
www.it-ebooks.info

http://www.it-ebooks.info/

Oracle SOA Suite 11g
Developer's Cookbook

Over 65 high-level recipes for extending your Oracle SOA
applications and enhancing your skills with expert tips and
tricks for developers

Antony Reynolds

Matt Wright

 BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle SOA Suite 11g Developer's Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: December 2012

Production Reference: 1191212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-388-3

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Authors
Antony Reynolds

Matt Wright

Contributors
James Goddard

Adrian Lewis

Brett Lomas

ShuXuan Nie

Geoff Trench

Reviewers
Edwin Biemond

Phil McLaughlin

Acquisition Editor
Stephanie Moss

Lead Technical Editor
Susmita Panda

Technical Editors
Veronica Fernandes

Worrell Lewis

Copy Editors
Insiya Morbiwala

Brandt D'Mello

Alfida Paiva

Project Coordinator
Leena Purkait

Proofreader
Linda Morris

Indexer
Hemangini Bari

Graphics
Aditi Gajjar

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Antony Reynolds has worked in the IT industry for more than 25 years, first getting a job
to maintain yield calculations for a zinc smelter while still an undergraduate. After graduating
from the University of Bristol with a degree in Mathematics and Computer Science, he worked
first for a software house, IPL in Bath, England, before joining the travel reservations system
Galileo as a development team lead. Galileo gave him the opportunity to work in Colorado and
Illinois where he developed a love for the Rockies and Chicago style deep pan pizza.

Since joining Oracle in 1998, he has worked in sales consulting and support. He currently works
as a Sales Consultant helping customers across North America realize the benefits of standards
based integration and SOA. While at Oracle he has co-authored Oracle SOA Suite Developer's
Guide, Packt Publishing and Oracle SOA Suite 11g R1 Developer's Guide, Packt Publishing.

Antony lives in Colorado with his wife and four children who make sure that he is gainfully
employed playing games, watching movies, and acting as an auxiliary taxi service. He is a slow
but steady runner and can often be seen jogging up and down the trails in the shadow of the
Rocky Mountains.

I would like to thank my wife Rowan, and my four very patient children, who
have put up with my staying at home on family trips and working late nights
in my basement office as I completed this book. My managers Ed Lee and
Troy Hewitt were very supportive and many of my colleagues contributed
knowingly or unknowingly to the recipes.

I am appreciative of Michael Weingartner and his team for their continued
enhancement and development of the SOA Suite which has enabled Matt
and myself to write this book. The reviewers provided valuable guidance
and corrections and any errors still remaining are entirely mine. Finally, the
team at Packt Publishing constantly nagged and cajoled Matt and myself to
keep some sort of schedule. Without them this book would still be on the
drawing board.

www.it-ebooks.info

http://www.it-ebooks.info/

Matt Wright is a director at Rubicon Red, an independent consulting firm helping
customers enable enterprise agility and operational excellence through the adoption of
technologies such as Service-Oriented Architecture (SOA), Business Process Management
(BPM), and Cloud Computing.

With over 20 years of experience in building enterprise scale distributed systems, Matt first
became involved with SOA shortly after the initial submission of SOAP 1.1 to the W3C in 2000,
and has worked with some of the early adopters of BPEL since its initial release in 2002.
Since then, he has been engaged in some of the earliest SOA-based implementations across
EMEA and APAC.

Prior to Rubicon Red, he held various senior roles within Oracle, most recently as Director of
Product Management for Oracle Fusion Middleware in APAC, where he was responsible for
working with organizations to educate and enable them in realizing the full business benefits
of SOA in solving complex business problems.

As a recognized authority on SOA, he is a regular speaker and instructor at private and public
events. He also enjoys writing and publishes his own blog (http://blogs.bpel-people.
com). He holds a B.Sc. (Eng) in Computer Science from Imperial College, University of London.

He has worked on Oracle SOA Suite Developer's Guide, Packt Publishing and Oracle SOA Suite
11g R1 Developer's Guide, Packt Publishing.

I would like to express my deep appreciation to everyone who has reviewed
this book. Their invaluable feedback and advice not only helped to validate
the overall accuracy of the content, but more importantly ensure its clarity
and readability.

A book like this doesn't make it into print without a lot of work from the
publisher. I would like to thank the team at Packt Publishing for all their
support; especially Stephanie Moss, Leena Purkait, and Susmita Panda.

A special mention must go to John Deeb for his continual encouragement,
input, and above all support in ensuring that I found time to write the book;
I couldn't ask for a more supportive friend and business partner.

Finally, I would like to say a very, very special thank you to my wife Natasha
and my children Elliot and Kimberley, who have been incredibly patient and
supportive in allowing me to spend far too many evenings and weekends
stuck away in my office writing this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Contributors

The creation of the content for this book has been very much a team effort, with many
contributions from the great team at Rubicon Red. In particular I would like to thank James
Goddard, Adrian Lewis, Brett Lomas, ShuXuan Nie, and Geoff Trench, each one of whom
contributed ideas and recipes to the book.

James Goddard is a software developer with 10 years of experience in IT, initially within
the telecommunication and utility industries in Melbourne, Australia. He specialised in system
integration design and development using Oracle Middleware before joining Rubicon Red as
a Consulting Architect in 2010. As a member of an energetic and innovative team of Oracle
experts, James was able to advise and contribute to SOA initiatives at a variety of organisations
around Australia.

He currently holds a position within Amazon Kindle, building highly scalable web services for
Amazon's digital product offerings in Seattle, WA.

Adrian Lewis is an SOA & Integration Solution Architect for Rubicon Red in Australia. He is
currently responsible for delivering a BPM and SOA solution for a Victorian state government
office using an implementation of Rubicon Red's FMW reference architecture. Adrian spent
the previous 5 years working as a Principal Consultant for Red Rock, delivering SOA, Human
Workflow, and integration solutions in Victoria and Queensland. Adrian holds a BEng(Hons)
in Cybernetics and Control Engineering from the University of Reading in England.

www.it-ebooks.info

http://www.it-ebooks.info/

Brett Lomas has been working in the IT industry for over 10 years in an ever varying
capacity. He is known for his passion for IT and how it can transform businesses when
used effectively. In his spare time he likes to use his pilot’s license to explore Australia.

Brett has recently worked for Oracle in the capacity of a Solution Architect , helping partners
gain the most value out of Oracle's Middleware stack. Most recently Brett is employed as an
SOA and BPM practitioner for Rubicon Red working with key customers throughout Australia
and New Zealand.

ShuXuan Nie has more than 10 years of experience in the IT industry that includes
SOA technologies such as BPEL, ESB, SOAP, XML, and Enterprise Java technologies,
Eclipse plug-ins, and other areas such as C++ cross-platform development.

Since 2010, she has been working in Rubicon Red and helping customers resolve integration
issues. Prior to Rubicon Red, she has worked for Oracle Global Customer Support team, IBM
China Software Development Lab, and the Australia Bureau of Meteorology Research Center
where she was responsible for the implementation of an Automated Thunderstorm Interactive
Forecast System for Aviation and Defence. ShuXuan holds an MS in Computer Science from
Beijing University of Aeronautics and Astronautics.

Geoff Trench has been playing with computers since the days of the Atari 800XL, and working
with them professionally for over 15 years, building solutions for a wide range of industries with
too many languages and tools to count.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewer

Edwin Biemond is an Oracle ACE and Solution Architect at Amis, specializing in messaging
with Oracle SOA Suite and Oracle Service Bus, and an expert in ADF development, WebLogic,
High Availability and Security. His Oracle career began in 1997 where he was developing an
ERP, CRM system with Oracle tools. Since 2001 he changed his focus to integration, security,
and Java development. He was awarded with the Java Developer of the year 2009 by Oracle
Magazine. In 2010, he won the EMEA Oracle Partner Community Award. He is the co-author
of the Oracle Service Bus 11g Development Cookbook, Packt Publishing, has contributed
to the Oracle SOA Handbook, Packt Publishing, is an international speaker at Oracle
OpenWorld & ODTUG, and has a popular blog called Java / Oracle SOA blog
(http://biemond.blogspot.com).

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Building an SOA Suite Cluster 7

Introduction 7
Gathering configuration information 10
Preparing the operating system 13
Preparing the database 16
Preparing the network 19

Chapter 2: Using the Metadata Service to Share XML Artifacts 23
Introduction 23
Creating a file-based MDS repository for JDeveloper 26
Creating Mediator using a WSDL in MDS 30
Creating Mediator that subscribes to EDL in MDS 33
Creating an external reference using a WSDL in MDS 34
Referencing Schematron in MDS for validation 36
Referencing a fault policy deployed to MDS 38
Deploying MDS artifacts to the SOA infrastructure 39
Exporting an MDS partition to the filesystem 43
Deleting XML artifacts from SOA infra MDS 46

Chapter 3: Working with Transactions 49
Introduction 49
Modifying a BPEL process to use the callers transaction context 51
Committing a transaction 52
Aborting a transaction 54
Catching rollback faults 56
Applying reversing or compensating transactions 59

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Table of Contents

Chapter 4: Mapping Data 65
Introduction 65
Ignoring missing elements with XSLT 66
Ignoring missing elements with Assign 69
Creating target elements in Assign 71
Array processing with XSLT 73
Array processing with BPEL Assign 75
Overriding mapping of EJB data to XML 78
Ignoring a Java property 86
Creating a wrapper element for a Java collection or array 88
Handling an abstract class 90

Chapter 5: Composite Messaging Patterns 95
Introduction 95
Message aggregation within a composite 96
Using dynamic partner links with BPEL 2.0 103
Singleton composite 110
Scheduling services 115
Scheduling a service within a composite 119
Deleting a scheduled service within a composite 125

Chapter 6: OSB Messaging Patterns 127
Introduction 127
Dynamic binding using OSB 128
Splitting out messages using OSB 135
Dynamic Split-Join in OSB 140
Fault handling in dynamic Split-Join in OSB 150

Chapter 7: Integrating OSB with JSON 153
Introduction 153
Converting between XML and JSON 154
Invoking a JSON service from OSB 164
Dynamically binding to a JSON service in OSB 172
Exposing a proxy service as a JSON service 175

Chapter 8: Compressed File Adapter Patterns 187
Introduction 187
Implement GZIP wrapper for OSB 188
Reading compressed files with OSB 191
Writing compressed files with OSB 196

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Table of Contents

Chapter 9: Integrating Java with SOA Suite 203
Introduction 203
Creating a custom XPath function for SOA Suite 206
Calling an EJB from an SOA composite 217
Using a Spring bean in an SOA composite 221
Using an EJB reference in a Spring component 226
Accessing the SOA runtime environment from BPEL 229

Chapter 10: Securing Composites and Calling Secure Web Services 231
Introduction 231
Restricting a composite to authenticated users with HTTP Basic Security 234
Creating a new, group-based authorization policy 239
Restricting a composite to authorized users 243
Adding keys to a credential store 246
Invoking an HTTP Basic secured web service 249

Chapter 11: Configuring the Identity Service 253
Introduction 253
Configuring the SOA Identity service to use Oracle Internet Directory 254
Configuring the SOA Identity service to use Oracle Virtual Directory 264
Configuring the SOA Identity service to use Active Directory 271
Configuring the SOA Identity service to use Sun iPlanet server 273

Chapter 12: Configuring OSB to Use Foreign JMS Queues 277
Introduction 277
Creating an OSB proxy service to consume JMS messages from OC4J 278
Creating an OSB business service to publish JMS messages to OC4J 282
Using WebLogic JMS Store-and-Forward for inter-domain messaging 289
Configuring OSB to consume JMS messages from JBoss
Application Server 5.1 296

Chapter 13: Monitoring and Management 303
Introduction 303
Capturing a composite completion status 305
Monitoring message throughput in real time 307
Deploy Monitor Express to BAM 311
Configuring BAM Adapter 314
Configuring a BPEL process to report the status to BAM Monitor Express 317

Index 321

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Service Oriented Architecture (SOA) provides the architectural framework needed to
integrate diverse systems together and create new composite applications. Oracle SOA Suite
11gR1 provides the tools needed to turn an SOA architecture into a working solution. SOA
Suite provides the developer with several high level components such as:

 f Oracle Service Bus (OSB), an enterprise strength service bus for full support of
service bus patterns including validation, enrichment, transformation, and routing
(the VETRO pattern)

 f Service Component Architecture (SCA) that hosts a number of components

 f Business Activity Monitoring (BAM) that provides real-time reporting on SOA
Suite activities

SCA components include:

 f Mediator for light weight transformation and routing

 f Rules for abstraction of business rules

 f BPEL for orchestrating long running or complex integrations

 f Human workflow (HWF) for allowing human interaction with long running processes

 f Spring for integrating Java Spring components

This book looks at many common problems that are encountered when integrating systems
and provides solutions to them in the form of more than 67 cookbook recipes. The solutions
explain the problem to be solved alongside clear step by step instructions to implement a
solution using SOA Suite components. Each recipe also includes a discussion of how it works
and what additional problems may be tackled by the solution presented.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

2

What this book covers
Chapter 1, Building an SOA Suite Cluster, explains how to prepare the environment to follow
Oracle's Enterprise Deployment Guide. The Enterprise Deployment Guide is Oracle's blueprint
for building a highly available SOA Suite cluster. The chapter includes key questions to ask
the network storage team, the networking team, and the Database Administrators before the
actual SOA Suite installation and deployment begins.

Chapter 2, Using the Metadata Service to Share XML Artifacts, explains how we can use MDS
to share XML artifacts, such as XML schemas, WSDL's fault policies, XSLT Transformations,
EDLs for event EDN event definitions and Schematrons between multiple composites.

Chapter 3, Working with Transactions, looks at the different ways to use transactions
within SOA Suite. This includes enrolling a BPEL process in an existing transaction, forcibly
committing or aborting a transaction within BPEL and catching faults that have caused the
transaction to be rolled back. It also covers how to apply reversing transactions when a
system does not support transaction functionality in its public interface.

Chapter 4, Mapping Data, covers how to copy and transform data using the SCA container.
It includes how to deal with missing XML elements and how to control the mapping of Java
objects to XML including dealing with abstract Java classes. It also covers how to process
arrays of data in both BPEL and XML stylesheet transforms (XSLT).

Chapter 5, Composite Messaging Patterns, explores some of the more complex but relatively
common message interaction patterns used in a typical SOA deployment. It includes recipes
for implementing patterns around message aggregation, singletons, and the dynamic
scheduling of BPEL processes and services.

Chapter 6, OSB Messaging Patterns, explores some common message processing design
patterns for delegation of execution to downstream services and provides recipes for
implementing them using Oracle Service Bus. It includes recipes for dynamic binding to
services, splitting out messages, as well as dynamic Split-Joins.

Chapter 7, Integrating OSB with JSON, covers how we can use the Service Bus to integrate
with RESTful web services that exchange data using JavaScript Object Notation (JSON)
instead of XML. It also looks at how to expose OSB Services as RESTful JSON web services.

Chapter 8, Compressed File Adapter Patterns, explains how to use the file/FTP adapter
to compress/uncompress the contents of exchanged files. This is particularly common in
Business-to-Business scenarios, where network bandwidth is more of a constraint.

Chapter 9, Integrating Java with SOA Suite, explains different ways to integrate Java code into
SOA Suite. This is demonstrated through creating a custom XPath function for use in SCA and
OSB, as well as re-using EJBs and Spring Beans in SOA Suite. It also shows how to access the
SOA runtime environment from within a BPEL process.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

3

Chapter 10, Securing Composites and Calling Secure Web Services, shows the developer
how to restrict access to a composite by applying a security policy, as well as showing how
to create a new security policy. It also explains how to make a call to a security protected
service and how to manage security stores.

Chapter 11, Configuring the Identity Service, details how to configure the Oracle Platform
Security Services (OPSS) to use various LDAP providers for authentication and authorization
within the Oracle SOA Suite. It covers configuration for Active Directory, Oracle Internet
Directory, Sun iPlanet, and Oracle Virtual Directory.

Chapter 12, Configuring OSB to use Foreign JMS Queues, covers how to configure the Service
Bus to read/write messages from various JMS providers, including OC4J, JBoss, and across
WebLogic domains.

Chapter 13, Monitoring and Management, includes recipes to monitor the completion status
of SOA composites through the EM dashboard, measuring their message throughput in real
time. It also covers setting up the SOA environment to use the SOA Suite provided Monitor
Express reports to take advantage of pre-built BAM dashboards.

What you need for this book
This book was written using Oracle SOA Suite 11.1.1.6 and Oracle JDeveloper 11.1.1.6
with the SOA Suite design extensions. The contents are relevant for all SOA Suite 11gR1
releases, although some features may not be available in revisions before 11.1.1.6 and
some screenshots may vary between revisions.

