
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Microsoft SharePoint 2013:
Developer Reference

Paolo Pialorsi

www.it-ebooks.info

http://www.it-ebooks.info/

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2013 by Paolo Pialorsi
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-7071-6

1 2 3 4 5 6 7 8 9 LSI 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, O’Reilly Media, Inc., Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Kenyon Brown

Production Editor: Christopher Hearse

Editorial Production: Zyg Group, LLC

Technical Reviewer: Jussi Roine

Copyeditor: Zyg Group, LLC

Indexer: Zyg Group, LLC

Cover Design: Twist Creative • Seattle

Cover Composition: Karen Montgomery

Illustrator: Rebecca Demarest

www.it-ebooks.info

http://www.it-ebooks.info/

This book is dedicated to my unique and infinite love: Paola!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

Introduction xix

PART I GETTING STARTED

ChaPteR 1 Microsoft SharePoint 2013: a quick tour 3

ChaPteR 2 SharePoint data fundamentals 31

PART II DEVELOPING SHAREPOINT SOLUTIONS

ChaPteR 3 Data provisioning 55

ChaPteR 4 SharePoint features and solutions 91

ChaPteR 5 Server Object Model 115

ChaPteR 6 LINQ to SharePoint 163

ChaPteR 7 Client-side technologies 201

PART III DEVELOPING SHAREPOINT APPS

ChaPteR 8 SharePoint apps 247

ChaPteR 9 the new SharePoint ReSt aPI 317

ChaPteR 10 Remote event receivers 351

PART IV EXTENDING SHAREPOINT

ChaPteR 11 Developing Web Parts 383

ChaPteR 12 Customizing the UI 421

ChaPteR 13 Web templates 465

ChaPteR 14 Business Connectivity Services 489

PART V DEVELOPING WORKFLOWS

ChaPteR 15 Windows Workflow Foundation 531

ChaPteR 16 SharePoint workflow fundamentals 549

ChaPteR 17 Developing workflows 579

ChaPteR 18 Advanced workflows 629

www.it-ebooks.info

http://www.it-ebooks.info/

vi Contents at a Glance

PART VI SECURITY INFRASTRUCTURE

ChaPteR 19 authentication and authorization infrastructure 661

ChaPteR 20 Claims-based authentication, federated identities,
 and Oauth 681

Index 735

www.it-ebooks.info

http://www.it-ebooks.info/

 vii

Contents

Introduction . xix

PART I GETTING STARTED

Chapter 1 Microsoft SharePoint 2013: A quick tour 3
What is SharePoint? . 3

Main benefits . 4

Share . 4

Organize . 5

Discover . 5

Build . 5

Manage . 6

SharePoint basic concepts . 6

SharePoint Central Administration . 6

SharePoint Administration via PowerShell . 8

Site collections and websites . 9

Lists, libraries, items, documents, and other apps11

App Parts and Web Parts .12

Architectural overview .13

Logical and physical architecture .15

Service applications . 17

The role of databases .18

SharePoint editions .19

SharePoint Foundation .19

SharePoint Server Standard .20

SharePoint Server Enterprise .20

SharePoint Online .21

www.it-ebooks.info

http://www.it-ebooks.info/

viii Contents

SharePoint for developers .21

ASP.NET integration .21

Server-side technologies .22

Client-side technologies .22

App Parts, Web Parts, and the UI .22

Data provisioning .23

Event receivers and workflows .23

Features, solutions deployment, and sandboxing23

Security infrastructure .24

Business Connectivity Services .24

Windows PowerShell for developers .24

Developer tools .24

SharePoint Designer 2013 .25

Microsoft Visual Studio 2012 .26

SharePoint Server Explorer .28

Solution Explorer and the Feature Designer .30

Summary. .30

Chapter 2 SharePoint data fundamentals 31
Lists of items and contents .31

Creating a new list .32

Standard list templates .34

Custom list templates .35

Views . 41

Creating a document library .44

Site columns .47

Content types .48

Sites .51

Summary. .52

www.it-ebooks.info

http://www.it-ebooks.info/

 Contents ix

PART II DEVELOPING SHAREPOINT SOLUTIONS

Chapter 3 Data provisioning 55
Site columns .55

Content types .60

Content type IDs .63

More about content types .67

Document content types .69

List definitions .70

List schema file .71

Defining a custom view .81

Summary. .89

Chapter 4 SharePoint features and solutions 91
Features and solutions .91

Feature element types .95

Feature deployment .97

Solution deployment .100

Packaging with Visual Studio 2012 .103

Upgrading solutions and features .105

Feature receivers .108

Handling FeatureUpgrading events .112

Summary. .114

Chapter 5 Server Object Model 115
Startup environment .116

Objects hierarchy .116

SPFarm, SPServer, SPService, and SPWebApplication 117

SPSite and SPWeb . 119

SPList and SPListItem . 125

SPDocumentLibrary and SPFile . 128

SPGroup, SPUser, and other security types .130

SPControl and SPContext . 132

www.it-ebooks.info

http://www.it-ebooks.info/

x Contents

Common and best practices .133

Resource disposal .133

Handling exceptions .136

Transactions .138

AllowUnsafeUpdates and FormDigest . 139

Real-life examples .140

Creating a new site collection .140

Creating a new website .142

Lists and items .143

Document libraries and files. .152

Groups and users .158

Summary. .161

Chapter 6 LINQ to SharePoint 163
LINQ overview .163

The goal of LINQ .165

LINQ under the hood .166

Introducing LINQ to SharePoint .169

Modeling with SPMetal.exe .170

Querying data .179

Managing data .184

Inserting a new item .186

Deleting or recycling an existing item .187

Advanced topics .188

Handling concurrency conflicts .188

Identity management and refresh .192

Disconnected entities .194

Model extensions and versioning .196

Summary. .198

Chapter 7 Client-side technologies 201
Architectural overview .201

Client Object Model .202

www.it-ebooks.info

http://www.it-ebooks.info/

 Contents xi

.NET Client-Side Object Model .203

Silverlight Client Object Model .213

The JSOM .218

Client Object Model examples .224

Creating a new list .225

Creating and updating a list item .226

Exception handling with lists .227

Deleting an existing list item .230

Paging queries of list items .230

Creating a new document library .231

Uploading and downloading documents .232

Checking documents in and out .233

Copying and moving files .233

The REST API .234

Querying for data with .NET and LINQ .237

Managing data .240

Summary .243

PART III DEVELOPING SHAREPOINT APPS

Chapter 8 SharePoint apps 247
Introducing apps .247

Development environment .248

Your first app .249

Sample SharePoint-hosted app outline .250

The app website .253

Provisioning content .254

Using the Client-Side Object Model .257

Inside AppManifest.xml .258

The General tab .259

The Permissions tab .260

The Prerequisites tab .265

The Supported Locales tab .267

The Remote Endpoints tab .268

www.it-ebooks.info

http://www.it-ebooks.info/

xii Contents

App Parts and custom UI extensions .270

Creating App Parts .270

Creating custom UI extensions .279

Autohosted apps .285

Creating an autohosted app .285

Converting a site to a SharePoint app .287

Handling a SQL Azure database .289

The SharePoint Chrome control. .292

Provider-hosted apps .296

Publishing apps and the Office Store .298

Deploying a SharePoint app .298

Publishing a SharePoint app .298

The corporate app catalog .301

The Office Store .303

Upgrading apps .308

App management configuration and deployment309

Security infrastructure .312

Summary. .316

Chapter 9 The new SharePoint REST API 317
Introducing the REST API .317

API reference .322

Querying data .325

Managing data .329

Cross-domain calls .333

Security .335

Common REST API usage .336

Creating a new list .338

Creating and updating a list item .339

Deleting an existing list item .341

Querying a list of items .342

Creating a new document library .343

Uploading or updating a document .344

Document check-in and checkout .345

www.it-ebooks.info

http://www.it-ebooks.info/

 Contents xiii

Deleting an existing document .347

Querying a list of documents. .348

Summary. .349

Chapter 10 Remote event receivers 351
Architecture of remote event receivers. .351

Architecture and contracts .352

Scopes and types of receivers .356

A sample remote event receiver .358

Deployment and registration .367

App-related receivers .370

Callback capability .377

Security .379

Summary. .380

PART IV EXTENDING SHAREPOINT

Chapter 11 Developing Web Parts 383
Web Part architecture .383

A Hello World Web Part .384

Web Part deployment .388

Real Web Parts .392

Classic Web Parts .392

Visual Web Parts .395

Configurable Web Parts .398

Configurable parameters .398

Editor Parts .400

Handling display modes .404

Custom Web Part verbs .405

Connectable Web Parts .407

Deployment and versioning .413

Security: Safe controls and cross-site-scripting safeguards 417

www.it-ebooks.info

http://www.it-ebooks.info/

xiv Contents

The SharePoint-specific WebPart class .419

Summary. .420

Chapter 12 Customizing the UI 421
Custom actions .421

The CustomAction element .421

The CustomActionGroup element .428

The HideCustomAction element .430

Server-side custom actions .432

Ribbons .434

Ribbon commands .434

Custom content .446

Images and generic content. .446

Application pages .448

Content pages, Web Part pages, and galleries450

Status bar and notification area .456

Dialog framework .461

Summary. .464

Chapter 13 Web templates 465
The core techniques .465

Site definitions .466

Custom site definitions .471

Site definitions with Visual Studio .474

Site and web templates .482

Site definitions vs. web templates .487

Summary. .487

Chapter 14 Business Connectivity Services 489
Overview of BCS .489

Accessing a database .491

BDC authentication modes .499

www.it-ebooks.info

http://www.it-ebooks.info/

 Contents xv

BDC model file .504

Offline capabilities .508

Accessing a WCF/SOAP service .510

Consuming OData services .516

.NET custom model .519

Developing a custom model from scratch. .521

Associating entities .525

Summary. .527

PART V DEVELOPING WORKFLOWS

Chapter 15 Windows Workflow Foundation 531
Architecture of Windows Workflow Foundation 4.5 531

Your first workflow project .535

Hosting and execution .539

Custom activities .540

Runtime scheduler and workflow process life cycle 544

Workflow persistence .546

Summary. .548

Chapter 16 SharePoint workflow fundamentals 549
The new architecture .549

Deployment of Workflow Manager 1.0 .553

Your first workflow with SharePoint Designer 2013561

More about workflows .573

Exception management .574

Reusable workflows .575

Versioning workflows .576

Summary. .578

www.it-ebooks.info

http://www.it-ebooks.info/

xvi Contents

Chapter 17 Developing workflows 579
Consuming REST services .579

Visual Studio 2012 for creating workflows .585

Workflow and SharePoint apps .598

Workflow forms .604

Custom workflow tasks .615

Workflow deployment .620

Farm-level workflow .620

SharePoint app workflow .624

Flowcharts and state machines .625

Summary. .626

Chapter 18 Advanced workflows 629
Custom actions .629

Creating a declarative activity .630

Deployment of declarative actions .634

Creating a code activity .639

Deployment of code activities .640

Security and workflow app principal .643

Workflow Services Manager .649

Using Workflow Services Manager .650

Summary. .658

PART VI SECURITY INFRASTRUCTURE

Chapter 19 Authentication and authorization infrastructure 661
Authentication infrastructure .661

Claims-based authentication .663

Migrating from classic to claims-based mode664

Claims-based authentication types .665

Windows authentication .667

Forms-Based Authentication .669

www.it-ebooks.info

http://www.it-ebooks.info/

 Contents xvii

Configuring FBA with SQL Membership Provider .670

Configuring the SQL Server database .670

Configuring SharePoint web.config files .673

Configuring SQL Server permissions .675

Configuring SharePoint .675

Enabling FBA users or roles .676

Authorization infrastructure .677

Summary. .680

Chapter 20 Claims-based authentication, federated identities,
and OAuth 681

Claims-based authentication and WS-Federation 681

Implementing an IP/STS with WIF .685

Building an STS .686

Building a relying party. .694

SharePoint trusted IPs .699

Trusting the IP/STS .699

Configuring the target web application .702

Creating a custom claims provider .704

Federating with Windows Azure ACS .713

Understanding OAuth .728

Configuring server-to-server apps .731

Summary. .733

Index 735

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

 xix

Introduction

Microsoft SharePoint is one of the biggest productivity frameworks released by
Microsoft during the last 10 years. SharePoint 2013 is just one more step of a

fabulous journey (that began in 2001) in the world of business productivity, collabora-
tion, knowledge sharing, search technologies, enterprise social networking, and web
content management.

From a developer’s perspective, SharePoint is a rich set of tools, classes, libraries, and
controls that are useful for building custom solutions and apps focused on making busi-
ness collaboration and enterprise social networking possible.

This book is an organized reference that provides the support that you need as you
develop real and concrete SharePoint solutions and apps, taking advantage of the main
libraries and tools offered by the product. This book covers the key topics in the field of
developing on SharePoint, targeting both junior and intermediate programmers who
want to improve their knowledge of SharePoint.

Beyond the explanatory content, each chapter includes clear examples and down-
loadable sample projects that you can explore for yourself.

Who should read this book

This book exists to help existing Microsoft .NET developers understand the architecture
and core topics of SharePoint 2013 while building Internet, intranet, and extranet sites,
as well as developing custom solutions and SharePoint apps.

Although most readers likely will have no prior experience with SharePoint 2013, the
book is also useful for those familiar with earlier versions of SharePoint and are inter-
ested in getting up to date on the newest features.

assumptions
This book expects that you have at least a minimal understanding of .NET development
and object-oriented programming concepts. Moreover, to develop SharePoint solu-
tions, you need to have a solid knowledge of ASP.NET and related technologies, such as
Simple Object Access Protocol (SOAP), Microsoft Windows Communication Foundation
(WCF), and web services. Although you can extend and customize SharePoint with most
(if not all) .NET language platforms, this book includes examples in C# only. If you are

www.it-ebooks.info

http://www.it-ebooks.info/

xx Introduction

not familiar with this language, you might consider reading Microsoft Visual C# 2012
Step by Step, by John Sharp (Microsoft Press, 2013).

With a heavy focus on web development and server-side technologies, this book
assumes that you have a basic understanding of web platforms, application servers,
and scalable software architectures. Some of the topics covered in this book require a
robust knowledge of .NET Framework 4.x, and WCF in particular.

Who should not read this book

This book does not target IT professionals who are seeking information on how to
deploy, configure, and maintain a SharePoint farm. However, some discussion about
deployment is given throughout the book for the sake of completeness. Similarly, this
book does not cover topics concerning site branding or public-facing Internet sites.

Organization of this book

This book is divided into six parts, each of which focuses on a different aspect or tech-
nology within SharePoint 2013.

Part I, “Getting started,” provides a quick overview of SharePoint 2013 and its data
foundations, with a focus on using the technology as shipped, but not yet extending it
with custom code.

Part II, “Developing SharePoint solutions,” focuses on the core libraries for develop-
ing solutions on the server side using the SharePoint Server Object Model and the new
LINQ to SharePoint provider. It also focuses on developing for the client side, using the
various flavors of the SharePoint Client Object Model and SOAP services. This part of
the book is full of examples and code excerpts, and you can use it as a concrete refer-
ence for everyday solutions.

Part III, “Developing SharePoint apps,” covers how to develop SharePoint apps,
which are some of the most interesting new features of SharePoint 2013 from a devel-
oper perspective. You will find a step-by-step guide about how to create various kinds
of apps, as well as information about the new Representational State Transfer (REST)
APIs introduced with SharePoint 2013 for consuming SharePoint from external apps.
Moreover, you will learn how to develop remote event receivers to create apps capable
of reacting to events happening in SharePoint.

www.it-ebooks.info

http://www.it-ebooks.info/

 Introduction xxi

Part IV, “Extending SharePoint,” provides deep coverage of the various techniques
and extensibility points available for customizing and extending the native SharePoint
environment. Four chapters full of realistic examples will help you learn how to create
Web Parts, custom pages, and web templates. You will also learn how to take advan-
tage of Business Connectivity Services (BCS) to consume external data sources.

Part V, “Developing workflows,” delves into workflow development. It starts with
a brief introduction of Windows Workflow Foundation (WF) 4.0 and the new work-
flow architecture in SharePoint 2013, moving to workflows designed with SharePoint
Designer 2013 or developed with Microsoft Visual Studio 2012. This part ends with
more advanced topics, such as workflow forms, custom activities, and workflow man-
agement services.

Part VI, “Security infrastructure,” examines the security infrastructure of SharePoint
from an architectural viewpoint, covering topics like authentication, authorization, and
the claims-based approach, and delves into identity federation and custom claims-
based scenarios. You will learn how to federate SharePoint 2013 with Windows Azure
Access Control Services (ACS) and with a custom self-developed identity provider.

Finding your best starting point in this book
The different sections of this book cover a wide range of technologies associated
with SharePoint. Depending on your needs and your existing understanding of the
SharePoint platform, you might wish to focus on specific areas of the book. Use Table 1
to determine how best to proceed.

TABLE 1 Where to start

If you are Follow these steps

New to SharePoint development or an
ASP.NET developer

Focus on Parts I, II, III, and IV, or read through the entire
book in written order.

Familiar with earlier releases of
SharePoint

Briefly skim Part I; Chapter 3, “Data provisioning,” in Part
II; and Part III if you need a refresher on the core con-
cepts. Then read about the new app model in Chapter 8,
“SharePoint apps,” in Part III; and be sure to read Parts V
and VI.

Interested primarily in developing
workflows

Read Part II; Chapter 9, “The new SharePoint REST API,” in
Part III; and Part V.

Interested primarily in developing
SharePoint apps

Read Part I; Chapter 3 and Chapter 4, “SharePoint features
and solutions,” in Part II; and Part III.

Most of the book’s chapters include hands-on samples that let you try out the
concepts you’ve learned. No matter which sections you choose to focus on, be sure to
download and install the sample applications on your system.

www.it-ebooks.info

http://www.it-ebooks.info/

xxii Introduction

Conventions and features in this book

This book presents information using conventions designed to make the information
readable and easy to follow.

■■ In most cases, the book includes exercises for Microsoft Visual C# programmers.

■■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a task successfully.

■■ Language keywords (apart from code blocks) appear in italic font.

■■ A vertical bar between two or more menu items (for example, File | Close) means
that you should select the first menu or menu item, then the next, and so on.

System requirements

You will need the following hardware and software to complete the practice examples
in this book:

■■ Windows 7 (x86 and x64), Windows 8 (x86 and x64), Windows Server 2008 R2
(x64), or Windows Server 2012 (x64)

■■ Microsoft Visual Studio 2012 (Ultimate, Premium, or Professional)

■■ Microsoft Office Developer Tools for Visual Studio 2012

■■ A valid Microsoft Office 365 developer subscription

■■ A computer that has a 1.6 GHz or faster processor (2 GHz recommended)

■■ 1 GB (32-bit) or 2 GB (64-bit) RAM (add more RAM if running SharePoint on-
premises in virtual machines)

■■ 10 GB of available hard disk space

■■ 5400 RPM hard disk drive

■■ DirectX 9–capable video card running at a resolution of 1024×768 or higher

■■ DVD-ROM drive (if installing Visual Studio from DVD)

■■ Internet connection to download software and chapter examples

www.it-ebooks.info

http://www.it-ebooks.info/

 Introduction xxiii

To run an on-premises SharePoint farm, you will need the following:

■■ Windows Server 2008 R2 Service Pack 1 (SP1) (x64) or Windows Server 2012
(x64)

■■ SQL Server 2008 R2 SP1 (x64) or SQL Server 2012 (x64)

■■ A computer that has at least a 64-bit four-core processor

■■ A minimum of 8 GB RAM (16GB RAM recommended)

■■ 80 GB of available hard disk space

Depending on your Windows configuration, you might require local administrator
rights to install or configure Visual Studio 2012, SQL Server 2008/2012, and SharePoint
2013 products.

Code samples

You can download the code samples for this book from the following page:

http://aka.ms/SP2013DevRef/files

The code sample ZIP file includes a child ZIP file for each chapter, which provides
sample projects. In particular, you can find the following:

■■ Ch-03-Data-Provisioning.zip Includes a single Microsoft Visual Studio
2012 project, which provisions some data structures (content types and list
definitions).

■■ Ch-05-Server-Object-Model.zip Includes a single Visual Studio 2012 project
illustrating how to use the SharePoint Server Object Model.

■■ Ch-06-LINQ-for-SharePoint.zip Includes a single Visual Studio 2012 project
showing how to use LINQ to SharePoint.

■■ Ch-07-Client-Side-Technologies.zip Provides four Visual Studio 2012 proj-
ects, which illustrate, respectively, how to work with the .NET Client-Side Object
Model (CSOM), the JavaScript Object Model (JSOM), the Microsoft Silverlight
Object Model, and the REST service.

■■ Ch-08-SharePoint-Apps.zip Comprises a set of SharePoint app projects that
show how to create apps providing the various hosting models (SharePoint
hosted, autohosted, and provider-hosted).

www.it-ebooks.info

http://www.it-ebooks.info/

xxiv Introduction

■■ Ch-09-New-REST-API.zip Illustrates how to use the new REST APIs through a
sample SharePoint app project.

■■ Ch-10-Remote-Event-Receivers.zip Explains how to create remote event
receivers by providing a single Visual Studio 2012 project of a SharePoint app.

■■ Ch-11-Developing-Web-Parts.zip Includes a couple of Visual Studio 2012
projects, which provide samples of basic web parts, as well as of advanced web
parts.

■■ Ch-12-Customizing-the-UI.zip Includes a single Visual Studio 2012 project
that provides many samples about how to create custom pages, custom rib-
bons, custom actions, and so on.

■■ Ch-13-Web-Templates.zip Provides samples about how to create a site defini-
tion, a site template, and a web template.

■■ Ch-14-Business-Connectivity-Services.zip Includes a Visual Studio 2012
project of a SharePoint app consuming a third-party OData service, a sample
project of a custom BCS model, and a WCF service available for consuming via
BCS.

■■ Ch-15-WF45-Intro.zip Provides a simple Visual Studio 2012 project that illus-
trates the basic capabilities of WF 4.5, aside from SharePoint 2013.

■■ Ch-16-SP-Workflow-Fundamentals.zip Includes basic samples of workflows
for SharePoint 2013 created by using Microsoft SharePoint Designer 2013.

■■ Ch-17-Workflow-Development.zip Provides some Visual Studio 2012 projects
that illustrate how to create basic workflows, workflows in SharePoint app, cus-
tom workflow forms, and custom tasks.

■■ Ch-18-Advanced-Workflows.zip Provides three Visual Studio 2012 projects
illustrating how to create advanced workflows and custom actions, and how to
consume the new workflow management services.

■■ Ch-20-Claims-Fed-OAuth.zip Includes a set of Visual Studio 2012 projects
that show how to create a custom identity provider, as well as a custom claims
provider.

You can use these sample projects as a reference for everyday needs, and you may
find it useful copy code excerpts from these samples into your real solutions.

www.it-ebooks.info

http://www.it-ebooks.info/

 Introduction xxv

Acknowledgments

This book has been a long and time-consuming process for me. I have worked toward
the completion of this project for about one year. However, a book is the result of the
work of many people. Unfortunately, only the author has his or her name on the cover.
This section is only partial compensation for the other individuals who helped out.

First, I would like to thank Microsoft Press, O’Reilly, and all the publishing people
who contributed to this book project. Mainly, I’d like to thank Ben Ryan and Kenyon
Brown, who—once again—trusted in me and gave me the opportunity to realize an
idea I have believed in for a long time. Ken supported me through this book project for
more than a year; he helped me focus on the content outline, and provided suggestions
and guidelines to accomplish this task. Another person deserving a really big acknowl-
edgment is Linda Laflamme, who assisted me along the whole project timeline, keeping
me on track, reviewing my chapters, and providing thorough suggestions, feedback,
and tips. From the copyediting team, I would like to thank Christopher Hearse and
Damon Larson for their accurate work.

I would also like to thank Jussi Roine, one of the most brilliant SharePoint Microsoft
Certified Masters (MCMs) that I know, for his accurate, smart, proactive, and great tech-
nical review. Jussi, you did a really great job—thank you very much, buddy! You deserve
gallons of beer!

I will never stop thanking my mentor, Giovanni Librando. As usual, Giovanni pro-
vided me a wealth of ideas, feedback, and tips to achieve this goal.

I’d like to thank my parents and my original family for their support and presence
during the last year and for having trusted me during my entire professional career.

Lastly, but most importantly, I want to thank my family—my wife, Paola; my son,
Andrea; and my daughter, Marta—for their support, patience, and understanding
during the last year. It has been a difficult and very busy year. You have supported me
greatly, and you renounced spending many hours with me because of this book. I know
I’ve asked a huge sacrifice of you, and I want to thank you for your support, trust, and
understanding!

www.it-ebooks.info

http://www.it-ebooks.info/

xxvi Introduction

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site at http://www.oreilly.com:

http://aka.ms/SP2013DevRef/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter:

http://twitter.com/MicrosoftPress

www.it-ebooks.info

mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com
http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress
http://www.it-ebooks.info/

 1

PART I

Getting started

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

 3

C H A P T E R 1

Microsoft SharePoint 2013:
a quick tour

This chapter explores Microsoft SharePoint 2013 and what it offers to developers who are creat-
ing real-world business solutions. To begin, you will focus on the main features and architecture

of SharePoint, as well as the rich set of capabilities the platform provides. Next, you will compare the
various SharePoint editions. Finally, you will explore the available developer tools. If you already know
SharePoint 2013 or have worked with it, you can probably skip this chapter; however, if you haven’t
yet acquired SharePoint at all, or if you are working on previous versions of SharePoint, such as
SharePoint 2007 or SharePoint 2010, you should continue on with the tour.

What is SharePoint?

Microsoft often defines SharePoint as a business collaboration platform that makes it easier for
people to work together. As a software developer, I prefer to define it as a platform with a rich frame-
work for developing business solutions. From a developer’s perspective, SharePoint is simply a rich set
of tools, classes, libraries, controls, and so on, that are useful for building business solutions focused
on collaboration, content management, social networking, content searches, and more.

Many people think of SharePoint as a platform that’s ready to use for building websites—usually
for intranet or extranet scenarios. That’s true, but it’s less than half the story! Certainly, SharePoint is a
platform for building websites, and of course, it can target intranet and extranet sites. But it is much
more, as well; you can use it to build any kind of web solution, including Internet publishing sites, by
taking advantage of its well-defined and ready-to-use set of tools, based on a secure, scalable, and
maintainable architecture. You can think of SharePoint as a superset of Microsoft ASP.NET, with a
broad set of services that can speed up the development of web-based collaborative solutions.

You should use SharePoint as a shared connection point between users, customers, and whoever
else uses your websites and the applications they utilize. The basic idea of SharePoint is to share con-
tent, applications, and data to improve collaboration and provide a unique user experience.

SharePoint itself is primarily a container of content and apps. Content is organized in lists, and each
list is made up of items. A list can consist of simple items with custom metadata properties called
fields. Lists can also be libraries of documents, which are a particular kind of item that correspond to
document files. Almost always when you develop a SharePoint solution, you manage lists and items.

www.it-ebooks.info

http://www.it-ebooks.info/

4 PaRt I Getting started

In Chapter 2, “SharePoint data fundamentals,” you will learn more about the architecture of data
management in SharePoint 2013.

Main benefits

Microsoft grouped the features and services provided by SharePoint 2013 into five main categories of
benefits: Share, Organize, Discover, Build, and Manage. Figure 1-1 shows these benefits, and the sec-
tions that follow provide a brief description of each.

FIGURE 1-1 The native benefits of the SharePoint 2013 platform.

Share
SharePoint 2013 enables you to share ideas and content with others. For example, you can use
SharePoint for storing and sharing documents, contacts, and tasks; organizing meetings; managing
business processes; and more. When you share something with SharePoint, you can also put it in the
social network of your colleagues, customers, partners, and contacts in general, regardless of whether
they are on your corporate network, on Facebook, on Twitter, or elsewhere. Through SharePoint,
people can discover what you shared, as well as share contents with you. Using the new social features
of SharePoint 2013, you can keep track of what your colleagues are working on.

With SharePoint 2013 and the new Microsoft Office 2013, you can publish documents and content
from any Office application, sharing them with people inside or outside your organization. You can
take advantage of these capabilities from your desktop computer as well as from any Internet-capable
mobile device, such as Microsoft Surface and other tablets running Microsoft Windows 8 or RT, as
well as smartphones based on the Windows Phone operating system or devices based on iOS.

When you share content through SharePoint, you can update your activity feed in order to make
people aware of what you are doing, keeping in touch with your colleagues wherever you are, with
any kind of device.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 5

Organize
Through SharePoint 2013, you can organize your projects and tasks, and even integrate SharePoint
with Microsoft Outlook and Microsoft Project to keep your projects on track. The product will help
you manage tasks, as well as their status and due dates. You will be able to keep your team con-
nected, through specific team sites, which enable you and others to track meetings, share documents,
store emails, and do whatever else is useful for your team collaboration.

The new SkyDrive Pro feature provided by SharePoint 2013, which supersedes SharePoint
Workspace, allows you and your colleagues to sync all the shared files to your desktop, as well as to
your tablet, with Windows 8. This way, the content will always be with you, even when you are offline,
traveling, or working at home. Upon connection with the network, any files you worked on offline will
be automatically synchronized with their online counterparts.

Discover
Since it was first introduced, one of stand-out features of SharePoint has been its search engine.
Having a platform for storing, sharing, and organizing content would be useless without the capabil-
ity to discover and retrieve it. With SharePoint 2013, you can search for content via a professional
search engine, which can be customized for your needs.

With SharePoint 2010, Microsoft introduced an improved and more accurate relevance engine that
was based on usage and history. Moreover, it included the FAST for SharePoint edition for support-
ing large-scale search scenarios, together with professional search-oriented features. Now, the FAST
for SharePoint engine is no longer a separate product, and all of its main features are included in
the standard SharePoint 2013 search engine. In addition, the SharePoint 2013 search engine has the
ability to suggest more relevant results and provide recommendations on people and documents
to follow. The search engine is now people-centric and social-centric, enabling you to find people
and connect with them, based on their interests, projects they contributed to, and documents they
worked on.

You can use all the content, search results, people, and insights to create reports, scorecards,
dashboards, and whatever else is helpful for providing meaningful data. Microsoft Excel 2013, Excel
Services, PowerPivot, and Power View for SharePoint can assist you in this task as well.

Given all these capabilities, you can consider SharePoint 2013 a solid platform for building data
and content-based, search-driven applications, oriented toward social networking and collaboration.

Build
One of the most exciting new features of SharePoint 2013 is its apps-extensibility model. Thanks to
this new feature, you can develop custom apps for Office 2013 and SharePoint 2013, using the power
of the cloud. You can design everything from business apps for the marketplace at large to a corpo-
rate catalog targeting your employees.

www.it-ebooks.info

http://www.it-ebooks.info/

6 PaRt I Getting started

Developing a custom app is as simple as combining the apps-extensibility model with such well-
known technologies and protocols as JavaScript, HTML, OAuth, and the versatility of the cloud. If you
prefer, of course, you can also host your custom apps on-premises, but hosting an app in the cloud
provides you with a more scalable infrastructure ready to grow with your business. For an in-depth
discussion of creating custom apps, see Part III, “Developing SharePoint apps.”

Manage
Nowadays, a key aspect of an IT solution is management, both from a tooling perspective and from
the viewpoint of budget and costs reduction. SharePoint 2013 gives you a mature, maintainable, and
manageable environment, which can be hosted on-premises as well as in the cloud, using Microsoft
Office 365. You can also keep some of your services and content on-premises while deploying others
on Office 365, within a hybrid infrastructure.

The new capabilities of Office 365 reduce the time to market for your solutions, allowing you to
concentrate your resources and time on the project, the contents, and the custom features, rather
than on the infrastructure under the cover.

Many of the solutions in this book are suitable both for on-premises and cloud scenarios, thanks to
the common infrastructure behind the scenes.

SharePoint basic concepts

To give you a better understanding of what SharePoint is and how to best use its features, this section
takes a brief tour through the product and provides introductions to a few of its most useful features
and capabilities.

SharePoint Central administration
The target audience for this book consists of SharePoint developers, not IT professionals. Therefore,
the book does not cover administrative tasks, and it does not provide instructions on how to set up
SharePoint from scratch. Nevertheless, as soon as you install a SharePoint server farm, you are pre-
sented with an administrative console called SharePoint Central Administration (SPCA) with which you
manage the entire farm.

More Info To learn how to deploy and administer a SharePoint farm, read Microsoft
SharePoint 2013 Administrator’s Companion, by Brian Alderman (Microsoft Press, 2013).

SPCA is a website based on the SharePoint engine; it’s designed to administer and monitor a
SharePoint server farm. When you deploy a new farm, by default the first server takes the role of
SPCA host. Nevertheless, in a well-defined SharePoint server farm, you should deploy at least two
servers hosting SPCA, for better availability and business continuity of the farm. Using SPCA, you

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 7

can configure servers and servers’ roles, define farm topology, and create new web applications and
site collections.

Because SPCA is an actual SharePoint site, you can use everything you will learn in this book to
customize this site, too. Thus, you can build solutions to extend the SharePoint administrative inter-
face. However, keep in mind that because SPCA is an administrative site responsible for the whole
farm, you should avoid using it as a development or test site.

The following list describes the main areas of SPCA:

■■ Application Management Here, you can manage existing web applications, as well as cre-
ate new web applications, site collections, and content databases. You will learn more about
these topics later in this chapter and in Chapter 2.

■■ Monitoring From this area, you have access to a set of tools for monitoring the farm, check-
ing for issues, and solving problems.

■■ Security Here, you can manage administrative accounts and services’ accounts of the farm,
and configure all the security-related features.

■■ General Application Settings This is the area where you manage general settings, such
as site directory and search engine settings, content deployment features, form services,
and more.

■■ System Settings From this area, you can manage servers in the farm, the farm topology,
services on servers, and farm customization features.

■■ Backup and Restore This area provides access to all the tools for managing and handling
disaster recovery tasks.

■■ Upgrade and Migration Here, you can manage upgrade and patching tasks.

■■ Apps This area provides access to the app configuration and management tools. You can
configure and monitor installed apps and apps licenses, as well as your corporate catalog
of apps.

■■ Configuration Wizards This area provides a wizard to configure the farm from scratch.

Note You should consider using the configuration wizards very carefully, and in most cases
you should avoid using them. In fact, a real SharePoint farm should never be installed using
a wizard. On the contrary, you or the IT professionals you work with should carefully design
the farm, assign roles to the servers, determine the services to run, and in general think
about and model whatever else is needed to make your SharePoint farm work properly.

Figure 1-2 shows the SPCA home page. Note the status bar at the top of the screen, which in
Figure 1-2 highlights some issues regarding the farm’s current configuration that were detected by

www.it-ebooks.info

http://www.it-ebooks.info/

8 PaRt I Getting started

the SharePoint Health Analyzer service. The SharePoint Health Analyzer is a very useful tool that mon-
itors the status of the farm, helping to maintain it at the optimum service level.

FIGURE 1-2 The SPCA home page of a SharePoint 2013 farm.

SharePoint administration via PowerShell
As with many other server products from Microsoft, SharePoint can be managed using Windows
PowerShell and scripting. SPCA is a good option for managing a SharePoint farm through a set of
visual tools and a web browser. However, having a text-based scripting engine to query, manage,
configure, and even install a SharePoint farm from scratch is a fundamental aid for IT professionals. In
SharePoint 2013, everything you can do with SPCA can also be done using some PowerShell scripts.
Moreover, PowerShell enables additional controls that are not available from SPCA.

The power of having a scripting engine for managing almost every aspect of a SharePoint farm is
enormous and unpredictable. For example, you can define a PowerShell script to deploy a farm from
scratch, or you can use a script to add a server to an already existing farm. You can create and config-
ure web applications, sites, and services using a script. Moreover, you can create scripts to configure
the topology of your farms. All these scripts become extremely useful and powerful whenever you
need to reproduce the same tasks for multiple customers or sites.

Even if you are a developer, you can benefit from having a rich library of predefined and parame-
ter-based PowerShell scripts. In fact, you can use those scripts to deploy development farms, as well

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 9

as test environments. Moreover, using a script, you can deploy your customizations onto an on-prem-
ises farm. This book will not cover PowerShell in depth, because there are many other topics to cover
that deal more specifically with SharePoint development. Nevertheless, you should consider reading a
book on PowerShell for SharePoint as a companion to this book.

More Info To learn more about Windows PowerShell, consult “Windows PowerShell” on
MSDN (http://msdn.microsoft.com/en-us/library/dd835506.aspx) or Windows PowerShell
Pocket Reference, by Lee Holmes (O’Reilly, 2012).

Site collections and websites
One fundamental concept embodied by SharePoint is that of a site collection. A site collection is
a logical container that holds a set of SharePoint sites hosted in a web application. Whenever you
work in SharePoint and you want to publish a site, regardless of whether it’s an Internet, intranet, or
extranet solution, you will have at least one web application with one site collection, made of one site.
Grouping sites in site collections allows those sites to share content, administrative settings, security
rules, and, optionally, users and groups.

To create a new site collection, you need a web application, which you can create by selecting
the Manage Web Applications menu item from the SPCA home page, or by using the correspond-
ing PowerShell command. Avoid using the web application that hosts SPCA. After you have a web
application, you can create a new site collection by selecting the Create Site Collection menu item on
the SPCA home page. A dialog box will appear, asking you for a title, a description, and a URL relative
to the parent web application.

Every site collection is administered by a site collection administrator, who is a user authorized
to administer an entire site collection, including the websites it contains. Every site collection must
have at least one site collection administrator, but it can have more than one. Thus, when creating
a new site collection, you need to designate a primary site collection administrator and, optionally, a
secondary one. After having created a site collection, you will be able to add as many site collection
administrators as you like. A site collection administrator has the rights to create, update, or delete
any site contained in a site collection. The administrator also has full rights to administer content
within those sites.

When you create a site collection, you should also choose a template from which to start. If you
need, you can select it from a number of predefined templates that are shipped with SharePoint.
By default, the template will create a new site collection with at least one site at the root of the site
collection. Templates are divided into functional groups and into two families. In fact, SharePoint
2013 comes with a new family of templates, as well as the previous template family from SharePoint
2010, for backward compatibility. Following are the five main functional groups of SharePoint 2013
templates:

■■ Collaboration These are sites whose structure has been designed to facilitate collaboration.
The Collaboration group includes the following templates: Team Site, Blank Site, Document

www.it-ebooks.info

http://www.it-ebooks.info/

10 PaRt I Getting started

Workspace, Blog, Group Work Site, Developer Site, Project Site, Community Site, and Visio
Process Repository.

■■ Meetings This group contains templates for sites related to meetings and meeting orga-
nization. The available templates are Basic Meeting Workspace, Blank Meeting Workspace,
Decision Meeting Workspace, Social Meeting Workspace, and Multipage Meeting Workspace.

■■ Enterprise These templates target enterprise-level needs in the areas of document manage-
ment, policies, and so on. They include Document Center, Discover Center, Records Center,
Business Intelligence Center, Enterprise Search Center, My Site Host, Community Portal, and
Basic Search Center.

■■ Publishing This group corresponds to sites intended for web-publishing purposes. The
available templates are Publishing Portal, Enterprise Wiki, and Product Catalog.

■■ Custom This is where you can develop your own site templates. Also in this group is a list of
all the available custom templates, if any exist.

Figure 1-3 shows the home page of a site collection created by using the Team Site template of
SharePoint 2013.

FIGURE 1-3 The home page of a Team Site template site collection.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 11

Lists, libraries, items, documents, and other apps
Every SharePoint site is composed of lists of items. When the items are simple—that is, they don’t
correspond to documents or files, but are made of custom metadata properties only—they’re
termed lists and list items. When the items correspond to files, they’re called document libraries or
just libraries.

Every site template includes some predefined lists that are created when you construct a site
using that template. For example, a team site provides a Documents library, a Site Assets library, a
Site Pages library, and a few other predefined lists and libraries. Regardless of the site template you
start from, you can always create new lists, libraries, and content, as well as activate features to cus-
tomize your site.

You can browse the contents of these lists and libraries, and, if you have the proper permissions,
you can create new apps, which can be lists of contents, libraries, or custom apps either taken from
the public marketplace or installed from the corporate catalog. Consider that in SharePoint 2013,
everything is called an app. However, a list or a library is still what it is—nothing more and nothing
less. You can also add items to already existing lists or upload new files (for libraries) by simply drag-
ging and dropping them from the file system to the webpage. Figure 1-4 shows the UI of SharePoint
2013 while browsing the contents of a document library.

FIGURE 1-4 The default UI of SharePoint while browsing the contents of a document library.

www.it-ebooks.info

http://www.it-ebooks.info/

12 PaRt I Getting started

Note also that Figure 1-4 shows the ribbon, which is a feature introduced with SharePoint 2010, to
better support end users through a UI similar to the well-known Office interface.

When you want to create a new app, you simply click the gear icon, which is located in the upper-
right corner of the webpage, and then select Add An App. As shown in Figure 1-5, you’ll see the Apps
You Can Add list, from which you can select the type of app that you would like to create.

FIGURE 1-5 The UI for adding a new app to a SharePoint site.

If none of the supplied templates of lists and libraries quite fits your needs, you can try or buy an
app from the marketplace, and you can install an app from a corporate catalog. Of course, in order to
access these, your farm should be connected to the Internet and configured for supporting apps.

app Parts and Web Parts
App Parts are new features of SharePoint 2013, enabling you to enrich pages with external apps and
content, which you can create on site or download from third-party sites or the cloud—for example,
through the marketplace. An App Part is a block of HTML code, empowered with JavaScript and
secured with OAuth, typically hosted outside the current site, and eventually integrating and/or
consuming some contents within the current site. Later, in Part III of this book, you will learn how to
create App Parts and how to consume them from a SharePoint site.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 13

Web Parts have been some of the most notable features of SharePoint since its early versions. In
fact, in SharePoint you can define pages made of configurable building blocks (Web Parts) that can
be enabled, moved, or hidden by end users. The goal of this feature is to allow users to define their
own pages, selecting content from a set of available Web Parts, with full personalization. Every page
made of Web Parts is called a Web Part page.

With SharePoint 2013, the importance of Web Parts is declining, while the use of App Parts is
becoming more prominent. You can think about App Parts as the heirs of Web Parts. A typical
SharePoint 2013 solution contains some custom lists and document libraries, along with some apps
presented as App Parts and configured in custom pages that show and manage the data stored in
those lists and libraries, as well as outside the current site.

Architectural overview

In this section, you’ll take a look at SharePoint architecture from a developer’s perspective. Figure 1-6
shows some of the main components of SharePoint, from the foundation elements up to the main
enterprise-level features.

FIGURE 1-6 The architecture of SharePoint 2013.

www.it-ebooks.info

http://www.it-ebooks.info/

14 PaRt I Getting started

At the very base of SharePoint 2013 sits the operating system. Starting with SharePoint 2013, the
minimum requirement for a production environment is Microsoft Windows Server 2008 R2 Service
Pack (SP) 1 (Standard, Enterprise, or Datacenter) or Microsoft Windows Server 2012 (Standard or
Datacenter). Although in SharePoint 2010 it was possible to install the product on a workstation
machine running Microsoft Windows 7 or Microsoft Windows Vista SP1/SP2, this is no longer allowed
with SharePoint 2013. Because SharePoint 2013 is available only in 64-bit versions, the minimum
requirement for a deployment environment is a server-based 64-bit operating system (Windows 8
does not qualify as a host operating system for SharePoint 2013).

More Info For further details about the software and hardware requirements of SharePoint
2013, read the document “Hardware and Software Requirements for SharePoint 2013” on
TechNet Online, at http://technet.microsoft.com/en-us/library/cc262485.aspx.

In addition to the operating system, SharePoint 2013 also requires a database server based on
Microsoft SQL Server 2008 R2 SP1 or Microsoft SQL Server 2012. Regardless of which edition of
SQL Server you plan to use, you must be running a 64-bit version of the product. SharePoint uses
the SQL Server database to store the configuration of SharePoint server farms, as well as the contents
of deployed websites and the configuration and contents of all the services under the cover of the
overall farm infrastructure.

On top of the operating system and database is an application server provided by Internet
Information Services (IIS) 7.5. IIS 7.5 is mandatory, both because it hosts the web applications and
because it publishes endpoints for SharePoint infrastructure services, making use of the Windows
Process Activation Service (WAS) feature of IIS 7. Use of IIS 8 is suggested in new scenarios that you
build from scratch, allowing you to take advantage of all the new features of Windows Server 2012
and IIS 8.

More Info You can find more details about WAS on the “Hosting in Windows Process
Activation Service” page on MSDN, at http://msdn.microsoft.com/library/ms734677.aspx.

Because SharePoint 2013 is based on Microsoft .NET Framework 4.5 and extends ASP.NET 4.5, the
infrastructure requires .NET Framework 4.5. Another element at the foundation of SharePoint 2013
is the Windows Identity Foundation 1.0 framework, which provides claims-based services, extended
in order to support OAuth and the new security model of SharePoint 2013. Part VI of this book,
“Security infrastructure,” digs deeper into these topics.

On top of this foundation sits Microsoft SharePoint Foundation 2013, which is a free platform
for building basic SharePoint solutions. Although free and the most basic edition of SharePoint,
SharePoint Foundation 2013 contains a great deal of functionality that developers can use to meet
the needs of basic portal scenarios.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 15

At the top of the architecture is the SharePoint Server 2013 platform, together with its high-level
and enterprise-level services, such as Excel Services, Managed Metadata Services, the User Profile
services, the search engine, and so forth.

From a hardware perspective, the minimum memory requirement for a SharePoint 2013 server is
8 GB for a development environment, but this hardly gives you enough room to work. A more realis-
tic minimum, however, is 16 GB for a successful development environment. For a production environ-
ment, the suggested memory is 12 GB for a web front-end or an application server, and 24 GB for an
all-in-one server. Moreover, every SharePoint 2013 server should have a 64-bit CPU with a minimum
of four cores.

Logical and physical architecture
Whenever you deploy a SharePoint environment, in reality, you’re deploying a logical architecture
called a SharePoint farm. A SharePoint farm is a set of servers that have different roles and offer vari-
ous services that together make up a server farm suitable for hosting a full SharePoint deployment.
Here are the common server roles in a SharePoint farm:

■■ Front-end web servers These servers publish websites, often called web applications.

■■ Application servers These servers host back-end services, such as Search services, the User
Profile service, Excel Services, and so forth.

■■ Database servers These servers store configuration and content data for the entire
SharePoint farm.

The smallest farm you can build is based on a single server; this type is often called the single
server farm deployment. However, it is highly recommended that you avoid such a scenario, except
for testing or development.

In fact, for the sake of scalability and business continuity, you should deploy a minimum of two
front-end web servers, two application servers, and a back-end database server capable of sup-
porting failover (clustering, mirroring, or AlwaysOn). This topology is commonly termed the small-
est fault-tolerant farm deployment. If you need to scale out and support a wider range of users and
sites, you can deploy a more complex farm by introducing some dedicated application servers. For
example, real medium-scale and large-scale farms typically have dedicated servers for the search
services, as well as dedicated servers for hosting the Office Web Apps services (which is a deployment
requirement).

Due to the number and size of servers required for hosting a real production SharePoint farm,
SharePoint 2013 farms are usually hosted in virtualized environments, either on-premises or in the
cloud. For example, you could evaluate hosting SharePoint 2013 on an Infrastructure as a Service
(IaaS) environment like Microsoft Windows Azure Virtual Machines. Moreover, you could also con-
sider directly using Microsoft Office 365.

www.it-ebooks.info

http://www.it-ebooks.info/

16 PaRt I Getting started

More Info You can find further information about topologies and architectural
diagrams on the “Technical diagrams for SharePoint 2013” page, on TechNet at
http://technet.microsoft.com/en-us/library/cc263199(v=office.15).aspx.

Regardless of the deployment topology you choose, SharePoint uses a SQL Server database for
storing farm configurations and content. Specifically, it creates a main and fundamental farm configu-
ration database as soon as you deploy a new farm. Usually, this database is called SharePoint_Config
or SharePoint_Config_{UniqueId}. If you use the automated setup process, this database is created for
you when you deploy the farm for the first time. If you use PowerShell to deploy a new farm, which
is highly suggested, you can determine the name of this database by yourself. Furthermore, the
SharePoint Deployment And Configuration Wizard creates a set of satellite database files for the main
services deployed. For example, it creates a database that stores the contents of the SPCA adminis-
trative site. In case you use a PowerShell script to deploy the farm, you can determine the name and
location of all SharePoint databases.

From a hierarchical perspective, each SharePoint farm is composed of services, which include all
the infrastructure services that make up the SharePoint environment. The most important kind of ser-
vices are web application services, which correspond to the entry point for web-published solutions.
Each web application is made up of at least one site collection and one content database. However,
you can deploy multiple site collections within a single web application, and you can deploy mul-
tiple content databases for a single web application. A content database is a database file that stores
content for one or more site collections. As it relates to SharePoint, content can include items, docu-
ments, documents versions, pages, images, and so on. Thus, the database behind a site collection can
grow very fast.

Starting with SharePoint 2010 and much more with SharePoint 2013, the server roles and the
configurable services have been improved to better support scale-out scenarios. In fact, you can now
distribute different roles to dedicated servers, eventually with hardware redundancy.

Figure 1-7 shows a graphical representation of a SharePoint farm with a couple of front-end web
servers, both of which publish the same web applications with network load balancing. The first web
application (Web Application #1) is made of two site collections (Site Collections #1 and #2), both of
which share a common content database (Content #1). The second web application (Web Application
#2) is made up of a third site collection (Site Collection #3) and stores its contents in a dedicated con-
tent database (Content #2). All the site collections contain one or more websites.

On the back end, there are four application servers, hosting SPCA, the search services, Excel
Services, and some other services.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 17

FIGURE 1-7 A simplified schema of a sample SharePoint farm with an N-tier topology.

All the data are persisted in a back-end database server that stores various database files for differ-
ent purposes.

Service applications
Introduced in SharePoint Foundation 2010, service applications are software services that run in a
SharePoint farm. Service applications are intended for sharing resources and capabilities across mul-
tiple sites and servers in the same farm, or even across farms. Most importantly, they are extensible
and scalable, unlike the Shared Service Providers (SSPs) of Microsoft Office SharePoint 2007.

To clarify the idea of a service application, consider a couple of examples. The search engine in
SharePoint 2013 is based on a service application. This means that you can share the same search
engine across different servers in the same farm, which is not surprising, but you can also share the
same search service across multiple farms. For example, in very large scenarios, you could deploy
a search-dedicated farm, without any front-end web server, that exposes only a wide set of servers
providing query, index, crawler, content -processing, and analytics components. You could then use
this farm to serve many other SharePoint 2013 farms, taking advantage of that shared search service.
Another example is Excel Services: if you have a farm that uses Excel Services extensively to make

www.it-ebooks.info

http://www.it-ebooks.info/

18 PaRt I Getting started

calculations and create reports on external data, you could decide to deploy Excel Services on two or
more dedicated servers in the farm, using them from all the other servers.

These configurations are possible because the architecture of service applications has been
designed with scalability in mind. Thus, every service application that runs on a server in the farm
can support scalability, and can be installed on two or more servers. At the same time, a farm uses a
proxy to consume a service application, which can be published locally, or in some cases can be pub-
lished by a third-party farm. While a front-end web server consumes a service application, however,
it ignores the real location of the service and simply concentrates on consuming it. This is possible
because each SharePoint Foundation 2013 farm has a native service application, called the Application
Discovery and Load Balancer Service, that coordinates service discovery and load balancing for
services deployed on more than one application server. By default, each service application proxy
communicates behind the scenes with the back-end service application via a secure channel based
on Windows Communication Foundation (WCF).

More Info You can find further information about service application architecture and
developing a custom service application in the book Microsoft SharePoint 2010 Developer
Reference, by Paolo Pialorsi (Microsoft Press, 2011), which is the previous edition of this book.

the role of databases
Every SharePoint farm includes one or more back-end database servers. In fact, the back-end SQL
server stores the entire configuration of the farm, as well as contents of every site collection and the
data for many service applications. For example, the search service stores crawled contents, properties
for crawled data, and configuration properties in multiple separate and dedicated database files. For
the sake of precision, in SharePoint 2013, the Search service application allocates four databases. The
Managed Metadata service has another dedicated database file, but the list of native services using
one or more databases on the back end could be longer.

Important Even though you can open a SharePoint database in SQL Server Management
Studio and inspect the databases of a SharePoint farm, you should avoid doing that. In ad-
dition, you should not base your software solutions on the data structure of SharePoint
databases. Thus, you should avoid querying and writing the content of these databases di-
rectly. If you do need to read or write their content, take advantage of the various libraries,
APIs, and object models discussed later in this book.

Now let’s concentrate on pages and content. Recall that each time you create a new site collection
using SPCA, you have the opportunity to choose a starting site template. The site template is a set of
configuration, layout, and content files that define a site model. You can build your own site templates
(you will learn how to do that later in Part IV, “Extending SharePoint”), or you can select one of the
existing site templates that are packaged with SharePoint. Whichever site template you choose, under

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 19

the covers, SharePoint starts from a set of files stored in the file system of all front-end web servers,
and then creates some records in the content database that will host the site collection that you are
creating. After the site collection has been created, when you browse to a page using a web browser,
the SharePoint engine determines whether the page you have requested resides entirely on the file
system, or whether it needs to retrieve some personalized content from the content database and
merges that with the page model from the file system, or even whether the page content is com-
pletely stored in the content database.

Having a back-end content database available gives you the option to deploy multiple front-end
web servers that can share the same content, improving horizontal scalability when necessary. At the
same time, maintaining basic page models in the file system improves performance, because loading
a page from the file system, unless it has been personalized, is generally faster than retrieving it from
an external database server. In the section “SharePoint for developers,” later in the chapter, you’ll see
how SharePoint differentiates between file system and database content sources.

SharePoint editions

SharePoint 2013 is offered in several editions. Even though this book is for developers (as opposed to
sales or marketing personnel), it is useful to know the main differences between each edition of the
product. The goal of this section is to give you the base knowledge required to choose the appropri-
ate SharePoint edition for each of your projects.

More Info For a full comparison of the SharePoint editions, see the page “SharePoint
Online” at http://technet.microsoft.com/en-us/library/jj819267.aspx.

SharePoint Foundation
SharePoint Foundation 2013 is the most basic edition of the product. It is free—providing that you
run it on a licensed copy of Microsoft Windows Server—and it offers the fundamental features for
building simple document storage and collaboration solutions. By default, this edition’s main capa-
bilities are accessibility, cross-browser support, basic search features, out-of-the-box pages and
Web Parts, new UI features based on dialogs and ribbons, blogs, and wikis.

The Foundation edition also supports the basic infrastructure of Business Connectivity Services,
although without any client-side or Office capability. Of course, you’ll also find the SPCA controls,
all the farm management tools, and services such as the SharePoint Health Analyzer. In fact, if you
wanted to, you could deploy a multitier farm using just SharePoint Foundation. Finally, SharePoint
Foundation offers all the features supporting custom development, including the Web Parts/App
Parts programming model, the Server Object Model, the Client Object Model, event receivers (local
or remote), claims-based security, and so on. All these topics will be covered in detail in Part II,
“Developing SharePoint solutions,” and Part III, “Developing SharePoint apps.”

www.it-ebooks.info

http://www.it-ebooks.info/

20 PaRt I Getting started

You should use this edition of SharePoint whenever you want to develop custom solutions that do
not require any high-level features, such as the document management tools, user profiles, managed
metadata, and so on. When you simply need to use SharePoint as a web-based “sharing point” to
store content, such as documents, contacts, tasks, and so on, this is the edition that best meets those
needs. Quite often, SharePoint Foundation is the right starting point for gaining experience with
SharePoint. It also serves well as a bridge: you can start installing Foundation; plus, later on, you will
be able to upgrade to SharePoint Server, if the need arises.

SharePoint Server Standard
The Microsoft SharePoint Server 2013 Standard edition is built on top of SharePoint Foundation 2013,
adding useful features for building business-level solutions. In particular, you will find features sup-
porting Enterprise Content Management (ECM) and Web Content Management solutions. This edition
also provides legal compliance capabilities, including records management, legal holds, and docu-
ment policies. It also offers support for document sets, which give you the ability to manage related
documents as if they were a single entity. It supports document IDs, which assign a unique protocol
number to SharePoint site documents. Using this edition, you can target content based on audiences,
which are profile-based groups of targets. Moreover, you have the capability to use the Managed
Metadata service for managing common metadata properties, navigation elements, publishing, and
product catalogs across multiple site collections and web applications.

SharePoint Server is the right choice for implementing business-level solutions. For example,
SharePoint Server can help you create a content management system (CMS) solution that provides
content publishing, content approval, page layouts, web standards (XHTML, WCAG 2.0, and so on)
support, and so forth. This edition also supports tags and metadata-driven search refinement, people
search, and the whole set of social features. As a business-level tool, it provides features for manag-
ing not only content, but also people, profiles, and personal sites. Finally, this edition of the product
provides support for developing and executing workflows, hosted either on-premises or in the cloud
on Windows Azure.

SharePoint Server enterprise
Microsoft SharePoint Server 2013 Enterprise edition targets large business solutions and enterprise-
level organizations. It extends the capabilities of SharePoint Server Standard by offering support for
dashboards, key performance indicators (KPIs), and business intelligence features. It improves search
capabilities by offering contextual search, deep search query refinement, extreme scale-out search
capabilities, rich web indexing, and so on. It also provides support for Excel Services, Visio Services,
Forms Services, and Access Services.

When you need to develop business analysis solutions or complex search-based solutions, you
should choose the Enterprise edition.

From a developer perspective, you can install the SharePoint Server Enterprise edition if you
have licensing coverage for that, and you can develop solutions for all the editions using a unique
environment.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 21

SharePoint Online
Microsoft SharePoint Online is the cloud-based SharePoint offering, based on the Software as a
Service (SaaS) paradigm included in Microsoft Office 365. With this edition, you can build SharePoint
solutions without building a SharePoint farm on-premises. Instead, by having your farm in the cloud,
you can enjoy an external solution free of management costs. As a developer, you are freed to focus
only on data, processes, ideas, the content that you want to share, and the apps you want to build.
The SharePoint Online offering is available in Standard mode, as well as in Dedicated mode. The
Standard offering uses an environment shared with other customers, although it is isolated according
to a clear set of multitenancy rules, and you can only extend that environment with code executed in
a sandbox or custom apps. On the contrary, the Dedicated offering allows you to have a dedicated
server farm on which you can deploy custom solutions with full-trust execution rights, as long as your
solutions passes a verification process.

SharePoint for developers

SharePoint offers developers numerous features and capabilities for building custom web solutions.
This section provides an overview of those features and services so you can better understand the
topics that you will be exploring in the rest of this book.

aSP.Net integration
As a developer, you might be wondering how SharePoint 2013 integrates with ASP.NET to service
requests and provide its high-level features on top of the ASP.NET native infrastructure.

Since IIS 7.0, in Windows Server 2008, application pools can run in one of two modes: integrated
mode or classic mode. Classic mode works like older versions of IIS (IIS 6), taking advantage of the
Internet Server Application Programming Interface (ISAPI) filter based on the Aspnet_isapi.dll file.
Integrated mode provides a unified request-processing pipeline for requests that target both man-
aged (.NET) and unmanaged (non-.NET) resources. Every request is served by a module registered in
the application configuration.

SharePoint 2013 provides a Microsoft.SharePoint.ApplicationRuntime namespace in the Microsoft.
SharePoint.dll assembly. This namespace contains a set of classes that integrate and/or override the
default behavior of ASP.NET while in IIS integrated mode. The primary class that handles SharePoint
requests is called SPRequestModule. It is configured in the web.config file of every SharePoint site, in
the system.webServer/modules section. This class registers a number of application events that handle
requests, authentication, errors, and so on. One fundamental task of this module is to register the
virtual path provider (SPVirtualPathProvider), which resolves requests by determining whether the
requested content should be retrieved from the content database or from the file system. A virtual
path provider is a class that provides contents to the ASP.NET pipeline by retrieving them from a
virtual file system.

www.it-ebooks.info

http://www.it-ebooks.info/

22 PaRt I Getting started

Server-side technologies
SharePoint offers developers a rich set of server-side tools. First, you can use the SharePoint Server
Object Model, which allows you to interact with SharePoint through a large set of libraries and classes.
Using these classes, you can read, manage, and administer data stored in SharePoint. More generally,
you can use the Server Object Model to do almost anything that SharePoint itself can do, because
SharePoint itself uses that same object model. You can use the Server Object Model on a SharePoint
server only, because it has some dependencies not satisfied by other servers. You will learn more
about this tool in Chapter 5, “Server Object Model.”

On the server side, you can also use the LINQ (Language Integrated Query) programming
model, exploiting the LINQ to SharePoint provider, by which you can query and manage SharePoint
data using a fully typed programming model, much as you would when managing data stored in
SQL Server using LINQ to SQL. Chapter 6, “LINQ to SharePoint,” discusses this LINQ query provider in
more detail.

Client-side technologies
One of the biggest news of SharePoint 2013, from a developer perspective, is the improvement of the
client-side technologies for consuming SharePoint data and interacting with remote SharePoint serv-
ers. In fact, you can exploit a rich set of client-side technologies offered specifically for this purpose.
For example, the SharePoint Client Object Model lets you interact with SharePoint from a client using
a set of classes that are similar to the Server Object Model, but work on any client that supports .NET,
Microsoft Silverlight, or JavaScript. The Client Object Model is available in three different flavors: .NET
managed, Silverlight, and JavaScript. The Client Object Model versions are almost functionally
identical on all three platforms. You can also use SOAP (Simple Object Access Protocol) services
published by SharePoint, even though they are deprecated and available for backward compatibility
only. Furthermore, you can use the REST (Representational State Transfer) API to access and manage
SharePoint data by using a protocol for querying and updating data via an HTTP/XML communication
channel called OData (Open Data Protocol, documented at http://www.odata.org). Moreover, start-
ing with SharePoint 2013, you can take advantage of a new and rich set of APIs published via HTTP
and accessible from any device; these APIs are useful for consuming data and interacting with site
collections, sites, services, and whatever else you could need to create a SharePoint app or solution.
From a security viewpoint, you can use the common OAuth (Open Authentication) standard to secure
communication and authenticate/authorize both users and apps while consuming data and interact-
ing with SharePoint services.

All of these client-side technologies are discussed throughout the book, and in particular in
Parts II and III.

app Parts, Web Parts, and the UI
Another area of interest for developers is customizing the UI. Many SharePoint developers work-
ing on SharePoint 2010 or earlier spent their time developing Web Parts, Web Part pages, and UI
customizations. SharePoint 2013 still provides a rich object model, and even backward compatibility,

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 23

for building custom Web Parts and Web Part pages, as well as a set of UI customization tools that
simplify working with AJAX (Asynchronous JavaScript and XML), dialog boxes, the ribbon, and so on.
Now, with SharePoint 2013, you can extend and customize the UI by creating apps and App Parts. You
can think about App Parts as blocks of content, consumed from a remote app, that play the same role
as Web Parts did in the past. You will see how to develop App Parts in Part III of this book.

Data provisioning
As soon as you begin working with SharePoint, you will face the need to define packages for auto-
matically deploying data structures. Working with SharePoint generally involves designing new lists
and new content types, which are reusable typed definitions of metadata models. However, if you
define your models using the web browser, you won’t have a high-level modeling approach; every-
thing you do must be migrated and/or executed again in the quality assurance (QA) and production
environment.

Fortunately, there are tools and techniques that allow you to model a data structure—optionally
based on custom contents and fields—and deploy that model to customers’ sites. These tools also pro-
vide support for deploying updated versions of the solution in the future. You’ll see more on this subject
later in this chapter, in the section “Features, solutions deployment, and sandboxing.” You will learn how
to define custom data models for automated provisioning in Chapter 3, “Data provisioning.”

Event receivers and workflows
With SharePoint, since version 2007, you can use local event receivers to intercept users’ actions
and/or events and subsequently execute some lightweight server-side code. Now, with SharePoint
2013, you also have the capability to create remote event receivers for invoking external and remote
services. These receivers are capable of handling events like item insertion, updating, deletion, and so
on. This is a useful feature for implementing simple process-handling solutions or business-processes
coordination, activating external processes upon user actions in SharePoint. Moreover, you can use
remote event receivers to make apps communicate with parent websites. Chapter 10, “Remote event
receivers,” dives into this subject.

Similarly, when you need to define complex and long-running business processes that respond to
events from the UI and interact with end users, you can define workflows. With SharePoint 2013, the
workflow engine has been redesigned from scratch, using the new Workflow Manager 1.0 engine,
based on Workflow Foundation 4.5, together with a new application server role that can be hosted
on Windows Azure or on-premises. This functionality deserves a thorough exploration, so this book
discusses it in four dedicated chapters, in Part V, “Developing workflows.”

Features, solutions deployment, and sandboxing
As a complete development platform, SharePoint 2010 introduced deployment services and capabili-
ties by which you can deploy and upgrade solutions during a project’s lifetime. In SharePoint 2013,
all these features are still available and suitable for developing complex customizations and solutions.

www.it-ebooks.info

http://www.it-ebooks.info/

24 PaRt I Getting started

Specifically, SharePoint offers the opportunity to create deployment packages, called Windows
SharePoint Services Solution Packages (WSPs). You can use these packages to automate setup and
maintenance tasks across an entire server farm. In addition, you can deploy these solutions in a
sandboxed environment. The packages consist of features, which are atomic sets of extensions that
you can develop, install, activate, and manage with a specific set of administrative tools. In Chapter 4,
“SharePoint features and solutions,” you will learn how to create and deploy such packages. In Part III
of the book, you will learn how to create and deploy custom apps as a suitable alternative to imple-
menting SharePoint solutions.

Security infrastructure
The SharePoint security infrastructure is another topic that affects both software development and
the architecture of solutions. In fact, to develop robust and solid solutions, a developer should have
a high degree of confidence in, and knowledge about, SharePoint authentication and authorization
policies. The key security aspects of SharePoint 2013 are its claims-based approach and support for
the OAuth protocol. Part VI of the book is fully dedicated to security matters.

Business Connectivity Services
Business Connectivity Services is another feature that is generally useful when developing solutions.
This feature supports consuming external data within SharePoint, and has a design almost identical to
data directly stored in SharePoint. The sources of this external data can be an RDBMS, like SQL Server
or any ODBC-compliant data source; a WCF/SOAP service; a custom .NET object model; or an OData
service. Chapter 14, “Business Connectivity Services,” will cover this topic.

Windows PowerShell for developers
Another interesting capability is that you can administer and automate SharePoint administrative
tasks using the Windows PowerShell console. Windows PowerShell is a task-based command-line shell
and scripting language designed especially for system administration. It can execute commands and
scripts authored by developers or system administrators, as long as they have some minimal develop-
ment expertise. What makes Windows PowerShell a powerful framework for developers is its exten-
sibility model, together with its capability to execute custom code. For example, from the Windows
PowerShell console, you can not only administer a farm, but also create scripts for populating data
into target lists of SharePoint. You can manage, create, and configure testing environments, and you
can create custom scripts to deploy your solutions.

Developer tools

SharePoint developers can take advantage of some Microsoft-supplied tools to support their work
and reduce the effort involved in developing custom solutions. This section lists these tools and iden-
tifies when they might be useful.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 25

SharePoint Designer 2013
SharePoint Designer 2013 is a rapid application development (RAD) tool for develop-
ing SharePoint no-code solutions. You can download it for free from Microsoft’s website, at
http://www.microsoft.com/download/details.aspx?id=35491. SharePoint Designer 2013 targets
advanced users, who can use it to design and compose solutions without writing any code. For
example, using SharePoint Designer 2013, you can

■■ Personalize pages, page layouts, Web Parts, Web Part pages, layouts, and themes.

■■ Create and manage lists and document libraries.

■■ Design simple workflows or import workflows designed using Microsoft Visio 2010 or 2013.

■■ Manage content types and site columns to model typed lists of contents.

■■ Model and register external data sources using the Business Data Connectivity engine.

■■ Create pages with lists data bound to external data sources.

■■ Manage users and groups.

■■ Manage files and assets of the target site.

Figure 1-8 shows the main page of SharePoint Designer 2013 when connected to a SharePoint site.
As you can see, it provides a user-friendly interface, consistent with the Office 2013 user experience.

FIGURE 1-8 The SharePoint Designer 2013 main page.

www.it-ebooks.info

http://www.it-ebooks.info/

26 PaRt I Getting started

As a developer, you will primarily use this tool to prototype solutions, to design Business Data
Connectivity models, and to customize layouts—working with themes, master pages, XSLTs, and pages.

Note This book will not cover SharePoint Designer 2013 in depth, because it is aimed at
developers who are willing to develop SharePoint solutions by writing custom code. For
deep coverage of SharePoint Designer 2013, read Microsoft SharePoint Designer 2013 Step
by Step, by Penelope Coventry (Microsoft Press, 2013).

Microsoft Visual Studio 2012
Visual Studio 2012 can be extended with a set of tools for developing SharePoint 2013 apps and
solutions. These tools are named the Microsoft Office Developer Tools for Visual Studio 2012 and
can be installed through the Web Platform Installer kit or downloaded manually from MSDN.
When you install Visual Studio 2012, you have also the opportunity to activate the SharePoint 2010
Developer Tools option, which installs a set of project and item templates that are ready to use in
SharePoint solutions that target SharePoint 2010. Most of the code and projects you develop using
the SharePoint 2010 developer tools are also supported by SharePoint 2013, for the sake of backward
compatibility. Nevertheless, it is highly recommended to develop using the SharePoint 2013 tools and
the new apps-oriented development model introduced in SharePoint 2013.

More Info The Microsoft Office Developer Tools for Visual Studio 2012 can be directly
downloaded from the following URL: http://msdn.microsoft.com/en-US/sharepoint/
aa905690.aspx.

The development tools for SharePoint also include some deployment tools, which are useful for pack-
aging, releasing, and upgrading a SharePoint solution.

Note To use Visual Studio 2012 for developing SharePoint 2013 apps and solutions, you
must run it under an administrative account, because you need some high-level permis-
sions to manage the SharePoint servers while deploying solutions. In addition, you need to
attach to the IIS worker process while debugging code. It is suggested to run your desktop
as a standard user, but run Visual Studio 2012 with a Run As command to impersonate an
administrative user. Moreover, to develop SharePoint solutions (WSPs), you need to have
SharePoint installed on your development machine. On the contrary, to develop SharePoint
apps, you do not need to have SharePoint on board, and you can remotely connect to an
external SharePoint environment, including SharePoint Online on Office 365.

Figure 1-9 shows the Add New Project form of Visual Studio 2012, showing the project templates
installed by the SharePoint extensions.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 27

FIGURE 1-9 The Add New Project form in Visual Studio 2012.

You can create the following types of projects:

■■ App for SharePoint 2013 This is the project template for creating a SharePoint 2013 app. It
will be discussed in depth in Chapter 8, “SharePoint apps.”

■■ SharePoint 2013 Project This is an empty project for starting a new SharePoint implemen-
tation. It provides a set of references to only the most useful libraries of SharePoint, and it
provides support for automatic deployment.

■■ SharePoint 2013 Silverlight Web Part This is a project intended for developing a Web Part
with a GUI based on Microsoft Silverlight.

■■ SharePoint 2013 Visual Web Part This is a project intended for developing a Web Part
with a GUI based on an ASCX web control of ASP.NET.

■■ Import SharePoint 2013 Solution Package This imports an old or third-party solution
package (WSP).

■■ Import Reusable SharePoint 2013 Workflow This project template is useful for importing
workflows designed with SharePoint Designer 2013 that need to be extended or improved
with Visual Studio 2012.

www.it-ebooks.info

http://www.it-ebooks.info/

28 PaRt I Getting started

Regardless of which project template you start from, you can develop any of these extension
types, because these models simply prepare a preconfigured environment. In fact, it’s quite common
to start with the App for SharePoint 2013 template or the SharePoint 2013 - Empty Project template,
and then add items as you need them.

Microsoft Office Developer Tools for Visual Studio 2012 also provides a rich set of item tem-
plates for creating various types of content in SharePoint app projects. Here is a list of some of the
main items:

■■ List This is for specifying a custom list of fields or creating a new list from an existing list
template.

■■ Remote Event Receiver This allows you to handle SharePoint events using a remote service.

■■ Content Type This is for creating a reusable collection of fields and settings that you can
apply to a SharePoint list.

■■ Workflow This allows you to create and deploy a workflow for SharePoint, based on the
new workflow engine of SharePoint 2013.

■■ Empty Element This is an XML feature element for hosting files, pages, or any other cus-
tomization, compliant with the features and elements schema available in SharePoint since
version 2010.

■■ Site Column A site column item is useful for creating custom content types and list
definitions.

■■ Module This is a module item for deploying files, pages, assets, and more on SharePoint.

■■ Client Web Part (Host Web) This is a client Web Part (App Part) for supporting a custom
SharePoint app.

■■ UI Custom Action (Host Web) This is typically used in an app that adds a UI extension to
its host site; for example, it can add an action to the ribbon or to a list menu.

■■ Task Pane App This is an app that appears in the task pane of an Office application.

■■ Content App This is an app that appears in the body of an Office document.

SharePoint Server Explorer
Another interesting feature offered by Visual Studio 2012 is SharePoint Server Explorer, an extension
to Server Explorer in Visual Studio 2012 for targeting SharePoint servers. Through this extension, you
can register as many SharePoint servers as you need and browse their topology and configuration
using the classic tree-view approach, such as in Visual Studio Server Explorer windows.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 1 Microsoft SharePoint 2013: A quick tour 29

As shown in Figure 1-10, the SharePoint Server Explorer interface lets you browse and manage the
following:

■■ Sites and subsites

■■ Content types

■■ Features

■■ List templates

■■ Lists and document libraries

■■ Workflows

In addition, because SharePoint Server Explorer is based on an extensible object model, you can
extend it to provide new functionalities, using Visual Studio 2012 to develop such solutions. You can
already find many custom extensions that can be downloaded for free.

FIGURE 1-10 The SharePoint Server Explorer UI in Visual Studio 2012.

www.it-ebooks.info

http://www.it-ebooks.info/

30 PaRt I Getting started

Solution Explorer and the Feature Designer
One last set of tools available in Visual Studio 2012 include Solution Explorer and the Feature
Designer. These are tools for graphically designing and managing SharePoint packages (WSPs) and
features. They are particularly useful for automating deployment of SharePoint solutions. You will
learn more about these tools in Chapter 4.

Summary

This chapter explained what SharePoint is, what its main capabilities are, and how developers can take
advantage of those capabilities. It described the product architecture and gave a quick comparison
of the various SharePoint editions so that you can choose the one that best fits your needs. Finally, it
covered the main tools available for developing SharePoint solutions.

www.it-ebooks.info

http://www.it-ebooks.info/

 31

C H A P T E R 2

SharePoint data fundamentals

Beginning with this chapter, you will be performing hands-on work with Microsoft SharePoint
2013 and its fundamental capabilities: the data management features. In Chapter 1, “Microsoft

SharePoint 2013: A quick tour,” you learned that the main focus of SharePoint is to manage lists
of items using a rich set of ancillary features. Now you will explore the different kinds of data and
functionality that SharePoint offers as support for creating SharePoint solutions. Although this
chapter concentrates on topics about standard features, future chapters, especially those in Part II,
“Developing SharePoint solutions,” and Part III, “Developing SharePoint apps,” will show you how to
extend and customize the native environment. If you already know about SharePoint data manage-
ment features and capabilities, you can probably skip this introductory chapter. If you want to learn
more about lists, libraries, columns, content types, and so on, however, keep reading.

Lists of items and contents

This section concentrates on general management tasks involved in managing lists and content.
You need to have a new site collection to use as the target for the examples in this chapter. Every
SharePoint farm installed with the Farm Configuration Wizard has a default web application that is
published on the Internet Information Service (IIS) default site. This default web application also hosts
the default site collection, meaning that you already have a target site to use to experiment with the
procedures you will see in the following pages. If you prefer to make your own, however, Chapter 1
illustrates how to create a new site collection.

Depending on the site template you chose while provisioning your first site collection, you should
have some more or less predefined list instances and content. Before creating a new list instance,
however, you need to log on to the SharePoint site as a user with sufficient rights to create lists.

A SharePoint site has at least four levels of preconfigured rights. It categorizes its users into
four groups:

■■ Excel Services viewers Users who have View Only permission for the contents of the site.

■■ Site visitors Users who can read the contents of the site.

www.it-ebooks.info

http://www.it-ebooks.info/

32 PaRt I Getting started

■■ Site members Users who can (by default) contribute to (add, update, delete) the contents
of the site and items in the lists. Because they cannot change the overall structure of the site,
however, they cannot create new list instances or change the definition of existing lists.

■■ Site owners Users who have full control of both site content and structure, allowing them to
change items, create new lists, or update the definition of existing lists.

Finally, as Chapter 1 showed, a fifth group, the site collection administrators group, is responsible
for administering the entire site collection. Part VI of this book, “Security infrastructure,” contains an
in-depth discussion of the security and permissions logic in SharePoint 2013, but for now, you simply
need to understand that the permissions for the various user groups arise from the following permis-
sion levels:

■■ View Only The user can view pages, list items, and documents. Document types with server-
side file handlers can be viewed in the browser but not downloaded.

■■ Limited Access The user can view specific lists, document libraries, list items, folders, or
documents when given permissions. This permission cannot be assigned directly by an end
user.

■■ Read The user can view pages and list items, and download documents.

■■ Contribute The user can view, add, update, and delete list items and documents.

■■ Edit The user can add, edit, and delete lists. He or she can also view, add, update, and delete
list items and documents.

■■ Design The user can view, add, update, delete, approve, and customize.

■■ Full Control The user has full control.

If you are logged in to the site as a user with sufficient rights, you can create new list instances and
more, as you will learn in the following sections.

Creating a new list
As discussed in Chapter 1, to create a new list, you first click the Settings control, which looks like a
gear and is located in the upper-right corner of the SharePoint 2013 standard Team Site template. On
the Settings menu, click Add An App, which will bring you to a page with the list of all the available
content and apps available for creation. For example, to create a list of contacts, simply select the
standard template for creating a contacts list, as shown in Figure 2-1.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 2 SharePoint data fundamentals 33

FIGURE 2-1 The web UI for adding a new app to the current site.

The result will be the creation of a new list with a set of predefined columns (metadata) for each
contact item.

After you have created a list instance, you can take advantage of the full set of features and
capabilities that the SharePoint 2013 data foundation provides. The following are some of the main
features and capabilities of a list instance:

■■ Columns These allow you to define a set of custom columns describing the metadata of
each item of the list.

■■ Folders Like file system folders, list folders can be used to partition data in subfolders.
Through folders, you can also define custom permissions and partition data visibility.

■■ Content types These are models of data that can be used to store different kinds of items
within a unique list instance. For example, you could have contacts of various types, such as
customers, suppliers, employees, and so on. They could share some common columns, and
have some specific columns, too. Chapter 3, “Data provisioning,” will cover content types
in detail.

www.it-ebooks.info

http://www.it-ebooks.info/

34 PaRt I Getting started

■■ Views Every list can render with various views. A view can be used to group items by a spe-
cific field value or content type, to filter and/or order items, to page the results, and so forth.

■■ Permissions Each list can have its own set of permissions, which can be different from the
default permissions applied to the site.

■■ Versioning This allows the list to keep track of changes and versions of items.

■■ Workflows These are business processes that execute when an item is created or modified.

■■ Content approval This is a content approval engine that you can use to enrich content
provisioning, such as adding approval rules and processes.

■■ Alerts This is an alerting infrastructure that you can employ to alert people about new,
updated, or deleted contents.

■■ RSS feeds This provides the capability to subscribe to and monitor a feed from any kind of
feed aggregator.

■■ Offline capabilities This allows you to keep data offline by using tools such as Microsoft
Outlook or SkyDrive Pro.

■■ Office integration This provides the ability to integrate list contents with Microsoft Excel,
Access, and other Office applications.

In fact, you can benefit from these features without having to write any code.

Standard list templates
The richest edition of SharePoint 2013 offers nearly 30 list templates out of the box. Table 2-1 pres-
ents some of the more common list templates.

TABLE 2-1 Common list templates available in SharePoint

Template name Description

Announcements A list for publishing news items and information.

Asset Library A list for sharing rich media assets, including images, audio, and video files.

Calendar A calendar that lets users schedule meetings and events, and set deadlines. You can
synchronize a Calendar list with Microsoft Outlook.

Contacts A list of people, including their addresses. You can synchronize a Contacts list with
Outlook.

Custom List A “blank” list model, meaning that you can create whatever type of list that you like by
defining custom columns and views.

Data Connection Library A list for sharing connections to external data sources, such as databases, SOAP services,
OLAP cubes, and so on.

Document Library A list for sharing documents and files.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 2 SharePoint data fundamentals 35

Template name Description

External List A list that supports reading and managing data from external data sources via Business
Connectivity Services.

Form Library A list for sharing XML-based business forms, such as those produced with Microsoft
InfoPath.

Links A list that stores hyperlinks to sites and resources.

Picture Library A list for sharing pictures. This list type includes upload, preview, slideshow, and thumb-
nail functionalities.

Slide Library A list to share slideshows built with Microsoft PowerPoint. It includes slide management
functionality.

Survey A list to create surveys, polls, or lists of questions. This type provides features for view-
ing a graphical summary of the responses.

Tasks A list of tasks to execute. It includes deadlines, notes, and completion status.

As you can see, you can create a variety of lists. You can also customize any list so that it meets
your specific needs.

Custom list templates
If none of the predefined list templates suits your needs, you can create a custom list instance and
define its columns and views manually. Of course, whenever you create any list, you can define cus-
tom views and columns, but when working with custom list instances, which are blank lists with the
minimal set of fields required by SharePoint, you always need to customize the columns to add your
own fields.

By default, a custom list has only five public and visible fields:

■■ Title This is a mandatory field that defines a title for each item in the list. It is useful for
rendering list items and for accessing the contextual menu that SharePoint provides for each
individual item in a list.

■■ Created This is an autocalculated field that stores information about when the user created
the current item.

■■ Modified This is an autocalculated field that stores information about when the last user
modified the current item.

■■ Created By This is an autocalculated field that stores information about the user who cre-
ated the current item.

■■ Modified By This is another autocalculated field that stores information about the user who
last modified the current item.

www.it-ebooks.info

http://www.it-ebooks.info/

36 PaRt I Getting started

The set of fields just described belongs to the base Item content type, from which every SharePoint
list item inherits.

Imagine that you want to create a list of products. If you create a custom list for this purpose, you
will need to add some custom columns. For example, you could have columns such as ProductID,
Description, Price, and so on. Although SharePoint cannot be considered an alternative to a database,
you can think of creating a custom list as similar to creating a custom table in your favorite RDBMS,
for the sake of simplicity. After reading this book, you will understand the role of SharePoint in a real
software solution, and you will learn when and how to use it for storing data, without using it as a
database replacement.

To set up a custom list, create the list instance, and then browse to the List Settings page by click-
ing the List Settings command on the List ribbon tab, as shown in Figure 2-2.

FIGURE 2-2 The List ribbon tab with the List Settings command (highlighted).

The List Settings command takes you to the List Settings page, where you can configure the set-
tings of the current list. From this page, for example, you can customize appearance information such
as the title and description of the current list, enable and configure settings about versioning of items,
define validation rules, manage workflows, configure advanced settings, and so forth. In particular,
you can configure the following parameters on the Advanced Settings page:

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 2 SharePoint data fundamentals 37

■■ Content Types Specifies whether to allow management of content types in the list. Think
of content types as containers of metadata and other settings. You can use content types to
define data-item template models. By default, a list hosts items with a specific content type
that has a default set of fields, depending on the model of list you are configuring. For exam-
ple, a Tasks list is made up of items of type Task, while a Calendar is made up of items of type
Event, and so on. However, as you will see later in this chapter, you can define more specific
content types to better define and manage the metadata. As an example, you can define such
concepts as Customer, Employee, Order, and so on, each with its specific fields.

■■ Item-Level Permissions Specifies the items that users are authorized to read, create, and
edit. It is a setting specific for a list of items. It is not available in document libraries.

■■ Attachments Specifies whether list items can have file attachments or not. It is another set-
ting specific for a list of items. It is not available in document libraries.

■■ Folders Defines whether the New Folder command is available on the ribbon.

■■ Search Controls whether items in the list should appear in search results. Users who do not
have permission to see the items of the list will not see them in search results, no matter what
this setting is.

■■ Reindex Instructs the search engine crawler to start a full reindexing of the current list’s
content at the next scheduled crawl.

■■ Offline Client Availability Specifies whether the items in the list can be downloaded to
offline clients.

■■ Datasheet Enables a datasheet view for bulk-editing data in the list.

■■ Dialogs Controls whether the new, edit, and display forms of items are displayed in a dialog
box or in place.

Just after the list of available configuration parameters and commands, you’ll see a list of Columns,
where you can manage the columns of the current list (see Figure 2-3).

Also on the List Settings page, you can create new custom columns from scratch or add an existing
site column (this will be discussed later in the chapter, in the “Site columns” section). In addition, you
can alter the ordinal position of columns. This helps when you want to reorganize the positions of
many columns. Finally, you can define custom indexes, which is useful whenever you need to search
the contents of a list using indexed columns as the search criteria.

www.it-ebooks.info

http://www.it-ebooks.info/

38 PaRt I Getting started

FIGURE 2-3 The List Settings page with the Columns section highlighted.

When you select Create Column, a specific SharePoint administrative page appears, requesting
information about the type of column that you want to create. Figure 2-4 shows the Create Column
page. Here, you can define the name of the new custom column and the field type, enter a brief
description, and supply other validation rules and constraints. For example, you can define whether
the new column is required or optional, whether it should have a default value, whether it should
contain a value that is unique across the whole list instance, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 2 SharePoint data fundamentals 39

FIGURE 2-4 The Create Column page for a new list column.

As Figure 2-4 shows, you can choose from a variety of data types when creating a new column.
The following are the available field types:

■■ Single Line of Text This corresponds to a single line of text.

■■ Multiple Lines of Text This corresponds to a text area with multiple columns and rows.

■■ Choice (Menu to Choose From) This has a predefined set of values. You can configure it to
accept single or multiple values, and whether it should render as a drop-down menu, a radio
button list, or a list of check boxes.

■■ Number (1, 1.0, 100) This defines a numeric column that can have decimals and minimum
and maximum value.

■■ Currency ($, ¥, €) This corresponds to a money field, which behaves almost like a Number
field type. You can select the currency format that you prefer.

■■ Date and Time This defines a Date and Time field that you can configure to handle date-
only fields or date and time fields.

www.it-ebooks.info

http://www.it-ebooks.info/

40 PaRt I Getting started

■■ Lookup (Information Already on This Site) This retrieves its values from another list
within the same site.

■■ Yes/No (Check Box) This defines a Boolean column.

■■ Person or Group This is a particular type of lookup field that searches for a user or group
defined in the current site.

■■ Hyperlink or Picture This column type holds an external URL, which can be either a page
URL or an image URL. In the latter case, you can configure this field type to render the image
available at that URL.

■■ Calculated (Calculation Based on Other Columns) This defines a formula that can be
calculated based on other fields defined in the current list, and then it renders the result.

■■ Task Outcome This is a field type representing the result of a task typically related to a run-
ning workflow process or business process.

■■ External Data This is a specific field type that looks up values via Business Connectivity
Services. You will find more about this topic in Chapter 16, “SharePoint workflow
fundamentals.”

■■ Managed Metadata This field is related to the Managed Metadata service.

If these options do not meet your needs, you can define custom field types of your own using
Microsoft Visual Studio 2012 and some custom code, installing them onto the target SharePoint
server farm. You’re better off, however, avoiding such extensions and customization techniques. In
fact, although a custom field type definition is absolutely possible and supported, it requires deploy-
ing code, XML files, and configurations on the physical file systems of the servers in the farm. Due
to the invasiveness of this approach, it is a scenario that is not supported in the standard offering of
Office 365. It would require you to upgrade to a dedicated farm either on-premises, or on Office 365
Dedicated.

On the contrary, if you would like to extend the available types of data, you can take advantage
of the new SharePoint 2013 client-side rendering (CSR) engine. Through this new feature, you can
declare custom behavior for predefined field data types by simply providing some custom JavaScript
code that will be executed on the client side.

New to SharePoint 2013 is the ability to add fields and change the shape of a list or library directly
from the current view of the list, just as if you were in an Excel spreadsheet. Notice the New Item and
Edit This List commands at the top of the list view. Click New Item to add a new item to the list via a
dedicated webpage. If you click the Edit This List command, you will switch the view to the editable
and configurable grid shown in Figure 2-5. Based on some client-side HTML and JavaScript code, this
grid view behaves almost like an Excel spreadsheet.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 2 SharePoint data fundamentals 41

FIGURE 2-5 In this view, you can edit the data and the data structure of a list or library.

To edit the grid, click the + (plus) icon above the rightmost column. You can add new columns on
the fly, choosing a proper data type and a name for the target field, as well as edit existing items and
add new ones. To stop the editing session, simply click the Stop link or change to a different page.

This technique is powerful because the end user can design the shape of the data without techni-
cal skills. Nevertheless, the resulting fields and data structure will be poor from a design, planning,
and taxonomy perspective. Moreover, the names of the fields created using this technique will be
strange because they are a kind of hash code of four characters based on the description provided by
the end user for the dynamically created field. Thus, rather than relying on these tools and facilities,
the better approach for developing and designing solutions is to plan, design, and deploy fields as
site columns within content types.

Views
In addition to lists and columns, you can create one or more custom views for a list. In fact, every
list has at least one default view that renders the fields of each item, using predefined ordering and
filtering criteria. Any user with the proper permissions can create personal views of a list, and those
with sufficient permissions can create a new, shared view for the target list. For example, imagine that
the Products list discussed in the preceding section is ready to use, containing custom fields such as
ProductID, Description, and Price. Figure 2-6 shows the default view for this list.

www.it-ebooks.info

http://www.it-ebooks.info/

42 PaRt I Getting started

FIGURE 2-6 The default view provided by SharePoint for the custom list of products.

You can use the Modify View command (highlighted on the ribbon in Figure 2-6) to change the
current view. Alternatively, by clicking the Create View command (also visible in Figure 2-6), you can
create a completely new view. If you choose to create a new view, you can select one of the five pre-
defined view formats:

■■ Standard View This is the classic view style. You can select fields, sorting and filtering rules,
grouping, paging, and so on. The result will be a webpage.

■■ Calendar View This view shows data in a calendar format (daily, weekly, or monthly). You
would likely use this only when you have data related to dates.

■■ Datasheet View This view renders data in an editable spreadsheet format (such as Excel),
which is convenient for bulk editing.

■■ Gantt View This option creates a view that renders data in a Gantt chart. It is primarily use-
ful when rendering the tasks of a project.

■■ Custom View in SharePoint Designer This option launches Microsoft SharePoint Designer
2013, in which you can design a new view.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 2 SharePoint data fundamentals 43

More Info Microsoft SharePoint Designer 2013 can be downloaded for free at
http://www.microsoft.com/download/details.aspx?id=35491.

For the sake of simplicity, select a Standard View template. You will be prompted with a configura-
tion page, on which you will define the rendering criteria for the new view, as shown in Figure 2-7.

FIGURE 2-7 The Create View page provided by SharePoint to define a new list view.

You have the opportunity to configure many aspects of the view with the settings on the
Create View page:

■■ Columns Select the columns to render in the view and their ordinal position in the display.

■■ Sort Define up to two columns for use when sorting data.

■■ Filter Filter the output items. It is suggested to use indexed columns for better perfor-
mances in filtering.

■■ Tabular View Specify whether a multiple-selection check box should be rendered adjacent
to each row.

■■ Group By Define up to two columns to use for grouping data.

www.it-ebooks.info

http://www.it-ebooks.info/

44 PaRt I Getting started

■■ Totals Establish total rows selectively on each visible column.

■■ Style Select a graphical rendering style for the list view.

■■ Folders Select whether to view items by browsing through folders, or all at once with a
folder flat view.

■■ Item Limit Define a limit to the amount of data to return. This is useful when working with
very large lists.

■■ Mobile Configure settings to better render the view on a mobile device.

In the example list of Products, you could plan to order products based on their price, listed from
least to most expensive. Figure 2-8 shows the custom view output. Custom views are useful for brows-
ing and managing data stored in large custom lists of items, but they are not a security measure by
any means. In fact, content is still visible to anyone who has at least read access to the source list, even
if you hide a column from a view.

FIGURE 2-8 The output of a custom view defined for the Products list.

Creating a document library
A document library is a particular kind of list that is designed to host files (for instance, documents)
instead of generic items. Each file corresponds to a single list item, which can also have a rich set
of metadata fields to make it more meaningful. To create a document library, simply select the
Document Library list template on the Add an App page, shown in Figure 2-1.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 2 SharePoint data fundamentals 45

Suppose that you want to create a list of offers, which includes some custom metadata for each
offer file, such as Protocol Number, Target Customer, and Offer Date Time. Begin by clicking the
Settings menu, and then click the Add An App command to create the library. Lastly, select the
Document Library app template.

When adding a new document library, you can choose to provide some advanced information,
like a description, whether the contents of the library will be versioned using the SharePoint version
control system, and a document template that can define the default template to use when creating
new documents in the library.

After you create the library, you can access it through a UI that is basically the same as the one
you used to manage lists of simple items. A document library, however, has some additional features
and commands. For example, the Files ribbon tab (which replaces the Items tab) contains commands
specifically tailored for managing files and documents. Instead of a List tab to manage the list, here
you have the Library ribbon tab, shown in Figure 2-9.

FIGURE 2-9 The Files ribbon tab of a document library.

The following are some of the most important commands available on the Files tab:

■■ New Document Creates a new document, starting from a document template.

■■ Upload Document Uploads a single document or a set of documents.

■■ New Folder Creates a new folder for organizing and navigating documents.

www.it-ebooks.info

http://www.it-ebooks.info/

46 PaRt I Getting started

■■ Edit Document Opens a selected document using its corresponding editing program. For
example, if you have selected a DOCX file, this command opens the file in Microsoft Word.

■■ Check Out Locks others out of the document so that you can have exclusive access to the
file in read and write mode.

■■ Check In Releases the exclusive lock on the file, confirming any changes and creating a new
version of the file (if file versioning is enabled).

■■ Discard Check Out Releases the exclusive lock on the file, discarding any changes.

■■ View Properties Shows the metadata properties of a selected file.

■■ Edit Properties Edits the metadata properties of a selected file.

■■ Shared With Shows the people with which you shared the current document.

■■ Share Allows you to share the current document with other people.

■■ Delete Document Deletes one or more selected files.

■■ Download a Copy Downloads a copy of a selected file.

■■ Send To Sends the selected file to a specific destination.

When working with a document library, you can configure settings and create custom columns
and custom views, just as you can with a standard list. Plus, in a document library, you can configure
a document template for creating any new documents. To configure this feature, select the Library
Settings command on the Library ribbon tab. The Document Library Settings page appears. Select
the Advanced Settings menu item to open a page on which you can configure a number of interest-
ing parameters (see Figure 2-10). Some of these parameters are the same as the common lists; others
are specific for document libraries. The following are the specific advanced settings for document
libraries:

■■ Document Template This allows you to specify the relative URL of a document that will be
used as the template for all new files created in the document library.

■■ Opening Documents in the Browser Here, you can define how SharePoint behaves
when opening browser-enabled documents—that is, documents that can be opened within
the browser. You can choose between Open In The Client Application, to open the file on
the client side, within the specific client application; Open In The Browser, to open the file
in the browser; and Use The Server Default, which is set by the farm administrators.

■■ Custom Send to Destination Use this to add a custom target to the Send To menu.

■■ Search This allows you to choose whether or not the contents of the current library will be
available as results of queries to the search engine.

■■ Site Assets Library This determines if this library will be the default assets library for storing
images, videos, and other files when users upload contents to their blogs or wiki pages.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 2 SharePoint data fundamentals 47

FIGURE 2-10 The Advanced Settings page for a document library.

Site columns

In the previous sections, you defined custom lists and columns by simply configuring them at the list
level. In some situations, however, you need to define the same column type in multiple list instances.
Wouldn’t it be great to define the concept once, and then use it in many libraries? SharePoint site
columns make sharing a metadata definition across multiple lists and libraries easy. A site column is
the formal definition of a field type (a metadata type) shared at the website level. Site column defini-
tions are hierarchical. In fact, you can define a site column in the root site of a site collection and use
it in all the sites of the collection. Having a unique concept for describing metadata simplifies defin-
ing search queries and improves the quality of search results. For example, suppose you use a site
column to define a protocol number that is shared across many document libraries. You could then
define a query to retrieve all documents that have a protocol number field containing a value within
a specified range, regardless of the library in which they are stored. A list of similar examples could be
very long.

To define a new site column, browse to the Site Settings page through the Settings menu (see
Figure 2-11). Under the Web Designer Galleries group, you will find a menu item named Site Columns,
which brings you to the page on which you manage existing site columns or create new ones.

www.it-ebooks.info

http://www.it-ebooks.info/

48 PaRt I Getting started

The Site Columns page lists all the existing site columns, divided into groups. To create a new
site column definition, simply click the Create button at the top of the page. Doing so takes you to
the Site Column Definition page for site columns, which is similar to the page you used to create a
list-level column (Figure 2-4). Here you can specify the settings that control the grouping of columns,
making it easier to retrieve them on the Gallery page.

FIGURE 2-11 The Site Settings page for a site collection.

After you define a site column, you can reference it in any list or library by selecting the Add From
Existing Site Columns command (Figure 2-3) on the List Settings page. You can also use a site column
to define a custom content type, as you will see in the next section.

Content types

A content type is a formal definition of a data template or item template, a model of the data you
intend to store in a particular list or document. Each time you create a new item in a list or a new
document in a library, you are creating an instance of a content type. In addition, every list and library
has one default content type under its cover. For example, if you create a list of type Contacts, and
you add a new item, this item will be made of a set of columns that are defined in the Contact content
type, which is a default content type provided by SharePoint. If you create a list of type document
library, as you did in the previous section, by default, the library will host items with a content type of
Document.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 2 SharePoint data fundamentals 49

A content type is based on a set of site column references, together with some other optional
information related to forms, rendering templates, a specific document template (for document items
only), and custom XML configuration.

As you will see in more detail in Chapter 3, content types are hierarchical and exploit an inheri-
tance pattern. At the root, there is a System content type, which is essentially a low-level base class
for every other content type. Figure 2-12 depicts the hierarchical inheritance tree for native content
types. As you can, see the System content type is inherited by the Item content type, which acts as
the base class, either directly or indirectly, for every other content type. For example, the Contact
content type you used in the list of contacts inherits from Item, as does the Document content type.
The Picture content type, which is the default content type for a picture library, inherits from the
Document content type.

FIGURE 2-12 The inheritance hierarchy of content types in SharePoint.

Depending on the edition of SharePoint you are using and on the configuration of your farm,
content types can also be shared across multiple site collections, web applications, or farms via the
Content Type Hub service, which is available through the Managed Metadata service and part of the
SharePoint Server 2013 Standard edition.

You can manage existing content types or define custom content types by clicking the Site Content
Types command found under the Web Designer Galleries group of the Site Settings page. To create
a new content type, click the Create button at the top of the page. A new page appears, asking you

www.it-ebooks.info

http://www.it-ebooks.info/

50 PaRt I Getting started

to supply a few settings, such as the name, description, logical group, and the parent content type
of your new content type. Immediately after creating the new content type, you will be redirected
to the page for content type management, shown in Figure 2-13. Here, you can configure all the
content type settings, including general information about the content type, specifying a custom
document template (in the event of a content type inheriting from Document), managing workflows,
information management policies, and many other options. You can also configure a content type
that uses a specific set of site columns. Doing this lets you share the same field types across multiple
content types.

FIGURE 2-13 The page for managing a content type configuration.

After defining one or more custom content types, you can map them to lists or libraries using
the list or library Advanced Settings page. Thus, the following is the process to design content in a
SharePoint site:

1. Define the site columns.

2. Create the content types that will use those columns.

3. Create the lists or libraries that use the content types.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 2 SharePoint data fundamentals 51

By working in this sequence, you will end up with a common set of data items (content types) that
share a common set of data fields (site columns), stored in custom data repositories (lists and libraries).
Be careful that you should never change or edit the out-of-the-box content types. In case of need, you
should create custom content types, inheriting from ones that already exist, and customize them.

Sites

Sites are another kind of data repository that you can define. Generally, you can use a site as a place
to hold collections of lists and libraries that are shared by the same target audience or that share the
same functional meaning. For example, you could have a website for each department of your com-
pany (Sales, Human Resources, Information Technology, and so on). Sites are stored in site collections,
so before you can create a new site, you first need to have a site collection.

As you may remember, each site collection contains one root site, by default. To create another
site, invoke the New Subsite command on the Site Contents page. To access the Site Contents page,
you can click the Settings menu, represented by a gear in the top-right corner of the webpage area,
and then click the Site Contents menu item. You will be prompted to select from a wide list of site
templates; the following are some of the most interesting choices:

■■ Team Site A site for a team of people who want to share documents, a calendar, announce-
ments, and tasks.

■■ Blank Site A blank site ready for customization.

■■ Blog A site for managing a blog, which can accept comments, ratings, and so forth.

■■ Project Site A site for managing and collaborating on a project.

■■ Community Site A place where community members discuss topics of common interest.

■■ Visio Process Repository A site for teams to quickly view, share, and store Visio process
diagrams.

■■ Document Center A site to centrally manage documents in an enterprise-level company.

■■ Records Center A site to manage records of documents in an enterprise-level company.
It provides configurable routing tables to direct files to specific locations based on custom
company rules.

■■ Business Intelligence Center A site for presenting business intelligence content in
SharePoint.

■■ Enterprise Search Center A site that supports searching for documents or people in an
enterprise-level company.

■■ Basic Search Center A site that delivers a basic search experience.

Although these are the most common website templates, you might see others, depending on
which SharePoint edition you have installed.

www.it-ebooks.info

http://www.it-ebooks.info/

52 PaRt I Getting started

Summary

This chapter discussed the fundamental parts of SharePoint data. You saw how to create lists of items,
site columns, content types, and sites. By capitalizing on the information discussed in this chapter,
you will be able to create simple data management solutions using SharePoint 2013 as your data
repository. However, as you further read this book, you will see why you should not use SharePoint
as an RDBMS surrogate; instead, SharePoint is an appropriate companion for a relational database. In
Chapter 3, you will learn how to provision data structures using code and markup, rather than simply
designing them through the web browser interface as you did in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

 53

PART II

Developing
SharePoint Solutions

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

 55

C H A P T E R 3

Data provisioning

The previous chapters showed you how many Microsoft SharePoint solutions rely on lists of items
that contain data, such as contacts, files, and so on. When you develop a SharePoint solution,

therefore, one of your main tasks is to provision data structures for these lists of items. In fact, when-
ever you need to develop a reusable and maintainable solution that will reside on many different site
collections and has many different customers, you should formally define the data structures that you
will use. Simply designing them through the SharePoint visual design interface from a web browser
might seem easy (any end user can do it), but in the long run it will become a source of confusion.
Formal definitions can be reused many times in multiple sites and can be versioned. Meanwhile, data
structure definitions made manually through the visual design interface are difficult to reuse and can
lead to duplication of definitions in multiple sites. Also, when you create SharePoint apps hosted on
SharePoint, you can use the data model of lists and items provided by SharePoint for storing data and
content related to your apps.

Note Within the context of this book, the term data structure refers to the formal defini-
tions of custom list definitions, content types, and site columns. Such formal definitions
help to ensure data consistency across lists and sites.

This chapter explores the rules for custom lists and the tools that SharePoint 2013 provides to cre-
ate them. To learn how these tools behave in a real-world scenario, you will investigate how to define
a custom list of contacts that can use custom forms and can be browsed through specific list views.
The list in this case study will be based on two content types: Customer and Supplier.

Site columns

The first and main step in provisioning a custom data structure is to define site columns. A site col-
umn describes a reusable data type model that you can use in many different content types and list
definitions, across multiple SharePoint sites. Unless you have never used SharePoint at all, you will
have already defined many site columns using a web browser, within the appropriate section of the
Site Settings page. To create a more flexible and reusable solution, you can also define a site column
using some XML code, which in SharePoint is called a feature element.

www.it-ebooks.info

http://www.it-ebooks.info/

56 PaRt II Developing SharePoint solutions

More Info For further details about features and feature elements, read Chapter 11,
“Developing Web Parts.”

Listing 3-1 shows a very simple site column definition for a Text column that contains the company
name of the sample contact.

LISTING 3-1 A simple site column defined in a feature element

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Field
 ID="{A8F24550-55CD-4d34-A015-811954C6CE24}"
 Name="DevLeapCompanyName"
 StaticName="DevLeapCompanyName"
 DisplayName="Company Name"
 Type="Text"
 Group="DevLeap Columns" />
</Elements>

Aside from the Elements tag itself, which is simply a container element, the interesting part of the
preceding column definition is the Field element. The most important feature of this element is the
ID attribute, which is a globally unique identifier (GUID) that uniquely identifies the site column. You
can use the ID attribute to reference this specific site column everywhere. Notice that you can create
unique GUIDs by using the GUIDGEN tool provided with Microsoft Visual Studio 2012.

Listing 3-1 declares that the Company Name column will have an internal Name attribute of
DevLeapCompanyName. Name is a required attribute, and like the ID attribute, it should also be
unique, because it provides an alternative way to exclusively reference the column from code. In
general, this example uses the developer’s company name value as a prefix to better ensure the
uniqueness of this name. The Name attribute value cannot contain spaces or any characters other
than numbers (0 through 9) and letters (a through z and A through Z). Any other characters will be
converted into the corresponding hexadecimal representation. For example, if you want to name
a field Company Name, you must define it as Company_x0020_Name. If you want to name a field
Revenue %, you must define it as Revenue_x0020__x0025_. The last thing to keep in mind is that the
Name attribute cannot be longer than 32 characters.

The preceding site column definition also defines the optional StaticName attribute, which is
another way of defining the internal name. The StaticName can be useful for referencing your
field in custom code, regardless of the encoding used in the Name field. Finally, the site col-
umn definition defines the field’s DisplayName attribute, whose value is the title that users

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 Data provisioning 57

will see in their browsers. This last attribute can take advantage of the multilanguage sup-
port provided by Microsoft .NET in general, so declaring its value as a resource string reference
(“$Resources:<Assembly_Name>,<Resource_Name>;”) instead of an explicit value will result in a
multilanguage value.

Why do you need three attributes to define field name types?
At first, using three attributes to define three kinds of names for a single field may seem
redundant and overly complex, but each attribute serves a purpose. Consider this: the XML
schema that we use as developers is also used internally by SharePoint to represent a site
column. When you define a column using the web browser interface, SharePoint automatically
determines the internal name (for instance, Name and StaticName) based on the name (which
becomes the display name) that you give it, automatically converting any nonalphanumeric
characters to their corresponding hexadecimal representations, and then trimming the result-
ing string to 32 characters for the Name attribute, leaving the StaticName attribute value as
long as needed. If a site column with the same Name already exists, SharePoint appends a
number to the name, using a zero-based index.

If you later change the DisplayName of the field, SharePoint will keep both the StaticName
and the Name unchanged. That scheme gives your site column three different values for the
three attributes: the DisplayName; the StaticName, which is simply the original DisplayName
with hexadecimal conversion of nonalphanumeric characters; and the Name, with hexadecimal
conversion of nonalphanumeric characters trimmed to 32 characters.

Lastly, using the SharePoint Server Object Model (for further details, see Chapter 5, “Server
Object Model”), you can change the StaticName, but you cannot change the internal Name
value. Therefore, when you have to define site columns using a feature element, the best prac-
tice is to assign the same value to the Name and to the StaticName (avoiding nonalphanumeric
characters) and to provide a descriptive value for the DisplayName attribute.

The Type attribute is mandatory for site column definitions. It defines the data type assigned to
the field. This Type attribute value can be one of a predefined set of SharePoint field types, or it can
be a custom field type that you have defined and deployed. Table 3-1 presents some of the main field
types provided by SharePoint.

More Info For a complete list of field types, refer to the online product reference at
http://msdn.microsoft.com/en-us/library/ms437580(v=office.15).aspx.

www.it-ebooks.info

http://www.it-ebooks.info/

58 PaRt II Developing SharePoint solutions

TABLE 3-1 Common predefined field types

Field type name Description

Boolean Represents a Boolean value (TRUE or FALSE), stored as a bit in Microsoft SQL Server and
accessible as an SPFieldBoolean object through the Server Object Model.

Choice Allows the user to select a single value from a predefined set of values. The XML schema
of the Field element must declare the values (for further details, see Listing 3-2). It
is stored as an nvarchar in SQL Server, and is accessible as an SPFieldChoice object
through the Server Object Model.

MultiChoice Allows the user to select multiple values from a predefined set of values. The XML
schema of the Field element has to declare the values. It is stored as an ntext in SQL
Server, and is accessible as an SPFieldMultiChoice object through the Server Object
Model.

Currency Defines a currency value. Currency is bound to a specific locale, using an LCID attribute.
It can have constraints using Min, Max, and Decimals attributes. It is stored as a float
in SQL Server and is accessible as an SPFieldCurrency object through the Server Object
Model.

DateTime Saves a date and time value. DateTime is stored as a datetime in SQL Server, and is
accessible as an SPFieldDateTime object through the Server Object Model.

Lookup and LookupMulti Behave almost the same as Choice and MultiChoice; however, the set of values to
choose from is taken from another list of items within the same site. These field types
are stored as int types in SQL Server, and are accessible as SPFieldLookup objects
through the Server Object Model.

Note Stores multiple lines of text. Note is stored as an ntext in SQL Server, and is accessible as
an SPFieldMultiLineText object through the Server Object Model.

Number Defines a floating-point number. Number can have constraints using Decimals, Div,
Max, Min, Mult, and Percentage. It is stored as a float in SQL Server and is accessible as
an SPFieldNumber object through the Server Object Model.

Text Describes a single line of text of a configurable maximum length. Text is stored as an
nvarchar in SQL Server, and is accessible as an SPFieldText object through the Server
Object Model.

URL Defines a URL with a specific LinkType (Hyperlink or Image). URL is stored as an nvarchar
in SQL Server and is accessible as an SPFieldUrl object through the Server Object Model.

User and UserMulti Describe a lookup for a single user or a set of users. These are stored as an int types in
SQL Server, and are accessible as SPFieldUser objects through the Server Object Model.

The last attribute defined in the site column example is the Group attribute, which simply defines
a group membership to make it easier to find custom fields through the web browser administra-
tive interface. Group is an optional attribute, but it is better that you define it whenever you create a
custom site column, in order to organize your columns in personalized custom groups.

Although it’s not an exhaustive keyword reference, Table 3-2 shows some of the many
other interesting attributes that you can use when defining custom site columns. For a com-
plete reference of the available attributes, you can read the following page on MSDN:
http://msdn.microsoft.com/en-us/library/aa979575.aspx.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 Data provisioning 59

TABLE 3-2 Interesting optional Boolean attributes available for the Field element

Field attribute Description

Hidden Can assume a value of TRUE or FALSE. When TRUE, the field will be completely hidden from
the UI and will be accessible only through code, using the Object Model.

ReadOnly Can assume a value of TRUE or FALSE. When TRUE, the field will not be displayed in new and
edit forms, but can be included in read-only data views. It will remain accessible using the
object model.

Required Can assume a value of TRUE or FALSE. Its name implies its role.

RichText Can assume a value of TRUE or FALSE. It determines whether a text field will accept rich text
formatting.

ShowInDisplayForm Can assume a value of TRUE or FALSE. When FALSE, the field will not be displayed in the
display form of the item containing the field.

ShowInEditForm Can assume a value of TRUE or FALSE. When FALSE, the field will not be displayed in the
editing form of the item containing the field.

ShowInNewForm Can assume a value of TRUE or FALSE. If it is FALSE, the field will not be displayed in the form
to add a new item containing the field.

While Listing 3-1 introduced a basic definition, Listing 3-2 adds another level of complexity by
declaring a Choice field that will be used to select the contact’s country affiliation.

LISTING 3-2 A Choice site column defined in a feature element

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Field
 ID="{149BF9A1-5BBB-468d-AA35-91ACEB054E3B}"
 Name="DevLeapCountry"
 StaticName="DevLeapCountry"
 DisplayName="Country"
 Type="Choice"
 Group="DevLeap Columns"
 Sortable="TRUE">
 <Default>Italy</Default>
 <CHOICES>
 <CHOICE>Italy</CHOICE>
 <CHOICE>USA</CHOICE>
 <CHOICE>Germany</CHOICE>
 <CHOICE>France</CHOICE>
 </CHOICES>
 </Field>
</Elements>

This example shows how you can define a set of available values for a Choice field. Note that the
list defines a Default element.

www.it-ebooks.info

http://www.it-ebooks.info/

60 PaRt II Developing SharePoint solutions

Another interesting task that you can accomplish when defining a site column is to declare a cus-
tom validation rule for its content. To do that, you simply define a Validation element as a child of the
Field definition. The Validation element can have a Message attribute, which defines an error message
to display to end users when validation fails, and a Script attribute, which defines a JavaScript rule that
performs the validation. Alternatively, you can define a rule using the Formulas syntax of SharePoint,
putting the rule inside the Validation element.

More Info For further details on calculated fields and formulas in SharePoint, refer to
the “Calculated Field Formulas” MSDN page, at http://msdn.microsoft.com/en-us/library/
bb862071.aspx.

Content types

A content type schema defines a model for a specific SharePoint complex data type, and is based on a
set of site column references, together with some other optional information related to forms, render-
ing templates, a specific document template (only in the case of document items), and custom XML
configuration.

Chapter 2, “SharePoint data fundamentals,” showed how SharePoint uses a hierarchical structure
for defining content types, which consists of a base content type named System with a single child
named Item. SharePoint then applies an inheritance paradigm (similar to object-oriented class inheri-
tance) to define each content type descendant of Item. Figure 3-1 shows an excerpt of the hierarchical
inheritance tree for native content types. As a consequence of this behavior, you must define inheri-
tance information for each new content type that you declare. For more details, read the “Content
type IDs” section later in the chapter.

Listing 3-3 provides an example of the Contact content type, defined by referencing a set of site
columns.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 Data provisioning 61

FIGURE 3-1 The content types inheritance hierarchy in SharePoint.

LISTING 3-3 A simple content type defined in a feature element, together with its site columns

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <!-- Site Columns used by the Content Type -->
 <Field
 ID="{C7792AD6-F2F3-4f2d-A7E5-75D5A8206FD9}"
 Name="DevLeapContactID"
 StaticName="DevLeapContactID"
 DisplayName="Contact ID"
 Type="Text"
 Group="DevLeap Columns"
 Sortable="TRUE" />

www.it-ebooks.info

http://www.it-ebooks.info/

62 PaRt II Developing SharePoint solutions

 <Field
 ID="{A8F24550-55CD-4d34-A015-811954C6CE24}"
 Name="DevLeapCompanyName"
 StaticName="DevLeapCompanyName"
 DisplayName="Company Name"
 Type="Text"
 Group="DevLeap Columns"
 Sortable="TRUE" />
 <Field
 ID="{149BF9A1-5BBB-468d-AA35-91ACEB054E3B}"
 Name="DevLeapCountry"
 StaticName="DevLeapCountry"
 DisplayName="Country"
 Type="Choice"
 Group="DevLeap Columns"
 Sortable="TRUE">
 <Default>Italy</Default>
 <CHOICES>
 <CHOICE>Italy</CHOICE>
 <CHOICE>USA</CHOICE>
 <CHOICE>Germany</CHOICE>
 <CHOICE>France</CHOICE>
 </CHOICES>
 </Field>
 <!-- Parent ContentType: Item (0x01) -->
 <ContentType ID="0x0100A60F69C4B1304FBDA6C4B4A25939979F"
 Name="DevLeapContact"
 Group="DevLeap Content Types"
 Description="Base Contact of DevLeap"
 Inherits="TRUE"
 Version="0">
 <FieldRefs>
 <FieldRef
 ID="{fa564e0f-0c70-4ab9-b863-0177e6ddd247}"
 Name="Title"
 DisplayName="Full name" />
 <FieldRef
 ID="{C7792AD6-F2F3-4f2d-A7E5-75D5A8206FD9}"
 Name="DevLeapContactID"
 DisplayName="Contact ID"
 Required="TRUE" />
 <FieldRef
 ID="{A8F24550-55CD-4d34-A015-811954C6CE24}"
 Name="DevLeapCompanyName"
 DisplayName="Company Name" />
 <FieldRef
 ID="{149BF9A1-5BBB-468d-AA35-91ACEB054E3B}"
 Name="DevLeapCountry"
 DisplayName="Country" />
 </FieldRefs>
 </ContentType>
</Elements>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 Data provisioning 63

This feature element example contains a ContentType element, which defines some descrip-
tive information, such as the Name, Group, and Description. The ContentType element also defines
a Version attribute, which indeed is used for managing versioning, as its name implies, but is still
reserved by Microsoft for future use. Last, but most important, is the ID attribute, which defines the
unique identifier for this content type in the site collection where it is defined. Inside the ContentType
element is a FieldRefs element, which is the parent of a list of FieldRef or RemoveFieldRef elements.
Each element in this list references a specific site column to be added or removed from this content
type. You might notice that this example references all the site columns defined earlier in the fea-
ture element file. In fact, unless you are defining site columns for use in multiple content types, it’s
common to define the referenced site columns within the same feature element file—just before the
content type that will use them.

Listing 3-3 also references a site column with the name Title and the ID {fa564e0f-0c70-4ab9-
b863-0177e6ddd247}. This is the SharePoint native site column that defines the Title field for each
SharePoint item. In the content type example, we changed the DisplayName value from Title, which
still retains its internal name, to Full name, which will be the displayed name for this content type. By
default, the Title field is also used by SharePoint to render the Edit Control Block menu, which allows
you to display, edit, and manage a list item from the list UI.

Content type IDs
The ID attribute of a content type is not a simple GUID, as it was with the site columns definition;
instead, it’s a more complex value that describes the hierarchical inheritance of the type. In fact, every
content type ID is composed of the ID of its hierarchical parent content type, followed by a hexa-
decimal value that’s unique to the current content type. You could say that a content type ID defines
its genealogy. This logic is recursive, starting with the System content type and extending all the way
down to the current content type. Table 3-3 shows an excerpt of the base hierarchy of SharePoint
content type IDs.

TABLE 3-3 An excerpt of the base hierarchy of SharePoint content type IDs

Content type ID

System 0x

Item 0x01

Document 0x0101

XmlDocument 0x010101

Picture 0x010102

Event 0x0102

…

Contact 0x0106

Task 0x0108

…

Folder 0x0120

www.it-ebooks.info

http://www.it-ebooks.info/

64 PaRt II Developing SharePoint solutions

Table 3-3 demonstrates that the root content type is System, which is a special hidden content type
with an ID value of 0x. The Item content type is the only child of System and has an ID value of 0x01
(the System ID + 01). The Document content type, which is a child of Item, has an ID value of 0x0101
(the Item ID + 01), while its sibling Event has an ID of 0x0102 (the Item ID + 02).

In general, the rule used to define content type IDs states that you can build an ID using either of
two techniques:

■■ Parent content type ID + two hexadecimal values (cannot be 00)

■■ Parent content type ID + 00 + hexadecimal GUID

Microsoft generally uses the first technique to define base content type IDs. Third parties, such as
vendors or ISVs, typically use the latter technique to define custom content type IDs. If you want to
define a hierarchy of custom content types of your own, follow these steps:

1. Identify the base content type from which you want to inherit.

2. Add 00 at the end of the base content type ID.

3. Add a hexadecimal GUID just after the 00.

4. Append two hexadecimal values to declare every specific child of your content type.

As a concrete example, suppose that you want to define a custom content type inher-
ited from the Document base content type. You would start with 0x0101, which is the
Document ID, append 00 to it, and then append a hexadecimal GUID, making your ID something like
0x010100BDD3EC87EA65463AB9FAA5337907A3ED.

If you wanted to use your custom content type as a base for some other inherited content types,
you would append 01, 02, and so on for each child content type, as in the following:

■■ Base ID 0x010100BDD3EC87EA65463AB9FAA5337907A3ED

■■ Child 1 0x010100BDD3EC87EA65463AB9FAA5337907A3ED01

■■ Child 2 0x010100BDD3EC87EA65463AB9FAA5337907A3ED02

More Info Content type IDs have a maximum length of 512 bytes. Because every two
hexadecimal characters correspond to a single byte, a content type ID has a maximum
length of 1,024 characters.

With that in mind, we can go back to the example custom Contact content type. First, you need to
choose the base content type from which you want to inherit. For example purposes, assume that you
decide to use the generic base Item as the parent content type. That means the custom content type
ID will start with 0x01, followed by 00 and then a hexadecimal GUID. The end result is the same as the
ID highlighted in bold in Listing 3-3:

ID="0x0100A60F69C4B1304FBDA6C4B4A25939979F"

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 Data provisioning 65

The goal of the case study is to define a custom list that is based on a couple of content types
(Customer and Supplier) inherited from this base Contact content type. Listing 3-4 shows the defini-
tions of the Customer and Supplier content types.

LISTING 3-4 Customer and Supplier content type definitions

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Field
 ID="{AC689935-8E8B-485e-A45E-FF5A338DD92F}"
 Name="DevLeapCustomerLevel"
 StaticName="DevLeapCustomerLevel"
 DisplayName="Customer Level"
 Type="Choice"
 Group="DevLeap Columns">
 <Default>Level C</Default>
 <CHOICES>
 <CHOICE>Level A</CHOICE>
 <CHOICE>Level B</CHOICE>
 <CHOICE>Level C</CHOICE>
 </CHOICES>
 </Field>
 <Field
 ID="{A73DE518-B9B9-4e8d-9D94-6099B4603997}"
 Name="DevLeapSupplierAccount"
 StaticName="DevLeapSupplierAccount"
 DisplayName="Supplier Account"
 Type="User"
 Group="DevLeap Columns"
 Sortable="TRUE" />
 <ContentType ID=”0x0100A60F69C4B1304FBDA6C4B4A25939979F01”
 Name="DevLeapCustomer"
 Group="DevLeap Content Types"
 Description="Customer of DevLeap"
 Version="0">
 <FieldRefs>
 <FieldRef
 ID="{AC689935-8E8B-485e-A45E-FF5A338DD92F}"
 Name="DevLeapCustomerLevel"
 Required="TRUE" />
 </FieldRefs>
 </ContentType>
 <ContentType ID=”0x0100A60F69C4B1304FBDA6C4B4A25939979F02”
 Name="DevLeapSupplier"
 Group="DevLeap Content Types"
 Description="Supplier of DevLeap"
 Version="0">
 <FieldRefs>
 <FieldRef
 ID="{A73DE518-B9B9-4e8d-9D94-6099B4603997}"
 Name="DevLeapSupplierAccount"
 Required="TRUE" />
 </FieldRefs>
 </ContentType>
</Elements>

www.it-ebooks.info

http://www.it-ebooks.info/

66 PaRt II Developing SharePoint solutions

Both of these content types extend the base Contact content type; each adds a specific site col-
umn. The Customer content type adds a required field to define the customer level (A, B, or C) for
each Customer instance, while the Supplier content type adds a field to reference a local account,
which you can browse as a SharePoint user. You can see the inheritance hierarchy of these custom
types in Figure 3-2, which shows a portion of the Site Content Type page of a site collection.

FIGURE 3-2 The Site Content Type page of a site collection where the custom content types are provisioned.

Finally, consider that Visual Studio 2012 automatically calculates the content type IDs when
you add a new content type to a SharePoint project. In fact, if you try to add a content type to a
SharePoint project within Visual Studio 2012, you will be prompted with a one-step wizard, regardless
of whether you are creating a Windows SharePoint Services Solution Package (WSP) or a SharePoint
app. In the wizard’s first and only step, you must choose the basic content type from which you would
like your custom content type to inherit (Figure 3-3).

FIGURE 3-3 The wizard for creating a new content type.

After you make your choice and click finish to close the wizard, SharePoint displays a graphical
designer useful to define the columns of the content type and its overall configuration. Figure 3-4
shows the two tabs available in the Content Type designer: Columns and Content Type.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 Data provisioning 67

FIGURE 3-4 The two tabs available in the Content Type designer.

As you can see, the Columns tab is active. Here you can reference the site columns to use in the
current content type. Note, however, that you can specify existing site columns only. The Content
Type tab enables you to define the name, the description, and the group of the current content type.
Lastly, through this second tab you can also determine whether the content type will inherit columns
from its parent type or not, as well as if the current type will be read-only and/or hidden. Based on
your settings, the designer creates an XML element manifest file that is similar to what you can code
manually. Although this might seem like a worthwhile shortcut, it is somewhat limited. When you
need a finer degree of flexibility in defining custom content types, manually creating or editing the
XML file is a better solution.

More about content types
Sometimes you need a more restricted content type; in such cases, SharePoint offers several other
interesting attributes to help you out. For example, the ReadOnly attribute makes the content type
read-only when its value is set to TRUE. Likewise, when the Sealed attribute is set to TRUE, it seals a
content type so that only a site collection administrator using the Server Object Model can unseal it
for editing. Lastly, the Hidden attribute is useful for making a content type invisible so that contribu-
tors cannot create new items of this type in list views, but you will still have access to it through your

www.it-ebooks.info

http://www.it-ebooks.info/

68 PaRt II Developing SharePoint solutions

custom code. If you want to declare a content type as completely invisible—not only for end users
but also for site collection administrators—you can make it belong to a special group named _Hidden.

In addition, you can configure a content type not only through ContentType element attributes,
but also by declaring some child elements. One of these is the FieldRefs child element discussed ear-
lier in this chapter. Another useful element is XmlDocuments, with which you can define any kind of
custom XML configuration to apply to the content type. SharePoint itself uses this element to declare
custom controls and pages for the content type. Listing 3-5 shows how to use this element.

LISTING 3-5 Using the XmlDocuments element inside a content type definition

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <ContentType ID="0x0100a60f69c4b1304fbda6c4b4a25939979f01"
 Name="DevLeapCustomer"
 Group="DevLeap Content Types"
 Description="Customer of DevLeap"
 Inherits="TRUE"
 Version="0">
 <FieldRefs>
 <FieldRef
 ID="{AC689935-8E8B-485e-A45E-FF5A338DD92F}"
 Name="DevLeapCustomerLevel"
 Required="TRUE" />
 </FieldRefs>
 <XmlDocuments>
 <XmlDocument NamespaceURI=
 "http://schemas.microsoft.com/sharepoint/v3/contenttype/forms">
 <FormTemplates xmlns=
 "http://schemas.microsoft.com/sharepoint/v3/contenttype/forms">
 <Display>DevLeapCustomerDisplay</Display>
 <Edit>DevLeapCustomerEdit</Edit>
 <New>DevLeapCustomerNew</New>
 </FormTemplates>
 </XmlDocument>
 </XmlDocuments>
 </ContentType>
</Elements>

Listing 3-5 shows that the XmlDocuments element is just a container for one or more
XmlDocument elements. Every XmlDocument element can have a NamespaceURI attribute that
declares the scope of the custom configuration defined. Listing 3-5 declares a configuration that
defines custom ASCX control files that are used for rendering display, edit, and add forms for
instances of the current content type. The ASCX control files referenced should be deployed inside

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 Data provisioning 69

the CONTROLTEMPLATES special folder of SharePoint, through a farm-level (full-trust) solution. The
content of each XmlDocument element derives from the referenced NamespaceURI. The only require-
ment is that the XML content must be valid against its declared XML schema.

When you consider that in a farm-level (full-trust) solution you can access any custom
XmlDocument that you define while provisioning content types later through the Server Object
Model, you can see that the model provides you with an extremely customizable environment.

Document content types
Content types inherited from the Document base content type (ID: 0x0101) are a special case that you
must analyze a bit more carefully than usual. In fact, every document has numerous specific con-
figurations that it must handle. For instance, in the “Content types” section earlier in the chapter, you
learned that a document can have a document template, a document information panel, or both.

Listing 3-6 shows the definition for a custom document content type that declares an Invoice
document model.

LISTING 3-6 Defining the Invoice content type, inherited from the Document content type

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <!-- Parent ContentType: Document (0x0101) -->
 <ContentType ID="0x010100A5FD8267A91945DF9F3884D9EAA4F12F"
 Name="DevLeapInvoice"
 Group="DevLeap Content Types"
 Description="Invoice of DevLeap"
 Inherits="TRUE"
 Version="0">
 <FieldRefs>
 <!-- Field References here -->
 </FieldRefs>
 <DocumentTemplate TargetName="Forms/DevLeapInvoiceTemplate.dotx" />
 </ContentType>
</Elements>

The Document portion of the ID is highlighted in bold to remind you of the underlying behavior
of SharePoint. The DocumentTemplate element (also highlighted) has a TargetName attribute that
defines the URL (relative for the site collection) of the template item to use for every new Invoice
instance. Listing 3-7 shows how to define a custom document information panel for a Document con-
tent type, assuming that you have already designed and deployed the panel.

www.it-ebooks.info

http://www.it-ebooks.info/

70 PaRt II Developing SharePoint solutions

LISTING 3-7 Defining a custom document information panel for an Invoice content type, inherited from the
Document content type

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <!-- Parent ContentType: Document (0x0101) -->
 <ContentType ID="0x010100a5fd8267a91945df9f3884d9eaa4f12f"
 Name="DevLeapInvoice"
 Group="DevLeap Content Types"
 Description="Invoice of DevLeap"
 Inherits="TRUE"
 Version="0">
 <FieldRefs>
 <!-- Field References here -->
 </FieldRefs>
 <XmlDocuments>
 <XmlDocument NamespaceURI=
 "http://schemas.microsoft.com/office/2006/metadata/customXsn">
 <xsnLocation>http://URL/customXsn.xsn</xsnLocation>
 <cached>False</cached>
 <openByDefault>True</openByDefault>
 <xsnScope>http://URL/documentLibrary</xsnScope>
 </XmlDocument>
 </XmlDocuments>
 </ContentType>
</Elements>

Listing 3-7 declares the absolute URL of the document information panel by using the xsnLocation
element. It also disables caching in the Microsoft Office client by setting the cached element to
FALSE. Lastly, it defines how the document should behave relative to this new panel, through the
openByDefault element, which is set to TRUE, meaning that the panel should open by default. The
xsnScope element is required, but for now it is reserved by Microsoft for internal use only.

List definitions

Now that you have defined your content types, you are ready to use them in a real list of contacts,
comprising customers and suppliers. In fact, generally, whenever you define a set of custom content
types, you also define one or more list definitions that use these content types. A list definition is
simply a formal representation, using an XML schema, of a list data model from which you are able to
create one or more instances of items corresponding to that model.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 Data provisioning 71

In SharePoint, a list definition is a combination of two files: a Schema.xml file, which defines the
data structure and configuration of the list definition model, and a feature element file that describes
the ListTemplate, which defines the information required for provisioning and deploying the list defi-
nition model.

List schema file
The list schema file is an XML document that describes all the metadata for the list data structure. The
following are the main areas of the Schema.xml file for a list definition:

■■ Content Types This section defines the content types that will be available within the list
definition.

■■ Fields This section declares the list-level site columns, which correspond to the entire set of
site columns referenced by all the content types associated with the list definition.

■■ Views This section defines the views that will be available to the end user for navigating
among the items of list template instances.

■■ Forms This section declares the ASPX pages that will be provided to the end user to add,
display, and update items of a list instance based on the current list definition.

■■ Validation This section defines the validation rules for list items.

■■ Toolbar This section declares the type of toolbar that must be provided in the browser
interface.

In addition to the preceding list, the complete XML schema contains some other elements as well.
Listing 3-8 shows an excerpt from a Schema.xml file that describes a list definition, together with
these main sections.

www.it-ebooks.info

http://www.it-ebooks.info/

72 PaRt II Developing SharePoint solutions

LISTING 3-8 Excerpt of a list definition schema file

<?xml version="1.0" encoding="utf-8"?>
<List xmlns:ows="Microsoft SharePoint"
 Title="DevLeapContacts"
 FolderCreation="FALSE"
 Direction="$Resources:Direction;"
 Url="Lists/DevLeapContacts"
 BaseType="0"
 EnableContentTypes="TRUE"
 xmlns="http://schemas.microsoft.com/sharepoint/">
 <MetaData>
 <ContentTypes>
 <!-- Here are referenced the content types -->
 </ContentTypes>
 <Fields>
 <!-- Here are declared the list-level site columns -->
 </Fields>
 <Views>
 <!-- Here are defined the views -->
 </Views>
 <Forms>
 <!-- Here are declared the forms used to add, display, update items -->
 </Forms>
 <Validation>
 <!-- Here are declared the validation rules for list items -->
 </ Validation >
 <Toolbar />
 <!-- To define what kind of toolbar to use in the Web browser UI -->
 </MetaData>
</List>

the List element
The List element is the root of the schema file and declares some basic attributes for the list definition.
The Title attribute defines the name of the list definition. The BaseType attribute defines the base list
type to use for the current list definition. The global onet.xml file of SharePoint (for further details,
please read Chapter 13, “Web templates”) declares the list of all the available integer values for the
BaseType values within a BaseTypes element.

Note The global onet.xml file is located in the SharePoint15_Root\TEMPLATE\GLOBAL\XML
folder.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 Data provisioning 73

The available BaseTypes values are

■■ 0 Generic/Custom List

■■ 1 Document Library

■■ 2 Not used, may be reserved for future use

■■ 3 Discussion Forum (deprecated, use 0 instead)

■■ 4 Vote or Survey

■■ 5 Issues List

For example, Listing 3-8 used a BaseType with a value of 0 because we are defining a generic/
custom list definition. The Url attribute is optional and defines the path to the root directory con-
taining any ASPX file specific for the list definition. The FolderCreation attribute is also optional, and
informs SharePoint whether to show (TRUE) or not show (FALSE) the New Folder command on the list
toolbar. Finally, the Direction attribute is optional and declares the reading direction: RTL (right to left)
or LTR (left to right). In Listing 3-8, the Direction value is read from a resource string so that the list
will be compliant with the current locale settings of the site collection. Lastly, to make the users aware
of the existence of the different available content types (Contact, Customer, and Supplier) when they
are creating new items, we need to explicitly enable content types on the list definition, setting the
EnableContentTypes attribute to a value of TRUE. There are many other attributes available for the List
definition element; Table 3-4 shows some of them.

More Info For a complete reference of all the available attributes for the List element,
refer to the official product documentation on MSDN, at http://msdn.microsoft.com/en-us/
library/ms415091(v=office.15).aspx.

TABLE 3-4 Some of the main attributes for the List element of a Schema.xml list definition file

Attribute Description

DisableAttachments Optional Boolean value to disable attachments on the list.

EnableMinorVersions Optional Boolean value that controls versioning with major and minor version of items.

ModeratedList Optional Boolean value to enable content approval on inserted items.

PrivateList Optional Boolean value to specify that the list is private.

VersioningEnabled Optional Boolean value to enable versioning on the list. This value can be changed when
creating a list instance.

www.it-ebooks.info

http://www.it-ebooks.info/

74 PaRt II Developing SharePoint solutions

the MetaData element
The main child element of List is the MetaData element, which wraps all the other elements in the
Schema.xml file.

One of the main child nodes of MetaData is the ContentTypes element. This element declares
the entire list of content types referenced by the current list definition. Listing 3-9 declares the
ContentTypes element for the custom Contacts list.

LISTING 3-9 The ContentTypes section of metadata for the sample list definition

<ContentTypes>
 <ContentType
 ID="0x0100A60F69C4B1304FBDA6C4B4A25939979F"
 Name="DevLeapContact"
 Group="DevLeap Content Types"
 Description="Base Contact of DevLeap"
 Inherits="TRUE" Version="0" Hidden="TRUE">
 <FieldRefs>
 <FieldRef ID="{fa564e0f-0c70-4ab9-b863-0177e6ddd247}"
 Name="Title" DisplayName="Full name" Required="TRUE" />
 <FieldRef ID="{C7792AD6-F2F3-4f2d-A7E5-75D5A8206FD9}"
 Name="DevLeapContactID" DisplayName="Contact ID"
 Required="TRUE" />
 <FieldRef ID="{A8F24550-55CD-4d34-A015-811954C6CE24}"
 Name="DevLeapCompanyName" DisplayName="Company Name" />
 <FieldRef ID="{149BF9A1-5BBB-468d-AA35-91ACEB054E3B}"
 Name="DevLeapCountry" DisplayName="Country" />
 </FieldRefs>
 </ContentType>
 <ContentType
 ID="0x0100A60F69C4B1304FBDA6C4B4A25939979F01"
 Name="DevLeapCustomer"
 Group="DevLeap Content Types"
 Description="Customer of DevLeap"
 Inherits="TRUE" Version="0">
 <FieldRefs>
 <FieldRef ID="{AC689935-8E8B-485e-A45E-FF5A338DD92F}"
 Name="DevLeapCustomerLevel" Required="TRUE" />
 </FieldRefs>
 <XmlDocuments>
 <XmlDocument NamespaceURI=
 "http://schemas.microsoft.com/sharepoint/v3/contenttype/forms">
 <FormTemplates xmlns=
 "http://schemas.microsoft.com/sharepoint/v3/contenttype/forms">
 <Display>DevLeapCustomerDisplay</Display>
 <Edit>DevLeapCustomerEdit</Edit>
 <New>DevLeapCustomerNew</New>
 </FormTemplates>
 </XmlDocument>
 </XmlDocuments>
 </ContentType>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 Data provisioning 75

 <ContentType
 ID="0x0100A60F69C4B1304FBDA6C4B4A25939979F02"
 Name="DevLeapSupplier"
 Group="DevLeap Content Types"
 Description="Supplier of DevLeap"
 Inherits="TRUE" Version="0">
 <FieldRefs>
 <FieldRef ID="{A73DE518-B9B9-4e8d-9D94-6099B4603997}"
 Name="DevLeapSupplierAccount" Required="TRUE" />
 </FieldRefs>
 </ContentType>
</ContentTypes>

Listing 3-9 defines all the content types already defined in the previous section, repeating their
IDs to link these copies to the original definitions. Why repeat these declarations instead of simply
referencing them in some way—such as by just linking their IDs, for example? During a content type’s
lifetime, its structure might change. To prevent and avoid any data loss, SharePoint copies content
type definitions inside the list definitions that use them. Doing so preserves data models and data
instances even if someone later changes them. Imagine what would happen if you had a simple con-
tent type reference rather than a copy; if you were to provision a Customer content type and use it
in a custom list, then a few months later, when you have thousands of customer instances in your list,
you delete a column from the Customer content type—or worse, you delete the entire content type!
Having a complete copy of the content type definition allows SharePoint to maintain your data, even
when the original content type changes or is removed.

On the other hand, whenever you want to make a change to one of your provisioned content
types and you want that change applied to every instance in a site collection, you need to explicitly
force the update through the browser-based content type administration page, through code using
the Server Object Model, or by manually updating any references in the provisioned XML files, includ-
ing the Schema.xml files for list definitions.

Listing 3-9 defines all three content types (Contact, Customer, and Supplier) and declares the base
Contact as hidden, which forces users to explicitly create Customer or Supplier instances.

Another child of MetaData is the Fields element. It defines the list-level columns used to store
metadata of item instances. These list-level columns are almost the same as the site columns defined
in the first section of this chapter. Once again, their definitions are duplicated rather than referenced,
and for the same reason: to support changes of the models without data loss during the site columns’
lifetimes. The Fields section of the list definition contains all the columns used by any of the content
types declared in the same Schema.xml file. Listing 3-10 shows the Fields element declared for the
custom Contacts list.

www.it-ebooks.info

http://www.it-ebooks.info/

76 PaRt II Developing SharePoint solutions

LISTING 3-10 The Fields section of the MetaData element for the sample list definition

<Fields>
 <Field ID="{c7792ad6-f2f3-4f2d-a7e5-75d5a8206fd9}"
 Name="DevLeapContactID"
 StaticName="DevLeapContactID"
 DisplayName="Contact ID"
 Type="Text"
 Group="DevLeap Columns"
 Sortable="TRUE" />
 <Field ID="{a8f24550-55cd-4d34-a015-811954c6ce24}"
 Name="DevLeapCompanyName"
 StaticName="DevLeapCompanyName"
 DisplayName="Company Name"
 Type="Text"
 Group="DevLeap Columns"
 Sortable="TRUE" />
 <Field ID="{149bf9a1-5bbb-468d-aa35-91aceb054e3b}"
 Name="DevLeapCountry"
 StaticName="DevLeapCountry"
 DisplayName="Country"
 Type="Choice"
 Group="DevLeap Columns"
 Sortable="TRUE">
 <Default>Italy</Default>
 <CHOICES>
 <CHOICE>Italy</CHOICE>
 <CHOICE>USA</CHOICE>
 <CHOICE>Germany</CHOICE>
 <CHOICE>France</CHOICE>
 </CHOICES>
 </Field>
 <Field ID="{ac689935-8e8b-485e-a45e-ff5a338dd92f}"
 Name="DevLeapCustomerLevel"
 StaticName="DevLeapCustomerLevel"
 DisplayName="Customer Level"
 Type="Choice"
 Group="DevLeap Columns">
 <Default>Level C</Default>
 <CHOICES>
 <CHOICE>Level A</CHOICE>
 <CHOICE>Level B</CHOICE>
 <CHOICE>Level C</CHOICE>
 </CHOICES>
 </Field>
 <Field ID="{a73de518-b9b9-4e8d-9d94-6099b4603997}"
 Name="DevLeapSupplierAccount"
 StaticName="DevLeapSupplierAccount"
 DisplayName="Supplier Account"
 Type="User"
 Group="DevLeap Columns"
 Sortable="TRUE" />
</Fields>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 Data provisioning 77

Just as with the ContentTypes section, the Fields section is simply a wrapper for the copies of all
the previously defined site columns. Notice that the ID values for the site columns are the same as
those of the global site columns, serving to keep the global site columns linked to the local list-level
columns.

Figure 3-5 shows how the List Settings page of a list based on the custom Contacts list definition
looks in a web browser. Note that all three content types and all the list-level columns are present.

FIGURE 3-5 The List Settings page of a list instance based on the custom Contacts list definition.

Just after the Fields section comes the Views element, which is a child of MetaData. This section
is really interesting because it is where you define the views on data that will be available to the end
users in the web browser. Each View element, which is a child of Views, defines a data view declaring
some configuration attributes (illustrated in Table 3-5).

More Info For a complete list of all the available View attributes, refer to the official docu-
mentation on MSDN, at http://msdn.microsoft.com/en-us/library/ms438338(v=office.15).aspx.

www.it-ebooks.info

http://www.it-ebooks.info/

78 PaRt II Developing SharePoint solutions

TABLE 3-5 Some of the main attributes for the View element of a Schema.xml list definition file

Attribute Description

Type The type of view. Type can be HTML, Chart, or Pivot.

BaseViewID An Integer value that declares the ID of the view. BaseViewID must be unique within a
Schema.xml file.

Url The public URL to access the view from the browser.

DisplayName The name of the view in the web browser.

DefaultView A Boolean value that declares if the view is the default view for the current list.

MobileView A Boolean value that specifies if the current view has to be made available to mobile devices.

MobileDefaultView A Boolean value that declares if the view, enabled for mobile access, is the default view for
mobile devices.

SetupPath Defines the site-relative path to the ASPX file corresponding to the current view model. It
allows provisioning a custom page for the current view.

WebPartZoneID A string that declares the ID of the WebPartZone control where the current view will be
loaded, within the ASPX Web Part page.

The View element also allows you to declare some other configuration details using child elements.
Listing 3-11 shows the default view definition for the list of contacts.

LISTING 3-11 The default View definition for the sample list

<View BaseViewID="1" Type="HTML"
 WebPartZoneID="Main"
 DisplayName="$Resources:core,objectiv_schema_mwsidcamlidC24;"
 DefaultView="TRUE" MobileView="TRUE"
 MobileDefaultView="TRUE"
 SetupPath="pages\viewpage.aspx"
 ImageUrl="/_layouts/images/generic.png"
 Url="AllItems.aspx">
 <Toolbar Type="Standard" />
 <RowLimit Paged="TRUE">50</RowLimit>
 <ViewFields>
 <FieldRef Name="Attachments">
 </FieldRef>
 <FieldRef Name="LinkTitle">
 </FieldRef>
 </ViewFields>
 <Query>
 <OrderBy>
 <FieldRef Name="ID">
 </FieldRef>
 </OrderBy>
 </Query>
 <XslLink>main.xsl</XslLink>
 <JSLink>clienttemplates.js</JSLink>
</View>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 Data provisioning 79

Listing 3-11 declares a BaseViewID with a value of 1, and specifies that this view will be the default
(DefaultView), not only for classic web browsers, but also for mobile devices (MobileDefaultView).
The URL to access the view will be AllItems.aspx, and this page will be based on the SetupPath file
pages\viewpage.aspx filling out the WebPartZone control whose ID is Main.

The child elements of the View tag in Listing 3-11 inform SharePoint to use the Standard value for
the toolbar. The maximum number of rows (RowLimit) is set to return a value of 50, enabling paging.

Note If not specified, the default RowLimit is 30.

After these configuration elements, Listing 3-11 defines some other elements that determine
the data to show, declaring a Query element to filter and sort data, and a set of ViewFields ele-
ments to show, as well as some optional grouping rules. The Query element is simply a Collaborative
Application Markup Language (CAML) query that defines the values to extract from the source list,
the ordering rule, and which values will be shown in the current view. For example, Listing 3-11
queries all the items in the list, sorting them by the value of their ID fields.

Note CAML is an XML-based querying language that can be used to define filtering,
sorting, and grouping on SharePoint data. The CAML language reference is available on
MSDN, at http://msdn.microsoft.com/en-us/library/ms467521(v=office.15).aspx. In case you
are a SharePoint 2010 developer, consider that CAML hasn’t changed that much between
SharePoint 2010 and SharePoint 2013.

Another important child section of the View element is the ViewFields element, which declares
the fields to show in the resulting view. These fields are referenced by their internal names, using a
specific FieldRef element.

The last child elements in the View are the XslLink and JsLink elements. Since SharePoint
2010, SharePoint can render views using XSLT transformations. The XslLink element speci-
fies the path to the XSLT file used to render the view. This XSLT file path is relative to the folder
SharePoint15_Root\TEMPLATE\LAYOUTS\XSL. Moreover, starting from SharePoint 2013, the JsLink
element allows declaring a JavaScript file to include and use for rendering the view.

Note SharePoint15_Root refers to the SharePoint root folder, which is typically located at
C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\15.

As an alternative to providing an explicit XSLT file path, you can use an Xsl element to simply
declare the XSLT transformation inside the Schema.xml file. Because you may want to reuse the XSLT
transformation, however, a better choice is to reference an external file. This is especially useful when
you are developing a full-trust solution. The capability to define the XSLT transformation inside the

www.it-ebooks.info

http://www.it-ebooks.info/

80 PaRt II Developing SharePoint solutions

Schema.xml file is provided for those situations, such as for sandboxed solutions and SharePoint apps,
when you want to avoid copying files to the file system of the target SharePoint farm.

The Forms element is another important configuration section for the list definition, as shown in
Listing 3-12.

LISTING 3-12 The Forms configuration section of the custom Contacts list definition

<Forms>
 <Form Type="DisplayForm"
 Url="DispForm.aspx" SetupPath="pages\form.aspx" WebPartZoneID="Main" />
 <Form Type="EditForm"
 Url="EditForm.aspx" SetupPath="pages\form.aspx" WebPartZoneID="Main" />
 <Form Type="NewForm"
 Url="NewForm.aspx" SetupPath="pages\form.aspx" WebPartZoneID="Main" />
</Forms>

The Forms element contains a set of Form elements that declare the forms available to the end
user. Each Form element requires a Type attribute that takes one of the following values:

■■ DisplayForm The form to display a list item

■■ EditForm The form to edit an existing list item

■■ NewForm The form to add a new list item

Every form also requires a URL where it can be accessed. Forms might include an optional
SetupPath attribute from which to load the ASPX page model, as well as a WebPartZoneID attribute,
which specifies the ID of the Web Part zone used to load the rendering control of the form. As an
alternative to the SetupPath attribute, you could have a Path attribute, which defines a physical file
system path relative to the _layouts folder for a template file, and a Template attribute, which specifies
the name of the template to use. You can also use CAML syntax to define the template for the body,
buttons, opening section, and closing section of each of these forms, using these specific child nodes
of the Form element: ListFormBody, ListFormButtons, ListFormClosing, and ListFormOpening.

The last configuration section shown is the Validation element. This element, introduced with
SharePoint 2010, supports defining validation rules that can apply to each item of the list. Listing 3-13
shows how to declare a custom validation rule together with a validation error message that end
users will see if validation fails.

LISTING 3-13 Declaring a sample validation rule for the custom Contacts list definition items

<Validation Message="Please check your data, there is something wrong!">
 =Title<>"Blank"
</Validation>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 Data provisioning 81

The validation rule forces the items to have a Title field with a value not equal to Blank. Notice that
list-level validation rules work properly only with fields shared by all the content types of the list. If
you enforce a rule against a field that is not defined in all the content types of the list, then your rule
will always throw an error when applied to the wrong content types. For example, if you define a rule
at the list level for the DevLeapCustomerLevel field of the Customer content type, you will not be able
to add or update any Supplier instances, because the DevLeapCustomer field is not present in the
Supplier content type. In such cases, you should instead define the validation rule at the site column
level.

Defining a custom view
When defining custom list definitions, you’ll frequently want to declare some custom views that cor-
respond to the business rules of your data model. For example, the sample model could feature one
view that shows only customers and another that shows only suppliers. This section demonstrates
how to define the former view; the latter’s definition will be almost identical.

First, define a new View element under the Views element of the Schema.xml file. The new view
will have a unique BaseViewID; in this example it will be 2. The DisplayName will be All Customers, the
Type will be HTML, and the Url will be AllCustomers.aspx. All the other attributes values of the View
element are trivial. You can see the complete definition of this view in Listing 3-14.

LISTING 3-14 Defining a custom view for a custom Contacts list definition

<View BaseViewID="2" Type="HTML"
 WebPartZoneID="Main"
 DisplayName="All Customers"
 DefaultView="FALSE" MobileView="TRUE"
 MobileDefaultView="FALSE"
 SetupPath="pages\viewpage.aspx"
 ImageUrl="/_layouts/images/generic.png"
 Url="AllCustomers.aspx">
 <Toolbar Type="FreeForm" />
 <XslLink>Contacts_Main.xsl</XslLink>
 <RowLimit Paged="TRUE">20</RowLimit>
 <ViewFields>
 <FieldRef Name="Attachments">
 </FieldRef>
 <FieldRef Name="LinkTitle">
 </FieldRef>
 <FieldRef Name="DevLeapContactID">
 </FieldRef>
 <FieldRef Name="DevLeapCompanyName">
 </FieldRef>
 <FieldRef Name="DevLeapCountry">
 </FieldRef>
 <FieldRef Name="DevLeapCustomerLevel">
 </FieldRef>
 </ViewFields>

www.it-ebooks.info

http://www.it-ebooks.info/

82 PaRt II Developing SharePoint solutions

 <Query>
 <Where>
 <Eq>
 <FieldRef Name="ContentType" />
 <Value Type="Text">DevLeapCustomer</Value>
 </Eq>
 </Where>
 <OrderBy>
 <FieldRef Name="ID">
 </FieldRef>
 </OrderBy>
 </Query>
</View>

There are some areas of interest in this view definition. First, the code defines a Query to
filter only items with a ContentType value of DevLeapCustomer and orders the result by the
item ID. Then it references all the fields of the Customer content type, defining a set of FieldRef
elements within the ViewFields element. Lastly, a custom XSLT transformation is defined for
rendering the custom view. SharePoint will search for this XSLT file, Contacts_Main.xsl, in the
SharePoint15_Root\TEMPLATE\LAYOUTS\XSL folder. The file has to be placed in that folder using the
solution-provisioning tools provided by Visual Studio 2012 to create a full-trust solution. (For further
details, see Chapter 4, “SharePoint features and solutions.”) Otherwise, as you have already seen, you
can define the XSLT code directly in the View schema definition, inside an Xsl element.

The XSLT file you reference or define in the View definition is a common XSLT transformation that
will receive a wide range of parameters at run time from SharePoint. In the XSLT code, for example,
you can access the XmlDefinition variable, which provides the XML definition of the current View. To
define an XSLT for a custom view, you must provide an XSLT template that matches the BaseViewID of
the targeted view. For the Contacts example, the following template was defined:

<xsl:template match="View[@BaseViewID="2"]" mode="full">
 <!-- Here is our custom XSLT transformation -->
</xsl:template>

The XSLT also receives a parameter named Rows that contains all the items to be rendered. Listing
3-15 shows an excerpt of the XML content of the Rows parameter. You can read it simply by using an
XSLT template that copies the source content with an <xsl:copy-of /> element.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 Data provisioning 83

LISTING 3-15 The content of the Rows parameter provided to a custom XSLT for rendering a list view

<Rows>
 <Row ID="1" PermMask="0x7fffffffffffffff" Attachments="0"
 Title="Customer 01" FileLeafRef="1_.000" FileLeafRef.Name="1_"
 FileLeafRef.Suffix="000" FSObjType="0"
 Created_x0020_Date="1;#2010-02-13 16:24:12" Created_x0020_Date.ifnew="1"
 FileRef="/sites/SP2010DevRef/Lists/Test/1_.000"
 FileRef.urlencode="%2Fsites%2FSP2010DevRef%2FLists%2FTest%2F1%5F%2E000"
 FileRef.urlencodeasurl="/sites/SP2010DevRef/Lists/Test/1_.000"
 File_x0020_Type=""
 HTML_x0020_File_x0020_Type.File_x0020_Type.mapall="icgen.gif||"
 HTML_x0020_File_x0020_Type.File_x0020_Type.mapcon=""
 HTML_x0020_File_x0020_Type.File_x0020_Type.mapico="icgen.gif" ContentTypeId
="0x0100A60F69C4B1304FBDA6C4B4A25939979F010044C1B948A829E64CBD49ED3F42A868C7"
DevLeapContactID="C01"DevLeapCompanyName="Company 01"
 DevLeapCountry="Italy" DevLeapCustomerLevel="Level C"
 ContentType="DevLeapCustomer"></Row>
 <!—And many other rows here, one for each list item to show -->
</Rows>

Listing 3-15 illustrates that the Rows parameter provides each row along with its data columns,
specified as attributes of a Row element. To output the content of the rows, you simply need to
retrieve the values of these attributes, placing them inside the proper HTML elements to adhere to
the graphical layout that you need to render.

However, many SharePoint developers do not like writing XSLT files, because XSLT is inflexible
(although very powerful) from a syntax viewpoint. Luckily, starting with SharePoint 2013, you have the
option to provide a custom JavaScript file through the JsLink child element of the View element, in
order to move rendering templates into client-side code. Generally speaking, this technique is known
as client-side rendering (CSR). Listing 3-16 uses this new technique to define a custom view.