Who this book is for
This book will benefit SOA Suite developers, designers, and architects who want to get the
most value out of their SOA Suite investments.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Run the leasing.ddl script as the leasing user."

A block of code is set as follows:

Operation getTotalPrice(book_list):
 totalPrice := 0
 for each order in book_list
 loop
 total_price := total_price +

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

4

 Book.priceCheck(order.isbn) * order.qty
 end loop
 return total_price

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

Operation getTotalPrice(book_list):
 totalPrice := 0
 for each order in book_list
 loop
 total_price := total_price +
 Book.priceCheck(order.isbn) * order.qty
 end loop
 return total_price

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Open your proxy service
and select the Message Flow tab."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

5

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit
http://www.PacktPub.com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/support, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Building an SOA
Suite Cluster

In this chapter, we will cover recipes to simplify the configuration of an SOA Suite cluster:

 f Gathering configuration information

 f Preparing the operating system

 f Preparing the database

 f Preparing the network

Introduction
An SOA Suite cluster can process more composite instances by spreading the load across
multiple machines, providing greater capacity. It also provides resiliency by allowing
composites to continue to execute on remaining machines in the cluster in the event of
a machine failing.

Using a cluster provides the following benefits:

 f Greater capacity

 f Greater resiliency

Oracle provides a comprehensive guide to creating an SOA Suite cluster called the Enterprise
Deployment Guide (EDG). Rather than duplicating the guide, this chapter will provide recipes
that enhance the guide and elaborate on the steps required.

1

www.it-ebooks.info

http://www.it-ebooks.info/

Building an SOA Suite Cluster

8

Terms used
SOA Suite is normally deployed on a WebLogic application server and in this chapter we will
use WebLogic nomenclature to describe SOA Suite entities:

 f Machine: A physical computer that hosts SOA Suite components

 f Server: A WebLogic instance executing in a Java Virtual Machine

 f Admin server: A WebLogic server that is used to manage the cluster

 f Managed server: A WebLogic server that is dedicated to running applications
such as SOA Suite

Target solution
The following figure shows the target SOA Suite deployment architecture for a three-machine
SOA Suite cluster:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

9

At the heart of the cluster are three physical machines running SOA Suite. They make use of a
highly available database and a shared filesystem. HTTP access to the machines is provided
through two web server machines which run HTTP servers. Finally, a load balancer is used
to distribute the load across the web servers. See the Preparing the network recipe for more
details on the load balancer.

This architecture may be scaled by adding additional SOA machines. For most environments,
the two web servers are only required for resilience. They can generally handle all but the
highest client loads. Each web server machine will distribute requests to all machines in the
SOA Suite cluster; there is no affinity between a particular HTTP machine and a particular
SOA machine.

Note that each set of machines forms a layer that may be separated by using firewalls to
improve security. If this is not required then the web servers may run on the SOA machines,
removing the need for the web machines.

The database is required by SOA Suite to store composite instance state and configuration
information. The shared filesystem is required by WebLogic to store shared configuration files,
transaction logs, and queues. A highly available database, such as Oracle Real Application
Clusters (RAC), is recommended.

Cluster details
An SOA Suite cluster is typically made up of several WebLogic clusters; a Web Services
Manager cluster, an SOA cluster, and a BAM cluster. These clusters may share hardware,
as shown in the following figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Building an SOA Suite Cluster

10

An SOA Suite Cluster contains not just the core SOA Suite
functionality of BPEL, Mediator, Rules, and Human Workflow
but also Web Services Manager and BAM. The Web Services
Manager and BAM have their own WebLogic clusters which
run alongside the core SOA cluster. Hence, the SOA Suite
cluster has within it three WebLogic clusters, one of which,
the SOA cluster, has the core SOA Suite functionality.

In our three-machine cluster we have chosen to have an SOA Cluster with three managed
servers, a BAM cluster with two managed servers, and a WSM cluster with two managed
servers. We can adjust the number of managed servers in a cluster to accommodate different
numbers of physical machines. Note that in our example each machine hosts at least two
servers, but the machines may host more or fewer servers depending on their capacity (CPU,
memory, and network).

The Node Manager is responsible for monitoring the state of the managed servers and
restarting them in the event of failure, either on the original machine if possible, or in the
event of machine failure on another machine in the cluster.

Gathering configuration information
Before starting to build an SOA Suite cluster it is important to ensure that you have all the
required configuration information and the environment is prepared correctly. Time spent
doing this properly will save a lot of heartache and delay later.

Getting ready
Make sure you know how big a cluster you wish to build in terms of number of
managed servers.

How to do it...
1. Create a drawing of the topology.

Before starting, make sure you understand the topology of the cluster you wish
to build and draw a picture of it either on a whiteboard or using a drawing tool
such as Visio.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

11

2. Identify physical machines for web servers.

Get the names of the physical servers that will be running the web servers and fill
them in on a list similar to the one shown as follows. Also identify the port number
that the web server will be running on and the protocol that it will be using.

Web server machine Web server port number Protocol
WebMachine1 7777 HTTP
WebMachine2 7777 HTTP

3. Identify physical machines for WebLogic servers.

Get the names of the physical servers that will be running SOA Suite and fill them
in on a worksheet similar to the one shown as follows. Use the WebLogic Servers
column to identify which servers will normally run on the physical machine, ignore
fail over for now.

WebLogic server machine WebLogic servers
SOAMachine1 Admin server WLS_SOA1 WLS_WSM1
SOAMachine2 WLS_SOA2 WLS_BAM1

SOAMachine3 WLS_SOA3 WLS_WSM2 WLS_BAM2

www.it-ebooks.info

http://www.it-ebooks.info/

Building an SOA Suite Cluster

12

4. Identify port numbers for WebLogic servers.

Create a table identifying the port number to be used for each type of server in your
cluster similar to the one as follows:

Server type Port number
Admin server 7001

WSM server 7010

SOA server 8001

BAM server 9001

The previous table shows the suggested values from the EDG.

5. Identify floating IP addresses for WebLogic servers.

Create a table identifying the virtual, or floating, IP addresses to be used for each
server that requires whole server migration similar to the one shown as follows:

WebLogic server Virtual hostname Virtual/Floating IP
Admin server AdminServerVHN 10.1.1.30

WLS_SOA1 SOA1VHN 10.1.1.31

WLS_SOA2 SOA2VHN 10.1.1.32

WLS_SOA3 SOA3VHN 10.1.1.33

WLS_BAM1 SOA1VHN 10.1.1.40

How it works...
The topology drawing and the list of physical machines for WebLogic and web servers will help
the team provisioning the hardware to understand what physical or virtual machines must be
provided and how they are connected.

The list of web server machine names, WebLogic server machine names, and port numbers
can be provided to the network team who will use it in conjunction with the topology diagram
to configure the firewall. They will also use it to create server pools in the load balancer for
each protocol type and then add the web servers to the newly created pools.

The list of WebLogic server floating IP addresses can be used by the network team to allocate
suitable IP addresses and, when coupled with the port numbers for WebLogic servers can be
used to identify ports that must be opened in any firewalls between the web servers, and the
WebLogic servers.

When running the domain wizard, the names of the managed servers and their associated
floating IP addresses and port numbers will be required.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

13

The Admin server is treated differently from managed servers because the Admin server does
not share its shared filesystem with other WebLogic instances. A failover script can be used to
unmount and mount shared storage for the Admin server as part of the failover task.

There's more...
If the web servers will be running multiple protocols then you can use multiple lines for a
single web server machine.

Web server machine Web server port number Protocol
WebMachine1 7777 HTTP
WebMachine1 4443 HTTPS
WebMachine2 7777 HTTP
WebMachine2 4443 HTTPS

Downloading the example code

You can download the example code files for all Packt books you
have purchased from your account at http://www. packtpub.
com. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files
e-mailed directly to you. The code package for the book includes an
Excel workbook SOA-Cookbook-Cluster-Workbook.xls with
worksheets containing templates for the tables used in this recipe.

See also
 f The Preparing the network recipe in this chapter

Preparing the operating system
This recipe will identify the steps required to prepare the operating system for installation
and configuration of an SOA Suite cluster. This recipe uses Linux as the operating system,
the actual commands required vary between operating systems. These steps are required
because SOA Suite high availability makes use of whole server migration.

Getting ready
Certain tasks mentioned in this recipe must be performed by a system administrator. As the
installer of the SOA Suite does not necessarily have system administrator privileges for the
operating system, it is a good idea to get all the tasks that require administrator privileges
completed before starting the installation and configuration of the SOA Suite.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an SOA Suite Cluster

14

How to do it...
1. Grant sudo privileges to the Oracle user.

As root on each machine that will be hosting WebLogic servers, run the visudo
command and add the following lines to the end of the file:
Node Manager Grants
oracle ALL=NOPASSWD: /sbin/ifconfig,/sbin/arping

oracle should be replaced with the user you will be running SOA Suite under.

2. Set up a shared mount point for use by the domain.

3. Write a file to the mount point from each machine and ensure that the files are
readable and writable from all the other machines.

4. Set up a shared mount point for use by the Admin server.

5. Write a file to the Admin server mount point from each machine that will run the
Admin server and ensure that the files are readable and writable from all the other
machines that can run the Admin server.

6. Capture the mount points that will be used by the Admin server and by all other
managed servers in a worksheet similar to the one as shown next:

Servers Mount point
Admin server /share/aserver

Managed servers /share/cluster

How it works...
The granting of sudo privileges is used to allow the non-root user executing the WebLogic
NodeManager to execute a limited subset of commands. These commands are used by the
node manager to assign and register the virtual IP addresses used by the SOA managed
servers and the BAM server. These commands are also used to unregister and release the
virtual IP addresses.

Floating or virtual IP addresses are used by the SOA, Admin, and BAM servers to allow these
servers to have the same IP address when they migrate from one machine to another.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

15

When we run the configuration wizard to create our cluster, we will need to have a shared file
location in which to create the domain. The Admin server shared file location is used to hold
the domain configuration for the Admin server. The domain wide shared mount point is used
to hold managed server domain directories as well as configuration plans. The EDG currently
recommends using a shared filesystem for both server transaction logs (TLogs) and for JMS
Queue storage. When migrating an Admin server, the shared storage for the Admin Server
can be unmounted from the original machine and mounted on the new machine hosting the
Admin server.

The shared filesystem may use a number of technologies, including SMB, NFS, NAS, and SAN
technologies. The key is that the filesystem supports shared access.

There's more...
It is possible to place the SOA Suite software onto shared storage. When doing this, Oracle
recommends having at least two copies of the installed software to make it easier to patch
and to reduce the risk of corruption.

Shared software installations

Certain shared storage configurations can cause very slow
startup when the software is placed in shared storage because
the classloader reads just a small amount from the disk for
each class loaded. When the software disk is shared, it may
not be able to cache reads and so classloading can introduce
a lot of latency into the startup process. This can more than
double the startup time for WebLogic servers. Once started and
in the RUNNING state then they will not suffer a performance
impact from having shared software storage.

Instead of using shared storage for TLogs and Queue stores, it is possible to place these in
the database. This imposes a small performance overhead but simplifies fail over to a DR site
because all the transaction logs and queues are replicated as part of the database replication
to the DR site.

See also
 f The Enterprise Deployment Guide, Chapter 14, Configuring Server Migration for an

Enterprise Deployment, Section 14.6, Setting Environment and Superuser Privileges
for the wlsifconfig.sh script (http://docs.oracle.com/cd/E23943_01/
core.1111/e12036/server_migration.htm)

 f The Enterprise Deployment Guide, Chapter 4, Preparing the File System for an
Enterprise Deployment , Section 4.3, About Recommended Locations for the
Different Directories (http://docs.oracle.com/cd/E23943_01/core.1111/
e12036/file_sys.htm)

www.it-ebooks.info

http://www.it-ebooks.info/

Building an SOA Suite Cluster

16

Preparing the database
An SOA Suite cluster requires specific configuration which is covered in this section.

Getting ready
The database preparation requires SYSDBA privileges. As the installer of the SOA Suite does not
necessarily have SYSDBA privileges for the database, it is wise to get all the tasks that require
SYSDBA privileges completed before starting the installation and configuration of the SOA Suite.

How to do it...
1. Check the character set requirements.

Have DBA verify that the database character set is AL32UTF8.
SQL> select value from nls_database_parameters where
 PARAMETER='NLS_CHARACTERSET';

If it is not AL32UTF8 then the DBA needs to change the character set (easy if the
current character set is a strict subset of AL32UTF8, hard if it is not) or create a new
database with the correct character set.

2. Check process requirements are satisfied.

Have the DBA verify that there are sufficient processes, at least 300 for SOA and 400
if using BAM with SOA.
SQL> show parameter PROCESSES

If necessary, increase the number of processes and restart the database.
SQL> Alter system set PROCESSES=400 scope=spfile;

If the database is an RAC database, have the DBA create database services for the
SOA components. Additional services can be created for WSM and BAM if desired.

3. Create database services for SOA and WSM.
SQL> execute DBMS_SERVICE.CREATE_SERVICE(SERVICE_NAME =>
 'soacluster.cookbook', NETWORK_NAME =>
 'soacluster.cookbook');

Where 'soacluster.cookbook' is the name of the service you want to create.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

17

4. Register the service with database instances in the RAC cluster.
> srvctl add service –d orcl –s soacluster –r orcl1,orcl2

Where orcl is your database name and orcl1 and orcl2 are instances in
your RAC cluster.

5. Start the service.
> srvctl start service –d orcl –s soacluster

6. Create the SOA repository.

Have the DBA run the Repository Creation Utility (RCU), it requires
SYSDBA privileges. After completion, verify that you can connect to the
<prefix>_soainfra schema.

SQL> connect dev_soainfra/welcome1

7. Configure SOA schema for transaction manager recovery.

With SYSDBA privileges, grant visibility on pending transactions to the
soainfra schema:

SQL> grant select on sys.dba_pending_transactions to
 dev_soainfra;

8. Grant ability to commit or rollback in doubt transactions to soainfra schema:
SQL> grant force any transaction to dev_soainfra;

9. With SYSDBA privileges, create a leasing tablespace:
SQL> create tablespace leasing logging datafile
 '/home/oracle/app/oracle/oradata/orcl/leasing.dbf' size
 32m autoextend on next 32m maxsize 2048m extent management
local;

Where /home/oracle/app/oracle/oradata/orcl is the location of the
database data files (<ORACLE_BASE>/oradata/<DB_NAME>).

10. Create a leasing user with privileges to create tables and connect to the database:
SQL> grant create table, create session to leasing
 identified by welcome1;

Where welcome1 is a password of your choosing.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an SOA Suite Cluster

18

11. Set the leasing user to use the leasing tablespace and allow him/her unlimited size
in the tablespace:
SQL> alter user leasing default tablespace leasing;
SQL> alter user leasing quota unlimited on leasing;

12. Get a copy of the leasing.ddl script found in "<WL_HOME>/server/db/
oracle/920" where <WL_HOME> is the location of the WebLogic server directory.
This may have to wait until you have installed the WebLogic server software.

13. Run the leasing.ddl script as the leasing user:
SQL> connect leasing/welcome1
SQL> @leasing.ddl

This assumes that you are running SQL*Plus from the directory where leasing.ddl
is located. Note that if you get errors about unknown commands and an error about
table or view does not exist, these can be safely ignored.

SQL> @leasing.ddl
SP2-0734: unknown command beginning "WebLogic S..." -
 rest of line ignored.
SP2-0734: unknown command beginning "Copyright ..." -
 rest of line ignored.
DROP TABLE ACTIVE
 *
ERROR at line 1:
ORA-00942: table or view does not exist

How it works...
Setting the database to AL32UTF character set is important if you will be processing
non-Latin characters through the SOA Suite. Failure to set this character set can result
in mis-representation of non-Latin character sets such as Chinese, Arabic, and Korean.

The leasing table is used by WebLogic to track which machines are running which migratable
managed servers. A migratable managed server is configured to be able to migrate from one
machine to another in the event of machine or other failure. The SOA servers and the BAM
servers should be configured to do this.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

19

Preparing the network
There are a number of tasks that require network configuration to be completed. As the
installer of the SOA Suite does not necessarily have network administrator privileges, it is a
good idea to get all the tasks that require administrator privileges completed before starting
the installation and configuration of the SOA Suite.

Getting ready
The following figure shows the hostnames associated with our cluster. Note that hostnames
associated with floating IP addresses (may migrate between machines) are given in italics and
all the names on the load balancer refer to virtual IP addresses.

www.it-ebooks.info

http://www.it-ebooks.info/

Building an SOA Suite Cluster

20

How to do it...
1. Collect managed server hostnames and IP addresses.

The Admin server, each SOA managed server, and one of the BAM managed servers
will require a unique hostname and IP address that must be routable across the cluster.
These IP addresses are separate from the IP addresses of the machines hosting the
managed servers. Enter the server type (Admin, SOA, or BAM) and WebLogic server
name in a worksheet similar to the one shown next. The server name is the name used
within WebLogic to refer to this server. Then have the network administrator complete
the table by allocating hostnames and IP addresses for the servers. These hostname/
IP address pairs should be put into an internal DNS.

Server type Server name Hostname IP address
Admin AdminServer AdminHost 10.2.0.121

SOA WLS_SOA1 SOAHost1 10.2.0.131

SOA WLS_SOA2 SOAHost2 10.2.0.132

SOA WLS_SOA3 SOAHost3 10.2.0.133

BAM WLS_BAM1 BAMHost1 10.2.0.141

2. Get frontend details for the load balancer.

The SOA Suite cluster will have at least one, and usually two or three, virtual
hostnames for use by the load balancer. Create a table listing those requirements
and get the network administrator to complete the hostname, port number, and
protocol details.

Role Virtual hostname Port Protocol
Admin access ClusterAdmin.cookbook.com 443 HTTPS
Internal access ClusterInternal.cookbook.com 80 HTTP
External access Cluster.cookbook.com 443 HTTPS

3. Configure the load balancer to listen on all the virtual hostnames and ports identified
in step 2 and load balance across all the web server hostnames and ports identified
in the Gathering configuration information recipe.

How it works...
The load balancer is used to distribute requests across the two web servers. The web
servers form a routing pool (or multiple routing pools if listening on multiple protocols).
The load balancer presents a single address to SOA Suite clients to access the cluster
via HTTP and HTTPS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

21

The web servers will be configured by the EDG to load balance across the WSM cluster using
the hostnames of the physical servers running OWSM. They will distribute the load across
the BAM cluster using the name of the physical servers running the BAM web interfaces and
the virtual hostname of the BAM server itself. The web servers use the virtual hostnames of
the SOA servers to distribute the load across the cluster. Finally, the virtual hostname of the
Admin server is used to route requests to whichever physical machine is hosting the Admin
server at the time of the request.

Using virtual hostnames for the SOA managed servers, the BAM server and the Admin
server allows these managed servers to move across physical machines without requiring
reconfiguration of the load balancers.

The node managers are dedicated to physical machines and so, like the WSM managed
servers, they are able to use the physical hostname of the server on which they run.

There's more...
Note that although the SOA cluster may not receive SOAP requests, the load balancer may
still be required to support access to web-based portions of the SOA Suite such as human
workflow, the B2B console, and the SOA composer application. If the only HTTP access to the
SOA environment is to the consoles for management purposes, then it may be possible to
remove the load balancer and web servers from the installation. In case that no load balancer
or web servers are used, EJB clients may access the managed servers directly using a T3
protocol which supports load balancing. Similarly, adapters do not require the load balancer.

The three frontend addresses mentioned are recommended in the EDG, but it is possible
to collapse the internal and external access into a single role. It is recommended to keep a
separate Admin access role to reduce exposure to hacking.

Although we have shown only a single network interface for both the SOA layer and web layer
machines, it is good practice to have two physical network adapters in these layers to provide
physical isolation of the networks to increase security. Multiple adapters can also be used to
reduce the risk of network outages impacting on the cluster.

See also
 f The Enterprise Deployment Guide, Chapter 3, Preparing the Network for an Enterprise

Deployment, Section 3.4, About IPs and Virtual IPs (http://docs.oracle.com/
cd/E23943_01/core.1111/e12036/net.htm)

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

2
Using the Metadata

Service to Share
XML Artifacts

In this chapter we will cover:

 f Creating a file-based MDS repository for JDeveloper
 f Creating Mediator using a WSDL in MDS
 f Creating Mediator that subscribes to EDL in MDS
 f Creating an external reference using a WSDL in MDS
 f Referencing Schematron in MDS for validation
 f Referencing a fault policy deployed to MDS
 f Deploying MDS artifacts to the SOA infrastructure
 f Exporting an MDS partition to the filesystem
 f Deleting XML artifacts from SOA infra MDS

Introduction
The WSDL of a web service is made up of the following XML artifacts:

 f WSDL Definition: It defines the various operations that constitute a service, their
input and output parameters, and the protocols (bindings) they support.

 f XML Schema Definition (XSD): It is either embedded within the WSDL definition or
referenced as a standalone component; this defines the XML elements and types
that constitute the input and output parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Metadata Service to Share XML Artifacts

24

To better facilitate the exchange of data between services, as well as achieve better
interoperability and re-usability, it is good practice to define a common set of XML
Schemas, often referred to as the canonical data model, which can be referenced
by multiple services (or WSDL Definitions).

This means, we will need to share the same XML schema across multiple composites.
While typically a service (or WSDL) will only be implemented by a single composite, it will
often be invoked by multiple composites; so the corresponding WSDL will be shared across
multiple composites.

Within JDeveloper, the default behavior, when referencing a predefined schema or WSDL, is
for it to add a copy of the file to our SOA project.

However, if we have several composites, each referencing their own local copy of the same
WSDL or XML schema, then every time that we need to change either the schema or WSDL,
we will be required to update every copy.

This can be a time-consuming and error-prone approach; a better approach is to have a
single copy of each WSDL and schema that is referenced by all composites.

The SOA infrastructure incorporates a Metadata Service (MDS), which allows us to create
a library of XML artifacts that we can share across SOA composites. MDS supports two types
of repositories:

 f File-based repository: This is quicker and easier to set up, and so is typically used
as the design-time MDS by JDeveloper.

 f Database repository: It is installed as part of the SOA infrastructure. This is used
at runtime by the SOA infrastructure.

As you move projects from one environment to another (for example, from test to production),
you must typically modify several environment-specific values embedded within your
composites, such as the location of a schema or the endpoint of a referenced web service.
By placing all this information within the XML artifacts deployed to MDS, you can make your
composites completely agnostic of the environment they are to be deployed to.

The other advantage of placing all your referenced artifacts in MDS is that it removes any
direct dependencies between composites, which means that they can be deployed and
started in any order (once you have deployed the artifacts to MDS).

In addition, an SOA composite leverages many other XML artifacts, such as fault policies,
XSLT Transformations, EDLs for event EDN event definitions, and Schematrons for validation,
each of which may need to be shared across multiple composites. These can also be shared
between composites by placing them in MDS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

25

Defining a project structure
Before placing all our XML artifacts into MDS, we need to define a standard file structure for
our XML library. This allows us to ensure that if any XML artifact within our XML library needs
to reference another XML artifact (for example a WSDL importing a schema), it can do so via a
relative reference; in other words, the XML artifact doesn't include any reference to MDS and
is portable. This has a number of benefits, including:

 f OSB compatibility; the same schemas and WSDLs can be deployed to the Oracle
Service Bus without modification

 f Third-party tool compatibility; often we will use a variety of tools that have no
knowledge of MDS to create/edit XML schemas, WSDLs, and so on (for example
XML Spy, Oxygen)

In this chapter, we will assume that we have defined the following directory structure under
our <src> directory.

Under the xmllib folder, we have defined multiple <solution> directories, where a solution
(or project) is made up of one or more related composite applications. This allows each
solution to maintain its XML artifacts independently.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Metadata Service to Share XML Artifacts

26

However, it is also likely that there will be a number of XML artifacts that need to be shared
between different solutions (for example, the canonical data model for the organization),
which in this example would go under <core>.

Where we have XML artifacts shared between multiple solutions, appropriate governance
is required to manage the changes to these artifacts.

For the purpose of this chapter, the directory structure is over
simplified. In reality, a more comprehensive structure should
be defined as part of the naming and deployment standards
for your SOA Reference Architecture.

The other consideration here is versioning; over time it is likely that multiple versions of the
same schema, WSDL and so on, will require to be deployed side by side. To support this, we
typically recommend appending the version number to the filename.

We would also recommend that you place this under some form of version control, as it
makes it far simpler to ensure that everyone is using an up-to-date version of the XML
library. For the purpose of this chapter, we will assume that you are using Subversion.

Creating a file-based MDS repository for
JDeveloper

Before we can reference this with JDeveloper, we need to define a connection to the
file-based MDS.

Getting ready
By default, a file-based repository is installed with JDeveloper and sits under the
directory structure:

<JDeveloper Home>/jdeveloper/integration/seed

This already contains the subdirectory soa, which is reserved for, and contains, artifacts
used by the SOA infrastructure.

For artifacts that we wish to share across our applications in JDeveloper, we should create the
subdirectory apps (under the seed directory); this is critical, as when we deploy the artifacts
to the SOA infrastructure, they will be placed in the apps namespace.

We need to ensure that the content of the apps directory always contains the latest version of
our XML library; as these are stored under Subversion, we simply need to check out the right
portion of the Subversion project structure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

27

How to do it...
1. First, we need to create and populate our file-based repository. Navigate to the seed

directory, and right-click and select SVN Checkout..., this will launch the Subversion
Checkout window.

 � For URL of repository, ensure that you specify the path to the apps
subdirectory.

 � For Checkout directory, specify the full pathname of the seed directory and
append /apps at the end. Leave the other default values, as shown in the
following screenshot, and then click on OK:

Subversion will check out a working copy of the apps subfolder within Subversion
into the seed directory.

2. Before we can reference our XML library with JDeveloper, we need to define a
connection to the file-based MDS.

Within JDeveloper, from the File menu select New to launch the Gallery, and
under Categories select General | Connections | SOA-MDS Connection from
the Items list.

This will launch the MDS Connection Wizard.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Metadata Service to Share XML Artifacts

28

3. Enter File Based MDS for Connection Name and select a Connection Type of File
Based MDS.

We then need to specify the MDS root folder on our local filesystem; this will be the
directory that contains the apps directory, namely:
<JDeveloper Home>\jdeveloper\integration\seed

Click on Test Connection; the Status box should be updated to Success!. Click on
OK. This will create a file-based MDS connection in JDeveloper.

4. Browse the File Based MDS connection in JDeveloper.

Within JDeveloper, open the Resource Palette and expand SOA-MDS. This should
contain the File Based MDS connection that we just created.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

29

5. Expand all the nodes down to the xsd directory, as shown in the following screenshot:

If you double-click on one of the schema files, it will open in JDeveloper
(in read-only mode).

There's more...
Once the apps directory has been checked out, it will contain a snapshot of the MDS artifacts
at the point in time that you created the checkpoint. Over time, the artifacts in MDS will be
modified or new ones will be created. It is important that you ensure that your local version
of MDS is updated with the current version.

To do this, navigate to the seed directory, right-click on apps, and select SVN Update.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Metadata Service to Share XML Artifacts

30

Creating Mediator using a WSDL in MDS
In this recipe, we will show how we can create Mediator using an interface definition from
a WSDL held in MDS. This approach enables us to separate the implementation of a service
(a composite) from the definition of its contract (WSDL).

Getting ready
Make sure you have created a file-based MDS repository for JDeveloper, as described in the
first recipe. Create an SOA application with a project containing an empty composite.

How to do it...
1. Drag Mediator from SOA Component Palette onto your composite. This will launch

the Create Mediator wizard; specify an appropriate name (EmployeeOnBoarding in
the following example), and for the Template select Interface Definition from WSDL.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

31

2. Click on the Find Existing WSDLs icon (circled in the previous screenshot); this will
launch the SOA Resource Browser. Select Resource Palette from the drop-down list
(circled in the following screenshot).

3. Select the WSDL that you wish to import and click on OK. This will return you to
the Create Mediator wizard window; ensure that the Port Type is populated and
click on OK.

This will create Mediator based on the specified WSDL within our composite.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Metadata Service to Share XML Artifacts

32

How it works...
When we import the WSDL in this fashion, JDeveloper doesn't actually make a copy of the
schema; rather within the componentType file, it sets the wsdlLocation attribute to
reference the location of the WSDL in MDS (as highlighted in the following screenshot).

.

For WSDLs in MDS, the wsdlLocation attribute uses the following format:

oramds:/apps/<wsdl name>

Where oramds indicates that it is located in MDS, apps indicates that it is in the application
namespace and <wsdl name> is the full pathname of the WSDL in MDS.

The wsdlLocation doesn't specify the physical location of the WSDL; rather it is relative
to MDS, which is specific to the environment in which the composite is deployed.

This means that when the composite is open in JDeveloper, it will reference the WSDL in
the file-based MDS, and when deployed to the SOA infrastructure, it will reference the WSDL
deployed to the MDS database repository, which is installed as part of the SOA infrastructure.

There's more...
This method can be used equally well to create a BPEL process based on the WSDL from
within the Create BPEL Process wizard; for Template select Base on a WSDL and follow
the same steps.

This approach works well with Contract First Design as it enables the contract for a
composite to be designed first, and when ready for implementation, be checked into
Subversion.

The SOA developer can then perform a Subversion update on their file-based MDS repository,
and then use the WSDL to implement the composite.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

33

Creating Mediator that subscribes to EDL in
MDS

In this recipe, we will show how we can create Mediator that subscribes to an EDN event
whose EDL is defined in MDS. This approach enables us to separate the definition of an event
from the implementation of a composite that either subscribes to, or publishes, the event.

Getting ready
Make sure you have created a file-based MDS repository for JDeveloper, as described in the
initial recipe.

Create an SOA application with a project containing an empty composite.

How to do it...
1. Drag Mediator from SOA Component Palette onto your composite. This will launch

the Create Mediator wizard; specify an appropriate name for it (UserRegistration in
the following example), and for the Template select Subscribe to Events.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Metadata Service to Share XML Artifacts

34

2. Click on the Subscribe to new event icon (circled in the previous screenshot); this will
launch the Event Chooser window.

3. Click on the Browse for Event Definition (edl) files icon (circled in the previous
screenshot); this will launch SOA Resource Browser. Select Resource Palette
from the drop-down list.

4. Select the EDL that you wish to import and click on OK. This will return you to the
Event Chooser window; ensure that the required event is selected and click on OK.

This will return you to the Create Mediator window; ensure that the required event
is configured as needed, and click on OK.

This will create an event subscription based on the EDL specified within
our composite.

How it works...
When we reference an EDL in MDS, JDeveloper doesn't actually make a copy of the EDL;
rather within the composite.xml file, it creates an import statement to reference the
location of the EDL in MDS.

There's more...
This approach can be used equally well to subscribe to an event within a BPEL process or
publish an event using either Mediator or BPEL.

Creating an external reference using a
WSDL in MDS

In this recipe, we will show how we can create an external reference using an interface
definition from a WSDL held in MDS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

35

Getting ready
Make sure you have created a file-based MDS repository for JDeveloper, as described in the
initial recipe. Then open the SOA project in which you want to create the external reference.

How to do it...
1. Drag a Web Service from the Service Adapters section of the SOA Component

Palette onto your composite. This will launch the Create Web Service wizard; specify
an appropriate name for it (Employee in the following example), and for Template
select Interface Definition from WSDL.

2. Click on the Find Existing WSDLs icon (as we did in the previous recipe); this will
launch SOA Resource Browser. Select Resource Palette from the drop-down list.

3. Select the WSDL that you wish to import and click on OK. This will return you to the
Create Web Service Wizard window; ensure that the Port Type is populated and
click on OK.

This will create an external reference based on the specified WSDL within our composite.

How it works...
When we import a WSDL in this fashion, JDeveloper doesn't actually make a copy of the
schema; rather within the composite.xml file, it sets the wsdlLocation attribute for
the external service reference to point to the location of the WSDL in MDS.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Metadata Service to Share XML Artifacts

36

There's more...
As you move composites from one environment to another (for example, from test to pre-prod
to prod), you typically need to modify the WSDL to any external web service, to point it to the
correct endpoint.

This should be done using a configuration plan; however using this approach enables all your
endpoints to be configured separately in MDS, enabling your composites to be completely
agnostic of the environment in which they are deployed.

If your composite makes use of adapters, such as the file or database
adapter, then it will still contain environment specific values. This can
be avoided by using only the adapters within Oracle Service Bus.

Referencing Schematron in MDS for
validation

In this recipe, we will show you how to reference Schematron defined in MDS to validate an
incoming message within Mediator. This approach enables us to separate the validation
rules for the actual composite, allowing us to change our validation rules without having
to redeploy a composite.

Getting ready
Make sure you have created a file-based MDS repository for JDeveloper, as described at the
start of this chapter, and that it contains a valid Schematron file.

Create an SOA application with a project containing Mediator (see the Create a Mediator using
a WSDL in MDS recipe in this chapter).

How to do it...
1. Schematron validation of incoming messages within Mediator is specified at

the routing rule level for an operation. Within JDeveloper, open the Mediator
that you wish to apply the validation to. Click on the Schematron icon, circled
in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

37

This will bring up the Validations window where you can specify one or more
Schematron files for the routing rule.