LISTING 3-16 A custom view definition for the custom Contacts list definition using JavaScript rendering

<View BaseViewID="3" Type="HTML"
 WebPartZoneID="Main"
 DisplayName="All Customers via JS"
 DefaultView="FALSE" MobileView="TRUE"
 MobileDefaultView="FALSE"
 SetupPath="pages\viewpage.aspx"
 ImageUrl="/_layouts/images/generic.png"
 Url="AllCustomersViaJS.aspx">
 <Toolbar Type="FreeForm" />
 <XslLink>main.xsl</XslLink>
 <JsLink Default="TRUE">~site/Scripts/CustomCustomersView.js</JsLink>
 <RowLimit Paged="TRUE">20</RowLimit>

www.it-ebooks.info

http://www.it-ebooks.info/

84 PaRt II Developing SharePoint solutions

 <ViewFields>
 <FieldRef Name="Attachments">
 </FieldRef>
 <FieldRef Name="LinkTitle">
 </FieldRef>
 <FieldRef Name="DevLeapContactID">
 </FieldRef>
 <FieldRef Name="DevLeapCompanyName">
 </FieldRef>
 <FieldRef Name="DevLeapCountry">
 </FieldRef>
 <FieldRef Name="DevLeapCustomerLevel">
 </FieldRef>
 </ViewFields>
 <Query>
 <Where>
 <Eq>
 <FieldRef Name="ContentType" />
 <Value Type="Text">DevLeapCustomer</Value>
 </Eq>
 </Where>
 <OrderBy>
 <FieldRef Name="ID">
 </FieldRef>
 </OrderBy>
 </Query>
</View>

In Listing 3-16, shows the JsLink element (highlighted in bold) configured as the default
(Default="TRUE") rendering template. SharePoint will look for the JavaScript file at a URL relative
to the current site collection, because of the ~site token at the very beginning of the URL. You can
deploy the JavaScript code of the CustomCustomerView.js file to the target site simply working at
the website level, using a sandboxed solution or an app deployment process. In the JavaScript code,
you can reference the Client Object Model of SharePoint in order to query the current list configura-
tion, as well as the items to render. This technique is extremely powerful. While provisioning lists for
Office 365, for example, you can use this technique to move all the rendering logic to the client side,
using jQuery or CSS rendering templates. With its XSLT and JavaScript support, SharePoint opens up
some great business opportunities; because it gives you the capability to display fully customized
rendering of list views, your solutions can support fully customized template layouts, even in extreme
web content management solutions.

More Info For more information about CSR, you can read the document “How to:
Customize a list view in apps for SharePoint using client-side rendering,” available at
http://msdn.microsoft.com/en-us/library/jj220045.aspx.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 Data provisioning 85

the ListTemplate definition file
ListTemplate is the feature element file that declares all the deployment properties needed to provi-
sion the list definition. It must be provisioned into a custom feature together with the Schema.xml file.
Listing 3-17 shows the ListTemplate for the sample Contacts list definition.

LISTING 3-17 The ListTemplate feature element for the sample Contacts list definition

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <ListTemplate
 Name="DevLeapContacts"
 Type="10001"
 BaseType="0"
 OnQuickLaunch="TRUE"
 SecurityBits="11"
 Sequence="410"
 DisplayName="DevLeap Contacts"
 Description="A list of Contact for DevLeap"
 Image="/_layouts/images/dlcon.png"/>
</Elements>

The Type attribute is the most important attribute in the ListTemplate element. Type takes an
integer value that should be unique at the site collection level. The code sample uses a value of
10001 to avoid overlapping with values of out-of-the-box list templates. In general, you should use a
large integer value to avoid overlapping with SharePoint. Consider that values in the range between
100 and 1200 are already taken, and developers should allocate numbers greater than 10000. The
uniqueness of this attribute allows you to define custom UI extensions that will target the entire set of
lists with that Type value.

The other attributes are straightforward. The BaseType attribute states the base type for the cur-
rent list definition. The Name attribute represents the internal name of the list, and the DisplayName
is the text shown to end users, together with the Description and the Image. You can load the
values of these descriptive attributes from external resource strings to provision list definitions in a
multilanguage environment. The OnQuickLaunch Boolean attribute value controls whether SharePoint
shows any instance of the list in the Quick Launch menu. You can also provision a list instance through
a custom feature of type ListInstance, which will be explained in Chapter 4.

Finally, the SecurityBits attribute defines the security behavior of the list. This is a two-digit string,
where the first digit controls whether users can read all items (1) or only their own items (2). The sec-
ond digit defines edit access permissions. The possible values are

■■ 1 Users can edit any item.

■■ 2 Users can edit only their own items.

■■ 4 Users cannot edit items.

www.it-ebooks.info

http://www.it-ebooks.info/

86 PaRt II Developing SharePoint solutions

For example, a value of 22 for the SecurityBits attribute means that users can see and edit only
their own items, while the default value of 11 means that users can see and edit all the items in
the list.

More Info For a complete list of attributes for the ListTemplate element, refer to the
official product documentation on MSDN, at http://msdn.microsoft.com/en-us/library/
ms462947(v=office.15).aspx.

Working with lists in Visual Studio 2012
Just as you can define content types with Visual Studio 2012 and its designers, you can also define
basic lists. In fact, whenever you add an item of type List to a SharePoint project, regardless of
whether it is a solution or an app, you are provided with a graphical designer that allows you to
design fields, content types, and views, and provide descriptive information for the list. First, you are
prompted with the wizard shown in Figure 3-6. Here you can specify the name of the target list and
create a customizable list definition based on a basic content type or a list instance based on an exist-
ing list definition.

FIGURE 3-6 The wizard for creating a new list in a SharePoint solution or app.

After you complete the page and click Finish, you can configure the resulting item through a
specific designer. If you created a new list definition, you will have access to a designer with three

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 Data provisioning 87

tabs, for configuring fields, content types, and views of the custom list definition. Figure 3-7 shows the
designer for this chapter’s example Contacts list, displaying the columns defined in the schema of the
list definition.

FIGURE 3-7 Configuring the fields of a custom list definition within Visual Studio 2012.

The designer also provides also a Content Types button; click it to open the dialog box shown in
Figure 3-8. Here you can determine the content types associated with the current list template.

FIGURE 3-8 The dialog box for configuring the content types associated with a list definition.

www.it-ebooks.info

http://www.it-ebooks.info/

88 PaRt II Developing SharePoint solutions

Once you have defined the content types and the columns, you can determine the views for the
custom list definition. Click the Views tab to access the controls shown in Figure 3-9.

FIGURE 3-9 Determining the views for the custom list definition.

Whether you are defining an instance of your custom list definition or simply declaring an instance
of an already existing list definition, you can configure some descriptive aspects of the target list
using the List tab, shown in Figure 3-10.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 Data provisioning 89

FIGURE 3-10 The List tab for configuring the list instance descriptive parameters.

By default, Visual Studio 2012 always defines a list instance together with the list definition. If you
do not want to provision a list instance, you can comment the code of the ListInstance element cre-
ated within the Elements.xml file available inside the list item in the Visual Studio project outline.

Summary

This chapter described how to define XML files to provision SharePoint data models and structures. In
particular, it showed how to use feature element files to deploy site columns, content types, and list
definitions. It also discussed how to do similar things using the designer provided by Microsoft Visual
Studio 2012, instead of using low-level XML files. These features promise a great return on investment
and a common maintenance plan.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

 91

C H A P T E R 4

SharePoint features and solutions

Since its early editions, two of the most popular characteristics of Microsoft SharePoint have been
its engine for managing custom features and its ability to deploy those features through the

installation of solution packages. Despite the addition of the new app model in SharePoint 2013,
using features and solutions is still a common way to extend on-premises environments. This chap-
ter will walk you through the various features that you can define, as well as explain how to package
SharePoint solutions to deploy those features. Because many of these features will be covered in
depth in upcoming chapters, the goal here is to provide a brief overview of all features and solutions
to serve as a foundation for later discussions.

Features and solutions

A feature is a customization or extension of the native environment that you can selectively install
and activate at various scope levels to deploy solutions modularly and granularly. For example, as you
learned in Chapter 3, “Data provisioning,” you can use a feature to deploy custom data structures,
such as site columns, content types, list definitions, and so on. You can also use a feature to deploy
a custom web template (as you will learn in Chapter 13, “Web templates”), automate deployment
of pages and Web Parts, and more. The upcoming “Feature element types” section contains a more
complete list of the standard features that SharePoint offers.

In general, features let you develop customizations and extensions that take advantage of an
out-of-the-box environment for deploying, upgrading, and managing them. The SharePoint Features
engine supports automated deployment; automatic management of multiple, load-balanced,
front-end web servers for reducing inconsistency issues; and automated upgrading to help avoid
versioning issues. Each time you develop a feature, SharePoint creates a feature manifest, which
is an XML file named Feature.xml that contains all the information about the feature. SharePoint
stores the feature manifest on every front-end web server on the farm in a subfolder of the
SharePoint15_Root\TEMPLATE\FEATURES directory.

Note SharePoint15_Root refers to the SharePoint root folder, which is typically located at
C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\15.

www.it-ebooks.info

http://www.it-ebooks.info/

92 PaRt II Developing SharePoint solutions

Each feature has its own folder, named for the contained feature; thus, two features cannot share
the same folder or the same name in a farm. Each feature’s folder contains all the files required to
implement that feature, together with the feature manifest file.

To deploy a feature, you need to install it (which means copying the feature’s folder to each front-
end web server), recycle the application pool, and then activate it. After you have deployed a feature,
you can upgrade it for maintenance and versioning purposes. You can even deactivate and uninstall
a feature.

Every feature has an activation scope that can assume one of the following values:

■■ Farm The feature targets the entire SharePoint farm.

■■ WebApplication The feature targets a single web application and all the contained site
collections.

■■ Site The feature targets a single site collection and all of its sites.

■■ Web The feature targets a single site.

In addition, every feature type shares the same feature manifest file structure, which is illustrated
in Listing 4-1.

LISTING 4-1 The SharePoint feature manifest file structure

<Feature xmlns="http://schemas.microsoft.com/sharepoint/"
 ActivateOnDefault = "TRUE" | "FALSE"
 AlwaysForceInstall = "TRUE" | "FALSE"
 AutoActivateInCentralAdmin = "TRUE" | "FALSE"
 Creator = "Text"
 DefaultResourceFile = "Text"
 Description = "Text"
 Hidden = "TRUE" | "FALSE"
 Id = "Text"
 ImageUrl = "Text"
 ImageUrlAltText = "Text"
 ReceiverAssembly = "Text"
 ReceiverClass = "Text"
 RequireResources = "TRUE" | "FALSE"
 Scope = "Text"
 SolutionId = "Text"
 Title = "Text"
 UIVersion = "Text"
 Version = "Text" >
 <ActivationDependencies>
 <ActivationDependency FeatureId = "Text" />
 </ActivationDependencies>
 <ElementManifests>
 <ElementManifest Location = "Text" />
 <ElementFile Location = "Text" />
 </ElementManifests>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 SharePoint features and solutions 93

 <Properties>
 <Property Key = "Text" Value = "Text" />
 </Properties>
 <UpgradeActions ReceiverAssembly = "Text" ReceiverClass = "Text">
 <AddContentTypeField />
 <ApplyElementManifests />
 <CustomUpgradeAction />
 <MapFile />
 <VersionRange />
 </UpgradeActions>
</Feature>

The feature element shown in Listing 4-1 belongs to the http://schemas.microsoft.com/sharepoint/
namespace site. It is composed of a set of attributes and accepts optional child elements. Table 4-1
lists and briefly explains each available attribute.

TABLE 4-1 Attributes supported by the Feature element

Attribute name Description

ActivateOnDefault An optional Boolean attribute with a default value of True. It applies only to Farm-
scoped or WebApplication-scoped features and determines whether the feature will
be activated by default during installation. For WebApplication-scoped features, if
this attribute is set to True, the feature will also be activated when a new web appli-
cation is created.

AlwaysForceInstall An optional Boolean attribute with a default value of False. When set to True, it
forces the feature to be installed—even if it is already installed.

AutoActivateInCentralAdmin An optional Boolean attribute with a default value of False. It defines whether the
feature will be activated by default in the Administrative website hosting SharePoint
Central Administration (SPCA). It does not apply to Farm-scoped features. However,
in common scenarios, it is not suggested to extend the Central Administration.

Creator An optional description of the feature’s creator.

DefaultResourceFile Optional text that defines the name of a common resource file, usually shared
with other features released by the same creator. By default, SharePoint will
look for resources in a file in the path SharePoint15_Root\TEMPLATE\FEATURES\
FeatureName\Resources, with a filename such as Resources.Culture.resx (the
Culture value can be any of the standard culture names defined by the Internet
Engineering Task Force (IETF), such as en-US, it-IT, fr-FR, and so on). However, when
you specify a name—for example, MySharedResources, SharePoint will use that
name, searching for a file named MySharedResources.Culture.resx in the shared path
SharePoint15_Root\Resources.

Description Optional text that describes the feature in the UI. You can define it using a resource
string in the form of $Resources:ResourceName. For example, if the feature descrip-
tion is a resource item with a key value of FeatureDescription, the corresponding
value should be $Resources: FeatureDescription.

Hidden An optional Boolean attribute with a default value of False. When set to True, the
feature will be hidden from the UI and can be activated or deactivated only through
the command-line tools or by using the object model.

Id A required attribute of type text that must contain an ID (GUID) that uniquely iden-
tifies the feature.

ImageUrl Optional text that defines the site-relative URL of an image used to render the fea-
ture in the UI.

www.it-ebooks.info

http://www.it-ebooks.info/

94 PaRt II Developing SharePoint solutions

Attribute name Description

ImageUrlAltText Optional text that defines alternate text for the image representing the feature
in the UI (see ImageUrl). You can define this using a resource string, just like the
Description property.

ReceiverAssembly Optional text that defines the strong name of an assembly that SharePoint will
search for in the Global Assembly Cache (GAC) and that provides a receiver class to
handle the feature’s events.

ReceiverClass Optional text that defines the full class name of a receiver class to handle
the feature’s events. SharePoint will search for the receiver class name in the
ReceiverAssembly.

RequireResources An optional Boolean attribute with a default value of False. It determines whether
SharePoint requires that resources exist for the language of the current website or
site collection to make the feature visible in the UI. This attribute does not affect
the ability to activate and manage the feature from the command line or from the
object model.

Scope A required text attribute that defines the scope within which the feature can be acti-
vated. The possible values are Farm, WebApplication, Site, and Web.

SolutionId Optional text that defines the ID of the solution to which the features belong.

Title Optional text that defines the title of the feature and that is visible in the UI. It is
limited to a maximum length of 255 characters. You can define it using a resource
string, as described in the Description property.

UIVersion Optional text that declares the UI version supported by the feature. The value can
be specified in multiple ways:

■■ =#: The site’s UIVersion must be equal to #.
■■ <#: The site’s UIVersion must be less than #.
■■ >#: The site’s UIVersion must be greater than #.
■■ <=#: The site’s UIVersion must be less than or equal to #.
■■ >=#: The site’s UIVersion must be greater than or equal to #.
■■ #;#: The site’s UIVersion must be in the semicolon-delimited list of numbers.

Version Optional text that defines the version of the feature. It can be made of up to four
numbers, delimited by periods. For example, it might be 1.0.0.0, 1.0.0.1, and so on.

A Feature tag of a feature manifest can also contain child elements, such as the following:

■■ ActivationDependencies Specifies a list of features on which activation of the current fea-
ture depends

■■ ElementManifests References a set of element manifests or element files, both declaring
the definition of the feature

■■ Properties Provides a set of default values for the feature’s properties, represented as a
tuple of keys and values

■■ UpgradeActions Specifies any custom action to execute when the feature is upgraded

The most important children are those declaring one or more elements that make up the feature.
These elements correspond to zero or more ElementManifest tags, which are defined through XML
files, and zero or more ElementFile tags, which declare files supporting the feature. Both tags provide
a Location attribute that references the target file as a path relative to the feature’s folder. Listing 4-2
shows a feature manifest deploying a Web Part.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 SharePoint features and solutions 95

LISTING 4-2 A feature manifest file deploying a Web Part

<Feature xmlns="http://schemas.microsoft.com/sharepoint/"
 Title="DevLeap Sample Web Part"
 Description="This feature deploys a sample Web Part."
 Id="c46c270e-e722-4aa0-82ba-b66c8dd61f4e" Scope="Site"
 Version="1.0.0.0">
 <ElementManifests>
 <ElementManifest Location="SampleWebPart\Elements.xml" />
 <ElementFile Location="SampleWebPart\SampleWebPart.webpart" />
 </ElementManifests>
</Feature>

The example feature manifest defines only the Scope and the Id attributes for the feature, together
with its Title and Description attributes; meanwhile, the Web Part is referenced by the element mani-
fest file located in the relative folder SampleWebPart\Elements.xml. The Web Part deployment also
requires a .webpart file, referenced by the ElementFile tag of the feature manifest.

Using the DefaultResourceFile and RequireResources attributes and the syntax illustrated in the
Description and Title attributes (all shown in Table 4-1), your feature can support a multilanguage
UI. Simply define a set of resource files for the feature using resource keys instead of text values. For
example, Listing 4-3 replaces the explicit values of Listing 4-2 with resource strings.

LISTING 4-3 A feature manifest supporting multiple languages

<Feature xmlns="http://schemas.microsoft.com/sharepoint/" Version="1.0.0.0
"Title="$Resources:FeatureTitle" Description="$Resources:FeatureDescription"
Id="c46c270e-e722-4aa0-82ba-b66c8dd61f4e" Scope="Site">
 <ElementManifests>
 <ElementManifest Location="SampleWebPart\Elements.xml" />
 <ElementFile Location="SampleWebPart\SampleWebPart.webpart" />
 <ElementFile Location="Resources\Resources.resx" />
 <ElementFile Location="Resources\Resources.it-IT.resx" />
 </ElementManifests>
</Feature>

The feature manifest declares the Title and Description properties as resources. It also includes a
couple of resource files for the default invariant culture (Resources.resx) and for the Italian culture
(Resources.it-IT.resx) in the feature deployment. These files are standard .resx files that you can define
manually or by using the tools in Visual Studio 2012.

Feature element types
As shown in Listings 4-2 and 4-3, the key information in every feature manifest file is the list of one or
more element manifest files. Those files are based on the same XML schema as the feature manifest
(http://schemas.microsoft.com/sharepoint/). They make use of a predefined set of tags, each of which
corresponds to a specific feature type. The full schema for these XML files is defined in the wss.xsd

www.it-ebooks.info

http://www.it-ebooks.info/

96 PaRt II Developing SharePoint solutions

document, available in the SharePoint15_Root\TEMPLATE\XML folder. Table 4-2 provides a brief
description of the main elements available in SharePoint 2013.

TABLE 4-2 The main feature elements

Feature element name Description

ContentTypeBinding Provisions a content type on a list defined in a site template (see onet.xml in Chapter 13).
Can be scoped to Site.

ContentType Defines a content type ready to be used in lists or libraries. Content types are discussed in
Chapter 3. Can be scoped to Site.

Control Customizes the configuration of an existing delegate control, or declares a new del-
egate control to override the standard SharePoint controls. Can be scoped to Farm,
WebApplication, Site, and Web.

CustomAction Defines an extension to the standard UI. For example, you can use CustomAction to define
a new button on a ribbon bar, a new menu item on a standard menu, or a new link on a
site settings page. Custom actions are discussed in Chapter 12, “Customizing the UI.” Can
be scoped to Farm, WebApplication, Site, and Web.

CustomActionGroup Groups custom actions. Can be scoped to Farm, WebApplication, Site, and Web.

DocumentConverter Declares a document converter that can convert a document from a type X to a
type Y. Requires custom development to implement the converter. Can be scoped to
WebApplication.

FeatureSiteTemplate
Association

Allows associating a feature to a specific site template definition for provisioning the
feature with the site definition when you create a new site with that definition. Can be
scoped to Farm, WebApplication, and Site.

Field Declares a site column definition. Site columns are discussed in Chapter 3. Can be scoped
to Site.

HideCustomAction Hides an existing custom action defined by another custom action or implemented by
default in SharePoint. Hiding custom actions are discussed in Chapter 12. Can be scoped
to Farm, WebApplication, Site, and Web.

ListInstance Provisions an instance of a list definition with a specific configuration. Can be scoped to
Site and Web.

ListTemplate Defines a list template for provisioning a custom list’s definitions. List templates are
described in Chapter 3. Can be scoped to Web.

Module Allows provisioning custom pages or files to a site. Module can also be used to deploy
configured Web Parts, ListView Web Parts over existing or provisioned lists, NavBar
links, and custom Master Pages, as well as to configure properties of the target feature.
Modules are discussed in Chapter 12 and Chapter 13. Can be scoped to Site and Web.

PropertyBag Assigns properties and metadata to items (File, Folder, ListItem, Web) through features.
Can be scoped to Web.

Receivers Defines a custom event receiver. Event receivers are discussed in Chapter 10, “Remove
event receivers.” Can be scoped to Web.

WebTemplate Allows deploying a website template, even through a sandboxed solution so that it can
create site instances based on that template. Site templates are discussed in Chapter 13.
Can be scoped to Site.

Workflow Deploys a legacy workflow (SharePoint 2010) definition on a target site. Workflows will be
covered in Part V of this book, “Developing workflows.” Can be scoped to Site.

WorkflowActions Defines custom workflow actions (SharePoint 2010) for SharePoint Designer 2013. Custom
actions for SharePoint Designer 2013 are described in Chapter 17, “Developing work-
flows,” and Chapter 18, “Advanced workflows.” Can be scoped to Farm.

WorkflowAssociation Associates a legacy workflow (SharePoint 2010) with its target. Can be scoped to Site and
Web.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 SharePoint features and solutions 97

The element manifest file in Listing 4-4 declares the Web Part referenced by the feature in
Listing 4-3.

LISTING 4-4 An element manifest file that defines the Web Part deployed by Listing 4-3

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/" >
 <Module Name="SampleWebPart" List="113" Url="_catalogs/wp">
 <File Path="SampleWebPart\SampleWebPart.webpart" Url="SampleWebPart.webpart"
 Type="GhostableInLibrary">
 <Property Name="Group" Value="DevLeap Web Parts" />
 </File>
 </Module>
</Elements>

Feature deployment
To deploy a feature, you need to copy the feature’s folder to the SharePoint15_Root\TEMPLATE\FEATURES
path of every target server for the feature. When this is complete, you can use the STSADM.exe command-
line tool (found in the SharePoint15_Root\BIN folder) to install and later activate the feature. The following
is the syntax to install and activate a feature via STSADM.exe:

STSADM.EXE -o installfeature
 {-filename <relative path to Feature.xml from system feature directory> |
 -name <feature folder>}
 [-force]
STSADM.EXE -o activatefeature
 {-filename <relative path to Feature.xml> |
 -name <feature folder> |
 -id <feature Id>}
 [-url <url>]
 [-force]

As an example, to forcibly install and activate the feature named SampleWebPart, you would use
the following syntax from the command prompt:

STSADM.EXE -o installfeature -name SampleWebPart -force
STSADM.EXE -o activatefeature -name SampleWebPart -force -url http://server/site/subsite

Alternately, you can use Windows PowerShell to install and activate your feature. Specifically,
you would use the Install-SPFeature and Enable-SPFeature PowerShell cmdlets, which are equivalent
options to STSADM:

Install-SPFeature -Path <relative path to Feature.xml from system feature directory> -Force
Enable-SPFeature -Identity <identity of the target feature> -Force -Url <target URL>

For the SampleWebPart example, you would use PowerShell with the following syntax:

Install-SPFeature -Path SampleWebPart -Force
Enable-SPFeature -Identity "SampleWebPart" -Force -Url "http://server/site/subsite"

www.it-ebooks.info

http://www.it-ebooks.info/

98 PaRt II Developing SharePoint solutions

Meanwhile, to deactivate a previously activated feature, you can use the following syntax from the
command prompt:

STSADM.EXE -o deactivatefeature
 {-filename <relative path to Feature.xml> |
 -name <feature folder> |
 -id <feature Id>}
 [-url <url>]
 [-force]

Here’s the syntax to deactivate the SampleWebPart feature from the command prompt:

STSADM.EXE -o deactivatefeature -name SampleWebPart -force -url http://server/site/subsite

Within PowerShell, you can use the following cmdlet for deactivation:

Disable-SPFeature -Identity <identity of the target feature> -Force -Url <target URL>

This is the syntax to deactivate SampleWebPart feature:

Disable-SPFeature -Identity "SampleWebPart" -Force -Url "http://server/site/subsite"

You can also uninstall an inactive feature by using the following STSADM.exe command:

STSADM.EXE -o uninstallfeature
 {-filename <relative path to Feature.xml> |
 -name <feature folder> |
 -id <feature Id>}
 [-force]

This is the specific command for the SampleWebPart feature:

STSADM.EXE -o uninstallfeature -name SampleWebPart -force

Or, you can use the following PowerShell cmdlet:

Uninstall-SPFeature -Identity <identity of the target feature> -Force

From within PowerShell, you uninstall the SampleWebPart feature with the following:

Uninstall-SPFeature -Identity "SampleWebPart" -Force

More Info For a complete reference on all the available Windows PowerShell
scripts for managing features and solutions, refer to the Microsoft TechNet page at
http://technet.microsoft.com/en-us/library/ee906565.aspx.

All of these command prompt commands and PowerShell cmdlets offer and support a wide
set of parameters; for the sake of simplicity, the examples are abridged. In real life, you should use
PowerShell cmdlets because STSADM is provided only for backward compatibility. Moreover, by

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 SharePoint features and solutions 99

working with Microsoft Office 365, you will have the opportunity to use PowerShell cmdlets, but you
will not be able to access the local command prompt of target servers.

To activate and deactivate a feature, you can use the web browser UI, especially if you like to
manage features remotely or want to delegate feature management tasks to users who do not have
access to the physical server farm. To manage features through the web browser interface, you
need to go to the Site Settings page of the target site, select the Site Actions group, and then select
Manage Site Features. Here, you can manage website-level features. If you need to manage site col-
lection features, under the Site Collection Administration group, select Site Collection Features. Both
of these menu items will lead you to a feature management page, from which you can activate or
deactivate features.

Figure 4-1 shows the feature management page, which lists a site collection’s features. If your fea-
tures provide multilanguage support, this page will give you the appropriate titles and descriptions,
according to the languages configured for the current site and to the current user’s language.

FIGURE 4-1 The Site Collection Features page.

Notice the Activate and Deactivate buttons next to the feature descriptions. You need to have
the proper rights to execute these actions, regardless of whether you use the STSADM.exe tool, a
PowerShell script, or the web UI. Users can activate/deactivate a feature at the website-level only if
they are site owners or higher, and they should do that only with a valid reason. To manage a feature

www.it-ebooks.info

http://www.it-ebooks.info/

100 PaRt II Developing SharePoint solutions

targeting a site collection, you need to have a site collection administrator account. To manage a
WebApplication-scoped or Farm-scoped feature, you need to be a farm administrator.

Solution deployment
In the examples thus far, you have copied the features folders to each server by hand. Manually
copying these folders is not the best practice, however, because of the high likelihood of errors. An
easier and safer approach is to take advantage of a solution package, which is a cabinet file (a .cab
compressed file) with a .wsp (Windows SharePoint Services Solution Package) extension provided to
automate the process of installing features and customizations. Through a .wsp package, you can
deploy a set of one or more features, automatically copying the files and folders to every front-end
server from a centralized management console. A .wsp package contains a solution-specific manifest
file called a solution manifest (yet another XML file, always with the name manifest.xml), which defines
a set of information through attributes and child elements. Listing 4-5 demonstrates the structure of
the solution manifest.

LISTING 4-5 The solution manifest file structure

<Solution
 Description = "Text"
 DeploymentServerType = "ApplicationServer" | "WebFrontEnd"
 ResetWebServer = "TRUE" | "FALSE"
 ResetWebServerModeOnUpgrade = "Recycle" | "StartStop"
 SharePointProductVersion = "Text"
 SolutionId = "Text"
 Title = "Text" >
 <ActivationDependencies />
 <ApplicationResourceFiles />
 <Assemblies />
 <CodeAccessSecurity />
 <DwpFiles />
 <FeatureManifests />
 <Resources />
 <SiteDefinitionManifests />
 <RootFiles />
 <TemplateFiles />
</Solution>

The Solution element belongs to the same namespace as the feature element (see
http://schemas.microsoft.com/sharepoint/). Table 4-3 gives a brief description of each attribute of the
Solution element.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 SharePoint features and solutions 101

TABLE 4-3 Attributes supported by the Solution element

Attribute name Description

Description Optional text that briefly describes the solution.

DeploymentServerType Describes whether the solution targets a front-end server or an application
server. It can take the values ApplicationServer or WebFrontEnd.

ResetWebServer An optional Boolean attribute with a default value of False. If the value is True
and the package targets a front-end server, the web server will be reset during
deployment of the solution.

ResetWebServerModeOnUpgrade Specifies the type of reset for the web server. Values are Recycle, for a complete
recycle of the application pool, and StartStop, for a stop and start process.
ResetWebServerModeOnUpgrade applies only if ResetWebServer has a value of
True.

SharePointProductVersion Defines the version of SharePoint Foundation in target for the current solution.

SolutionId Defines the ID of the solution.

Title Defines the title of the solution.

In addition, a Solution tag of a solution manifest can contain child elements, such as the following:

■■ ActivationDependencies Specifies a list of solutions on which the activation of the current
solutions depend.

■■ ApplicationResourceFiles Specifies the application resource files to include in the solution,
referencing local or global resource files.

■■ Assemblies References a set of .NET assemblies, declared with their strong name, to include
in the solution deployment. The referenced assemblies will be copied to all the target servers
when deploying the solution.

■■ CodeAccessSecurity Specifies custom code access security policies.

■■ DwpFiles Provides a list of Web Part deployment files (.dwp).

■■ FeatureManifests Provides a list of feature manifests to include in the solution deployment.

■■ Resources Specifies the resources to include in the solution.

■■ SiteDefinitionManifests Includes site definitions in the solution. To learn more about this
topic, see Chapter 13.

■■ RootFiles Declares a list of files to include in the solution that will also be deployed on every
server of the farm, in a path relative to the SharePoint15_Root folder.

■■ TemplateFiles Declares a list of files to include in the solution that will also be deployed on
every server on the farm in a path relative to the SharePoint15_Root\TEMPLATE folder.

You can deploy a .wsp package using a PowerShell script with syntax such as this:

Add-SPSolution file.wsp

www.it-ebooks.info

http://www.it-ebooks.info/

102 PaRt II Developing SharePoint solutions

Otherwise, you can use the STSADM.exe command-line tool and the following syntax:

STSADM.EXE -o addsolution -filename filepath.wsp

After installing a solution, you need to deploy it to be able to activate and deactivate it and
upgrade its features. Using PowerShell, the following is the minimal script needed to deploy a solu-
tion for all the web applications on the farm:

Install-SPSolution -Identity file.wsp -GACDeployment -AllWebApplications

While using the STSADM.exe command-line tool, you can invoke the following command:

STSADM.EXE -o deploysolution
 -name <Solution name>
 [-url <virtual server url>]
 [-allcontenturls]
 [-time <time to deploy at>]
 [-immediate]
 [-local]
 [-allowgacdeployment]
 [-allowcaspolicies]
 [-lcid <language>]
 [-force]

After you add a solution to the farm, however, with SPCA, you can also deploy it using a web
browser. Go to the System Settings page, and then click Manage Farm Solutions in the Farm
Management group.

Regardless of the interface that you use to deploy a solution, if your farm does not operating
24 hours a day, 7 days a week, you can schedule the deployment at night to avoid any issues or
failures during peak daytime usage. If your farm does operate all day, every day, you should have a
set of front-end servers configured for network load balancing so that you can deploy and upgrade
solutions one server at a time without any service interruption.

Just as you can install and deploy a solution, you can also retract and remove one. To retract
a solution, you can still use the SPCA interface. Alternately, you can use a PowerShell script or the
STSADM.exe command-line tool. The PowerShell cmdlet takes the following form:

Uninstall-SPSolution -Identity <solution identity>
 [-Time <scheduled time to uninstall>]
 [-AllWebApplications]
 [-WebApplication]

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 SharePoint features and solutions 103

Meanwhile, this is the STSADM.exe syntax for retracting a solution:

STSADM.EXE -o retractsolution
 -name <Solution name>
 [-url <virtual server url>]
 [-allcontenturls]
 [-time <time to remove at>]
 [-immediate]
 [-local]
 [-lcid <language>]

To completely remove an unused solution, you can use the following PowerShell cmdlet:

Remove-SPSolution -Identity <solution identity> [-Force]

If you prefer using STSADM.exe, you need the following syntax:

STSADM.EXE -o deletesolution
 -name <Solution name>
 [-override]
 [-lcid <language>]

Solutions also can help you with versioning issues. After deploying a solution, you can upgrade
it through a standard and supported upgrade path, as you’ll learn in the “Upgrading solutions and
features” section later in this chapter. Before deploying and upgrading a solution, however, you need
to package it, as the next section illustrates.

Packaging with Visual Studio 2012
Visual Studio 2012 natively provides tools that support developers in releasing SharePoint solutions.
Whenever you create a SharePoint 2013 project within Visual Studio 2012, you can choose to manage
the project deployment through the Packaging Explorer and the Package Designer. These tools give
you the ability to graphically define the content of the package that will be compiled while building
your solution. Figure 4-2 depicts the interface of the Packaging Explorer and the Package Designer for
a sample Web Part project.

The interface includes a tree view on the left, in which you can explore the package structure, as
well as an editing interface in the body of Visual Studio. From the editing interface, you can config-
ure the name of the package, the features that will be put inside it (chosen from the set of features
available in the current Visual Studio solution), and the order of installation of those features. At the
top of the editor, there are three tabs (Design, Advanced, and Manifest) that you can use to change
the display of the Package Designer editing section. Figure 4-2 shows the editing section in Design
view. In Advanced view, you can provide custom .NET assemblies (DLLs) that will be deployed by the
current package. In Manifest view, you can see the autogenerated XML of the manifest, and you can

www.it-ebooks.info

http://www.it-ebooks.info/

104 PaRt II Developing SharePoint solutions

customize the XML template that is used to generate it to provide any custom tag or attribute that’s
not defined by default. You can also take full control of the XML manifest content, replacing the auto-
generated code with a completely manual version.

FIGURE 4-2 The Visual Studio 2010 Packaging Explorer and Package Designer interface.

In addition to using the Packaging Explorer, you have the ability to manage the configuration
of each feature included in the package. To configure a feature, double-click it in the Visual Studio
Solution Explorer, or click the Edit command available for each feature in the Packaging Explorer.
The feature editor is the place to provide descriptive information for the feature, such as its title and
description; configuration and behavioral parameters, including the target scope of the feature; the
set of items that make up the feature; and any feature activation dependencies. A feature activation
dependency gives you the ability to define a sequence of deployment for features. For example, you
can create a sequence that prevents you from deploying one specific feature before another spe-
cific feature has been deployed. As with the Packaging Explorer, you can switch to Manifest view so
that you can see the XML that describes the current feature. You can also customize the XML using a
model or from scratch.

Note If you right-click a feature item in Solution Explorer, you can create custom resource
files and add feature event receivers, which will be discussed in the upcoming “Feature
receivers” section.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 SharePoint features and solutions 105

After you define a package, right-click the Visual Studio project that contains it, and then deploy
the .wsp package by clicking Deploy. By default, Visual Studio will deploy the package on the farm
that you chose when you created the project. In a development environment, you usually target the
local server, which performs double-duty as the development machine and the SharePoint server
for first testing your solutions. You can also simply create the package by clicking the Publish menu
item, in which case you will be prompted to select the target file location. The publishing command
is useful whenever you need to deploy the .wsp package into an external environment and you need
to copy the .wsp file from your development environment to the target environment. Lastly, you can
retract a solution from the SharePoint server where you previously deployed it by clicking the Retract
menu item. If you deploy a solution on a server where you have already deployed it—for example,
because you fixed some bugs and you want to repeat solution testing—the deploy process offered
by Visual Studio 2012 will automatically retract the old version and release the new one, deactivating
the features before retraction and activating them again during deployment. From the perspective
of SharePoint, it would be better to upgrade the solutions, as you will see in the next section of this
chapter. For the sake of simplicity, however, Visual Studio retracts it and deploys it again.

Upgrading solutions and features

During the course of a solution’s lifetime, you may eventually need to upgrade and customize your
code. SharePoint 2013 provides a rich set of capabilities to support you while upgrading solutions and
features. In fact, you can upgrade a solution to update a .wsp deployment from an older version to a
current one. To upgrade a solution, you can use the following PowerShell cmdlet:

Update-SPSolution -Identity <solution identity> -LiteralPath <path of the updated WSP>
 [-CASPolicies]
 [-FullTrustBinDeployment]
 [-GACDeployment]
 [-Force]

For the SampleWebPart deployment package, use a PowerShell script like the following:

Update-SPSolution -Identity file.wsp -LiteralPath c:\file_v2.wsp -GACDeployment

You can also use the STSADM.exe command:

STSADM.EXE -o upgradesolution
 -name <Solution name>
 [-filename <upgrade filename>]
 [-time <time to upgrade at>]
 [-immediate]
 [-local]
 [-allowgacdeployment]
 [-allowcaspolicies]
 [-lcid <language>]

Thus, for the SampleWebPart deployment package example, the syntax would be the following:

STSADM.EXE -o upgradesolution -name SampleWebPart.wsp -allowGacDeployment

www.it-ebooks.info

http://www.it-ebooks.info/

106 PaRt II Developing SharePoint solutions

No matter which method you use, SharePoint updates the .wsp package stored in the configura-
tion database and synchronizes every target server in the farm with the content of the new package.
For example, if your update includes new files (DLLs, ASPX pages, JS files, and so on), the upgrade
process will copy them to all of the servers within the farm. At the same time, if your upgrade removes
items that you will no longer use, the upgrade process will remove them from all the servers.

Important Be careful designating files for removal. If files are shared with other solu-
tions, the SharePoint update process will still remove them, potentially breaking func-
tionalities of other solutions. For further details about upgrading solutions, read the
document “Upgrading a Farm Solution in SharePoint 2010,” available on MSDN at
http://msdn.microsoft.com/en-us/library/aa543659.aspx.

The feature’s manifest schema provides elements that you can use to upgrade custom features
through versioning and declarative upgrade actions. The Server Object Model provides specific
types and members for this purpose. These are useful for querying at various scopes (SPWebService,
SPWebApplication, SPContentDatabase, and SPSite) and retrieving the features’ current versions.
Listing 4-6 illustrates how to query a site collection for all the features that need to be upgraded.

LISTING 4-6 Using types to query for features that need to be upgraded

using(SPSite site = new SPSite("http://devbook.sp2013.local/")) {

 Boolean needsUpgrade = true;
 SPFeatureQueryResultCollection featuresToUpgrade =
 site.QueryFeatures(SPFeatureScope.Site, needsUpgrade);

 Boolean force = true;
 foreach (SPFeature feature in featuresToUpgrade) {
 feature.Upgrade(force);
 }
}

The QueryFeatures method of the SPSite class can search for features to upgrade while the
Upgrade method on each SPFeature instance upgrades it effectively. The interesting part of the dis-
cussion is what happens during the feature upgrade process.

Every feature has a version number attribute specified in its manifest, so you can upgrade a feature
by simply incrementing the version number; for example, you can use the Properties section of the
Package Designer to release a new .wsp package to deploy the new version via an upgradesolution
command. Beginning with SharePoint 2010, the feature manifest file has a section in which you can
declare upgrade actions to execute during the Upgrade process. These upgrade actions are defined
inside an UpgradeActions configuration element (see Listing 4-1), where you can define custom
actions to execute while upgrading a feature. You can use the AddContentTypeField element to define

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 SharePoint features and solutions 107

a field (for instance, a site column) that will be automatically added to a content type, eventually
pushing the modification to inheriting content types and lists. You can also specify element mani-
fests to apply during an upgrade by using the ApplyElementManifests tag with its child elements,
ElementFile and ElementManifest. Using this last element, you can create new content, like list defini-
tions, site columns, content types, list instances, custom pages, and so forth. Using the MapFile ele-
ment, you can specify mapping between old and new files. Lastly, if you need to execute custom code
during the upgrade process, you can configure the CustomUpgradeAction tag, which will reference
a custom upgrade action defined in a feature receiver. You will learn more about feature receivers in
the next section.

Occasionally, you might need to release a version upgrade in multiple environments that require
different versions of the same feature. For example, imagine having a new feature with a current ver-
sion of 2.0.0.0 that you want to update on a pair of customers’ farms, called Farm1 and Farm2. Farm1
is currently running version 1.0.0.0 of your feature and Farm2 is running version 1.5.0.0. In such a
scenario, you should define a new package with a path to upgrade your feature from version 1.0.0.0
to version 2.0.0.0, and from version 1.5.0.0 to version 2.0.0.0, as well.

Luckily, the schema of the feature manifest supports declaration of version ranges via the
VersionRange element—a child of the UpgradeActions element. Thus, you can define two different
upgrade paths based on the initial version of the feature that you want to upgrade. Listing 4-7 shows
an example of a feature manifest that satisfies this scenario.

LISTING 4-7 A feature manifest that supports versioning with multiple upgrade paths

<Feature xmlns="http://schemas.microsoft.com/sharepoint/" Version="1.0.0.0"
Title="$Resources:FeatureTitle" Description="$Resources:FeatureDescription"
Id="c46c270e-e722-4aa0-82ba-b66c8dd61f4e" Scope="Site">
 <UpgradeActions>
 <VersionRange BeginVersion="0.0.0.0" EndVersion="1.5.0.0">
 <MapFile FromPath="Oldest.aspx" ToPath="Latest.aspx" />
 </VersionRange>
 <VersionRange BeginVersion="1.5.0.0" EndVersion="2.0.0.0">
 <MapFile FromPath="Intermediary.aspx" ToPath="Latest.aspx" />
 </VersionRange>
 </UpgradeActions>
 <ElementManifests>
 <ElementManifest Location="SampleWebPart\Elements.xml" />
 <ElementFile Location="SampleWebPart\SampleWebPart.webpart" />
 <ElementFile Location="Resources\Resources.resx" />
 <ElementFile Location="Resources\Resources.it-IT.resx" />
 </ElementManifests>
</Feature>

The VersionRange element accepts two attributes: BeginVersion and EndVersion. The former is a
lower inclusive limit and the latter is an upper exclusive limit. Thus, the first VersionRange defined in
Listing 4-7 refers to features with a version greater than or equal to 0.0.0.0 and lower than 1.5.0.0,

www.it-ebooks.info

http://www.it-ebooks.info/

108 PaRt II Developing SharePoint solutions

whereas the second VersionRange matches features with a version greater than or equal to 1.5.0.0 and
lower than 2.0.0.0. In this example, the feature simply maps an old .aspx file to a newer one. Of course,
during a feature’s upgrade process, you can do whatever you want because you can invoke custom
SharePoint code using a feature receiver.

More Info For further details, read the MSDN “Upgrading Features” page at
http://msdn.microsoft.com/en-us/library/aa544511.aspx.

Feature receivers

A feature receiver is a class that executes custom code upon the occurrence of specific life cycle–
related events, usually by making use of the SharePoint Server Object Model. Every feature receiver
adheres to the architecture of the SharePoint event receivers, which are described in Chapter 10,
“Remote event receivers.” A feature receiver can trap the following events:

• Feature activation This occurs when a feature has been activated.

• Feature deactivating This occurs while a feature is deactivating.

• Feature installation This occurs when a feature has been installed.

• Feature uninstalling This occurs while a feature is uninstalling.

• Feature upgrading This occurs while a feature is upgrading.

To implement your own feature receivers, you need to define a new class that inherits from the
base abstract class, SPFeatureReceiver, which is defined in the Microsoft.SharePoint namespace.
Listing 4-8 presents the definition of the SPFeatureReceiver abstract class.

LISTING 4-8 The definition of the SPFeatureReceiver base abstract class

public abstract class SPFeatureReceiver {
 public SPFeatureReceiver();

 public virtual void FeatureActivated(SPFeatureReceiverProperties properties);
 public virtual void FeatureDeactivating(SPFeatureReceiverProperties
properties);
 public virtual void FeatureInstalled(SPFeatureReceiverProperties properties);
 public virtual void FeatureUninstalling(SPFeatureReceiverProperties
properties);
 public virtual void FeatureUpgrading(SPFeatureReceiverProperties properties,
 string upgradeActionName, IDictionary<string, string> parameters);
}

Each of the virtual methods accepts an argument of type SPFeatureReceiverProperties, which
allows access to information about the target feature, its definition, and the current site. Listing 4-9
declares the SPFeatureReceiverProperties class.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 SharePoint features and solutions 109

LISTING 4-9 The definition of the SPFeatureReceiverProperties class

public sealed class SPFeatureReceiverProperties : IDisposable {

 public SPFeatureDefinition Definition { get; internal set; }
 public SPFeature Feature { get; }
 public SPSite UserCodeSite { get; }
}

Through the properties of this class, you can do practically anything that you want, writing custom
code to implement everything that is not already available through standard feature elements.

Important Although the SPFeatureReceiverProperties class implements the IDisposable
interface, you should not dispose of it directly; the infrastructure code of SharePoint
Foundation already handles the disposal of instances of this type.

To create a feature receiver, you need to implement the receiver class, build its assembly, put it into
the GAC, and declare the ReceiverAssembly and ReceiverClass attributes in a feature manifest XML file.
Listing 4-10 illustrates an example of a feature manifest with a receiver declaration.

LISTING 4-10 The manifest of a feature with a custom feature receiver

<Feature xmlns="http://schemas.microsoft.com/sharepoint/ "Version=1.0.0.0"
Title="DevLeap Sample Web Part"
Description="This feature deploys a sample Web Part."
Id="c46c270e-e722-4aa0-82ba-b66c8dd61f4e"
ReceiverAssembly="DevLeap.SP2010.SampleFeature, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=b001133e0647953d"
ReceiverClass="DevLeap.SP2010.SampleFeature.SampleWebPartEventReceiver"
Scope="Site">
 <ElementManifests>
 <ElementManifest Location="SampleWebPart\Elements.xml" />
 <ElementFile Location="SampleWebPart\SampleWebPart.webpart" />
 </ElementManifests>
</Feature>

Note The values of the ReceiverAssembly and the ReceiverClass attributes in Listing 4-10
need to be defined on a single of code.

Listing 4-11 shows a sample feature receiver, creating a list instance when the feature is activated
and deleting the list instance while the feature is deactivating.

www.it-ebooks.info

http://www.it-ebooks.info/

110 PaRt II Developing SharePoint solutions

LISTING 4-11 A sample feature receiver that handles FeatureActivated and FeatureDeactivating events

public class SampleWebPartEventReceiver : SPFeatureReceiver {

 public override void FeatureActivated(SPFeatureReceiverProperties properties)
{
 // Get the parent of the feature
 // Current feature has a Site scope, thus the Parent
 // should be a Site Collection
 SPSite site = properties.Feature.Parent as SPSite;

 if (site != null) {
 SPWeb web = site.RootWeb;

 // Check to see if the list already exists
 try {
 SPList targetList = web.Lists["Sample List"];
 }
 catch (ArgumentException) {
 // The list does not exist, thus you can create it
 Guid listId = web.Lists.Add("Sample List",
 "Sample List for SampleWebPart", SPListTemplateType.Events);
 SPList list = web.Lists[listId];
 list.OnQuickLaunch = true;
 list.Update();
 }
 }
 }

 public override void FeatureDeactivating(SPFeatureReceiverProperties
properties) {
 // Get the parent of the feature
 // Current feature has a Site scope, thus the Parent
 // should be a Site Collection
 SPSite site = properties.Feature.Parent as SPSite;

 if (site != null) {
 SPWeb web = site.RootWeb;

 // Check to see if the list already exists
 try {
 SPList list = web.Lists["Sample List"];
 list.Delete();
 }
 catch (ArgumentException) {
 // The list does not exist, thus you don't need to delete it
 }
 }
 }
}

Listing 4-11 illustrates that you should access the context of your feature through the
Feature.Parent property of the current SPFeatureReceiverProperties argument. Depending on the

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 SharePoint features and solutions 111

scope of your feature, the Parent property could be the whole farm (SPFarm), a single web applica-
tion (SPWebApplication), a site collection (SPSite), or a single website (SPWeb). It is up to you to know
the target scope of your feature, and consequently determine the appropriate type to be hosted by
the Parent property. In Listing 4-11, the scope of the feature is a site collection; thus, the SPSite type
is used. If you are implementing a feature receiver that creates content during activation, it’s a good
habit to delete that content while deactivating. Sometimes, however, it’s a good idea to leave data
upon deactivation of a feature so that you don’t dispose of data critical to end users. For example, if
your feature created custom list instances or libraries, simply deleting them would be a bad idea. In
fact, users may have used those lists and libraries to store custom data, which would be lost in a silent
removal. Additionally, if your feature is activated and deactivated many times during the life cycle
of your solutions, it’s possible that you could activate it on a site where the contents created by the
FeatureActivated event already exist. To prevent this, the code in Listing 4-11 checks for any previ-
ously existing list instance, prior to creating it.

Visual Studio 2012 provides a shortcut for creating feature event receivers. To access it, go to
Solution Explorer and right-click a feature item within the Features folder of your SharePoint proj-
ect to open the shortcut menu. There, you can select the Add Event Receiver menu item, which will
create all the plumbing code for you. You will only need to write the code of the receiver’s methods.
Figure 4-3 shows the shortcut menu of a feature in Solution Explorer.

FIGURE 4-3 The Add Event Receiver menu item in a feature in Visual Studio 2012.

www.it-ebooks.info

http://www.it-ebooks.info/

112 PaRt II Developing SharePoint solutions

Important Be very careful when you define error handling code while implementing cus-
tom feature receivers. Any unhandled exception could lead to instability in your solution
and block your feature deployment or removal.

handling FeatureUpgrading events
One feature receiver event that deserves a dedicated section is FeatureUpgrading. Introduced in
SharePoint 2010 for handling feature upgrades, this method targets all situations in which you need
to upgrade a feature executing custom code. If you override the FeatureUpgrading method, you will
receive an instance of the SPFeatureReceiverProperties type, as you do with all the other methods of
the feature receivers. You will also receive an argument of type String with name upgradeActionName
and an argument of type IDictionary<String, String> with name parameters. The values for these
arguments can be defined in the feature manifest file, within the UpgradeActions section of the file
schema (see Listing 4-7).

How would you use this method in practice? Suppose that you deployed the SampleWebPart fea-
ture version 1.0.0.0 in your environment. Later, you decide to upgrade it to version 2.0.0.0. This new
version of your Web Part needs to change (by code) the configuration of the list instance that you
created in the FeatureActivated event in Listing 4-11. Assume that your upgrade method changes the
OnQuickLaunch status of the Sample List and configures the ContentTypesEnabled property. Listing
4-12 shows the feature manifest with the configuration of the custom upgrade action.

LISTING 4-12 The feature manifest file with the configuration of the custom upgrade action

<Feature xmlns="http://schemas.microsoft.com/sharepoint/" Version="2.0.0.0"
Title="DevLeap Sample Web Part"
Description="This feature deploys a sample Web Part."
Id="c46c270e-e722-4aa0-82ba-b66c8dd61f4e" ReceiverAssembly="DevLeap.SP2010.
SampleFeature, Version=1.0.0.0, Culture=neutral, PublicKeyToken=b001133e0647953d"
ReceiverClass="DevLeap.SP2010.SampleFeature.Features.SampleWebPart.
SampleWebPartEventReceiver" Scope="Site">
 <UpgradeActions>
 <CustomUpgradeAction Name="UpgradeSampleList">
 <Parameters>
 <Parameter Name="ShowOnQuickLaunch">False</Parameter>
 <Parameter Name="EnableContentTypes">True</Parameter>
 </Parameters>
 </CustomUpgradeAction>
 </UpgradeActions>
 <ElementManifests>
 <ElementManifest Location="SampleWebPart\Elements.xml" />
 <ElementFile Location="SampleWebPart\SampleWebPart.webpart" />
 </ElementManifests>
</Feature>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 SharePoint features and solutions 113

Note The values of the ReceiverAssembly and the ReceiverClass attributes in Listing 4-12
need to be defined on a single line of code.

The custom upgrade action is defined using a Name attribute and a set of Parameter elements.
Meanwhile, Listing 4-13 demonstrates the implementation of the FeatureUpgrading method, which
uses the custom upgrade action configuration.

LISTING 4-13 Using the FeatureUpgrading method implementation to handle the custom upgrade action

public override void FeatureUpgrading(SPFeatureReceiverProperties properties,
 string upgradeActionName,
 System.Collections.Generic.IDictionary<string, string> parameters) {

 // Get the parent of the feature
 // Current feature has a Site scope, thus the Parent
 // should be a Site Collection
 SPSite site = properties.Feature.Parent as SPSite;

 if (site != null) {
 // Check the type of upgrade action
 if (upgradeActionName == "UpgradeSampleList") {
 // Extract and convert the properties
 Boolean showOnQuickLaunch =
 Boolean.Parse(parameters["ShowOnQuickLaunch"]);
 Boolean enableContentTypes =
 Boolean.Parse(parameters["EnableContentTypes"]);

 SPWeb web = site.RootWeb;

 // Check to see if the list already exists
 try {
 SPList list = web.Lists["Sample List"];
 list.OnQuickLaunch = showOnQuickLaunch;
 list.ContentTypesEnabled = enableContentTypes;
 list.Update();
 }
 catch (ArgumentException) {
 // The list does not exist, thus you cannot upgrade it
 }
 }
 }
}

The method invocation receives the Name attribute of the CustomUpgradeAction element inside
the upgradeActionName argument, as well as the set of Parameter elements through the param-
eters dictionary. Based on these arguments, the upgrade code can now do whatever is necessary to
upgrade the feature.

www.it-ebooks.info

http://www.it-ebooks.info/

114 PaRt II Developing SharePoint solutions

Summary

This chapter discussed how to take advantage of features and solutions to deploy customization and
custom code. Specifically, it described how to package features in .wsp packages and how to deploy
them, as well as how to upgrade features using the capabilities provided with SharePoint 2013. In
future chapters, especially those in Part IV, “Extending SharePoint,” you will dig deeper into imple-
menting some of the main features that are useful when developing and customizing SharePoint
solutions.

www.it-ebooks.info

http://www.it-ebooks.info/

 115

C H A P T E R 5

Server Object Model

As you learned in Chapter 1, “Microsoft SharePoint 2013: A quick tour,” Microsoft SharePoint 2013
is based directly on Microsoft .NET and Microsoft ASP.NET. Not surprisingly, one of the main

tools that you will use to develop server-side solutions interacting with the SharePoint engine is the
.NET object model offered by the SharePoint infrastructure. Called the Server Object Model, it is a set
of namespaces and classes divided into several .NET assemblies. You can reference and use it in any
kind of .NET solution that will run on a SharePoint server. In fact, the Server Object Model has some
dependencies that are satisfied only on servers in a SharePoint farm, so you cannot use it in client-
side solutions, SharePoint apps, remote event receivers, or anything else that is not running on a
SharePoint server.

Thus, the Server Object Model is a good choice only for code-based solutions running on a
SharePoint server. These are typically deployed through a farm solution or a sandboxed solution.
You cannot create farm solutions at all in Microsoft Office 365, and starting with SharePoint 2013, you
should also create SharePoint apps, rather than code-based sandboxed solutions.

If you are writing a software solution that interacts with SharePoint but does not run on a
SharePoint server, you can use the Client Object Model, the new REST (Representational State
Transfer) API, or OData (Open Data Protocol). For more information on these, see Part II, “Developing
SharePoint solutions,” and Part III, “Developing SharePoint apps.”

The key point of the Server Object Model is that you can use it to do in code everything (and
more) that you can do with the SharePoint UI, whether through the browser, using the command-line
tools, or with Windows PowerShell.

This chapter shows you how to use the major classes of the Server Object Model by examining
their main members. You won’t find a complete reference for the entire object model here, because
it contains thousands of types—an encyclopedia would probably be insufficient.

More Info If you are looking for a complete reference of all the types in the SharePoint
Server Object Model, see the “.NET server API reference for SharePoint 2013” page on
MSDN, at http://msdn.microsoft.com/en-us/library/jj193058.aspx.

www.it-ebooks.info

http://www.it-ebooks.info/

116 PaRt II Developing SharePoint solutions

Startup environment

Before you begin working with the Server Object Model, and the examples in this chapter in par-
ticular, you need to make a few preparations. Because the UI is not a focus of this chapter, the code
samples shown here mainly use a console application, which will need to execute on a SharePoint
server. Consider that in real-life development, using a console application or a PowerShell script
for testing code using the Server Object Model often speeds up the development by skipping the
deployment phase. (Throughout the book, however, you will see the Server Object Model in action
within SharePoint solutions as well.) To test the code samples in this chapter, you need to create a new
Console project in Microsoft Visual Studio 2012. Next, make sure that the Target Framework setting
on the Application tab of the project is set to .NET Framework 4.5. Because Microsoft SharePoint 2013
works on 64-bit machines only, specify x64 for the Platform Target setting on the Build tab of the
project. Lastly, you need to reference some of the SharePoint Server Object Model assemblies, includ-
ing Microsoft.SharePoint.dll, which is the main Server Object Model assembly. You can find it, along
with many of the other assemblies, in the SharePoint15_Root\ISAPI folder, as well as in standard .NET
references in Visual Studio.

Note SharePoint15_Root represents the SharePoint root folder, which usually is located in
C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\15.

Objects hierarchy

All the main types of the Server Object Model are defined in namespaces that start with
Microsoft.SharePoint.* or Microsoft.Office.*, and in general have a type name that begins with SP,
which stands for SharePoint. For example, the type that represents a user is named SPUser and
belongs to the namespace Microsoft.SharePoint. The type that represents a SharePoint site, also
defined in that namespace, is named SPWeb. Figure 5-1 shows some of the main classes and their
hierarchical organization in the Server Object Model.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 117

FIGURE 5-1 The hierarchy of the main types of the SharePoint Server Object Model.

The sections that follow explore the main types of the Server Object Model, briefly discussing their
key members and showing some quick code samples. Later in the chapter, you will learn how to take
advantage of these types in everyday solutions by working through some examples.

SPFarm, SPServer, SPService, and SPWebApplication
The first and main object of the Server Object Model is the SPFarm class, which represents a refer-
ence to an entire SharePoint server farm. This class belongs to the Microsoft.SharePoint.Administration
namespace. You can use it to create a fresh new farm from scratch, or you can connect to an existing
farm. To create a new farm, you need to invoke one of the many overloads of the public static Create
factory method. To connect to an existing farm (the most common scenario), you provide a SQL
Server connection string and the farm’s secret passphrase to the public static Open method, which
has the following signature:

public static SPFarm Open(SqlConnectionStringBuilder connectionString, SecureString
passphrase)

The connection string corresponds to the farm configuration database that is defined while config-
uring the farm using the SharePoint 2013 Products Configuration Wizard or PowerShell. You can also
find it in the system registry at HKLM\Software\Microsoft\Shared Tools\Web Server Extensions\15.0\
Secure\ConfigDB\dsn. Alternatively, you can connect directly to a local farm using the static property
SPFarm.Local.

www.it-ebooks.info

http://www.it-ebooks.info/

118 PaRt II Developing SharePoint solutions

Important By default, the SharePoint Server Object Model impersonates the current user.
Thus, whenever you create an instance of an SP* type without providing any specific set of
user credentials, your code impersonates the user running the process or the web request
when you invoke the Server Object Model from a webpage.

After obtaining an instance of SPFarm, you can browse and manage servers and services that
belong to that farm. For example, you can browse the Servers collection to enumerate all the physi-
cal servers that belong to the farm as objects of type SPServer. You can browse the Services property,
which has the type SPServiceCollection and contains different kinds of services—all sharing a com-
mon base class of type SPService. You can examine all the Windows services, which are objects of type
SPWindowsService, or you can access the web services, which are of type SPWebService. Every web
service is composed of one or more web applications, each with the type SPWebApplication. Listing
5-1 shows a code example that browses for all these kinds of objects in the local farm. Note that
you should execute this (and the following) code excerpt in a project that references the Microsoft.
SharePoint.dll assembly, and you should also provide a using statement for Microsoft.SharePoint, as
well as for Microsoft.SharePoint.Administration.

LISTING 5-1 Browsing objects in the local farm

SPFarm farm = SPFarm.Local;

Console.WriteLine("Here are the servers of the Farm");
foreach (SPServer server in farm.Servers) {
 Console.WriteLine("Server Name: {0}", server.Name);
 Console.WriteLine("Server Address: {0}", server.Address);
 Console.WriteLine("Server Role: {0}", server.Role);
}

foreach (SPService service in farm.Services) {

 Console.WriteLine("---------------------------------------");

 if (service is SPWindowsService) {
 Console.WriteLine("Windows Service: {0}", service.DisplayName);
 Console.WriteLine("Type: {0}", service.TypeName);
 Console.WriteLine("Instances: {0}", service.Instances.Count);
 }
 else if (service is SPWebService) {
 Console.WriteLine("Web Service: {0}", service.DisplayName);
 Console.WriteLine("Type: {0}", service.TypeName);
 Console.WriteLine("Instances: {0}", service.Instances.Count);

 SPWebService webService = service as SPWebService;

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 119

 if (webService != null) {
 foreach (SPWebApplication webApplication in
 webService.WebApplications) {
 Console.WriteLine("Web Application: {0}",
 webApplication.DisplayName);

 Console.WriteLine("Content Databases");
 foreach (SPContentDatabase db in webApplication.ContentDatabases)
 {
 Console.WriteLine("Content Database: {0}", db.Name);
 Console.WriteLine("Connection String: {0}",
 db.DatabaseConnectionString);
 }
 }
 }
 }
 else {
 Console.WriteLine("Generic Service Name: {0}", service.DisplayName);
 Console.WriteLine("Type Name: {0}", service.TypeName);
 Console.WriteLine("Instances: {0}", service.Instances.Count);
 }
}

In real life, you do not need to edit a farm’s configuration on a daily basis; however, it is impor-
tant to know that the Server Object Model enables you to edit it should the need arise. Moreover,
sometimes it’s useful to begin browsing your farm topology from the root node (SPFarm) so you can
explore the site collections and websites in greater detail. You can also execute the same kind of code
from a PowerShell script, if you prefer.

SPSite and SPWeb
SPSite and SPWeb are fundamental types in the Server Object Model. They represent a site col-
lection and a site, respectively. From a SharePoint perspective, a website (SPWeb) is just a child of
a collection of one or more sites (SPSite). As you will see later in this chapter, these classes are the
basis for many typical operations in your solutions. Every time you need to access the content of a
SharePoint site, you will need to reference its parent SPSite object (the site collection the site belongs
to), and then open the corresponding SPWeb instance. To access an SPSite instance, you can cre-
ate it using one of the available constructors, or you can obtain a reference to it through its parent
SPWebApplication instance. Here are the constructors provided for building an SPSite instance:

public SPSite(Guid id);
public SPSite(string requestUrl);
public SPSite(Guid id, SPUrlZone zone);
public SPSite(Guid id, SPUserToken userToken);
public SPSite(string requestUrl, SPUserToken userToken);
public SPSite(Guid id, SPUrlZone zone, SPUserToken userToken);

www.it-ebooks.info

http://www.it-ebooks.info/

120 PaRt II Developing SharePoint solutions

Using the appropriate constructor, you can reference a site collection by its unique ID, which is a
globally unique identifier (GUID), or with a URL that corresponds to a resource published by the site
collection. Some of these six overloads of the constructor let you access the site by using a specific
zone from the SPUrlZone enumeration, the definition of which is shown in the following:

public enum SPUrlZone {
 Default,
 Intranet,
 Internet,
 Custom,
 Extranet
}

These values correspond to the zones that you can create using the SharePoint administrative
tools. Other SPSite constructors accept an SPUserToken instance. The SPUserToken class represents
a token for a valid SharePoint user. When you create an SPSite instance using such a token, you
can impersonate the user who owns that token rather than the current user. You can import an
SPUserToken instance from a previously exported array of bytes, or you can create one from an object
that implements the generic System.Security.Principal.IIdentity interface. You would, for example, take
advantage of these constructor overloads to execute code on behalf of another user, probably one
with elevated privileges.

More Info In the SharePoint Server Object Model, starting from SPSite and moving down
to the SPWeb, SPList, and SPListItem (refer to Figure 5-1), almost every object instance has
a unique and identifying ID property, which can be a GUID or an integer. You should be-
come accustomed to the idea of having an ID to uniquely reference each of these types. In
general, you can also use URLs or titles to reference items, but using the unique ID helps to
prevent errors.

Listing 5-2 shows a code excerpt that browses all the SPSite and SPWeb instances in a set of
SPWebApplication objects. The webService variable in the excerpt references an instance of an
SPWebService object, which can be retrieved using the code illustrated in Listing 5-1.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 121

LISTING 5-2 Browsing for SPSite and SPWeb objects of an object of type SPWebApplication

foreach (SPWebApplication webApplication in webService.WebApplications) {
 Console.WriteLine("Web Application: {0}", webApplication.DisplayName);

 foreach (SPSite site in webApplication.Sites) {
 using (site) {
 Console.WriteLine("Site Collection: {0}", site.Url);

 foreach (SPWeb web in site.AllWebs) {
 using (web) {
 Console.WriteLine("Web Site: {0}", web.Title);
 }
 }
 }
 }
}

The example in Listing 5-3 shows how to obtain a reference to an SPSite object using its
public URL.

LISTING 5-3 Getting a reference to an SPSite object using its public URL

using (SPSite site = new SPSite("http://devbook.sp2013.local/")) {
 Console.WriteLine("Current Site URL: {0}", site.Url);

 SPWeb web = site.RootWeb;
 Console.WriteLine("Current Site RootWeb Title: {0}", web.Title);
}

After you have a reference to an SPSite instance, you can browse for the sites contained in the
collection, or you can change the configuration of the site collection itself. Table 5-1 lists the main
members of the SPSite type, which you will probably use often in real projects, along with a brief
description of each member.

TABLE 5-1 Some of the members of the SPSite type

Member name Description

AllowUnsafeUpdates Property to get or set whether to accept updates via HTTP GET or without validating
data security of messages sent via HTTP POST. Setting this property to a value of true
reduces the security of the website. For further details on this, read the “Common
and best practices” section later in the chapter.

AllWebs Collection property that holds references to all the websites contained in the current
site collection.

CheckForPermissions Method that checks the permissions for a given set of rights and throws an exception
if the check fails.

Delete Method (along with some overloads) that deletes the current site collection from the
parent web application.

www.it-ebooks.info

http://www.it-ebooks.info/

122 PaRt II Developing SharePoint solutions

Member name Description

DoesUserHavePermissions Method that’s almost the same as CheckForPermissions, but returns a Boolean result
rather than throwing an exception when the check fails.

EventReceivers Collection property that contains references to the event receivers configured for
the current site collection. Those are the event receivers installed on the SharePoint
server, not the remote event receivers that are discussed in Chapter 10, “Remote
event receivers.”

Features Collection property that you can use to enumerate the features associated with
the current site collection. For more information about features, refer to Chapter 4,
“SharePoint features and solutions.”

GetCustomListTemplates Method that returns the list of custom list templates for a specific website in the cur-
rent site collection.

GetCustomWebTemplates Method that returns the list of custom website templates available in the current site
collection, based on a specific locale ID.

GetEffectiveRightsForAcl Method that returns the effective rights of the current user for a specified target
access control list (ACL).

GetRecycleBinItems Method that lets you query the current contents of the Recycle Bin.

GetRecycleBinStatistics Method that lets you obtain the size and the number of items in the Recycle Bin.

ID Read-only property that represents the ID of the current site collection.

IISAllowsAnonymous Read-only Boolean property that indicates whether anonymous access is configured
in Internet Information Services (IIS) for the web application containing the current
site collection.

Impersonating Read-only Boolean property that returns true when the current instance of SPSite has
been created by impersonating a third-party identity using an SPUserToken object
instance.

OpenWeb Method (and its overloads) that returns an SPWeb instance corresponding to a spe-
cific website contained in the current site collection.

ReadLocked Property to get or set the ReadLocked status of the current site collection. When
TRUE , the site will not be accessible via the Server Object Model or remote pro-
cedure call (RPC), and will return an HTTP 403 (FORBIDDEN) status code to any
web browser request. To set this value, you need global administrative rights. For
example, you can use this property to suspend service for a customer with a pay-
ment overdue. In that scenario, you should set the LockIssue property before setting
the ReadLocked property to true.

ReadOnly Property to get or set the read-only status for the contents of the current site collec-
tion. Setting this property to true also sets the WriteLocked property to true.

RecycleBin Collection property by which you can enumerate the items currently contained in
the Recycle Bin of the current site collection.

RootWeb Property that returns a reference to the root website of the current site collection.

Solutions Collection property that supports enumerating the sandboxed solutions associated
with the current site collection.

Url Read-only property that returns the full URL to the root website of the current site
collection.

WorkflowManager Read-only property that gives you access to the object managing workflow tem-
plates and instances in the current site collection. This property relates to the legacy
workflow engine provided for backward compatibility with SharePoint 2010. For
further details about workflows, see Part V of this book, “Developing workflows.”

WriteLocked Boolean property that’s similar to ReadLocked, but affects write access only.

Zone Property that returns the zone used to construct the current SPSite instance.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 123

An SPSite object is required to obtain access to an SPWeb instance. In fact, the SPWeb class does
not have a public constructor. The only way to obtain a reference to a site is through its parent SPSite
object, although you can get access to the current website using the SPControl and SPContext types,
which will be discussed later, in the “SPControl and SPContext” section. The SPSite class provides the
OpenWeb method (see Table 5-1) for this purpose. Listing 5-4 shows an example of accessing a spe-
cific website by using its parent site collection.

LISTING 5-4 Getting a reference to an SPWeb instance through its parent SPSite object

using (SPSite site = new SPSite("http://devbook.sp2013.local/")) {
 Console.WriteLine("Current Site URL: {0}", site.Url);

 using (SPWeb web = site.OpenWeb("SampleSubSite")) {
 Console.WriteLine(web.Title);
 }
}

Listing 5-4 uses the SPSite.OpenWeb method, which has the following overloads:

public SPWeb OpenWeb();
public SPWeb OpenWeb(Guid gWebId);
public SPWeb OpenWeb(string strUrl);

public SPWeb OpenWeb(string strUrl, bool requireExactUrl);
public SPWeb OpenWeb(string strUrl, SPSiteOpenWebOptions options);

The first overload opens the lowest-level website, as defined by the URL provided to the construc-
tor of the current site collection. For example, if you created the SPSite instance using the root site
URL, you would get a reference to the root website. In contrast, if you created the SPSite instance
using a child website URL, you would get a reference to that website. The second overload opens the
website using its unique ID. The last three overloads accept the relative URL of the website, which
must be exact for the last overload if the requireExactUrl argument is true. In the last overload, you
have an option of type SPSiteOpenWebOptions, which allows you the choice of initializing a naviga-
tion cache.

You can use an SPWeb reference to navigate the contents of the site or simply to read or change
its configuration. You will learn how to manage site contents later in this chapter. Table 5-2 lists some
of the main members of the SPWeb type.

www.it-ebooks.info

http://www.it-ebooks.info/

124 PaRt II Developing SharePoint solutions

TABLE 5-2 Some of the members of the SPWeb type

Member name Description

AllowUnsafeUpdates Property to get or set whether to accept updates via HTTP GET or without vali-
dating data security of messages sent via HTTP POST. Setting this property to a
value of true reduces the security of the website. For further details on this, read
the “Common and best practices” section later in the chapter.

AllUsers Collection property that holds references to all the users who are members of the
website, or who have browsed to the site as authenticated members of a domain
group in the site. For further details about users and groups, see Chapter 19,
“Authentication and authorization infrastructure.”

AppDatabaseName Read-only property providing the name of the app database for the current web
site.

AppDatabaseServerReferenceId Read-only property to get the ID (GUID) of the server where the app database is
located.

CheckPermissions Method that checks whether the current user has a specific set of permissions.
Throws an exception in case of failure.

ContentTypes Collection property for enumerating all the content types in the website.

Delete Method that deletes the current website.

EventReceivers Collection property that holds references to all the event receivers of the website.
Those are the event receivers installed on the SharePoint server, not the remote
event receivers that are discussed in Chapter 10.

Features Collection property by which you can enumerate the features associated with the
current website. For more information, see Chapter 4.

Fields Collection property by which you can enumerate all the site columns of the
website.

Files Collection property that holds references to all the files in the root directory of
the website.

Folders Collection property that holds references to all the first-level folders of the
website.

GetFile Method that returns a file, based on its GUID or URL.

GetFolder Method that returns a folder, based on its GUID or URL.

GetRecycleBinItems Method that allows querying the current contents of the Recycle Bin.

GetSiteData Method that queries for list items across multiple lists and multiple SPWeb
instances within a site collection. It returns a object of type System.Data.
DataTable of ADO.NET.

GetUserEffectivePermissions Method that returns the effective permissions for a specified username.

Groups Collection property by which you can enumerate all the groups of the website.
For more information about users and groups, see Chapter 19.

ID Read-only property that represents the ID of the current website.

Lists Collection property by which you can enumerate all the lists of the website.

RecycleBin Collection property by which you can enumerate the items currently in the
Recycle Bin of the current website.

Site Property for referencing the parent site collection.

SiteUsers Collection property that holds references to all the users of the current site col-
lection. For more information about users and groups, see Chapter 19.

Title Property to get or set the title of the website.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 125

Member name Description

Update Method that saves any changes applied to the website to the database.

Users Collection property containing references to all the users with explicitly assigned
permissions in the current website. For more information about users and groups,
see Chapter 19.

One of the most interesting members of this type is the Update method. While working with the
Server Object Model, you are reading and changing an in-memory representation of the current
object. Thus, any changes you make will not be applied to the database unless you explicitly request
the object to persist its state using the Update method. Of course, if you change an in-memory
SPWeb instance and do not invoke the Update method, your changes will be lost. This behavior
is common for many types in the Server Object Model, including SPWeb, SPList, and SPListItem.
Additionally, remember that in a typical SharePoint farm, the database server runs on a separate
server, which is not the web front end or the application server where your code will run. Thus, saving
the state of an object and invoking the Update method requires crossing the wire.

Listing 5-5 shows an example that modifies the Title property of the current website, and then
invokes the Update method to confirm the action.

LISTING 5-5 Modifying the title of an instance of SPWeb

using (SPSite site = new SPSite("http://devbook.sp2013.local/")) {
 Console.WriteLine("Current Site URL: {0}", site.Url);

 using (SPWeb web = site.OpenWeb("SampleSubSite")) {
 web.Title = web.Title + " - Changed by code!";
 web.Update();
 }
}

SPList and SPListItem
Quite often, you will open an SPSite instance and one of its child SPWeb instances to gain access to
the contents of one or more lists. The Server Object Model offers two types that target the concept
of SharePoint lists and list items: SPList and SPListItem. SPList corresponds to a single list instance,
whether that is a list of items or a document library. SPListItem defines a reference to a specific item
of a list. In general, you open the list to extract one or more items, and then work with those items.
Listing 5-6 shows an example that obtains a reference to a list and then browses its items.

www.it-ebooks.info

http://www.it-ebooks.info/

126 PaRt II Developing SharePoint solutions

LISTING 5-6 Browsing the items contained in an SPList instance of an object of type SPWeb

using (SPSite site = new SPSite("http://devbook.sp2013.local/")) {
 Console.WriteLine("Current Site URL: {0}", site.Url);

 using (SPWeb web = site.OpenWeb()) {
 SPList list = web.Lists["DevLeap Customers"];

 foreach (SPListItem item in list.Items) {
 Console.WriteLine(item.Title);
 }
 }
}

Listing 5-6 extracts an SPList object by using the Lists indexer of the current SPWeb instance, which
uses the list Title property as a key. Then it enumerates the contents of the Items collection property
of the list instance. The SPList type offers a rich set of members. Table 5-3 shows some of the more
important members.

TABLE 5-3 Some of the members of the SPList type

Member name Description

AddItem Method that creates a new empty item in the current list. Once it’s created, you will
need to compile the fields of that item according to the validation constraints of the
list.

BreakRoleInheritance Method that breaks inheritance of role assignments for the current list and eventually
copies role assignments from the parent website.

CheckPermissions Method that checks whether the current user has a specific set of permissions. Throws
an exception if the call fails.

ContentTypes Collection property containing all the content types in the list.

Delete Method that deletes the current list.

DoesUserHavePermissions Method that checks whether the current user has a specific permission. Returns a
Boolean value.

EventReceivers Collection property containing all the event receivers of the website. Those are the
event receivers installed on the SharePoint server, not the remote event receivers that
are discussed in Chapter 10.

Fields Collection property containing all the fields and/or site columns in the current list.

Folders Collection property containing all the folders, if any, in the current list.

GetItemById Method to get an item by using its unique numeric ID.

GetItems Method with multiple overloads, used to get a subset of items. You will see more
about this in the “Lists and items” section later in the chapter.

Hidden Property that hides or shows the current list.

ID Read-only property that represents the ID of the current list.

ItemCount Read-only Int32 property that returns the number of items contained in the current
list, including folders.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 127

Member name Description

Items Collection property containing the items in the current list.

RootFolder Read-only property that returns the root folder of the list.

SchemaXml Read-only String property that describes the list schema in XML of the currently
selected list using CAML code (see the note following this table).

Title Property to get or set the list title.

Update Method that saves any pending list changes to the database.

Note Collaborative Application Markup Language (CAML) is an XML-based query-
ing language that is useful for defining filtering, sorting, and grouping on SharePoint
data. The CAML querying language is the lowest-level way of accessing SharePoint data
while looking for lists and items. The CAML language reference is available on MSDN, at
http://msdn.microsoft.com/en-us/library/ms462365(v=office.15).aspx.

Just as with the SPWeb type, the SPList class provides an Update method that saves any changes
applied in memory. Using the Server Object Model, you can browse the contents of existing lists, or
you can create new lists from scratch and populate them with fresh new items. Whether you create
new items or browse for existing ones, you must manage them as SPListItem instances. Table 5-4
shows some of the main members of the SPListItem type.

TABLE 5-4 Some of the members of the SPListItem type

Member name Description

Attachments Collection property containing the attachments, if any, of the current item.

BreakRoleInheritance Method that breaks inheritance of role assignments for the current item and eventually
copies role assignments from the parent list.

CheckPermissions Method that checks whether the current user has a specific set of permissions. Throws
an exception if the call fails.

ContentType Read-only property that returns a reference to the content type associated with the
current item.

ContentTypeId Read-only property that returns the ID of the content type associated with the current
item.

Copy Static method to copy an item from one location to another within the same server.
The method has a couple of overloads.

CopyFrom Method that overwrites the current item with a source item provided as a URL from
the same server.

CopyTo Method that overwrites the target item, which is provided as a URL on the same server,
with the current item.

Delete Method that deletes the current item.

DoesUserHavePermissions Checks whether the current user has a specific permission. Returns a Boolean value.

File Read-only property that returns a reference to the file that corresponds to the current
item when the item resides in a document library.

www.it-ebooks.info

http://www.it-ebooks.info/

128 PaRt II Developing SharePoint solutions

Member name Description

Folder Read-only property that returns a reference to the folder associated with the current
item when the item is a folder item.

ID Read-only property that represents the ID of the current item.

Recycle Method that deletes the current item, putting it into the Recycle Bin.

SystemUpdate Method that saves any changes applied to the current item without affecting the
Modified and Modified By fields of the current item, and optionally the item version.

Title Property to get the item title.

Update Method that saves any pending changes applied to the current item.

UpdateOverwriteVersion Method that saves any changes applied to the current item without creating a new
version of the item.

Url Read-only property that returns the site-relative URL of the current item.

Versions Collection property containing the version history for the current item.

Workflows Collection property containing the workflows running on the current item. This prop-
erty relates to the legacy workflow engine provided for backward compatibility with
SharePoint 2010. For further details about workflows, see Part V of this book.

Xml Read-only property that returns the current item as an XML fragment, using an
XMLDATA (<z:row />) format.

Later in this chapter, the “Lists and Items” section shows how you can take advantage of some of
these members in realistic scenarios.

SPDocumentLibrary and SPFile
Whenever you use an SPList instance, which corresponds to a document library, you can cast that
instance to an SPDocumentLibrary type. This type represents a document library, which is almost the
same as the base SPList type, but has a small set of more specific members related to file handling.
As an example, an SPDocumentLibrary object provides a collection property through which you can
enumerate all the currently checked-out files. When you need to enumerate the files contained in a
document library, you can browse the SPListItem elements of the list and access their File property,
which is of type SPFile. Listing 5-7 shows some sample code that browses the files of a document
library and displays their name and size in bytes.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 129

LISTING 5-7 Browsing the files contained in an SPDocumentLibrary instance of an SPWeb object

using (SPSite site = new SPSite("http://devbook.sp2013.local/")) {

 Console.WriteLine("Current Site URL: {0}", site.Url);

 using (SPWeb web = site.OpenWeb()) {
 foreach (SPList list in web.Lists) {
 SPDocumentLibrary library = list as SPDocumentLibrary;

 if (library != null) {
 foreach (SPListItem item in library.Items) {
 Console.WriteLine("{0} - {1}",
 item.File.Name,
 item.File.Length);
 }
 }
 }
 }
}

The SPFile class offers a rich set of members, as shown in Table 5-5.

TABLE 5-5 Some of the members of the SPFile type

Member name Description

Approve Method that approves a file submitted for content approval.

CheckedOutByUser Read-only property that returns a reference to the SPUser instance for the user who
checked out the file.

CheckIn Method to check in the current file.

CheckOut Method to check out the current file.

CheckOutType Read-only property that returns the checkout status type for the current file. The possible
values are defined in the SPCheckOutType enumeration: Online, Offline, and None.

CopyTo Method that copies the current file to a specified destination URL within the same site,
overwriting the target, if it exists. It has two overloads.

Delete Method that deletes the current file.

Deny Method to deny approval for a file submitted for content approval.

Length Read-only property that returns the size in bytes (long) of the current file. When the file is a
page, the property excludes the size of any Web Parts used in the page.

Lock Method that applies a lock on the current file, preventing other users from modifying it.

LockedByUser Read-only property that returns a reference to the SPUser object for the user who locked
the file.

MoveTo Method that moves the current file to a specified destination URL within the same site,
overwriting the target, if it exists. It has four overloads.

Name Read-only property that returns the file name.

OpenBinary Method to read the file’s content into a Byte array. It has two overloads.

www.it-ebooks.info

http://www.it-ebooks.info/

130 PaRt II Developing SharePoint solutions

Member name Description

OpenBinaryStream Method to read the file’s content as a Stream. It has three overloads.

Publish Method to submit the file for content approval.

Recycle Method that deletes the current file, putting it into the Recycle Bin.

SaveBinary Method to save the contents of the current file, using a Stream or a Byte array. It has seven
overloads.

Title Property to get or set the file title.

UndoCheckOut Method to undo the current checkout process for a file.

Update Method that saves any changes applied to the current file.

Url Read-only property that returns the site-relative URL of the current item.

Versions Collection property containing the version history for the current item.

In the “Document libraries and files” section later in the chapter, you will see how to use some of
these members to manage files stored in SharePoint.

SPGroup, SPUser, and other security types
Another set of useful types for developing real solutions are the SPGroup and SPUser classes. These
correspond to a group and a SharePoint user, respectively, and both inherit from SPPrincipal. The
SPPrincipal type ultimately inherits from SPMember. From a security point of view, a set of permissions
is assigned to an SPPrincipal object using an SPRoleAssignment class. Thus, you can configure permis-
sions equivalently for a user or for a group, using the same classes and syntax. An SPRoleAssignment
object maps an SPPrincipal instance to an SPRoleDefinition instance. SPRoleDefinition is the type that
defines a SharePoint permission level. In Part VI of this book, “Security infrastructure,” you will explore
how SharePoint security works internally; for now, all you need is a high-level overview of these types.
For example, Listing 5-8 shows how to enumerate role assignments and role definitions.

LISTING 5-8 Browsing role assignments and definitions for an SPWeb instance

using (SPSite site = new SPSite("http://devbook.sp2013.local/")) {
 Console.WriteLine("Current Site URL: {0}", site.Url);

 using (SPWeb web = site.OpenWeb()) {
 foreach (SPRoleAssignment ra in web.RoleAssignments) {
 Console.WriteLine("-Member Name: {0}", ra.Member.Name);

 foreach (SPRoleDefinition rd in ra.RoleDefinitionBindings) {
 Console.WriteLine("Permissions: {0}", rd.BasePermissions);
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 131

When you target an SPUser object with a custom SPRoleAssignment instance, you will probably
find the list of the main members of the SPUser type useful. You can see the most important mem-
bers in Table 5-6.

TABLE 5-6 Some of the members of the SPUser type

Member name Description

Alerts Collection property containing any alerts configured by the user.

Email Property that gets or sets the user’s email address.

Groups Collection property containing the groups to which the user belongs.

ID Read-only property that returns the user member ID (inherited from SPMember, through
SPPrincipal).

IsSiteAdmin Read-only property that returns true if the current user is a site collection administrator.

LoginName Read-only property that returns the login name of the user.

Name Property to get or set the display name of the user.

RawSid Read-only property to get the raw binary Security ID (SID) of the user, in case the user is a
Windows user.

Sid Read-only property to get the SID of the user, in case the user is a Windows user.

Update Method to save any changes applied to the current user.

UserToken Read-only property to get a reference to the SPUserToken object of the current authentication
process. It can be used to create an SPSite instance in order to impersonate the user, as already
discussed at the beginning of this chapter.

Xml Read-only property to get the current user as an XML fragment.

If you are targeting an SPGroup instance, it will help to know about some of the main members
explained in Table 5-7.

TABLE 5-7 Some of the members of the SPGroup type

Member name Description

AddUser Method to add an SPUser to the current SPGroup.

Description Property to get or set the description of the group.

ID Read-only property to get the group member ID (inherited from SPMember through
SPPrincipal).

Name Property to get or set the display name of the group.

RemoveUser Method to remove an SPUser from the current SPGroup.

Update Method to save any changes applied to the current group.

Users Property that allows enumerating the users belonging to the current group.

Xml Read-only property to get the current group as an XML fragment.

These classes can be used to make authorization checks by code, or for managing automation
of users and groups. For example, you can add a user to a group inside a custom timer job written
using these classes. In the “Groups and users” section later in the chapter, you will see how to write
this code.

www.it-ebooks.info

http://www.it-ebooks.info/

132 PaRt II Developing SharePoint solutions

SPControl and SPContext
One last group of types provided by the Server Object Model of SharePoint consists of some infra-
structural classes such as SPControl and SPContext. The SPControl type is defined in the Microsoft.
SharePoint.WebControls namespace. It is the base class for many SharePoint server controls, and it
helps when developing web controls or Web Parts. Aside from its base class role, SPControl provides
a small set of static methods, the most useful of which let you retrieve a reference to the current
SPSite, SPWeb, or SPWebApplication instances. Here are the signatures of these methods:

public static SPModule GetContextModule(HttpContext context);
public static SPSite GetContextSite(HttpContext context);
public static SPWeb GetContextWeb(HttpContext context);
public static SPWebApplication GetContextWebApplication(HttpContext context);

All of these methods require an HttpContext object instance as their sole input argument.

Another way of obtaining a reference to the current SPSite and SPWeb is to use the SPContext
class, which provides a static property named Current that references the current SharePoint context.
The current SPContext object gives you direct access to all the most useful information about the cur-
rent request. Table 5-8 shows the main members offered.

TABLE 5-8 Some of the members of the SPContext type

Member name Description

ContextPageInfo Read-only property that contains information about the current list item (permissions, list ID, list
item ID, and so on) for the current request.

File Read-only property that returns a reference to the SPFile instance, if any, corresponding to the
SPListItem object served by the current request.

IsDesignTime Read-only Boolean property to check whether the current request is running at design time.

IsPopUI Read-only Boolean property to check whether the current request is for a pop-up dialog box.

Item Read-only property that returns a reference to either the SPListItem object determined by the
specified list and item ID or the SPItem object set when the context is created.

ItemId Read-only property to get the ID (Int32) of the list item associated with the current context.

List Read-only property that returns a reference to the SPList object associated with the current
context.

ListId Read-only property that returns the ID (GUID) of the list associated with the current context.

ListItem Read-only property that returns a reference to the SPListItem object associated with the current
context.

RegionalSettings Read-only property that returns the regional settings of the current request context.

ResetItem Method that forces a refresh of the current item. Internally, the method reloads the in-memory
cached item from the content database.

Site Read-only property that returns a reference to the SPSite object corresponding to the site col-
lection of the current request context.

Web Read-only property that returns a reference to the SPWeb object corresponding to the website
of the current request context.

For a complete list of all the available types and members in the Server Object Model, see the full
online reference on MSDN, at http://msdn.microsoft.com/en-us/library/ms464984.aspx.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 133

Common and best practices

You will use the types discussed in the previous section, together with many others, throughout
this book and in your real-world SharePoint solutions. Understanding what they do is important,
but knowing how to use them correctly is even more so. The goal of this section is to share some
thoughts and provide some best practices so that you can profitably use the Server Object Model.

Resource disposal
The first and most important hint you need to know is how to correctly release resources while work-
ing with objects of the Server Object Model. You can either wait for the .NET Framework to do it for
you or release resources manually. Which option you choose is largely determined by how critical
those resources are. By default, the .NET Framework employs a nondeterministic release of allocated
managed objects, which is based on the garbage collector and provided by the common language
runtime (CLR). When an instance of a managed type that you created is no longer used, the gar-
bage collector automatically releases the allocated memory—but at a nondeterministic (unpredict-
able) time. When the managed object holds references to unmanaged resources—such as window
handles, files, streams, database connections, sockets, and so forth—these unmanaged resources will
be released only when the garbage collector collects memory. When such unmanaged resources are
scarce, are critical, happen to lock physical resources, or use a large amount of unmanaged memory,
you’re better off releasing them as soon as possible rather than waiting for the .NET garbage collec-
tor. To accomplish this goal, the .NET Framework infrastructure provides the IDisposable interface,
which exposes a Dispose method that you should call to explicitly release these unmanaged resources.
Here’s the definition of the IDisposable interface:

public interface IDisposable {
 void Dispose();
}

There are many patterns for implementing IDisposable; however, it is beyond
the scope of this book to give you full coverage of this topic. To learn more about
resource disposal in SharePoint, consult the article “Disposing Objects” on MSDN, at
http://msdn.microsoft.com/en-us/library/ee557362.aspx.

More Info To dig deeper into the CLR and garbage collector internals, consult
Jeffrey Richter’s book, CLR via C#, Fourth Edition (Microsoft Press, 2012), available at
http://www.oreilly.com/catalog/9780735667457/.

For now, suffice it to know that whenever a .NET type implements the IDisposable interface, you
should invoke the Dispose method as soon as you no longer need the object. Calling Dispose lets you
release unmanaged resources in a deterministic manner.

www.it-ebooks.info

http://www.it-ebooks.info/

134 PaRt II Developing SharePoint solutions

To invoke Dispose, you should adopt a standard technique, such as one of the following:

■■ Use the using keyword.

■■ Use a try...finally code block.

■■ Explicitly invoke the Dispose method.

Listing 5-9 shows a code excerpt that takes advantage of the using keyword.

LISTING 5-9 Employing the using keyword while working with an SPSite instance to ensure timely disposal of
unmanaged resources

using (SPSite site = new SPSite("http://devbook.sp2013.local/")) {
 // Work with the SPSite object
}

The compiler converts the using keyword into a try...finally code block, such as the one in
Listing 5-10.

LISTING 5-10 Using the try...finally block while working with an SPSite instance to ensure timely disposal of
unmanaged resources

SPSite site = null;
try {
 site = new SPSite("http://devbook.sp2013.local/");

 // Work with the SPSite object
}
finally {
 if (site != null)
 site.Dispose();
}

If you need to catch exceptions that might occur while working with disposable objects, wrap the
using block or the try...finally block with an external try...catch block, as shown in Listing 5-11.

LISTING 5-11 Wrapping the using block in an external try...catch block while working with an SPSite instance so it
can handle any exceptions

try {
 using (SPSite site = new SPSite("http://devbook.sp2013.local/")) {
 // Work with the SPSite object
 }
}
catch (SPException ex) {
 // Handle exception
}

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 135

Writing code this way ensures that any unmanaged resources will be released as soon as they
are no longer needed. It also ensures that exceptions can be handled without overloading the
environment.

You should apply this technique even when using objects from the SharePoint Server Object
Model. For example, the SPSite and SPWeb types both implement the IDisposable interface, and both
allocate unmanaged memory. If you do not correctly release SPSite and SPWeb instances, you will
probably experience memory leaks, crashes, and frequent application pool recycles because of extra
(and unnecessary) memory consumption.

However, you must also be careful, because you should dispose of these types only when you
have explicitly created them. For example, Listing 5-12 illustrates a situation in which you should not
dispose of an SPSite instance.

LISTING 5-12 Incorrect object disposal through the using keyword

try {
 using (SPSite site = SPControl.GetContextSite(HttpContext.Current)) {
 // Work with the SPSite object
 }
}
catch (SPException ex) {
 // Handle exception
}

In Listing 5-12, the SPSite instance is retrieved from the request context through the SPControl
type. Thus, you didn’t create it; the internal SharePoint Foundation code did. This means you are not
responsible for disposing of it. The same logic applies to SPSite or SPWeb references retrieved from
the current SPContext object. In contrast, Listing 5-13 shows you the correct way to write the code.

LISTING 5-13 The correct way to handle objects that do not need to be disposed of explicitly

try {
 SPSite site = SPControl.GetContextSite(HttpContext.Current);
 // Work with the SPSite object
}
catch (SPException ex) {
 // Handle exception
}

For situations in which you create both SPSite and SPWeb instances within the same code excerpt,
you should employ nested using keywords, as you can see in many examples in this chapter (such as
Listing 5-8).

www.it-ebooks.info

http://www.it-ebooks.info/

136 PaRt II Developing SharePoint solutions

Keep in mind that if you are browsing a collection of SPWeb items—for example, enumerating the
AllWebs property of an SPSite object—you are responsible for releasing each single SPWeb instance,
as exemplified in Listing 5-14.

LISTING 5-14 Object disposal while iterating collections

try {
 using (SPSite site = new SPSite("http://devbook.sp2013.local/")) {
 // Work with the SPSite object
 foreach (SPWeb web in site.AllWebs) {
 using (web) {
 // Work with the SPWeb object
 }
 }
 }
}
catch (SPException ex) {
 // Handle exception
}

Furthermore, there are types that internally create instances of SPSite or SPWeb that you’ll need to
dispose of explicitly. For example, the SPWebPartManager and the SPLimitedWebPartManager classes
internally use an SPWeb instance that must be disposed of. These types all implement IDisposable, so
you should handle them almost the same way as you do the SPSite and SPWeb types.

Handling exceptions
A perennially interesting area when developing software solutions is that of exception handling
for intercepting code failures. The SharePoint Server Object Model provides a base class named
SPException, which is the default exception thrown by the SharePoint Server Object Model and is also
the type from which almost every specific SharePoint exception inherits. While handling exceptions,
consider a few suggestions.

First, catch and handle only those exceptions that you anticipate and can manage. In other words,
you should avoid simply catching all exceptions using a catch all block or an empty catch block. That
way, when an exception that you don’t anticipate occurs, it will bubble up to higher-level code that is
able to handle it, if any exists. If the exception is unexpected through the entire stack of the current
request, it’s best to let the software crash. (Of course, you would inform the end user in a friendly
manner and possibly automatically alert technical support.) That is exactly what SharePoint does by
default for unhandled exceptions. Figure 5-2 shows the default error message that SharePoint displays
when an unexpected error occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 137

FIGURE 5-2 The default message that SharePoint 2013 displays when an unexpected error occurs.

More Info The default location for the Microsoft SharePoint 2010 Unified Logging System
(ULS) logs is in the SharePoint15_Root\LOGS folder. You can search the log manually using
any basic text editor. Alternatively, the log is compatible with the free ULS viewer, which
you can download from http://archive.msdn.microsoft.com/ULSViewer.

The correlation ID (GUID) shown in the message refers to the current request context, which you
can use to search for the exception in the SharePoint ULS log. Specifically, search for a row of type
Unexpected that contains the correlation ID from the error dialog at the end of the row. That’s where
you can find the unhandled exception details and stack trace.

If you decide to catch unexpected exceptions with code of your own (and thereby avoid the
default error message), you will probably still want to log/trace the exception by yourself. Listing 5-15
shows how to manage an unexpected exception by logging it to the ULS log.

www.it-ebooks.info

http://www.it-ebooks.info/

138 PaRt II Developing SharePoint solutions

LISTING 5-15 Logging an exception to the ULS log

try {
 using (SPSite site = new SPSite("http://devbook.sp2013.local/")) {
 // Work with the SPSite object
 foreach (SPWeb web in site.AllWebs) {
 using (web) {
 // Work with the SPWeb object
 }
 }
 }
}
catch (SPException ex) {
 // Log exception to ULS
 SPDiagnosticsService.Local.WriteTrace(0, new SPDiagnosticsCategory(
 "My Custom Category", TraceSeverity.Unexpected, EventSeverity.Error),
 TraceSeverity.Unexpected, ex.Message, ex.StackTrace);
}

Listing 5-15 illustrates that the SPDiagnosticService provides utilities for logging into the ULS log of
the local server, through the WriteTrace method.

transactions
Working within a transactional environment when manipulating data is a common application need;
however, the SharePoint data engine and the SharePoint Server Object Model are not transactional.
You cannot rely on them alone to build a transactional system. In fact, SharePoint is not an RDBMS.
Data you store in SharePoint lists should not be critical and should not require a transactional envi-
ronment. If you do need to store information in SharePoint using a kind of transactional behavior,
you need something like a compensable system. For example, you can use a Windows Workflow
Foundation 4.5 workflow that makes use of a CompensableActivity activity. Let’s see what that means
in concrete terms.

More Info For further details about Windows Workflow Foundation, read Part V of this
book.

Whenever you invoke the Update method for a Server Object Model object (such as SPListItem),
SharePoint updates the corresponding data in the target content database. If you change two or
more items and you want to update either all or none of them, you must keep track of such changes
yourself (in case you need to revert back to the original values if the process fails) because SharePoint
doesn’t support this. The same is true when you need to update data on SharePoint or update data
using an external resource manager, such as an RDBMS. If you update the SharePoint content data-
base first and then the RDBMS update fails, you will need to manually restore the original content
values on the SharePoint side, using some custom code.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 139

If you must have transactional support while managing data stored in SharePoint, you should
probably ask yourself whether SharePoint is truly the appropriate place to store that data. Of course,
the answer would be no. In such critical cases, you need a transactional RDBMS instead. You can
still use SharePoint to present such data to end users, however, by taking advantage of Business
Connectivity Services and external lists for this purpose.

AllowUnsafeUpdates and FormDigest
To avoid cross-site scripting issues, SharePoint applies a security check whenever you change data
through the Server Object Model during HTTP requests. In fact, by default, SharePoint web forms use
a form digest control to enforce security. The FormDigest is a hidden field that is sent by SharePoint
web forms via HTTP POST, and checked by the security infrastructure on the server. When you make
changes to objects by using the Server Object Model during an HTTP GET request, this input field will
be missing, so by default SharePoint will throw an exception that looks like this excerpt:

Microsoft.SharePoint.SPException: The security validation for this page is invalid.

Similarly, if you send an HTTP POST request with a missing or invalid FormDigest value, you
will receive the same error. This behavior applies only during HTTP requests. Therefore, when you
reference the Server Object Model in a class library or a batch tool that runs outside of the ASP.NET
pipeline, the security check will not occur. In fact, the check process looks for the HttpContext.Current
variable; if it is null, the digest validation will not occur.

With that in mind, if you are developing a webpage that will respond to HTTP GET requests,
or a custom web form page that doesn’t inherit from the WebPartPage type and doesn’t use the
FormDigest control, you will need to instruct SharePoint to skip the digest validation; otherwise, your
code will not work.

To instruct SharePoint to skip the validation, set the Boolean AllowUnsafeUpdates property of the
current SPSite or SPWeb object to true. Listing 5-16 shows an example.

LISTING 5-16 Using the AllowUnsafeUpdates property of the SPWeb type to skip a security check

SPWeb web = SPContext.Current.Web
SPList list = web.Lists["DevLeap Customers"];

try {
 web.AllowUnsafeUpdates = true;

 list.Title = list.Title + " - Changed!";
 list.Update();
}
finally {
 web.AllowUnsafeUpdates = false;
}

www.it-ebooks.info

http://www.it-ebooks.info/

140 PaRt II Developing SharePoint solutions

The code in Listing 5-16 works with an SPWeb instance provided by the current SPContext
instance. It sets the AllowUnsafeUpdates property to true before changing an SPList instance property,
and then resets the property to false (its default value) just after invoking the SPList.Update method.
To ensure that the AllowUnsafeUpdates property always reverts to its original value, the code uses a
try...finally code block.

Conversely, when you develop a custom ASPX page and you want to exploit the security environ-
ment provided by SharePoint, you have a couple of choices. You can inherit from WebPartPage, or
you can manually include a FormDigest control in your page. In the first case, you simply need to
inherit from the Microsoft.SharePoint.WebPartPages.WebPartPage base class, which internally renders
a FormDigest control. Then, in your code, you call the utility method SPUtility.ValidateFormDigest() to
check the digest when you post the page back to the server. In the latter case, you need to include
the Microsoft.SharePoint.WebControls.FormDigest control in your page(s), and you still need to invoke
the SPUtility.ValidateFormDigest() method to check the digest.

Of course, in a custom ASPX page, you could also invalidate the security check by setting the
AllowUnsafeUpdates property to true. However, that would be both insecure behavior and poor
practice.

Real-life examples

The purpose of this section is to give you some concrete examples from real-life solutions that illus-
trate how to work with SharePoint Server Object Model types. The examples are divided into groups
based on the target object and target goal. You should consider this section as an everyday refer-
ence for developing SharePoint solutions. Look to the following code excerpts for inspiration while
developing custom controls, Web Parts, custom pages, timer jobs, or whatever else will have to run
on a SharePoint server.

Creating a new site collection
This first example shows how to create a new site collection in code (see Listing 5-17).

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 141

LISTING 5-17 Creating a new site collection

using (SPSite rootSite = new SPSite("http://devbook.sp2013.local/")) {
 SPWebApplication webApplication = rootSite.WebApplication;

 using (SPSite newSiteCollection = webApplication.Sites.Add(
 "sites/CreatedByCode", // Site URL
 "Created by Code", // Site Collection Title
 "Sample Site Collection Created by Code", // Site Collection Description
 1033, // LCID
 15, // Compatibility level (can be 14 for 2010 or 15 for 2013)
 "STS#0", // Web Site Template for a Team Site
 "SP2013\\PaoloPi", // Owner Login
 "Paolo Pialorsi", // Owner DisplayName
 "paolo@devleap.com", // Owner EMail
 "SP2013\\MarcoR", // Secondary Contact Login
 "Marco Russo", // Secondary Contact DisplayName
 "marco@devleap.com", // Secondary Contact EMail
 "SP2013SQL", // Database Server Name for Content Database
 "WSS_Content_CreatedByCode", // Content Database Name
 null, // Database Login Name
 null // Database Login Password
)) {
 Console.WriteLine("Created Site Collection: {0}",
 newSiteCollection.Url);
 }
}

Listing 5-17 uses the method of the SPSiteCollection type, to which you can get a reference from
the SPWebApplication.Sites property. The method has many different overloads; the code excerpt uses
one of the most complete signatures, which is as follows:

public SPSite Add(
 string siteUrl,
 string title,
 string description,
 uint nLCID,
 uint compatibilityLevel,
 string webTemplate,
 string ownerLogin,
 string ownerName,
 string ownerEmail,
 string secondaryContactLogin,
 string secondaryContactName,
 string secondaryContactEmail,
 string databaseServer,
 string databaseName,
 string userName,
 string password
)

www.it-ebooks.info

http://www.it-ebooks.info/

142 PaRt II Developing SharePoint solutions

This example shows that you can define each and every detail of the site collection configuration,
including the website template name to use, and you can even assign a dedicated content database.
Table 5-9 lists some of the most common website template values.

TABLE 5-9 Some of the most common website template names available in SharePoint for creating a new
site collection

Site template name Description

STS#0 Team site (15 or 14)

STS#1 Blank site (15 or 14)

STS#2 Document workspace (15 or 14)

MPS#0 Basic meeting workspace (15 or 14)

MPS#1 Blank meeting workspace (15 or 14)

MPS#2 Decision meeting workspace (15 or 14)

MPS#3 Social meeting workspace (15 or 14)

MPS#4 Multipage meeting workspace (15 or 14)

CMSPUBLISHING#0 Publishing site (15 or 14)

SPSPORTAL#0 Collaboration portal (15 or 14)

COMMUNITY#0 Community site (15 only)

COMMUNITYPORTAL#0 Community portal (15 only)

More Info To list all the available site templates names, descriptions, and compatibility lev-
els for a specific farm, use PowerShell and the Get-SPWebTemplate cmdlet command.

Listing 5-17 assumes that the site collection (http://devbook.sp2013.local/) will allow you to create
another site collection under the sites managed path of the parent web application. The sites man-
aged path is available out of the box for any SharePoint web application. If you need to create a
root site collection from scratch, however, you should retrieve a reference to the SPWebApplication
instance through an SPFarm object.

Creating a new website
After you have a site collection, at some point you will probably need to create one or more websites
in it. Listing 5-18 contains a code excerpt that uses the SPWebCollection.Add method. The method
also has many overloads. The following is the overload signature used in Listing 5-18:

public SPWeb Add(
 string strWebUrl,
 string strTitle,
 string strDescription,
 uint nLCID,
 string strWebTemplate,
 bool useUniquePermissions,
 bool bConvertIfThere
)

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 143

LISTING 5-18 Creating a new website

using (SPSite site = new SPSite(
"http://devbook.sp2013.local/sites/CreatedByCode/")) {
 using (SPWeb newWeb = site.AllWebs.Add(
 "MyBlog", // Web Site Url
 "Blog Created By Code", // Web Site Title
 "Blogging Site Created By Code", // Web Site Description
 1033, // LCID
 "BLOG#0", // Web Site Template Name
 true, // Use Unique Permissions
 false // Convert an existing folder
)) {
 Console.WriteLine("New Web Site URL: {0}", newWeb.Url);
 }
}

While creating a website, you can specify a website template name or an object of type
SPWebTemplate. This last type has a CompatibilityLevel property, which enables you to specify
whether you are creating a SharePoint 2010 or SharePoint 2013 site. Some of the available values for
this argument are illustrated in Table 5-10.

TABLE 5-10 Some of the website template names available in SharePoint for creating a new website

Site template name Description

STS#0 Team site

STS#1 Blank site

WIKI#0 Wiki

BLOG#0 Blog

CMSPUBLISHING#0 Publishing site

BLANKINTERNET#0 Blank publishing site

Note the Boolean useUniquePermissions argument that’s used in Listing 5-18. This is useful for speci-
fying whether to inherit permissions from the parent site collection or whether the new site should have
unique permissions. The bConvertIfThere argument is also interesting; when true, it instructs SharePoint
to convert an existing folder into the child website; when false, it causes SharePoint to throw an excep-
tion if a folder already exists with the URL requested for the new website.

Of course, to be able to create a new website inside an existing site collection at all, you need to
access the Server Object Model with a user account that has sufficient permissions.

Lists and items
This section includes several examples related to managing lists and list items. For example, you will
learn how to create lists, as well as how to create, update, and delete items within those lists.

www.it-ebooks.info

http://www.it-ebooks.info/

144 PaRt II Developing SharePoint solutions

Creating a new list
To create a new list of items, you can use Listing 5-19 as a pattern. It demonstrates how to create a list
of contacts and configure the list properties.

LISTING 5-19 Creating a new list of contacts in a website and configuring the list properties

using (SPSite site = new SPSite(
"http://devbook.sp2013.local/sites/CreatedByCode/")) {
 using (SPWeb web = site.OpenWeb()) {
 Guid newListId = web.Lists.Add(
 "Contacts", // List Title
 "Company’s Contacts", // List Description
 SPListTemplateType.Contacts // List Template Type
);
 SPList newList = web.Lists[newListId];
 newList.OnQuickLaunch = true;
 newList.ReadSecurity = 1; // All users have Read access to all items
 newList.WriteSecurity = 2; // Users can modify only items they've created
 newList.Update();

 Console.WriteLine("Created list: {0}", newList.Title);
 }
}

Listing 5-19 exploits the SPListCollection.Add method, using one overload that specifies the list
template using an enumeration value. Here’s the signature of the Add method used:

public virtual Guid Add(
 string title,
 string description,
 SPListTemplateType templateType
)

The SPListTemplateType enumeration defines about 60 templates that cover the most common list
scenarios. If you wish to create a list using a custom template, you can browse the ListTemplates prop-
erty of the current SPWeb instance, selecting the corresponding SPListTemplate instance and using
the following overload of the SPListCollection.Add method instead:

public virtual Guid Add(
 string title,
 string description,
 SPListTemplate template
)

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 145

All the overloads of the SPListCollection.Add method return a Guid value that corresponds to the
ID of the newly created list. To configure the list you just created, you need to retrieve a reference to
it using that ID. Listing 5-19 uses the SPList object to configure the list so that it will appear on the
Quick Launch menu. It configures the default item-level permissions to let all users read every item
but change only items that they created. You can see the result of this item-level permissions configu-
ration made through code in Figure 5-3.

Remember, as soon as you have finished configuring any object from the Server Object Model, you
must invoke the Update method to confirm the changes.

FIGURE 5-3 Item-level permissions resulting from the code in Listing 5-19.

Creating a new list item
After creating a list, you will want to populate it with new items. The code in Listing 5-20 adds a new
contact item to the list created in Listing 5-19.

www.it-ebooks.info

http://www.it-ebooks.info/

146 PaRt II Developing SharePoint solutions

LISTING 5-20 Populating a list with new items

using (SPSite site = new SPSite(
"http://devbook.sp2013.local/sites/CreatedByCode/")) {
 using (SPWeb web = site.OpenWeb()) {
 try {
 SPList list = web.Lists["Contacts"];

 try {
 SPListItem newItem = list.Items.Add();
 newItem["Last Name"] = "Pialorsi";
 newItem["First Name"] = "Paolo";
 newItem["E-mail Address"] = "paolo@devleap.it";
 newItem.Update();
 }
 catch (ArgumentException) {
 Console.WriteLine("Invalid Field Name!");
 }
 }
 catch (ArgumentException) {
 Console.WriteLine("Invalid List Title!");
 }
 }
}

Again, you need to invoke an Add method for the corresponding collection—in this case, an
SPListItemCollection. The method returns a new SPListItem instance ready to be configured and
updated against the content database. To be accurate, the Add method simply creates a new item
configured according to the target list in terms of fields, content types, and so on. However, despite
its name, the Add method does not really add the item to the list; in fact, the new SPListItem instance
has an ID with a value of zero (0). Only after you invoke the Update method of the item for the first
time will it be inserted into the list and have a unique ID assigned. The code in Listing 5-20 config-
ures three fields of the target item. The syntax you use to assign values to the fields uses each field’s
DisplayName; however, the indexer of an SPListItem lets you provide as arguments the DisplayName,
the Name, the StaticName of the field, the unique ID of the field (which is useful when you are work-
ing with provisioned site columns), or the ordinal position (index) of the field within the Fields collec-
tion of the current item.

More Info To better understand topics such as site columns, DisplayName, Name,
StaticName, and so on, see Chapter 2, “SharePoint data fundamentals,” and Chapter 3,
“Data provisioning.”

For completeness, the example code catches exceptions of type ArgumentException, just in case
you provide an invalid list title or field name. In general, you should avoid writing list titles or field
names in source code; instead, you should work with provisioned contents and their corresponding
IDs. Using the IDs essentially eliminates the possibility of an invalid value at run time (unless you make

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 147

a typing mistake while writing the code)—but those types of issues should become apparent during
testing, before the application ever reaches a production environment.

Modifying an existing list item
Another common task is modifying the metadata of an existing item. The procedure is similar to
creating a new list item; the only difference is that you need to query the list to get a reference to
the item that you want to update. The example in Listing 5-21 retrieves the item to update using its
unique ID, via the SPList.GetItemById method.

LISTING 5-21 Modifying an existing item of a list

using (SPSite site = new SPSite(
"http://devbook.sp2013.local/sites/CreatedByCode/")) {
 using (SPWeb web = site.OpenWeb()) {
 try {
 SPList list = web.Lists["Contacts"];
 SPListItem itemToChange = list.GetItemById(1);

 itemToChange["Last Name"] += " - Changed!";
 itemToChange.Update();
 }
 catch (ArgumentException) {
 Console.WriteLine("Invalid List Title or invalid List Item ID!");
 }
 }
}

Note that the SPList.GetItemById method retrieves the full item, with all its columns of metadata.
When you need to change just a few columns, it’s best to retrieve only those specific columns. To do
that, use the SPList.GetItemByIdSelectedFields method, which retrieves only the columns you specify.
In this case, the line from which the example retrieves the item to change could be

SPListItem itemToChange = list.GetItemByIdSelectedFields(1, "Last Name");

But the SPList.GetItemByIdSelectedFields method also accepts a list of fields to retrieve from the
content database as a params array of String.

When you don’t know the ID of the item that you want to update, you can use the SharePoint
query engine—a topic covered later in this chapter, in the “Querying for list items” section.

Concurrency conflicts
Any server-side code has the potential to serve an unpredictable number of users, so changing data
in a back-end RDBMS carries the possibility of a concurrency conflict. Concurrency issues can also
happen when working with data stored in SharePoint. Thus, due to the nature of SharePoint, which is
a web-based product with (hopefully) a large number of concurrent users, it is highly probable that
concurrency conflicts will arise while managing SharePoint items. Fortunately, the SharePoint team

www.it-ebooks.info

http://www.it-ebooks.info/

148 PaRt II Developing SharePoint solutions

provided a standard pattern for catching concurrency conflicts. Consider the example in Listing 5-22,
which changes an SPListItem object with two different concurrent sessions.

LISTING 5-22 Catching concurrency in SPListItem management

using (SPSite site = new SPSite(
"http://devbook.sp2013.local/sites/CreatedByCode/")) {
 using (SPWeb web = site.OpenWeb()) {
 try {
 SPList list = web.Lists["Contacts"];
 SPListItem itemToChange = list.GetItemById(1);

 itemToChange["Last Name"] += " - Changed!";

 // Before Update, simulate a concurrent change
 ChangeListItemConcurrently();

 itemToChange.Update();
 }
 catch (SPException ex) {
 Console.WriteLine(ex.Message);
 }
 }
}

When the code in Listing 5-22 invokes the Update method to save changes, a concurrency conflict
exception will be raised because the ChangeListItemConcurrently procedure has already changed that
item. The exception will be a Microsoft.SharePoint.SPException with this error message:

Save Conflict. Your changes conflict with those made concurrently by another user. If you
want your changes to be applied, click Back in your Web browser, refresh the page, and
resubmit your changes.

The error message is tightly tied to a web scenario (notice “click Back in your Web browser”).
However, the exception itself can be caught within any kind of software solution—even running
on a SharePoint server. To solve this exception, you must reload the SPListItem object from the
content database and then apply your changes again, just as a web user would do using his or her
web browser.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 149

Deleting an existing list item
Deleting an SPListItem instance is a common task, similar to inserting or updating items. The program
flow for deleting an item is both simple and quick, as you can see in Listing 5-23.

LISTING 5-23 Deleting an SPListItem instance

using (SPSite site = new SPSite(
"http://devbook.sp2013.local/sites/CreatedByCode/")) {
 using (SPWeb web = site.OpenWeb()) {
 SPList list = web.Lists["Contacts"];
 SPListItem itemToDelete = list.GetItemById(1);
 itemToDelete.Delete();
 }
}

You simply need to retrieve the SPListItem instance that corresponds to the item that you want to
delete, and then invoke the Delete method (to permanently delete the item) or the Recycle method
(to move the item into the Recycle Bin).

Querying for list items
As previously discussed, retrieving an SPListItem instance by ID is an uncommon task, unless you have
a custom ASPX page that receives the ListID and the ListItemID values as QueryString parameters.
More generally, you need to retrieve items from lists using a query that is based on the metadata
of the items you want to extract. For example, you might need to extract all contacts whose email
address contains @devleap.com. The Server Object Model provides a class named SPQuery, through
which you can execute a CAML query against an SPList instance to retrieve items corresponding to
the query. Listing 5-24 shows an example.

Note If you don’t like writing CAML queries, try CAML Designer for SharePoint 2010, by
Karine Bosch, which targets SharePoint 2010 and 2013. You can download this free tool
from http://karinebosch.wordpress.com/my-articles/caml-designer/.

www.it-ebooks.info

http://www.it-ebooks.info/

150 PaRt II Developing SharePoint solutions

LISTING 5-24 Querying the items of an SPList instance using an SPQuery object

using (SPSite site = new SPSite(
"http://devbook.sp2013.local/sites/CreatedByCode/")) {
 using (SPWeb web = site.OpenWeb()) {
 SPList list = web.Lists["Contacts"];

 SPQuery query = new SPQuery();

 // Define columns to retrieve
 query.ViewFields = "<FieldRef Name=\"Title\" />
 <FieldRef Name=\"FirstName\" /><FieldRef Name=\"Email\" />";

 // Force retrieving only the selected columns
 query.ViewFieldsOnly = true;

 // Define the query. Remember to remove the <Query></Query> container
 // tag, in case of any
 query.Query = "<Where><Contains><FieldRef Name=\"Email\" />
 <Value Type=\"Text\">@devleap.com</Value></Contains></Where>";

 // Define the maximum number of results for each page (like a SELECT TOP)
 query.RowLimit = 10;

 // Query for items
 SPListItemCollection items = list.GetItems(query);

 foreach (SPListItem item in items) {
 Console.WriteLine("{0} {1} - {2}",
 item["First Name"],
 item["Last Name"],
 item["E-mail Address"]);
 }
 }
}

Listing 5-24 configures some of the properties of the SPQuery type, the most important of which
is the Query argument, which contains the CAML code. However, the SPQuery type also has other
properties that are even more fundamental for performance, such as the ViewFields property, which
returns only specifically referenced columns, and thus avoids forcing the server to retrieve use-
less columns. The previous example marks the ViewFieldsOnly property as true. The SPQuery type
also has a RowLimit property that supports partitioning of data results, such as for paging results.
Listing 5-25 shows how to take advantage of the RowLimit property together with the SPQuery.
ListItemCollectionPosition property to page results in blocks of five items for each page.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 151

LISTING 5-25 Querying the items of an SPList instance using an SPQuery object with paging

using (SPSite site = new SPSite(
"http://devbook.sp2013.local/sites/CreatedByCode/")) {
 using (SPWeb web = site.OpenWeb()) {
 SPList list = web.Lists["Contacts"];

 SPQuery query = new SPQuery();

 // Define columns to retrieve
 query.ViewFields = "<FieldRef Name=\"Title\" />
 <FieldRef Name=\"FirstName\" /><FieldRef Name=\"Email\" />";

 // Force retrieving only the selected columns
 query.ViewFieldsOnly = true;

 // Define the query
 query.Query = "<Where><Contains><FieldRef Name=\"Email\" />
 <Value Type=\"Text\">@domain.com</Value></Contains></Where>";

 // Define the maximum number of results for each page (like a SELECT TOP)
 query.RowLimit = 5;

 Int32 pageIndex = 1;
 Int32 itemIndex = 1;

 do {
 Console.WriteLine("Current Page: {0}", pageIndex);

 // Query for items
 SPListItemCollection items = list.GetItems(query);

 foreach (SPListItem item in items) {
 Console.WriteLine("{0} - {1} {2} - {3}",
 itemIndex,
 item["First Name"],
 item["Last Name"],
 item["E-mail Address"]);
 itemIndex++;
 }

 // Set current position to make SPQuery able
 // to set the start item of the next page
 query.ListItemCollectionPosition =
 items.ListItemCollectionPosition;
 pageIndex++;
 } while (query.ListItemCollectionPosition != null);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

152 PaRt II Developing SharePoint solutions

When you execute the code in Listing 5-25 against a list of contacts with a fictitious set of items,
you will see the following console output:

Current Page: 1
1 - First Name 001 Last Name 001 - email_001@domain.com
2 - First Name 002 Last Name 002 - email_002@domain.com
3 - First Name 003 Last Name 003 - email_003@domain.com
4 - First Name 004 Last Name 004 - email_004@domain.com
5 - First Name 005 Last Name 005 - email_005@domain.com
Current Page: 2
6 - First Name 006 Last Name 006 - email_006@domain.com
7 - First Name 007 Last Name 007 - email_007@domain.com
[etc.]

The ListItemCollectionPosition property is of type SPListItemCollectionPosition. It offers a PagingInfo
property of type String, which contains the following data:

Paged=TRUE&p_ID=8

The _ID is the unique identifier of the last item retrieved; this allows SharePoint to know the start-
ing position of the next page.

The SPQuery type offers many other properties; however, those I’ve described here will generally
suffice for everyday tasks.

Document libraries and files
Document libraries and files are critical for many real-world SharePoint solutions. In this section,
you will learn how to create document libraries, and how to upload, download, update, and manage
documents. Remember that in SharePoint 2013, a document library, from a web UI perspective, is
shown as an app. However, it is still a document library as it was in previous editions of SharePoint.

Creating a new document library
To create a new document library, you just need to write code using an SPListTemplateType value of
DocumentLibrary, such as was shown in Listing 5-19. Although this creates a library, the library is an
empty one. Because many corporations require documents to be formatted in a standardized way,
quite often you may need to provide a document template to use for new documents. The code in
Listing 5-26 creates a library of invoices with an Excel spreadsheet document template.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 153

LISTING 5-26 Creating a new SPDocumentLibrary instance with a document template

using (SPSite site = new SPSite(
"http://devbook.sp2013.local/sites/CreatedByCode/")) {
 using (SPWeb web = site.OpenWeb()) {
 SPListTemplate listTemplate = web.ListTemplates["Document Library"];
 SPDocTemplate docTemplate =
 (from SPDocTemplate dt in web.DocTemplates
 where dt.Type == 122
 // 122 means "A blank Microsoft Excel document"
 select dt).FirstOrDefault();

 Guid newListId = web.Lists.Add(
 "Invoices", // List Title
 "Excel Invoices", // List Description
 listTemplate, // List Template
 docTemplate // Document Template (i.e. Excel)
);

 SPDocumentLibrary newLibrary = web.Lists[newListId] as SPDocumentLibrary;
 newLibrary.OnQuickLaunch = true;
 newLibrary.EnableVersioning = true;
 newLibrary.Update();
 }
}

When run, the code in Listing 5-26 creates a new document library that you can reference as an
instance of the SPDocumentLibrary type. Notice the LINQ to Objects query that is used to determine
the SPDocTemplate item that corresponds to an Excel spreadsheet. Table 5-11 lists all the document
templates available in a team site (STS#0) along with their DocTemplateID identifiers.

TABLE 5-11 The document templates available in SharePoint

DocTemplate ID Description

100 No template used by the document library

101 A blank Microsoft Word 97–2003 document

103 A blank Microsoft Excel 97–2003 document

104 A blank Microsoft PowerPoint 97–2003 document

121 A blank Microsoft Word document

122 A blank Microsoft Excel document

123 A blank Microsoft PowerPoint document

111 A basic Microsoft OneNote 2010 Notebook

102 A blank Microsoft SharePoint Designer HTML document

105 A blank Microsoft basic page ASPX document

106 A blank Microsoft Web Part page ASPX document

1000 An empty Microsoft InfoPath form, ready for design

www.it-ebooks.info

http://www.it-ebooks.info/

154 PaRt II Developing SharePoint solutions

You can find all these IDs of the document templates for a team site in the ONET.xml files, in the
folder SharePoint15_Root\TEMPLATE\SiteTemplates\sts\xml. You can also find them in the SharePoint
software development kit (SDK), which is available online and as a free download.

Uploading a new document
After you create a library, uploading new content to it is simple. Recall that Table 5-3 showed that
each SPList instance has a RootFolder property and a Folders collection property. You can reference
any SPFolder object to browse for its contents or to upload new content using the Add method of the
Files property, which is of type SPFileCollection. The code excerpt in Listing 5-27 uploads a dummy
Excel invoice file to the root folder of the library that was created in Listing 5-26.

LISTING 5-27 Uploading a new document to an SPDocumentLibrary instance

using (SPSite site = new SPSite(
"http://devbook.sp2013.local/sites/CreatedByCode/")) {
 using (SPWeb web = site.OpenWeb()) {
 SPDocumentLibrary library = web.Lists["Invoices"] as SPDocumentLibrary;

 using (FileStream fs = new FileStream(@"..\..\DemoInvoice.xlsx",
 FileMode.Open, FileAccess.Read, FileShare.Read)) {
 SPFile fileUploaded = library.RootFolder.Files.Add(
 "DemoInvoice.xlsx", fs, true);
 Console.WriteLine("Uploaded file: {0}", fileUploaded.Url);
 }
 }
}

The Add method has 20 overloads. The preceding code used the one that accepts the destination
URL of the file, an argument of type System.IO.Stream for the content of the file to upload, and a
Boolean value that, when true, instructs SharePoint to overwrite any previously existing file. Detailed
examples of all the overloads is beyond the scope of this book; however, it is interesting to group
them on a functional basis. All the overloads accept the destination URL of the file as their first argu-
ment. But one group of overloads accepts the file as an object of type System.IO.Stream, and another
group takes a System.Byte[] array as input. Additionally, there is a group that accepts an argument of
type HashTable, which is a property bag for a file’s metadata. This family of methods is useful when-
ever you need to upload a file along with its metadata in a unique transaction. Lastly, there are a
couple of overloads that accept an argument of type SPFileCollectionAddParameters, which lets you
specify some options about how to handle check-ins and check-in comments, and so on.

More Info You can find a complete overload reference online, at
http://msdn.microsoft.com/en-us/library/microsoft.sharepoint.spfilecollection.add.aspx.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 155

Downloading a document
For document libraries, downloading is, of course, a frequent task. Every SPListItem object in a docu-
ment library has a File property of type SPFile. Through that property, you can access the file’s con-
tent as either an object of type System.IO.Stream or as an array of bytes (System.Byte[]). Listing 5-28
presents an example that downloads the file that was uploaded in Listing 5-27.

LISTING 5-28 Downloading a document from an SPDocumentLibrary instance

using (SPSite site = new SPSite(
"http://devbook.sp2013.local/sites/CreatedByCode/")) {
 using (SPWeb web = site.OpenWeb()) {
 SPDocumentLibrary library = web.Lists["Invoices"] as SPDocumentLibrary;
 SPFile fileToDownload = web.GetFile(library.RootFolder.Url +
 "/DemoInvoice.xlsx");

 Int32 bufferLength = 4096;
 Int32 readLength = bufferLength;
 Byte[] buffer = new Byte[bufferLength];

 Stream inStream = fileToDownload.OpenBinaryStream();

 using (FileStream outStream = new FileStream(
 @"..\..\DemoInvoiceDownload.xlsx",
 FileMode.OpenOrCreate, FileAccess.Write, FileShare.None)) {
 while (readLength == buffer.Length) {
 readLength = inStream.Read(buffer, 0, bufferLength);
 outStream.Write(buffer, 0, readLength);
 if (readLength < bufferLength) break;
 }
 }
 }
}

The key points in Listing 5-28 are the SPWeb.GetFile method, which is a shortcut to retrieve an
SPFile instance for a specified file URL, and the OpenBinaryStream method of the SPFile class. The
remaining code is plumbing to manage streams and save bytes on the hard disk.

Document check-in and checkout
Another common task while managing documents is working with checkout and check-in features. As
was shown in Table 5-5, the SPFile class provides some specific methods to handle these tasks. Listing
5-29 shows a code excerpt that checks out a file and then checks it back in again, adding a comment.

www.it-ebooks.info

http://www.it-ebooks.info/

156 PaRt II Developing SharePoint solutions

LISTING 5-29 Checking a document out and back in

using (SPSite site = new SPSite(
"http://devbook.sp2013.local/sites/CreatedByCode/")) {
 using (SPWeb web = site.OpenWeb()) {

 SPDocumentLibrary library = web.Lists["Invoices"] as SPDocumentLibrary;
 SPFile file = web.GetFile(library.RootFolder.Url + "/DemoInvoice.xlsx");

 if (file.CheckOutType == SPFile.SPCheckOutType.None) {
 // If the file is not already checked out ... check it out
 file.CheckOut();
 }
 else {
 // Otherwise check it in leaving a comment
 file.CheckIn("File Checked-In for demo purposes",
 SPCheckinType.MajorCheckIn);
 }
 }
}

When checking out a document, you should first evaluate the CheckOutType property, which is of
type SPFile.SPCheckOutType—an enumeration of the following values:

■■ None The file is not checked out.

■■ Offline The file is checked out for editing on the client side.

■■ Online The file is checked out for editing on the server side.

When the CheckOutType value is None, you can invoke the CheckOut method, optionally speci-
fying the type (Offline or Online) of checkout that you want to occur. Otherwise, you can check
the file in using the CheckIn method, providing a comment and optionally an argument of type
SPCheckinType, which can assume the following values:

■■ MajorCheckIn The check-in increments a major version of the file.

■■ MinorCheckIn The check-in increments a minor version of the file.

■■ OverwriteCheckIn The check-in overwrites the current file version.

One last option you have is the UndoCheckOut method, which releases a checkout without modi-
fying the existing stored copy of the file.

Copying and moving files
Quite often in workflows and event receivers, you need to copy a file from one folder to another or
move a file from one library to another.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 157

More Info For further details about SharePoint workflows, see Part V of this book.

These actions are fully supported by the SharePoint Server Object Model. The example in
Listing 5-30 copies or moves a file based on a provided argument.

LISTING 5-30 Copying and moving a document from one location to another

using (SPSite site = new SPSite(
"http://devbook.sp2013.local/sites/CreatedByCode/")) {
 using (SPWeb web = site.OpenWeb()) {

 SPDocumentLibrary sourceLibrary =
 web.Lists["Invoices"] as SPDocumentLibrary;

 SPDocumentLibrary destinationLibrary =
 web.Lists["Invoices History"] as SPDocumentLibrary;

 SPFile file = web.GetFile(sourceLibrary.RootFolder.Url +
 "/DemoInvoice.xlsx");

 if (move) {
 // It is a file moving action
 file.MoveTo(destinationLibrary.RootFolder.Url +
 "/DemoInvoice_Moved.xlsx", true);
 }
 else {
 // It is a file copy action
 file.CopyTo(destinationLibrary.RootFolder.Url +
 "/DemoInvoice_Copied.xlsx", true);
 }
 }
}

Listing 5-30 assumes that you have a library named Invoices and a library named Invoices History,
and that you are copying or moving files between these two libraries. Whether you move or copy a
file, both the methods receive a Boolean argument to force overwriting of any previously existing file
in the target folder. Note that both of these methods work only within the same site.

Managing versions of documents
While working with files, you often need to manage versioning to keep track of changes during a file’s
life cycle and to retrieve older versions of a document. Listing 5-31 shows an example that extracts
the next-to-last version of a document.

www.it-ebooks.info

http://www.it-ebooks.info/

158 PaRt II Developing SharePoint solutions

LISTING 5-31 How to manage file versions

using (SPSite site = new SPSite(
"http://devbook.sp2013.local/sites/CreatedByCode/")) {
 using (SPWeb web = site.OpenWeb()) {

 SPDocumentLibrary library = web.Lists["Invoices"] as SPDocumentLibrary;
 SPFile file = web.GetFile(library.RootFolder.Url + "/DemoInvoice.xlsx");

 Console.WriteLine("Available versions:");

 foreach (SPFileVersion v in file.Versions) {
 Console.WriteLine("Version: {0} - URL: {1}", v.VersionLabel, v.Url);
 }

 SPFile fileOfSecondLastVersion =
 file.Versions[file.Versions.Count - 1].File;

 Console.WriteLine(fileOfSecondLastVersion.Name);
 }
}

Listing 5-31 demonstrates that SharePoint makes managing file versions simple. For each available
version of the document, you have access to an SPFile instance that you can manage exactly as you
would the current version of the document.

Groups and users
The tasks discussed in this section involve the management of users and groups. You will learn how
to create and manage a user, how to control users’ membership against groups, and how to define
custom permission levels to assign specific permissions to users or groups.

Creating a new user
As usual, the first step in the sequence of common tasks is to be able to create a new item. Remember
that a user in SharePoint is an SPUser instance. Each SPWeb instance offers a set of user collections
(AllUsers, SiteUsers, Users), which were listed in Table 5-2. Listing 5-32 shows how to add a new user,
taken from Active Directory, into the list of users for a group of a site.

LISTING 5-32 Adding a new user to the Users collection of a group of a site

using (SPSite site = new SPSite("http://devbook.sp2013.local/")) {
 using (SPWeb web = site.OpenWeb()) {

 web.Groups[0].Users.Add("SP2013\\TestUser", "test@devleap.com",
 "Test User", null);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 159

The SPUserCollection.Add method accepts the logon name of the user, the email address, the
display name, and an optional argument with textual notes about the SPUser Instance. When you add
a previously existing user, the infrastructure ignores any duplicate insertion. However, if you simply
want to get a valid SPUser instance that corresponds to a logon name—and you don’t want to worry
about whether that user exists—you can invoke the SPWeb.EnsureUser method. This method adds the
user if that user is not already defined in the site, or uses the existing user, if there is one. Listing 5-33
shows a revised example.

LISTING 5-33 Adding a new user to a site with the EnsureUser method

using (SPSite site = new SPSite("http://devbook.sp2013.local/")) {
 using (SPWeb web = site.OpenWeb()) {

 SPUser userAdded = web.EnsureUser("SP2013\\AnotherTestUser");
 Console.WriteLine(userAdded.Xml);
 }
}

This time, the EnsureUser method directly returns the SPUser that you’re probably expecting.

Managing group membership
Deleting a user and managing user properties are trivial tasks, so this chapter will not cover them. But
it is interesting to know how to add a user to a specific SharePoint group. There are many techniques
to accomplish this; however, in Listing 5-34 you will see how to do that by working with the Groups
collection of the current SPWeb instance, which is the most common technique.

LISTING 5-34 Adding a user to a website group

using (SPSite site = new SPSite("http://devbook.sp2013.local/")) {
 using (SPWeb web = site.OpenWeb()) {
 SPUser user = web.EnsureUser("SP2013\\AnotherTestUser");
 web.Groups[web.Title + " Members"].AddUser(user);
 }
}

The example is clear; the last line invokes the AddUser method of an SPGroup object retrieved
by group name. Using the SPWeb.Groups collection, you can also add, update, or delete existing
SharePoint groups; however, you should be very careful when performing such actions in code,
because the security model should be managed by an IT professional—and having code that creates
users and groups on its own could reduce the security of the overall environment if not well defined
and documented.

www.it-ebooks.info

http://www.it-ebooks.info/

160 PaRt II Developing SharePoint solutions

Managing user and group permissions
In the “SPGroup, SPUser, and other security types” section earlier in the chapter, you learned that both
users and groups internally inherit from SPPrincipal, which is a fundamental type for assigning per-
missions. In SharePoint 2013, permissions are based on permission levels. A permission level consists
of a set of low-level permissions, such as Browse Directory, View Pages, View Items, Add Items, and
so forth. For a full and detailed list of all the available permissions and native permission levels, see
Chapter 19. For now, you just need to know that you can define custom permission levels using either
the browser UI or the Server Object Model. Additionally, you can assign a permission level to an
SPPrincipal object (an instance of type SPUser or SPGroup). Listing 5-35 shows a code excerpt that cre-
ates a new permission level (composed of the following permissions: View Pages, Browse Directories,
and Update Personal Web Parts) and assigns it to a specific SPUser instance.

LISTING 5-35 Creating a new permission level and assigning it to a user

using (SPSite site = new SPSite("http://devbook.sp2013.local/")) {
 using (SPWeb web = site.OpenWeb()) {

 SPUser user = web.EnsureUser("SP2013\\AnotherTestUser");

 SPRoleDefinition newRoleDefinition = new SPRoleDefinition();
 newRoleDefinition.Name = "Custom Permission Level";
 newRoleDefinition.Description = "View Pages, Browse Directories, " +
 "Update Personal Web Parts";
 newRoleDefinition.BasePermissions = SPBasePermissions.ViewPages |
 SPBasePermissions.BrowseDirectories |
 SPBasePermissions.UpdatePersonalWebParts;
 web.RoleDefinitions.Add(newRoleDefinition);

 SPPrincipal principal = user;
 SPRoleAssignment newRoleAssignment = new SPRoleAssignment(principal);
 newRoleAssignment.RoleDefinitionBindings.Add(
 web.RoleDefinitions["Custom Permission Level"]);
 web.RoleAssignments.Add(newRoleAssignment);
 }
}

The code in Listing 5-35 first retrieves a reference to an SPUser object, and then it creates a new
permission level—a new instance of SPRoleDefinition—and assigns a set of selected permissions to it
using a bit mask of permissions. Finally, it adds a binding between the SPPrincipal object representing
the user and the permission level, using a new SPRoleAssignment instance.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 Server Object Model 161

Summary

This chapter provided an overview of the SharePoint Server Object Model, starting with the main
SharePoint object hierarchy. It then provided a description of the main types. Finally, it explored basic
types of everyday tasks, their problems, and solutions. It also included some suggestions and best
practices for writing better and more efficient code. With this as a foundation, you’re ready to take on
the rest of Part II and Part III, which will expand your knowledge and use the Server Object Model to
create business solutions.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

 163

C H A P T E R 6

LINQ to SharePoint

When you need to develop server-side solutions, one of the most significant features of
Microsoft SharePoint 2013 is its support for LINQ (Language-Integrated Query). Supported

since SharePoint 2010, LINQ is a satisfying alternative to the classic object model discussed in
Chapter 5, “Server Object Model.” This chapter will begin with a quick overview of LINQ, just in case
you’re not familiar with it, and then show you how to work with it. Next, you’ll learn about LINQ to
SharePoint as a LINQ query provider implementation, which is useful for querying and managing
items in SharePoint lists using the LINQ data access model. If you already know about LINQ, you can
skip the next section and move directly to the section titled “Introducing LINQ to SharePoint.”

More Info To learn more about LINQ, read Programming Microsoft LINQ in .NET 4.0, by
Paolo Pialorsi and Marco Russo (Microsoft Press, 2010).

LINQ overview

LINQ is a programming model that introduces queries as a first-class concept into any Microsoft .NET
language. Complete support for LINQ, however, requires some extensions in the language that you
are using. These extensions boost developer productivity, thereby providing a shorter, more mean-
ingful, and expressive syntax with which to manipulate data.

LINQ provides a methodology that simplifies and unifies the implementation of any kind of data
access. LINQ does not force you to use a specific architecture; it facilitates the implementation of
several existing architectures for accessing data, such as the following:

■■ RAD/prototype

■■ Client/server

■■ N-tier

■■ Smart client

The architecture of LINQ is based on the idea of having a set of LINQ providers, each able to
target a different kind of data source. Figure 6-1 shows a schema of the main LINQ providers avail-
able in .NET Framework 4.5. Aside from SharePoint and out of the box with .NET Framework 4.5 and

www.it-ebooks.info

http://www.it-ebooks.info/

164 PaRt II Developing SharePoint solutions

Microsoft Visual Studio 2012, LINQ includes many providers suitable for accessing several different
types of data sources, including the following:

■■ LINQ to Objects This is used to query in-memory data and object graphs.

■■ LINQ to SQL This was specifically designed to query and manage data stored in a Microsoft
SQL Server database, using a lightweight, simplified object-relational mapper (O/RM) that
maps entities to tables with a one-to-one relationship. LINQ to SQL can be considered a dis-
continued library. Nevertheless, you can still use it.

■■ LINQ to Entities The first-class O/RM offered by Microsoft to design solutions based on
the domain model, with a real abstraction from the underlying persistence storage. LINQ
to Entities is based on the Entity Framework. The .NET Framework 4.5 ships with the Entity
Framework version 5.

■■ LINQ to DataSet This is a LINQ implementation targeting old-style ADO.NET DataSet and
DataTable types. It is mainly offered for backward compatibility reasons.

■■ LINQ to XML This is a LINQ implementation targeting XML contents, useful to query, man-
age and navigate across XML nodes.

In your SharePoint solutions, you can use any of these LINQ providers, as long as you access
objects, SQL Server, DBMSs, DataSet objects, or XML. If you need to access SharePoint data, however,
you cannot use any of these providers; but read on for suggested solutions.

FIGURE 6-1 A graphical representation of the main LINQ providers available in .NET Framework 4.5.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 LINQ to SharePoint 165

the goal of LINQ
The goal of LINQ is to provide a set of tools that improve code implementation by adapting to several
different architectures, rather than changing application architectures.

Today, data managed by a program can originate from many and varied data sources, such as an
array, an object graph, an XML document, a database, a text file, a registry key, an e-mail message,
Simple Object Access Protocol (SOAP) message content, a Microsoft Office Excel file, and so forth. The
list is extensive. LINQ makes it easier to access all these various kinds of data, providing a unified pro-
gramming model. In fact, each data source has its own specific data-access model. When you need
to query a database, you typically use SQL. You navigate XML data by using the Document Object
Model (DOM) or XPath/XQuery. You iterate an array and build algorithms to navigate an object
graph. You use specific application programming interfaces (APIs) to access other data sources, such
as an Excel file, an e-mail message, or the Windows registry. Put briefly, you use different program-
ming models to access different data sources.

The unification of data access techniques into a single comprehensive model has been attempted
in many ways. For example, Open Database Connectivity (ODBC) providers allow you to query an
Excel file as you would a Windows Management Instrumentation (WMI) repository. With ODBC, you
use an SQL-like language to access data represented through a relational model. Sometimes, however,
data is represented more effectively in a hierarchical or network model instead of a relational one.
Moreover, if a data model is not tied to a specific language, you probably need to manage different
type systems. All these differences create an “impedance mismatch” between data and code.

LINQ addresses these issues by offering a uniform method to access and manage data without
forcing the adoption of a “one size fits all” model. LINQ makes use of common capabilities in the
operations in different data models instead of flattening the different structures between them. In
other words, by using LINQ, you keep existing heterogeneous data structures, such as classes or
tables, but you gain a uniform syntax to query all these data types, regardless of their physical rep-
resentation. Think about the differences between a graph of in-memory objects and relational tables
with proper relationships. With LINQ, you can use the same query syntax on both models.

Here is a simple LINQ query for a typical software solution that returns the names of customers
in Italy:

var query =
 from c in Customers
 where c.Country == "Italy"
 select c.CompanyName;

The result of this query is a list of strings. You can enumerate these values with a foreach loop
in C#:

foreach (string name in query) {
 Console.WriteLine(name);
}

www.it-ebooks.info

http://www.it-ebooks.info/

166 PaRt II Developing SharePoint solutions

Both the query definition and the foreach loop are regular C# statements, valid for C# 3.0 or
higher, but what is Customers? At this point, you might be wondering what it is we are querying. Is
this query a new form of Embedded SQL? Not at all. You can apply the same query (and the foreach
loop) to the following:

■■ An SQL database using LINQ to SQL

■■ A third-party DBMS using LINQ to Entities

■■ A DataSet object using LINQ to DataSet

■■ An array of objects in memory using LINQ to Objects

■■ A remote service

In fact, you can apply the query to many other kinds of data, as well, so long as you use each kind’s
specific LINQ provider. For example, Customers could be a collection of objects:

Customer[] Customers;

Customers also could be an entity class that describes a physical table in a relational database:

DataContext db = new DataContext(ConnectionString);
Table<Customer> Customers = db.GetTable<Customer>();

Or, Customers could be an entity class that describes a conceptual model mapped to a relational
database:

NorthwindModel dataModel = new NorthwindModel();
ObjectSet<Customer> Customers = dataModel.Customers;

And in SharePoint 2013, Customers could be an entity class that describes a collection of SPListItem
types retrieved from an SPList of customers stored in SharePoint:

MySiteContext sp = new MySiteContext (siteUri);
EntityList<Customer> Customers = sp.GetList<Customer>("Customers");

These examples highlight that the main goal of LINQ is to provide a unified querying and pro-
gramming model—fully integrated with programming languages—that abstracts code from the
underlying infrastructure.

LINQ under the hood
Now you know that a LINQ query can target any kind of data source supported by a LINQ provider.
But how does LINQ work? This section gives you a tour of what’s under its hood.

Suppose you write the following code that uses LINQ:

Customer[] Customers = GetCustomers();
var query =

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 LINQ to SharePoint 167

 from c in Customers
 where c.Country == "Italy"
 select c;

From that query, the compiler generates this code:

Customer[] Customers = GetCustomers();
IEnumerable<Customer> query =
 Customers
 .Where(c => c.Country == "Italy");

When the query becomes more complex, as you can see in the next example…

Note From now on, the examples will skip the Customers declaration for the sake of
brevity.

var query =
 from c in Customers
 where c.Country == "Italy"
 orderby c.Name
 select new { c.Name, c.City };

The generated code is more complex, too:

var query =
 Customers
 .Where(c => c.Country == "Italy")
 .OrderBy(c => c.Name)
 .Select(c => new { c.Name, c.City });

The code calls instance members on the object returned from the previous call. It calls Where on
Customers; OrderBy on the object returned by Where; and finally, Select on the object returned by
OrderBy. This behavior is regulated by what are known as extension methods in the host language (C#
in this case). The implementation of the Where, OrderBy, and Select methods—called by the sample
query—depends on the type of Customers and on namespaces specified in relevant using statements.
Extension methods are a fundamental syntax feature used by LINQ so that it can maintain the same
syntax across different data sources.

The basic concept behind LINQ is that queries target objects that implement either the
IEnumerable<T> interface for in-memory data or the IQueryable<T> interface for data retrieved from
an external store. Here’s the definition of the IEnumerable<T> interface:

public interface IEnumerable<T> : IEnumerable {
 IEnumerator<T> GetEnumerator();
}

And here’s the definition of the IQueryable<T> interface, together with its base interface,
IQueryable:

public interface IQueryable<T> : IEnumerable<T>, IQueryable, IEnumerable {

www.it-ebooks.info

http://www.it-ebooks.info/

168 PaRt II Developing SharePoint solutions

}
public interface IQueryable : IEnumerable {
 Type ElementType { get; }
 Expression Expression { get; }
 IQueryProvider Provider { get; }
}

Whenever you browse for (enumerate) the results of a query—for example, by using a foreach
statement—the compiler invokes the GetEnumerator method of the IEnumerable<T> interface, and
at that point the query is effectively executed.

When the target object of your query implements only the IEnumerable<T> interface, the exten-
sion methods targeting that type will work against in-memory objects. For example, LINQ to Objects
and LINQ to XML both work in this way.

However, when the query target object implements IQueryable<T>, the extension methods
construct an expression tree, which describes the query from a provider-independent point of view.
The expression tree is then processed by the IQueryable implementation of the query target object,
invoking the IQueryProvider object published by the IQueryable.Provider property. The query pro-
vider visits the expression tree, using an expression visitor, and produces a query syntax that targets
the concrete persistence storage.

For example, as shown in Figure 6-2, for a LINQ to SQL query engine, the query provider will
generate a T-SQL query that corresponds to the LINQ query you defined in your .NET code. Similarly,
when using LINQ to SharePoint, the query provider generates a CAML (Collaborative Application
Markup Language) query that will be executed against the target SPList using the standard Server
Object Model querying syntax.

FIGURE 6-2 A graphical representation of how LINQ providers work.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 LINQ to SharePoint 169

Note CAML is an XML-based querying language that is useful for retrieving, manipulat-
ing, sorting, and grouping SharePoint data.

Introducing LINQ to SharePoint

With a better understanding of LINQ and generally how it works, you can dive into LINQ to
SharePoint, which is just another LINQ query provider that targets SharePoint data. Figure 6-3 shows
the data access model architecture of SharePoint 2013, illustrating the role of LINQ to SharePoint
compared to other data access technologies available in SharePoint 2013.

FIGURE 6-3 The SharePoint 2013 data access model architecture and the role of LINQ to SharePoint.

The key feature of LINQ to SharePoint is that it can query SharePoint data with a fully typed
approach, using a common querying language (LINQ) and retrieving typed entities.

www.it-ebooks.info

http://www.it-ebooks.info/

170 PaRt II Developing SharePoint solutions

Modeling with SPMetal.exe

The first and main task when developing solutions that make use of LINQ to SharePoint is to model
the typed entities. You can define these manually, but it is generally more useful to use SPMetal.
exe, which can automatically generate entities for you. You can find the SPMetal.exe utility in the
SharePoint15_Root\BIN folder. SPMetal.exe is a command-line tool that accepts the wide range of
arguments listed in Table 6-1.

TABLE 6-1 Arguments that you can provide to SPMetal.exe

Argument Description

/web:<url> Specifies the absolute URL of the target website. The host address can be local, in
which case, the tool uses the Server Object Model to connect to the server.

/useremoteapi Specifies that the website URL is remote. You might not use this option if any of the
lists on the website contain lookup fields. Secondary lookups are not supported by
the Client Object Model.

/user:<name> Specifies the logon username (or domain).

/password:<password> Specifies the logon password.

/parameters:<file> Specifies an XML file with code generation parameters.

/code:<file> Specifies the output location for generated code (default: console).

/language:<language> Specifies the source code language. Valid options are csharp and vb (default: inferred
from source code file name extension).

/namespace:<namespace> Specifies a namespace used for autogenerated code (default: no namespace).

/serialization:<type> Specifies a serialization type. Valid options are none and unidirectional (default:
none). The entities serialization topic will be discussed in the “Disconnected entities”
section.

Note that the default behavior of SPMetal.exe is to output autogenerated code to the console.
That’s not terribly useful except for testing, so you should generally provide a /code argument to
instruct the tool to generate a code file instead. The resulting code file should be included in your
Visual Studio project manually. Next, you need to provide the target website URL by using the /web
argument, and then instruct the tool to use the Client Object Model (/useremoteapi) if the site is
remote. It’s common to also provide a namespace by using the /namespace argument to make the
generated code part of the same namespace of your target project. Here’s a typical command-line
invocation of the tool:

SPMETAL.EXE /web:http://devbook.sp2013.local /code:devbook.cs /namespace:DevLeap.SP2013.Linq2SP

By default, SPMetal.exe creates a full model for the target site, defining a class for almost every
supported content type and a list for every list instance, except for hidden lists. The tool will also cre-
ate a class named {WebSiteName}DataContext, where {WebSiteName} is the name of the target web-
site (without spaces, in case the site name has spaces in its content). This class represents the entry
point for using LINQ to SharePoint, and it inherits from the Microsoft.SharePoint.Linq.DataContext
base class.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 LINQ to SharePoint 171

Quite often, you do not really need to model each and every content type and list instance of the
target site. Usually, you need to model only some custom data structures that you plan to query and
manage with LINQ to SharePoint. The /parameters command-line argument is provided for this pur-
pose. In fact, by using this argument, you can provide SPMetal.exe with an XML file that instructs the
tool about what to skip and what to include in the autogenerated model. Listing 6-1 shows a sample
XML parameters file that excludes all the common team site default contents, but includes all other
lists and content types. Notice that you cannot use both an ExcludeList and a List element targeting
the same list.

LISTING 6-1 A sample XML parameters file suitable for SPMetal.exe

<?xml version="1.0" encoding="utf-8"?>
<Web AccessModifier="Internal"
xmlns="http://schemas.microsoft.com/SharePoint/2009/spmetal">
 <ExcludeList Name="Documents"/>
 <ExcludeList Name="Site Assets"/>
 <ExcludeList Name="Site Pages"/>
 <ExcludeList Name="Style Library"/>
</Web>

Listing 6-1 shows that the XML file is based on a custom XML namespace. Table 6-2 describes the
supported elements that you can use to define such a file.

TABLE 6-2 The elements available for defining an XML parameters file

Element name Description and purpose

Web The root element of the schema. This tag defines the name of the DataContext gener-
ated class, configuring the class attribute. It also defines the access modifier used for
autogenerated types. By default, SPMetal.exe uses a public access modifier.

List Instructs SPMetal.exe to include a specified list definition. It is useful for including hid-
den lists. It also allows you to override the name of the list in the autogenerated code.
The tag requires a Name attribute whose value is the list name.

ExcludeList Excludes the generation of the specified target list from the autogenerated code. This
tag requires a Name attribute whose value is the list name.

ExcludeOtherLists Instructs SPMetal.exe to avoid generating any list definition except those that you
explicitly define using a List element.

IncludeHiddenLists Requests that SPMetal.exe generate list definitions for hidden lists. You cannot use this
element together with the ExcludeOtherLists element.

ContentType Forces SPMetal.exe to generate the code for a specific content type, referenced by
Name, using a specific attribute. You can use this tag, for example, to include a hidden
content type. This element can be a child of the Web or List elements.

Column Instructs SPMetal.exe to output a property representing a field (site column) that it
would not model by default. For example, you can use this element to include a hidden
field. It requires a Name attribute, whose value is the name of the field to include.

ExcludeColumn Excludes a field from code generation. This element requires a Name attribute, whose
value is the name of the field to include.

www.it-ebooks.info

http://www.it-ebooks.info/

172 PaRt II Developing SharePoint solutions

ExcludeOtherColumns Configures the tool to block code generation for columns that are not explicitly refer-
enced by a Column element.

IncludeHiddenColumns Causes SPMetal.exe to generate code for hidden column. This element cannot be used
together with the ExcludeOtherColumns element.

ExcludeContentType Blocks code generation for the content type specified by the value of a Name attribute.
This element can be a child of Web or List elements.

ExcludeOtherContentTypes Configures SPMetal.exe to block code generation for SharePoint apps not explicitly
referenced by a ContentType element.

IncludeHiddenContentTypes Requests that SPMetal.exe also generate code for any hidden content type. This ele-
ment cannot be used together with the ExcludeOtherContentTypes element.

Now suppose that you have a website with a couple of custom lists: a standard document
library named Invoices and a custom list of items named DevLeap Contacts in which each item
can be of type DevLeapCustomer or DevLeapSupplier. Both types share a base content type called
DevLeapContact.

Note To provision these content types and lists, see the code samples in Chapter 3, “Data
provisioning.”

Listing 6-2 shows another XML parameters file that includes these custom content types and lists
and excludes all other content types and lists.

LISTING 6-2 Sample XML parameters file for SPMetal.exe

<?xml version="1.0" encoding="utf-8"?>
<Web AccessModifier="Internal" xmlns="http://schemas.microsoft.com/
SharePoint/2009/
spmetal">
 <List Name="DevLeap Contacts">
 <ContentType Name="DevLeapContact" Class="DevLeapContact" />
 <ContentType Name="DevLeapCustomer" Class="DevLeapCustomer" />
 <ContentType Name="DevLeapSupplier" Class="DevLeapSupplier" />
 </List>
 <List Name="Invoices" />
 <ExcludeOtherLists />
</Web>

Assume you’ve executed this with SPMetal.exe; now you’ll examine the resulting autogenerated
code. First, you have a DevbookDataContext class that provides entry points to access the content lists
of the target site. Listing 6-3 shows the definition of this DataContext-inherited class.

LISTING 6-3 The DevbookDataContext class, autogenerated using the XML parameters file from Listing 6-2

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 LINQ to SharePoint 173

internal partial class DevbookDataContext : Microsoft.SharePoint.Linq.DataContext
{

 #region Extensibility Method Definitions
 partial void OnCreated();
 #endregion

 public DevbookDataContext(string requestUrl) :
 base(requestUrl) {
 this.OnCreated();
 }

 [Microsoft.SharePoint.Linq.ListAttribute(Name="DevLeap Contacts")]
 public Microsoft.SharePoint.Linq.EntityList<DevLeapContact> DevLeapContacts {
 get {
 return this.GetList<DevLeapContact>("DevLeap Contacts");
 }
 }

 [Microsoft.SharePoint.Linq.ListAttribute(Name="Invoices")]
 public Microsoft.SharePoint.Linq.EntityList<Document> Invoices {
 get {
 return this.GetList<Document>("Invoices");
 }
 }
}

The class has a constructor that accepts the URL of the target website as its only argument.
Internally, it invokes a partial method (OnCreated), which you can use to customize the context
initialization. Next, there are a couple of public properties that correspond to the two modeled lists
(Invoices and DevLeap Contacts). It is interesting to see that both of these properties are decorated
with the ListAttribute attribute, stating the name of the underlying SharePoint list. Also, both of these
properties are of type EntityList<T>, which is the type LINQ to SharePoint uses to represent a collec-
tion of typed items.