2. To add Schematron, click on the plus sign; this will bring up the Add Validation
window shown here:

For Part, select the part of the SOAP message to which you want to apply the
validation.

3. Next click ,on the search icon (circled in the previous screenshot). This will launch
the standard SOA Resource Browser window; select Resource Palette from the
drop-down list.

4. Select the Schematron that you wish to use and click on OK. This will return you to
the Add Validation window.

5. Click on OK; this will return you to the Validation window, which will now list our
newly created validation. Click on OK, and this will return you to the Mediator editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Metadata Service to Share XML Artifacts

38

How it works...
When we reference Schematron in this way, JDeveloper doesn't add a copy of Schematron to
the composite; rather within the Mediator plan, it sets the schematron element to reference
the location of Schematron in MDS.

At runtime, when the composite references Schematron, it will use the one deployed to the
SOA infrastructure, MDS Database repository.

There's more...
This has a number of distinct advantages. Firstly, you can ensure that all your composites
use the same version of a particular Schematron.

Secondly, if you need to modify your validation rules, you simply need to update
a single copy of your Schematron and redeploy it to MDS. Any composite that
references that Schematron will automatically pick up the modified version, without
the need to be re-deployed.

Referencing a fault policy deployed to MDS
Rather than creating the fault-policies.xml and fault-binding.xml files in your
composite project, which then get deployed with the composite into the runtime environment,
you can actually reference the fault policies deployed to MDS.

Getting ready
Make sure you have created a file-based MDS repository for JDeveloper, as described at
the start of this chapter, and that it contains valid fault-policies.xml and fault-
binding.xml files.

Then, open the SOA project in which you want to reference the external fault policy.

How to do it...
1. To reference the policies deployed on MDS, we need to add the properties oracle.

composite.faultPolicyFile and oracle.composite.faultBindingFile
to the composite.xml file.

2. These should be added directly following the service elements and reference
the location of your policy and binding files in MDS, as shown in the following
code screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

39

How it works...
By default, at runtime the SOA infrastructure will look in the same directory, as composite.
xml for the fault-policies.xml and fault-binding.xml files.

Specifying these properties overrides this default behavior, causing the SOA infrastructure
to reference the specified location within MDS.

There's more...
This has a number of distinct advantages. Firstly, you can share fault policies across multiple
composites. Secondly, if you need to modify your fault policies, you simply need to update a
single copy of your fault policy and re-deploy it to MDS.

When deploying an updated version of the fault policy, it will not be
automatically picked up by any composite that uses it. Rather, you
need to either re-deploy the composite or restart the server.

Deploying MDS artifacts to the SOA
infrastructure

Before we can deploy a composite that references the artifacts held in MDS, we must deploy
those artifacts to MDS on the SOA infrastructure. To do this, we need to create a JAR file
containing the shared artifacts and then deploy it as part of an SOA bundle.

In this recipe, we will show you how to do this via JDeveloper, though in practice we would
recommend the use of deployment scripts used in conjunction with tools, such as Maven
and Hudson.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Metadata Service to Share XML Artifacts

40

Getting ready
Make sure you have created an XML library containing your XML artifacts (as described at the
beginning of this chapter).

How to do it...
1. Within JDeveloper, create a Generic Application (for example, mdslib), and

when prompted to, create a project and give it an appropriate name (for example,
xmllib). In the application navigator, right-click on the xmllib project and select
Project Properties.

This will launch the Project Properties window; select Deployment from the
navigational tree, as shown in the following screenshot:

2. Click on New; this will launch the Create Deployment Profile dialog. Specify
an archive type of JAR File and specify an appropriate name for it (for example,
xmllib), and click on OK. This will launch the Edit JAR Deployment Profile
Properties window where we can specify what goes in the JAR file.

3. Even though we are creating a JAR file, it's basically a ZIP file and not a real JAR file,
so we need to remove the JAR file specific content; so deselect Include Manifest File.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

41

Then select File Groups | Project Output | Contributors from the navigational tree
and deselect Project Output Directory and Project Dependencies.

4. Next, specify the actual XML artifacts that we wish to add to the JAR file. Click on Add;
this will launch the Add Contributor window.

5. Click on the magnifying glass and browse to the apps directory for your XML artifacts
(this should be the one in your source repository — see the method to create the XML
library given at the start of this chapter), and click on OK.

6. Next, select File Groups | Project Output | Filters and check that only the files we
want are included within the JAR file.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Metadata Service to Share XML Artifacts

42

7. Click on OK to confirm the content of the JAR file, and then click on OK one more time
to complete the deployment profile; finally, from the main menu select Save All.

8. The next step is to create an SOA bundle. From Application Menu, select Application
Properties. This will launch the Application Properties window; from the navigational
tree, select Deployment and then click on New. This will launch the Create
Deployment Profile window, as shown in the following screenshot:

9. Specify an archive type and appropriate name for the SOA bundle, and click on OK.
This will launch the SOA Bundle Deployment Profile Properties window, creating the
XML library.

10. Select Dependencies from the navigational tree and ensure that xmllib is selected.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

43

11. Click on OK twice and then select Save All from the toolbar.

12. We are now ready to deploy our XML schemas to the metadata repository. To do
this, in Application Menu select Deploy | SOA Bundle Name; this will launch the
Deployment Action dialog. Select Deploy to Application Server and follow the
standard steps to deploy it to your target SOA infrastructure server(s).

How it works...
In order to deploy our JAR file to the metadata repository, we need to place it within an
SOA bundle and deploy that to our SOA infrastructure.

The schemas will then be made available to the SOA composites deployed on the same
SOA infrastructure.

There's more...
When you deploy an SOA bundle to MDS, it's a cumulative operation, in that new artifacts are
added to MDS and artifacts that already exist in MDS are replaced by a new version. But if I
don't deploy an artifact, then the previous one remains.

For example, if I deploy an SOA bundle containing A.xsd and B.xsd to MDS, and then deploy
a new version of the SOA bundle containing A.xsd (an updated version) and C.xsd to MDS, I
will have A.xsd (new version), B.xsd, and C.xsd deployed to MDS.

Exporting an MDS partition to the filesystem
Occasionally, we may want to validate the current content of all the XML artifacts deployed
to the MDS repository on our SOA infrastructure. In this recipe, we will show how to export
the content of MDS to the filesystem.

Getting ready
Make sure you have deployed some XML artifacts to the MDS repository running on the
SOA infrastructure.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Metadata Service to Share XML Artifacts

44

How to do it...
1. Log in to Enterprise Manager, and with the navigation tree expand the SOA node and

right-click on soa-infra. Select Administration | MDS Configuration, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

45

2. This will open the MDS Configuration page in Enterprise Manager, as shown in the
following screenshot:

3. Select Export metadata documents to an archive on the machine where this
web browser is running. and click on the Export button.

4. In the browser pop-up window, choose the path and filename and then click on
the Save button.

This will download the current content of the MDS repository in a ZIP file to your local
filesystem.

There's more...
The content of the MDS repository can also be exported using the WSLT command
exportMetadata. This gives you more fine-grained control over what is exported, for
example the following command:

wls:/lab_domain/serverConfig> exportMetadata(application='soa-
infra',server='soa_server1',toLocation='D:/MDSExport', docs='/apps/
core/**')

This will export just the content of the MDS repository under /apps/core.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Metadata Service to Share XML Artifacts

46

Deleting XML artifacts from SOA infra MDS
When we deploy XML artifacts to MDS, it's a cumulative operation, in that new artifacts are
added to MDS and artifacts that already exist in MDS are replaced by a new version. But, if I
don't deploy an artifact, then the previous one remains.

For example, if I deploy an SOA bundle containing A.xsd and B.xsd to MDS, and then deploy
a new version of the SOA bundle containing A.xsd (an updated version) and C.xsd to MDS,
I will have A.xsd (new version), B.xsd, and C.xsd deployed to MDS.

In addition, every time we deploy a new SOA bundle, MDS retains the previous version of the
SOA bundle.

Because of this, we often need to clean up and remove unnecessary and unwanted files from
the MDS repository.

Getting ready
Make sure you have deployed some XML artifacts to the MDS repository running on the
SOA infrastructure.

How to do it...
1. To do this we need to launch the WebLogic Server Administration Scripting Shell; go

to the directory MIDDLEWARE_HOME/Oracle_SOA1/common/bin.

2. On Windows run the command wlst.cmd, and on Unix run the command wslt.sh.

This will open the WebLogic Server Administration Scripting Shell (WLST) in offline
mode, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

47

3. On the WLST command prompt, execute the following code:
connect('adminuser', 'adminpassword', 't3://hostname:port')

For example:
connect('weblogic', 'welcome1', 't3://localhost:7001')

The WLST should confirm that you have connected successfully with the text, similar
to:

Connecting to t3://localhost:7001 with userid weblogic ...

Successfully connected to Admin Server 'AdminServer' that belongs
to domain 'soa_domain'.

Warning: An insecure protocol was used to connect to the

server. To ensure on-the-wire security, the SSL port or

Admin port should be used instead.

4. Use the deleteMetadata command to remove the XML artifacts from MDS, for
example:

deleteMetadata(application='soa-infra',server='soa_
server1',docs='/apps/core/**')

This will delete all the content under the /apps/core location in MDS.

There's more...
The WLST command purgeMetadata can be used to remove all but the latest version
(referred to as tip) of all the artifacts deployed to MDS.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Working with
Transactions

In this chapter we will cover:

 f Modifying a BPEL process to use the callers transaction context

 f Committing a transaction

 f Aborting transaction

 f Catching rollback faults

 f Applying a reversing or compensating transaction

Introduction
In this chapter we will examine recipes that allow us to control the transactional behavior
of composites.

Transactions defined
A transaction may be thought of as a set of changes to the state of a system. All the changes
must be applied together or none of the changes must be applied. For example, a transfer
between two bank accounts involves two operations, debiting the payer's account and
crediting the payee's account. In this case, if the credit operation fails we don't want to
debit the payer's account because the money was not deposited in the payee's account.

3

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Transactions

50

We may have more than two changes in a transaction. For example, in addition to transferring
the funds in our example, which requires two operations, we may also wish to notify the payer
and payee that the transfer has occurred. Again, we want this to be part of the transaction
because we do not want to send a notification unless the transfer of funds has also occurred,
so we have now extended our transaction to four operations.

Transaction managers
A transaction manager is responsible for coordinating the operations in a transaction. If all
the operations are in the same resource, such as the same database, then the resource may
manage the transaction itself. If the transaction is spread across multiple resources, such as
the database and message queue, then an XA transaction manager is required to co-ordinate
the operations across different resources.

SOA Suite by default will use the XA transaction manager in the application server to co-
ordinate its transactions. When a message arrives in SOA Suite, an XA transaction is started.

Compensating transactions
Not all transactions are managed by a transaction manager. Sometimes we want the
benefits of a transaction but the services we are using are non-transactional, for example
basic SOAP over HTTP services. In this case, we need to manage the transactional behavior
within our composites.

In our example, if the two accounts are held at two separate banking institutions, things
could become more complicated. This does not change the transaction requirements; it just
makes implementing a transaction more complicated. We must now provide explicit reversing
transactions to undo unwanted work when we are unable to complete all the operations in our
transaction. These are called compensating transactions.

Within SOA Suite, the BPEL engine has built-in support for compensating transactions that
allow us to register and invoke reversing operations (compensating transactions).

Hints on working with SOA Suite transactions

Always have a clear plan of where you want transaction
boundaries to occur. Determine if you want BPEL processes
to be part of existing transactions or if you want to execute
them within their own transaction. Transactions can be
committed by using a dehydrate statement or by calling a
non-idempotent service. It is often helpful to create a diagram
showing transaction boundaries within your composite.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

51

Modifying a BPEL process to use the callers
transaction context

We often want to include a BPEL process in the calling transaction, and this recipe shows how
to modify the BPEL process to do this.

Getting ready
In JDeveloper, open the project that has the BPEL process that we want to make part of the
calling transaction.

How to do it...
1. Switch to Source View.

In JDevelper, open composite.xml that contains the BPEL process and click on the
Source tab at the bottom of the diagram:

2. Add a Transaction Required property.

Find the component that corresponds to the BPEL process in Source View; the
component name attribute will be the same as the name of the BPEL process. Add
a property called bpel.config.transaction with the value required to the
component, as shown in the following code:

<component name="TransactionIDProcess" version="1.1">
 <implementation.bpel src="TransactionIDProcess.bpel"/>
 <property name="bpel.config.transaction"
 many="false"
 type="xs:string">required</property>
</component>

The BPEL process will now participate in the same transaction as the caller of the process.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Transactions

52

How it works...
When creating a BPEL process with sync delivery in SOA Suite 11.1.1.6 and higher, we can
specify the transaction attributes of the BPEL process as required or requiresNew. This
sets the bpel.config.transaction property.

The bpel.config.transaction property has two values:

 f required: This makes the BPEL process execute as part of the calling transaction.
If no calling transaction exists, it will create a new one.

 f requiresNew: This is the default value and makes the BPEL process execute as a
separate transaction. Any existing transaction will be suspended.

These properties define the transaction semantics of the BPEL process to which they are
applied. Any JCA adapters, such as a database or JMS adapter, can also be executed in the
same transaction context as the BPEL process.

There's more...
When executing, the BPEL engine keeps track of which activities have occurred by updating
the state in the dehydration database. This updating of the process state is done in the
same transaction context in which the BPEL process is being executed. This keeps the
state of the BPEL process in sync with the state of the resources used by the BPEL process.
These updates are only committed when the process is dehydrated or a RequiresNew
process is completed. One way in which this can occur is following a call to a non-idempotent
partner link.

The BPEL engine uses a separate transaction context to keep a record of which steps were
attempted; this is used to update the database with logging information and means that
even if the BPEL process transaction rolls back, it will be possible to see what activities were
executed before the rollback. This aids in debugging a failing BPEL process.

See also
 f The Aborting a transaction recipe in this chapter.

Committing a transaction
We may wish to explicitly commit a transaction in our BPEL process. This recipe describes how
to achieve this.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

53

Getting ready
In JDeveloper, open the project containing the BPEL process that you wish to explicitly commit
a transaction to.

How to do it...
1. Add a Dehydrate activity to the process.

2. Open the BPEL process that needs to explicitly commit the transaction.

3. From the Component Palette expand the Oracle Extensions section; drag a
Dehydrate activity onto the BPEL process:

When executed, this will cause the current transaction to be committed and a new transaction
to be started.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Transactions

54

How it works...
The Dehydrate activity causes the current state of the BPEL process to be saved in the
dehydration database. This also causes the current transaction context to be committed.
Because the BPEL process is still active, a new transaction context is immediately created.

There's more...
A Dehydrate activity can be very useful in an asynchronous process, but should be avoided in
a synchronous process unless the BPEL process's bpel.config.transaction property is
not set or set to requiresNew.

Synchronous BPEL processes that have the required
transaction attribute should always leave the committing
of the transaction to the caller; they should never force
the committing of a transaction.

See also
 f The Catching rollback faults recipe in this chapter.

Aborting a transaction
If an error occurs while we are in a transaction, we may wish to abort the transaction, thus
rolling back any work that has already been done. This recipe shows how to rollback the
currently executing transaction.

Getting ready
In JDeveloper, open the project containing the BPEL process, which may encounter errors,
requiring the transaction to be rolled back.

How to do it...
1. Open the BPEL process that needs to cause the transaction to be rolled back.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

55

2. From the Component Palette, drag a Throw activity onto the BPEL process:

3. Double-click on the Throw activity that was created in the previous step.

4. Click on the icon in the Fault QName section of the dialog to launch the
Fault Chooser dialog:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Transactions

56

5. Select the rollback fault and click on OK:

6. Click on OK to apply the changes to the Throw activity.

This activity will cause the current BPEL process transaction to be rolled back when executed.

How it works...
The rollback fault has a special meaning to the BPEL engine and causes the current
transaction to be rolled back. The BPEL process will be restored to the state that it was in
before the current transaction was started. A rollback fault can't be caught by a BPEL
process in the same transaction context.

See also
 f The Catching rollback faults recipe in this chapter

Catching rollback faults
A BPEL process may want to catch a rollback fault thrown by another BPEL process. This
recipe shows how to do that.

Getting ready
Open the composites containing the caller BPEL process and the callee BPEL process.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

57

How to do it...
1. Open composite.xml containing the callee BPEL process (the BPEL process that

throws a rollback fault) and switch to the Source View tab.

2. Locate the component element corresponding to the callee BPEL process and verify
that either:

There is no bpel.config.transaction property:
<component name="BPELProcess1" version="1.1">
 <implementation.bpel src="BPELProcess1.bpel"/>
 <!—No bpel.config.transaction property -->
</component>

Or the bpel.config.transaction property is set to requiresNew:

<component name="BPELProcess2" version="1.1">
 <implementation.bpel src="BPELProcess2.bpel"/>
 <property name="bpel.config.transaction"
 many="false"
 type="xs:string">requiresNew</property>
</component>

3. Open the caller BPEL process and add a catch block by selecting the triangular ()
icon on a scope containing the invoke activity to the callee BPEL process:

4. Double click on the Catch to bring up the Catch dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Transactions

58

5. Click on the icon in the Fault Name section of the dialog to launch the Fault
Chooser dialog:

6. Select the remoteFault fault and click on OK:

7. Click on OK to apply the changes to the catch.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

59

How it works...
The catch block is to be executed when a rollback fault is thrown in the callee
BPEL process.

When a BPEL process throws a rollback fault, it cannot be caught in the current
transaction context. When the fault leaves the current transaction context, it is converted to
a remoteFault that can be caught in the caller BPEL process. It is necessary to make sure
that the caller and callee are in separate transaction contexts; hence the need to check the
value of the bpel.config.transaction property is not set to required.

When a BPEL process throws any fault that is not caught in the current transaction context,
it causes the current transaction to be rolled back. If instead of throwing a fault a BPEL
process returns a fault through a reply activity, then the current transaction is not
rolled back.

Applying reversing or compensating
transactions

If operations occur that are not part of a transaction, then reversing operations must be
applied to undo the changes. The reversing operations are performed to reverse the effects
of the unwanted operations. This recipe shows how to do that.

Getting ready
Open the BPEL process that performs operations that cannot be rolled back as part of
a transaction, and instead requires reversing operations to be applied in the case of a
processing failure.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Transactions

60

How to do it...
1. For each operation (usually an invoke activity) that has a corresponding reversing

operation, wrap it in a scope activity by dragging a scope from the Component
Palette and dropping it just after the operation that requires reversing:

2. Move the activity or activities that require reversing into the scope by
dragging-and-dropping them into the scope:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

61

3. Click on the Add Compensation Handler icon in the scope to add a
compensation handler:

4. Drag appropriate activities (usually an assign and an invoke) into the
compensation handler to reverse the operations in the corresponding scope:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Transactions

62

5. If a failure in an operation does not throw a fault, then create a Throw activity by
dragging it into the scope that contains the failed operation (see step 2 of the recipe
Aborting a transaction in this chapter).

6. Choose an appropriate fault type (see step 4 of the recipe Aborting a transaction).

7. Drag appropriate activities (usually an assign and an invoke) into the
compensation handler to reverse the operations in the corresponding scope.

8. Add a catch block to the outermost scope (see step 3 of the recipe Catching
rollback faults).

9. Drag a Compensate activity from the Component Palette onto the catch that
was just created:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

63

How it works...
When a fault is caught by catch, compensate it will cause all the operations that require
reversing to be reversed.

Compensate can only be called from within a catch block. When it is called, it starts with
the most recently completed scope and calls the compensation handler for that scope
if it has one. It then looks for the previously completed scope and calls the compensation
handler for that scope. In this way, the reversing operations are applied in the reverse order
to the original operations. If a scope was not completed, its compensation handler will not
be invoked.

If an operation throws a fault, we can catch it and call the Compensate activity. Operations
may indicate failure by returning a failure status rather than throwing a fault. In this case,
by placing a Throw activity inside the scope for which the operation failed, we can avoid the
reversing operation being invoked for that scope.

Compensation occurs outside of transaction boundaries. So a BPEL process may be
spread across several transactions, but compensation ignores this and continues to invoke
compensation handlers for completed scopes regardless of the transaction context in which
they were completed.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping Data

In this chapter, we will cover the following recipes to transform data from one format
to another:

 f Ignoring missing elements with XSLT

 f Ignoring missing elements with Assign

 f Creating target elements in Assign

 f Array processing with XSLT

 f Array processing with BPEL Assign

 f Overriding mapping of EJB data to XML

 f Ignoring a Java property

 f Creating a wrapper element for a Java collection or array

 f Handling an abstract class

Introduction
At the heart of any solution built with SOA Suite is the transformation of data from one format
to another. Within SOA Suite we have two explicit mechanisms to deal with this, namely XML
Stylesheet Transforms (XSLT) or XPath Assigns. Transformation may also occur implicitly as
a result of using a component or adapter, for example converting to/from Java formats when
using Java components and adapters.

4

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping Data

66

Comparison of XSLT and Assign
Within both the Mediator and BPEL components, we have the choice between using XSLT
transformation and XPath Assigns. When we use an XPath Assign, we are manipulating the
target XML document directly. This may be more efficient when we are adding or altering a
small part of the target document and the target document already contains data. When we
use an XSLT transform, we are replacing the target XML document with a new one generated
from the transform.

Choosing between Assign and Transform

Generally when we are populating a new variable for the first
time, it is best to use a transform. A transform is also easier
to use when manipulating repeating elements in the target.
When we wish to modify only a few elements in the target,
Assign is the easiest way to do this.

A common pattern is to perform an initial mapping to a variable by using XSLT and then
making subsequent additions or modifications using Assign. The reverse pattern cannot be
used because an XSLT transform will completely replace a variable with new content, losing
any previous assignments to that variable.

Typing in XML Schema
Although XML Schema allows for element contents to be typed, generally the data
transformation process is quite lax about enforcing type constraints, and as long as the data
being transformed is compatible in its string form with the target type, no errors will be thrown;
for example, the string 75 may be assigned to a numeric type without error, and similarly a
numeric type such as 12.5 may be safely assigned to a string.

Ignoring missing elements with XSLT
Sometimes, when we are performing an XSLT transformation, we get an empty target element
because the source element was not present. If a source element is missing we may want
to omit the target element from our output. We often wish to distinguish between a missing
element and an empty element. In this recipe, we will show how to distinguish between a
missing XML element and an empty XML element in XSLT.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

67

It is possible that the source element might actually be an optional element in the input
document, and this will be indicated by the XML element marker within square brackets, as
shown in the following example:

Given the following input document:

<inputVariable>
 <part name="payload">
 <ns1:process>
 <ns1:val1>Only Value</ns1:val1>
 </ns1:process>
 </part>
</inputVariable>

The previous transform will generate the following output document:

<outputVariable>
 <part name="payload">
 <processResponse>
 <client:val1>Only Value</client:val1>
 <client:val2/>
 </processResponse>
 </part>
</outputVariable>

Note, that this is indistinguishable from the output generated by the following input document:

<inputVariable>
 <part name="payload">
 <ns1:process>
 <ns1:val1>Only Value</ns1:val1>
 <ns1:val2></ns2:val2>
 </ns1:process>
 </part>
</inputVariable>

This may be significant for our future processing, and so we need to be able to distinguish the
two input documents, which we do by using an XSLT if construct.

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping Data

68

Getting ready
Open an existing XSLT file that generates an empty element, when an element is not present
in the input, to the transform.

How to do it...
1. Add an if function to the target element:

2. In the General section of Component Palette open XSLT Constructs and drag the if
construct onto the target element. This will make the mapping of the target element
conditional on some XPath expressions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

69

3. To map the source element to the target element, drag the missing source element
onto the if construct. This makes the target element mapping conditional based on
the presence of the missing source element:

How it works...
The if construct acts as a conditional on any nested mappings underneath it. If the
conditional evaluates to true, then the mappings underneath it are executed; otherwise
they are ignored, and the elements underneath it will not appear in the output document.

There's more...
We used the if construct to test for the existence of an element in the source document, but
we could have used it to test any Boolean expression, allowing us to put arbitrary conditional
logic in our transform. In this case, rather than mapping an element to the if construct, we
would map an XPath expression using the expression editor.

The MiscMappings project in the code samples has a sample XSL transformation called
CorrectedIntialTransformation.xsl demonstrating this.

See also
 f The Ignoring missing elements with Assign recipe in this chapter

 f The Ignoring a Java property recipe in this chapter

Ignoring missing elements with Assign
An assignment may fail with a selectionFailure fault that can be caused by attempting to
select a nonexistent element. In this recipe, we will show how to deal with missing elements in
an assign so that we avoid the selectionFailure fault.

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping Data

70

Getting ready
Open an assignment that causes selectionFailure faults when an element is not present
in the input. It is possible that the source element might actually be an optional element in
the input document, and the XML element marker being in square brackets will indicate this.

How to do it...
1. Right-click to the left-hand side of the assignment that causes the

selectionFailure fault and select the ignoreMissingFromData menu item. This
will cause the assignment to be ignored if the source element does not exist:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

71

How it works...
When the ignoreMissingFromData attribute is set on a copy statement in Assign,
it causes that copy statement to be skipped if the from query were to cause a
selectionFailure fault.

There's more...
The ignoreMissingFromData attribute also works with all other Assign subelements, such
as insertAfter, insertBefore, copyList, and append.

The MiscMappings project in the code samples has a sample BPEL process called
MappingBPELProcess.bpel demonstrating this.

See also
 f The Ignoring missing elements with XSLT recipe in this chapter

 f The Ignoring a Java property recipe in this chapter

Creating target elements in Assign
The target of a copy must exist in Assign. In this recipe, we will show how to create that target
if it does not already exist. If the target does not exist, a selectionFault is thrown.

Getting ready
Open an assignment that causes selectionFailure faults when an element is not present
in the output. It is possible that the target element is not present because an earlier XSLT
transform did not create it.

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping Data

72

How to do it...
1. Right-click to the left-hand side of the assignment that causes the

selectionFailure fault and click on the insertMissingToData menu item.
This will cause the target element to be created if it does not already exist:

How it works...
When the insertMissingToData attribute is set on a copy statement in Assign, it causes
the intended target element to be created if it does not already exist.

There's more...
The insertMissingToData attribute only works with the copy assign subelements; it
cannot be used when appending or inserting elements.

The MiscMappings project in the code samples has a sample BPEL process called
MappingBPELProcess.bpel demonstrating this.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

73

See also
 f The Ignoring missing elements with Assign recipe in this chapter

Array processing with XSLT
We often deal with repeating elements in XML. These repeating elements act as an array and
need special processing constructs when used in XSLT. In this recipe, we show how to process
an array using XSLT.

Getting ready
Create an XSLT stylesheet for an input schema and an output schema, both of which have
repeating elements in them. An example schema fragment is shown as follows:

<element name="vendorQuote"
 maxOccurs="unbounded"
 type="tns:vendorQuoteType"/>

This element may repeat an unlimited number of times.

How to do it...
1. Expand the target document until the target repeating element is visible.

2. Drag a for-each construct from Component Palette | General | XSLT Constructs
onto the repeating element in the target document (productLowestQuote in
this case):

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping Data

74

3. Drag the source repeating element (productQuote in the following example) onto the
for-each construct. This will cause the output document to contain an empty target
repeating element for each source document repeating element:

4. Now, map any nested elements and values under the source repeating element
(productName for example) to the target elements under the for-each construct.

How it works...
The for-each construct loops over the top-level elements in the input node-set and creates
an empty target element for each one. Any mappings under the for-each construct are done
in the context of the current node from the input node-set. For example, if the input document
is as shown in the following code snippet, the node-set will contain three productQuote
nodes and a mapping from productName will reference each of these nodes Revell B17G
Flying Fortress 1:48 Scale, Monogram B29 Superfortress 1:48, and Airfix
Avro Lancaster 1:72 in turn.

<productQuote>
 <productName>Revell B17G Flying Fortress 1:48</productName>
 ...
</productQuote>
<productQuote>
 <productName>Monogram B29 Superfortress 1:48</productName>
</productQuote>
<productQuote>
 <productName>Airfix Avro Lancaster 1:72</productName>
 ...
</productQuote>

The ArrayProcessing project in the code samples has a sample XSLT called
ArrayTransformation.xsl demonstrating this.

There's more...
The for-each construct can reference any arbitrary node-set and does not have to be tied to
the input document directly; any XPath function that returns a node-set can be used as input.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

75

See also
 f The Array processing with BPEL Assign recipe in this chapter

 f The Creating a wrapper element for a Java collection or array recipe in this chapter

 f The Handling an abstract class recipe in this chapter

Array processing with BPEL Assign
Sometimes we need to iterate over array elements in a BPEL process while performing an
action such as a BPEL invoke. This requires us to process repeating elements outside of an
XSLT transform. In this recipe, we examine how to access repeating elements in an assign
statement. We will iterate over the elements in a node-set; elements in the set are indexed
starting with one.

Getting ready
We will need a source XML document to iterate over, and a target XML document to update
with the results of our iteration.

How to do it...
1. Create an index variable to keep track of the current index of the array. The variable

should be of the integer type:

2. Create a variable to hold the number of items in the array; again this should be of the
type integer.

3. Use an assign statement to initialize the current index to 0.

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping Data

76

4. Use an assign statement to initialize the number of items to the number of
elements to iterate over. The number of elements that need to be iterated over
can be calculated by using the XPath count function and passing it to the node-set
corresponding to the elements to be iterated over, as shown in the following code:
count(bpws:getVariableData('outputVariable',
 'payload',
 '/client:lowestQuotes/client:productLowestQuote'))

This can be created by dragging the expression editor onto the number of items
variable, and in the Expression Builder by selecting Functions | Mathematical
Functions | count and hitting Insert Into Expression. Then, select the elements to
be iterated over and insert that XPath into the expression between the parentheses
after the count function:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

77

5. Create a while loop in the BPEL process by dragging the Component Palette |
BPEL Constructs | While onto the BPEL process at the location where we want a
loop. Open the while activity and use the expression editor to create a suitable loop
condition using the loop counter variable and the number of items variable; see the
following example:
bpws:getVariableData('CurrentIndex') < bpws:getVariableData('Total
Products')

6. Before using the current index variable, we need to increment it because XPath node-
sets are indexed starting with one.

7. When we need to access the current element in the while loop, we do it by indexing
the repeating element with the current index variable, as shown in the following
sample XPath, to select a productLowestQuote record's product name:
bpws:getVariableData('outputVariable','payload')
 /client:productLowestQuote
 [bpws:getVariableData('CurrentIndex')]
 /client:productName

Note, that we can use this method to index either a source or a target variable.

How it works...
When we select an element with an XPath expression, it actually returns a node-set of zero
or more elements. If the result returns more than one node (the cardinality of the node-set is
greater than one), then we can use the index variable and the while loop to iterate across
the elements in the node-set. It is important to remember when selecting from a node-set that
the first element in the node-set is indexed by one.

There's more...
If we need to add elements to a sequence in an assign statement rather than just modify
them, we need to use InsertAfter to place an XML Fragment at the correct point in the
output document.

The ArrayProcessing project in the code samples has a sample BPEL process called
ArrayProcess.bpel demonstrating this.

See also
 f The Array processing with XSLT recipe in this chapter

 f The Creating a wrapper element for a Java collection or array recipe in this chapter

 f The Handling an abstract class recipe in this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping Data

78

Overriding mapping of EJB data to XML
When we use an EJB reference or the Spring component in SOA Suite, we usually want to
wire it to a non-Java resource. When we do this, JDeveloper uses JAXB to create an XML
representation of the parameters and return values of the methods in the Java interface
we are using. Often the SOA developer is unable to modify or create mappings in EJB or
Java bean itself. If we are unable to change the JAXB mapping in the EJB or Java bean,
or there are no mappings provided, and we are using default mappings, then we can use
this recipe to override the mappings. Overriding the default generation of the mappings
allows us to specify target namespaces, rationalize the structure of the data, and
remove unneeded properties from the Java classes. Some things that we may want
to customize include:

 f Specifying concrete implementations for abstract classes and interfaces in
the interface

This allows us to map to the Java objects in the interface that cannot be instantiated
directly. For example, often we have lists of abstract classes or interfaces; by
specifying the possible concrete implementations of these classes, we can generate
an XML Schema that includes additional properties available only through the
concrete classes.

 f Hiding unwanted properties

This allows us to remove properties that are not needed for our implementation, or
not needed because they are convenience properties, such as the length of an array
or collection, which can easily be derived from the underlying array or collection.

 f Providing wrappers for arrays and collections

The default mapping for an array or collection is to provide a list of repeating
elements. We can modify the mapping to provide a wrapper element that represents
the whole array or collection, with the repeating elements appearing a level down
within it.

 f Changing WSDL namespaces

It is often necessary to change the namespaces in a generated WSDL to match
a corporate standard, or to avoid conflicts with other components that are
being used.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

79

SOA Suite allows us to describe in an XML document how we want a Java interface to be
mapped from Java objects into XML. The file that does this is called an Extended Mapping
(EXM) file. When generating a WSDL and its associated XML Schema from a Java interface,
SOA Suite looks for an EXM file corresponding to the Java interface that is being generated.
Without this file, the mapping will be the default generation, which simply attempts to take each
field and method in the Java code and map it to an XML type in the resulting WSDL. The EXM
file is used to describe, or clarify, the mappings to XML, and uses EclipseLink MOXy to provide
an XML version of the Java annotations. This means that we can apply the equivalent of the
Java annotations to the Java classes referenced from the interface, giving us complete control
over how the XML is generated. This is illustrated in the following diagram, which shows how
the WSDL interface mapping depends on the Java interface of the EJB reference or Spring
component that is being wired (obviously), but is modified by the EXM file that, in turn, may
embed or reference an XML version of the JAXB annotations (using EclipseLink MOXy):

The mapping will automatically take advantage of any class annotations in the Java classes
that are being mapped, but the XML descriptions can override or add to these annotations,
allowing us fine-grained control over our XML interface. This allows for changes to be made
without touching the underlying Java code.