Internally, these properties invoke the DataContext.GetList<T> method. If you have any experience
with LINQ to SQL, you will find many similarities between LINQ to SharePoint and LINQ to SQL. The
Invoices list is made up of a set of Document instances, where Document is the typed entity auto-
generated by SPMetal.exe that describes a SharePoint document from a conceptual viewpoint. The
DevLeapContacts list is composed of items of type DevLeapContact, which is the typed entity corre-
sponding to the base content type DevLeapContact.

One last thing to consider about the DataContext type is that it implements IDisposable, because
internally it uses some types that exploit unmanaged resources such as the SPSite and SPWeb types.
Therefore, you should always call Dispose whenever you create an instance.

www.it-ebooks.info

http://www.it-ebooks.info/

174 PaRt II Developing SharePoint solutions

More Info See the “Resource disposal” section in Chapter 5 to better understand the rea-
sons for disposing of unmanaged resources.

Figure 6-4 shows the class diagram of the generated types.

FIGURE 6-4 Class diagram of typed entities generated by SPMetal.exe.

Specifically, Figure 6-4 shows that the SPMetal.exe tool generated an Item base class, which inter-
nally implements some infrastructural interfaces for data management tracking (ITrackEntityState,
ITrackOriginalValues) and for data binding (INotifyPropertyChanged, INotifyPropertyChanging),
as well as some properties that correspond to the common data of every SharePoint list item (Id,
Path, Title, and Version). The Document entity inherits from Item and adds some document-specific
properties (DocumentCreatedBy, DocumentModifiedBy, and Name). The most interesting part of the
model is how it defines entities that map to custom content types. In fact, SPMetal.exe modeled a
DevLeapContact class, which inherits from Item and is the base class for the types DevLeapCustomer
and DevLeapSupplier. This is challenging behavior; SPMetal.exe modeled the content types and lists of
SharePoint, mapping them to an object-oriented model of entities, with full inheritance support.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 LINQ to SharePoint 175

Important Because of the need for a set of typed entities that model the content types
defined in the target SharePoint site, it is good practice to use LINQ to SharePoint only
against sites that have a well-defined and stable structure. To learn how to correctly provi-
sion data structures in SharePoint, see Chapter 3. Similarly, it is not as useful to use LINQ
to SharePoint on sites that frequently change their structure, because you would need
to refresh the typed model frequently as well. Instead, you should access and query sites
with a high change frequency using the standard Server Object Model and the untyped
approach, eventually using CAML at a low level.

Listing 6-4 shows a portion of the code corresponding to the base Item type.

LISTING 6-4 The Item type code autogenerated by SPMetal.exe

/// <summary>
/// Create a new list item.
/// </summary>
[Microsoft.SharePoint.Linq.ContentTypeAttribute(Name="Item", Id="0x01")]
[Microsoft.SharePoint.Linq.DerivedEntityClassAttribute(
Type=typeof(DevLeapContact))]
[Microsoft.SharePoint.Linq.DerivedEntityClassAttribute(Type=typeof(Document))]
internal partial class Item : Microsoft.SharePoint.Linq.ITrackEntityState,
Microsoft.SharePoint.Linq.ITrackOriginalValues,
System.ComponentModel.INotifyPropertyChanged,
System.ComponentModel.INotifyPropertyChanging {

 // Code omitted for the sake of brevity ...

 #region Extensibility Method Definition
 partial void OnLoaded();
 partial void OnValidate();
 partial void OnCreated();
 #endregion

 Microsoft.SharePoint.Linq.EntityState
 Microsoft.SharePoint.Linq.ITrackEntityState.EntityState {
 get {
 return this._entityState;
 }
 set {
 if ((value != this._entityState)) {
 this._entityState = value;
 }
 }
 }

 System.Collections.Generic.IDictionary<string, object>
 Microsoft.SharePoint.Linq.ITrackOriginalValues.OriginalValues {
 get {
 if ((null == this._originalValues)) {

www.it-ebooks.info

http://www.it-ebooks.info/

176 PaRt II Developing SharePoint solutions

 this._originalValues = new
 System.Collections.Generic.Dictionary<string,
 object>();
 }
 return this._originalValues;
 }
 }
 public Item() {
 this.OnCreated();
 }
 [Microsoft.SharePoint.Linq.ColumnAttribute(Name="ID", Storage="_id",
 ReadOnly=true, FieldType="Counter")]
 public System.Nullable<int> Id {
 get {
 return this._id;
 }
 set {
 if ((value != this._id)) {
 this.OnPropertyChanging("Id", this._id);
 this._id = value;
 this.OnPropertyChanged("Id");
 }
 }
 }

 // Code omitted for the sake of brevity ...
 [Microsoft.SharePoint.Linq.ColumnAttribute(Name="Title", Storage="_title",
 Required=true, FieldType="Text")]
 public virtual string Title {
 get {
 return this._title;
 }
 set {
 if ((value != this._title)) {
 this.OnPropertyChanging("Title", this._title);
 this._title = value;
 this.OnPropertyChanged("Title");
 }
 }
 }

 // Code omitted for the sake of brevity ...

}

It is interesting to see the class attribute decorations—which are specific for LINQ to SharePoint—
that instruct the engine about the content type ID (ID=0x01) behind the Item class, as well as
about the types that inherit from this base class. You can see that the base Item type, and thus
every typed entity in the model, provides an EntityState property related to the ITrackEntityState
interface implementation, and an OriginalValues property of type Dictionary, related to the
ITrackOriginalValues interface implementation. You’ll see these properties used for tracking entities’
states and changes in the “Managing data” section later in the chapter. In addition, the entity offers

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 LINQ to SharePoint 177

two public properties useful for accessing the current item ID and title. These properties are marked
with the ColumnAttribute attribute, which defines the underlying storage field and the correspond-
ing SharePoint column. Lastly, the class provides three partial methods that you can implement to
add custom behaviors to the type when loading (OnLoaded), validating (OnValidate), and creating
(OnCreated) a type instance.

Starting from this base type, the tool arranges inheritance for all the entity types corresponding
to the content types. Listing 6-5 contains an excerpt of the DevLeapContact, DevLeapCustomer, and
DevLeapSupplier types.

LISTING 6-5 The autogenerated code for the custom types

[Microsoft.SharePoint.Linq.ContentTypeAttribute(Name="DevLeapContact",
 Id="0x010025836A76187A4B49892A35CB80CC5232")]
[Microsoft.SharePoint.Linq.DerivedEntityClassAttribute(
 Type=typeof(DevLeapCustomer))]
[Microsoft.SharePoint.Linq.DerivedEntityClassAttribute(
 Type=typeof(DevLeapSupplier))]
internal partial class DevLeapContact : Item {
 private string _contactID;
 private string _companyName;
 private System.Nullable<Country> _country;

 #region Extensibility Method Definitions
 partial void OnLoaded();
 partial void OnValidate();
 partial void OnCreated();
 #endregion

 public DevLeapContact() {
 this.OnCreated();
 }

 [Microsoft.SharePoint.Linq.ColumnAttribute(Name="DevLeapContactID",
 Storage="_contactID", Required=true, FieldType="Text")]
 public string ContactID {
 // Code omitted for the sake of brevity ...
 }

 [Microsoft.SharePoint.Linq.ColumnAttribute(Name="DevLeapCompanyName",
 Storage="_companyName", FieldType="Text")]
 public string CompanyName {
 // Code omitted for the sake of brevity ...
 }

 [Microsoft.SharePoint.Linq.ColumnAttribute(Name="DevLeapCountry",
 Storage="_country", FieldType="Choice")]
 public System.Nullable<Country> Country {
 // Code omitted for the sake of brevity ...
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

178 PaRt II Developing SharePoint solutions

[Microsoft.SharePoint.Linq.ContentTypeAttribute(Name="DevLeapCustomer",
 Id="0x010025836A76187A4B49892A35CB80CC523200D458F4EF7D494F43B84D46C30F7
BA444")]
internal partial class DevLeapCustomer : DevLeapContact {
 private System.Nullable<CustomerLevel> _customerLevel;
 #region Extensibility Method Definitions
 partial void OnLoaded();
 partial void OnValidate();
 partial void OnCreated();
 #endregion

 public DevLeapCustomer() {
 this.OnCreated();
 }

 [Microsoft.SharePoint.Linq.ColumnAttribute(Name="DevLeapCustomerLevel",
 Storage="_customerLevel", Required=true, FieldType="Choice")]
 public System.Nullable<CustomerLevel> CustomerLevel {
 // Code omitted for the sake of brevity ...
 }
}

[Microsoft.SharePoint.Linq.ContentTypeAttribute(Name="DevLeapSupplier",
 Id="0x010025836A76187A4B49892A35CB80CC523200070CB29DDC9B4566B98F94F4
1E652260")]
internal partial class DevLeapSupplier : DevLeapContact {
 // Code omitted for the sake of brevity ...
}

internal enum Country : int {
 None = 0,
 Invalid = 1,
 [Microsoft.SharePoint.Linq.ChoiceAttribute(Value="Italy")]
 Italy = 2,
 [Microsoft.SharePoint.Linq.ChoiceAttribute(Value="USA")]
 USA = 4,
 [Microsoft.SharePoint.Linq.ChoiceAttribute(Value="Germany")]
 Germany = 8,
 [Microsoft.SharePoint.Linq.ChoiceAttribute(Value="France")]
 France = 16,
}

internal enum CustomerLevel : int {
 None = 0,
 Invalid = 1,
 [Microsoft.SharePoint.Linq.ChoiceAttribute(Value="Level A")]
 LevelA = 2,
 [Microsoft.SharePoint.Linq.ChoiceAttribute(Value="Level B")]
 LevelB = 4,
 [Microsoft.SharePoint.Linq.ChoiceAttribute(Value="Level C")]
 LevelC = 8,
}

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 LINQ to SharePoint 179

Listing 6-5 shows that the classes are fully connected with the original SharePoint types because
each class refers to its corresponding content type using its ID, just as the Item base type did
in Listing 6-4. Additionally, when you have a Choice field on the SharePoint side (for example,
DevLeapContact.Country and DevLeapCustomer.CustomerLevel), the tool generates an enum type,
giving you strongly typed access to the choice values.

Of course, you could write all this code manually and get the same results, but that’s not recom-
mended because you would be wasting your time.

Querying data

Now that you have seen how to model your data with SPMetal.exe, and what the model is, you can
start querying the site for content. The key feature of this new query provider lies in its ability to
query SharePoint content using LINQ queries. As an example, Listing 6-6 contains a code excerpt with
a query that fetches the titles of documents in the Invoices library with the Title property starting with
a specific word.

Note To execute the custom code illustrated in this section and in those that follow, you
need to reference the Microsoft.SharePoint.Linq.dll assembly, which is available in the
SharePoint15_Root\ISAPI folder of every SharePoint server. In addition, you should declare
a couple of using statements for the namespaces Microsoft.SharePoint.Linq and System.Linq
in your code.

LISTING 6-6 A code excerpt using a LINQ to SharePoint query to find documents in the Invoices list created by a
specific user

using (DevbookDataContext spContext = new
 DevbookDataContext("http://devbook.sp2013.local/")) {
 var query = from d in spContext.Invoices
 where d.Title.StartsWith("Invoice")
 select d.Title;

 foreach (var i in query) {
 Console.WriteLine(i);
 }
}

Listing 6-6 creates a new instance of the DataContext class, passing in the URL of the target site.
The target site can be the URL of any SharePoint site with a data structure that is compatible with
the site from which you generated the model. Of course, in real code, the URL should not be hard
coded, and you should refer to a configurable parameter. It also employs the using keyword to
dispose of unmanaged resources expediently. Then it simply queries the Invoices collection provided

www.it-ebooks.info

http://www.it-ebooks.info/

180 PaRt II Developing SharePoint solutions

by the current context, just as with any other LINQ query. Under the hood, the query engine cre-
ates a CAML query and sends it to the Invoices list using an SPQuery instance, invoking the SPList.
GetItems method. If you want to see the autogenerated CAML query, you can set the Log property
of the DataContext instance to a TextWriter object (for example, Console.Out if you are working with a
Console application). Here’s the syntax:

spContext.Log = Console.Out;

And here’s the CAML code generated for the query in Listing 6-6:

<View>
 <Query>
 <Where>
 <And>
 <BeginsWith><FieldRef Name="ContentTypeId" />
 <Value Type="ContentTypeId">0x0101</Value>
 </BeginsWith>
 <BeginsWith>
 <FieldRef Name="Title"/><Value Type="Text">Invoice</Value>
 </BeginsWith>
 </And>
 </Where>
 </Query>
 <ViewFields>
 <FieldRef Name="Title" />
 </ViewFields>
 <RowLimit Paged="TRUE">2147483647</RowLimit>
</View>

The LINQ to SharePoint query engine allows you to define many kinds of queries, with partition-
ing (where), projection (select), and under some circumstances, relationships (join). Imagine that the
Invoices list of documents is made of a custom content type named DevLeapInvoice that has a lookup
field that accepts a DevLeapContact object from the DevLeap Contacts custom list. If you refresh the
model (via SPMetal.exe) after adding such a lookup field in the Invoices list, you will see a new class
that inherits from the original Document type, as shown in Listing 6-7.

LISTING 6-7 The definition of the DevLeapInvoice type

[Microsoft.SharePoint.Linq.ContentTypeAttribute(
 Name="DevLeapInvoice", Id="0x0101000B231F0B244C41F59EB1467059EA59E8")]
internal partial class DevLeapInvoice : Document {
 private Microsoft.SharePoint.Linq.EntityRef<DevLeapContact> _devLeapContact;

 // Code omitted for the sake of brevity ...

 public DevLeapInvoice() {
 this._devLeapContact = new
 Microsoft.SharePoint.Linq.EntityRef<DevLeapContact>();
 this.Initialize();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 LINQ to SharePoint 181

 [Microsoft.SharePoint.Linq.AssociationAttribute(
 Name="DevLeap_x0020_Contact", Storage="_devLeapContact",
 MultivalueType=Microsoft.SharePoint.Linq.AssociationType.Single,
 List="DevLeap Contacts")]
 public DevLeapContact DevLeapContact {
 get {
 return this._devLeapContact.GetEntity();
 }
 set {
 this._devLeapContact.SetEntity(value);
 }
 }

 private void Initialize() {
 this._devLeapContact.OnSync += new System.EventHandler<Microsoft.
SharePoint.Linq.AssociationChangedEventArgs<DevLeapContact>>(this.
OnDevLeapContactSync);
 this._devLeapContact.OnChanged += new System.EventHandler(this.
OnDevLeapContactChanged);
 this._devLeapContact.OnChanging += new System.EventHandler(this.
OnDevLeapContactChanging);
 this.OnCreated();
 }

 private void OnDevLeapContactChanging(object sender, System.EventArgs e) {
 this.OnPropertyChanging("DevLeapContact", this._devLeapContact.
Clone());
 }

 private void OnDevLeapContactChanged(object sender, System.EventArgs e) {
 this.OnPropertyChanged("DevLeapContact");
 }

 private void OnDevLeapContactSync(object sender,
 Microsoft.SharePoint.Linq.AssociationChangedEventArgs<DevLeapContact> e) {
 if ((Microsoft.SharePoint.Linq.AssociationChangedState.Added ==
 e.State)) {
 e.Item.InvoicesDocument.Add(this);
 }
 else {
 e.Item.InvoicesDocument.Remove(this);
 }
 }
}

This new type has a property named DevLeapContact, of type DevLeapContact, which internally
works with a private storage field of type EntityRef<DevLeapContact>. In addition, the type con-
structor automatically creates an instance of that field and registers some event handlers to manage
the synchronization of the association between the DevLeapInvoice object and its corresponding
DevLeapContact instance.

www.it-ebooks.info

http://www.it-ebooks.info/

182 PaRt II Developing SharePoint solutions

On the other side, the DevLeapContact type has been changed, too. In fact, now it supports a pub-
lic property of type Microsoft.SharePoint.Linq.EntitySet<DevLeapInvoice>, which represents a refer-
ence to all the invoices for the current contact.

Now comes the nice part of the story: you can define a LINQ query that joins these entities. In
addition, you can use deferred loading of entities when dynamically browsing related items. Deferred
loading allows you to dynamically load data related to the entities you are querying, whenever you
need them and without having to explicitly and manually load them. In fact, the LINQ to SharePoint
provider will take care of that for you. Listing 6-8 shows a code excerpt of a sample query with a join
syntax.

LISTING 6-8 A LINQ to SharePoint query that uses a join between contacts and invoices

using (DevbookDataContext spContext = new
 DevbookDataContext("http://devbook.sp2013.local/")) {

 var query = from c in spContext.DevLeapContacts
 join i in spContext.Invoices on c.Id equals i.DevLeapContact.Id
 select new { c.ContactID, c.Title, InvoiceTitle = i.Title };

 // Use the query results ...
}

The output of this query will be a set of new anonymous types that expose the properties
ContactID, Title, and InvoiceTitle. The CAML query sent to the SharePoint is as follows:

<View>
 <Query>
 <Where>
 <And>
 <BeginsWith>
 <FieldRef Name="ContentTypeId" />
 <Value Type="ContentTypeId">0x0101000B231F0B244C41F59EB1467059EA59E8</Value>
 </BeginsWith>
 <BeginsWith>
 <FieldRef Name="DevLeap_x0020_ContactContentTypeId" />
 <Value Type="Lookup">0x010025836A76187A4B49892A35CB80CC5232</Value>
 </BeginsWith>
 </And>
 </Where>
 <OrderBy Override="TRUE" />
 </Query>
 <ViewFields>
 <FieldRef Name="DevLeap_x0020_ContactDevLeapContactID" />
 <FieldRef Name="DevLeap_x0020_ContactTitle" />
 <FieldRef Name="Title" />
 </ViewFields>
 <ProjectedFields>
 <Field Name="DevLeap_x0020_ContactDevLeapContactID" Type="Lookup"
 List="DevLeap_x0020_Contact" ShowField="DevLeapContactID" />
 <Field Name="DevLeap_x0020_ContactTitle" Type="Lookup"

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 LINQ to SharePoint 183

 List="DevLeap_x0020_Contact" ShowField="Title" />
 <Field Name="DevLeap_x0020_ContactContentTypeId" Type="Lookup"
 List="DevLeap_x0020_Contact" ShowField="ContentTypeId" />
 </ProjectedFields>
 <Joins>
 <Join Type="INNER" ListAlias="DevLeap_x0020_Contact">
 <!--List Name: DevLeap Contacts-->
 <Eq>
 <FieldRef Name="DevLeap_x0020_Contact" RefType="ID" />
 <FieldRef List="DevLeap_x0020_Contact" Name="ID" />
 </Eq>
 </Join>
 </Joins>
 <RowLimit Paged="TRUE">2147483647</RowLimit>
</View>

Notice the elements ProjectedFields and Joins in the CAML code. In Listing 6-9 code excerpt illus-
trates deferred loading in action.

LISTING 6-9 A LINQ to SharePoint Query using deferred loading

using (DevbookDataContext spContext = new
 DevbookDataContext("http://devbook.sp2013.local/")) {

 var query = from c in spContext.DevLeapContacts
 select c;

 foreach (var c in query) {
 Console.WriteLine(c.Title);
 foreach (var i in c.InvoicesDocument) {
 Console.WriteLine(i.Title);
 }
 }
}

In Listing 6-9, the first LINQ query is converted into CAML and executed against SharePoint
within the first and external foreach block. Then, when the inner foreach block browses for the
InvoicesDocument collection of the current contact, the LINQ to SharePoint engine automatically
executes a CAML query to retrieve the invoices belonging to the current contact. This is the default
behavior, which you can change by setting the DeferredLoadingEnabled property of the DataContext
to false, as shown here:

spContext.DeferredLoadingEnabled = false;

If you’re familiar with LINQ, you probably use hierarchical grouped queries, making use of the join
into (also known as group join) clause, which avoids the need to execute a separate query to retrieve
the invoices for every single contact. However, the LINQ to SharePoint query provider has limitations

www.it-ebooks.info

http://www.it-ebooks.info/

184 PaRt II Developing SharePoint solutions

due to its use of CAML queries under the covers. For example, with CAML, you cannot query more
than one list at a time, so you can’t use a group join. Listing 6-10 presents a code excerpt that declares
an unsupported group join query.

LISTING 6-10 An unsupported LINQ to SharePoint query syntax

using (DevbookDataContext spContext = new
 DevbookDataContext("http://devbook.sp2013.local/")) {

 var query = from c in spContext.DevLeapContacts
 join i in spContext.Invoices on c.Id equals i.DevLeapContact.Id
 into invoices select new { c.Id, c.Title, Invoiced = invoices };
}

When you try to execute a query like this, the LINQ to SharePoint query provider throws an excep-
tion similar to this:

Unhandled Exception: System.InvalidOperationException: The query uses unsupported elements,
such as references to more than one list, or the projection of a complete entity by
usingEntityRef/EntitySet.

Moreover, LINQ to SharePoint does not support multifetch queries that query across multiple
lists or join clauses on fields other than Lookup fields. For multifetch queries, you can consider using
specific controls instead, such as the Content by Query Web Part or the SPSiteDataQuery class, which
allows querying multiple lists using CAML queries. Also, you cannot define queries across multiple
websites or that query different DataContext instances. Finally, you cannot use mathematical func-
tions because CAML does not support them. Overall, LINQ to SharePoint does not support queries
that cannot be translated into CAML syntax.

More Info For a complete list of unsupported syntax and commands, please refer
to the article “Unsupported LINQ Queries and Two-stage Queries,” on MSDN, at
http://msdn.microsoft.com/en-us/library/ee536585.aspx.

Managing data

The previous section showed that LINQ to SharePoint provides a convenient syntax for executing
CAML queries with a fully typed approach. Even if this is sufficient for your needs, the story becomes
more interesting when you consider that LINQ to SharePoint gives you access to data using a kind of
SharePoint-specific O/RM, meaning you can also manage (insert, update, delete) data using LINQ to
SharePoint, and it’s a fully typed approach.

Here’s a quick initial example. The code in Listing 6-11 queries for a specific contact in the DevLeap
Contacts list, using a LINQ to SharePoint query, and then changes the Country property of the
retrieved item.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 LINQ to SharePoint 185

LISTING 6-11 Using LINQ to SharePoint to change an entity

using (DevbookDataContext spContext = new DevbookDataContext(
 "http://devbook.sp2013.local/")) {

 var contact = (from c in spContext.DevLeapContacts
 where c.ContactID == "PP001"
 select c).FirstOrDefault();

 // Let's see if we found the target contact
 if (contact != null) {
 contact.Country = Country.USA;
 spContext.SubmitChanges();
 }
}

As Listing 6-11 demonstrates, the process is both simple and intuitive. You just need to retrieve the
object, change its properties, and then confirm the changes by invoking the SubmitChanges method
of the DataContext. You should consider SubmitChanges the counterpart of the Update method in the
standard Server Object Model. In fact, just as with the Server Object Model, whenever you change
an instance of an entity that models an item in a SharePoint list, you are changing the in-memory
copy of that data, not the SharePoint content database. Behind the scenes, the LINQ to SharePoint
engine tracks this change, so you can apply it on the real content database when you invoke the
DataContext.SubmitChanges method.

Internally, the DataContext base class provides an object tracker (an internal EntityTracker class)
that tracks any changes you make to in-memory copies of typed entities. Furthermore, as you have
already seen in the previous section, the base Item class that every LINQ to SharePoint entity inherits
implements the ITrackEntityState interface, which provides an EntityState property that can assume
one of the following values:

■■ Unchanged The entity has not been changed.

■■ ToBeInserted The entity is new and will be inserted into its parent list when you call
SubmitChanges.

■■ ToBeUpdated The entity has been changed and will be updated in the content database
when you call SubmitChanges.

■■ ToBeDeleted The entity has been deleted and will be permanently removed from the con-
tent database when you call SubmitChanges.

■■ ToBeRecycled The entity has been deleted and will be moved to the Recycle Bin when you
call SubmitChanges.

■■ Deleted The entity has been deleted or recycled.

For example, if you test the EntityState property of the contact in Listing 6-11, you will see that
the entity is in the Unchanged state just after retrieval. As soon as you change the Country property,

www.it-ebooks.info

http://www.it-ebooks.info/

186 PaRt II Developing SharePoint solutions

its state becomes ToBeUpdated. Finally, just after you invoke the SubmitChanges method, the state
returns to Unchanged, because the entity has been synchronized with the content database.

This tracking behavior is provided transparently by default whenever you create a DataContext
instance and retrieve modeled entities. Note that tracking does not work on anonymous types, which
are types that you get through LINQ queries that use custom projection. For example, the code
illustrated in Listing 6-8 uses projection to extract an anonymous type made only of ContactID, Title,
and InvoiceTitle properties. The type resulting from that query will be read-only and thus will not have
tracking support.

The tracking behavior, however, has an impact on performance and resource consumption.
Therefore, if you don’t need to manage data (such as when you need to query and render contents in
a read-only fashion), you can disable the entity tracking service by setting the ObjectTrackingEnabled
property of the DataContext class to false:

spContext.ObjectTrackingEnabled = false;

In the next few pages, you will see how to manage data, taking advantage of the LINQ to
SharePoint tracking engine through some concrete examples. You’ve already seen an example of
updating an item in Listing 6-11, so that operation will not be repeated.

Inserting a new item
To insert a new item into a list, you first create the item instance, just as you would with any .NET
object. Next, you need to configure its properties, and finally, you need to add the new item to
its parent list and submit changes to the content database. The code in Listing 6-12 illustrates this
process.

LISTING 6-12 Inserting a new item in a list using LINQ to SharePoint

using (DevbookDataContext spContext = new
 DevbookDataContext("http://devbook.sp2013.local/")) {
 DevLeapCustomer newCustomer = new DevLeapCustomer {
 Title = "Andrea Pialorsi",
 ContactID = "AP001",
 CompanyName = "DevLeap",
 Country = Country.Italy,
 CustomerLevel = CustomerLevel.LevelA,
 };
 spContext.DevLeapContacts.InsertOnSubmit(newCustomer);
 spContext.SubmitChanges();
}

The key point of this example, aside from the SubmitChanges method invocation that you have
already seen, is the call to the InsertOnSubmit method of the EntityList<T> class that lies behind the
DevLeapContacts property of the DataContext. The InsertOnSubmit method accepts an item to be
inserted into the target list as soon as you invoke SubmitChanges. The entity passed to the method

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 LINQ to SharePoint 187

will acquire a state of ToBeInserted. Note that the InsertOnSubmit method is fully typed accord-
ing to the generic type T of the EntityList<T> class. Thus, in Listing 6-12 you can invoke this method
by providing a class of type DevLeapContact or any type inherited from DevLeapContact, such as
DevLeapCustomer or DevLeapSupplier.

The EntityList<T> class also provides an InsertAllOnSubmit method, which lets you insert a group
of entities instead of a single entity. This last method requires an argument of type IEnumerable<T>,
representing the collection of items to insert.

Deleting or recycling an existing item
Deleting an item is much like inserting a new item. The EntityList<T> class provides a DeleteOnSubmit
method, as well as a DeleteAllOnSubmit method, similar to the methods presented in the preceding
section. The former accepts a single item to delete, whereas the latter accepts a collection of type
IEnumerable<T>, representing the items to delete. Both of these methods permanently delete the
target items from the content database when you confirm the action by invoking SubmitChanges.
SharePoint provides a Recycle Bin feature, so the EntityList<T> class also provides a couple of meth-
ods specifically intended to move items into the Recycle Bin, instead of permanently deleting them.
These methods are RecycleOnSubmit and RecycleAllOnSubmit. Listing 6-13 shows a code excerpt that
illustrates how to delete or recycle an item.

LISTING 6-13 Deleting or recycling an item from a list using LINQ to SharePoint

using (DevbookDataContext spContext = new DevbookDataContext(
 "http://devbook.sp2013.local/")) {
 var contact = (from c in spContext.DevLeapContacts
 where c.ContactID == "AP001"
 select c).FirstOrDefault();

 // Let's see if we found the target contact
 if (contact != null) {
 if (recycle) {
 spContext.DevLeapContacts.RecycleOnSubmit(contact);
 }
 else {
 spContext.DevLeapContacts.DeleteOnSubmit(contact);
 }
 spContext.SubmitChanges();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

188 PaRt II Developing SharePoint solutions

Advanced topics

In this section, you’ll see some more advanced topics about using LINQ to SharePoint. These topics
include managing concurrency conflicts, working with the identity management services, handling
disconnected entities, supporting versioning, and extending the entity model.

Handling concurrency conflicts
Whenever you have a data management infrastructure that works when disconnected from the
source repository, you will inevitably face concurrency conflicts. In fact, every single time you insert,
update, or delete/recycle any data, you are working with an in-memory copy of the content; there-
fore, you have no guarantee that your changes will be effectively confirmed by the back-end store
when you invoke SubmitChanges. For example, when you retrieve an item from a list to change its
properties, someone else might change that same item concurrently. Moreover, your code can be
executed multiple times concurrently when you are in a high-traffic solution. Thus, when you try to
apply your changes to the back-end repository, it will throw a concurrency conflict exception.

Fortunately, LINQ to SharePoint has established and complete support for concurrency conflicts. In
fact, the SubmitChanges method has three overloads:

public void SubmitChanges();
public void SubmitChanges(ConflictMode failureMode);
public void SubmitChanges(ConflictMode failureMode, bool systemUpdate);

At this point, the first overload should be familiar (you have seen it in many of the previous code
listings). Both the second and the third overloads accept an argument of type ConflictMode, which is
an enum defined in the following excerpt:

public enum ConflictMode {
 ContinueOnConflict,
 FailOnFirstConflict
}

The names of the available values reveal their purposes:

■■ ContinueOnConflict When any concurrency conflict occurs, the DataContext object will skip
the conflicting items, but it will continue to submit changes for all nonconflicting items. When
the SubmitChanges method completes with conflicts, it throws a ChangeConflictException, so
you will have the opportunity to evaluate conflicts and decide what to do.

■■ FailOnFirstConflict This stops processing the SubmitChanges method as soon as any
concurrency conflict occurs. This overload also throws a ChangeConflictException so that you
can evaluate the conflict and decide what to do. Any modifications submitted before the first
conflict will be persisted to the content database.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 LINQ to SharePoint 189

Note The third overload also accepts a Boolean argument with the name systemUpdate,
which is not directly related to handling concurrency conflicts, but simply allows you to
update the content database without incrementing the version number of the changed
items. By default, the SubmitChanges overload without arguments uses a ConflictMode
argument with a value of FailOnFirstConflict and a systemUpdate argument with a value
of false.

When you submit changes to the content database and a change conflict occurs, you can catch
a ChangeConflictException, which contains a description tightly bound to SharePoint’s typical web
scenario. As an example, here’s the Message property for a concurrency conflict exception:

Database values have been updated since the client last read them.

To solve conflicts, you can browse the ChangeConflicts property of the DataContext class
instance. This property is a collection of objects of type ObjectChangeConflict, which you can
enumerate to inspect all conflicting items. Every ObjectChangeConflict instance exposes a prop-
erty named Object, of type System.Object, that references the current conflicting item. You can
cast that property to the real target entity instance. In addition, you can inspect the conflicting
members of the current conflicting item by enumerating the MemberConflicts property of every
ObjectChangeConflict instance. Finally, each element of the MemberConflicts collection is of type
MemberChangeConflict and provides you with some detailed information about the member con-
flict. For example, you can see the member name and type, the original value of the member when
you retrieved the entity from the SharePoint content database, the current value in memory, and
the actual value in the content database.

With that information, to solve concurrency issues, you need to invoke the Resolve method, which
has several overloads for both ObjectChangeConflict and MemberChangeConflict values. In essence,
the Resolve method lets you determine which values win—those of the current user or those in the
content database (the other concurrent user).

Here are the overloads for the Resolve method of the ObjectChangeConflict class:

public void Resolve();
public void Resolve(RefreshMode refreshMode);
public void Resolve(RefreshMode refreshMode, bool autoResolveDeletes);

The RefreshMode argument is the most interesting part of these method overloads because it
determines how to resolve conflicts. RefreshMode is an enum type, defined as follows:

public enum RefreshMode {
 KeepChanges,
 KeepCurrentValues,
 OverwriteCurrentValues
}

www.it-ebooks.info

http://www.it-ebooks.info/

190 PaRt II Developing SharePoint solutions

The ObjectChangeConflict.Resolve method changes its behavior depending on the RefreshMode
value you provide:

■■ KeepChanges Accepts the current user’s changes, if any; otherwise, it reloads values from
the content database. This acts like a synchronizer with the content database, without losing
the user’s changes.

■■ KeepCurrentValues Causes the current user’s values to win over the current database
values.

■■ OverwriteCurrentValues Makes all values match the latest values in the content database
(the other concurrent user’s values win).

The first overload of ObjectChangeConflict.Resolve internally assumes a value of
KeepChanges for its RefreshMode argument. The third overload accepts a Boolean argument
named autoResolveDeletes, which when false, instructs the entity tracking engine to throw an
InvalidOperationException if a target item has been deleted.

Table 6-3 contains a matrix of possible values, which helps to explain the behavior of the
ObjectChangeConflict.Resolve method.

TABLE 6-3 Schema of the behavior of the ObjectChangeConflict.Resolve method

Refresh mode Original values Current values Database values Final values

KeepChanges Country = Italy
Company = A

Country = USA
Company = A

Country = Germany
Company = B

Country = USA
Company = B

KeepCurrentValues Country = Italy
Company = A

Country = USA
Company = A

Country = Germany
Company = B

Country = USA
Company = A

OverwriteCurrentValues Country = Italy
Company = A

Country = USA
Company = A

Country = Germany
Company = B

Country = Germany
Company = B

The MemberChangeConflict.Resolve method works almost the same as the one provided by the
ObjectChangeConflict class. However, it affects only one member at time, instead of the whole entity.
It also has a couple of overloads:

public void Resolve(RefreshMode refreshMode);
public void Resolve(object value);

The first overload works exactly the same as the ObjectChangeConflict method, but affects only
the current member. The second overload lets you provide a custom value to force onto the content
database. Thus, in this last case, you can completely change the final value of the member, providing
a new value that’s different from the current, original, or database values.

Lastly, there is also a ResolveAll method provided by the ChangeConflictCollection class. It is useful
when you want to solve all conflicts in one shot by applying the same conflict resolution logic to all
the conflicts.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 LINQ to SharePoint 191

Listing 6-14 shows a complete code example of managing concurrency conflicts in LINQ to
SharePoint.

LISTING 6-14 Concurrency conflict management using LINQ to SharePoint

using (DevbookDataContext spContext = new
 DevbookDataContext("http://devbook.sp2013.local/")) {
 var contacts = from c in spContext.DevLeapContacts
 where c.Country == Country.Italy
 select c;

 String conflictingItemID = contacts.FirstOrDefault().ContactID;

 foreach (var item in contacts) {
 item.CompanyName += String.Format(" - Changed on {0}", DateTime.Now);
 }

 // Before submitting changes, the code simulates concurrency
 // changing one of the items from another DataContext
 using (DevbookDataContext spContextOther =
 new DevbookDataContext("http://devbook.sp2013.local/")) {
 var conflictingItem = (from c in spContextOther.DevLeapContacts
 where c.ContactID == conflictingItemID
 select c).FirstOrDefault();

 conflictingItem.Country = Country.USA;
 spContextOther.SubmitChanges();
 }
 try {
 spContext.SubmitChanges(ConflictMode.ContinueOnConflict)
 } catch (ChangeConflictException ex) {
 Console.WriteLine(ex.Message);

 // Browse for conflicting items
 foreach (var conflict in spContext.ChangeConflicts) {
 // Check if the item has been deleted by
 // someone else
 if (conflict.IsDeleted) {
 Console.WriteLine("Unfortunately the item has been deleted, " +
 "so your changes cannot be submitted!");
 }
 else {
 // Retrieve a typed reference to the conflicting item
 DevLeapContact contact = conflict.Object as DevLeapContact;

 // If the item is a DevLeapContact
 if (contact != null) {
 Console.WriteLine("Contact with ID {0} is in conflict!",
 contact.ContactID);

www.it-ebooks.info

http://www.it-ebooks.info/

192 PaRt II Developing SharePoint solutions

 // Browse for conflicting members
 foreach (var member in conflict.MemberConflicts) {
 Console.WriteLine("Member {0} is in conflict.\n\t" +
 "Current Value: {1}\n\tOriginal Value: " +
 "{2}\n\tDatabase Value: {3}",
 member.Member.Name,
 member.CurrentValue,
 member.OriginalValue,
 member.DatabaseValue);
 }
 Console.WriteLine("Make your choice: Override Database " +
 "Value (Y) or Skip your Current Values (N)?");
 String choice = Console.ReadLine().ToLower();

 switch (choice) {
 case "y":
 case "yes":
 conflict.Resolve(RefreshMode.KeepChanges, true);
 break;
 case "n":
 case "no":
 conflict.Resolve(RefreshMode.OverwriteCurrentValues,
 true);
 break;
 default:
 break;
 }
 }
 }
 }
 spContext.SubmitChanges();
 }
}

Listing 6-14 uses a couple of DataContext instances to simulate a concurrency conflict. It asks the
end user, via a console-based UI, how to solve the generated conflict. It also demonstrates that LINQ
to SharePoint provides a rich set of capabilities for resolving concurrency conflicts, making it a mature
technology suitable for real-world business solutions.

Identity management and refresh
At the base of every O/RM framework, there is an engine—generally called an identity management
service—that avoids having duplicate in-memory instances of the same entity. LINQ to SharePoint
also provides such a service. Consider the sample code in Listing 6-15.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 LINQ to SharePoint 193

LISTING 6-15 Code excerpt that illustrates identity management service behavior

using (DevbookDataContext spContext = new DevbookDataContext(
 "http://devbook.sp2013.local/")) {

 var contacts = from c in spContext.DevLeapContacts
 where c.CompanyName.Contains("DevLeap")
 select c;

 // Change the Country property of the first contact
 contacts.FirstOrDefault().Country = Country.USA;

 // Show all the retrieved contacts
 foreach (var c in contacts) {
 Console.WriteLine("Customer with ID {0} has a Country value of {1}",
 c.ContactID, c.Country);
 }

 Console.WriteLine("------------------");

 // Retrieve the same contacts with another LINQ query
 var otherContacts = from c in spContext.DevLeapContacts
 where c.CompanyName.Contains("DevLeap")
 select c;

 // Show all the newly retrieved contacts
 foreach (var c in otherContacts) {
 Console.WriteLine("Customer with ID {0} has a Country value of {1}",
 c.ContactID, c.Country);
 }

 // Check if the two first contacts instances are the same contact
 Console.WriteLine("Do the contacts have the same HashCode? {0}",
 contacts.FirstOrDefault().GetHashCode() ==
 otherContacts.FirstOrDefault().GetHashCode());
}

The code retrieves the contacts whose CompanyName field contains “DevLeap” from the DevLeap
Contacts list, and changes the Country property of the first contact to USA. A second LINQ query
retrieves the same list of contacts to check whether the result comes from the content database or from
existing in-memory instances. To determine which, the code writes the Country value of every retrieved
contact and compares the HashCode values of the first two instances of the retrieved contacts.

The following code is the output generated by Listing 6-15 at the console window:

Customer with ID PP001 has a Country value of USA
Customer with ID AP001 has a Country value of Italy

Customer with ID PP001 has a Country value of USA
Customer with ID AP001 has a Country value of Italy
Do the contacts have the same HashCode? True

www.it-ebooks.info

http://www.it-ebooks.info/

194 PaRt II Developing SharePoint solutions

Not surprisingly, the entities are the same; in other words, the modified contact instance takes
precedence over the instance retrieved from the content database. In fact, under the covers, LINQ
to SharePoint queries the content database twice, the first time executing the former query, and the
second time the latter. However, because the entities requested by the second query are already in
memory, the identity management service skips the data from the content database and uses the
data of the existing in-memory instances instead. You might be wondering why it still executes
the database query rather than using the in-memory data directly without stressing the database.
The reason is that the engine merges the results retrieved from the database with any existing in-
memory entities. If there are more items in the database than in memory, the engine will merge the
new ones from the database and the rest that are already in memory. This is good behavior because it
avoids duplication of data and instances.

Given this behavior, you’re probably wondering how you can refresh an entity from the content
database, skipping any existing in-memory instance. To do that, you can use a different DataContext
instance, as long as you do not have to use the same DataContext instance. Otherwise, you can call
the DataContext class’s Refresh method, which has these overloads:

public void Refresh(RefreshMode mode, IEnumerable entities);
public void Refresh(RefreshMode mode, params object[] entities);
public void Refresh(RefreshMode mode, object entity);

All of these overloads accept an argument of type RefreshMode, which you may remember
from the “Handling concurrency conflicts” section. Depending on the value you choose for the
RefreshMode argument, the Refresh method will either forcibly reload data from the content data-
base (OverwriteCurrentValues) or merge your changed values with those in the content database
(KeepChanges). Generally, the value of KeepCurrentValues is not very useful when provided to the
Refresh method, because it simply forces the entities to use the values already in memory.

Disconnected entities
In software solutions with a distributed architecture, you sometimes need to serialize an entity, trans-
fer it across the wire to a remote site or consumer, and eventually get it back to update the persistent
storage. When your data is stored in SharePoint, LINQ to SharePoint becomes an interesting solution
for working in a disconnected manner. In fact, when you generate the entity model with SPMetal.
exe and provide it with the /serialization:unidirectional command-line argument, the tool will mark
all the generated entities with the DataContract attribute of the .NET runtime serialization engine.
Consequently, you can serialize your entities and use them, for example, as the content of a Windows
Communication Foundation (WCF) message.

More Info If you would like to learn more about WCF, consider reading Windows
Communication Foundation 4 Step by Step, by John Sharp (Microsoft Press, 2010).

Listing 6-16 shows a code excerpt that serializes a LINQ to SharePoint entity.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 LINQ to SharePoint 195

LISTING 6-16 Serializing a LINQ to SharePoint DevLeapContact entity

using (DevbookDataContext spContext = new DevbookDataContext(
 "http://devbook.sp2013.local/")) {
 spContext.DeferredLoadingEnabled = false;

 var contact = (from c in spContext.DevLeapContacts
 where c.ContactID == "PP001"
 select c).FirstOrDefault();

 // Let's see if we found the target contact
 if (contact != null) {
 // Prepare a DataContractSerializer instance
 DataContractSerializer dcs = new
 DataContractSerializer(typeof(DevLeapContact),
 new Type[] { typeof(DevLeapCustomer), typeof(DevLeapSupplier) });

 // Serialize the object graph
 using (XmlWriter xw = XmlWriter.Create(Console.Out)) {
 dcs.WriteObject(xw, contact);
 xw.Flush();
 }
 }
}

Note the line that disables DeferredLoadingEnabled. This is done to avoid circular references during
entity serialization. Listing 6-17 shows the XML produced by the DataContractSerializer engine.

LISTING 6-17 The XML produced to serialize a DevLeapContact entity with DataContractSerializer

<?xml version="1.0"?>
<DevLeapContact xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
 i:type="DevLeapCustomer"
 xmlns="http://schemas.datacontract.org/2004/07/DevLeap.SP2013.Linq2SP">
 <_entityState>Unchanged</_entityState>
 <_id>1</_id>
 <_originalValues xmlns:d2p1=
 "http://schemas.microsoft.com/2003/10/Serialization/Arrays" i:nil="true" />
 <_path>/Lists/DevLeap Contacts</_path>
 <_title>Paolo Pialorsi</_title>
 <_version>19</_version>
 <_companyName>DevLeap</_companyName>
 <_contactID>PP001</_contactID>
 <_country>Italy</_country>
 <_invoicesDocument xmlns:d2p1=
 "http://schemas.datacontract.org/2004/07/Microsoft.SharePoint.Linq">
 <d2p1:Loaded>true</d2p1:Loaded>
 <d2p1:entities />
 </_invoicesDocument>
 <_customerLevel>LevelB</_customerLevel>
</DevLeapContact>

www.it-ebooks.info

http://www.it-ebooks.info/

196 PaRt II Developing SharePoint solutions

The XML stream contains the basic private fields of the entity, its original values, and the entity
state. Thus, the XML produced is not an ideal solution for an interoperable cross-platform solution,
but can be used to connect WCF consumers with WCF services (from .NET to .NET).

When the consumer makes changes to the received serialized entities and sends them back to the
server, you can use the Attach method of the EntityList<T> class on the service side to reattach the
entity to the DataContext and update the content database. Here’s the signature of this method:

public void Attach(TEntity entity);

This method simply accepts the entity to attach back to the DataContext tracking engine.

Note Even if this serialization behavior seems to be a great opportunity for defining
enterprise solutions that use SharePoint as their back-end storage, it is important to under-
stand that when you have many thousands of items corresponding to data records, it is bad
practice to use SharePoint as the persistence storage. It would absolutely be better to have
an external DBMS with a specific and well-designed schema, with indexes and stored pro-
cedures. Instead, when you need to render your external content as a standard SharePoint
list, you can use Business Connectivity Services. In software with a distributed architecture,
you should create a persistence-ignorant data access layer that ignores how, where, and
what the persistence is.

Model extensions and versioning
A final topic to cover here relates to managing model extensions and entity versioning. Let’s start with
a couple of examples. Imagine that you have a well-defined LINQ to SharePoint model, such as the
one created at the beginning of this chapter. At some point, a power user changes the data schema
you provisioned, adding a custom column—such as a new Address column—to the DevLeapCustomer
content type. To be able to see this new property, you should refresh the model via SPMetal.exe,
which will then update the entity definition. However, it is not always possible to update the entity
model and refresh all deployed assemblies.

Now consider a situation in which you have a content type that uses a custom field type, devel-
oped with .NET code and Visual Studio 2012, and you want to use that content type with LINQ to
SharePoint. Unfortunately, SPMetal.exe does not support custom field types. Thus, you need to
autonomously manage the code for reading and writing the custom field type.

To manage these situations but still use LINQ to SharePoint, you can implement the
ICustomMapping interface for entities that you want to extend or update. This interface was specifi-
cally designed to support you when extending LINQ to SharePoint entities. Here’s its definition:

public interface ICustomMapping {
 void MapFrom(object listItem);
 void MapTo(object listItem);
 void Resolve(RefreshMode mode, object originalListItem, object databaseListItem);
}

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 LINQ to SharePoint 197

The MapFrom and MapTo methods both receive an argument of type Object, which internally
is an SPListItem instance that corresponds to the native SharePoint item behind the current entity.
Using the MapFrom method, you can read untyped values from the low-level SPListItem instance
and use them to configure a property—or whatever you want—in the entity. The MapTo method
writes these properties back to the underlying SPListItem object. The Resolve method is a conflict
resolution method similar to the ObjectChangeConflict and MemberChangeConflict methods you’ve
already seen; however, in this case, it is up to the project developer to define the concurrency conflict
behavior. Listing 6-18 shows a custom entity type created using SPMetal.exe and extended using the
ICustomMapping interface.

LISTING 6-18 Implementing the ICustomMapping interface

internal partial class DevLeapCustomer : ICustomMapping {

 private String _address;
 public String Address {
 get { return (this._ address); }
 set { this._ address = value; }
 }

 [CustomMapping(Columns = new String[] { "*" })]
 public void MapFrom(object listItem) {
 SPListItem item = listItem as SPListItem;
 if (item != null) {
 this.Address = item["address"].ToString();
 }
 }

 public void MapTo(object listItem) {
 SPListItem item = listItem as SPListItem;
 if (item != null) {
 item["address "] = this.Address;
 }
 }

 public void Resolve(RefreshMode mode, object originalListItem,
 object databaseListItem) {
 // Code omitted for the sake of brevity
 }
}

Note the CustomMapping attribute applied on top of the MapFrom method. This is an attribute
that identifies new columns mapped with the MapFrom method. It requires an array of InternalName
values of supported columns. In this example, the CustomMapping attribute accepts any kind of new
column (through the use of *) in order to be useful in case of versioning.

www.it-ebooks.info

http://www.it-ebooks.info/

198 PaRt II Developing SharePoint solutions

Summary

In this chapter, you learned how to implement LINQ to SharePoint to model SharePoint data as a
set of typed entities, how to query that entity model, and how to manage data retrieved from LINQ
queries. You also read about some advanced topics, such as managing concurrency conflicts, identity
management, serialization, and versioning of entities.

www.it-ebooks.info

http://www.it-ebooks.info/

 199

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

 201

C H A P T E R 7

Client-side technologies

A powerful feature of Microsoft SharePoint 2013 is the rich set of libraries and tools it offers to
support development of client-side solutions. Before SharePoint 2010, the only out-of-the-box

method to communicate between SharePoint and a consumer application was to use WebDAV or
SharePoint ASMX web services. Both of these communication techniques were restrictive, however,
and not terribly easy to use. Moreover, as of SharePoint 2013, most of the ASMX web services are
deprecated and you shouldn’t use them anymore. With the advent of Web 2.0 and the emerging
need for a dynamic web UI, the urge to go beyond that old-style paradigm has become a necessity. In
this chapter, you will see how to take advantage of the client-side technologies offered by SharePoint
2013 (as well as client-side techniques in general) to implement Web 2.0 solutions that consume
SharePoint 2013 data.

Architectural overview

First of all, let’s consider an architectural overview of the available technologies. Figure 7-1 shows
a schema that illustrates the new data access model architecture of SharePoint 2013, which will be
familiar from Chapter 6, “LINQ to SharePoint.”

FIGURE 7-1 The SharePoint 2013 data access model architecture and the role of the Client Object Model.

www.it-ebooks.info

http://www.it-ebooks.info/

202 PaRt II Developing SharePoint solutions

From a client-side viewpoint, when you need to access SharePoint data in a strongly typed manner,
you can use the REST (Representational State Transfer) API, making use of the so-called Open Data
Protocol (also known as OData).

More Info To learn more about the Open Data Protocol, consult its official website at
http://www.odata.org.

Similarly, when you simply need to access data through weakly typed entities, you can use the
Client Object Model or the new _api endpoint introduced with SharePoint 2013, which is just a
new endpoint for consuming the _vti_bin/Client.svc REST service. For further information about the
new _api endpoint, please read Chapter 9, “The new SharePoint REST API.” Furthermore, in case you
want to develop a Windows Phone app consuming SharePoint 2013, you can use the new SDK (soft-
ware development kit) project templates and libraries available for this purpose in the latest Windows
Phone SDK.

More Info You can download the Windows Phone SDK from the Windows Phone
Developer Center site at http://create.msdn.com.

Whether you prefer a strongly typed or weakly typed approach, behind the scenes you’ll find
the same data foundation elements that already support the Server Object Model and LINQ to
SharePoint.

Client Object Model

The Client Object Model is a set of libraries and classes with which you can consume SharePoint data
through a specific object model that is a subset of the SharePoint Server Object Model.

Note You can download the Client Object Model as a redistributable pack-
age that targets either x86 or x64 platforms. You’ll find both versions at
http://www.microsoft.com/en-us/download/details.aspx?id=35585.

Figure 7-2 shows the overall architecture of the Client Object Model.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 203

FIGURE 7-2 The architecture of the Client Object Model of SharePoint 2013.

The key advantage of Client Object Model is that it supports multiple platforms. In fact, you can
use it in any solution that can run JavaScript code, via the JavaScript Client Object Model (JSOM), or
in any .NET-managed application using the Client Side Object Model—even in a Silverlight solu-
tion. Behind the scenes, all these platforms consume a WCF (Windows Communication Foundation)
service named Client.svc, which is published under the /_vti_bin/ folder of the current site. The service
accepts REST requests as well as XML requests, and responds with JavaScript Object Notation (JSON)
responses or XML Atom responses. In the following sections, you will see these different flavors of the
Client Object Model.

.Net Client-Side Object Model
The .NET Client-Side Object Model (CSOM) is based on a set of .NET-managed assemblies, which
reside in and can be referenced from the SharePoint15_Root\ISAPI folder. The most basic of these
assemblies are Microsoft.SharePoint.Client.dll and Microsoft.SharePoint.Client.Runtime.dll, which any
32-bit or 64-bit .NET 3.5 (or higher) project can reference. SharePoint 2013 also offers new assemblies
for consuming such SharePoint Server 2013 features as Enterprise Content Management (ECM), tax-
onomy, user profiles, advanced search, analytics, Business Connectivity Services (BCS), and others.

After you reference at least the two main assemblies (Microsoft.SharePoint.Client.dll and Microsoft.
SharePoint.Client.Runtime.dll), you need to create an instance of the ClientContext class, defined
in the Microsoft.SharePoint.Client namespace. This class represents the client context in which you
are acting. It is also the proxy to the SharePoint server that you are targeting. You can think of the
ClientContext class as the client-side version of the SPContext class. It has a couple of constructors
based on the URL of the target site, provided as a String or System.Uri type. As soon as you have a

www.it-ebooks.info

http://www.it-ebooks.info/

204 PaRt II Developing SharePoint solutions

valid reference to the ClientContext object, you can browse its Site and Web properties, which are
references to the site collection and the site that you are targeting. Listing 7-1 shows a code excerpt
that queries the contents of a list of contacts in the current website.

Note To provision these content types and lists, refer to the code samples in Chapter 3,
“Data provisioning.”

LISTING 7-1 Querying the contents of a list of contacts

// Open the current ClientContext
ClientContext ctx = new ClientContext("http://devbook.sp2013.local/");

// Prepare a reference to the current Site Collection
Site site = ctx.Site;
ctx.Load(site);

// Prepare a reference to the current Web Site
Web web = site.RootWeb;
ctx.Load(web);

// Prepare a reference to the list of "DevLeap Contacts"
List list = web.Lists.GetByTitle("DevLeap Contacts");
ctx.Load(list);

// Execute the prepared commands against the target ClientContext
ctx.ExecuteQuery();

// Show the title of the list just retrieved
Console.WriteLine(list.Title);

// Prepare a query for all items in the list
CamlQuery query = new CamlQuery();

query.ViewXml = "<View/>";

ListItemCollection allContacts = list.GetItems(query);

ctx.Load(allContacts);

// Execute the prepared command against the target ClientContext
ctx.ExecuteQuery();

// Browse the result
Console.WriteLine("\nContacts");
foreach (ListItem listItem in allContacts) {
 Console.WriteLine("Id: {0} - Fullname: {1} - Company: {2} - Country: {3}",
 listItem["DevLeapContactID"],
 listItem["Title"],
 listItem["DevLeapCompanyName"],
 listItem["DevLeapCountry"]
);
}

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 205

Each time you want to access an object, you first need to add a request for that object by invok-
ing the Load<T> method of the ClientContext instance. You can load as many objects as you like.
Many of the client-side objects have a type name that is the same as that of the Server Object Model
counterpart, except that on the client side, the SP prefix is missing. For example, SPWeb and SPSite
on the server side become Web and Site on the client side. Once you are ready to effectively query
SharePoint, you must invoke the ExecuteQuery method of the ClientContext instance. There is also an
asynchronous version of this method, called ExecuteQueryAsync, for invoking the service asynchro-
nously. Notice Listing 7-1 uses an instance of the CamlQuery class to query the items contained in the
target list; specifically, it passes an instance of the CamlQuery class to the GetItems method of the List
instance variable representing the list on the client.

Although the Client Object Model provides you with a subset of the classes and methods from
the Server Object Model, that subset comprises a rich set of types that is too wide to be covered
completely here. Instead, the chapter will focus on more practical matters and later provide some
concrete examples taken from everyday life.

Note If you would like to browse the entire set of types and members available in the
Client Object Model, go to the “Microsoft.SharePoint.Client namespace” MSDN page, at
http://msdn.microsoft.com/en-us/library/microsoft.sharepoint.client.aspx.

authenticating
One important thing to know when using any class or method is how to authenticate against a
SharePoint server. By default, the CSOM uses Windows integrated authentication. Occasionally, how-
ever, you may have to work with forms-based authentication or a custom authentication mechanism.
The ClientContext class, through its ClientRuntimeContext base class, provides an AuthenticationMode
property and a FormsAuthenticationLoginInfo property, which are useful to configure a set of forms-
based authentication credentials. The following code example shows how you should change the
startup code of Listing 7-1:

ClientContext ctx = new ClientContext("http://devbook.sp2013.local/");
ctx.AuthenticationMode = ClientAuthenticationMode.FormsAuthentication;
FormsAuthenticationLoginInfo loginInfo = new FormsAuthenticationLoginInfo {
 LoginName = "UserLoginName",
 Password = "HereYourPassword",
};
ctx.FormsAuthenticationLoginInfo = loginInfo;

Note The Client Object Model behavior could change if you use it within a public website
with an anonymous user session. In fact, some methods (for example, List.GetItems) by
default cannot be called by an anonymous user. Of course, you can change default permis-
sions to enable anonymous users to call such methods.

www.it-ebooks.info

http://www.it-ebooks.info/

206 PaRt II Developing SharePoint solutions

Data retrieval and projection
To improve performance and reduce network traffic, the data retrieval engine of the Client Object
Model by default does not retrieve all of the properties of the items you load. For example, when you
query the items of a list, as in Listing 7-1, and you try to access the DisplayName property of an item,
a PropertyOrFieldNotInitializedException is thrown, with the following description:

Unhandled Exception: Microsoft.SharePoint.Client.PropertyOrFieldNotInitializedException: The
property or field 'DisplayName' has not been initialized. It has not been requested or the
request has not been executed. It may need to be explicitly requested.

Table 7-1 presents the list of properties that are not automatically retrieved unless you explicitly
request them for the main client-side types.

Note For further details about data retrieval policies, see the “Data Retrieval Overview”
MSDN page, at http://msdn.microsoft.com/en-us/library/ee539350.aspx.

TABLE 7-1 Properties that are not automatically retrieved through the Client Object Model

Type Properties not available by default

Folder ContentTypeOrder, UniqueContentTypeOrder

List BrowserFileHandling, DataSource, EffectiveBasePermissions, HasUniqueRoleAssignments,
IsSiteAssetsLibrary, OnQuickLaunch, RoleAssignments, SchemaXml, ValidationFormula,
ValidationMessage

ListItem DisplayName, EffectiveBasePermissions, HasUniqueRoleAssignments, RoleAssignments

SecurableObject HasUniqueRoleAssignments, RoleAssignments

Site Usage

Web EffectiveBasePermissions, HasUniqueRoleAssignments, RoleAssignments

Listing 7-2 shows how to instruct the ClientContext to retrieve the DisplayName and the
RoleAssignments properties for each ListItem instance.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 207

LISTING 7-2 Querying the contents of a list of contacts, including some extra properties

// Browse the result
foreach (ListItem listItem in allContacts) {
 ctx.Load(listItem,
 item => item.DisplayName,
 item => item.RoleAssignments);

 ctx.ExecuteQuery();

 Console.WriteLine("Id: {0} - Fullname: {1} - Company: {2} - Country: {3}",
 listItem["DevLeapContactID"],
 listItem["Title"],
 listItem["DevLeapCompanyName"],
 listItem["DevLeapCountry"]
);

 Console.WriteLine(listItem.DisplayName);
}

The code sample uses the ClientContext.Load<T> method, which accepts a parameter array of
expressions of type Expression<Func<T, Object>>. Here is the method signature:

public void Load<T>(
 T clientObject,
 params Expression<Func<T, Object>>[] retrievals)
where T : ClientObject

The expressions define the properties to retrieve from the server. In Listing 7-2, they are defined
using lambda expressions. However, the code excerpt of Listing 7-2 is a little bit stressing for the
server. In fact, each item in the list of contacts queries the server for its own extra properties. It would
be better to instruct the ClientContext to retrieve all the properties at one time. Luckily, the Client
Object Model also provides an extension method called IncludeWithDefaultProperties. Defined in type
ClientObjectQueryableExtension, the IncludeWithDefaultProperties method instructs the ClientContext
object about the properties to retrieve by default when querying a target list of objects. Listing 7-3
shows a revised version of the code of Listing 7-2.

www.it-ebooks.info

http://www.it-ebooks.info/

208 PaRt II Developing SharePoint solutions

LISTING 7-3 Querying the contents of a list of contacts, including some extra properties, into the default list of
properties

// Prepare a query for all items in the list
CamlQuery query = CamlQuery.CreateAllItemsQuery();
ListItemCollection allContacts = list.GetItems(query);
ctx.Load(allContacts);

// Define the extra properties to include in default properties
ctx.Load(allContacts,
 items => items.IncludeWithDefaultProperties(
 item => item.DisplayName,
 item => item.RoleAssignments));

// Execute the prepared command against the target ClientContext
ctx.ExecuteQuery();

If you would like to selectively define the fields to retrieve from the target list, you can use the
Collaborative Application Markup Language (CAML) query definition to specify the fields to retrieve,
setting the ViewFields property. Listing 7-4 shows the syntax.

LISTING 7-4 Querying the contents of a list of contacts and projecting fields in the output

// Prepare a query for all items in the list
CamlQuery query = new CamlQuery();
query.ViewXml = "<View><ViewFields><FieldRef Name=‘DevLeapContactID’/>"
+"<FieldRef Name=‘Title’/><FieldRef Name=‘DevLeapCountry’/></ViewFields></View>";
ListItemCollection allContacts = list.GetItems(query);
ctx.Load(allContacts);

// Execute the prepared command against the target ClientContext
ctx.ExecuteQuery();

Of course, if you try to access a field that is not explicitly declared in the query, you will get a
PropertyOrFieldNotInitializedException, as with the previous examples.

Another technique to project a subset of fields for a query is to use the Include extension method,
still defined in type ClientObjectQueryableExtension. Listing 7-5 presents the syntax, which produces a
result equivalent to Listing 7-4, but without involving CAML.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 209

LISTING 7-5 Querying the contents of a list of contacts and projecting fields in the output without using CAML

// Prepare a query for all items in the list
CamlQuery query = CamlQuery.CreateAllItemsQuery();
ListItemCollection allContacts = list.GetItems(query);

// Define the columns to include in the output
ctx.Load(allContacts,
 items => items.Include(
 item => item["DevLeapContactID"],
 item => item["Title"],
 item => item["DevLeapCountry"]
));

// Execute the prepared command against the target ClientContext
ctx.ExecuteQuery();

The signature of the Include method accepts an array of Expression<Func<TSource, object>> argu-
ments, which define a set of inclusion rules. In Listing 7-5, these expressions are defined using some
lambda expressions.

As with custom projection rules, you can also use CAML to define custom filters (for instance, data
partitioning) on data to retrieve. For example, you could select only the contacts with a value of Italy
in the DevLeapCountry field by using a <Where /> CAML clause. However, one great feature of the
CSOM is the support for LINQ queries. In fact, when you work with the CSOM, you can provide LINQ
queries to a LoadQuery<T>-specific method, which will convert these queries into requests for the
SharePoint server.

Important Be aware that when you define LINQ queries with the CSOM, you are using
LINQ to Objects, not the custom LINQ to SharePoint query provider discussed in Chapter
6. This implies that you do not have all the infrastructural services provided by the LINQ to
SharePoint query provider.

Listing 7-6 presents a code excerpt that uses LINQ to Objects and the Client Object Model to
query for the Italian contacts.

www.it-ebooks.info

http://www.it-ebooks.info/

210 PaRt II Developing SharePoint solutions

LISTING 7-6 Querying the contents of a list of contacts using a LINQ query

// Prepare a query for all items in the list
CamlQuery query = CamlQuery.CreateAllItemsQuery();
ListItemCollection allContacts = list.GetItems(query);
var linqQuery =
 from c in allContacts
 where (String)c["DevLeapCountry"] == "Italy"
 select c;

var linqQueryResult = ctx.LoadQuery(linqQuery);

// Execute the prepared command against the target ClientContext
ctx.ExecuteQuery();

The key point of Listing 7-6 is the invocation of method LoadQuery<T>, which provides the follow-
ing pair of overloads:

public IEnumerable<T> LoadQuery<T>(ClientObjectCollection<T> clientObjects)
 where T : ClientObject;
public IEnumerable<T> LoadQuery<T>(IQueryable<T> clientObjects)
 where T : ClientObject;

Similar to the Load<T> method, the LoadQuery<T> method works only with a result inheriting
from ClientObject. As a consequence of this behavior, you cannot use the LoadQuery<T> method
to retrieve custom anonymous types, projecting only a subset of the available fields of an item. The
main difference between Load<T> and LoadQuery<T> is that the former loads data into the client
objects retrieved from the SharePoint server; the latter returns an object of type IEnumerable<T>
that represents an independent collection of items. This behavior implies that the object instances
allocated by Load<T> will be released by the garbage collector when the ClientContext object goes
out of scope, while object instances returned by LoadQuery<T> can be collected independently from
the ClientContext.

ClientObject vs. ClientValueObject
The ClientObject type is the base abstract class defined in the .NET Client Object Model to describe
any object retrieved on a remote client. The Client Object Model also provides a base abstract
ClientValueObject class, which represents a client-side version of a server-side property value. For
example, a ListItem type is a class inherited from ClientObject, while the ContentTypeId property of a
ListItem is a class inherited from ClientValueObject. For the sake of thoroughness, a property like the
Title property of a List instance is a scalar value and behaves like any classic .NET type.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 211

The main difference between an object inherited from the ClientObject class and one inherited
from ClientValueObject lies in their behavior when using them within a query or a method call. In fact,
you cannot use a ClientValueObject-inherited object as the argument of a method or inside a query,
unless you have not retrieved it from the server. However, you can reference a ClientObject-inherited
object in another method call or query definition, even if you did not already retrieve it from the
server, because it will be correctly resolved by the CSOM.

Listing 7-7 illustrates a query based on objects inherited from ClientObject, such as the Web and
the List properties.

LISTING 7-7 Using a ClientObject-inherited object in a direct method call

// Open the current ClientContext
ClientContext ctx = new ClientContext("http://devbook.sp2013.local/");

// Prepare a reference to the target list. We can directly reference
// the property ctx.Web.Lists because both Web and Lists are of types
// inherited from ClientObject
List list = ctx.Web.Lists.GetByTitle("DevLeap Contacts");

// Retrieve the title of the list
ctx.Load(list,
 l => l.Title);

// Execute the query
ctx.ExecuteQuery();

// Show the result
Console.WriteLine(list.Title);

The code sample works correctly because the ClientObject-inherited properties will be handled by
the CSOM. However, if you try to access some of the properties of the Web instance of the current
ClientContext object, you will get an exception. For example, the following instruction will fail unless
you explicitly do not load the Title property of the current website:

Console.WriteLine(ctx.Web.Title);

Listing 7-8 presents a code excerpt that illustrates the incorrect use of a ClientValueObject-
inherited object.

www.it-ebooks.info

http://www.it-ebooks.info/

212 PaRt II Developing SharePoint solutions

LISTING 7-8 Incorrect use of a ClientValueObject-inherited object before loading its value

// Open the current ClientContext
ClientContext ctx = new ClientContext("http://devbook.sp2013.local/");

// Prepare a reference to the target list
// Here you will get a PropertyOrFieldNotInitializedException
// when accessing the Title property of the current website
List list = ctx.Web.Lists.GetByTitle(ctx.Web.Title);

// Retrieve the title of the list
ctx.Load(list,
 l => l.Title);

// Execute the query
ctx.ExecuteQuery();

// Show the result
Console.WriteLine(list.Title);

Here, the code fails, throwing a PropertyOrFieldNotInitializedException, because you need to
explicitly load the ClientValueObject-inherited object representing the Web instance before using it.
Listing 7-9 shows the working code example.

LISTING 7-9 Using a ClientValueObject-inherited object properly by loading its value before referencing it

// Open the current ClientContext
ClientContext ctx = new ClientContext("http://devbook.sp2013.local/");

// Retrieve the title of the website
Web web = ctx.Web;
ctx.Load(web,
 w => w.Title);

// Execute the first query
ctx.ExecuteQuery();

// Prepare a reference to the target list
List list = ctx.Web.Lists.GetByTitle(web.Title);

// Retrieve the title of the list
ctx.Load(list,
 l => l.Title);

// Execute the second query
ctx.ExecuteQuery();

// Show the result
Console.WriteLine(list.Title);

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 213

Listing 7-9 correctly loads the Title property of the current Web object before using it in the subse-
quent GetByTitle method call.

You can also use the method IsPropertyAvailable, inherited from ClientObject, to test the presence
of a specific scalar property in a current ClientObject instance.

Important If the property you are looking for exists in the item schema, but it is missing on
the client side, you can use the Retrieve method to explicitly retrieve all the scalar proper-
ties of a ClientObject instance, or just a set of specific scalar properties. The Retrieve method
is documented on MSDN as “reserved for internal use only,” however, so you use it at your
own risk.

Silverlight Client Object Model
The Silverlight Client Object Model behaves almost the same as the .NET CSOM. You can find it in
the SharePoint15_Root\TEMPLATE\LAYOUTS\ClientBin folder, and you can use it in any Silverlight 3.0
(or higher) solution by referencing the two main assemblies, Microsoft.SharePoint.Client.Silverlight.
dll and Microsoft.SharePoint.Client.Silverlight.Runtime.dll. Like the CSOM, the Silverlight Client Object
Model also supports development for such SharePoint Server 2013 features as ECM, user profiles,
taxonomy, and so on.

Note If you would like to learn more about developing with Microsoft Silverlight, read
Microsoft Silverlight 4 Step by Step, by Laurence Moroney (Microsoft Press, 2010).

The Silverlight Client Object Model is useful whenever you need to develop a Silverlight solution
that needs to interact with data stored in a SharePoint site. For example, you can use it to build a
custom data entry UI or a custom visualization of data that’s ready for hosting with the Silverlight
Web Part.

Imagine that you want to show the contacts contained in the sample list from the previous exam-
ple by using a custom Silverlight control. First, you create a Silverlight application, and then you make
a reference to the Silverlight Client Object Model assemblies. Now, assume that you want to render
the contacts with a ListBox control, using a custom ItemTemplate for rendering. Listing 7-10 shows the
XAML (Extensible Application Markup Language) code of the Main control of the sample application.

www.it-ebooks.info

http://www.it-ebooks.info/

214 PaRt II Developing SharePoint solutions

LISTING 7-10 The XAML code of the Main control of the sample Silverlight application

<UserControl x:Class="DevLeap.SilverlightClientOMDemo.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:custom="clr-namespace:DevLeap.SP2013.SilverlightOM"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="600">
 <UserControl.Resources>
 <custom:ListItemFieldConverter x:Key="ListItemFieldConverter" />
 </UserControl.Resources>

 <Grid x:Name="LayoutRoot" Background="LightGreen">
 <ListBox x:Name="AllContactsList">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation="Vertical">
 <TextBlock Text="{Binding Converter=
 {StaticResource ListItemFieldConverter},
 ConverterParameter=‘DevLeapContactID’, Mode=OneWay}" />
 <TextBlock Text="{Binding Converter=
 {StaticResource ListItemFieldConverter},
 ConverterParameter=‘Title’, Mode=OneWay}" />
 <TextBlock Text="{Binding Converter=
 {StaticResource ListItemFieldConverter},
 ConverterParameter=‘DevLeapCountry’, Mode=OneWay}" />
 <TextBlock Text="{Binding Converter=
 {StaticResource ListItemFieldConverter},
 ConverterParameter=‘DevLeapCompanyName’, Mode=OneWay}"
/>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 </Grid>

</UserControl>

In Listing 7-10, the XAML code by itself is not particularly exciting; it just defines a Grid control,
with a ListBox control inside and a DataTemplate control for rendering each item of the contacts list.
The code behind the user control is more interesting, because it makes use of the Silverlight Client
Object Model. Listing 7-11 gives you a look at the code behind the user control.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 215

LISTING 7-11 The code behind the XAML user control of the sample Silverlight application

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;
using Microsoft.SharePoint.Client;

namespace DevLeap.SP2013.SilverlightOM {
 public partial class MainPage : UserControl {
 public MainPage() {
 InitializeComponent();
 loadDevLeapContacts();
 }

 private ListItemCollection allContacts;

 private void loadDevLeapContacts() {
 // Open the current ClientContext
 ClientContext ctx = ClientContext.Current;

 // Prepare a reference to the list of "DevLeap Contacts"
 List list = ctx.Web.Lists.GetByTitle("DevLeap Contacts");

 // Prepare a query for all items in the list
 CamlQuery query = CamlQuery.CreateAllItemsQuery();
 allContacts = list.GetItems(query);
 ctx.Load(allContacts);

 // Execute the prepared command against the target ClientContext
 ctx.ExecuteQueryAsync(onQuerySucceeded, onQueryFailed);
 }

 private void onQuerySucceeded(object sender,
 ClientRequestSucceededEventArgs args) {
 this.Dispatcher.BeginInvoke(new updateUI(refreshGrid));
 }

 private void onQueryFailed(object sender,
 ClientRequestFailedEventArgs args) {
 this.Dispatcher.BeginInvoke(new showExceptionUI(
 showException), args.Exception);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

216 PaRt II Developing SharePoint solutions

 private delegate void updateUI();

 private void refreshGrid() {
 this.AllContactsList.ItemsSource = allContacts;
 }

 private delegate void showExceptionUI(Exception ex);

 private void showException(Exception ex) {
 MessageBox.Show(String.Format("Exception occurred: {0}",
 ex.Message));
 }
 }
}

The syntax is almost the same as that used with the CSOM. However, a small but significant dif-
ference is the way the code retrieves a reference to the ClientContext object. Because the Silverlight
control must be hosted within a website, you could construct the Silverlight version of ClientContext
by using the default constructor, which requires the target website as an argument of type System.
Uri. Alternatively, you could take advantage of a shortcut to the current website context by using
the ClientContext.Current static entry point. This is a constructive shortcut, because many times the
Silverlight control will be hosted exactly in the same website that it will target. Furthermore, consider
that the ClientContext.Current property internally uses a custom Silverlight init parameter with the
name MS.SP.url and the value of the current context URL, provided to the Silverlight environment at
startup. If you host your control using the Silverlight Web Part, then this init parameter, together with
a few others, will be automatically provided to the control. However, if you directly insert the control
inside a page, without using a Silverlight Web Part, then the ClientContext.Current property will be
null unless you do not provide the MS.SP.url init parameter by yourself.

Note The init parameters automatically provided by the Silverlight Web Part are MS.SP.url,
MS.SP.formDigest, MS.SP.formDigestTimeoutSeconds, MS.SP.requestToken, and MS.SP.viaUrl.

Another fundamental difference between this sample and the one based on the CSOM is the use
of an asynchronous programming model. This is not a kind of virtuosity, but a real need, because in
Silverlight you have to work within the confines of the asynchronous programming pattern. In fact,
while working with Silverlight, if you try to execute some blocking code from the main UI thread, you
will get an exception of type InvalidOperationException with the following message:

The method or property that is called may block the UI thread and is not allowed. Please use
a background thread to invoke the method or property, for example, using System.Threading.
ThreadPool.QueueUserWorkItem method to invoke the method or property.

The Silverlight Client Object Model also provides a synchronous pattern based on the
ExecuteQuery method used in the CSOM. You can call this method only from threads that do not
modify the UI, however.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 217

Listing 7-11 shows that the sample directly binds the ListItemCollection retrieved from the server
to the ListBox control. However, as you probably know, every ListItem object of SharePoint has its
fields stored in a named collection, and the XAML binding syntax does not support named collec-
tions. Nevertheless, the code in Listing 7-10 binds the fields using markup. This is possible because
the XAML references a custom converter registered as a resource of the user control. In XAML (for
instance, Silverlight and Windows Presentation Foundation [WPF]), a converter is a type that converts
one input bound to a control into another output, rendering the output of the conversion. In the
XAML sample code in Listing 7-10, the converter converts the name of a field of a ListItem object into
the corresponding field value. Listing 7-12 displays the source code of the custom converter. If you do
not like to use a custom converter, you can wrap ListItem instances with a custom type of your own.

LISTING 7-12 A custom converter, converting from a named field to its value

namespace DevLeap.SP2013.SilverlightOM {
 public class ListItemFieldConverter : IValueConverter {
 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture) {

 // In case the source item is NULL, just stop
 if (value == null)
 return value;

 // In case the fieldName is empty or NULL, just stop
 String fieldName = parameter as String;
 if (String.IsNullOrEmpty(fieldName))
 return null;

 // Cast the source item to ListItem
 ListItem item = value as ListItem;

 if (item != null) {
 // Return the field
 return (item[fieldName]);
 }
 else
 return (null);
 }

 public object ConvertBack(object value, Type targetType, object
 parameter,System.Globalization.CultureInfo culture) {
 // We do not support two-way conversion
 throw new NotImplementedException();
 }
 }
}

In a real solution, the converter could be more complete and accurate, but for the sake of simplic-
ity, Listing 7-12 uses a concise implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

218 PaRt II Developing SharePoint solutions

Aside from binding rules and asynchronous programming tasks, the Silverlight Client Object
Model has the same potential, capabilities, and recommended procedures as the Client Object Model.
Consider, however, that Silverlight is a discontinued technology. Thus, you should not invest too much
time in developing new solutions based on it.

the JSOM
The third client object model offered by SharePoint targets the ECMAScript world. Often called the
JavaScript Object Model (JSOM), it is a set of .js files built for ECMAScript-enabled (JavaScript, JScript)
platforms. The main .js files that are available are

■■ SP.js

■■ SP.Core.js

■■ SP.Ribbon.js

■■ SP.Runtime.js

These files are deployed in the SharePoint15_Root\TEMPLATE\LAYOUTS directory and are auto-
matically downloaded to the client (web browser) when a user browses to a SharePoint page. In fact,
the default master pages of SharePoint define a ScriptManager control, which automatically includes
references to these .js files. You could also reference them by yourself, however, within a custom ASPX
page. Every file is also available with a debug-enabled version—these filenames end with .debug.js
instead of .js. For example, the SP.js file is also available in a debug version, named SP.debug.js. The
browsers supported by the scripts include Microsoft Internet Explorer 7 and higher, Firefox 3.5 and
higher, and Safari 4.0 and higher.

Important For security reasons, you cannot use the JSOM in a page unless that page con-
tains a form digest for security validation. SharePoint native pages, of course, include the
SharePoint:FormDigest control. If you use the Client Object Model within a custom ASPX
page, you will need to include the FormDigest control by yourself.

In everyday life, you will probably use the JSOM in a custom SharePoint page, in a custom Web
Part, or in a SharePoint app that consumes a remote SharePoint web site. For a SharePoint page or a
Web Part, you will need to create a new empty SharePoint project and add an item (for example, an
Application Page item) to it. In order to reference the scripts, you can use the SharePoint:ScriptLink
control, which accepts a set of arguments, including the following:

■■ LoadAfterUI Loads the script after the code of the UI

■■ Localizable Indicates if the current page can be localized

■■ Name Defines the relative path of the .js file to include in the page

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 219

Then you need to define a script block that uses the object model. Although the CSOM and the
Silverlight Client Object Model share almost the same syntax, the JSOM does not. The data types
used do not completely correspond on both platforms, and the members’ names differ. For example,
to access the Title property of an item from the JSOM, you need to invoke the get_title() method.
In addition, some arguments are case sensitive, and there are other differences. Listing 7-13 shows
an example of an application page that uses the JSOM to retrieve a List instance and show its Title
property.

LISTING 7-13 A SharePoint application page using the JSOM

<%@ Assembly Name="$SharePoint.Project.AssemblyFullName$" %>
<%@ Import Namespace="Microsoft.SharePoint.ApplicationPages" %>
<%@ Register Tagprefix="SharePoint" Namespace="Microsoft.SharePoint.WebControls"
Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral, PublicKeyToke
n=71e9bce111e9429c" %>
<%@ Register Tagprefix="Utilities" Namespace="Microsoft.SharePoint.Utilities"
Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral, PublicKeyToke
n=71e9bce111e9429c" %>
<%@ Register Tagprefix="asp" Namespace="System.Web.UI" Assembly="System.Web.
Extensions, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" %>
<%@ Import Namespace="Microsoft.SharePoint" %>
<%@ Assembly Name="Microsoft.Web.CommandUI, Version=15.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>
<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowECMAScriptIn
Action.aspx.cs" Inherits="DevLeap.SP2013.JSOM.Layouts.DevLeap.SP2013.JSOM.
ShowECMAScriptInAction" DynamicMasterPageFile="~masterurl/default.master" %>

<asp:Content ID="PageHead" ContentPlaceHolderID="PlaceHolderAdditionalPageHead"
 runat="server">
<SharePoint:ScriptLink ID="SPScriptLink" runat="server" LoadAfterUI="true"
Localizable="false" Name="SP.js" />
<script language="javascript" type="text/javascript">

 var clientContext;
 var web;
 var oContactsList;

 function onQuerySucceeded(sender, args) {
 alert(‘Title of the List: ‘ + this.oContactsList.get_title());
 }

 function onQueryFailed(sender, args) {
 alert(‘Request failed ‘ + args.get_message() + ‘\n’ +
 args.get_stackTrace());
 }

www.it-ebooks.info

http://www.it-ebooks.info/

220 PaRt II Developing SharePoint solutions

 function retrieveContacts() {
 this.clientContext = new SP.ClientContext.get_current();
 this.web = this.clientContext.get_web();
 this.oContactsList = this.web.get_lists().getByTitle("DevLeap Contacts");
 this.clientContext.load(this.oContactsList);
 this.clientContext.executeQueryAsync(
 Function.createDelegate(this, this.onQuerySucceeded),
 Function.createDelegate(this, this.onQueryFailed));
 }
</script>
</asp:Content>

<asp:Content ID="Main" ContentPlaceHolderID="PlaceHolderMain" runat="server">
<input type="button" onclick="retrieveContacts()"
 value="Click me to get the list!" />
</asp:Content>

<asp:Content ID="PageTitle" ContentPlaceHolderID="PlaceHolderPageTitle"
 runat="server">
ECMAScript Object Model Demo Page
</asp:Content>

<asp:Content ID="PageTitleInTitleArea"
 ContentPlaceHolderID="PlaceHolderPageTitleInTitleArea" runat="server" >
 ECMAScript Object Model Demo Page
</asp:Content>

The core of Listing 7-13 is in the method retrieveContacts, where the syntax is not so different
from the other versions of the Client Object Model. You can get a reference to an SP.ClientContext
instance either by using the get_current() method from Listing 7-13 or by using a constructor that
accepts the server-relative URL of the target site. The latter syntax is useful when you need to work
with data from a target site that differs from the site at your location (for example, when your code
is in a remote SharePoint app). The only fundamental difference is syntactical and involves using the
get_ and set_ prefixes for every property accessor, as well as using the asynchronous pattern when
executing the query against the SharePoint server. For a more interesting and powerful example of
this, consider Listing 7-14, which combines jQuery with the JSOM.

LISTING 7-14 A SharePoint application page using jQuery together with the JSOM

<%@ Assembly Name="$SharePoint.Project.AssemblyFullName$" %>
<%@ Import Namespace="Microsoft.SharePoint.ApplicationPages" %>
<%@ Register Tagprefix="SharePoint" Namespace="Microsoft.SharePoint.WebControls"
Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral, PublicKeyToke
n=71e9bce111e9429c" %>
<%@ Register Tagprefix="Utilities" Namespace="Microsoft.SharePoint.Utilities"
Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral, PublicKeyToke
n=71e9bce111e9429c" %>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 221

<%@ Register Tagprefix="asp" Namespace="System.Web.UI" Assembly="System.Web.
Extensions, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" %>
<%@ Import Namespace="Microsoft.SharePoint" %>
<%@ Assembly Name="Microsoft.Web.CommandUI, Version=15.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>
<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="UseJQueryWithECMA
Script.aspx.cs" Inherits="DevLeap.SP2013.JSOM.Layouts.DevLeap.SP2013.JSOM.
UseJQueryWithECMAScript" DynamicMasterPageFile="~masterurl/default.master" %>

<asp:Content ID="PageHead" ContentPlaceHolderID="PlaceHolderAdditionalPageHead"
runat="server">
 <SharePoint:ScriptLink ID="SPScriptLink" runat="server" LoadAfterUI="true"
Localizable="false" Name="SP.js" />
 <script type="text/javascript"
src="http://ajax.aspnetcdn.com/ajax/4.0/1/MicrosoftAjax.js"></script>
 <script type="text/javascript"
src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.8.3.min.js"></script>
 <script type="text/javascript"
src="http://code.jquery.com/ui/1.9.2/jquery-ui.min.js"></script>
 <link href="http://code.jquery.com/ui/1.9.2/themes/redmond/jquery-ui.css"
rel="Stylesheet" type="text/css" />

<style type="text/css">
 #listOfContacts .ui-selecting {
 background: #FECA40;
 }
 #listOfContacts .ui-selected {
 background: #F39814;
 color: white;
 }
 #listOfContacts {
 list-style-type: none;
 margin: 0;
 padding: 0;
 width: 60%;
 }
 #listOfContacts li {
 margin: 3px;
 padding: 0.4em;
 font-size: 1em;
 height: 15px;
 width: 600px;
 }
 </style>
 <script language="javascript" type="text/javascript">

 var clientContext;
 var web;
 var oContactsList;
 var listItems;

 _spBodyOnLoadFunctionNames.push("InitData");

www.it-ebooks.info

http://www.it-ebooks.info/

222 PaRt II Developing SharePoint solutions

 function onQuerySucceeded(sender, args) {
 dataBindList();
 }

 function onQueryFailed(sender, args) {
 alert(‘Request failed ‘ + args.get_message() + ‘\n’ +
 args.get_stackTrace());
 }

 function InitData() {
 this.clientContext = new SP.ClientContext.get_current();
 this.web = this.clientContext.get_web();
 this.oContactsList = this.web.get_lists()
 .getByTitle("DevLeap Contacts");

 var camlQuery = new SP.CamlQuery();
 var q = ‘<View><RowLimit>100</RowLimit></View>‘;
 camlQuery.set_viewXml(q);
 this.listItems = this.oContactsList.getItems(camlQuery);
 this.clientContext.load(this.listItems);

 this.clientContext.executeQueryAsync(
 Function.createDelegate(this, this.onQuerySucceeded),
 Function.createDelegate(this, this.onQueryFailed));
 }

 function dataBindList() {
 var listItemsEnumerator = this.listItems.getEnumerator();

 // iterate though all of the items
 while (listItemsEnumerator.moveNext()) {
 var item = listItemsEnumerator.get_current();
 var id = item.get_id();
 var title = item.get_item("Title");
 var contactId = item.get_item("DevLeapContactID");
 var companyName = item.get_item("DevLeapCompanyName");
 var country = item.get_item("DevLeapCountry");

 $("#listOfContacts").append(‘<li class="ui-widget-content"
 id="item_’ + id + ‘">Title: ‘ + title + ‘ - Contact ID: ‘ +
 contactId + ‘ - Company Name: ‘ +
 companyName + ‘ - Country: ‘ + country + ‘‘);
 }

 $("#listOfContacts").selectable();
 }
 </script>
</asp:Content>
<asp:Content ID="Main" ContentPlaceHolderID="PlaceHolderMain" runat="server">
 <div id="listOfContactsContainer">
 <ol id="listOfContacts">
 </div>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 223

</asp:Content>
<asp:Content ID="PageTitle" ContentPlaceHolderID="PlaceHolderPageTitle"
 runat="server">
 jQuery and ECMAScript Object Model Demo Page
</asp:Content>

<asp:Content ID="PageTitleInTitleArea"
 ContentPlaceHolderID="PlaceHolderPageTitleInTitleArea" runat="server">
 jQuery and ECMAScript Object Model Demo Page
</asp:Content>

Listing 7-14 uses jQuery version 1.8.3, which is the most current version at the time of this writ-
ing. It also uses a custom jQuery UI theme (named Redmond). For the sake of simplicity, the sample
project loads the .js file of the jQuery world, the CSS (Cascading Style Sheets) code, and images of the
UI theme from publicly available content delivery networks (CDNs). Additionally, the sample page of
Listing 7-14 loads the well-known list of contacts and renders them using a custom selectable order
list. The core methods are InitData, to configure and start downloading data, and dataBindList, which
renders the items retrieved. The first thing you should notice is the invocation of a method to execute
the InitData function as soon as the page loads; the method uses this syntax:

_spBodyOnLoadFunctionNames.push("InitData");

This method is provided by the JavaScript infrastructure of SharePoint and can be implemented in
any page. The InitData function prepares and loads the queries, executing them asynchronously to
keep the UI fluent, even when downloading data. The syntax used here is not substantially different
from before. As soon as data is available, the dataBindList method does the real job: using jQuery to
enumerate the list items and bind them to dynamic HTML content. Figure 7-3 depicts the output of
the application page implemented with jQuery and the JSOM.

www.it-ebooks.info

http://www.it-ebooks.info/

224 PaRt II Developing SharePoint solutions

FIGURE 7-3 A sample SharePoint page that uses jQuery and the JSOM.

More generally, you can consider using the JSOM whenever you need to dynamically load or even
change SharePoint data from a JavaScript-enabled environment; you can use it in conjunction with
jQuery or while developing custom ribbons. You will learn about this in Chapter 12, “Customizing the
UI.” Another scenario in which you will surely use the JSOM is when developing custom SharePoint
apps, as you will discover in Part III, “Developing SharePoint apps.”

Client Object Model examples

This section provides examples of common operations that use the CSOM within a .NET-managed cli-
ent or a Silverlight control. The operations fall into two basic categories:

■■ Working with lists and items

■■ Managing document libraries and files

More Info For further examples about these topics, you can also have a
look at the “Apps for Office and SharePoint Samples” page on MSDN, at
http://code.msdn.microsoft.com/officeapps.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 225

Creating a new list
Creating new contents using the CSOM involves using some types specifically provided for the
purpose. In fact, from the client viewpoint, the creation of a new List—or new ListItem, or whatever
else—implies the need to request that the server execute the necessary action. Thus, for creating a
new list, there is a class named ListCreationInformation, which describes the request to create a new
list instance. The code excerpt in Listing 7-15 uses this type to create a new list of contacts.

LISTING 7-15 Creating a new List instance using the CSOM

ClientContext ctx = new ClientContext("http://devbook.sp2013.local/");

ListCreationInformation lci = new ListCreationInformation();
lci.Title = "Contacts CSOM";
lci.Description = "Contacts Created by Client Side Object Model";
lci.TemplateType = (Int32)ListTemplateType.Contacts;
lci.QuickLaunchOption = QuickLaunchOptions.On;

List newList = ctx.Web.Lists.Add(lci);
ctx.ExecuteQuery();

Listing 7-15 demonstrates how the ListCreationInformation instance defines the main properties
of the list to be created, such as Title, Description, and QuickLaunchOption. The object also defines
the TemplateType property, which defines the base model to use for creating the list instance. If
you want to create a new list instance based on a custom list definition, you can use the property
ListCreationInformation.TemplateFeatureId to reference the GUID (globally unique identifier) of the
feature provisioning the list definition.

More Info For further details about data provisioning, refer to Chapter 3.

If you try to create a list that already exists with the Title provided by your code, you will get an
exception of type Microsoft.SharePoint.Client.ServerException, with the following error message:

Unhandled Exception: Microsoft.SharePoint.Client.ServerException: A list, survey, discussion
board, or document library with the specified title already exists in this Web site. Please
choose another title.

One last thing to consider is that just after ExecuteQuery method invocation, the List instance you
get back from the Add method of the Lists property is a fully functional instance that you can use to
add items, configure properties, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

226 PaRt II Developing SharePoint solutions

Creating and updating a list item
When you create a list instance, you need to add new items to the list. Listing 7-16 demonstrates how
to add a contact to the newly created list of contacts.

LISTING 7-16 Creating a new list item using the CSOM

ClientContext ctx = new ClientContext("http://devbook.sp2013.local/");

List contactsList = ctx.Web.Lists.GetByTitle("Contacts CSOM");

ListItem item = contactsList.AddItem(new ListItemCreationInformation());
item["Title"] = "Paolo Pialorsi";
item["Email"] = "paolo@devleap.com";
item["Company"] = "DevLeap";
item.Update();

ctx.ExecuteQuery();

Listing 7-16 adds the ListItem object to the List instance using a ListItemCreationInformation type,
which simply defines a creation task for a new ListItem. The result of the AddItem method is a ListItem
instance that can be used to configure fields of the item, and then finally allows the Update method
to be invoked to confirm the values of the fields. As usual with the CSOM, however, you need to
inform the server about what you want to do. Thus, you need to call the ExecuteQuery method on
the ClientContext instance.

Updating a ListItem instance is similar to creating a new item. The only difference is that you
need to retrieve the item from the store. You can do this by enumerating the items returned from
a CamlQuery object, as shown in Listing 7-14, or you can retrieve a specific item by ID using the
GetItemById method of the List type. Listing 7-17 presents an example of updating the item created in
Listing 7-16.

LISTING 7-17 Updating a list item by using the CSOM

ClientContext ctx = new ClientContext("http://devbook.sp2013.local/");

List contactsList = ctx.Web.Lists.GetByTitle("Contacts CSOM");
ListItem itemToUpdate = contactsList.GetItemById(1);

itemToUpdate["Company"] = "DevLeap - Changed!";
itemToUpdate.Update();

ctx.ExecuteQuery();

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 227

Exception handling with lists
While working with lists and items, you occasionally may look for one that does not exist. Due to the
architecture of the Client Object Model, you must query the server to determine if the desired item
exists. Suppose you use a try...catch code block to trap the exception related to the missing item. In
this case, the exception would be a ServerException, with the following error message:

Unhandled Exception: Microsoft.SharePoint.Client.ServerException: Item does not exist. It
may have been deleted by another user.

You could then follow a backup path to avoid issues on the client side, create the missing item
from scratch, or try to retrieve another item. If you look for a list that does not exist, you’ll receive the
following exception:

Unhandled Exception: Microsoft.SharePoint.Client.ServerException: List ‘Contacts CSOM’ does
not exist at site with URL ‘http://devbook.sp2013.local’.

This time, you will probably need to query the server for new data or create the missing list. Listing
7-18 illustrates one possible scenario.

LISTING 7-18 Code excerpt showing how to retrieve or create a list in the event that it is missing, and then add an
item to it

ClientContext ctx = new ClientContext("http://devbook.sp2013.local/");
List contactsList = null;

try {
 contactsList = ctx.Web.Lists.GetByTitle("Contacts CSOM");
 ctx.Load(contactsList);
 ctx.ExecuteQuery();
}
catch (ServerException) {
 ListCreationInformation lci = new ListCreationInformation();
 lci.Title = "Contacts CSOM";
 lci.Description = "Contacts Created by Client Side Object Model";
 lci.TemplateType = (Int32)ListTemplateType.Contacts;
 lci.QuickLaunchOption = QuickLaunchOptions.On;

 contactsList = ctx.Web.Lists.Add(lci);
 ctx.ExecuteQuery();
}
finally {
 ListItem item = contactsList.AddItem(new ListItemCreationInformation());
 item["Title"] = "Paolo Pialorsi";
 item["Email"] = "paolo@devleap.com";
 item["Company"] = "DevLeap";
 item.Update();
 ctx.ExecuteQuery();
}

www.it-ebooks.info

http://www.it-ebooks.info/

228 PaRt II Developing SharePoint solutions

The boldface code in Listing 7-18 shows the three calls to the ExecuteQuery method. In the
worst situation, this code could execute all the try...catch...finally blocks, invoking the server via
ExecuteQuery three times. This could lead to performance degradation and also put a great deal of
stress on the server side. Luckily, the CSOM provides a class named ExceptionHandlingScope that is
specifically defined to support such situations and avoid executing multiple queries against the server.

Listing 7-19 displays the prototype of using the ExceptionHandlingScope type.

LISTING 7-19 The prototype for using ExceptionHandlingScope

ClientContext ctx = new ClientContext("http://devbook.sp2013.local/");

ExceptionHandlingScope scope = new ExceptionHandlingScope(ctx);

using (scope.StartScope()) {
 using (scope.StartTry()) {
 // Try to do something on the server side
 }
 using (scope.StartCatch()) {
 // Do something else in case of failure on the server side
 }
 using (scope.StartFinally()) {
 // Execute this code, whatever is the result of previous code blocks
 }
}

// Now invoke the server, just one time
ctx.ExecuteQuery();

Behind the scenes, the ExceptionHandlingScope instance collects activities (internally called
ClientActions) to execute on the server side for all the three situations (try, catch, and finally). The
server will begin executing the code inside the StartTry block, and then in case of failure, it will
execute the code in the StartCatch block. Regardless of whether exceptions occur in the StartTry
block, the server will finally execute the code in the StartFinally block. However, the request sent to
the server defining all the previously described code blocks is just one, as well as the response. Listing
7-20 presents a complete example.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 229

LISTING 7-20 The complete code to retrieve or create a list in the event that it is missing, and then add an
item to it

ClientContext ctx = new ClientContext("http://devbook.sp2013.local/");
ExceptionHandlingScope scope = new ExceptionHandlingScope(ctx);
List contactsList;

using (scope.StartScope()) {
 using (scope.StartTry()) {
 // Try to reference the target list
 contactsList = ctx.Web.Lists.GetByTitle("Contacts CSOM");
 }
 using (scope.StartCatch()) {
 // Create the list, in case it doesn’t exist
 ListCreationInformation lci = new ListCreationInformation();
 lci.Title = "Contacts CSOM";
 lci.Description = "Contacts Created by Client Side Object Model";
 lci.TemplateType = (Int32)ListTemplateType.Contacts;
 lci.QuickLaunchOption = QuickLaunchOptions.On;

 contactsList = ctx.Web.Lists.Add(lci);
 }
 using (scope.StartFinally()) {
 // Add the ListItem, whether the list has just been created
 // or was already existing
 contactsList = ctx.Web.Lists.GetByTitle("Contacts CSOM");

 ListItem item = contactsList.AddItem(new ListItemCreationInformation());
 item["Title"] = "Paolo Pialorsi";
 item["Email"] = "paolo@devleap.com";
 item["Company"] = "DevLeap";
 item.Update();
 }
}

// Now invoke the server, just one time
ctx.ExecuteQuery();

www.it-ebooks.info

http://www.it-ebooks.info/

230 PaRt II Developing SharePoint solutions

Deleting an existing list item
Another common scenario is deleting an item from a list. Listing 7-21 illustrates how to do this.

LISTING 7-21 Deleting a ListItem instance

ClientContext ctx = new ClientContext("http://devbook.sp2013.local/");

List contactsList = ctx.Web.Lists.GetByTitle("Contacts CSOM");

// This will work only in case an item with ID = 1 exists.
// Otherwise you should change the ID or search for a specific item to delete.
ListItem itemToDelete = contactsList.GetItemById(1);

itemToDelete.DeleteObject();

ctx.ExecuteQuery();

This is very similar to the syntax used to update an item. The only difference is the invocation of
the DeleteObject method.

Paging queries of list items
Already in this chapter you’ve seen many ways of querying items in a list. Real-life applications, how-
ever, can contain thousands of items. Thus, it is not realistic to query these items with a unique query
batch as shown in these smaller-scale examples. For such situations, take advantage of the paging
capabilities of the SharePoint querying engine. Listing 7-22 shows a code excerpt that demonstrates
how to efficiently paginate query results.

LISTING 7-22 How to efficiently paginate query results using the CSOM

ClientContext ctx = new ClientContext("http://devbook.sp2013.local/");

List contactsList = ctx.Web.Lists.GetByTitle("Contacts CSOM");
ListItemCollectionPosition itemPosition = null;
Int32 currentPage = 0;

do {
 CamlQuery query = new CamlQuery();
 query.ListItemCollectionPosition = itemPosition;
 query.ViewXml = "<View><RowLimit>10</RowLimit></View>";
 ListItemCollection pageOfContacts = contactsList.GetItems(query);
 ctx.Load(pageOfContacts);
 ctx.ExecuteQuery();

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 231

 itemPosition = pageOfContacts.ListItemCollectionPosition;
 currentPage++;
 Console.WriteLine("Page #: {0}", currentPage);

 foreach (ListItem item in pageOfContacts) {
 Console.WriteLine("Contact: {0}", item["Title"]);
 }
 Console.WriteLine();
} while (itemPosition != null);

First, to paginate data, you need to instruct the CAML query about the page size by using a
<RowLimit/> element. In this example, the page size is 10 items per page. Next, declare a vari-
able of type ListItemCollectionPosition to define a paging context for the running CamlQuery
object. Each time you execute the query, which invokes the GetItems method of the List instance,
set the property ListItemCollectionPosition of the query in order to instruct SharePoint about
the page that you want to retrieve. You can retrieve the value to provide for each page from the
ListItemCollectionPosition property of the class ListItemCollection. When retrieving the last page,
the ListItemCollectionPosition property will have a null value, and you will know that you’ve con-
sumed the whole set of data.

Creating a new document library
In addition to creating a standard list, at times you will need to create a custom document library.
Listing 7-23 demonstrates the code to do the job.

LISTING 7-23 Creating a custom document library

ClientContext ctx = new ClientContext("http://devbook.sp2013.local/");

ListCreationInformation lci = new ListCreationInformation();
lci.Title = "Custom Documents";
lci.Description = "Custom Documents Created by Client Side Object Model";
lci.TemplateType = (Int32)ListTemplateType.DocumentLibrary;
lci.QuickLaunchOption = QuickLaunchOptions.On;
List newList = ctx.Web.Lists.Add(lci);

ctx.ExecuteQuery();

The only difference between Listing 7-23 and Listing 7-15 is the value of ListTemplateType. For a
document library, you could also define a DocumentTemplateType property to specify a custom docu-
ment template.

www.it-ebooks.info

http://www.it-ebooks.info/

232 PaRt II Developing SharePoint solutions

Uploading and downloading documents
Uploading files to and downloading files from a document library is simple. To upload, use code simi-
lar to that shown in Listing 7-24.

LISTING 7-24 Uploading a file to a document library using the CSOM

ClientContext ctx = new ClientContext("http://devbook.sp2013.local/");

List targetList= ctx.Web.Lists.GetByTitle("Custom Documents");

FileCreationInformation fci = new FileCreationInformation();
fci.Content = System.IO.File.ReadAllBytes("SampleFile.txt");
fci.Url = "SampleFile.txt";
fci.Overwrite = true;

File fileToUpload = newList.RootFolder.Files.Add(fci);
ctx.Load(fileToUpload);

ctx.ExecuteQuery();

The key point of Listing 7-24 is the creation of an instance of FileCreationInformation type. The
FileCreationInformation instance accepts a relative value for the Url property of the file to upload,
and then collects the file in the right folder, based on the folder where the FileCreationInformation
instance will be added. To upload a file, you can use the SaveBinaryDirect static method provided by
the File class.

To avoid problems while uploading files, be careful to check the maximum upload file size. If nec-
essary, you have the option to increase the maximum upload file size.

Listing 7-25 illustrates downloading a file.

LISTING 7-25 Downloading a file from a document library using the CSOM

ClientContext ctx = new ClientContext("http://devbook.sp2013.local/");

List targetList = ctx.Web.Lists.GetByTitle("Custom Documents");
ctx.Load(targetList, lst => lst.RootFolder);
ctx.ExecuteQuery();

String fileToDownload = (targetList.RootFolder.ServerRelativeUrl +
"/SampleFile.txt");
FileInformation fileInfo = File.OpenBinaryDirect(ctx, fileToDownload);

using (System.IO.StreamReader sr = new System.IO.StreamReader(fileInfo.Stream)) {
 String content = sr.ReadToEnd();
 Console.WriteLine(content);
}

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 233

Notice that the listing retrieves a Stream object from the FileInformation object to manage
the file at a low level. Additionally, the FileInformation instance can be retrieved by invoking the
OpenBinaryDirect static method of the File class.

Checking documents in and out
As with downloading and uploading a file, to check a document in and out, you need to use the
corresponding methods File.CheckIn and File.CheckOut. It’s a good habit to check the CheckOutType
property of the current File instance to determine if the file has to be checked in or checked out.
Listing 7-26 provides an example.

LISTING 7-26 Check-in and checkout of a file in a document library using the CSOM

ClientContext ctx = new ClientContext("http://devbook.sp2013.local/");

List targetList = ctx.Web.Lists.GetByTitle("Custom Documents");
ctx.Load(targetList, lst => lst.RootFolder);
ctx.ExecuteQuery();

String fileToRetrieve = (targetList.RootFolder.ServerRelativeUrl +
"/SampleFile.txt");
File file = ctx.Web.GetFileByServerRelativeUrl(fileToRetrieve);
ctx.Load(file);
ctx.ExecuteQuery();

if (file.CheckOutType == CheckOutType.None) {
 file.CheckOut();
}
else {
 file.CheckIn("Finished check-out!", CheckinType.MajorCheckIn);
}

ctx.ExecuteQuery();

Just as on the Server Object Model, the CheckIn method allows you specify the revision (minor,
major, or overwrite) of the document that you want to check in.

Copying and moving files
To copy and move a file from a document library, you first need to retrieve a reference to the target
File instance, as you did in the previous examples. Once you have the reference, you can invoke the
MoveTo method or the CopyTo method, depending on whether you want to move the file or copy it.
Listing 7-27 demonstrates how.

www.it-ebooks.info

http://www.it-ebooks.info/

234 PaRt II Developing SharePoint solutions

LISTING 7-27 Copying or moving a file between document libraries

ClientContext ctx = new ClientContext("http://devbook.sp2013.local/");

List targetList = ctx.Web.Lists.GetByTitle("Custom Documents");
ctx.Load(targetList, lst => lst.RootFolder);
ctx.ExecuteQuery();

String fileToRetrieve = (targetList.RootFolder.ServerRelativeUrl +
"/SampleFile.txt");
File file = ctx.Web.GetFileByServerRelativeUrl(fileToRetrieve);

file.CopyTo("Shared Documents/SampleFileCopy.txt", true);
file.MoveTo("Shared Documents/SampleFileMoved.txt", MoveOperations.Overwrite);

ctx.ExecuteQuery();

Both of these methods accept some parameters beyond the destination file relative URL. The
CopyTo method accepts a Boolean argument that determines if the file should overwrite any exist-
ing destination item, and the MoveTo method uses an enumeration for almost the same purpose.
Note that both methods copy or move not only the binary content of the file, but also its field values
(metadata).

The REST API

The last client-side API that I’ll discuss in this chapter is the REST API, a feature introduced with
SharePoint 2010 that has been greatly improved in SharePoint 2013.

Note REST (Representational State Transfer) embodies the idea of accessing data across
the Internet network, referencing resources using a clear and unique syntax. For example,
when you open a browser and navigate to the URL http://www.microsoft.com, you identify
Microsoft’s website using its identifying URL, and a web server at Microsoft returns the con-
tent you requested. When you browse to http://www.w3.org, you use a different URL that
identifies a different resource. A REST API is an API that represents commands and instruc-
tions using a similar paradigm.

As you will see in this section, you will have the opportunity to reference a
resource published by a SharePoint website by using a unique URL, which is a
representation of that item. For further details about REST, refer to the docu-
ment that first introduced the concept of REST in 2000, which is available at
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 235

SharePoint 2013 publishes a WCF service endpoint that can provide data using a REST protocol.
This service listens at the virtual URL /_vti_bin/ListData.svc of every SharePoint website and can be
used by any third party willing to read and eventually change data stored in SharePoint.

If you open your browser and navigate to the URL of the REST service, you will get back an XML
list of all the available contents of the target SharePoint website. Figure 7-4 shows an example of
what the browser returns when you query the REST service for this book’s sample site (http://devbook.
sp2013.local/_vti_bin/ListData.svc).

FIGURE 7-4 The result of requesting the ListData.svc endpoint on this book’s sample site.

Note To read the representation of the list’s contents as XML in Internet Explorer, you first
need to turn off the “Feed reading view” feature. To do so, go to Tools | Internet Options
| Content | Feeds And Web Slices | Settings, and then clear the check box adjacent to Turn
On Feed Reading View.

As Figure 7-4 illustrates, the result is a collection of items, each with its own relative URL (href
attribute) corresponding to the lists contained in the current site. If you try to access the REST service
URL, appending one of these relative URLs to the service URL, you will gain access to the content of
the corresponding list. For example, suppose you request the following URL:

http://devbook.sp2013.local/_vti_bin/ListData.svc/DevLeapContacts

www.it-ebooks.info

http://www.it-ebooks.info/

236 PaRt II Developing SharePoint solutions

By default, the browser will show you a list of items in the form of a syndication feed, because the
output XML is built using the Atom Syndication format (see http://www.w3.org/2005/Atom). If you
request a URL such as the following, then the REST service will return the XML representation of the
contact with an ID value of 1.

http://devbook.sp2013.local/_vti_bin/ListData.svc/DevLeapContacts(1)

If you need to retrieve the value of the field CompanyName of the item with an ID value of 1, you
can request the following URL:

http://devbook.sp2013.local/_vti_bin/ListData.svc/DevLeapContacts(1)/CompanyName

Still, the result of this last query will be wrapped in an XML element. However, if you are interested
in retrieving only the bare value, you can append to the URL the command /$value, and the REST
service will return only the text value of the CompanyName field.

http://devbook.sp2013.local/_vti_bin/ListData.svc/DevLeapContacts(1)/CompanyName/$value

In general, the URI mapping access rule is like the following:

http://siteurl/_vti_bin/ListData.svc/{EntityName}[({Identifier})]/[{Property}]/[{$command}]

This is a very useful interface for querying data by using a URL-based syntax that can be consumed
by any device able to access HTTP and to read XML (which today means almost any device at all). You
can use the same URL syntax to write queries to partition (filter) data, to order data, to query paged
data, and so on. The following list presents the main keywords available as query string parameters:

■■ $filter={predicate} Filter the data.

■■ $expand={Entity} Include related objects.

■■ $orderby={property} Order results.

■■ $skip=n Skip the first n results (useful for paging).

■■ $top=n Retrieve the first n results (also useful for paging).

■■ $metadata Get metadata describing the published entities.

The syntax that is being used is based on an open standard called OData, as proposed by
Microsoft under the Microsoft Open Specification Promise.

More Info For further details about the Microsoft Open Specification Promise, see
http://www.microsoft.com/openspecifications/en/us/programs/osp/default.aspx. To find out
more about OData, see http://www.odata.org.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 237

Querying for data with .Net and LINQ
The previous section showed you how to consume the SharePoint REST API using an HTTP client, such
as the WebClient class of System.Net. However, it wouldn’t be very pleasant to manually compose
all the URLs corresponding to every kind of query, and then manually parse the responses in XML
(Atom) format. Fortunately, Microsoft Visual Studio and .NET provide established support for services
compliant with the OData specification. In fact, if you add a service reference to the ListData.svc ser-
vice within a Visual Studio 2012 .NET project, the environment will recognize the service as an OData
service and will provide you with a high-level interface to access the published resources.

Every OData service can provide a set of metadata, which is available by invoking the URL
$metadata, and the Add Service Reference tool can read this metadata to create a set of typed classes
representing each published resource. Figure 7-5 shows the Add Service Reference dialog box while a
reference to an OData-compliant service is being added. Remember that you must refresh the refer-
ence each time you change or update the schema of your data in SharePoint.

FIGURE 7-5 The Add Service Reference dialog box, shown while adding a reference to an OData-compliant
service.

After you create a service reference to an OData service, you will be able to create an instance of
an object called {ServiceName}DataContext that represents the proxy to the service and inherits from
System.Data.Services.Client.DataServiceContext. If you’re using a SharePoint REST service, the proxy
class will have a name like {SiteTitle}DataContext, where SiteTitle represents the title of the target site,

www.it-ebooks.info

http://www.it-ebooks.info/

238 PaRt II Developing SharePoint solutions

without spaces. In the book’s example, the site title is DevLeap Book Portal, so the class will have a
long but clear and self-explanatory name: DevLeapBookPortalDataContext.

Through instances of this class, you will be able to access and query the list items of the site as if
they were collections of typed entities. In fact, every list corresponds to a collection property of the
proxy class. Every content type corresponds to an entity type. For instance, for the book’s sample site,
the DevLeap Contacts list of SharePoint will correspond to a DevLeapContacts collection property
of the proxy class. This collection will host typed instances of contact items. Listing 7-28 displays an
example of querying the contacts using the REST proxy.

LISTING 7-28 Querying contacts using the REST proxy

DevLeapBookPortalDataContext dc = new DevLeapBookPortalDataContext(
 new Uri("http://devbook.sp2013.local/_vti_bin/ListData.svc"));

dc.Credentials = System.Net.CredentialCache.DefaultCredentials;

foreach (var item in dc.DevLeapContacts) {
 Console.WriteLine(item);
}

Listing 7-28 shows that the DataContext class provides a constructor that requires an argument
of type System.Uri that corresponds to the URL of the ListData.svc service endpoint. If you need to
authenticate this against the remote service, you can use the Credentials property of the DataContext
class. This property accepts a type implementing System.Net.ICredential, which for example is imple-
mented by the System.Net.CredentialCache.DefaultCredentials class, and which corresponds to the
system credentials of the current application. Then you only need to query (enumerate) the content
of the collections in which you are interested to access the corresponding items.

One interesting thing to know is that the autogenerated code supports LINQ queries, too. Thus,
you can write a query targeting the collections of items published by the DataContext class, as shown
in Listing 7-29. Furthermore, the LINQ query is not a LINQ to Objects query working in memory;
rather, it is a query managed by a query provider that will translate the LINQ query into a REST
(OData-style) query.

More Info For further details about LINQ, read the book Programming Microsoft LINQ in
Microsoft .NET Framework 4, by Paolo Pialorsi and Marco Russo (Microsoft Press, 2010).

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 239

LISTING 7-29 Querying contacts by using a LINQ query

DevLeapBookPortalDataContext dc = new DevLeapBookPortalDataContext (
 new Uri("http://devbook.sp2013.local/_vti_bin/ListData.svc"));
dc.Credentials = System.Net.CredentialCache.DefaultCredentials;

var query = from c in dc.DevLeapContacts
 where c.ContentType == "DevLeapCustomer"
 select new {
 c.ContactID,
 c.Title,
 c.CompanyName,
 c.CustomerLevelValue
 };

foreach (var item in query) {
 Console.WriteLine(item);
}

Notice that the DevLeapContacts property of the DataContext class is of type System.Data.Services.
Client.DataServiceQuery<DevLeapContactsItem>. The DataServiceQuery<T> class implements the
IQueryable<T> interface of the LINQ infrastructure and represents the proxy to the OData LINQ query
provider, also known as WCF Data Services Client Library.

More Info If you would like to go deeper into WCF Data Services, see the “WCF Data
Services” page on MSDN, at http://msdn.microsoft.com/en-us/library/cc668792.aspx.

If you step into the code and add a watch on the query variable, you will see that the variable
internally represents the query as a REST request, as with the following:

http://devbook.sp2013.local/_vti_bin/ListData.svc/DevLeapContacts()?$filter=ContentType
 eq ‘DevLeapCustomer’&$select=ContactID,Title,CompanyName,CustomerLevelValue

If you try to copy this URL and paste it into the browser address bar, you will get back exactly the
results of the query, represented in XML format.

If you like to query data of a SharePoint site while ignoring that it is a SharePoint site, then the
REST way is your way, because you have a typed collection of items—even queryable with LINQ—that
abstracts from the underlying repository. Of course there are some limitations with this approach. For
instance, you cannot write just any kind of query, and there are some keywords and operators (join,
average, First, FirstOrDefault, and so on) that by now are not supported by the WCF Data Services
Client Library. If you try to invoke an unsupported query command, you will get back an exception
like the following one:

Unhandled Exception: System.NotSupportedException: The method ‘Join’ is not supported.

www.it-ebooks.info

http://www.it-ebooks.info/

240 PaRt II Developing SharePoint solutions

Note The full list of unsupported keywords and methods can be found on MSDN, at
http://msdn.microsoft.com/library/ee622463.aspx.

Listing 7-30 displays a code excerpt of an unsupported query syntax.

LISTING 7-30 An unsupported query syntax

// This query does not work, because join is not supported
var query = from c in dc.DevLeapContacts
 where c.ContentType == "DevLeapCustomer"
 join i in dc.Invoices on c.Id equals i.InvoiceCustomerLookupId
 select new { c.ContactID, c.Title, c.CompanyName, i.Name };

However, there are already a lot of useful commands and keywords that are supported. For
example, you can do paging by using Skip and Take, and you can do ordering and more. Listing 7-31
demonstrates how to implement paging across a list of items.

LISTING 7-31 Paging in a LINQ query

// Get the second page, with a page size of 10
var query = (from c in dc.ContactsCOM
 select c).Skip(10).Take(10);

The URL request corresponding to the query in Listing 7-31 is the following:

http://devbook.sp2013.local/_vti_bin/ListData.svc/ContactsCOM()?$skip=10&$top=10

You can see the $skip and $top parameters illustrated in the previous section, which apply the
paging rules defined in the code of Listing 7-31.

Managing data
The ability to query SharePoint data using the REST API is very interesting and by itself is probably
sufficient to boost the enthusiasm level for this API. However, this is just half of the story. With the
REST API, from the perspective of the OData specification, you can also manage (insert, update, or
delete) data using a fully typed approach, even if you are working on the client side.

The DataContext class provides an identity management service, which allows working with
retrieved entities as though they were entities of a typical object-relational mapper (O/RM), such as
LINQ to SQL, LINQ to Entities, or LINQ to SharePoint.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 241

Whenever you retrieve an entity—not a custom anonymous type based on a custom projection—
you can manage its properties and inform the source SharePoint server about your changes, applying
them with a batch job. Listing 7-32 shows a code excerpt that updates the property of an existing item.

LISTING 7-32 Updating a previously existing item via REST

DevLeapBookPortalDataContext dc = new DevLeapBookPortalDataContext(
 new Uri("http://devbook.sp2013.local/_vti_bin/ListData.svc"));
dc.Credentials = System.Net.CredentialCache.DefaultCredentials;

DevLeapContactsItem item = (from c in dc.DevLeapContacts
 where c.ID == 1
 select c).First();
item.CompanyName += " - Changed!";
dc.UpdateObject(item);

dc.SaveChanges();

As the code sample shows, immediately after updating the entity, you need to manually invoke
the UpdateObject method of the DataContext class to instruct it about the change you made. This is
a requirement because internally the DataContext proxy class does not automatically track changes
to objects. You can change many entities at the same time, and when you have finished, you simply
need to invoke the SaveChanges method of the DataContext object in order to send your changes
back to the server.

If you need to add a new item to a target list, you can use the general-purpose AddObject method
provided by the DataContext class. In the following snippet, you can see the signature of this method:

public void AddObject(string entitySetName, object entity);

You can also use a fully typed method called AddTo{ListName}, which is a wrapper around
the AddObject untyped method, and is automatically generated by the tools that generate
the service reference. For the sake of clarity, the following shows the definition of the method
AddToDevLeapContacts:

public void AddToDevLeapContacts(DevLeapContactsItem devLeapContactsItem) {
 base.AddObject("DevLeapContacts", devLeapContactsItem);
}

Listing 7-33 presents a code excerpt that adds an item to the sample list of contacts.

www.it-ebooks.info

http://www.it-ebooks.info/

242 PaRt II Developing SharePoint solutions

LISTING 7-33 Adding a new item to a list

DevLeapBookPortalDataContext dc = new DevLeapBookPortalDataContext(
 new Uri("http://devbook.sp2013.local/_vti_bin/ListData.svc"));
dc.Credentials = System.Net.CredentialCache.DefaultCredentials;

DevLeapContactsItem item = new DevLeapContactsItem {
 Title = "Sample Customer",
 ContactID = "CC001",
 ContentType = "DevLeapCustomer",
 CompanyName = "Sample Company",
 CountryValue = "Germany",
 CustomerLevelValue = "Level A"
};
dc.AddToDevLeapContacts(item);

dc.SaveChanges();

The sample code creates a new instance of an object with a type compliant with the target list.
Then it sets the properties of the item (for instance, the fields) and adds it to the target list using the
AddTo{ListName} method. Lastly, it invokes the SaveChanges method of the DataContext object to
confirm the changes on the server side. Notice that the target list accepts two kinds of content types,
so the sample also configures the ContentType property of the item in order to instruct SharePoint
about the right content type to use on the server side.

The last common task in managing data is deleting entities. The DataContext class offers
a DeleteObject method, which accepts an entity that will be marked to be deleted at the next
SaveChanges invocation. Thus, to delete an item, you simply need to invoke SaveChanges, as
Listing 7-34 demonstrates.

LISTING 7-34 Deleting an item from a list

DevLeapBookPortalDataContext dc = new DevLeapBookPortalDataContext(
 new Uri("http://devbook.sp2013.local/_vti_bin/ListData.svc"));
dc.Credentials = System.Net.CredentialCache.DefaultCredentials;

DevLeapContactsItem item = (from c in dc.DevLeapContacts
 where c.ContactID == "CC001"
 select c).First();
dc.DeleteObject(item);

dc.SaveChanges();

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 Client-side technologies 243

The OData client library available in Visual Studio 2012 also provides full support for handling con-
currency issues while managing data. However, it is beyond the scope of this chapter (and this book)
to give you the proper coverage of the WCF Data Services Client Library. The key is understand the
potential of this API while managing SharePoint data and external data in general whenever you have
an OData provider available.

Summary

This chapter covered the client-side technologies offered by SharePoint 2013 with which you can
query and manage data from a remote consumer. In particular, it discussed how to use the Client
Object Model, together with its different flavors, such as the CSOM, the Silverlight Client Object
Model, and the JSOM. It also covered how to use the REST service to query data—even with LINQ
queries—and how to manage data. Now you are ready to develop SharePoint solutions and apps,
armed with a solid understanding of the available tools and technologies.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

 245

PART III

Developing
SharePoint apps

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

 247

C H A P T E R 8

SharePoint apps

Without doubt, the biggest news of Microsoft SharePoint 2013 is the new app model, with which
you can create apps and publish them in a public marketplace or corporate app catalog. You

can use the app model on Microsoft Office 365 and SharePoint Online or in on-premises solutions.
For example, you can create a custom app that addresses a common need and sell it worldwide to
millions of users through the Microsoft Office Store. The main goal of this new app model is to enable
developers to customize and extend SharePoint sites without full-trust access to the target farm. This
goal adheres perfectly to the cloud-computing offering model and philosophy. In this chapter, you
will tour the app model architecture, as well as learn about app development and deployment.

Introducing apps

When developing a new SharePoint app, you can choose between three configurations:

■■ Full-page Based on one or more web pages, these apps include a dedicated UI. You should
provide a back button for returning to the parent site, where the app is launched from—but
your app will have a UI of its own.

■■ App Parts Also called Client Parts, these render some app content in an IFrame inside pages
of the parent site. Usually, App Parts are used to provide users with a small piece of informa-
tion or functions that can directly interact with the SharePoint user interface.

■■ UI command extension Used to extend the UI of the parent site, these apps may include a
ribbon button or an ECB (Edit Control Block) command to lead the user to a page or function
provided by an external app.

SharePoint apps can use three hosting models, as well:

■■ SharePoint-hosted This model relies on a subweb of the parent site (also called an app web)
and enables you to use all the common SharePoint artifacts for implementing the UI and the
behavior of the SharePoint app. You can take advantage of all the features of SharePoint, such
as lists, Web Parts, pages, workflows, and so on.

■■ Autohosted Apps following this model are hosted on Microsoft Windows Azure, which can
access a Microsoft SQL Azure database for managing data, too. The apps are automatically
deployed on Windows Azure on your behalf and can communicate with SharePoint through

www.it-ebooks.info

http://www.it-ebooks.info/

248 PaRt III Developing SharePoint apps

events and the Client Object Model. Secure communication with SharePoint is enforced
using OAuth.

■■ Provider-hosted From a functional perspective, apps that follow this model are almost
the same as autohosted apps. The only difference is that a provider-hosted app has to be
deployed on your own hosting environment and does not necessarily use the Windows Azure
environment.

Regardless of the hosting model and configuration, every SharePoint app is mainly a web applica-
tion that interacts with SharePoint using the Client Object Model and the new REST API introduced
with SharePoint 2013 (which is covered in Chapter 9, “The new SharePoint REST API”). One key feature
of SharePoint apps is that they can be developed with any programming language or technology, as
long as you host them outside SharePoint (that is, using an autohosted or provider-hosted model). In
fact, you can create a SharePoint app using PHP, Java, or any other technology capable of communi-
cating with SharePoint via the new REST API and the OAuth protocol.

Development environment
You have two choices for your environment to develop and test a custom SharePoint app. Your first
option is a SharePoint 2013 site based on the Developer Site site template and hosted on a properly
configured, on-premises SharePoint farm. (For more information about configuring an on-premises
farm for deployment of apps, read the “App management configuration and deployment” section
later in the chapter.) Otherwise, you can sign up for an Office 365 Developer Site subscription, which
is freely available, as long as you have a valid license of Microsoft Visual Studio Premium or Ultimate
with MSDN Subscription, and enables you to develop and test apps using SharePoint 2013 Online. (To
create a subscription, go to http://msdn.microsoft.com/en-us/library/fp179924.aspx.)

Moreover, if you want to develop the app using Microsoft .NET and Microsoft Visual Studio 2012,
you will need the Office Developer Tools for Visual Studio 2012, which can be downloaded and
installed through the Web Platform Installer 4.0 tool. You also will need to install the following tools
and libraries:

■■ SharePoint client components

■■ Windows Identity Foundation SDK

■■ Workflow Tools SDK and Workflow Client SDK

■■ Windows Identity Foundation SDK and Windows Identity Foundation extensions

If you are working on a server with SharePoint 2013 installed, you need to add only Visual Studio
2012 and the Office Developer Tools for Visual Studio 2012. All the other libraries and tools are
already part of the installation set of any SharePoint 2013 environment.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 249

Your first app

The best way to learn about SharePoint apps is to develop one. Throughout the chapter, you will com-
plete a sample introductory app, evaluating possible scenarios along the way. Imagine that you want
to create an app for managing contacts. In this section, you will start hosting the app on SharePoint.
First, you’ll create a new project. To do so, start Visual Studio 2012 and open the New Project dia-
log box (File | New Project). Select the Office/SharePoint | Apps group of projects and choose App
For SharePoint 2013. Figure 8-1 shows the project type highlighted in the New Project window of
Visual Studio 2012.

FIGURE 8-1 The New Project window of Visual Studio 2012 with the App for SharePoint 2013 project highlighted.

As soon as you choose to add a new SharePoint app, Visual Studio prompts you with a wizard for
configuring the target developer site URL, as well as the hosting model you would like to use. Figure
8-2 shows the first step of the wizard. For this first exercise, you should choose a SharePoint-hosted
app, in order to make it simpler to develop and host the app.

If you choose to host your SharePoint app on an Office 365 developer site, click the Validate but-
ton, which is located just beside the target site URL. Depending on your configuration, you may be
prompted with an Office 365 logon screen.

www.it-ebooks.info

http://www.it-ebooks.info/

250 PaRt III Developing SharePoint apps

FIGURE 8-2 The New App For SharePoint wizard.

Sample SharePoint-hosted app outline
After you create a project, Solution Explorer presents you with a set of folders and files, as shown in
Figure 8-3. The following are the main sections of this project outline:

■■ Features folder Contains all the features for provisioning contents and capabilities to the
target app website. Upon creation, this folder contains only one web-level feature. The goal of
this feature is to provision all the other contents to the target app website.

■■ Package folder Contains the package for deploying the app on the target site.

■■ Content folder Deploys custom CSS styles related to the app and is a Module feature.

■■ Images folder Deploys all the images related to the app and is a Module feature. Upon
creation, the folder contains only the AppIcon.png file, which represents the icon of your app.
To customize the look of your app, replace the default AppIcon.png file with a customized
96×96-pixel PNG image.

■■ Pages folder Holds a Module feature for deploying all the pages of the target app website.
By default, the project template creates a Default.aspx page, but you can create more pages
by yourself.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 251

■■ Scripts folder Represents a Module feature that is composed of JavaScript files for deploy-
ing jQuery scripts, some JavaScript references, and the App.js file, which is the JavaScript Client
Object Model entry point of the app.

■■ AppManifest.xml file Contains all the configuration and deployment information related to
the app. It’s the fundamental file of every app, and it will be discussed in detail in the “Inside
AppManifest.xml” section later in the chapter.

■■ packages.config file Relates to the jQuery package automatically configured in the current
project. In general, this file holds the information about the packages referenced by the Visual
Studio project.

FIGURE 8-3 The outline of an app for SharePoint 2013 project.

To begin playing with the current app project, just press F5 to start debugging it on the target site.
First, you will notice that Visual Studio 2012 starts compiling, packaging, deploying, and installing the
solution. Then your default web browser will start, showing the Default.aspx page of the current app.
Figure 8-4 shows the output.

www.it-ebooks.info

http://www.it-ebooks.info/

252 PaRt III Developing SharePoint apps

FIGURE 8-4 The default welcome screen of a SharePoint-hosted app.

Notice that the Default.aspx page, after a quick initialization message (“initializing...”), welcomes
the current user by name. The code for retrieving the user name uses the JavaScript Client-Side Object
Model (JSOM). Moreover, the page looks like every other SharePoint 2013 page, and it has a link at
the top-left corner of the page for coming back to the host site.

Before clicking the Back link, notice the URL of the current page in the browser’s address bar. In the
current example, which runs on-premises, the address is similar to the following:

http://apps-{UniqueID}.sp2013apps.local/sites/{ParentSiteName}/{AppName}/

Later, in the section “App management configuration and deployment,” you will learn how to con-
figure a SharePoint web application or tenant for hosting such a URL. If you are targeting an Office
365 developer site, the URL of the app will be something like this:

https://{TenancyName}-{UniqueID}.sharepoint.com/sites/{ParentSiteName}/{AppName}/

Eventually, you will be prompted with the Office 365 logon screen to access the target host site
and the app. Lastly, whether you are on-premises or in the cloud, the app URL will be enriched with a
long list of query string parameters. (You’ll learn more about these later in this chapter.)

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 253

the app website
When you install your app onto the target development site, the site lists it on the Site Contents page
in the Lists, Libraries, and other Apps category. As shown in Figure 8-5, the example app’s listing has a
custom AppIcon.png file with the company’s logo.

FIGURE 8-5 The Site Contents page of a developer site with a custom app installed.

Remember, the SharePoint-hosted app uses an app website, which is a subweb of the current
site collection, dedicated for hosting the app. You cannot access the app website with SharePoint
Designer 2013, because support for it is disabled for this kind of website. Nevertheless, you can
access it through PowerShell; simply use the Client-Side Object Model (CSOM) or any third-party
tool to browse the site structure. Listing 8-1 demonstrates how to access the app website through
PowerShell, by iterating through the child websites of the current site collection.

www.it-ebooks.info

http://www.it-ebooks.info/

254 PaRt III Developing SharePoint apps

LISTING 8-1 A sample PowerShell script to retrieve information about the current app website

Add-PSSnapin Microsoft.SharePoint.PowerShell -erroraction SilentlyContinue

$site = Get-SPSite "http://devbook.sp2013.local/sites/AppsDevelopmentSite/"
Write-Host "Here are the sub-webs of the current site collection root web"
foreach ($web in $site.AllWebs) {
 Write-Host "ID: " $web.ID " - Title: " $web.Title
 if ($web.IsAppWeb -eq $true) {
 Write-Host "App Web Site Author: "$web.Author
 Write-Host "App Web Site Is App Web?" $web.IsAppWeb
 Write-Host "App Web Site Is Root Web?" $web.IsRootWeb
 Write-Host "App Web Site Is Provisioned?" $web.Provisioned
 Write-Host "App Web Site URL?" $web.Site.Url
 Write-Host "App Web Site parent Web Application:"
 $web.Site.WebApplication
 }
}

When you execute a PowerShell script like the one in Listing 8-1, the host console will display out-
put similar to the following:

Here are the sub-webs of the current site collection root web
ID: 75f26332-940d-4f08-838d-cda4b6e11c62 - Title: AppsDevelopmentSite
ID: 43d8c941-d442-490c-8ed5-4408a41d5516 - Title: DevLeap.SP20130.ContactsApp
App Web Site Author: SHAREPOINT\system
App Web Site Is App Web? True
App Web Site Is Root Web? False
App Web Site Is Provisioned? True
App Web Site URL? http://apps-3285d5aad768c4.sp2013apps.local/sites/AppsDevelopmentSite
App Web Site parent Web Application: SPWebApplication Name=DevLeap Book Portal

The most interesting information you can glean from the script output is

■■ The app website is automatically provisioned by the Local System account.

■■ The app website has an explicit flag stating that it is the site hosting an app.

■■ The parent site collection and web application of the app website are the site collection and
web application of the extended site.

■■ The app website is a subweb of the current site collection.

Provisioning content
Now that you understand the basics of a SharePoint-hosted app, you’re ready to provision some con-
tent into the app web of your first sample app. Imagine that you want to add a list of contacts based
on a custom content type. In Chapter 3, “Data provisioning,” you already learned how to provision
list definitions based on custom content types. Thus, this section will skip all the details, and the goal

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 255

will be to create a list of contacts made of the following fields: Title, Description, Telephone, Email,
and Photo.

To present the custom Contacts list to the end user, you could add a direct link to the default view
of the list into the home page (Default.aspx file) of the app, but there’s an even better way. You can
use the app’s Default.aspx page, which is a common SharePoint page. Open the Default.aspx file, and
put some ASPX code inside the content region named PlaceHolderMain, as shown in Listing 8-2. The
list-relative URL used is Lists/AppContacts.

LISTING 8-2 The Default.aspx page source ASPX code changed to show the custom list of contacts

<%-- The following 4 lines are ASP.NET directives needed when using SharePoint
components --%>
<%@ Page Inherits="Microsoft.SharePoint.WebPartPages.WebPartPage, Microsoft.
SharePoint, Version=15.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c"
MasterPageFile="~masterurl/default.master" Language="C#" %>
<%@ Register TagPrefix="Utilities" Namespace="Microsoft.SharePoint.Utilities"
Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral, PublicKeyToke
n=71e9bce111e9429c" %>
<%@ Register TagPrefix="WebPartPages" Namespace="Microsoft.SharePoint.
WebPartPages" Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>
<%@ Register TagPrefix="SharePoint" Namespace="Microsoft.SharePoint.WebControls"
Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral, PublicKeyToke
n=71e9bce111e9429c" %>

<%-- The markup and script in the following Content element will be placed in the
<head> of the page --%>
<asp:Content ContentPlaceHolderID="PlaceHolderAdditionalPageHead" runat="server">
 <script type="text/javascript" src="../Scripts/jquery-1.7.1.min.js"></script>
 <script type="text/javascript" src="/_layouts/15/sp.runtime.debug.js">
</script>
 <script type="text/javascript" src="/_layouts/15/sp.debug.js"></script>

 <!-- Add your CSS styles to the following file -->
 <link rel="Stylesheet" type="text/css" href="../Content/App.css" />

 <!-- Add your JavaScript to the following file -->
 <script type="text/javascript" src="../Scripts/App.js"></script>
</asp:Content>

<%-- The markup and script in the following Content element will be placed in the
<body> of the page --%>
<asp:Content ContentPlaceHolderID="PlaceHolderMain" runat="server">

 <div>
 <p id="message">
 <!-- The following content will be replaced with the user name when
you run the app - see App.js -->
 initializing...
 </p>
 </div>

www.it-ebooks.info

http://www.it-ebooks.info/

256 PaRt III Developing SharePoint apps

 <WebPartPages:WebPartZone ID="spWebPartZone" runat="server">

 <WebPartPages:XsltListViewWebPart runat="server"

 ListUrl="Lists/AppContacts"

 IsIncluded="True"

 JsLink="clientTemplate.js"

 NoDefaultStyle="TRUE"

 PageType="PAGE_NORMALVIEW"

 Default="False"

 ViewContentTypeId="0x">

 </WebPartPages:XsltListViewWebPart>

 </WebPartPages:WebPartZone>

</asp:Content>

As you can see, the WebPartZone control (highlighted in bolded text) wraps a classic SharePoint
XsltListViewWebPart control, which shows the items of the custom Contacts list. Figure 8-6 illustrates
the resulting output in the browser after some sample contacts have been added. As you can see,
the layout and the behavior of the page are the same of any other SharePoint page, because the app
website is yet another SharePoint site.

Important Remember that an app website is provisioned and unprovisioned together
with its app. Thus, you create an app that stores content inside its app web. If your end
users remove or uninstall the app, however, not only will the app web be decommissioned,
but your data will be lost as well. In order to intercept such events, you can handle app-
related events. For example, you can use the AppUninstalling event (discussed in Chapter
10, “Remote event receivers”) together with other remote events.

Moreover, the Default.aspx page, as well as any other custom page you add to the app, is based
on server controls or client-side code only. For example, you cannot add an application page (see
Chapter 12, “Customizing the UI,” for further details) based on server-side code, because this would
require a full-trust deployment of your page, which is not allowed for SharePoint-hosted apps. In case
you need to create an app that uses server-side code, you should create an autohosted or a provider-
hosted app.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 257

FIGURE 8-6 The output of the Default.aspx page after adding an XsltListViewWebPart control for showing the
custom Contacts list.

Using the Client-Side Object Model
For the sake of completeness, have a look at how the JSOM interacts with your app website. Open the
App.js file provided in the Scripts folder of the project. In Listing 8-3, you can see the default content
of that file.

LISTING 8-3 The JavaScript code provided by default within the App.js file inside the Scripts folder of a
SharePoint-hosted app project

var context;
var web;
var user;

// This code runs when the DOM is ready and creates a context object, which
// is needed to use the SharePoint object model
$(document).ready(function () {
 context = SP.ClientContext.get_current();
 web = context.get_web();
 getUserName();
});

www.it-ebooks.info

http://www.it-ebooks.info/

258 PaRt III Developing SharePoint apps

// This function prepares, loads, and then executes a SharePoint query
// to get the current user's information
function getUserName() {
 user = web.get_currentUser();
 context.load(user);
 context.executeQueryAsync(onGetUserNameSuccess, onGetUserNameFail);
}

// This function is executed if the above OM call is successful
// It replaces the contents of the 'helloString' element with the user name
function onGetUserNameSuccess() {
 $('#message').text('Hello ' + user.get_title());
}

// This function is executed if the above call fails
function onGetUserNameFail(sender, args) {
 alert('Failed to get user name. Error:' + args.get_message());
}

As discussed in Chapter 7, “Client-side technologies,” you can use the JavaScript Client Object
Model (JSOM) to interact with the current site or site collection, as well with remote sites (as long as
you have a set of authorized credentials). Listing 8-3 uses a jQuery directive to register for the DOM
document ready event. There it retrieves a reference to the current website in order to get the cur-
rent user name. Because the JSOM natively provides asynchronous behavior, the code queries for the
current user by invoking the executeQueryAsync method of the current context and, when successful,
shows the title property of the current user in the paragraph (that is, the HTML element <p>) with an
ID value of message, which is defined in the Default.aspx page. You can see that paragraph element in
Listing 8-2, just before the code highlighted in bold.

If you want to enrich your custom app with client-side code and the JSOM, you can simply add
your custom code to this App.js file. Then you should invoke your custom functions from within the
Default.aspx page or from any other custom page you will provision together with your SharePoint
app. Everything you have already learned about the JSOM is valid in this context, too.

Inside AppManifest.xml

The main content of every SharePoint app project, regardless of its hosting model, is in the
AppManifest.xml file. This file contains information about the app in general, the permissions
required by the app, the prerequisites for running the app, the supported languages/locales, and any
remote endpoint. By double-clicking the AppManifest.xml file, you can open the specific designer
provided by Visual Studio 2012 and edit all these configurations. For example, Figure 8-7 shows
the AppManifest.xml designer, which is made of a set of tabs for managing the various configu-
ration properties, grouped by category. In the next section, you will learn all the details about
these properties.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 259

FIGURE 8-7 The designer for AppManifest.xml provided by Visual Studio 2012.

More Info Under the hood, the AppManifest.xml file is just an XML file based on the XML
schema with a namespace URI value of http://schemas.microsoft.com/sharepoint/2012/
app/manifest. You can find further details about the AppManifest.xml schema at
http://msdn.microsoft.com/en-us/library/jj583347.aspx.

the General tab
The first and main configuration tab, General, holds general information about the app, such as the
title, name, and version, as well as the icon to show in the SharePoint UI. You can also choose the start
page of the app, which will become the default page of the app website provisioned while installing
the app. Finally, yet importantly, you can configure the query string behavior of the app. As shown in
the previous section, when your app is activated, it receives a rich and long set of query string argu-
ments. If you configure the query string property of you app, you can determine the list of arguments
that the app will receive. In this property, you can use the tokens illustrated in Table 8-1. All these
tokens will be resolved and appended to the URL of the default page of your app during activation.

www.it-ebooks.info

http://schemas.microsoft.com/sharepoint/2012/app/manifest
http://schemas.microsoft.com/sharepoint/2012/app/manifest
http://msdn.microsoft.com/en-us/library/jj583347.aspx
http://www.it-ebooks.info/

260 PaRt III Developing SharePoint apps

TABLE 8-1 Tokens for configuring the AppManifest.xml file’s query string property

Token name Description

{AppWebUrl} The URL of the app web in an app for SharePoint. This token should be used only outside an
app web. Within the app web itself, use {Site} for the URL of the app web.

{HostLogoUrl} The logo for the host web of an app for SharePoint.

{HostTitle} The title of the host web of an app for SharePoint.

{HostUrl} The URL of the host web of an app for SharePoint.

{Language} The current language/culture of the host web of an app for SharePoint.

{StandardTokens} Combines three other tokens. It initially resolves to SPHostUrl={HostUrl}&SPAppWebUrl=
{AppWebUrl}&SPLanguage={Language}. Then each of these tokens resolves. If there is no app
web, the &SPAppWebUrl={AppWebUrl} portion is not present.

By default, any SharePoint app uses the {StandardTokens} URL token, because it is the most com-
plete. You can change it, however, or add your own tokens or arguments to the URL.

the Permissions tab
The Permissions section is probably the most important, and it enables you to define the permis-
sions your app requires in order to install and execute. Whenever you install an app, the SharePoint
environment will ask to the user installing it for those specific permissions. In fact, an app must be
explicitly granted the required permissions in order to be installed. When installing an app, users can
grant only permissions that they have, and they can grant or deny permissions with an all-or-nothing
approach only. Users cannot grant a subset of the required permissions. If a user tries to install an app
that requires permissions the user does not have, the SharePoint environment will raise an exception,
showing a message that states the user does not have sufficient permissions to complete the action.

Every app has an identity of its own, which is associated with a security principal called the app
principal. The app principal of an app has full control rights against the app web hosting the app itself.
Thus, you do not need to request permissions for accessing the app web from your app. On the con-
trary, if your app needs to access the parent site or any external location outside the app web, you will
need to request specific permissions for that.

The available permissions are defined by scope, and scopes are represented as URIs in the
AppManifest.xml file. In the UI for configuring the permission, however, you see only literal names, for
the sake of simplicity. Table 8-2 lists the available scopes.

TABLE 8-2 Available scopes and permissions for an app

Scope Available permissions Description

BCS Read Corresponds to the URI http://sharepoint/bcs/connection
and allows defining the permission to access Business
Connectivity Services (BCS) data.

Enterprise Resources Read, Write Allows accessing enterprise-level resources of
Microsoft Project Server 2013. It is defined by the URI
http://sharepoint/projectserver/enterpriseresources.

www.it-ebooks.info

http://sharepoint/bcs/connection
http://sharepoint/projectserver/enterpriseresources
http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 261

Scope Available permissions Description

List Read, Write, Manage, FullControl Allows defining permissions for access-
ing lists. It corresponds to the URI
http://sharepoint/content/sitecollection/web/list and
supports extended properties for defining a specific
target BaseTemplateId number, in case you would like
to define permissions only for lists based on a particular
BaseTemplateId.

Micro Feed Read, Write, Manage, FullControl Corresponds to the URI
http://sharepoint/social/microfeed and relates to the
Social Features group of scopes. It allows defining per-
missions for accessing the social microfeed.

Multiple Projects Read, Write Allows defining permissions for accessing multiple proj-
ects of Project Server 2013. It corresponds to the URI
http://sharepoint/projectserver/projects.

Project Server Manage Corresponds to the URI http://sharepoint/projectserver
and defines the permission to manage Project Server
2013.

Reporting Read Allows defining the permission to read reporting infor-
mation from Project Server 2013 and corresponds to
the URI http://sharepoint/projectserver/reporting.

Search QueryAsUserIgnoreAppPrincipal Defines permission to search contents via the app as the
user principal, instead of using the app principal. It cor-
responds to the URI http://sharepoint/search.

Single Project Read, Write Allows defining permissions for accessing a single proj-
ect of Project Server 2013. It corresponds to the URI
http://sharepoint/projectserver/projects/project.

Site Collection Read, Write, Manage, FullControl Corresponds to the URI
http://sharepoint/content/sitecollection and defines the
permissions related to a site collection.

Social Core Read, Write, Manage, FullControl Provides permissions for accessing core informa-
tion of the social features. It corresponds to the URI
http://sharepoint/social/core.

Statusing SubmitStatus Allows defining the permission to submit status
to Project Server 2013. It corresponds to the URI
http://sharepoint/projectserver/statusing.

Taxonomy Read, Write Provides permission configuration for accessing
the taxonomy engine and corresponds to the URI
http://sharepoint/taxonomy.

Tenant Read, Write, Manage, FullControl Corresponds to the URI http://sharepoint/content/tenant
and defines permissions for accessing the content at the
tenant level.

User Profile Read, Write, Manage, FullControl Corresponds to the URI http://sharepoint/social/tenant
and defines permissions for accessing the users’ social
features at the tenant level.

Web Read, Write, Manage, FullControl Defines permissions for accessing a specific website
within a site collection and corresponds to the URI
http://sharepoint/content/sitecollection/web.

Workflow Elevate Allows defining the permission to elevate privileges in
workflows of Project Server 2013. It corresponds to the
URI http://sharepoint/projectserver/workflow.

www.it-ebooks.info

http://sharepoint/content/sitecollection/web/list
http://sharepoint/social/microfeed
http://sharepoint/projectserver/projects
http://sharepoint/projectserver
http://sharepoint/projectserver/reporting
http://sharepoint/search
http://sharepoint/projectserver/projects/project
http://sharepoint/content/sitecollection
http://sharepoint/social/core
http://sharepoint/projectserver/statusing
http://sharepoint/taxonomy
http://sharepoint/content/tenant
http://sharepoint/social/tenant
http://sharepoint/content/sitecollection/web
http://sharepoint/projectserver/workflow
http://www.it-ebooks.info/

262 PaRt III Developing SharePoint apps

Where available, the FullControl permission cannot be requested for apps that you want to publish
to the Office Store. Moreover, the permission scopes related to Project Server 2013 are available only
in environments where Project Server 2013 is installed.

App permissions are inherited hierarchically, and a permission applied to a parent object is implic-
itly applied to all of its children. For example, if you grant a Write permission at the Site Collection
scope, the app will have that same permission for all of the sites within the target site collection.

Figure 8-8 shows how the Permissions tab behaves in the AppManifest.xml designer. For the sake
of clarity, the AppManifest.xml file illustrated requires all the available permissions.

FIGURE 8-8 The Permissions tab in the designer for AppManifest.xml.

Listing 8-4 provides the XML source of an AppManifest.xml file configured as illustrated in
Figure 8-8.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 263

LISTING 8-4 The XML source of an AppManifest.xml file with all the available permission scopes defined

<?xml version="1.0" encoding="utf-8" ?>
<!--Created:cb85b80c-f585-40ff-8bfc-12ff4d0e34a9-->
<App xmlns="http://schemas.microsoft.com/sharepoint/2012/app/manifest"
 Name="DevLeapSP20130ContactsApp"
 ProductID="{abe98779-6d6c-490c-83d4-8bf9acd4820c}"
 Version="1.0.0.0"
 SharePointMinVersion="15.0.0.0">
 <Properties>
 <Title>DevLeap.SP20130.ContactsApp</Title>
 <StartPage>~appWebUrl/Pages/Default.aspx?{StandardTokens}</StartPage>
 </Properties>

 <AppPrincipal>
 <Internal />
 </AppPrincipal>

 <AppPermissionRequests>
 <AppPermissionRequest Scope="http://sharepoint/bcs/connection" Right="Read"
/>
 <AppPermissionRequest Scope="http://sharepoint/projectserver/
enterpriseresources" Right="Write" />
 <AppPermissionRequest
Scope="http://sharepoint/content/sitecollection/web/list" Right="FullControl" >
 <Property Name="BaseTemplateId" Value="101" />
 </AppPermissionRequest>
 <AppPermissionRequest Scope="http://sharepoint/social/microfeed"
Right="FullControl" />
 <AppPermissionRequest Scope="http://sharepoint/projectserver/projects"
Right="Write" />
 <AppPermissionRequest Scope="http://sharepoint/projectserver" Right="Manage"
/>
 <AppPermissionRequest Scope="http://sharepoint/projectserver/reporting"
Right="Read" />
 <AppPermissionRequest Scope="http://sharepoint/search"
Right="QueryAsUserIgnoreAppPrincipal" />
 <AppPermissionRequest
Scope="http://sharepoint/projectserver/projects/project" Right="Write" />
 <AppPermissionRequest Scope="http://sharepoint/content/sitecollection"
Right="FullControl" />
 <AppPermissionRequest Scope="http://sharepoint/social/core"
Right="FullControl" />
 <AppPermissionRequest Scope="http://sharepoint/projectserver/statusing"
Right="SubmitStatus" />
 <AppPermissionRequest Scope="http://sharepoint/taxonomy" Right="Write" />
 <AppPermissionRequest Scope="http://sharepoint/content/tenant"
Right="FullControl" />
 <AppPermissionRequest Scope="http://sharepoint/social/tenant"
Right="FullControl" />
 <AppPermissionRequest Scope="http://sharepoint/content/sitecollection/web"
Right="FullControl" />
 <AppPermissionRequest Scope="http://sharepoint/projectserver/workflow"
Right="Elevate" />
 </AppPermissionRequests>
</App>

www.it-ebooks.info

http://www.it-ebooks.info/

264 PaRt III Developing SharePoint apps

Notice the List permission, highlighted in bold, with the optional property BaseTemplateId con-
figured to a value of 101 (for “document library”). When you install an app with some custom per-
missions requests, the SharePoint environment will ask you to trust it. Figure 8-9 illustrates how the
request to trust the app is prompted to an end user. As you can see, the form asks the end user to
choose the library to which you would like the app to have access. If you trust the app and give it the
requested permissions, then you will be able to use it.

FIGURE 8-9 The page for trusting an app during installation.

In case you later decide to change or retract permissions from an app, you can remove the whole
app, or you can go to the permissions-management page specific for that app. To view that page, go
to the Site Contents page, click the ellipsis just behind the app icon, and select the Permissions link
on the ECB menu. This link will lead you to the permissions-management page that is illustrated in
Figure 8-10.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 265

FIGURE 8-10 The permissions-management page for an app.

the Prerequisites tab
The third configuration tab of the AppManifest.xml file, Prerequisites, provides a grid for configuring
the list of the prerequisites that must be installed on the SharePoint site in order for the app to be
installed. If necessary, you can configure the following prerequisites:

■■ Access V14 (aka Access 2010)

■■ Access V15

■■ Duet Enterprise Services

■■ Education Services

■■ Managed Metadata Web Service

■■ PowerPoint Services

■■ Search Services

www.it-ebooks.info

http://www.it-ebooks.info/

266 PaRt III Developing SharePoint apps

■■ Secure Store Services

■■ SharePoint Translation Services

■■ SharePoint Workflow Services

■■ User Profile Service

■■ Visio Services

■■ Work Management Service

Each prerequisite feature or service can also specify a minimum version requirement. Figure 8-11
shows the outline of this configuration tab, with all of the out-of-the-box prerequisites configured.

FIGURE 8-11 The outline of the tab for configuring app prerequisites.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 267

The resulting configuration defines an AppPrerequisites element in the AppManifest.xml file, filled
with a set of elements with name AppPrerequisite. Each AppPrerequisite element is configured with a
Type attribute, an ID attribute, and an optional MinimumVersion attribute. Here is the XML definition
of the AppPrerequisite element for the Visio Services capability:

<AppPrerequisite Type="Capability" ID="778D6B91-D46F-40E6-B7A4-1C666B800D03"
MinimumVersion="15.0.0.0" />

As you can see, the prerequisite is referenced by ID, which in general is a globally unique identi-
fier (GUID). The Type attribute can assume values of Feature, Capability, or AutoProvisioning. The first
two values are self-explanatory; the AutoProvisioning value is suitable only for autohosted apps. In
fact, for autohosted apps, you can automatically provision components that the app needs while
provisioning the app itself. In this case, the ID attribute can assume literal values (instead of GUIDs)
corresponding to RemoteWebHost and Database, for provisioning a Windows Azure website and a
SQL Azure database, respectively. The MinimumVersion attribute is in the form of a product version:
{number} ({major version}.{minor version}.{build number}.{revision}).

For services such as Excel, Access, or Visio Services, the infrastructure will verify that the service is
installed and licensed. For features at the Farm, WebApplication, or Site scope, the infrastructure will
verify that they are deployed and activated. For features that can be activated at the Web scope on
the target app web, the environment will automatically activate them during app installation.

the Supported Locales tab
Through the Supported Locales tab, you can configure the locales supported by your app, together
with the resource files corresponding to each locale. Every SharePoint app can support one or more
locales, providing dedicated resources and resource files. On this tab, you simply need to configure
a locale ID (using the culture name) and the name and content of the corresponding resource file.
Each time you configure a supported locale, Visual Studio 2012 creates the corresponding .resx file
for you. Figure 8-12 shows the tab configured for supporting the Italian locale and the French locale.
It also shows the SharePoint app project outline, with the .resx files corresponding to these supported
locales.

Important By default, apps have no locales configured. If you want to publish your app
on the Office Store, however, you must declare at least one supported locale, and you
should support the English locale (1033).

www.it-ebooks.info

http://www.it-ebooks.info/

268 PaRt III Developing SharePoint apps

FIGURE 8-12 The tab for configuring the supported locales for an app.

the Remote endpoints tab
The last tab of the AppManifest.xml configuration panel is Remote Endpoints. A remote endpoint is a
URL that your app will use for accessing data or services from external domains. Nowadays, there are
cross-site scripting (XSS) policies denying access to external domains via JavaScript code. When you
are developing an HTML-and-JavaScript-based SharePoint app, use this tab to configure the list of
allowed remote endpoints. SharePoint will then provide a JavaScript-based API (SP.RequestExecutor)
that will call the configured remote endpoints for you, and pass back the data it receives. Figure 8-13
shows how the configuration for remote endpoints behaves in Visual Studio 2012.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 269

FIGURE 8-13 The tab for configuring the remote endpoints for an app.

Configuring the remote endpoints on this tab results in the creation of an XML section within the
AppManifest.xml file, such as the following:

 <RemoteEndpoints>
 <RemoteEndpoint Url="http://www.myremoteservice.com" />
 </RemoteEndpoints>

In Chapter 9, you will learn how the SP.RequestExecutor API works and how to take advantage of it
in your apps.

www.it-ebooks.info

http://www.it-ebooks.info/

270 PaRt III Developing SharePoint apps

App Parts and custom UI extensions

So far, this chapter has discussed full-page apps. In this section, you will learn how to create App Parts
and custom UI extensions, which are the two other configurations available for SharePoint apps.

Creating app Parts
To recap, an App Part (also known as a Client Part) renders some content of the app in an IFrame
inside pages of the parent site. Now, imagine that you want to extend the functionalities of the
SharePoint app you developed during the previous sections. For example, you could add an App Part
for searching the contacts from within the parent SharePoint site. Figure 8-14 shows the intended
output result.

FIGURE 8-14 The sample App Part in action while searching app contacts.

To add a new App Part, simply right-click the app project while in Visual Studio and select Add |
New Item | Client Web Part (Host Web) from the list of available item templates. Then provide a name
for the target App Part. For this example, call it SearchContactsAppPart. When you add an App Part
to a project, a wizard will prompt you to enter some information about the App Part, as shown in

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 271

Figure 8-15. In this wizard, you can choose between creating a new App Part and using an already
existing ASPX page, which will be loaded inside the IFrame that will host the App Part. Click the Finish
button to create an ASPX page file and a new feature element for provisioning your App Part.