Getting ready
We must identify the Java interface that we wish to override the mapping for, and understand
how we wish that interface to be represented in XML. We will use the following Java interface:

package soa.cookbook;

public interface QuoteInterface {
 public QuoteResponse getQuotes(QuoteRequest request);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping Data

80

The structure of the request and response parameters is shown in the following diagram:

We want to create a mapping file to modify the way the interface is mapped.

How to do it...
1. Prepare JDeveloper to use the SOA JAXB mappings.

To take full advantage of the XML element completion in JDeveloper, we must
make sure that all the schema we are using are registered with JDeveloper. Under
JDeveloper in Tools | Preferences | XML Schemas, we click on Add to register the
schema as an XML extension:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

81

The schema is found in a JAR file located at <JDEV_HOME>/modules/org.
eclipse.persistence_1.1.0.0_2-1.jar, and the schema is inside this jar at
/xsd/eclipselink_oxm_2_1.xsd, so the location we register is
jar:file:/<JDEV_HOME>/modules/org.eclipse.
persistence_1.1.0.0_2-1.jar!/xsd/eclipselink_oxm_2_1.xsd where
<JDEV_HOME> is the location where you installed JDeveloper. Note, that the version
number of the JAR file and the XML Schema vary between JDeveloper releases:

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping Data

82

2. Change the order of the source paths in your SOA project to have SCA-INF/src first.
This is done using the Project Source Paths dialog in Project Properties. All files
related to the mapping will go here. For example, <Project>/SCA-INF/src/com/
customer/EXM_Mapping_EJB.exm, where com.customer is the associated
Java package:

3. Create an EXM mapping file by launching the wizard to generate a base mapping
(EXM) file.

Launch the New XML Document from XML Schema wizard (File | New | All
Technologies | General | XML Document from XML Schema).

4. Specify a file with the name of the Java interface and a .exm extension in a directory
corresponding to the Java package of the interface under SCA-INF/src. For
example, if your EJB adapter defined soa.cookbook.QuoteInterface as the
remote interface, then the directory should be <Project>/SCA-INF/src/soa/
cookbook and so the full file path would be <Project>/SCA-INF/src/soa/
cookbook/QuoteInterface.exm. By using the .exm extension, we are able to
use registered schema that will automatically map to the correct schema so that the
future steps in the wizard will understand what we are doing:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

83

The weblogic-wsee-databinding schema should already be selected; select a root
element of java-wsdl-mapping and leave java-wsdl-mapping and leave java-wsdl-mapping Depth at the default value. This will give us
a basic file to start working with:

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping Data

84

5. Import a JAXB (OXM) mapping file.

As recommended by Oracle, separate out the mappings per package by using the
<toplink-oxm-file> element. This will allow you, per package, to define reusable
mapping files outside of the EXM file. Since the EXM file and the embedded mappings
have different XML root elements, defining them separately allows JDeveloper to
provide validation and completion; a sample include is shown as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<java-wsdl-mapping xmlns="http://xmlns.oracle.com/weblogic/
weblogic-wsee-databinding">
 <xml-schema-mapping>
 <toplink-oxm-file file-path="./mappings.xml"
 java-package="soa.cookbook"/>
 </xml-schema-mapping>
</java-wsdl-mapping>

6. Create an OXM file.

Create an OXM mapping file to store custom mappings. As mentioned, these files are
per package, separate from the EXM files, and reusable. We can use the New XML
Document from Schema to create these as well. In this case, they will have an XML
or OXM extension, use the persistence registered schema (http://www.eclipse.
org/eclipselink/xsds/persistence/oxm), and be stored relative to the EXM
file. That is, they can go in the same directory, or in other directories, as long as you
refer to them by the relative path from the EXM file. In the following example, we have
set the target namespace of the mapping.

<?xml version="1.0" encoding="UTF-8" ?>
<xml-bindings xmlns="http://www.eclipse.org/eclipselink/xsds/
persistence/oxm">
 <!-- Set target Namespace via namespace attribute -->
 <xml-schema namespace=http://cookbook.soa.mapping/javatypes
 element-form-default="QUALIFIED"/>
</xml-bindings>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

85

7. Rewire the existing components.

Once complete, delete any existing wires to the Java components and rewire.
You should notice the dialog box change to indicate that an extended mapping
file was used:

Note that an extended mapping file was used.

How it works...
When a component that expects a WSDL interface is wired to a component/reference
exposing a Java interface, JDeveloper will invoke the Java to the WSDL compiler. This will
check the classpath to see if an EXM file exists in the path corresponding to the interface
package and with a name corresponding to the interface class. If such a file exists, then it is
used to override the default mappings. This file will also override any explicit JAXB annotations
in the classes that are to be mapped.

This same process is done at design time in JDeveloper and again at runtime in SOA Suite.
At runtime, the mapping is done the first time that the Java component is invoked.

There's more...
XML Schema can also be registered to work as an OXM extension instead of an XML
extension. But if you use a .oxm extension, then in each project where you use it you must
add a rule to copy .oxm files from the source to the output directory when compiling.

By using a common mapping file or files, it is possible to have consistent mapping across
multiple interfaces that use the same classes. By using a different mapping file, it is possible
to map classes differently depending on the interface they are used with, allowing the
interface to be simplified; for example, by ignoring the properties of a class that are not
needed in a given interface.

The EXMMapping project in the code samples has sample EXM (EXM_Mapping_EJB.exm)
and OXM files (mappings.xml) demonstrating this.

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping Data

86

See also
 f The Ignoring a Java property recipe in this chapter

 f The Creating a wrapper element for a Java collection or array recipe in this chapter

 f The Handling an abstract class recipe in this chapter

Ignoring a Java property
Often the Java interface we are using will have convenience methods that appear to be
additional properties but are actually just a simpler way of accessing another property. An
example is shown as follows:

public class QuoteRequest implements Serializable {
 ...
 private String[] products;
 ...
 public void setProducts(String[] products) {
 this.products = products;
 }
 public String[] getProducts() {
 return products;
 }
 public String getProduct(int i) {
 ...
 }
 public String getProduct() {
 return getProduct(0);
 }
 public void setProduct(String product) {
 products = new String[1];
 products[0] = product;
 return;
 }
 ...
}

In this example, the getProduct and setProduct methods are just simplified interfaces to
the getProducts and setProducts methods in the case where there is only one product
required. We would not want to generate an XML element for both the product and the
products properties of this bean, so in this recipe we will show how to hide an unwanted
property (product).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

87

Getting ready
We need to know the class name of the bean and the name of the property that we wish to
remove from the XML mapping.

How to do it...
1. Add an <xml-transient> element to the mapping file.

In the OXM mapping file, we declare that a property is to be transient and not show
up in the WSDL mapping by marking it as <xml-transient>, as shown in the
following code snippet:
<?xml version="1.0" encoding="UTF-8" ?>
<xml-bindings ... >
 <java-types>
 <java-type name="soa.cookbook.QuoteRequest">
 <java-attributes>
 <!-- Can remove mappings by making them
 transient via xml-transient element -->
 <xml-transient java-attribute="product"/>
 </java-attributes>
 </java-type>
 </java-types>
</xml-bindings>

The <java-type> name property is the Java class that has the property we want
to remove. The <xml-transient> name property is the name of the property in
the class.

2. Save the mapping file.

3. Remap the interface if necessary.

If the interface has already been mapped, then it is necessary to regenerate the
WSDL interface for the changes we have made to take effect. Do this by deleting the
existing wire and then rewiring.

How it works...
<xml-transient> causes the named property to be ignored by the Java to XML converter.
This means that no XML element will be generated for the given property.

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping Data

88

There's more...
We may decide to ignore a property because it is not used by our particular use case. This can
simplify our composite. Any mappings from XML to Java will cause the property to be initialized
with a default value, usually null.

Ignoring a property may improve runtime performance because there is less work to do, and
the resulting XML document will also be smaller.

The EXMMapping project in the code samples has a sample OXM file (mappings.xml)
demonstrating this.

See also
 f The Ignoring missing elements with XSLT recipe in this chapter

 f The Ignoring missing elements with Assign recipe in this chapter

 f The Overriding mapping of EJB data to XML recipe in this chapter

Creating a wrapper element for a Java
collection or array

Within Java we have collections and arrays that deal with multiple objects. The collection
or array has a name, but the individual objects within it do not. Because of this, the default
mapping of a collection or array is just a repeating element.

Within XML, we usually like to provide a complex type element that has a sequence within it to
hold the repeating elements. In other words, we want a schema that looks like the following
screenshot. In this recipe, we will look at how to provide a wrapper element for our collections.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

89

Getting ready
We need to know the class name of the bean and the name of the property that is a collection
or array requiring a wrapper element.

How to do it...
1. Add an <xml-element-wrapper> element to the mapping file.

In the OXM mapping file, we declare that a property requires a wrapper element in
the WSDL mapping by marking it with an <xml-element-wrapper> as follows:
<?xml version="1.0" encoding="UTF-8" ?>
<xml-bindings ...>
 <java-types>
 <java-type name="soa.cookbook.QuoteRequest">
 <java-attributes>
 <xml-element java-attribute="products" name="product">
 <!-- Can provide wrapper element for arrays and
 collections via xml-element-wrapper element -->
 <xml-element-wrapper name="products"/>
 </xml-element>
 </java-attributes>
 </java-type>
 </java-types>
</xml-bindings>

The <java-type> name property is the Java class that has the property we need
to provide a wrapper for. The <xml-element> java-attribute property is
the name of the Java property that needs to be wrapped, and the elements name
attribute is the name we want that XML element to have in the generated schema.
The <xml-element-wrapper> name attribute is the name we want that XML
element wrapper to have in the generated schema.

2. Save the mapping file.

3. Remap the interface if necessary.

If the interface has already been mapped, then it is necessary to regenerate the
WSDL interface for the changes we have made to take effect. Do this by deleting the
existing wire and then rewiring.

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping Data

90

How it works...
<xml-element> is used to identify an XML element that should be generated and how it maps
onto a Java bean property or class. The <xml-element-wrapper> property causes a wrapper
XML element to be a part of the generated XML Schema. Using the name attribute allows us to
control the name of the actual data element and the wrapper. We need this because often the
Java property name will be a plural (such as products), and we want the actual data element to
have a singular name (product) and would prefer the wrapper element to be plural (products).

The EXMMapping project in the code samples has a sample OXM file (mappings.xml)
demonstrating this.

There's more...
If we only have a single property in a bean, then there is no need for a wrapper class because
the containing class provides that function.

See also
 f The Array processing with XSLT recipe in this chapter

 f The Array processing with BPEL Assign recipe in this chapter

 f The Overriding mapping of EJB data to XML recipe in this chapter

 f The Handling an abstract class recipe in this chapter

Handling an abstract class
Within Java, we often have abstract classes and commonly use them in collections and arrays.
When a class is abstract, we cannot generate XML for any derived elements because they are
not known until runtime. An example of this is the following code structure:

public abstract class VendorQuote implements Serializable
 ...
public class HardwareVendorQuote extends VendorQuote
 ...
public class ServiceVendorQuote extends VendorQuote
 ...
public class Quote implements Serializable {
 private AbstractList<VendorQuote> vendors;
 ...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

91

Note, that the vendors attribute in the Quote class is the collection of an abstract class.
If we need our XML to differentiate between these concrete classes or create a Quote
class (which will need concrete classes in the collection), then we need to generate
XML Schema elements for the concrete derived classes HardwareVendorQuote and
SoftwareVendorQuote. In this recipe we show how to achieve this.

Getting ready
We need to know the class name of the bean and the name of the property that is the
abstract class.

www.it-ebooks.info

http://www.it-ebooks.info/

Mapping Data

92

How to do it...
1. Add the <xml-see-also> and <xml-elements> elements to the mapping file.

In the OXM mapping file, we declare that a property has multiple possible concrete
classes, and hence multiple possible elements in the WSDL mapping, by marking it
with an <xml-elements>, as shown in the following code snippet:
<?xml version="1.0" encoding="UTF-8" ?>
<xml-bindings ...>
 <java-types>
 <java-type name="soa.cookbook.Quote">
 <!-- Indicate that we are referencing these classes
 and so generate mappings for them -->
 <xml-see-also>
 soa.cookbook.HardwareVendorQuote
 soa.cookbook.ServiceVendorQuote
 </xml-see-also>
 <java-attributes>
 <xml-elements java-attribute="vendors">
 <!-- Can provide concrete classes for
 abstract classes via explicit type
 attribute in xml-element -->
 <xml-element type="soa.cookbook.HardwareVendorQuote"
 name="hwVendorQuote"/>
 <xml-element type="soa.cookbook.ServiceVendorQuote"
 name="svcVendorQuote"/>
 <xml-element-wrapper name="vendors"/>
 </xml-elements>
 </java-attributes>
 </java-type>
 </java-types>
</xml-bindings>

The <xml-elements> java-attribute property is the name of the Java property
that we want to associate with potential concrete classes; the <xml-element>
elements under the <xml_elements> element identify the potential concrete
classes for this abstract class. The <xml-see-also> is a list of concrete classes that
we need to provide XML types for in the generated schema. The <xml-element>
name property is the name of our concrete element and the type property in the
concrete Java class.

2. Save the mapping file.

3. Remap the interface if necessary.

If the interface has already been mapped, then it is necessary to regenerate the
WSDL interface for the changes we have made to take effect. Do this by deleting the
existing wire and then rewiring.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

93

How it works...
<xml-elements> provides a list of all the possible concrete elements that may be found
in the given abstract Java class. Each <xml-element> element is used to identify an XML
element that should be generated and how it maps onto a concrete class extending the
abstract Java class. The <xml-see-also> element is really a hint to the schema generator
that it will need to create the XML elements corresponding to the listed Java classes.

The EXMMapping project in the code samples has a sample OXM file (mappings.xml)
demonstrating this.

There's more...
When creating the mapping file, we need to be aware of all the possible concrete
implementations that we may encounter. If we add new concrete classes to our Java
implementation, we need to revisit the mapping file to add the new concrete classes.

See also
 f The Array processing with XSLT recipe in this chapter

 f The Array processing with BPEL Assign recipe in this chapter

 f The Overriding mapping of EJB data to XML recipe in this chapter

 f The Creating a wrapper element for a Java collection or array recipe in this chapter

 f The Handling an abstract class recipe in this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Composite Messaging
Patterns

In this chapter, we will cover:

 f Message aggregation within a composite

 f Using dynamic partner links with BPEL 2.0

 f Singleton composite

 f Scheduling services

 f Scheduling a service within a composite

 f Deleting a scheduled service within a composite

Introduction
This chapter explores some of the more complex but relatively common message interaction
patterns used in a typical SOA deployment.

While these patterns have been around for a while, some have proved cumbersome to
implement in earlier versions of the SOA Suite (both 10gR3 and the initial release of 11gR1).
However, later releases of the SOA Suite have introduced new features, such as aggregation,
which provides better support for these patterns.

In this chapter, we take advantage of these to provide recipes for implementing patterns
around message aggregation, singletons, and the dynamic scheduling of BPEL processes
and services.

5

www.it-ebooks.info

http://www.it-ebooks.info/

Composite Messaging Patterns

96

Message aggregation within a composite
A typical messaging requirement is to aggregate multiple related messages for processing
within a single BPEL process instance. There are two parts to this recipe; the first is to route
related messages through to the same instance of a BPEL process. This can be achieved
using a correlation set defined against a common value present in each message.

The second is to determine when we have all the messages that belong to the aggregation.
Typically, most use cases fall into two broad patterns:

 f Fixed duration: In this scenario, we don't know how many messages we expect to
receive, so we will process all those received within a specified period of time.

 f Wait for all: In this scenario, we know how many messages we expect to receive.
Once they have been received, we can process them as an aggregated message.
It's usual to combine this with a timeout, so the process doesn't wait forever, if
some messages aren't received.

An example of the first pattern is an order aggregation process, whereby we aggregate the
orders we receive for a particular book over a period of time (for example, 24 hours) and then
place a single order with the publisher for the total amount of orders received.

Getting ready
This recipe makes use of the new aggregation feature in Oracle SOA Suite 11gR1 Patch Set 5
(11.1.1.6.0), so you need to ensure that you have installed either this or a later release of the
Oracle SOA Suite.

Create an SOA application with a project containing an empty composite (named
WarehouseService in the following example).

How to do it...
1. Drag a BPEL process from the SOA Component Palette onto our composite.

This will launch the Create BPEL Process wizard. Specify an appropriate name
(WarehouseService, in the following screenshot), and for the template, select
Base on a WSDL.

2. Click on the Find Existing WSDLs icon. This will launch the SOA Resource Browser.
Browse the filesystem to select the WSDL that you wish to import and click on OK.

Ideally, the WSDL should define a one-way asynchronous
operation that we will use to implement our aggregation
service. While synchronous operations are supported, they
are not recommended and should be avoided.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

97

For the purpose of following this example, select the
WarehouseService_1.0.wsdl node included with the samples for this chapter.

Ensure Warehouse Service is selected as the Port Type, and click on OK. This will
add BPEL Process Warehouse Service to our composite.

3. In the SOA Composite Editor, select the BPEL process service component, as
shown next:

4. In the Property Inspector pane in the lower-right corner of Oracle JDeveloper, click on
the Add icon (circled in the following screenshot).

5. This will open the Create Property dialog. In the Name field, enter bpel.config.
reenableAggregationOnComplete, and in the Value field, enter true; then,
click on OK.

If the Property Inspector pane is not displayed, select
Property Inspector from the View menu bar in JDeveloper.

6. Next, we need to create and initialize a While loop to process our messages. Create
an xsd:boolean variable named orderComplete and use an Assign activity to set it
to false().

www.it-ebooks.info

http://www.it-ebooks.info/

Composite Messaging Patterns

98

Create a variable named waitUntil, of type xsd:dateTime, and use an Assign
activity to set it to the following value:

xp20:add-dayTimeDuration-to-dateTime(xp20:current-
 dateTime(), 'PT1H')

7. Next, drag a While activity onto the BPEL process (after the Assign activity) and set
its loop condition to the following value:
$orderComplete = false()

8. Then, drag a Pick activity onto the While activity, double-click on the OnMessage
icon to open the Edit OnMessage window.

For Partner Link, select the same partner link used by the initial receive activity
(warehouseservice_client, in this example), and select the same operation
(submitBookOrder).

Click on the auto-create variable (the plus icon) to launch the Create Variable
window and give the variable a meaningful name (for example, nextBookOrder).
Next, click on OK.

9. Now we need to add a step to aggregate the book orders. Drag an Assign activity
onto the OnMessage activity.

Add an expression to increment the quantity of the original order received, by the
quantity of the new order; in other words:
origOrder/quantity = origOrder/quantity +
 nextOrder/quantity

The XPath expression, should look something like the following:

$inputVariable.payload.ns2:bookOrder/ns2:quantity +
 $nextBookOrder.payload.ns2:bookOrder/ns2:quantity

10. Select the Pick activity and click on the Add onAlarm icon. Double-click on the
onAlarm icon to open the Edit onAlarm window.

Set the first radio button to Until, and set the second radio button to Expression;
then, set the expression value to be $waitUntil.

11. Next, drag an Assign activity onto the OnAlarm activity, and assign the value true()
to $orderComplete.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

99

12. Within the Structure view for the BPEL process, right-click on the Properties folder
and select Create Property…, as shown in the following screenshot:

This will launch the Create CorrelationSet Property window. Give the property a
meaningful name (for example, isbn), and then click on the search icon to launch
the Type Chooser window and select the appropriate schema type (for example,
xsd:string).

13. Click on the Create Property Alias… icon, circled in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Composite Messaging Patterns

100

This will open the Property Alias window. In the Type Explorer window, expand
the WarehouseService_1.0.wsdl node (under the Project WSDL Files
folder). Next, expand the Message Types folder and select Part - payload
(under submitBookOrder) as highlighted in the following screenshot:

14. In the Query field, enter the XPath location of the ISBN in the submitBookOrder
message, which is:
/tns: ns1:bookOrder/ns1:isbn

Then click on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

101

15. Within the Structure view for the BPEL process, expand the Correlation Sets folder,
and then expand the Process folder. Then, right-click on the Correlation Sets folder
and select Create Correlation Set…, as shown in the following screenshot:

This will launch the Create Correlation Set window; give the correlation set a
meaningful name, for example, isbnCS.

16. Next, click on the plus icon to launch the Property Chooser window, and select the
isbn property created in step 12.

17. Now we need to initialize the correlation set. Within the BPEL Editor, double-click
on the receiveInput activity to open the Edit Receive window, and select the
Correlations tab.

18. Click on Create Correlation… (the plus icon circled in the following screenshot).
This will add an empty correlation to the Receive activity.

www.it-ebooks.info

http://www.it-ebooks.info/

Composite Messaging Patterns

102

19. For the Correlation Set field, select isbnCS from the drop-down list. Next, select Yes
from the Initiate field dropdown, as shown in the following screenshot:

20. Within the BPEL Editor, double-click on the onMessage activity to open the Edit
onMessage window, and select the Correlations tab.

21. Click on Create Correlation…, the plus icon. This will add an empty correlation to the
onMessage activity. For the Correlation Set field, select isbnCS from the drop-down
list. Next, select No from the Initiate dropdown.

22. Deploy the WarehouseService composite to the Oracle SOA Suite and use
Enterprise Manager to submit multiple submitBookOrder messages.

For book orders that contain the same ISBN number, you should see that they are
routed through to the same instance of the BPEL process.

How it works...
Since the 11.1.1.6 release of the Oracle SOA Suite, Oracle BPEL Process Manager has
supported a message aggregation feature. When multiple messages are routed to the same
process, the first message is routed to create a new instance and subsequent messages can
be routed to continue the created instance using a mid-process receive activity.

By default, this feature is disabled. To enable it, we need to set the property bpel.config.
reenableAggregationOnComplete to true.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

103

Prior to 11.1.1.6, the same result could be achieved by using
a different name for the operation that created the process
instance from the operation used to receive the second and
subsequent messages.

Once we have enabled aggregation, we still have to define the key that the BPEL engine
should use in order to aggregate messages. For this, we use a correlation set (isbnCS, in
the previous example) that consists of one or more properties (isbn in our case). These
properties are then mapped, using a property alias, to the corresponding field in the
messages that are being aggregated.

The combined value of these properties at runtime should result in a unique value (at least,
unique across all instances of the same process) that allows the BPEL engine to route the
message to the appropriate instance of a process.

On receipt of the first message in the aggregation, we need to tell the BPEL process to
initialize the correlation set, which we did by setting the initiate property to true (in step 19).
This then tells the BPEL engine to route all other messages that contain the same value to
this instance of the BPEL process.

There's more...
With this pattern, messages are processed in the order they are received in, by the BPEL
process; this may be different from the sequence in which the messages are sent. If
messages need to be aggregated in a particular order, the messages should be re-sequenced
prior to processing.

Using dynamic partner links with BPEL 2.0
With most BPEL processes, partner links are static in that they reference a single
instance of web service specified by the developer at design time (though typically
configured at deployment).

In the majority of cases, this approach is fine. However, in this recipe we will consider a
scenario in which a standard service contract might be implemented by multiple providers,
the selection of which we want to dynamically configure at runtime.

An example of this, is the order aggregation process of our online bookstore, where at the
point of placing an order with the publisher, we will need to invoke the appropriate service in
order to route our book order to the correct publisher.

www.it-ebooks.info

http://www.it-ebooks.info/

Composite Messaging Patterns

104

For this scenario, the BPEL language supports the concept of dynamic partner links, which
enables the BPEL process to specify at runtime the endpoint of the web service being invoked
and bind to it dynamically.

In this recipe, we will build on the order aggregation process of our online bookstore in order
to route our book orders to the appropriate publisher.

Getting ready
In order to use this design pattern, you will need to define a standard WSDL to be
implemented by each of your routing destinations (publishers, in our example).

For our purposes, we have defined the WSDL Publisher_Service_1.0.wsdl, which
defines the operation submitBookOrder.

We have provided three basic implementations of this service, as defined in the
following table:

Publisher Endpoint
ACME http://<host>:7001/soa-infra/services/default /

PublisherACME/publisheracme_client_ep

Packt http://<host>:7001/soa-infra/services/default /
PublisherPackt/publisherpackt_client_ep

Skynet http://<host>:7001/soa-infra/services/default /
PublisherSkynet/publisherskynet_client_ep

These implementations are defined in the PublisherApp application, which is included in
the sample for the book. You will need to open this sample in JDeveloper and deploy to your
instance of the SOA Suite.

For the purpose of this recipe, we will extend the Message aggregation within a composite
recipe to place the aggregated order, so you will either need to follow this sample recipe or
open the sample solution with JDeveloper.

In addition, we are going to create a variable of type Endpoint Reference, defined in
the schema ws-addressing.xsd. This is already defined and deployed to MDS. So,
to reference this from within our BPEL process, we will need to create a file-based MDS
connection in JDeveloper.

Instructions on how to do this are defined in the Creating a file-based MDS repository for
JDeveloper recipe in Chapter 2, Using the Metadata Service to Share XML Artifacts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

105

How to do it...
1. Open the Message Aggregation composite and drag a web service onto

the External Reference swimlane. This will open the Create Web Service
window. Give it the name PublisherService, and then browse to the
PublisherService_1.0.wsdl WSDL included with the samples and select it.

When prompted to localize files, ensure that the option Maintain original
directory structure for imported files is selected, but deselect the option
Rename duplicate files.

Next, wire the WarehouseService service to the PublisherService service.

2. The next step is to invoke the publisher service. Open the WarehouseService BPEL
process, and drag an Invoke activity onto the end of the BPEL process (after the
while loop).

Open the Edit Invoke window, give it the name submitPublisherOrder, specify
PublisherService as the Partner Link, and ensure submitBookOrder is selected
as the operation.

Create an input variable with the name publisherBookOrder and an output
variable with the name publisherBookOrderResponse.

3. We now need to initialize the publisherBookOrder variable. Drag an
Assign activity on to the BPEL process just before the Invoke activity
submitPublisherOrder.

Map the content of inputVariable/payload/ns1:submitBookOrder to
publisherBookOrder/payload/ns4:submitBookOrder.

4. Open the Variables window for the BPEL process, and click on Create. This will open
the Create Variable window. Specify a name for publisherEndpoint, specify a type of
Element, and then click on Browse Elements… (the magnifying glass icon).

This will open the Type Chooser window. Click on Import Schema File…. This will
launch the Import Schema File window. Click on the Browse Resources… icon to
open the SOA Resource Browser window.

5. Ensure Resource Palette is selected from the dropdown, and then expand the
following:
IDE Connections > SOA-MDS > File Based MDS > soa > shared
 > common

www.it-ebooks.info

http://www.it-ebooks.info/

Composite Messaging Patterns

106

Select the schema ws-addressing.xsd as shown in the following screenshot:

6. In the Import Schema file, uncheck Copy to Project, and click on OK.

In the Type Chooser window, select Endpoint Reference, as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

107

7. Next, we need to set the variable publisherEndpoint to contain the endpoint of
the appropriate publisher service that we wish to invoke.

To populate the Address element, use a transformation activity rather than
an Assign activity. We have used a concat function, as shown in the following
screenshot, to create the endpoint based on the publisher name and map that
to the Address element within the EndpointReference variable:

In reality, we would want to use the publisher name to look up
the actual endpoint; but have just taken this approach to keep
it simple.

8. Open the Variables window for the BPEL process and click on Create. This will open
the Create Variable window. Specify a name for publisherServiceRef, specify a type
of element, and then click on Browse Elements….

In the Type Chooser window, select Import Schema File…. Browse the filesystem
and select the file ws-bpel_serviceref.xsd, included with the samples for the
Getting ready section for this recipe. In the Import Schema File, uncheck Copy to
Project, and click on OK.

In the Type Chooser window, select service-ref.

9. Drag an Assign activity onto the BPEL process, just before the Invoke activity, and
give it the name setPublisherServiceRef.

Map publisherEndpoint to publisherServiceRef/ns6:service-ref/
xsd:any.

www.it-ebooks.info

http://www.it-ebooks.info/

Composite Messaging Patterns

108

JDeveloper will prompt you with the following warning:

10. Double click on To part of the copy rule to open the Expression Builder
window, and manually update the XPath to $publisherServiceRef/
ns5:EndpointReference.

Note that the namespace prefix may not be ns5; rather,
you should ensure that you specify the prefix mapped to
the namespace http://schemas.xmlsoap.org/
ws/2003/03/addressing.

11. Then, right-click on the To part of the copy rule and select insertMissingToData.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

109

12. Next, create a copy rule to map $publisherServiceRef to the
PublisherService partner link, as shown in the following screenshot:

13. Deploy the updated WarehouseService composite to the Oracle SOA Suite and use
Enterprise Manager to submit multiple submitBookOrder messages.

Ensure that you specify either ACME, Packt, or Skynet as the publisher , you should
see that orders are dynamically routed by the Warehouse Service to the appropriate
publisher service.

How it works...
BPEL 2.0 provides support for dynamic partner links. This allows a BPEL 2.0 process to
override the endpoint specified at design time for a partner link, with a value determined
at runtime.

While we can override the endpoint for a partner link, all other attributes of our service
definition remain fixed. So, to use this approach, we must define a common WSDL interface
that all of our services will implement.

www.it-ebooks.info

http://www.it-ebooks.info/

Composite Messaging Patterns

110

To dynamically invoke the appropriate endpoint at runtime, we need to update the endpoint
reference of the partner link before invoking the service. To do this, we need to create a
variable of type Service-Ref (as defined by ws-bpel_serviceref) and populate it with
a variable of type EndPointReference (as defined by WS-Addressing) containing just
an <Address> element populated with the endpoint of the publisher service that we wish
to invoke.

This is important, since if we create an EndpointReference containing any of the other
optional elements, the BPEL engine will throw a fault when we try and invoke the partner link.

To do this, we used a transformation activity rather than an Assign activity, since Assign
will create all optional elements as well (we could still use an Assign, but we would need
to add a remove rule for each of these elements). Once done, we inserted this into the
Service-Ref variable.

Once we have created the Service-Ref variable, we just map it to the partner link before
invoking the service, and BPEL will dynamically route the request to the updated endpoint.

There's more...
Oracle Service Bus also enables the dynamic routing of web service invocations at runtime.

If you are implementing a solution where OSB provides a virtualization layer on top of all
your external services, we would recommend that as the appropriate place to implement
dynamic routing.

However, if you are only using the core Oracle SOA Suite (minus the OSB), this isn't an
option. In addition, there are occasions where you may want to dynamically assemble SCA
composites to build a dynamic end-to-end business process. In this scenario, dynamic partner
links can prove extremely useful.

Singleton composite
A typical use case with a composite would be submitting a request to an external resource/
system that only supports a single connection at a time. In such a case, we need to protect
against parallel composite instances submitting concurrent requests to that resource.

This implies that we need some way to serialize requests for that resource (probably on
a first-in, first-out basis). A common design pattern for achieving this is the singleton, first
documented in the book Design Patterns: Elements of Reusable Object-Oriented Software,
Gang of Four (where they use a print spooler as an example).

Now, BPEL doesn't explicitly support the notion of a singleton, however it does allow you to
simulate one using a variation of the Message aggregation within a composite recipe, which
is good enough for the purpose of what we are trying to achieve.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

111

Getting ready
For the purpose of this recipe, we will extend the PublisherSkynet service used in the
Using dynamic partner link recipe, so that we can only publish a single order to Skynet at
a time.

We have extended the implementation of this composite for the BPEL process
PublisherSkynet to invoke the BPEL process PublisherAsyncService. You
can find the code for this extended example in the Getting ready section of this recipe.

For this recipe, we are going to show how to modify the PublisherAsyncService
process to act as a singleton. So, you will need to open this composite with JDev to follow
this sample recipe.

As many components of this recipe are similar to the Message
Aggregation process, for the sake of brevity, we have summarized
many of the steps covered in the initial recipe.

How to do it...
1. In the SOA Composite Editor, ensure you have selected the BPEL process

PublisherAsyncService. In the Property Inspector pane, in the lower-right
corner of Oracle JDeveloper, click on the Add icon.

This will open the Create Property dialog. In the Name field, enter bpel.config.
reenableAggregationOnComplete, and in the Value field, enter true; then,
click on OK.