FIGURE 8-15 The UI for adding an App Part to a target project.

The ASPX page file is just another web page that will be hosted in your app web, and that will have
the same capabilities of the Default.aspx page or any other custom ASPX page. Here you can use the
JSOM to interact with SharePoint and with your app web. Listing 8-5 shows the default content of the
SearchContactsAppPart.aspx file created by Visual Studio 2012 upon creation of the App Part.

www.it-ebooks.info

http://www.it-ebooks.info/

272 PaRt III Developing SharePoint apps

LISTING 8-5 The default content of the SearchContactsAppPart.aspx page behind the custom App Part

<%@ Page language="C#" Inherits="Microsoft.SharePoint.WebPartPages.WebPartPage,
Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral, PublicKeyToken=71e9bce1
11e9429c" %>
<%@ Register Tagprefix="SharePoint" Namespace="Microsoft.SharePoint.WebControls"
Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral, PublicKeyToke
n=71e9bce111e9429c" %>
<%@ Register Tagprefix="Utilities" Namespace="Microsoft.SharePoint.Utilities"
Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral, PublicKeyToke
n=71e9bce111e9429c" %>
<%@ Register Tagprefix="WebPartPages" Namespace="Microsoft.SharePoint.
WebPartPages" Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>

<WebPartPages:AllowFraming ID="AllowFraming" runat="server" />

<html>
<head>
 <title></title>
 <script type="text/javascript">
 // Set the style of the client web part page
 // to be consistent with the host web.
 function setStyleSheet() {
 var hostUrl = ""
 if (document.URL.indexOf("?") != -1) {
 var params = document.URL.split("?")[1].split("&");
 for (var i = 0; i < params.length; i++) {
 p = decodeURIComponent(params[i]);
 if (/^SPHostUrl=/i.test(p)) {
 hostUrl = p.split("=")[1];
 document.write("<link rel=\"stylesheet\" href=\"" +
 hostUrl + "/_layouts/15/defaultcss.ashx\" />");
 break;
 }
 }
 }
 if (hostUrl == "") {
 document.write("<link
rel=\"stylesheet\" href=\"/_layouts/15/1033/styles/themable/corev15.css\" />");
 }
 }
 setStyleSheet();
 </script>
</head>
<body>
</body>
</html>

As you can see, the page references the classic SharePoint server-side libraries and controls, and
inherits its behavior from the Microsoft.SharePoint.WebPartPages.WebPartPage base class, without
defining any master page file. Moreover, the server-side control called AllowFraming enables your
page to be rendered inside an IFrame.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 273

Just after the server control for allowing the frame support is HTML and JavaScript code for
rendering the basic elements of the page, together with default theming consistent with the host
SharePoint website. By default, the page will try to locate the SPHostUrl parameter in the query string
and will download the CSS style (if it exists) from the URL _layouts/15/defaultcss.ashx relative to the
SPHostUrl. If the SPHostUrl argument is missing, the App Part will be rendered using the CoreV15.css
style of the current app website.

To implement the App Part, you will have to add some HTML and JavaScript code to the page.
For the current sample, you will reuse some ideas and code already shown in Chapter 7. For example,
you’ll add a text box and a button for searching contacts. Inside the body element of the page, add
the following markup:

Search Contacts: <input type="text" name="textToSearch" id="textToSearch" />
 <input type="button" value="Search" onclick="javascript:searchContacts();" />

 <div id="searchOutput" style="overflow:auto; height: 130px;"></div>

Then, just before the closing tag of the head element of the page, add the following references to
scripts:

<script type="text/javascript"
 src="http://ajax.aspnetcdn.com/ajax/4.0/1/MicrosoftAjax.js"></script>
 <script type="text/javascript"
 src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.8.3.min.js"></script>
 <script type="text/javascript"
 src="http://code.jquery.com/ui/1.9.2/jquery-ui.min.js"></script>
 <script type="text/javascript"
 src="/_layouts/15/sp.runtime.debug.js"></script>
 <script type="text/javascript" src="/_layouts/15/sp.debug.js"></script>
 <script type="text/javascript"
 src="../Scripts/SearchContacts.js"></script>

Now you will need to add a new JavaScript file in the Scripts folder of the project. For example,
give it a name of SearchContacts.js. Listing 8-6 shows how the code should look.

LISTING 8-6 The JavaScript code behind the App Part defined in the SearchContactsAppPart.aspx page

var clientContext;
var web;
var contactsList;
var listItems;

// This code runs when the DOM is ready and creates a context object which is
// needed to use the SharePoint object model
$(document).ready(function () {
 clientContext = SP.ClientContext.get_current();
 web = clientContext.get_web();
});

www.it-ebooks.info

http://www.it-ebooks.info/

274 PaRt III Developing SharePoint apps

// This function prepares, loads, and then executes a SharePoint
// query to get the search query for app contacts results
function searchContacts() {
 contactsList = web.get_lists().getByTitle("App Contacts");

 var textToSearch = $("#textToSearch").val();
 var camlQuery = new SP.CamlQuery();
 var q = '<View><Query><Where><Contains><FieldRef ' +
 'Name="DevLeapAppContactDescription" /><Value Type="Text">' +
 textToSearch + '</Value></Contains></Where></Query></View>';
 camlQuery.set_viewXml(q);
 listItems = contactsList.getItems(camlQuery);

 clientContext.load(listItems);
 clientContext.executeQueryAsync(onSearchQuerySucceeded, onSearchQueryFailed);
}

// Output the result
function onSearchQuerySucceeded(sender, args) {
 $("#searchOutput").empty();

 if (listItems.get_count() > 0) {
 var listItemsEnumerator = listItems.getEnumerator();

 // Iterate though all of the items
 while (listItemsEnumerator.moveNext()) {
 var item = listItemsEnumerator.get_current();

 var id = item.get_id();
 var contactDescription = item.get_item(
 "DevLeapAppContactDescription");
 var contactTelephone = item.get_item("DevLeapAppContactTelephone");
 var contactEmail = item.get_item("DevLeapAppContactEmail");
 var contactPhoto = item.get_item("DevLeapAppContactPhoto").get_url();

 $("#searchOutput").append('' +
 '<img style="float: left; margin: 5px;" src="' +
 contactPhoto + '" align="left" alt="' + contactDescription +
 '"/>');
 }
 }
 else {
 $("#searchOutput").append('<div>No results matching the query. ' +
 'Try again ...</div>');
 }
}

function onSearchQueryFailed(sender, args) {
 alert('Request failed ' + args.get_message() + '\n' + args.get_stackTrace());
}

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 275

As you can see, the code is made of standard JSOM directives for searching the target list of con-
tacts using Collaborative Application Markup Language (CAML).

The last piece of code to evaluate is the feature element for provisioning the App Part. In fact,
when you add an App Part to a SharePoint app project, Visual Studio 2012 adds also a feature
element to the project. In Listing 8-7 shows the one related to the sample App Part illustrated in
this section.

LISTING 8-7 The feature element file for provisioning the sample SearchContactsAppPart

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <ClientWebPart Name="SearchContactsAppPart" Title="SearchContactsAppPart Title"
 Description="SearchContactsAppPart Description"
 DefaultWidth="600"
 DefaultHeight="200">

<!-- Content element identifies the location of the page that will render inside
the client web part

Properties are referenced on the query string using the pattern _propertyName_
Example: Src="~appWebUrl/Pages/ClientWebPart1.aspx?Property1=_property1_" -->

 <Content Type="html" Src="~appWebUrl/Pages/SearchContactsAppPart.aspx" />
 <!-- Define properties in the Properties element.
 Remember to put Property Name on the Src attribute of the
 Content element above. -->
 <Properties>
 </Properties>
 </ClientWebPart>
</Elements>

The ClientWebPart element provisions an App Part, providing descriptive information like Name,
Title, Description, DefaultWidth, and DefaultHeight. If you are creating a multilingual app, you should
at least provide a resource-based value for both the Title and Description attributes, using the classic
$Resources:ResourceName; syntax and providing a value for the key ResourceName in every RESX file.

In addition, you can include a list of custom properties, defined through a set of Property elements
(children of the Properties element). Every Property element can assume the structure illustrated in
Listing 8-8 and define a property that will be configurable through the SharePoint UI while managing
the page hosting the App Part. You can also define properties that are not configurable by the end
users, but that are still needed by the App Part internal logic.

www.it-ebooks.info

http://www.it-ebooks.info/

276 PaRt III Developing SharePoint apps

LISTING 8-8 Property element structure

<Property xmlns="http://schemas.microsoft.com/sharepoint/"
 Name="Text"
 DefaultValue="Text"
 Multilingual= "true" | "false"
 PersonalizationScope="user" | "shared"
 PersonalizableIsSensitive= "true" | "false"
 Type= "string" | "int" | "boolean" | "enum"
 RequiresDesignerPermission= "true" | "false"
 WebBrowsable= "true" | "false"
 WebCategory="Text"
 WebDescription="Text"
 WebDisplayName="Text"
 ManagedLinkConvertServerLinksToRelative= "true" | "false"
 ManagedLinkFixup= "true" | "false" >
 <EnumItems>
 <EnumItem
 Value="Text"
 WebDisplayName="Text" />
 </EnumItems>
</Property>

The most interesting things to notice are the available data types, which are string, int, Boolean,
and enum (shown in Figure 8-15). In case of the enum type, you will have to provide the admitted
values using the EnumItems child element. Some other interesting attributes are PersonalizationScope,
for defining whether the property can be personalized by each user or will assume a shared value;
and RequiresDesignerPermission, for determining whether the user has to have designer permis-
sions to edit the property value. Moreover, you can define attributes to configure the appearance
of every single property in the UI, including WebBrowsable, WebCategory, WebDescription, and
WebDisplayName. These last attributes have names and meanings that correspond to similar prop-
erties of SharePoint Web Parts, which will be discussed in Chapter 11, “Developing Web Parts.”
Listing 8-9 demonstrates how to define an enum property for defining the orientation (horizontal or
vertical) of results for the sample App Part for searching contacts.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 277

LISTING 8-9 A sample Property element defining a property of type enum, defined for the sample App Part for
searching contacts

<Property Name="FlowDirection"
 DefaultValue="Horizontal"
 Multilingual="true"
 PersonalizationScope="shared"
 PersonalizableIsSensitive="true"
 Type="enum"
 RequiresDesignerPermission="true"
 WebBrowsable="true"
 WebCategory="Custom Properties"
 WebDescription="Flow Direction"
 WebDisplayName="Flow Direction"
 ManagedLinkConvertServerLinksToRelative="true"
 ManagedLinkFixup="true">
 <EnumItems>
 <EnumItem Value="Horizontal" WebDisplayName="Horizontal"/>
 <EnumItem Value="Vertical" WebDisplayName="Vertical"/>
 </EnumItems>
</Property>

The selected values of configurable properties can be passed via query string to the ASPX page
behind the App Part. The syntax for passing the properties is to append them to the Src attribute
value at the end of the App Part page URL. The name for the query string arguments can be anything
you like, while the value has to be represented as _{PropertyName}_. For example, to get the value of
a property with the name FlowDirection into an argument with the name Direction, you should write
the Src attribute value as follows:

Src="~appWebUrl/Pages/ClientWebPart1.aspx?Direction=_FlowDirection_"

Remember that the feature element is an XML file, so any special characters, such as & or %,
should be represented in URL-encoded format. To access the provided values while executing the
App Part, use jQuery extensions or custom JavaScript code, just as you would with any other HTML or
JavaScript application.

www.it-ebooks.info

http://www.it-ebooks.info/

278 PaRt III Developing SharePoint apps

Figure 8-16 shows how the various types of properties are rendered in the SharePoint UI. To dis-
play the tool pane, click the Edit Web Part menu, which is available while the page is in Edit mode, as
it is for any other classic Web Part in SharePoint.

FIGURE 8-16 The UI for configuring the properties of an App Part.

After you install your app, you can add the App Part to a target page. You simply need to edit the
page, and on the ribbon’s Insert tab, click the App Part button. You will be prompted with the list of
all the available App Parts, including SearchContactsAppPart. Figure 8-17 illustrates the UI for insert-
ing the sample App Part in a target page.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 279

FIGURE 8-17 The UI for adding an App Part to a target page.

Notice that, although you are still in edit mode, your App Part is fully functional already. In fact,
the code behind the App Part is based on JavaScript and runs both in edit and design mode.

Creating custom UI extensions
Custom UI extensions allow your SharePoint apps to interact with the end user through the standard
UI of SharePoint. You can add custom menu items in the ECB, and custom ribbon commands and tabs
to the ribbons of standard SharePoint pages, while using exactly the same tools and techniques you
would for any other UI customization (see Chapter 12). In addition, while working in SharePoint apps,
you also have the support of a few dedicated tools and wizards.

To create a custom UI extension, you simply need to add a new item to an already existing
SharePoint app project. To add a new menu item, right-click the project in Visual Studio 2012 Solution
Explorer, select Add from the menu, and then choose New Item and finally Menu Item Custom Action.
In the wizard that appears, provide the appropriate answers to create the new menu item. Figure 8-18
depicts the first step of this wizard.

www.it-ebooks.info

http://www.it-ebooks.info/

280 PaRt III Developing SharePoint apps

FIGURE 8-18 The first step of the wizard for creating a new menu item extension.

First, you can choose whether the menu item will be created within the app web or the host web.
Then you can choose where the menu item will be scoped. The available options are

■■ List Template The new menu item will be scoped to every list based on a specified
template.

■■ List Instance The new menu item will be scoped to a specific list instance.

■■ Content Type The new menu item will be scoped to a specific content type, regardless of
the list template or list instance where it will be used.

■■ File Extension The new menu item will be scoped to a particular file extension of items in
libraries.

The wizard will adapt to the selection you make. For example, if you choose List Instance, then you
will have to choose the specific target instance; when choosing Content Type, you will have to select
the target content type; and so on.

In the second step of the wizard (Figure 8-19), you define the caption of the menu item, as well as
the target URL to drive the user to when the menu item is selected.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 281

FIGURE 8-19 The second step of the wizard for creating a new menu item extension.

After you complete the wizard, Visual Studio will prompt you with a new feature element that
defines the custom action. Listing 8-10 shows sample content for such a file.

LISTING 8-10 A sample feature element for provisioning a menu item extension

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <CustomAction Id="db823841-8f6c-4b9a-912d-2b839eeddb43.SendDocumentToContact"
 RegistrationType="List"
 RegistrationId="101"
 Location="EditControlBlock"
 Sequence="10001"
 Title="Send document to the Contacts App">
 <!--
 Update the Url below to the page you want the custom action to use.
 Start the URL with the token ~remoteAppUrl if the page is in the
 associated web project, use ~appWebUrl if page is in the app project.
 -->
 <UrlAction Url="~appWebUrl/Pages/SendDocument.aspx" />
 </CustomAction>
</Elements>

www.it-ebooks.info

http://www.it-ebooks.info/

282 PaRt III Developing SharePoint apps

The UrlAction element, within the CustomAction element, defines a new menu item that targets
the ECB menu of any item within a document library, as declared by attributes RegistrationType =
List and RegistrationId = 101. For further details about the various options for the attributes of
CustomAction and UrlAction elements, please read Chapter 12. Notice also the Id attribute of the
CustomAction element, which defines the unique ID of the menu item and should be a unique literal
value. Moreover, the Url attribute defined in the UrlAction element can reference content under the
app web, in case you start the URL with the ~appWebUrl token. Otherwise, if the target content is
under the host web, you can start the URL with the ~remoteAppUrl token.

The next steps are to create a page with a name corresponding to the one you provided while
defining the custom action, and to start debugging the app. To create a new page, right-click
the Pages folder in the SharePoint app project and select Add | New Item | Page. Moving into a
document library within the host web, you will notice that the ECB menu contains the new item
Send Document To The Contacts App (see Figure 8-20). Click this menu item and you will be
redirected to the custom page you just created.

FIGURE 8-20 The custom menu item extension in action.

Behind the scenes, the SharePoint environment invokes a GET method to redirect the browser to a
URL such as the following:

_layouts/15/appredirect.aspx?client_id={clientId}&redirect_uri=%7EappWebUrl%2FPages%2FSendDocum
ent%2Easpx

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 283

where the {clientId} argument is a token describing the current context. If you want to provide some
arguments to the target URL—for example, the ID of the source document or the ListId of the source
library—you can modify the Url attribute of the UrlAction element, including some predefined tokens.
Here is a sample Url value for this purpose:

<UrlAction Url="~appWebUrl/Pages/SendDocument.aspx?ItemId={ItemId}&ListId={ListId}" />

All the available URL tokens will be discussed in the “Custom actions” section of Chapter 12.

Many menu item customizations apply to custom ribbons, as well. To add a custom ribbon, for
example, right-click the SharePoint app project and select Add | New Item | Ribbon Custom Action. A
wizard will ask you questions very similar to those for creating a new menu item. This time, however,
you can choose from only three scope values: List Template, List Instance, and None. While the first
two scopes are the same as before, while creating custom menu items, the None option creates a rib-
bon command independent from any target scope.

The second step of the wizard (Figure 8-21) is specific for ribbons and asks you to provide informa-
tion about the location of the ribbon command, the caption, and the target URL. The location of the
ribbon can be one of the predefined locations (see Chapter 12) or a custom location.

FIGURE 8-21 The second step of the wizard for creating a new ribbon command extension.

www.it-ebooks.info

http://www.it-ebooks.info/

284 PaRt III Developing SharePoint apps

Once again, the result of the wizard will be an XML file defining a feature element of type
CustomAction. This time, the CustomAction will use the syntax to define a ribbon command. (For more
details about defining ribbon commands, ribbon tabs, and groups, read Chapter 12.) An interesting
thing to notice is that with a ribbon command, you can either define a target URL to redirect the end
user to, or you can provide a JavaScript set of instructions to execute directly in the context of the
current page. Listing 8-11 shows the resulting XML feature element, while Figure 8-22 illustrates the
resulting ribbon command.

LISTING 8-11 A sample feature element for provisioning a menu item extension

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <CustomAction Id="56116170-9f53-4000-ba3e-5eafe9c43ec3.SendDocumentsToContact"
 RegistrationType="List"
 RegistrationId="101"
 Location="CommandUI.Ribbon"
 Sequence="10001"
 Title="Invoke 'SendDocumentsToContact' action">
 <CommandUIExtension>
 <!--
 Update the UI definitions below with the controls and the command actions
 that you want to enable for the custom action.
 -->
 <CommandUIDefinitions>
 <CommandUIDefinition
 Location="Ribbon.Documents.Manage.Controls._children">
 <Button Id="Ribbon.Documents.Manage.SendDocumentsToContactButton"
 Alt="Send Documents to Contact"
 Sequence="100"
 Command="Invoke_SendDocumentsToContactButtonRequest"
 LabelText="Send Documents to Contact"
 TemplateAlias="o1"
 Image32by32="_layouts/15/images/placeholder32x32.png"
 Image16by16="_layouts/15/images/placeholder16x16.png" />
 </CommandUIDefinition>
 </CommandUIDefinitions>
 <CommandUIHandlers>
 <CommandUIHandler Command="Invoke_SendDocumentsToContactButtonRequest"
 CommandAction="~appWebUrl/Pages/Default.aspx"/>
 </CommandUIHandlers>
 </CommandUIExtension >
 </CustomAction>
</Elements>

FIGURE 8-22 The custom ribbon command extension created in the sample.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 285

Autohosted apps

This section will move on from the SharePoint-hosted scenario to discuss the autohosted host-
ing model. The autohosted model uses a site that is automatically provisioned for you on Windows
Azure websites. Thus, you can take advantage of the out-of-the-box capabilities of Windows Azure
websites, including multitenancy, load balancing, high availability, and support for the SQL Azure
data repository.

Creating an autohosted app
From a practical viewpoint, an autohosted app can do almost everything a SharePoint-hosted app can
do. However, by default, an autohosted app does not have an app web for storing data and information;
instead, it uses a persistence infrastructure of its own, which can be based on SQL Azure. The auto-
hosted model works only for SharePoint sites hosted on Office 365 or SharePoint Online. At the time
of this writing, Microsoft has not yet announced the pricing model for hosting apps on Windows Azure
websites. In fact, so far, apps hosted on Windows Azure cannot be published to the Office Store.

To create an autohosted app, you can start Visual Studio 2012 and create a new SharePoint app.
In the first step of the resulting wizard, provide the URL of an Office 365–hosted site and choose the
autohosted hosting model. The procedure may be similar, but the solution outline (see Figure 8-23) is
slightly different compared to a SharePoint-hosted app.

FIGURE 8-23 The solution outline for an autohosted app for SharePoint.

www.it-ebooks.info

http://www.it-ebooks.info/

286 PaRt III Developing SharePoint apps

The outline includes a classic ASP.NET web application, which can be any kind of ASP.NET
web application, as well as a SharePoint app project, which contains only the AppIcon.png and
AppManifest.xml files. These two files are the same as those of a SharePoint-hosted app. You could
add to the SharePoint app project feature elements for provisioning content types, pages, lists, and so
on; however, these elements would require an app website. On the contrary, because you are devel-
oping an autohosted app, you will probably prefer to benefit from the Windows Azure environment
instead of using SharePoint for storing data and content of your app.

The ASP.NET web application is made of a Pages folder with a Default.aspx page, a Scripts folder
with some useful JavaScript files, the classic web.config file, and a TokenHelper.cs file, which supports
the application in managing and handling the secure communication with SharePoint. The Default.
aspx file, unlike the SharePoint-hosted app page, will have some .NET code behind it. If you open the
Default.aspx.cs file, you will find code similar to Listing 8-12.

LISTING 8-12 The .NET code behind the Default.aspx page of an autohosted app

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace DevLeap.SP2013.ContactsAppAutoHostedWeb.Pages {
 public partial class Default : System.Web.UI.Page {
 protected void Page_Load(object sender, EventArgs e) {
 // The following code gets the client context and
 // Title property by using TokenHelper.
 // To access other properties, you may need to request
 // permissions on the host web.
 var contextToken = TokenHelper.GetContextTokenFromRequest(
 Page.Request);
 var hostWeb = Page.Request["SPHostUrl"];

 using (var clientContext =
 TokenHelper.GetClientContextWithContextToken(
 hostWeb, contextToken, Request.Url.Authority)) {
 clientContext.Load(clientContext.Web, web => web.Title);
 clientContext.ExecuteQuery();
 Response.Write(clientContext.Web.Title);
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 287

The main part of the code is the Page_Load method, where the page retrieves the Title property
of the host web and writes it back to the HTTP response. Because the autohosted app site is hosted
outside SharePoint, the code needs to retrieve a security context token with proper authorizations to
access the host web and its properties. The following line does the magic:

var contextToken = TokenHelper.GetContextTokenFromRequest(Page.Request);

It uses the TokenHelper class, which is automatically generated by the project template, and that
class reads a few arguments from the query string to create a secured communication session against
the host web. The code of the TokenHelper class is open, you can read it and eventually change it. Of
course, just because you can it does not mean you should change it. Probably the best thing to do is
to read through the TokenHelper class—without changing it—to better understand how it works with
the CSOM. You can see that the page uses the CSOM to retrieve the Title of the host web and creates
a ClientContext object instance based on the contextToken gained through the page request. You can
replace this code with anything else, and if you like to interact with the host web, you can simply use
the CSOM to provide an authenticated and authorized context token to the ClientContext. (For more
thorough detail on the CSOM, see Chapter 7.)

If you start debugging the app, you will have to provide credentials to access the Office 365
environment before you are presented with the page for trusting the app. Because an autohosted
app works outside the context of SharePoint, you will always have to trust it during installation. Next,
you will be redirected to the site hosting the app. Notice that while debugging in your development
environment, the autohosted app site will run locally on Internet Information Services (IIS) Express
so that you can debug it on your local machine. In the next section, you will learn how to publish the
app, once you have finished development and testing.

As you can see from the output of the app in the web browser, you can control all the UI and UX
details for an autohosted app. Thus, the layout of the output is up to you and your code.

Converting a site to a SharePoint app
Starting from scratch is one way to create your SharePoint App, but luckily for ASP.NET developers,
there is another way: you can convert a classic ASP.NET project into a SharePoint autohosted app,
meaning you can take advantage of the new and more productive MVC4 (Model-View-Controller 4.0)
pattern available in ASP.NET 4.x. To try this option, create a new solution made of an ASP.NET 4.0 site
based on MVC4, or use an already existing site you want to convert to a SharePoint app. Right-click
the web project node in Solution Explorer and select the Add App For SharePoint Project menu item
(Figure 8-24). Of course, you can use this functionality against any kind of ASP.NET project, not only
with MVC4 sites.

www.it-ebooks.info

http://www.it-ebooks.info/

288 PaRt III Developing SharePoint apps

FIGURE 8-24 The menu item for creating a SharePoint app from an already existing ASP.NET website.

Important Do not choose a .NET version greater than 4.0 because, at the time of this writ-
ing, ASP.NET 4.5 is not supported by the autohosted apps environment on Windows Azure.
Of course, this might change in the future.

Next, provide the URL of the host web, on Office 365 or SharePoint Online, for publishing the
already existing ASP.NET website. Once you do, a new SharePoint app project will be added to
the solution and some new references will be added to the ASP.NET web project. The name of the
SharePoint app project will be the same of the ASP.NET web project, ending with the .SharePoint suf-
fix. Moreover, the action will add a TokenHelper class to the ASP.NET web project, in order to support
the SharePoint 2013 authentication and authorization environment. Now, the ASP.NET web project is
the UI for the SharePoint app project. In fact, if you open the property grid of the SharePoint app, you
can see that the MVC4 project is configured in the Web Project property of the app. See Figure 8-25
for details.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 289

FIGURE 8-25 The property grid of the SharePoint autohosted app with the Web Project property in evidence.

handling a SQL azure database
As you can see from Figure 8-25, there are also properties for configuring a SQL Database project and
a SQL Data script. Suppose the example autohosted app uses a custom SQL Azure database on the
back end for storing contacts data. In this case, you can add a new SQL Server database to the cur-
rent solution. To do so, right-click the solution and choose Add | New Project | SQL Server Database
Project. Open the properties of the database project and configure its target platform to SQL Azure.

More Info If you do not configure the target platform to SQL Azure, Visual Studio will
advise you and change it for you, as soon as you wire the SQL Database project to the
SharePoint app. In fact, the only database platform supported by autohosted apps is
SQL Azure.

Now add a new table for holding contacts to the database project (Add | New Item | Table) and
configure some fields. For the sake of simplicity, in addition to the Id primary key field, configure just
the following text fields: ContactDescription, ContactPhone, and ContactEmail. The final layout of the
table will be similar to Figure 8-26.

www.it-ebooks.info

http://www.it-ebooks.info/

290 PaRt III Developing SharePoint apps

FIGURE 8-26 The designer of the Contacts table defined in the SQL Azure database.

Now you can configure the SQL Database project as the target database for the SharePoint app
simply by selecting the new database project in the SQL Database property of the SharePoint
app project.

To autopopulate the database with sample data, you can add an SQL script to the project and con-
figure it in the SQL Data Script property of the SharePoint app. In real scenarios, you will probably use
this script to autopopulate lookup tables, as well as to execute any other SQL script that you will need
to commit just after having created the SQL Azure database.

Listing 8-13 provides the code excerpt you can use to retrieve an instance of a SqlConnection
object for accessing the SQL Azure database—for example, for using it with Entity Framework.
In fact, you cannot configure the connection string directly in the web.config file of your auto-
hosted app, because while writing your app you won’t know where the SQL Azure database will be

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 291

deployed. To solve this issue, the SharePoint Client Object Model provides you with a class named
AppInstance, which has a method called TryGetAppDatabaseConnectionDirect that accepts the current
ClientContext instance and a couple of output arguments for trying to retrieve the current database
connection.

LISTING 8-13 The .NET code to retrieve the SqlConnection object of a SQL Azure database for an autohosted app

SqlConnection connection;
Boolean isReadOnly;

var contextToken = TokenHelper.GetContextTokenFromRequest(
HttpContext.Current.Request);
var hostWeb = request["SPHostUrl"];

using (var clientContext = TokenHelper.GetClientContextWithContextToken(
 hostWeb, contextToken, request.Url.Authority)) {
 AppInstance.TryGetAppDatabaseConnectionDirect(clientContext,
 out connection, out isReadOnly);

 // This code block closes the connection in case of usage with Entity
 // Framework
 if (connection.State != System.Data.ConnectionState.Closed) {
 connection.Close();
 }
}

While working locally, the SQL Azure database will be deployed on your local machine under a
connection string like the following:

Data Source=(localdb)\Projects;Initial Catalog=DevLeap.SP2013.ContactsAppAutoHosted.
DB;Integrated Security=True;Pooling=False;Connect Timeout=30;ApplicationIntent=ReadWrite

While on Windows Azure, the connection string will map to a real SQL Azure environment. Now
you are free to use the database from any kind of code for accessing the database, such as direct
System.Data.SqlClient objects, Entity Framework, or whatever else you like. In the companion source
code, you will find a complete code example of using Entity Framework for accessing the Contacts
entities, rendering the output in a read-only grid. Take a look at the result in Figure 8-27.

www.it-ebooks.info

http://www.it-ebooks.info/

292 PaRt III Developing SharePoint apps

FIGURE 8-27 The sample SharePoint app based on SQL Azure rendering the list of Contacts entities.

the SharePoint Chrome control
As shown in Figure 8-27, the output is extremely simple, leaving a great deal of room for improve-
ment to the UI and UX. For example, the app is missing a command bar to interact with the
SharePoint environment, as well as a Back button to return to the host web. Such UI components were
provided by default for SharePoint-hosted apps. You could create chrome to mimic a SharePoint-
hosted app, but you don’t have to: SharePoint provides a control called a Chrome control, which
renders based on some HTML/JavaScript/CSS code and can be included in any SharePoint app page.
Listing 8-14 provides the source code of the Default.aspx page of an autohosted app with the Chrome
control in place.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 293

LISTING 8-14 The Default.aspx page of the autohosted app with the Chrome control in place

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"
Inherits="DevLeap.SP2013.ContactsAppAutoHostedWeb.Pages.Default" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Contacts Autohosted App with Chrome</title>
 <script type="text/javascript"
 src="//ajax.aspnetcdn.com/ajax/4.0/1/MicrosoftAjax.js"></script>
 <script type="text/javascript"
 src="//ajax.aspnetcdn.com/ajax/jQuery/jquery-1.7.2.min.js"></script>
 <script type="text/javascript">
 "use strict";

 var hostweburl;

 //load the SharePoint resources
 $(document).ready(function () {
 //Get the URI decoded URL.
 hostweburl =
 decodeURIComponent(
 getQueryStringParameter("SPHostUrl")
);

 // The SharePoint js files URL are in the form:
 // web_url/_layouts/15/resource
 var scriptbase = hostweburl + "/_layouts/15/";

 // Load the js file and continue to the
 // success handler
 $.getScript(scriptbase + "SP.UI.Controls.js", renderChrome)
 });

 // Callback for the onCssLoaded event defined
 // in the options object of the chrome control
 function chromeLoaded() {
 // When the page has loaded the required
 // resources for the chrome control,
 // display the page body.
 $("body").show();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

294 PaRt III Developing SharePoint apps

 //Function to prepare the options and render the control
 function renderChrome() {
 // The Help, Account and Contact pages receive the
 // same query string parameters as the main page
 var options = {
 "appIconUrl": "../AppIcon.png",
 "appTitle": "Contacts Autohosted App with Chrome",
 "appHelpPageUrl": "Help.html?"
 + document.URL.split("?")[1],
 // The onCssLoaded event allows you to
 // specify a callback to execute when the
 // chrome resources have been loaded.
 "onCssLoaded": "chromeLoaded()",
 "settingsLinks": [
 {
 "linkUrl": "Account.html?"
 + document.URL.split("?")[1],
 "displayName": "Account settings"
 },
 {
 "linkUrl": "Contact.html?"
 + document.URL.split("?")[1],
 "displayName": "Contact us"
 }
]
 };

 var nav = new SP.UI.Controls.Navigation(
 "chrome_placeholder",
 options
);
 nav.setVisible(true);
 }

 // Function to retrieve a query string value.
 // For production purposes you may want to use
 // a library to handle the query string.
 function getQueryStringParameter(paramToRetrieve) {
 var params =
 document.URL.split("?")[1].split("&");
 var strParams = "";
 for (var i = 0; i < params.length; i = i + 1) {
 var singleParam = params[i].split("=");
 if (singleParam[0] == paramToRetrieve)
 return singleParam[1];
 }
 }
 </script>
</head>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 295

<body>
 <form id="form1" runat="server">
 <div id="chrome_placeholder"></div>
 <div style="margin: 10px;">
 <h1 class="ms-accentText">Contacts App</h1>
 <h2 class="ms-accentText">The list of Contacts</h2>
 <div id="MainContent">

 <asp:GridView ID="gridContacts" runat="server" CellPadding="4"
 ForeColor="#333333" GridLines="None">
 <AlternatingRowStyle BackColor="White" />
 <EditRowStyle BackColor="#2461BF" />
 <FooterStyle BackColor="#507CD1" Font-Bold="True"
 ForeColor="White" />
 <HeaderStyle BackColor="#507CD1" Font-Bold="True"
 ForeColor="White" />
 <PagerStyle BackColor="#2461BF" ForeColor="White"
 HorizontalAlign="Center" />
 <RowStyle BackColor="#EFF3FB" />
 <SelectedRowStyle BackColor="#D1DDF1" Font-Bold="True"
 ForeColor="#333333" />
 <SortedAscendingCellStyle BackColor="#F5F7FB" />
 <SortedAscendingHeaderStyle BackColor="#6D95E1" />
 <SortedDescendingCellStyle BackColor="#E9EBEF" />
 <SortedDescendingHeaderStyle BackColor="#4870BE" />
 </asp:GridView>
 </div>
 </div>
 </form>
</body>
</html>

The code contains a couple of JavaScript inclusions in the header of the page. Taken from the
official Microsoft CDN, these JavaScript files support jQuery and AJAX. Next, an explicit script injects
the JavaScript file SP.UI.Controls.js from the source host web URL. Moreover, the script prepares
the Chrome control for rendering, providing the ID of a DIV control that will be the placeholder for
the Chrome control, as well as a set of options. These options define the title, icon, help page URL,
and additional Settings menu links for rendering in the Chrome control. Compare Figure 8-28 with
Figure 8-27 to fully appreciate the results of this makeover. Notice the custom items in the Settings
menu, as well as the Back button to return to the host site.

www.it-ebooks.info

http://www.it-ebooks.info/

296 PaRt III Developing SharePoint apps

FIGURE 8-28 The Default.aspx page of the autohosted app, with the Chrome control in action.

One last thing to emphasize about the Chrome control is that when you change the design of
the host site, the app site will reflect the same choices because the Chrome control loads its styles
dynamically.

Provider-hosted apps

A provider-hosted app is almost like an autohosted app, except it uses a third-party provider for host-
ing the web application rather than Windows Azure websites. The third-party provider can manually
provision Windows Azure or can be based on anything else, even an on-premises server farm of your
own. On its second page, the Visual Studio wizard for creating a provider-hosted app asks you to
choose between using Windows Azure Access Control Services (ACS) for authentication and authori-
zation, rather than using a high-trust configuration based on a private certificate and asymmetric keys
exchange (see Figure 8-29). The first choice is suitable when your app will be used on sites hosted on
Office 365. The second choice, High Trust, is suitable for on-premises scenarios and will be discussed
later, in the “Security infrastructure” section.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 297

FIGURE 8-29 The second step of the wizard for creating a provider-hosted app.

Behind the scenes, the only difference between an autohosted app and a provider-hosted app
is a line in the AppManifest.xml file. An autohosted app has the following piece of XML in the
AppPrincipal element:

<AppPrincipal>
 <AutoDeployedWebApplication/>
 </AppPrincipal>

while a provider-hosted app contains this:

<AppPrincipal>
 <RemoteWebApplication ClientId="*" />
 </AppPrincipal>

As you can see, the ClientId attribute has a value of * (that is, any) because you will have to provide
the real value for this data during the publishing phase only. While developing and debugging, you
will not need it. Instead, you will use the localhost site hosted by IIS Express. (Again, the “Security
infrastructure” section provides more detail.)

www.it-ebooks.info

http://www.it-ebooks.info/

298 PaRt III Developing SharePoint apps

Publishing apps and the Office Store

Now you are ready to publish your app to your customers, using either a corporate app catalog or the
Office Store. Regardless of which you choose, you need to prepare the proper output files first. In this
section, you will learn how to achieve these results.

Deploying a SharePoint app
Invoking the Deploy command for a SharePoint-hosted app or an autohosted app is easy: simply
right-click the app project in Visual Studio Solution Explorer and click the Deploy command on the
menu. The result will be a complete deployment of your app on the target platform. For example,
your autohosted app will be packaged and published for you on Office 365 and on Windows Azure.
Now you can test this project while running completely in the cloud or while on the target platform.
Suppose you deployed the autohosted Contacts app on your developer site in Office 365. After
deployment, the autohosted app will be executed from a dedicated hosting infrastructure, using
Windows Azure websites and SQL Azure on the back end, instead of being executed from your local-
host using IIS Express and the local SQL Server Express. Of course, in this last scenario, you will not be
able to debug the server code. The URL of your app will become something like the following:

https://52b8b0c7-78da-4a07-9d2b-3190e07625f5.o365apps.net/

As you can see, the URL references the Office 365 autohosted apps environment (o365apps.net),
and every app installation receives a unique GUID-based host name. If you want to remove the app,
you can invoke the Retract menu item, still available by right-clicking the app project in Solution
Explorer, or you can explicitly remove it from the target host site.

Publishing a SharePoint app
When you’re ready to publish your app, right-click the SharePoint app project in Solution Explorer
and choose Publish from the menu to open the publishing wizard. For SharePoint-hosted and auto-
hosted apps, the wizard only allows you to click the Finish button to create the package for publish-
ing. The result will be an APP file placed inside the app.publish subfolder of the Debug or Release
folder of the project, depending the compilation type you are using.

Important When publishing a final release of your app, compile it in release mode. Do
not publish the APP file taken from the Debug folder; publishing software compiled in
debug mode is a very bad practice for security and performances reasons. Because the
publishing wizard opens the destination folder for you by default, as long as you publish
the app while in release mode, you should be safe.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 299

The APP file is an ordinary ZIP file, but with .app extension instead. In fact, if you change the
file extension from .app to .zip and you explore the content, you will find files and folders describ-
ing the app for publishing. For an autohosted app, for instance, you’ll see the AppIcon.png file,
the AppManifest.xml file, a DACPAC file for provisioning the database on SQL Azure, a ZIP file for
provisioning the website onto Windows Azure websites (if necessary), resource files, and so on. For
SharePoint-hosted apps, you will see the AppIcon.png file, the AppManifest.xml, and the resources
files, as well as a WSP file, which will be used for provisioning all the SharePoint artifacts onto the app
website. Figure 8-30 compares the outline of two APP files: one for a SharePoint-hosted app (on the
left) and one for an autohosted app (on the right).

FIGURE 8-30 The contents of a SharePoint-hosted app’s APP file (left) and an autohosted app’s APP file (right),
once renamed into ZIP.

In either case, you can manually upload the resulting APP file to a developer site for testing, pub-
lish it to a corporate app catalog, or submit it to the Office Store to make it publicly available.

www.it-ebooks.info

http://www.it-ebooks.info/

300 PaRt III Developing SharePoint apps

While publishing a provider-hosted app, you are presented with a rich wizard. The first page asks
you to select or create a new publishing profile (see Figure 8-31). It even offers you options for mul-
tiple profiles for testing, staging, production, and so on.

FIGURE 8-31 The first step of the publishing wizard for publishing a provider-hosted app.

The second page (Figure 8-32) asks you to provide information about the hosting environment,
including the URL of the target site, the client ID, and the client secret for secure communication
between SharePoint and the provider-hosted app. You can retrieve the client ID and client secret
values from the Seller Dashboard available on the Office Store, or you can generate them from the
target host site. (For more information, see the “Security infrastructure” section later in the chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 301

FIGURE 8-32 The second step of the publishing wizard for publishing a provider-hosted app.

The last page is just a recap of your settings. This time, the result of the publishing wizard will be a
set of files: an APP file for publishing the app, a DEPLOY file (web deploy file) for the website deploy-
ment, and a ZIP file with the contents of the website.

the corporate app catalog
To publish an app to the corporate app catalog, you need to have the URL of the corporate app cata-
log site collection configured for your current web application or tenant, as well as a set of authorized
credentials for publishing apps. Then you can simply upload the APP file to the catalog into the Apps
For SharePoint library. The results will be similar to the corporate app catalog in Figure 8-33. In the
section “App management configuration and deployment,” you will learn how to configure an app
catalog on your farm.

www.it-ebooks.info

http://www.it-ebooks.info/

302 PaRt III Developing SharePoint apps

FIGURE 8-33 The list of apps for SharePoint published in a corporate app catalog.

Once you have configured a corporate app catalog for a web application or tenant, and you have
published some apps on it, you can add an app to a target site by clicking Site Contents, and then
Add An App. You can then choose apps published through the corporate app catalog by browsing
a specific category of apps called From Your Organization. Figure 8-34 shows how the apps are pre-
sented to the end user. Notice that, for the sake of completeness, the app catalog in the figure also
contains an autohosted app, which is not available in an on-premises scenario. Thus, the app catalog
highlights this issue and does not allow the user to install that app.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 303

FIGURE 8-34 The user’s view of the apps in a corporate app catalog.

If you are a farm administrator, you will be able to monitor app installation and usage from
SharePoint Central Administration (SPCA).

The Office Store
What if you want to make your apps available for the entire world? In that case, you need to rely on
the Office Store provided by Microsoft (http://www.office.com/store). To do so, you first need to cre-
ate a seller account for publishing apps. With a valid and enabled account, you can access the Seller
Dashboard at https://sellerdashboard.microsoft.com. There, after logging in with a valid Windows Live
ID, you will be able to submit an app, manage your already submitted apps, register client IDs, and
monitor metrics of selling and downloads of your apps. Figure 8-35 shows the first step for creating
an app profile. You have to choose whether you are publishing an app for Office or SharePoint, or an
app for Windows Azure. Note, however, that the Seller Dashboard is the same for both types of apps.

More Info For further information about how to create a seller account, read the docu-
ment “How to: Create or edit your seller account in the Microsoft Seller Dashboard,” avail-
able on MSDN online at http://msdn.microsoft.com/en-us/library/office/apps/jj220034.aspx.

www.it-ebooks.info

http://www.office.com/store
https://sellerdashboard.microsoft.com
http://msdn.microsoft.com/en-us/library/office/apps/jj220034.aspx
http://www.it-ebooks.info/

304 PaRt III Developing SharePoint apps

FIGURE 8-35 The first page of the wizard for submitting an app to the Office Store through the Seller Dashboard.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 305

Click Next to go to the page for providing information about the app (title, version number, logo,
category, screen shots, target markets, trial periods, and so on). As shown in Figure 8-36, during this
phase you also must provide the APP file package.

FIGURE 8-36 The second page of the wizard for submitting an app to the Office Store through the Seller
Dashboard.

www.it-ebooks.info

http://www.it-ebooks.info/

306 PaRt III Developing SharePoint apps

On the third page (Figure 8-37), you can provide descriptive information, up to five screen shots
with a fixed size of 512×384 pixels, license information, and so on.

FIGURE 8-37 The third page of the wizard for submitting an app to the Office Store through the Seller
Dashboard.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 307

On the wizard’s last page, shown in Figure 8-38, you can configure the price for your app or
choose to make it freely available.

FIGURE 8-38 The last step for submitting an app to the Office Store through the Seller Dashboard.

Note You must provide your app’s price on a per-user bases, but you can also specify the
maximum number of user licenses that a customer can buy. If a customer buys a number of
user licenses higher than the price threshold you set, he or she will pay only for the number
of licenses configured in the Price Threshold field. Imagine you configure a price of $9.99
with a price threshold of 10 (as in Figure 8-38). Then, if a customer buys 20 copies of your
app, he or she will pay only $99.90 (the price of 10 licenses), but will have the right to use
up to 20 licenses.

Your app will be verified and checked against an approval process based on the rules outlined
at the following URL: http://msdn.microsoft.com/en-us/library/office/apps/jj220035. Upon approval
completion, your app will be available worldwide either on Office 365 or on-premises (as long as the
farm administrators of the on-premises farm have enabled the capability to freely install apps from
the Office Store).

As a seller, you will be able to monitor how your app sells on the market, as well as your revenues
in the case of for-purchase apps.

www.it-ebooks.info

http://www.it-ebooks.info/

308 PaRt III Developing SharePoint apps

Upgrading apps
The app model of SharePoint also provides a standard path for upgrading your apps. Whether you
need to upgrade your app to fix a bug or add new features, the process is the same:

1. Create a new APP package with a new version number.

2. Change that information in AppManifest.xml file.

3. Upload the file again to the Office Store or app catalog.

Upon changing the version number and republishing the app, you will have a new subfolder in the
app.publish folder. From there you will be able to get the new upgraded APP file.

For apps published through the Office Store, however, you will need to submit the new and
updated version for approval before publishing to the end users. For apps published through a cor-
porate app catalog, you simply update the APP file in the catalog’s target Apps For SharePoint library.
Regardless of the publishing environment you are using, existing installations will not be upgraded
automatically. Instead, end users who have installed the app will be informed by the environment that
a newer version is available, as shown in Figure 8-39.

FIGURE 8-39 The notification of an available upgrade for an installed app.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 309

Authorized users can upgrade the app by clicking the Get It button. During the upgrade pro-
cess, the user will have to trust the app again. In fact, the upgraded version could have changed the
permissions requirements. During the upgrade process, the app will show an informational message
while on the Site Contents page.

The upgrade process for SharePoint-hosted apps is simple and easy. For autohosted apps, the
upgrade of the Windows Azure website is handled on the Azure platform. The upgrade process for
provider-hosted apps also involves the external publishing infrastructure, so be careful while upgrad-
ing these apps. In fact, you should not upgrade a provider-hosted app site introducing breaking
changes, unless you are absolutely sure that all of your existing customers and users have already
upgraded the app on their SharePoint environments. Usually, in these cases it would be better to keep
different versions of the app online, on the provider side, to support customers who are reluctant to
upgrade to the new versions of your app.

App management configuration and deployment

While you work on Office 365, the entire environment and application software is provided as a
service, ready to use, according to the Software as a Service (SaaS) offering model. However, also
having an on-premises farm that’s fully functional and capable of supporting SharePoint apps can
be very useful, especially while working in a development environment. In this section, you will learn
how to configure a SharePoint 2013 on-premises farm to provide full support for the new app model.
This section will assume that you already have a SharePoint 2013 farm ready for the app environment
configuration.

First, you will need to configure the required service applications: the Subscription Settings service
and the App Management service. To do so, you can use SPCA, or you can run a PowerShell script, as
in Listing 8-15.

LISTING 8-15 A PowerShell script for configuring the services required for running the app model on-premises

Add-PSSnapin Microsoft.SharePoint.PowerShell -erroraction SilentlyContinue

$subSettingstName = "Subscription Settings Service"
$subSettingstDatabaseName = "SP2013_Farm_SubSettingsDB"
$appManagementName = "App Management Service"
$appManagementDatabaseName = "SP2013_Farm_AppManagementDB"

Write-Host "Creating Subscription Settings Service and Proxy..."
$subSvc = New-SPSubscriptionSettingsServiceApplication –ApplicationPool
$saAppPoolName
 –Name $subSettingstName –DatabaseName $subSettingstDatabaseName
$subSvcProxy = New-SPSubscriptionSettingsServiceApplicationProxy
 –ServiceApplication $subSvc
Get-SPServiceInstance | where-object {$_.TypeName -eq $subSettingstName} |
 Start-SPServiceInstance > $null

www.it-ebooks.info

http://www.it-ebooks.info/

310 PaRt III Developing SharePoint apps

Write-Host "Creating App Management Service and Proxy..."
$appManagement = New-SPAppManagementServiceApplication -Name $appManagementName
 -DatabaseServer $databaseServerName -DatabaseName $appManagementDatabaseName
 –ApplicationPool $saAppPoolName
$appManagementProxy = New-SPAppManagementServiceApplicationProxy
 -ServiceApplication $appManagement -Name "$appManagementName Proxy"
Get-SPServiceInstance | where-object {$_.TypeName -eq $appManagementName} |
 Start-SPServiceInstance > $null

The very beginning of the script declares four literal variables that you can configure based on
your naming conventions. The script simply creates the Subscription Settings service application,
together with its proxy, and starts an instance of the service on the current server. The same happens
for the App Management service application.

To configure the App Management service for supporting apps, first create a web application for
hosting apps. To define such a web application, you need to determine the host name that will be
used for that web application. For example, you could decide to install all the apps under a top-level
domain dedicated to hosting apps (something like company-apps.com), or you could host apps in a
subdomain of the main domain of your on-premises farm (something like apps.company.com). The
former scenario is the one recommended by Microsoft in official product deployment guidelines.
Configure your DNS accordingly by creating a catchall CNAME record in a new top-level domain or a
subdomain in the already existing domain. The CNAME record should map to the host name where
the apps will be installed. For example, in case your domain and host name is company.com, the
CNAME will be for * or for *.apps, respectively, and should map to company.com.

Next, create a new web application for hosting the apps and the app websites. Once again, you
can use SPCA or PowerShell. Listing 8-16 demonstrates the PowerShell method.

LISTING 8-16 A PowerShell script for creating the web application for hosting apps

Add-PSSnapin Microsoft.SharePoint.PowerShell -erroraction SilentlyContinue

$PortalAppName = "Apps Portal Host"
$PortalAppPort = 80
$PortalAppPool = "AppsAppPool"
$PortalAppPoolUsername = "SHAREPOINT\SPContent"
$PortalAppDatabaseName = "SP2013_Farm_WSS_Content_Apps_Portal"
$PortalAppProxyGroup = "IntranetProxyGroup"

$appPoolAccount = Get-SPManagedAccount -Identity $PortalAppPoolUsername -EA 0
if($appPoolAccount -eq $null)
{
 Write-Host "Please supply the password for the Service Account..."
 $appPoolCred = Get-Credential $PortalAppPoolUsername
 $appPoolAccount = New-SPManagedAccount -Credential $appPoolCred -EA 0
}
$appPoolAccount = Get-SPManagedAccount -Identity $PortalAppPoolUsername -EA 0

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 311

Creates a new claims-based NTLM (default) authentication provider
$ap = New-SPAuthenticationProvider

Create the Portal Host
New-SPWebApplication -Name $PortalAppName -Port $PortalAppPort
 -ApplicationPool $PortalAppPool -ApplicationPoolAccount $appPoolAccount
 -DatabaseName $PortalAppDatabaseName -AuthenticationProvider $ap
 -ServiceApplicationProxyGroup $PortalAppProxyGroup

Create the Portal Root Site Collection
$PortalRootOwner = "SHAREPOINT\Administrator"
$PortalRootName = "Apps Portal"

$PortalRootTemplate = Get-SPWebTemplate "STS#1"

New-SPSite -Url "http://sp2013srv01/" -OwnerAlias $PortalRootOwner -Template
$PortalRootTemplate -Name $PortalRootName

The script creates a new web application on the default server host name using the default con-
figuration for claims-based authentication, and creates a root site collection based on the Blank Site
template (STS#1). Again, the variables defined at the beginning of the script should be configured
according to your farm and naming conventions.

To finalize the configuration of the services, you should configure the app domain name and the
app prefix, which will be the name of the domain used for the autogenerated host names for host-
ing apps, as well as the prefix used while generating the host names. You can do that from SPCA by
choosing Apps and then Configure Apps URLs in the App Management section. You can also still use
PowerShell, executing the following two lines of code:

Set-SPAppDomain company-apps.com
Set-SPAppSiteSubscriptionName -Name "apps" -Confirm:$false

In the first line, you configure the domain name, which in the example is a top-level domain with a
value of company-apps.com. While in the second line, you configure the prefix, which is "apps". Thus,
the resulting apps URLs will be something like this:

http://apps-{UniqueID}.company-apps.com/sites/{ParentSiteName}/{AppName}/

Important For security reasons, it is strongly suggested to host apps under a secured site,
which provides its content via HTTPS. For testing and development purposes, however, you
can host apps in your development environment in a site published over HTTP. Moreover,
when registering autohosted apps or provider-hosted apps, either on-premises or on the
Seller Dashboard of the Office Store, you are obliged to provide a URL over HTTPS.

www.it-ebooks.info

http://www.it-ebooks.info/

312 PaRt III Developing SharePoint apps

To complete the installation of your environment, you should configure an app catalog for provid-
ing corporate apps to your users. To do that, you need to have a corporate catalog site collection
available in your web application or tenant. The template to use is APPCATALOG#0, and you can cre-
ate it using the New-SPSite cmdlet or SPCA. Still using PowerShell, you can configure a site for being
the app catalog using the following syntax:

Update-SPAppCatalogConfiguration -Site "http://www.company.com/sites/AppCatalog" -Force:$true
-SkipWebTemplateChecking:$true

The URL of the site collection passed to the cmdlet will determine the target web application or
tenant for the command. Otherwise, you can use SPCA, navigate to the Apps page, and select the
Manage App Catalog menu item in the App Management group. There you will be able to create a
corporate app catalog site collection from scratch and associate it with the target web application or
tenant.

Security infrastructure

The last topic to cover in this chapter is the security infrastructure behind the scenes of the SharePoint
app model. As you know, every SharePoint app uses an app principal, which represents the identity
of the app and determines the app’s authorizations for accessing resources. This security environ-
ment uses the Security Token Service (STS) available in SharePoint, SAML (Security Assertion Markup
Language) tokens, and the OAuth access tokens. The whole environment is based on the claims-based
authentication model, which is the default authentication model in SharePoint 2013.

Important Apps are not supported in SharePoint web applications configured with classic
mode authentication.

The hosting method you choose for your app determines how it handles authentication. For
example, SharePoint-hosted apps run on an app web, which is a subsite of the host web. When work-
ing in app websites, you can take advantage of internal authentication, which allows your app code to
use the CSOM and REST for accessing both the app web and the host web, without requiring explicit
app authentication code. (Of course, you still will need explicit permissions.) On the contrary, auto-
hosted and provider-hosted apps run on external, remote websites. In these cases, your code will
need to use external authentication, which is explicit authentication based on Windows Azure ACS or
a server-to-server (S2S) trust relationship. To be authenticated and authorized for accessing resources,
autohosted and provider-hosted apps require OAuth access tokens. The access tokens can contain
information about the app only, or can carry information about a user identity inside a context token.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 313

In all hosting cases, you can use policies within your code to enforce authorizations for both the
user and the app. When an app calls SharePoint using the CSOM or REST from client-side code, for
example, both the user and the app need to adhere to the required permissions. If either of them
misses the proper permissions, the app code will fail with an access-denied exception. When an
autohosted or provider-hosted app executes server-side code, your policy needs to enforce authori-
zation for the app only. You must explicitly enable this scenario in the app’s AppManifest.xml file by
setting the AllowAppOnlyPolicy attribute to true in the AppPermissionsRequests element. Only site
collection administrators can grant use of the app-only policy. If the app-only policy is granted and
the app already has tenant-scoped permissions, then the user must be a tenant administrator to grant
use of the app-only policy. Finally, to use this capability in server-side code, you will need to invoke
the GetAppOnlyAccessToken method of the TokenHelper class for retrieving a special app-only access
token. Behind the scenes, all app-only requests are made by SHAREPOINT\APP, which is a special user
that cannot be used during explicit authentication, almost like SHAREPOINT\SYSTEM.

All these scenarios are possible thanks to the OAuth protocol and Windows Azure ACS. In Chapter
20, “Claims-based authentication, federated identities, and OAuth,” you will learn more about OAuth,
ACS, user and app authentication, and the internals of the security infrastructure of SharePoint 2013.
For now, however, simply understand that every single time you register an autohosted or provider-
hosted app in SharePoint, you will need to provide a client ID and client secret information for secur-
ing the authentication and providing a valid and secure access token. When working with autohosted
apps, the Office 365 environment must create this information and configure the remote web applica-
tion to use them. When you work with provider-hosted apps, it is your responsibility to configure the
client ID and the client secret in the remote web application. In fact, you have explicit configuration
settings to provide while publishing the app, as you have already seen in Figure 8-32. There are also
some application pages for managing app principals:

■■ /_layouts/15/AppRegNew.aspx Allows manual registration of a new app, providing the cli-
ent ID and client secret, as well as the remote domain and redirect URL for the target app

■■ /_layouts/15/AppPrincipals.aspx Enumerates all the registered apps, together with their
unique client IDs

■■ /_layouts/15/AppInv.aspx Allows you to retrieve app registration information (title,
domain, and redirect URL) based on a provided client ID

www.it-ebooks.info

http://www.it-ebooks.info/

314 PaRt III Developing SharePoint apps

When publishing your apps through the Office Store, you must create a client ID and client secret
through a wizard on the Seller Dashboard of the Office Store. As shown in Figure 8-40, the first page
of the wizard asks you to specify the client ID and the client secret.

FIGURE 8-40 The first page of the wizard for creating a client ID and a client secret.

After you click the Generate Client ID button, you can review and make note of your settings from
the wizard’s recap page, as shown in Figure 8-41.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 SharePoint apps 315

FIGURE 8-41 The recap page of the Seller Dashboard displays your newly created client ID and client secret.

As you can see, the screen provides all the security information (client ID and client secret) and
urges you to copy the details to a safe place. For security reasons, you will never be able to come
back to this screen after clicking the Done button. If you lose your client ID or client secret, you can’t
retrieve them—you must recreate them from scratch.

More Info For further details about configuring app principals and OAuth, read the docu-
ment “Tips and FAQs: OAuth and remote apps for SharePoint 2013,” which is available on
MSDN online at http://msdn.microsoft.com/en-us/library/fp179932.aspx.

If you cannot rely on OAuth and ACS for authenticating an app principal, you can use S2S authen-
tication, which requires you to configure a trust relationship between SharePoint and your app. This
rarely used scenario works only on-premises and uses a certificate, to whose private key the app code
should have access. This is a high-trust scenario, because the app is trusted by SharePoint but still has

www.it-ebooks.info

http://www.it-ebooks.info/

316 PaRt III Developing SharePoint apps

a restricted set of permissions. It is not a full-trust solution, in which the code can do almost every-
thing. Moreover, a high-trust app is responsible for authenticating the end users, because it cannot
use the capability of OAuth 2.0 and ACS to transfer the user identity through the context token. To
configure this scenario, you will need to provide the app with an X.509 certificate, as well as execute
some PowerShell scripts to register the certificate and the trust on the SharePoint side.

More Info For further details about configuring a high-trust scenario, read the document
“How to: Create high-trust apps for SharePoint 2013 using the server-to-server protocol
(advanced topic),” available at http://msdn.microsoft.com/en-us/library/fp179901.aspx.

Summary

In this chapter, you learned a great deal about the architecture of SharePoint apps. Specifically, you
learned the differences between SharePoint-hosted, autohosted, and provider-hosted apps, as well as
how to develop them. Then you explored the internals of the AppManifest.xml file of SharePoint apps.
You discovered how to deploy and publish an app, either on a corporate app catalog or on the Office
Store. Lastly, you examined the workings of the security infrastructure of the SharePoint app model.
Now you are ready to create your own apps and publish them.

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/fp179901.aspx
http://www.it-ebooks.info/

 317

C H A P T E R 9

the new SharePoint ReSt aPI

Another important introduction in Microsoft SharePoint 2013 is the REST (Representational State
Transfer) API. The REST API gives any platform access to many key objects, properties, and

methods that were previously available only via the Client Object Model for Microsoft .NET, Microsoft
Silverlight, and JavaScript. In fact, the new API provides a rich set of REST URIs that you can access via
HTTP and XML/JSON (JavaScript Object Notation) for consuming nearly every capability of the Client
Object Model. All you need is a third-party technology capable of consuming REST services. In this
chapter, you will learn about the architecture of this new REST API, as well as how to manage the most
common tasks for everyday programming needs.

Introducing the REST API

The overall architecture of the REST API is based on the client.svc WCF service, which serves the classic
Client Object Model, but implements an OData-compliant endpoint, too.

More Info OData stands for Open Data Protocol, and you can read more about it at
http://www.odata.org/.

You can access the REST API at the relative URL _api/ of any SharePoint site. For example, to access
the API targeting the root site collection of a target web application, you can open your browser and
navigate to a URL such as the following:

http://devbook.sp2013.local/_api/site

where devbook.sp2013.local in the example is the host name of a sample web application. The previ-
ous URL is just an alias to the real URL, which is

http://devbook.sp2013.local/_vti_bin/client.svc/site

As you can see, the real URL corresponds to client.svc, which was discussed in Chapter 7, “Client-
side technologies.” It is just an additional RESTful endpoint that publishes the capabilities of the classic
Client Object Model through the OData protocol. By browsing to such a URL, you will see that the
result is an XML representation—based on the ATOM protocol—of information about the current site
collection. (When using Internet Explorer, be sure to disable the feed-reading view in the browser’s

www.it-ebooks.info

http://www.it-ebooks.info/

318 PaRt III Developing SharePoint apps

content properties.) At the beginning of the ATOM response, there is a list of links targeting many
additional URLs for accessing information and APIs related to the current site collection. At the end of
the response, there are some properties specific to the current site collection.

Here are some other commonly used URLs of APIs, which are useful while developing on
SharePoint:

■■ http://devbook.sp2013.local/_api/web Use to access the information about the target
website.

■■ http://devbook.sp2013.local/_api/web/lists Use to access the collection of lists in the
target website.

■■ http://devbook.sp2013.local/_api/web/lists/GetByTitle('Title of the List') Use to access
the information of a specific list instance, selected by title.

■■ http://devbook.sp2013.local/_api/search Use to access the Search query engine.

As you can see, the root of any relative endpoint is the _api/ trailer, which can be followed by many
API targets (as the following section will illustrate) and correspond to the most common artifacts of
SharePoint. As with many REST services, you can communicate with this REST API not only by the
browser, invoking URLs with the HTTP GET method, but also by using a client capable of communicat-
ing over HTTP and parsing ATOM or JSON responses. In fact, depending on the HTTP Accept header
provided within the request, the REST service will provide ATOM (Accept: application/atom+xml) or
JSON (Accept: application/json;odata=verbose) answers. By default, REST service responses are pre-
sented by using the ATOM protocol, according to the OData specification.

Depending on the HTTP method and headers (X-Http-Method) you use, you can take advantage
of various capabilities of the API, taking advantage of a complete CRUDQ (create, read, update,
delete, and query) set of methods. The available HTTP methods and headers are:

■■ GET These requests typically represent read operations, which apply to objects, properties,
or methods, which return information.

■■ POST Without any additional X-Http-Method header, this method is used for creation
operations. For example, you can use POST to post a file to a library, to post an item to a list,
or to post a new list definition for creation in a target website. While invoking POST opera-
tions against a target object, any property that is not required and is not specified in the HTTP
invocation will be set to its default value. If you provide a value for a read-only property, you
will get an exception.

■■ PUT, PATCH, and MERGE These requests are used for update operations. You can use PUT
to update an object. While invoking PUT operations, you should specify all writable prop-
erties. If any property is missing, the operation could fail or could set the missing proper-
ties back to their default values. The PATCH and MERGE operations are based on the POST
method, with the addition of an X-Http-Method header with a value of PATCH or MERGE.
They are equivalent, and you should always use the former, because the latter is provided for
backward compatibility only. Like PUT, PATCH and MERGE handle update operations. The big

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 9 The new SharePoint REST API 319

difference is that with PATCH and MERGE, any writeable property that is not specified will
retain its current value.

■■ DELETE These requests are for deleting an item and can be implemented with POST, plus
the additional X-Http-Method header with a value of DELETE. If you invoke this operation
against recyclable objects, SharePoint will move them to the Recycle Bin.

Listing 9-1 demonstrates how to use the new REST API. The sample is intentionally written using a
legacy programming language, specifically VBScript in a .vbs file, to demonstrate that the REST APIs
are available to any platform and any technology landscape. The code reads the title of a list instance
in a target website.

LISTING 9-1 A sample VBScript file for reading the title of a list instance in a target website using the REST API

Dim xmlResponse 'As Microsoft.XMLDOM
Dim xmlHttp 'As Microsoft.XMLHTTP
Dim titleNode 'As Microsoft.Msxml.IXMLDOMNode

Set xmlResponse = CreateObject("Microsoft.XMLDOM")
Set xmlHttp = CreateObject("Microsoft.XMLHTTP")

xmlHttp.Open "GET", "http://devbook.sp2013.local/_api/web/lists/
GetByTitle('DevLeap%20Contacts')", false
xmlhttp.setRequestHeader "Content-Type", "application/xml"
xmlHttp.Send

xmlResponse.async = false
xmlResponse.LoadXml xmlHttp.responseText
xmlResponse.SetProperty "SelectionLanguage", "XPath"
xmlResponse.SetProperty "SelectionNamespaces", _ xmlns:a='http://www.
w3.org/2005/ Atom'" & _
 " xmlns:d='http://schemas.microsoft.com/ado/2007/08/dataservices'" & _
 " xmlns:m='http://schemas.microsoft.com/ado/2007/08/dataservices/metadata'"

Set titleNode = xmlResponse.SelectSingleNode("/a:entry/a:content/" & _
 "m:properties/d:Title/text()")

MsgBox titleNode.Text

Set title = Nothing
Set xmlResponse = Nothing
Set xmlHttp = Nothing

The sample code invokes a GET method to begin creating and configuring a Microsoft.XMLHTTP
object for requesting a specific list instance by title. The result will be an XML (ATOM) representa-
tion of the list information, which will look like the excerpt in Listing 9-2. Near the end of Listing
9-2, notice the XML node with a qualified name value of d:title. Highlighted in bold, this represents
the Title property of the list, and it is associated with a namespace that has a prefix value of d. The
namespace URI of that namespace is http://schemas.microsoft.com/ado/2007/08/dataservices and
corresponds to the well-known ADO.NET Data Services namespace URI.

www.it-ebooks.info

http://www.it-ebooks.info/

320 PaRt III Developing SharePoint apps

LISTING 9-2 An excerpt of the XML (ATOM) representation of the list information of a specific list instance

<?xml version="1.0" encoding="utf-8"?>
<entry xml:base="http://devbook.sp2013.local/_api/"
xmlns="http://www.w3.org/2005/Atom"
 xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 xmlns:georss="http://www.georss.org/georss"
 xmlns:gml="http://www.opengis.net/gml"
 m:etag=""7"">
 <id>http://devbook.sp2013.local/_api/Web/Lists(guid'bb72c030-20d0-47a6-b290-
f4f60e873d70')</id>
 <category term="SP.List"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme"/>
 <link rel="edit" href="Web/Lists(guid'bb72c030-20d0-47a6-b290-f4f60e873d70')"/>
 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/
FirstUniqueAncestorSecurableObject" type="application/atom+xml;type=entry"
title="FirstUniqueAncestorSecurableObject" href="Web/Lists(guid'bb72c030-20d0-
47a6-b290-f4f60e873d70')/FirstUniqueAncestorSecurableObject"/>
 <link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/
RoleAssignments" type="application/atom+xml;type=feed" title="RoleAssignments"
href="Web/Lists(guid'bb72c030-20d0-47a6-b290-f4f60e873d70')/RoleAssignments"/>

 <!-- List of link elements omitted for the sake of brevity -->

 <title/>
 <updated>2013-01-07T06:03:56Z</updated>
 <author>
 <name/>
 </author>
 <content type="application/xml">
 <m:properties>
 <d:AllowContentTypes m:type="Edm.Boolean">true</d:AllowContentTypes>
 <d:BaseTemplate m:type="Edm.Int32">10001</d:BaseTemplate>
 <d:BaseType m:type="Edm.Int32">0</d:BaseType>
 <d:ContentTypesEnabled m:type="Edm.Boolean">true</d:ContentTypesEnabled>
 <d:Created m:type="Edm.DateTime">2012-11-25T23:02:56Z</d:Created>
 <d:DefaultContentApprovalWorkflowId m:type="Edm.Guid">00000000-0000-0000-
0000-000000000000</d:DefaultContentApprovalWorkflowId>
 <d:Description></d:Description>
 <d:Direction>none</d:Direction>
 <d:DocumentTemplateUrl m:null="true"/>
 <d:DraftVersionVisibility m:type="Edm.Int32">0</d:DraftVersionVisibility>
 <d:EnableAttachments m:type="Edm.Boolean">true</d:EnableAttachments>
 <d:EnableFolderCreation m:type="Edm.Boolean">false</d:EnableFolderCreation>
 <d:EnableMinorVersions m:type="Edm.Boolean">false</d:EnableMinorVersions>
 <d:EnableModeration m:type="Edm.Boolean">false</d:EnableModeration>
 <d:EnableVersioning m:type="Edm.Boolean">false</d:EnableVersioning>
 <d:EntityTypeName>DevLeap_x0020_ContactsList</d:EntityTypeName>
 <d:ForceCheckout m:type="Edm.Boolean">false</d:ForceCheckout>
 <d:HasExternalDataSource m:type="Edm.Boolean">false
</d:HasExternalDataSource>
 <d:Hidden m:type="Edm.Boolean">false</d:Hidden>
 <d:Id m:type="Edm.Guid">bb72c030-20d0-47a6-b290-f4f60e873d70</d:Id>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 9 The new SharePoint REST API 321

 <d:ImageUrl>/_layouts/15/images/itgen.png</d:ImageUrl>
 <d:IrmEnabled m:type="Edm.Boolean">false</d:IrmEnabled>
 <d:IrmExpire m:type="Edm.Boolean">false</d:IrmExpire>
 <d:IrmReject m:type="Edm.Boolean">false</d:IrmReject>
 <d:IsApplicationList m:type="Edm.Boolean">false</d:IsApplicationList>
 <d:IsCatalog m:type="Edm.Boolean">false</d:IsCatalog>
 <d:IsPrivate m:type="Edm.Boolean">false</d:IsPrivate>
 <d:ItemCount m:type="Edm.Int32">4</d:ItemCount>
 <d:LastItemDeletedDate m:type="Edm.DateTime">2012-11-30T00:39:15Z
</d:LastItemDeletedDate>
 <d:LastItemModifiedDate m:type="Edm.DateTime">2012-11-30T00:39:15Z
</d:LastItemModifiedDate>
<d:ListItemEntityTypeFullName>SP.Data.DevLeap_x0020_ContactsListItem
</d:ListItemEntityTypeFullName>
 <d:MultipleDataList m:type="Edm.Boolean">false</d:MultipleDataList>
 <d:NoCrawl m:type="Edm.Boolean">false</d:NoCrawl>
 <d:ParentWebUrl>/</d:ParentWebUrl>
 <d:ServerTemplateCanCreateFolders
 m:type="Edm.Boolean">true</d:ServerTemplateCanCreateFolders>
 <d:TemplateFeatureId m:type="Edm.Guid">743feab9-3136-4e92-862f-
c554a63fdaa1</d:TemplateFeatureId>
 <d:Title>DevLeap Contacts</d:Title>

 </m:properties>
 </content>
</entry>

You can achieve the same goal with any other programming or scripting language capable of
communicating over HTTP and managing ATOM or JSON answers. For example, consider Listing 9-3,
which is written in C#: the click event handler of a Button control within a Microsoft Windows Store
app for Windows 8 consumes the collection of lists available in a target website, using the HttpClient
class of the Windows Runtime. Notice the code for creating an HttpClient instance configured to use
integrated security and to accept JSON responses (highlighted in bold).

More Info For further information about developing Windows Store Apps for Windows
8, consult Build Windows 8 Apps with Microsoft Visual C# and Visual Basic Step by Step, by
Luca Regnicoli, Paolo Pialorsi, and Roberto Brunetti (Microsoft Press, 2013).

www.it-ebooks.info

http://www.it-ebooks.info/

322 PaRt III Developing SharePoint apps

LISTING 9-3 A Windows Store app consuming the collection of lists of a site collection using the REST API

private async void DownloadLists_Click(object sender, RoutedEventArgs e) {
 List<String> listsTitles = new List<string>();

 HttpClientHandler handler = new HttpClientHandler();

 handler.UseDefaultCredentials = true;

 HttpClient client = new HttpClient(handler);

 client.DefaultRequestHeaders.Add("Accept", "application/json;odata=verbose");

 HttpResponseMessage response = await client.GetAsync(

 "http://devbook.sp2013.local/_api/web/lists");

 String jsonString = await response.Content.ReadAsStringAsync();
 JsonObject o = JsonObject.Parse(jsonString);

 foreach (var i in o.FirstOrDefault().Value.GetObject()
 .FirstOrDefault().Value.GetArray()) {
 JsonObject item = i.GetObject();
 if (!item["Hidden"].GetBoolean())
 listsTitles.Add(item["Title"].GetString());
 }

 this.ListOfLists.ItemsSource = listsTitles;
}

Eventually, and for testing purposes, you can also play with tools like Fiddler Composer
(http://www.fiddler2.com) in order to test the behavior and the responses provided by the REST API.

aPI reference
Every method offered by the REST API can be invoked using a reference URL, which is made accord-
ing to the schema illustrated in Figure 9-1.

FIGURE 9-1 The schema of the URL of any REST API published by SharePoint 2013.

The protocol moniker can be http or https, depending on the web application configuration.
The {hostname} argument is clearly the host name—which will eventually include the fully qualified
domain name—of the target web application. The subsequent {site} is the target site collection and is

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 9 The new SharePoint REST API 323

optional, because you could target the root site collection. Following the _api trailer is a {namespace}
argument that corresponds to one of the target families of APIs. Table 9-1 lists some of the main
available namespaces. The URL ends with a reference to an {object}, a specific {property}, an {indexer},
or a {method} call. Indexers will be followed by a numeric {index} argument, while method calls could
be followed by {parameter} arguments. For some operations, the arguments can be provided as a
JSON object in the HTTP POST request body, as well.

TABLE 9-1 The main namespaces available in URLs of the REST API

Namespace Target

site The current site collection. Can be used to browse site collection properties and configuration,
and corresponds to the Microsoft.SharePoint.Client.Site class of the Client-Side Object Model
(CSOM).

web The current website. Can be used to browse website properties, configuration, and contents, and
corresponds to the Microsoft.SharePoint.Client.Web class of the CSOM.

SP.UserProfiles.
PeopleManager

The APIs for working with the User Profile service within the context of the current user, and cor-
responds to the Microsoft.SharePoint.Client.UserProfiles.PeopleManager class of the CSOM.

ContextInfo Retrieves the context of the current session, which corresponds to the serialization of an object
of type Microsoft.SharePoint.SPContextWebInformation.

search The search engine of SharePoint. Can be used to search content and suggestions.

publishing The publishing engine. Can be used to manage the publishing capabilities.

social.feed The social capabilities. Includes operations for accessing social feeds, followers, followed con-
tents, and so on.

The REST API offers about 2,000 classes and more than 6,000 members, which are available
throughout the hierarchy of objects of the CSOM, using the preceding namespaces as root objects.
The first three namespaces are easy to manage and understand, because you simply need to refer-
ence the corresponding CSOM types and compose the request URLs. For example, the Site class of the
Microsoft.SharePoint.Client namespace offers a property with name Owner and type User. Using the
REST API, you can invoke the GET verb to retrieve the following URL:

http://devbook.sp2013.local/_api/site/owner

Moreover, for invoking the GetWebTemplates method, which accepts the culture parameter, you
can invoke the following URL:

http://devbook.sp2013.local/_api/site/GetWebTemplates(1033)

The value 1033 provided is the en-US culture. Consult the CSOM online reference
(http://msdn.microsoft.com/en-us/library/ee544361.aspx) to see all the available properties, methods,
and members in general.

Notice that for security reasons, all the operations that modify data will require a security form
digest with a name of X-RequestDigest in the HTTP request headers. To retrieve the value needed for
this header, you have a couple of options:

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/ee544361.aspx
http://www.it-ebooks.info/

324 PaRt III Developing SharePoint apps

■■ Working in JavaScript, inside a web page directly hosted in SharePoint or a SharePoint-hosted
app, you can retrieve the value of the digest from a hidden INPUT field with an ID value of
__REQUESTDIGEST. For example, using jQuery, you can reference the field with the following
syntax: $("# __REQUESTDIGEST").val().

■■ Working in any other context, you can invoke (using the POST method) the ContextInfo
namespace and retrieve the form digest value from the ATOM or JSON response. By default,
the form digest retrieved through this method will expire in 1,800 seconds.

Listing 9-4 shows the JSON output of the ContextInfo method invocation. The form digest value is
highlighted in bold.

LISTING 9-4 The JSON output of the ContextInfo method invocation

{
 "d": {
 "GetContextWebInformation": {
 "__metadata": {
 "type":"SP.ContextWebInformation"
 },
 "FormDigestTimeoutSeconds":1800,
 "FormDigestValue":"0x8B48E76BAF6C86A17CCEC50F9A29E7CBB85816B883417C52C10C67
 FB19760517B774CD71E43517635386DE585E92A0262779824E5E0C7ECA905436A048AC85AC,

 08 Jan 2013 01:11:57 -0000",

 "LibraryVersion":"15.0.4420.1017",
 "SiteFullUrl":"http://devbook.sp2013.local",
 "SupportedSchemaVersions": {
 "results": [
 "14.0.0.0",
 "15.0.0.0"
]
 },
 "WebFullUrl":"http://devbook.sp2013.local"
 }
 }
}

Listing 9-5 provides a code excerpt of a Windows Store app for Windows 8 that invokes the
EnsureUser method of a target website, providing a value for the form digest HTTP header after
extracting that value from the ContextInfo method.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 9 The new SharePoint REST API 325

LISTING 9-5 A code excerpt for invoking the EnsureUser method of a target website via the REST API

private async void EnsureUser_Click(object sender, RoutedEventArgs e) {
 HttpClientHandler handler = new HttpClientHandler();
 handler.UseDefaultCredentials = true;
 HttpClient client = new HttpClient(handler);
 client.DefaultRequestHeaders.Add("Accept", "application/json;odata=verbose");
 HttpResponseMessage response = await client.PostAsync(
 "http://devbook.sp2013.local/_api/ContextInfo", null);
 String jsonString = await response.Content.ReadAsStringAsync();
 JsonObject o = JsonObject.Parse(jsonString);

 var info = o.FirstOrDefault().Value.GetObject().FirstOrDefault().Value;

 String digest = String.Empty;

 if (info != null) {

 digest = info.GetObject()["FormDigestValue"].GetString();

 }

 client.DefaultRequestHeaders.Add("X-RequestDigest", digest);

 response = await client.PostAsync(
 "http://devbook.sp2013.local/_api/web/EnsureUser('SampleUser01')", null);

 if (!response.IsSuccessStatusCode) {
 throw new Exception("Error while invoking EnuserUser method!");
 }
}

The other namespaces (search, publishing, and social.feed, for instance) provide some useful opera-
tions for managing the search engine, the publishing capabilities, and the social feeds.

Querying data
Another useful capability of the new REST API is the support for OData querying. Every time you
invoke an operation that returns a collection of entities, you can also provide an OData-compliant set
of query string parameters for sorting, filtering, paging, and projecting that collection. For example,
imagine querying the list of items available in a document library. The URL would be:

http://hostname/_api/web/lists/GetByTitle('Documents')/Items

In case you are interested in the list of files in the root folder of the library, the corresponding
URL is:

http://hostname/_api/web/lists/GetByTitle('Documents')/RootFolder/Files

www.it-ebooks.info

http://www.it-ebooks.info/

326 PaRt III Developing SharePoint apps

According to the OData specification, you can append the following querying parameters to the URL:

■■ $filter Defines partitioning criteria on the current entity set. For example, you can provide
the query string argument $filter=substringof('LINQ',Name)%20eq%20true to retrieve docu-
ments with LINQ in their file name.

■■ $select Projects only a subset of properties (fields) of the entities in the current entity set.
For example, you can provide a value of $select=Name,Author to retrieve only the file name
and the author of every file in the entity set.

■■ $orderby Sorts data returned by the query. You can provide query string arguments with
a syntax like $sort=TimeLastModified%20desc,Name%20asc to sort files descending by
TimeLastModified and ascending by Name.

■■ $top Selects the first N items of the current entity set. Use the syntax &top=5 to retrieve only
the first five entities from the entity set.

■■ $skip Skips the first N items of the current entity set. Use the syntax $skip=10 to skip the first
10 entities of the entity set.

■■ $expand Automatically and implicitly resolves and expands a relationship between an
entity in the current entity set and another related entity. For example, you can use the syntax
$expand=Author to retrieve the author of a file.

As you have already seen in the previous example, the arguments provided to an OData query
must be URL encoded because they are passed to the query engine via REST, through the URL of the
service. Space characters must be converted into %20, for example, and any other nonalphanumeric
characters must be converted into their corresponding encoded values.

In the previous examples, you saw just a quick preview of the available functions and operators
for filtering entities with OData. Table 9-2 provides the full list of the available logical operations
defined in the OData core specification. You can also read the official core documentation of OData
at http://www.odata.org/media/30002/OData.html. The operators in bold are supported by the
SharePoint 2013 REST API.

TABLE 9-2 The logical operations available in the OData core specification

Operator Description Example

eq Equal /Suppliers?$filter=Address/City eq 'Redmond'

ne Not equal /Suppliers?$filter=Address/City ne 'London'

gt Greater than /Products?$filter=Price gt 20

ge Greater than or equal /Products?$filter=Price ge 10

lt Less than /Products?$filter=Price lt 20

le Less than or equal /Products?$filter=Price le 100

and Logical and /Products?$filter=Price le 200 and Price gt 3.5

or Logical or /Products?$filter=Price le 3.5 or Price gt 200

not Logical negation /Products?$filter=not endswith(Description,'milk')

www.it-ebooks.info

http://www.odata.org/media/30002/OData.html
http://www.it-ebooks.info/

 CHAPTER 9 The new SharePoint REST API 327

There are also some arithmetic operators, which are listed in Table 9-3.

TABLE 9-3 The arithmetic operators available in the OData core specification

Operator Description Example

add Addition /Products?$filter=Price add 5 gt 10

sub Subtraction /Products?$filter=Price sub 5 gt 10

mul Multiplication /Products?$filter=Price mul 2 gt 2000

div Division /Products?$filter=Price div 2 gt 4

mod Modulo /Products?$filter=Price mod 2 eq 0

None of the arithmetic operators defined in the OData core specification are supported by the
SharePoint 2013 REST API. While defining a query, you can compose operators using parentheses—
()—to group elements and define precedences. For example, you can write the following:

/Products?$filter=(Price sub 5) gt 10

Lastly, in queries for partitioning data, you can also use functions for strings, dates, math, and
types. Table 9-4 provides the full list of functions available in the OData specification. Again, the
operators highlighted in bold are those supported by SharePoint 2013 REST API.

TABLE 9-4 The functions available in the OData core specification for querying entities

Function Description Example

bool substringof(string
searchString, string
searchInString)

Returns a Boolean value stating whether the value
provided in the first argument is a substring of the
second argument. Can be used as a replacement
for the contains method.

substringof('Alfreds',Company
Name)

bool endswith(string string,
string suffixString)

Returns a Boolean value declaring whether the
string provided in the first argument ends with the
string provided in the second argument.

endswith(CompanyName,'Futte
rkiste')

bool startswith(string
string, string prefixString)

Returns a Boolean value declaring whether the
string provided in the first argument starts with the
string provided in the second argument.

startswith(CompanyName,'Alfr')

int length(string string) Returns an integer value representing the length of
the string provided as the argument.

length(CompanyName) eq 19

int indexof(string searchIn-
String, string searchString)

Returns an integer value representing the index of
the string provided in the second argument, which
is searched within the string provided in the first
argument.

indexof(CompanyName,'lfreds')
eq 1

string replace(string
searchInString, string search-
String, string replaceString)

Replaces the string provided in the second argu-
ment with the string provided in the third argu-
ment, searching within the first string argument.

replace(CompanyName,' ', '') eq
'AlfredsFutterkiste'

string substring(string string,
int pos)

Returns a substring of the string provided in the
first argument, starting from the integer position
provided in the second argument.

substring(CompanyName,1) eq
'lfreds Futterkiste'

string substring(string string,
int pos, int length)

Returns a substring of the string provided in the
first argument, starting from the integer position
provided in the second argument and stopping
after a number of characters provided in the third
integer argument.

substring(CompanyName,1, 2)
eq 'lf'

www.it-ebooks.info

http://www.it-ebooks.info/

328 PaRt III Developing SharePoint apps

Function Description Example

string tolower(string string) Returns a string that is the lowercase conversion of
the string provided as the string argument.

tolower(CompanyName) eq
'alfreds futterkiste'

string toupper(string string) Returns a string that is the uppercase conversion of
the string provided as the string argument.

tolower(CompanyName) eq
'alfreds futterkiste'

string trim(string string) Returns a string trimmed of spaces, based on the
string provided as the argument.

trim(CompanyName) eq 'Alfreds
Futterkiste'

string concat(string string1,
string string2)

Returns a string that is the concatenation of the
two string arguments provided.

concat(concat(City,', '), Country)
eq 'Berlin, Germany'

int day(DateTime
datetimeValue)

Returns an integer that corresponds to the day of
the datetime value provided as the argument.

day(BirthDate) eq 8

int hour(DateTime
datetimeValue)

Returns an integer that corresponds to the hours of
the datetime value provided as the argument.

hour(BirthDate) eq 1

int minute(DateTime
datetimeValue)

Returns an integer that corresponds to the minutes
of the datetime value provided as the argument.

minute(BirthDate) eq 0

int month(DateTime
datetimeValue)

Returns an integer that corresponds to the month
of the datetime value provided as the argument.

month(BirthDate) eq 12

int second(DateTime
datetimeValue)

Returns an integer that corresponds to the seconds
of the datetime value provided as the argument.

second(BirthDate) eq 0

int year(DateTime
datetimeValue)

Returns an integer that corresponds to the year of
the datetime value provided as the argument.

year(BirthDate) eq 1948

double round(double
doubleValue)

Returns a double number that is the rounded value
of the double value provided as the argument.

round(Freight) eq 32

decimal round(decimal
decimalValue)

Returns a decimal number that is the rounded
value of the decimal value provided as the
argument.

round(Freight) eq 32

double floor(double
doubleValue)

Returns a double number that is the floor value of
the double value provided as the argument.

floor(Freight) eq 32

decimal floor(decimal
datetimeValue)

Returns a decimal number that is the floor value of
the decimal value provided as the argument.

floor(Freight) eq 32

double ceiling(double
doubleValue)

Returns a double number that is the ceiling value
of the double value provided as the argument.

ceiling(Freight) eq 33

decimal ceiling(decimal
datetimeValue)

Returns a decimal number that is the ceiling value
of the decimal value provided as the argument.

ceiling(Freight) eq 33

bool IsOf(type value) Returns a Boolean value stating if the target entity
is of the type provided as the argument.

isof('NorthwindModel.Order')

bool IsOf(expression value,
type targetType)

Returns a Boolean value stating if the expression
provided as the first argument, is of the type pro-
vided as the second argument.

isof(ShipCountry,'Edm.String')

Based on all the information provided in previous paragraphs, you should now be able to under-
stand the following query:

http://devbook.sp2013.local/_api/web/lists/GetByTitle(Documents')/RootFolder/Files?$expand=Autho
r&$select=Name,Author,TimeLastModified&$sort=TimeLastModified%20desc,Name&$skip=20&$top=10&$filt
er=substringof('Chapter',Name)%20eq%20true

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 9 The new SharePoint REST API 329

You can disassemble and decode the query string parameters with the information provided in
Table 9-5.

TABLE 9-5 The sample query string parameters explained

Query part Explanation

$expand=Author Expand the related object author while retrieving the documents.

$select=Name,Author,TimeLastModified Retrieve the fields name, author, and time last modified.

$sort=TimeLastModified desc,Name Sort the output descending by TimeLastModified and ascending by
Name.

$skip=20 Skip the first 20 items of the result set (the first two pages of 10
items).

$top=10 Retrieve only the first 10 items of the result set (the third page of 10
items).

$filter= substringof('Chapter',Name) eq true Retrieve only files with a file name that contains the literal Chapter.

More Info For quick testing and definition of OData queries, you can use LINQPad, which
is a smart tool available at the following URL: http://www.linqpad.net.

If you are working with the .NET Framework, the OData client library already creates such queries
for you, allowing you to write LINQ queries on the consumer side. If you are working with any other
development technology, however, you do need to understand and write this kind of queries.

Managing data
Creating, updating, deleting, and otherwise managing entities using OData and the REST API is
relatively simple as long as you remember a few rules. First, as you‘ve already seen, you must provide
the X-RequestDigest HTTP header whenever you want to change some data. Second, when managing
lists and lists items, you need to avoid concurrency conflicts by specifying an additional HTTP header
with the name IF-MATCH, which assumes a value called ETag. To avoid concurrency conflicts, read
the ETag value by retrieving the target entity (list or list instance) with a GET method. The ETag value
will be included in the response HTTP headers and in the response content, regardless of whether it
is formatted in ATOM or JSON. Listing 9-6 includes a sample set of HTTP response headers returned
by SharePoint 2013 while selecting a list instance via the REST API. The ETag header is highlighted
in bold.

Note The IF-MATCH header applies only to lists and list items and can assume a value
of * for situations where you do not care about concurrency and merely want to force
your action.

www.it-ebooks.info

http://www.it-ebooks.info/

330 PaRt III Developing SharePoint apps

LISTING 9-6 A sample set of HTTP response headers returned while querying a list instance via the REST API

HTTP/1.1 200 OK
Cache-Control: private, max-age=0
Transfer-Encoding: chunked
Content-Type: application/json;odata=verbose;charset=utf-8
Expires: Mon, 24 Dec 2012 11:17:56 GMT
Last-Modified: Tue, 08 Jan 2013 11:17:56 GMT
ETag: "7"
Server: Microsoft-IIS/8.0
X-SharePointHealthScore: 0
SPClientServiceRequestDuration: 31
X-AspNet-Version: 4.0.30319
SPRequestGuid: e6c0f29b-cb1a-2004-1a5f-42027001734d
request-id: e6c0f29b-cb1a-2004-1a5f-42027001734d
X-FRAME-OPTIONS: SAMEORIGIN
Persistent-Auth: true
X-Powered-By: ASP.NET
MicrosoftSharePointTeamServices: 15.0.0.4420
X-Content-Type-Options: nosniff
X-MS-InvokeApp: 1; RequireReadOnly
Date: Tue, 08 Jan 2013 11:17:56 GMT

The code excerpt of the JavaScript function in Listing 9-7 updates the title of an item using the
REST API and provides a value for the ETag parameter.

LISTING 9-7 A sample code excerpt to update the title of a list item using JavaScript and the REST API

var hostweburl;
var appweburl;
var eTag;

// This code runs when the DOM is ready and creates a context object
// which is needed to use the SharePoint object model
$(document).ready(function () {
 //Get the URI decoded URLs.
 hostweburl = decodeURIComponent(getQueryStringParameter("SPHostUrl"));

 appweburl = decodeURIComponent(getQueryStringParameter("SPAppWebUrl"));

 var scriptbase = hostweburl + "/_layouts/15/";
 $.getScript(scriptbase + "SP.RequestExecutor.js", execCrossDomainRequest);

});

function execCrossDomainRequest() {
 var contextInfoUri = appweburl + "/_api/contextinfo";
 var itemUri = appweburl +
"/_api/SP.AppContextSite(@target)/web/lists/GetByTitle('Documents')/Items(1)?@
target='" + hostweburl + "'";

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 9 The new SharePoint REST API 331

 var executor = new SP.RequestExecutor(appweburl);

 // First request, to retrieve the form digest
 executor.executeAsync({
 url: contextInfoUri,
 method: "POST",
 headers: { "Accept": "application/json; odata=verbose" },
 success: function (data) {
 var jsonObject = JSON.parse(data.body);

 formDigestValue =

 jsonObject.d.GetContextWebInformation.FormDigestValue;

 updateListItem(formDigestValue, itemUri);

 },
 error: function (data, errorCode, errorMessage) {
 var errMsg = "Error retrieving the form digest value: "
 + errorMessage;
 $("#error").text(errMsg);
 }
 });
}

function updateListItem(formDigestValue, itemUri) {
 var executor = new SP.RequestExecutor(appweburl);
 var newContent = JSON.stringify({ '__metadata':
{ 'type': 'SP.Data.Shared_x0020_DocumentsItem' }, 'Title': 'Changed by REST API'
});

 // Second request, to retrieve the ETag of the target item
 executor.executeAsync({
 url: itemUri,
 method: "GET",
 headers: { "Accept": "application/json; odata=verbose" },
 success: function (data) {
 $("#message").text('ETag: ' + data.headers["ETAG"]);

 eTag = data.headers["ETAG"];

 internalUpdateListItem(formDigestValue, itemUri, eTag, newContent);

 },
 error: function (data, errorCode, errorMessage) {
 var errMsg = "Error retrieving the eTag value: "
 + errorMessage;
 $("#error").text(errMsg);
 }
 });
}

function internalUpdateListItem(formDigestValue, itemUri, eTag, newContent) {
 var executor = new SP.RequestExecutor(appweburl);

www.it-ebooks.info

http://www.it-ebooks.info/

332 PaRt III Developing SharePoint apps

 // Third request, to change the title of the target item
 executor.executeAsync({
 url:
 appweburl +
"/_api/SP.AppContextSite(@target)/web/lists/GetByTitle('Documents')/Items(1)?@
target='" + hostweburl + "'",
 method: "POST",
 body: newContent,
 headers: {

 "Accept": "application/json;odata=verbose",

 "content-type": "application/json;odata=verbose",

 "content-length": newContent.length,

 "X-RequestDigest": formDigestValue,

 "X-HTTP-Method": "MERGE",

 "IF-MATCH": eTag

 },

 success: function (data) {
 $("#message").text('Item successfully updated!');
 },
 error: function (data, errorCode, errorMessage) {
 var errMsg = "Error updating list item: "
 + errorMessage;
 $("#error").text(errMsg);
 }
 });
}

// Function to retrieve a query string value.
// For production purposes you may want to use
// a library to handle the query string.
function getQueryStringParameter(paramToRetrieve) {
 var params =
 document.URL.split("?")[1].split("&");
 var strParams = "";
 for (var i = 0; i < params.length; i = i + 1) {
 var singleParam = params[i].split("=");
 if (singleParam[0] == paramToRetrieve)
 return singleParam[1];
 }
}

Executing as soon as the DOM document is ready, Listing 9-7 first configures both the app web
URL and the host web URL. Then it configures a scripting file (SP.RequestExecutor.js), which will be dis-
cussed in the “Cross-domain calls” section, which follows. After startup, the sample code requests the
ContextInfo via a POST request, in order to extract a valid value for the form digest. If your code runs
inside a SharePoint-hosted app, you can simply read the form digest value from the current page (a
hidden field with name __REQUESTDIGEST). After retrieving the form digest, the sample gets the item
to update, in order to access its ETag value. Lastly, the code runs a POST request against the target
item URI, providing the JSON serialization of the changes to apply, the form digest, and the ETag.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 9 The new SharePoint REST API 333

Later, in the “Common REST API usage” section, you will see many samples based on the basic
concepts demonstrated here. For now, however, notice that the JavaScript code for invoking the REST
API uses an object of type SP.RequestExecutor to invoke the service endpoints, instead of a classic
jQuery.Ajax method. In the next section, “Cross-domain calls,” you will learn how it works.

One last thing to understand about data management is how the REST API behaves in case of a
concurrency conflict. Remember, providing the ETag value simply enables you to identify and man-
age conflicts; it does not prevent you from experiencing them, unless you provide a value of * for the
IF-MATCH header. For example, imagine that while you’re executing the code of Listing 9-7, someone
else changes the same target item, confirming the updates before the execution of your code. In a
real scenario, you should retrieve the ETag value as soon as the user starts editing the target item, and
you should provide it back to the server while saving your changes. Thus, you could have a short-term
concurrency conflict. Every time someone changes an item and saves it, the ETag value will change. It
is a numeric value, and it will increment by 1 unit. If a conflict does occur, the update or delete action
will fail, and your HTTP request will get back a 412 HTTP status code, which is the Precondition Failed
status. Moreover, in the response body, you will find an XML or JSON representation of the error. For
example, the JSON response error message will look like the following excerpt:

{"error":{"code":"-1, Microsoft.SharePoint.Client.ClientServiceException","message":{"lang":"en-
US","value":"The request ETag value '\"4\"' does not match the object's ETag value '\"5\"'."}}}

You can find this object serialized inside the data argument of the function invoked if the HTTP
request fails due to a concurrency conflict, and the errorCode variable will assume a value of -1002. In
your custom code, you should catch this kind of exception and prompt the user with a concurrency
conflict error, and eventually download the update item from SharePoint to let the user compare data
and make a choice.

Cross-domain calls
When developing SharePoint apps, you typically need to make cross-domain JavaScript calls between
the app web and the host web. Because the domain of the app web is always different from the
domain of the host web, however, this can cause complications. Specifically, browsers prohibit this
kind of behavior by default in an effort to avoid cross-domain attacks and their related security issues.
Luckily, SharePoint 2013 provides a JavaScript library to help you satisfy the browsers and keep the
calls flowing: the SP.RequestExecutor.js library.

Found in the _layouts/15 folder of every SharePoint site, the SP.RequestExecutor.js library provides
out-of-the-box capabilities to make cross-domain calls against trusted and registered domains. When
you instantiate the library’s SP.RequestExecutor type in your client-side code, it uses a hidden IFRAME
element, together with some POST messages and a proxy page (AppWebProxy.aspx) to enable you to
make highly secure calls—even cross-domain calls.

In Listing 9-7, the startup code adds a reference to the library for making cross-domain calls.
Then it creates an instance of the SP.RequestExecutor type, providing the URL of the app web in the
object constructor. Behind the scenes, the object injects an IFrame rendering the AppWebProxy.aspx

www.it-ebooks.info

http://www.it-ebooks.info/

334 PaRt III Developing SharePoint apps

page, which calls the host web. When the call to the host web completes, the client instance of the
SP.RequestExecutor retrieves the result from the IFrame and provides it to the calling app. Figure 9-2
diagrams this process.

FIGURE 9-2 The steps of a cross-domain call using the SP.RequestExecutor.js library.

To use the SP.RequestExecutor.js library while invoking the REST API, you need to create an
instance of the SP.RequestExecutor type. In addition, you must invoke the executeAsync method and
provide the necessary arguments, including the following:

■■ url Represents the target URL of the REST API. While using the code from an app web, you
can provide a reference to the host web using the SP.AppContextSite() function, as illustrated
in Listing 9-7.

■■ method Defines the HTTP method to use while invoking the target URL.

■■ body Declares the content of the message body that will be posted to the target URL, just in
case you will have message content to send.

■■ headers Allows defining a list of HTTP headers to provide while invoking the target URL. As
you can see from Listing 9-7, here you can provide such headers as Accept, X-RequestDigest,
X-HTTP-Method, IF-MATCH, and so on.

■■ success Is the pointer to a function that will be invoked in case of a successful call.

■■ error Is the pointer to a function that will be invoked in case of a failed call.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 9 The new SharePoint REST API 335

Security
By default, the REST API requires that the consumers act in an authenticated session for security pur-
poses. The authenticated session can be gained through Windows integrated security, browser-based
direct authentication (in the case of a SharePoint-hosted app), or using OAuth (in any other situation).

In the case of integrated security, you need to enable the automatic flow of integrated security
credentials in the HTTP client library you will use. For example, if you’re working in JavaScript within
a web browser and using SharePoint-hosted app or application pages, the flow of integrated security
credentials will be automatic. On the contrary, when working in a Windows Store app for Windows 8,
you must request permission for the enterprise authentication capability in the AppManifest.xml file
of the app.

If you want to use OAuth—suppose you’re executing JavaScript code within a autohosted or
provider-hosted app on a third-party site—you first need to retrieve and store the access token pro-
vided during the OAuth handshake. Then you must provide that access token to every request to the
REST API, embedded in a dedicated Authorization HTTP header. The JavaScript code excerpt in Listing
9-8 configures that HTTP header using an access token stored in a hypothetical accessToken variable.

LISTING 9-8 A code excerpt for invoking the REST API with OAuth authentication

jQuery.ajax({
 url: "http://hostname/_api/contextinfo",
 type: "POST",
 headers: {
 "Authorization": "Bearer " + accessToken,

 "accept": "application/json;odata=verbose",
 "contentType": "text/xml"
 },
})

In addition, you can enable anonymous access to read-only operations of the REST API, in case you
want to publish your contents to the public Internet. To configure this capability, you will need to edit
the Anonymous permission of the target website. Figure 9-3 shows the configuration panel for setting
this option. You can find the panel by choosing Site Settings | Site Permissions | Anonymous Access.

www.it-ebooks.info

http://www.it-ebooks.info/

336 PaRt III Developing SharePoint apps

FIGURE 9-3 The UI for configuring anonymous access to the REST API.

If you turn off Require Use Remote Interfaces Permission, all anonymous users will be able to
invoke the read-only operations of the REST API. Only authorized users can change this option, but
they may do so from the web interface, working within PowerShell, or using the CSOM.

Common REST API usage

For the remainder of the chapter, you will learn how to use the REST API while executing common
and useful tasks. All the code samples are provided in JavaScript and run in a SharePoint app that uses
cross-domain calls. Thus, you will be able to reuse all the code excerpts illustrated by simply copy-
ing and pasting the code and adapting the values of the arguments and HTTP headers provided to
the methods.

Important The code samples come from a SharePoint-hosted app, so they do not need to
provide an OAuth access token. Please refer to the “Security” section earlier in the chapter if
you need to use the code sample from an autohosted or a provider-hosted app.

For the sake of simplicity, all the code samples also assume that you have the set of global and
predefined variables illustrated in Listing 9-9, together with some common startup code.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 9 The new SharePoint REST API 337

LISTING 9-9 A code excerpt for the startup phase of the code samples illustrated in the current section

var hostweburl;
var appweburl;
var eTag;
var formDigestValue;

$(document).ready(function () {
 // Get the URI-decoded URLs.
 hostweburl = decodeURIComponent(getQueryStringParameter("SPHostUrl"));
 appweburl = decodeURIComponent(getQueryStringParameter("SPAppWebUrl"));

 var scriptbase = hostweburl + "/_layouts/15/";
 $.getScript(scriptbase + "SP.RequestExecutor.js", retrieveFormDigest);
});

// Function to retrieve a query string value.
// For production purposes you may want to use
// a library to handle the query string.
function getQueryStringParameter(paramToRetrieve) {
 var params =
 document.URL.split("?")[1].split("&");
 var strParams = "";
 for (var i = 0; i < params.length; i = i + 1) {
 var singleParam = params[i].split("=");
 if (singleParam[0] == paramToRetrieve)
 return singleParam[1];
 }
}

function retrieveFormDigest() {
 var contextInfoUri = appweburl + "/_api/contextinfo";
 var executor = new SP.RequestExecutor(appweburl)

 executor.executeAsync({
 url: contextInfoUri,
 method: "POST",
 headers: { "Accept": "application/json; odata=verbose" },
 success: function (data) {
 var jsonObject = JSON.parse(data.body);
 formDigestValue =
 jsonObject.d.GetContextWebInformation.FormDigestValue;
 },
 error: function (data, errorCode, errorMessage) {
 var errMsg = "Error retrieving the form digest value: "
 + errorMessage;
 $("#error").text(errMsg);
 }
 });
}

All the code samples illustrated in the next sections will behave as event handlers for HTML Button
input elements.

www.it-ebooks.info

http://www.it-ebooks.info/

338 PaRt III Developing SharePoint apps

Creating a new list
To create a new list instance via the REST API and JSON, you first need to prepare a JSON representa-
tion of the list to create. Then you must send it through AJAX, including the X-RequestDigest HTTP
header. Listing 9-10 provides a function for this.

LISTING 9-10 A JavaScript function for creating a list instance using the REST API

function createNewList() {
 var executor = new SP.RequestExecutor(appweburl);
 var operationUri = appweburl +
 "/_api/SP.AppContextSite(@target)/web/lists?@target='" +
 hostweburl + "'";

 var bodyContent = JSON.stringify({

 '__metadata': { 'type': 'SP.List' },

 'AllowContentTypes': true,

 'BaseTemplate': 100,

 'ContentTypesEnabled': true,

 'Description': 'Custom List created via REST API',

 'Title': 'RESTCreatedList'

 });

 executor.executeAsync({
 url: operationUri,
 method: "POST",
 headers: {
 "Accept": "application/json;odata=verbose",
 "content-type": "application/json;odata=verbose",
 "content-length": bodyContent.length,
 "X-RequestDigest": formDigestValue,
 },
 body: bodyContent,
 success: function (data) {
 var jsonObject = JSON.parse(data.body);
 },
 error: function (data, errorCode, errorMessage) {
 var jsonObject = JSON.parse(data.body);
 var errMsg = "Error: " + jsonObject.error.message.value;
 $("#error").text(errMsg);
 }
 });
}

Notice that Listing 9-10 creates the list in the host web; your app will need specific permissions to
accomplish this task.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 9 The new SharePoint REST API 339

Creating and updating a list item
Now imagine that you want to add one or more items to the list you just created. The code will be
similar to Listing 9-10, but you will need to define the JSON structure of a list item. Moreover, you will
need to change the URI of the operation in order to map to the collection of items of the target list.
Listing 9-11 shows the necessary code.

LISTING 9-11 A JavaScript function for creating a list item in a list instance using the REST API

function createNewListItem() {
 var executor = new SP.RequestExecutor(appweburl);
 var operationUri = appweburl +
"/_api/SP.AppContextSite(@target)/web/lists/GetByTitle('RESTCreatedList')/Items"
+ "?@ target='" + hostweburl + "'";

 var bodyContent = JSON.stringify({

 '__metadata': { 'type': 'SP.Data.RESTCreatedListListItem' },

 'Title': 'Item created via REST API'

 });

 executor.executeAsync({
 url: operationUri,
 method: "POST",
 headers: {
 "Accept": "application/json;odata=verbose",
 "content-type": "application/json;odata=verbose",
 "content-length": bodyContent.length,
 "X-RequestDigest": formDigestValue,
 },
 body: bodyContent,
 success: function (data) {
 var jsonObject = JSON.parse(data.body);
 },
 error: function (data, errorCode, errorMessage) {
 var jsonObject = JSON.parse(data.body);
 var errMsg = "Error: " + jsonObject.error.message.value;
 $("#error").text(errMsg);
 }
 });
}

Notice the value assigned to the type property of the __metadata of the target item. It defines
the data type name corresponding to a list item of the current list. Listing 9-11 assumes a value of
SP.Data.RESTCreatedListListItem.

Updating an already existing item is almost the same as creating a new one, except that you need
to provide the ETag value in the request headers and to synchronize the execution of parallel opera-
tions. Listing 9-12 shows an example that changes the title property of an existing list item.

www.it-ebooks.info

http://www.it-ebooks.info/

340 PaRt III Developing SharePoint apps

LISTING 9-12 A JavaScript function for updating a list item in a list instance using the REST API

function updateListItem() {
 var executor = new SP.RequestExecutor(appweburl);
 var operationUri = appweburl +
"/_api/SP.AppContextSite(@target)/web/lists/GetByTitle('RESTCreatedList')/" +
"Items(1)?@target='" + hostweburl + "'";
 var bodyContent = JSON.stringify({
 '__metadata': { 'type': 'SP.Data.RESTCreatedListListItem' },
 'Title': 'Item changed via REST API'
 });

 // Retrieve the ETag value
 executor.executeAsync({
 url: operationUri,
 method: "GET",
 headers: { "Accept": "application/json; odata=verbose" },
 success: function (data) {
 $("#message").text('ETag: ' + data.headers["ETAG"]);
 eTag = data.headers["ETAG"];

 // Invoke the real update operation
 executor.executeAsync({
 url: operationUri,
 method: "POST",
 headers: {
 "Accept": "application/json;odata=verbose",
 "content-type": "application/json;odata=verbose",
 "content-length": bodyContent.length,
 "X-RequestDigest": formDigestValue,
 "X-HTTP-Method": "MERGE",

 "IF-MATCH": eTag
 },
 body: bodyContent,
 success: function (data) {
 $("#message").text("Operation completed!");
 },
 error: function (data, errorCode, errorMessage) {
 var jsonObject = JSON.parse(data.body);
 var errMsg = "Error: " + jsonObject.error.message.value;
 $("#error").text(errMsg);
 }
 });
 },
 error: function (data, errorCode, errorMessage) {
 var jsonObject = JSON.parse(data.body);
 var errMsg = "Error retrieving the eTag value: " +
 jsonObject.error.message.value;
 $("#error").text(errMsg);
 }
 });
}

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 9 The new SharePoint REST API 341

Note that Listing 9-12 uses a nested SP.RequestExecutor instance, which will run just after success-
ful completion of the external operation invocation.

Deleting an existing list item
What if you want to recycle one or more of the items you created in the previous examples? One
more time, you need to provide the ETag value of the current item, as shown in Listing 9-13.

LISTING 9-13 A JavaScript function for deleting a list item in a list instance using the REST API

function deleteListItem() {
 var executor = new SP.RequestExecutor(appweburl);
 var operationUri = appweburl +
"/_api/SP.AppContextSite(@target)/web/lists/GetByTitle('RESTCreatedList')/" +
"Items(1)?@target='" + hostweburl + "'";

 // Retrieve the eTag value
 executor.executeAsync({
 url: operationUri,
 method: "GET",
 headers: { "Accept": "application/json; odata=verbose" },
 success: function (data) {
 $("#message").text('ETag: ' + data.headers["ETAG"]);
 eTag = data.headers["ETAG"];

 // Invoke the real update operation
 executor.executeAsync({
 url: operationUri,
 method: "POST",
 headers: {
 "Accept": "application/json;odata=verbose",
 "content-type": "application/json;odata=verbose",
 "X-RequestDigest": formDigestValue,
 "X-HTTP-Method": "DELETE",
 "IF-MATCH": eTag
 },
 success: function (data) {
 $("#message").text("Operation completed!");
 },
 error: function (data, errorCode, errorMessage) {
 var jsonObject = JSON.parse(data.body);
 var errMsg = "Error: " + jsonObject.error.message.value;
 $("#error").text(errMsg);
 }
 });
 },
 error: function (data, errorCode, errorMessage) {
 var jsonObject = JSON.parse(data.body);
 var errMsg = "Error retrieving the eTag value: " +
 jsonObject.error.message.value;
 $("#error").text(errMsg);

 }
 });
}

www.it-ebooks.info

http://www.it-ebooks.info/

342 PaRt III Developing SharePoint apps

Listing 9-13 uses an HTTP POST method, along with an X-HTTP-Method header with a value of
DELETE. If you want to force the deletion, however, you can provide a value of * for the ETag header.

Querying a list of items
A common and useful operation is querying of a list of items. As shown in the ”Querying data” sec-
tion earlier in the chapter, you simply need to invoke an endpoint providing an OData query as a set
of query string parameters. If you’re working in JavaScript on the client side, however, the result will
be a collection of items presented in JSON format. Listing 9-14 demonstrates how to query the items
in a hypothetical list of contacts.

LISTING 9-14 A JavaScript function for querying a list of contacts using the REST API

function queryListItems() {
 var executor = new SP.RequestExecutor(appweburl);
 var operationUri = appweburl +
 "/_api/SP.AppContextSite(@target)/web/lists/GetByTitle('Sample%20Contacts')/"
+ "Items?@target='" + hostweburl + "'&$filter=Company%20eq%20'DevLeap'";

 executor.executeAsync({
 url: operationUri,
 method: "GET",
 headers: { "Accept": "application/json;odata=verbose" },
 success: function (data) {
 var jsonObject = JSON.parse(data.body);

 $("#result").empty();

 for (var i = 0; i < jsonObject.d.results.length; i++) {

 var item = jsonObject.d.results[i];

 $("#result").append("<div>" + item.Title + "</div>");

 }

 },
 error: function (data, errorCode, errorMessage) {
 var jsonObject = JSON.parse(data.body);
 var errMsg = "Error: " + jsonObject.error.message.value;
 $("#error").text(errMsg);
 }
 });
}

The HTTP request for querying items is a GET; it does not require a form digest, and it will suf-
fice that the app and the current user both have permissions to read the target list. The response is a
JSON serialized array of items that is browsed by code.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 9 The new SharePoint REST API 343

Creating a new document library
Most SharePoint solutions use documents and document libraries; Listing 9-15 shows you how to cre-
ate a document library via the REST API.

LISTING 9-15 A JavaScript function for creating a document library via the REST API

function createNewLibrary() {
 var executor = new SP.RequestExecutor(appweburl);
 var operationUri = appweburl +
 "/_api/SP.AppContextSite(@target)/web/lists?@target='" +
 hostweburl + "'";

 var bodyContent = JSON.stringify({
 '__metadata': { 'type': 'SP.List' },
 'AllowContentTypes': true,
 'BaseTemplate': 101,

 'ContentTypesEnabled': true,
 'Description': 'Custom Library created via REST API',
 'Title': 'RESTCreatedLibrary'
 });

 executor.executeAsync({
 url: operationUri,
 method: "POST",
 headers: {
 "Accept": "application/json;odata=verbose",
 "content-type": "application/json;odata=verbose",
 "content-length": bodyContent.length,
 "X-RequestDigest": formDigestValue,
 },
 body: bodyContent,
 success: function (data) {
 var jsonObject = JSON.parse(data.body);
 },
 error: function (data, errorCode, errorMessage) {
 var jsonObject = JSON.parse(data.body);
 var errMsg = "Error: " + jsonObject.error.message.value;
 $("#error").text(errMsg);
 }
 });
}

The procedure is almost identical to that for creating a custom list. The only difference is that here
you provide a BaseTemplate value compliant with a document library. The example provides a value
of 101, which corresponds to a generic document library. When you successfully create the library,
you will get back a JSON serialization of its definition in the success event.

www.it-ebooks.info

http://www.it-ebooks.info/

344 PaRt III Developing SharePoint apps

Uploading or updating a document
Once you have one or more document libraries, you can use the REST API to upload documents into
them. Listing 9-16 uploads an example XML file into a document library. The URL of the operation for
adding the new file is highlighted in bold, as well as the HTTP headers that are required for the cor-
rect and secure execution of the operation.

LISTING 9-16 A JavaScript function for uploading a document into a document library via the REST API

function uploadFile() {
 var executor = new SP.RequestExecutor(appweburl);
 var operationUri = appweburl + "/_api/SP.AppContextSite(@target)/web/lists/"
 + "GetByTitle('Documents')/RootFolder/Files/Add" +
 "(url='SampleFile.xml',overwrite=true)?@target='" + hostweburl + "'";

 var xmlDocument = "<?xml version='1.0'?><document>" +
 "<title>Uploaded via REST API</title></document>";

 executor.executeAsync({
 url: operationUri,
 method: "POST",
 headers: {

 "Accept": "application/json;odata=verbose",

 "content-type": "text/xml",

 "content-length": xmlDocument.length,

 "X-RequestDigest": formDigestValue,

 },

 body: xmlDocument,

 success: function (data) {
 var jsonObject = JSON.parse(data.body);
 $("#message").text("Operation completed!");
 },
 error: function (data, errorCode, errorMessage) {
 var jsonObject = JSON.parse(data.body);
 var errMsg = "Error: " + jsonObject.error.message.value;
 $("#error").text(errMsg);
 }
 });
}

If you want to update an already published file, you can use a procedure like the one illustrated in
Listing 9-17.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 9 The new SharePoint REST API 345

LISTING 9-17 A JavaScript function for updating a document into a document library via the REST API

function updateFile() {
 var executor = new SP.RequestExecutor(appweburl);
 var operationUri = appweburl +
 "/_api/SP.AppContextSite(@target)/web/" +
 "GetFileByServerRelativeUrl('/sites/AppsDevelopmentSite/" +
 "Shared%20Documents/SampleFile.xml')/$value?@target='" +
 hostweburl + "'";

 var xmlDocument = "<?xml version='1.0'?><document>" +
 "<title>File updated via REST API</title></document>";

 executor.executeAsync({
 url: operationUri,
 method: "POST",

 headers: {
 "Accept": "application/json;odata=verbose",
 "content-type": "text/xml",
 "content-length": xmlDocument.length,
 "X-HTTP-Method": "PUT",
 "X-RequestDigest": formDigestValue,
 },
 body: xmlDocument,
 success: function (data) {
 $("#message").text("Operation completed!");
 },
 error: function (data, errorCode, errorMessage) {
 var jsonObject = JSON.parse(data.body);
 var errMsg = "Error: " + jsonObject.error.message.value;
 $("#error").text(errMsg);
 }
 });
s}

As you can see, the REST endpoint for the operation is the $value of the file, and the file will be
overridden by what it will be posted by the page.

Document check-in and checkout
Another vital component of many business-level solutions is the ability to control document version-
ing through the check-in and checkout capabilities of SharePoint. Listing 9-18 shows you how to
check out a document, while Listing 9-19 handles check-in.

www.it-ebooks.info

http://www.it-ebooks.info/

346 PaRt III Developing SharePoint apps

LISTING 9-18 A JavaScript function for checking out a document from a document library via the REST API

function checkOutFile() {
 var executor = new SP.RequestExecutor(appweburl);
 var operationUri = appweburl +
 "/_api/SP.AppContextSite(@target)/web/" +
 "GetFileByServerRelativeUrl('/sites/AppsDevelopmentSite/" +
 "Shared%20Documents/SampleFile.xml')/CheckOut()?@target='" +
 hostweburl + "'";

 executor.executeAsync({
 url: operationUri,
 method: "POST",
 headers: {
 "Accept": "application/json;odata=verbose",
 "X-RequestDigest": formDigestValue,

 },
 success: function (data) {
 var jsonObject = JSON.parse(data.body);
 $("#message").text("Operation completed!");
 },
 error: function (data, errorCode, errorMessage) {
 var jsonObject = JSON.parse(data.body);
 var errMsg = "Error: " + jsonObject.error.message.value;
 $("#error").text(errMsg);
 }
 });
}

LISTING 9-19 A JavaScript function for checking in a document into a document library via the REST API

function checkInFile() {
 var executor = new SP.RequestExecutor(appweburl);
 var operationUri = appweburl +
 "/_api/SP.AppContextSite(@target)/web/" +
 "GetFileByServerRelativeUrl('/sites/AppsDevelopmentSite/" +
 "Shared%20Documents/SampleFile.xml')/CheckIn?@target='" +
 hostweburl + "'";

 var bodyContent = JSON.stringify({

 'comment': 'Checked in via REST',

 'checkInType': 1

 });

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 9 The new SharePoint REST API 347

 executor.executeAsync({
 url: operationUri,
 method: "POST",
 headers: {
 "Accept": "application/json;odata=verbose",

 "Content-type": "application/json;odata=verbose",

 "Content-length": bodyContent.length,

 "X-RequestDigest": formDigestValue,

 },
 body: bodyContent,
 success: function (data) {
 var jsonObject = JSON.parse(data.body);
 $("#message").text("Operation completed!");
 },
 error: function (data, errorCode, errorMessage) {
 var jsonObject = JSON.parse(data.body);
 var errMsg = "Error: " + jsonObject.error.message.value;
 $("#error").text(errMsg);
 }
 });
}

The checkout phase simply requires an operation URI to be invoked via HTTP POST. On the
contrary, the check-in phase requires posting some arguments, which in the current example are
presented as a JSON object. This posted JSON object represents the arguments for the classic and
standard CheckIn method of the CSOM.

Deleting an existing document
The last action related to management of single files is the deletion of a document. As shown at the
beginning of this chapter, to delete a document, you need to make an HTTP POST request to the ser-
vice, providing an ETag for security validation rules and an HTTP header of type X-HTTP-Method with
a value of DELETE. Listing 9-20 demonstrates the process.

www.it-ebooks.info

http://www.it-ebooks.info/

348 PaRt III Developing SharePoint apps

LISTING 9-20 A JavaScript function for deleting a document from a document library via the REST API

function deleteFile() {
 var executor = new SP.RequestExecutor(appweburl);
 var operationUri = appweburl + "/_api/SP.AppContextSite(@target)/web/" +
 "GetFileByServerRelativeUrl('/sites/AppsDevelopmentSite/" +
 "Shared%20Documents/SampleFile.xml')?@target='" +
 hostweburl + "'";

 executor.executeAsync({
 url: operationUri,
 method: "POST",

 headers: {

 "Accept": "application/json;odata=verbose",

 "X-HTTP-Method": "DELETE",

 "X-RequestDigest": formDigestValue,

 "IF-MATCH": "*", // Discard concurrency checks

 },

 success: function (data) {
 $("#message").text("Operation completed!");
 },
 error: function (data, errorCode, errorMessage) {
 var jsonObject = JSON.parse(data.body);
 var errMsg = "Error: " + jsonObject.error.message.value;
 $("#error").text(errMsg);
 }
 });
}

Notice that Listing 9-20 retrieves the file itself as an SP.File object, instead of the bare content
($value) of the file. The code then deletes that file without performing a concurrency check.

Querying a list of documents
Querying a list of documents from a document library is almost the same as querying a list of items.
The main difference is the URL of the endpoint, which targets the Files collection instead of the Items
collection. Furthermore, every file of a document library is an object of type SP.File, not SP.ListItem.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 9 The new SharePoint REST API 349

LISTING 9-21 A JavaScript function for querying files from a document library via the REST API

function queryDocuments() {
 var executor = new SP.RequestExecutor(appweburl);
 var operationUri = appweburl +
 "/_api/SP.AppContextSite(@target)/web/lists/" +
 "GetByTitle('Documents')/RootFolder/Files?@target='" +
 hostweburl + "'";

 executor.executeAsync({
 url: operationUri,
 method: "GET",

 headers: { "Accept": "application/json;odata=verbose" },

 success: function (data) {
 var jsonObject = JSON.parse(data.body);
 $("#message").empty();

 for (var i = 0; i < jsonObject.d.results.length; i++) {
 var item = jsonObject.d.results[i];
 $("#message").append("<div>" + item.Name + "</div>");
 }
 },
 error: function (data, errorCode, errorMessage) {
 var jsonObject = JSON.parse(data.body);
 var errMsg = "Error: " + jsonObject.error.message.value;
 $("#error").text(errMsg);
 }
 });
}

Notice also that the HTTP query uses an HTTP GET method and provides only the Accept HTTP
header, without requiring any other extended header or information.

More Info For further details about the types and members available in the REST API,
consult the official reference of the SP namespace of the Client-Side Object Model for
JavaScript (JSOM). You can find the official reference at http://msdn.microsoft.com/en-us/
library/ee557057.aspx.

Summary

In this chapter, you learned about the new REST API introduced in SharePoint 2013. You examined
the architecture and the capabilities of this new tool, which can be consumed either by .NET or
SharePoint apps, as well as from any third-party platform. In addition, you learned how to implement
the REST API in real projects with JavaScript, addressing a set of common scenarios.

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/ee557057.aspx
http://msdn.microsoft.com/en-us/library/ee557057.aspx
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

 351

C H A P T E R 1 0

Remote event receivers

New to Microsoft SharePoint 2013, remote event receivers allow you to connect external soft-
ware and apps to your SharePoint solutions. Through a remote event receiver, you can link to

SharePoint any external software that’s capable of providing services based on a specific and pre-
defined SOAP (Simple Object Access Protocol) service contract. You should not, however, consider
remote event receivers as alternatives to Business Connectivity Services (BCS). While BCS allows
consuming data from external data sources, remote event receivers allow an external system to
subscribe to specific events that will occur on the SharePoint side. The external system can be an ERP,
a line-of-business (LOB) system, a custom SharePoint app, or a third-party solution. Furthermore, you
can implement remote receivers using potentially any programming language, as long as it is capable
of providing a SOAP endpoint to receive events. Throughout this chapter, you will investigate remote
event receiver architecture, capabilities, security considerations, and implementation details.

Architecture of remote event receivers

The architecture of remote event receivers uses SOAP as the protocol for communicating across the
wire, because it is the most open, standard protocol for implementing cross-platform dialogs. On the
SharePoint side, the remote event receiver employs a Microsoft Windows Communication Foundation
(WCF) proxy for calling the remote endpoint. While working in Microsoft .NET, you can also imple-
ment the remote event receiver side of the dialog using WCF. And, as you’ll learn in the “A sample
remote event receiver” section, Microsoft Visual Studio 2012 provides an item template and wizard-
assisted procedure for this purpose. For now, however, you’ll concentrate on learning about the
architecture and capabilities of remote event receivers.

More Info To understand the architecture of remote event receivers, you should have
a good knowledge of WCF and .NET server-side programming. If you aren’t familiar
with these topics, take a lap around WCF architecture and service implementation by
reading Windows Communication Foundation 4 Step by Step, by John Sharp (Microsoft
Press, 2010). You can also have a quick look at the following online article on MSDN:
http://msdn.microsoft.com/en-us/library/ms731082.aspx.

The new remote event receivers introduced in SharePoint 2013 are similar to the event receivers
that were available in SharePoint 2010. These are still available in SharePoint 2013, but they are

www.it-ebooks.info

http://www.it-ebooks.info/

352 PaRt III Developing SharePoint apps

provided mainly for backward compatibility, even if an occasional project could still benefit from their
implementation. Classic and local event receivers are suitable only in on-premises and sandboxed
solutions, while remote event receivers are a better choice for Microsoft Office 365 solutions and
SharePoint apps.

More Info If you need further details about classic event receivers, consult the previ-
ous version of this book: Microsoft SharePoint 2010 Developer Reference, by Paolo Pialorsi
(Microsoft Press, 2011).

architecture and contracts
A remote event receiver is just a remote SOAP endpoint that adheres to a specific service contract. In
Figure 10-1, you can see the functional schema of remote event receivers in SharePoint 2013.

FIGURE 10-1 The functional schema of remote event receivers.

A remote event receiver is registered for handling events related to a list item, a list, a website,
an app, a BCS entity, or a security configuration. Whenever an event related to a registered tar-
get occurs, the SharePoint 2013 remote event receiver environment raises a remote call to a SOAP
endpoint published by a third-party remote system. Any authentication and authorization task is
implemented using the Windows Azure ACS for Microsoft Office 365 (or the OAuth protocol in

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 Remote event receivers 353

on-premises deployment scenarios). As you will learn in the "Security Infrastructure" section of this
book, the OAuth protocol manages only app authentication and authorization, while standard user
authentication and authorization are managed by the standard security infrastructure of SharePoint.
You can also configure an app that publishes a remote event receiver to run in a so-called high-trust,
or server-to-server (S2S), configuration, which was introduced in Chapter 8, “SharePoint apps,” and will
be explained in detail in Chapter 20, “Claims-based authentication, federated identities, and OAuth.”

Listing 10-1 outlines the service contract of remote event receivers, which is applied regardless of
whether the target SharePoint 2013 environment is online or on-premises.

LISTING 10-1 The service contract of the remote event receiver services

[ServiceContract(Namespace="http://schemas.microsoft.com/sharepoint/remoteapp/")]
public interface IRemoteEventService {

 [OperationContract]
 SPRemoteEventResult ProcessEvent(SPRemoteEventProperties properties);

 [OperationContract(IsOneWay = true)]
 void ProcessOneWayEvent(SPRemoteEventProperties properties);
}

As you can see, the service contract defines just two operations, which correspond to the notifica-
tion of a synchronous event and an asynchronous one-way event. The ProcessEvent operation handles
synchronous events, while ProcessOneWayEvent is for asynchronous processing. Both the opera-
tions accept an argument of type SPRemoteEventProperties, which defines all the useful information
for implementing the remote event receiver business logic. Listing 10-2 shows the definition of the
SPRemoteEventProperties type.

www.it-ebooks.info

http://www.it-ebooks.info/

354 PaRt III Developing SharePoint apps

LISTING 10-2 The definition of type SPRemoteEventProperties, which is the argument provided to the remote
event receiver operations

[DataContract(Name="RemoteEventProperties",
 Namespace="http://schemas.microsoft.com/sharepoint/remoteapp/")]
public class SPRemoteEventProperties {
 [DataMember]
 public SPRemoteAppEventProperties AppEventProperties { get; internal set; }
 [DataMember]
 public string ContextToken { get; internal set; }
 [DataMember]
 public Guid CorrelationId { get; internal set; }
 [DataMember]
 public int CultureLCID { get; internal set; }
 [DataMember]
 public SPRemoteEntityInstanceEventProperties
 EntityInstanceEventProperties { get; set; }
 [DataMember]
 public string ErrorCode { get; internal set; }
 [DataMember]
 public string ErrorMessage { get; internal set; }
 [DataMember]
 public SPRemoteEventType EventType { get; internal set; }
 [DataMember]
 public SPRemoteItemEventProperties ItemEventProperties { get; internal set; }
 [DataMember]
 public SPRemoteListEventProperties ListEventProperties { get; internal set; }
 [DataMember]
 public SPRemoteSecurityEventProperties SecurityEventProperties { get;
 internal set; }
 [DataMember]
 public int UICultureLCID { get; internal set; }
 [DataMember]
 public SPRemoteWebEventProperties WebEventProperties { get; internal set; }
}

The SPRemoteEventProperties class is a data contract serializable type and thereby transferable
across the wire within the SOAP request for remote event receivers. Moreover, the type provides
properties for transferring all the useful information about the current context, the event that is
happening, and the related event outcome, just in case of a synchronous event. Table 10-1 shows a
detailed list of the main members of the SPRemoteEventProperties type.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 Remote event receivers 355

TABLE 10-1 The main members of the SPRemoteEventProperties type

Member Description

AppEventProperties A complex property providing information about the app that is the target of the
remote event receiver, in case the remote event receiver is related to a SharePoint
app

ContextToken A property of type String representing the OAuth content token of the current
request

CorrelationId The correlation ID of the current request, presented as a GUID property

CultureLCID An Integer property providing the LCID of the current culture

EntityInstanceEventProperties A complex property providing information about a BCS entity that is the target
of the remote event receiver, in case the remote event receiver is related to a BCS
entity set

ErrorCode A read-only String property to access an error code

ErrorMessage A read-only String property to access an error message

EventType A property of type SPRemoteEventType, which defines the kind of event described
by the remote event receiver

ItemEventProperties A complex property providing information about a SharePoint item that is the tar-
get of the remote event receiver, in case the remote event receiver is related to an
item

ListEventProperties A complex property providing information about a SharePoint list that is the target
of the remote event receiver, in case the remote event receiver is related to a list

SecurityEventProperties A complex property providing information about a SharePoint security principal
that is the target of the remote event receiver, in case the remote event receiver is
related to a security principal

UICultureLCID An Integer property providing the LCID of the current UI culture

WebEventProperties A complex property providing information about a SharePoint website that is the
target of the remote event receiver, in case the remote event receiver is related to
a website

When the operation invoked is the synchronous one, the result is of type SPRemoteEventResult.
This type provides information to SharePoint 2013 about the remote event outcome. Table 10-2 lists
the main members for the SPRemoteEventResult type.

TABLE 10-2 The main members of the SPRemoteEventResult type

Member Description

ChangedItemProperties A property that allows changing the values of the fields of the target item of a synchro-
nous event. For example, you can use it to change a field of an item when the target item
is going to be added or updated.

ErrorMessage A String property to provide a descriptive error message to SharePoint when the synchro-
nous remote event receiver needs to abort the current operation.

RedirectUrl A property that provides the String value of the URL to which you want to redirect the
target user’s browser as a result of an error raised from the remote event receiver. This
property is deprecated, and you should avoid using it, unless you need to support back-
ward compatibility.

Status An enumerated type (SPRemoteEventServiceStatus) that allows synchronous events to
abort the current operation. The available values are CancelNoError, CancelWithError,
CancelWithRedirectUrl, and Continue. By default, this property assumes the value of
Continue.

The SPRemoteEventResult type is serializable through data contract serialization, as well.

www.it-ebooks.info

http://www.it-ebooks.info/

356 PaRt III Developing SharePoint apps

Scopes and types of receivers
SharePoint 2013 supports about 70 different types of events that you can raise. Depending on the
type of event and the operation invoked, a remote event receiver can assume different scopes.
Events with names ending in -ed are typically asynchronous events and are handled by the
ProcessOneWayEvent operation, even if they can be executed synchronously, too. If an -ed event is
executed synchronously, the invoked operation will be ProcessEvent. The ProcessEvent operation also
handles all the events with names ending in -ing; these are synchronous events as well.

As a handy reference, this section lists all available events, divided by scope. Table 10-3 details
events related to single list items.

TABLE 10-3 Events related to a list item

List item event type Description

ItemAdding An item of a list is going to be added.

ItemUpdating An item of a list is going to be updated.

ItemDeleting An item of a list is going to be deleted.

ItemCheckingIn An item of a list is going to be checked in.

ItemCheckingOut An item of a list is going to be checked out.

ItemUncheckingOut An item of a list is going to be unchecked out.

ItemAttachmentAdding An attachment of an item of a list is going to be added.

ItemAttachmentDeleting An attachment of an item of a list is going to be deleted.

ItemFileMoving A file of a library is going to be moved.

ItemVersionDeleting A version of a file of a library is going to be deleted.

ItemAdded An item of a list has been added.

ItemUpdated An item of a list has been updated.

ItemDeleted An item of a list has been deleted.

ItemCheckedIn An item of a list has been checked in.

ItemCheckedOut An item of a list has been checked out.

ItemUncheckedOut An item of a list has been unchecked out.

ItemAttachmentAdded An attachment of an item of a list has been added.

ItemAttachmentDeleted An attachment of an item of a list has been deleted.

ItemFileMoved A file of a library has been moved.

ItemFileConverted A file of a library has been converted.

ItemVersionDeleted A version of a file of a library has been deleted.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 Remote event receivers 357

Table 10-4 illustrates events related to lists.

TABLE 10-4 Events related to a list

List event type Description

FieldAdding A field is going to be added to a list definition.

FieldUpdating A field of a list definition is going to be updated.

FieldDeleting A field of a list definition is going to be deleted.

FieldAdded A field has been added to a list definition.

FieldUpdated A field of a list definition has been updated.

FieldDeleted A field of a list definition has been deleted.

ListAdding A list instance is going to be added.

ListDeleting A list instance is going to be deleted.

ListAdded A list instance has been added.

ListDeleted A list instance has been deleted.

A third family of events corresponds to those defined for actions related to a website. Table 10-5
enumerates these.

TABLE 10-5 Events related to a website

Web event type Description

SiteDeleting A site collection is going to be deleted.

WebDeleting A website instance is going to be deleted.

WebMoving A website instance is going to be moved.

WebAdding A website instance is going to be added.

SiteDeleted A site collection has been deleted.

WebDeleted A website instance has been deleted.

WebMoved A website instance has been moved.

WebProvisioned A website instance has been provisioned.

Lastly, SharePoint provides events for app management, BCS entities, and security, which are
defined in Table 10-6.

TABLE 10-6 Events related to security, apps, and BCS entities

Others EventType Description

GroupAdding A group is going to be added.

GroupUpdating A group is going to be updated.

GroupDeleting A group is going to be deleted.

GroupUserAdding A user is going to be added to a group.

GroupUserDeleting A user is going to be deleted from a group.

RoleDefinitionAdding A role definition is going to be added.

www.it-ebooks.info

http://www.it-ebooks.info/

358 PaRt III Developing SharePoint apps

Others EventType Description

RoleDefinitionUpdating A role definition is going to be updated.

RoleDefinitionDeleting A role definition is going to be deleted.

RoleAssignmentAdding A role is going to be assigned to a target principal.

RoleAssignmentDeleting A role is going to be removed from a target principal.

InheritanceBreaking Permissions inheritance is going to be broken.

InheritanceResetting Permissions inheritance is going to be reset.

GroupAdded A group has been added.

GroupUpdated A group has been updated.

GroupDeleted A group has been deleted.

GroupUserAdded A user has been added to a group.

GroupUserDeleted A user has been deleted from a group.

RoleDefinitionAdded A role definition has been added.

RoleDefinitionUpdated A role definition has been updated.

RoleDefinitionDeleted A role definition has been deleted.

RoleAssignmentAdded A role has been assigned to a target principal.

RoleAssignmentDeleted A role has been removed from a target principal.

InheritanceBroken Permissions inheritance has been broken.

InheritanceReset Permissions inheritance has been reset.

AppInstalled A SharePoint app has been installed.

AppUpgraded A SharePoint app has been upgraded.

AppUninstalling A SharePoint app is going to be uninstalled.

EntityInstanceAdded A BCS entity instance has been added.

EntityInstanceUpdated A BCS entity instance has been updated.

EntityInstanceDeleted A BCS entity instance has been deleted.

You can implement and provision remote event receivers within a SharePoint app to implement
custom event-handling capabilities that are related to the contents of the app website of an app, and
you can also implement and provision them independently from a SharePoint app. While the remote
event receivers defined in an app can be accessed both on-premises and on Office 365, remote event
receivers that are not part of an app are more suitable for on-premises environments because they
require some extra work during deployment.

A sample remote event receiver

Now that you know the various kinds of remote event receivers that are available, you’ll create a
simple remote event receiver. Imagine that you have a SharePoint app for managing orders of prod-
ucts. Whenever a new order is inserted in a SharePoint list of orders, you want a SharePoint app to be
activated through a remote event receiver to perform an action on a LOB system.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 Remote event receivers 359

A detailed implementation of the LOB system on the back end of the remote event receiver is out
of scope for the current sample. Instead, let’s start with creating a custom SharePoint app that simply
intercepts the remote events. For example, you can define an autohosted app targeting an Office 365
environment, following the procedure you learned in Chapter 8. Then you can add a new Order con-
tent type, a list definition, and a list instance, which is based on the Order content type.

Important A remote event receiver works only in cases when the target SharePoint envi-
ronment is capable of communicating via SOAP over HTTP/HTTPS with the remote event
receiver service endpoint. As you learned in Chapter 8, if you are developing a remote
event receiver for an on-premises deployment, you cannot create an autohosted app. For
an on-premises scenario, your only options are SharePoint-hosted and provider-hosted
apps. Moreover, for developing a remote event receiver in a SharePoint-hosted app, you
will need to deploy an external website, too, because the SharePoint app website cannot
publish the SOAP service endpoint for the remote event receiver. Meanwhile, you can easily
invoke and eventually debug a remote event receiver defined in a provider-hosted app. In
an on-premises scenario, that provider-hosted app will have to be defined as a high-trust
app, unless you do not use Windows Azure ACS.

On the contrary, if you plan to deploy and debug an app for Office 365, you can choose
between an autohosted and a provider-hosted model. Nevertheless, by default you will not
be able to debug it on your local installation of Microsoft Internet Information Services (IIS)
Express, because IIS Express is not accessible from Office 365. However, you can use the
Windows Azure Service Bus to communicate between Office 365 and your local environ-
ment. The Microsoft Office Developer Tools for Visual Studio 2012 provide a set of tools
for configuring remote debugging of remote event receivers through the Windows Azure
Service Bus.

For further details about using the Windows Azure Service Bus for this purpose, please read
the article “Debugging Remote Event Receivers with Visual Studio,” which is available at
http://blogs.msdn.com/b/officeapps/archive/2013/01/03/debugging-remote-event-receivers-
with-visual-studio.aspx.

Lastly, consider that if you deploy the remote event receiver on your local development
environment (for example, using IIS Express) or in a provider-hosted environment, and you
want to publish the app via HTTPS, you will need to use an SSL certificate published by a
trusted Certification Authority; otherwise, SharePoint will refuse to communicate with your
remote event receiver because of certificate validation issues.

For the sake of completeness, you should provide some custom code to insert items in the newly
defined list of orders. For example, you could define in the Default.aspx page of the app some HTML
form fields to insert a new order item instance. Listing 10-3 provides an excerpt of the HTML code
for defining such a form. Here, the order content type is made of the fields Title, OrderId, OrderStatus
(admitted values are Inserted, Approved, Shipped, Completed), and CustomerId.

www.it-ebooks.info

http://www.it-ebooks.info/

360 PaRt III Developing SharePoint apps

LISTING 10-3 The basic ASPX code of the Default.aspx page of the app, for adding new order items

 <form id="form1" runat="server">

 <div id="chrome_placeholder"></div>

 <div style="margin-left: 20px;">
 Order Title: <asp:TextBox ID="OrderTitle" runat="server" />

 Order ID: <asp:TextBox ID="OrderID" runat="server" />

 Order Status:
 <asp:DropDownList ID="OrderStatus" runat="server">
 <asp:ListItem Value="Inserted" Text="Inserted" />
 <asp:ListItem Value="Approved" Text="Approved" />
 <asp:ListItem Value="Shipped" Text="Shipped" />
 <asp:ListItem Value="Completed" Text="Completed" />
 </asp:DropDownList>

 Customer ID: <asp:TextBox ID="CustomerID" runat="server" />

 <asp:Button ID="InsertOrder" runat="server" Text="Insert Order!"
 OnClick="InsertOrder_Click" />

 <asp:Button ID="RefreshOrders" runat="server" Text="Refresh Orders"
 OnClick="RefreshOrders_Click" />

 <asp:GridView ID="gridOrders" runat="server" />

 </div>
 </form>

As you can see from the code, the Default.aspx page provides both a form for inserting a new
order item and a GridView control for showing the items in the list of orders. The .NET code behind
the buttons for inserting a new item and for showing the list of items is based on the Client-Side
Object Model (CSOM); you can find the full sample code in the companion samples for this chapter.
Please refer to Chapter 7, “Client-side technologies,” for further details about working with the CSOM.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 Remote event receivers 361

After creating the SharePoint app and configuring the content type, list definition, and data man-
agement business logic, right-click the SharePoint app project (the one with the AppManifest.xml file
in it) and select Add | New Item | Remote Event Receiver, as shown in Figure 10-2.

FIGURE 10-2 Visual Studio 2012 while adding a new remote event receiver.

www.it-ebooks.info

http://www.it-ebooks.info/

362 PaRt III Developing SharePoint apps

When you click the Add button, Visual Studio launches a wizard (see Figure 10-3) that asks you to
provide information about the scope of the event receiver and the type of events you want to trap.

FIGURE 10-3 The wizard for configuring a new remote event receiver.

For example, select a remote event receiver targeting List Item Events, selecting the Orders list you
previously created in the SharePoint app, and choosing events of type An Item Is Being Added and An
Item Was Added, which correspond to the ItemAdding and ItemAdded event types, respectively. When
you click Finish, the Visual Studio wizard adds not only a feature element to the target SharePoint app
project, but also a WCF service to the web project.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 Remote event receivers 363

Listing 10-4 provides the source code of the class implementing the WCF service, which corre-
sponds to the remote event receiver.

LISTING 10-4 The basic remote event receiver implementation generated by the wizard of Visual Studio 2012

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.SharePoint.Client;
using Microsoft.SharePoint.Client.EventReceivers;

namespace DevLeap.SP2013.RER.OrdersWeb {
 public class OrdersRemoteEventReceive : IRemoteEventService {
 public SPRemoteEventResult ProcessEvent(SPRemoteEventProperties
 properties) {
 SPRemoteEventResult result = new SPRemoteEventResult();

 using (ClientContext clientContext =
 TokenHelper.CreateRemoteEventReceiverClientContext(
 properties)) {
 if (clientContext != null) {
 clientContext.Load(clientContext.Web);
 clientContext.ExecuteQuery();
 }
 }
 return result;
 }

 public void ProcessOneWayEvent(SPRemoteEventProperties properties) {
 }
 }
}

As you can see, the source code of the autogenerated remote event receiver handles the
ProcessEvent method of the IRemoteEventService service contract. Moreover, it creates a new
ClientContext instance of the CSOM, using the argument of type SPRemoteEventProperties provided
to the remote event receiver operation. Notice the static method CreateRemoteEventReceiver
ClientContext of the TokenHelper class, which creates a ClientContext instance based on the
ContextToken property of the argument. Within the code of the remote event receiver, you can
access, using the CSOM, the whole SharePoint host website and the app website, as well as their con-
tent and lists of items, in accordance with the permissions configured for you app. For more informa-
tion on how to use the CSOM for interacting with SharePoint, see Chapter 7.

www.it-ebooks.info

http://www.it-ebooks.info/

364 PaRt III Developing SharePoint apps

For the sake of simplicity, imagine that you want to retrieve information about the just-added item.
You can access the argument of type SPRemoteEventProperties that’s provided, and retrieve the prop-
erties of the currently managed item through the ItemEventProperties property. Listing 10-5 provides
an example of this procedure.

LISTING 10-5 Sample implementation of the ProcessEvent operation of the remote event receiver

public SPRemoteEventResult ProcessEvent(SPRemoteEventProperties properties) {
 SPRemoteEventResult result = new SPRemoteEventResult();

 if (properties.EventType == SPRemoteEventType.ItemAdding) {
 using (ClientContext clientContext =
 TokenHelper.CreateRemoteEventReceiverClientContext(properties)) {

 if (clientContext != null) {
 if ((String)properties.ItemEventProperties
 .AfterProperties["DevLeapOrderStatus"] == "Completed") {
 result.Status = SPRemoteEventServiceStatus.CancelWithError;
 result.ErrorMessage =
 "Order cannot be inserted as 'Completed'";
 }
 else {
 String newTitle = String.Format("{0} - Added on {1}",
 (String)properties.ItemEventProperties
 .AfterProperties["Title"],
 DateTime.Now);
 result.ChangedItemProperties["Title"] = newTitle;
 }
 }
 }
 }

 return result;
}

As you can see in the code highlighted in bold in Listing 10-5, to access a field of the target
item, you can query by field name the AfterProperties or BeforeProperties indexer properties of the
ItemEventProperties property, which is available in the argument of type SPRemoteEventProperties
received by the remote event receiver operation. Whether you query AfterProperties or
BeforeProperties depends on the kind of event you are handling. For example, if you are manag-
ing the ItemAdding event, you will have only the AfterProperties values. If you are handling the
ItemUpdating event, however, you will have both the AfterProperties and the BeforeProperties values.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 Remote event receivers 365

In Listing 10-5, the synchronous event (the ProcessEvent operation) first checks the EventType prop-
erty of the argument received. If EventType is of type SPRemoteEventType.ItemAdding, then it checks
the DevLeapOrderStatus field of the target item. If the field has a value of Completed, the remote
event receiver raises an error back to the SharePoint environment. To raise an error, you simply need
to provide a value other than Continue for the Status property of the return value of the operation,
which is of type SPRemoteEventResult. The sample raises an error and provides a description for that
error in the ErrorMessage property of the operation result.

Just for the sake of example, in Listing 10-5, if the target order item passes the validation rule, the
remote event receiver changes the Title field of the current order item, appending text with a value of
- Added on, followed by the current date and time. Notice that, in order to change the field value, the
remote event receiver implementation configures the ChangedItemProperties property of the opera-
tion result.

More Info You may be wondering why the sample code does not use the CSOM to change
the field value. The answer is simple: you cannot change an item during the ItemAdding
event, because the item still does not exist in the content database. Thus, you should not
be able to retrieve it from the target list using the CSOM. Moreover, if you are trapping
another event—not the ItemAdding event, but, for example, the ItemUpdating event—
changing the target item via the CSOM will raise another remote event receiver event, and
you will put your code in an infinite loop, blocking the app. Moreover, while executing mul-
tiple updates on the same item, because of the loop, you could get multiple concurrency
exceptions, too.

If you want to add another event to an already defined remote event receiver, you can simply click
the event receiver element in Solution Explorer in Visual Studio 2012 and change the properties in the
property grid, where you will find a Boolean property for each available event. Figure 10-4 shows the
UI for managing this task.

www.it-ebooks.info

http://www.it-ebooks.info/

366 PaRt III Developing SharePoint apps

FIGURE 10-4 The property grid of an instance of a remote event receiver.

Now put a breakpoint in the remote event receiver service code, start the SharePoint app by
pressing F5 in Visual Studio 2012, add a new order to the target list of orders using the form pro-
vided in the Default.aspx page, and see the events being raised in the service code. You will see both
the ItemAdding event, raised in the ProcessEvent operation, and the ItemAdded event, raised in the
ProcessOneWayEvent operation.

Listing 10-6 contains a sample of the ProcessOneWayEvent operation handling the ItemAdded
event. As you can see, the event retrieves the target item by ID, using the CSOM, and changes its Title
field by appending the literal value - ItemAdded Event Raised.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 Remote event receivers 367

LISTING 10-6 Sample implementation of the ProcessOneWayEvent operation of the remote event receiver

public void ProcessOneWayEvent(SPRemoteEventProperties properties) {
 if (properties.EventType == SPRemoteEventType.ItemAdded) {
 using (ClientContext clientContext =
 TokenHelper.CreateRemoteEventReceiverClientContext(properties)) {
 if (clientContext != null) {
 List ordersList = clientContext.Web.Lists.GetByTitle("Orders");
 ListItem orderItem =
 ordersList.GetItemById(
 properties.ItemEventProperties.ListItemId);

 String newTitle = String.Format("{0} - ItemAdded Event Raised",
 (String)properties.ItemEventProperties.
 AfterProperties["Title"]);
 orderItem["Title"] = newTitle;
 orderItem.Update();
 clientContext.ExecuteQuery();
 }
 }
 }
}

Deployment and registration

To deploy remote event receivers, you need to provision a specific feature element that declares the
name, the event to handle, the URL of the service, the ordinal sequence of the event, and the type of
source for the event. When you add and configure a new remote event receiver in Visual Studio 2012,
Visual Studio defines such a feature element behind the scenes. Listing 10-7 details the XML source of
that feature element for the example remote event receiver you defined.

www.it-ebooks.info

http://www.it-ebooks.info/

368 PaRt III Developing SharePoint apps

LISTING 10-7 The feature element for provisioning a remote event receiver handling ItemAdding and ItemAdded
events

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Receivers ListTemplateId="10101">
 <Receiver>
 <Name>OrdersRemoteEventReceiverItemAdding</Name>
 <Type>ItemAdding</Type>
 <SequenceNumber>10000</SequenceNumber>
 <Url>~remoteAppUrl/OrdersRemoteEventReceiver.svc</Url>
 </Receiver>
 <Receiver>
 <Name>OrdersRemoteEventReceiverItemAdded</Name>
 <Type>ItemAdded</Type>
 <SequenceNumber>10000</SequenceNumber>
 <Url>~remoteAppUrl/OrdersRemoteEventReceiver.svc</Url>
 </Receiver>
 </Receivers>
</Elements>

Listing 10-8 shows the complete definition of the Receivers element, which can contain multiple
remote event receiver registrations for the same target object.

LISTING 10-8 The feature element of type Receivers, which defines one or more remote event receiver
declarations

<Receivers
 ListTemplateId = "Text"
 ListTemplateOwner = "Text"
 ListUrl = "Text"
 RootWebOnly = "TRUE" | "FALSE"
 Scope = "Site" | "Web">
 <Receiver>
 <Name />
 <Type />
 <SequenceNumber />
 <Url />
 <Synchronization> Synchronous | Asynchronous </Synchronization>
 <Data />
 <Filter />
 </Receiver>
</Receivers>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 Remote event receivers 369

The Receivers feature element belongs to the http://schemas.microsoft.com/sharepoint namespace.
It is composed of a set of attributes, and accepts one or more Receiver child elements. Table 10-7 lists
each available attribute, along with a brief explanation.

TABLE 10-7 The attributes of the Receivers element

Attribute Description

ListTemplateId Numeric value that defines the ID of the list definition to which the event receivers apply. It
can assume any of the values defined in the SPListTemplateType enumeration, or it can assume
a custom ListTemplateId of a custom list definition created with Visual Studio 2012.

ListTemplateOwner GUID value that corresponds to the ID of the feature that provisioned the list template, if the
list template is registered through a feature. Otherwise, it can be the name of the site defini-
tion that declares the current list template to which the event receivers apply.

ListUrl Attribute that specifies the URL of the list instance to which the event receivers apply. Can
assume the form of lists/orders, in case the target list name is Orders.

RootWebOnly Boolean attribute to declare if the event receivers apply only to the root web.

Scope Attribute that can assume the value of Site or Web. It defines the scope of the event
receivers—they target either the site collection or the current web.

You can manually define feature elements provisioning remote event receivers. Although it is
easier to let Visual Studio do the job for you, in some circumstances you may need to manually
change the automatically generated files. For example, you can define whether an event will be
synchronous or asynchronous using the Synchronization child element of the Receiver element. By
default, all the -ing events are synchronous and all the -ed events are asynchronous, but you can
configure any -ed event to be synchronous simply by setting the Synchronization child element of the
Receiver tag to a value of Synchronous. If you provision an -ing event as synchronous, be careful that
the ProcessEvent operation is raised on the service side, instead of the default ProcessOneWayEvent
operation.

Lastly, the Url child element of the Receiver element is usually configured by Visual Studio 2012
as a URL relative to the app website, thanks to the ~remoteAppUrl token at the beginning of the URL
value. However, you can configure whatever URL you like and need. For example, if your app is run-
ning in a testing environment with a specific public URL, you can simply replace the autogenerated
URL with a real, direct URL of your own.

You can also manage and register the remote event receivers by using code based on the Server
Object Model. Listing 10-9 shows sample code for browsing all the already registered remote event
receiver instances, as well as for adding a new remote event receiver definition.

www.it-ebooks.info

http://www.it-ebooks.info/

370 PaRt III Developing SharePoint apps

LISTING 10-9 A sample code excerpt for browsing and adding remote event receivers to a target list

using (SPSite site = new SPSite("http://devbook.sp2013.local/")) {
 using (SPWeb web = site.OpenWeb()) {
 SPList targetList = web.Lists.TryGetList("Orders");

 // Browse all the already defined remote event receivers
 foreach (SPEventReceiverDefinition rer in targetList.EventReceivers) {
 Console.WriteLine("RER Name: {0}\nType: {1}\nSequence Number: {2}" +
 "\nUrl: {3}\nSynchronization: {4}",
 rer.Name,
 rer.Type,
 rer.SequenceNumber,
 rer.Url,
 rer.Synchronization
);
 Console.WriteLine("*********************************");
 }

 // Add a new remote event receiver definition
 targetList.EventReceivers.Add(
 SPEventReceiverType.ItemAdding,
 "http://services.devleap.com/MyCustomRER.svc");
 }
}

Notice that the EventReceivers property of the SPList type serves both the remote event receiv-
ers and the local in-process event receivers. In this chapter, the latter are not discussed, because they
are not suitable for a cloud scenario like Office 365. However, while browsing all the registered event
receivers by code, you should pay attention about what you get out from the EventReceivers property.

Lastly, consider that a remote event receiver can also be registered using the CSOM, as you will
learn in the next section.

App-related receivers

So far, you’ve seen remote event receivers defined inside and deployed through apps for trapping
events related to the contents of a SharePoint app. Remote event receivers can also handle events
that rely on the app life cycle itself rather than on data inside an app. For example, AppInstalled,
AppUpgraded, and AppUninstalling are raised whenever an app is installed, upgraded, or uninstalled,
respectively. The AppInstalled event is useful for provisioning custom content or configurations while
installing an app. The AppUninstalling event handles the opposite scenario, and can save custom data
before decommissioning the app website and before any data stored inside the app website is com-
pletely lost. The AppUpgraded event is handy for managing upgrades of data—for example, when an
app upgrade needs to change data structures and sample data already provisioned with a previous
version of the app.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 Remote event receivers 371

The architecture and the SOAP contract of an app-related remote event receiver are exactly
the same for any other remote event receiver. However, while trapping these events, you will
receive a property with the name AppEventProperties and type SPRemoteAppEventProperties, avail-
able in the argument of type SPRemoteEventProperties provided to the ProcessEvent operation,
which gives you information about the current app. Listing 10-10 provides the definition of the
SPRemoteAppEventProperties type.

LISTING 10-10 The definition of the SPRemoteAppEventProperties type

[DataContract(Name="RemoteAppEventProperties",
 Namespace="http://schemas.microsoft.com/sharepoint/remoteapp/")]
public class SPRemoteAppEventProperties {
 [DataMember]
 public Uri AppWebFullUrl { get; private set; }
 [DataMember]
 public string AssetId { get; private set; }
 [DataMember]
 public string ContentMarket { get; private set; }
 [DataMember]
 public Uri HostWebFullUrl { get; private set; }
 [DataMember]
 public Version PreviousVersion { get; private set; }
 [DataMember]
 public Guid ProductId { get; private set; }
 [DataMember]
 public Version Version { get; private set; }
}

Table 10-8 details the members of the SPRemoteAppEventProperties type.

TABLE 10-8 The members of the SPRemoteAppEventProperties type

Member Description

AppWebFullUrl A property of type URI that provides the URL of the app website of the current app

AssetId A String property providing the asset ID of the current app

ContentMarket A String property providing the source market of the current app

HostWebFullUrl A property of type URI that provides the URL of the host website of the current app

PreviousVersion A property of type Version, declaring the previous version of the current app if an upgrade is
occurring

ProductId A GUID property providing the product ID of the current app, which is also defined in the
AppManifest.xml file of the app

Version A property of type Version, declaring the current version of the current app

www.it-ebooks.info

http://www.it-ebooks.info/

372 PaRt III Developing SharePoint apps

To register an app-related event, you can manually edit the AppManifest.xml file of your app.
Inside the Properties element of the AppManifest.xml file, you can add three elements corresponding
to the three kinds of available events. The sample AppManifest.xml file in Listing 10-11 configures all
three event receivers.

LISTING 10-11 A sample AppManifest.xml file for configuring all the available app-related event receivers

<?xml version="1.0" encoding="utf-8" ?>
<!--Created:cb85b80c-f585-40ff-8bfc-12ff4d0e34a9-->
<App xmlns="http://schemas.microsoft.com/sharepoint/2012/app/manifest"
 Name="DevLeapSP2013REROrders"
 ProductID="{00d890ef-ff24-4f35-b6b6-1528e526cf39}"
 Version="1.0.0.0"
 SharePointMinVersion="15.0.0.0">
 <Properties>
 <Title>DevLeap.SP2013.RER.Orders</Title>
 <StartPage>~remoteAppUrl/Pages/Default.aspx?{StandardTokens}</StartPage>
<InstalledEventEndpoint>~remoteAppUrl/AppEventReceiver.svc
</ InstalledEventEndpoint><UpgradedEventEndpoint>~remoteAppUrl/AppEventReceiver.
svc</UpgradedEventEndpoint> <UninstallingEventEndpoint>~remoteAppUrl/
AppEventReceiver.svc</UninstallingEventEndpoint>
 </Properties>

 <AppPrincipal>
 <RemoteWebApplication ClientId="*" />
 </AppPrincipal>

 <AppPermissionRequests AllowAppOnlyPolicy="true" />

</App>

Notice the three elements (highlighted in bold) for defining the URI of the remote service for
handling AppInstalled, AppUpgraded, AppUninstalling. You can achieve the same result by editing the
properties of the SharePoint app project. Figure 10-5 shows the property grid of a sample app proj-
ect; the three properties are outlined in red.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 Remote event receivers 373

FIGURE 10-5 The properties for configuring app-related event receivers in a SharePoint app project.

When you enable an app-related event by setting its property value to true, Visual Studio adds a
service file called AppEventReceiver.svc to the app web project. In the code of the service, you will
be able to implement your custom receiver. Listing 10-12 illustrates a sample remote event receiver
handling app-related events.

LISTING 10-12 A code excerpt of the ProcessEvent operation of a sample app-related remote event receiver

public SPRemoteEventResult ProcessEvent(SPRemoteEventProperties properties) {
 SPRemoteEventResult result = new SPRemoteEventResult();

 if (properties.EventType == SPRemoteEventType.AppInstalled ||
 properties.EventType == SPRemoteEventType.AppUpgraded ||
 properties.EventType == SPRemoteEventType.AppUninstalling) {

 // Do something with your app-related events

 }
 return (result);
}

www.it-ebooks.info

http://www.it-ebooks.info/

374 PaRt III Developing SharePoint apps

Notice that the asynchronous pattern (ProcessOneWayEvent) is not available while developing
app-related event receivers, because app-related events are only synchronous. However, you will
have to fully implement the service contract, providing a fake and empty implementation for this
operation, too.

Consider a real scenario for using an app-related event receiver. For example, you could provision
a custom remote event receiver that targets a list or library in the host website, instead of targeting
the app website, as you did in the section “A sample remote event receiver.” Imagine that you want
to trap an event whenever a user uploads a file in the default Documents library in the host website
of your app. The goal of this receiver is to block files with the word virus in their name. Listing 10-13
shows a sample implementation of such a receiver.

LISTING 10-13 A code excerpt of the ProcessEvent operation of a sample remote event receiver for a library

public SPRemoteEventResult ProcessEvent(SPRemoteEventProperties properties) {
 SPRemoteEventResult result = new SPRemoteEventResult();

 // If the event is ItemAdding, handle it
 if (properties.EventType == SPRemoteEventType.ItemAdding) {
 String documentFileUrl = properties.ItemEventProperties.AfterUrl;
 if (documentFileUrl.Contains("virus")) {
 result.Status = SPRemoteEventServiceStatus.CancelWithError;
 result.ErrorMessage = "Invalid file name!";
 }
 }
 return (result);
}

As you can see, the implementation of this decoy receiver is really simple. If you attempt to upload
a file whose name contains the keyword virus into the Documents library, the receiver will block it.
Figure 10-6 illustrates how the standard UI of SharePoint behaves in this situation.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 Remote event receivers 375

FIGURE 10-6 The standard UI of SharePoint when a remote event receiver blocks a file upload with an error
message.

The interesting part of this example, however, is the registration of the remote event receiver. In
fact, to register the receiver, you need to link the service with the target library, using the CSOM,
within the AppInstalled event. In addition, of course, you will need to remove it from the list of con-
figured receivers when the app is uninstalled (via the AppUninstalling event). Listing 10-14 provides
sample code for an app-related event receiver that handles these tasks.

www.it-ebooks.info

http://www.it-ebooks.info/

376 PaRt III Developing SharePoint apps

LISTING 10-14 A code excerpt of an app-related receiver for registering remote event receivers for a library in the
host website

public SPRemoteEventResult ProcessEvent(SPRemoteEventProperties properties) {
 SPRemoteEventResult result = new SPRemoteEventResult();

 // Configure a remote event receiver for a document library
 if (properties.EventType == SPRemoteEventType.AppInstalled) {
 using (ClientContext clientContext = TokenHelper.
 CreateAppEventClientContext(
 properties, false)) {
 if (clientContext != null) {
 List documentsLibrary = clientContext.Web.Lists.
 GetByTitle("Documents");
 // Define the remote event receiver configuration
 EventReceiverDefinitionCreationInformation receiverDefinition =
 new EventReceiverDefinitionCreationInformation();

 receiverDefinition.EventType = EventReceiverType.ItemAdding;
 receiverDefinition.ReceiverName = "DocumentItemAddingReceiver";
 receiverDefinition.ReceiverUrl =
 String.Format("{0}://{1}/DocumentLibraryReceiver.svc",
 OperationContext.Current.Channel.LocalAddress.Uri.Scheme,
 OperationContext.Current.Channel.LocalAddress.Uri.
 Authority);
 receiverDefinition.SequenceNumber = 10000;

 // Add it to the target library and save on SharePoint
 // asynchronously
 documentsLibrary.EventReceivers.Add(receiverDefinition);
 clientContext.ExecuteQuery();
 }
 }
 }
 // Remove the remote event receiver definition while uninstalling
 else if (properties.EventType == SPRemoteEventType.AppUninstalling) {
 using (ClientContext clientContext = TokenHelper.
 CreateAppEventClientContext(
 properties, false)) {
 if (clientContext != null) {

 // Search for the remote event receiver to remove
 List documentsLibrary = clientContext.Web.Lists.
 GetByTitle("Documents");
 clientContext.Load(documentsLibrary.EventReceivers);
 clientContext.ExecuteQuery();

 List<EventReceiverDefinition> toDelete =
 new List<EventReceiverDefinition>();

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 Remote event receivers 377

 // Keep track of the remote event receiver instances to remove
 foreach (EventReceiverDefinition rer in documentsLibrary.
 EventReceivers) {
 if (rer.ReceiverName == "DocumentItemAddingReceiver") {
 toDelete.Add(rer);
 }
 }

 // Effectively remove them
 if (toDelete.Count > 0) {
 foreach (EventReceiverDefinition rer in toDelete) {
 rer.DeleteObject();
 }
 clientContext.ExecuteQuery();
 }
 }
 }
 }
 return (result);
}

Notice that, in order to register a remote event receiver, your app needs to have at least the right
of type Manage on the target website, which is the host website.

Callback capability

Another interesting and advanced feature available through remote event receivers is the callback
capability, diagrammed in Figure 10-7.

FIGURE 10-7 The functional schema of remote event receivers with callback capabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

378 PaRt III Developing SharePoint apps

The substantial difference from a classic scenario is that a remote event receiver using callback
capabilities can acquire an app-related OAuth token if the remote event receiver is hosted by an app
that runs on a farm in the cloud, like Office 365, or on-premises, but with OAuth properly configured.

More Info For further details about configuring an on-premises SharePoint 2013 farm for
using ACS and OAuth, you can read the following blog post from Steve Peschka: http://
blogs.technet.com/b/speschka/archive/2012/07/23/setting-up-an-oauth-trust-between-
farms-in-sharepoint-2013.aspx.

Otherwise, you can configure your on-premises app using an S2S (high-trust) security configu-
ration, avoiding the need for the OAuth protocol. Through the acquired token, the remote event
receiver can call back the SharePoint environment, typically requesting content or performing some
management tasks. Listing 10-15 shows a code excerpt of an event handled by the ProcessEvent
operations, which are consequently asynchronous.

LISTING 10-15 A code excerpt of the ProcessEvent operation of a sample app-related remote event receiver

public void ProcessOneWayEvent(SPRemoteEventProperties properties) {
 if (properties.EventType == SPRemoteEventType.ItemAdded) {
 using (ClientContext clientContext =
 TokenHelper.GetS2SClientContextWithWindowsIdentity(new
 Uri(properties.ItemEventProperties.WebUrl),
 System.Security.Principal.WindowsIdentity.GetCurrent())) {
 if (clientContext != null) {
 List ordersList = clientContext.Web.Lists.GetByTitle("Orders");
 ListItem orderItem = ordersList.GetItemById(
 properties.ItemEventProperties.ListItemId);

 String newTitle = String.Format("{0} - ItemAdded Event Raised",
 (String)properties.ItemEventProperties.
 AfterProperties["Title"]);
 orderItem["Title"] = newTitle;
 orderItem.Update();

 clientContext.ExecuteQuery();
 }
 }
 }
}

In the highlighted lines, the sample retrieves a client context instance and communicates with
the SharePoint host website, modifying some data. The client context is acquired using an S2S (also
known as high-trust) deployment instead of OAuth.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 Remote event receivers 379

Security

From a security viewpoint, remote event receivers use the standard security infrastructure of
SharePoint 2013 and SharePoint apps. Thus, if you create a remote event receiver within a SharePoint
app, then that remote event receiver will execute its code like any other content of the app. For
example, if you create or modify an item of a list or library from within an event receiver, and then
you check the Created By or Last Modified By fields, you will find something like the information
illustrated in Figure 10-8.

FIGURE 10-8 The properties of an item created and managed by a custom remote event receiver within a
SharePoint app.

Notice that both the Created By and Last Modified By properties declare that the actions have
been executed by the app DevLeap.SP2013.RER.Orders, on behalf of the current user, which in
Figure 10-8 is the administrator.

If you save the context token and later execute a scheduled task with app-only credentials, the
Last Modified By field will be related to the app only, without referencing a user on whose behalf the
app is working.

www.it-ebooks.info

http://www.it-ebooks.info/

380 PaRt III Developing SharePoint apps

Moreover, when SharePoint invokes a remote event receiver, it provides to it a rich set
of information within the argument of type SPRemoteEventProperties. If you need to cre-
ate a ClientContext instance for talking with the source SharePoint site, you can use
either the CreateRemoteEventReceiverClientContext method of the TokenHelper class or
the GetS2SClientContextWithWindowsIdentity method of the TokenHelper class. Both
these methods give back a configured and ready-to-use ClientContext of the CSOM. The
CreateRemoteEventReceiverClientContext method creates a ClientContext instance specifically
for a remote event receiver running in a classic autohosted or provider-hosted scenario. The
GetS2SClientContextWithWindowsIdentity method creates a ClientContext instance for an S2S
(high-trust) scenario.

More Info For further details about how to configure an S2S scenario, read Chapter 20.

Summary

In this chapter, you learned about the architecture of remote event receivers and how they work.
You saw how to develop and provision a sample remote event receiver. Then you considered such
advanced scenarios as app-related event receivers, receivers related to host websites, and callback-
enabled receivers. Lastly, you learned about the security infrastructure that underpins the implemen-
tation and execution of remote event receivers.

www.it-ebooks.info

http://www.it-ebooks.info/

 381

PART IV

Extending SharePoint

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

 383

C H A P T E R 1 1

Developing Web Parts

Since its early editions, Microsoft SharePoint has been famous and popular for the capability to
compose pages through Web Parts. First introduced in SharePoint Team Services 2001, Web

Parts are simply user-customizable regions hosted by a SharePoint webpage; they have been widely
adopted by the market over the years. With Microsoft .NET 2.0, the infrastructure for Web Parts
moved from SharePoint to the official ASP.NET web development platform, making the use of Web
Parts possible in many kinds of ASP.NET applications. As reliable as ever, Web Parts are still available
in SharePoint 2013 and can be useful in many solutions, especially when working on-premises.

To users, a Web Part is simply a piece of a webpage that they can customize from a web browser
interface. For example, users can even add and remove Web Parts from pages (often called Web Part
pages) by choosing Web Parts from a server gallery or from an online public gallery.

For developers, a Web Part is a class that defines code for rendering its content in the browser,
for handling custom configuration, layout, positioning, and so on, within the SharePoint or ASP.NET
environment. More importantly, developers can reuse Web Parts in many different pages and sites,
simplifying custom solution development, deployment, and maintenance. In fact, many SharePoint
solutions are based on a set of custom Web Parts that are referenced in pages.

This chapter explains how Web Parts work and how to develop custom Web Parts, as well as more
advanced topics about Web Part development.

Web Part architecture

A Web Part is an ASP.NET custom control that inherits from the base class WebPart from the System.
Web.UI.WebControls.WebParts namespace. To be able to fully use a Web Part in a page, you need to
define a WebPartZone control, which is a container for a set of Web Parts. The WebPartZone control
provides a common rendering pattern to all its constituent Web Parts. Another fundamental control
in the Web Parts architecture is the WebPartManager, which handles all the tasks related to Web Part
lifetime management—such as loading and unloading them, as well as serializing and deserializing
their state within the current page and connecting Web Parts into Web Part zones. SharePoint has
its own WebPartZone controls that give you the ability to define a set of SharePoint-specific render-
ing zones, such as the WebPartZone class for standard Web Part rendering and the EditorZone class
to render parts responsible for editing other Web Parts. (Editor Parts will be covered later in this
chapter.) Also, the WebPartManager control has been redefined in SharePoint into a custom imple-
mentation called SPWebPartManager, which handles some specific activities exclusively available in

www.it-ebooks.info

http://www.it-ebooks.info/

384 PaRt IV Extending SharePoint

SharePoint. In order to take advantage of these controls, SharePoint also provides a custom page type
called WebPartPage (available in the Microsoft.SharePoint.WebPartPages namespace) that includes a
preconfigured and unique instance of an SPWebPartManager control and the main Web Part zones,
which are useful for rendering a page made of Web Parts. Figure 11-1 illustrates the overall architec-
tural schema of such a page.

FIGURE 11-1 Overall architecture of a Web Part page in SharePoint and ASP.NET.

In everyday solutions, you will mainly work with Web Parts, and you will rarely have to directly
interact with WebPartZone controls and the WebPartManager control.

A Hello World Web Part

It’s time to start developing your first Web Part. Microsoft Visual Studio 2012 provides some proj-
ect templates (Silverlight Web Part and Visual Web Part) and utilities that can help you to rapidly
develop custom Web Parts. Suppose that you need to develop a Hello World Web Part that simply
welcomes the current user, writing his or her name and the current DateTime value in the browser.
You will begin creating a new project of type SharePoint 2013 - Empty Project. This project template
simply starts with a set of assembly references, useful for developing any kind of SharePoint solution,
and with a predefined deployment configuration. When you create a new SharePoint project, Visual
Studio asks you for the URL of the website where it will deploy the solution. It also asks you what kind
of deployment you want to build (farm solution or sandboxed solution). For this example, choose a
farm solution deployment. You will see more about deployment later, in the “Web Part deployment”
section. For now, you need to concentrate on the Web Part itself.

To develop your sample Web Part, you need to add a new file item of type Web Part to the proj-
ect. Name the new item HelloWorldWebPart. A new class file is added, together with a set of configu-
ration files, which will be discussed later. Figure 11-2 shows the project layout after you have added
the Web Part item.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 Developing Web Parts 385

FIGURE 11-2 The project layout of the sample Web Part solution.

Listing 11-1 displays the content of the HelloWorldWebPart.cs file, just after you add the Web Part
item to the project.

LISTING 11-1 The startup class file for the Hello World Web Part

using System;
using System.ComponentModel;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;

namespace DevLeap.SP2013.WebParts.HelloWorldWebPart {
 [ToolboxItemAttribute(false)]
 public class HelloWorldWebPart : WebPart {
 protected override void CreateChildControls()

 {

 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

386 PaRt IV Extending SharePoint

Looking at this code, the first thing you should notice is that the class inherits from the base
class WebPart, as mentioned in the previous section. The key point, however, is the override of the
CreateChildControls method, where, as with any other ASP.NET custom control, you should create
the web control’s tree, which defines the rendering of the Web Part. Listing 11-2 adds a couple of
instances of LiteralControl to display the welcome message text inside an <h1> tag and the current
date time in a <div> element.

LISTING 11-2 The code for the sample Hello World Web Part

using System;
using System.ComponentModel;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;

namespace DevLeap.SP2010.WebParts.HelloWorldWebPart {
 [ToolboxItemAttribute(false)]
 public class HelloWorldWebPart : WebPart {
 protected override void CreateChildControls()
 {
 SPWeb currentWeb = SPControl.GetContextWeb(HttpContext.Current);
 String currentUserName = currentWeb.CurrentUser.LoginName;
 this.Controls.Add(new LiteralControl(String.Format(
 "<h1>Welcome {0}!</h1>", currentUserName)));
 this.Controls.Add(new LiteralControl(String.Format(
 "<div>Current DateTime: {0}</div>", DateTime.Now)));
 }
 }
}

At the beginning of the CreateChildControls method implementation, the code also requests the
current SPWeb instance from the SPControl class, through the current HttpContext, so it can get the
current user’s login name.

More Info For further details about the SPWeb and SPControl classes, refer to Chapter 5,
“Server Object Model.”

As you can see from this introductory example, to be a good Web Part developer, you first need
to be a good ASP.NET developer. At the same time, every ASP.NET developer should be very comfort-
able developing Web Parts.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 Developing Web Parts 387

Figure 11-3 presents the output of the Hello World Web Part, inserted into the home page of a
web application.

FIGURE 11-3 The output of the Hello World Web Part within a SharePoint 2013 site.

Note Another way of implementing a Web Part is to inherit from the class WebPart of
namespace Microsoft.SharePoint.WebPartPages; however, this class internally inherits from
the ASP.NET WebPart base class and is primarily provided for backward compatibility with
older versions of SharePoint. If you decide to inherit your Web Parts from the SharePoint
WebPart base class, these Web Parts will target only SharePoint sites; you cannot use them
in standard ASP.NET websites. By using the SharePoint custom base class, you can take
advantage of some additional functionalities that are not available in standard Web Part
infrastructure. Although these additional capabilities have extremely limited uses, their few
benefits will be discussed at the end of this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

388 PaRt IV Extending SharePoint

Web Part deployment

Following is the list of actions that occurs while deploying a Web Part:

1. Build the class into a .NET assembly of type DLL.

2. Make the assembly available to the web application (putting it into the GAC [Global Assembly
Cache], or into the web application local bin folder, or into the Solution Gallery of the current
site collection).

Note The GAC is the centralized and shared repository of trusted and digitally
signed .NET assemblies. For further details about .NET development and deploy-
ment, consult Applied Microsoft .NET Framework Programming, by Jeffrey Richter
(Microsoft Press, 2002).

3. Authorize the Web Part to execute within the current SharePoint environment.

4. Load the Web Part into the Web Parts Gallery of the current site so that it is available to the
end user.

Visual Studio 2012 makes it easy to complete all these deployment steps. Simply select Build |
Deploy Solution to automatically deploy the Web Part on the website that you configured while cre-
ating the project. Behind the scenes, Visual Studio packages a Web Part solution package (WSP) for
you and deploys it on the target environment, following the previously outlined steps.

Take a look at these steps from a practical perspective. Building the .NET assembly is trivial, so I will
not cover it here; however, consider that if you ever want to put it into the GAC, you need to give it
a strong name (including the name, version, culture, and public key token). Fortunately, Visual Studio
2012 does this for you, automatically adding a set of signing keys to the project. Putting the assembly
into the GAC or web application bin folder is also trivial for any .NET developer. Conversely, installing
the assembly into the Solution Gallery of the current site collection requires you to know about sand-
boxed solutions. However, in SharePoint 2013, you should prefer developing apps instead of using
sandboxed solutions, in particular when they are used for deploying custom code—and a Web Part is
mainly made of custom code. Thus, the deployment of a Web Part through a sandboxed solution will
not be covered in this book.

To authorize the Web Part to execute within the SharePoint environment, you need to add a spe-
cific configuration item into the web.config file of the current web application, declaring the Web Part
as a SafeControl object. At the end of this chapter, you can find more details about the SafeControls
configuration section. Listing 11-3 presents an excerpt of the custom configuration that you need
to apply.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 Developing Web Parts 389

LISTING 11-3 The custom configuration needed to make the Hello World Web Part safe for SharePoint

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<configuration>
 <SharePoint>
 <!-- Removed for the sake of simplicity -->
 <SafeControls>
 <!-- Here there are many other SafeControls -->
 <SafeControl Assembly="DevLeap.SP2013.WebParts, Version=1.0.0.0,

 Culture=neutral, PublicKeyToken=cba640f292988abf"

 Namespace="DevLeap.SP2013.WebParts.HelloWorldWebPart" TypeName="*"

 Safe="True" SafeAgainstScript="False" />
 </SafeControls>
 <!-- Removed for the sake of simplicity -->
</configuration>

Making the Web Part available in the Web Part Gallery requires that you add the Web Part defini-
tion to the current site collection. This definition is a .webpart file that Visual Studio 2012 automati-
cally generates when you add a Web Part item to a project. Listing 11-4 illustrates the default content
of this file in the example.

LISTING 11-4 The .webpart file to deploy the Hello World Web Part

<?xml version="1.0" encoding="utf-8"?>
<webParts>
 <webPart xmlns="http://schemas.microsoft.com/WebPart/v3">
 <metaData>
<type name="DevLeap.SP2013.WebParts.HelloWorldWebPart.HelloWorldWebPart,

$SharePoint.Project.AssemblyFullName$" />
 <importErrorMessage>$Resources:core,ImportErrorMessage;<importErrorMessage>
 </metaData>
 <data>
 <properties>

 <property name="Title" type="string"> DevLeap.SP2013.WebParts -
HelloWorldWebPart</property>

 <property name="Description" type="string">My WebPart</property>

 </properties>
 </data>
 </webPart>
</webParts>

The key aspect of the .webpart file is the declaration of the type (a .NET type) corresponding to the
current Web Part. Notice that a single .webpart file can declare many Web Parts, even if by default
Visual Studio 2012 creates a .webpart file for each Web Part definition. The type name of the Hello
World Web Part is declared as a full name (namespace plus class name), together with the containing

www.it-ebooks.info

http://www.it-ebooks.info/

390 PaRt IV Extending SharePoint

assembly name. In this code example, the assembly name is defined using an alias ($SharePoint.
Project.AssemblyFullName$), which Visual Studio 2012 will automatically replace with the real assem-
bly name during the deployment process.

In addition, the .webpart file declares the default values for some of the properties of the Web
Part. For instance, you can see that the Title and Description properties of the Web Part are defined as
custom property elements within a properties wrapper element.

You can change the values of these properties as well as define some other properties by simply
editing the .webpart file in Visual Studio. Table 11-1 provides a list of the most useful properties that
you can define.

TABLE 11-1 Some of the main configurable properties of a .webpart file

Property name Description

Title Defines the title of the Web Part. The title will be shown to the end user in the Web Parts
Gallery as well as when the Web Part is inserted in a page, and it will be the default title of a
newly inserted Web Part.

Description Describes the current Web Part. This will be shown to the end user in the Web Parts Gallery
and when the Web Part is inserted in a page.

TitleIconImageUrl Specifies the URL to an image used to represent the Web Part in its title bar. The default
value is an empty string ("").

CatalogIconImageUrl Specifies the URL to an image used to represent the Web Part in the Web Parts Catalog,
which is the catalog for browsing available Web Part controls during Web Part insertion
within a target page. The default value is an empty string ("").

ChromeType Defines the type of border that frames the Web Part. It can assume the following values
(the default value is Default):

■■ Default Inherits its behavior from the containing Web Part zone
■■ TitleAndBorder Displays a title bar with a border
■■ None Will not display a border or title bar
■■ TitleOnly Displays a title bar without a border
■■ BorderOnly Displays a border without a title bar

ChromeState Determines whether the Web Part will appear minimized or normal (not minimized).

AllowClose Defines whether the Web Part can be closed by an end user.

AllowConnect Defines whether the Web Part can be connected to another by an end user.

AllowEdit Defines whether the Web Part can be edited by an end user.

AllowHide Defines whether the Web Part can be hidden by an end user.

AllowMinimize Defines whether the Web Part can be minimized by an end user.

AllowZoneChange Defines whether the Web Part can be moved between different Web Part zones by an end
user.

ExportMode Allows defining if the current Web Part configuration can be exported for reuse on another
website.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 Developing Web Parts 391

Listing 11-5 demonstrates how you can customize the .webpart file for the Hello World Web Part
sample: by adding a CatalogImageUrl property to provide a custom image for the Web Part, by
changing the ChromeType property, and by enabling editing through the AllowEdit property.

LISTING 11-5 The .webpart file to deploy the configured Hello World Web Part

<?xml version="1.0" encoding="utf-8"?>
<webParts>
 <webPart xmlns="http://schemas.microsoft.com/WebPart/v3">
 <metaData>
 <type name="DevLeap.SP2013.WebParts.HelloWorldWebPart.HelloWorldWebPart,
 $SharePoint.Project.AssemblyFullName$" />
 <importErrorMessage>$Resources:core,ImportErrorMessage;
</importErrorMessage>
 </metaData>
 <data>
 <properties>
 <property name="Title" type="string"> DevLeap.SP2013.WebParts -
HelloWorldWebPart</property>
 <property name="Description" type="string">
 Custom WebPart to welcome end user</property>
 <property name="CatalogIconImageUrl"

 type="string">/_layouts/images/ICTXT.GIF</property>

 <property name="AllowEdit" type="bool">true</property>

 <property name="ChromeType" type="chrometype">TitleAndBorder</property>
 </properties>
 </data>
 </webPart>
</webParts>

Figure 11-4 illustrates the output of the customized Hello World Web Part. You can also custom-
ize the group in which the Web Part will be presented to the end user within the Web Part Gallery.
To achieve this result, you need to edit the Elements.xml file related to the Web Part and change the
value of the Group property defined in that XML file. Notice the custom category, the custom icon
in the Web Parts Catalog, the customized description, and the customized ChromeType property
(TitleAndBorder).

www.it-ebooks.info

http://www.it-ebooks.info/

392 PaRt IV Extending SharePoint

FIGURE 11-4 The output of the customized Hello World Web Part within a SharePoint 2013 site.

As you will see in the “Configurable Web Parts” section later in the chapter, developers can also
define Web Part properties that are customizable by site owners or site members with the appropri-
ate permissions. Such properties will be configurable with default values while deploying Web Parts—
in exactly the same way as the standard Web Part properties just described.

Real Web Parts

Of course, real Web Parts are a little bit more complex than the Hello World example, and are
equipped with a richer set of controls and behaviors. In this section, you will explore two kinds of Web
Parts: classic Web Parts made of custom code, and Visual Web Parts, which are designed using the
graphical designer of Visual Studio 2012.

Classic Web Parts
A standard classic Web Part is a control that is made up of a set of ASP.NET controls, interacts with
the end user through events, and controls behavior. In this section, you will build a data entry Web
Part that will collect data from the end user and insert that data into a target SharePoint list. The core
engine of this Web Part will use the SharePoint Server Object Model as the means to insert items into
the target list. The UI will be built using ASP.NET server controls.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 Developing Web Parts 393

Imagine that you have a target list of requests for contacts available in your SharePoint site, and
you want to collect users’ requests using your custom Web Part implementation. Name the Web Part
InsertRequestForContactWebPart and create a SharePoint project in Visual Studio 2012 to host it.
Next, choose a farm solution project type. The Web Part provides a small set of fields (for the reason
of the request for contact and for requesting the user’s full name and email address) to describe the
request. These fields correspond to the Requests for Contacts target list that you manually defined in
the current website.

Note In Chapter 3, “Data provisioning,” you learned how to programmatically define and
provision data structures of lists like Requests for Contacts. In an actual professional solu-
tion, you will probably need to define the list, as well as the Web Parts working on it, in a
common SharePoint solution that you will be able to deploy “at once.”

Internally, the Web Part will have a set of ASP.NET controls that correspond to the input fields, and
will use the SharePoint Server Object Model (see Chapter 5, “Server Object Model,” for further details)
to insert the new item into the list. Listing 11-6 displays the whole implementation of the Web Part,
while Figure 11-5 shows its final output.

FIGURE 11-5 The output of the InsertRequestForContactWebPart within a SharePoint 2013 site.

www.it-ebooks.info

http://www.it-ebooks.info/

394 PaRt IV Extending SharePoint

LISTING 11-6 The whole implementation of the InsertRequestForContactWebPart

namespace DevLeap.SP2013.WebParts.InsertRequestForContactWebPart {
 [ToolboxItemAttribute(false)]
 public class InsertRequestForContactWebPart : WebPart {
 protected TextBox RequesterFullName;

 protected TextBox RequesterEMail;

 protected TextBox Reason;

 protected Button SubmitRequestForContact;

 protected Label ErrorMessage;

 protected override void CreateChildControls() {
 this.RequesterFullName = new TextBox();

 this.RequesterFullName.Columns = 100;

 this.RequesterFullName.MaxLength = 255;

 this.Controls.Add(new LiteralControl("<div>Requester Full Name: "));

 this.Controls.Add(this.RequesterFullName);

 this.Controls.Add(new LiteralControl("</div>"));

 this.RequesterEMail = new TextBox();
 this.RequesterEMail.Columns = 100;
 this.RequesterEMail.MaxLength = 100;
 this.Controls.Add(new LiteralControl("<div>Requester EMail: "));
 this.Controls.Add(this.RequesterEMail);
 this.Controls.Add(new LiteralControl("</div>"));

 this.Reason = new TextBox();
 this.Reason.Columns = 100;
 this.Reason.MaxLength = 255;
 this.Controls.Add(new LiteralControl("<div>Reason: "));
 this.Controls.Add(this.Reason);
 this.Controls.Add(new LiteralControl("</div>"));

 this.SubmitRequestForContact = new Button();
 this.SubmitRequestForContact.Text = "Submit Request for Contact";
 this.Controls.Add(new LiteralControl("<div>"));
 this.Controls.Add(this.SubmitRequestForContact);
 this.SubmitRequestForContact.Click +=

 new EventHandler(SubmitRequestForContact_Click);
 this.Controls.Add(new LiteralControl("</div>"));

 this.ErrorMessage = new Label();
 this.ErrorMessage.ForeColor = System.Drawing.Color.Red;
 this.Controls.Add(new LiteralControl("<div>"));
 this.Controls.Add(this.ErrorMessage);
 this.Controls.Add(new LiteralControl("</div>"));
 }

 void SubmitRequestForContact_Click(object sender, EventArgs e) {
 SPWeb web = SPControl.GetContextWeb(HttpContext.Current);

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 Developing Web Parts 395

 try {
 SPList targetList = web.Lists["Requests for Contacts"];
 SPListItem newItem = targetList.Items.Add();
 newItem["Reason"] = this.Reason.Text;
 newItem["Requester full name"] = this.RequesterFullName.Text;
 newItem["Requester email"] = this.RequesterEMail.Text;
 newItem.Update();
 }
 catch (IndexOutOfRangeException) {
 this.ErrorMessage.Text =
 "Cannot find list \"Requests for Contacts\"";
 }
 }
 }
}

In Listing 11-6, the code highlighted in bold declares the protected variables that hold the ASP.
NET server controls. The code inside the CreateChildControls method override instantiates these
controls. In particular, notice the binding between the Click server-side event of the button named
SubmitRequestForContact and the SubmitRequestForContact_Click method. Within this last event-
handling method, you create a new instance of an SPListItem representing a single contact request,
compile its fields, and then feed the SPList instance with this new item.

Starting from this second example, it’s easy to imagine that you can build whatever you need,
using some ASP.NET code and custom controls, together with some .NET code. For instance, you can
develop a Web Part that allows the user to interact with a back-end database, or you can define a
Web Part that talks with an external SOAP service provided by a third party. As you let your creativ-
ity wander, keep in mind that SharePoint is a strong and secure environment—thus, every kind of
customization or solution must be approved and authorized. Later, in the “Deployment and version-
ing” section, you will learn about the security aspects of developing and deploying custom SharePoint
Web Parts that comply with the security infrastructure of SharePoint.

Visual Web Parts
Listing 11-6 defines all the ASP.NET server controls that make up the Web Part, using a lot of custom
.NET code. Designing a Web Part by code is not always convenient, however, because in some sce-
narios you need to declare UI attributes (such as CSS styles), control positioning and alignment, and
so on. In addition, writing and maintaining all the code and controls you create inside a Web Part can
be difficult.

Luckily, Visual Studio 2012 offers an out-of-the-box solution for this problem: the Visual Web Part
item template defines a Web Part that loads its UI from a custom ASCX control. This kind of Web Part
internally creates a dynamic partial class of your Web Part, providing the .NET code for creating what
you design in the designer. Listing 11-7 shows the core implementation of a Visual Web Part that is
called VisualInsertRequestForContactWebPart. The invocation of method InitializeControl takes care

www.it-ebooks.info

http://www.it-ebooks.info/

396 PaRt IV Extending SharePoint

of loading all the .NET code for defining the UI of the Web Part, which will be designed in the visual
designer of Visual Studio 2012.

LISTING 11-7 The basic implementation of the VisualInsertRequestForContactWebPart

namespace DevLeap.SP2013.WebParts.VisualInsertRequestForContactWebPart {
 [ToolboxItemAttribute(false)]
 public class VisualInsertRequestForContactWebPart : WebPart {
 public VisualInsertRequestForContactWebPart() {
 }

 protected override void OnInit(EventArgs e) {
 base.OnInit(e);
 InitializeControl();
 }

 protected void Page_Load(object sender, EventArgs e) {
 }
 }
}

In the Web Part source code, you need to place not only the code related to the dynamic loading
of the UI, but also the event handlers and custom procedures. You can assign all the other aspects of
the controls’ tree in the ASCX file, as shown in Listing 11-8.

LISTING 11-8 The ASCX file for the VisualInsertRequestForContactWebPart

<%@ Assembly Name="$SharePoint.Project.AssemblyFullName$" %>
<%@ Assembly Name="Microsoft.Web.CommandUI, Version=15.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>
<%@ Register Tagprefix="SharePoint" Namespace="Microsoft.SharePoint.WebControls"
Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral, PublicKeyToke
n=71e9bce111e9429c" %>
<%@ Register Tagprefix="Utilities" Namespace="Microsoft.SharePoint.Utilities"
Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral, PublicKeyToke
n=71e9bce111e9429c" %>
<%@ Register Tagprefix="asp" Namespace="System.Web.UI" Assembly="System.Web.
Extensions, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" %>
<%@ Import Namespace="Microsoft.SharePoint" %>
<%@ Register Tagprefix="WebPartPages" Namespace="Microsoft.SharePoint.
WebPartPages" Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>
<%@ Control Language="C#" AutoEventWireup="true" CodeBehind="VisualInse
rtRequestForContactWebPart.ascx.cs" Inherits="DevLeap.SP2013.WebParts.
VisualInsertRequestForContactWebPart.VisualInsertRequestForContactWebPart" %>
<p>
 Requester full name:
 <asp:TextBox ID="RequesterFullName" runat="server" Columns="100"
 MaxLength="255"></asp:TextBox>
</p>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 Developing Web Parts 397

<p>
 Requester email:
 <asp:TextBox ID="RequesterEMail" runat="server" Columns="100"
MaxLength="100"></asp:TextBox>
</p>
<p>
 Reason:
 <asp:TextBox ID="Reason" runat="server" Columns="100" MaxLength="255" />
</p>
<asp:Button ID="SubmitRequestForContact" runat="server"
 onclick="SubmitRequestForContact_Click" Text="Submit Request for Contact" />

<asp:Label ID="ErrorMessage" runat="server" ForeColor="Red" Visible="False" />

Of course, the benefit of having an ASCX file instead of standard .NET code is that an ASCX file can
be defined using the Visual Studio 2012 designer, as shown in Figure 11-6.

FIGURE 11-6 The visual layout of the ASCX file of the VisualInsertRequestForContactWebPart in the Visual Studio
2012 designer.

www.it-ebooks.info

http://www.it-ebooks.info/

398 PaRt IV Extending SharePoint

Configurable Web Parts

In the previous examples, you used a predefined target list for inserting items. In real-world SharePoint
solutions, however, authorized users can configure Web Parts. In this section, you will see how to develop
configurable Web Parts and how to present a user-friendly interface for Web Part configuration.

Configurable parameters
The first step in creating configurable Web Parts is to define the properties that can be altered. To
do so, you simply need to declare a public property in the Web Part class definition, tagging the
property with the WebBrowsableAttribute attribute and optionally with the PersonalizableAttribute
attribute. Listing 11-9 shows a Web Part that declares a configurable property.

LISTING 11-9 A Web Part that provides a configurable property

Namespace DevLeap.SP2013.WebParts.ConfigurableInsertRequestForContactWebPart {
 [ToolboxItemAttribute(false)]
 public class ConfigurableInsertRequestForContactWebPart : WebPart {
 [WebBrowsable(true)]
 [Personalizable(PersonalizationScope.Shared)]
 public String TargetListTitle { get; set; }

 //
 // CreateChildControls code omitted ...
 //

 void SubmitRequestForContact_Click(object sender, EventArgs e) {
 SPWeb web = SPControl.GetContextWeb(HttpContext.Current);

 try {
 SPList targetList = web.Lists[this.TargetListTitle];

 SPListItem newItem = targetList.Items.Add();
 newItem["Reason"] = this.Reason.Text;
 newItem["Requester full name"] = this.RequesterFullName.Text;
 newItem["Requester email"] = this.RequesterEMail.Text;
 newItem.Update();
 }
 catch (IndexOutOfRangeException) {
 this.ErrorMessage.Text =
 "Cannot find list \"Requests for Contacts\"";
 }
 }
 }
}

The WebBrowsableAttribute class instructs the Web Part infrastructure that the property has to
be made available in the configuration panel for the Web Part, which is called the tool pane. This
attribute accepts a Boolean parameter named Browsable that is assigned a value of true when the
attribute is declared through its default constructor. The PersonalizableAttribute class declares that

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 Developing Web Parts 399

the property can be personalized and defines the scope of the personalization. It accepts a scope of
type User, which means that the property can be personalized on a per-user basis, or a scope of type
Shared, which means the property personalization will be shared between all users.

Some other useful attributes can help you better define the configurable property, improving the
end-user experience. For instance, you can define a custom category for the property by tagging it
with the CategoryAttribute attribute. You can change the caption of the property by tagging it with
the WebDisplayAttribute attribute, and you can change the tooltip shown to the end user by tag-
ging the property with the WebDescriptionAttribute attribute. You can provide a default value for the
property via the DefaultValueAttribute attribute. Listing 11-10 displays a complete definition for the
TargetListTitle property.

LISTING 11-10 A Web Part that provides a configurable property, with all the useful attributes

[WebBrowsable(true)]
[Personalizable(PersonalizationScope.Shared)]
[WebDescription("Title of the Target list")]
[WebDisplayName("Target list")]
[Category("Data Foundation")]
public String TargetListTitle { get; set; }

Figure 11-7 illustrates the UI presented to the user by a configurable property.

FIGURE 11-7 The tool pane of the sample Web Part.

www.it-ebooks.info

http://www.it-ebooks.info/

400 PaRt IV Extending SharePoint

The Web Part editor area in Figure 11-7 is provided by the SharePoint infrastructure and is based
on a set of SharePoint-specific classes, called Tool Parts, which can be customized by user code. By
default, SharePoint provides a WebPartToolPart class that provides the UI for editing the standard
properties of Web Parts (title, chrome type, size, and so on) and a CustomPropertyToolPart class,
which automatically allows editing custom properties.

Table 11-2 covers how the CustomPropertyToolPart class usually behaves when rendering custom
properties.

TABLE 11-2 The standard behavior of the CustomPropertyToolPart class while rendering custom properties

Custom property type Behavior

Boolean Renders a check box

Enum Renders a drop-down list

Integer Renders a text box

String Renders a text box

DateTime Renders a text box

You can implement custom Tool Part classes by simply inheriting from the ToolPart base abstract
class provided by the Microsoft.SharePoint.WebPartPages namespace. To make a custom Tool
Part available to SharePoint, however, you need to inherit the Web Part class from the Microsoft.
SharePoint.WebPartPages.WebPart base abstract class provided by SharePoint, instead of using the
common System.Web.UI.WebControls.WebParts.WebPart base abstract class provided by ASP.NET. To
do so, you need to override the GetToolParts method, returning a custom collection of Tool Parts. This
kind of customization works only in SharePoint, due to the dependency on the Microsoft.SharePoint.
dll assembly. But developing a Web Part that inherits from Microsoft.SharePoint.WebPartPages.
WebPart is not considered a best practice. You should always implement ASP.NET Web Parts, which
inherit from System.Web.UI.WebControls.WebParts.WebPart, unless you really need any of the few
features available only in SharePoint Web Parts; this will be the focus of the section “The SharePoint-
specific WebPart class,” later in the chapter.

editor Parts
Listing 11-10 defined a property that requires the end user to configure the Web Part manually, typ-
ing the target list name autonomously. You made use of the standard behavior of SharePoint and the
out-of-the-box CustomPropertyToolPart. However, even if it were possible to publish such a Web Part,
you would probably agree that this is not a user-friendly and error-free approach. A better solu-
tion is to provide a drop-down list with all the lists available in the current website, thereby avoid-
ing typographical errors and the consequent time-consuming debugging tasks. To customize the
configuration UI of the Web Parts this way, you can create custom classes called Editor Parts, provided
by the Web Part infrastructure of ASP.NET. Editor Parts are controls hosted in a specific WebPartZone
control called EditorZone. They are nearly the same as standard Web Parts, except that they inherit
from the base class EditorPart instead of inheriting from the WebPart class. This specific base class
provides the link between the Editor Part itself and the Web Part currently being edited. To provide

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 Developing Web Parts 401

a Web Part with a custom Editor Part, you need to override the implementation of the IWebEditable
interface, which is implemented by the Web Part base class. Listing 11-11 provides the definition of
this interface.

LISTING 11-11 The IWebEditable interface definition

public interface IWebEditable {
 EditorPartCollection CreateEditorParts();
 object WebBrowsableObject { get; }
}

The interface declares a method with the name CreateEditorParts that should return a collection of
Editor Parts that support Web Parts with a wide set of Editor Parts. The interface also defines a public
read-only property to get a reference to the configurable object that the Editor Parts will target.
Usually, the WebBrowsableObject property returns the current Web Part instance (this). Listing 11-12
displays the new implementation of the custom Web Part.

LISTING 11-12 The new custom Web Part, implementing the IWebEditable interface

namespace DevLeap.SP2013.WebParts.EditorInsertRequestForContactWebPart {
 [ToolboxItemAttribute(false)]
 public class EditorInsertRequestForContactWebPart : WebPart {
 [WebBrowsable(false)]
 [Personalizable(PersonalizationScope.Shared)]
 public Guid TargetListID { get; set; }

 //
 // CreateChildControls code omitted ...
 //

 void SubmitRequestForContact_Click(object sender, EventArgs e) {
 SPWeb web = SPControl.GetContextWeb(HttpContext.Current);

 try {
 SPList targetList = web.Lists[this.TargetListID];
 SPListItem newItem = targetList.Items.Add();
 newItem["Reason"] = this.Reason.Text;
 newItem["Requester full name"] = this.RequesterFullName.Text;
 newItem["Requester email"] = this.RequesterEMail.Text;
 newItem.Update();
 }
 catch (IndexOutOfRangeException) {
 this.ErrorMessage.Text =
 "Cannot find list \"Requests for Contacts\"";
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

402 PaRt IV Extending SharePoint

 public override EditorPartCollection CreateEditorParts() {
 RequestForContactEditorPart editorPart =
 new RequestForContactEditorPart();
 editorPart.ID = this.ID + "_RequestForContactEditorPart";
 EditorPartCollection editorParts =
 new EditorPartCollection(base.CreateEditorParts(),
 new EditorPart[] { editorPart });
 return editorParts;
 }
 public override object WebBrowsableObject {
 get { return(this); }
 }
 }
}

In Listing 11-12, the property TargetListTitle of type String has been changed into the property
TargetListID of type Guid so that it can store the unique ID of the target list, and that ID is used to
look up the list instance in the SubmitRequestForContact_Click event handler. The code in the listing
also turns off the WebBrowsable attribute on the property to hide it from the standard property grid
of the Web Part editor. This property will be handled using the custom Editor Part.

Important If you do not turn off the WebBrowsable attribute of a property that is also
configurable through a custom Editor Part, your end user will have both the custom
Editor Part and the standard property grid for editing that property, provided by the
CustomPropertyToolPart of SharePoint. This is, of course, confusing for the end user and
should be avoided.

Next, the code overrides the CreateEditorParts method to invoke the base class method imple-
mentation and to add a custom Editor Part, named RequestForContactEditorPart, to the collection of
available Editor Parts of the current Web Part. Notice also the definition of a custom ID for the Editor
Part instance, based on the uniqueness of the current Web Part ID, to make the Editor Part ID unique
as well.

EditorPart is a base abstract class that provides some virtual or abstract methods and properties
that are useful for managing the editing of the target Web Part. For instance, every class inherited
from EditorPart has a WebPartToEdit property that references the Web Part instance that the Editor
Part is currently editing. There are also a couple of abstract methods, called ApplyChanges and
SyncChanges, that can be used to save any changes to the Web Part currently being edited, and to
load the current configuration from it, respectively.

Listing 11-13 gives you an opportunity to evaluate the implementation of the
RequestForContactEditorPart class.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 Developing Web Parts 403

LISTING 11-13 The RequestForContactEditorPart class implementation

public class RequestForContactEditorPart : EditorPart {
 protected DropDownList targetLists;

 protected override void CreateChildControls() {
 this.targetLists = new DropDownList();

 SPWeb web = SPControl.GetContextWeb(HttpContext.Current);
 foreach (SPList list in web.Lists) {
 this.targetLists.Items.Add(new ListItem(list.Title,
 list.ID.ToString()));
 }

 this.Title = "Request for Contact EditorPart";
 this.Controls.Add(new LiteralControl("Select the target List:
"));
 this.Controls.Add(this.targetLists);
 this.Controls.Add(new LiteralControl("

"));
 }

 public override bool ApplyChanges() {
 EnsureChildControls();
 EditorInsertRequestForContactWebPart wp =
 this.WebPartToEdit as EditorInsertRequestForContactWebPart;
 if (wp != null) {
 wp.TargetListID = new Guid(this.targetLists.SelectedValue);
 }
 return (true);
 }

 public override void SyncChanges() {
 EnsureChildControls();
 EditorInsertRequestForContactWebPart wp =
 this.WebPartToEdit as EditorInsertRequestForContactWebPart;
 if (wp != null) {
 ListItem selectedItem =
 this.targetLists.Items.FindByValue(wp.TargetListID.ToString());
 if (selectedItem != null) {
 this.targetLists.ClearSelection();
 selectedItem.Selected = true;
 }
 }
 }
}

As with any other Web Part, an Editor Part must create its controls graph to render its content. In
Listing 11-13, the CreateChildControls method override creates a drop-down list and binds it to the
collection of lists of the current website.

Then, the ApplyChanges method override saves the currently selected list ID into the TargetListID
property of the current Web Part instance. Similarly, the SyncChanges method override autoselects

www.it-ebooks.info

http://www.it-ebooks.info/

404 PaRt IV Extending SharePoint

the list with ID equal to the current TargetListID property value in the drop-down list. Figure 11-8
depicts the output of the custom Editor Part.

FIGURE 11-8 The configuration panel of the sample Web Part, with the Editor Part in place.

In an actual SharePoint solution, all of the Web Parts will typically provide a rich and complete set
of configuration parameters, configurable and customizable through custom Editor Parts.

Handling display modes

During the course of developing real-world Web Parts, sooner or later you will probably face the
need to change the rendering of your custom Web Parts, based on the status of the page that hosts
them. A page hosting one or more Web Parts can be rendered in display mode (when the end user is
browsing the site), in design mode (when the user can design the page layout), or in edit mode (when
the end user is configuring or customizing the page and its controls).

To query the page display mode and render a Web Part accordingly, you need to query the
DisplayMode property of the WebPartManager (SPWebPartManager in SharePoint). The sample
Web Part in Listing 11-14 adapts its rendering based on the current DisplayMode property of the
WebPartManager class.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 Developing Web Parts 405

LISTING 11-14 A Web Part rendering its content relative to the current page DisplayMode property of the
WebPartManager class

protected override void CreateChildControls() {
 if (this.WebPartManager.DisplayMode == WebPartManager.BrowseDisplayMode) {
 // Page display mode
 // Render standard content
 }
 else if (this.WebPartManager.DisplayMode == WebPartManager.DesignDisplayMode)
{
 // Page design mode
 this.Controls.Add(new LiteralControl("<div>
 Please move to Display mode to use this Web Part.</div>"));
 }
 else if (this.WebPartManager.DisplayMode == WebPartManager.EditDisplayMode) {
 // Page edit mode
 this.Controls.Add(new LiteralControl("<div>
 Please move to Display mode to use this Web Part or configure its
 properties, since you are in Edit mode.</div>"));
 }
}

Any class inheriting from WebPart has a shortcut property referencing the current
WebPartManager instance. Through this property, you can check the DisplayMode and many
other context properties. You can also use the WebPartManager to subscribe to events related
to DisplayMode changes. For instance, you can monitor the DisplayMode status with the
DisplayModeChanging and DisplayModeChanged events.

Custom Web Part verbs

Another Web Part customization capability that is sometimes useful is the definition of custom Web
Part verbs. Web Part verbs are menu items that are displayed in the Web Part menu, as shown in
Figure 11-9.

To configure custom verbs, you need to override the read-only Verbs property provided by the
base WebPart class. This property returns a WebPartVerbCollection and can be used to completely
redefine the menu of a Web Part. Verbs are objects of type WebPartVerb and can be of three
different kinds:

■■ Server-side Verbs that require a POST-back to carry out their job; they work on the
server side

■■ Client-side Verbs that simply use JavaScript syntax to do their job; they work on the
client side

■■ Client and server-side Verbs that first execute some client-side JavaScript, and then can
execute some server-side code, unless the client-side code cancels the request

www.it-ebooks.info

http://www.it-ebooks.info/

406 PaRt IV Extending SharePoint

FIGURE 11-9 Sample custom verbs rendered in a custom Web Part.

Listing 11-15 presents an excerpt of the sample Web Part, which supports all three kinds of custom
verbs.

LISTING 11-15 A custom Web Part with custom verbs

public override WebPartVerbCollection Verbs {
 get {
 WebPartVerb serverSideVerb = new WebPartVerb("serverSiteVerbId",
 handleServerSideVerb);
 serverSideVerb.Text = "Server-side verb";
 WebPartVerb clientSideVerb = new WebPartVerb("clientSideVerbId",
 "javascript:alert('Client-side Verb selected');");
 clientSideVerb.Text = "Client-side verb";

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 Developing Web Parts 407

 WebPartVerb clientAndServerSideVerb = new
 WebPartVerb("clientAndServerSideVerbId",
 handleServerSideVerb,
 "javascript:alert('Client-side Verb selected');");
 clientAndServerSideVerb.Text = "Client and Server-side verb";
 WebPartVerbCollection newVerbs = new WebPartVerbCollection(
 new WebPartVerb[] {
 serverSideVerb, clientSideVerb, clientAndServerSideVerb,
 }
);
 return (new WebPartVerbCollection(base.Verbs, newVerbs));
 }
}

protected void handleServerSideVerb(Object source, WebPartEventArgs args) {
 EnsureChildControls();

 this.GenericMessage.Text = "You raised a server-side event!";
}

The interesting aspect of this sample code is the implementation of the Verbs property, where you
manually define and configure verbs, and then add them to the resulting collection of Web Part verbs.

Usually, custom verbs are defined in Intranet/extranet solutions to provide support for custom
functionalities, such as refreshing content, opening custom pop-up windows, and so forth. In general,
they are not used in web content management (WCM) solutions, because the user experience is usu-
ally different in these public-facing Internet sites.

Connectable Web Parts

A Web Part is defined as connectable when it can be connected with another Web Part, within the
same page, in a provider-consumer relationship. Connectable Web Parts are useful for creating
filters and master-detail pages, where one Web Part—the provider—typically renders a selectable
list of items or a single master item, and other Web Parts—the consumers—render filtered contents
based on the provider’s current item. What happens behind the scenes is that the provider and the
consumer share some data, based on a shared communication contract. As a concrete example, you
will see how to develop a provider Web Part that offers a selectable list of product categories, and a
consumer Web Part that shows the products belonging to the currently selected category.

First, to develop the sample connectable Web Parts solution, you need to define a data source. For
the sake of simplicity, Listing 11-16 example uses an XML data source file, containing both categories
and products, so you don’t need to have access to a DBMS to build the example.

www.it-ebooks.info

http://www.it-ebooks.info/

408 PaRt IV Extending SharePoint

LISTING 11-16 The XML data source file for the connectable Web Parts sample

<?xml version="1.0" encoding="utf-8" ?>
<store>
 <categories>
 <category id="FOOD" description="Food" />
 <category id="BEV" description="Beverages" />
 <category id="APPAREL" description="Shoes and Dresses" />
 <category id="UTILS" description="Utilities and Tools" />
 </categories>
 <products>
 <product code="P01" description="Meat" categoryId="FOOD" price="15.00" />
 <product code="P02" description="Filet" categoryId="FOOD" price="18.00" />
 <product code="P03" description="Biscuits" categoryId="FOOD" price="4.00" />
 <product code="P04" description="Olive Oil" categoryId="FOOD" price="35.00"
/>
 <product code="P05" description="Chips" categoryId="FOOD" price="3.00" />
 <product code="P06" description="Water" categoryId="BEV" price="0.50" />
 <product code="P07" description="Red Wine" categoryId="BEV" price="7.00" />
 <product code="P08" description="White Wine" categoryId="BEV" price="9.00" />
 <product code="P09" description="Beer" categoryId="BEV" price="3.50" />
 <product code="P10" description="Weiss Bier" categoryId="BEV" price="4.00" />
 <product code="P11" description="Cap" categoryId="APPAREL" price="45.00" />
 <product code="P12" description="T-Shirt" categoryId="APPAREL" price="12.00"
/>
 <product code="P13" description="Coat" categoryId="APPAREL" price="210.00" />
 <product code="P14" description="Screwdriver" categoryId="UTILS" price="7.00"
/>
 <product code="P15" description="Hairdryer" categoryId="UTILS" price="31.00"
/>
 </products>
</store>

The provider Web Part that shows the categories will render a grid containing all the product
categories, along with a link button that allows users to select a specific category. The products (or
consumer) Web Part will render a grid of products, filtered by the selected category. The provider
and the consumer need to share a communication contract, which is an interface that will be imple-
mented by the provider and consumed by the consumer. Thanks to the smart architecture of ASP.NET
connectable Web Parts, you can define that interface freely, without any constraints on its proper-
ties, methods, and signature. In addition, a typical interface for connecting Web Parts defines only
properties that correspond to the data shared between provider and consumer. Listing 11-17 shows
the interface defined for this example.

LISTING 11-17 The communication contract shared between the provider and the consumer Web Parts

public interface ICategoriesProvider {
 String CategoryId { get; }
}

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 Developing Web Parts 409

To make the connection available, you need to implement the interface in a custom type and
include a public method in the provider Web Part that returns an instance of that type. Then, to make
SharePoint and ASP.NET aware that the method can be assumed as a connection provider, you deco-
rate it with the ConnectionProviderAttribute attribute. Listing 11-18 contains an excerpt of an example
implementation of the provider Web Part.

LISTING 11-18 An excerpt of the provider Web Part

public class CategoriesWebPart : WebPart, ICategoriesProvider {

 [WebBrowsable(true)]
 [Personalizable(true)]
 public String XmlDataSourceUri { get; set; }

 protected GridView gridCategories;

 protected override void CreateChildControls() {
 // ... code omitted ...
 }

 public String CategoryId {
 get {
 if (this.gridCategories.SelectedIndex >= 0) {
 return (this.gridCategories.SelectedDataKey.Value as String);
 }
 else {
 return (String.Empty);
 }
 }
 }
 [ConnectionProvider("Category")]
 public ICategoriesProvider GetCategoryProvider() {
 return (this);
 }

 // ... code omitted ...
}

As shown in Listing 11-18, the interface is generally implemented directly in the provider Web Part,
returning an instance of the Web Part through the method decorated with the ConnectionProvider
attribute. The GetCategoryProvider method simply returns this (the instance of the current Web Part),
and is marked as ConnectionProvider, with a specific name for the data provided. That name will be
shown to the end user while connecting Web Parts.

The other side of this connection—the consumer Web Part—looks like Listing 11-19.

www.it-ebooks.info

http://www.it-ebooks.info/

410 PaRt IV Extending SharePoint

LISTING 11-19 An excerpt of the consumer Web Part

public class ProductsWebPart : WebPart {

 [WebBrowsable(true)]
 [Personalizable(true)]
 public String XmlDataSourceUri { get; set; }
 protected ICategoriesProvider _provider;
 protected GridView gridProducts;
 protected String categoryId;
 [ConnectionConsumer("Products of Category")]
 public void SetCategoryProvider(ICategoriesProvider categoriesProvider) {
 this._provider = categoriesProvider; }

 protected override void OnPreRender(EventArgs e) {
 if (this._provider != null) {
 this.categoryId = this._provider.CategoryId;
 if (!String.IsNullOrEmpty(this.categoryId)) {
 this.EnsureChildControls();
 // ... code omitted ...
 }
 else {
 this.Controls.Add(new LiteralControl(
 "Please select a Product Category"));
 }
 }
 else {
 this.Controls.Add(new LiteralControl(
 "Please connect this Web Part to a Categories Data Provider"));
 }
 base.OnPreRender(e);
 }

 protected override void CreateChildControls() {
 // ... code omitted ...
 }
}

As its name implies, the consumer Web Part consumes the data presented by the provider
Web Part through a specific public method, named SetCategoryProvider, which is decorated with the
ConnectionConsumerAttribute attribute.

SharePoint automatically matches the provider method, marked as ConnectionProvider, and the
consumer method, marked as ConnectionConsumer, invoking the former to get a reference to the
provider instance, and the latter to set the reference. This way, the consumer, which is in its own
OnPreRender event method, will be able to check if a reference to a specific data provider exists, and,
if so, will query it to get back the currently selected product category.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 Developing Web Parts 411

Figure 11-10 shows the output of these Web Parts connected in a common Web Part page.

FIGURE 11-10 The output of the connected Web Parts within a SharePoint 2013 Web Part page.

Note It is strategic to query the data provider in the OnPreRender method of the consumer
Web Part, instead of, for instance, invoking it in the CreateChildControls method. In fact, in
the CreateChildControls method stage, the provider Web Part shouldn’t be ready to provide
the currently selected item, while in the OnPreRender stage, the current selection, if any,
will be available.

Figure 11-11 shows the configuration interface natively provided by SharePoint to connect a
couple of connectable Web Parts.

www.it-ebooks.info

http://www.it-ebooks.info/

412 PaRt IV Extending SharePoint

FIGURE 11-11 The native interface of SharePoint to connect a couple of connectable Web Parts.

Notice in Figure 11-11 how the Send Category To menu item goes into the Products Web
Part item. The Category word is defined in the constructor of the ConnectionProviderAttribute in
Listing 11-18.

In the interest of being thorough, Table 11-3 lists the configurable properties of
ConnectionProviderAttribute and ConnectionConsumerAttribute. Some of these properties can be
configured only through the constructors of these attributes.

TABLE 11-3 The configurable properties of ConnectionProviderAttribute and ConnectionConsumerAttribute

Property name Description

AllowsMultipleConnections In both attributes, indicates whether the connection point allows multiple
connections.

ConnectionPointType Represents a Type corresponding to the ConnectionPoint between the provider and
the consumer. Generally, it is automatically assigned; however, it can be created and
assigned using a custom type.

DisplayName Represents the user-friendly name of the connection, used also in the browser UI
when connecting Web Parts.

ID Defines the unique ID of a connection provider and allows a provider to publish mul-
tiple unique connections, as well as a consumer to specify its target provider.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 Developing Web Parts 413

As is evident from the properties shown in Table 11-3, you can define a provider Web Part that
provides data to multiple consumers, which can prove useful. As an example, if you build custom
dashboards—typically for business intelligence solutions—you might have a provider Web Part that
supplies the currently selected product, business unit, or whatever you need to monitor, and a set of
consumer Web Parts that show detailed information about the currently selected item.

SharePoint by itself provides some native interfaces that correspond to Web Parts connection con-
tracts, as listed in Table 11-4. These interfaces are considered obsolete, however, and you should rely
on them only when you need to provide backward compatibility in your Web Parts.

TABLE 11-4 The SharePoint native connectable interfaces

Interfaces Description

ICellProvider, ICellConsumer Contract to provide or consume a single value, like a field or a cell.

IRowProvider, IRowConsumer Contract to provide or consume a single row or a set of rows.

IListProvider, IListConsumer Contract to provide or consume an entire list of items.

IFilterProvider, IFilterConsumer Contract to provide or consume a filter in a master-detail scenario.

IParametersInProvider,
IParametersInConsumer

Contract to provide or consume a set of parameters for a Web Part. In this situa-
tion, the consumer gives the values of the parameters to the provider.

IParametersOutProvider,
IParametersOutConsumer

Contract to provide or consume a set of parameters for a Web Part. In this situa-
tion, the provider gives the values of the parameters to the consumer.

More Info Sometimes, you’ll come across situations in which you would like to connect
a provider Web Part, based on a specific provider contract interface, to a consumer Web
Part that can’t directly consume that contract, but can consume a different interface. The
infrastructure of connectable Web Parts allows you to define interface transformers, which
allow you to connect incompatible interfaces. This book does not cover this topic; however,
it is important to be aware of its existence. You can find further details about this topic at
http://msdn.microsoft.com/en-us/library/ms469765.aspx.

Deployment and versioning

In SharePoint 2013, you can deploy a Web Part in three locations:

■■ The Solution Gallery This allows deploying Web Parts in a sandboxed environment.
Although introduced in SharePoint 2010, it is now deprecated in SharePoint 2013. Thus, this
chapter will not cover it.

www.it-ebooks.info

http://www.it-ebooks.info/

414 PaRt IV Extending SharePoint

■■ The bin directory of the hosting web application Using this deployment, you can release
a Web Part locally to a specific web application, with local maintenance and configuration.

■■ The GAC Code libraries and Web Parts are deployed here so that they can be shared by all
the web applications in the current server farm. Code installed in the GAC has full-trust rights
on the hosting server.

Regardless of which deployment location you choose, a Web Part is deployed through a .web-
part file that’s either included in a SharePoint solution or manually deployed by an authorized user.
However, deployment includes not only installing from scratch, but also upgrading from one version
to another.

To upgrade a Web Part, one useful suggestion is to release upgrades only through strongly named
assemblies. A strongly named assembly can be checked against its signature when .NET loads it, to
prevent tampering. In addition, the strong name also declares the assembly version clearly, better
supporting upgrade paths.

Note The .NET Common Language Runtime (CLR) checks the digital signature of a strongly
named assembly whenever it loads such an assembly deployed in the bin directory of the
hosting application. However, the signature of an assembly deployed in the GAC is checked
only when it’s inserted into the GAC. This behavior may sound strange, but only admin-
istrators (local or domain) can add assemblies to the GAC. If an administrator inserts an
assembly into the GAC, and that assembly has a valid signature, then only another user with
administrative rights could change (tamper with) that binary file. So, unless your administra-
tors become hackers, that situation should never happen!

If your upgrade process involves only internal code modification without changes to any public
property of the Web Part, and you did not change the assembly version, you can simply substitute the
assembly in the deployment location. If you changed some of the public properties of the Web Part,
you need to adapt older versions of your Web Part to the last version. If a Web Part page or a wiki
page contains an old instance of your Web Part, as soon as someone opens the page, the old Web
Part will load, and SharePoint infrastructure will look for its assembly and type. If you replaced the old
one with a new version, however, SharePoint will not find the old assembly, and the type load will fail.
Similarly, if you renamed, removed, or otherwise changed some properties, the serialization of the old
Web Part will not match the new type.

To solve the assembly-versioning issue, you can use the .NET native assembly binding redirect
infrastructure. By manually adding a few lines of XML to the web.config file of the web application,
you can instruct the .NET CLR to load the new assembly in place of the old one. Listing 11-20 shows
an example of assembly-binding redirect.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 Developing Web Parts 415

LISTING 11-20 An excerpt of a web.config file with an assembly-binding redirect directive

<runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="DevLeap.SP2013.VersionableWebPart"
 publicKeyToken="6acae404adfa82c3" culture="neutral" />
 <bindingRedirect oldVersion="1.0.0.0" newVersion="2.0.0.0" />
 </dependentAssembly>
 </assemblyBinding>
</runtime>

This small piece of XML declares that when the CLR needs to load the assembly with name
DevLeap.SP2013.VersionableWebPart and a PublicKeyToken value of 6acae404adfa82c3, and with neu-
tral culture and version 1.0.0.0 (oldVersion), it should instead try to load version 2.0.0.0 (newVersion) of
the same assembly. Of course, the new assembly must be available in the web application bin folder
or in the GAC.

On the other hand, migrating properties from one Web Part version into another is not a trivial
feat. If you are upgrading an old SharePoint native Web Part to an ASP.NET Web Part, you can over-
ride the AfterDeserialize() method to migrate properties from the old version to the new one. This
method will be invoked the first time SharePoint loads a page with an older version of your Web Part
in it. For subsequent loads, the Web Part will already be upgraded, and the AfterDeserialize() method
will not be invoked again.

Keep in mind that when you are upgrading ASP.NET Web Parts, you cannot use this
method. For versioning personalization data in ASP.NET Web Parts, you should instead use the
IVersioningPersonalizable interface defined in the namespace System.Web.UI.WebControls.WebParts.
Listing 11-21 shows the signature of this interface.

LISTING 11-21 The IVersioningPersonalizable interface for Web Part versioning

namespace System.Web.UI.WebControls.WebParts {
 public interface IVersioningPersonalizable {
 void Load(IDictionary unknownProperties);
 }
}

The only method defined in this interface is Load, which receives a list of all the unknown proper-
ties that should be deserialized, but for which the Web Part environment does not know where to
store their values. You can implement this interface to migrate personalization while the framework
loads the Web Parts.

www.it-ebooks.info

http://www.it-ebooks.info/

416 PaRt IV Extending SharePoint

For clarity, consider the simple Web Part in Listing 11-22, which has one customizable property.

LISTING 11-22 A very simple Web Part to show how Web Part versioning works

namespace DevLeap.SP2013.VersionableWebPart.CustomWebPart {
 [ToolboxItemAttribute(false)]
 public class CustomWebPart : WebPart {
 [WebBrowsable(true)]
 [Personalizable(true)]
 public String TextToRender { get; set; }

 protected override void CreateChildControls() {
 this.Controls.Add(new LiteralControl(this.TextToRender));
 }
 }
}

This Web Part is deployed within an assembly with the following strong name:

DevLeap.SP2013.VersionableWebPart, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=6acae404adfa82c3

Now suppose that you define a new version of this Web Part, changing the assembly version,
renaming the public property TextToRender to TextToRenderTimes, and adding a new property,
NumberOfTimes. First, you need to define a corresponding binding redirect in the web.config file.
Then you must install the new assembly into the GAC, and finally, you need to implement the version-
ing interface (IVersioningPersonalizable).

Listing 11-23 shows an example of a new Web Part that transparently migrates unknown
properties.

LISTING 11-23 The second version of the simple Web Part from Listing 11-22

namespace DevLeap.SP2013.VersionableWebPart.CustomWebPart {

 [ToolboxItemAttribute(false)]
 public class CustomWebPart : WebPart, IVersioningPersonalizable {

 [WebBrowsable(true)]
 [Personalizable(true)]
 public String TextToRenderTimes { get; set; }

 [WebBrowsable(true)]
 [Personalizable(true)]
 public Int32 RepeatTimes { get; set; }

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 Developing Web Parts 417

 protected override void CreateChildControls() {
 for (Int32 c = 0; c < this.RepeatTimes; c++) {
 this.Controls.Add(new LiteralControl(this.TextToRenderTimes));
 }
 }
 void IVersioningPersonalizable.Load(IDictionary unknownProperties) {
 foreach (DictionaryEntry entry in unknownProperties) {
 if (entry.Key.ToString() == "TextToRender") {
 this.RepeatTimes = 1;
 this.TextToRenderTimes = entry.Value.ToString();
 }
 }
 }
 }
}

The Load method of IVersioningPersonalizable receives a dictionary of all the unmatched proper-
ties, which lets you match or migrate them to the corresponding new property, if it exists.

Security: Safe controls and cross-site-scripting safeguards

From a security point of view, every Web Part acts in the context of the current user; thus, its security
against SharePoint data is based on the current user’s permissions. However, SharePoint data security
may not be the ultimate measure of a secure solution. For example, an authorized user could insert
a Web Part that represents a risk for the client browser or for the server environment hosting the
SharePoint solution. Imagine what would happen if a user uploads a custom Web Part that consumes
a lot of CPU resources (perhaps 100 percent) due to a bug or even malicious intent. Any SharePoint
front-end server that loads and executes this Web Part would block any further functionality—or at
least have its performance seriously degraded.

To avoid such issues, SharePoint provides safe controls. In fact, SharePoint will load and execute
only authorized Web Parts, based on a list of SafeControl elements declared in the web.config file of
the current web application. When you deploy a Web Part solution at the farm level, the Web Part
class is marked as a SafeControl in the web.config file of the site where the control is deployed. If you
try to load a page that hosts a Web Part or a control not marked as a SafeControl, the load will fail,
but the SharePoint environment will remain stable and secure. Listing 11-24 contains an example of a
SafeControl declaration for one of the Web Parts defined previously in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

418 PaRt IV Extending SharePoint

LISTING 11-24 A SafeControl declaration for the RSSFeedDynamicViewerWebPart control

<SafeControl Assembly="DevLeap.SP2013.AdvancedWebParts, Version=1.0.0.0,
 Culture=neutral, PublicKeyToken=420cb6d9461e6c7c"
 Namespace="DevLeap.SP2013.AdvancedWebParts.CategoriesWebPart"
 TypeName="*" Safe="True" SafeAgainstScript="False" />

Notice that the SafeControl tag references the safe Web Part in terms of assembly, including
its strong name, namespace, and type name. The SafeControl tag also defines a SafeAgainstScript
attribute with a Boolean value that allows configuring a feature called Cross-Site-Scripting SafeGuard,
which was introduced in SharePoint 2010.

Through this feature, only users with the role of designer or higher can customize Web Parts via
configuration properties. This means that, by default, a site contributor cannot configure or customize
Web Part properties, while prior to SharePoint 2010 that was possible.

Since SharePoint 2010, the Client Object Model is available even in the web browser, via JavaScript.
Imagine what would happen if a malicious user configured a Web Part property with some JavaScript
code, invoking the Client Object Model to delete or change some data on the server, and that custom
property was used to render the output of the Web Part (for instance, a Title property). Of course, the
Client Object Model acts in the context of the current user, so the injected JavaScript could do exactly
what the current user can do. But what would happen if that same page were opened by a site collec-
tion administrator, for example? This new kind of cross-site-scripting (XSS) is natively blocked by the
Cross-Site-Scripting SafeGuard feature. This feature impacts not only your new Web Parts, but also
any Web Part developed by anyone else.

If—at your own risk—you want to continue to let a Web Part remain configurable, even by site
contributors, you can change the SafeAgainstScript attribute of the SafeControl declaration for that
Web Part. Figure 11-12 illustrates the UI provided by Visual Studio 2012 for changing this property.

A value of True instructs SharePoint to allow editing and configuration even by site contribu-
tors. There is also a new attribute, RequiresDesignerPermissionAttribute, which you can use to tag
a property to make it configurable only by users with designer rights or higher. This last attribute
overrides any configuration in the web.config file, so if you declare a control with SafeAgainstScript
but also define a property marked with RequiresDesignerPermissionAttribute, that property will still
not be configurable by a contributor, and will require at least a designer role, regardless of the web.
config configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 Developing Web Parts 419

FIGURE 11-12 The Safe Control Entries property editor of a Web Part in Visual Studio 2012.

The SharePoint-specific WebPart class

As you learned at the beginning of this chapter, in SharePoint you have the capability to inherit Web
Parts from a SharePoint-specific base class, instead of using the standard class provided by ASP.NET.
The resulting Web Parts are still fully integrated with the ASP.NET Web Parts infrastructure, because
the SharePoint WebPart class internally inherits from that of ASP.NET. These Web Parts can be used
only in SharePoint. They have, however, a few additional capabilities that in very specific conditions
make implementing SharePoint-specific Web Parts a beneficial choice:

■■ Support for SharePoint Tool Parts This provides support for Tool Parts, which were
described in the “Configurable Web Parts” section.

■■ Path or code replacement tokens You can use these to inject tokens in the output HTML
code of a SharePoint Web Part, and then have the SharePoint infrastructure replace them with
their corresponding values. There are tokens for the current user name, the current locale ID
of the website, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

420 PaRt IV Extending SharePoint

■■ Cross-page connections and connections between Web Parts that are outside of a Web
Part zone As shown in this chapter, Web Parts can be connected to each other to build
master-detail solutions. SharePoint-specific Web Parts support cross-page connections, while
standard ASP.NET Web Parts only support intrapage connections. SharePoint Web Parts can
also be connected even if they are outside a Web Part zone.

■■ Client-side connections These are connections between SharePoint-specific Web Parts,
based on client-side (JavaScript) code.

■■ Data caching There is a data-caching infrastructure that allows caching of Web Part data
into the content database.

Summary

In this chapter, you learned about Web Parts—from their underlying architecture, to developing and
deploying them from scratch, to providing custom appearances and behaviors. In particular, you saw
how to create configurable and customizable Web Parts, providing the end user with custom Editor
Parts, Tool Parts, and custom verbs. You also learned how to develop connectable Web Parts. The
chapter also discussed how to deploy Web Parts that support versioning and security.

www.it-ebooks.info

http://www.it-ebooks.info/

 421

C H A P T E R 1 2

Customizing the UI

This chapter describes how to extend the UI of Microsoft SharePoint 2013. In particular, you will
learn how to customize menus, ribbons, controls, and pages. This chapter is important if you want

to be able to provide your users or customers with a custom UI that is compliant with the standard
SharePoint behavior, while simultaneously satisfying the requirements of intranet and extranet solu-
tions, as well as Internet publishing sites.

Custom actions

The first area of customization that you will address is creating custom actions in the standard
SharePoint UI. Custom actions are features that can extend or change the standard behavior of any
of the following items: menu items, link menus of administrative pages, and ribbons. The ribbon is
important enough to warrant a dedicated section in this chapter (see “Ribbons”); all other custom
actions will be covered here. As you may recall from Chapter 4, “SharePoint features and solutions,”
the types of custom action features that you can create are

■■ CustomAction Creates a new custom action to define a new control on a ribbon, a new
menu item on a standard menu, or a new link on a settings page

■■ CustomActionGroup Creates a new group of custom actions for better usability from the
perspective of the end user

■■ HideCustomAction Hides an existing custom action defined by another custom action or
implemented by default in SharePoint

The following pages will delve into these items.

the CustomAction element
The definition of a CustomAction element requires the declaration of a feature element manifest,
based on the XML structure, as illustrated in Listing 12-1.

www.it-ebooks.info

http://www.it-ebooks.info/

422 PaRt IV Extending SharePoint

LISTING 12-1 The CustomAction element structure

<CustomAction
 RequiredAdmin = "Delegated | Farm | Machine"
 ControlAssembly = "Text"
 ControlClass = "Text"
 ControlSrc = "Text"
 Description = "Text"
 FeatureId = "Text"
 GroupId = "Text"
 Id = "Text"
 ImageUrl = "Text"
 Location = "Text"
 RegistrationId = "Text"
 RegistrationType = "Text"
 RequireSiteAdministrator = "TRUE" | "FALSE"
 Rights = "Text"
 RootWebOnly = "TRUE" | "FALSE"
 ScriptSrc = "Text"
 ScriptBlock = "Text"
 Sequence = "Integer"
 ShowInLists = "TRUE" | "FALSE"
 ShowInReadOnlyContentTypes = "TRUE" | "FALSE"
 ShowInSealedContentTypes = "TRUE" | "FALSE"
 Title = "Text"
 UIVersion = "Integer">
 <UrlAction />
 <CommandUIExtension />
</CustomAction>

The CustomAction element is made of a set of attributes and accepts a couple of optional child
elements. Table 12-1 describes each available attribute.

TABLE 12-1 The attributes supported by the CustomAction element

Attribute name Description

RequiredAdmin Optional Text attribute that specifies the rights required for the custom action to
apply. Supported values are Delegated, Farm, and Machine.

ControlAssembly Optional Text attribute used to declare a custom assembly full name, hosting a
control for rendering the custom action with code running on the server side.

ControlClass Used to declare a custom class, implementing a control for rendering the custom
action with code running on the server side.

ControlSrc Optional Text attribute that specifies the relative URL of an ASCX file that corre-
sponds to the source of the custom action.

Description Optional Text attribute with which you can provide a long description for the
action.

FeatureId Optional Text attribute that specifies the ID of the feature associated with the
custom action.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 423

Attribute name Description

GroupId Optional Text attribute that declares the group that will contain the custom
action. For a complete reference of all the available groups and locations, refer
to “Default Custom Action Locations and IDs,” on MSDN online at http://msdn.
microsoft.com/en-us/library/bb802730.aspx.

Id Optional Text attribute that specifies the ID of the custom action. This can be a
GUID or a string that uniquely identifies the custom action.

ImageUrl Declares the relative URL of an image that represents an icon for the custom
action.

Location Specifies the location of the custom action. This is a value taken from a pre-
defined list of locations or from a custom set of locations.

RegistrationId Optional Text attribute that declares the ID of the target list, content type, or file
type associated with the custom action.

RegistrationType Optional Text attribute that declares the type of registration the action is target-
ing. RegistrationType works together with the RegistrationId attribute, and can
assume one of the following values: None, List, ContentType, ProgId, or FileType.

RequireSiteAdministrator Optional Boolean attribute that specifies whether the action will be displayed to
all users or only to site administrators.

Rights Optional Text attribute that defines the minimum set of rights required to view
the current custom action. If it is not specified, the action will be visible to any-
one. It can specify one or more rights, comma separated, selected from the list of
available rights defined in the standard base permission of SharePoint. Possible
values are ViewListItems, ManageAlerts, ManageLists, and so on.
For a complete reference of all the base permissions available in SharePoint, refer
to the document “SPBasePermissions Enumeration,” at http://msdn.microsoft.com/
en-us/library/microsoft.sharepoint.spbasepermissions.aspx.

RootWebOnly Optional Boolean attribute, valid only for sandboxed solutions, that specifies if
the action must be only on root websites.

ScriptSrc Optional Text attribute that defines the relative URL of a script to download and
execute. ScriptSrc works only in conjunction with a Location attribute with a value
of ScriptLink. It is very useful whenever you need to reference external JavaScript
source files for implementing custom behaviors.

ScriptBlock Optional Text attribute that defines the ECMAScript source code of a script to
execute. ScriptBlock works only in conjunction with a Location attribute with a
value of ScriptLink.

Sequence Optional Integer attribute that defines the ordinal position of the custom action,
within its group.

ShowInLists Deprecated optional Boolean attribute that specifies whether the action will be
shown in the page for managing content types.

ShowInReadOnlyContentTypes Optional Boolean attribute that specifies whether the action will be displayed
only for the page for managing read-only content types.

ShowInSealedContentTypes Optional Boolean attribute that specifies whether the action will be displayed
only for the page for managing sealed content types.

Title Required Text attribute to specify the title of the action. Title will be used in the
UI to present the action to the end user.

UIVersion Optional Integer value to define the version of the UI in which the action will be
rendered.

www.it-ebooks.info

http://www.it-ebooks.info/

424 PaRt IV Extending SharePoint

In addition, a CustomAction tag can contain some child elements:

■■ UrlAction Defines a destination URL for when the end user clicks the custom action.

■■ CommandUIExtension Defines a complex UI extension, typically a ribbon. This will be dis-
cussed in the next section, “Ribbons.”

The basic and most-used attributes are those for defining the ID, the title, the location (where you
want the action to appear), and the registration type, together with the registration ID. For example,
if you want your action to be displayed when the end user clicks the contextual menu of a document
(also called the Edit Control Block [ECB] menu), you can define a custom action for the document
libraries of a site like the one illustrated in Listing 12-2.

LISTING 12-2 A CustomAction targeting the ECB menu of items in a document library

<CustomAction
 Location="EditControlBlock"

 RegistrationType="List"

 RegistrationId="101"

 Id="DevLeap.CustomActions.DemoECB.SampleAction"

 Title="Sample Action"
 Description="Sample custom action.">
 <UrlAction Url="javascript:window.alert('You clicked the Sample Action!');"/>
</CustomAction>

The Location attribute specifies that the action will be shown in the ECB menu. The
RegistrationType attribute targets a specific List, while the RegistrationId explicitly defines the list type
(101 = “Document Library”). Notice the child element, UrlAction, which defines a destination URL for
when the end user clicks the menu item. In this first example, the custom action simply shows an alert.
Figure 12-1 depicts how the action looks in the web browser.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 425

FIGURE 12-1 The custom action shown in the ECB of a document item.

Often, you need to define a custom action targeting not only a list, but also a specific con-
tent type, regardless of the list in which it is contained. For example, suppose that you have
a custom content type defining a document of type invoice (call it DevLeapInvoice). This con-
tent type needs to have an identifying unique ID, which in this example will have a value of
0x010100DFCFE30E0795465F8973EF29B73F1551.

The DevLeapInvoice content type has some custom metadata fields to define the invoice num-
ber, a description, and a status that can assume some predefined values (Draft, Approved, Sent, and
Archived). Figure 12-2 illustrates the edit form of this kind of document.

www.it-ebooks.info

http://www.it-ebooks.info/

426 PaRt IV Extending SharePoint

FIGURE 12-2 The edit form of a DevLeapInvoice item instance.

Listing 12-3 demonstrates a custom action, still targeting the ECB, that will be shown only in the
ECB of items with a content type of DevLeapInvoice. The action allows archiving a single invoice,
changing its Status field to a value of Archived.

LISTING 12-3 A CustomAction element targeting the ECB of items with a content type of DevLeapInvoice

<CustomAction
 Location="EditControlBlock"
 RegistrationType="ContentType"

 RegistrationId="0x010100DFCFE30E0795465F8973EF29B73F1551"
 Id="DevLeap.CustomActions.Invoices.Archive"
 Title="Archive Invoice"
 Rights="ViewListItems,EditListItems"
 Description="Archive this Invoice.">
 <UrlAction Url="~site/_layouts/DevLeap.SP2013.UIExtensions/
 DevLeapInvoiceChangeStatus.aspx?ItemId={ItemId}&ListId={ListId}&
 Status=Archived" />
</CustomAction>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 427

The only substantial difference between Listing 12-3 and Listing 12-2 is the RegistrationType
attribute, which now targets a ContentType, as well as the RegistrationId, which now defines the ID
of the target content type instead of the ID of a list template. The code sample in Listing 12-3 also
introduces the Rights attribute, with which you can archive invoices only to users who have the
ViewListItems and EditListItems permissions assigned.

Additionally, the UrlAction child element defined in Listing 12-3 declares a URL of a custom appli-
cation page, instead of a piece of JavaScript, as in Listing 12-2. The URL could also link to a custom
page provided by a custom SharePoint 2013 app. In the “Application pages” section of this chapter,
you will learn how to deploy custom application pages. For now, however, disregard the page itself
and focus your attention on the Url attribute of the UrlAction element. This attribute can link to any
kind of URL and can contain tokens that will be replaced by the environment during page rendering.
These tokens are

■■ ~site Website-relative (SPWeb) link

■■ ~sitecollection Site collection–relative (SPSite) link

■■ ~remoteAppUrl URL of the site hosting a SharePoint 2013 app, which installs a custom
action

■■ {ItemId} Integer ID that represents the item within a list

■■ {ItemUrl} URL of the current item; works only for documents in libraries

■■ {ListId} ID (GUID) of the list on which the action is currently working

■■ {SiteUrl} URL of the website (SPWeb)

■■ {RecurrenceId} Recurrence index ID when related to recurring event items

Finally, you can use any valid JavaScript code block.

In Listing 12-3, the Url attribute uses the {ItemId} and {ListId} tokens because it targets the
ECB menu of a single item, so it passes the item ID and list ID to the target page as QueryString
parameters.

The ECB menu isn’t the only location suitable for defining custom actions. Table 12-2 lists the most
useful additional locations.

More Info For a complete list of all the available locations, refer to the document “Default
Custom Action Locations and IDs,” at http://msdn.microsoft.com/en-us/library/bb802730.
aspx.

www.it-ebooks.info

http://www.it-ebooks.info/

428 PaRt IV Extending SharePoint

TABLE 12-2 The most useful locations for defining custom actions

Location Group ID Description

DisplayFormToolbar Not applicable Corresponds to the display form toolbar of lists

EditControlBlock Not applicable Corresponds to the per-item ECB menu

EditFormToolbar Not applicable Corresponds to the edit form toolbar of lists

Microsoft.SharePoint.SiteSettings Customization Look And Feel section of the Site Settings page

Galleries Galleries section of the Site Settings page

SiteAdministration Site Administration section of the Site Settings
page

SiteCollectionAdmin Site Collection Administration section of the Site
Settings page

UsersAndPermissions Users And Permissions section of the Site Settings
page

Microsoft.SharePoint.StandardMenu ActionsMenu Actions menu in list and document library views

ActionsMenuForSurvey Site Actions menu for surveys

NewMenu New menu in list and document library views

SiteActions Site Actions menu

NewFormToolbar Not applicable Corresponds to the new form toolbar of lists

ViewToolbar Not applicable Corresponds to the toolbar in list views

Microsoft also documents the Id values for many of the previously defined custom actions, with
which you can override standard menu items with custom items of your own.

the CustomActionGroup element
Another useful element for defining custom actions is CustomActionGroup. Using this element, you
can define groups of actions; it is typically used when defining custom sections in the configuration
pages, such as the Site Settings page or the pages of the Central Administration. In fact, you can also
extend and override administrative pages, not only end-user UI elements. Listing 12-4 shows the
structure of the CustomActionGroup element.

LISTING 12-4 The CustomActionGroup element structure

<CustomActionGroup
 Description = "Text"
 Id = "Text"
 Location = "Text"
 Sequence = "Integer"
 Title = "Text">
</CustomActionGroup>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 429

The CustomActionGroup element is mainly descriptive (for the group it defines). It does not have
any child elements because the only purpose of this element is to declare a new group, which will be
referenced by other custom actions. Table 12-3 presents a brief description of the available attributes.

TABLE 12-3 The attributes supported by the CustomActionGroup element

Attribute name Description

RequiredAdmin Optional Text attribute that specifies the rights required for the custom action group to apply.
Values supported are Delegated, Farm, and Machine.

Description Optional Text attribute with which you can provide a long description for the action group.

Id Required Text attribute that specifies the ID of the custom action group. It can be a GUID or a
string that uniquely identifies the custom action group.

ImageUrl Optional Text attribute that declares the relative URL of an image representing an icon for the
custom action.

Location Required Text attribute that specifies the location of the custom action group. Location is a
value taken from a predefined list of locations or from a custom set of locations.

Sequence Optional Integer value that defines the ordinal position of the custom action group within the
set of groups.

Title Required Text attribute that specifies the title of the action. Title will be used in the UI to present
the action group to the end user.

Listing 12-5 illustrates how to use the CustomActionGroup element to define a new section in the
Site Settings administrative page. Notice the CustomAction element that uses a value of Microsoft.
SharePoint.SiteSettings for the Location attribute and the value of the custom action group’s Id for the
GroupId attribute.

LISTING 12-5 CustomActionGroup element extending the Site Settings administrative page

<CustomActionGroup
 Location="Microsoft.SharePoint.SiteSettings"

 Id="DevLeap.CustomActions.Invoices.Settings"
 Description="View Invoices Settings"
 Title="Invoices Management" />

<CustomAction
 Location="Microsoft.SharePoint.SiteSettings"

 GroupId="DevLeap.CustomActions.Invoices.Settings"
 Id="DevLeap.CustomActions.Invoices.SampleSettings"
 Title="Invoices Sample Settings Page"
 Description="Go to a custom page for managing Invoices' settings.">
 <UrlAction Url="~site/_layouts/DevLeap.SP2013.UIExtensions/InvoicesSettings.
aspx" />
</CustomAction>

www.it-ebooks.info

http://www.it-ebooks.info/

430 PaRt IV Extending SharePoint

Figure 12-3 shows the customized Site Settings administrative page in action.

FIGURE 12-3 A customized Site Settings administrative page.

the HideCustomAction element
The last element available for customizing UI actions is HideCustomAction. Using this element, you
can hide existing actions, regardless of whether they are standard, native actions or custom actions
defined by you or someone else. Be aware, though, that not all native actions can be hidden. Listing
12-6 shows you the structure of the HideCustomAction element.

LISTING 12-6 The HideCustomAction element structure

<HideCustomAction
 GroupId = "Text"
 HideActionId = "Text"
 Id = "Text"
 Location = "Text">
</HideCustomAction>

This element simply defines the information about the action to hide. Table 12-4 gives you a brief
explanation of the available attributes.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 431

TABLE 12-4 The attributes supported by the HideCustomAction element

Attribute name Description

GroupId Optional Text attribute that specifies the group to which the action to hide belongs

HideActionId Optional Text attribute that specifies the ID of the action to hide

Id Optional Text attribute that specifies the ID of the current HideCustomAction element

Location Optional Text attribute that specifies the location of the custom action to hide

Listing 12-7 presents an example of the HideCustomAction element being used to hide the Quick
Launch menu item in the Look And Feel group of the Site Settings page.

LISTING 12-7 A sample HideCustomAction element declaration

<HideCustomAction
 Id="DevLeap.CustomActions.HideQuickLaunchFromSettings"
 Location="Microsoft.SharePoint.SiteSettings"
 GroupId="Customization"
 HideActionId="QuickLaunch" />

In Listing 12-7, the Location, GroupId, and HideActionId attributes correspond to those identifying
the Site Theme action. Figure 12-4 shows the result of this action, comparing the page before apply-
ing the customization, and then after.

FIGURE 12-4 The Look And Feel group before (left) and after (right) hiding the Site Theme action.

www.it-ebooks.info

http://www.it-ebooks.info/

432 PaRt IV Extending SharePoint

Server-side custom actions
You can also create custom actions that define their content dynamically by using server-side
code, instead of using an XML declaration. To define this kind of action, you need to declare a
CustomAction element within a feature element manifest, providing a value for the ControlAssembly
and ControlClass attributes. These attributes must reference the assembly and the full type name of
a class inheriting from the base class System.Web.UI.WebControls.WebControl and building a specific
set of controls inside the CreateChildControls method override. Listing 12-8 illustrates an example of a
custom action referencing a custom ControlClass attribute.

LISTING 12-8 The custom action referencing a custom ControlClass attribute

<CustomAction
 Location="Microsoft.SharePoint.StandardMenu"
 GroupId="SiteActions"
 ControlAssembly="DevLeap.SP2013.UIExtensions, Version=1.0.0.0,

 Culture=neutral, PublicKeyToken=3b7c6076bf78362f"

 ControlClass="DevLeap.SP2013.UIExtensions.SwitchToMobileMode"
 Id="DevLeap.CustomActions.SwitchToMobileMode">
</CustomAction>

Note The values of both the ControlAssembly and the ControlClass attributes in Listing
12-8 must be defined on a single line of code.

The action targets the Site Actions menu (also known as the gear menu) and allows switching the
site to mobile-rendering mode. Of course, you could write this action without a custom class, but this
example gives you an idea of what’s possible.

Listing 12-9 displays the sample implementation of the class, which is referenced in the
ControlClass attribute, and which internally generates the menu item.

LISTING 12-9 The class referenced by the CustomClass attribute of the custom action of Listing 12-8

public class SwitchToMobileMode : System.Web.UI.WebControls.WebControl {
 protected override void CreateChildControls() {
 SPWeb web = SPControl.GetContextWeb(HttpContext.Current);
 MenuItemTemplate switchToMobile = new MenuItemTemplate();
 switchToMobile.Text = "Switch to Mobile view";
 switchToMobile.Description =
 "Switches the current site rendering mode to mobile";
 switchToMobile.ClientOnClickNavigateUrl =
 String.Format("{0}?Mobile=1", web.Url);

 this.Controls.Add(switchToMobile);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 433

Listing 12-9 illustrates that you can instantiate a MenuItemTemplate class, which represents
a single menu item. You can then configure its descriptive properties, such as Text, Description,
ImageUrl, and so on. However, the fundamental properties are those related to the behavior of the
menu item within the UI. You can configure the ClientOnClickNavigateUrl property if you simply
need to define a URL to navigate to when the user clicks the menu. Additionally, you can configure
the ClientOnClickScript property to configure an ECMAScript code block to execute when the menu
entry is clicked. Lastly, to set the control ID and parameter for a postback event, you can assign the
ClientOnClickUsingPostBackEvent property. In this last scenario, you should handle the postback event
yourself; for example, by implementing the System.Web.UI.IPostBackEventHandler interface in the
control class. You can also configure the ClientOnClickPostBackConfirmation property to provide a
confirmation message that will be displayed to the end user, just before handling the post-back event.
Figure 12-5 shows the result of the sample in Listing 12-9.

FIGURE 12-5 The custom action defined using a MenuItemTemplate class on the server side.

Another type of menu that you can instantiate within custom code is SubMenuTemplate, which
represents the parent of a hierarchical menu.

www.it-ebooks.info

http://www.it-ebooks.info/

434 PaRt IV Extending SharePoint

Regardless of the type of menu items you define within your CustomClass implementation, it is
mandatory to define the class as a SafeControl object for SharePoint. (Details about using SafeControl
elements in web.config files were presented at the end of Chapter 11, “Developing Web Parts.”)

Note While working with Microsoft Visual Studio 2012, Web Parts are automatically config-
ured in the solution’s manifest file as SafeControl items. However, the custom class shown in
Listing 12-9, as well as any other control class that is not a Web Part, will not be automati-
cally registered as a SafeControl. To force registration of the class as a SafeControl—using
Visual Studio 2012—you can open the Feature Designer of any feature element of your
package, such as the one defining the custom actions. There, in the property grid panel,
you will find a Safe Control Entries property of type collection that will support you in con-
figuring one or more custom SafeControl entries.

Ribbons

For end users, the ribbon is one of the most visible and evident features of SharePoint 2013. Having a
web-based solution with a command bar that makes use of ribbons, such as Microsoft Office clients
do, is a great way to support and involve users who are already accustomed to using such tools.

SharePoint 2013 provides a native set of ribbons, but any developer can define specific
CustomAction elements to define his or her own ribbon commands, groups, and tabs. In this section,
you will learn how.

Ribbon commands
Ribbon commands represent single items to place in a previously existing ribbon tab and group. For
example, think about the code sample in Listing 12-3. The goal of that custom action was to allow
archiving a single invoice, changing its Status field to a value of Archived. A better option, however,
would be to give users the opportunity to archive multiple invoices at the same time. The ECB menu
extended with Listing 12-3 applies only to a single item, while a ribbon command could be applied to
multiple items simultaneously, improving usability and overall user experience.

To get familiar with ribbons, start with a simple example. Listing 12-10 presents a ribbon that dis-
plays an alert when it is clicked.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 435

LISTING 12-10 A sample ribbon that shows an alert upon being clicked

<CustomAction
 RegistrationType="ContentType"
 RegistrationId="0x010100DFCFE30E0795465F8973EF29B73F1551"
 Id="DevLeap.CustomActions.Invoices.SampleRibbonCommand"
 Location="CommandUI.Ribbon.ListView">
 <CommandUIExtension>
 <CommandUIDefinitions>
 <CommandUIDefinition Location="Ribbon.Documents.Manage.Controls._children">
 <Button Id="SampleRibbonCommand"
 Alt="Shows an alert."
 Description="Shows an alert, just to make an example."
 Sequence="25"
 Command="ShowSampleAlert"
Image16by16="/_layouts/15/images/DevLeap.SP2013.UIExtensions/Baloon_16x16.png"
Image32by32="/_layouts/15/images/DevLeap.SP2013.UIExtensions/Baloon_32x32.png"
 LabelText="Show Alert"
 TemplateAlias="o1" />
 </CommandUIDefinition>
 </CommandUIDefinitions>
 <CommandUIHandlers>
 <CommandUIHandler Command="ShowSampleAlert"
 CommandAction="javascript:
 window.alert('This an alert from the ribbon');" />
 </CommandUIHandlers>
 </CommandUIExtension>
</CustomAction>

The CustomAction element is almost the same as in the previous section, but the Location attribute
targets a location with a value of CommandUI.Ribbon.ListView, which corresponds to the ribbon menu
of a ListView control. Then the action targets the DevLeapInvoice content type through its content
type ID, as with the ECB custom action defined earlier. Thus, the ribbon command will show up only
while DevLeapInvoice items are being worked on. However, instead of a UrlAction child element, now
there is a CommandUIExtension element, which defines a ribbon item. In particular, it defines a set
of CommandUIDefinition elements, wrapped in a CommandUIDefinitions parent element, together
with one or more CommandUIHandler elements, wrapped by a CommandUIHandlers parent tag. A
CommandUIDefinition element defines the UI behavior of the command with its Location attribute,
which in the code sample has a value of Ribbon.Documents.Manage.Controls._children and declares
that its child elements will be children of the Manage group of the Documents tab of the ribbon. In
Listing 12-10, the command is represented as a Button element with a title, a description, a couple
of images sized 16×16 pixels and 32×32 pixels, and so on. Also in Listing 12-10, the Button element
has a Sequence attribute with a value of 25, which means it will render between the second and third
button of the target ribbon group (Manage). For standard and native buttons, the Sequence attribute
has a value that is a multiple of 10. Thus, the first button has a Sequence value of 10, the second has a
Sequence value of 20, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

436 PaRt IV Extending SharePoint

Another interesting Button attribute is TemplateAlias, which defines the rendering behavior of the
control. Native available templates are o1, which renders the 32×32 image form of the button, and o2,
which renders the 16×16 image form. However, you can also define your own templates. Additionally,
the CommandUIHandler element declares the code to execute when the commands are clicked. For
example, in Listing 12-10, the CommandAction attribute of the CommandUIHandler element invokes
a client-side window.alert method based on JavaScript. For mapping the Button to its handler, there is
a Command attribute whose value corresponds to the Command attribute of the CommandUIHandler
element. Figure 12-6 shows the results of Listing 12-10 in action.

FIGURE 12-6 The custom ribbon command to show an alert in action.

The CommandUIDefinition element can host a rich set of child elements. Table 12-5 presents a
quick list of all the supported child elements, taken from the official product documentation on
MSDN (http://msdn.microsoft.com/en-us/library/ff458373.aspx).

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 437

TABLE 12-5 The child elements of the CommandUIDefinition element

Attribute name Description

Button Defines a push-button control. The main attributes are Alt, for alternate text; the Command to
execute on click; Description and LabelText, for the UI; the various attributes to define 16×16
and 32×32 images, eventually cropped from an image map; the TemplateAlias and the Sequence
position of the button in the owner group; and the various attributes to define tooltip text and
images.

CheckBox Defines a CheckBox control. CheckBox also has a Command attribute to execute when clicked,
as well as layout attributes regarding description, images, and so on.

ColorPicker Defines a ColorPicker control.

ComboBox Defines a ComboBox control. ComboBox supports attributes for defining autocompletion; the
command to execute on click; and the command to execute on open, close, and preview.

ContextualGroup Defines a group of tabs that are presented when they are relevant. ContextualGroup allows
defining a specific color to use while showing the group.

ContextualTabs Contains groups of tabs that are conditionally present. ContextualTabs is the container of one or
more ContextualGroup elements.

Controls Contains elements that define controls. Controls can contain elements of type Button, CheckBox,
ComboBox, DropDown, FlyoutAnchor, GalleryButton, Label, MRUSplitButton, Spinner, SplitButton,
TextBox, and ToggleButton.

DropDown Defines a control with which a user can select from a drop-down list. Supports most of the same
attributes as the ComboBox element.

FlyoutAnchor Defines the anchor point for a flyout menu. Supports attributes for defining the command to
execute when the control is clicked, the various attributes for declaring images and tooltips, and
the command to invoke for populating the menu dynamically.

Gallery Defines a gallery. Supports attributes to define the dimensions of child items. Gallery is made up
of a set of GalleryButton child elements.

GalleryButton Defines a gallery button. These are almost like standard buttons, except that they allow defining
the dimensions, according to the parent Gallery, and they support an InnerHTML attribute to
define the HTML markup that illustrates the choice that the button represents.

Group Defines a group of controls. Supports attributes for defining the description, the various images,
and the command to execute when clicked.

Groups Defines the groups of controls on a tab. Simply contains a set of child Group elements.

GroupTemplate Defines the scaling behavior for controls in a Group element. GroupTemplate can host Layout
child elements and offers a ClassName attribute for defining a CSS style sheet to apply to the
group.

InsertTable Defines a menu control for inserting a table that contains a variable number of cells. Provides a
Command attribute for defining the code to execute when the table has to be inserted, as well
as CommandPreview and CommandRevert attributes to preview and revert the effect of the
command.

Label Defines a Label control. Label supports a ForId attribute to declare the ID of the target control
of the label, and some other attributes to define the images as well as the LabelText attribute.

MaxSize Specifies the maximum size for a group of controls. MaxSize offers a Size attribute to define the
maximum allowed size for the group of controls.

Menu Defines a menu control. Menu supports only a MaxWidth attribute.

MenuSection Defines a section of a menu. MenuSection can host child elements of type Controls and Gallery.
It also offers a DisplayMode attribute to define the sizing of the items, and a Scrollable attribute
to declare if the menu section can be scrolled.

MRUSplitButton Defines a control that combines a button and a drop-down menu to display a list of the most
recently used items. Provides some attributes to declare the code to execute for the purpose of
populating the most recently used list, as well as to use when the user previews or reverts the
selection, or effectively selects an item.

www.it-ebooks.info

http://www.it-ebooks.info/

438 PaRt IV Extending SharePoint

Attribute name Description

QAT Defines a quick-access toolbar. QAT supports some attributes to declare images and CSS classes,
and hosts a Controls child element.

Ribbon Contains elements that define the Server ribbon UI. Ribbon is the container of Tabs and
ContextualTabs child elements. It supports many appearance attributes.

Scale Defines how a group of controls on a tab is sized. Scale is the child of a Scaling element and
supports Size and PopupSize attributes.

Scaling Defines tab scaling. Scaling contains child elements of type MaxSize and Scale.

Spinner Defines a spinner control. Spinner can contain a Unit child element and supports some appear-
ance attributes, as well as a command to execute when the control is clicked.

SplitButton Defines a control that combines a button and a drop-down menu. SplitButton can host a Menu
child element. Supports many attributes to define various images, tooltips, and commands
related to the drop-down menu.

Tab Represents a Tab control. Tab defines a CssClass attribute to use while rendering the tab and the
title to show in the tab. It is the container of the Scaling and Groups child elements.

Tabs Contains elements that define tab controls. Tabs can host a set of Tab child elements.

TextBox Defines a TextBox control. TextBox supports attributes for defining the appearance of the con-
trol, as well as a command to execute when it is clicked, and MaxLength to define the maximum
length in characters.

ToggleButton Defines a button that is used to switch states. ToggleButton supports attributes for defining the
appearance of the control, as well as a command to execute when it is clicked.

Recall that the goal of this particular section is to have a ribbon with which a user can archive mul-
tiple items with content type DevLeapInvoice at the same time. Listing 12-11 shows the source code
necessary.

LISTING 12-11 Source code for a ribbon that archives one or more items with a content type of DevLeapInvoice

<CustomAction
 RegistrationType="ContentType"
 RegistrationId="0x010100DFCFE30E0795465F8973EF29B73F1551"
 Id="DevLeap.CustomActions.Invoices.ArchiveRibbon"
 Location="CommandUI.Ribbon.ListView">
 <CommandUIExtension>
 <CommandUIDefinitions>
 <CommandUIDefinition
 Location="Ribbon.Documents.EditCheckout.Controls._children">
 <Button Id="InvoiceArchiveRibbonButton"
 Alt="Changes the status of the Invoice to Archived."
 Description="Change the status of the Invoice to Archived."
 Sequence="25"
 Command="ChangeInvoiceStatusToArchived"
 Image16by16=

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 439

"/_layouts/15/images/DevLeap.SP2013.UIExtensions/IconArchive_16x16.gif"
 Image32by32=
"/_layouts/15/images/DevLeap.SP2013.UIExtensions/IconArchive_32x32.gif"
 LabelText="Archive Invoices"
 TemplateAlias="o1" />
 </CommandUIDefinition>
 </CommandUIDefinitions>
 <CommandUIHandlers>
 <CommandUIHandler Command="ChangeInvoiceStatusToArchived"
 EnabledScript="javascript:
 function checkInvoicesSelected() {
 // Check the number of selected items
 var items =
 SP.ListOperation.Selection.getSelectedItems();
 return (items.length >= 1);
 }
 checkInvoicesSelected();"
 CommandAction="javascript:
 // Shared variables
 var ctx;
 var itemsToArchive;
 var notifyId = '';

 // Function that archives the selected items
 function archiveInvoices() {

 // Notify the end user about the work in progress
 this.notifyId =
 SP.UI.Notify.addNotification(
 'Archiving items...', true);

 // Get the current ClientContext
 this.ctx = new SP.ClientContext.get_current();

 // Get the current Web
 var web = this.ctx.get_web();

 // Get the currently selected list
 var listId =
 SP.ListOperation.Selection.getSelectedList();
 var sourceList = web.get_lists().getById(listId);

 // Get the selected items and archive each of them
 var items =
 SP.ListOperation.Selection.getSelectedItems(
 this.ctx);

 var item;
 this.itemsToArchive = new Array(items.length);
 for(var i in items) {
 item = items[i];

www.it-ebooks.info

http://www.it-ebooks.info/

440 PaRt IV Extending SharePoint

 // Get each selected item
 var listItem = sourceList.getItemById(item.id);
 this.itemsToArchive.push(listItem);
 this.ctx.load(listItem);
 }

 // Effectively load items from SharePoint
 this.ctx.executeQueryAsync(
 Function.createDelegate(this, onQuerySucceeded),
 Function.createDelegate(this, onQueryFailed));
 }

 // Delegate called when server
 // operation is completed upon success
 function onQuerySucceeded(sender, args) {
 // Mark each item as Archived
 var item = null;
 do {
 item = this.itemsToArchive.pop();
 if (item != null) {
 item.set_item('DevLeapInvoiceStatus',
 'Archived');
 item.update();
 }
 } while (item != null);

 // Effectively update items in SharePoint
 this.ctx.executeQueryAsync(
 Function.createDelegate(this, onUpdateSucceeded),
 Function.createDelegate(this, onQueryFailed));
 }

 // Delegate called when server
 // operation is completed upon success
 function onUpdateSucceeded(sender, args) {
 SP.UI.Notify.removeNotification(this.notifyId);
 SP.UI.ModalDialog.RefreshPage(
 SP.UI.DialogResult.OK);
 }

 // Delegate called when server
 // operation is completed with errors
 function onQueryFailed(sender, args) {
 alert('The requested operation failed: ' +
 args.toString());
 }
 archiveInvoices();" />
 </CommandUIHandlers>
 </CommandUIExtension>
</CustomAction>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 441

Although Listing 12-11 is not short, it is actually quite simple. In fact, it takes advantage of
the JavaScript Client-Side Object Model (JSOM)—which was presented in Chapter 7, “Client-side
technologies”—within the code of the CommandAction attribute of the CommandUIHandler element.
It creates a ClientContext, retrieves the selected items by using the SP.ListOperation.Selection class,
and then updates them with a Status field value of Archived, invoking the asynchronous operation via
the executeQueryAsync method of the ClientContext.

It is interesting to note that the ribbon is entirely defined in XML and JavaScript, without the
need for any kind of server-side code. Thus, it will work asynchronously in the web browser without
requiring a postback to the server. The only postback is required at the end of the update process,
to refresh the list of items and reflect the applied changes. You can see the invocation of the SP.
UI.ModalDialog.RefreshPage method in the onUpdateSucceeded method. You can also include the
JavaScript code in an external JS file and reference it using a custom action with the Location attribute
with a value of ScriptLink. Last but not least, remember that you can deploy such commands while
working within a custom SharePoint 2013 app as well.

Another interesting aspect of Listing 12-11 is the attribute EnabledScript of the element
CommandUIHandler. This attribute is invoked on the client side, and it contains another JavaScript
script block to determine if the ribbon command must be enabled or disabled. Internally, the script
checks the number of selected items and returns true only if there is at least one invoice selected in
the result of the SP.ListOperation.Selection.getSelectedItems() method. As the sample code illustrates,
the SP.ListOperation.Selection.getSelectedItems() method returns only the IDs of the selected items,
not the items themselves.

To complete the example, the Location attribute of the CommandUIDefinition element declares
where to locate the new ribbon. In this example, the ribbon is in the Open & Check Out group of
the Documents tab, which has a location of Ribbon.Documents.EditCheckout.Controls. Thus, the new
command has a Location value of Ribbon.Documents.EditCheckout.Controls._children to instruct the
environment to show the item as a child of the Open & Check Out group.

Note You can find the complete list of locations in the document “Default Server Ribbon
Customization Locations,” which is available on MSDN at http://msdn.microsoft.com/en-us/
library/ee537543.aspx.

The sample code of Listing 12-11 also uses the new notification area of SharePoint 2010, which will
be discussed in the “Status bar and notification area” section. Figure 12-7 shows the ribbon command
in action.

www.it-ebooks.info

http://www.it-ebooks.info/

442 PaRt IV Extending SharePoint

FIGURE 12-7 The custom ribbon command to archive multiple invoices simultaneously.

Finally, consider that inside the code of the CommandAction attribute, you can use substitution
tokens that are replaced by the environment before executing the script. The available tokens are

■■ {ItemId} ID (GUID) taken from the list view

■■ {ItemUrl} Web-relative URL of the list item

■■ {RecurrenceId} ID of a recurrent item

■■ {SiteUrl} The fully qualified URL to the site

■■ {ListId} ID (GUID) of the list

■■ {ListUrlDir} Server-relative URL of the site plus the list’s folder

■■ {Source} Fully qualified request URL

■■ {SelectedListId} ID (GUID) of the list that is currently selected from a list view

■■ {SelectedItemId} ID of the item that is currently selected from the list view

One last scenario to consider is the creation of a custom ribbon tab. In fact, if you have multiple
commands to support your custom content, it is good habit to define a ribbon tab of your own,
instead of extending an existing one. To define a new tab of ribbons, you need to use the Tab, Scaling,

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 443

Groups, and Group elements. Listing 12-12 demonstrates the declaration of a custom tab, which will
show up only when selecting items with a content type of DevLeapInvoice. The tab will host three but-
tons that, for the sake of simplicity, just show an alert with a welcome message.

LISTING 12-12 A custom tab of ribbons for a content type of DevLeapInvoice

<CustomAction
 RegistrationType="ContentType"
 RegistrationId="0x010100DFCFE30E0795465F8973EF29B73F1551"
 Id="DevLeap.CustomActions.Invoices.Tab"
 Location="CommandUI.Ribbon.ListView">
 <CommandUIExtension>
 <CommandUIDefinitions>
 <CommandUIDefinition
 Location="Ribbon.Tabs._children">
 <Tab
 Id="DevLeap.CustomActions.Invoices.Tab.One"
 Title="Invoices"
 Description="This tab holds custom commands for Invoices."
 Sequence="1000">
 <Scaling
 Id="DevLeap.CustomActions.Invoices.Tab.One.Scaling">
 <MaxSize
 Id="DevLeap.CustomActions.Invoices.Tab.One.Scaling.MaxSize"
 GroupId="DevLeap.CustomActions.Invoices.Tab.One.GroupOne"
 Size="OneLargeTwoSmall"/>
 <Scale
 Id="DevLeap.CustomActions.Invoices.Tab.One.Scaling.Scale"
 GroupId="DevLeap.CustomActions.Invoices.Tab.One.GroupOne"
 Size="OneLargeTwoSmall" />
 </Scaling>
 <Groups Id="DevLeap.CustomActions.Invoices.Tab.Groups">
 <Group
 Id="DevLeap.CustomActions.Invoices.Tab.One.GroupOne"
 Description="This is the first group."
 Title="First Group"
 Sequence="52"
 Template="DevLeap.CustomActions.Invoices.RibbonTemplate">
 <Controls Id="Ribbon.CustomTabExample.CustomGroupExample.Controls">
 <Button
 Id="DevLeap.CustomActions.Invoices.Tab.One.ButtonOne"
 Command="ButtonOneCommand"
 Sequence="10"
 Description="First sample command."
 Image32by32=

"/_layouts/15/$Resources:core,Language;/images/formatmap32x32.png"

 Image32by32Left="-160"

 Image32by32Top="-256"
 LabelText="First sample command!"
 TemplateAlias="customOne"/>

www.it-ebooks.info

http://www.it-ebooks.info/

444 PaRt IV Extending SharePoint

 <Button
 Id="DevLeap.CustomActions.Invoices.Tab.One.ButtonTwo"
 Command="ButtonTwoCommand"
 Sequence="20"
 Description="Second sample command."
 Image16by16=

"/_layouts/15/$Resources:core,Language;/images/formatmap16x16.png"

 Image16by16Left="-144"

 Image16by16Top="-32"
 LabelText="Second sample command!"
 TemplateAlias="customTwo"/>
 <Button
 Id="DevLeap.CustomActions.Invoices.Tab.One.ButtonThree"
 Command="ButtonThreeCommand"
 Sequence="30"
 Description="Third sample command."
 Image16by16=

"/_layouts/15/$Resources:core,Language;/images/formatmap16x16.png"

 Image16by16Left="-96"

 Image16by16Top="-128"
 LabelText="Third sample command!"
 TemplateAlias="customThree"/>
 </Controls>
 </Group>
 </Groups>
 </Tab>
 </CommandUIDefinition>
 <CommandUIDefinition Location="Ribbon.Templates._children">
 <GroupTemplate Id="DevLeap.CustomActions.Invoices.RibbonTemplate">
 <Layout
 Title="OneLargeTwoSmall"
 LayoutTitle="OneLargeTwoSmall">
 <Section Alignment="Top" Type="OneRow">
 <Row>
 <ControlRef DisplayMode="Large" TemplateAlias="customOne" />
 </Row>
 </Section>
 <Section Alignment="Top" Type="TwoRow">
 <Row>
 <ControlRef DisplayMode="Small" TemplateAlias="customTwo" />
 </Row>
 <Row>
 <ControlRef DisplayMode="Small" TemplateAlias="customThree" />
 </Row>
 </Section>
 </Layout>
 </GroupTemplate>
 </CommandUIDefinition>
 </CommandUIDefinitions>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 445

 <CommandUIHandlers>
 <CommandUIHandler
 Command="ButtonOneCommand"
 CommandAction="javascript:window.alert('You pressed CommandOne!');" />
 <CommandUIHandler
 Command="ButtonTwoCommand"
 CommandAction="javascript:window.alert('You pressed CommandTwo!');" />
 <CommandUIHandler
 Command="ButtonThreeCommand"
 CommandAction="javascript:window.alert('You pressed CommandThree!');" />
 </CommandUIHandlers>
 </CommandUIExtension>
</CustomAction>

Listing 12-12 first creates a new ribbon tab that declares a Location value of Ribbon.Tabs._children,
with a Title value of Invoices. It also declares some scaling information, indicating how the ribbon will
behave when the window is resized. Specifically, you must define a MaxSize element for each rib-
bon group, describing the rendering behavior at the maximum size. You also need to define at least
one Scale element for each ribbon group, providing information about how to scale the contents
of the group. Both the MaxSize and Scale elements use a Size attribute with a value that references
the Title attribute of the Layout elements defined in the CommandUIDefinition element, with a
Location value of Ribbon.Templates._children. In the current example, the OneLargeTwoSmall sizing
layout describes a first Section element with one row, and a second Section element with two rows.
The Row elements defined in the Section elements also declare a TemplateAlias, which the Button
elements will reference. It is also important to notice the value of the Location attribute of the two
CommandUIDefinition elements.

Notice the way that the images of the buttons are defined. For performance reasons, SharePoint
2013 uses CSS image sprites, which use images that are maps of multiple icons, rendered using CSS
cropping. For example, there are two image files, named formatmap16x16.png and formatmap32x32.
png, that contain a rich set of icons used for rendering buttons of ribbons and menus with a size of
16×16 pixels and 32×32 pixels, respectively. If you want to render a specific image, you need to refer-
ence the proper picture in the Image16by16 or Image32by32 attribute, depending on the size of the
image you are looking for. Then you need to provide the location of the top and left corners of the
image to crop, using the attributes Image16by16Top and Image16by16Left, or Image32by32Top and
Image32by32Left. These attributes require a negative value for the offset. In Listing 12-12, the image
URLs include the reference to the proper culture code, determined by querying the core resource
strings. Figure 12-8 displays the output of Listing 12-12 as it appears in the web browser.

www.it-ebooks.info

http://www.it-ebooks.info/

446 PaRt IV Extending SharePoint

FIGURE 12-8 The custom tab of ribbons targeting the content type DevLeapInvoice.

Custom content

In the previous sections, some of the code listings referenced custom images and pages that were
deployed on the farm together with the features that use them. In this section, you will learn how to
use features to deploy this kind of custom content.

Images and generic content
The first types of content that you will probably need to deploy are custom images. By default,
SharePoint stores images in the SharePoint15_Root\TEMPLATE\IMAGES folder and makes them avail-
able through a virtual directory named _layouts/15/images/.

Note SharePoint15_Root refers to the SharePoint root folder, which is typically located at
C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\15.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 447

Working with Visual Studio 2012, you can deploy custom images in the proper folder by right-
clicking the project to open the menu shown in Figure 12-9, and then selecting Add | SharePoint
“Images” Mapped Folder. This creates a folder named Images in your project. When you add an
image file to this folder, the file will be automatically deployed in the SharePoint Images folder. To
better organize files in the SharePoint folders, Visual Studio 2012 automatically creates a subfolder
that uses the name of the current project and places the images there. For example, if your project
name is MyCustomProject, and you add an image file with the name MyImage.jpg, then the image will
be deployed under the path SharePoint15_Root\TEMPLATE\IMAGES\MyCustomProject\MyImage.jpg,
and will be available through the relative URI ./_layouts/15/images/MyCustomProject/MyImage.jpg.

FIGURE 12-9 The menu item to add an image to the SharePoint15_Root\TEMPLATE\IMAGES folder.

If you need to deploy other kinds of generic content, such as ASCX controls, CSS files, JS files,
and so on, select Add | SharePoint Mapped Folder from the project’s contextual menu. You will be
prompted with a pop-up window like the one shown in Figure 12-10. From there, you will be able to
select any of the folders available under the SharePoint15_Root path.

www.it-ebooks.info

http://www.it-ebooks.info/

448 PaRt IV Extending SharePoint

FIGURE 12-10 The pop-up window to select a SharePoint mapped folder.

Important Keep in mind that you can deploy files on the target server’s file system only
while on-premises and working with full-trust solutions. Thus, this deployment technique is
not available while working with Microsoft Office 365 or SharePoint Online.

application pages
Application pages are ASPX files that are available for all sites of a farm and deployed in the
SharePoint15_Root\TEMPLATE\LAYOUTS folder. SharePoint makes them available through a virtual
directory named _layouts. In general, these pages are defined to provide the UI for administrative
tasks or to implement custom application pages that will be used to support custom solutions, which
in this case do not include SharePoint apps that use a different page model (as discussed in Chapter
8, “SharePoint apps”). For example, Listing 12-3 contains a UrlAction element referencing a custom
application page called DevLeapInvoiceChangeStatus.aspx.

To create such pages using Visual Studio 2012, you can simply add a new item to the project
and then select an item of type Application Page, which is an ASPX file. A folder named Layouts
will be added to the project, if it does not already exist. Within that folder, a subfolder will be cre-
ated, using the name of your project. The new ASPX file will be placed in that subfolder. The ASPX
file will define a standard ASP.NET page, which you will be able to define using standard ASP.NET

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 449

controls, custom SharePoint controls, or custom controls of your own. By default, the page will have a
DynamicMasterPageFile attribute with a value of ~masterurl/default.master, but you can freely change
this behavior. In addition, the CodeBehind attribute of the page will reference a code file declar-
ing a custom ASP.NET page that will inherit from the LayoutsPageBase class, which is defined in the
Microsoft.SharePoint.WebControls namespace and defines the base and common behavior for every
application page. The LayoutsPageBase base class provides some useful properties to directly access
the SPWeb and SPSite instances of the current context.

In Listing 12-3, the custom application page used in the UrlAction element was capable of chang-
ing the Status field of a single item with a content type of DevLeapInvoice, reading the target ListId,
ItemId, and Status from the QueryString. Listing 12-13 reveals the source code behind that page.

LISTING 12-13 The source code behind the DevLeapInvoiceChangeStatus.aspx page used in Listing 12-3

using System;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using System.Web;
using Microsoft.SharePoint.Utilities;

namespace DevLeap.SP2013.UIExtensions.Layouts.DevLeap.SP2013.UIExtensions {
 public partial class DevLeapInvoiceChangeStatus : LayoutsPageBase {
 protected void Page_Load(object sender, EventArgs e) {

 String itemId = this.Request.QueryString["ItemId"];
 String listId = this.Request.QueryString["ListId"];
 String status = this.Request.QueryString["Status"];

 if (!String.IsNullOrEmpty(itemId) &&
 !String.IsNullOrEmpty(listId) &&
 !String.IsNullOrEmpty(status)) {
 SPWeb web = this.Web;

 try {
 try {
 SPList list =
 web.Lists[new Guid(this.Request.QueryString["ListId"])];
 SPListItem item =
 list.GetItemById(
 Int32.Parse(this.Request.QueryString["ItemId"]));

 web.AllowUnsafeUpdates = true;
 item[FieldsIds.DevLeapInvoiceStatus_ID] = status;
 item.Update();
 SPUtility.Redirect(
 list.DefaultViewUrl,
 SPRedirectFlags.Default,
 HttpContext.Current);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

450 PaRt IV Extending SharePoint

 finally {
 web.AllowUnsafeUpdates = false;
 }
 }
 catch (ArgumentException) {
 throw new ApplicationException("Invalid List or Item ID!");
 }
 }
 }
 }
}

The ASPX code of the DevLeapInvoiceChangeStatus.aspx page is not terribly interesting because it
has no content. However, a classic custom application page should define only the content regions to
fill out the content placeholders defined in the master page used by the target site.

Important Application pages cannot be personalized or customized by the end user
because they are defined on the file system. If you need to define custom pages that are
also customizable, you need to refer to the next section.

Content pages, Web Part pages, and galleries
Sometimes you need to deploy pages that do not need to be shared and available on any site of your
farm. Instead, you simply need to deploy a custom page or Web Part page to a single target site,
eventually supporting customization by the end user or by using SharePoint Designer 2013.

To accomplish this task, you can use the Module feature element, which enables you to deploy an
item into the content database of a target site. Listing 12-14 shows the structure of the Module ele-
ment, together with its child elements.

LISTING 12-14 The structure of the Module feature element, together with its child elements

<Module
 HyperlinkBaseUrl = string
 IncludeFolders = "Text"
 List = "Integer"
 Name = "Text"
 Path = "Text"
 RootWebOnly = "TRUE" | "FALSE"
 SetupPath = "Text"
 Url = "Text">

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 451

 <File
 DocumentTemplateForList = string
 DoGUIDFixUp = "TRUE" | "FALSE"
 IgnoreIfAlreadyExists = "TRUE" | "FALSE"
 Level = Draft
 Name = string
 NavBarHome = "TRUE" | "FALSE"
 Path = string
 Type = "Ghostable" | "GhostableInLibrary"
 Url = string>
 <AllUsersWebPart />
 <BinarySerializedWebPart />
 <NavBarPage />
 <Property />
 <View />
 <WebPartConnection />
 </File>
</Module>

The code in Listing 12-14 is made up of a small set of attributes, while the core part is made of the
child File element. Table 12-6 provides explanations of the main attributes of the Module element.

TABLE 12-6 The main attributes of the Module element

Attribute Description

HyperlinkBaseUrl Optional Text attribute that specifies an absolute URL to use as the base URL for hyperlinks.

List Optional Integer attribute that specifies the type of the target list. The possible values are defined
in the onet.xml file of the site template (more about this in Chapter 13, “Web templates”).

Name Required Text attribute that specifies the name of the module.

Path Optional Text attribute that specifies the path of the physical files, relative to the feature’s folder:
SharePoint15_Root\TEMPLATE\FEATURES\FeatureName.

RootWebOnly Required Boolean attribute that specifies whether the files will be installed only on the top-level
website of the current site collection.

SetupPath Optional Text attribute that specifies the physical path to a folder within the SharePoint15_Root\
TEMPLATE\FEATURES\FeatureName folder that contains a file to include in the module.

Url Optional Text attribute that specifies the virtual path of the folder in which to include the files
to deploy. If Path is not specified, the value of Url will be used. If you provide a value that corre-
sponds to a folder that does not exist, the folder will be created upon activation of the feature.

www.it-ebooks.info

http://www.it-ebooks.info/

452 PaRt IV Extending SharePoint

Moreover, Table 12-7 provides explanations of each attribute available for the File element.

TABLE 12-7 The attributes supported by the File element in a Module element

Attribute Description

IgnoreIfAlreadyExists Optional Boolean attribute that specifies whether to overwrite an already existing item
(true) or not (false).

Name Optional Text attribute that specifies the virtual path name for the file in the target site.

NavBarHome Optional Boolean attribute that specifies whether to use the current content, in case it is a
page, as the home link in the top navigation bar. In general it is used while defining custom
site templates. For further details, see Chapter 13.

Path Optional Text attribute that specifies the path of the physical file, relative to the feature’s
folder: SharePoint15_Root\TEMPLATE\FEATURES\FeatureName.

Type Optional Text attribute that specifies whether the file will be stored in a document library
(GhostableInLibrary) or outside a document library (Ghostable).

Url Required Text attribute that specifies the virtual path of the file in the target site. If the value
of the Name attribute is specified, then it will be used as the virtual path. If the value of the
Path attribute is not specified, the value of Url will be used instead.

Listing 12-15 shows how to deploy a custom image into the Site Assets library of a SharePoint site
by using the Module feature.

LISTING 12-15 A Module feature to deploy an image into the Site Assets library of a SharePoint site

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Module Name="SiteAssetsImage" Url="SiteAssets">
 <File IgnoreIfAlreadyExists="True"
 Path="SiteAssetsImage\DevLeap-Icon-48x48.png"
 Url="DevLeap-Icon-48x48.png"

 Type="GhostableInLibrary" />
 </Module>
</Elements>

You can also use the Module feature for deploying a content page, eventually to be made up of
Web Parts. If you need to deploy an ASPX content page only, you can use an element manifest file,
such as the one shown in Listing 12-16.

LISTING 12-16 A Module feature used to deploy a content page on a SharePoint site

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Module Name="SampleContentPage">
 <File IgnoreIfAlreadyExists="True"
 Path="SampleContentPage\SampleContentPage.aspx"
 Url="SampleContentPage.aspx" />
 </Module>
</Elements>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 453

The code in Listing 12-16 provisions a page with a URL value of SampleContentPage.aspx under the
root of the target site, reading the page content from a file stored in the feature’s folder, under the
relative path SampleContentPage\SampleContentPage.aspx. Listing 12-17 presents the source code of
that page.

LISTING 12-17 The source code of the page SampleContentPage.aspx provisioned in Listing 12-16

<%@ Page language="C#" MasterPageFile="~masterurl/default.master" %>

<asp:Content ID="Content1" ContentPlaceHolderId="PlaceHolderPageTitle"
runat="server">
 This is the SampleContentPage Title
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderId="PlaceHolderPageTitleInTitleArea"
runat="server">
 This is the SampleContentPage Title in Title Area
</asp:Content>

<asp:Content ID="Content7" ContentPlaceHolderId="PlaceHolderPageDescription"
runat="server">
 This is the description of the SampleContentPage
</asp:Content>

<asp:Content ID="Content12" ContentPlaceHolderId="PlaceHolderMain"
runat="server">
 This is the main body of the SampleContentPage
</asp:Content>

If the page you are going to provision is a Web Part page, that means it is made up of Web Parts;
the File element supports some child elements specifically available for including Web Parts in a Web
Part page. Now consider the ASPX page illustrated in Listing 12-18. It defines a page that includes a
WebPartZone control with an ID of MainWebPartZone placed in the PlaceHolderMain content region.

LISTING 12-18 A Web Part page provisioned through a Module feature

<%@ Page language="C#" MasterPageFile="~masterurl/default.master"
Inherits="Microsoft.SharePoint.WebPartPages.WebPartPage,
Microsoft.SharePoint,Version=15.0.0.0,Culture=neutral,PublicKeyToken=71e9bce111e
9429c" %>
<%@ Register Tagprefix="SharePoint" Namespace="Microsoft.SharePoint.WebControls"
Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>

www.it-ebooks.info

http://www.it-ebooks.info/

454 PaRt IV Extending SharePoint

<%@ Register Tagprefix="Utilities" Namespace="Microsoft.SharePoint.Utilities"
Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>
<%@ Register Tagprefix="WebPartPages" Namespace="Microsoft.SharePoint.
WebPartPages"
Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>
<%@ Import Namespace="Microsoft.SharePoint" %>
<%@ Assembly Name="Microsoft.Web.CommandUI, Version=15.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>

<asp:Content ID="Content1" ContentPlaceHolderId="PlaceHolderPageTitle"
runat="server">
 <SharePoint:ListItemProperty ID="ListItemProperty1" Property="BaseName"
 maxlength="40" runat="server"/>
</asp:Content>

<asp:Content ID="Content12" ContentPlaceHolderId="PlaceHolderMain"
runat="server">
 <table cellpadding="4" cellspacing="0" border="0" width="100%">
 <tr>
 <td id="_invisibleIfEmpty" name="_invisibleIfEmpty" valign="top"
width="100%">
 <WebPartPages:WebPartZone runat="server" Title="loc:FullPage"

 ID="MainWebPartZone" FrameType="TitleBarOnly" />
 </td>
 </tr>
 </table>
</asp:Content>

Note The @Register directives at the top of Listing 12-18 must have the Assembly attribute
defined on their own line.

The Module element defined in Listing 12-19 automatically provisions the page from Listing 12-18
into the library Site Pages, adding two Web Parts into the WebPartZone with ID MainWebPartZone.
The key point is the inclusion of the AllUsersWebPart child elements in the File element. The first one
defines an instance of the standard ImageWebPart of SharePoint. The second child element refer-
ences the HelloWorldWebPart that was defined at the beginning of Chapter 11.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 455

LISTING 12-19 The feature element manifest used to provision a Web Part page, together with some Web Parts

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Module Name="SampleWebPartPage" Url="SitePages">
 <File IgnoreIfAlreadyExists="True"
 Path="SampleWebPartPage\SampleWebPartPage.aspx"
 Url="SampleWebPartPage.aspx"
 Type="GhostableInLibrary">
 <AllUsersWebPart WebPartZoneID="MainWebPartZone" WebPartOrder="1">
 <![CDATA[
 <WebPart xmlns="http://schemas.microsoft.com/WebPart/v2"
 xmlns:iwp="http://schemas.microsoft.com/WebPart/v2/Image">
 <Assembly>Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c</Assembly>
 <TypeName>Microsoft.SharePoint.WebPartPages.ImageWebPart</TypeName>
 <FrameType>None</FrameType>
 <Title>$Resources:wp_SiteImage;</Title>
<iwp:ImageLink>/_layouts/images/homepageSamplePhoto.jpg</iwp:ImageLink>
 <iwp:AlternativeText>Home Page Sample Photo</iwp:AlternativeText>
 </WebPart>
]]>
 </AllUsersWebPart>
 <AllUsersWebPart WebPartZoneID="MainWebPartZone" WebPartOrder="2">
 <![CDATA[
 <webParts>
 <webPart xmlns="http://schemas.microsoft.com/WebPart/v3">
 <metaData>
 <type name="DevLeap.SP2013.WebParts. HelloWorldWebPart.
HelloWorldWebPart, DevLeap.SP2013.WebParts, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=a7081b3b197bafe2" />
 <importErrorMessage>Cannot import this Web Part.
</importErrorMessage>
 </metaData>
 <data>
 <properties>
 <property name="Title" type="string">Hello World Web Part
</property>
 </properties>
 </data>
 </webPart>
 </webParts>
]]>
 </AllUsersWebPart>
 </File>
 </Module>
</Elements>

www.it-ebooks.info

http://www.it-ebooks.info/

456 PaRt IV Extending SharePoint

Notice also that the syntax for declaring the two Web Parts is different. In fact, the former is a
legacy Web Part that supports the old-style DWP Web Part deployment technique available since
SharePoint 2003, while the latter uses the syntax of the new WEBPART deployment files available
since SharePoint 2010.

Important You can insert and configure a Web Part instance within a Web Part page and
then export it via the standard UI of SharePoint. The resulting file will contain all the XML
information to support the configuration made through the UI. Now you can copy and
paste this XML into an XML element file, having your Web Part properly configured in the
project, without manually writing all the elements and attributes.

The File element supports some other child elements. For example, it supports the View child ele-
ment, which can be used to instantiate a ListView into the target Web Part page. Additionally, it sup-
ports the WebPartConnection element to connect Web Parts directly during the provisioning process.

Keep in mind that extending a site using custom pages and custom content directly deployed into
the content database is a habit that Microsoft started to discourage with SharePoint 2013. In fact, you
should use the new app model available in SharePoint 2013, which Part III of this book, “Developing
SharePoint apps,” discusses.

Status bar and notification area

Found in the default master pages of SharePoint, the status bar and the notification area features are
based on JavaScript code and a bit of extra markup. You can implement these tools within your pages
easily with two JSOM classes. The SP.UI.Notify class manages the notification area, and the SP.UI.
Status class manages the status bar. Table 12-8 describes the methods of the SP.UI.Notify class.

TABLE 12-8 The methods offered by the SP.UI.Notify class

Method Description

addNotification Used to add a notification to the notification area. Requires the text of the notification and a
Boolean argument to specify if the notification will stay on the page until explicitly removed.
addNotification returns an ID identifying the notification.

removeNotification Removes a notification from the notification area. Requires the ID of the notification to
remove.

To add a notification to the notification area, use the following:

var notifyId = SP.UI.Notify.addNotification("This is a Notification!", true);

To remove the notification, use this:

SP.UI.Notify.removeNotification(notifyId);

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 457

Table 12-9 describes the methods provided by the SP.UI.Status class.

TABLE 12-9 The methods offered by the SP.UI.Status class

Method Description

addStatus Adds a status to the status bar. Returns an ID identifying the status.

appendStatus Appends text to an existing status message in the status bar.

removeAllStatus Removes all the status messages from the status bar and hides the status bar.

removeStatus Removes a status message from the status bar. Requires the ID of the status message that is
being removed.

setStatusPriColor Configures the color of the status bar.

updateStatus Updates a status message. Requires the ID of the status message that is being updated.

To add a status message and turn the status bar red, for example, use the following code:

var statusId = SP.UI.Status.addStatus("Critical Status!");
SP.UI.Status.setStatusPriColor(statusId, 'red');

To remove the status message, you use this:

SP.UI.Status.removeStatus(statusId);

You can use these classes and methods whenever you need to interact with the end user, using the
standard notification tools provided by SharePoint 2013. For example, the code in Listing 12-11 used
the notification area to inform the end user about the process of archiving invoices. In Listing 12-20,
a custom ribbon tab provides four commands to show and hide a notification message, as well as to
show and hide a status message.

LISTING 12-20 The code of a custom ribbon tab that uses the SP.UI.Notify and SP.UI.Status classes

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <CustomAction
 RegistrationType="ContentType"
 RegistrationId="0x010100DFCFE30E0795465F8973EF29B73F1551"
 Id="DevLeap.CustomActions.Invoices.Notifications"
 Location="CommandUI.Ribbon.ListView">
 <CommandUIExtension>
 <CommandUIDefinitions>
 <CommandUIDefinition
 Location="Ribbon.Tabs._children">
 <Tab
 Id="DevLeap.CustomActions.Invoices.NotificationsTab"
 Title="Notification & Status"
 Description="This tab holds commands for Status and Notifications."
 Sequence="1000">
 <Scaling
 Id="DevLeap.CustomActions.Invoices.NotificationsTab.Scaling">
 <MaxSize

www.it-ebooks.info

http://www.it-ebooks.info/

458 PaRt IV Extending SharePoint

Id="DevLeap.CustomActions.Invoices.NotificationsTab.One.Scaling.MaxSize"
GroupId="DevLeap.CustomActions.Invoices.NotificationsTab.GroupOne"
 Size="TwoLarge"/>
 <MaxSize
Id="DevLeap.CustomActions.Invoices.NotificationsTab.Two.Scaling.MaxSize"
GroupId="DevLeap.CustomActions.Invoices.NotificationsTab.GroupTwo"
 Size="TwoLarge"/>
 <Scale
Id="DevLeap.CustomActions.Invoices.NotificationsTab.One.Scaling.Scale"
GroupId="DevLeap.CustomActions.Invoices.NotificationsTab.GroupOne"
 Size="TwoLarge" />
 <Scale
Id="DevLeap.CustomActions.Invoices.NotificationsTab.Two.Scaling.Scale"
GroupId="DevLeap.CustomActions.Invoices.NotificationsTab.GroupTwo"
 Size="TwoLarge" />
 </Scaling>
 <Groups Id="DevLeap.CustomActions.Invoices.NotificationsTab.Groups">
 <Group
 Id="DevLeap.CustomActions.Invoices.NotificationsTab.GroupOne"
 Description="This is the Notification Area group."
 Title="Notification"
 Sequence="10"
Template="DevLeap.CustomActions.Invoices.RibbonTemplate.Notification">
 <Controls
Id="DevLeap.CustomActions.Invoices.NotificationsTab.GroupOne.Controls">
 <Button
Id="DevLeap.CustomActions.Invoices.NotificationsTab.GroupOne.ShowNotification"
 Command="ShowNotificationCommand"
 Sequence="10"
 Description="Show Notification command."
Image16by16="/_layouts/15/images/DevLeap.SP2013.UIExtensions/Baloon_16x16.png"
Image32by32="/_layouts/15/images/DevLeap.SP2013.UIExtensions/Baloon_32x32.png"
 LabelText="Show Notification"
 TemplateAlias="customOne"/>
 <Button
Id="DevLeap.CustomActions.Invoices.NotificationsTab.GroupOne.HideNotification"
 Command="HideNotificationCommand"
 Sequence="20"
 Description="Hide Notification command."
Image16by16="/_layouts/15/images/DevLeap.SP2013.UIExtensions/Baloon_16x16.png"
Image32by32="/_layouts/15/images/DevLeap.SP2013.UIExtensions/Baloon_32x32.png"
 LabelText="Hide Notification"
 TemplateAlias="customTwo"/>
 </Controls>
 </Group>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 459

 <Group
 Id="DevLeap.CustomActions.Invoices.NotificationsTab.GroupTwo"
 Description="This is the Status Area group."
 Title="Status"
 Sequence="20"
 Template="DevLeap.CustomActions.Invoices.RibbonTemplate.Status">
 <Controls
Id="DevLeap.CustomActions.Invoices.NotificationsTab.
GroupTwo.Controls">
 <Button
Id="DevLeap.CustomActions.Invoices.NotificationsTab.GroupTwo.ShowStatus"
 Command="ShowStatusCommand"
 Sequence="30"
 Description="Show Status command."
Image16by16="/_layouts/15/images/DevLeap.SP2013.UIExtensions/Baloon_16x16.png"
Image32by32="/_layouts/15/images/DevLeap.SP2013.UIExtensions/Baloon_32x32.png"
 LabelText="Show Status"
 TemplateAlias="customThree"/>
 <Button
Id="DevLeap.CustomActions.Invoices.NotificationsTab.GroupTwo.HideStatus"
 Command="HideStatusCommand"
 Sequence="40"
 Description="Hide status command."
Image16by16="/_layouts/15/images/DevLeap.SP2013.UIExtensions/Baloon_16x16.png"
Image32by32="/_layouts/15/images/DevLeap.SP2013.UIExtensions/Baloon_32x32.png"
 LabelText="Hide Status"
 TemplateAlias="customFour"/>
 </Controls>
 </Group>
 </Groups>
 </Tab>
 </CommandUIDefinition>
 <CommandUIDefinition Location="Ribbon.Templates._children">
 <GroupTemplate
Id="DevLeap.CustomActions.Invoices.RibbonTemplate.Notification">
 <Layout
 Title="TwoLarge"
 LayoutTitle="TwoLarge">
 <Section Alignment="Top" Type="OneRow">
 <Row>
 <ControlRef DisplayMode="Large" TemplateAlias="customOne" />
 <ControlRef DisplayMode="Large" TemplateAlias="customTwo" />
 </Row>
 </Section>
 </Layout>
 </GroupTemplate>
 </CommandUIDefinition>
 <CommandUIDefinition Location="Ribbon.Templates._children">
 <GroupTemplate
Id="DevLeap.CustomActions.Invoices.RibbonTemplate.Status">

www.it-ebooks.info

http://www.it-ebooks.info/

460 PaRt IV Extending SharePoint

 <Layout
 Title="TwoLarge"
 LayoutTitle="TwoLarge">
 <Section Alignment="Top" Type="OneRow">
 <Row>
 <ControlRef DisplayMode="Large" TemplateAlias="customThree" />
 <ControlRef DisplayMode="Large" TemplateAlias="customFour" />
 </Row>
 </Section>
 </Layout>
 </GroupTemplate>
 </CommandUIDefinition>
 </CommandUIDefinitions>
 <CommandUIHandlers>
 <CommandUIHandler
 Command="ShowNotificationCommand"
 CommandAction="javascript:

 this.notifyId = SP.UI.Notify.addNotification(

 'Notification message ...', true);" />
 <CommandUIHandler
 Command="HideNotificationCommand"
 CommandAction="javascript:

 SP.UI.Notify.removeNotification(this.notifyId);" />
 <CommandUIHandler
 Command="ShowStatusCommand"
 CommandAction="javascript:

 this.statusId = SP.UI.Status.addStatus('Status message ...');

 SP.UI.Status.setStatusPriColor(this.statusId, 'red');" />
 <CommandUIHandler
 Command="HideStatusCommand"
 CommandAction="javascript:

 SP.UI.Status.removeStatus(this.statusId);" />
 </CommandUIHandlers>
 </CommandUIExtension>
 </CustomAction> <CustomAction
 Location="ScriptLink"

 Id="DevLeap.CustomActions.Invoices.NotificationsTab"

 ScriptBlock="

 var notifyId = '';

 var statusId = '';

 "

 />
</Elements>

Take a look again at the last CustomAction element with a value of ScriptLink for the Location attri-
bute. Notice that it instructs the SharePoint environment to include into the page the scripting code
declared in the ScriptBlock attribute. As mentioned in Table 12-1, you can also reference an external
script file, declaring the ScriptSrc attribute instead of the ScriptBlock attribute.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 461

Dialog framework

Finally, you can extend the UI using the dialog framework of SharePoint 2013, which is provided by
the class SP.UI.ModalDialog of the JSOM. Through this class, you can show pages inside modal dialog
windows, and you can also pass information between the dialog window and the main window.
Remember, the dialog framework was introduced with SharePoint 2010 and now is available mainly
for backward compatibility. In fact, the new UI of SharePoint 2013 is almost free of dialogs, for a bet-
ter user experience. Table 12-10 presents the main methods of the SP.UI.ModalDialog class.

TABLE 12-10 The main methods of the SP.UI.ModalDialog class

Method Description

close Closes the current dialog window and returns a result value of type SP.UI.DialogResult.
The SP.UI.DialogResult type can assume a value of invalid, cancel, or OK.

commonModalDialogClose Closes a modal dialog and returns a result value of type SP.UI.DialogResult and a
custom return value of type Object. The SP.UI.DialogResult type can assume value of
invalid, cancel, or OK.

commonModalDialogOpen Opens a modal dialog and provides some input arguments, such as the URL of the
content to show in the dialog, some options of type SP.UI.DialogOptions, a callback
to a return function of type SP.UI.DialogCallback, and some extra arguments of type
Object.

OpenPopUpPage Opens a pop-up dialog page that provides some input arguments, such as the URL of
the content to show in the pop-up page, a callback to a return function of type SP.UI.
DialogCallback, and the width and height of the pop-up window.

RefreshPage Reloads the current page for refreshing purposes.

showModalDialog Shows a modal dialog that provides an input argument of type SP.UI.DialogOptions.

ShowPopupDialog Shows a pop-up dialog that provides the URL of the content to show in the pop-up
window.

showWaitScreenSize Shows a wait screen that provides some input arguments, such as the title of the win-
dow, the message to show while waiting, a callbackFunc delegate to a return function,
and the width and height of the window.

showWaitScreenWithNoClose Does the same thing as showWaitScreenSize but without a close button in the upper-
right corner of the window. This kind of window must be closed by custom code.

Take a look at how some of these methods work. Suppose that you want to extend the list of
invoices, providing a custom ribbon command to open a pop-up window for changing the status of
an item. Aside from the ribbon command definition, which by now should be familiar to you, con-
sider the scripting code defined in Listing 12-21 that shows a custom application page to manage the
invoice status.

www.it-ebooks.info

http://www.it-ebooks.info/

462 PaRt IV Extending SharePoint

LISTING 12-21 The scripting code used to show a modal dialog for changing the status of an invoice

// Function to open the dialog
function openChangeStatusDialog() {

 var ctx = SP.ClientContext.get_current();
 var selectedItem = SP.ListOperation.Selection.getSelectedItems(ctx)[0];
 var options = SP.UI.$create_DialogOptions();
 options.url = '{SiteUrl}/_layouts/DevLeap.SP2013.UIExtensions/' +
'DevLeapInvoiceChangeStatusDialog.aspx' + '?ListId=' + SP.ListOperation.
Selection.getSelectedList() + '&ItemId=' + selectedItem.id;
 options.autoSize = true;
 options.dialogReturnValueCallback = Function.createDelegate(null,
dialogCloseCallback);
 this.dialog = SP.UI.ModalDialog.showModalDialog(options);
}

// Function to handle close callback
function dialogCloseCallback(result, returnValue) {
 if (result == SP.UI.DialogResult.OK) {
 window.alert('You clicked OK! And selected a status of: ' + returnValue);
 }
 if (result == SP.UI.DialogResult.cancel) {
 window.alert('You clicked Cancel!');
 } SP.UI.ModalDialog.RefreshPage(result);
}

Listing 12-21 demonstrates that the custom function openChangeStatusDialog creates a variable
of type SP.UI.DialogOptions and provides it to the SP.UI.ModalDialog.showModalDialog method. The
SP.UI.DialogOptions class is made of some members that are useful when creating a dialog window.
These members are

■■ url The URL of the resource to load in the dialog window.

■■ html Used this to include HTML content that you want to display in the dialog window (in
case you don’t want to provide a URL). The content must be provided as a DOM graph of
nodes and not as a simple text value.

■■ title The title of the dialog window.

■■ args Optional arguments that can be passed to the dialog window.

■■ width The width of the dialog window.

■■ height The height of the dialog window.

■■ x The x-coordinate location of the upper-left corner of the dialog window.

■■ y The y-coordinate location of the upper-left corner of the dialog window.

■■ autoSize A Boolean value that specifies whether the dialog framework will handle autosizing
of the dialog window, based on its content.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 12 Customizing the UI 463

■■ allowMaximize A Boolean value that specifies whether the dialog window can be
maximized.

■■ showMaximized A Boolean value that specifies whether the dialog window will be opened
maximized or not.

■■ showClose A Boolean value that specifies whether the Close button will be shown or not.

■■ dialogReturnValueCallback A delegate to a callback function to invoke when the dialog
window will be closed.

The callback function receives a result argument that allows determining whether the end user
clicked the Cancel button or the OK button to close the dialog. In addition, it also takes a returnValue
argument, in case the dialog window returns something to the main window. Notice that the code in
Listing 12-21 defines the target URL of the dialog window, including in that URL the value of the ListId
property of the current list and the ItemId property of the currently selected item, read using the
Client-Side Object Model (CSOM). Figure 12-11 shows the dialog window in action.

FIGURE 12-11 The dialog window to change the Status field of an invoice.

The target page is available in the source code samples, but it will not be explained here in detail
because it is a standard application page, just like the one in Listing 12-17 However, one particularly
interesting piece of code of the DevLeapInvoiceChangeStatusDialog.aspx page opened in the dialog

www.it-ebooks.info

http://www.it-ebooks.info/

464 PaRt IV Extending SharePoint

window is the script used to close the dialog window itself, which gives feedback to the parent page.
Listing 12-22 illustrates that code excerpt.

LISTING 12-22 The scripting code used to show a modal dialog for changing the status of an invoice

// In case we are in a PopUp dialog, we need to close it
if ((SPContext.Current != null) && SPContext.Current.IsPopUI) {
 this.Context.Response.Write("<script type='text/javascript'>window.

frameElement.commonModalDialogClose(1, '" + statusDropDown.SelectedValue +

"');</script>");
 this.Context.Response.Flush();
 this.Context.Response.End();
}

Notice that the current SPContext provides a property named IsPopUI to check if the current page
is loaded in a pop-up dialog environment. If it is, the page writes to the ASP.NET Response object a
small piece of JavaScript code to close the dialog, returning a status of SP.UI.DialogResult.OK (which
has a value of 1) and the value selected by the end user for the Status field.

Summary

This chapter covered a lot of information about how to customize and extend the native SharePoint
UI, and focused mainly on on-premises solutions. In particular, it described how to create features of
type CustomAction, CustomActionGroup, and HideCustomAction. It discussed how to create custom
ribbon commands and tabs using the new ribbon model provided by SharePoint 2010. It also dis-
cussed using the JSOM to implement the logic of your custom commands. You learned how to deploy
content by using Module features so you can provision images, custom content pages, and custom
application pages, as well as Web Part pages and items in galleries. Finally, you saw how to work with
the notification area, the status bar, and the dialog framework. You can also use some of these tech-
niques while developing SharePoint 2013 apps, in particular when they use the JSOM.

www.it-ebooks.info

http://www.it-ebooks.info/

 465

C H A P T E R 1 3

Web templates

Providing your customers with packages of features that you activate selectively is a great way
to extend Microsoft SharePoint to cover the requirements of most projects. Some situations,

however, require a more robust solution: creating a ready-to-go site with predefined structure and
content from the ground up, starting from a custom template.

For example, suppose you have to create an extranet site collection to host a set of websites, where
each site represents the private extranet of a customer. Because every customer’s site will have a com-
mon set of contents and features (for example, a library of orders, a library of invoices, and a discus-
sion area), you might be tempted to base each site on one of the site models SharePoint provides for
common scenarios, such as team site, blog, or community site. Don’t do it. These templates are very
broad, and you’d go crazy trying to manually provision the content using features. It’s better to build
your own new web template that defines the structure of a customer’s extranet website, and then cre-
ate every site instance starting from that template.

In this chapter, you will learn how to create, deploy, and manage these more complex site models.

The core techniques

SharePoint 2013 provides four main techniques for provisioning features and reusable site models:

■■ Site definitions

■■ Feature stapling

■■ Site templates

■■ Web templates

Before you can put them to work, you need to understand their differences and individual
strengths.

A site definition is a site model defined on the file system and stored in the folder
SharePoint15_Root\TEMPLATE\SiteTemplates of every front-end server. Saving files on the file system
is an ancient habit that requires direct access to the servers in your server farm. Thus, it is not suitable
for Microsoft Office 365 or SharePoint Online.

www.it-ebooks.info

http://www.it-ebooks.info/

466 PaRt IV Extending SharePoint

Feature stapling is a technique that enables you to customize existing site definitions by adding
custom features to extend the site definition. The new features will also be included on all the new
sites created using that specific site definition. Bear in mind, however, that feature stapling cannot
be applied to already created sites. Once you deploy a site definition on the file system, changing
its configuration is unsupported. This chapter will not cover feature stapling, because it is available
mainly for backward compatibility and is not available in Office 365.

More Info For further details about feature stapling, you can read Vesa Juvonen’s blog
post at http://blogs.msdn.com/b/vesku/archive/2010/10/14/sharepoint-2010-and-web-
templates.aspx.

A site template is an exported snapshot of an already existing site instance, with or without its
content. You can use a site template, which is basically just a WSP package, to replicate a site instance
from one environment to another, as long as the base site definition is available on the target envi-
ronment, too. In addition, you can import site templates into Microsoft Visual Studio 2012 to create
custom template projects. To save a site template from an already existing site instance, simply click
Save Site As Template in the Site Actions menu group on the Site Settings page. The one excep-
tion, however, is that a site template cannot be created from a site in which publishing features are
enabled, so it’s only usable in team and collaboration sites.

Available since SharePoint 2010, a web template is a specific WebTemplate feature that you can
create using Microsoft Visual Studio 2012 and provision using a sandboxed solution. A web template
enables you to define a custom site model for future reuse. You can deploy web templates at the site
collection level, through a sandboxed solution, or at the farm level using a full-trust WSP solution
package. Because web templates can use a sandboxed solution for deployment, you can use them
against Office 365 and SharePoint Online, too.

Site definitions

When creating custom site models, often a good way to start is by simply extending one of the site
definitions provided in SharePoint 2013. To choose the right model to get started with, though, you
need to know what the models are. The native site definitions are stored in the file system of the serv-
ers, specifically in the SharePoint15_Root\TEMPLATES\SiteTemplates folder. There, you will find a sub-
folder for every base site definition or group of site definitions. Whenever you create a new site col-
lection or a new subsite under an existing site collection, SharePoint provides a list of all the available

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 13 Web templates 467

site templates, site definitions, and web templates from which you can choose the model to use for
your new site. Figure 13-1 shows the standard page for choosing the template for a new subsite.

FIGURE 13-1 The standard page for choosing the template for a new subsite.

Behind the scenes, SharePoint loads the list of available models, reading all the available files with
the prefix webtemp*.xml found in the SharePoint15_Root\TEMPLATE\IdCulture\XML folder, where
IdCulture corresponds to the currently selected language in the Create Site window. Regarding the
IdCulture argument, 1033 stands for English (United States), 1040 stands for Italian, and so forth. The
webtemp*.xml files enumerate one or more site models, together with their name, configuration,
and folder. In Listing 13-1, the content of the main, standard webtemp.xml file is set for the English
language.

www.it-ebooks.info

http://www.it-ebooks.info/

468 PaRt IV Extending SharePoint

LISTING 13-1 The content of the standard webtemp.xml file, set for English

<?xml version="1.0" encoding="utf-8"?>
<!-- _lcid="1033" _version="15.0.4420" _dal="1" -->
<!-- _LocalBinding -->
<Templates xmlns:ows="Microsoft SharePoint">
 <Template Name="GLOBAL" SetupPath="global" ID="0">
 <Configuration ID="0" Title="Global template" Hidden="TRUE" ImageUrl=""
Description="This template is used for initializing a new site." >
</Configuration>
 </Template>
 <Template Name="STS" ID="1">
 <Configuration ID="0" Title="Team Site" Hidden="FALSE"
ImageUrl="/_layouts/images/stts.png"
Description="A site for teams to quickly organize, author, and share
information. It provides a document library, and lists for managing
announcements,
calendar items, tasks, and discussions." DisplayCategory="Collaboration">
</Configuration>
 <Configuration ID="1" Title="Blank Site" Hidden="FALSE"
ImageUrl="/_layouts/
images/stbs.png"
Description="A blank site for you to customize based on your
requirements." DisplayCategory="Collaboration"
AllowGlobalFeatureAssociations="False"></Configuration>

 <!-- Code omitted for the sake of brevity -->

 </Template>

<!-- Code omitted for the sake of brevity -->

</Templates>

The file provides a list of Template items, each with a Name attribute and an optional SetupPath
attribute. Each Template element is the parent of one or more Configuration elements, which provide
a custom configuration for that specific template. For example, the STS template is available in three
configurations: STS#0, STS#1, and STS#2. The syntax of {TemplateName}#{Configuration ID} is com-
mon in SharePoint. Table 13-1 lists the main available site definitions with the corresponding configu-
rations, described as they are in SharePoint.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 13 Web templates 469

TABLE 13-1 Some of the main native site definitions available in SharePoint 2013

Title Base definition Configuration Description

Team Site STS 0 A site for teams to quickly
organize, author, and share
information.

Blank Site STS 1 A blank site for you to customize,
based on your requirements.

Document Workspace STS 2 A site for colleagues to work
together on a document.

Central Admin Site CENTRALADMIN 0 A site for hosting the SharePoint
Central Administration (SPCA) site.
This template is hidden.

Blog BLOG 0 A blog site.

Document Center BDR 0 A site to centrally manage docu-
ments in your enterprise.

Records Center OFFILE 1 A record management site.

Business Intelligence Center BICenterSite 0 A site for presenting Business
Intelligence Center.

Personalization Site SPSMSITE 0 A site for delivering personalized
views, data, and navigation from
this site collection into My Site.

Publishing Portal BLANKINTERNETCONTAINER 0 A starter site hierarchy for an
Internet-facing site or a large
intranet portal.

Enterprise Wiki ENTERWIKI 0 A site for publishing knowledge
that you capture and want to
share across the enterprise.

Enterprise Search Center SRCHCEN 0 A site for delivering the enterprise
search center.

Basic Search Center SRCHCENTERLITE 0 A site for delivering a basic search
center.

Visio Process Repository Visprus 0 A site for teams to quickly view,
share, and store Microsoft Visio
process diagrams.

The availability of some of these site definitions depends on your SharePoint 2013 license. For
example, the Enterprise Search Center site requires you to have SharePoint Server 2013 Enterprise
licensed and installed. By default, SharePoint 2013 includes a few other site definitions, but they are
hidden and available only for backward compatibility. When you create a site instance by code, you
can reference the site definition using the syntax {TemplateName}#{Configuration ID}. For example,
STS#0 means Team Site, BLOG#0 means Blog Site, and so forth.

The webtemp*.xml files are just directories of site templates configurations. The actual configu-
ration is included in an XML file named ONET.XML, which is located in the XML subfolder of every
site definition. For example, consider the group of templates defined in the STS site definition.
The corresponding ONET.XML file declares some common configuration items, such as the docu-
ment templates, the list templates, the navigation bar groups, and the custom pages and Web Part
pages to deploy. Then it defines some Configuration elements, each one corresponding to a specific

www.it-ebooks.info

http://www.it-ebooks.info/

470 PaRt IV Extending SharePoint

configuration for the STS template. Listing 13-2 shows the ONET.XML file of the STS template, defin-
ing the configuration for STS#0.

LISTING 13-2 The ONET.XML file for the standard STS site template defining STS#0

<Configuration ID="0" Name="Default" MasterUrl="_catalogs/masterpage/v4.master">
 <Lists>
 <List FeatureId="00BFEA71-E717-4E80-AA17-D0C71B360101" Type="101"
 Title="$Resources:core,shareddocuments_Title;"
 Url="$Resources:core,shareddocuments_Folder;"
 QuickLaunchUrl="$Resources:core,shareddocuments_Folder;/Forms/AllItems.
aspx" />
 <List FeatureId="00BFEA71-6A49-43FA-B535-D15C05500108" Type="108"
 Title="$Resources:core,discussions_Title;"
 Url="$Resources:core,lists_Folder;/$Resources:core,discussions_Folder;"
 QuickLaunchUrl="$Resources:core,lists_Folder;/$Resources:core,discussions_
 Folder;/AllItems.aspx" EmailAlias="$Resources:core,discussions_
EmailAlias;" />
 <!-- Code omitted for the sake of brevity -->
 </Lists>
 <Modules>
 <Module Name="Default" />
 </Modules>
 <SiteFeatures>
 <!-- BasicWebParts Feature -->
 <Feature ID="00BFEA71-1C5E-4A24-B310-BA51C3EB7A57" />
 <!-- Three-state Workflow Feature -->
 <Feature ID="FDE5D850-671E-4143-950A-87B473922DC7" />
 </SiteFeatures>
 <WebFeatures>
 <!-- TeamCollab Feature -->
 <Feature ID="00BFEA71-4EA5-48D4-A4AD-7EA5C011ABE5" />
 <!-- MobilityRedirect -->
 <Feature ID="F41CC668-37E5-4743-B4A8-74D1DB3FD8A4" />
 <!-- WikiPageHomePage Feature -->
 <Feature ID="00BFEA71-D8FE-4FEC-8DAD-01C19A6E4053" />
 </WebFeatures>
</Configuration>

The configuration declares the list instances that will be created in the target site, the modules that
will be provisioned (the pages that will be created), and the site-level and web-level features that will
be activated. Additionally, consider that all of the site definitions inherit from a common and global
definition named GLOBAL, which is defined in the SharePoint15_Root\TEMPLATE\GLOBAL folder.
There, in the ONET.XML file in the XML folder, are defined all the base list templates and list types
used by the other site definitions.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 13 Web templates 471

Custom site definitions

Assuming you are working on-premises, defining your own site definitions is simple. To manually
create a custom site definition, copy an existing folder and change the ONET.XML file to select the
list definitions to use for creating list instances, the modules to provision, and the features to activate.
Next, define a custom webtemp*.xml file and copy it into the proper folder within SharePoint15_Root\
TEMPLATES\IdCulture\XML. You will be able to use the new definition after you recycle the appli-
cation pool of your target web application, or after you execute IISRESET, which resets the entire
Internet Information Services (IIS) environment.

Important Do not change any of the out-of-the-box site definitions, because chang-
ing such files and folders would lead you to an unsupported and probably unstable
environment.

Try an example: copy the SharePoint15_Root\TEMPLATES\SiteTemplates\ENTERWIKI folder and
name it MYENTERWIKI. Then open the ONET.XML file in the XML subfolder of MYENTERWIKI and
change the Configuration section as you see fit. To add a Shared Documents list to the standard
Enterprise Wiki site, for instance, add a List element to the Lists element of the Configuration tag in
the ONET.XML file, like so:

<List FeatureId="00BFEA71-E717-4E80-AA17-D0C71B360101" Type="101"
 Title="$Resources:core,shareddocuments_Title_15;"
 Url="$Resources:core,shareddocuments_Folder;"
 OnQuickLaunch="TRUE" />

The values for the FeatureId and Type attributes are those corresponding to the base list definition
of the document library, as it is declared in the DocumentLibrary feature in the SharePoint15_Root\
TEMPLATES\FEATURES\DocumentLibrary folder.

www.it-ebooks.info

http://www.it-ebooks.info/

472 PaRt IV Extending SharePoint

To make the site template available for creating new site instances, you need to define a custom
webtemp*.xml file; for example, call it webtempcustom.xml and copy it into the SharePoint15_Root\
TEMPLATES\IdCulture\XML folder. Listing 13-3 shows the source code of such a file.

LISTING 13-3 The source code of the custom webtempcustom.xml file for the custom MYENTERWIKI site
definition

<?xml version="1.0" encoding="utf-8"?>
<!-- _lcid="1033" _version="15.0.4420" _dal="1" -->
<!-- _LocalBinding -->
<Templates xmlns:ows="Microsoft SharePoint">
 <Template Name="MYENTERWIKI" ID="10001">
 <Configuration ID="0" Title="My Wiki Site" Hidden="FALSE"
 ImageUrl="/_layouts/15/images/wikiprev.png?rev=23" Description="A site for
a community to brainstorm and share ideas. It provides Web pages that can be
quickly edited to record information and then linked together through keywords"
DisplayCategory="DevLeap" >
 </Configuration>
 </Template>
</Templates>

Notice the ID value of 10001 used in the Template definition. In custom site templates, you should
use values equal to or greater than 10000 for the ID attribute, to avoid overriding the IDs of native
templates.

To use your new site definition named MYENTERWIKI#0, you now need to recycle the application
pool of the target web application where you want to create a site based on this template. You can
also reset IIS by invoking the IISRESET command to make the template available on all the web appli-
cations. Recycling the application pool or resetting the IIS process is required because SharePoint

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 13 Web templates 473

loads the site templates once at startup and then caches them for performance reasons. Figure 13-2
displays the new site template available in the list of templates.

FIGURE 13-2 The standard page for choosing the template for a new subsite, with the new custom site definition.

www.it-ebooks.info

http://www.it-ebooks.info/

474 PaRt IV Extending SharePoint

Figure 13-3 illustrates the home page of a site created using the new My Wiki Site template, with
the Shared Documents library at the top of the page.

FIGURE 13-3 The home page of the site created using the custom My Wiki Site site definition.

To include a list view of the document library on the home page, you need to add a View element
inside the Module element that is provisioning the Default.aspx page, in the ONET.XML file of your
site definition. You’ll learn more about this last topic in the next section.

Site definitions with Visual Studio

Manually creating site definitions is simple, but it is not always the best solution, nor is it considered
a best practice. For example, the technique works only in an on-premises farm, and it requires great
effort if you have many servers in a farm, because you must copy the files and folders to each server
to use your custom site definition. Although you were able to use features already available in the
farm for the My Enterprise Wiki example, quite often you will need to define a custom site template
to take advantage of custom features and custom contents, which you need to deploy together
with your site definition. To help you in such cases, Microsoft Visual Studio 2012 provides some item
templates for creating a site definition from scratch. Figure 13-4 shows the Add New Item window of
Visual Studio 2012, with the proper item template selected.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 13 Web templates 475

FIGURE 13-4 The Add New Item window of Visual Studio 2012 with the Site Definition item template highlighted.

Important Each time you define a project in Visual Studio, it builds and deploys an assem-
bly. In general, however, a site definition is a codeless solution, unless you do not write
custom code to support your custom features or you implement a custom feature receiver.
Thus, in case you do not have custom code, you can simply exclude the assembly from
being deployed and avoid having an empty assembly deployed on the farm. To exclude an
assembly from deployment, you need to set the value of the Include Assembly In Package
property for the current project to False using the Visual Studio property grid.

Once you choose the project template, Visual Studio 2012 prompts you with the common window,
asking for the target site URL and the type of deployment (farm solution or sandboxed solution). For
the site definition, your only choice is a farm solution deployment, because the site definition must be
stored on the file system of the farm’s servers. The sandboxed deployment is not available. The tem-
plate project outline is made up of the minimal contents for defining a site definition: an ONET.XML
file, a webtemp*.xml file, and a Default.aspx home page. To define your site definition, you simply
need to add features (as you did in previous chapters), package the solution, and then deploy it.

For example, suppose that you want to deploy a new site definition for managing work proj-
ects, with a custom list definition, based on a new content type describing a project item and a

www.it-ebooks.info

http://www.it-ebooks.info/

476 PaRt IV Extending SharePoint

corresponding list instance of projects. Additionally, you need an XsltListViewWebPart to show the
content of that list of projects on the home page (Default.aspx) of the site.

First, you must edit the webtemp*.xml file, providing a name and an ID for the Template ele-
ment, as well as a value for the attributes Title, Description, and DisplayCategory of the Configuration
element. Listing 13-4 presents the webtemp*.xml file corresponding to the sample project’s site
definition.

LISTING 13-4 The content of the webtemp*.xml file related to the sample Projects site definition

<?xml version="1.0" encoding="utf-8"?>
<Templates xmlns:ows="Microsoft SharePoint">
 <Template Name="DLPROJECTS" ID="10002">
 <Configuration ID="0" Title="DevLeap Projects" Hidden="FALSE"
 ImageUrl="/_layouts/images/CPVW.gif"
 Description="A custom site for managing projects."
 DisplayCategory="DevLeap">
 </Configuration>
 </Template>
</Templates>

In Listing 13-4, the name of the template is DLPROJECTS, the ID has a value of 10002, and the
configuration ID is 0, which means it is the first configuration. So, if you want to reference that site
definition configuration by code, you should use the name DLPROJECTS#0.

Because the name assigned to the template is DLPROJECTS, the deployment location for ONET.
XML, Default.aspx, and any other file of the site definition will target the folder SiteTemplates\
DLPROJECTS. For example, because the ONET.XML file will be deployed in the XML folder of the site
definition, its deployment location will be SiteTemplates\DLPROJECTS\Xml\. Visual Studio 2012 will
carry this out for you.

Just after defining the webtemp*.xml file, you should work on the ONET.XML file, which is the
main schema file for the custom site definition. You could define the Projects list within the ONET.
XML file by using the ListTemplate element and a List instance element. Be aware that if you provi-
sion data through the ONET.XML file, you will not be able to extend or maintain it over the course of
the site’s lifetime. In fact, data provisioned with a site definition cannot be upgraded, and you would
need to write custom code of your own to upgrade it. Instead, as you learned in Chapter 3, “Data
provisioning,” you could add the content type, list definition, and list instance defining the Projects
data structure by using feature elements, which can be upgraded and maintained during the life cycle
of your site. (You should already know how to manage this; if not, refer to Chapter 3 and Chapter
4, “SharePoint features and solutions.”) In addition, if you use features, you can add feature activa-
tion directives to the ONET.XML file. For example, suppose you have a feature provisioning a new
list instance of projects, based on a custom list definition and a custom content type. Listing 13-5
shows a sample ONET.XML deploying that list of projects, using a custom feature and the custom
Default.aspx page.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 13 Web templates 477

LISTING 13-5 The content of the ONET.XML file related to the sample Projects site definition

<?xml version="1.0" encoding="utf-8"?>
<Project Title="DLPROJECTS" Revision="2" ListDir=""
 xmlns:ows="Microsoft SharePoint"
 xmlns="http://schemas.microsoft.com/sharepoint/">
 <NavBars>
 </NavBars>
 <Configurations>
 <Configuration ID="0" Name="DLPROJECTS">
 <Lists>
 </Lists>
 <SiteFeatures>
 </SiteFeatures>
 <WebFeatures>
 <Feature ID="13957dde-9510-4216-8e15-9b769ff73bcd" />
 </WebFeatures>
 <Modules>
 <Module Name="DefaultWithProjects" />
 </Modules>
 </Configuration>
 </Configurations>
 <Modules>
 <Module Name="DefaultWithProjects" Url="" Path="">
 <File Url="default.aspx" IgnoreIfAlreadyExists="TRUE">
 <View List="Lists/Projects" BaseViewID="1"
 WebPartZoneID="CentralZone" WebPartOrder="1">
 <![CDATA[
 <webParts>
 <webPart xmlns="http://schemas.microsoft.com/WebPart/v3">
 <metaData>
 <type name="Microsoft.SharePoint.WebPartPages.
XsltListViewWebPart,
Microsoft.SharePoint,Version=15.0.0.0,Culture=neutral,
PublicKeyToken=71e9bce111e9429c" />
 <importErrorMessage>Cannot import this Web Part.
 </importErrorMessage>
 </metaData>
 <data>
 <properties>
 <property name="AllowConnect" type="bool">True</property>
 <property name="ChromeType" type="chrometype">None</property>
 <property name="AllowClose" type="bool">False</property>
 </properties>
 </data>
 </webPart>
 </webParts>
]]>
 </View>
 </File>
 </Module>
 </Modules>
 <ServerEmailFooter>Email from DevLeap Projects Site</ServerEmailFooter>
</Project>

www.it-ebooks.info

http://www.it-ebooks.info/

478 PaRt IV Extending SharePoint

The first thing to notice in the ONET.XML file is the Configuration element, which corresponds to
the one defined in the webtemp*.xml file. To use the content defined by your custom provisioning
feature, you need to put a Feature element within the WebFeatures element. The feature provisioning
the list instance of Project, together with site columns, content types, and list definition, is a web-
scoped feature. Additionally, the feature provisions a Module element for the Configuration, referenc-
ing one of the available Module elements defined in the Modules section of the ONET.XML file.

The Module element provisions the Default.aspx page and also declares a View element, which
includes a Web Part of type XsltListViewWebPart that renders the items of the list of projects, with the
path Lists/Projects, into the WebPartZone control with ID CentralZone, defined in the source code of
Default.aspx. Listing 13-6 illustrates the source code of the Default.aspx page provisioned with the
custom site definition.

LISTING 13-6 The source of the Default.aspx page provisioned with the sample Projects site definition

<%@ Page language="C#" MasterPageFile="~masterurl/default.master"
Inherits="Microsoft.SharePoint.WebPartPages.WebPartPage,
Microsoft.SharePoint,Version=15.0.0.0,Culture=neutral,PublicKeyToken=71e9bce111e
9429c" %>
<%@ Register Tagprefix="SharePoint" Namespace="Microsoft.SharePoint.WebControls"
Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral, PublicKeyToke
n=71e9bce111e9429c" %>
<%@ Register Tagprefix="Utilities" Namespace="Microsoft.SharePoint.Utilities"
Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral, PublicKeyToke
n=71e9bce111e9429c" %>
<%@ Import Namespace="Microsoft.SharePoint" %>
<%@ Assembly Name="Microsoft.Web.CommandUI, Version=15.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>
<%@ Register Tagprefix="WebPartPages" Namespace="Microsoft.SharePoint.
WebPartPages" Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>

<asp:Content ID="PageTitleContent" ContentPlaceHolderId="PlaceHolderPageTitle"
runat="server">
 <SharePoint:ProjectProperty ID="ProjectProperty2" Property="Title"
runat="server"/>
</asp:Content>

<asp:Content ID="SearchAreaContent" ContentPlaceHolderId="PlaceHolderSearchArea"
runat="server">
 <SharePoint:DelegateControl ID="DelegateControl1" runat="server"
 ControlId="SmallSearchInputBox" />
</asp:Content>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 13 Web templates 479

<asp:Content ID="MainContent" ContentPlaceHolderId="PlaceHolderMain"
runat="server">
 <table cellspacing="0" border="0" width="100%">
 <tr class="s4-die">
 <td class="ms-pagebreadcrumb">
 <asp:SiteMapPath SiteMapProvider="SPContentMapProvider"
id="ContentMap" SkipLinkText="" NodeStyle-CssClass="ms-sitemapdirectional"
runat="server"/>
 </td>
 </tr>
 <tr>
 <td class="ms-webpartpagedescription"><SharePoint:ProjectProperty
 ID="ProjectProperty3" Property="Description" runat="server"/></td>
 </tr>
 <tr>
 <td>
 <table width="100%" cellpadding="0" cellspacing="0"
 style="padding: 5px 10px 10px 10px;">
 <tr>
 <td valign="top" width="100%">
 <WebPartPages:WebPartZone runat="server"
 FrameType="TitleBarOnly"
 ID="CentralZone" Title="loc:CentralZone" />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
</asp:Content>

To deploy the site definition, you can simply select the Deploy command in Visual Studio. I sug-
gest, however, that before you deploy the site definition, you change the deployment configuration
from Default to No Activation in the project’s properties, under the SharePoint properties page (see
Figure 13-5). This will avoid activating the features in the deployment target site, as well.

www.it-ebooks.info

http://www.it-ebooks.info/

480 PaRt IV Extending SharePoint

FIGURE 13-5 The properties window of the project for provisioning the sample site definition.

After deploying the site definition, you will find its corresponding folder in the SharePoint15_Root\
TEMPLATES\SiteTemplates folder, and you will be able to create new site instances by using the new
custom site template. Figure 13-6 displays the new site definition available in the list of creatable site
definitions, while Figure 13-7 presents the home page of a site of projects created using the new site
definition.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 13 Web templates 481

FIGURE 13-6 The sample site definition available as a model while creating a new site instance.

FIGURE 13-7 The home page of a site of projects created using the new sample site definition.

www.it-ebooks.info

http://www.it-ebooks.info/

482 PaRt IV Extending SharePoint

Finally, remember that this technique for deploying custom site templates with Visual Studio is
available only on-premises, and you cannot access it within Office 365. In order to create site models
suitable for on-premises infrastructure as well as for the cloud, you have to use web templates, which
are discussed in the following section.

Site and web templates

When you create a new site instance from the UI of SharePoint, you are prompted to select a model,
as shown previously in Figure 13-6. In addition to the site definitions you just learned about, the list of
available site models contains web templates.

You can create a custom web template by exporting the definition of an existing site instance,
with or without its content, and storing the result into the content database as a sandboxed solution.
To export an existing site definition, you can use the web browser and navigate to the Save Site As
Template page, located under the Site Actions group on the Site Settings page of the current website.

Regardless of how you save the web template, the result will be a WSP package with a feature
element specifically introduced in SharePoint 2010 for managing deployment of custom web tem-
plates. The corresponding element is the WebTemplate element. To have a look at its structure, you
can simply export an existing site instance, save the generated WSP file, and then rename it to CAB.
You can then extract the element manifest declaring the WebTemplate feature. Listing 13-7 reveals the
structure of the WebTemplate element.

LISTING 13-7 The WebTemplate element structure

<WebTemplate
 AdjustHijriDays = "Integer"
 AlternateCssUrl = "Text"
 AlternateHeader = "Text"
 BaseTemplateID = "Integer"
 BaseTemplateName = "Text"
 BaseConfigurationID = "Integer"
 CalendarType = "Integer"
 Collation = "Integer"
 ContainsDefaultLists = "TRUE" | "FALSE"
 CustomizedCssFiles = "Text"
 CustomJSUrl = "Text"
 Description = "Text"
 DisplayCategory = "Text"
 ExcludeFromOfflineClient = "TRUE" | "FALSE"
 ImageUrl = "URL"
 Locale = "Integer"
 Name = "Text"
 ParserEnabled = "TRUE" | "FALSE"
 PortalName = "Text"
 PortalUrl = "Text"

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 13 Web templates 483

 PresenceEnabled = "TRUE" | "FALSE"
 ProductVersion = "Integer"
 QuickLaunchEnabled = "TRUE" | "FALSE"
 Subweb = "TRUE" | "FALSE"
 SyndicationEnabled = "TRUE" | "FALSE"
 Time24 = "TRUE" | "FALSE"
 TimeZone = "Integer"
 Title = "Text"
 TreeViewEnabled = "Text"
 UIVersionConfigurationEnabled = "TRUE" | "FALSE">
</WebTemplate>

The WebTemplate element comprises a set of attributes, which are described in Table 13-2.

TABLE 13-2 The attributes supported by the WebTemplate element

Attribute name Description

AdjustHijriDays Optional Integer attribute that specifies the number of days to extend or reduce
the current month in Hijri (Islamic) calendars used on the target website.

AlternateCssUrl Optional Text attribute that specifies the URL for an alternative cascading style
sheet (CSS).

AlternateHeader Optional Text attribute that provides the name of a custom ASPX page.
AlternateHeader defines a custom alternative header for provisioned pages. It
should be available in the SharePoint15_Root\TEMPLATE\LAYOUTS folder.

BaseTemplateID Required Integer attribute that specifies the ID of the parent site definition.
BaseTemplateID contains the value of the ID attribute of the Template element in
the webtemp*.xml file that defines the parent site definition.

BaseTemplateName Required Text attribute that specifies the name of the parent site definition.
BaseTemplateName contains the value of the Name attribute of the Template ele-
ment in the webtemp*.xml file that defines the parent site definition.

BaseConfigurationID Required Integer attribute that specifies the ID of the configuration of the par-
ent site definition. BaseConfigurationID contains the value of the ID attribute of
the Configuration element in the webtemp*.xml file that defines the parent site
definition.

CalendarType Optional Integer attribute that specifies the type of the default calendar type for
calendars created on the target website.

Collation Optional Integer attribute that specifies the collation to use for the target website.

ContainsDefaultLists Optional Boolean attribute that specifies whether the parent site definition con-
tains lists that are defined in the ONET.XML file of the GLOBAL site definition.

CustomizedCssFiles Optional Text attribute that specifies custom CSS files.

CustomJSUrl Optional Text attribute that provides a custom JavaScript file located in the
SharePoint15_Root\TEMPLATE\LAYOUTS folder, which will be executed within the
target website.

Description Optional Text attribute that specifies a description for the site template.

DisplayCategory Optional Text attribute that specifies the category in which the web template will
appear in the SharePoint UI for creating a new site.

ExcludeFromOfflineClient Optional Boolean attribute that specifies whether the site must be downloaded
during offline client synchronization.

www.it-ebooks.info

http://www.it-ebooks.info/

484 PaRt IV Extending SharePoint

Attribute name Description

ImageUrl Optional URL address of the preview image of the model, which is displayed in the
SharePoint UI for creating a new site.

Locale Optional Integer attribute that specifies the locale ID of the language/culture for
the target website.

Name Required Text attribute that specifies the internal name of the web template.

ParserEnabled Optional Boolean attribute that specifies whether the values of columns in docu-
ment libraries will be automatically added to documents added to libraries of the
target website.

PortalName Optional Text attribute that provides the name of the portal associated with the
website.

PortalUrl Optional Text attribute that specifies the URL of the portal associated with the
target website.

PresenceEnabled Optional Boolean attribute that specifies whether online presence will be enabled
for users of the target website.

ProductVersion Optional Integer attribute that specifies the version of SharePoint Foundation used
to create the web template.

QuickLaunchEnabled Optional Boolean attribute that determines if the Quick Launch area will be
enabled on the target website.

Subweb Optional Boolean attribute that specifies whether the web template has been cre-
ated from a child Web site or from the root Web site of a site collection.

SyndicationEnabled Optional Boolean attribute that determines if RSS syndication will be enabled on
the target website.

Time24 Optional Boolean attribute that specifies whether to use the 24-hour format to
represents hours.

TimeZone Optional Integer attribute that specifies the default time zone for the target
website.

Title Optional Text attribute that provides the title for the web template.

TreeViewEnabled Optional Text attribute that specifies whether the tree view in the left navigation
area of pages will be enabled. TreeViewEnabled can only take TRUE or FALSE text
values.

UIVersionConfigurationEnabled Optional Boolean attribute that specifies whether users can change the UI version
of the target website.

Listing 13-8 shows an example of a WebTemplate instance, generated by exporting an instance of
the sample site for managing projects, which you saw in the previous section.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 13 Web templates 485

LISTING 13-8 The WebTemplate element feature generated from the sample Projects site definition instance

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <WebTemplate AdjustHijriDays="0"
 AlternateCssUrl=""
 AlternateHeader=""
 BaseTemplateID="10002"
 BaseTemplateName="DLPROJECTS"
 BaseConfigurationID="0"
 CalendarType="1"
 Collation="25"
 ContainsDefaultLists="TRUE"
 CustomizedCssFiles=""
 CustomJSUrl=""
 ExcludeFromOfflineClient="FALSE"
 Locale="1033"
 Name="SampleProjects"
 ParserEnabled="TRUE"
 PortalName=""
 PortalUrl=""
 PresenceEnabled="TRUE"
 ProductVersion="4"
 QuickLaunchEnabled="TRUE"
 Subweb="TRUE"
 SyndicationEnabled="TRUE"
 Time24="FALSE"
 TimeZone="4"
 Title="SampleProjects"
 TreeViewEnabled="FALSE"
 UIVersionConfigurationEnabled="FALSE" />
</Elements>

Note in Listing 13-8 how the WebTemplate element references its parent site definition (10002,
DLPROJECTS#0). In fact, all the three attributes—BaseTemplateID, BaseTemplateName, and
BaseConfigurationID—reference the site definition created in the previous section. For this reason,
Microsoft does not support changing or removing a site definition after having used it for creating
sites. If a referenced site definition is changed or removed, elements such as the WebTemplate feature
in Listing 13-8 will no longer work.

The easiest way to create a WebTemplate feature using Visual Studio is to design the site in the
browser. Then you can save it as a template and export the resulting WSP package file, downloading
it from the Solution Gallery page of the site collection. From there, you simply need to import the
WSP file into Visual Studio 2012, creating a new project of type SharePoint 2013 - Import Solution
Package. Now you can choose to define a sandboxed solution, because the WebTemplate feature has
been implemented by Microsoft specifically to satisfy the requirement of deploying web templates

www.it-ebooks.info

http://www.it-ebooks.info/

486 PaRt IV Extending SharePoint

through sandboxed solutions. Visual Studio will start a wizard that will prompt you to choose the WSP
file, and then it will analyze the WSP file and generate a list of items that will be imported. In general,
you should accept the proposed list unless you prefer to exclude some content from the web tem-
plate. When you click the wizard’s Finish button, you will have a new Visual Studio project, complete
with a SharePoint package full of features and elements that correspond to the structure of the origi-
nal site that was used to generate the web template.

To customize the web template project, you can manually open the imported ONET.XML file and
change its contents. Figure 13-8 illustrates the interface of Visual Studio while an imported web tem-
plate is being edited.

FIGURE 13-8 The Visual Studio project available for customizing an imported WSP file.

Visual Studio makes a lot of features and elements available, but the application needs only a few.
The important elements are the list of projects and the custom home page.

Of course, you could also create a project for a web template from scratch, manually adding items
to the corresponding folders and creating a project structure like the one shown in Figure 13-8.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 13 Web templates 487

Site definitions vs. web templates

It is important to understand that creating a site definition or a web template is an uncommon and
complex task. In general, you should create features and solutions to deploy custom data structures
and content. Features and solutions are more flexible, modular, and more easily maintained than site
definitions or web templates, and they are typically the easiest to define.

If you decide that you need to create a new site model, you will need to choose between creating
a site definition or a web template. In such situations, you should factor in the following:

■■ Deploying a web template requires only the proper rights to upload the WSP file into the
solution gallery of the target site collection. A site definition requires physical access to the file
system of the servers in the farm. In fact, a web template is a sandboxed solution.

■■ A site definition cannot be deployed in a cloud environment (SharePoint Online or Office 365),
while a web template can be deployed and used in the cloud.

■■ A web template can be versioned without affecting existing site instances created from a
previous version.

■■ When you change the pages defined in a web template, those changes will be available only
in new sites, while changing the layout of pages provisioned through a site definition will also
affect previously deployed sites. However, Microsoft recommends you not change a site defi-
nition after you have used it. Instead, for versioning or changing a site definition, you should
use features stapling.

■■ A web template can do almost everything a site definition can. The only capabilities that are
not available in a WebTemplate feature are module elements for provisioning pages, custom
components to process files or security (FileDialogPostProcessor and ExternalSecurityProvider),
ServerEmailFooter configuration for custom e-mail footers (which, however, are not that use-
ful), feature stapling, and variations hierarchy.

Thus, the best practice is to favor web templates and avoid using site definitions, unless you really
do need them.

Summary

In this chapter, you learned the difference between site definitions and web templates. You also
learned how to create your own site definitions, both manually and with Visual Studio, and how to
define a web template within Visual Studio 2012. Finally, you were presented with some important
characteristics to consider when deciding whether to create a site definition or web template.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

 489

C H A P T E R 1 4

Business Connectivity Services

Business Connectivity Services (BCS) is a fundamental service application of Microsoft SharePoint
2013. It provides capabilities to read and write data from external systems, such as line-of-business

(LOB) applications, web services, databases, and any other external sources that offer a suitable con-
nector. This chapter introduces the architecture of the service and examines some useful case studies.

Overview of BCS

BCS allows accessing external data by using a CRUDQ (create, read, update, delete, and query)
approach. It is a service application that ships natively with any edition of SharePoint 2013, including
SharePoint Foundation 2013. The edition of SharePoint you install, however, will determine the exact
mix of features included. Figure 14-1 presents an architectural schema of BCS.

FIGURE 14-1 The architectural schema of the BCS application in SharePoint 2013.

The service is based on a core engine named Business Data Connectivity (BDC) that uses a runtime
engine to connect with various data providers. The supported data providers are

■■ LOB applications Any LOB solutions that can be consumed through a specific connector or
through one of the following providers

www.it-ebooks.info

http://www.it-ebooks.info/

490 PaRt IV Extending SharePoint

■■ WCF/Web services Any Simple Object Access Protocol (SOAP) web service or any Microsoft
Windows Communication Foundation (WCF) service

■■ OData Any Open Data protocol–compliant data source service

■■ Custom .NET assemblies Custom Microsoft Windows .NET assemblies that will wrap any
back-end data source

■■ Database Any database based on Microsoft SQL Server, Oracle, OLE DB data providers, or
ODBC data providers

More Info For backward compatibility, you can also consume a custom connector, which is
a custom-developed library for reading and writing data from any external data sources. If
you are interested in this topic, read the document “Creating Custom Business Connectivity
Services Connectors Using SharePoint Server 2010,” which is available on MSDN at http://
msdn.microsoft.com/en-us/library/ff953161.aspx. The best practice, however, is to use an
established data provider.

Regardless of the type of data provider that you use, the BDC engine stores configurations and
shapes of data sources in a dedicated repository, which is called External Content Type Repository and
corresponds to a dedicated database file. SharePoint is a presentation layer for data managed using
BCS, and every item that you read or write data from an external data source through BCS, that data
corresponds to an external content type (ECT), which is consumed through an external list. SharePoint
also provides several Web Parts out of the box for rendering, filtering, and searching data provided
by BCS. In addition, an external list renders with an appearance and behavior that is almost the same
as a standard SharePoint list of items. The capability to render external data in SharePoint as if it were
internal data is a key feature of BCS; you can provide end users with a common experience for both
internal and external data.

Also, if you have the SharePoint Server 2013 edition, you can consume BCS data (even offline)
from client applications such as those of the Microsoft Office 2013 suite, using the Client-Side Object
Model (CSOM) or the BDC Client Runtime, which is a client-side engine that SharePoint can auto-
matically install on any client hosting Office 2013. The capability to work offline on the client side
makes BCS very interesting for partially connected solutions such as smart clients and Office Business
Applications. For example, you can connect a Microsoft Outlook 2013 client to an external list pub-
lished through SharePoint and BCS, and take its data offline. This allows users to work with the data,
even when disconnected from the network. The offline data will be saved in local storage on the
client PC, within the current user profile folder. For security reasons, the data is also encrypted on the
local folder of the end user. If the user changes any of the items while offline, when he or she goes
back online, the BDC Client Runtime will be able to synchronize the client-side data cache with the
server-side online data.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 14 Business Connectivity Services 491

Important When working on a client, the BDC Client Runtime will connect directly to the
data repository, without using SharePoint 2013 as an intermediary. Thus, if your repository
is a database stored in a database management system (DBMS), the client will access the
database directly; if the repository is accessed through a WCF/web service, the client will
access the HTTP server directly. If you have any firewall between the client network and the
server network, you will need to open the right TCP ports and protocols.

By default, the client accessibility and the offline capabilities are available only in Outlook 2013.
However, the BDC Client Runtime is provided with an object model, which you can use from any .NET
application. This means that you can write custom code in Microsoft Word 2013, Microsoft Excel 2013,
and so on. You could also write some code in a custom .NET smart client of your own. An interest-
ing aspect to note is that the offline data cache is unique on a per-user basis. Thus, offline data will
be shared between multiple client applications, avoiding data duplication and concurrency conflicts
within the same user’s session.

To consume an external data source using BCS, you need to model the ECTs that you will use,
together with a formal definition of the LOB system you are going to consume. This information can
be defined with an XML file, built according to a BCS-specific XML schema. You can build the XML file
by using a tool like SharePoint Designer 2013, Microsoft Visual Studio 2012, or any other XML editor.
Depending on the type of data provider you plan to use, any of these applications could be useful.
For example, SharePoint Designer 2013 is the ideal solution for modeling SQL Server–based solutions
and WCF/web service–based solutions. Conversely, Visual Studio 2012 works very well with custom
.NET assemblies and custom connectors. A generic XML editor is suitable for all the other situations.

Accessing a database

It’s time to begin consuming some data using BCS. As an example, consider a SQL Server data-
base containing some hypothetical records of a customer relationship management (CRM) system.
Figure 14-2 shows the schema of the target database that accompanies this chapter. Notice that
the Customers table contains a list of orders that consists of OrdersRows, which is related to a table
of products.

www.it-ebooks.info

http://www.it-ebooks.info/

492 PaRt IV Extending SharePoint

FIGURE 14-2 The schema of a sample CRM database that you will manage by using BCS.

As previously stated, the ideal tool for modeling a BCS connection to a DBMS is SharePoint
Designer 2013. Start the application and open the target SharePoint site. Move to the External
Content Types section in the Site Objects menu on the left side of the UI, as shown in Figure 14-3.

FIGURE 14-3 The Site Objects menu of SharePoint Designer 2013, shown with External Content Types highlighted.

To create a new ECT, on the ribbon, under the New group, click External Content Type. A win-
dow appears (see Figure 14-4), in which you will set up a CRMCustomer entity corresponding to the
records in the Customers table of the target DBMS.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 14 Business Connectivity Services 493

FIGURE 14-4 The window for creating a new ECT.

Specifically, you need to provide the following information:

■■ Name The name of the ECT.

■■ Display Name The name that will be used for displaying the ECT.

■■ Namespace The namespace, which can be any string, grouping ECTs of the same type or
with a common data source.

■■ Version The version of the ECT.

■■ Identifiers The identifiers (defined via a wizard) that you will see in the upcoming pages.

■■ Office Item Type The behavior of the ECT when it will be presented in the office client UI.
Possible values are Generic List, Appointment, Contact, Task, and Post. For example, for a
Customers table, each Customer row can be mapped to a contact.

■■ Offline Sync For External List The capability to work offline.

■■ External System The concrete definition of the external data source. (This will be discussed
shortly.)

■■ External Content Type Operations The operations available for the current ECT.

www.it-ebooks.info

http://www.it-ebooks.info/

494 PaRt IV Extending SharePoint

■■ Permissions The access permissions for the current ECT.

■■ External Lists The external lists where the current ECT is used.

■■ Fields The list of the fields declared for the current ECT.

To define the concrete data source configuration, click the Click Here To Discover External Data
Sources And Define Operations link adjacent to External System, or click the Operations Design View
ribbon command.

A second page appears. You can either click the Add Connection button to define a new data
connection, or choose an existing data connection in the Data Source Explorer area. When you add
a new connection, you must determine the type of data source to which you will connect. SharePoint
Designer 2013 gives you three options:

■■ .NET Type

■■ SQL Server

■■ WCF Service

If you select SQL Server, a dialog box appears, in which you must provide the connection string
information. You also need to configure an authentication method (this will be covered in depth in
the next section). For the sake of simplicity, in the current example, use the default value Connect
With User’s Identity, which corresponds to a pass-through connection that will use the identity of the
user at run time. If the web application is not configured to authenticate with Windows credentials,
the NT Authority/Anonymous Logon account will be passed to the external system.

More Info For further details about BCS authentication and security infrastructure, read
the document “Business Connectivity Services security tasks in SharePoint Server 2013,”
which is available on TechNet at http://technet.microsoft.com/en-us/library/jj683116.aspx.

After defining the connection string, you are presented with a list of tables, views, and stored pro-
cedures that are available in the external database. Right-click an item (table, view, or routine) in the
Data Source Explorer window, and a contextual menu will appear, as shown in Figure 14-5. From this
menu, you can add operations for managing data. Each operation corresponds to a method that will
allow interaction with the data source. Using the SharePoint Designer 2013 interface, you can define
the following operations:

■■ Read Item Corresponds to the method for reading a single row/item

■■ Read List Corresponds to the method for reading a list of rows/items

■■ Create Creates a new row/item

■■ Update Updates an already existing row/item

■■ Delete Deletes an already existing row/item

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 14 Business Connectivity Services 495

FIGURE 14-5 The Operations Designer window for an ECT.

In addition, the context menu contains a New Association command with which you can create a
relationship between two ECTs in a master/detail fashion. This last topic is covered in the “Associating
entities” section later in the chapter.

When you click the Create All Operations command at the top of the context menu, a wizard will
guide you through three simple steps, and then create all the desired operations. The pages of the
wizard are

■■ Operation Properties This gives a summary of what the wizard will do for you.

■■ Parameters Configuration Here, you can define all the fields of the ECT that you are creat-
ing. You must define an identifier field, but when using a SQL Server data source, SharePoint
Designer 2013 can usually determine the identifier automatically, using the primary key of the
table. If the primary key is composed with multiple columns, all of these columns will become
required fields of the target ECT. If you choose to map the ECT to an Office type, you must
satisfy some minimal requirements. For example, a contact of Office has to have a LastName
property, and it is mandatory to map a field of the data source to that property. To do so, in
the Properties section of the wizard, choose Office Property. From there, you can freely map
all the fields that you like with their corresponding Office properties. You can also define

www.it-ebooks.info

http://www.it-ebooks.info/

496 PaRt IV Extending SharePoint

a field that will be used in the data picker and columns of type External Data for searching
items while in SharePoint.

■■ Filter Parameters Configuration Use this page to define custom filters for selecting items.
You can define various kinds of filters, such as Comparison Of Fields, Limitation Of Returned
Rows, Paging, Timestamp Filtering, and Wildcard (*) Free Filtering.

Figure 14-6 depicts the main window for managing the ECT with all operations created and fields
defined. Now you are almost ready for consuming the list of ECTs, but pay attention to two key points:

■■ You need to authorize users to consume the defined ECT.

■■ The identity that you will use to access the data source, depending on the authentication con-
figuration you choose, will need to have access to the data source.

FIGURE 14-6 The window for creating a new ECT, completely configured.

Save the newly defined ECT by clicking the Save button in the upper-left corner. Then, open
SharePoint Central Administration (SPCA) and browse to the management page of the BDC Services
service application, as shown in Figure 14-7.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 14 Business Connectivity Services 497

From this page, you can do the following:

■■ Manage all the ECTs, the configured external systems, and the BDC models that you have
defined in the farm.

■■ Import an external model defined in another farm or with an external tool.

■■ Set user and group permissions for the entire metadata store or for a specific entity.

■■ Delete a previously defined ECT.

■■ Create, upgrade, or configure profile pages for an existing ECT. A profile page is a Web Part
page for managing the contents of a specific ECT.

FIGURE 14-7 The SPCA page for managing BDC Services.

Select the CRMCustomer check box, and then on the ribbon, click Set Object Permission or select
Set Metadata Store Permissions. In the window that appears, you can define permissions for a specific
user or group. The available permission mask allows you to define four permissions:

■■ Edit Specifies whether the user can edit the external systems, a single external system, a
single ECT, or an operation

■■ Execute Allows the user to execute CRUDQ operations against an ECT

www.it-ebooks.info

http://www.it-ebooks.info/

498 PaRt IV Extending SharePoint

■■ Selectable In Clients Allows the user to create external lists of the target ECT, use Business
Data Web Parts, and select ECTs within the ECT picker

■■ Set Permissions Allows the user to set permissions on the target item (models, data
sources, and ECTs)

You can propagate permissions on descendant items to work with a permission inheritance model.

The minimum requirement for viewing and managing ECT data is to have both the Selectable In
Clients and the Execute permissions applied.

Important Remember that at least one user or group must be assigned the Set Permissions
right to avoid creating unmanageable objects.

Now you are ready to create an external list for managing the list of customers of the SampleCRM
database. You can create the external list from SharePoint Designer 2013 or from the web browser.
For this exercise, use the web browser. Browse to the target site where you want to make the list avail-
able and choose the menu item to create a new list instance. Choose an External List template and
create it. You will be asked to provide the standard properties of a new list (name and quick launch
behavior) and the name for the ECT. Select the target ECT, and you are done. Figure 14-8 illustrates
the result. Notice that the user experience is exactly the same as browsing a native list of SharePoint.

FIGURE 14-8 Browsing the Customers table through BCS in SharePoint 2013.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 14 Business Connectivity Services 499

Note Depending on the authentication model you chose while creating the data source,
you might receive an “Access denied by Business Data Connectivity” message. If you do,
check the trace log of SharePoint, which by default is in the SharePoint15_Root\LOGS
folder. You should find an exception with a High level of severity, a value of Business
Connectivity Services in the Area field, and an error message stating that BCS received an
Access Denied exception while trying to access SQL Server. In this case, you should give the
proper permissions, from a SQL Server perspective, to the user who is trying to access the
SQL Server database. With the default authentication configuration (Connect with User’s
Identity), the database connection will be opened, impersonating the user of the applica-
tion pool, which by default in IIS 7.x and SharePoint 2013 is NT AUTHORITY\IUSR.

BDC authentication modes

The Business Data Connectivity engine provides several authentication modes through which you can
access a target data source:

■■ RevertToSelf Disabled by default, this mode should be enabled at the service application
level by a farm administrator. When configured, it allows for authenticating against the back-
end data source using the application pool identity. You should never use this mode because
it can make your environment unsafe. In SharePoint Designer 2013, it corresponds to BDC
Identity mode.

■■ PassThrough Enabled by default, this mode applies impersonation and delegation of the
current user’s identity. If your web application uses Kerberos for authentication, the back-end
data source will be accessed by the end user’s identity, via delegation. If your web application
uses NTLM, the back-end data source will be accessed by the application pool identity. In
cases of security double-hop, which should be a common scenario in real farms, there will be
authentication issues with NTLM, because of the lack of delegation capabilities. In SharePoint
Designer 2013, it corresponds to the User’s Identity mode.

■■ WindowsCredentials This mode uses the Secure Store service application for authen-
ticating against the back-end data source using a set of Windows credentials. You’ll learn
more about how to configure this mode in the chapter. In SharePoint Designer 2013, it is the
Impersonate Windows Identity mode.

■■ RdbCredentials This mode is almost the same as the WindowsCredentials mode. Although
it still uses Secure Store service application, the credentials used to authenticate against the
back-end data source are custom credentials instead of Windows ones. For example, the cre-
dentials can be SQL logins defined at the database level, in case of a SQL Server back-end data
source. In SharePoint Designer 2013, it represents the Impersonate Custom Identity mode.

www.it-ebooks.info

http://www.it-ebooks.info/

500 PaRt IV Extending SharePoint

Figure 14-9 shows these modes presented by SharePoint Designer 2013 while a data source is
being configured.

FIGURE 14-9 The connection properties of a BCS data source with the available authentication modes.

For the sake of clarity, consider an example of configuring a WindowsCredentials authentication
mode. First, you will need to configure an application in the Secure Store Service administration
page. Open SPCA, navigate to the Application Management section, and choose the Manage Service
Application page. There, assuming you have already configured the BCS service and the Secure Store
service, you have the opportunity to access the administration page of the Secure Store service. In
case this is the first time you are using the Secure Store service, you will need to generate a new key
for securely storing credentials. You can accomplish this task by clicking the Generate New Key ribbon
button under the Key Management ribbon group. Providing a secure passphrase, you will be able to
generate a new key. Then you can start creating a new application by clicking the New ribbon button
in the Manage Target Application ribbon group. A wizard will ask you for some information about the
target application. Figure 14-10 shows the first step of the wizard.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 14 Business Connectivity Services 501

FIGURE 14-10 The first step of the Create New Secure Store Target Application wizard.

Through this first step, you can configure the target application ID, which is fundamental infor-
mation that you will need to reference while configuring the BCS data source. Moreover, aside from
some descriptive information, you will need to provide the target application type. The available
values are:

■■ Individual Used for mapping each individual to a unique set of credentials on the external
system

■■ Individual Ticket Used for mapping each individual to a unique set of credentials on the
external system, and can issue tickets that can be redeemed later to get credentials by another
account, which typically is a service account

■■ Individual Restricted Used for mapping individuals with restricted access to the calling
context to a unique set of credentials on an external system

■■ Group Used for mapping all the members of one or more groups to a single set of creden-
tials on the external system

www.it-ebooks.info

http://www.it-ebooks.info/

502 PaRt IV Extending SharePoint

■■ Group Ticket Used for mapping all the members of one or more groups to a single set of
credentials on the external system, and can issue tickets that can be later redeemed to get
credentials by another account, which typically is a service account

■■ Group Restricted Used for mapping members of one or more groups that have restricted
access to the calling context to a single set of credentials on the external system

Suppose you want all the authenticated users to use a shared set of credentials for accessing the
SampleCRM database. Thus, you should choose Group as the value for the target application type.
Notice that you cannot change the target application type value after you have completed the con-
figuration of a target application.

More Info For further details about configuring the Secure Store service, read the docu-
ment “Configure the Secure Store Service in SharePoint 2013,” which is available on
TechNet, at http://technet.microsoft.com/en-us/library/ee806866.aspx.

After you configure these properties, click Next, and the wizard will prompt you with a screen like
the one in Figure 14-11.

FIGURE 14-11 The second step of the Create New Secure Store Target Application wizard.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 14 Business Connectivity Services 503

As you can see, the page allows for providing the fields describing the credentials that will be
associated with each group of credentials. In the case of a set of Windows credentials, the fields will
be Windows Username and Windows Password. The last step of the wizard, illustrated in Figure 14-12,
asks for the administrators of the new target application, as well as for the users and groups that will
be in target for the application.

FIGURE 14-12 The last step of the Create New Secure Store Target Application wizard.

After you have created the target application, you need to configure a set of credentials for the
target group. Click the Set ribbon button in the Credentials ribbon group after having selected the
target application. Figure 14-13 shows the pop-up window for configuring the credentials.

www.it-ebooks.info

http://www.it-ebooks.info/

504 PaRt IV Extending SharePoint

FIGURE 14-13 The Set Credentials For Secure Store Target Application (Group) pop-up window.

Now, in order to use the new Secure Store target application, you need to configure the data
source in SharePoint Designer 2013. For example, select Impersonate Windows Identity and provide
the target application ID you defined at the very beginning of the Secure Store service application.

BDC model file

You can export the ECT model created in the previous section by using SharePoint Designer 2013 or
via the management page of the BCS service application. If you try to export the Customer ECT defi-
nition, an XML file with extension .bdcm (meaning BDC model) will be generated; it will look similar to
Listing 14-1.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 14 Business Connectivity Services 505

LISTING 14-1 The BDCM file that defines the Customer ECT retrieved from the SampleCRM database

<?xml version="1.0" encoding="utf-16" standalone="yes"?>
<Model xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.microsoft.com/windows/2007/BusinessDataCatalog
BDCMetadata.xsd" Name="CRMCustomer" xmlns="http://schemas.microsoft.com/
windows/2007/
BusinessDataCatalog">
 <AccessControlList>
 <AccessControlEntry Principal="sharepoint\administrator">
 <Right BdcRight="Execute" />
 <Right BdcRight="SetPermissions" />
 <Right BdcRight="SelectableInClients" />
 </AccessControlEntry>
 </AccessControlList>
 <LobSystems>
 <LobSystem Type="Database" Name="SampleCRM">
 <Properties>
 <Property Name="WildcardCharacter" Type="System.String">%</Property>
 </Properties>
 <AccessControlList>
 <!-- Code omitted for the sake of brevity -->
 </AccessControlList>
 <Proxy />
 <LobSystemInstances>
 <LobSystemInstance Name="SampleCRM">
 <Properties>
 <!-- Here is the database connection information -->
 <!-- Code omitted for the sake of brevity -->
 </Properties>
 </LobSystemInstance>
 </LobSystemInstances>
 <Entities>
 <Entity Namespace="http://schemas.devleap.com/SampleCRM"
 Version="1.0.0.0"
 EstimatedInstanceCount="10000" Name="CRMCustomer"
 DefaultDisplayName="CRMCustomer">
 <Properties>
 <Property Name="OutlookItemType"
 Type="System.String">Contact</Property>
 </Properties>
 <AccessControlList>
 <!-- Code omitted for the sake of brevity -->
 </AccessControlList>
 <Identifiers>
 <Identifier TypeName="System.String" Name="CustomerID" />
 </Identifiers>
 <Methods>
 <Method Name="Create" DefaultDisplayName="CRMCustomer Create">
 <Properties>
 <Property Name="RdbCommandType" Type="System.Data.CommandType,
 System.Data, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089">Text</Property>

www.it-ebooks.info

http://www.it-ebooks.info/

506 PaRt IV Extending SharePoint

 <Property Name="RdbCommandText" Type="System.String">INSERT
INTO[dbo].[Customers]([CustomerID] , [ContactName] , [CompanyName] , [Email] ,
[Enabled])VALUES(@CustomerID , @ContactName , @CompanyName , @Email , @Enabled)
SELECT[CustomerID] FROM [dbo].[Customers] WHERE [CustomerID] = @CustomerID</
Property>
 <Property Name="BackEndObjectType"
 Type="System.String">SqlServerTable</Property>
 <Property Name="BackEndObject"
 Type="System.String">Customers</Property>
 <Property Name="Schema" Type="System.String">dbo</Property>
 </Properties>
 <AccessControlList>
 <!-- Code omitted for the sake of brevity -->
 </AccessControlList>
 <Parameters>
 <Parameter Direction="In" Name="@CustomerID">
 <TypeDescriptor TypeName="System.String" CreatorField="true"
 IdentifierName="CustomerID" Name="CustomerID">
 <Properties>
 <Property Name="Size" Type="System.Int32">10</Property>
 </Properties>
 <Interpretation>
 <NormalizeString FromLOB="NormalizeToNull"
 ToLOB="NormalizeToEmptyString" />
 </Interpretation>
 </TypeDescriptor>
 </Parameter>
 <!-- Code omitted for the sake of brevity -->
 </Parameters>
 <MethodInstances>
 <MethodInstance Type="Creator" ReturnParameterName="Create"
 ReturnTypeDescriptorPath="Create[0]" Default="true"
 Name="Create" DefaultDisplayName="CRMCustomer Create">
 <AccessControlList>
 <!-- Code omitted for the sake of brevity -->
 </AccessControlList>
 </MethodInstance>
 </MethodInstances>
 </Method>
 <!-- Code omitted for the sake of brevity -->
 </Methods>
 </Entity>
 </Entities>
 </LobSystem>
 </LobSystems>
</Model>

The main element of a BDCM file is the Model tag. This is the root element of the document,
and it wraps an entire BDC model definition. Model has a dedicated AccessControlList element, and
it defines one or more LobSystem definitions. A LobSystem element defines from an abstract view-
point an external data source. A concrete data source is represented by a LobSystemInstance ele-
ment, instead. Each ECT in a LobSystem is described by an Entity element, which declares a new ECT,

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 14 Business Connectivity Services 507

together with its Identifiers and Methods elements. A single model in general defines a set of entities.
Meanwhile, the Method elements are defined using single Method elements and are instantiated
using elements of type MethodInstance. Each MethodInstance features a Type attribute, which defines
the typology of method instance. Table 14-1 lists the available values for the MethodInstance/@Type
attribute.

TABLE 14-1 The available values for the MethodInstance/@Type attribute

Type Description

AccessChecker Checks the permissions for the calling security principal related to a collection of
entities.

AssociationNavigator Retrieves a list of associated (related) entities from a single entity.

Associator Associates an entity instance with another.

BinarySecurityDescriptorAccessor Retrieves a list of bytes defining the permissions for a set of security principals,
related to a specific entity instance.

BulkAssociatedIdEnumerator Retrieves IDs of entities associated with another.

BulkAssociationNavigator Retrieves destination entities that are associated with multiple specified entities.

BulkIdEnumerator Supports the search engine of SharePoint during incremental updates.
BulkIdEnumerator returns some version information for entities whose IDs are
provided to the method.

BulkSpecificFinder Retrieves a set of entities given a set of IDs.

ChangedIdEnumerator Supports the search engine of SharePoint during incremental updates.
ChangedIdEnumerator returns IDs of entities that were modified since a specified
date/time.

Creator Creates a new instance of an entity.

DeletedIdEnumerator Supports the search engine of SharePoint during incremental updates.
DeletedIdEnumerator returns IDs of entities that were deleted since a specified
date/time.

Deleter Deletes an entity instance.

Disassociator Removes an association between an entity instance and another one.

Finder Retrieves a list of entity instances, based on a set of filtering conditions that can
be declared within the Method definition.

GenericInvoker Invokes a specific method or task in the target system.

IdEnumerator Supports the search engine. IdEnumerator retrieves the field values for the identi-
fier fields of a list of entities.

Scalar Returns a single scalar value from the external system.

SpecificFinder Retrieves a specific instance of an entity, based on its corresponding identifier.

StreamAccessor Returns a single stream of bytes from a specific entity instance. StreamAccessor
can be used to retrieve images, videos, attachments, and so on that are related
to a specific entity instance.

Updater Updates an entity instance.

When you define a BDC model, regardless of the data provider you use on the back end, you end
up defining a file such as the one shown in Listing 14-1 and using methods like the ones illustrated
here. SharePoint Designer 2013 and Visual Studio 2012 support just the most frequently used method
instance types, while the others should be defined manually in the BDCM file using an XML editor.

www.it-ebooks.info

http://www.it-ebooks.info/

508 PaRt IV Extending SharePoint

Offline capabilities

If you have SharePoint Server 2013, you can experience the offline capabilities offered by BCS.
Browse to and select an external list, such as the one you created in the previous section. To connect
your list to Outlook 2013 and make it available offline, on the ribbon, click Connect To Outlook (see
Figure 14-14).

Note If you do not have the Connect To Outlook ribbon command available on the ribbon
bar, please ensure that the site feature named Offline Synchronization For External Lists is
activated and try again.

The Outlook offline capability is available because you defined the ECT with an Office Contact
behavior. A temporary window appears, displaying the message “Preparing External List For
Synchronization With Outlook.”

FIGURE 14-14 The ribbon of an external list with the Connect To Outlook command highlighted.

Next, an installer dialog window appears (Figure 14-15), asking the end user for permission to
install the BDC Client Runtime on the client side (if it is not already installed) and to install the model
schema for the entity that you are connecting with Outlook.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 14 Business Connectivity Services 509

FIGURE 14-15 The pop-up dialog box that appears when installing the client model and consuming the ECT.

Click the Install button if the displayed information is acceptable; click Don’t Install if it’s not.

Figure 14-16 shows the final output of the offline list in Outlook 2013.

FIGURE 14-16 The list of contacts available in Outlook 2013 and corresponding to the list of customers.

Now you can browse and edit data either from SharePoint 2013 within the web browser or using
Outlook 2013, or you can manage data directly in the database storage. Regardless of the interface
you use for managing data, all your modifications will be sooner (online) or later (offline) synchro-
nized with the back-end database.

www.it-ebooks.info

http://www.it-ebooks.info/

510 PaRt IV Extending SharePoint

As soon as you connect the list to the Microsoft Office client platform, the BDC Client Runtime
creates a folder under the local user’s profile path (which, for example, could be C:\Users\
Your UserName\AppData\Local\Microsoft\BCS), where the offline data is stored. Notice that the
folder is green, meaning it is encrypted. There you will find an SDF file of SQL Server Compact Edition,
as well as a PST offline cache file.

Accessing a WCF/SOAP service

Using the standard SharePoint 2013 UI for accessing data stored in a DBMS with CRUDQ support is
undoubtedly interesting and challenging. For security and privacy reasons, however, many companies
prefer to lock and secure their databases, preventing direct data access from clients or even servers.
In these situations, articulated business solutions built on top of the database provide access to data
filtered by business rules and security policies. Quite often, the business rules are exposed or pub-
lished through SOAP services, eventually implemented using WCF.

The BCS support for connecting with SOAP services over HTTP (web services), optionally imple-
mented with WCF, can also make these kinds of applications available in SharePoint. BCS can consume
any SOAP service that offers the minimum set of operations that is mandatory for the WCF/web
service connector of BCS. For a minimal implementation that is capable of reading data with a read-
only approach, you need one SOAP operation corresponding to a Finder method instance type and
another supporting the SpecificFinder type. From a SOAP perspective, a Finder method is an opera-
tion that optionally accepts some filters and returns a collection of entities. A SpecificFinder operation
accepts an identifier and returns the corresponding entity. Specifically, every returned entity should
have an identifying property, and the result of a SpecificFinder operation has to return an entity with
at least the same properties as the result of the Finder operation. There cannot be a Finder method
that returns more information than a SpecificFinder method. Listing 14-2 shows a WCF service con-
tract satisfying these requirements.

LISTING 14-2 A WCF service contract satisfying the read-only requirements for WCF

[ServiceContract(Namespace = "http://schemas.devleap.com/CustomerService")]
public interface ICustomerService {
 [OperationContract]
 Customer GetCustomerById(String customerID);

 [OperationContract]
 Customers ListAllCustomers();
}

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 14 Business Connectivity Services 511

[DataContract(Name = "Customer", Namespace = "http://schemas.devleap.com/
Customers")]
public class Customer {
 [DataMember(Name = "CustomerID", Order = 1)]
 public String CustomerID { get; set; }

 [DataMember(Name = "ContactName", Order = 1)]
 public String ContactName { get; set; }

 [DataMember(Name = "CompanyName", Order = 1)]
 public String CompanyName { get; set; }

 [DataMember(Name = "Country", Order = 1)]
 public String Country { get; set; }
}

[CollectionDataContract(ItemName = "Customer", Name = "Customers", Namespace =
"http://schemas.devleap.com/Customers")]
public class Customers : List<Customer> {
 public Customers() : base() { }
 public Customers(IEnumerable<Customer> collection) : base(collection) { }
}

The sample contract uses a Customer entity and a Customers list of entities. These types are
marked as serializable with the DataContract serialization engine used by WCF. The service con-
tract publishes only two operations: GetCustomerById and ListAllCustomers. The former accepts the
customerID (the identifier parameter) and returns a single Customer entity. The latter, for the sake of
simplicity, does not expect any argument and returns a list of Customer instances.

If you would like to support a full CRUDQ scenario, you need to publish three more operations for
the corresponding method types (Creator, Updater, Deleter). The Creator operation should accept the
entity to create as input, and it should return the identifier of the created entity or the whole created
entity. The Updater operation should accept the entity and, above all, its identifier. It is not required
to return anything back to the caller, but it is not forbidden. The Deleter operation should accept the
identifier of the entity to delete. A response is not required. Listing 14-3 demonstrates an extended
WCF contract supporting the CRUDQ scenario.

www.it-ebooks.info

http://www.it-ebooks.info/

512 PaRt IV Extending SharePoint

LISTING 14-3 A WCF service contract satisfying the CRUDQ requirements for WCF

[ServiceContract(Namespace = "http://schemas.devleap.com/CustomerService")]
public interface ICustomerService {
 [OperationContract]
 Customer GetCustomerById(String customerID);

 [OperationContract]
 Customers ListAllCustomers();

 [OperationContract]
 Customer AddCustomer(Customer item);

 [OperationContract]
 Customer UpdateCustomer(Customer item);

 [OperationContract]
 Boolean DeleteCustomer(Customer item);
}

The internal code of a service that implements such a contract is trivial, and it will not be covered
in this chapter. You will find a full sample implementation, however, in the code samples.

After you define a service contract and service implementation that adhere to the communication
requirements, as well as publish the service through a dedicated endpoint, you can register a new
ECT corresponding to the entity published by the service. The best tool for accomplishing this task is
still SharePoint Designer 2013. The first part of the registration task is exactly the same as registering
an external database. In the Data Source Explorer window, however, while adding a new connection
for the external system behind the ECT, you need to select a new WCF Service data source type for
the external data source. Figure 14-17 shows the WCF Connection dialog box for configuring a data
source of type WCF Service.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 14 Business Connectivity Services 513

FIGURE 14-17 The WCF Connection dialog box for registering a WCF Service external data source.

The configuration information is as follows:

■■ Service Metadata URL This is the URL of the endpoint publishing the service’s metadata.

■■ Metadata Connection Mode This is the type of metadata published by the service. The
available values are WSDL and MetadataExchange (WS-MetadataExchange).

■■ Service Endpoint URL This is the URL of the endpoint publishing the service.

■■ Name This is an optional name for the service.

■■ Use Proxy Server This specifies an HTTP proxy to use for contacting the service endpoint.

■■ Define Custom Proxy Namespace For Programmatic Access This specifies a namespace
for the autogenerated proxy code, in order to access the service proxy by custom code.

■■ WCF Service Authentication Settings This specifies the authentication technique to use
while communicating with the external service.

■■ Metadata Authentication Settings This defines a specific authentication mode for retriev-
ing the service metadata. This setting is optional.

After you register the external data source, you must define all the operations that you would like
to support.

www.it-ebooks.info

http://www.it-ebooks.info/

514 PaRt IV Extending SharePoint

Note While defining a WCF Service data source, if you provide a service or metadata
address published by localhost, you will receive the following error message: “The URL
should not loop back to the local host.” In fact, you cannot use a loopback URL (for
instance, localhost) in a multiserver farm, because there wouldn’t be a guarantee of avail-
ability of the URL for every server of the farm. Therefore, you always need to publish ser-
vices through qualified host names.

As with the SQL Server data source, you can add operations by right-clicking a SOAP operation in
the Data Source Explorer window, which in the case of a WCF service will show you all the available
SOAP operations. Figure 14-18 displays the resulting window.

Notice in Figure 14-18 that the menu does not provide a command for configuring all the opera-
tions in one shot. This is because it cannot generate them autonomously by simply reading the
service metadata, so you need to configure each individual operation step by step. You should start
by creating a Finder method, which is an operation of type ReadList . Then define a SpecificFinder
method, which corresponds to a ReadItem operation. Lastly, define the Create, Update, and Delete
operations, in case they’re needed. Each operation allows you to configure the input and output
arguments via a wizard interface.

FIGURE 14-18 The Data Source Explorer window for the sample WCF Service data source.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 14 Business Connectivity Services 515

During definition of the operation of type ReadList, you need to define the entity identifier in
the Return Parameter Configuration wizard step. You should also define a field to show in the entity
picker. For the purposes of the current example, you should define the CustomerID property of each
Customer entity as the identifier field, and the ContactName property as the field to show in the
picker. Figure 14-19 shows this wizard step.

Furthermore, when defining the operation of type ReadItem, you have to map the identifier
property to the corresponding argument of the SpecificFinder method in the Input Parameters
Configuration wizard step. Then, in the Output Parameters Configuration step, you must define the
entity identifier in the output message, and any property mapping to the corresponding Office prop-
erty, if you defined the ECT as an Office item type.

The same considerations about the entity identifier are valid for the operations of type Create,
Update, and Delete.

FIGURE 14-19 The Return Parameter Configuration wizard step that defines the ReadList operation.

When you finish configuring the ECT, save it, and then you can use it in external lists and Office
clients, too.

www.it-ebooks.info

http://www.it-ebooks.info/

516 PaRt IV Extending SharePoint

Consuming OData services

One new capability of the BCS services introduced with SharePoint 2013 is support for OData services.
OData stands for Open Data Protocol (see http://www.odata.org) and is an emerging technology for
providing interoperable data-publishing services. A key feature of OData is that it is a web protocol
for querying and updating data. Thus, you can use it to consume a complete CRUDQ experience. The
data provided by an OData service can be published as an ATOM (XML) feed or using a JSON serial-
ization format, both using the HTTP transport protocol.

To consume an OData service via BCS, you need to create a SharePoint 2013 app using Visual
Studio 2012. In Chapter 8, “SharePoint apps,” you learned how to create an app. For the sake of brev-
ity, imagine here creating a SharePoint-hosted app for consuming a publicly available OData service
like the one offered by Netflix (see http://developer.netflix.com/docs/OData_Catalog).

To consume an OData service, you simply need to add to the app a specific project item. In
Figure 14-20, you can see that you need to right-click the SharePoint 2013 app project, select Add
from the menu that appears, and then choose Content Types For An External Data Source.

FIGURE 14-20 The Add | Content Types For An External Data Source menu item.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 14 Business Connectivity Services 517

You will be prompted with a very brief wizard for providing the URL of the external OData service,
which in the case of Netflix is http://odata.netflix.com/Catalog/, and the name to give to the data
source. Figure 14-21 illustrates how this wizard step is made.

FIGURE 14-21 The Specify OData Source wizard page for adding a new OData source.

The next step is to choose the data lists to consume. Figure 14-22 shows how this last wizard step
behaves. Notice that you can explicitly select the data lists you want to consume, and you can choose
to automatically create external lists instances for every consumed data list in the target SharePoint
app site.

www.it-ebooks.info

http://www.it-ebooks.info/

518 PaRt IV Extending SharePoint

FIGURE 14-22 The Select The Data Entities wizard page for adding a new OData source.

Click Finish on the page, and you will have a set of list instance elements—one for each selected
data entity—as well as an ECT file for every single data entity. The ECT files will define a model for each
entity. Figure 14-23 displays the project outline, indicating the OData entities that have been created.

FIGURE 14-23 The outline of the SharePoint 2013 app after adding the ECTs from an OData service.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 14 Business Connectivity Services 519

If you deploy the app or start debugging it, you will see that the target app’s web will contain the
external lists you defined. To check this result, you can simply navigate with your favorite browser to
the corresponding URL. For example, to check the existence of the external list of titles consumed
from Netflix, navigate to the URL {app web URL}/Lists/Titles. Figure 14-24 shows the results.

FIGURE 14-24 The list of titles from Netflix using the OData service connector for BCS.

.NET custom model

Another opportunity you have while defining BCS solutions is to develop a custom model in Visual
Studio 2012. This capability is useful whenever you need to consume, and in particular index and
search with the search engine, a third-party data source that is not directly accessible through a
database connection or by using a web service. It is also useful when you need to use an interme-
diary proxy to aggregate data that will eventually be provided by non-homogeneous sources. A
custom model is a .NET assembly compiled in Visual Studio 2012 and built starting from a Visual
Studio template project of type SharePoint 2013 - Empty Project. This project type is by necessity a
full-trust, farm-level solution that deploys its assembly into the Global Assembly Cache (GAC). Thus,
you cannot use it in Office 365. In fact, the custom model is accessible from any web application and
can be shared across the farm. Inside the .NET assembly, you can write any code you like, and you can
use any kind of library, service, or data provider in order to read the target data source. From a BCS
viewpoint, you define a BDCM file within Visual Studio 2012, and you model a set of entities that will

www.it-ebooks.info

http://www.it-ebooks.info/

520 PaRt IV Extending SharePoint

correspond to the ECT that you want to design. Visual Studio 2012 provides the BCS Model Designer
and a BDC Explorer window to support model definition. Figure 14-25 illustrates the model designer,
together with the BDC Explorer toolbox.

FIGURE 14-25 The BCS Model Designer available in Microsoft Visual Studio 2012.

The main goal of the model designer is to allow you to design entities and relationships (called
associations in BCS) between entities. Each individual entity is made up of one or more identifier
properties and some methods. The methods are defined and configured in terms of parameters,
method instances, and filter descriptors using the BDC Method Details window. With the BDC
Explorer, you can inspect the model by using the classic tree-view approach. The result of model-
ing is a BDCM file that you can manually import into SharePoint 2013. To do so, first deploy the
corresponding assembly DLL into the GAC, and then use the BCS service application page in SPCA.
Alternatively, you can take advantage of the automatic deployment provided by Visual Studio 2012,
which uses a feature receiver (defined in class ImportModelReceiver of namespace Microsoft.Office.
SharePoint.ClientExtensions.Deployment) for importing the file into the metadata catalog of BCS.

When you design a model in the graphical designer, Visual Studio 2012 automatically creates a
code file called {Entity}Service.cs for each entity, where {Entity} corresponds to the name of the entity
handled by that class file. Within that file, Visual Studio 2012 will place static methods correspond-
ing to the method instances declared in the designer. In addition, you can use the designer to define

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 14 Business Connectivity Services 521

the method instances and parameters for each designed method, as well as the data types of input,
output, and return parameters.

To master the model design process, you should first define classes corresponding to all of the
entities that you want to make available through the model. Then you should design the entities in
the model designer and configure the methods that you want to make available. Remember that at
the very least, you should define both a Finder and a SpecificFinder method. If you want to provide
Creator, Updater, and Deleter methods, you can design them, too. In the accompanying code sample
for this chapter, you will find a complete solution, which will be discussed in the next section.

Developing a custom model from scratch
In this section, you will use a step-by-step approach to learn how to design a simple model that pub-
lishes a list of customers read from the SampleCRM database (introduced previously in the “Accessing
a database” section). In this example, however, you will read the customers using LINQ to Entities.

More Info LINQ to Entities is a topic that will not be covered in this book. If you would like
to understand how it works, read the book Programming LINQ in .NET Framework 4, by
Paolo Pialorsi and Marco Russo (Microsoft Press, 2010).

First, create a new SharePoint 2013 project of type SharePoint 2013 - Empty Project. Then add an
item of type BCS Model (for example, name it SampleCRMModel). A window will appear with a pre-
configured model designer, describing a SampleCRMModel model with a hypothetical Entity1 item,
together with both Entity1.cs and Entity1Service.cs classes. Remove the Entity1 item from the model,
as well as the related CS files.

Add an Entity Framework 5.0 model to the project (click Add | New Item | ADO.NET Entity Data
Model) and define a link to the table of customers defined in the target SampleCRM SQL Server
database. To make the Entity Framework 5.0 model work inside SharePoint, you need to change
the web.config file of the target web application, deploy the EntityFramework.dll assembly into the
BIN folder of the web application, and create the connection string for the external data source by
code. This chapter will not cover details about how to manage these tasks, which are related to Entity
Framework 5.0. Nevertheless, in the companion code samples, you will find all the code for consum-
ing an external SQL Server database via Entity Framework 5.0 within a SharePoint 2013 site.

Next, add a new entity to the BCS model, giving it a name of Customer. The designer will gen-
erate a CustomerService.cs file for you. Add a new identifier for the Customer entity and name it
CustomerID.

Now you need to configure at least two methods (see Figure 14-26). The ReadList method will cor-
respond to a Finder method, while the ReadItem method will correspond to a SpecificFinder method.
To add these methods, simply go to the BDC Method Details panel and select the option Add A
Method, as well as the appropriate method type.

www.it-ebooks.info

http://www.it-ebooks.info/

522 PaRt IV Extending SharePoint

FIGURE 14-26 The BCS Model Designer showing the Customer ECT with its identifier and methods.

Start with the ReadList method. Select the method in the designer and show the BDC Method
Details window, which by default appears in the bottom area of Visual Studio. If the window is not
displayed, go to View | Other Windows to show it. As you can see, the ReadList method has a return
parameter called CustomersList; click it. In the property grid, specify that the type name behind the
CustomersList parameter will be the List<Customer> type, where the Customer type is the one gener-
ated by Entity Framework. Do the same thing for the ReadItem method, this time selecting a return
value of type Customer. You can add other parameters, or you can stop modeling the entities here.

Now you are ready to implement the model code. Open the source code of the
CustomerService.cs file, and notice that the designer defined the service code for you. Listing 14-4
shows this autogenerated code.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 14 Business Connectivity Services 523

LISTING 14-4 The autogenerated CustomerService.cs file

public partial class CustomerService {
 public static Customer Read(string customerID) {
 throw new System.NotImplementedException();
 }

 public static IEnumerable<Customer> List() {
 throw new System.NotImplementedException();
 }
}

Replace the methods implementation with concrete code, and you will be ready to provide read-
only data to BCS. Listing 14-5 shows you a concrete code implementation.

LISTING 14-5 The autogenerated CustomerService.cs file with a concrete code implementation

public partial class CustomerService {
 public static IEnumerable<Customer> ReadList() {
 SampleCRMEntities ctx = SampleCRMEntities.CreateContext();
 return (ctx.Customers);
 }

 public static Customer ReadItem(string customerID) {
 SampleCRMEntities ctx = SampleCRMEntities.CreateContext();
 return (ctx.Customers.FirstOrDefault(c => c.CustomerID == customerID));
 }
}

Notice that the static method SampleCRMEntities.CreateContext is part of the customization made
to support Entity Framework 5.0 within SharePoint 2013. You can add also the Creator, Updater, and
Deleter methods. To do so, click the Add A Method command menu item in the BDC Method Details
window (illustrated previously in Figure 14-26). The Creator method accepts a parameter of type
Customer with a direction value of In, and it returns a result of type Customer with a direction value of
Return. The Updater method accepts at least a parameter of type Customer with a direction value of
In, but it will not return anything. The Deleter method accepts a parameter of type customerID with a
direction value of In, but it too does not return anything.

Listing 14-6 presents the final implementation of the CustomerService.cs file.

www.it-ebooks.info

http://www.it-ebooks.info/

524 PaRt IV Extending SharePoint

LISTING 14-6 The final CustomerService.cs implementation

public partial class CustomerService {
 public static IEnumerable<Customer> ReadList() {
 SampleCRMEntities ctx = SampleCRMEntities.CreateContext();
 return (ctx.Customers);
 }

 public static Customer ReadItem(string customerID) {
 SampleCRMEntities ctx = SampleCRMEntities.CreateContext();
 return (ctx.Customers.FirstOrDefault(c => c.CustomerID == customerID));
 }

 public static Customer Create(Customer newCustomer) {
 SampleCRMEntities ctx = SampleCRMEntities.CreateContext();
 ctx.Customers.Add(newCustomer);
 ctx.SaveChanges();

 return (newCustomer);
 }

 public static void Update(Customer customer) {
 SampleCRMEntities ctx = SampleCRMEntities.CreateContext();
 ctx.Customers.Attach(customer);
 ctx.SaveChanges();
 }

 public static void Delete(string customerID) {
 SampleCRMEntities ctx = SampleCRMEntities.CreateContext();
 ctx.Customers.Remove(ctx.Customers.FirstOrDefault
 (c => c.CustomerID == customerID));
 ctx.SaveChanges();
 }
}

After you finish designing your model, you can validate it by right-clicking the designer surface
and selecting the Validate command. If your model is correctly defined, Visual Studio 2012 displays
the message “Model validation completed with no errors” in the Output window.

Now you can deploy the model and consume it from your SharePoint 2013 sites.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 14 Business Connectivity Services 525

Associating entities

Regardless of the type of data source provider you choose for designing your ECTs, it is important
to know that you can define associations between entities of the same namespace or model. In fact,
whenever you have entities with a relationship, you can design an association with which you can
navigate through your data, moving across associations.

Depending on the tool that you use for designing your BCS models, you can define the following
kind of associations:

■■ One-to-many forward and/or reverse associations based on a foreign key This
models a classic 1-n relationship. An example of a one-to-many association is represented
by a customer with his or her orders. It is based on a foreign key and can be modeled within
SharePoint Designer 2013.

■■ Many-to-many associations These associations correspond to n-n relationships. An exam-
ple of a many-to-many association is an association between customers and their interest
areas. Customers can have multiple interest areas, and every interest area can have multiple
interested customers.

■■ Self-referential associations These are associations that are self-referential for the same
entity. An example could be a list of employees, where each employee is related to his or her
manager, who is also an employee.

■■ Multiple related ECTs These associations allow modeling between one entity and multiple
entities. An example could be an association table with multiple identifying foreign keys map-
ping to different tables, such as the description of a product in a multilanguage environment,
where a description is identified by a product ID and a culture code, respectively correspond-
ing to the product and culture used to identify the product description.

As an example, consider the SampleCRM database and the CRMCustomer ECT defined previously
in the “Accessing a database” section. Add another ECT corresponding to the Orders table and call it
CRMOrder. Each Order row is related to a specific Customer row, and the relationship is one-to-many,
where CRMCustomer is the source and the related CRMOrder instances are the destinations. From
within SharePoint Designer 2013, you can select the Operations Design View ribbon command of the
destination ECT, and then click the Add Association menu item to create a new association.

Note In SharePoint Designer 2013, you always need to create an association starting from
the destination entity, not from the source entity.

www.it-ebooks.info

http://www.it-ebooks.info/

526 PaRt IV Extending SharePoint

When you undertake adding a new association, a wizard appears that asks you to select the source
ECT and the related identifier (see Figure 14-27).

FIGURE 14-27 The first step of the wizard for creating an association between two ECT entities.

Then you need to select the parameters to provide to the association. An association is a par-
ticular kind of MethodInstance definition, as are, for example, Associator, AssociationNavigator, and
BulkAssociationNavigator, which were described in Table 14-1. Thus, you have the ability to pro-
vide input parameters and filter parameters. The return type of the method is the related list of
destinations.

You can use associations, for example, by using native Business Data Web Parts of SharePoint, cre-
ating pages that use the Business Data List and the Business Data Related List Web Parts. These Web
Parts are available only in the Enterprise edition of SharePoint Server 2013. Figure 14-28 demonstrates
the output of these Web Parts when configured to render CRMCustomer and related CRMOrder
instances.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 14 Business Connectivity Services 527

FIGURE 14-28 A Web Part page showing the output of Business Data List and Business Data Related List when
connected.

If you need to define an association different from a one-to-many, based on a foreign key, you can
use a text editor for the BDCM file or the Visual Studio 2012 BDC Model Designer.

Summary

In this chapter, you learned how BCS works on both the server and client side. You saw how to con-
figure the most popular kinds of data source providers: DBMS, WCF/Web Service, OData, and the
custom .NET model. You also read a quick overview of associations. You now have the basic elements
to start using BCS in your real business solutions.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

 529

PART V

Developing
workflows

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

 531

C H A P T E R 1 5

Windows Workflow Foundation

Part V, “Developing workflows,” focuses on developing workflows and orchestrating business
processes within Microsoft SharePoint 2013. First, in this chapter, you will learn about the archi-

tecture, capabilities, and functionality of Microsoft Windows Workflow Foundation (WF) 4.5, which
serves as the basis of the new workflow engine of SharePoint 2013. To master the workflow engine of
SharePoint 2013, you first need to understand the workflow engine of WF 4.5 itself. While subsequent
chapters of Part V will cover workflows for SharePoint, this chapter delves into WF 4.5 alone.

Architecture of Windows Workflow Foundation 4.5

The latest version of the workflow engine from Microsoft, WF 4.5, is a rich set of libraries, types, and
tools for creating custom workflow-based software solutions and is implemented with Microsoft .NET
Framework 4.5. WF 4.5 is not a ready-to-use software or an application server available out of the
box. With WF 4.5, you can’t do anything unless you write custom code on top of the WF 4.5 engine.
WF 4.5 is a tool for developers, not a software application for end users. You, as a developer, can cre-
ate software applications providing workflow-based functionality using .NET 4.5 and WF 4.5.

Note To learn how SharePoint 2013 takes advantage of WF 4.5 to provide workflow-based
capabilities to end users, see Chapter 16, “SharePoint workflow fundamentals.”

In WF 4.5, every workflow is made of a set of activities or at least a single activity. An activity is the
smallest unit of execution for a workflow and can be considered a single step of a workflow. Activities
can be created by developers, or can be taken from the list of activities already available out of the
box. Typically, a real workflow solution is made of activities available out of the box as well as cus-
tom developed ones. Whenever you need to implement a software application that uses WF 4.5, you
should analyze the requirements of the target solution and define the custom activities necessary to
implement that solution. Regardless of the number and type of custom activities you will develop,
every workflow definition will be made of markup code defined using a syntax called XAML. When
you run a workflow instance, you load the workflow definition, provide some input arguments, and
allocate a thread for executing that workflow instance. Internally, the workflow engine will run every
workflow instance with a maximum of one thread at a time.

www.it-ebooks.info

http://www.it-ebooks.info/

532 PaRt V Developing workflows

WF 4.5 is based on the architecture shown in Figure 15-1. You can think of every application that
uses WF 4.5 as a host application. Host applications access the WF runtime for loading and executing
workflow instances, as well as the WCF (Windows Communication Foundation) runtime for commu-
nicating between the workflow instances and the outside. Every workflow instance can be persisted
onto a dedicated persistence storage, and can also be monitored using out-of-the-box tools.

With Microsoft Visual Studio 2012, you can not only define workflows while developing custom
solutions, but also use the native libraries of WF 4.5 to create custom workflow designers of your own.
You can then include these workflow designers in your custom applications.

On the hosting side, you can also host and run workflow instances within Internet Information
Services (IIS) and manage those instances using IIS management tools. You can also use Windows
Server AppFabric, which provides some useful monitoring and management tools that extend the
native capabilities of IIS.

FIGURE 15-1 A simplified schema showing the architecture of a system with externalized authentication.

When you create a new workflow definition, you can choose between three workflow models that
are available out of the box:

■■ Sequence Represents a sequential workflow in which you define an explicit entry point
(start) and a well-known exit point (end). The workflow instances will be executed from the
start to the end, stepping through multiple steps and following some branches, without the
capability to step backward through the flow. The only way to step backward in a sequential
workflow is to define multiple nested loops, but doing so would result in overly complex and
difficult-to-manage workflows.

■■ Flowchart Defines a flow that behaves like a flow diagram; it can be traversed from start to
finish, and specific conditions and rules can return the flow to previously completed steps.

■■ State machine Defines a state machine flow, which is made of a set of states and rules to
transfer the flow. It is the most suitable solution for implementing human-interactive flows,
because end-user behavior is unpredictable and nondeterministic.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 15 Windows Workflow Foundation 533

Those are just basic examples of flow definitions. In reality, you can mix the three models within a
single workflow definition. For example, you can create a flowchart workflow that internally is made
of some sequences or state machines. You even can create workflow shapes of your own and plug
them into the native infrastructure; however, flowcharts, sequences, and state machines can satisfy
almost every need.

Listing 15-1 contains an example excerpt of XAML defining a sequential workflow that provides the
typical “Hello world” message.

LISTING 15-1 The XAML code of a sample sequential workflow

<Activity mc:Ignorable="sap sap2010 sads" x:Class="WorkflowConsoleApplication1.
Workflow1"
 sap2010:ExpressionActivityEditor.ExpressionActivityEditor="C#"
 xmlns="http://schemas.microsoft.com/netfx/2009/xaml/activities"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:sads="http://schemas.microsoft.com/netfx/2010/xaml/activities/debugger"
 xmlns:sap="http://schemas.microsoft.com/netfx/2009/xaml/activities/presentation"
 xmlns:sap2010="http://schemas.microsoft.com/netfx/2010/xaml/activities/
presentation"
 xmlns:scg="clr-namespace:System.Collections.Generic;assembly=mscorlib"
 xmlns:sco="clr-namespace:System.Collections.ObjectModel;assembly=mscorlib"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <TextExpression.NamespacesForImplementation>
 <sco:Collection x:TypeArguments="x:String">
 <x:String>System</x:String>
 <x:String>System.Collections.Generic</x:String>
 <x:String>System.Data</x:String>
 <x:String>System.Linq</x:String>
 <x:String>System.Text</x:String>
 </sco:Collection>
 </TextExpression.NamespacesForImplementation>
 <TextExpression.ReferencesForImplementation>
 <sco:Collection x:TypeArguments="AssemblyReference">
 <AssemblyReference>Microsoft.CSharp</AssemblyReference>
 <AssemblyReference>System</AssemblyReference>
 <AssemblyReference>System.Activities</AssemblyReference>

 <!-- Code omitted for the sake of brevity -->

 </sco:Collection>
 </TextExpression.ReferencesForImplementation>
 <Sequence>
 <WriteLine Text="Hello world!" sap2010:WorkflowViewState.IdRef="WriteLine_1"
/>
 </Sequence>
<sap2010:WorkflowViewState.IdRef>WorkflowConsoleApplication1.Workflow1_1</
sap2010:WorkflowViewState.IdRef>
 <sap2010:WorkflowViewState.ViewStateManager>

 <!-- Code omitted for the sake of brevity -->

 </sap2010:WorkflowViewState.ViewStateManager>
</Activity>

www.it-ebooks.info

http://www.it-ebooks.info/

534 PaRt V Developing workflows

Aside from some infrastructural content, the real workflow definition is highlighted in bold and
simply declares a sequence made of one activity of type WriteLine, which will write to the console
window a welcome message with a text value of Hello world! Figure 15-2 shows the listing’s graphical
representation in the workflow designer available in Visual Studio 2012.

FIGURE 15-2 The graphical designer of Visual Studio 2012 presenting a sample workflow definition.

Furthermore, consider that with WF 4.5 you can also define a workflow simply by writing a few
lines of code, aggregating instances of activities in an object graph defined as Microsoft C# or Visual
Basic .NET source code. Listing 15-2 shows a code excerpt of a C#-based workflow.

LISTING 15-2 A sample sequential workflow only based on C# code

Sequence sequenceWorkflow = new Sequence {
 Activities = {
 new WriteLine { Text = "Hello world!" }
 }
};

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 15 Windows Workflow Foundation 535

Your first workflow project

To better understand how to define a workflow, try creating an extremely simple workflow definition
corresponding to a flow for selecting a vacation destination. Imagine that you want to create, using
WF 4.5, the workflow depicted as a flow diagram in Figure 15-3.

FIGURE 15-3 A flow diagram depicting a sample workflow outline.

To represent this workflow using WF 4.5, you can start by creating a sample Workflow project in
Visual Studio 2012. Under the list of available project templates, you can find a group of workflow
projects, where you can create one of the following:

■■ Activity Designer Library Represents a project template for creating a custom designer for
a custom set of activities (discussed in Chapter 18, “Advanced workflows”).

■■ Activity Library Represents a project template for creating a new set of custom activities
(discussed later in this chapter and in Chapter 18).

■■ WCF Workflow Service Application Defines a project for hosting a workflow service,
which will be published by a WorkflowServiceHost object. This topic will not be covered in
detail in this book, because it is out of the scope of SharePoint 2013 workflows.

■■ Workflow Console Application Defines workflows that will run in the console environment
of a Windows machine. It is a good option for practicing with WF 4.5 and for creating sample
workflows.

For the example, start with a Workflow Console Application project template. You will be
prompted with a blank design surface, and with a rich toolbox of activities on the left side of your
screen. Figure 15-4 shows the Visual Studio 2012 interface just after the new project is created.

www.it-ebooks.info

http://www.it-ebooks.info/

536 PaRt V Developing workflows

FIGURE 15-4 The outline of the sample workflow project in Visual Studio 2012.

To start designing your flow, drag an activity from the toolbox and drop it onto the workflow
design surface. The following are the available groups of activities:

■■ Control Flow Activities for defining and controlling the flow of your processes. For example,
in this group you can find activities like DoWhile, ForEach, If, Parallel, and so on.

■■ Flowchart Activities for defining a flowchart-based workflow. Such activities include
FlowChart, FlowDecision, and FlowSwitch.

■■ State Machine Activities for defining state machine workflows. These activities include
StateMachine, State, and FinalState.

■■ Messaging Activities for communicating with external systems, using SOAP (Simple Object
Access Protocol), WCF, REST (Representational State Transfer) and HTTP, and so on. This is one
of the richest groups of activities.

■■ Runtime Activities for persisting workflow status, terminating a workflow instance, execut-
ing a piece of flow without any persistence, and so on. These are the very core activities of WF
4.5.

■■ Primitives Activities to invoke external code, assign a value to a variable, wait for a delay,
and perform other fundamental tasks.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 15 Windows Workflow Foundation 537

■■ Transaction Activities like TransactionScope, CompensableActivity, Compensate, and
CancellationScope, which are related to transactional tasks.

■■ Collection Activities for managing collections of items and variables. You can find activities
for adding, removing, retrieving, and checking for the existence of items in a collection, and
more.

■■ Error Handling Activities for handling errors, such as TryCatch, Throw, and Rethrow.

■■ Migration Activities to interoperate with previous versions of WF.

■■ DynamicValue Activities for managing dynamic values and types. For example, these
include activities for managing JavaScript Object Notation (JSON) and OData content.

While working in an environment configured for developing SharePoint and Microsoft Office
solutions, you will also find many other categories of activities, all with SP in their name. Chapter 17,
“Developing workflows,” will discuss them. This chapter, however, focuses on the standard and basic
workflow engine of WF 4.5.

To create the workflow illustrated in Figure 15-3, you need to design a FlowChart activity. For
instance, specify a value of Vacation Flowchart for its DisplayName property. Every FlowChart activity
starts with a predefined startup point. Add a WriteLine activity to the flowchart and connect it to the
green startup symbol. By clicking in the body of the WriteLine activity, you will be able to provide text
to display on the console as a greeting message. Notice that here you can write any C# or Visual Basic
expression. In fact, one of the main capabilities of the designer for WF 4.5 is the ability to configure
activities using dynamic and code-based expressions. For the sake of simplicity, imagine the user pro-
vides the name of the destination to get the country as an input argument at the workflow startup. In
a real workflow, you would probably use a custom activity for querying the user and for validating the
provided input.

To declare an argument or variable, you can use the workflow designer. In the lower-left corner of
the designer in Visual Studio 2012 are three tabs: Variables, Arguments, and Imports. The Variable tab
enables you to define variables for holding values during execution of workflow instances. Variables
can be scoped to define their lifetime and availability. The Arguments tab allows defining properties,
input, output, or both input/output arguments that can be used to configure the workflow instances.
With the Imports tab, you can define the assemblies that you want to reference in the code running
within the workflow you are defining. To accept the TargetCountry argument, click the Arguments tab,
and declare an input argument with name TargetCountry and type String.

Then design a FlowSwitch<T> activity with a value of System.String for the T to disambiguate.
Connect the FlowSwitch<T> activity with the WriteLine activity you defined before and determine
the behavior of the workflow, based on the content of the TargetCountry argument. To achieve this
result, configure the Expression property of the FlowSwitch<T> activity in order to map it to the
TargetCountry argument. Then, for the sake of simplicity, imagine that you want to use a WriteLine
activity for each of the user’s choices. According to the diagram in Figure 15-3, if the user provides
a value of Italy for the TargetCountry argument, the workflow will suggest going to Venice; if the

www.it-ebooks.info

http://www.it-ebooks.info/

538 PaRt V Developing workflows

user provides a value of Germany, then the workflow will suggest visiting Munich; lastly, if the user
provides any other value, the workflow will simply write “Other.” Figure 15-5 illustrates the resulting
flowchart definition.

FIGURE 15-5 Outline of the sample workflow project in Visual Studio 2012.

To start debugging your new workflow definition, right-click the first WriteLine activity in the
designer and select the Insert Breakpoint menu item from the Breakpoint menu. Now you can simply
start playing the workflow in Visual Studio 2012 by pressing F5.

By default, the workflow instance starts with an empty value for the TargetCountry argument, and
the flow will go through the default path (Other). You can configure a default value for this argument
through the Arguments tab of the designer, or you can start the workflow providing an argument
from outside the flow. In the next section, you will learn how to start a workflow providing some input
arguments.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 15 Windows Workflow Foundation 539

Hosting and execution

Out of the box, you have three available options for hosting and executing a workflow instance:

■■ The WorkflowInvoker class

■■ The WorkflowApplication class

■■ The WorkflowServiceHost class

The WorkflowInvoker class executes a single workflow instance using a single-threaded and syn-
chronous model. The WorkflowInvoker execution engine assumes you want to execute a workflow
instance that will run for a short time, without any kind of persistence storage. This option is suitable
for quick and small workflows, which in general are simple, and which do not really need to be scal-
able, highly available, or asynchronous. The C# code excerpt in Listing 15-3 uses a WorkflowInvoker
object to host and execute a workflow instance, based on the chapter’s example workflow.

LISTING 15-3 Executing a workflow instance through a WorkflowInvoker object

Dictionary<String, Object> arguments = new Dictionary<String, Object>();
arguments.Add("TargetCountry", "Italy");

Activity instance = new VacationWorkflow();
WorkflowInvoker.Invoke(instance, arguments);

When using a WorkflowInvoker object, you can also include input arguments, within a vari-
able of type Dictionary<String, Object>. In the code sample, the arguments provide a value for the
TargetCountry argument.

Alternately, you can use an instance of the WorkflowApplication class, which allows hosting and
executing a single workflow instance within an independent, scalable, asynchronous, and persistable
runtime engine. In fact, the WorkflowApplication class internally uses a dedicated scheduler based
on a thread pool. The scheduler can execute a workflow instance for a long time, even persisting
its status into a back-end persistence storage if it becomes idle. The C# code excerpt in Listing 15-4
executes a workflow instance using a WorkflowApplication object, but is very basic. Later in this chap-
ter, you will more thoroughly investigate workflow persistence.

www.it-ebooks.info

http://www.it-ebooks.info/

540 PaRt V Developing workflows

LISTING 15-4 Executing a workflow instance using a WorkflowApplication object

ManualResetEvent rst = new ManualResetEvent(false);

Dictionary<String, Object> arguments = new Dictionary<string, object>();
arguments.Add("TargetCountry", "Italy");

Activity instance = new VacationWorkflow();
WorkflowApplication application = new WorkflowApplication(instance, arguments);

application.Completed = (WorkflowApplicationCompletedEventArgs e) => {
 rst.Set();
};

application.Run();
rst.WaitOne();

Notice that in Listing 15-4, the code waits for the workflow execution using an object of type
ManualResetEvent. The workflow instance will be executed asynchronously, and the hosting applica-
tion will have to wait for the background task to complete. Furthermore, while hosting a workflow
instance within a WorkflowApplication object, you have the capability to suspend, unload, resume, or
terminate a running workflow instance.

If the workflow you are implementing has to be published as a service, you have one last execu-
tion option. You can empower the WorkflowServiceHost class, which provides a hosting and execu-
tion infrastructure that internally uses the WCF engine and allows publishing of a workflow service.
Such workflows can be defined within a web application and can be published using IIS or a custom
self-hosting application. Not every workflow definition can be hosted within a WorkflowServiceHost
object. To host a workflow definition as a workflow service, you need to design the workflow accord-
ingly and use some specific activities that internally implement a WCF service contract.

Custom activities

As you know, every workflow definition is made of one or more activities. From a developer perspec-
tive, a workflow activity is just a piece of markup that aggregates already existing activities or is a
custom class implementation. Using the Visual Studio 2012 workflow designer, you can easily imple-
ment a custom activity. To do so, open the chapter’s sample project and add a new workflow project
of type Activity Library.

In the new project, you will find a new project item with extension .xaml; this is an XML-based
file that you will be able to design using the classic workflow designer and the toolbox of available
out-of-the-box activities. Here, you can design a kind of subworkflow that you will be able to reuse
many times in your own workflow definitions. However, this file can aggregate existing activities
only, so its main purpose is to reuse existing elements, rather than to create completely new activi-
ties from scratch.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 15 Windows Workflow Foundation 541

In a real business workflow solution, you will probably need to write some code to implement
real activities from scratch. From an object-orientation viewpoint, a custom activity is just a class
that inherits from the base class System.Activities.Activity or from one of the other types inheriting
from that base class. Figure 15-6 displays the full hierarchy of types available for creating code-
based activities.

FIGURE 15-6 The hierarchy of types available for creating code-based custom activities.

For example, depending on the type of activity you want to implement, you can inherit from one
of many available base classes, including the following:

■■ CodeActivity This is the base class to inherit from for creating a synchronous custom activ-
ity that provides some functionality implementing a code-based method called Execute,
without necessarily providing a result.

■■ AsynCodeActivity This can be inherited to implement an asynchronous activity that can be
used to execute code adhering to the asynchronous code execution pattern available in .NET
and based on the Begin/End{MethodName} pair of methods. This kind of base class does not
return a result value.

■■ NativeActivity This is the base class to inherit from for creating any kind of activity and can
interact with the WF 4.5 runtime engine at any level. This base class does not return any result.

■■ CodeActivity<TResult> This can be inherited to implement a code-based activity that will
provide a result of type TResult.

■■ AsynCodeActivity<TResult> This is the counterpart of the AsyncCodeActivity, and returns a
result value of type TResult.

■■ NativeActivity<TResult> This is the same as the NativeActivity, but activities inheriting
from this type will provide a result of type TResult.

www.it-ebooks.info

http://www.it-ebooks.info/

542 PaRt V Developing workflows

In Figure 15-6, there are also some other types available, such as DynamicActivity and
DynamicActivity<TResult>. These are sealed classes that are useful for creating custom activities and
workflow instances directly in code, but not for creating custom activity types.

Now, think again about the simple vacation workflow example. In Figure 15-3, the workflow defi-
nition got the value of the TargetCountry argument from the list of input arguments of the work-
flow. A better option, however, is to include within the workflow definition some logic that queries
the user for the target country, and then to provide some validation rules in the same workflow.
To add this custom querying activity (call it ReadLineActivity), you first need to inherit from the
CodeActivity<TResult> base class, because you will use some custom code to query the user. The
result of type TResult will be a System.String and provide the user-specified target country to the
workflow. Listing 15-5 implements such a custom activity.

LISTING 15-5 A sample C# code excerpt implementing a custom ReadLineActivity

public class ReadLineActivity : CodeActivity<String> {
 protected override string Execute(CodeActivityContext context) {
 return(Console.ReadLine());
 }
}

As you can see, the simple implementation reads a line from the console and returns the read
value through the return value of the Execute method, which overrides the corresponding method
of the CodeActivity<String> base class. Moreover, the Execute method receives an argument of type
CodeActivityContext, which provides the current request context and which will be used later. Now,
build the class library project, and open the workflow designer of the VacationWorkflow definition.
Notice the new activity is waiting in the toolbox, ready to be inserted in the workflow definition.

After inserting the new activity, you can configure it. In the property grid of the designer, the cus-
tom activity provides a Result property. Delete the TargetCountry argument from the Arguments tab,
and define a new TargetCountry variable of type System.String on the Variables tab of the workflow
designer. Configure the Result property of the custom ReadLineActivity to return the read value into
the TargetCountry variable. Figure 15-7 shows the new outline of the vacation workflow.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 15 Windows Workflow Foundation 543

FIGURE 15-7 The workflow designer with the custom ReadLineActivity in place.

When defining custom activities, you not only provide result values, often you also need to
accept configuration parameters and input/output arguments. In WF 4.5 custom activities, you
can define as many arguments as you want simply by declaring properties of type InArgument<T>,
OutArgument<T>, or InOutArgument<T>. As the type names imply, these types represent input,
output, and input/output arguments. You can use these types for holding values that will be serialized
and deserialized together with the workflow status and that you can use to change the behavior of
your custom activities. Imagine that you want to define an input argument for the ReadLineActivity.
This argument will be a string message that will prompt the workflow users before asking them for
the target country value. Listing 15-6 provides a revised ReadLineActivity implementation.

LISTING 15-6 A sample C# code excerpt implementing a custom ReadLineActivity with an input argument

public class ReadLineActivity : CodeActivity<String> {
 public InArgument<String> Message { get; set; }

 protected override string Execute(CodeActivityContext context) {
 Console.WriteLine(this.Message.Get(context));
 this.Result = Console.ReadLine();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

544 PaRt V Developing workflows

The property definition is self-explanatory, although the use of the Message property (high-
lighted in bold) probably is not. You cannot directly access any property of type InArgument<T>,
OutArgument<T>, or InOutArgument<T> to read or write its value. On the contrary, you need to
employ the Get and Set methods provided for accessing their values in the context of the cur-
rent activity execution, which is the argument of type CodeActivityContext provided to the Execute
method. Any argument defined in this way will be available on the workflow design surface for con-
figuration using an explicit value or an expression.

The custom activity examples based on CodeActivity<TResult> run synchronously within the execu-
tion of the target workflow instances. In Chapter 18, you will learn how to implement asynchronous
activities using base types like AsyncCodeActivity<TResult> and NativeActivity<TResult>.

Runtime scheduler and workflow process life cycle

From a functional point of view, every workflow instance executes its steps based on a scheduler,
which schedules execution of threads and steps during a workflow instance’s lifetime. Technically
speaking, the workflow engine of WF 4.5 executes one single activity per time handling a queue of
work items that will be executed in a specific order. The queue of work items can be populated by
the workflow runtime host (your hosting process), by an activity running in the workflow, or by some
external code. As long as the queue of work items has something to do, the workflow scheduler
schedules the execution of these work items, once per time in a single-threaded fashion. When the
queue of work items is empty or when the currently running work item is handling a background task
and there is nothing to do in the meantime, the workflow instance is idle. When a workflow instance
is idle or between the executions of work items, you can persist the workflow state. When a workflow
instance is idle, you can also unload that instance and reload it later when you have something to do.

Think about document approval workflows. There will be times when an approval workflow has
to wait for end users’ approval. It would be useless and dangerous to keep a pending workflow idle
in memory just waiting for end users. You would consume resources (RAM and CPU) keeping alive
a workflow instance that has nothing to do. Moreover, in the case of a hardware failure or system
reboot, you would lose your workflow instance state if you kept it in memory only. On the contrary,
if you save the workflow state periodically and you unload idle workflows from memory, you will be
able to reload and resume them only when needed, and eventually use a multiserver infrastructure
where workflows are loaded and resumed on the server when you have enough resources to manage
their execution. Activities provided out of the box by WF 4.5 internally take advantage of this way of
working. For activities that you implement, you should consider these issues and create the activities
according to the behavior of the runtime scheduler of WF 4.5.

To better understand this topic, change the sample vacation workflow, adding a Delay activity
between the ReadLineActivity and the first WriteLine activity. Any Delay activity instance accepts a
Duration property, which represents the delay duration as a TimeSpan value. Figure 15-8 shows the
new outline of the workflow definition.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 15 Windows Workflow Foundation 545

FIGURE 15-8 The workflow designer with the custom Delay activity in place.

Listing 15-7 contains a revised code excerpt for running the workflow instance using a
WorkflowApplication class and intercepting the Idle event.

LISTING 15-7 Running the new workflow outline with a Delay activity

ManualResetEvent rst = new ManualResetEvent(false);

Activity instance = new VacationWorkflow();
WorkflowApplication application = new WorkflowApplication(instance);

application.Completed = (WorkflowApplicationCompletedEventArgs e) =>
{
 rst.Set();
};

application.Idle = (WorkflowApplicationIdleEventArgs e) =>
{
 Console.WriteLine("Workflow idle");
};

application.Run();
rst.WaitOne();

www.it-ebooks.info

http://www.it-ebooks.info/

546 PaRt V Developing workflows

Running the workflow instance, you will see that, just after providing the target country to the
ReadLineActivity instance, the workflow will become idle because of the Delay activity.

Workflow persistence

If a workflow instance is idle and it is running within a WorkflowApplication or a WorkflowServiceHost
host, such as SharePoint, you can persist the workflow state as long as you have configured a persis-
tence storage on the back end. Try configuring persistence for the vacation workflow sample run-
ning within a WorkflowApplication host. First, you need a properly configured persistence storage.
By default, WF 4.5 uses a Microsoft SQL Server custom database for persistence storage. When you
install .NET 4.5, the setup package copies onto your file system some SQL files for creating such a
persistence database. Under the path %windir%\Microsoft.NET\Framework64\v4.0.30319\SQL\en, you
will find the following files:

■■ SqlWorkflowInstanceStoreLogic.sql

■■ SqlWorkflowInstanceStoreSchema.sql

■■ DropSqlWorkflowInstanceStoreLogic.sql

■■ DropSqlWorkflowInstanceStoreSchema.sql

As you can deduce from their names, these files provide the T-SQL commands for creating or
deleting the schemas and logic of persistence tables. There are multiple files because sometimes it
is useful to create these tables and this logic within an already existing application-specific database,
instead of creating a dedicated database. Because you have the source SQL files, you can execute
them against any database, and you are free to use them in your own environment, too. These script
files target SQL Server 2005 or higher. Run the SqlWorkflowInstanceStoreSchema.sql file first, and
then run the SqlWorkflowInstanceStoreLogic.sql file. The first file creates the schemas for the tables,
and the second one creates the business logic on top of these schemas.

With your persistence database ready, you next need to reference the assemblies System.Activities.
DurableInstancing.dll and System.Runtime.DurableInstancing.dll within your target host application,
and you need to change the code in order to use the persistence. Listing 15-8 demonstrates the
revised hosting code.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 15 Windows Workflow Foundation 547

LISTING 15-8 A sample C# code excerpt for hosting the vacation workflow with persistence storage configured

ManualResetEvent rst = new ManualResetEvent(false);

Activity instance = new VacationWorkflow();
WorkflowApplication application = new WorkflowApplication(instance);

SqlWorkflowInstanceStore store = new SqlWorkflowInstanceStore(
 "Server=DEVSQL1;Initial Catalog=WF45_PersistenceStorage;Integrated
Security=SSPI");
application.InstanceStore = store;

application.Completed = (WorkflowApplicationCompletedEventArgs e) =>
{
 rst.Set();
};

application.Idle = (WorkflowApplicationIdleEventArgs e) =>
{
 Console.WriteLine("Workflow Idle");
};

application.PersistableIdle = (WorkflowApplicationIdleEventArgs e) =>
{
 Console.WriteLine("Workflow PersistableIdle");
 return (PersistableIdleAction.Persist);
};

application.Run();
rst.WaitOne();

The code for configuring the persistence store is highlighted in bold, as is the PersistableIdle event
handler, which will be raised as soon as the workflow instance is idle and ready for persistence. The
event handler will be able to return a result of type PersistableIdleAction, which can assume the values
None, Persist, or Unload. None does nothing, Persist instructs the WorkflowApplication instance to
persist the workflow onto the target store, and Unload instructs the WorkflowApplication instance to
persist and unload the workflow instance, to free resources.

Consider that the SqlWorkflowInstanceStore class used in Listing 15-8 is the default imple-
mentation of a persistence store service, which is provided out of the box by WF 4.5 and which
stores the status of workflows in SQL Server. However, it is just a class inheriting from the
InstanceStore abstract class, and you can implement a persistence storage service of your own.
For example, on MSDN, you can find a sample for storing workflow data in a custom XML file (see
http://msdn.microsoft.com/en-us/library/ee829481.aspx).

www.it-ebooks.info

http://www.it-ebooks.info/

548 PaRt V Developing workflows

If you are wondering what will be saved into the persistence store, you could inspect the table
[System.Activities.DurableInstancing].[InstancesTable] created within the persistence storage database.
There you will find the serialized workflow instance state, which is not human readable and is mainly
made of the following information:

■■ The list of work items to execute

■■ The list of bookmarks of the current workflow, which will be discussed in Chapter 17, “Claims-
based authentication, federated identities, and OAuth.”

■■ Variables, arguments, and all the instance data of the workflow instance

■■ Any pending callback, such as a timer

■■ Any custom data, because you can extend the persistence of WF 4.5 and provide some cus-
tom data to store in the persistence storage

Summary

In this chapter, you investigated the architecture of WF 4.5 and how to take advantage of WF 4.5 in
your own software solutions. You also learned how to design a simple workflow, how to create a very
basic custom activity, and how the workflow scheduler executes workflow instances and activities.
Lastly, you saw how the out-of-the-box persistence storage system works in WF 4.5.

www.it-ebooks.info

http://www.it-ebooks.info/

 549

C H A P T E R 1 6

SharePoint workflow fundamentals

For Microsoft SharePoint 2013, Microsoft completely redesigned the architecture of the workflow
engine. Unlike previous versions of SharePoint (2007 and 2010), which were based on Microsoft

Windows Workflow Foundation (WF) 3.0, the new 2013 engine supports WF 4.5. This chapter walks
you through the architecture of this new engine. Along the way, you’ll learn how to work with
Workflow Manager 1.0, which provides a WF 4.5 server farm. You’ll also learn how to create your own
workflow from scratch.

The new architecture

A good way to understand the new architecture of workflow in SharePoint 2013 is to compare it to
the existing WF 3.x architecture in SharePoint 2010 (Figure 16-1). This legacy workflow engine is still
available in SharePoint 2013, mainly for backward compatibility, and a good understanding of its
limits allows a better understanding of the architectural choices made in SharePoint 2013.

FIGURE 16-1 A simplified schema of the architecture of WF 3.x in SharePoint 2010 and 2013.

From a functional perspective, every workflow instance running on WF 3.x is hosted in SharePoint
2010/2013 and runs on a SharePoint server. When a running workflow instance interacts with an end
user through custom pages or tasks, the workflow instance is executed within the process of a web

www.it-ebooks.info

http://www.it-ebooks.info/

550 PaRt V Developing workflows

front-end server. When a workflow instance executes some background tasks, it runs in the back-
ground timer service of SharePoint, through a dedicated timer job that will run every n minutes (by
default, every 5 minutes) onto one dedicated application server. While a workflow instance is not
running—for example, because it is waiting for an external event such as an approval from an end
user—the instance gets persisted in the content database of the target site collection and is unloaded
to keep the environment light and safe.

Such an architecture works great for simple and low-traffic scenarios. For a huge workflow
infrastructure with thousands of running workflow instances, however, you cannot rely on executing
instances within the same process that is providing web content to end users, nor can you rely on a
single dedicated application server. Thus, in SharePoint 2013 you should take advantage of the new
WF 4.5 engine (shown in Figure 16-2) and relegate WF 3.x to backward compatibility uses only.

FIGURE 16-2 A simplified schema of the new architecture of WF 4.5 in SharePoint 2013.

As shown in Figure 16-2, the workflow engine now runs on a dedicated server farm, based on
a new service called Workflow Manager 1.0. The Workflow Manager 1.0 engine has a highly scal-
able architecture, which allows executing a huge number of workflow instances in near–real time
and using an external multiserver and multitenant infrastructure. In Microsoft Office 365, Workflow
Manager is hosted on Microsoft Windows Azure to improve scalability. On-premises, you have to
deploy a server farm, which can be hosted on the same SharePoint servers or on a dedicated set of
servers, in case you need to serve a high number of workflow instances and users in a dedicated
environment.

The Workflow Manager farm and the SharePoint 2013 farm communicate across the network,
empowering the new Windows Azure Service Bus when communicating between SharePoint and
Workflow Manager. In Office 365, the Windows Azure Service Bus will be provided by Windows
Azure. On-premises, however, you will have to install the stand-alone version of the Service Bus,
which can be installed together with Workflow Manager 1.0. Later in this chapter, you will learn how

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 16 SharePoint workflow fundamentals 551

to deploy on-premises both Workflow Manager 1.0 and the Service Bus engine. On the other side,
when Workflow Manager communicates with SharePoint 2013, it uses the new Representational State
Transfer (REST) APIs, like any external SharePoint 2013 app.

The security infrastructure is enforced using OAuth 2.0 and Windows Azure Access Control
Services (ACS) in Office 365, or, if you are on-premises, a local security (server-to-server, or S2S) trust
between SharePoint 2013 and the local Workflow Manager.

Important To work properly, both the OAuth 2.0 and S2S configurations require you
to have an instance of the User Profile service of SharePoint 2013 installed and config-
ured. Thus, starting with SharePoint 2013, the new WF 4.5 workflow engine is available
only on SharePoint Server Standard or Enterprise; it is no longer available on SharePoint
Foundation. On the contrary, the legacy WF 3.x engine still works on SharePoint
Foundation 2013.

On the SharePoint side of the architecture, there is also a service application proxy, which connects
the SharePoint 2013 farm with the remote Workflow Manager 1.0 farm. To communicate with the
remote Workflow Manager 1.0 farm, the service application proxy uses a Workflow Client 1.0 library,
which provides the basic and primitive commands for interacting with the remote Workflow Manager
1.0 farm. Internally, the Workflow Services Manager component, which sits on top of the workflow
service application proxy, provides capabilities to support workflow instance management, deploy-
ment, messaging, and interoperability with legacy SharePoint 2010 workflows.

SharePoint, on its own side, manages lists, libraries, items, documents, and all the events that can
be of any interest for the workflow engine. Moreover, SharePoint saves and manages workflow asso-
ciations, activities, and metadata configuration. Whenever an event of interest occurs for Workflow
Manager, such as itemAdded or itemUpdated, the workflow service application proxy will inform
Workflow Manager using a WCF-based communication channel, using the Service Bus and an event
publish/subscribe model. This publish/subscribe model can also be accessed by apps and custom
workflows, which can send activation messages through the Service Bus to the external Workflow
Manager engine. One interesting thing to notice is that, thanks to the publish/subscribe event model
offered by the Service Bus, if an event of interest for multiple target workflow instances occurs on the
SharePoint side, the communication channel between SharePoint and Workflow Manager will deliver
only one event notification. On the Workflow Manager side, the Service Bus will raise the event in
every target workflow instance, via a multicast event-based system, reducing the traffic across the
wire and allowing multiple subscribers for the same published event.

In this new architecture, you can associate a workflow definition either with an SPWeb object or an
SPList instance. Starting with SharePoint 2013 and the new workflow architecture, a workflow associa-
tion cannot be defined targeting an SPContentType object, however. Thus, SharePoint 2013 supports
list workflows and site workflows only. Moreover, as it was in the previous version of the workflow
engine, in 2013, a workflow instance can be started manually by an end user, or automatically upon

www.it-ebooks.info

http://www.it-ebooks.info/

552 PaRt V Developing workflows

specific events, such as an item creation or change. Furthermore, with the new engine, as with the
old, you can start a workflow definition as many subsequent times against a specific item as you
want, but you cannot start two concurrent instances of the same workflow definition against a unique
target item.

As soon as a workflow association is started against a target item, the client side of the workflow
service will inform the remote Workflow Manager using an event, which is defined accordingly to
the publish/subscribe infrastructure defined. If there will be any workflow definition on the Workflow
Manager side subscribed for that specific event happening, then a new workflow instance will be
created. Moreover, as it was with SharePoint 2010 workflows, every workflow association relies on a
workflow tasks list, as well as a workflow history list. The workflow tasks list holds the tasks related to
the workflow processes, while the workflow history list stores history messages.

From a development perspective, an advanced user can create workflow definitions using either
SharePoint Designer 2013 or Microsoft Visual Studio 2012. You can create workflows for both versions
of the workflow engine using either tool.

The following are the main goals achieved with this new architecture:

■■ Higher and better scalability The new workflow engine is very scalable and highly
performing.

■■ Decoupling between SharePoint 2013 and Workflow Manager 1.0 The new Workflow
Manager is completely independent from SharePoint 2013, so it can be run wherever you
need, keeping SharePoint unaware of the real location of the workflow farm.

■■ SharePoint app integration and support for cloud-ready workflows You can develop
apps that empower workflows in their internal implementation and that can run in the
cloud (autohosted or provider-hosted), communicating with the remote SharePoint 2013
environment.

■■ Markup-based workflow definition and better expressiveness The workflow definitions
are now mainly markup based, and to publish a new workflow definition you simply need to
publish the XAML markup code—not libraries or .NET assemblies at the SharePoint farm level.

■■ More power to SharePoint Designer 2013 Because of the previous point, SharePoint
Designer 2013 is now more powerful and is the best choice to implement many of the
workflows you will need. This opens the workflow engine to inexperienced users and
nondevelopers.

■■ Independence from cloud or on-premises deployment The overall architecture is inde-
pendent from the location of both the SharePoint 2013 farm (on-premises or on Office 365)
and the Workflow Manager farm (on-premises or on Windows Azure).

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 16 SharePoint workflow fundamentals 553

Deployment of Workflow Manager 1.0

To start playing with the new Workflow Manager 1.0 engine, you can use Office 365, which is already
configured and ready to use, or you can deploy the workflow engine on-premises. The new workflow
engine is not configured by default, however; you need to download, install, and configure it before
you can use it. If you plan to play with the new workflow engine simply on Office 365, skip ahead to
the “Your first workflow with SharePoint Designer 2013” section. If you plan to deploy the workflow
on-premises, read on here.

You can download the Workflow Manager 1.0 engine, as well as Workflow Client 1.0, from
Microsoft through Web Platform Installer 4.5 (or later), which is available at http://www.microsoft.
com/web/downloads/platform.aspx. Figure 16-3 displays the interface of Web Platform Installer 4.5
when installing Workflow Manager 1.0.

FIGURE 16-3 The Web Platform Installer UI during the installation of Workflow Manager 1.0.

www.it-ebooks.info

http://www.it-ebooks.info/

554 PaRt V Developing workflows

More Info Be careful to download the right version of the product. In fact, via Web
Platform Installer 4.5, you can download Workflow Manager 1.0 as well as the Workflow
1.0 beta 2version. However, the beta version is not supported on SharePoint 2013 RTM.
Moreover, the Workflow Manager 1.0 package includes Workflow Client 1.0, and you do
not need to download and install it separately.

In order to leverage the new workflow engine on-premises, you should install the February
2013 Cumulative Update of both Service Bus 1.0 and Workflow Manager 1.0. Moreover, you
should install the March 2013 Public Update for SharePoint 2013. Lastly, you need to have
the RTM version of the Office Developer Tools for Visual Studio 2012.

To install Workflow Manager 1.0, you need the following:

■■ .NET Framework 4.5

■■ Service Bus 1.0 (Plus February 2013 CU)

■■ Workflow Client 1.0 (Plus February 2013 CU)

■■ Windows PowerShell 3.0

■■ SQL Server 2008 R2 Service Pack 1 (SP1), SQL Server Express 2008 R2 SP1, or SQL Server 2012

If you are installing Workflow Manager 1.0 on the same servers where you are running the
SharePoint 2013 farm, all these requirements will be already satisfied. Otherwise, if you plan to install
Workflow Manager on-premises on a dedicated set of servers, you will have to install all of them, and
you will have to install Workflow Client 1.0 only onto the SharePoint servers.

After you install Workflow Manager 1.0, you must run the Workflow Manager Configuration
Wizard, which will walk you through the various configuration steps. The configuration wizard starts
by asking if you want to configure a new Workflow Manager farm or if you want to join an already
existing farm (Figure 16-4).

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 16 SharePoint workflow fundamentals 555

FIGURE 16-4 The first step of the Workflow Manager Configuration Wizard.

Choose to configure a new farm, and select the second option—Configure Workflow Manager
With Custom Settings—which will allow you to personalize the farm configuration for your testing,
development, or production environment.

Next, the wizard asks you to provide some configuration information about the Workflow
Manager farm (Figure 16-5). You will have to provide information about the following:

■■ The target Microsoft SQL Server service instance and the database name for storing the
Workflow Manager farm management data.

■■ The target Microsoft SQL Server service instance and the database name for storing workflow
instance data.

■■ The target Microsoft SQL Server service instance and the database name for storing workflow
resources.

■■ The account to use for running the Workflow Manager service instance. This should be a set of
valid domain-level credentials, which will be authorized to log on as a service on the servers of
the farm. You should avoid using any domain administrative account for this purpose. It would
be better to create a dedicated service account.

www.it-ebooks.info

http://www.it-ebooks.info/

556 PaRt V Developing workflows

■■ The certificates to use for securing communication across the Workflow Manager farm, as well
as for securing configuration data. You can autogenerate these certificates by simply pro-
viding a shared secret, or you can provide the three certificates (communication, outbound
signing, and configuration encryption) needed, choosing them from the current certificate
store. In a real production environment, the best practice is to use manually created certifi-
cates, because you will have to trust them on all of the machines and services consuming the
Workflow Manager farm, including the SharePoint 2013 farm.

■■ The TCP ports that will be used by Workflow Manager to publish its environment. By default,
the ports configured are port 12290 for secure (HTTPS) management requests, and port
12291 for insecure (HTTP) management requests. In a development and testing environment,
you can configure HTTP, too. In a production environment, however, you should avoid pub-
lishing Workflow Manager over HTTP for security reasons.

■■ The domain group that will determine the users authorized to manage the Workflow Manager
farm. Again, you should create and configure a dedicated group, rather than use the auto-
matically proposed group of domain administrators.

FIGURE 16-5 The second step of the Workflow Manager Configuration Wizard, for configuring the
Workflow Manager farm.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 16 SharePoint workflow fundamentals 557

After you configure the Workflow Manager farm, you must configure the Service Bus. Again,
the wizard will drive you through the steps to accomplish this task. In particular, as you can see in
Figure 16-6, you will be prompted for providing the following information:

■■ The target Microsoft SQL Server service instance and the database name for storing the
Service Bus farm management data.

■■ The target Microsoft SQL Server service instance and the database name for storing the
Service Bus gateway data.

■■ The target Microsoft SQL Server service instance and the database name for storing the
Service Bus message container data.

■■ The account to use for running the Service Bus service instance. This should be a set of valid
domain-level credentials, which will be authorized to log on as a service on the servers of the
farm. Avoid using any domain administrative account for this purpose; create a dedicated
service account instead.

■■ The certificates to use for securing communication with the Workflow Manager farm, as well
as for securing configuration data. You can autogenerate these certificates simply by provid-
ing a shared secret, or you can provide the two certificates (for communication and configura-
tion encryption) needed, choosing them from the current certificate store. In a real production
environment, the best practice, once again, is to use manually created certificates, because
you will have to trust them on all of the machines and services consuming the Workflow
Manager farm, including the SharePoint 2013 farm.

■■ The TCP ports that will be used by the Service Bus to publish its environment. By default, the
ports configured are port 9355 for secure (HTTPS) communication, port 9344 for network-
level (TCP) communication, and port 9356 for message broker communication. It will be con-
figured also a port range of five ports, by default starting on port 9000 and ending on port
9005, for internal farm communication between servers in the Service Bus farm.

■■ The domain group that will determine the users authorized to manage the Service Bus farm.
Again, you should create and configure a dedicated group, rather than using the automatically
proposed group of domain administrators.

www.it-ebooks.info

http://www.it-ebooks.info/

558 PaRt V Developing workflows

FIGURE 16-6 The main step of the Service Bus Configuration wizard for configuring the Workflow
Manager farm.

The Workflow Manager Configuration wizard also allows you to generate a PowerShell script for
automating the installation process, just in case you want to repeat the same installation process
using that script. After configuring a first server in the farm, you will be able to add as many servers
as you want. It will suffice to download and install Workflow Manager 1.0 on any target server and to
run the Workflow Manager Configuration wizard, choosing to join an already existing farm.

After having configured the Workflow Manager farm, you will have a wide set of database files
configured on the target Microsoft SQL Server database engine, including

■■ The Service Bus Gateway database

■■ The Service Bus Management database

■■ The Service Bus Message Container database

■■ The Workflow Manager Instance Management database

■■ The Workflow Manager Management database

■■ The Workflow Manager Resource Management database

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 16 SharePoint workflow fundamentals 559

While on your development environment, you need not give these database files special attention,
but in a real production environment, you should consider including these databases in you disaster-
recovery and high-availability plans.

More Info For further details about deploying a highly available Workflow Manager farm,
read the article “Configuring a Highly Available Workflow in Workflow Manager 1.0,” avail-
able on MSDN at http://msdn.microsoft.com/en-us/library/windowsazure/jj193534.aspx.

After you configure a Workflow Manager farm, you should have three services running on the
target servers:

■■ Service Bus Gateway

■■ Service Bus Message Broker

■■ Workflow Manager Backend

The last step before you can use Workflow Manager in SharePoint 2013 is to link the Workflow
Manager farm with the SharePoint 2013 farm. To accomplish this task, you simply need to execute the
following PowerShell cmdlet:

Register-SPWorkflowService -SPSite 'http://devbook.sp2013.local/' -WorkflowHostUri 'http://
sp2013srv01:12291/' -AllowOAuthHttp –Force $wfproxy = Get-SPWorkflowServiceApplicationProxy
$wfproxy.RegisterWorkflowLifecycleManagementEnvironment()

Table 16-1 lists all of the arguments available for the Register-SPWorkflowService cmdlet.

TABLE 16-1 Arguments that you can provide to the Register-SPWorkflowService cmdlet

Argument Description

SPSite Specifies the target site collection to configure.

WorkflowHostUri Specifies the full URL (including the port number) of the workflow service management
endpoint.

AllowOAuthHttp Enables support for OAuth over HTTP, instead of requiring HTTPS.

Force Forces the current configuration, overwriting any already existing configuration settings and
ignoring any errors.

PartitionMode Allows connecting each subscription (tenant) to a dedicated workflow service instance. If not
provided, every subscription will connect to a single and shared workflow service instance.

ScopeName Specifies a name for identifying the SharePoint 2013 farm to the workflow service instance.

As already stated, in a development or testing environment, you could configure the Workflow
Manager farm to use HTTP and port 12291, and not only HTTPS and port 12290. On the other hand,
in a production environment, you should always configure HTTPS, and you should register as trusted
the X.509 certificate used by the Workflow Manager farm on the SharePoint 2013 farm as well.

www.it-ebooks.info

http://www.it-ebooks.info/

560 PaRt V Developing workflows

More Info For further details about managing SSL certificates between Workflow Manager
1.0 and SharePoint 2013, read the article “Installing Workflow Manager certificates in
SharePoint Server 2013,” available on TechNet at http://technet.microsoft.com/en-us/library/
jj658589.aspx.

After linking the SharePoint 2013 farm with the Workflow Manager farm, you will be able to find
a new service application proxy named Workflow Service Application Proxy under SharePoint Central
Administration (SPCA), on the Manage Service Applications page. By clicking that service application
proxy, you will be presented with a simple page stating that the workflow service is connected, as
shown in Figure 16-7.

FIGURE 16-7 The service application proxy page of the Workflow Service Application Proxy.

One last test to check that the workflow service is properly configured and connected to
SharePoint 2013 is to start a new instance of SharePoint Designer 2013 and access the site you just
connected with the workflow service. Click the Workflows command on the left-hand accordion and
add a new list workflow definition for any of the available lists or libraries—for example, choose the
Documents library if it exists in the target site. In the Create List Workflow dialog box will be a drop-
down list with a caption of Platform Type (see Figure 16-8).

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 16 SharePoint workflow fundamentals 561

FIGURE 16-8 The dialog window for creating a new list workflow definition in SharePoint Designer 2013.

If this drop-down list provides you both SharePoint 2010 Workflow (WF 3.x) and SharePoint 2013
Workflow (WF 4.5), then you are ready to start creating workflows with the new workflow engine. If
you see only SharePoint 2010 Workflow, you need to double-check your farm configuration.

Your first workflow with SharePoint Designer 2013

The best way to learn about a tool or technique is to see it in action, so in this section, you will create
a SharePoint workflow from scratch with Microsoft SharePoint Designer 2013. For this exercise, imag-
ine that you want to implement a sample approval workflow, which will assign an approval task to a
target user as soon as a new document is uploaded to a target library.

To begin, open SharePoint Designer 2013 and connect to a target site configured for supporting
the new workflow engine. Choose the Workflows section in the left-hand accordion and select the
command to create a new List Workflow. For example, target the Documents library that is available
by default in many site definitions, or create a new document library for using it as the target of your
workflow definition. Choose the SharePoint 2013 workflow target platform.

www.it-ebooks.info

http://www.it-ebooks.info/

562 PaRt V Developing workflows

SharePoint Designer 2013 will prompt you with a new design surface, which is made of stages. A
stage is a piece of a workflow definition that allows grouping conditions and actions together. You
can think of a stage as a state in a state machine workflow; you can go to a specific stage when a
certain condition occurs, or you can repeat a stage until a condition ceases. Through stages, you can
control the flow of your workflow definitions, and you can create repetitions. Stages are a new and
fundamental feature introduced in SharePoint Designer 2013 thanks to the new workflow engine of
SharePoint 2013. Each stage can be made of one or more conditions, steps, actions, or loops. On the
top ribbon of SharePoint Designer 2013, as shown in Figure 16-9, you can choose to add any of these
elements to the design surface.

FIGURE 16-9 The workflow design surface of SharePoint Designer 2013.

When designing an approval workflow, you first must define some infrastructural variables and
startup parameters, which will be used to configure any workflow instance. On the ribbon, click the
Initiation Form Parameters button. You will be prompted with a dialog box like the one illustrated in
Figure 16-10.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 16 SharePoint workflow fundamentals 563

FIGURE 16-10 The Association And Initiation Form Parameters dialog box of SharePoint Designer 2013.

As in SharePoint 2010, in SharePoint 2013 a workflow definition can have an association form,
which is used to configure the workflow association with its target. It can also have an initiation form,
which is used to provide startup parameters to a specific workflow instance. An association or initia-
tion parameter can assume several types of values:

■■ Single line of text

■■ Multiple lines of text

■■ Number (for example, 1, 1.0, or 100)

■■ Date and time

■■ Choice (menu to choose from)

■■ Yes/no (check box)

■■ Person or group

■■ Hyperlink or picture

You can define every parameter by providing a name, a description, an underlying data type,
and an optional default value. Assume that the current approval workflow needs to define a
default request-for-approval message during association, as well as a target approver (person
or group) during initiation. Add a couple of parameters that fit these definitions and name them
ApprovalRequestMessage and TargetApprover. As you define each parameter, the interface of the dia-
log box adapts to the target data type you choose. For example, while configuring the TargetApprover
parameter as a field of type Person or Group, you are prompted with a designer for configuring the
behavior of the PeoplePicker control that will be used.

www.it-ebooks.info

http://www.it-ebooks.info/

564 PaRt V Developing workflows

Now you can define some variables by clicking the Local Variables ribbon command. The variables
should have a name and a data type. The available data types are:

■■ Boolean

■■ Date/Time

■■ Dictionary

■■ GUID

■■ Integer

■■ Number

■■ String

First, define an ApprovalOutcome variable of data type Boolean. Now you are ready to design the
real workflow. In order to ask to the TargetApprover subject to approve the document, add an action,
evaluate its result, and change the status of the target document. The action for assigning a task
to a target user is available in the Actions group. In Chapter 15, “Windows Workflow Foundation,”
you learned how to create a very simple activity from scratch by writing some custom code. From a
SharePoint 2013 viewpoint, an action is a wrapper around one or more activities that makes them
available as a human-readable statement. Table 16-2 lists the default actions available in SharePoint
Designer 2013. Although they are not listed here, some legacy actions of SharePoint 2010 are still
available (for backward compatibility) in SharePoint 2013 via the interop bridge.

TABLE 16-2 The default actions available in SharePoint Designer 2013

Action name Description

Start a List Workflow Starts a new list workflow instance based on the SharePoint 2010 workflow
engine. You can provide some input parameters and choose the target item
on which the workflow instance will be executed.

Start a Site Workflow Starts a new site workflow instance based on the SharePoint 2010 workflow
engine. You can provide some input parameters with which the workflow
instance will be executed.

Add a Comment Enables you to leave a comment on the workflow design surface.

Add Time to Date Adds a specific time in minute, hours, days, or months to a date. The output
is saved in a variable. The date to change can be a specific date, the current
date, or a lookup value.

Build Dictionary Builds a dictionary variable (key/values pairs). It is typically used for man-
aging JavaScript Object Notation (JSON) data retrieved from an external
Representational State Transfer (REST) service consumed over HTTP. The
output is saved in a variable.

Call HTTP Web Service Allows calling an external REST service over HTTP, using the verbs GET,
POST, PUT, and DELETE. You can provide a variable (typically a dictionary)
as an input request and get back a response variable, which can still be a
dictionary. You can also collect variables for retrieving the HTTP response
headers and the HTTP response status code.

Count Items in a Dictionary Counts the number of items in a dictionary, storing the resulting number
into a variable.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 16 SharePoint workflow fundamentals 565

Action name Description

Do Calculation Performs a calculation across two numbers, specific or lookup, applying any
of the following operations: plus, minus, multiply by, divide by, and module.
The result is saved in a variable.

Get an Item from a Dictionary Retrieves a specific item from a dictionary variable, storing the result in a
variable.

Log to History List Logs a message to the workflow history list.

Pause for Duration Pauses the current workflow instance for a time interval in days, hours, and
minutes.

Pause until Date Pauses the current workflow instance until a specific date and time, which
can be provided as an explicit value or can be read from a lookup value or
variable.

Send an Email Sends an email to a user or group of users. You can configure properties
for To, CC, Subject (specific or lookup/calculated), and Message Body (with
formatting and calculated fields). Internally, it uses the SPUtility.SendMail
function via the Client-Side Object Model (CSOM).

Set Time Portion of Date/Time Field Sets the time portion (hours and minutes) of a date or time field. It saves the
result in a variable.

Set Workflow Status Sets the status of the current workflow instance.

Set Workflow Variable Sets the value of a variable of the current workflow instance.

Check In Item Checks in an item in a target document library.

Check Out Item Checks out an item from a target document library.

Copy Document Copies a document from one document library to another.

Create List Item Creates a new list item in a target list. You can provide field values for the
new item.

Delete Item Deletes an item from a list.

Discard Check Out Item Discards changes and checks in an item that is checked out.

Set Field in Current Item Sets the value of a specific field into the current item.

Translate Document Translates a specific document in a particular language using the Machine
Translation Service application introduced with SharePoint 2013 Server. The
result is saved as a document in a specified target library.

Update List Item Updates a list item in a target list. You can provide field values to update in
the target item.

Wait for Event in List Item Pauses the current workflow instance, waiting for a specified event. The
event can be an ItemAdded or an ItemUpdated event. The result is stored in
a variable.

Wait for Field Change in Current Item Pauses the current workflow instance, waiting for a specific field of the cur-
rent item to change its value.

Assign a Task Assigns a task to a target person or group. You can define participants,
title, description (with formatting and lookup), and due date. You can wait,
pausing the workflow instance, for task completion. You can plan to send a
reminder email and recurrent reminder emails. You can also define custom
task outcome values.

Start a Task Process Starts a task process with multiple task recipients. You can define task com-
pletion to be serial (one at a time) or parallel (all at once). You can pause
the current workflow instance, waiting for all responses, the first response, a
specific response, or the percentage of responses.

Extract Substring from End of String Copies n characters from the end of a string and copies the result into a
variable.

www.it-ebooks.info

http://www.it-ebooks.info/

566 PaRt V Developing workflows

Action name Description

Extract Substring from Index of String Retrieves a substring from a provided string, starting at a specified charac-
ter index, and copies the result into a variable.

Extract Substring from Start of String Copies n characters from the beginning of a string and copies the result into
a variable.

Extract Substring of String from Index
with Length

Retrieves a substring from a provided string, starting at a specified charac-
ter index, copying n characters and storing the result into a variable.

Find Interval Between Dates Calculates the time interval in minutes, hours, or days between two dates
and saves the result in a variable.

Find Substring in String Searches for a substring in a specified string and returns the index of the
substring’s starting point, if any, into a result variable.

Replace Substring in String Replaces a substring in a provided string and stores the result in a variable.

Trim String Removes white spaces at the begging and end of a provided string value
and stores the result in a variable.

Go to Stage Defines the next stage to which the current workflow instance will go.

To monitor the outcome of actions and determine the flow of a process, you can use conditions.
Table 16-3 lists the conditions available in SharePoint Designer 2013. Although not included here,
some legacy SharePoint 2010 conditions are still available (for backward compatibility) via the interop
bridge. In addition, in Chapter 18, “Advanced workflows,” you will learn how to extend the list of con-
ditions and actions by creating custom code in Visual Studio 2012.

TABLE 16-3 The conditions available in SharePoint Designer 2013

Condition name Description

If Any Value Equals Value Checks if a field value of the current item or of a lookup item equals a specific
value

Created by a Specific Person Checks if the current item has been created by a specific person

Created in a Specific Date Span Checks if the current item has been created within a specific date and time
interval

Modified by a Specific Person Checks if the current item has been modified by a specific person

Modified in a Specific Date Span Checks if the current item has been modified within a specific date and time
interval

Person Is a Valid SharePoint User Checks if a specific person is a valid SharePoint user

Title Field Contains Keywords Checks if the Title field value of the current item contains a specific string value

Lastly, you can define loops (Loop n Times and Loop with Condition action), as well as parallel
blocks, which are useful for creating real workflow and business processes.

For the sample approval workflow, you need to add a few more actions from Table 16-2. Assume
that the approval process should not take more than five days from the creation of the target item to
approve. Thus, insert an Add Time to Date action to add five days to the current date and time, and

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 16 SharePoint workflow fundamentals 567

store the result in a variable. Next, add an action to assign an approval task to the target approver
user, providing values for task recipients, title, description, and due date, and reading them from the
current workflow variables. Now rename the current stage by clicking the stage title and providing a
Title value of “Assign Approval Task.”

Add a new stage and name it Check Approval Outcome. At the very end of the first stage, add
a Go to Stage action, and set the target stage to the Check Approval Outcome stage. In the new
stage, add a condition of type If Any Value Equals Value, and configure it to check the approval task
outcome. If the task outcome is an approval, the workflow will set the workflow variable named
ApprovalOutcome to a value of Yes; otherwise, it will set that variable to a value of No. Moreover, the
workflow will save a message in the history list to track the approval result.

Lastly, the stage will read any comment from the approval task and save it into the
ApprovalComment workflow variable. To complete the workflow definition, create the second stage to
complete the workflow instance, configuring a Go to Stage action to go to the End of Workflow action.
Figure 16-11 shows the resulting workflow definition.

FIGURE 16-11 The approval workflow designed in SharePoint Designer 2013.

www.it-ebooks.info

http://www.it-ebooks.info/

568 PaRt V Developing workflows

To test the example workflow, you need to save and publish it using the corresponding ribbon
commands on the ribbon of SharePoint Designer 2013. As soon as you publish the workflow defini-
tion, you can browse to the target library, upload a document, and start a workflow instance. To
start an instance, click the ECB (Edit Control Block) menu of the newly uploaded item and choose the
Workflows menu item. As shown in Figure 16-12, you will be prompted with the list of all the available
workflow definitions, grouped by target platform type (SharePoint 2010 workflows and SharePoint
2013 workflows). Start the example workflow and follow the process.

FIGURE 16-12 The page for starting a new workflow instance in SharePoint 2013.

Upon starting the workflow instance, you will be prompted with the initiation form, which asks you
to provide the initiation parameters that were defined at the very beginning of the workflow design

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 16 SharePoint workflow fundamentals 569

process. Those are the ApprovalRequestMessage and TargetApprover parameters. Figure 16-13 shows
the initiation form autogenerated by SharePoint Designer 2013.

FIGURE 16-13 The initiation form of the sample document approval workflow.

Start the workflow instance and follow the process. Notice the default view of the current library
now displays the name of the running workflow instance as the title of the workflow status field.
This field presents the status of the running workflow instances and behaves like any other list field,
enabling you to filter and sort values. You can export the field into such client platforms as the Office
2013 client, and it provides a direct entry point to the workflow status page, which contains informa-
tion about the currently running workflow instance, the pending tasks, and the history list. Figure
16-14 highlights the workflow status field.

www.it-ebooks.info

http://www.it-ebooks.info/

570 PaRt V Developing workflows

FIGURE 16-14 The document library view with the approval workflow status field outlined in red.

The workflow status page provides information about the workflow initiator, the start date and
time, the last run date and time, the SharePoint internal status of the workflow instance, and the
workflow status. Table 16-4 lists the possible values for the workflow internal status field, while Figure
16-15 highlights two workflow status fields on the workflow status page.

TABLE 16-4 The values available for the internal status field of a workflow instance

Status name Description

NotStarted Signals that the workflow instance has not started.

Started Signals that the workflow instance has started and is running.

Suspended Signals that execution of the workflow has been stopped, but may be resumed.

Canceling Signals that the workflow instance has received a cancellation message.

Canceled Signals that execution of the specified workflow instance is canceled.

Terminated Terminates the running workflow instance and raises the Completed event in the host. Once the
workflow is terminated, it cannot be resumed.

Completed Signals that the workflow instance has finished running.

NotSpecified Signals that no status has been specified.

Invalid Signals that the workflow instance is in an invalid state.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 16 SharePoint workflow fundamentals 571

FIGURE 16-15 The two workflow status fields provided by the workflow status page.

Figure 16-16 shows the form for editing the approval task. To reach that form, simply click any task
presented on the workflow status page, and then select the Edit Task command from the ECB menu.
As you can see, aside from the standard task fields, there are a few commands in the bottom area of
the form for approving or rejecting the document.

www.it-ebooks.info

http://www.it-ebooks.info/

572 PaRt V Developing workflows

FIGURE 16-16 The approval task form provided by default in SharePoint 2013 for a workflow approval task.

In SharePoint, tasks like the one illustrated in Figure 16-16 are a fundamental part of a workflow
process and, in general, are among the most frequently used techniques to interact with end users.
Before SharePoint 2013, a user had to browse all the lists of tasks of every different site to manage his
or her assigned tasks—a complex and time-consuming process. Luckily, SharePoint 2013 introduces
the new Work Management Service Application, which enables you to aggregate tasks from multiple
systems into a unique and central location. This location is the user’s personal site and is provided
through the User Profile service. Users can aggregate tasks from SharePoint 2013, Microsoft Exchange
Server 2013, Microsoft Project Server 2013, and potentially any other provider that supports the Work
Management Service Application. Thus, all the workflow tasks created by SharePoint 2013 work-
flows, regardless of the site where they were created, are aggregated and provided to the end users
through a unique and consolidated UI, which improves usability and productivity of end users.

Back to SharePoint Designer 2013, you can experience one of the most brilliant features intro-
duced in SharePoint 2013 workflows: the visual designer view. Click the Views ribbon command and
choose Visual Designer view. Figure 16-17 shows the result.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 16 SharePoint workflow fundamentals 573

FIGURE 16-17 The approval workflow in the visual designer view in SharePoint Designer 2013.

You can click the Export to Visio ribbon command to export the workflow definition into a VSDX
file of Microsoft Visio 2013. This capability is useful if you need to share the workflow process defini-
tion with someone who is not an experienced SharePoint user or designer, but rather a business-
person with only Visio 2013 installed on his or her machine. In Visio 2013, you will have exactly the
same user experience you have in SharePoint Designer 2013 while in the Visual Designer view. Lastly,
consider that, at a later time, you will be able to import into SharePoint Designer 2013 a workflow
definition designed or edited in Visio 2013.

More about workflows

Now that you have defined a basic workflow sample, you can tackle some more advanced and
useful topics. For example, you will see how exceptions are handled in workflows and how they are
presented to end users. You will also learn how to create reusable workflows and how to manage
versioning of workflows definitions.

www.it-ebooks.info

http://www.it-ebooks.info/

574 PaRt V Developing workflows

Exception management
Consider exception management, for example. SharePoint Designer 2013 does not include any
actions or conditions to implement try…catch blocks for business logic. Instead, you must consult the
workflow status page for details about exceptions that occur, as shown in Figure 16-18.

FIGURE 16-18 The workflow status page of a workflow instance that raised an exception while running.

As you can see, the stack trace message that pops up when you click the info icon is not com-
pletely user friendly and probably would be unintelligible to the average end user. Another common
exception occurs if the user tries to start an instance of a workflow definition that is already running
against the current item. The workflow instance will not start, because only a single instance of a
workflow definition can be started against an item. The workflow instance will try to start, however,
and will instantly fail with an internal status value of Terminated, providing a message like the one
shown in Figure 16-19.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 16 SharePoint workflow fundamentals 575

FIGURE 16-19 The workflow status page of a workflow instance that has been terminated because another
instance of the same workflow definition is already running on it.

Reusable workflows
In SharePoint Designer 2013, you have the option to create a reusable workflow definition, which
is almost the same as a classic list workflow, but you can reuse it by associating its definition with
multiple targets. The design process is almost the same as the one for defining a classic list workflow
as well. After saving and publishing the reusable workflow, however, you have to click the Associate
To List ribbon command to effectively associate the workflow definition with a target. The association
process starts your default web browser, after which you associate the workflow definition with its
target using the web browser interface.

You can also save as a template a workflow definition created in SharePoint Designer 2013. A saved
template is just a Windows SharePoint Services Solution Package (WSP) saved in the Sites Assets
library of the current site and that you can download and reuse somewhere else.

Important In Visual Studio 2012, you can import a saved WSP file using the project
template called SharePoint 2013 - Import Reusable 2010 Workflow. However, be care-
ful, because that project template works only with old-style WSP packages, which define
SharePoint 2010 workflows. It does not handle SharePoint 2013 workflow definitions.

www.it-ebooks.info

http://www.it-ebooks.info/

576 PaRt V Developing workflows

Remember, however, that when you define a workflow in SharePoint Designer 2013, behind the
scenes SharePoint Designer creates a flowchart workflow model and produces only a XAML markup-
based definition of the process, together with the VSDX file for Visio 2013 used for rendering the view
illustrated in Figure 16-17, and any ASPX form file. You can check this behavior by browsing, using
SharePoint Designer 2013, to the folder containing the source files of the workflow. In Figure 16-20
you can see the content of the folder representing the sample approval workflow.

FIGURE 16-20 The content of the folder containing the sample approval workflow defined in SharePoint
Designer 2013.

Versioning workflows
Starting with WF 4.5, the workflow engine of .NET Framework can manage versioning of workflow
identities. From a SharePoint 2013 perspective, however, the versioning of a workflow definition
remains unchanged. The Workflow Settings page, which is the page from which you associate a work-
flow definition with a target, gives you the option to remove an existing workflow association. When
you remove one workflow definition, you must choose what will happen to the running instances of
that workflow. Figure 16-21 shows the Remove Workflows page that is displayed when you choose to
remove an association.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 16 SharePoint workflow fundamentals 577

FIGURE 16-21 The Remove Workflows page for a list.

You have the option to force workflow association removal, interrupting any running instances, by
selecting the Remove option. Otherwise, you can select the No New Instances option, which allows
the running instances to complete, but disables the capability to create new instances of that work-
flow. Usually, these options are very useful when performing workflow maintenance or an upgrade. In
fact, an idle workflow instance is persisted in the Workflow Manager database and will be reloaded in
memory when execution starts again as the result of an event like a user’s task change, a delay expira-
tion, and so on.

When this occurs, you have no guarantee that the same workflow version will still be available in
the current environment. For example, there could be a newer version, potentially different from the
original one used during instance creation.

If you decide to forcibly remove the workflow association without waiting for any running
instances to complete, the workflow engine of SharePoint will terminate running instances immedi-
ately, and thus avoid any kind of issues related to workflow versioning. Of course, you will lose any
data or information status about the running workflow instances.

On the other hand, if you decide to prevent new instances of the workflow, but you leave all the
running instances in their state, you will have the opportunity to wait for their completion. After all

www.it-ebooks.info

http://www.it-ebooks.info/

578 PaRt V Developing workflows

the running instances complete, you can forcibly remove the association from the target list. In the
meantime, you can associate a new version of the workflow and start using it on the other items of
the target list.

While working with workflows defined in SharePoint Designer 2013, the workflow publishing
engine of SharePoint Designer 2013 will always upgrade existing workflow associations, keeping
already running instances associated with the original workflow definition and starting the new
instances using the new workflow definition. Moreover, be mindful that using the Remove Workflows
page to remove a workflow association of a workflow definition that you defined in SharePoint
Designer 2013 leaves the environment in an unstable state. In fact, you will still be able to associate
that workflow definition to the target list, but you will no longer be able to edit its definition using
SharePoint Designer.

Summary

Reading this chapter, you learned about the architecture of the new workflow engine of SharePoint
2013 by comparing it with the legacy SharePoint 2010 workflow engine. You learned how to deploy a
Workflow Manager environment on-premises, and you saw how to connect a SharePoint 2013 farm
on-premises with an external Workflow Manager. Then you created a simple approval workflow using
SharePoint Designer 2013 in order to better understand how to design workflows based on markup,
without writing any code. At the end of the chapter, you learned how errors, workflow statuses, and
versioning are handled.

www.it-ebooks.info

http://www.it-ebooks.info/

 579

C H A P T E R 1 7

Developing workflows

This chapter covers Microsoft SharePoint workflows from a developer perspective, discussing how
to create real workflows using either SharePoint Designer 2013 or Microsoft Visual Studio 2012. As

you learned in Chapter 16, “SharePoint workflow fundamentals,” SharePoint Designer 2013 is a pow-
erful authoring tool for workflows. Whenever you need to create real workflow solutions, consider
SharePoint Designer 2013 first. If it does not satisfy your functional requirements, then consider using
Visual Studio 2012 instead. You can either design the entire workflow solution within Visual Studio
2012, or you can create custom actions and conditions in Visual Studio while still defining the work-
flow in SharePoint Designer 2013 (see Chapter 18, “Advanced workflows,” for details).

In this chapter, you will learn to create workflows, workflow forms, and SharePoint apps that use
workflow features, as well as understand workflow implementation from a practical viewpoint. You’ll
begin by using SharePoint Designer.

Consuming REST services

The best way to appreciate the real potential of SharePoint Designer 2013 as a mature workflow
authoring tool is to put it to work. In this section, you will use it to create a workflow solution that
consumes services via HTTP, as well as Representational State Transfer (REST) and JavaScript Object
Notation (JSON). Imagine that you need to create a site workflow that manages all the documents
in a library. You can consume the REST API offered by SharePoint 2013 to retrieve the collection of
documents, and then you can manage them through the REST API or by using the out-of-the-box
activities of SharePoint Designer 2013.

Start SharePoint Designer 2013 and create a new site workflow definition called Documents
Maintenance Workflow. Insert a Call HTTP Web Service action, and click the configuration link, which
is available in the shape of the action, to access the Call HTTP Web Service dialog box, shown in
Figure 17-1.

www.it-ebooks.info

http://www.it-ebooks.info/

580 PaRt V Developing workflows

FIGURE 17-1 The dialog window for configuring the Call HTTP Web Service action of SharePoint Designer 2013.

Choose the HTTP GET request method and provide a URL that retrieves the ID and the Title of all
the documents in the library with title Documents. For the example environment, use http://devbook.
sp2013.local/sites/Workflows/_api/web/Lists/GetByTitle('Documents')/Items?$select=ID,Title.

After defining the HTTP method and the URL, you can configure the request headers, the request
body, the response body, the response headers, and the response status code through some dedi-
cated workflow variables. To properly compile the request headers, you add a Build a Dictionary
action prior to the Call HTTP Web Service action and configure a variable of type Dictionary to hold
the headers’ values, including at least the Accept header for requesting a JSON response format
(application/json;odata=verbose). To configure the request headers, right-click the Call HTTP Web
Service action and choose the Properties menu. You will be prompted with a dialog box for config-
uring all the available properties of the Call HTTP Web Service action. There you will find the HTTP
RequestHeaders property, as shown in Figure 17-2.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 581

FIGURE 17-2 The dialog window for configuring the Call HTTP Web Service action during the configuration of the
RequestHeaders property.

More Info As you learned in Chapter 9, “The New SharePoint REST API,” the REST API uses
the response headers to provide useful information such as the ETag of a single item. Thus,
having the capability to collect the response headers of an HTTP request is fundamental in
situations when you want to change the items via REST.

The variables for holding these values (request body, request headers, response body, and
response headers) must be of type Dictionary, because they will keep a set of values. In particular,
consider that the REST service will return JSON content according to the provided Accept request
header. Listing 17-1 shows an excerpt of a sample JSON result.

www.it-ebooks.info

http://www.it-ebooks.info/

582 PaRt V Developing workflows

LISTING 17-1 An excerpt of the JSON response provided by the REST API while querying the items of a library

{"d":
 {"results":
 [{"__metadata":
 {"id":"91f72d8d-cd93-4872-bc18-c2f612d15ad2",
 "uri":"http://devbook.sp2013.local/sites/Workflows/_api/Web/
 Lists(guid'c5be436f-89cb-48bb-b141-09decd4ed400')/Items(6)",
 "etag":"\"3\"",
 "type":"SP.Data.Shared_x0020_DocumentsItem"},
 "Id":6,
 "Title":"Invoice-03-2013",
 "ID":6},
 {"__metadata":
 {"id":"85e0058d-b111-483f-a2a2-423bbde1fa01",
 "uri":"http://devbook.sp2013.local/sites/Workflows/_api/Web/
 Lists(guid'c5be436f-89cb-48bb-b141-09decd4ed400')/Items(7)",
 "etag":"\"2\"",
 "type":"SP.Data.Shared_x0020_DocumentsItem"},
 "Id":7,
 "Title":"Invoice-01-2013",
"ID":7},
 {"__metadata":
 {"id":"de91a68e-76df-4b39-b50f-5abab1529733",
 "uri":"http://devbook.sp2013.local/sites/Workflows/_api/Web/
 Lists(guid'c5be436f-89cb-48bb-b141-09decd4ed400')/Items(8)",
 "etag":"\"2\"",
 "type":"SP.Data.Shared_x0020_DocumentsItem"},
 "Id":8,
 "Title":"Invoice-02-2013",
"ID":8}]
 }
}

As shown in Figure 17-3, the JSON response has a hierarchical structure.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 583

FIGURE 17-3 The hierarchical structure of a JSON response retrieved from a REST operation for enumerating the
documents of a library.

To manage such a response within the workflow definition, you can use the Get an Item from a
Dictionary action. For an input argument, provide the response content retrieved from the Call HTTP
Web Service action, and configure the path according to the hierarchy illustrated in Figure 17-3. For
example, to retrieve the collection of resulting items, you can provide a path value of d/results. To
retrieve a single resulting item, provide a path value of d/results[{Index}], where the {Index} parameter
is a numeric indexer.

Now imagine that the goal of the maintenance workflow is to retrieve the title and ID of each
document, in order to write them and the number of items retrieved to the workflow history list. To
get the number of items, you can use the Count Items in a Dictionary action, providing as input the
collection of items (d/result). To extract the ID and the title of every document, simply iterate through
them. SharePoint Designer 2013 offers the Loop n Times construct to handle this task. First, retrieve
the total number of items returned using the Count Items in a Dictionary action. Then you can loop

www.it-ebooks.info

http://www.it-ebooks.info/

584 PaRt V Developing workflows

n times, where the value of n will be the number of retrieved items. Using a local variable to hold the
currently selected item index, you can browse all the returned items and retrieve the ID and title of
each via a couple of Get an Item from a Dictionary actions. Figure 17-4 illustrates the layout for this
workflow.

FIGURE 17-4 The structure of a sample workflow definition for enumerating the documents of a library.

Note that when looping through the resulting items, the Index variable increments in a dedicated
inner step. If you save, publish, and execute such a workflow, you will see the workflow status page
of the workflow instance, which illustrates the history list with the ID and title of the items retrieved
(Figure 17-5).

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 585

FIGURE 17-5 The workflow status page of a sample workflow definition.

By using the Call HTTP Web Service action and the other actions to manage dictionaries, you can
invoke the native REST API available in SharePoint 2013, targeting your own farm or any other farm,
as long as you provide the proper OAuth authentication HTTP headers. As you can see, SharePoint
Designer 2013 is a powerful tool for creating workflows, but it’s not the only one.

Visual Studio 2012 for creating workflows

Visual Studio 2012 offers its own advantages for creating workflow definitions. To get started with
its creation wizard, launch Visual Studio 2012, create a new project of type SharePoint 2013 - Empty
Project and choose to target a farm-level solution. Add a new item to the newly created project by
right-clicking the project in Solution Explorer and selecting Add | New Item. Choose a new item of
type Workflow, and name it MyFirstWorkflow. A wizard will ask you to provide some information
about the workflow you are going to create (Figure 17-6).

www.it-ebooks.info

http://www.it-ebooks.info/

586 PaRt V Developing workflows

FIGURE 17-6 The first step of the wizard for creating a new workflow definition in Visual Studio 2012.

The first step of the wizard asks you to declare if the workflow will target a list or a site. The second
step (Figure 17-7) then prompts you to select the target list if you decide to create a list workflow, as
well as the target history list and task list. You can also decide to create a new history list and/or new
tasks list. In this step, you can also decide whether to associate the workflow definition with a target.
Later, during the provisioning of the workflow, you will provide the lists with which you will associate
the workflow definition.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 587

FIGURE 17-7 The second step of the wizard for creating a new workflow definition in Visual Studio 2012.

The third and last step of the wizard asks you to decide when and how the instances of the work-
flow definition will be created and started. The available options, as shown in Figure 17-8, are the
following:

■■ A user manually starts the workflow.

■■ The workflow starts automatically when an item is created.

■■ The workflow starts automatically when an item is changed.

While developing a new workflow, you should usually choose to manually start the workflow, just
because it is easier to debug a workflow and manually start its instances while the debugger is active,
rather than having to create or change an item to fire new instances of the workflow definition.

www.it-ebooks.info

http://www.it-ebooks.info/

588 PaRt V Developing workflows

FIGURE 17-8 The third and last step of the wizard for creating a new workflow definition in Visual Studio 2012.

Keep in mind that all these options are mainly for debugging purposes. When you create a work-
flow definition in Visual Studio 2012, the resulting workflow will be available for association wherever
you want to associate it. The result of this wizard will be a XAML file, together with a feature ele-
ment and a SharePoint feature for provisioning the workflow. As you saw in Chapter 15, “Windows
Workflow Foundation,” a XAML workflow file created from scratch is a whiteboard—from a designer
viewpoint. Even in this case, by opening the XAML file created, you will have a whiteboard, with just
a Sequence activity designed on it. You can now use the toolbox provided by Visual Studio 2012
to define activities on the target design surface. In particular, in the activity toolbox that is avail-
able when you are in the designer, you will find many groups of SharePoint-related activities (see
Figure 17-9). In Table 17-1, you can see the list of all the SharePoint-related activities available out of
the box, divided into functional groups.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 589

FIGURE 17-9 The whiteboard for designing workflows in Visual Studio 2012.

TABLE 17-1 The SharePoint-related activities available in Visual Studio 2012 workflows

Activity name Description Group

GetCurrentItemId Retrieves the ID (Int32) of the current SharePoint list item on
which a list workflow instance is running. Returns a value of
type Int32.

SP - Current
Context

GetHistoryListId Retrieves the ID of the current SharePoint history list, if a history
list is specified in the current workflow association. Returns a
value of type GUID.

SP - Current
Context

GetTaskListId Retrieves the ID of the current SharePoint 2013 tasks list, if
a tasks list is specified in the current workflow association.
Returns a value of type GUID.

SP - Current
Context

LookupWorkflowContextProperty Returns the value of a specified workflow context property.
Accepts the context variable name, which can be Associator,
Initiator, Association Name, Instance ID, Current Site URL,
Current Item URL, List Name, or List ID. Returns a String value.

SP - Current
Context

WebUri Returns the absolute URI of the SPWeb instance containing the
currently running workflow instance. Returns a value of type
String.

SP - Current
Context

CheckInItem Checks in a list item. Requires the ID of the target list and the ID
of the target item. Optionally, also accepts a comment.

SP - List

CheckOutItem Checks out a list item. Requires the ID of the target list and the
ID of the target item.

SP - List

www.it-ebooks.info

http://www.it-ebooks.info/

590 PaRt V Developing workflows

Activity name Description Group

CopyItem Copies a file item from a source library to a target one. Works
only with files, not with simple SharePoint list items. Requires
the source list ID, item ID, target list ID, and a flag to allow over-
writing the destination.

SP - List

CreateListItem Creates a SharePoint list item. Requires the target list ID and
the target field values as a DynamicValue property. Returns
the ID of the created list item, as well as a variable of type
DynamicValue with the metadata fields of the just-created list
item.

SP - List

DeleteListItem Deletes a list item. Requires the target list ID and the target list
item ID.

SP - List

LookupSPList Returns, as a DynamicValue, the list of properties of a specified
list instance. Requires the target list ID.

SP - List

LookupSPListItem Returns properties of a specified SharePoint list item, present-
ing the values in a DynamicValue variable. Requires the target
list item ID and the target list ID. Can also be configured with
the fields to retrieve, using a collection of strings. The result will
be a variable of DynamicValue type.

SP - List

LookupSPListItemId Returns the ID property of the first SharePoint list item that
matches the specified filtering criteria, based on field name and
value. Requires the target list ID, property name, and property
value. Returns the ID (Int32) of the retrieved item, if any.

SP - List

UndoCheckOutItem Undoes the checkout of an item. Requires the target list ID and
the target list item ID.

SP - List

UpdateListItem Updates one or more properties of a specified SharePoint list
item. Requires the target list ID, list item ID, and list of proper-
ties and values to update as a DynamicValue variable.

SP - List

WaitForFieldChange Waits for a specified field of a specified SharePoint list item
to change to a specified value. Requires the target list ID,
SharePoint list item ID, and field name and value, to monitor for
the change event. Returns a DynamicValue field.

SP - List

WaitForItemEvent Waits for a specified event happening on a specified item
on which the workflow is running. Requires the target list ID,
SharePoint list item ID, and event to wait for. The available
events are ItemAdded and ItemUpdated. Returns the ID (Int32)
of the item related to the event.

SP - List

CompositeTask Runs a task process, assigning multiple tasks to multiple people
in parallel or series, waits for tasks to complete, and calcu-
lates aggregate outcome. Accepts arguments for configuring
approvers, email notification behavior, task content type, avail-
able outcome values, and so on. Returns an aggregated out-
come in a variable.

SP - Task

SingleTask Runs a single task process, assigning the task to a single person
or to a group and waiting for task completion. Accepts argu-
ments for configuring the task assignee, email notification
behavior, task content type, available outcome values, and so
on. Returns an outcome value in a variable, as well as the ID of
the created task item.

SP - Task

LookupSPGroup Retrieves the properties of a target group. Requires the princi-
pal ID (Int32) of the group and returns the properties as a vari-
able of type DynamicValue.

SP - User

LookupSPGroupMembers Retrieves the properties of members of a target group. Requires
the principal ID (Int32) of the group and returns the properties
as a variable of type DynamicValue.

SP - User

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 591

Activity name Description Group

LookupSPPrincipal Returns properties of a target principal (that is, a user or a
group). Requires the user name (String) of the target user
or group and returns the properties as a variable of type
DynamicValue. Optionally, can also add the principal to the
current SPWeb instance, if it does not already exist in the cur-
rent website.

SP - User

LookupSPPrincipalId Returns the principal ID (Int32) of a user or a group, through its
user name (String). Optionally, can also add the principal to the
current SPWeb instance, if it does not already exist in the cur-
rent website.

SP - User

LookupSPUser Retrieves the properties of a target user. Requires the principal
ID (Int32) of the user and returns the properties as a variable of
type DynamicValue.

SP - User

AppOnlySequence Is a container activity that executes all activities inside of its
scope with the identity of the workflow, instead of using the
identity of the workflow initiator user.

SP - Utilities

DelayUntil Delays the execution of the workflow until a specified DateTime
value, if that date and time has not already passed.

Email Sends an email message to SharePoint users. Requires email
subject and body. Can optionally accept To, CC, BCC, and addi-
tional headers. The fields To, CC, BCC, and Additional Headers
are collections of strings.

SP - Utilities

LookupSPChoiceFieldIndex Returns the index of a specified value in a SharePoint Choice
field.

SP - Utilities

TranslateDocument Creates a translated copy of a document, copying the result
into a specified target library. Uses SharePoint Translation
Services and requires a preconfigured Machine Translation
Service application. Requires the source list ID, the source docu-
ment list item ID, the destination list ID, and the language to
translate the document to.

SP - Utilities

WaitForCustomEvent Waits for a custom event to be sent into the workflow. Requires
the name of the event as a String value. It optionally returns the
event result as a String value.

SP - Utilities

WorkflowInterop Starts a SharePoint 2010 (Microsoft Windows Workflow
Foundation [WF] 3.5) workflow instance. Accepts input argu-
ments for configuring the workflow definition, the target list
item, the startup parameters, and so on. Returns the GUID of
the started workflow instance, and optionally a variable of type
DynamicValue with the values of the variables of the target
workflow instance at completion. Can be configured to wait
for the workflow completion, suspending the current workflow
instance.

SP - Utilities

WriteToHistory Writes a comment to the workflow history list. Requires the
input message as a String type.

SP - Utilities

The Workflow Manager infrastructure provides some additional activities that are useful while
designing SharePoint 2013 workflows. Although these activities are not only for SharePoint workflows,
they are surely useful when developing them. Table 17-2 lists these activities.

www.it-ebooks.info

http://www.it-ebooks.info/

592 PaRt V Developing workflows

TABLE 17-2 The activities available in Visual Studio 2012 workflows with Workflow Manager

Activity name Description Group

GetS2SSecurityToken Retrieves a server-to-server (S2S) security token as a vari-
able of type SecurityToken. Can also retrieve an app-only
S2S security token in case it’s needed.

Messaging

HttpSend Sends an HTTP request to a target web server. Can use any
of the following verbs: GET, POST, PUT, DELETE, PATCH,
HEAD, COMMENT, OPTIONS, TRACE, and CONNECT.
Accepts arguments like the target URI, request content,
request headers, response content, response headers, and
response status code. Can also accept an argument of type
SecurityToken if the connection will use an S2S secured
communication.

Messaging

AddToDictionary<TKey, TValue> Adds an item to a dictionary. Accepts a target dictionary, a
key, and a value.

Collection

ClearDictionary<TKey, TValue> Clears a target dictionary. Collection

CountDictionary<TKey, TValue> Count the number of items in a target dictionary. Collection

DictionaryContains<TKey, TValue> Checks if a target dictionary contains a specific value.
Returns a Boolean value.

Collection

GetDictionaryValue<TKey, TValue> Gets an item value from a dictionary, based on its key. Collection

RemoveFromDictionary<TKey,
TValue>

Removes an item from a dictionary, based on its key. Collection

BuildDictionary<TKey, TValue> Creates and initializes a new dictionary. Accepts the key
and value pairs, and returns a new dictionary variable.

Collection

SplitKeyValuePair<TKey, TValue> Splits key and value from a given key/value pair. Collection

BuildDynamicValue Builds a DynamicValue variable out of a set of paths and
values. If the passed DynamicValue variable is null, then
creates and initializes it. If not null, adds new properties
to it.

DynamicValue

ContainsDynamicValueProperty Returns true if a property is contained in a DynamicValue
variable.

DynamicValue

CopyDynamicValue Copies properties from one DynamicValue variable to
another.

DynamicValue

CountDynamicValueItems Returns the number of items in a DynamicValue variable. DynamicValue

CreateDynamicValue Creates one DynamicValue variable with a path that can be
passed at run time.

DynamicValue

GetDynamicValueProperties Get properties from a DynamicValue variable. DynamicValue

GetODataProperties Gets the value of multiple properties from an OData mes-
sage provided as a DynamicValue variable.

DynamicValue

GetDynamicValueProperty<T> Gets one property of a DynamicValue variable. DynamicValue

IsEmptyDynamicValue Returns true if a given input DynamicValue variable is
empty.

DynamicValue

ParseDynamicValue Parses JSON code into a DynamicValue variable. DynamicValue

Now imagine that you want to create a simple workflow definition that targets a document library,
retrieves the current item, checks out the document, and writes an item in the associated history list.
Insert a CheckOutItem activity and configure it to check out the current item, configuring values of

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 593

the ListId and ItemId properties with the values of the automatically provided values defined as (cur-
rent list) and (current item).

More Info The workflow designer in Visual Studio 2012 allows you to automatically choose
the current target list ID and target item ID values by choosing the values (current list) and
(current item), where available.

Then add a WriteToHistory activity and configure its Message property to an explicit string value of
Document checked-out!. Figure 17-10 illustrates the result in the workflow designer.

FIGURE 17-10 The sample workflow designed in Visual Studio 2012.

Notice that you have not defined any code. You simply configured the workflow definition using
the designer and the properties of the defined activities with their underlying Microsoft C# or Visual
Basic expressions. This is one of the key features of workflows in SharePoint 2013: they are markup
based. You do not have to write any code, even if you define a workflow in Visual Studio 2012.

Note If you previously defined workflows with SharePoint 2010 and WF 3.5, you are prob-
ably familiar with the CodeActivity activity. With SharePoint 2013 and WF 4.5, this activity
has been removed.

www.it-ebooks.info

http://www.it-ebooks.info/

594 PaRt V Developing workflows

Now you are ready to build, deploy, and test your workflow definition. Right-click the project
in Solution Explorer and select the Deploy menu item. Now open the browser and navigate to the
Documents library. Open the Workflow Settings page, which is available on the Library ribbon tab,
and check the available workflows. You should see the workflow you just deployed, as illustrated in
Figure 17-11.

FIGURE 17-11 The Workflow Settings page of a document library.

To execute an instance of the workflow, select any of the documents in the target library, click the
Files ribbon tab, and click the Workflows ribbon button. You will be prompted with the Workflows
page of the selected item. Click the workflow name to start a new instance. As soon as you start the
workflow, the target document becomes checked out. Click the ECB menu and select the Workflows
menu item to access the Workflows page (Figure 17-12).

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 595

FIGURE 17-12 The Workflows page of a document item in a document library.

Click the Internal Status column, where you see a value of Completed, to access the Workflow
Status page of that completed workflow instance. As shown in Figure 17-13, the workflow instance
has an Internal State value of Completed, and the Workflow History list reports a single item with the
description defined in the workflow definition in Visual Studio 2012.

The workflow instance you have just associated with the target library of orders does not provide a
custom workflow status column. In fact, workflows created with Visual Studio 2012 by default do not
provide implementation for such a column. Later in this chapter, in the “Workflow deployment” sec-
tion, you will learn how to turn it on.

www.it-ebooks.info

http://www.it-ebooks.info/

596 PaRt V Developing workflows

FIGURE 17-13 The Workflow Status page of a workflow instance executed against a specific document.

To test and debug your workflow definition, you can place a breakpoint within the designer on any
of the activities you defined. Suppose you want to break and debug starting from the GetCurrentListId
activity instance. Press F5 to start debugging the project. Visual Studio 2012 will deploy the work-
flow project to SharePoint, and will start a console process that acts as a Workflow Manager instance
dedicated to debugging.

More Info The Workflow Manager instance dedicated to debugging corresponds to the
process Microsoft.Workflow.TestServiceHost.exe, which by default is available in the folder
C:\Program Files (x86)\Workflow Manager Tools\1.0. This process emulates a Workflow
Manager. Visual Studio 2012, while debugging a workflow for SharePoint 2013, regis-
ters this emulator in SharePoint 2013, in order to intercept requests and debug workflow
instances.

Starting a workflow instance while debugging will raise within Visual Studio 2012 any breakpoint
you declared in the workflow definition. Figure 17-14 shows the console output of the Workflow
Manager emulator.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 597

FIGURE 17-14 The console screen of the Workflow Manager emulator available for debugging SharePoint 2013
workflows within Visual Studio 2012.

Here is the output, in the console window, provided by the emulator after executing a sample
workflow instance:

Listening at http://sp2013srv01.sharepoint.local:12292/
Runtime and gateway started, press <Enter> to exit.
Instance '866d65ba-4870-4ef7-8730-2d48eb8fa9d6' of workflow fb5b0c53-2f56-46a3-b3db-c07f0c13e591

Status: Started; Details: .
Instance '866d65ba-4870-4ef7-8730-2d48eb8fa9d6' of workflow fb5b0c53-2f56-46a3-b3db-c07f0c13e591

Status: Completed; Details: .

While debugging the workflow, expect to have a slow environment, because the overall debug-
ging infrastructure is a little bit heavy to run and manage, and it is resource-consuming, too.

www.it-ebooks.info

http://www.it-ebooks.info/

598 PaRt V Developing workflows

Workflow and SharePoint apps

The sample workflow you just defined requires a farm-level solution for deployment, so it is not
suitable for publishing in Microsoft Office 365. If you instead define a workflow in a SharePoint app
project, however, you can then publish it on-premises or on Office 365 via the cloud. Thus, the best
practice is to create workflow definitions in apps, rather than in farm-level solutions.

To do so, create a new SharePoint 2013 app project—for instance, targeting an Office 365 tenant.
Choose a SharePoint-hosted app, define a document library instance called Orders in the app web-
site, and add a new item of type Workflow. Imagine that the library holds a set of orders that need
approval by a manager, and name it OrdersWorkflow.

More Info For further details about creating a SharePoint 2013 app, the available hosting
models, and how to add a document library instance, see Chapter 8, “SharePoint apps.”

The sample will be a list workflow, and the workflow creation wizard provided by Visual Studio
2012 is smart enough to suggest that you associate the workflow with any of the libraries defined in
the current SharePoint app (see Figure 17-15).

FIGURE 17-15 The wizard for creating a workflow definition in a SharePoint app, using Visual Studio 2012.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 599

If the Workflow History list and the Workflows Tasks list are not already available in the SharePoint
app, you can define them explicitly, or you can simply ask the wizard to create them for you in the
target app website.

While a real approval workflow definition should handle such input arguments as the target
approver and the approval request message, the sample approval workflow will define explicit and
fake values for these arguments. Later, you will use an initiation form. For now, create variables for
holding the TargetApprover (String), the ApprovalRequestMessage (String), the ApprovalTaskId (Int32),
and the ApprovalTaskOutcome (Int32) values.

Insert a SingleTask activity instance into the sequence defining the workflow, and configure its
properties by clicking the Configure link provided in the designer. You will be prompted with a pop-
up configuration screen (see Figure 17-16), where you will be able to configure all the main proper-
ties of the task. As you will see, a SingleTask activity has many required properties. Table 17-3 lists the
values configured in the current sample.

FIGURE 17-16 The Task Options designer provided by the SingleTask activity within Visual Studio 2012.

www.it-ebooks.info

http://www.it-ebooks.info/

600 PaRt V Developing workflows

TABLE 17-3 The configuration of the main properties for the SingleTask activity

Property name Value Notes

AssignedTo TargetApprover An argument with a predefined value of i:0#.
w|sharepoint\\administrator or paolo@
sp2013dr.onmicrosoft.com. Later it will be taken from
the workflow initiation form.

DueDate DateTime.UtcNow.AddDays(5) The number of days, which should be taken from the
workflow initiation form.

Body ApprovalRequestMessage An argument with a predefined value of Please
approve this order. Later it will be taken from the
workflow initiation form.

ContentTypeId Workflow Task (SharePoint
2013)

A ContentTypeId with a value of
0x0108003365C4474CAE8C42BCE396314E88E51F,
corresponding to the out-of-the-box Workflow Task
(SharePoint 2013) content type. You can also pro-
vide a custom content type ID for a custom task,
as described later, in the "Custom workflow tasks”
section.

OutcomeFieldName Task Outcome The value to select before selecting the
DefaultTaskOutcome property value.

DefaultTaskOutcome Rejected A value dependent on the field selected in the
OutcomeFieldName property.

Title "Order Approval Task" An explicit value. You should read it from a variable.

CompletedStatus "Completed" The explicit value of the localized string describing the
completed status. You should read it from a variable.

WaitForTaskCompletion True A Boolean value that instructs the workflow process to
wait for task completion.

OverdueReminderRepeat Daily An explicit value. You should read it from a variable.

Outcome ApprovalTaskOutcome An output variable of type Int32. If the activity is con-
figured with the WaitForTaskCompletion property with
a value of true, upon task completion this property
will provide the index of the task outcome value, taken
from the available values defined for the field declared
in the OutcomeFieldName property.

TaskId ApprovalTaskId The item ID of the task item created in the task lists.

Notice that when you add a SingleTask activity or a CompositeTask activity to the workflow
designer, the activity automatically adds variables to the current context for holding fundamental
field values like task outcomes and others. You can use these automatically created variables, or you
can replace them with custom variables of your own.

Now you need to determine if the task outcome is an approval of the order or a rejection. Insert
an If activity, which is available in the Control Flow group of native activities. In the condition, enter
the following expression:

ApprovalTaskOutcome == 0

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 601

The 0 value corresponds to the Approved outcome value, which is the first value defined in the
underlying field type. In the left branch, which is the one labeled as Then, insert a WriteToHistory
activity, providing a value of Approved for the Message property. In the right branch, which is the one
labeled as Else, insert another WriteToHistory activity, providing a value of Rejected for the Message
property. The sample workflow definition is now complete. Take a look at the final workflow outline in
Figure 17-17.

FIGURE 17-17 The outline of the sample order-approval workflow in the designer provided by Visual Studio 2012.

Now press F5 to deploy and debug the SharePoint app, or deploy it and then test it through the
web browser as if you were an end user. If you debug the app by pressing F5, because the project
contains a workflow definition, the Visual Studio 2012 debugger will start the Workflow Manager
emulator, too. If you simply deploy and test the app from the browser, you will use the standard
Workflow Manager. You will not, however, be able to raise breakpoints and step into the workflow
definition unless you do not attach the Internet Information Services (IIS) worker process with the
debugger. Moreover, consider that workflow debugging is allowed only in on-premises environments
and cannot be done while targeting Office 365. If you try to debug a workflow project targeting
Office 365, Visual Studio 2012 will raise a debug error, providing you the pop-up message shown in
Figure 17-18.

www.it-ebooks.info

http://www.it-ebooks.info/

602 PaRt V Developing workflows

FIGURE 17-18 The pop-up error message raised by Visual Studio 2012 during the debugging of a workflow tar-
geting Office 365.

More Info You can also enable or disable workflow debugging by changing the Enable
Workflow Debugging option on the SharePoint tab in the SharePoint app project
properties.

Figure 17-19 shows the Workflow Status page of the sample workflow definition while running on
a target document.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 603

FIGURE 17-19 The Workflow Status page of a sample order-approval workflow defined in Visual Studio 2012.

Figure 17-20 shows the task form for completing the approval task. It is an ASP.NET form, which
is almost the same as the one available while developing workflows in SharePoint Designer 2013.
Moreover, consider that starting with SharePoint 2013, the workflow task forms cannot be created
using Microsoft InfoPath Forms Services; the only option you have is to use ASP.NET forms.

www.it-ebooks.info

http://www.it-ebooks.info/

604 PaRt V Developing workflows

FIGURE 17-20 The ASP.NET task form for approving an order for the approval workflow for the sample orders.

Lastly, while a workflow created in a farm-level solution by default does not present the workflow
status column, a workflow defined in a SharePoint app does present that column, as do workflows
created with SharePoint Designer 2013.

Workflow forms

In this section, you will learn how to create custom workflow forms. To create a workflow association
or initiation form, you can simply use Visual Studio 2012. Right-click the workflow element in Solution
Explorer, and then choose to add a new item. From the resulting list of available items, choose a
Workflow Initiation Form template type (see Figure 17-21). The suggested file name will be for an
ASPX page file.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 605

FIGURE 17-21 The Add New Item window for a workflow element in Visual Studio 2012.

After you add the Workflow Initiation Form item, Visual Studio prompts you with the source code
of the ASPX page file, which will be placed in the Pages folder of the current SharePoint app project.
The page is made of a Content control targeting the PlaceHolderMain region of the default master
page of SharePoint. The Content control contains ASP.NET, HTML, and JavaScript code completely
commented (and left there for the sake of providing an example of some of the most common ways
of rendering input fields for initiation arguments of type String, Integer, and DateTime). The ASPX file
provides a couple of sample buttons to start the workflow instance or cancel the initiation. Lastly, at
the end of the file is a small piece of JavaScript code that, using the Client-Side Object Model (CSOM)
and the Workflow Services Manager client library, starts a new workflow instance providing the argu-
ments configured by the user through the initiation form.

More Info The Workflow Services Manager client library is available in the JavaScript file
sp.workflowservices.js, which is referenced in the PlaceHolderAdditionalPageHead region of
the initiation form page.

Listing 17-2 shows an excerpt of the source code of the initiation form.

www.it-ebooks.info

http://www.it-ebooks.info/

606 PaRt V Developing workflows

LISTING 17-2 An excerpt of the source code of a sample workflow initiation form

<asp:Content ID="Content4" ContentPlaceHolderId="PlaceHolderMain" runat="server">
<%--
 The following sample code creates a simple workflow initiation form
that allows end users to enter values for workflow parameters when initiating a
workflow instance.
 The sample JavaScript below will start a workflow instance using the
initiation parameter values provided by the user.
--%>
 <table>
 <tr><td>String:
<textarea id="strInput" rows="1" cols="50"">
</textarea>

</td></tr>
 <tr><td>Integer:
<textarea id="intInput" rows="1" cols="50"">
</textarea>

</td></tr>
 <tr><td>DateTime: <SharePoint:DateTimeControl ID="dateTimeInput"
 DatePickerFrameUrl="../_layouts/15/iframe.aspx" LocaleId="1033"
 DateOnly="false" runat="server" />

</td></tr>
 <tr><td>
 <input type="button" name="startWorkflowButton" value="Start"
 onClick="StartWorkflow()" />
 <input type="button" name="cancelButton" value="Cancel"
 onClick="RedirFromInitForm()" />

 </td></tr>
 </table>
 <script type="text/javascript">
 // ---------- Start workflow ----------
 function StartWorkflow() {
 var errorMessage = "An error occurred when starting the workflow.";
 var subscriptionId = "", itemId = "", redirectUrl = "";
 var urlParams = GetUrlParams();

 if (urlParams) {
 //itemGuid = urlParams["ItemGuid"];
 itemId = urlParams["ID"];
 redirectUrl = urlParams["Source"];
 subscriptionId = urlParams["TemplateID"];
 }
 if (subscriptionId == null || subscriptionId == "") {
 // Cannot load the workflow subscription without a
 // subscriptionId, so workflow cannot be started.
 alert(errorMessage +
" Could not find the workflow subscription id.");
 RedirFromInitForm(redirectUrl);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 607

 else {
 // Set workflow in-arguments/initiation parameters
 var wfParams = new Object();
 var strInputValue = document.getElementById("strInput").value;
 if (strInputValue) {
 wfParams['strArg'] = strInputValue;
 }
 var intInputValue = document.getElementById("intInput").value;
 if (intInputValue) {
 var intValue = parseInt(intInputValue);
 if (intValue)
 wfParams['intArg'] = intValue;
 }
 var dateTimeInputValue = document.getElementById(
 "ctl00_PlaceHolderMain_dateTimeInput_dateTimeInputDate").
 value;
 if (dateTimeInputValue) {
 var dateTimeValue = new Date(document.getElementById(
 "ctl00_PlaceHolderMain_dateTimeInput_dateTimeInputDate").
 value);
 if (dateTimeValue)
 wfParams['dateTimeArg'] = dateTimeValue;
 }

 // Get workflow subscription and then start the workflow
 var context = SP.ClientContext.get_current();
 var wfManager = SP.WorkflowServices.WorkflowServicesManager.
 newObject(context, context.get_web());
 var wfDeployService = wfManager.getWorkflowDeploymentService();
 var subscriptionService = wfManager.
 getWorkflowSubscriptionService();
 context.load(subscriptionService);

 context.executeQueryAsync(
 function (sender, args) { // Success
 var subscription = null;

 // Load the workflow subscription
 if (subscriptionId)
 subscription = subscriptionService.
 getSubscription(subscriptionId);
 if (subscription) {
 if (itemId != null && itemId != "") {
 // Start list workflow
 wfManager.getWorkflowInstanceService()
 .startWorkflowOnListItem(subscription,
 itemId, wfParams);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

608 PaRt V Developing workflows

 else {
 // Start site workflow
 wfManager.getWorkflowInstanceService()
 .startWorkflow(subscription, wfParams);
 }
 context.executeQueryAsync(
 function (sender, args) {
 // Success
 RedirFromInitForm(redirectUrl);
 },
 function (sender, args) {
 // Error
 alert(errorMessage + " " +
 args.get_message());
 RedirFromInitForm(redirectUrl);
 }
)
 }
 else {
 // Failed to load the workflow subscription,
 // so workflow cannot be started.
 alert(errorMessage +
 " Could not load the workflow subscription.");
 RedirFromInitForm(redirectUrl);
 }
 },
 function (sender, args) { // Error
 alert(errorMessage + " " + args.get_message());
 RedirFromInitForm(redirectUrl);
 }
)
 }
 }

 // ---------- Redirect from page ----------
 function RedirFromInitForm(redirectUrl) {
 window.location = redirectUrl;
 }
 // ---------- Returns an associative array (object) of URL params -------
 function GetUrlParams() {
 var urlParams = null;
 if (urlParams == null) {
 urlParams = {};
 var parts = window.location.href.replace
 (/[?&]+([^=&]+)=([^&]*)/gi,
 function (m, key, value) {
 urlParams[key] = decodeURIComponent(value);
 });
 }
 return urlParams;
 }
 </script>
</asp:Content>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 609

The JavaScript code that starts the workflow instance is highlighted in bold. Note that you can
define the initiation form any way you want, from a markup and design viewpoint. The only important
thing is to start the workflow instance using the JavaScript code. Of course, having a code excerpt for
handling all the most useful data types and for starting a workflow instance is a great aid.

To start the workflow providing input arguments, the JavaScript code retrieves the cur-
rent SP.ClientContext instance. Through this, it gets a reference to a new instance of the SP.
WorkflowServices.WorkflowServicesManager class, which will be explained in detail in Chapter 18.
For now, it will suffice to know that the WorkflowServicesManager instance retrieves a reference
to the types useful for resolving the current workflow definition. Using the TemplateID query
string parameter, which will be provided to the initiation form by SharePoint, the JavaScript code
retrieves the workflow definition associated with the current initiation form, and starts the work-
flow instance using either the startWorkflow method or the startWorkflowOnListItem method of the
WorkflowInstanceService class, depending on the target of the workflow.

Important The WorkflowInstanceService type, which is used to start a workflow instance
in the JSOM, provides two methods for starting a new workflow instance: startWorkflow
and startWorkflowOnListItem. Which one you should use depends on the type of workflow
definition you are starting. The startWorkflow method starts a site workflow and accepts
the workflow subscription and the arguments. The startWorkflowOnListItem method starts
a list workflow and accepts the workflow subscription, the target item ID (Int32), and the
arguments.

Now go back to the OrdersWorkflow definition you designed in the previous section. To retrieve
values provided through the initiation form, you need to define workflow arguments correspond-
ing to the fields configured in the form. In the current OrdersWorkflow sample, delete the variables
ApprovalRequestMessage and TargetApprover and replace them with a couple of arguments with the
same name and type (String). You need to adapt the initiation form accordingly. Leave the String field
in the page, deleting the Integer and DateTime sample code excerpts. Then change the JavaScript
code to provide the right startup arguments. As you can see from reading the code highlighted in
bold in Listing 17-3, a client-side PeoplePicker control has been inserted, which is new in SharePoint
2013. This new control allows selecting a user, a group, or a distribution list from the client code using
JavaScript. This control will be used to retrieve the value for the TargetApprover argument.

More Info For further details about the client-side PeoplePicker control, you can read the
article “How to: Use the client-side PeoplePicker control in apps for SharePoint,” available
on MSDN at the following URL: http://msdn.microsoft.com/en-us/library/jj713593.aspx.
You can also consider the code sample available here: http://code.msdn.microsoft.com/
SharePoint-2013-Add-the-900e0742.

www.it-ebooks.info

http://www.it-ebooks.info/

610 PaRt V Developing workflows

LISTING 17-3 An excerpt of the source code of the OrdersWorkflow initiation form

<asp:Content ID="Content2" ContentPlaceHolderId="PlaceHolderAdditionalPageHead"
 runat="server">
 <script type="text/javascript" src="../_layouts/15/sp.runtime.js"></script>
 <script type="text/javascript" src="../_layouts/15/sp.js"></script>
 <script type="text/javascript" src="../_layouts/15/sp.workflowservices.js">
</script>

 <!-- Scripts added to support client-side PeoplePicker -->
 <script type="text/javascript" src="../Scripts/jquery-1.7.1.min.js"></script>
 <SharePoint:ScriptLink ID="ScriptLink1" name="clienttemplates.js"
 runat="server"
 LoadAfterUI="true" Localizable="false" />
 <SharePoint:ScriptLink ID="ScriptLink2" name="clientforms.js" runat="server"
 LoadAfterUI="true" Localizable="false" />
 <SharePoint:ScriptLink ID="ScriptLink3" name="clientpeoplepicker.js"
 runat="server"LoadAfterUI="true" Localizable="false" />
 <SharePoint:ScriptLink ID="ScriptLink4" name="autofill.js" runat="server"
 LoadAfterUI="true" Localizable="false" />
 <SharePoint:ScriptLink ID="ScriptLink6" name="sp.core.js" runat="server"
 LoadAfterUI="true" Localizable="false" />
 <script type="text/javascript"
 src="../Scripts/ClientSidePeoplePicker.js"></script>
</asp:Content>
<asp:Content ID="Content4" ContentPlaceHolderId="PlaceHolderMain" runat="server">
 <table>
 <tr>
 <td>
 Approval request message:

 <textarea id="ApprovalRequestMessage" rows="5" cols="50">
 </textarea>

 </td>
 </tr>
 <tr>
 <td>
 Target Approver(s):

 <div id="peoplePicker"></div>

 </td>
 </tr>
 <tr>
 <td>
 <input type="button" name="startWorkflowButton" value="Start"
 onClick="StartWorkflow()" />
 <input type="button" name="cancelButton" value="Cancel"
 onClick="RedirFromInitForm()" />

 </td>
 </tr>
 </table>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 611

 <script type="text/javascript">
 // ---------- Start workflow ----------
 function StartWorkflow() {
 var errorMessage = "An error occured when starting the workflow.";
 var subscriptionId = "", itemId = "", redirectUrl = "";
 var urlParams = GetUrlParams();

 if (urlParams) {
 //itemGuid = urlParams["ItemGuid"];
 itemId = urlParams["ID"];
 redirectUrl = urlParams["Source"];
 subscriptionId = urlParams["TemplateID"];
 }
 if (subscriptionId == null || subscriptionId == "") {
 // Cannot load the workflow subscription without a
 // subscriptionId, so workflow cannot be started.
 alert(errorMessage +
 " Could not find the workflow subscription id.");
 RedirFromInitForm(redirectUrl);
 }
 else {
 // Set workflow in-arguments/initiation parameters
 var wfParams = new Object();
 var approvalRequestMessageValue = $("#ApprovalRequestMessage").
 val();
 if (approvalRequestMessageValue) {
 wfParams['ApprovalRequestMessage'] =
 approvalRequestMessageValue;
 }
 var targetApproverValue = getUserKeys("peoplePicker");
 if (targetApproverValue) {
 wfParams['TargetApprover'] = targetApproverValue;
 }

 // Get workflow subscription and then start the workflow
 var context = SP.ClientContext.get_current();
 var wfManager = SP.WorkflowServices.WorkflowServicesManager.
 newObject(context, context.get_web());
 var wfDeployService = wfManager.getWorkflowDeploymentService();
 var subscriptionService = wfManager.
 getWorkflowSubscriptionService();
 context.load(subscriptionService);

 context.executeQueryAsync(
 function (sender, args) { // Success
 var subscription = null;
 // Load the workflow subscription
 if (subscriptionId)
 subscription = subscriptionService.
 getSubscription(subscriptionId);
 if (subscription) {
 if (itemId != null && itemId != "") {
 // Start list workflow
 wfManager.getWorkflowInstanceService()

www.it-ebooks.info

http://www.it-ebooks.info/

612 PaRt V Developing workflows

 .startWorkflowOnListItem(subscription,
 itemId, wfParams);
 }
 else {
 // Start site workflow
 wfManager.getWorkflowInstanceService()
 .startWorkflow(subscription, wfParams);
 }
 context.executeQueryAsync(
 function (sender, args) {
 // Success
 RedirFromInitForm(redirectUrl);
 },
 function (sender, args) {
 // Error
 alert(errorMessage + " "
 + args.get_message());
 RedirFromInitForm(redirectUrl);
 }
)
 }
 else {
 // Failed to load the workflow subscription,
 // so workflow cannot be started.
 alert(errorMessage +
 " Could not load the workflow subscription.");
 RedirFromInitForm(redirectUrl);
 }
 },
 function (sender, args) { // Error
 alert(errorMessage + " " + args.get_message());
 RedirFromInitForm(redirectUrl);
 }
)
 }
 }

 // Code omitted for the sake of brevity ...

 </script>
</asp:Content>

Because the OrdersWorkflow definition targets a list workflow, the JavaScript code will use the
startWorkflowOnListItem method, providing as arguments the workflow subscription ID correspond-
ing to the current workflow definition, the ID of the current item taken from the query string, and a
dictionary of arguments that will have to match the arguments defined in the workflow designer of
Visual Studio 2012. The sample workflow initiation form will also resolve the selected target approver
user key using some custom JavaScript code, which is a modified version of the code provided by
MSDN for using the client-side PeoplePicker control. Listing 17-4 shows the JavaScript code for resolv-
ing the target approver.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 613

LISTING 17-4 An excerpt of the JavaScript code to retrieve the user key provided by the client-side PeoplePicker
control

// Run your custom code when the DOM is ready.
$(document).ready(function () {
 // Specify the unique ID of the DOM element where the picker will render.
 initializePeoplePicker('peoplePicker');
});

// Render and initialize the client-side PeoplePicker.
function initializePeoplePicker(peoplePickerElementId) {
 // Create a schema to store picker properties, and set the properties.
 var schema = {};
 schema['PrincipalAccountType'] = 'User,DL,SecGroup,SPGroup';
 schema['SearchPrincipalSource'] = 15;
 schema['ResolvePrincipalSource'] = 15;
 schema['AllowMultipleValues'] = false;
 schema['MaximumEntitySuggestions'] = 50;
 schema['Width'] = '280px';

 // Render and initialize the picker.
 // Pass the ID of the DOM element that contains the picker, an array of
 // initial
 // PickerEntity objects to set the picker value, and a schema that defines
 // picker properties.
 this.SPClientPeoplePicker_InitStandaloneControlWrapper(
 peoplePickerElementId, null, schema);
}

// Query the picker for user information.
function getUserKeys(peoplePickerElementId) {
 // Get the PeoplePicker object from the page.
 var peoplePicker = this.SPClientPeoplePicker.SPClientPeoplePickerDict
 [peoplePickerElementId + "_TopSpan"];

 // Get information about all users.
 var users = peoplePicker.GetAllUserInfo();
 var userInfo = '';
 for (var i = 0; i < users.length; i++) {
 var user = users[i];
 for (var userProperty in user) {
 userInfo += userProperty + ': ' + user[userProperty] + '
';
 }
 }
 // We do not use the userInfo variable,
 // but just in case ... leave it here ...

 // Get user keys.
 var keys = peoplePicker.GetAllUserKeys();
 return(keys);
}

www.it-ebooks.info

http://www.it-ebooks.info/

614 PaRt V Developing workflows

To test and check the arguments, you can add a couple of WriteToHistory activities for writing the
two arguments to the Workflow History list.

However, to effectively use the initiation form, you will need to configure the workflow project
item in the Visual Studio 2012 project. In Solution Explorer, click the OrdersWorkflow item to edit its
properties using the standard property grid of Visual Studio 2012. There you will find a long list of
properties, including one named InitiationUrl. Through the InitiationUrl property, you can define the
ASPX page to use as the initiation form for your workflow. When you add an initiation form through
Visual Studio 2012, it automatically adds the proper value to the workflow configuration.

Deploy the SharePoint app and start a workflow instance; you will be prompted with an initiation
form like the one shown in Figure 17-22.

FIGURE 17-22 The workflow initiation form for the sample OrdersWorkflow definition in Visual Studio 2012.

The form displays a field for providing the content of the ApprovalRequestMessage argument, and
the client-side PeoplePicker control for providing the value of the TargetApprover argument.

The workflow association form will be almost the same as the workflow initiation form. The only
difference will be the JavaScript code behind the form. By using the association form, you will need
to define the association, which in SharePoint 2013 is represented by a WorkflowSubscription type
instance and its configuration properties. However, consider that in SharePoint 2013, many of the
workflows you will develop in Visual Studio 2012 will be defined within SharePoint apps. Thus, the

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 615

association of the workflow with its target list, library, or site will happen during the provisioning of
the app, because end users usually do not configure lists, libraries, and the app website manually.
Meanwhile, if you are developing a farm-level workflow, you may also need to create a custom work-
flow association form. In Chapter 18, you will learn how to publish a WorkflowSubscription instance,
using the Workflow Services Manager client library, and write an association form page for a workflow
defined in a farm-level solution.

Custom workflow tasks

You can further customize your workflows by creating custom tasks and defining custom task fields
and custom task forms. To create a custom task, you first define a custom content type, inheriting
from the basic Workflow Task (SharePoint 2013) content type.

More Info For details about how to create a custom content type, please refer to Chapter
3, “Data provisioning,” as well as Chapter 8.

Within the custom content type definition, declare a site column for holding a custom task out-
come, which will be the customization defined in the custom task. Listing 17-5 shows the source XML
code declaring the new task content type.

LISTING 17-5 The XML code declaring the custom OrderApprovalTask content type

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Field ID="{919DEB5B-FB24-49B8-93E1-0EDE24947F9F}"
 Name="OrderApprovalOutcome"
 StaticName="OrderApprovalOutcome"
 DisplayName="OrderApprovalOutcome"
 Type="OutcomeChoice"
 Required="FALSE"
 Group="DevLeap Site Columns">
 <CHOICES>
 <CHOICE>Approved</CHOICE>
 <CHOICE>To Review</CHOICE>
 <CHOICE>Rejected</CHOICE>
 </CHOICES>
 </Field>

www.it-ebooks.info

http://www.it-ebooks.info/

616 PaRt V Developing workflows

 <!-- Parent ContentType: Workflow Task (SharePoint 2013)
(0x0108003365C4474CAE8C42BCE396314E88E51F) -->
 <ContentType
ID="0x0108003365C4474CAE8C42BCE396314E88E51F00D46A33DB74E44810A5A763715BB0F727"
 Name="OrderApprovalTask"
 Group="DevLeap Content Types"
 Description="Orders Approval Content Type"
 Inherits="FALSE"
 Version="0">
 <FieldRefs>
 <FieldRef ID="{919DEB5B-FB24-49B8-93E1-0EDE24947F9F}"
Name="OrderApprovalOutcome" />
 </FieldRefs>

 <XmlDocuments>
 <XmlDocument NamespaceURI="http://schemas.microsoft.com/sharepoint/v3/
contenttype/forms/url">
 <FormUrls xmlns="http://schemas.microsoft.com/sharepoint/v3/contenttype/
forms/url">
 <Display>Pages/OrderApprovalTaskForm.aspx</Display>
 <Edit>Pages/OrderApprovalTaskForm.aspx</Edit>
 </FormUrls>
 </XmlDocument>
 </XmlDocuments>

 </ContentType>
</Elements>

Notice that the custom task inherits from the Workflow Task (SharePoint 2013) content type
(0x0108003365C4474CAE8C42BCE396314E88E51F), but it does not inherit the UI from the par-
ent content type (attribute inherits with a value of FALSE). On the contrary, the ContentType ele-
ment is configured to use a custom set of forms, which are configured as relative URLs mapping to
custom ASPX pages defined in the Pages folder of the current SharePoint app project. Also notice
that the custom site column for holding the task outcome is of type OutcomeChoice, which is a new
SharePoint 2013 type defined for holding the outcome of a workflow task.

The custom ASPX page implementing the task form, which is illustrated in Listing 17-6, defines
some custom UI elements and provides three buttons to approve, reject, or submit the order for
review. Based on the JSOM, the code behind the page simply updates the current task item, which
was retrieved using the List and ID query string arguments, and sets the OrderApprovalOutcome field
according to the user’s choice.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 617

LISTING 17-6 The ASPX code of the custom workflow task form

<%@ Page language="C#" MasterPageFile="~masterurl/default.master"
Inherits="Microsoft.SharePoint.WebPartPages.WebPartPage, Microsoft.SharePoint,
Version=15.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>
<%@ Register Tagprefix="SharePoint" Namespace="Microsoft.SharePoint.WebControls"
Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral, PublicKeyToke
n=71e9bce111e9429c" %>
<%@ Register Tagprefix="Utilities" Namespace="Microsoft.SharePoint.Utilities"
Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral, PublicKeyToke
n=71e9bce111e9429c" %>
<%@ Register Tagprefix="WebPartPages" Namespace="Microsoft.SharePoint.
WebPartPages" Assembly="Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>

<asp:Content ContentPlaceHolderId="PlaceHolderAdditionalPageHead" runat="server">
 <SharePoint:ScriptLink name="sp.js" runat="server" OnDemand="true"
LoadAfterUI="true" Localizable="false" />
 <script type="text/javascript" src="../Scripts/jquery-1.7.1.min.js"></script>
</asp:Content>

<asp:Content ContentPlaceHolderId="PlaceHolderMain" runat="server">

 <h1>Order Approval Task</h1>

 <WebPartPages:WebPartZone runat="server" FrameType="TitleBarOnly" ID="full"
Title="loc:full" />

 <table>
 <tr>
 <td>
 Please choose the outcome for the current task
 </td>
 </tr>
 <tr>
 <td>
 <input type="button" name="approveTaskOutcome" value="Approved"
 onclick="setTaskOutcome('Approved');" />
 <input type="button" name="rejectTaskOutcome" value="Rejected"
 onclick="setTaskOutcome('Rejected');" />
 <input type="button" name="toReviewTaskOutcome" value="To Review"
 onclick="setTaskOutcome('To Review');" />

 </td>
 </tr>
 </table>

www.it-ebooks.info

http://www.it-ebooks.info/

618 PaRt V Developing workflows

 <script type="text/javascript">
 var ctx;
 var urlParams = null;

 function getUrlParams() {
 if (urlParams == null) {
 urlParams = {};
 var parts = window.location.href.
 replace(/[?&]+([^=&]+)=([^&]*)/gi, function (m, key, value) {
 urlParams[key] = value;
 });
 }
 return urlParams;
 }

 function setTaskOutcome(outcome) {
 ctx = SP.ClientContext.get_current();
 var web = ctx.get_web();
 var tasksList = web.get_lists().getById(
 decodeURIComponent(getUrlParams()["List"]));
 var task = tasksList.getItemById(getUrlParams()["ID"]);
 task.set_item("OrderApprovalOutcome", outcome);
 task.set_item("Status", "Completed");
 task.update();

 ctx.executeQueryAsync(
 function (sender, args) {
 redirFromInitForm();
 },
 function (sender, args) {
 alert("Error while saving the task outcome: " +
 args.get_message());
 }
);
 }

 function redirFromInitForm() {
 window.location = decodeURIComponent(getUrlParams()["Source"]);
 }

 </script>
</asp:Content>

To use the new task content type, you could add to the app website a new list of tasks of this type.
A better practice, however, is to use the wizard that adds a new workflow definition. By default, this
wizard creates a tasks list for you; you should edit the list definition of that tasks list instead of creat-
ing a new one from scratch.

Open the Elements.xml file related to the tasks list and add a ContentTypeBinding element using a
code excerpt like the one highlighted in bold in Listing 17-7.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 619

LISTING 17-7 The code for provisioning the Workflow Tasks list, including a custom task content type

<?xml version="1.0" encoding="utf-8" ?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <ListInstance FeatureId="{f9ce21f8-f437-4f7e-8bc6-946378c850f0}"
 TemplateType="171"
 Title="WorkflowTaskList"
 Description="This list instance is used for workflow Task items."
 Url="Lists/WorkflowTaskList"
 RootWebOnly="FALSE" />

 <ContentTypeBinding ListUrl="Lists/WorkflowTaskList"
 RootWebOnly="FALSE"
 ContentTypeId="0x0108003365C4474CAE8C42BCE396314E88E51F"/>
 <ContentTypeBinding ListUrl="Lists/WorkflowTaskList"
 RootWebOnly="FALSE"
ContentTypeId="0x0108003365C4474CAE8C42BCE396314E88E51F00D46A33DB74E44810A5A7637
15BB0F727"/>
</Elements>

The ContentTypeBinding element binds the custom content type to the tasks list definition
available out of the box in SharePoint, and referenced through its TemplateType ID, which has a
value of 171. In the current example, the content type ID of the custom task content type is the
ContentTypeBinding element (highlighted in bold). Now, moving to the workflow definition, you can
insert a SingleTask activity or a CompositeTask activity, and you can configure the task content type to
match the new custom content type (see Figure 17-23).

FIGURE 17-23 The property editors of a SingleTask activity configured for using a custom task content type.

www.it-ebooks.info

http://www.it-ebooks.info/

620 PaRt V Developing workflows

You can configure the custom task using either the standard property grid of Visual Studio 2012 or
the Task Options pop-up window available in the workflow designer.

Discussing the whole approval workflow is out of scope for this context. In short, you define the
workflow process using whatever activities you like, and then deploy and test it. In Figure 17-24, you
can see how the custom task form behaves in the web browser when the assignee edits it.

FIGURE 17-24 The custom workflow task form rendered in the web browser.

Workflow deployment

Now that you can develop a workflow definition, you’re ready to delve into the workings of the work-
flow deployment process. This topic varies depending on the type of project you are defining. For
example, a farm-level solution behaves differently from a SharePoint app project.

Farm-level workflow
When you deploy a project that includes a workflow definition in a farm-level solution, you can use
the standard Module feature element. Listing 17-8 shows the feature element deploying the sample
approval workflow defined earlier in the chapter, in the section “Visual Studio 2012 for creating
workflows.”

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 621

LISTING 17-8 The feature element file for deploying a sample workflow definition

<?xml version="1.0" encoding="utf-8" ?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Module Name="MyFirstWorkflow" Url="wfsvc/5d8de52d6b344e0ba8d8da022449bb7b">
 <File Url="Workflow.xaml" Type="GhostableInLibrary"
 Path="MyFirstWorkflow\Workflow.xaml" DoGUIDFixUp="TRUE">
 <Property Name="ContentType" Value="WorkflowServiceDefinition" />
 <Property Name="isReusable" Value="true" />
 <Property Name="RequiresInitiationForm" Value="False" />
 <Property Name="RequiresAssociationForm" Value="False" />
 <Property Name="WSPublishState" Value="3" />
 <Property Name="WSDisplayName" Value="MyFirstWorkflow" />
 <Property Name="WSDescription" Value="My 'MyFirstWorkflow' Workflow" />
 <!-- If you change the name or Url of your custom initiation or association
form,
 remember to update the corresponding property value (InitiationUrl or
 AssociationUrl) to match the new web relative url.
 -->
 <Property Name="InitiationUrl"
 Value="wfsvc/5d8de52d6b344e0ba8d8da022449bb7b/MyFirstWorkflow/WFInitForm.
aspx" />
 <Property Name="AssociationUrl"
 Value="wfsvc/5d8de52d6b344e0ba8d8da022449bb7b/MyFirstWorkflow/WFAssocForm.
aspx" />
 <Property Name="RestrictToType" Value="List" />
 <Property Name="RestrictToScope" Value="{$ListId:Shared Documents;}" />
 </File>
 <File Url="WorkflowStartAssociation"
 Path="MyFirstWorkflow\WorkflowStartAssociation"
 Type="GhostableInLibrary">
 <Property Name="WSDisplayName" Value="MyFirstWorkflow - Workflow Start" />
 <Property Name="ContentType" Value="WorkflowServiceSubscription" />
 <Property Name="WSPublishState" Value="3" />
 <Property Name="WSEventType" Value="WorkflowStart" />
 <Property Name="WSEnabled" Value="true" />
 <Property Name="WSGUID" Value="a5fdbc8e-0132-4403-a919-74fcc088192d" />
 <Property Name="WSEventSourceGUID" Value="{$ListId:Shared Documents;}" />
 <Property Name="Microsoft.SharePoint.ActivationProperties.ListId"
 Value="{$ListId:Shared Documents;}" />
 <Property Name="HistoryListId" Value="{$ListId:Lists/Workflow History;}" />
 <Property Name="TaskListId" Value="{$ListId:Lists/Workflow Tasks;}" />
 <Property Name="StatusColumnCreated" Value="1" />
 </File>
 <File Path="MyFirstWorkflow\WFInitForm.aspx"
 Url="MyFirstWorkflow/WFInitForm.aspx" />
 <File Path="MyFirstWorkflow\WFAssocForm.aspx"
 Url="MyFirstWorkflow/WFAssocForm.aspx" />
 </Module>
 <ListInstance FeatureId="{2c63df2b-ceab-42c6-aeff-b3968162d4b1}"
 TemplateType="4501"
 Title="wfsvc"
 Description=
"This list instance is used by SharePoint to keep track of workflows. Do not
modify."
 Url="wfsvc"
 RootWebOnly="FALSE" />
</Elements>

www.it-ebooks.info

http://www.it-ebooks.info/

622 PaRt V Developing workflows

The most interesting parts of the file are highlighted in bold. For example, the Module feature ele-
ment provisions a pair of files with two content types:

■■ WorkflowServiceDefinition Represents a workflow definition, together with its configura-
tion properties—for example, the target (list or site), and the InitiationUrl and AssociationUrl
properties, if any.

■■ WorkflowServiceSubscription Declares an association between a WorkflowServiceDefinition
and a target. This file defines the name, the activation type, the tasks list, the history list, and
so on.

The workflow by itself is deployed in a folder relative to the wfsvc library. The folder will have a
unique name. The workflow feature provisions the wfsvc library, which effectively holds the workflow
definition files, which include the XAML file, the association file, any forms, and so on.

The file with content type WorkflowServiceDefinition supports many configurable properties. The
most interesting are

■■ WSDisplayName Represents the display name of the workflow definition. It is visible to the
end users when configuring new workflow associations.

■■ WSDescription Represents the description of the workflow definition. It is visible to the end
users when configuring new workflow associations.

■■ InitiationUrl Represents the relative URL of the workflow initiation form, if any.

■■ AssociationUrl Represents the relative URL of the workflow association form, if any.

■■ RestrictToType Limits the available event source type for the workflow subscriptions based
on the current workflow definition. The available values are List, Site, and empty or null, which
behave the same.

■■ RestrictToScope Is a GUID value or an expression that will be processed by Visual Studio
2012 during packaging of the WSP file, which further restricts the scope of the current
workflow definition. For example, if the RestrictToType property has a value of List, then this
property can assume the value of the GUID of a specific list.

The default workflow-provisioning template available in Visual Studio 2012 does not use any
initiation or association form. However, if you add a workflow initiation form or a workflow associa-
tion form, Visual Studio 2012 will add the corresponding Property and File elements to the feature
element file. By default, when you add a workflow initiation or association form while working in
farm-level solutions, Visual Studio 2012 places the forms’ files within the same folder that hosts the
workflow definition.

The file with content type WorkflowServiceSubscription supports many other configurable proper-
ties. The most interesting are

■■ WSDisplayName Represents the display name of the workflow subscription. It is visible to
the end users while starting a new workflow instance.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 623

■■ WSEventType Defines the list of event types for which the workflow subscription is listening.

■■ WSEnabled Defines whether the current workflow subscription is enabled or not.

■■ WSEventSourceGUID Defines the unique ID (GUID) of the event source corresponding to
the WSEventType value. Usually it is the ID of the target list or library if the workflow is a list
workflow.

■■ ListId Defines the ID of the target list if the workflow is a list workflow.

■■ HistoryListId Defines the ID of the history list, if any.

■■ TaskListId Defines the ID of the tasks list, if any.

■■ StatusColumnCreated Declares whether the workflow subscription should have a workflow
status column or not.

The supported values for the WSEventType property are

■■ WorkflowStart Allows the workflow to be manually started by an authenticated user with
Edit Item permissions

■■ ItemAdded Starts the workflow when a new item is created

■■ ItemUpdated Starts the workflow when an item is updated

Workflow features use a dedicated feature receiver, declared in the
SPWorkflowPackageFeatureReceiver class of the Microsoft.SharePoint.WorkflowServices namespace.
This feature receiver accepts only features with a web scope, and if the workflow is properly config-
ured, this feature receiver registers the workflow status column to the target list or library.

To accomplish the status column–registration task, you need to configure the
StatusColumnCreated property of the File element with content type WorkflowServiceSubcription.
Here is a code excerpt of the property to configure:

<Property Name="StatusColumnCreated" Value="1" />

A value of 1 instructs the feature receiver to create a status column with a name equal to the work-
flow association name. Any other value will not create the workflow status column.

By configuring all the properties illustrated in this section, you can determine the provisioning of
your workflow definitions. Usually, the out-of-the-box provisioning files will suffice, but if necessary,
you can edit the feature element file to adhere to your requirements.

www.it-ebooks.info

http://www.it-ebooks.info/

624 PaRt V Developing workflows

SharePoint app workflow
When you deploy a workflow definition through a SharePoint app project, Visual Studio 2012 hides all
the inner workings from you. The deployment is managed for you, and you simply have to configure
a set of properties that determine the behavior of the deployment process. To edit these properties,
click the workflow item in Solution Explorer and work through the property grid of Visual Studio 2012
(see Figure 17-25).

FIGURE 17-25 The property grid of a workflow defined in a SharePoint app in Visual Studio 2012.

As you can see, there are properties for managing all the most common configuration param-
eters, including description, display name, history list, tasks list, initiation and association form URLs,
startup behavior, and target list. For instance, if you want to configure the workflow to start when a
target item is added, you can simply change the value of the property Start On Item Added to true.
Moreover, if you want to configure the URL of the initiation or association form, you need to choose
or provide a value for the Initiation Url and Association Url properties.

Behind the scenes, the editor will configure some XML elements in a file named
SharePointProjectItem.spdata, which is placed in the same folder as the XAML file with the source
code of the workflow definition.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 17 Developing workflows 625

Flowcharts and state machines

So far, using Visual Studio 2012, you have designed only sequential workflows. However, you can also
use flowcharts and state machines in SharePoint 2013 workflows. From an operational viewpoint,
designing a flowchart or a state machine is not that different from creating a sequential workflow. You
simply need to delete the Sequence activity, which is provided by default by Visual Studio 2012 within
the workflow item template for SharePoint, and replace it with a Flowchart or StateMachine activity.
For example, Figure 17-26 illustrates a sample flowchart-based approval workflow for SharePoint 2013
in the workflow designer.

FIGURE 17-26 The workflow design surface of Visual Studio 2012 for a flowchart workflow.

More interesting than how to design the sequences, flowcharts, or state machines is when to use
which kind of model. The answer depends on the functional requirements of your project:

■■ Sequential workflow A good option whenever you need to define a flow with clear start-
ing and ending points, with a defined path to move from the beginning to the end, and
without the need to step back in the flow process. For example, a sequential workflow is the
right choice for defining maintenance processes, and is often used in site collection–level
workflows.

■■ Flowchart workflow The right solution for implementing decision-based processes.
Flowcharts are based on the idea of performing an action, evaluating the action result or a

www.it-ebooks.info

http://www.it-ebooks.info/

626 PaRt V Developing workflows

condition, making a decision, performing another action, and so on. With a flowchart, you
can come across the same portions of a flow process multiple times. It is a suitable option for
defining approval processes with moderate interaction with end users, loops, and so on. Not
by chance, SharePoint Designer 2013 creates workflows as flowcharts when you use its work-
flow designer.

■■ State machine workflow The best choice for modeling a human-interactive process, like a
document approval process. The states of the state machine correspond to the phases of the
process. The outcome of every approval phase corresponds to a transition rule, which defines
the target state to go to. When the process is completed, the state machine can make a transi-
tion to the final state. Even if every state machine can be defined using a flowchart, there are
many situations, such as with approval processes, where a state machine is simpler to design
and better self-documented in its design schema.

Summary

In this chapter, you learned how to create advanced workflows using SharePoint Designer 2013,
consuming REST services using the Call HTTP Web Service action and the Dictionary data type. Then
you moved on to designing workflows using Visual Studio 2012. You saw how to implement custom
workflows targeting an on-premises farm, as well as how to create SharePoint apps that internally
use custom workflows. You learned how to create custom workflow forms, custom tasks, and custom
task forms. Then you saw how the deployment process of a workflow works. The chapter ended by
comparing the various models of workflow definitions available.

www.it-ebooks.info

http://www.it-ebooks.info/

 627

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

 629

C H A P T E R 1 8

Advanced workflows

In this chapter, you will learn about some advanced topics and new features introduced with
Microsoft SharePoint 2013. The chapter will explain how you can create custom actions by using

declarative activities, as well as by writing code-based activities. You will learn about workflow
security and how to use Workflow Services Manager from the client side. If you are working with
SharePoint workflows for the first time, you may wish to postpone a careful reading of the material
until after you have more experience with standard workflow features. If you’re comfortable with the
basics of workflows and are ready to take your projects to the next level, however, read on now.

Custom actions

One of the main areas of extensibility for every workflow solution—not just SharePoint solutions—is
developing custom activities. In Chapter 15, you learned the very basics of creating custom activities:
simply defining a custom class that inherits from the System.Activities.Activity base class. Depending
on your implementation, you may need to do more. In this section, you will learn how to develop
custom activities targeting both SharePoint Designer 2013 and Microsoft Visual Studio 2012.

Let's start with some useful definitions. As you know, an activity is a building block of a workflow
and represents the minimal unit of workflow execution. An action is a high-level wrapper of one or
more activities to provide a human-readable statement within SharePoint Designer 2013 or another
client platform. Because in SharePoint 2013 the Workflow Manager engine is open for integration,
you can implement workflow designers of your own that consume the Workflow Services Manager
services (the section “Workflow Services Manager” will explain how).

You can define a custom action two ways. You can work declaratively in Visual Studio 2012, simply
using the designer without writing any code, to create a declarative activity. Alternately, you can
create some custom code to define a code activity that will enable you to use the whole .NET devel-
opment environment. The code-activity scenario is suitable only for on-premises farms, because it
requires you to deploy your custom code using a full-trust solution.

www.it-ebooks.info

http://www.it-ebooks.info/

630 PaRt V Developing workflows

Creating a declarative activity
To create a declarative activity, you must have a development environment with SharePoint 2013
Server and Workflow Manager installed locally. On the same machine that houses SharePoint
2013, you must also install Visual Studio 2012 Professional or higher, as well as the Microsoft Office
Developer Tools for Visual Studio 2012.

Imagine that you want to create a custom activity for consuming a list of customers from an
external Representational State Transfer (REST) or OData service. For example, you can consume the
publicly available OData service for reading the well-known Northwind database, which is available
at http://services.odata.org/Northwind/Northwind.svc. To begin, launch Visual Studio 2012, create a
new project of type SharePoint 2013 - Empty Project, and choose to produce a sandboxed solution.
Next, add a new item of type Workflow Custom Activity to the project. You will be prompted with a
workflow activity designer that already includes a Sequence activity.

The order-approval workflow needs to retrieve some data about the target customer of the order;
it does so by querying the Northwind OData service using the CustomerID field. The REST URI for
retrieving the customer data is http://services.odata.org/Northwind/Northwind.svc/Customers('ALFKI')?
$select={CustomerID},CompanyName,ContactName,ContactTitle,Country.

Replace the {CustomerID} argument with the CustomerID value of the customer to look up. Listing
18-1 shows the JavaScript Object Notation (JSON) result of the service invocation.

LISTING 18-1 The JSON response of the Northwind OData service during a query for a specific customer instance

{
 "d" : {
 "__metadata": {
 "uri":
 "http://services.odata.org/Northwind/Northwind.svc/Customers('ALFKI')",
 "type":"NorthwindModel.Customer"
 },
 "CustomerID": "ALFKI",
 "CompanyName": "Alfreds Futterkiste",
 "ContactName": "Maria Anders",
 "ContactTitle": "Sales Representative",
 "Country": "Germany"
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 18 Advanced workflows 631

More Info To check the output of the service, you can use the Fiddler2 tool (http://www.
fiddler2.com/). To view the JSON output format, remember to configure an Accept HTTP
header with a value of application/json.

To implement the custom activity (call it NWCustomerLookup), you first need to create an input
argument with name CustomerID to receive the ID of the customer to look for in the Northwind
database. You also need a set of output arguments for holding the return values, which are all of type
String; name them CompanyName, ContactName, ContactTitle, and Country.

To effectively contact the remote OData service, you can use the HttpSend activity, available in
Visual Studio 2012. Simply provide the target URL, as well as the Accept HTTP header (application/
json). To create the set of HTTP headers, use a BuildDynamicValue activity and put the output into
a responseHeaders variable of type DynamicValue. You can place the response in a variable of type
DynamicValue, as well. Table 18-1 shows the configuration provided to the main properties of the
HttpSend activity.

TABLE 18-1 The configuration provided to the main properties of the HttpSend activity

Attribute name Description Value

Method Defines the HTTP method or verb GET

Uri Defines the URI to contact; in this example, it will
be dynamically calculated using the input argu-
ment CustomerID

"http://services.odata.org/Northwind/
Northwind.svc/Customers('" + CustomerID
+ "')?$select=CustomerID,CompanyName,
ContactName,ContactTitle,Country

RequestHeaders Declares the HTTP request headers that will be
used to contact the remote endpoint

requestHeaders

ResponseContent Represents the response, as a variable of type
DynamicValue, returned by the remote service

responseContent

By using the GetDynamicValueProperties activity, you can retrieve the fields and place them inside
the specific output arguments. Figure 18-1 illustrates the outline of the custom declarative activity.

www.it-ebooks.info

http://www.it-ebooks.info/

632 PaRt V Developing workflows

FIGURE 18-1 The outline of the custom declarative activity in the designer of Visual Studio 2012.

To deploy the custom activity, you need to do a little bit of work, which is covered in detail in the
next section. For now, assume you have already deployed the custom declarative activity, and take a
look at Figure 18-2 to see how the custom activity behaves in SharePoint Designer 2013.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 18 Advanced workflows 633

FIGURE 18-2 The custom declarative activity in the designer of SharePoint Designer 2013.

Important Whenever you deploy custom actions or custom activities for SharePoint
Designer 2013, the client tool will need to refresh its local cache; otherwise, the new ele-
ments will not be available. Luckily, SharePoint Designer 2013 informs you about this issue.
Nevertheless, you must manually clear the cache. To accomplish this task, simply delete the
folder with path user profile\appdata\local\microsoft\websitecache\sitename.

The sample illustrated in Figure 18-2 defines a simple site workflow, which is defined just to test
the custom declarative activity. As you can see, the activity is described using the following sentence:

Lookup for customer with CustomerID in Northwind (Output to: Variable: CompanyName, Variable:
ContactName, Variable: ContactTitle, Variable: Country).

The CustomerID token represents an input argument, while the CompanyName, ContactName,
ContactTitle, and Country arguments are the output values that will be saved in workflow variables.
Notice that inserting the action in the designer will automatically create the target variables for hold-
ing the output values. In the next section, you will learn how to achieve this automatic behavior.

www.it-ebooks.info

http://www.it-ebooks.info/

634 PaRt V Developing workflows

Deployment of declarative actions
From a deployment and provisioning viewpoint, workflow actions and activities are defined in
specific files with an .actions4 extension, which vary by language and which can be installed onto
the SharePoint servers in the folder SharePoint15_Root\TEMPLATE\Language LCID\Workflow. The
Language LCID represents the locale ID of the target language. For example, the English (LCID:
1033) version of the .actions4 files will be installed in the folder SharePoint15_Root\TEMPLATE\1033\
Workflow.

Note SharePoint15_Root refers to the SharePoint root folder, which is typically located at
C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\15.

In the same folder, you will also find some .actions files. However, those files are related to
SharePoint 2010 and the legacy WF 3.x workflow engine, and you should not bother with them in this
chapter. The .actions4 files can also be provisioned using sandboxed solutions, if you want to deploy
custom declarative activities in Microsoft Office 365. Listing 18-2 shows a code excerpt of the default
workflow15.actions4 file, which contains the same out-of-the-box actions you saw while making your
first workflow with SharePoint Designer 2013 in Chapter 16, “SharePoint workflow fundamentals.”
Listing 18-2 defines the native Set Field in Current Item action.

LISTING 18-2 A code excerpt of the workflow15.actions4 file for defining an action

<Action Name="Set Field in Current Item"
 ClassName="Microsoft.SharePoint.WorkflowServices.Activities.SetField"
 AppliesTo="list" UsesCurrentItem="true" Category="List Actions">
 <RuleDesigner Sentence="Set %1 to %2">
 <FieldBind Field="FieldName" Text="field" Id="1"
 DesignerType="WritableFieldNames" DisplayName="Field" />
 <FieldBind Field="FieldValue" Text="value" Id="2"
 TypeFrom="FieldName" DesignerType="Dependent" DisplayName="Value" />
 </RuleDesigner>
 <Parameters>
 <Parameter Name="FieldName" Type="System.String, mscorlib" Direction="In"
 DesignerType="WritableFieldNames"
 Description="Field to set the value of." />
 <Parameter Name="FieldValue" Type="System.Object, mscorlib" Direction="In"
 DesignerType="Dependent" Description="Value to set the field to." />
 </Parameters>
</Action>

As you can see, the excerpt defines an Action element, which is the root element for any action
definition. This element requires a ClassName attribute, which defines the underlying .NET type that
effectively implements the action. The most common attributes of the Action element are illustrated
in Table 18-2.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 18 Advanced workflows 635

More Info For further details about the workflow configuration schemas in SharePoint
2013, you can read “WorkflowActions4 schema reference,” available on MSDN at
http://msdn.microsoft.com/en-us/library/jj583378.aspx.

TABLE 18-2 The main attributes for configuring a custom action in the .actions4 files

Attribute name Description Data type

__SolutionId Specifies a GUID that the client application writes to the implementation-
specific action. The server uses the GUID to help locate the assembly at
workflow run time.

xsd:string

AppliesTo Defines the target of the action. The available values are site, list, doclib, and
all. They are all self-explanatory. Depending on the value provided to this
attribute, the action will be visible and either available or not in the UI of
SharePoint Designer 2013. It is a required attribute.

xsd:string, within
a fixed set of
available values:
site, list, doclib,
and all.

Assembly Is the strong name (Name, Version, Culture, PublicKeyToken) of the assembly
containing the type implementing the custom action.

xsd:string

Category Provides the category where the action will show up in the UI of SharePoint
Designer 2013.

xsd:string

ClassName Is the fully qualified name of the class that implements the workflow action.
It is a required attribute.

xsd:string

FunctionName Specifies the name of a function to call. That function will be defined in
the ClassName attribute, available in the assembly defined in the Assembly
attribute.

xsd:string

Name Is the descriptive name of the action, and is displayed in the UI of
SharePoint Designer 2013. It is a required attribute.

xsd:string

SandboxedFunction If true, calls a specific function defined in the class with name equal to the
ClassName attribute. That class will be searched in the assembly with a
strong name value equal to the content of the Assembly attribute. That
assembly will by looked for in the solution with the ID value defined in the
__SolutionId attribute.

xsd:boolean

ShapeImageUrl Defines the URL of an image that will be used in the UI of SharePoint
Designer 2013 to present the action.

xsd:string

UsesCurrentItem Indicates whether the action targets a specific list item, or if it is suitable for
a site workflow. If this attribute is configured with a value of false or is not
configured, the action can be used in a site workflow. Otherwise, the action
can only be used in a list workflow.

xsd:boolean

The main child elements of the Actions element are RuleDesigner and Parameters. The former
defines the behavior of the custom action within SharePoint Designer 2013, and declares the sentence
to prompt to the user designing the workflow, as well as any field to ask for. Reading Listing 18-2, you
can see that the RuleDesigner element accepts a Sentence attribute, which defines a tokenized string.
For example, the sentence for the Set Field in Current Item action is the following:

Set %1 to %2

where %1 and %2 correspond to two occurrences of children FieldBind elements. Every FieldBind ele-
ment defines a field that matches a token in the sentence. The FieldBind element accepts a wide range
of attributes, which are illustrated in Table 18-3.

www.it-ebooks.info

http://www.it-ebooks.info/

636 PaRt V Developing workflows

TABLE 18-3 The main attributes for configuring the FieldBind element in the .actions4 files

Attribute name Description Data type

DesignerType Defines the data type to use within the designer UI of SharePoint
Designer 2013. The main available values are defined later in this sec-
tion. It is a required attribute.

xsd:string

DisplayName Represents the display name of the field in the UI of SharePoint
Designer 2013.

xsd:string

EventCategory Defines the event category type for instances of the FieldBind ele-
ment with a DesignerType attribute with a value of ListItemEvent or
EventDropdown.

xsd:string

Field Declares the name of the field corresponding to the current FieldBind
element. There will be a Parameter element (in the Parameters element
section) with the Name attribute with the same value.

xsd:string

Id Defines the numeric ID of the field, and will match the %Id token
declared in the Sentence attribute of the RuleDesigner parent element.

xsd:positiveInteger

OperatorTypeFrom When the DesignerType attribute has a value of Operator, declares the
field from which the current field will retrieve its operator type.

xsd:string

Text Declares the descriptive text used for presenting the field in the UI of
SharePoint Designer 2013.

xsd:string

TypeFrom When the DesignerType attribute has a value of Dependent, declares
the field from which the current field will retrieve its type.

xsd:string

The Parameters element of the .actions4 file behaves similarly to the RuleDesigner element. In
fact, the Parameters element is the parent of a set of Parameter elements, where each one describes
a single parameter with a direction (input, output, or optional), name, type, and designer behavior.
Table 18-4 lists the main attributes available for configuring each Parameter element.

TABLE 18-4 The main attributes for configuring the Parameter element in the .actions4 files

Attribute name Description Data type

Description Defines the description of the current parameter. xsd:string

DesignerType Defines the data type to use within the designer UI of SharePoint
Designer 2013. The main available values are defined later in this
section. It is a required attribute.

xsd:string

Direction Declares the direction (input, output, or optional) for the
parameter.

xsd:string, within a fixed set
of available values: In, Out,
and Optional.

DisplayName Represents the display name of the field in the UI of SharePoint
Designer 2013.

xsd:string

InitialValue Defines the initial and default value for the parameter. xsd:string

Name Defines the name of the parameter. The value of this attribute is
used to reference the parameter in the FieldBind elements.

xsd:string

Type Defines the underlying data type, represented as a .NET type with
a name and container assembly.

xsd:string

Each Parameter element can be referenced by name in the FieldBind elements. In Listing 18-3, you
can see the NWCustomerLookup.actions4 file, which defines the custom NWCustomerLookup declara-
tive activity you created in the previous section.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 18 Advanced workflows 637

LISTING 18-3 The content of the NWCustomerLookup.actions4 file for defining the NWCustomerLookup declara-
tive activity

<Action Name="Northwind customer lookup"
 ClassName="DevLeap.SP2013.DeclarativeAction.NWCustomerLookup"
Category="DevLeap" AppliesTo="all">
 <RuleDesigner
 Sentence="Lookup for customer with %1 in Northwind (Output to: %2, %3, %4, %5)">
 <FieldBind Field="CustomerID" DesignerType="TextBox" Id="1" Text="CustomerID"
 DisplayName="CustomerID" />
 <FieldBind Field="CompanyName" DesignerType="ParameterNames" Id="2"
Text="CompanyName" DisplayName="CompanyName" />
 <FieldBind Field="ContactName" DesignerType="ParameterNames" Id="3"
Text="ContactName" DisplayName="ContactName" />
 <FieldBind Field="ContactTitle" DesignerType="ParameterNames" Id="4"
 Text="ContactTitle" DisplayName="ContactTitle" />
 <FieldBind Field="Country" DesignerType="ParameterNames" Id="5"
Text="Country" DisplayName="Country" />
 </RuleDesigner>
 <Parameters>
 <Parameter Name="CustomerID" Type="System.String, mscorlib" Direction="In"
 DesignerType="TextArea" Description="The ID of the customer to lookup" />
 <Parameter Name="CompanyName" Type="System.String, mscorlib" Direction="Out"
 DesignerType="ParameterNames"
Description="The ID of the customer to lookup" />
 <Parameter Name="ContactName" Type="System.String, mscorlib" Direction="Out"
 DesignerType="ParameterNames"
Description="The ID of the customer to lookup" />
 <Parameter Name="ContactTitle" Type="System.String, mscorlib" Direction="Out"
 DesignerType="ParameterNames"
Description="The ID of the customer to lookup" />
 <Parameter Name="Country" Type="System.String, mscorlib" Direction="Out"
 DesignerType="ParameterNames"
Description="The ID of the customer to lookup" />
 </Parameters>
</Action>

To deploy the current custom activity, you simply need to package the resulting WSP file and
upload the sandboxed solution to the target site collection. Visual Studio 2012 already does this for
you, and also creates an .actions4 file in the project. That .actions4 file will be almost empty, however,
so you will have to compile it manually, and without any kind of IntelliSense or syntax check. In case
you are creating a declarative activity within a sandboxed solution, the .actions4 file, the XAML file,
and any other elements are deployed to the content database of the target site collection through
a sandboxed solution. Because you don’t need physical access to the file system of the target server
farm, the declarative activities are the first choice for extending native activities in the context of a
Office 365 cloud-hosted solution.

www.it-ebooks.info

http://www.it-ebooks.info/

638 PaRt V Developing workflows

While compiling the .actions4 file, you must provide values for a variety of settings. For example,
the DesignerType attribute accepts a long list of possible values. The most interesting and frequently
used of these values are the following:

■■ TextBox Accepts a text value and presents a text box in the UI of the designer.

■■ Operator Allows for providing a set of values in a dedicated list of Option elements.

■■ Dependent Declares a field type that will retrieve its data type from another field, declared
in a TypeFrom attribute.

■■ Dropdown Presents a drop-down list of values on the design surface.

■■ SinglePerson Provides a single-user lookup on the design surface.

■■ Date Provides a control for selecting a data value.

■■ TextArea Allows for setting a multiline text field.

■■ RestCall Defines the arguments of a REST/HTTP call.

■■ ParameterNames Creates a variable in the current workflow context, using the type and
name of the current field or parameter.

■■ StringBuilder Provides a control for building a value of type String.

■■ Dictionary Allows for creating a collection of key/values pairs. Behind the scenes, it corre-
sponds to a DynamicValue variable.

■■ Hide Prevents a field from being displayed on the design surface.

■■ ListItem Provides a lookup to a specific list item.

■■ CreateListItem Provides the UI for configuring the creation of a new list item.

■■ UpdateListItem Provides the UI for configuring the update of a list item.

■■ ItemProperties Provides the UI for configuring a set of fields for a list item.

■■ ChooseListItem Provides the UI for selecting a specific list item.

■■ DocLibNames Provides the UI for selecting a specific document library using a drop-down
list of all the available document libraries.

■■ Email Provides the UI for defining an email address.

■■ Person Allows for providing a single person as the variable type.

■■ WorkflowParameters Provides a lookup to the workflow context parameters.

■■ Float Provides a numeric field or property of type float.

■■ Stages Provides a drop-down list for selecting a specific stage of the workflow definition.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 18 Advanced workflows 639

Creating a code activity
A code activity, which is suitable only for on-premises scenarios, can be based on one or more code
files. Let’s start with a simple example of a custom credit card validator activity. You can inherit from
the base CodeActivity<T>, where the type of T will be Boolean and will return true if the argument
named CreditCard, which is of type InArgument<String>, represents a real credit card number.

Create a new Visual Studio 2012 project of type Activity Library and add a new item of type Code
Activity with the name CreditCardValidationActivity. The code template for a code activity item
already includes a property of type InArgument<String> and overrides the Execute method of the
base CodeActivity class. Change the base class of the CreditCardValidationActivity class to inherit from
CodeActivity<Boolean>, and refresh the signature of the method overriding the Execute method of
the base class. Now you are ready to implement the business logic of the custom code activity. Listing
18-4 provides the code for implementing the custom activity, which internally uses the .NET 4.5 data
validation framework to check the credit card number. For this purpose, you will need to reference
the assembly System.ComponentModel.DataAnnotations with version 4.0.0.0.

More Info The sample code activity uses a publicly available algorithm for validating the
credit card numbers, which is mainly a kind of CRC (cyclic redundancy check). Called LUHN
after its inventor, the algorithm is documented at http://en.wikipedia.org/wiki/Luhn_algorithm.
On the Internet, you will find tons of code samples for validating credit card numbers using
this algorithm. Starting in .NET 4.5, however, you have an alternative: using a native class
called CreditCardAttribute, which is available in the System.ComponentModel.DataAnnotations
namespace and is useful for validating credit card numbers.

LISTING 18-4 The source code of the custom code activity for validating credit card numbers

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Activities;
using System.ComponentModel.DataAnnotations;

namespace DevLeap.SP2013.CustomActivities {

 public sealed class CreditCardValidationActivity : CodeActivity<Boolean> {

 [RequiredArgument]
 public InArgument<String> CreditCard { get; set; }

 protected override bool Execute(CodeActivityContext context) {
 CreditCardAttribute cc = new CreditCardAttribute();
 return (cc.IsValid(this.CreditCard.Get(context)));
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

640 PaRt V Developing workflows

As you can see, the custom code activity itself is very simple, in order to keep the focus on imple-
mentation and deployment.

Deployment of code activities
You can define a real custom activity with all the arguments that you like, whether they are of type
InArgument<T>, OutArgument<T>, or InOutArgument<T>. You can implement the business logic with
as much complexity as you like, but sooner or later you will need to deploy the activity.

The first step is still the creation of an .actions4 file. Listing 18-5 contains the .actions4 file for the
CreditCardValidationActivity.

LISTING 18-5 The content of the CreditCardValidationActivity.actions4 file for defining the
CreditCardValidationActivity

<?xml version="1.0" encoding="utf-8" ?>
<WorkflowInfo Language="en-us">
 <Actions>
 <Action Name="Validate Credit Card"
 ClassName="DevLeap.SP2013.CustomActivities.CreditCardValidationActivity"
 Assembly="DevLeap.SP2013.CustomActivities, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=bbaf2a8a1431fb28"
 Category="DevLeap" AppliesTo="all">
 <RuleDesigner Sentence="Validate credit card number %1 (Output to: %2)">
 <FieldBind Field="CreditCard" DesignerType="TextBox" Id="1"
Text="CreditCard" DisplayName="CreditCard" />
 <FieldBind Field="ValidationResult" DesignerType="ParameterNames" Id="2"
 Text="Result" DisplayName="Result" />
 </RuleDesigner>
 <Parameters>
 <Parameter Name="CreditCard" Type="System.String, mscorlib"
 Direction="In"
 DesignerType="TextArea" Description="The credit card number" />
 <Parameter Name="ValidationResult" Type="System.Boolean, mscorlib"
 Direction="Out"
 DesignerType="ParameterNames" Description="The validation result" />
 </Parameters>
 </Action>
 </Actions>
</WorkflowInfo>

As you can see, the file is almost the same as the one defined in Listing 18-3. However, this time,
the Action element is wrapped in an Actions parent element, and the XML file has a WorkflowInfo root
element. Moreover, the Action element declares the Assembly attribute, which references the strong
name of the assembly providing the custom activity class. The assembly will need to be strongly
named, because it will have to be deployed in the GAC (Global Assembly Cache) of the SharePoint
servers. This time, the custom .actions4 file will go to the file system, not to the content database of
the target site collection through a sandboxed solution.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 18 Advanced workflows 641

While developing custom code activities, you must define a second XML file, called AllowedTypes.
xml, which declares the types allowed for loading in the Workflow Manager engine. Listing 18-6
defines that file for the sample CreditCardValidationActivity class.

LISTING 18-6 The AllowedTypes.xml file defined for the CreditCardValidationActivity

<?xml version="1.0" encoding="utf-8" ?>
<AllowedTypes>
 <Assembly Name="DevLeap.SP2013.CustomActivities">
 <Namespace Name="DevLeap.SP2013.CustomActivities">
 <Type>CreditCardValidationActivity</Type>
 </Namespace>
 </Assembly>
</AllowedTypes>

The file is simple, and declares the assembly, namespace, and class name of the types allowed to
run in the workflow engine.

The following are the steps for deploying the custom code activity to Workflow Manager.

1. Copy the assembly and the AllowedTypes.xml file into the following path locations:

• %ProgramFiles%\Workflow Manager\1.0\Workflow\Artifacts

• %ProgramFiles%\Workflow Manager\1.0\Workflow\WFWebRoot\bin

2. Restart the Workflow Manager engine (that is, the Workflow Manager Backend service).

3. To make the custom activity available in SharePoint 2013, copy the assembly into the GAC of
all the involved SharePoint servers.

4. Add the .actions4 file to the path SharePoint15_Root\TEMPLATE\Language LCID\Workflow.

5. Restart Internet Information Services (IIS) (execute an IISReset).

6. Clean the client-side cache of SharePoint Designer 2013.

In the case of multiserver deployment, you must execute the preceding steps on each server of the
farm.

More Info For further details about deploying custom code-based activities, you can
read the document “Defining and using custom code activities and types in a Workflow
Manager 1.0 workflow,” at http://msdn.microsoft.com/en-us/library/windowsazure/
jj193517(v=azure.10).aspx.

Now you are ready to play with your new custom activity in SharePoint Designer 2013.

www.it-ebooks.info

http://www.it-ebooks.info/

642 PaRt V Developing workflows

Because some of the files have to be copied outside of the SharePoint15_Root path (that is,
C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\15), you cannot create
an automated setup-and-deployment process that uses a WSP file. Unfortunately, you will need to
create a PowerShell file, or something similar, to replicate and automate the installation process.
Nevertheless, for the SharePoint side of the deployment, you can use a farm-level solution—which
will be capable of deploying the assembly to the GAC—to copy the .actions4 file to the Workflow
folder of SharePoint 2013, as well as to recycle the IIS application pool process.

After deploying the custom code activity, you will be able to find it in SharePoint Designer 2013, as
shown in Figure 18-3 (see the red outline).

FIGURE 18-3 The custom code activity in the list of available actions in the designer of SharePoint Designer 2013.

Figure 18-4 shows the behavior of the custom code activity in SharePoint Designer 2013. From
an end-user viewpoint, a custom activity is presented the same way whether it is declarative or code
based. Behind the scenes, however, the deployment process is different, and the potentials are com-
pletely different, too. While a declarative action can use already existing actions only, a code-based
activity can do whatever you want, because it uses custom code.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 18 Advanced workflows 643

FIGURE 18-4 The custom code activity in the designer of SharePoint Designer 2013.

Security and workflow app principal

In SharePoint 2013, the workflow engine has been changed not only from an architectural viewpoint,
but also from a security perspective.

In SharePoint 2010, the workflow instances run as the initiating user by default, or can run imper-
sonating the publisher via the impersonation step, or can run acting with elevated privileges using
some custom code. Now, in SharePoint 2013, workflows have their own identity, which is an app
principal. To experience this behavior, open the web browser and navigate to the Site Settings page.
There, under the Users And Permissions group of actions, click the Site App Permissions menu item.
Figure 18-5 shows the output in the web browser.

www.it-ebooks.info

http://www.it-ebooks.info/

644 PaRt V Developing workflows

FIGURE 18-5 The Site App Permissions page of a SharePoint 2013 site with workflow definitions.

Notice the app outlined in red, which has a display name value of Workflow and a dedicated app
identifier. This is the app identity that will be used by the workflow engine for performing operations.
For the sake of completeness, notice that in the Site App Permission page there is also an app identi-
fier for SharePoint itself. To better prove the existence of an app principal dedicated to the workflow
engine, start a workflow instance of a workflow definition created with SharePoint Designer 2013,
targeting, for example, the Documents library of the current site. Imagine starting an instance of the
sample approval workflow defined in Chapter 16. That workflow definition creates a task. Open the
task and check the Created At and Last Modified At fields (see Figure 18-6).

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 18 Advanced workflows 645

FIGURE 18-6 The display page of a task item created with a custom workflow definition.

As shown in Figure 18-6, the creator is “Workflow on behalf of Paolo Pialorsi” and the modifier
is “Workflow on behalf of Paolo Pialorsi.” What you have just seen makes clear that the workflow
engine has its own identity and acts on behalf of the target users. By default, any workflow instance
will act on behalf of the current user, and consequently, any update or item creation will be marked as
illustrated in Figure 18-6. From an authorization viewpoint, the item creation or modification will be
authorized only if the workflow app permission and the user permission both have the right to do so.
If the user or the workflow do not have the permission to perform an operation, then that operation
will fail.

Occasionally, you may need to implement a workflow for performing actions that users can’t
perform. For example, imagine an approval workflow that has to move a document from one library
to another, where the target library is not directly accessible by the users of the workflow. In such
situations, because of the authorization policy you have just seen, the file-move operation would
fail. However, there is an option to execute a step with the identity of the workflow app only, without
combining the workflow app identity with the user’s identity. The result will be a kind of elevation of
permissions, from the workflow app perspective. To achieve this, you can use the App Step capability,
which is available in SharePoint Designer 2013. First of all, you need to activate a specific site feature
called Workflows Can Use App Permissions from the Site Features page (Figure 18-7).

www.it-ebooks.info

http://www.it-ebooks.info/

646 PaRt V Developing workflows

FIGURE 18-7 The Site Features page of a SharePoint 2013 site with the Workflows Can Use App Permissions fea-
ture highlighted.

Important If you activate the Workflows Can Use App Permissions feature while editing an
existing workflow definition in SharePoint Designer 2013, you will need to close and restart
SharePoint Designer 2013 to make it aware of the availability of the App Step capability.

After activating the feature, insert an app step into the target workflow definition by clicking the
ribbon button highlighted in Figure 18-8.

FIGURE 18-8 The App Step ribbon button available in SharePoint Designer 2013.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 18 Advanced workflows 647

An app step is just a container of actions and conditions that will be executed under the workflow
app identity only. In Figure 18-9, you can see the outline of a sample workflow definition, which cre-
ates a list item in a fake target list of contacts by using the standard workflow app principal combined
with the user’s identity. Then, using an app step, the workflow definition updates the just-created item
by using the workflow app principal only.

FIGURE 18-9 The outline of a sample workflow definition using an app step in SharePoint Designer 2013.

As you can imagine, showing the properties of the item created and then updated by an instance
of this sample workflow definition reveals that the item was created by “Workflow on behalf of Paolo
Pialorsi,” as it was in the previous examples (see Figure 18-10). The same item was last modified by the
workflow principal only, however.

www.it-ebooks.info

http://www.it-ebooks.info/

648 PaRt V Developing workflows

FIGURE 18-10 The security properties of an item created and updated by the sample workflow definition using
the app step.

When you design a workflow definition that uses an app step, during the publishing phase,
SharePoint Designer 2013 will warn you that you are publishing a potentially dangerous workflow
(see Figure 18-11). In fact, the workflow app identity will have permissions to read and write any item
in the target site. Thus, the app step provides a way of having a full elevation of privileges, and you
should therefore use it carefully.

FIGURE 18-11 The warning prompted by SharePoint Designer 2013 while publishing a workflow definition that
includes one or more app steps.

While developing workflows with Visual Studio 2012, the counterpart of the app step is the
AppOnlySequence activity. As discussed in Chapter 17, “Developing workflows,” the AppOnlySequence
activity is a container activity that executes all activities inside of its scope with the identity of the
workflow, instead of using the identity of the workflow initiator user.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 18 Advanced workflows 649

When you create a workflow definition with Visual Studio 2012 inside a SharePoint app, the iden-
tity of that workflow will be the identity of the container app. Thus, any list or item inside the app
website will be accessible for reading and writing to the workflow instances, too. Meanwhile, the con-
tents in the host website will be accessible to the workflow definition only if the app has the proper
permissions granted.

Starting from SharePoint 2013, you should create workflow definitions that target a site using
SharePoint Designer 2013, in order to be able to use the same workflow definition and the new
declarative model regardless of whether you are on-premises or on Office 365. When you are creat-
ing a custom SharePoint app, however, you should use a workflow definition created with Visual
Studio 2012. In this last case, you should create workflow definitions that target the contents of your
app website, not workflow definitions that write content of the host web. Because your app could be
installed on any host web, you cannot make any assumptions about the data structures available in
the host web. Nevertheless, under specific rights grants, you can also create a workflow that reads or
writes content in the host web.

Workflow Services Manager

The new architecture of workflows in SharePoint 2013 introduces the Workflow Services Manager
component, which (as you learned in Chapter 16, and in particular Figure 16-2) handles all the main
tasks and activities related to the new workflow infrastructure. In SharePoint 2013, when you want
to talk and interact with the workflow engine, you need to talk and interact with Workflow Services
Manager, which will be the proxy to the Workflow Manager engine. Figure 18-12 depicts the main
capabilities offered by Workflow Services Manager.

FIGURE 18-12 The main capabilities offered by Workflow Services Manager.

Workflow Services Manager provides a rich set of services and capabilities, which are

■■ Deployment service Enables saving, publishing, and updating properties of workflow defi-
nitions. It also offers methods for validating the XAML of workflow definitions.

■■ Instance service Enables managing and interacting with running workflow instances. It
allows retrieving the list of running instances, a reference to a specific instance, and sending a
direct message to a workflow instance.

www.it-ebooks.info

http://www.it-ebooks.info/

650 PaRt V Developing workflows

■■ Subscription service Manages the associations between workflow definitions, deployed
through the Deployment Service, and targets, which can be lists or sites.

■■ Messaging service Handles messaging from SharePoint to workflow instances via the
Service Bus infrastructure.

■■ Interop service Allows executing legacy SharePoint 2010 and WF 3.x workflows from the
new engine. It is fundamental to guarantee backward compatibility with workflows already
defined in SharePoint 2010.

The goal of Workflow Services Manager is to provide a rich set of APIs, regardless of whether you
are on the server side using the Server Side Object Model or on the client side using the Client-Side
Object Model (CSOM), the JavaScript Client Object Model (JSOM), or REST. This rich set of APIs allows
managing, deploying, provisioning, and communicating with workflow definitions and instances from
any external SharePoint app, mobile device, custom tool, or whatever else.

More Info For more information about the server-side object model for
Workflow Services Manager, consult http://msdn.microsoft.com/en-us/library/
microsoft.sharepoint.workflowservices.aspx. To learn more about taking advantage of
Workflow Services Manager from the CSOM, the JSOM, and REST, you should read the fol-
lowing protocol reference: http://msdn.microsoft.com/en-us/library/hh660550.aspx.

Using Workflow Services Manager
Let's investigate how to use this new API while working on the client side. To execute the necessary
code excerpts, first create a new console application in Visual Studio 2012 and reference at least the
following assemblies:

■■ Microsoft.SharePoint.Client.dll

■■ Microsoft.SharePoint.Client.Runtime.dll

■■ Microsoft.SharePoint.Client.WorkflowServices

To practice working with the Workflow Services Manager API, take a look at how to accomplish
such common tasks as retrieving the workflow definitions associated with a target list or library, asso-
ciating a workflow with a target, terminating a workflow, and publishing a custom workflow through
XAML.

For example, Listing 18-7 enumerates the workflows associated with a specific target library.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 18 Advanced workflows 651

LISTING 18-7 A CSOM code excerpt for retrieving the list of workflow definitions associated with a target library

private static void EnumerateWorkflowSubscriptions() {

 ClientContext ctx = new
ClientContext("http://devbook.sp2013.local/sites/Workflows/");
 Web web = ctx.Web;
 ctx.Load(web);
 List documents = web.Lists.GetByTitle("Documents");
 ctx.Load(documents);
 ctx.ExecuteQuery();

 WorkflowServicesManager wfManager = new WorkflowServicesManager(ctx, web);
 WorkflowSubscriptionService subscriptionService =
 wfManager.GetWorkflowSubscriptionService();
 ctx.Load(subscriptionService);
 WorkflowSubscriptionCollection subscriptions =
 subscriptionService.EnumerateSubscriptionsByList(documents.Id);
 ctx.Load(subscriptions);
 ctx.ExecuteQuery();

 foreach (var s in subscriptions) {
 Console.WriteLine("**");
 Console.WriteLine("Id: {0}", s.Id);
 Console.WriteLine("Name: {0}", s.Name);
 Console.WriteLine("DefinitionId: {0}", s.DefinitionId);
 Console.WriteLine("Enabled: {0}", s.Enabled);
 Console.WriteLine("EventSourceId: {0}", s.EventSourceId);
 Console.WriteLine("EventTypes");
 foreach (var e in s.EventTypes) {
 Console.WriteLine("EventType: {0}", e);
 }
 Console.WriteLine("ManualStartBypassesActivationLimit: {0}",
 s.ManualStartBypassesActivationLimit);
 Console.WriteLine("PropertyDefinitions");
 foreach (var p in s.PropertyDefinitions) {
 Console.WriteLine("Property: {0} - Value: {1}", p.Key, p.Value);
 }
 Console.WriteLine("StatusFieldName: {0}", s.StatusFieldName);
 }
}

Highlighted in bold, the code uses the Subscription service to retrieve the list of workflow sub-
scriptions associated with the library with the title “Documents” in the target SharePoint site. Notice
that the WorkflowServicesManager class must be created to provide the current instance of the
ClientContext, as well as the target object of type Web. Through the WorkflowServicesManager
class instance, you get access to the current Subscription service instance. In fact, the

www.it-ebooks.info

http://www.it-ebooks.info/

652 PaRt V Developing workflows

WorkflowServicesManager type provides all the useful entry points for using the whole Workflow
Services Manager engine. Table 18-5 lists the main members of the WorkflowServicesManager type.

TABLE 18-5 The main members of the WorkflowServicesManager type

Member name Description

AppId Read-only property to retrieve the ID of the currently associated workflow app

IsConnected Read-only property to determine if the current Workflow Services Manager
instance is connected with a back-end Workflow Manager infrastructure

ScopePath Read-only property to retrieve the path to the current scope in the workflow
host

WorkflowServiceAddress Read-only property to retrieve the URI of the workflow manager host

GetWorkflowDeploymentService Method to retrieve an instance of the WorkflowDeploymentService class

GetWorkflowInstanceService Method to retrieve an instance of the WorkflowInstanceService class

GetWorkflowInteropService Method to retrieve an instance of the WorkflowInteropService class

GetWorkflowMessagingService Method, available only in the Server Object Model, to retrieve an instance of the
WorkflowMessagingService class

GetWorkflowSubscriptionService Method to retrieve an instance of the WorkflowSubscriptionService class

Each service type provides a rich set of methods and properties to manage deployment, instances,
interoperability, subscriptions, and messaging.

For example in Listing 18-7, the code excerpt retrieves an instance of the
WorkflowSubscriptionService class, in order to get the currently defined subscriptions for a tar-
get library, using the EnumerateSubscriptionsByList method. Each subscription is represented by
an instance of the WorkflowSubscription type, which can be used not only for reading a subscrip-
tion, but also for associating a new subscription to a target. Later in this section, you will learn
more about creating workflow associations. In Table 18-6, you can see the main members of the
WorkflowSubscription type.

TABLE 18-6 The main members of the WorkflowSubscription type

Member name Description

DefinitionId Property to get or set the ID (GUID) of the associated workflow definition.

Enabled Property to define whether the current workflow subscription is active or not.

EventSourceId Property to get or set the logical source instance name of the event. Usually
corresponds to the GUID of the target list or site.

EventTypes Property to get or set the list of events in target for the current subscription.
The available values are WorkflowStarting, ItemAdded, and ItemUpdated.

ManualStartBypassesActivationLimit Property to define whether multiple workflow instances can be started manu-
ally on the same list item at the same time. This property can be used for list
workflows only.

Name Property to get or set the descriptive name of the subscription.

PropertyDefinitions Property to get a reference to a Dictionary<String, String> variable of key/
value pairs of properties that represent the configuration of the subscription.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 18 Advanced workflows 653

Member name Description

StatusColumnCreated Property of type Boolean to define whether the workflow association will have
to create a custom workflow status column in the target list or library. It is
available only on the Server Object Model.

StatusFieldName Property to get or set the name (String) of the field representing the workflow
status.

GetProperty Method to read a property from the configuration properties of the subscrip-
tion. It is available only on the Server Object Model.

SetProperty Method to write a property to the configuration properties of the
subscription.

Through an instance of the WorkflowSubscriptionService class and with objects of type
WorkflowSubscription, you can do many things. For example, the code excerpt of a workflow associa-
tion page in Listing 18-8 takes advantage of the JSOM implementation of Workflow Services Manager
to associate a workflow definition with a target.

LISTING 18-8 A code excerpt taken from a workflow association page based on the JSOM

function associateWorkflow() {
 ctx = SP.ClientContext.get_current();
 wfManager = SP.WorkflowServices.WorkflowServicesManager.newObject(ctx,
ctx.get_web());
 var depService = wfManager.getWorkflowDeploymentService();
 subscriptionService = wfManager.getWorkflowSubscriptionService();
 ctx.load(subscriptionService);

 definitionId = $('input[name=WorkflowDefinition]').val();
 definitionName = $('input[name=WorkflowName]').val();
 taskListId = $('input[name=TaskListWF4').val();
 historyListId = $('input[name=HistoryList').val();
 allowManual = $('input[name=AllowManual').val();
 autoStartCreate = $('input[name=AutoStartCreate').val();
 autoStartChange = $('input[name=AutoStartChange').val();

 associatedListId = getUrlParams()["AssociatedList"];
 subscription = SP.WorkflowServices.WorkflowSubscription.newObject(ctx);
 subscription.set_definitionId(definitionId);
 subscription.set_name(definitionName);
 subscription.set_enabled(true);
 subscription.set_eventSourceId(associatedListId);

www.it-ebooks.info

http://www.it-ebooks.info/

654 PaRt V Developing workflows

 // Define event types
 eventTypes = new Array();
 eventTypesIndex = 0;
 if (allowManual == "ON") {
 eventTypes[eventTypesIndex] = "WorkflowStart";
 eventTypesIndex = eventTypesIndex + 1;
 }
 if (autoStartCreate == "ON") {
 eventTypes[eventTypesIndex] = "ItemAdded";
 eventTypesIndex = eventTypesIndex + 1;
 }
 if (autoStartChange == "ON") {
 eventTypes[eventTypesIndex] = "ItemUpdated";
 eventTypesIndex = eventTypesIndex + 1;
 }
 subscription.set_eventTypes(eventTypes);

 // Configure Status Field Name
 subscription.set_statusFieldName("OrdersWorkflowStatus");
 subscription.setProperty("StatusColumnCreated", "1");

 // Configure properties
 subscription.setProperty("ApprovalTaskDueDays",
 $("#ApprovalTaskDueDays").val());
 subscription.setProperty("ApprovalRequestMessage",
 $("#ApprovalRequestMessage").val());
 subscription.setProperty("TargetApprover", getUserKeys("peoplePicker"));

 // Workflow Tasks List
 subscription.setProperty("TaskListId", taskListId);

 // Workflow History List
 subscription.setProperty("HistoryListId", historyListId);

 // Publish the WorkflowSubscription
 subscriptionService.publishSubscriptionForList(subscription,
 associatedListId);

 ctx.executeQueryAsync(
 function (sender, args) {
 redirFromInitForm();
 },
 function (sender, args) {
 alert("Something went wrong while associating workflow: " +
 args.get_message());
 redirFromInitForm();
 }
);
}

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 18 Advanced workflows 655

To create a new instance of the WorkflowSubscription type, Listing 18-8 configures all the main
properties (highlighted in bold) described in Table 18-6. The most important part of the code excerpt
is the invocation of the publishSubscriptionForList method, which accepts the subscription and the ID
of the associated list or library. As you might guess from the name of the method, it is suitable only
for publishing subscriptions for lists or libraries. If you want to publish a subscription for a site work-
flow, use the publishSubscription method instead.

Another interesting use case is the starting of a new workflow instance. First, to create a
new instance of a workflow definition, use the GetWorkflowInstanceService method of the
WorkflowServicesManager class to reference an object of type WorkflowInstanceService. Next, as you
learned in Chapter 17, you can use the StartWorkflow or the StartWorkflowOnListItem methods. The
WorkflowInstanceService class provides many other helpful members, as well. Table 18-7 lists the most
commonly used methods.

TABLE 18-7 The main members of the WorkflowInstanceService type

Member name Description

CancelWorkflow Sends a cancel message to a specified workflow instance, permitting the instance
to execute a cancellation scope.

CountInstances Retrieves the count of all the instances of a specified subscription.

CountInstancesWithStatus Retrieves the count of all the instances of a specified subscription that have a
specific internal status. The internal status can assume any of the following val-
ues: NotStarted, Started, Suspended, Canceling, Canceled, Terminated, Completed,
NotSpecified, and Invalid.

EnumerateInstancesForListItem Retrieves the instances running on a specific list item; allows multiple overloads.

EnumerateInstancesForSite Retrieves the instances running on a specific site.

GetDebugInfo Retrieves debug information, in JSON format, about a workflow instance.

GetInstance Retrieves a workflow instance by ID; allows multiple overloads.

ResumeWorkflow Resumes a workflow instance that is suspended.

StartWorkflow Starts a site workflow.

StartWorkflowOnListItem Starts a list workflow.

SuspendWorkflow Suspends a workflow instance that is executing.

TerminateWorkflow Terminates a workflow instance forcefully by deleting it from memory. The
instance is not allowed to execute a cancellation scope.

For example, Listing 18-9 contains a code excerpt of a function that forcibly terminates all the
workflow instances running on the items of a target library.

www.it-ebooks.info

http://www.it-ebooks.info/

656 PaRt V Developing workflows

LISTING 18-9 A CSOM code excerpt of a function that forcibly terminates all the workflow instances running on
the items of a list

private static void TerminateAllWorkflowInstances() {
 ClientContext ctx = new ClientContext(
 "http://devbook.sp2013.local/sites/Workflows/");
 Web web = ctx.Web;
 ctx.Load(web);
 List documents = web.Lists.GetByTitle("Documents");
 ctx.Load(documents);
 ctx.ExecuteQuery();

 WorkflowServicesManager wfManager = new WorkflowServicesManager(ctx, web);
 WorkflowInstanceService instanceService = wfManager.
 GetWorkflowInstanceService();

 ListItemCollection items = documents.GetItems(
 CamlQuery.CreateAllItemsQuery());
 ctx.Load(items);
 ctx.ExecuteQuery();

 foreach (ListItem item in items) {
 WorkflowInstanceCollection instances =
 instanceService.EnumerateInstancesForListItem(documents.Id, item.Id);
 ctx.Load(instances);
 ctx.ExecuteQuery();

 foreach (var instance in instances) {
 if (instance.Status == WorkflowStatus.Started ||
 instance.Status == WorkflowStatus.Suspended)
 instanceService.TerminateWorkflow(instance);
 }
 ctx.ExecuteQuery();
 }
}

The WorkflowDeploymentService class is also interesting. Through this service, you can deploy and
manage the workflow definitions. Table 18-8 lists its main methods.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 18 Advanced workflows 657

TABLE 18-8 The main members of the WorkflowDeploymentService type

Member name Description

DeleteDefinition Deletes a workflow definition.

DeprecateDefinition Marks a workflow definition as deprecated. Currently running workflow instances are
allowed to complete, but new instances of the workflow definition are prevented from
starting. This method is useful for performing workflow versioning.

EnumerateDefinitions Retrieves workflow definitions from the workflow store.

GetDefinition Retrieves a specific workflow definition from the workflow store.

GetDesignerActions Retrieves the list of valid Workflow Manager Client 1.0 actions for the specified server.

PackageDefinition Packages a workflow definition into a WSP file that will be saved in the Site Assets library of
the current site.

PublishDefinition Publishes a workflow definition to the workflow store.

SaveDefinition Saves a workflow definition to the workflow store.

ValidateActivity Validates a workflow activity against workflow definitions stored in the target workflow
store.

Listing 18-10 shows a code excerpt of a sample procedure for publishing the XAML of a workflow
definition to the workflow store.

LISTING 18-10 A CSOM code excerpt of a function that published the XAML of a workflow definition to the
workflow store

private static void PublishXamlWorkflowToWorkflowStore(String xaml) {

 ClientContext ctx = new
 ClientContext("http://devbook.sp2013.local/sites/Workflows/");
 Web web = ctx.Web;
 ctx.Load(web);
 List documents = web.Lists.GetByTitle("Documents");
 ctx.Load(documents);
 ctx.ExecuteQuery();

 WorkflowServicesManager wfManager = new WorkflowServicesManager(ctx, web);
 WorkflowDeploymentService deploymentService =
 wfManager.GetWorkflowDeploymentService();

 var validationResult = deploymentService.ValidateActivity(xaml);
 ctx.ExecuteQuery();

 WorkflowDefinition definition = new WorkflowDefinition(ctx);
 definition.Xaml = xaml;
 definition.DisplayName = "Sample XAML based Workflow";
 definition.Description = "Workflow saved by code";
 deploymentService.SaveDefinition(definition);
 ctx.ExecuteQuery();
}

www.it-ebooks.info

http://www.it-ebooks.info/

658 PaRt V Developing workflows

Listing 18-10 validates the XAML code, which is provided as an argument of type String to the
sample PublishXamlWorkflowToWorkflowStore method, and then saves the workflow definition to
the workflow store. After executing that code and providing a valid XAML workflow definition, you
will find a new workflow definition available in SharePoint Designer 2013 for adding in the target
SharePoint site.

The WorkflowInteropService class simply provides methods to start or cancel a legacy SharePoint
2010 and WF 3.x workflow instance. In particular, the StartWorkflow method accepts all the argu-
ments useful to start a new workflow instance—which are the association name, the correlation ID,
the target list ID, and the target item GUID—as well as any additional arguments or parameters for
running the workflow. Meanwhile, the CancelWorkflow method accepts the GUID of the workflow
instance to cancel. Lastly, the WorkflowMessagingService class, which is available only on the Server
Object Model, provides the PublishEvent method, which allows publishing a message to the Service
Bus, providing the GUID of the event source, the name of the event, and a collection of key/value
pairs for providing a payload to the target subscribers of the event. Typically, the event source GUID
should be the ID of the list, or of the site depending on the kind of workflow you are running, and the
name of the event is the fully qualified name of the event.

Summary

In this chapter, you learned how to create custom activities, either declaratively or by writing code.
You learned how to deploy both declarative and code-based activities, and you experimented with
both of them. Then you saw how the new security infrastructure of workflows in SharePoint 2013
works, and how the authorization rules are applied. In particular, you saw how to use app steps, which
are available in SharePoint Designer 2013, and the AppOnlySequence activity, which is available in
Visual Studio 2012. Lastly, you learned about Workflow Services Manager by walking through some
useful code excerpts for taking advantage of this powerful component from client code using the
CSOM or the JSOM.

www.it-ebooks.info

http://www.it-ebooks.info/

 659

PART VI

Security
infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

 661

C H A P T E R 1 9

authentication and authorization
infrastructure

No real solution today can ignore the topics of authentication and authorization. Microsoft
SharePoint 2013 takes security seriously and provides a modern and powerful set of tools,

as well as a solid architecture, for supporting claims-based authentication and authorization. The
native support for claims opens SharePoint 2013 to integration with third-party platforms as well as
single-sign-on scenarios.

In this first chapter of Part VI, “Security infrastructure,” you will dig into the main topics about
authentication and authorization in SharePoint 2013. In particular, you will learn about claims-based
authentication, as well as the old classic authentication mode, which is still available for the sake of
backward compatibility. You will also learn how SharePoint authorizes users after having authenti-
cated them. In the next chapter, you will focus on identity federation and OAuth.

Authentication infrastructure

Within its two authentication modes—classic and claims based—SharePoint 2013 supports three
authentication methods:

■■ Windows Authentication Uses the Windows infrastructure, providing support for NTLM,
Kerberos, Anonymous, Basic, and Digest authentication. X.509 Certificate Authentication is
not supported, unless you manually configure users’ certificate mapping rules within Internet
Information Services (IIS). It works both in classic mode and claims-based mode.

■■ Forms-Based Authentication (FBA) Utilizes a username-and-password HTML form that
queries a membership provider on the back end. By default, it includes providers for LDAP
and SQL Server; however, you can develop custom providers of your own. FBA is based on the
standard forms authentication provided by Microsoft ASP.NET, which resides at the very core
of SharePoint. It works only in claims-based mode.

■■ SAML Token-Based Authentication Uses an external identity provider that supports SAML
1.1 and WS-Federation Passive profile. SAML token-based Authentication includes Microsoft
Active Directory Federation Services (AD FS) version 2.0, LDAP, or custom third-party identity
providers. It works only in claims-based mode.

www.it-ebooks.info

http://www.it-ebooks.info/

662 PaRt VI Security infrastructure

You can configure each method against a web application or a zone using SharePoint Central
Administration (SPCA), as shown in Figure 19-1. To reach the Create New Web Application page, sim-
ply open SPCA, click Application Management, and then click Manage Web Applications. There you
will find a ribbon button for creating a new web application.

Note A SharePoint zone provides the ability to publish the same web application with mul-
tiple endpoints (URLs). Available since SharePoint 2007, the goal of this feature is to give
you a method to share a common application configuration and common content data-
bases between multiple IIS sites, which can each have specific configurations of authentica-
tion, authorization, security in general, and web.config files.

FIGURE 19-1 The UI provided by SPCA for configuring the authentication methods.

Starting with SharePoint 2013, the SPCA UI provides the settings for configuring claims-based
authentication only. If you need to use classic authentication mode for backward compatibility, such
as when running sites migrated from SharePoint 2010, then you must use PowerShell. This is only
a temporary solution, however, because classic mode is deprecated and will be removed in future

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 19 Authentication and authorization infrastructure 663

releases. Thus, when migrating an existing SharePoint solution to SharePoint 2013, you should care-
fully consider the task of migrating to claims-based authentication, too, if the source web application
is not already claims based.

Note Remember that classic mode supports only Windows Authentication (that is, NTLM
or Kerberos), while claims-based mode supports all the three available authentication
methods.

In the following section, you will learn the main features of claims-based authentication.

Claims-based authentication
The claims-based authentication mode was introduced with SharePoint 2010. It employs the concept
of claims identity, representing each user’s identity as tokens made of claims. A claim is a statement,
asserted by an issuer, about a subject, which is assumed to be true by the reader, due to a trust rela-
tionship between the reader and the issuer. The statement can be about any kind of information. For
example, it could be the name, the identity, a role membership, a user preference, or anything else.
Claims are issued by a claim provider and packaged into a security token, which is emitted by a secu-
rity token service, which can also be an identity provider or can use an external identity provider. The
identity provider is a service that authenticates the end users, based on a specific set of credentials.
For example, an identity provider could be Microsoft Windows Live, Facebook, your Active Directory
infrastructure with AD FS on top of it, and so on. The target of the security token is a service provider,
which can be a website, a web service, or whatever else. The entity described by the security token is
called Subject; in general, this is a user, a server, a service, or anything else that can have an identity
of its own.

The power of claims-based authentication arises from the fact that claims-based identities are
cross platform and can lead your solutions to provide single-sign-on capabilities on multiple plat-
forms using a standard, secure, and reliable protocol. You can use claims to federate your company
with customers, resellers, external service providers, and other third parties. Using claims-based
authentication and external security token services and identity providers allows you to federate
and trust external systems without duplicating users’ credentials and passwords. Only the identity
providers will manage credentials and passwords, while all the various service providers will trust the
intermediary identity providers and the security tokens emitted by the security token services.

Each claim consists of a ClaimType property, which in general is a URI that uniquely defines the
type of the claim; a ClaimValue property, which is the real content of the claim; and a ClaimValueType
property, which defines the data type of the ClaimValue property. Each claim can also be described by
some other information, such as the Issuer and the target Subject properties.

www.it-ebooks.info

http://www.it-ebooks.info/

664 PaRt VI Security infrastructure

The capability to describe an identity as a set of claims (a set of true and trustable informa-
tion) allows supporting any kind of authentication mechanism. In fact, with the claims-based mode,
you can use Windows Authentication, but you can also use FBA or any third-party trusted identity
provider.

If you use Windows Authentication in claims-based authentication mode, the Windows identities
will be converted to a set of claims representing the current user. You can still take advantage of inte-
grated authentication, because the Windows identity of the current user will be translated into claims
at no cost to you. In addition, a Windows user authenticated using classic mode is almost the same as
a user authenticated with claims-based mode, because internally in SharePoint the user identity is the
same (an instance of type SPUser). On the back end, SharePoint 2013 always uses claims identities—
regardless of the mode you selected on the front end—to communicate between the front-end serv-
ers and the servers (within the same farm) hosting service applications.

In your code, the current user’s identity and principal will be instances of type ClaimsIdentity and
ClaimsPrincipal, available in the assembly Microsoft.IdentityModel released with Windows Identity
Foundation (WIF) 1.0.

Important Be careful: Microsoft .NET Framework 4.5 defines two new types for
ClaimsIdentity and ClaimsPrincipal in the System.Security.Claims namespace in mscorlib.dll,
and these are broadly available in all the .NET Framework 4.5. However, SharePoint 2013
uses the WIF 1.0 library, with the addition of an extension library (Microsoft.IdentityModel.
Extensions.dll) for supporting OAuth and server-to-server authentication. Thus, the
ClaimsIdentity and ClaimsPrincipal types used by SharePoint 2013 are those available in
the old version of WIF, not the new one introduced in .NET 4.5. Chapter 20, “Claims-based
authentication, federated identities, and OAuth,” will cover this topic in depth.

Migrating from classic to claims-based mode
When you are migrating a SharePoint 2010 web application that uses classic-mode authentica-
tion to claims-based mode in SharePoint 2013, you can use the PowerShell cmdlet Convert-
SPWebApplication. The syntax is as follows:

Convert-SPWebApplication -Identity <SPWebApplicationPipeBind>
 -To <String>
 [-Force <SwitchParameter>]
 [-RetainPermissions <SwitchParameter>]

where the Identity argument identifies the web application to convert. The To argument declares the
target authentication mode, which by now can only assume the literal value of Claims. There is also
an optional Force argument that is useful to keep permissions (RetainPermissions) while migrating. For

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 19 Authentication and authorization infrastructure 665

example, if you want to migrate the web application published at the URL http://migrated.intranet.
local/ to claims-based authentication, you can use the following syntax:

Convert-SPWebApplication -Identity http://migrated.intranet.local
 -To Claims –RetainPermissions -Force

The command converts the web application’s authentication mode to Windows Claims authen-
tication mode, which is the most similar to Windows Classic, and migrates the user accounts in the
content database to claims-encoded values, keeping their assigned permissions. To execute the
migration, you must be a member of the securityadmin role of the target SQL Server database server,
a member of the db_owner role of all the content databases that need to be upgraded, and a member
of the Administrators group of the server on which you are running the PowerShell script.

Important After you convert a web application to claims-based authentication, you cannot
revert it back to classic-mode authentication. Thus, you should plan the migration carefully
and eventually test it in a testing environment before applying it in production.

After migration, check in the ULS (Unified Logging System) log for any user accounts that are no
longer in the Active Directory database (defined in the converted content databases), because they
will not be migrated.

If you want to convert only a subset of users to claims-based authentication, such as only those
who use a specific content database, PowerShell can help. Specifically, use the MigrateUsersToClaims
method provided by the SPWebApplication class. You can find further details about this method at
http://msdn.microsoft.com/en-us/library/jj171669.aspx.

Claims-based authentication types

With claims-based mode, you can enable multiple authentication methods within the same zone.
Thus, you can now have a unique zone—and a unique URL—to access your site, but your users will be
able to choose between multiple authentication methods with which to provide their credentials.

When you configure claims-based mode with a unique authentication method, SharePoint will
authenticate the end users directly with that unique method. However, if you configure multiple
authentication methods, your users will be prompted to select their desired authentication method.
Figure 19-2 depicts the authentication method selection page, configured to support both Windows
Authentication and FBA.

www.it-ebooks.info

http://www.it-ebooks.info/

666 PaRt VI Security infrastructure

FIGURE 19-2 The Sign In page, on which end users select the authentication method when multiple authentica-
tion methods are configured on the same zone.

Behind the scenes, the authentication engine of SharePoint normalizes all the users’ identities
into SPUser instances, converting every identity into a set of claims. The users’ identity normalization
process involves invoking a native service application of SharePoint, called the Security Token Service
(STS). Figure 19-3 shows a functional schema of the identity normalization process managed by
SharePoint 2013. This section will cover Windows Authentication and FBA, while SAML-based authen-
tication will be covered in the next chapter.

FIGURE 19-3 A functional schema of the identity normalization process managed by SharePoint 2013.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 19 Authentication and authorization infrastructure 667

Windows authentication
In terms of capabilities, Windows Authentication is almost the same as the old-style classic mode.
Backstage, however, the user’s identity is translated into a set of claims. If you develop a custom
control or Web Part for writing a user’s identity, you will see that the current user’s identity is a
ClaimsIdentity. The set of claims that comprise the user’s identity by default are

■■ http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier A claim with a
value of type String that defines the user name.

■■ http://schemas.microsoft.com/ws/2008/06/identity/claims/primarysid A claim with a
value of type String that defines the security identifier (SID) of the user.

■■ http://schemas.microsoft.com/ws/2008/06/identity/claims/primarygroupsid A claim
with a value of type String that defines the SID of the primary group of the users.

■■ http://schemas.xmlsoap.org/ws/2005/05/identity/claims/upn A claim with a value of
type String that defines the user principal name (UPN) of the user.

■■ http://schemas.microsoft.com/sharepoint/2009/08/claims/userlogonname A claim
with a value of type String that defines the logon name of the user.

■■ http://schemas.microsoft.com/sharepoint/2009/08/claims/userid A claim with a value
of type String that defines the user ID of the current user. For Windows Authentication, it
assumes a value of 0#.w|{Username}, where the string 0#.w| is a trailer and {Username} is the
user name of the user. The w stands for Windows Authentication.

■■ http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name A claim with a value
of type String that defines the name of the user, assuming a syntax like that of the previously
described claim (userid).

■■ http://schemas.microsoft.com/sharepoint/2009/08/claims/identityprovider A claim
with a value of type String that defines the name of the identity provider. For Windows
Authentication, it assumes a value of windows. This is a SharePoint-specific claim.

■■ http://schemas.microsoft.com/office/2012/01/nameidissuer A claim with a value of type
String describing the issuer of the nameid claim (see the nameid entry later in this list). This is
a Microsoft Office–specific claim.

■■ http://sharepoint.microsoft.com/claims/2009/08/isauthenticated A claim with a value
of type String and an inner value of True or False, used to indicate whether the current user is
authenticated. This is a SharePoint-specific claim.

■■ http://schemas.microsoft.com/sharepoint/2009/08/claims/farmid A claim
with a value of type String that defines the ID of the current SharePoint farm. This is a
SharePoint-specific claim.

■■ http://schemas.microsoft.com/office/2012/01/upn A claim with a value of type String
that describes the UPN of the current user. This is an Office-specific claim.

www.it-ebooks.info

http://www.it-ebooks.info/

668 PaRt VI Security infrastructure

■■ http://schemas.microsoft.com/office/2012/01/nameid A claim with a value of type String
that describes the unique name identifier of the current user. This is an Office-specific claim.

■■ http://sharepoint.microsoft.com/claims/2009/08/tokenreference A claim with a value of
type String that defines a reference to the user token. This is a SharePoint-specific claim.

■■ http://sharepoint.microsoft.com/claims/2012/02/claimprovidercontext A claim with
a value of type String that defines the context of the current user token. This is a SharePoint-
specific claim usually corresponding to the URL of the context.

■■ http://schemas.microsoft.com/ws/2008/06/identity/claims/groupsid A claim with a
value of type String that defines the SID of a group to which the current user belongs. A single
ClaimsIdentity could contain many claims of this type, depending on the number of groups to
which the current user belongs.

■■ http://schemas.microsoft.com/ws/2008/06/identity/claims/authenticationmethod A
claim with a value of type String that defines the configured authentication method.
When using Windows Authentication, it assumes a value of http://schemas.microsoft.com/
ws/2008/06/identity/authenticationmethod/windows.

■■ http://schemas.microsoft.com/ws/2008/06/identity/claims/authenticationinstant A
claim with a value of type DateTime that defines the date and time the token was issued.

To extract the value of the claims, you can use code such as in Listing 19-1.

LISTING 19-1 Extracting claims from a current user’s identity

ClaimsIdentity ci = this.Page.User.Identity as ClaimsIdentity;
if (ci != null) {
 this.Controls.Add(new LiteralControl("<h2>Claims</h2>"));
 foreach (Claim c in ci.Claims) {
 this.Controls.Add(new LiteralControl(
 String.Format(
 "<div>ClaimType: {0} - ClaimValue: {1} - ClaimValueType: {2}</div>",
 c.ClaimType, c.Value, c.ValueType)));
 }
}

In this example, it suffices to cast the current user’s identity (this.Page.User.Identity) to the
ClaimsIdentity type of the Microsoft.IdentityModel namespace. Assuming the cast is successful, you
will be able to enumerate the Claims property and extract each individual Claim instance.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 19 Authentication and authorization infrastructure 669

Forms-Based Authentication
When you configure FBA, you gain the capability to authenticate your users against an external
repository of users. By default, this can be an LDAP or Microsoft SQL Server database built using the
standard SQL Membership Provider of ASP.NET. Of course, you can also develop custom membership
providers of your own, querying any kind of users’ repository. In the next section, you will learn how
to configure SharePoint 2013 to support FBA with the standard SQL Membership Provider. For now,
consider the default set of claims that make up the user’s identity when using FBA:

■■ http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier The same as
in Windows Authentication.

■■ http://schemas.microsoft.com/ws/2008/06/identity/claims/role A claim with a value of
type String that defines the name of a role to which the current user belongs. There could be
many claims of this type in a single ClaimsIdentity, depending on the number of roles to which
the current user belongs.

■■ http://schemas.microsoft.com/sharepoint/2009/08/claims/userlogonname The same
as in Windows Authentication.

■■ http://schemas.microsoft.com/sharepoint/2009/08/claims/userid A claim with a value
of type String that defines the user ID of the current user. For FBA, it assumes a value of
0#.f|{MembershipProvider}|{Username}, where the string 0#.f| is a trailer, {MembershipProvider}
is the name of the configured membership provider, and {Username} is the user name of the
user. The f stands for FBA.

More Info For further details about login name encoding, please read the following
Wiki page on TechNet: http://social.technet.microsoft.com/wiki/contents/articles/13921.
sharepoint-2013-and-sharepoint-2010-claims-encoding.aspx.

■■ http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name A claim with a value
of type String that defines the name of the user, assuming a syntax like that of the previously
described claim (userid).

■■ http://schemas.microsoft.com/sharepoint/2009/08/claims/identityprovider A claim
with a value of type String that defines the name of the identity provider. For FBA, it assumes a
value of forms:{MembershipProvider}, where {MembershipProvider} is the name of the config-
ured membership provider. This is a SharePoint-specific claim.

■■ http://sharepoint.microsoft.com/claims/2009/08/isauthenticated A claim with a value
of type String and an inner value of True or False, used to indicate whether the current user is
authenticated. This is a SharePoint-specific claim.

www.it-ebooks.info

http://www.it-ebooks.info/

670 PaRt VI Security infrastructure

■■ http://schemas.microsoft.com/sharepoint/2009/08/claims/farmid A claim with a value
of type String that defines the ID of the current SharePoint farm. This is a SharePoint-specific
claim.

■■ http://schemas.microsoft.com/office/2012/01/upn A claim with a value of type String
that describes the UPN of the current user. This is an Office-specific claim.

■■ http://schemas.microsoft.com/office/2012/01/nameid A claim with a value of type String
that describes the unique name identifier of the current user. This is an Office-specific claim.

■■ http://sharepoint.microsoft.com/claims/2009/08/tokenreference A claim with a value of
type String that defines a reference to the user token. This is a SharePoint-specific claim.

■■ http://sharepoint.microsoft.com/claims/2012/02/claimprovidercontext A claim with
a value of type String that defines the context of the current user token. This is a SharePoint-
specific claim that usually corresponds to the URL of the context.

Configuring FBA with SQL Membership Provider

In this section, you will learn how to configure a SharePoint 2013 web application to support FBA
against a SQL Server database. The process involves configuring and creating a SQL Server database,
changing the web.config file of the target web application, SPCA, and SharePoint STS, configuring
SQL Server permissions, configuring SharePoint, and enabling users and roles in SharePoint.

Configuring the SQL Server database
To configure SharePoint to support FBA with SQL Membership Provider, you first need to create a
SQL Server database file that supports your environment. To help you, ASP.NET provides a tool called
ASPNET_REGSQL.EXE, which is available in the Microsoft .NET Framework folder. You invoke ASPNET_
REGSQL.EXE within the Microsoft Visual Studio command prompt, and it creates a SQL Server data-
base file. The tool is organized as a wizard (see Figure 19-4) with four main pages:

■■ Welcome screen There is nothing more to do here than simply click the Next button.

■■ Select A Setup Option On this page, you select whether to configure a new database or to
remove an existing one. Choose the Configure SQL Server For Application Services option.

■■ Select The Server And Database Here, you select the target SQL Server database server
where the database file will be created, together with the authentication method that will be
used to communicate with the server, and the name of the database file that will be created.

■■ Confirm Your Settings This is simply a summary of your settings.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 19 Authentication and authorization infrastructure 671

FIGURE 19-4 The Select The Server And Database page of the ASPNET_REGSQL.EXE wizard.

Note To learn more about FBA with a SQL Server database on the back end, consult
http://www.microsoft.com/en-us/download/details.aspx?id=34684.

After you create the database, you need to configure some users and groups to use in SharePoint.
For this purpose—and for the sake of simplicity—you can create a new ASP.NET Empty Website proj-
ect in Visual Studio.

Important Remember that SharePoint 2013 is based on.NET Framework 4.5. Therefore,
your website should be created using the same target version of .NET Framework to avoid
issues with varying assembly versions.

You can configure the website by going to Project | ASP.NET Configuration, which brings up the
ASP.NET Web Site Administration Tool. This is a well-known tool with which every ASP.NET developer
should be familiar. From there, you can use the Security Setup Wizard to configure your site for sup-
porting FBA using the previously created SQL database. You can also manually configure the web.
config file, if you like. After completing this task, the web.config file of the sample site will look like the
XML excerpt illustrated in Listing 19-2.

More Info If you are not familiar with the Web Site Administration Tool site, see the
document “Web Site Administration Tool Overview,” which is available on MSDN at
http://msdn.microsoft.com/en-us/library/yy40ytx0.aspx.

www.it-ebooks.info

http://www.it-ebooks.info/

672 PaRt VI Security infrastructure

LISTING 19-2 The web.config file of the sample site for configuring FBA in Visual Studio

<configuration>
 <connectionStrings>
 <add name="SharePointFBA" connectionString="server=SP2013SQL;database=SP2013_
Farm_FBA;integrated security=SSPI;"/>
 </connectionStrings>

 <system.web>
 <compilation debug="true" targetFramework="4.0" />

 <authentication mode="Forms" />

 <authorization>
 <deny users="?"/>
 </authorization>

 <membership defaultProvider="FBASQLMembershipProvider">
 <providers>
 <add connectionStringName="SharePointFBA" applicationName="/"
 passwordAttemptWindow="5" enablePasswordRetrieval="false"
 enablePasswordReset="false" requiresQuestionAndAnswer="true"
 requiresUniqueEmail="true" passwordFormat="Hashed"
 name="FBASQLMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider, System.Web,
Version=4.0.0.0,Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
 </providers>
 </membership>

 <roleManager enabled="true" defaultProvider="FBASQLRoleManager">
 <providers>
 <add connectionStringName="SharePointFBA" applicationName="/"
 name="FBASQLRoleManager"
 type="System.Web.Security.SqlRoleProvider, System.Web,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
 </providers>
 </roleManager>

 </system.web>
</configuration>

Note The type attribute values, as well as the connectionString attribute, in the preced-
ing listing should appear on a single line in your code. They’re wrapped here due to typo-
graphic constraints.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 19 Authentication and authorization infrastructure 673

These configuration elements will be useful when configuring SharePoint 2013 for FBA. While
you’re in the Security Setup Wizard, you can also configure some users and groups, for testing pur-
poses. In the sample code that accompanies this chapter, the following roles have been created:

■■ Admins

■■ Managers

■■ Users

In addition, the following users have been created:

■■ SampleAdmin01

■■ SampleManager01

■■ SampleUser01

As their names imply, each user belongs to the corresponding role. For example, you can give
them a password value of Passw0rd!. You should test your authentication infrastructure by writing a
couple of sample pages for logging in and logging out.

Configuring SharePoint web.config files
Now that you have a working configuration for you site, you are ready to apply that configuration
to SharePoint. First, you need to locate the web.config file of the web application where you will
configure FBA. By default, the root folder of a SharePoint web application is located in the C:\inetpub\
wwwroot\wss\VirtualDirectories folder of every front-end server.

Note For the sake of simplicity, if you are working in a lab environment, you could create
a new web application by using SPCA or PowerShell, and configure it with the following
steps. Otherwise, in a production environment, you should locate the web.config file of the
real target web application.

Next, you need to copy the connectionStrings/add element that defines your SQL Server mem-
bership database into the connectionStrings element of the target web.config file. Be careful while
editing the web.config file, and make a backup copy of it before applying any kind of change. If the
connectionStrings section is missing, you must create it from scratch, adding it after the configSections
element of the web.config file, as shown:

 <connectionStrings>
 <add name="SharePointFBA" connectionString="server=SP2013SQL;database=SP2013_Farm_
FBA;integrated security=SSPI;"/>
 </connectionStrings>

www.it-ebooks.info

http://www.it-ebooks.info/

674 PaRt VI Security infrastructure

Then you need to locate the Membership and RoleProvider sections, within the system.web sec-
tion of the target web.config file. There, you need to copy only the providers’ configuration, without
changing the default providers that were already configured by SharePoint. The result should look like
the following:

<membership defaultProvider="i">
 <providers>
 <add name="i" type="Microsoft.SharePoint.Administration.Claims.
SPClaimsAuthMembershipProvider, Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c" />
 <add connectionStringName="SharePointFBA" applicationName="/"
 passwordAttemptWindow="5" enablePasswordRetrieval="false"
 enablePasswordReset="false" requiresQuestionAndAnswer="true"
 requiresUniqueEmail="true" passwordFormat="Hashed"
 name="FBASQLMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider, System.Web, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
 </providers>
</membership>
<roleManager defaultProvider="c" enabled="true" cacheRolesInCookie="false">
 <providers>
 <add name="c" type="Microsoft.SharePoint.Administration.Claims.SPClaimsAuthRoleProvider,
Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c" />
 <add connectionStringName="SharePointFBA" applicationName="/"
 name="FBASQLRoleManager"
 type="System.Web.Security.SqlRoleProvider, System.Web, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
 </providers>
</roleManager>

Note The type attribute values in the preceding listing should appear on a single line in
your code. They’re wrapped here due to typographic constraints.

In the previous example, the code highlighted in bold shows that SharePoint 2013 already has a
default membership provider named i and a default role provider named c. These are the providers
that manage the claims-based infrastructure.

After you have configured the web.config file of the target web application, you need to configure
the web.config file of the SPCA web application in the same way, as well as the web.config file of the
internal SharePoint STS. The SPCA web application must be configured so that you can manage users
defined in the FBA database from within the administrative pages, as well. You can still find its web.
config file in a folder in the C:\inetpub\wwwroot\wss\VirtualDirectories path of every front-end server.
The STS web application needs to have access to the FBA database in order to retrieve claims and
information about the authenticated users during identity normalization. You can find the STS service
of SharePoint and its web.config file in the SharePoint15_Root\WebServices\SecurityToken folder.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 19 Authentication and authorization infrastructure 675

Configuring SQL Server permissions
To take full advantage of the authentication infrastructure that you have just configured, the appli-
cation pools of SharePoint need to have access to the SQL Server database you configured for FBA.
Thus, you need to properly configure the database’s permissions. This is a simple but fundamental
task. To carry it out, you need to enable the Windows identities configured for the following:

■■ The SPCA application pool

■■ The STS application pool

■■ The application pool of the target web application

All three need the following database role memberships:

■■ aspnet_Membership_FullAccess

■■ aspnet_Roles_FullAccess

Configuring SharePoint
You are almost done. Now you simply need to configure the FBA providers—for example, through
the SPCA interface. To access the list of available web applications, click Application Management,
then click Manage Web Applications, and then choose the FBA target. On the ribbon, click the
Authentication Providers command, and in the window that appears, click the Default Configuration
link. The Edit Authentication configuration page will open.

Select the Enable Forms Based Authentication (FBA) check box, and provide the name for the
membership provider and role provider to use. Figure 19-5 shows the configuration dialog box, com-
pleted with information based on the current sample scenario.

www.it-ebooks.info

http://www.it-ebooks.info/

676 PaRt VI Security infrastructure

FIGURE 19-5 The Edit Authentication configuration page of SPCA.

Enabling FBA users or roles
The last step in configuring FBA is to enable some users or roles to access the site collections defined
in your target web application. You can accomplish this task either from SPCA or from the People And
Groups page of the target site.

Notice that if you now try to browse for users or roles, you will be able to browse both Windows
and FBA users within the same browsing windows. From the perspective of SharePoint 2013, all
the users are claims identities, regardless of the authentication provider that was used. Notice how
searching for users in Figure 19-6 returns one result in the role repository of FBA and three more
results in the security groups of Windows.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 19 Authentication and authorization infrastructure 677

FIGURE 19-6 The Share dialog box with multiple authentication providers configured, during a search for users.

Authorization infrastructure

No matter which authentication mode and methods you choose, authorization in SharePoint is always
managed the same way. This is a great feature that makes life easier for SharePoint administrators,
because they do not need to care about the front-end authentication environment.

Authorization in SharePoint is based on permission levels, which are a formal definition of a set of
permissions. Permission levels can be assigned to users (SPUser) or groups (SPGroup). Both SPUser
and SPGroup inherit from SPPrincipal, which is the base class for every principal in SharePoint,
including app principals, as you will learn in Chapter 20. The permission is the low-level item from an
authorization viewpoint. SharePoint defines many permissions, and Table 19-1 presents the full list, in
the same order as they are defined in the SharePoint management interface. Consider that these per-
missions cannot be customized or extended. However, it’s unlikely that you would need to customize
them because they cover a very wide range of needs.

www.it-ebooks.info

http://www.it-ebooks.info/

678 PaRt VI Security infrastructure

TABLE 19-1 The list of permissions defined in SharePoint 2013

Permission Description

Manage Lists Allows you to create and delete lists, add or remove columns in a list, and add or
remove public views of a list.

Override Check Out Allows you to discard or check in a document that is checked out to another user.

Add Items Allows you to add items to lists and add documents to document libraries.

Edit Items Allows you to edit items in lists, edit documents in document libraries, and cus-
tomize Web Part pages in document libraries.

Delete Items Allows you to delete items from a list and documents from a document library.

View Items Allows you to view items in lists and documents in document libraries.

Approve Items Allows you to approve a minor version of a list item or document.

Open Items Allows you to view the source of documents with server-side file handlers.

View Versions Allows you to view past versions of a list item or document.

Delete Versions Allows you to delete past versions of a list item or document.

Create Alerts Allows you to create alerts.

View Application Pages Allows you to view forms, views, and application pages, and enumerate lists.

Manage Permissions Allows you to create and change permission levels on the website and assign
permissions to users and groups.

View Web Analytics Data Allows you to view reports on website usage.

Create Subsites Allows you to create subsites such as team sites, meeting workspace sites, and
document workspace sites.

Manage Web Site Grants the ability to perform all administration tasks for the website, as well as
manage content.

Add and Customize Pages Allows you to add, change, or delete HTML pages or Web Part pages, and edit
the website using a SharePoint Foundation–compatible editor.

Apply Themes and Borders Allows you to apply a theme or borders to the entire website.

Apply Style Sheets Allows you to apply a style sheet (CSS file) to the website.

Create Groups Allows you to create a group of users that can be used anywhere within the site
collection.

Browse Directories Allows you to enumerate files and folders in a website using SharePoint Designer
and WebDAV interfaces.

Use Self-Service Site Creation Allows you to create a website using self-service site creation.

View Pages Allows you to view pages in a website.

Enumerate Permissions Allows you to enumerate permissions on the website, list, folder, document, or
list item.

Browse User Information Allows you to view information about users of the website.

Manage Alerts Allows you to manage alerts for all users of the website.

Use Remote Interfaces Allows you to use SOAP, WebDAV, the Client Object Model, or SharePoint
Designer interfaces to access the website.

Use Client Integration Features Allows you to use features that launch client applications. Without this permis-
sion, users will have to work on documents locally and upload their changes.

Open Allows users to open a website, list, or folder in order to access items inside that
container.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 19 Authentication and authorization infrastructure 679

Permission Description

Edit Personal User Information Allows a user to change his or her own user information, including adding a
picture.

Manage Personal Views Allows you to create, change, and delete personal views of lists.

Add/Remove Personal Web Parts Allows you to add or remove personal Web Parts on a Web Part page.

Update Personal Web Parts Allows you to update Web Parts to display personalized information.

A permission level is made up of a set of permissions selected from the list in Table 19-1.
SharePoint 2013 defines a default set of seven permission levels:

■■ View Only Allows the user to view pages, list items, and documents. Document types with
server-side file handlers can be viewed in the browser but not downloaded.

■■ Limited Access Allows the user to view specific lists, document libraries, list items, folders,
or documents when given permissions.

■■ Read Allows the user to view pages and list items, and download documents.

■■ Contribute Allows the user to view, add, update, and delete list items and documents.

■■ Edit Allows the user to add, edit, and delete lists, and view, add, update, and delete list items
and documents.

■■ Design Allows the user to view, add, update, delete, approve, and customize pages.

■■ Full Control Gives the user full control.

Chapter 2, “SharePoint data fundamentals,” showed how an out-of-the-box SharePoint site con-
figures four groups of users: Excel Viewers, Site Visitors, Site Members, and Site Owners. To config-
ure permission levels for such users, begin on the Site Permissions page, which you can access from
the Settings menu (the gear at the top-right of the browser, just beside the user name) on the Site
Settings page. Click the Permission Levels ribbon command to display a page in which you can create
new permission levels. To create and configure groups, go to the People And Groups page, which you
can reach through the Site Settings page.

When you enable anonymous access for a site, you will be able to configure permissions for
anonymous users. Figure 19-7 shows the choices for anonymous access: Nothing (no access), Lists And
Libraries (but only those for which anonymous users have been explicitly enabled), and Entire Web
Site. This page also provides an option to determine whether anonymous users will be able to access
remote client APIs anonymously. Consider that an anonymous user does not have any claim assigned,
but he or she is still represented by a ClaimsIdentity and a ClaimsPrincipal, in case of claims-based
authentication mode.

www.it-ebooks.info

http://www.it-ebooks.info/

680 PaRt VI Security infrastructure

FIGURE 19-7 The Anonymous Access page for configuring anonymous access permissions.

Note Anonymous access can be configured from SPCA via the Authentication Providers
page. You used this page earlier in this chapter to configure the authentication providers
for a web application. You can follow the procedure shown at http://technet.microsoft.com/
en-us/library/ff608071.aspx#section2.

After you define permission levels and assign them to users or groups, you can also override
default permissions at the list or library level, or even at the single-item level. Because webpages are
items, as are documents and general list items, you can configure permissions at the single-page
level, too.

Summary

In this chapter, you learned how SharePoint 2013 authenticates and authorizes users. In particular,
you saw that there are two authentication modes: claims-based mode, which is the default, and
classic mode, which is available only in code and for backward compatibility. You can choose from
three authentication methods: Windows Authentication, FBA, and using trusted identity providers,
which will be explained in Chapter 20. You also walked through how to configure both the claims-
based mode and FBA to authenticate users against a SQL Server database. Finally, you learned how
SharePoint manages authorizations and permissions.

www.it-ebooks.info

http://www.it-ebooks.info/

 681

C H A P T E R 2 0

Claims-based authentication,
federated identities, and Oauth

This chapter takes a detailed look at claims-based authentication and the security infrastructure
behind Microsoft SharePoint apps. After a general overview, it focuses on web-based and HTTP-

based scenarios. You will learn how to use Microsoft Windows Identity Foundation (WIF) 4.5 (the
official Microsoft claims-based framework) to implement a simple Security Token Service (STS), as
well as how to register that STS in SharePoint 2013 so that you can share a common single-sign-on
infrastructure between multiple SharePoint sites and even third-party sites. In addition, you will learn
how to federate with Windows Azure Access Control Services (ACS). Lastly, the chapter covers OAuth
for app authentication and authorization.

Claims-based authentication and WS-Federation

Today’s software solutions always require user authentication and authorization. Quite often, how-
ever, each application implements its own authentication method, and users are obliged to remember
and manage many different credentials. Think about a typical day in your life: you log on to your
domain network when you turn on your computer; you log on to Facebook using its specific creden-
tials; next, you log on to http://www.live.com using your Microsoft Account credentials; then, if you
need to access your home banking system, you provide yet another set of credentials specific for that
system; and so on. The list of examples could be very long, indeed.

The problem is evident: you and everyone else in today’s digital world have too many sets of cre-
dentials to remember, manage, and keep safe. Wouldn’t a better solution be to decouple applications
and software solutions from their authentication environments, while taking advantage of a shared
set of credentials? In the ideal digital world, you should authenticate once, at the very beginning of
the day, and use a worldwide single-sign-on infrastructure.

Now consider the scenario of the emerging cloud-computing offerings. Quite often, you use some
services on-premises, such as domain controllers, file servers, ERP, and so forth, as well as online
services, such as Microsoft Office 365 (Office Web Apps, Microsoft Exchange Online, SharePoint
Online, Microsoft Lync, and so on), Microsoft CRM Online, and some services built on top of the
Windows Azure platform. Of course, users of your internal network’s domain should authenticate
on the internal network as well as online, and you should avoid multiplying users’ credentials and

www.it-ebooks.info

http://www.it-ebooks.info/

682 PaRt VI Security infrastructure

authentications. In the ideal world, you should federate your internal network with the online services,
providing a single-sign-on experience to your users, utilizing a federated trust between your network
on-premises and the online services in the cloud.

Furthermore, from a developer’s perspective, it is hard to implement the authentication and
authorization logic for each and every software solution that a user implements. It would be better to
externalize the authentication infrastructure, concentrating the software implementation on the busi-
ness logic and rules, eventually providing a custom authorization environment only.

Many software solutions authenticate their users just because they need to authorize access to
resources or functionalities based on users’ identities. They do not really need, however, to collect
and maintain users’ credentials. From an authorization viewpoint, it suffices to have some information
about the users to cluster them in groups or audiences and authorize access to resources based on
their properties.

Pushed by these ideas, a few years ago the software market started working on the goal of defin-
ing an authentication infrastructure that could be externalized and that could identify every user as
a digital identity. In Chapter 19, “Authentication and authorization infrastructure,” you learned that a
digital identity is essentially a set of claims. Remember that a claim is a statement that is asserted by
an issuer about a subject; this statement is assumed to be true by the reader, due to a trust relation-
ship between the reader and the issuer. The externalized authentication provider is generally defined
as the identity provider (IP) and often publishes an STS. The application or software solution external-
izing the authentication process is called the service provider or relying party. The consumer, who uses
the service provider for authenticating with the IP, is generally called the subject. Figure 20-1 portrays
an extremely simplified authentication architecture employed by a software solution that uses exter-
nalized authentication.

FIGURE 20-1 A simplified schema showing the architecture of a system with externalized authentication.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 683

From a technology viewpoint, these concepts use such specifications as WS-Security, WS-Trust, and
WS-*. The final goal of these specifications is to allow for implementing a token-based authentication
and authorization system, in which third parties can issue tokens.

In December 2006, an international and multivendor working group defined a specification called
Web Services Federation Language 1.1 (WS-Federation), which states its role is to define “mechanisms
to allow different security realms to federate, such that authorized access to resources managed in
one realm can be provided to security principals whose identities are managed in other realms.”

Note If you are interested, you can download the full WS-Federation specification
document from http://specs.xmlsoap.org/ws/2006/12/federation/ws-federation.pdf.
There is also an updated version of the specification, called WS-Federation 1.2, avail-
able on the OASIS website, at http://docs.oasis-open.org/wsfed/federation/v1.2/os/
ws-federation-1.2-spec-os.pdf.

From a practical viewpoint, WS-Federation defines extensions to the WS-Security and WS-Trust
specifications, which support exchange of authentication and authorization claims between federated
partners, identities brokering, and protection of claims during their transmission across partners. One
of the most interesting features of WS-Federation is the capability to provide federation techniques
that you can use in communication based on Simple Object Access Protocol (SOAP), via WS-Security
and WS-Trust, as well as in web browser–based environments. The SOAP scenario is often called active
requestor, while the scenario based on web browsers is referred to as passive requestor. From the
perspective of SharePoint and web/HTTP, you should be most interested in the passive requestor sce-
nario, because it is the only process that you can manage, as well as experience from a user viewpoint.

Note SharePoint 2013 uses the active (SOAP-oriented) scenario in the communica-
tion infrastructure of the service applications. Providing complete coverage of all the
WS-Federation scenarios is beyond the scope of this book, however.

Figure 20-2 illustrates a sequence diagram related to the functional schema of WS-Federation in
the passive requestor scenario.

www.it-ebooks.info

http://www.it-ebooks.info/

684 PaRt VI Security infrastructure

FIGURE 20-2 The sequence diagram of WS-Federation for the passive requestor scenario.

In Figure 20-2, the passive requestor scenario walks through the following steps:

1. The web browser (subject) sends a request for a resource to the service provider.

2. The service provider returns a request for authentication and redirects the browser to the
IP/STS of the IP.

3. The end user authenticates within the IP/STS.

4. If the credentials are valid, the IP/STS issues a token and returns it to the browser.

5. The browser sends (via automatic HTTP POST) the issued token to the service provider.

6. The service provider receives the issued token and validates it against the list of trusted IPs.
If the token was issued by a trusted IP, it marks the end user as authenticated and eventually
authorizes the subject based on the claims presented in the security token.

7. If the user recognized by the IP/STS is valid and authorized, the SP accepts the request and
returns the originally requested resource.

The term passive derives from the fact that the web browser is unconsciously and automatically
redirected to the IP/STS, and then automatically sends the token via POST to the SP. Thus, the browser
is passive during the authentication process.

If you share the same IP/STS for two or more sites, such as sharing your Microsoft Account across
multiple sites, once an end user has authenticated with the IP/STS, he or she will be able to obtain

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 685

issued tokens for all of the federated sites without authenticating again. This is a powerful single-sign-
on scenario.

Furthermore, when you log on to SharePoint 2013 using claims-based authentication mode, the
front end does not redirect you to an external IP/STS for authentication. Instead, it communicates on
the back end with the internal IP/STS of SharePoint, using SOAP as the communication protocol.

If you want to realize a complete WS-Federation scenario, you need to register an external IP,
together with all the information about its STS. Then you will be able to authenticate with third-party
solutions, whereupon you will experience the WS-Federation passive requestor scenario concretely.

When you want to register an external IP, you can use Windows Active Directory Federation
Service (AD FS) 2.0, which is available out of the box in Windows Server 2008 or higher; federate with
Windows Azure ACS, which will be covered later in this chapter; or implement an IP of your own.
Because this book targets developers, the next section will explain how to implement a custom IP
from scratch, using Microsoft Visual Studio 2012. Nevertheless, in many cases, you may prefer using
AD FS 2.0 or ACS instead of writing custom code.

Implementing an IP/STS with WIF

WIF is a framework natively provided by Microsoft in Microsoft .NET Framework 4.5. WIF sup-
ports .NET developers while developing claims-based solutions, whether they work on the service
provider side or implement an IP/STS of their own. Targeting .NET 3.5 and 4.0, WIF 1.0 is still avail-
able, as well. In fact, SharePoint 2013 internally uses WIF 1.0 with some custom extension libraries
to provide OAuth support. The WIF 4.5 runtime is included in the .NET 4.5 runtime, while the WIF
1.0 runtime is available as a free download from http://www.microsoft.com/downloads/en/details.
aspx?FamilyID=eb9c345f-e830-40b8-a5fe-ae7a864c4d76.

Note If you need to develop custom solutions, download the .NET Framework 4.5 software
development kit (SDK), which is included in Visual Studio 2012, and the Identity and Access
Tool, which is available at http://visualstudiogallery.msdn.microsoft.com/e21bf653-dfe1-
4d81-b3d3-795cb104066e. If you want to create custom solutions based on WIF 1.0, down-
load the WIF 1.0 SDK, which is available at http://www.microsoft.com/downloads/en/details.
aspx?FamilyID=c148b2df-c7af-46bb-9162-2c9422208504.

WIF 1.0 is compatible with WIF 4.5, so in this chapter you will worth with WIF 4.5 on the IP/STS
side. (The WS-Federation active scenario is out of scope for this book.) In the next sections, you will
learn how to use WIF 4.5 to implement an IP/STS solution, which can be used to implement a web-
based WS-Federation passive requestor scenario, suitable for realizing a single-sign-on user experi-
ence shared across multiple sites, whether or not they are implemented with SharePoint. To better
follow along, open the .NET solution called DevLeap.IPSTS, which is available in the companion code
samples. To work with this code, you must have .NET 4.5, WIF 4.5, and the Identity and Access Tool.
Remember, Visual Studio 2012 already includes WIF 4.5 as part of .NET 4.5.

www.it-ebooks.info

http://www.it-ebooks.info/

686 PaRt VI Security infrastructure

Building an StS
Imagine your company maintains a shared repository of credentials that is based on the standard
ASP.NET Membership Providers infrastructure for authenticating users, and you plan to use it for
accessing both a SharePoint site and a classic ASP.NET site. To implement a new STS for this scenario,
you first need to create a new website project of type ASP.NET Empty Web Application in Visual
Studio 2012.

Important The WIF 1.0 SDK includes an STS Web Site template, but the WIF 4.5 SDK does
not. Moreover, because many of the types and namespaces defined in the WIF libraries
were renamed and changed between WIF 1.0 and WIF 4.5, you cannot start creating an
IP/STS project with WIF 1.0 and then upgrade it to WIF 4.5.

The project template prepares a new empty website project to which you must add a few pages
and code files:

■■ Default.aspx A welcome page providing some useful links to interact with the IP/STS. You
will find this page in the companion sources, but it will not be discussed in this chapter.

■■ Issue.aspx The page that provides the authentication UI and that wraps the IP/STS service
on the back end.

■■ FederationMetadata.xml An XML file providing all the information about the endpoint
and the security configuration of the IP/STS. It is fundamental, and, for security reasons, it will
be digitally signed. You can create it manually, or you can use some out-of-the-box classes of
WCF and WIF to generate it automatically.

Moreover, to use the WIF 4.5 libraries in the IP/STS website project, you need to add references
to the System.IdentityModel, System.IdentityModel.Selectors, and System.IdentityModel.Services
assemblies.

Next, you need to configure the ASP.NET profile, membership, and role providers. This example
uses the ASP.NET Profile engine to store information for custom user profiles, which will be converted
into claims. In Listing 20-1, you can see an excerpt of the web.config file of the IP/STS web application.
For detailed explanations of the membership and role configuration, please refer back to Chapter 19.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 687

LISTING 20-1 An excerpt of the web.config file of the IP/STS sample web application

<?xml version="1.0"?>
<configuration>

 <!-- Configuration omitted for the sake of brevity -->

 <system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

 <authorization>
 <deny users="?" />
 </authorization>

 <authentication mode="Forms">
 <forms name=".DEVLEAPIPSTS"
 requireSSL="true"
 defaultUrl="~/Default.aspx"
 loginUrl="~/Issue.aspx"
 cookieless="UseDeviceProfile"
 enableCrossAppRedirects="false"
 slidingExpiration="false"
 timeout="300" />
 </authentication>

 <membership defaultProvider="FBASQLMembershipProvider">
 <providers>
 <add connectionStringName="SharePointFBA" applicationName="/"
 passwordAttemptWindow="5" enablePasswordRetrieval="false"
 enablePasswordReset="false" requiresQuestionAndAnswer="true"
 requiresUniqueEmail="true" passwordFormat="Hashed"
 name="FBASQLMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider, System.Web,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
 </providers>
 </membership>

 <roleManager enabled="true" defaultProvider="FBASQLRoleManager">
 <providers>
 <add connectionStringName="SharePointFBA" applicationName="/"
 name="FBASQLRoleManager"
 type="System.Web.Security.SqlRoleProvider, System.Web,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
 </providers>
 </roleManager>

www.it-ebooks.info

http://www.it-ebooks.info/

688 PaRt VI Security infrastructure

 <profile defaultProvider="FBASQLProfile">
 <properties>
 <add name="Name" type="String" />
 <add name="Email" type="String" />
 <add name="Gender" type="String" defaultValue="Neutral" />
 <add name="FavoriteColor" type="String" defaultValue="Yellow" />
 </properties>
 <providers>
 <add connectionStringName="SharePointFBA" applicationName="/"
 name="FBASQLProfile"
 type="System.Web.Profile.SqlProfileProvider, System.Web,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
 </providers>
 </profile>

 </system.web>

 <!-- Configuration omitted for the sake of brevity -->

</configuration>

As shown highlighted in bold, the configuration defines a user profile made of four properties:

■■ Name A string representing the user’s name

■■ Email A string representing the user’s email

■■ Gender A string representing the user’s gender

■■ Favorite Color A string providing the user’s favorite color

Later, you will use these profile properties to populate users’ claims. Moreover, in the “Creating a
custom claims provider” section, you will authorize users based on their gender and favorite color.

Now consider Listing 20-2: the ASPX code defining the Issue.aspx page. From a UI perspective, this
page provides only the controls for authenticating end users. Because in the current sample IP/STS
we will use the out-of-the-box Membership Provider API of ASP.NET, the Issue.aspx page will simply
contain an ASP.NET Login web control.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 689

LISTING 20-2 The ASPX code of the Issue.aspx page

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Issue.aspx.cs"
Inherits="DevLeap.IPSTS.Issue" %>

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Sample IP/STS Issue Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:Login ID="loginControl" runat="server"
 OnAuthenticate="loginControl_Authenticate" />
 </div>
 </form>
</body>
</html>

As you can see, the core business logic of the Issue.aspx page is behind the OnAuthenticate event
of the Login control, which is handled by the loginControl_Authenticate event handler method. By
default, the Login control authenticates users by itself, using ASP.NET membership. Nevertheless, to
implement a custom IP/STS, you will need to provide some custom code for users’ authentication.
Listing 20-3 implements that method.

LISTING 20-3 A code excerpt illustrating the loginControl_Authenticate event handler method of the Login control

protected void loginControl_Authenticate(object sender, AuthenticateEventArgs e)
{
 IIdentity identity = null;

 if (Membership.ValidateUser(loginControl.UserName, loginControl.Password)) {
 // Authentication succeeded
 identity = new GenericIdentity(loginControl.UserName);
 }
 else {
 return;
 }

 if (identity != null) {
 // Set Authentication cookie
 FormsAuthentication.SetAuthCookie(identity.Name,
 loginControl.RememberMeSet);
 // Generate and issue the security token
 ProcessRequest(identity);
 }
 else {
 return;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

690 PaRt VI Security infrastructure

Aside from implementing the authentication logic, the event handler simply creates a .NET
identity, which is an instance of a type implementing the IIdentity interface, and passes it to a
ProcessRequest method, which does the real job from the WS-Federation viewpoint. Listing 20-4
implements the ProcessRequest method.

LISTING 20-4 The full implementation of the ProcessRequest method within the Issue.aspx page

protected void ProcessRequest(IIdentity identity) {
 var principal = new ClaimsPrincipal(
 new ClaimsIdentity[] { (ClaimsIdentity)identity });

 FederatedPassiveSecurityTokenServiceOperations.ProcessRequest(
 this.Request,
 principal,
 DevLeapSecurityTokenServiceConfiguration.Current.
 CreateSecurityTokenService(),
 this.Response);
}

As the code excerpt illustrates, aside from creating an instance of the ClaimsPrincipal
type, the ProcessRequest method simply invokes the ProcessRequest method of the
FederatedPassiveSecurityTokenServiceOperations type, which is available out of the box in WIF 4.5.
That method accepts some arguments related to the current HTTP Request and Response objects,
the current user principal, and an instance of a type that inherits from the SecurityTokenService class,
which is the real core engine of the IP/STS. The infrastructural types are defined in a dedicated class
library project so that the code for the sample project can be better organized.

Note The code behind the Issue.aspx page does some other things that will not be covered
within the text of this chapter. However, you will find the complete and fully functional code
in the companion sample.

Listing 20-5 shows the implementation of the DevLeapSecurityTokenServiceConfiguration
type, which is defined in the infrastructural class library and handles the creation of the custom
SecurityTokenService instance.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 691

LISTING 20-5 The source code of the DevLeapSecurityTokenServiceConfiguration class

public class DevLeapSecurityTokenServiceConfiguration :
SecurityTokenServiceConfiguration
{

 private static Lazy<DevLeapSecurityTokenServiceConfiguration>
 _configuration =
 new Lazy<DevLeapSecurityTokenServiceConfiguration>(delegate {
 return (new DevLeapSecurityTokenServiceConfiguration());
 }, true);

 public DevLeapSecurityTokenServiceConfiguration() :
 base(ConfigurationManager.AppSettings["IssuerUri"],
 X509Helper.RetrieveSigningCredentials()) {
 SecurityTokenService = typeof(DevLeapSecurityTokenService);
 }

 public static DevLeapSecurityTokenServiceConfiguration Current {
 get { return _configuration.Value; }
 }
}

The main part of the DevLeapSecurityTokenServiceConfiguration class is the constructor, which
uses the base class constructor to define the type of the class inheriting from SecurityTokenService
that will implement the STS business logic. In the current example, the class inheriting from
SecurityTokenService is the DevLeapSecurityTokenService, shown in Listing 20-6.

LISTING 20-6 The source code of the DevLeapSecurityTokenService class

public class DevLeapSecurityTokenService : SecurityTokenService {

 /// <summary>
 /// Creates an instance of DevLeapSecurityTokenService.
 /// </summary>
 /// <param name="configuration">The SecurityTokenServiceConfiguration.
 /// </param>
 public DevLeapSecurityTokenService(SecurityTokenServiceConfiguration
configuration)
 : base(configuration) {
 }

 /// <summary>
 /// This method returns the configuration for the token issuance request.
 /// The configuration is represented by the Scope class. In our case,
 /// we are only capable of issuing a token for a single RP identity
 /// represented by the EncryptingCertificateName.
 /// </summary>
 /// <param name="principal">The caller's principal.</param>
 /// <param name="request">The incoming RST.</param>

www.it-ebooks.info

http://www.it-ebooks.info/

692 PaRt VI Security infrastructure

 /// <returns>The scope information to be used for
 /// the token issuance.</returns>
 protected override Scope GetScope(System.Security.Claims.ClaimsPrincipal
 principal,
 System.IdentityModel.Protocols.WSTrust.RequestSecurityToken request) {

 // RP validation disabled for the sake of simplicity
 // ValidateAppliesTo(request.AppliesTo);

 Scope scope = new Scope(request.AppliesTo.Uri.OriginalString,
 SecurityTokenServiceConfiguration.SigningCredentials);
 scope.ReplyToAddress = scope.AppliesToAddress;
 scope.SymmetricKeyEncryptionRequired = false;
 scope.TokenEncryptionRequired = false;

 return (scope);
 }

 /// <summary>
 /// This method returns the claims to be issued in the token.
 /// </summary>
 /// <param name="principal">The caller's principal.</param>
 /// <param name="request">The incoming RST, to obtain additional
 /// information.</param>
 /// <param name="scope">The scope information corresponding to this
 /// request.</param>
 /// <returns>The outgoing claimsIdentity to be included in the issued
 /// token.</returns>
 protected override System.Security.Claims.ClaimsIdentity
 GetOutputClaimsIdentity(System.Security.Claims.ClaimsPrincipal principal,
 System.IdentityModel.Protocols.WSTrust.RequestSecurityToken request,
 Scope scope) {

 if (null == principal) {
 throw new ArgumentNullException("principal");
 }

 Claim[] targetClaims = null;
 XmlSerializer xs = new XmlSerializer(typeof(ClaimTypes));

 ProfileBase profile = ProfileBase.Create(principal.Identity.Name);
 if (profile != null) {
 using (StreamReader sr = new StreamReader(
 HttpContext.Current.Server.MapPath(
 ConfigurationManager.AppSettings["ClaimTypesFilePath"]))) {

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 693

 ClaimTypes cts = xs.Deserialize(sr) as ClaimTypes;
 targetClaims =
 (from c in new List<ClaimTypesClaimType>(cts.ClaimType)
 select new Claim(c.Type,
 (String)profile.GetPropertyValue(c.Name),
 ClaimValueTypes.String)
).ToArray();
 }
 }

 ClaimsIdentity ci = new ClaimsIdentity(targetClaims);
 return (ci);
 }
}

The two key points of interest in the DevLeapSecurityTokenService class are the GetScope and
GetOutputClaimsIdentity methods. The GetScope method defines the scope of the token issuance. In
particular, it defines the X.509 certificate that will be used to sign and eventually encrypt the security
token that the IP/STS will release. In the GetScope method, you could also validate the calling relying
parties if you want to accept token requests from authorized relying parties only—and generally speak-
ing, you should do that. Moreover, the GetOutputClaimsIdentity method is the core method of the STS
and provides, as its result, an instance of the ClaimsIdentity type, which will represent the claims that
will be included in the output security token. As shown in Listing 20-6, the DevLeapSecurityTokenService
class populates the collection of claims of the current user by accessing his or her user profile and read-
ing the list of available claims from an XML file like the one shown in Listing 20-7.

LISTING 20-7 The XML file with the full list of claims provided by the sample IP/STS

<?xml version="1.0" encoding="utf-8" ?>
<ClaimTypes xmlns="http://schemas.devleap.com/SampleIPSTS/ClaimTypes">
 <ClaimType Name="Email"
 Description="The Email address of the subject."
 Optional="false"
 Type="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
¬ emailaddress" />
 <ClaimType Name="Name"
 Description="The Name of the subject."
 Optional="false"
 Type="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name" />
 <ClaimType Name="Gender"
 Description="The Gender of the subject."
 Optional="true"
 Type="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/gender" />
 <ClaimType Name="FavoriteColor"
 Description="The Favorite Color of the subject."
 Optional="true"
 Type="http://schemas.devleap.com/SampleIPSTS/claims/favoritecolor" />
</ClaimTypes>

www.it-ebooks.info

http://www.it-ebooks.info/

694 PaRt VI Security infrastructure

Notice that the claims defined in Listing 20-7 correspond exactly to the user-profile properties
declared in the web.config file in Listing 20-1.

Note Generating the FederationMetadata.xml file is beyond the scope of this chap-
ter, but you will find the file in the companion code samples. To create your own
FederationMetadata.xml file, you can try two freely distributed tools from Thinktecture:
Federation Metadata Generator (http://static.thinktecture.com/christianweyer/
FederationMetadataGenerator_1.0.zip) and the StarterSTS project (http://startersts.codeplex.
com/). Be careful, however, because these tools target WIF 1.0, not WIF 4.5. Although they
are fine for generating the FederationMetadata tool, you should not use them for creating
an IP/STS. Moreover, if you are looking for a ready to go IP/STS solution you can take a look
at the IdentityServer project made available by ThinkTecture at the following URL: http://
thinktecture.github.io/.

With the fundamental parts of the custom IP/STS implementation in place, you’re ready to con-
sume it, first from an ASP.NET relying party and then from SharePoint 2013.

Building a relying party
To test the IP/STS, you can add a new ASP.NET website project to the current solution by clicking
File | New Project in Visual Studio 2012, and choosing an ASP.NET Empty Web Application project
model. Next, you need to configure identity federation using the Identity and Access Tool. Right-
click the web project in Visual Studio 2012 to access the menu, then choose Identity And Access (see
Figure 20-3).

Note If Identity And Access is not listed on the menu, the tool is not installed. See the
instructions at the beginning of the chapter for installation help.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 695

FIGURE 20-3 The menu extension to configure the Identity and Access Tool for a web project in Visual Studio
2012.

The Identity and Access Tool prompts you to select whether you want to federate your web app
with a local development STS, which is provided out of the box by the Identity and Access Tool; with
Windows Azure ACS; or with a business IP/STS like the one in the previous section (see Figure 20-4).

www.it-ebooks.info

http://www.it-ebooks.info/

696 PaRt VI Security infrastructure

FIGURE 20-4 The UI provided by the Identity and Access Tool for federating a web application in Visual Studio
2012.

For the example, select the Use A Business Identity Provider option and provide the URL of the
FederationMetadata.xml file published by the custom IP/STS. Click the OK button to configure your
web application according to your choices.

More Info For further details about WIF, IP/STS, and the Identity and Access Tool, read
Programming Windows Identity Foundation, by Vittorio Bertocci (Microsoft Press, 2010) or
A Guide to Claims-Based Identity and Access Control: Authentication and Authorization for
Services and the Web, by the Patterns & Practices team (Microsoft Press, 2013). You can also
read Vittorio Bertocci’s blog, at http://www.cloudidentity.com/, and in particular the post
”A Refresh of the Identity and Access Tool for VS 2012,” from March 2013.

Take a closer look at the web.config file after the Identity and Access Tool modifies it. Two
new configuration sections, system.identityModel and system.identityModel.services, were defined
targeting the WIF 4.5 infrastructure. The standard ASP.NET authentication method was set to
None, because authentication events will be intercepted by an HttpModule class of WIF called
WSFederationAuthenticationModule, available in the System.IdentityModel.Services namespace. In

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 697

addition, a module corresponding to the SessionAuthenticationModule class was registered. This last
module avoids repeating authentication against the IP/STS for each request, storing the session secu-
rity token in a cookie stored securely and locally for the current web application. Listing 20-8 shows
the configuration of the system.identityModel and system.identityModel.services sections of the XML
configuration file.

LISTING 20-8 An excerpt of the web.config file related to the WIF 4.5 sections

<system.identityModel>
 <identityConfiguration>
 <audienceUris>
 <add value="http://localhost:14966/" />
 </audienceUris>
 <issuerNameRegistry type="System.IdentityModel.Tokens.
ConfigurationBasedIssuerNameRegistry, System.IdentityModel, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089">
 <trustedIssuers>
 <add thumbprint="A60699901F8483C72034EA165074392D8E4FC08C"
 name="Issue.aspx" />
 </trustedIssuers>
 </issuerNameRegistry>
 </identityConfiguration>
</system.identityModel>
<system.identityModel.services>
 <federationConfiguration>
 <cookieHandler requireSsl="false" />
 <wsFederation passiveRedirectEnabled="true"
 issuer="https://localhost:44334/Issue.aspx"
 realm="http://localhost:14966/"
 requireHttps="false" />
 </federationConfiguration>
</system.identityModel.services>

Highlighted in bold, the key points of this listing are:

■■ The list of the audience URIs, which are the URLs that represent the relying party.

■■ The list of trusted issuers, which are the token issuers that are trusted by the current website.
Each trusted issuer is identified by the thumbprint of its certificate. It is important to update
this value when moving from a development environment, based on a test certificate, to a
production environment using a real certificate.

■■ A wsFederation element, which defines the configuration details of the WS-Federation proto-
col. For example, through this element you can enable the passive requestor profile, the URI of
the token issuer, and the realm (that is, the web address) of the relying party. Remember that
the realm will be evaluated by the STS to determine whether the current site (relying party)
has been authorized to request token issuing or not.

www.it-ebooks.info

http://www.it-ebooks.info/

698 PaRt VI Security infrastructure

Now, if you start browsing the site, you will be prompted for logging in to the IP/STS before being
able to access the relying-party site. To see the real result, however, you need to add a Default.aspx
page to the relying-party web project and define a bunch of code for rendering the claims. Listing
20-9 provides a code excerpt of the Page_Load event of the Default.aspx page.

LISTING 20-9 A code excerpt of the Page_Load event of the Default.aspx page of the relying-party web project

protected void Page_Load(object sender, EventArgs e) {
 if (this.User != null && this.User.Identity != null) {
 ClaimsIdentity ci = this.User.Identity as ClaimsIdentity;
 if (ci != null) {
 var claims = (from c in ci.Claims
 select new { c.Type, c.Value }).ToArray();

 this.gridClaims.DataSource = claims;
 this.gridClaims.DataBind();
 }
 }
}

As you can see, the code simply defines a LINQ query against the collection of claims of the cur-
rent ClaimsIdentity instance, corresponding to the currently authenticated user. The result of the
LINQ query is bound to a GridView control defined in the ASPX markup of the Default.aspx page.
Figure 20-5 shows the result after authenticating with a sample user (assuming you have properly
configured users’ profiles).

FIGURE 20-5 The output of the Default.aspx page after authentication with a sample user.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 699

SharePoint trusted IPs

As you saw in Chapter 19, SharePoint 2013 uses WIF and the WS-Federation specification as a kind of
authentication provider. Thus, you can register the example IP/STS as a trusted IP in SharePoint 2013.
To do this, you must complete some configuration steps.

trusting the IP/StS
To begin, you need to trust the IP from the perspective of SharePoint. Therefore, you need to retrieve
the certificate of the IP/STS and register it in the list of trusted issuers of SharePoint. If you are con-
suming an STS published by a third-party IP, then you can extract the public key of the certificate
from the FederationMetadata.xml file, selecting the following XPath node:

EntityDescriptor/RoleDescriptor/KeyDescriptor/KeyInfo/X509Data/X509Certificate

You can simply copy the content of that XML node into a text file and save it with a .cer file
extension.

Otherwise, if you are working with an IP/STS published by the same machine on which you are
running SharePoint, you can export the .cer certificate file from the local-machine certificate store.
You then can import the .cer file into the private SharePoint 2013 certificate store either by using a
Windows PowerShell script or the UI of the SharePoint Central Administration (SPCA). In Windows
PowerShell, use the following syntax:

$cert = New-Object System.Security.Cryptography.X509Certificates.
X509Certificate2("IPSTSCert.cer")
New-SPTrustedRootAuthority -Name "DevLeap Sample IP/STS" -Certificate $cert

With this cmdlet, you can retrieve an instance of the X509Certificate2 class by referencing the .cer
file path, and then load it by invoking the New-SPTrustedRootAuthority cmdlet specific to SharePoint
2013. If the certificate is not trusted by the servers in your SharePoint 2013 farm—for example, if it is
a custom self-created certificate—you will have to trust the whole certificate chain in the SharePoint
2013 farm. Executing the script on a single server is sufficient to trust the whole farm.

If you prefer to use the UI of SPCA, browse to the Security section, select Manage Trust, and then
in the Trust Relationships ribbon group, click the New button to add a new item. You will have to
provide a name and the path to the .cer file to the Establish Trust Relationship page, as shown in
Figure 20-6.

www.it-ebooks.info

http://www.it-ebooks.info/

700 PaRt VI Security infrastructure

FIGURE 20-6 The Establish Trust Relationship page for registering a new trust relationship.

Registering the IP and mapping claims
Now you are ready to register the custom IP/STS in SharePoint 2013. To begin, define the claims that
you would like to manage, and then map them to claims that will be available on the SharePoint side.
Each time you authenticate a subject by using an external IP/STS, you have the capability to map the
claims emitted by the STS in the security token to claims of the SharePoint side. For example, the cus-
tom IP/STS discussed earlier returns a claim of type http://schemas.devleap.com/Claims/Gender, which
represents the gender of the current user from the IP/STS viewpoint. In SharePoint, you will have
the opportunity to map this claim to another claim type, or you can leave it as-is. The claims-based
authentication infrastructure of SharePoint will translate claims for you during user authentication.

Important The claims-mapping capability is extremely useful and important, because you
could have multiple IPs registered for a single web application, and the capability to trans-
late claims from one type to another allows SharePoint to normalize claims during authen-
tication. You also have the capability to implement custom claim providers, inheriting from
the class SPClaimProvider, to augment claims of a current principal during the authentica-
tion phase.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 701

To register claims mapping, you can use a few commands in Windows PowerShell. Here are the
commands for mapping the claims issued by the custom STS:

$map1 = New-SPClaimTypeMapping -IncomingClaimType "http://schemas.xmlsoap.org/ws/2005/05/
identity/claims/emailaddress" -IncomingClaimTypeDisplayName "Email" -SameAsIncoming

$map2 = New-SPClaimTypeMapping -IncomingClaimType "http://schemas.xmlsoap.org/ws/2005/05/
identity/claims/gender" -IncomingClaimTypeDisplayName "Gender" -SameAsIncoming

$map3 = New-SPClaimTypeMapping -IncomingClaimType "http://schemas.devleap.com/SampleIPSTS/
claims/favoritecolor" -IncomingClaimTypeDisplayName "FavoriteColor" -SameAsIncoming

Here, any email, gender, and favoritecolor claims are left as they are when they come in (see the
argument -SameAsIncoming).

The last step for registering an external IP is to create a new entry for the IP in the list of available
providers. Again, you can use a Windows PowerShell script to accomplish this:

$realm = "http://claims.sp2013.local/_trust/default.aspx"
$signinurl = "https://localhost:44334/Issue.aspx"
New-SPTrustedIdentityTokenIssuer -Name "DevLeap Sample IP/STS" -Description "DevLeap Sample IP/
STS" -Realm $realm -ImportTrustCertificate $cert -ClaimsMappings $map1,$map2,$map3
-SignInUrl $signinurl -IdentifierClaim $map1.InputClaimType

The script defines the $realm variable, which corresponds to the realm of the claims-consumer
site. The value of this URL (/_trust/default.aspx, relative to the target SharePoint site) corresponds to a
page that will be automatically added to the root folder of your SharePoint web application when you
activate a trusted IP as an authentication technique. That page will be almost empty in terms of ASP.
NET markup, and it will inherit its behavior from the page TrustedProviderSignInPage, defined in the
Microsoft.SharePoint.IdentityModel.Pages namespace. This page will only redirect the user’s browser
to the IP/STS logon page.

Another variable defined in the script is the URL of the logon page of the IP/STS ($signinurl).
Finally, the script registers a new SPTrustedIdentityTokenIssuer instance by invoking the cmdlet
New-SPTrustedIdentityTokenIssuer. The arguments provided to this cmdlet in the previous example are
for the name and description of the new IP, the realm of the target SharePoint site, the X.509 certifi-
cate of the IP/STS, and the sign-in URL, claims mappings, and type of the claim that will be considered
as the identifier claim for the authenticated subject.

www.it-ebooks.info

http://www.it-ebooks.info/

702 PaRt VI Security infrastructure

Configuring the target web application
To complete the configuration process, you need to add the new IP to the list of authentication
providers for the target web application. On the SPCA page, in the Application Management section,
click Manage Web Applications. A window appears that presents the list of all the available web appli-
cations. Choose the web application for which you want to enable the IP/STS as one of the authenti-
cation methods. Next, on the ribbon, click the Authentication Providers command. In the window that
appears, click the Default Configuration hyperlink. The Edit Authentication configuration page opens,
as shown in Figure 20-7. Here, you can select the new IP.

FIGURE 20-7 The Edit Authentication configuration page of SPCA.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 703

That’s it! Now you’re ready to authenticate your users by using the custom IP/STS. Figure 20-8
shows the authentication options that are presented to any end user willing to authenticate.

FIGURE 20-8 The authentication options displayed to the end user.

The DevLeap Sample IP/STS option will redirect the user to the logon page of the IP/STS. Of
course, if you configure the IP as the unique authentication provider, your users will be redirected
automatically to the IP/STS without stepping into the authentication method selection page.

Now you will also be able to configure users authenticated by the IP as specific SharePoint users
and give them specific permissions. Figure 20-9 shows the Share dialog window, with a search result
obtained by searching against the currently configured IP.

www.it-ebooks.info

http://www.it-ebooks.info/

704 PaRt VI Security infrastructure

FIGURE 20-9 The Share window of SharePoint for adding people and groups.

If you try to access the sample site you defined in the “Building a relying party” section, you will be
authenticated automatically and have access to the site. Thus, you are experiencing a real single-sign-
on user experience.

Creating a custom claims provider
When SharePoint authenticates a user via claims-based authentication, it engages a claim provider,
which is a class providing claims augmentation and name resolution utilities. Claims augmentation
allows for adding some custom claims to the security token retrieved by the authentication infrastruc-
ture. Name resolution allows for adding capabilities to search, resolve, and provide friendly values for
claims, people, and roles in the PeoplePicker control.

Depending on the authentication type you use, SharePoint will access one of three default claims
providers:

■■ SPActiveDirectoryClaimProvider Used by Windows Authentication

■■ SPFormsClaimProvider Used by FBA

■■ SPTrustedClaimProvider Used by SAML-based (IP) authentication

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 705

The claims provider engaged for SAML-based tokens provides claim augmentation capabilities, but
it does not provide real name-resolution functionality. In fact, when you shared your site with people
and groups, as shown in Figure 20-9, you were simply using a fake model for claims and name resolu-
tion. The PeoplePicker control accepts any text value you provide to it and resolves it as if it is a real
claim value provided by the federated IP/STS. Unfortunately, this behavior can lead to confusion for
the end users. Usually, when using SAML-based authentication, you should also implement a custom
claims provider to fix this standard behavior.

To better experience this issue, open SPCA and select the Manage Web Applications menu item in
the Application Management menu group. Then select the web application you previously configured
for using the external IP/STS, and click User Policy on the ribbon. If you add a new user policy from
the resulting dialog box, and you choose to search for a specific set of users or roles while within the
PeoplePicker control, you will see the search dialog box shown in Figure 20-10.

FIGURE 20-10 The Select People And Groups dialog box of a PeoplePicker control.

Within the Select People And Groups dialog box, you can search for people and groups, based on
claims values. You will be able to write any text value, however, even if that value does not exist or is
not handled by the federated IP/STS. To fix this behavior, you will need to implement a custom claims
provider.

www.it-ebooks.info

http://www.it-ebooks.info/

706 PaRt VI Security infrastructure

Note The sample illustrated in this chapter is based on the article “Claims Walkthrough:
Writing Claims Providers for SharePoint 2010,” by Steve Peschka, available on TechNet, at
http://msdn.microsoft.com/en-us/library/ff699494.aspx.

A custom claims provider, like those available out of the box, is just a class that provides claims
augmentation and name resolution capabilities. Listing 20-10 provides an excerpt of a sample claims
provider class, supporting the claims provided by the custom IP/STS illustrated previously.

LISTING 20-10 An excerpt of a sample claims provider class for supporting custom claims

public class DevLeapClaimsProvider: SPClaimProvider {

 private static String genderClaimType =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/gender";
 private static String favoriteColorClaimType =
 "http://schemas.devleap.com/SampleIPSTS/claims/favoritecolor";
 private static String fidelityProgramLevelClaimType =
 "http://schemas.devleap.com/SampleIPSTS/claims/fidelityProgramLevel";

 public DevLeapClaimsProvider(String displayName)
 : base(displayName) {
 }

 public static String ProviderDisplayName {
 get { return "DevLeap Claims Provider"; }
 }

 internal static String ProviderInternalName {
 get { return "DevLeapClaimsProvider"; }
 }

 public override String Name {
 get { return ProviderInternalName; }
 }

 // Available values for the Gender claim
 private String[] genderValues = new String[] { "Male", "Female" };

 // Available values for the FavoriteColor claim
 private String[] favoriteColorValues = new String[] { "White", "Green",
 "Yellow", "Red", "Blue", "Black" };

 // Available values for the FavoriteColor claim
 private String[] fidelityProgramLevels = new String[] { "Bronze", "Silver",
 "Gold", "Platinum" };

 // Code omitted for the sake of brevity ...
}

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 707

The class was created in a .NET 4.5 Class Library project, which references the basic Microsoft.
SharePoint.dll assembly and the Microsoft.IdentityModel.dll assembly for WIF 1.0. The basic idea of
this sample claims provider is to provide predefined values for the gender and favoriteColor claims, as
well as to augment the security token of authenticated users with a fidelityProgramLevel claim, which
can assume only four values: Bronze, Silver, Gold, or Platinum.

Although the companion code provides claims augmentation and name resolution functions, the
code illustrated in Listing 20-10 simply defines the basic infrastructure of the class. As you can see,
the custom claims provider class inherits from the SPClaimProvider abstract class, which is available in
the Microsoft.SharePoint.Administration.Claims namespace of the Microsoft.SharePoint.dll assembly.
The SPClaimProvider base class provides many members that can be overridden, depending on the
type of capabilities you want to provide through your custom claims provider. First of all, and regard-
less the type of claims provider you are implementing, you need to override the Name property to
provide a name unique at the farm level for the custom claims provider.

To implement name resolution, you need to override the following abstract methods:

protected abstract void FillSchema(SPProviderSchema schema);

protected abstract void FillClaimTypes(List<String> claimTypes);

protected abstract void FillClaimValueTypes(List<String> claimValueTypes);

protected abstract void FillEntityTypes(List<String> entityTypes);

To implement claims augmentation, you must override the following members:

public abstract bool SupportsEntityInformation

protected abstract void FillClaimsForEntity(Uri context, SPClaim entity,
 List<SPClaim> claims);

Optionally, you can override members to support hierarchies, to resolve claims, or to support
searching claims:

public abstract bool SupportsHierarchy

protected abstract void FillHierarchy(Uri context, String[] entityTypes,
 String hierarchyNodeID, int numberOfLevels, bool includeEntityData,
 SPProviderHierarchyTree hierarchy);

public abstract bool SupportsResolve

protected abstract void FillResolve(Uri context, String[] entityTypes,
 String resolveInput, List<PickerEntity> resolved);

protected abstract void FillResolve(Uri context, String[] entityTypes,
 SPClaim resolveInput, List<PickerEntity> resolved);

www.it-ebooks.info

http://www.it-ebooks.info/

708 PaRt VI Security infrastructure

public abstract bool SupportsSearch

protected abstract void FillSearch(Uri context, String[] entityTypes,
 String searchPattern, String hierarchyNodeID, int maxCount,
 SPProviderHierarchyTree searchTree);

As you may gather from the names of the abstract properties, you need to declare your support
for any specific functionality. For example, if you want to support search capabilities, you will need
to override the Boolean SupportsSearch property, returning a value of true, and then you will have
to override the FillSearch method. Listing 20-11 shows a code excerpt of the implementation of the
FillSearch method, which is invoked by the PeoplePicker control when searching for a specific value.

LISTING 20-11 An excerpt of a sample claims provider class, showing the FillSearch custom method

protected override void FillSearch(Uri context, string[] entityTypes,
 string searchPattern, string hierarchyNodeID, int maxCount,
 Microsoft.SharePoint.WebControls.SPProviderHierarchyTree searchTree) {

 // Check if the picker is requesting the types we effectively return
 // Because this custom claims provider returns roles
 // simply continue in case the request is for role claims
 if (!EntityTypesContain(entityTypes, SPClaimEntityTypes.FormsRole))
 return;

 // Nodes where we will stick our matches
 Microsoft.SharePoint.WebControls.SPProviderHierarchyNode matchNode = null;

 #region Fidelity Program Levels

 // Look to see if the value that is typed in matches any of the claims values
 foreach (string level in fidelityProgramLevels) {
 if (level.ToLower().StartsWith(searchPattern.ToLower())) {
 // We have a match, create a matching entity
 PickerEntity pe = GetPickerEntity(level,
 fidelityProgramLevelClaimType, "Fidelity Program Level");

 // Add the level node where it should be displayed too
 if (!searchTree.HasChild(level)) {

 // Create the node so we can show our match in there too.
 matchNode = new
 SPProviderHierarchyNode(
 DevLeapClaimsProvider.ProviderInternalName,
 level,
 level,
 true);

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 709

 // Add it to the tree
 searchTree.AddChild(matchNode);
 }
 else
 // Get the node for this team.
 matchNode = searchTree.Children.Where(theNode =>
 theNode.HierarchyNodeID == level).First();

 // Add the match to our node.
 matchNode.AddEntity(pe);
 }
 }
 #endregion

 // The same is done for gender and favoriteColor claims
 // Code omitted for the sake of brevity

}

Now you are ready to deploy the custom claims provider implementation. To achieve this, you
need to create a SharePoint farm-level solution with a custom feature and a feature receiver in it. The
only goal of the farm-level solution is to copy the assembly containing the custom claims provider
into the Global Assembly Cache (GAC) of the servers in the SharePoint farm.

Important Because you need a farm-level feature, you will not be able to use a custom
claims provider in Office 365—all the information you are reading about custom claims
providers is only suitable for an on-premises scenario.

Moreover, you will have to implement a specific kind of feature event receiver that inherits from
the SPClaimsProviderFeatureReceiver class. You will use it to enable the claims provider on the farm by
settings its IsUsedByDefault property to a value of true. By default, when you install a claims provider
onto a target farm, it is configured as disabled. Listing 20-12 details the feature receiver used to
deploy the custom claims provider described in this section.

www.it-ebooks.info

http://www.it-ebooks.info/

710 PaRt VI Security infrastructure

LISTING 20-12 An excerpt of the feature receiver for deploying a custom claims provider

public class ProvisioningFeatureEventReceiver : SPClaimProviderFeatureReceiver {

 private void ExecBaseFeatureActivated(
 Microsoft.SharePoint.SPFeatureReceiverProperties properties) {
 base.FeatureActivated(properties);
 }

 public override string ClaimProviderAssembly {
 get { return typeof(DevLeapClaimsProvider).Assembly.FullName; }
 }

 public override string ClaimProviderType {
 get { return typeof(DevLeapClaimsProvider).FullName; }
 }

 public override string ClaimProviderDisplayName {
 get { return DevLeapClaimsProvider.ProviderDisplayName; }
 }

 public override string ClaimProviderDescription {
 get { return "A sample provider to augment claims and resolve " +
 "claims provided by sample IP/STS"; }
 }

 public override void FeatureActivated(SPFeatureReceiverProperties properties)
{
 ExecBaseFeatureActivated(properties);
 SPClaimProviderManager cpm = SPClaimProviderManager.Local;
 foreach (SPClaimProviderDefinition cp in cpm.ClaimProviders) {
 if (cp.ClaimProviderType == typeof(DevLeapClaimsProvider)) {
 cp.IsUsedByDefault = true;
 cpm.Update();
 break;
 }
 }
 }
}

After installing and deploying the solution and activating the feature, you will have to map the
custom claims provider with the target web application in which you want to use the provider. To
map a web application to a specific claims provider, you can use a small PowerShell script like the one
Listing 20-13.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 711

LISTING 20-13 A PowerShell script for registering a custom claims provider onto a target web application

Add-PSSnapin Microsoft.SharePoint.PowerShell -erroraction SilentlyContinue

$AuthNAppHostHeader = "claims.sp2013.local"
$Zone = "Default"

$cp = Get-SPClaimProvider | where-object {$_.TypeName -eq "DevLeap.IPSTS.
Providers.DevLeapClaimsProvider"}

$webApp = Get-SPWebApplication "http://$AuthNAppHostHeader"
if ($webApp.IisSettings.ContainsKey($Zone)) {
 $settings = $webApp.GetIisSettingsWithFallback($Zone)
 $providers = $settings.ClaimsProviders

 if(-not($providers.Contains($cp))) {
 $providers += $cp
 Set-SPWebApplication -Identity $webApp -Zone $Zone
 -AdditionalClaimProvider $providers
 Write-Host "Registered" $cp.DisplayName "on" $webApp.Url "in zone $Zone"
 } else {
 Write-Host $cp.DisplayName "already registered on" $webApp.Url
 "in zone $Zone"
 }
}

More Info For further details about how to deploy a custom claims provider, you can
read the article “How to: Deploy a claims provider in SharePoint 2013,” available at
http://msdn.microsoft.com/en-us/library/ee535443.aspx.

Now you are ready to check the result. Back on the User Policy page of the web application, check
the new capabilities that you will find in the Select People And Groups dialog box. Figure 20-11
illustrates the new layout of the dialog box. By searching a particular value, like the value Gold for the
fidelity program level, you will see the result highlighted in the proper claim node.

www.it-ebooks.info

http://www.it-ebooks.info/

712 PaRt VI Security infrastructure

FIGURE 20-11 The Select People And Groups dialog box of a PeoplePicker control with the custom claims provider
configured.

Consider that the sample claims provider discussed in this section augments claims, too.
In fact, after installing the custom claims provider in the list of users’ claims, you will find a
fidelityProgramLevel claim. Figure 20-11 shows the presence of the new custom claim provider, as you
can see in the DevLeap Claims Provider item in the hierarchy on the left side of the screen.

While in Figure 20-12 you can see the claims of the currently logged in user, in particular you can
see the gender, favoriteColor, and fidelityProgramLevel claims.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 713

FIGURE 20-12 The list of claims related to a logged-in user, after claims augmentation.

Federating with Windows Azure ACS

So far, you have seen how to create a custom IP/STS, how to configure a SharePoint web applica-
tion to use the IP/STS, and how to define a custom claims provider to provide end users with a
better experience. You will probably agree, however, that the process is not overly easy, and using
an out-of-the-box solution would be better than developing so much code. Luckily, Windows
Azure offers ACS, an out-of-the-box IP/STS service that supports custom IPs, as well as such con-
solidated and well-known authentication engines as Facebook, Windows Live ID, Google, Active
Directory Federation Services (AD FS) 2.0, and more. In this section, you will learn how to take
advantage of Windows Azure ACS in SharePoint 2013. Before you begin, either create a Windows
Azure account and a subscription, or log in to the management portal of Windows Azure,
(https://manage.windowsazure.com/) with your existing account.

In the management portal, focus your attention on the Active Directory group of services. Here,
you can create a new ACS namespace. Figure 20-13 illustrates the controls to use.

www.it-ebooks.info

http://www.it-ebooks.info/

714 PaRt VI Security infrastructure

FIGURE 20-13 The UI for creating a new Windows Azure ACS namespace.

Simply provide a name for the target namespace, choosing a name unique in the Windows Azure
ACS world, and a region where your service will be provisioned. Click Create, and the new service
instance will be ready to work with. Select it, and click the Manage button in the lower command bar
of the management portal, to manage the service. You will be presented with a dedicated web man-
agement portal like the one shown in Figure 20-14.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 715

FIGURE 20-14 The home page of the web portal for managing a Windows Azure ACS instance.

The home page of the Windows Azure ACS instance management portal provides links to config-
ure all the various aspects of the service. First, you need to choose and configure the IPs. By default,
every ACS service instance is configured to authenticate users using Microsoft Account, but you can
configure as many IPs as you want, as long as they fall into one of the following categories:

■■ WS-Federation Defines all the available federation services that are compliant with the
WS-Federation specification. For instance, AD FS 2.0 is one possible option for this category.

■■ Facebook Allows use of Facebook as an external IP.

■■ Windows Live ID Uses the Microsoft Account IP offered by Microsoft.

■■ Google Uses Google as the IP for authenticating users.

■■ Yahoo! Uses Yahoo! as the IP for authenticating users.

Imagine that you want to provide authentication services using Facebook users’ credentials or
Microsoft Account. To use Facebook, first you must create and configure a Facebook app on the
Facebook developer portal: log in to the Facebook developer portal (http://developers.facebook.com)

www.it-ebooks.info

http://www.it-ebooks.info/

716 PaRt VI Security infrastructure

and choose to create a new app. You will have to configure at least the Site URL of your app, which
will be the URL of the Windows Azure ACS service instance. Figure 20-15 shows the Facebook app
configuration panel.

FIGURE 20-15 The page for managing the configuration of a Facebook app.

At the very top of the page, notice the app ID and the app secret for the current app. You will need
these to properly configure the Windows Azure ACS integration with Facebook. Behind the scenes,
ACS uses OAuth to talk with Facebook and converts the OAuth context information into claims in a
security token that will be provided to SharePoint 2013. After creating the Facebook app, go back to
the management site for your ACS service and click the Identity Providers menu on the left side of
the home page. Choose to add a new Identity Provider and select Facebook as the type. You will be
prompted with a page like the one shown in Figure 20-16.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 717

FIGURE 20-16 The page for adding a new IP based on Facebook.

On this page, you will have to configure the Application ID field with the value of the app ID taken
in Facebook, and the Application Secret field with the value of the app secret taken from Facebook.
Save the new IP.

The next step is to configure the relying parties. Click the Relying Party Applications menu
item on the left of the ACS management portal to access the page shown in Figure 20-17. Here,
you can create as many relying parties as you want. Every single relying party will participate in
the unique single-sign-on experience provided by the ACS IP. For this example, simply configure
a target SharePoint web application. Let’s say the URL of the target SharePoint web application is
http://claims.sp2013.local.

www.it-ebooks.info

http://www.it-ebooks.info/

718 PaRt VI Security infrastructure

FIGURE 20-17 The page for creating a new relying party in Windows Azure ACS.

To configure a SharePoint 2013 relying party, aside from providing a name for the relying party,
you must also configure the realm and the return URL targeting the /_trust/default.aspx relative URL.
Thus, for the sample web application with URL http://claims.sp2013.local/, you need to provide both
for the realm and for the return URL the value of http://claims.sp2013.local/_trust/default.aspx. While
configuring a new relying party, you will also have the opportunity to choose which IP will be avail-
able for each relying party. In this case, assume the default Windows Live ID and Facebook. Next,
choose the format of the SAML token that will be sent back to the relying party. For SharePoint 2013,
choose a SAML 1.1 token, unless you do not want to customize the out-of-the-box capabilities of
SharePoint.

Figure 20-18 shows the second part of the page for creating a relying party. Notice the options
for configuring the IPs, the SAML token format, and the token lifetime in seconds. The token lifetime
should be larger than the corresponding value configured in SharePoint, which by default is 600
seconds. For example you can use a value of 3000 seconds or more. The available range for the token
lifetime is between 0 and 86400 (1 day).

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 719

FIGURE 20-18 The second part of the page for creating a new relying party in Windows Azure ACS.

From the same page, you can define the rules for signing and encrypting the tokens, and you can
also provide a custom X.509 certificate dedicated to a specific relying party.

After creating one or more relying parties, you need to configure how Windows Azure ACS
will handle and eventually transform the claims received from the external IPs before sending the
security tokens to the target relying parties. In fact, ACS can apply transformations and translations
of claims before sending the security tokens to the target relying party. By default, you can create
a set of automatic rules, but if necessary, you can also define simple translation rules that can read
a claim and provide another claim or a fixed value as output. Creating rules is mandatory, and by
default ACS has no rules defined. Click the Rule Groups menu item on the left of the management
site, and then click the Generate button in the middle of the page. Figure 20-19 illustrates the page
for generating rules.

www.it-ebooks.info

http://www.it-ebooks.info/

720 PaRt VI Security infrastructure

FIGURE 20-19 The page for creating rule groups in Windows Azure ACS.

So far, you have configured the Windows Azure ACS service for SharePoint integration. On the
ACS management site, there are some other pages for configuring certificates, signing and encryp-
tion keys, assigning identities local to the ACS service, and defining administrators of the ACS service.
To federate SharePoint 2013 with ACS, however, you don’t need to bother with these. Simply click the
Application Integration menu item to see the URLs that you will have to use to integrate SharePoint
with ACS. Figure 20-20 shows the resulting Application Integration page.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 721

FIGURE 20-20 The Application Integration page for integrating external applications with Windows Azure ACS.

From this page, you will have to navigate with a web browser to the WS-Federation Metadata URL.
There, you will find the X.509 certificate used by ACS to sign the security tokens that will be sent to
SharePoint. As described previously, in the “Trusting the IP/STS” section, you will have to copy the text
content of the following node:

EntityDescriptor/RoleDescriptor/KeyDescriptor/KeyInfo/X509Data/X509Certificate

Then you must save the copied text into a file with extension .cer. The last thing to do is execute
some PowerShell commands to federate SharePoint 2013 with ACS. Listing 20-14 provides a sample
PowerShell script for this task.

www.it-ebooks.info

http://www.it-ebooks.info/

722 PaRt VI Security infrastructure

LISTING 20-14 A PowerShell script to federate Windows Azure ACS with SharePoint 2013

Add-PSSnapin Microsoft.SharePoint.PowerShell -erroraction SilentlyContinue

$cert = New-Object System.Security.Cryptography.X509Certificates.
X509Certificate2(
 "C:\SP2013DR\Ch-20-Claims-Fed-OAuth\ACS-Certificate.cer")

New-SPTrustedRootAuthority -Name "SP2013 ACS certificate" -Certificate $cert

$map0 = New-SPClaimTypeMapping -IncomingClaimType
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier"
 -IncomingClaimTypeDisplayName "NameIdentifier" -LocalClaimType
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/username"
$map1 = New-SPClaimTypeMapping -IncomingClaimType
 "http://schemas.microsoft.com/accesscontrolservice/2010/07/claims/
identityprovider"
 -IncomingClaimTypeDisplayName "IdentityProvider" –SameAsIncoming
$map2 = New-SPClaimTypeMapping -IncomingClaimType
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress"
 -IncomingClaimTypeDisplayName "Email" -SameAsIncoming

$realm = "http://claims.sp2013.local/_trust/default.aspx"
$signinurl = "https://sp2013-reference.accesscontrol.windows.net:443/v2/
wsfederation"

$ip = New-SPTrustedIdentityTokenIssuer -Name "SP2013 ACS"
 -Description "SP2013 ACS"
 -Realm $realm -ImportTrustCertificate $cert -ClaimsMappings $map0,$map1,$map2
 -SignInUrl $signinurl -IdentifierClaim $map0.InputClaimType

As you can see, the script is almost the same as the one used in the “Registering the IP and map-
ping claims” section. Now the ACS IP is ready to be used. In SPCA, edit the authentication providers
of a target web application and add the new IP to the list of the trusted IPs. Figure 20-21 shows the UI
with two IPs available: the custom one and the ACS IP.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 723

FIGURE 20-21 The page for configuring trusted IPs for a target web application.

As soon as you add the new trusted IP, you will be able to authenticate using Windows Azure ACS.
Figure 20-22 shows the authentication options provided to the end users.

www.it-ebooks.info

http://www.it-ebooks.info/

724 PaRt VI Security infrastructure

FIGURE 20-22 The page for selecting the authentication method for accessing a web application.

Figure 20-23 shows the logon page provided by Windows Azure ACS, where end users can choose
to authenticate using Windows Live ID or Facebook. Be aware that the page provided by Windows
Azure ACS is autogenerated with a standard and very simple template. However, you can customize
this page with your own layout.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 725

FIGURE 20-23 The logon page provided by Windows Azure ACS.

Click the Facebook button and you will be redirected to the standard Facebook login page,
which will provide information about the target app that is requesting authentication. In the current
example, the Facebook app name is SP2013-Reference. Figure 20-24 shows the Facebook login page.

www.it-ebooks.info

http://www.it-ebooks.info/

726 PaRt VI Security infrastructure

FIGURE 20-24 The login page of Facebook while authenticating through Windows Azure ACS.

After authenticating, the end users will be prompted with a request to authorize the Facebook app
(which in reality will be ACS) to access some of the profile information of the currently authenticated
user. The profile information and properties will be those you configured while creating the IP in ACS.
Facebook will prompt this page (Figure 20-25) to each end user only the first time he or she authenti-
cates using that Facebook app.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 727

FIGURE 20-25 The page of Facebook for authorizing Windows Azure ACS to access the user’s profile information.

Clicking the Go To App button redirects your end user to ACS and then to SharePoint 2013.
Remember that you are using a WS-Federation passive requestor, so the user will be redirected pas-
sively back and forth between SharePoint, ACS, and the external IP.

If the user is authorized to access SharePoint, you will be able to find a rich set of claims describ-
ing his or her digital identity. Figure 20-26 shows the home page of the sample web application,
which browses all the claims available in the currently logged-in user’s profile. As you can see, there
are claims providing information about the email, the name, and the Facebook session ID. If neces-
sary, you will be able to read this information from the identity of the current user, which is of type
ClaimsIdentity, and, for example, use the Facebook APIs to retrieve additional information, as long as
the user provided you with authorization to do so.

www.it-ebooks.info

http://www.it-ebooks.info/

728 PaRt VI Security infrastructure

FIGURE 20-26 The home page of the sample web application after an end user has been authenticated with ACS
and Facebook.

Notice that the current web application is also configured for using the custom claims provider
created previously. Thus, in the list of users’ claims, you will still find the Fidelity Program Level claims.
This means that the custom claims provider augments the claims of an authenticated user regardless
of the IP you used to authenticate him or her.

Understanding OAuth

So far, you’ve learned how the authentication engine of SharePoint behaves when authenticat-
ing users and roles in a claims-based world. What about SharePoint apps? As you remember from
Chapter 8, “SharePoint apps,” every app has a security principal of its own, called the app principal,
and whenever a SharePoint app needs to consume a SharePoint site, an authentication and authoriza-
tion process based on the OAuth protocol takes place.

OAuth is the protocol that defines how to manage all the phases for authenticating an app against
a remote repository of data and a remote API, as well as how to authorize that app to perform exactly

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 729

a well-defined set of operations. An open protocol, OAuth authenticates apps and enables secure API
authorization from desktop and web applications through a standard, web-based technique.

Nowadays, every web application provides some content and features to authenticated users.
Think about SkyDrive, Flickr, Facebook, LinkedIn, and similar sites. Each requires users to authenticate
by providing credentials and allows authenticated users to manage their personal data. Take SkyDrive
as an example. You can log into SkyDrive using your Microsoft Account; you can upload content,
share content with others, and read content shared with you by someone else. Moreover, you can
use a Windows Store app, running within a Windows 8 tablet PC, to read or write files stored on your
SkyDrive storage. The same thing could happen using an iPhone, an iPad, or any other device capable
of consuming the APIs published by SkyDrive. Furthermore, suppose you want to share your photos
stored on SkyDrive with external services, such as an external photo-printing service. Usually, when
you need to share your content with someone else or with an external app, you should not share
your user credentials with any of the apps or users with whom you share your content. In fact, if you
were to share your credentials, those users or external apps would have exactly the same rights and
capabilities you would have for your own data, including the capability to delete your files, change
your permissions, and even change your password. Of course, this would be too much. On the con-
trary, you usually authorize external users or apps to do something against your own data, keeping
you as the only owner of that data and providing to the third parties only those permissions that are
effectively required, usually for a limited period of time. For example, think again about the photo-
printing service. You would probably allow an external photo-printing service to access your photos
on SkyDrive only for reading, and perhaps for only half an hour—just enough time to download and
print the photos. But how is it possible to share this content with third-party apps without sharing you
user credentials, and with imposed time limits?

In SharePoint 2013, whenever a SharePoint app wants to access content related to a site or a
specific user, the authentication and authorization engine works as illustrated in the schema in
Figure 20-27.

www.it-ebooks.info

http://www.it-ebooks.info/

730 PaRt VI Security infrastructure

FIGURE 20-27 A functional diagram of SharePoint 2013 authentication, including OAuth.

When SharePoint 2013 begins to authenticate an incoming request, it first looks to see if the
incoming request contains a SAML token with a user identity. If SharePoint finds a SAML token, it can
then assume that the incoming request was initiated by an end user, not by an app. Once it finds a
SAML token, SharePoint 2013 then inspects the target URL of the incoming request to see whether
it references a standard SharePoint site or a child site associated with a specific app. If the incoming
request targets a standard site, SharePoint 2013 handles authentication and authorization tasks as
described in previous sections. If the incoming request targets an app web, SharePoint 2013 initializes
the call context with both a user identity and an app identity.

When an incoming request does not contain a SAML token, SharePoint 2013 knows that a user
did not initiate the request. In this scenario, the SharePoint 2013 authentication pipeline inspects the
incoming request to see if it contains a security token identifying a developer or a hosted app. Once
SharePoint 2013 finds a security token identifying an app, it sets up a call context with the app iden-
tity, and optionally the user identity as well.

While invoking the CSOM or the new REST APIs, SharePoint will expect and validate the security
token, and will provide access to content and APIs according to the permissions provided to the tar-
get app, and to the user for which the app is acting.

Internally, the OAuth protocol uses an app ID, which uniquely identifies every app, as well as an
app shared secret, which allows every app to communicate securely with the target service provider
or API, being able to secure communication and authenticate against the target service provider
or API as a specific app. When the service provider, which could be SharePoint 2013, authorizes the
app to do something, or does not authorize the app to do something, it evaluates the authorization

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 731

rules both of the app and of the current end user. If both of them have the rights for the APIs that are
requested, then the result is consent; otherwise; it will be a denial.

In Chapter 8, you learned that when you create a SharePoint app, you can create an app ID
or client ID and a shared secret, using the Seller Dashboard for the Office Store (if you are using
Microsoft Office 365), or using some dedicated administrative pages (if the app targets an on-
premises environment). In both cases, SharePoint 2013 uses OAuth in conjunction with Windows
Azure ACS.

Remember, however, that SharePoint 2013 uses OAuth only for authentication and authorization of
apps and for consuming the CSOM. All the other authentication and authorization techniques ignore
the OAuth protocol and maintain their classic way of working.

Configuring server-to-server apps

Sometimes, while defining the security context of an app that will be used on-premises, you may not
want to define an app ID and an app shared secret. Instead, you would prefer to trust an app, with-
out relying on Windows Azure ACS, OAuth, and so on. Luckily, there is a suitable option that allows
working in a high-trust, or server-to-server (S2S), configuration. This configuration involves sharing
between the app and the target SharePoint farm of an X.509 certificate, which will be used to secure
and authenticate the communication between SharePoint and the target app. To configure the S2S
scenario, follow these steps:

1. Access the SharePoint 2013 management interface using a user account that is a member of
the administrators of the target machine, as well as a user that has been configured as a shell
admin for SharePoint, using the Add-SPShellAdmin command.

2. Verify that the User Profile service is installed and at least started on one of the application
servers in the farm.

3. Verify that the App Management service is installed and started in the current farm.

4. Create or obtain the .cer file corresponding to the X.509 certificate you want to use for the
high-trust configuration between SharePoint 2013 and the external app.

5. If you want to manually generate the certificate from scratch, you can use the following
syntax:

makecert.exe -r -pe -n "CN={Name}" -b {StartDate} -e {EndData} -ss my
 -sr localMachine -sky exchange
 -sp "Microsoft RSA SChannel Cryptographic Provider" -sy 12 file.cer

where the -r argument instructs the tool to create a self-signed certificate. The -pe argument
marks the private key as exportable. The -b and -e arguments define the start and end dates
of validity of the target certificate. The -ss and -sr arguments specify storing the certificate in
the personal store of the local machine. The -sky argument with a value of exchange instructs

www.it-ebooks.info

http://www.it-ebooks.info/

732 PaRt VI Security infrastructure

the tool to create a certificate with message-exchange capabilities (signature and encryption).
Last, the -sp and -sy arguments declare the kind of CryptoAPI provider that will be used. If you
want, you can also use IIS for creating a self-signed certificate, instead of using the makecert
command-line tool.

6. Start the SharePoint management shell or the Windows PowerShell ISE, and import the
SharePoint 2013 cmdlets.

7. Load the .cer file related to the X.509 certificate that you will use for the high-trust scenario
and invoke the following cmdlet:

$certificate = New-Object
 System.Security.Cryptography.X509Certificates.X509Certificate2(
 "{CERFilePath}")

{CERFilePath} is the path of the .cer file related to the X.509 certificate file to use.

8. Execute the following PowerShell commands:

$appId = "{AppID}"
$spweb = Get-SPWeb "{AppURL}"
$realm = Get-SPAuthenticationRealm -ServiceContext $spweb.Site
$fullAppIdentifier = $appId + '@' + $realm
New-SPTrustedSecurityTokenIssuer -Name "{FriendlyName}"
-Certificate $certificate -RegisteredIssuerName $fullAppIdentifier

The {AppID} argument is the lowercase ID that identifies the app to trust, and it can be read
from the app creation wizard when you create a new provider-hosted app. The {AppURL}
argument is the URL of the app on the target server. {FriendlyName} is a friendly name that
will be used to identify the high-trust relationship.

9. Register the app within the App Management service by using the following PowerShell
command:

$appPrincipal = Register-SPAppPrincipal -NameIdentifier
 $fullAppIdentifier -Site $spweb -DisplayName "{DisplayName}"

{DisplayName} will be the name representing the high-trust app in SPCA.

10. Configure explicit permission for the target app, using the following cmdlet:

Set-AppPrincipalPermission -appPrincipal $appPrincipal -site $web
 -right {Level} -scope {Scope}

The arguments {Level} and {Scope} define the permissions exactly as you saw them in
Chapter 8, in the section “The Permissions tab.”

After completing these steps, you will be ready to execute you SharePoint app, which will be a
provider-hosted app running in an on-premises environment. Every authentication and authorization

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 20 Claims-based authentication, federated identities, and OAuth 733

request between SharePoint 2013 and the app configured as high trust will be based on the just-
defined X.509 certificate.

Summary

In this chapter, you learned about claims-based environments, WS-Federation, and how to use WIF
to develop an IP/STS for a custom IP. You also saw how to register an IP/STS implemented with
WIF into SharePoint for the purpose of authenticating SharePoint users through an external and
trusted IP. Then you learned how to use Windows Azure ACS as an option for using an external IP/
STS as a service. Lastly, the chapter discussed how SharePoint 2013 takes advantage of OAuth and S2S
security while authenticating and authorizing SharePoint apps.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

 735

AddContentTypeField element, 106–107
Add Event Receiver menu item, 111
Add From Existing Site Columns command, 48
AddItem method, 126, 226
Add Items permission, 678
Add method, SPListCollection, 144, 145
Add New Item window, 605
Add New Project form, Visual Studio 2012, 27
addNotification method, 456
AddObject method, 241
add operator, 327
Add/Remove Personal Web Parts permission, 679
Add-SPShellAdmin command, 731
addStatus method, 457
Add Time to Date action, 564
AddToDevLeapContacts method, 241
AddToDictionary<TKey, TValue> activity, 592
AddTo{ListName} method, 241, 242
AddUser method, 131, 159
AD FS (Active Directory Federation Service), 685
AD FS (Active Directory Federation Services), 661
AdjustHijriDays attribute, 483
administration

via PowerShell, 8–9
SharePoint Central Administration, 6–8

ADO.NET Data Services namespace, 319
Advanced Settings page

figure of, 47
mapping custom content types to lists or libraries

using, 50
parameters on, 36

AfterDeserialize() method, 415
AfterProperties property, 364
Ajax method, 333
Alerts property, 131
AllCustomers.aspx, 81
AllowAppOnlyPolicy attribute, 313

Index

Symbols
$expand parameter, 236, 326, 329
$filter parameter, 236, 326, 329
$metadata parameter, 236
$orderby parameter, 236, 326
$realm variable, 701
$select parameter, 326, 329
$skip parameter, 236, 326, 329
$sort parameter, 329
$top parameter, 236, 326, 329
100-1000 document template IDs, 153
@Register directives, 454

A
Accept request header, 581
AccessChecker value, 507
access control list (ACL), 122
AccessControlList element, 506
Access Control Services (ACS), 296, 551
accessToken variable, 335
ACL (access control list), 122
ACS (Access Control Services), 296, 551
Action element, 640
actions

for workflows, 564–566
ActivateOnDefault attribute, 93
ActivationDependencies element, 94, 101
Active Directory Federation Service (AD FS), 685
Active Directory Federation Services (AD FS), 661
active requestor, 683
Activity Designer Library, 535
Activity Library, 535
Add a Comment action, 564
Add A Method command, 523
Add and Customize Pages permission, 678

www.it-ebooks.info

http://www.it-ebooks.info/

AllowClose property

736 Index

AllowClose property, 390
AllowConnect property, 390
AllowEdit property, 390, 391
AllowHide property, 390
AllowMinimize property, 390
AllowOAuthHttp argument, 559
AllowsMultipleConnections property, 412
AllowUnsafeUpdates property, 121, 124, 139–140
AllowZoneChange property, 390
AllUsers property, 124
AllUsersWebPart element, 454
AllWebs property, 121, 136
AlternateCssUrl attribute, 483
AlternateHeader attribute, 483
AlwaysForceInstall attribute, 93
and operator, 326
Announcements template, 34
Anonymous Access page, 680
APIs (application programming interfaces), 165
AppContextSite() function, 334
AppDatabaseName property, 124
AppDatabaseServerReferenceId property, 124
appendStatus method, 457
AppEventProperties property, 355, 371
AppEventReceiver.svc file, 373
APP file, 301
AppIcon.png file, 250, 286
AppId property, 652
AppInstalled event, 358, 370
AppInstance class, 291
App.js file, 258
Application Management area, SPCA, 7
application pages, 448–450
application programming interfaces (APIs), 165
ApplicationResourceFiles element, 101
application servers, 15
AppliesTo attribute, 635
ApplyChanges method, 402
ApplyElementManifests tag, 107
Apply Style Sheets permission, 678
Apply Themes and Borders permission, 678
App Management service, 309, 310
AppManifest.xml file

General tab, 259–260
overview, 251, 258–259
Permissions tab, 260–265
Prerequisites tab, 265–267
Remote Endpoints tab, 268–269
sample, 372

Supported Locales tab, 267–268
AppOnlySequence activity, 591, 648
App Parts

overview, 12, 270–279
use by developers, 22–23

AppPermissionsRequests element, 313
AppPrerequisites element, 267
app principal, 260
AppPrincipal element, 297
app-related receivers, 370–377
ApprovalComment variable, 567
ApprovalOutcome variable, 564
ApprovalRequestMessage argument, 563, 569, 609,

614
Approve Items permission, 678
Approve method, 129
apps-extensibility model, 5–6
apps, SharePoint

AppManifest.xml file
General tab, 259–260
overview, 258–259
Permissions tab, 260–265
Prerequisites tab, 265–267
Remote Endpoints tab, 268–269
Supported Locales tab, 267–268

App Parts, 270–279
app website, 253–254
autohosted apps

Chrome control, 292–296
configuring SQL Azure database, 289–292
converting site to, 287–289
creating, 285–287
overview, 285

creating, 249–250
custom UI extensions, 279–284
development environment for, 248
JavaScript Client Object Model (JSOM), 257–258
on-premises farm for, 309–312
overview, 247–248
project structure for, 250–252
provider-hosted apps, 296–297
provisioning content, 254–257
publishing

to corporate app catalog, 301–303
deploying, 298–301
to Office Store, 303–307
overview, 298

security infrastructure for, 312–316
upgrading, 308–309
workflows in

www.it-ebooks.info

http://www.it-ebooks.info/

 autohosted apps

 Index 737

defining, 598–604
deploying, 624
and security, 643–649

App Step ribbon button, 646
Apps You Can Add list, 12
AppUninstalling event, 256, 358, 370
AppUpgraded event, 358, 370
AppWebFullUrl property, 371
AppWebProxy.aspx page, 333
{AppWebUrl} token, 260, 282
architecture

client-side technologies, 201–202
databases, role of, 18–19
logical and physical architecture, 15–17
of remote event receivers

and contracts, 352–355
overview, 351–352
scopes, 356–358

service applications, 17–19
of Web Parts, 383–384
of workflows, 549–552
of WWF, 531–534

ArgumentException exception, 146
ASCX files, 68, 396
ASP.NET integration, 21
Aspnet_isapi.dll file, 21
ASPNET_REGSQL.EXE tool, 670
ASP.NET task form, 604
ASP.NET Web Site Administration Tool, 671
ASPX form file, 576
ASPX page file, 271
Assemblies element, 101
Assembly attribute, 454, 635
AssetId property, 371
Asset Library template, 34
Assign a Task action, 565
AssignedTo property, 600
Association And Initiation Form Parameters dialog

box, 563
association forms

for workflows
creating, 604–615
overview, 563–564

AssociationNavigator value, 507
AssociationUrl property, 622, 624
Associator value, 507
AsynCodeActivity class, 541
Atom Syndication format, 236
Attachments parameter, 37

Attachments property, 127
attributes for content types, 67–69
authentication

claims-based authentication
FBA, 669–670
overview, 665–666
Windows authentication, 667–668

claims-based authentication and WS-
Federation, 681–685

configuring server-to-server apps, 731–733
FBA with SQL membership provider

configuring SharePoint web.config files, 673–
674

configuring SQL server database, 670–673
configuring SQL Server permissions, 675
enabling providers for, 675–676
enabling users or roles, 676–677
overview, 670

implementing IP/STS with WIF
building relying party, 694–698
building STS, 686–694
overview, 685

infrastructure of
claims-based authentication, 663–664
migrating from classic-mode, 664–665
overview, 661–663

modes for BCS, 499–504
OAuth protocol, 728–731
overview, 681
trusted IPs

configuring target web application, 702–704
creating custom claims provider, 704–712
overview, 699
registering IP/STS in SharePoint, 700–701

with Windows Azure ACS
authenticating with Facebook, 726–728
configuring relying parties, 717–719
creating rule groups, 719–720
federating SharePoint with Windows Azure

ACS, 721–722
logon page for, 723–725
overview, 713–715
setting up Facebook app, 715–717

AuthenticationMode property, 205
Authentication Providers command, 702
Authorization HTTP header, 335
authorization infrastructure, 677–680
AutoActivateInCentralAdmin attribute, 93
autohosted apps

www.it-ebooks.info

http://www.it-ebooks.info/

AutoProvisioning value

738 Index

Chrome control, 292–296
configuring SQL Azure database, 289–292
converting site to, 287–289
creating, 285–287
defined, 247
overview, 285

AutoProvisioning value, 267
autoResolveDeletes argument, 190

B
Backup and Restore area, SPCA, 7
-b argument, 731
BaseConfigurationID attribute, 483, 485
BaseTemplateID attribute, 264, 483, 485
BaseTemplateName attribute, 483, 485
BaseTemplate value, 343
BaseType attribute, 72, 85
BaseViewID attribute, 78, 81
Basic Meeting Workspace template, 10
Basic Search Center site definition, 469
Basic Search Center template, 10, 51
bConvertIfThere argument, 143
BCS (Business Connectivity Services)

accessing database, 491–499
accessing SOAP service, 510–515
accessing WCF service, 510–515
authentication modes, 499–504
consuming OData service, 516–519
defined, 24
entity associations, 525–527
model file for, 504–507
.NET custom model

designing, 521–524
overview, 519–521

offline capabilities of, 508–510
overview, 489–491
scope, 260

BDC (Business Data Connectivity), 489
BDC Client Runtime, 490
BDC Explorer toolbox, 520, 522
BeforeProperties property, 364
BeginVersion attribute, 107
benefit categories of SharePoint 2013, 4–6
BinarySecurityDescriptorAccessor value, 507
BLANKINTERNET#0 template, 143
Blank Meeting Workspace template, 10
Blank Site template, 9, 51, 469
BLOG#0 template, 143

Blog template, 10, 51, 469
body argument, 334
Body property, 600
Boolean field type, 40, 58
Boolean property, 365
BreakRoleInheritance method, 126, 127
Browsable parameter, 398
Browse Directories permission, 678
Browse User Information permission, 678
Build Dictionary action, 564, 580
BuildDictionary<TKey, TValue> activity, 592
BuildDynamicValue activity, 592, 631
BulkAssociatedIdEnumerator value, 507
BulkAssociationNavigator value, 507
BulkIdEnumerator value, 507
BulkSpecificFinder value, 507
Business Connectivity Services (BCS). See BCS
Business Data Connectivity (BDC), 489
Business Intelligence Center template, 10, 51, 469
Button element, 435, 437

C
Calculated field type, 40
Calendar template, 34
CalendarType attribute, 483
Calendar View, 42
callback capability of remote event receivers, 377–

378
Call HTTP Web Service action, 564, 579, 580
CAML (Collaborative Application Markup

Language), 79, 127, 168, 208, 275
CamlQuery class, 205, 231
Canceled value, 570
Canceling value, 570
CancelNoError value, 355
CancelWithError value, 355
CancelWithRedirectUrl value, 355
CancelWorkflow method, 655, 658
Cascading Style Sheets (CSS), 223
CatalogIconImageUrl property, 390
CatalogImageUrl property, 391
Category attribute, 635
CategoryAttribute attribute, 399
CDNs (content delivery networks), 223
ceiling() function, 328
Central Admin Site site definition, 469
ChangeConflictCollection class, 190
ChangeConflictException, 188, 189

www.it-ebooks.info

http://www.it-ebooks.info/

 code argument

 Index 739

ChangeConflicts property, 189
ChangedIdEnumerator value, 507
ChangedItemProperties property, 355, 365
ChangeListItemConcurrently procedure, 148
Check Approval Outcome stage, 567
CheckBox attribute, 437
CheckedOutByUser property, 129
CheckForPermissions method, 121
Check In command, 46
checking documents in and out

using CSOM, 233
overview, 155–156

Check In Item action, 565
CheckInItem activity, 589
CheckIn method, 129, 156, 233, 347
Check Out command, 46
Check Out Item action, 565
CheckOutItem activity, 589
CheckOut method, 129, 156
CheckOutType property, 129, 156, 233
CheckPermissions method, 124, 126, 127
Choice field type, 39, 58
ChooseListItem value, 638
Chrome control for autohosted apps, 292–296
ChromeState property, 390
ChromeType property, 390, 391
claims augmentation, 704
claims-based authentication

FBA, 669–670
implementing IP/STS with WIF

building relying party, 694–698
building STS, 686–694
overview, 685

infrastructure of, 663–664
overview, 665–666
trusted IPs, 699

configuring target web application, 702–704
creating custom claims provider, 704–712
registering IP/STS in SharePoint, 700–701

Windows authentication, 667–668
and WS-Federation, 681–685

claims identity, 663
ClaimsIdentity instance, 698
ClaimsIdentity type, 664, 668
Claims namespace, 664
ClaimsPrincipal type, 664, 690
Claims property, 668
ClaimType property, 663
ClaimValue property, 663
ClaimValueType property, 663

classic-mode authentication, 664–665
Classic Web Part, 392–395
ClassName attribute, 634, 635
ClearDictionary<TKey, TValue> activity, 592
ClientContext class, 203, 205, 287, 363
Client.dll assembly, 203
ClientId attribute, 297
{clientId} token, 283
Client namespace, 203, 205, 323
Client Object Model. See also CSOM

JSOM, 218–224
Silverlight Client Object Model, 213–218

ClientObjectQueryableExtension method, 207, 208
ClientOnClickNavigateUrl property, 433
ClientOnClickPostBackConfirmation property, 433
ClientOnClickScript property, 433
ClientOnClickUsingPostBackEvent property, 433
ClientRuntimeContext class, 205
Client-Side Object Model (CSOM), 323, 360, 463,

490, 605, 650
client-side rendering (CSR), 40, 83
client-side technologies

architectural overview, 201–202
Client Object Model. See also CSOM

JSOM, 218–224
Silverlight Client Object Model, 213–218

overview, 22, 201
REST API

managing data, 240–243
overview, 234–236
querying for data with .NET and LINQ, 237–

240
Client.svc, 203
Client Web Part, 28
ClientWebPart element, 275
close method, 461
CLR (Common Language Runtime), 133, 414
CMS (content management system), 20
CMSPUBLISHING#0 template, 142, 143
CNAME record, 310
CodeAccessSecurity element, 101
code activities

defined, 629
for workflows

creating, 639–640
deploying, 640–643

CodeActivity activity, 593
CodeActivity class, 541, 542
CodeActivityContext argument, 544
code argument, 170

www.it-ebooks.info

http://www.it-ebooks.info/

CodeBehind attribute

740 Index

CodeBehind attribute, 449
Collaboration group, 9
Collaborative Application Markup Language

(CAML), 79, 127, 168, 208, 275
Collation attribute, 483
Collection group, 537
ColorPicker attribute, 437
ColumnAttribute attribute, 177
Column element, 171
columns, site, 47–48
ComboBox attribute, 437
CommadUIHandlers element, 435
CommandAction attribute, 441
CommandUIDefinition element, 435, 436, 445
CommandUIExtension element, 435
CommandUIHandler element, 441
Common Language Runtime (CLR), 133, 414
commonModalDialogClose method, 461
commonModalDialogOpen method, 461
communication contract, 408
Community Portal template, 10, 142
Community Site template, 10, 51, 142
CompanyName field, 236
CompatibilityLevel property, 143
CompensableActivity activity, 138
CompletedStatus property, 600
Completed value, 570
CompositeTask activity, 590
concat() function, 328
concurrency conflicts

in LINQ to SharePoint, 188–192
overview, 147–148

conditions
for workflows, 566

configSections element, 673
configurable Web Parts

configurable parameters, 398–400
Editor Parts, 400–404
overview, 398

Configuration element, 471, 478
Configuration Wizards area, SPCA, 7
ConflictMode argument, 189
connectable Web Parts, 407–413
ConnectionConsumerAttribute attribute, 410, 412
ConnectionPointType property, 412
ConnectionProvider attribute, 409
ConnectionProviderAttribute attribute, 409, 412
connectionStrings element, 673
Connect To Outlook ribbon command, 508
Contact content type, 49, 63

ContactName property, 515
Contacts template, 34
ContainsDefaultLists attribute, 483
ContainsDynamicValueProperty activity, 592
Content App, 28
content delivery networks (CDNs), 223
content management system (CMS), 20
ContentMarket property, 371
Content pages, 450–456
ContentTypeBinding element, 96, 618, 619
ContentType element, 63, 96, 171
Content Type Hub service, 49
ContentTypeId property, 127, 210, 600
ContentType property, 127, 242
content types

attributes for, 67–69
defined, 28
Document content types, 69–70
ID attribute, 63–67
menu items scoped for, 280
overview, 48–51, 60–63

ContentTypesEnabled property, 112
Content Types parameter, 37
ContentTypes property, 124, 126
ContextInfo namespace, 323, 324
ContextPageInfo property, 132
ContextToken property, 355
ContextualGroup attribute, 437
ContextualTabs attribute, 437
ContinueOnConflict value, 188
Continue value, 355
contracts, 352–355
Contribute permission level, 32, 679
ControlAssembly attribute, 422, 432
ControlClass attribute, 422, 432
Control element, 96
Control Flow group, 536
Controls attribute, 437
Controls.js file, 295
ControlSrc attribute, 422
Convert-SPWebApplication cmdlet, 664
Copy Document action, 565
CopyDynamicValue activity, 592
CopyFrom method, 127
copying files

overview, 156–157
using CSOM, 233–234

CopyItem activity, 590
Copy method, 127
CopyTo method, 127, 129, 233

www.it-ebooks.info

http://www.it-ebooks.info/

 custom tasks

 Index 741

CoreV15.css style, 273
corporate app catalog, publishing to, 301–303
CorrelationId property, 355
CountDictionary<TKey, TValue> activity, 592
CountDynamicValueItems activity, 592
CountInstances method, 655
CountInstancesWithStatus method, 655
Count Items in a Dictionary action, 564, 583
Country property, 184
Create Alerts permission, 678
Create All Operations command, 495
CreateChildControls method, 386, 395, 403, 411, 432
Create Column page, 38–39
CreateContex method, 523
Created by a Specific Person condition, 566
Created By field, 35
Created field, 35
Created in a Specific Date Span condition, 566
CreateDynamicValue activity, 592
CreateEditorParts method, 401, 402
Create Groups permission, 678
Create List Item action, 565
CreateListItem activity, 590
CreateListItem value, 638
Create List Workflow dialog box, 560
Create New Secure Store Target Application

wizard, 501, 502, 503
create, read, update, delete, and query

(CRUDQ), 489
CreateRemoteEventReceiverClientContext

method, 380
Create Site Collection option, 9
Create Subsites permission, 678
Create View command, 42
Create View page, 43
Creator attribute, 93
Creator value, 507
Credentials ribbon group, 503
CreditCardValidationActivity class, 639–640
cross-domain calls for REST API, 333–334
cross-site scripting (XSS), 268, 418
CRUDQ (create, read, update, delete, and

query), 489
CSOM (Client-Side Object Model), 463, 605, 650

authenticating, 205
ClientObject vs. ClientValueObject, 210–213
consuming BCS data, 490
data retrieval and projection, 206–210
examples

checking documents in and out, 233

copying and moving files, 233–234
creating and updating list item, 226
creating new document library, 231
creating new list, 225
deleting existing list item, 230
exception handling with lists, 227–230
overview, 224
paging queries of list items, 230–231
uploading and downloading

documents, 232–233
overview, 203–205
Site class, 323

CSR (client-side rendering), 40, 83
CSS (Cascading Style Sheets), 223
CultureLCID property, 355
culture parameter, 323
Currency field type, 39, 58
Current property, 132, 216
Current variable, 139
CustomAction element, 96, 282, 284, 421–428, 426,

432
CustomActionGroup element, 96, 428–430
custom actions

CustomAction element, 421–428
CustomActionGroup element, 428–430
HideCustomAction element, 430–431
overview, 421
server-side custom actions, 432–434
for workflows

creating code activities, 639–640
creating declarative activities, 630–633
deployment of code activities, 640–643
deployment of declarative actions, 634–638
overview, 629

custom activities
for workflows, 540–544

custom claims provider, 704–713
CustomerID property, 515
CustomerID token, 633
CustomerService.cs file, 523
CustomersList parameter, 522
Custom group, 10
CustomizedCssFiles attribute, 483
CustomJSUrl attribute, 483
custom list templates, 34, 35–41
CustomMapping attribute, 197
CustomPropertyToolPart class, 400, 402
Custom Send to Destination setting, 46
custom tasks

for workflows, 615–620

www.it-ebooks.info

http://www.it-ebooks.info/

custom UI extensions

742 Index

custom UI extensions, 279–284
CustomUpgradeAction element, 107, 113
custom verbs for Web Parts, 405–407
Custom View in SharePoint Designer option, 42
custom views for list definitions, 81–84

D
DACPAC file, 299
data argument, 333
database servers, 15
dataBindList method, 223
Data Connection Library template, 34
DataContext class, 170, 179, 189, 194, 238, 240, 241,

242
DataContract serialization engine, 195, 511
data management features

content types, 48–51
lists of items and contents

creating new list, 32–34
custom list templates, 35–41
document library, creating, 44–46
standard list templates, 34–35

overview, 31
site columns, 47–48
sites, 51–52

data provisioning
content types

attributes for, 67–69
Document content types, 69–70
ID attribute, 63–67
overview, 60–63

list definitions
custom views for, 81–84
in Visual Studio 2012, 86–89
List element, 72–73
list schema file, 71–72
ListTemplate definition file, 85–86
MetaData element, 74–81
overview, 70–71

overview, 23, 55
site columns, 55–60

DataServiceContext class, 237
DataServiceQuery<T> class, 239
Datasheet parameter, 37
Datasheet View, 42
Data Source Explorer window, 494, 514
DataTemplate control, 214
DateTime field type, 39, 58

Date value, 638
day() function, 328
db_owner role, 665
Decision Meeting Workspace template, 10
declarative activities

defined, 629
for workflows

creating, 630–633
deploying, 634–638

Default.aspx page, 250, 251, 255, 686, 698
Default Configuration hyperlink, 702
DefaultCredentials class, 238
DefaultResourceFile attribute, 93, 95
DefaultTaskOutcome property, 600
DefaultValueAttribute attribute, 399
DefaultView attribute, 78
DeferredLoadingEnabled property, 183, 195
DefinitionId property, 652
Delay activity, 544
DelayUntil activity, 591
DeleteAllOnSubmit method, 187
DeleteDefinition method, 657
DeletedIdEnumerator value, 507
Delete Document command, 46
Deleted value, 185
Delete Item action, 565
Delete Items permission, 678
DeleteListItem activity, 590
Delete method, 121, 124, 126, 127, 129
DeleteObject method, 230, 242
DELETE operation, 319
Deleter value, 507
Delete Versions permission, 678
deleting list items

overview, 149
using CSOM, 230

Deny method, 129
Dependent value, 638
Deploy command, 298
DEPLOY file, 301
deploying

features, 97–100
remote event receivers, 367–370
solutions, 100–103
Web Parts, 388–392, 413–417
workflows

farm-level workflow, 620–623
overview, 620
SharePoint app workflow, 624

DeploymentServerType attribute, 101

www.it-ebooks.info

http://www.it-ebooks.info/

 documents

 Index 743

deployment service, Workflow Services
Manager, 649

DeprecateDefinition method, 657
Description attribute, 93, 95, 101, 390, 422, 429, 483,

636
Description property, 131, 225
DesignerType attribute, 636, 638
Design permission level, 32, 679
design surface

for workflows, 561–562
DevbookDataContext class, 172
Developer Site template, 10
developers, tools and features for

App Parts, 22–23
ASP.NET integration, 21
Business Connectivity Services, 24
client-side technologies, 22
data provisioning, 23
event receivers, 23
features, 23–24
Microsoft Visual Studio 2012, 26–28
overview, 21
sandboxing, 23–24
security infrastructure, 24
SharePoint Designer 2013, 25–26
SharePoint Server Explorer, 28–29
Solution Explorer and Feature Designer, 30
solutions deployment, 23–24
UI, 22–23
Web Parts, 22–23
Windows PowerShell, 24
workflows, 23

Developer Tools option, 26
development environment, 248
DevLeapBookPortalDataContext class, 238
DevLeap Claims Provider item, 712
DevLeapContact class, 174, 187
DevLeapContacts property, 186, 238, 239
DevLeapInvoice type, 180
DevLeapOrderStatus field, 365
DevLeap Sample IP/STS option, 703
DevLeapSecurityTokenService class, 691
DevLeapSecurityTokenServiceConfiguration

class, 690, 691
Dialogs parameter, 37
DictionaryContains<TKey, TValue> activity, 592
Dictionary<String, Object> class, 539
Dictionary value, 638
Direction attribute, 636
DisableAttachments attribute, 73

Disassociator value, 507
Discard Check Out command, 46
Discard Check Out Item action, 565
disconnected entities, 194–196
Discover Center template, 10
DisplayCategory attribute, 483
DisplayFormToolbar location, 428
DisplayForm value, 80
DisplayModeChanged event, 405
DisplayModeChanging event, 405
DisplayMode property, 404
display modes for Web Parts, 404–405
DisplayName attribute, 56, 57, 78, 412, 537, 636
DisplayName property, 206
Dispose method, 133
<div> elements, 295, 386
div operator, 327
DLPROJECTS template, 476
Do Calculation action, 565
DocLibNames value, 638
Document Center template, 10, 51, 469
Document content type, 49, 63, 69–70
DocumentConverter element, 96
DocumentCreatedBy property, 174
document libraries

check-in and checkout of documents in, 155–156
copying and moving files in, 156–157
creating

using CSOM, 231
overview, 44–46

and custom site definitions, 471
downloading documents from, 155
managing versions of documents, 157–158
overview, 11–12
using REST API with

creating document library, 343
deleting document, 347–348
document check-in and checkout, 345–347
querying, 348–349
updating document, 344–345

uploading documents to, 154
Document Library template, 34, 44
DocumentModifiedBy property, 174
Document Object Model (DOM), 165
documents

checking in and out, 155–156, 233
copying, 156–157, 233–234
downloading, 155, 232–233
managing versions of, 157–158
moving, 156–157

www.it-ebooks.info

http://www.it-ebooks.info/

document templates

744 Index

overview, 11–12
uploading, 154, 232–233

document templates
element for, 69
IDs of, 153
URL setting for, 46

DocumentTemplateType property, 231
Document Workspace template, 9, 469
DoesUserHavePermissions method, 122, 126, 127
DOM (Document Object Model), 165
Download a Copy command, Library tab, 46
downloading documents

using CSOM, 232–233
overview, 155

DropDown attribute, 437
Dropdown value, 638
DueDate property, 600
Duration property, 544
DwpFiles element, 101
DynamicMasterPageFile attribute, 449
DynamicValue group, 537

E
-e argument, 731
ECB (Edit Control Block), 247, 424
ECB (Edit Control Block) menu, 568
ECM (Enterprise Content Management), 20, 203
ECT (external content type), 490
Edit Authentication configuration page, 676, 702
Edit Control Block (ECB), 247, 424
Edit Control Block (ECB) menu, 568
EditControlBlock location, 428
Edit Document command, Library tab, 46
EditFormToolbar location, 428
EditForm value, 80
editions

SharePoint Foundation, 19–20
SharePoint Online, 21
SharePoint Server Enterprise, 20
SharePoint Server Standard, 20

Edit Items permission, 678
EditorPart class, 402
Editor Parts, 400–404
EditorZone class, 383
EditorZone control, 400
Edit permission level, 32, 679
Edit Personal User Information permission, 679
Edit Properties command, Library tab, 46

Edit Task command, ECB menu, 571
Edit This List command, 40
Edit Web Part menu, 278
ElementFile element, 95, 107
ElementManifest element, 94, 107
Elements element, 56
elements, feature, 95–97
Elements.xml file, 618
Email activity, 591
Email property, 131
Email value, 638
Empty Element feature, 28
EnableContentTypes attribute, 73
Enabled property, 652
EnableMinorVersions attribute, 73
Enable-SPFeature cmdlet, 97
Enable Workflow Debugging option, 602
endswith() function, 327
EndVersion attribute, 107
EnsureUser method, 159, 324
Enterprise Content Management (ECM), 20, 203
Enterprise group, 10
Enterprise Resources scope, 260
Enterprise Search Center template, 10, 51, 469
Enterprise Wiki template, 10, 469
entity associations, 525–527
Entity element, 506
EntityInstanceAdded event, 358
EntityInstanceDeleted event, 358
EntityInstanceEventProperties property, 355
EntityInstanceUpdated event, 358
EntityList<T> class, 186, 187, 196
EntityRef<T> class, 181
{Entity}Service.cs file, 520
EntitySet property, 182
EntityState property, 176, 185
EntityTracker class, 185
EnumerateDefinitions method, 657
EnumerateInstancesForListItem method, 655
EnumerateInstancesForSite method, 655
Enumerate Permissions permission, 678
EnumerateSubscriptionsByList method, 652
EnumItems element, 276
enum type, 276
eq operator, 326
error argument, 334
ErrorCode property, 355
Error Handling group, 537
ErrorMessage property, 355, 365
Establish Trust Relationship page, 699

www.it-ebooks.info

http://www.it-ebooks.info/

 FieldDeleting event

 Index 745

ETag parameter, 329, 330
EventCategory attribute, 636
Event content type, 63
event receivers, 23
EventReceivers property, 122, 124, 126, 370
EventSourceId property, 652
EventType property, 355
EventTypes property, 652
exception handling

using CSOM, 227–230
overview, 136–138

ExceptionHandlingScope class, 228
exception management

for workflows, 574–575
ExcludeColumn element, 171
ExcludeContentType element, 172
ExcludeFromOfflineClient attribute, 483
ExcludeList element, 171
ExcludeOtherColumns element, 172
ExcludeOtherContentTypes element, 172
ExcludeOtherLists element, 171
executeAsync method, 334
executeQueryAsync method, 205, 258, 441
ExecuteQuery method, 205, 216, 225, 228
executing instances

of workflows, 539–540
$expand parameter, 236, 326, 329
ExportMode property, 390
Expression<Func<T, Object>> class, 207, 209
Extensible Application Markup Language

(XAML), 213
external authentication, 312
external content type (ECT), 490
External Content Type Repository, 490
External Data field type, 40
External List template, 35, 498
ExternalSecurityProvider, 487
Extract Substring from End of String action, 565
Extract Substring from Index of String action, 566
Extract Substring from Start of String action, 566
Extract Substring of String from Index with Length

action, 566

F
Facebook

authenticating with, 726–728
setting up app for Windows Azure ACS, 715–717

FailOnFirstConflict value, 188, 189

farm-level workflow
deploying, 620–623

FBA (Forms-Based Authentication)
defined, 661
overview, 669–670
with SQL membership provider

configuring SharePoint web.config files, 673–
674

configuring SQL server database, 670–673
configuring SQL Server permissions, 675
enabling providers for, 675–676
enabling users or roles, 676–677
overview, 670

FeatureActivated event, 108, 110, 112
feature activation dependency, 104
FeatureDeactivating event, 108, 110
Feature Designer, Visual Studio 2012, 30
feature elements, 55, 478
FeatureId attribute, 422, 471
feature installation event, 108
feature manifest, 91
FeatureManifests element, 101
feature receivers

handling FeatureUpgrading events, 112–113
overview, 108–112

features
deploying, 97–100
element types, 95–97
overview, 91–95
upgrading, 105–108
use by developers, 23–24

FeatureSiteTemplateAssociation element, 96
Features property, 122, 124
feature stapling, 466
FeatureUninstalling event, 108
FeatureUpgrading event

handling, 112–113
overview, 108

Feature.xml file, 91
FederatedPassiveSecurityTokenServiceOperations

type, 690
FederationMetadata.xml file, 686, 694
Fiddler Composer, 322
fidelityProgramLevel claim, 712
FieldAdded event, 357
FieldAdding event, 357
Field attribute, 636
FieldBind element, 635
FieldDeleted event, 357
FieldDeleting event, 357

www.it-ebooks.info

http://www.it-ebooks.info/

Field element

746 Index

Field element, 56, 96
FieldRef element, 79
FieldRefs element, 63
Fields element, 75
Fields property, 124, 126
FieldUpdated event, 357
FieldUpdating event, 357
File class, 232, 233
FileCreationInformation class, 232
FileDialogPostProcessor, 487
File element, 451
File Extension option, 280
File property, 127, 132
files. See documents; document libraries
Files collection, 348
Files property, 124, 154
Files ribbon tab, 45
FillSearch method, 708
$filter parameter, 236, 326, 329
Filter Parameters Configuration page, 496
Finder method, 510, 514
Finder value, 507
Find Interval Between Dates action, 566
Find Substring in String action, 566
Float value, 638
floor() function, 328
Flowchart group, 536
flowcharts

using in workflows, 625–626
workflow model, 532, 625

FlowSwitch<T> activity, 537
FlyoutAnchor attribute, 437
Folder content type, 63
FolderCreation attribute, 73
Folder property, 128, 206
Folders parameter, 37
Folders property, 124, 126, 154
Force argument, 559
FormDigest control, 140
FormDigest property, 139–140
Form Library template, 35
FormsAuthenticationLoginInfo property, 205
Forms-Based Authentication (FBA). See FBA
Forms element, 80
front-end web servers, 15
Full Control permission level, 32, 262, 679
FunctionName attribute, 635

G
GAC (Global Assembly Cache), 388, 519, 640, 709
galleries, 450–456
Gallery attribute, 437
GalleryButton attribute, 437
Gantt View, 42
General Application Settings area, SPCA, 7
General tab, AppManifest.xml, 259–260
Generate Client ID button, 314
Generate New Key ribbon button, 500
GenericInvoker value, 507
ge operator, 326
Get an Item from a Dictionary action, 565, 583
GetAppOnlyAccessToken method, 313
GetCategoryProvider method, 409
GetCurrentItemId activity, 589
GetCurrentListId activity, 596
get_current() method, 220
GetCustomerById operation, 511
GetCustomListTemplates method, 122
GetCustomWebTemplates method, 122
GetDebugInfo method, 655
GetDefinition method, 657
GetDesignerActions method, 657
GetDictionaryValue<TKey, TValue> activity, 592
GetDynamicValueProperties activity, 592, 631
GetDynamicValueProperty<T> activity, 592
GetEffectiveRightsForAcl method, 122
GetEnumerator method, 168
GetFile method, 124
GetFolder method, 124
GetHistoryListId activity, 589
GetInstance method, 655
GetItemById method, 126, 145, 226
GetItemByIdSelectedFields method, 147
GetItems method, 126, 180, 205, 231
GetList<T> method, 173
GET method, 282, 318
GetODataProperties activity, 592
GetOutputClaimsIdentity method, 693
GetProperty method, 653
GetRecycleBinItems method, 122, 124
GetRecycleBinStatistics method, 122
GetS2SClientContextWithWindowsIdentity

method, 380
GetS2SSecurityToken activity, 592
GetScope method, 693
getSelectedItems() method, 441
GetSiteData method, 124

www.it-ebooks.info

http://www.it-ebooks.info/

 IIS (Internet Information Services)

 Index 747

Get-SPWebTemplate cmdlet, 142
GetTaskListId activity, 589
get_title() method, 219
GetToolParts method, 400
GetUserEffectivePermissions method, 124
GetWebTemplates method, 323
GetWorkflowDeploymentService method, 652
GetWorkflowInstanceService method, 652, 655
GetWorkflowInteropService method, 652
GetWorkflowMessagingService method, 652
GetWorkflowSubscriptionService method, 652
Global Assembly Cache (GAC), 388, 519, 640, 709
GLOBAL definition, 470
globally unique identifier (GUID), 56, 120, 225, 267
Go To App button, 727
Go to Stage action, 566
Grid control, 214
GridView control, 360, 698
GroupAdded event, 358
GroupAdding event, 357
Group attribute, 58, 437
GroupDeleted event, 358
GroupDeleting event, 357
Group field type, 40
GroupId attribute, 423, 429, 431
groups. See also users

membership to, 159
permissions for, 160

Groups attribute, 437
Groups property, 124, 131
GroupTemplate attribute, 437
GroupUpdated event, 358
GroupUpdating event, 357
GroupUserAdded event, 358
GroupUserAdding event, 357
GroupUserDeleted event, 358
GroupUserDeleting event, 357
Group Work Site template, 10
gt operator, 326
GUIDGEN tool, 56
GUID (globally unique identifier), 56, 120, 225, 267

H
h1 element, 386
headers argument, 334
hello world Web Part, 384–387, 454
Hidden attribute, 59, 67, 93
Hidden property, 126

HideActionId attribute, 431
HideCustomAction element, 96, 430–431
Hide value, 638
high-trust configuration, 353
HistoryListId property, 623
home page, SPCA, 8
{HostLogoUrl} token, 260
{hostname} token, 322
{HostTitle} token, 260
{HostUrl} token, 260
HostWebFullUrl property, 371
hour() function, 328
href attribute, 235
HttpClient class, 321
HttpContext class, 132
HTTP GET request method, 580
HttpSend activity, 592, 631
HTTPS ports, 557
HTTP Web Service dialog box, 579
HyperlinkBaseUrl attribute, 451
Hyperlink type, 40

I
ICellConsumer interface, 413
ICellProvider interface, 413
ICredential interface, 238
ICustomMapping interface, 197
Id attribute, 93, 95, 423, 429, 431, 636
ID attribute, 56, 63–67, 267, 412
IdCulture argument, 467
Identity argument, 664
identity management and refresh, 192–194
identity provider, 663
identity provider (IP), 682
IdEnumerator value, 507
IDisposable interface, 109, 133
Idle event, 545
ID property, 122, 124, 126, 128, 131
IEnumerable<T> interface, 167, 210
If Any Value Equals Value condition, 566
IFilterConsumer interface, 413
IFilterProvider interface, 413
IF-MATCH header, 329
IgnoreIfAlreadyExists attribute, 452
IIdentity interface, 120, 690
IISAllowsAnonymous property, 122
IIS (Internet Information Services), 14, 31, 122, 287,

359, 532, 601

www.it-ebooks.info

http://www.it-ebooks.info/

IISRESET command

748 Index

IISRESET command, 471, 472
IListConsumer interface, 413
IListProvider interface, 413
Image16by16Left attribute, 445
Image16by16Top attribute, 445
Image32by32 attribute, 445
Image32by32Left attribute, 445
Image32by32Top attribute, 445
images, custom, 446–448
ImageUrlAltText attribute, 94
ImageUrl attribute, 93, 423, 429, 484
Impersonating property, 122
ImportModelReceiver class, 520
InArgument<T> class, 543
IncludeHiddenColumns element, 172
IncludeHiddenContentTypes element, 172
IncludeHiddenLists element, 171
Include method, 209
IncludeWithDefaultProperties method, 207
{index} argument, 323
indexof() function, 327
Index variable, 584
infrastructure

of authentication
claims-based authentication, 663–664
migrating from classic-mode, 664–665
overview, 661–663

of authorization, 677–680
InheritanceBreaking event, 358
InheritanceBroken event, 358
InheritanceReset event, 358
InheritanceResetting event, 358
InitData method, 223
InitializeControl method, 395
InitialValue attribute, 636
Initiation Form Parameters button, 562
initiation forms

for workflows
creating, 604–615
overview, 563–564

InitiationUrl property, 614, 622, 624
init parameter, 216
INotifyPropertyChanged, 174
INotifyPropertyChanging, 174
InOutArgument<T> class, 543
InOutArgument<T> property, 543
Input Parameters Configuration wizard step, 515
InsertAllOnSubmit method, 187
InsertOnSubmit method, 186, 187
InsertTable attribute, 437

installing
Workflow Manager 1.0, 553–554

Install-SPFeature cmdlet, 97
instance service, 649
interface transformers, 413
internal authentication, 312
Internet Information Services (IIS), 14, 31, 122, 359,

532, 601
Internet Server Application Programming Interface

(ISAPI), 21
interop service, 650
InvalidOperationException, 216
Invalid value, 570
Invoice content type, 69
IParametersInConsumer interface, 413
IParametersInProvider interface, 413
IParametersOutConsumer interface, 413
IParametersOutProvider interface, 413
IP (identity provider), 682
IPostBackEventHandler interface, 433
IP/STS (Identity Provider/Security Token Service)

implementing with WIF
building relying party, 694–698
building STS, 686–694
overview, 685

IQueryable<T> interface, 167, 239
IRemoteEventService service contract, 363
IRowConsumer interface, 413
IRowProvider interface, 413
ISAPI (Internet Server Application Programming

Interface), 21
IsConnected property, 652
IsDesignTime property, 132
IsEmptyDynamicValue activity, 592
IsOf() function, 328
IsPopUI property, 132, 464
IsPropertyAvailable method, 213
IsSiteAdmin property, 131
Issue.aspx page, 686
IsUsedByDefault property, 709
ItemAdded event, 356, 362
ItemAdded value, 551, 623
ItemAdding event, 356, 362
ItemAttachmentAdded event, 356
ItemAttachmentAdding event, 356
ItemAttachmentDeleted event, 356
ItemAttachmentDeleting event, 356
ItemCheckedIn event, 356
ItemCheckedOut event, 356
ItemCheckingIn event, 356

www.it-ebooks.info

http://www.it-ebooks.info/

 ListId property

 Index 749

ItemCheckingOut event, 356
Item content type, 63
ItemCount property, 126
ItemDeleted event, 356
ItemDeleting event, 356
ItemEventProperties property, 355, 364
ItemFileConverted event, 356
ItemFileMoved event, 356
ItemFileMoving event, 356
ItemId property, 132
{ItemId} token, 427, 442
Item-Level Permissions, 37
ItemProperties value, 638
Item property, 132
Items collection, 348
items in list. See list items
Items property, 127
ItemUncheckedOut event, 356
ItemUncheckingOut event, 356
ItemUpdated event, 356
ItemUpdated value, 551, 623
ItemUpdating event, 356, 364
{ItemUrl} token, 427, 442
ItemVersionDeleted event, 356
ItemVersionDeleting event, 356
ITrackEntityState interface, 174, 176, 185
ITrackOriginalValues interface, 174, 176
IVersioningPersonalizable interface, 415
IWebEditable interface, 401

J
JavaScript Client Object Model (JSOM), 650
JavaScript Object Notation (JSON), 537, 630
JsLink element, 79, 83
JSOM (JavaScript Client Object Model), 203,

218–224, 252, 257–258, 441, 650
JSON (JavaScript Object Notation), 203, 537, 630

K
Key Management ribbon group, 500
KPIs (key performance indicators), 20

L
Label attribute, 437
language argument, 170
Language-Integrated Query. See LINQ

{Language} token, 260
LayoutsPageBase class, 449
left to right (LTR), 73
length() function, 327
Length property, 129
le operator, 326
libraries. See document libraries
Library ribbon tab, 45
life cycle of workflow process, 544–546
Limited Access permission level, 32, 679
Links template, 35
Linq.dll assembly, 179
LINQ (Language-Integrated Query). See also LINQ

to SharePoint
goal of, 165–166
overview, 22, 163–164
under hood, 167–168

Linq namespace, 179
LINQ to SharePoint. See also LINQ

concurrency conflicts, handling, 188–192
disconnected entities, 194–196
identity management and refresh, 192–194
managing data

deleting or recycling item, 187
inserting new item, 186–187

model extensions and versioning, 196–197
modeling with SPMetal.exe, 169–179
overview, 169
querying data, 179–184

ListAdded event, 357
ListAdding event, 357
ListAllCustomers method, 511
List attribute, 451
ListAttribute attribute, 173
ListBox control, 214
ListCreationInformation class, 225
ListData.svc, 235, 237
list definitions

custom views for, 81–84
List element, 72–73
list schema file, 71–72
ListTemplate definition file, 85–86
MetaData element, 74–81
overview, 70–71
in Visual Studio 2012, 86–89

ListDeleted event, 357
ListDeleting event, 357
List element, 72–73, 171
ListEventProperties property, 355
ListId property, 132, 623

www.it-ebooks.info

http://www.it-ebooks.info/

{ListId} token

750 Index

{ListId} token, 427, 442
ListID value, 149
ListInstance element, 96
List Instance option, 280
ListItemCollection class, 231
ListItemCollectionPosition property, 150, 152, 231
ListItemCreationInformation class, 226
ListItemID value, 149
ListItem property, 132, 206
list items. See also lists

creating, 145–147, 226
deleting, 149, 230
modifying, 147
paging queries of, 230–231
querying, 149–152
updating, 226

ListItem value, 638
List permission, 264
List property, 132, 206
lists. See also document library; list items

concurrency conflicts, 147–148
creating, 32–34, 144, 225
custom list templates, 35–41
exception handling with, 227–230
overview, 11–12
standard list templates, 34–35
using REST API with

creating lists, 338
deleting item, 341–342
querying, 342
updating items, 339–341

views of, 41–44
list schema file, 71–72
List scope, 261
List Settings command, 36
List Settings page, 36, 38
Lists property, 124
List<T> class, 522
ListTemplate definition file, 85–86
ListTemplate element, 96, 476
ListTemplateId attribute, 369
List Template option, 280
ListTemplateOwner attribute, 369
ListTemplates property, 144
ListTemplateType value, 231
ListUrl attribute, 369
{ListUrlDir} token, 442
LoadAfterUI argument, 218
Load method, 415
LoadQuery<T> method, 209, 210

Load<T> method, 205, 207, 210
LobSystem element, 506
Locale attribute, 484
localhost, 514
Localizable argument, 218
Local property, 117
Local Variables ribbon command, 564
Location attribute, 94, 423, 424, 429, 431, 435, 460
LockedByUser property, 129
Lock method, 129
logical architecture, 15–17
Login control, 689
LoginName property, 131
Log property, 180
Log to History List action, 565
Lookup field type, 40, 58
LookupMulti field type, 58
LookupSPChoiceFieldIndex activity, 591
LookupSPGroup activity, 590
LookupSPGroupMembers activity, 590
LookupSPList activity, 590
LookupSPListItem activity, 590
LookupSPListItemId activity, 590
LookupSPPrincipal activity, 591
LookupSPPrincipalId activity, 591
LookupSPUser activity, 591
LookupWorkflowContextProperty activity, 589
lt operator, 326
LTR (left to right), 73

M
main page, SharePoint Designer 2013, 25
MajorCheckIn value, 156
makecert command-line tool, 732
Manage Alerts permission, 678
Managed Metadata field type, 40
Managed Metadata service, 49
Manage Lists permission, 678
Manage Permissions permission, 678
Manage Personal Views permission, 679
Manage Service Application page, 500
Manage Service Applications page, 560
Manage Target Application ribbon group, 500
Manage Web Site permission, 678
ManualResetEvent object, 540
ManualStartBypassesActivationLimit property, 652
MapFrom method, 197
MapTo method, 197

www.it-ebooks.info

http://www.it-ebooks.info/

 NotSpecified value

 Index 751

MaxSize attribute, 437
MaxSize element, 445
Meetings group, 10
MemberChangeConflict method, 197
MemberChangeConflict value, 189
MemberConflicts property, 189
Menu attribute, 437
MenuItemTemplate class, 433
MenuSection attribute, 437
MERGE operations, 318
Message attribute, 60
message broker communication, 557
Message property, 189, 544, 601
Messaging group, 536
messaging service, Workflow Services Manger, 650
MetaData element, 74–81
$metadata parameter, 236
method argument, 334
Method attribute, 631
MethodInstance type, 507, 526
Micro Feed scope, 261
Microsoft.IdentityModel.dll assembly, 707
Microsoft Open Specification Promise, 236
Microsoft SharePoint 2013. See SharePoint 2013
Microsoft.SharePoint.Administration.Claims

namespace, 707
Microsoft.SharePoint.IdentityModel.Pages

namespace, 701
Microsoft.SharePoint.WorkflowServices

namespace, 623
Microsoft Visual Studio 2012. See Visual Studio 2012
MigrateUsersToClaims method, 665
Migration group, 537
MinimumVersion attribute, 267
MinorCheckIn value, 156
minute() function, 328
MobileDefaultView attribute, 78
MobileView attribute, 78
ModalDialog class, 461, 461–464
model extensions in LINQ to SharePoint, 196–197
model file for BCS, 504–507
modeling with SPMetal.exe, 170–179
Model tag, 506
Model-View-Controller 4.0 (MVC4), 287
ModeratedList attribute, 73
Modified by a Specific Person condition, 566
Modified By field, 35
Modified field, 35
Modified in a Specific Date Span condition, 566
Modify View command, 42

mod operator, 327
Module element, 96, 250, 450, 474, 478
Monitoring area, SPCA, 7
month() function, 328
MoveTo method, 129, 233
moving documents

using CSOM, 233–234
overview, 156–157

MPS#0-4 templates, 142
MRUSplitButton attribute, 437
MS.SP.url parameter, 216
mul operator, 327
MultiChoice field type, 58
Multipage Meeting Workspace template, 10
Multiple Lines of Text field type, 39
Multiple Projects scope, 261
MVC4 (Model-View-Controller 4.0), 287
My Site Host template, 10
My Wiki Site template, 474

N
Name argument, 218
Name attribute, 56, 85, 451, 452, 468, 484, 635, 636
Name property, 129, 131, 652
namespace argument, 170
NamespaceURI attribute, 68
NativeActivity class, 541
NativeActivity<TResult> class, 541
NavBarHome attribute, 452
ne operator, 326
.NET custom model

designing, 521–524
overview, 519–522

network-level communication port, 557
New Document command, 45
New Folder command, 37, 45, 73
NewFormToolbar location, 428
NewForm value, 80
New Item command, 40
New Project window, 249
New-SPSite cmdlet, 312
New-SPTrustedIdentityTokenIssuer cmdlet, 701
New-SPTrustedRootAuthority cmdlet, 699
New Subsite command, 51
Note field type, 58
notification area, 456–460
not operator, 326
NotSpecified value, 570

www.it-ebooks.info

http://www.it-ebooks.info/

NotStarted value

752 Index

NotStarted value, 570
Number field type, 39, 58
NumberOfTimes property, 416
NWCustomerLookup activity, 631

O
OAuth protocol, 352, 378, 728–731
ObjectChangeConflict class, 189, 190
ObjectChangeConflict method, 190, 197
object-relational mapper (O/RM), 240
objects hierarchy, Server Object Model

SPContext class, 132
SPControl class, 132
SPDocumentLibrary class, 128–130
SPFile class, 128–130
SPGroup class, 130–131
SPList class, 125–128
SPListItem class, 125–128
SPServer class, 118–119
SPService class, 118–119
SPSite class, 119–125
SPUser class, 130–131
SPWebApplication class, 118–119
SPWeb class, 119–125

ObjectTrackingEnabled property, 186
OData (Open Data Protocol)

consuming with BCS, 516–519
overview, 202

ODBC (Open Database Connectivity), 165
Office Store, publishing to, 303–307
offline capabilities of BCS, 508–510
Offline Client Availability parameter, 37
OnAuthenticate event, 689
OnCreated method, 173, 177
ONET.XML file, 469, 471
OnLoaded method, 177
on-premises farm, 309–312
OnPreRender method, 410
OnQuickLaunch attribute, 85
onUpdateSucceeded method, 441
OnValidate method, 177
OpenBinaryDirect method, 233
OpenBinary method, 129
OpenBinaryStream method, 130, 155
openByDefault element, 70
openChangeStatusDialog function, 462
Open Database Connectivity (ODBC), 165
Open Data Protocol (OData). See OData

Opening Documents in the Browser setting, 46
Open Items permission, 678
Open permission, 678
OpenPopUpPage method, 461
OpenWeb method, 122, 123
Operation Properties page, 495
Operations Designer window, 495
OperatorTypeFrom attribute, 636
Operator value, 638
OrderApprovalOutcome field, 616
OrderBy object, 167
$orderby parameter, 236, 326
Order content type, 359
organizing projects and tasks, 5
OriginalValues property, 176
O/RM (object-relational mapper), 240
or operator, 326
OutArgument<T> class, 543
OutcomeFieldName property, 600
Outcome property, 600
OverdueReminderRepeat property, 600
Override Check Out permission, 678
OverwriteCheckIn value, 156
OverwriteCurrentValues, 194

P
PackageDefinition method, 657
packages.config file, 251
packaging solutions with Visual Studio 2012, 103–

105
Page_Load event, 698
Page_Load method, 287
PagingInfo property, 152
paging queries of list items, 230–231
ParameterNames value, 638
parameters argument, 170
Parameters Configuration page, 495
Parameters element, 635, 636
Parent property, 110
ParseDynamicValue activity, 592
ParserEnabled attribute, 484
PartitionMode argument, 559
passive requestor, 683
PassThrough mode, 499
password argument, 170
PATCH operations, 318
Path attribute, 80, 451, 452
Pause for Duration action, 565

www.it-ebooks.info

http://www.it-ebooks.info/

 Read permission level

 Index 753

Pause until Date action, 565
-pe argument, 731
PeopleManager namespace, 323
PeoplePicker control, 563, 609, 705
permission levels, 675, 677
Permission Levels ribbon command, 679
Permissions tab, AppManifest.xml, 260–265
persistence of workflows, 546–548
PersonalizableAttribute attribute, 398
PersonalizationScope attribute, 276
Personalization Site template, 469
Person field type, 40
Person Is a Valid SharePoint User condition, 566
Person value, 638
Photo field type, 40
physical architecture, 15–17
Picture content type, 49, 63
Picture Library template, 35
PlaceHolderAdditionalPageHead region, 605
PortalName attribute, 484
PortalUrl attribute, 484
POST operations, 318
PowerShell, 8–9, 24
Prerequisites tab, AppManifest.xml, 265–267
PresenceEnabled attribute, 484
PreviousVersion property, 371
Primitives group, 536
PrivateList attribute, 73
ProcessEvent method, 353, 356, 363, 373
process life cycle for workflows, 544–546
ProcessOneWayEvent method, 353, 356, 366, 374
ProcessRequest method, 690
Product Catalog template, 10
ProductId property, 371
ProductVersion attribute, 484
projects

organizing, 5
structure for SharePoint apps, 250–252

Project Server scope, 261
Project Site template, 10, 51
Properties element, 94, 372
PropertyBag element, 96
PropertyDefinitions property, 652
Property element, 275
PropertyOrFieldNotInitializedException, 206, 208,

212
protocol moniker, 322
provider-hosted apps, 248, 296–297
Provider property, 168
providers, FBA, 675–676

provisioning content, 254–257. See also data
provisioning

PublicKeyToken value, 415
PublishDefinition method, 657
PublishEvent method, 658
Publishing group, 10
publishing namespace, 323
Publishing Portal template, 10, 469
publishing SharePoint apps

to corporate app catalog, 301–303
deploying, 298–301
to Office Store, 303–307
overview, 298

Publish method, 130
publishSubscriptionForList method, 655
publishSubscription method, 655
PublishXamlWorkflowToWorkflowStore method, 658
purpose of SharePoint 2013, 3–4
PUT operations, 318

Q
QAT attribute, 438
quality assurance (QA), 23
Query argument, 150
QueryFeatures method, 106
querying

using LINQ to SharePoint, 179–184
lists items, 149–152
using .NET and LINQ, 237–240
with REST API

document libraries, 348–349
lists, 342
overview, 325–329

QuickLaunchEnabled attribute, 484
Quick Launch menu, 145
QuickLaunchOption property, 225

R
RAD (rapid application development), 25
RawSid property, 131
RdbCredentials mode, 499
ReadItem method, 514, 521
ReadList method, 521
ReadLocked property, 122
ReadOnly attribute, 59, 67
ReadOnly property, 122
Read permission level, 32, 679

www.it-ebooks.info

http://www.it-ebooks.info/

ReceiverAssembly attribute

754 Index

ReceiverAssembly attribute, 94, 109, 113
ReceiverClass attribute, 94, 109, 113
Receivers element, 96, 368, 369
Records Center template, 10, 51, 469
{RecurrenceId} token, 427, 442
RecycleAllOnSubmit method, 187
RecycleBin property, 122, 124
Recycle method, 128, 130
RecycleOnSubmit method, 187
RedirectUrl property, 355
Redmond theme, 223
Refresh method, 194
RefreshMode argument, 189, 190
RefreshPage method, 441, 461
RegionalSettings property, 132
@Register directives, 454
Register-SPWorkflowService cmdlet, 559
RegistrationId attribute, 423
registration of remote event receivers, 367–370
RegistrationType attribute, 423, 424, 427
Reindex parameter, 37
relying parties

building, 694–698
configuring, 717–719
defined, 682

Relying Party Applications menu item, 717
~remoteAppUrl token, 282, 369, 427
Remote Endpoints tab, AppManifest.xml, 268–269
Remote Event Receive item, 28
remote event receivers

app-related receivers, 370–377
architecture of

and contracts, 352–355
overview, 351–352
scopes, 356–358

callback capability, 377–378
deployment of, 367–370
example of, 358–367
overview, 351
registration of, 367–370
security of, 379–380
types of, 356–358

remote procedure call (RPC), 122
removeAllStatus method, 457
RemoveFieldRef element, 63
RemoveFromDictionary<TKey, TValue> activity, 592
removeNotification method, 456
removeStatus method, 457
RemoveUser method, 131
replace() function, 327

Replace Substring in String action, 566
Reporting scope, 261
Representational State Transfer. See REST
Representational State Transfer (REST). See REST

(Representational State Transfer)
RequestExecutor class, 333, 341
RequestExecutor.js library, 332, 333, 334
RequestHeaders attribute, 580, 631
RequiredAdmin attribute, 422, 429
Required attribute, 59
requireExactUrl argument, 123
RequireResources attribute, 94, 95
RequiresDesignerPermission attribute, 276
RequiresDesignerPermissionAttribute attribute, 418
RequireSiteAdministrator attribute, 423
ResetItem method, 132
ResetWebServer attribute, 101
ResetWebServerModeOnUpgrade attribute, 101
Resolve method, 190
resource disposal, 133–136
ResourceName key, 275
Resources element, 101
ResponseContent attribute, 631
RestCall value, 638
REST (Representational State Transfer)

consuming services in workflows, 579–585
declarative activities and, 630
messaging activities using, 536
Workflow Services Manager and, 551

REST (Representational State Transfer) API
API reference, 322–325
cross-domain calls, 333–334
examples using

creating and updating list item, 339–341
creating document library, 343
creating list, 338
deleting document, 347–348
deleting list item, 341–342
document check-in and checkout, 345–347
querying list of documents, 348–349
querying list of items, 342
updating document, 344–345

managing data, 240–243, 329–333
OData, 22, 202
overview, 234–236, 317–322
querying data, 325–329
security, 335–336

RestrictToScope property, 622
RestrictToType property, 622
Result property, 542

www.it-ebooks.info

http://www.it-ebooks.info/

 security

 Index 755

ResumeWorkflow method, 655
.resx files, 95, 267
retrieveContacts method, 220
Retrieve method, 213
Return Parameter Configuration wizard, 515
returnValue argument, 463
reusable workflows, 575–576
RevertToSelf mode, 499
Ribbon

attribute, 438
customizing

commands for, 434–446
overview, 434

Ribbon.js file, 218
RichText attribute, 59
Rights attribute, 423, 427
right to left (RTL), 73
RoleAssignmentAdded event, 358
RoleAssignmentAdding event, 358
RoleAssignmentDeleted event, 358
RoleAssignmentDeleting event, 358
RoleAssignments property, 206
RoleDefinitionAdded event, 358
RoleDefinitionAdding event, 357
RoleDefinitionDeleted event, 358
RoleDefinitionDeleting event, 358
RoleDefinitionUpdated event, 358
RoleDefinitionUpdating event, 358
roles, enabling, 676–677
RootFiles element, 101
RootFolder property, 127, 154
RootWebOnly attribute, 369, 423, 451
RootWeb property, 122
round() function, 328
Row element, 83
RowLimit element, 231
RowLimit property, 150
Rows parameter, 82
RPC (remote procedure call), 122
RSSFeedDynamicViewerWebPart control, 418
RTL (right to left), 73
RuleDesigner element, 635
rule groups

creating for Windows Azure ACS, 719–720
Rule Groups menu item, 719
Run As command, 26
Runtime.dll assembly, 203
Runtime group, 536
Runtime.js file, 218
runtime scheduler

for workflows, 544–546

S
S2S (server-to-server), 312, 353, 551, 731–733
SaaS (Software as a Service), 309. See

also SharePoint Online
SafeAgainstScript attribute, 418
SafeControl object, 388, 434
SafeControl tag, 418
SAML token, 718
SampleCRM database, 498
SampleWebPart feature, 97, 98, 105
SandboxedFunction attribute, 635
SaveBinaryDirect method, 232
SaveBinary method, 130
SaveChanges method, 241, 242
SaveDefinition method, 657
Scalar value, 507
Scale attribute, 438
Scaling attribute, 438
Schema.xml file, 71, 80
SchemaXml property, 127
Scope attribute, 94, 95, 369
ScopeName argument, 559
ScopePath property, 652
scopes, 356–358
Script attribute, 60
ScriptBlock attribute, 423, 460
ScriptLink control, 218
ScriptSrc attribute, 423, 460
SDK (software development kit), 154, 202
Sealed attribute, 67
SearchContactsAppPart, 271, 278
search engine feature, 5
search namespace, 323
Search parameter, 37
Search scope, 261
Search setting, 46
second() function, 328
SecurableObject property, 206
secure (HTTPS) port, 557
Secure Store Service administration page, 500
security

infrastructure of, 24
of remote event receivers, 379–380
for REST API, 335–336
for SharePoint apps, 312–316
for Web Parts, 417–419

www.it-ebooks.info

http://www.it-ebooks.info/

securityadmin role

756 Index

for workflows, 643–649
securityadmin role, 665
Security area, SPCA, 7
SecurityBits attribute, 85
SecurityEventProperties property, 355
Security Setup Wizard, 673
security token, 663
SecurityTokenService class, 690
Security Token Service (STS), 312, 666
{SelectedItemId} token, 442
{SelectedListId} token, 442
Selection class, 441
$select parameter, 326, 329
Select People And Groups dialog box, 705, 711
Select The Data Entities wizard page, 518
Select The Server And Database page, 671
Send an Email action, 565
Send To command, Library tab, 46
Sentence attribute, 635
Sequence activity, 588
Sequence attribute, 423, 429, 435
sequential workflows, 532, 625
serialization argument, 170
ServerEmailFooter, 487
ServerException, 225
Server Explorer, 28–29
Server Object Model

common and best practices
AllowUnsafeUpdates, 139–140
FormDigest, 139–140
handling exceptions, 136–138
resource disposal, 133–136
transactions, 138–139

objects hierarchy
SPContext class, 132
SPControl class, 132
SPDocumentLibrary class, 128–130
SPFarm class, 117–118
SPFile class, 128–130
SPGroup class, 130–131
SPList class, 125–128
SPListItem class, 125–128
SPServer class, 118–119
SPService class, 118–119
SPSite class, 119–125
SPUser class, 130–131
SPWebApplication class, 118–119
SPWeb class, 119–125

overview, 115
real-life examples

document libraries and files, 154–158
groups and users, 158–160
lists and items, 144–152
site collection, creating, 140–142
website, creating, 142–143

startup environment, 116
server-side custom actions, 432–434
Server Side Object Model, 650
server-side technologies, 22
server-to-server (S2S), 312, 353, 551, 731–733
service provider, 663, 682
Services property, 118
SessionAuthenticationModule class, 697
SetCategoryProvider method, 410
Set Field in Current Item action, 565, 634, 635
SetProperty method, 653
Set ribbon button, 503
setStatusPriColor method, 457
Set Time Portion of Date/Time Field action, 565
SetupPath attribute, 78, 80, 451, 468
Set Workflow Status action, 565
Set Workflow Variable action, 565
ShapeImageUrl attribute, 635
Share command, Library tab, 46
Share dialog box, 677
Shared With command, Library tab, 46
SharePoint 2013

architectural overview
logical and physical architecture, 15–17
overview, 13–15
role of databases, 18–19
service applications, 17–18

basic concepts
administration via PowerShell, 8–9
App Parts, 12
documents, 11–12
libraries, 11–12
lists, 11–12
SharePoint Central Administration, 6–8
site collections, 9–10
Web Parts, 12–13
websites, 9–10

benefits of, 4–6
for developers

App Parts, 22–23
ASP.NET integration, 21
Business Connectivity Services, 24
client-side technologies, 22
data provisioning, 23
event receivers and workflows, 23

www.it-ebooks.info

http://www.it-ebooks.info/

 $skip parameter

 Index 757

features, 23–24
Microsoft Visual Studio 2012, 26–28
overview, 21
sandboxing, 23–24
security infrastructure, 24
server-side technologies, 22
SharePoint Designer 2013, 25–26
SharePoint Server Explorer, 28–29
Solution Explorer and Feature Designer, 30
solutions deployment, 23–24
UI, 22–23
Web Parts, 22–23
Windows PowerShell, 24

editions
overview, 19
SharePoint Foundation, 19–20
SharePoint Online, 21
SharePoint Server Enterprise, 20
SharePoint Server Standard, 20

purpose/use of, 3–4
SharePoint Central Administration (SPCA), 303, 496,

560, 662, 699
SharePoint_Config database, 16
SharePoint Designer 2013, 25–26
SharePoint.dll assembly, 118
SharePoint Health Analyzer, 8
SharePoint-hosted model, 247
SharePoint namespace, 108
SharePointProductVersion attribute, 101
SharePoint Server Explorer, 28–29
sharing, 4
ShowInDisplayForm attribute, 59
ShowInEditForm attribute, 59
ShowInLists attribute, 423
ShowInNewForm attribute, 59
ShowInReadOnlyContentTypes attribute, 423
ShowInSealedContentTypes attribute, 423
showModalDialog method, 461, 462
ShowPopupDialog method, 461
showWaitScreenSize method, 461
showWaitScreenWithNoClose method, 461
Sid property, 131
Silverlight Client Object Model, 213–218
Silverlight.dll assembly, 213
Silverlight.Runtime.dll assembly, 213
Silverlight Web Part project, 27
Simple Object Access Protocol (SOAP), 22, 165, 490,

536, 683
Single Line of Text field type, 39
SinglePerson value, 638

Single Project scope, 261
SingleTask activity, 590, 599
Site Actions group, 99
Site App Permission page, 644
Site App Permissions menu, 643
Site Assets Library setting, 46
Site class, 323
Site Collection Administration group, 99
site collections

creating, 140–142
scope, 261

~sitecollection token, 427
Site Column Definition page, 48
site columns, 28, 47–48, 55–60
Site Columns page, 48
Site Contents page, 51, 264
Site Content Type page, 66
Site Content Types command, 49
SiteDefinitionManifests element, 101
site definitions

creating custom, 471–474
defined, 465
using, 466–470
in Visual Studio, 474–482
vs. web templates, 487

SiteDeleted event, 357
SiteDeleting event, 357
Site Features page, 645
site models

overview, 465–466
site definitions

creating custom, 471–474
using, 466–470
in Visual Studio, 474–482
vs. web templates, 487

web templates
creating custom, 482–486
vs. site definitions, 487

site namespace, 323
Site Permissions page, 679
Site property, 124, 132, 206
sites, 51–52
SiteSettings location, 428
Site Settings page, 47, 49, 99
site templates, 466
~site token, 427
{SiteUrl} token, 427, 442
SiteUsers property, 124
Size attribute, 445
$skip parameter, 236, 326, 329

www.it-ebooks.info

http://www.it-ebooks.info/

-sky argument

758 Index

-sky argument, 731
SkyDrive Pro feature, 5
Slide Library template, 35
SOAP (Simple Object Access Protocol), 22, 165, 490,

536, 683
Social Core scope, 261
social.feed namespace, 323
Social Meeting Workspace template, 10
Software as a Service (SaaS), 309. See

also SharePoint Online
software development kit (SDK), 154, 202
Solution element, 100
Solution Explorer, Visual Studio 2012, 30
__SolutionId attribute, 635
SolutionId attribute, 94, 101
solutions

deploying, 100–103
manifest file for, 100
package, defined, 100
packaging with Visual Studio 2012, 103–105
upgrading, 105–108

Solutions property, 122
$sort parameter, 329
{Source} token, 442
SPActiveDirectoryClaimProvider, 704
-sp argument, 732
SPCA (SharePoint Central Administration), 6–8, 303,

496, 560, 662, 699
SPCheckOutType class, 156
SPClaimProvider class, 700, 707
SPClaimsProviderFeatureReceiver class, 709
SPContentType class, 551
SPContext class, 123, 132
SPControl class, 123, 132, 386
SP.Core.js file, 218
SPDocumentLibrary class, 128–130, 153
SpecificFinder method, 507, 510, 514, 521
Specify OData Source wizard page, 517
SPException, 148
SPFarm class, 117–118
SPFeatureReceiver class, 108
SPFeatureReceiverProperties class, 108, 109, 110
SPFile class, 128–130
SPFileCollectionAddParameters argument, 154
SPFile property, 155
SPFormsClaimProvider, 704
SPGroup class, 130–131
SPHostUrl parameter, 273
Spinner attribute, 438
SP.js file, 218

SPLimitedWebPartManager class, 136
SPList class, 125–128, 147, 180, 370
SPListCollection class, 144, 145
SPListItem class, 125–128, 146
SPListItemCollection class, 146
SPListItemCollectionPosition class, 152
SPListTemplateType, 144, 152
SplitButton attribute, 438
SplitKeyValuePair<TKey, TValue> activity, 592
SPMetal.exe, 170–179
SPPrincipal class, 130, 677
SPQuery class, 149
SPRemoteAppEventProperties class, 371
SPRemoteEventProperties class, 353, 354, 363, 371
SPRemoteEventResult class, 365
SPRequestModule class, 21
SPRoleAssignment class, 130
SPRoleDefinition class, 130
SPServer class, 118–119
SPService class, 118–119
SPServiceCollection class, 118
SPSite argument, 559
SPSite class, 106, 119–125, 123, 136
SPSiteCollection class, 141
SPSiteDataQuery class, 184
SPSPORTAL#0 template, 142
SPTrustedClaimProvider, 704
SPTrustedIdentityTokenIssuer class, 701
SPUrlZone enumeration, 120
SPUser class, 130–131, 664
SPUserCollection class, 159
SPUserToken class, 120
SPUtility class, 140
SPVirtualPathProvider class, 21
SPWebApplication class, 118–119, 120, 665
SPWebApplication.Sites property, 141
SPWeb class, 119–125, 155, 159, 551
SPWebCollection class, 142
SPWebPartManager class, 136, 384
SPWebService object, 120
SPWebService type, 118
SPWebTemplate class, 143
SPWindowsService class, 118
SPWorkflowPackageFeatureReceiver class, 623
SQL Azure database, 289–292
SqlClient class, 291
SqlConnection class, 290
SQL Server

configuring database, 670–673
configuring permissions, 675

www.it-ebooks.info

http://www.it-ebooks.info/

 Taxonomy scope

 Index 759

configuring SharePoint web.config files, 673–674
enabling providers for, 675–676
enabling users or roles, 676–677
overview, 670

SqlWorkflowInstanceStore class, 547
SqlWorkflowInstanceStoreLogic.sql file, 546
SqlWorkflowInstanceStoreSchema.sql file, 546
-sr argument, 731
-ss argument, 731
stages

adding to workflows, 566–567
defined, 562

Stages value, 638
StandardMenu location, 428
{StandardTokens} token, 260
Standard View, 42
Start a List Workflow action, 564
Start a Site Workflow action, 564
Start a Task Process action, 565
Started value, 570
Start On Item Added property, 624
startswith() function, 327
StartWorkflow method, 609, 655, 658
StartWorkflowOnListItem method, 609, 612, 655
State Machine group, 536
state machine workflow, 532, 625–626
StaticName attribute, 56, 57
status bar, 456–460
StatusColumnCreated property, 623, 653
StatusFieldName property, 653
status fields

for workflows, 570–571
Statusing scope, 261
Status property, 365
Status type, 355
StreamAccessor value, 507
Stream class, 154
StringBuilder value, 638
STS#0 template, 142, 143
STS#1 template, 142, 143
STS#2 template, 142
STSADM.exe tool, 97, 102
STS (Security Token Service), 312, 666
subject, 682
SubMenuTemplate, 433
SubmitChanges method, 185, 186, 188
sub operator, 327
subscription service, 650
Subscription Settings service, 309
substring() function, 327

substringof() function, 327
Subweb attribute, 484
success argument, 334
Supported Locales tab, AppManifest.xml, 267–268
SupportsSearch property, 708
Survey template, 35
Suspended value, 570
SuspendWorkflow method, 655
-sy argument, 732
SyncChanges method, 402
Synchronization element, 369
SyndicationEnabled attribute, 484
System.Activities.Activity class, 629
System.Activities.DurableInstancing.dll

assembly, 546
System.Byte[] array, 154
System.ComponentModel.DataAnnotations

assembly, 639
System content type, 63
System.IdentityModel assembly, 686
system.identityModel section, 697
System.IdentityModel.Selectors assembly, 686
System.IdentityModel.Services assembly, 686
System.IdentityModel.Services namespace, 696
system.identityModel.services section, 697
System.Runtime.DurableInstancing.dll assembly, 546
System Settings page, 7, 102
SystemUpdate method, 128

T
Tab attribute, 438
Tabs attribute, 438
TargetApprover parameter, 563, 569, 609
TargetCountry argument, 537, 542
Target Framework setting, 116
TargetListID property, 402, 404
TargetListTitle property, 399, 402
TargetName attribute, 69
Task content type, 63
TaskId property, 600
TaskListId property, 623
Task Options designer, 599
Task Options pop-up window, 620
Task Outcome field type, 40
Task Pane App, 28
tasks, organizing, 5
Tasks template, 35
Taxonomy scope, 261

www.it-ebooks.info

http://www.it-ebooks.info/

TCP ports

760 Index

TCP ports, 557
Team Site template, 9, 51, 469
TemplateAlias attribute, 436
Template attribute, 80
Template element, 468
TemplateFeatureId property, 225
TemplateFiles element, 101
templates

overview, 465–466
site definitions

creating custom, 471–474
using, 466–470
in Visual Studio, 474–482
vs. web templates, 487

web templates
creating custom, 482–486
vs. site definitions, 487

TemplateType property, 225
Tenant scope, 261
Terminated value, 570
TerminateWorkflow method, 655
testing workflows

overview, 567–570
in Visual Studio 2012, 594–597

TextArea value, 638
Text attribute, 636
TextBox attribute, 438
TextBox value, 638
Text column, 56
Text field type, 58
TextToRender property, 416
TextToRenderTimes property, 416
Time24 attribute, 484
TimeSpan value, 544
TimeZone attribute, 484
Title attribute, 72, 94, 95, 101, 423, 429, 484
Title Field Contains Keywords condition, 566
TitleIconImageUrl property, 390
Title property, 124, 125, 127, 128, 130, 210, 225, 287,

319, 339, 390, 600
To argument, 664
ToBeDeleted value, 185
ToBeInserted value, 185
ToBeRecycled value, 185
ToBeUpdated value, 185
ToggleButton attribute, 438
TokenHelper class, 287, 288, 313, 363, 380
tolower() function, 328
$top parameter, 236, 326, 329
toupper() function, 328

Transaction group, 537
transactions, 138–139
Translate Document action, 565
TranslateDocument activity, 591
TreeViewEnabled attribute, 484
trim() function, 328
Trim String action, 566
trusted IPs

configuring target web application, 702–704
creating custom claims provider, 704–712
overview, 699
registering IP/STS in SharePoint, 700–701

TrustedProviderSignInPage page, 701
TryGetAppDatabaseConnectionDirect method, 291
Type attribute, 57, 78, 80, 85, 267, 452, 471, 507, 636
TypeFrom attribute, 636

U
UICultureLCID property, 355
UI Custom Action, 28
UI (user interface)

custom actions
CustomAction element, 421–428
CustomActionGroup element, 428–430
HideCustomAction element, 430–431
overview, 421
server-side custom actions, 432–434

custom content
application pages, 448–450
Content pages, 450–456
galleries, 450–456
images, 446–448
Web Part pages, 450–456

ModalDialog class, 461–464
notification area, 456–460
overview, 421
Ribbon

commands for, 434–446
overview, 434

status bar, 456–460
UIVersion attribute, 94, 423
UIVersionConfigurationEnabled attribute, 484
ULS (Unified Logging System), 137, 665
Unchanged value, 185
UndoCheckOutItem activity, 590
UndoCheckOut method, 130
Unified Logging System (ULS), 137, 665
Update List Item action, 565

www.it-ebooks.info

http://www.it-ebooks.info/

 WaitForCustomEvent activity

 Index 761

UpdateListItem activity, 590
UpdateListItem value, 638
Update method, 125, 128, 130, 131
UpdateObject method, 241
UpdateOverwriteVersion method, 128
Update Personal Web Parts permission, 679
Update property, 127
updateStatus method, 457
upgradeActionName argument, 113
UpgradeActions element, 94, 106, 107
Upgrade and Migration area, SPCA, 7
Upgrade method, 106
upgradesolution command, 106
upgrading

features, 105–108
SharePoint apps, 308–309
solutions, 105–108

Upload Document command, Library tab, 45
uploading documents, 154, 232–233
Uri attribute, 631
Uri class, 216
UrlAction element, 282, 424, 448, 449
url argument, 334
Url attribute, 73, 78, 451, 452
URL field type, 58
Url property, 122, 128, 130
Use A Business Identity Provider option, 696
Use Client Integration Features permission, 678
user argument, 170
useremoteapi argument, 170
Use Remote Interfaces permission, 678
User field type, 58
UserMulti field type, 58
User Profile scope, 261
users. See also groups

creating, 158–159
enabling for FBA with SQL Server, 676–677
permissions for, managing, 160

Users And Permissions group, 643
Users property, 125, 131
UserToken property, 131
UsesCurrentItem attribute, 635
Use Self-Service Site Creation permission, 678
useUniquePermissions argument, 143

V
ValidateActivity method, 657
ValidateFormDigest() method, 140

Validation element, 60, 80
.vbs file, 319
Verbs property, 407
Version attribute, 63, 94
versioning

in LINQ to SharePoint, 196–197
managing versions of documents, 157–158
for Web Parts, 413–417
for workflows, 576–578

VersioningEnabled attribute, 73
Version property, 371
VersionRange element, 107
Versions property, 128, 130
View Application Pages permission, 678
View definition, 82
View element, 79, 474
ViewFields element, 79
ViewFieldsOnly property, 150
ViewFields property, 150, 208
View Items permission level, 678
View Only permission level, 31, 32, 679
View Pages permission level, 678
View Properties command, Library tab, 46
views, 41–44
Views element, 77
Views ribbon command, 572
ViewToolbar location, 428
View Versions permission, 678
View Web Analytics Data permission, 678
virus keyword, 374
Visio Process Repository template, 10, 51, 469
Visual Designer view

for workflows, 572–573
Visual Studio 2012

list definitions in, 86–89
overview, 26–28
packaging solutions with, 103–105
site definitions in, 474–482
workflows in

activities available in, 589–593
building, 594–597
creating, 585–589
testing, 594–597

Visual Web Parts, 27, 395–397
VSDX file, 573

W
WaitForCustomEvent activity, 591

www.it-ebooks.info

http://www.it-ebooks.info/

Wait for Event in List Item action

762 Index

Wait for Event in List Item action, 565
WaitForFieldChange activity, 590
Wait for Field Change in Current Item action, 565
WaitForItemEvent activity, 590
WaitForTaskCompletion property, 600
WAS (Windows Process Activation Service), 14
WCF (Windows Communication Foundation), 194,

203, 532
accessing with BCS, 490, 510–515
Connection dialog box for, 512
and remote event receivers, 351
WCF Data Services Client Library, 239

WCF Workflow Service Application, 535
WCM (web content management), 407
WebAdding event, 357
web argument, 170
WebBrowsable attribute, 276, 402
WebBrowsableAttribute attribute, 398
WebBrowsableObject property, 401
WebCategory attribute, 276
WebClient class, 237
web.config files, 673–674
web content management (WCM), 407
WebControl class, 432
WebControls namespace, 132, 449
WebDeleted event, 357
WebDeleting event, 357
WebDescription attribute, 276
WebDescriptionAttribute attribute, 399
Web Designer Galleries group, 47, 49
WebDisplayAttribute attribute, 399
WebDisplayName attribute, 276
Web element, 171
WebEventProperties property, 355
WebFeatures element, 478
WebMoved event, 357
WebMoving event, 357
web namespace, 323
WebPart class, 386, 419–420
WebPartConnection element, 456
Web Part page, 527
WebPartPage class, 140
WebPartPages namespace, 384, 387, 400
WebPartPage type, 139
Web Parts

architecture of, 383–384
Classic Web Part, 392–395
configurable Web Parts

configurable parameters, 398–400
Editor Parts, 400–404

overview, 398
connectable Web Parts, 407–413
custom verbs for, 405–407
deploying, 388–392, 413–417
display modes for, 404–405
hello world Web Part, 384–387
overview, 12–13, 383
security, 417–419
SharePoint-specific WebParts, 419–420
UI customization for, 450–456
versioning for, 413–417
Visual Web Part, 395–397
.webpart file, 390

WebParts namespace, 383
Web Part solution package (WSP), 388
WebPartToEdit property, 402
WebPartToolPart class, 400
WebPartVerbCollection class, 405
WebPartZone class, 256, 383, 453
WebPartZoneID attribute, 78
Web Platform Installer 4.0 tool, 248
Web Platform Installer UI, 553
Web Project property, 288
Web property, 132, 206
WebProvisioned event, 357
Web scope, 261
websites, creating, 142–143
WebTemplate element, 96, 482
web templates. See also site definitions

creating custom, 482–486
defined, 466
vs. site definitions, 487

webtemp*.xml files, 467
WebUri activity, 589
Where CAML clause, 209
WIF (Windows Identity Foundation)

implementing IP/STS with
building relying party, 694–698
building STS, 686–694
overview, 685

WIF (Windows Identity Foundation) 1.0, 664
WIKI#0 template, 143
Windows authentication, 667–668
Windows Azure ACS, 352

authenticating with Facebook, 726–728
configuring relying parties, 717–719
creating namespace in, 714
creating rule groups, 719–720
federating SharePoint with Windows Azure

ACS, 721–722

www.it-ebooks.info

http://www.it-ebooks.info/

 Workflow Services Manager

 Index 763

logon page for, 723–725
overview, 713–715
setting up Facebook app, 715–717

Windows Azure Service Bus, 550
Windows Communication Foundation

(WCF), 532. See WCF
WindowsCredentials mode, 499
Windows Identity Foundation (WIF) 1.0, 664
Windows Management Instrumentation (WMI), 165
Windows PowerShell, 24
Windows Presentation Foundation (WPF), 217
Windows Process Activation Service (WAS), 14
Windows SharePoint Services Solution Packages

(WSPs), 24, 388, 575
WMI (Windows Management Instrumentation), 165
WorkflowActions element, 96
WorkflowApplication class, 539, 545
WorkflowAssociation element, 96
Workflow Console Application, 535
WorkflowDeploymentService class, 656–658
Workflow element, 96
WorkflowHostUri argument, 559
Workflow Initiation Form template, 604
WorkflowInstanceService class, 609, 655–656
WorkflowInterop activity, 591
WorkflowInteropService class, 658
WorkflowInvoker class, 539
Workflow Manager 1.0

configuring, 554–559
installing, 553–554
linking farm to SharePoint, 559–561

Workflow Manager Configuration Wizard, 554
Workflow Manager emulator, 596
WorkflowManager property, 122
WorkflowMessagingService class, 658
WorkflowParameters value, 638
workflows, 23

actions for, 564–566
adding stages to, 566–567
app principal for, 643–649
architecture of, 549–552
association form for, 563–564
association forms

creating, 604–615
conditions for, 566
consuming REST services, 579–585
creating, 535–538
custom actions in

creating code activities, 639–640
creating declarative activities, 630–633

deployment of code activities, 640–643
deployment of declarative actions, 634–638
overview, 629

custom activities for, 540–544
custom tasks for, 615–620
defining in SharePoint apps, 598–604
deploying

farm-level workflow, 620–623
overview, 620
SharePoint app workflow, 624

design surface for, 561–562
exception management, 574–575
executing instances of, 539–540
flowcharts in, 625–626
initiation form for, 563–564
initiation forms

creating, 604–615
overview, 579
persistence of, 546–548
process life cycle for, 544–546
reusable, 575–576
runtime scheduler for, 544–546
security for, 643–649
state machines in, 625–626
status fields for, 570–571
testing, 567–570
versioning for, 576–578
Visual Designer view for, 572–573
in Visual Studio 2012

activities available in, 589–593
building, 594–597
creating, 585–589
testing, 594–597

Workflow Manager 1.0
configuring, 554–559
installing, 553–554
linking farm to SharePoint, 559–561

Workflow Services Manager
overview, 649–650
WorkflowDeploymentService class, 656–658
WorkflowInstanceService class, 655–657
Workflow Services Manager, 651–652
WorkflowSubscription class, 652–655

Workflows Can Use App Permissions feature, 645
Workflow scope, 261
WorkflowServiceAddress property, 652
Workflow Service Application Proxy, 560
WorkflowServiceDefinition type, 622
WorkflowServiceHost host, 546
Workflow Services Manager

www.it-ebooks.info

http://www.it-ebooks.info/

WorkflowServicesManager class

764 Index

overview, 649–650
WorkflowDeploymentService class, 656–658
WorkflowInstanceService class, 655–656
WorkflowServicesManager class, 651–652
WorkflowSubscription class, 652–655

WorkflowServicesManager class, 609, 651–652, 655
WorkflowServiceSubscription type, 622
Workflow Settings page, 594
Workflows property, 128
WorkflowStart value, 623
Workflow Status page, 602
WorkflowSubscription class, 652–655
WorkflowSubscriptionService class, 652, 653
WorkflowSubscription type, 614
WPF (Windows Presentation Foundation), 217
WriteLine activity, 537
WriteLocked property, 122
Write permission, 262
WriteToHistory activity, 591
WSDescription property, 622
WSDisplayName property, 622
WSEnabled property, 623
WSEventSourceGUID property, 623
WSEventType property, 623
WS-Federation and claims-based

authentication, 681–685
WSFederationAuthenticationModule class, 696
wsFederation element, 697
.wsp extension, 100
WSPs (Windows SharePoint Services Solution

Packages), 24, 388, 575
WS-Security specification, 683
WS-Trust specification, 683
WWF (Windows Workflow Foundation)

architecture of, 531–534
creating workflows, 535–538
custom activities for, 540–544
executing workflow instances, 539–540
overview, 531
runtime scheduler for, 544–546
workflow persistence, 546–548
workflow process life cycle, 544–546

X
X509Certificate2 class, 699
XAML (Extensible Application Markup

Language), 213
X-Http-Method header, 318

XmlDefinition variable, 82
XmlDocument content type, 63
XmlDocuments element, 68
Xml property, 128, 131
X-RequestDigest header, 323, 338
Xsl element, 79
XslLink element, 79
.xslt file, 82
XsltListViewWebPart control, 256, 476
xsnLocation element, 70
xsnScope element, 70
XSS (cross-site scripting), 268, 418

Y
year() function, 328
Yes/No field type, 40

Z
.zip file, 301
Zone property, 122

www.it-ebooks.info

http://www.it-ebooks.info/

about the author

PAOLO PIALORSI is a consultant, trainer, and author who specializes in
developing distributed application architectures and Microsoft SharePoint–
based enterprise solutions. During his professional career, he has passed more
than 40 Microsoft certification exams. Paolo has a great deal of experience
working with SharePoint, and he is a Microsoft Certified Master (MCM) for
SharePoint 2010. He is one of the content owners of the Italian version of the

SharePoint & Office Conference, and he is a popular speaker at worldwide industry
conferences.

He is the author of many Microsoft Press books on Microsoft .NET, Microsoft Windows
8, and SharePoint. Recent books include Programming Microsoft LINQ in Microsoft
.NET Framework 4, Build Windows 8 Apps with Microsoft Visual C# and Visual Basic Step
by Step, Build Windows 8 Apps with Microsoft Visual C++ Step by Step, and Microsoft
SharePoint 2010 Developer Reference. He has also written three Italian-language books,
on the topics of .NET, XML, and web services.

You can reach Paolo via the following:

■■ The SharePoint Developer Reference
blog http://www.sharepoint-reference.com

■■ Twitter @PaoloPia; http://www.twitter.com/PaoloPia

■■ LinkedIn http://it.linkedin.com/in/paolopialorsi/

www.it-ebooks.info

http://www.it-ebooks.info/

SurvPage_Corp_02.indd 1 5/19/2011 4:18:12 PM

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Tell us how well this book meets your needs—what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	Introduction
	Part I: Getting started
	Chapter 1: Microsoft SharePoint 2013: A quick tour
	What is SharePoint?
	Main benefits
	Share
	Organize
	Discover
	Build
	Manage

	SharePoint basic concepts
	SharePoint Central Administration
	SharePoint Administration via PowerShell
	Site collections and websites
	Lists, libraries, items, documents, and other apps
	App Parts and Web Parts

	Architectural overview
	Logical and physical architecture
	Service applications
	The role of databases

	SharePoint editions
	SharePoint Foundation
	SharePoint Server Standard
	SharePoint Server Enterprise
	SharePoint Online

	SharePoint for developers
	ASP.NET integration
	Server-side technologies
	Client-side technologies
	App Parts, Web Parts, and the UI
	Data provisioning
	Event receivers and workflows
	Features, solutions deployment, and sandboxing
	Security infrastructure
	Business Connectivity Services
	Windows PowerShell for developers

	Developer tools
	SharePoint Designer 2013
	Microsoft Visual Studio 2012
	SharePoint Server Explorer
	Solution Explorer and the Feature Designer

	Summary

	Chapter 2: SharePoint data fundamentals
	Lists of items and contents
	Creating a new list
	Standard list templates
	Custom list templates
	Views
	Creating a document library

	Site columns
	Content types
	Sites
	Summary

	Part II: Developing SharePoint Solutions
	Chapter 3: Data provisioning
	Site columns
	Content types
	Content type IDs
	More about content types
	Document content types

	List definitions
	List schema file
	Defining a custom view

	Summary

	Chapter 4: SharePoint features and solutions
	Features and solutions
	Feature element types
	Feature deployment
	Solution deployment
	Packaging with Visual Studio 2012

	Upgrading solutions and features
	Feature receivers
	Handling FeatureUpgrading events

	Summary

	Chapter 5: Server Object Model
	Startup environment
	Objects hierarchy
	SPFarm, SPServer, SPService, and SPWebApplication
	SPSite and SPWeb
	SPList and SPListItem
	SPDocumentLibrary and SPFile
	SPGroup, SPUser, and other security types
	SPControl and SPContext

	Common and best practices
	Resource disposal
	Handling exceptions
	Transactions
	AllowUnsafeUpdates and FormDigest

	Real-life examples
	Creating a new site collection
	Creating a new website
	Lists and items
	Document libraries and files
	Groups and users

	Summary

	Chapter 6: LINQ to SharePoint
	LINQ overview
	The goal of LINQ
	LINQ under the hood

	Introducing LINQ to SharePoint
	Modeling with SPMetal.exe
	Querying data
	Managing data
	Inserting a new item
	Deleting or recycling an existing item

	Advanced topics
	Handling concurrency conflicts
	Identity management and refresh
	Disconnected entities
	Model extensions and versioning

	Summary

	Chapter 7: Client-side technologies
	Architectural overview
	Client Object Model
	.NET Client-Side Object Model
	Silverlight Client Object Model
	The JSOM

	Client Object Model examples
	Creating a new list
	Creating and updating a list item
	Exception handling with lists
	Deleting an existing list item
	Paging queries of list items
	Creating a new document library
	Uploading and downloading documents
	Checking documents in and out
	Copying and moving files

	The REST API
	Querying for data with .NET and LINQ
	Managing data

	Summary

	Part III: Developing SharePoint apps
	Chapter 8: SharePoint apps
	Introducing apps
	Development environment

	Your first app
	Sample SharePoint-hosted app outline
	The app website
	Provisioning content
	Using the Client-Side Object Model

	Inside AppManifest.xml
	The General tab
	The Permissions tab
	The Prerequisites tab
	The Supported Locales tab
	The Remote Endpoints tab

	App Parts and custom UI extensions
	Creating App Parts
	Creating custom UI extensions

	Autohosted apps
	Creating an autohosted app
	Converting a site to a SharePoint app
	Handling a SQL Azure database
	The SharePoint Chrome control

	Provider-hosted apps
	Publishing apps and the Office Store
	Deploying a SharePoint app
	Publishing a SharePoint app
	The corporate app catalog
	The Office Store
	Upgrading apps

	App management configuration and deployment
	Security infrastructure
	Summary

	Chapter 9: The new SharePoint REST API
	Introducing the REST API
	API reference
	Querying data
	Managing data
	Cross-domain calls
	Security

	Common REST API usage
	Creating a new list
	Creating and updating a list item
	Deleting an existing list item
	Querying a list of items
	Creating a new document library
	Uploading or updating a document
	Document check-in and checkout
	Deleting an existing document
	Querying a list of documents

	Summary

	Chapter 10: Remote event receivers
	Architecture of remote event receivers
	Architecture and contracts
	Scopes and types of receivers

	A sample remote event receiver
	Deployment and registration
	App-related receivers
	Callback capability
	Security
	Summary

	Part IV: Extending SharePoint
	Chapter 11: Developing Web Parts
	Web Part architecture
	A Hello World Web Part
	Web Part deployment
	Real Web Parts
	Classic Web Parts
	Visual Web Parts

	Configurable Web Parts
	Configurable parameters
	Editor Parts

	Handling display modes
	Custom Web Part verbs
	Connectable Web Parts
	Deployment and versioning
	Security: Safe controls and cross-site-scripting safeguards
	The SharePoint-specific WebPart class
	Summary

	Chapter 12: Customizing the UI
	Custom actions
	The CustomAction element
	The CustomActionGroup element
	The HideCustomAction element
	Server-side custom actions

	Ribbons
	Ribbon commands

	Custom content
	Images and generic content
	Application pages
	Content pages, Web Part pages, and galleries

	Status bar and notification area
	Dialog framework
	Summary

	Chapter 13: Web templates
	The core techniques
	Site definitions
	Custom site definitions
	Site definitions with Visual Studio
	Site and web templates
	Site definitions vs. web templates
	Summary

	Chapter 14: Business Connectivity Services
	Overview of BCS
	Accessing a database
	BDC authentication modes
	BDC model file
	Offline capabilities
	Accessing a WCF/SOAP service
	Consuming OData services
	.NET custom model
	Developing a custom model from scratch

	Associating entities
	Summary

	Part V: Developing workflows
	Chapter 15: Windows Workflow Foundation
	Architecture of Windows Workflow Foundation 4.5
	Your first workflow project
	Hosting and execution
	Custom activities
	Runtime scheduler and workflow process life cycle
	Workflow persistence
	Summary

	Chapter 16: SharePoint workflow fundamentals
	The new architecture
	Deployment of Workflow Manager 1.0
	Your first workflow with SharePoint Designer 2013
	More about workflows
	Exception management
	Reusable workflows
	Versioning workflows

	Summary

	Chapter 17: Developing workflows
	Consuming REST services
	Visual Studio 2012 for creating workflows
	Workflow and SharePoint apps
	Workflow forms
	Custom workflow tasks
	Workflow deployment
	Farm-level workflow
	SharePoint app workflow

	Flowcharts and state machines
	Summary

	Chapter 18: Advanced workflows
	Custom actions
	Creating a declarative activity
	Deployment of declarative actions
	Creating a code activity
	Deployment of code activities

	Security and workflow app principal
	Workflow Services Manager
	Using Workflow Services Manager

	Summary

	Part VI: Security infrastructure
	Chapter 19: Authentication and authorization infrastructure
	Authentication infrastructure
	Claims-based authentication
	Migrating from classic to claims-based mode

	Claims-based authentication types
	Windows authentication
	Forms-Based Authentication

	Configuring FBA with SQL Membership Provider
	Configuring the SQL Server database
	Configuring SharePoint web.config files
	Configuring SQL Server permissions
	Configuring SharePoint
	Enabling FBA users or roles

	Authorization infrastructure
	Summary

	Chapter 20: Claims-based authentication, federated identities, and OAuth
	Claims-based authentication and WS-Federation
	Implementing an IP/STS with WIF
	Building an STS
	Building a relying party

	SharePoint trusted IPs
	Trusting the IP/STS
	Configuring the target web application
	Creating a custom claims provider

	Federating with Windows Azure ACS
	Understanding OAuth
	Configuring server-to-server apps
	Summary

	Index