2. Open the BPEL process PublisherSkynet. Open the Assign activity
setSubmitBookOrder, and add a third copy rule to set the value of token to the
following expression:
substring(xp20:current-dateTime(), 1, 16)

Save and close this process.

3. Open the BPEL process PublisherAsyncService. First, we need to create and
initialize a While loop to process the messages in sequence. Create an xsd:boolean
variable named processingComplete, and use an Assign activity to set it to
false().

Create a variable named waitUntil of type xsd:dateTime, and use an Assign activity
to set it to the following expression:
xp20:add-dayTimeDuration-to-dateTime(concat
 ($inputVariable.payload/ns1:token, ':00'), 'PT1M')

www.it-ebooks.info

http://www.it-ebooks.info/

Composite Messaging Patterns

112

Next, drag a While activity onto the BPEL process (after the Assign activity) and set
its loop condition to the following expression:

$processingComplete = false()

4. Then, drag a Pick activity onto the While activity. Double-click on the OnMessage
icon to open the Edit OnMessage window.

For Partner Link, select the same partner link used by the initial receive activity
(publisherasyncservice_client, in this example), and select the same
operation (submitBookOrder).

Click on the auto-create variable (plus icon) to launch the Create Variable window.
Give the variable a meaningful name (for example, nextBookOrder).

5. Next, we need to add the logic to process the message. This is where we would
typically call out to an external resource/system that only supports a single
connection at a time.

For the purpose of this recipe, we are just going to add a 10 second delay to simulate
the time required by the external system to process the request. So, drag a Wait
activity onto the onMessage branch, and set it to wait for 10 seconds.

6. Select the Pick activity and click on the Add onAlarm icon. Double-click on the
onAlarm icon to open the Edit onAlarm window.

Set the first radio button to Until, and set the second radio button to Expression;
then, set the expression value to $waitUntil.

7. Within the Structure view for the BPEL process, right-click on the Properties folder
and select Create Property…. This will launch the Create Property window. Give the
property a meaningful name, (for example, token), and then click on the search
icon to launch the Type Chooser window; select the appropriate schema type (for
example, xsd:string).

8. Click on the Create Property Alias… icon. This will open the Property Alias window.
In the Type Explorer window, expand the PublisherAsyncService_1.0.wsdl
node (under the Project WSDL Files folder). Next, expand the Message Types folder
and select the Part - payload under the submitBookOrder message type.

In the Query field, enter the XPath location of the token in the submitBookOrder
message, which is as follows:
/tns:submitBookOrder/tns:token

Then click on OK.

9. Within the Structure view for the BPEL process, expand the Correlation Sets folder,
and then expand the Process folder. Then, right-click on the Correlation Sets folder
and select Create Correlation Set….

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

113

This will launch the Create Correlation Set window. Give the correlation set a
meaningful name, for example, tokenCS.

Next, click on the plus icon to launch the Property Chooser window, and select the
token property.

10. Next, we need to initialize the correlation set. Within the BPEL editor, double-click
on the receiveInput activity to open the Edit Receive window, and select the
Correlations tab.

Click on Create Correlation…, the plus icon. This will add an empty correlation to the
Receive activity.

For the Correlation Set field, select tokenCS from the dropdown. Next, select Yes
from the Initiate dropdown.

11. Within the BPEL editor, double-click on the onMessage activity to open the Edit
onMessage window, and select the Correlations tab.

Click on Create Correlation…, the plus icon. This will add an empty correlation to the
onMessage activity. For the Correlation Set field, select tokenCS from the dropdown.
Next, select No from the Initiate dropdown.

12. Deploy the PublisherSkynet composite to the Oracle SOA Suite and use
Enterprise Manager to submit multiple submitBookOrder messages.

For book orders that are submitted in the same minute, you should see that they are
routed through to the same instance of the BPEL process.

How it works...
This recipe makes use of the message aggregation feature we introduced in the first
recipe to route multiple messages to the same process instance so that we can process
them sequentially, thus ensuring that only a single request is submitted at a time to our
external resource.

As before, the first message is routed to create a new instance of our singleton; subsequent
messages then need to be routed through to this in-flight instance that is achieved by the use
of a shared token, which is used to correlate messages against the singleton instance.

With a typical implementation of a singleton, we would create a single instance of that object
and it would live forever. However, with BPEL, we can't let the process loop forever as, over
time, the size of the audit trail for the BPEL instance within the dehydration store would get
too big and impact the overall performance of the BPEL engine.

Thus, in reality, we need an instance of the singleton process to run for a period of time, and
then, terminate gracefully at the end of this period, to be replaced by a new instance of the
BPEL process.

www.it-ebooks.info

http://www.it-ebooks.info/

Composite Messaging Patterns

114

For the purpose of this recipe, we have assumed that an instance of the singleton will run for
just 1 minute (obviously, in reality we would allow a longer duration, for example, 24 hours,
but it would take a long time to test the recipe).

So, for this purpose, we are using the current time (based on a shared system clock) to create
the token. Take a look at the following statement:

substring(xp20:current-dateTime(), 1, 16)

The preceding statement creates a token of the format CCYY-MM-DDThh:mm. Thus, every
message received in the same minute will have the same token and get routed through to the
same instance of the BPEL process.

The process itself will only wait until CCYY-MM-DDThh:mm + 1 minute for new messages
before terminating.

There's more...
It should be noted that this approach isn't perfect. An obvious issue is what happens if the
singleton is sent more messages than it is able to process within its execution window.

In this scenario, the messages would be queued up for delivery, but because the singleton
terminates at the end of its window, those messages would be left on the queue and would
never get processed.

One answer here is for the singleton. Once it has completed its execution period to enter a
second loop that retrieves each remaining message and forwards it to the singleton (via the
wrapper process — PublisherSkynet in the previous example). This will generate a new token
based on the new time and the message will get invoked by the new singleton.

Of course, with this scenario, there is still the possibility that a message could keep getting
forwarded forever, but this would imply the throughput of messages requiring processing is
greater than the external resource/system can process over a sustained period of time, and
therefore, we are "resource constrained" by the backend system.

The other potential issue is that we could have a race condition between the end of one
singleton process and the start of the next, with both processes trying to access the same
resource at the same time. To reduce the likelihood of this, we could include a wait period
at the start of the process, which comfortably allows sufficient time for the previous process
to complete.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

115

Scheduling services
A common requirement is to schedule a process or service to run at regular intervals, for
example, we have an account billing composite that is required to be run once every night.

The Oracle SOA Suite doesn't provide a native scheduling component, so a common approach
is to implement a BPEL process that continuously loops, with the sole purpose of launching
another scheduled BPEL process.

However, as the process never dies, this will result in an ever-increasing audit trail, causing
the objects persisted in the database, as well as the in-memory size of the process to grow
over time, which eventually will have a negative impact on the performance of the engine.

A better approach is to use a Web Service Scheduler deployed to the Oracle SOA Suite.

Getting ready
You will need to download the Scheduler from the Rubicon Red website, which can be found
at http://www.rubiconred.com/scheduler.

Once downloaded, follow the instructions to install the Scheduler on the WebLogic server
running SOA Suite.

We are going to schedule the StockService process to run every hour, on the hour. This is a
process that checks the stock levels for fast-selling titles and raises alerts if they are falling
too low.

For the purpose of this demo, we have included a light-weight application, called StockApp,
within the Getting ready samples for this recipe. You will need to open it in JDeveloper and
deploy to the Oracle SOA Suite to follow along with this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Composite Messaging Patterns

116

How to do it...
1. Log in to Oracle Enterprise Manager and open the StockService dashboard. Click on

the Show WSDL and Endpoint URI icon (circled in the following screenshot). Log in
to Oracle Enterprise Manager (EM) and open a window that contains the URI for the
Stock Service WSDL.

Highlight the WSDL URL and copy it, as we will need this in a moment.

2. Log into the Scheduler at http://<hostname>:7001/SchedulerUi/
SchedulerUIExt.html.

This will take you to the Scheduler dashboard. Click on the Add Job icon; this will
open the Edit Job page. Enter the following information:

Field Value
Job Name Stock Check

Job Group Stock

Schedule Type Cron

Active Ensure this is checked, otherwise the job won't be
triggered.

From Don't specify a value
Until Don't specify a value
Cron Expression 0 * * * * ?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

117

3. For the Job type field, ensure Web service is selected, and then within WSDL,
paste the URL for the WSDL specified in step 1 and hit Enter. The Scheduler will
parse the WSDL, and assuming it is valid, will display details of the binding and
service endpoints.

4. From the Operation dropdown, select the checkInventory operation. This will
populate the Payload field with a skeleton of the payload to be included, when the
Scheduler invokes the web service. Update the content of the element WarehouseId
to be Main, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Composite Messaging Patterns

118

Once complete, click on Save. This will save the details of the job and return you to
the dashboard.

The job will now be active.

5. Log in to Enterprise Manager. Within the audit trail, we should be able to see an
instance of the StockService process being created every 60 seconds.

How it works...
We have defined the job Stock Check in the Stock group with a cron schedule
of 0 * * * * ?.

This will create a Quartz job, under the covers, that fires every minute on the minute. When it
triggers, it will cause the Scheduler to submit a web service request to the specified endpoint
containing the payload that we defined.

There's more...
The Scheduler can be used to schedule synchronous and asynchronous web services
deployed to the Oracle SOA Suite or Oracle Service. In addition, it can be used to schedule the
publication of EDN events to the SOA Suite.

While cron expressions are powerful, they can be confusing. So, the Scheduler also supports
the creation of Simple Schedules, which are simpler to understand.

The Scheduler also comes with a web service API that enables us to create schedules
dynamically from within another service, which we will look at in the next couple of recipes.

This is also useful for deployment purposes, as we can use this to create scheduled jobs as
part of the process of deploying composites to the SOA Suite.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

119

Scheduling a service within a composite
A common system requirement is to dynamically schedule the future execution of a process or
service relative to the occurrence of some event.

For example, we may have a customer satisfaction process, which we want to execute one
month after the customer received delivery of ordered goods. Alternatively, we may want to
schedule a repeating process for a specific period of time, for example, to track the status of
a shipped item until it is delivered.

While this can be done using BPEL, it can cause issues when managing the dehydration
store. Often, a better approach is to get the BPEL process to create a scheduled job to
manage this separately.

Getting ready
You will need to download the Scheduler from the Rubicon Red website. It can be found at
http://www.rubiconred.com/scheduler.

Once downloaded, follow the instructions to install the Scheduler on the WebLogic server
running the Oracle SOA Suite.

To configure a scheduled job via the web service API, we will need the WSDL for the Scheduler.
This can be found at http://localhost:7001/RXRScheduler_2.0/util.sch.evs.
Job?WSDL.

For our purpose, we will be configuring the Scheduler to invoke our ParcelTracker process
(as we use this in a later recipe). So, to follow the example, you will need to deploy the
ParcelTracker composite contained within the example code for this chapter.

Once deployed, you will need the WSDL for the Parcel Tracker; this should be available
at http://localhost:7001/soa-infra/services/default/ParcelTracker/
parceltrackerservice_client?WSDL.

Create an SOA composite with a project containing a BPEL process (named
ScheduleParcelTracker in the example detailed in this recipe).

The ScheduleParcelTracker process is designed to receive a request containing the orderNo
for a parcel to be tracked and creating a scheduled job to invoke the ParcelTracker
composite every 15 seconds to track the status of the specified order.

www.it-ebooks.info

http://www.it-ebooks.info/

Composite Messaging Patterns

120

How to do it...
1. Drag a web service from the SOA Component Palette onto the External References

swimlane within our composite. This will launch the Create Web Service wizard.
Specify Scheduler as the name, and for the WSDL URL, enter the location of the
Scheduler WSDL (see the Getting ready section).

Ensure that Port Type is set to util.sch.eve.Job and click on OK. JDeveloper will
add a reference to the Scheduler to our composite.

2. Next, drag a wire from the BPEL process to the Scheduler external reference.

3. Open the ScheduleParcelTracker BPEL process and rename the default
inputVariable variable to orderNo.

4. Next, drag an Invoke activity onto the BPEL process, double-click on it to open the
Edit Invoke window. Give it the name putJob. For Partner Link, select Scheduler
and select the operation putJob.

For the input variable, click on the auto-create variable (plus icon) to launch
the Create Variable window. Give the variable a meaningful name (for example,
putJobInput). Do the same for the output variable.

5. Drag an Assign activity onto our BPEL process just before the Invoke activity. Double-
click on it to open the Edit Assign window. Give it the name setPutJob.

6. First, we need to populate the job element with the unique identity of our job. This is
a composite key defined by the elements jobId and jobGroup.

Use the Assign activity to set jobId to contain the orderNo of the parcel being
tracked and jobGroup to ParcelTracker (the name of our process).

We have also set jobDescription to hold details of the parcel being tracked.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

121

7. Next, we need to specify the schedule for when the job will be run. For the purpose
of this recipe, we will use a basic cron schedule to run our job every 15 seconds. Use
the Assign activity to specify the following values for the job:

Job element Source
ns9:startDate xp20:current-date()

ns9:endDate xp20:add-dayTimeDuration-to-
dateTime(xp20:current-date(), 'P14D')

ns9:active true()

ns9:jobDefinition/
ns9:cronSchedule

'0/15 * * * ?'

We have specified that the job will only be active from the current date up to 14 days
into the future (this is optional but will prevent the job from running forever, in case
we forget to cancel it) and set the job to be active (otherwise it won't run).

8. Next, we need to initialize the jobdefinition element, which specifies the web
service to be invoked and the content of the payload to be passed.

Use the Assign activity to initialize the attributes of the job in the element $putJob.
payload/ns8:body/ns9:job/ns9:jobDefinition, as detailed within the
following table:

Element Source
@jobClass 'WebService'

@responseInterface 'One-Way'

We also need to use the Assign activity to initialize the content of the element
ns9:jobDefinition/ns9:webServiceJobDefinition, as detailed in the
following table:

Element Value
ns9:service/ns9:URI 'http://rubiconred.com/ckbk/svc/

ParcelTrackerService'

ns9:service/
ns9:localName

'parceltrackerservice_client'

ns9:port/ns9:URI 'http://rubiconred.com/ckbk/svc/
ParcelTrackerService'

ns9:port/
ns9:localName

'ParcelTrackerService_pt'

ns9:endpointAddress 'http://localhost:7001/soa-infra/
services/default/ParcelTracker/
parceltrackerservice_client'

www.it-ebooks.info

http://www.it-ebooks.info/

Composite Messaging Patterns

122

We have now configured the Scheduler to send a correctly formed SOAP message to a
web service endpoint; the next step is to provide the payload to put in the message.

9. The putJob element contains an element called soapRequestBody, which is
defined as xs:anyType. This is where we specify the request message to send to
ParcelTracker when the Scheduler invokes it.

To do this, we must create a variable of the same type as the message to be sent to
ParcelTracker. This is defined in ParcelTrackerService_1.0.wsdl.

Create a new global variable, named syncParcelLocation. Select Message
Type as the variable type, and click on Browse Message Types… to open the Type
Chooser window. From here, select Import WSDL file and locate the Parcel Tracker
Service WSDL file. Ensure copy to project is selected and click on OK.

Within the Type Chooser window, expand ParcelTrackerService_1.0.wsdl and
select the message type syncParcelLocation.

10. syncParcelLocation contains the element orderNo. Set this to be the orderNo
contained within the variable used to invoke our BPEL process.

Next, within the Assign activity, use an Append rule to copy the entire
syncParcelLocation message into the soapRequestBody element.

11. When creating the mapping, you may have noticed a couple of choice elements,
for example, simpleSchedule or cronsSchedule, and ednJobDefinition
or webServiceDefinition.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

123

By default, BPEL will create empty elements for these alternative choices at runtime,
so we need to remove them to produce a valid message.

12. In the Assign activity, select the simpleSchedule element. Right-click and
select Remove.

Repeat this step for the element ednJobDefinition.

Now that our process is complete, deploy it and run it to see the created job in action.

How it works...
When our scheduleParcelTracker composite is executed, it invokes the putJob
operation against the Scheduler. The contents of the SOAP message should look somewhat
like the following code snippet:

<job xmlns="http://rubiconred.com/ebo/util.sch.Job">
 <jobId xmlns:inp1=
 "http://rubiconred.com/ckbk/xsd/order">120699</jobId>
 <jobGroup>ParcelTracker</jobGroup>
 <jobDescription>A job managing the tracking of parcel
 120699</jobDescription>
 <startDate>2012-06-03</startDate>
 <endDate>2012-06-17</endDate>
 <active>true</active>

www.it-ebooks.info

http://www.it-ebooks.info/

Composite Messaging Patterns

124

 <jobDefinition jobClass="WebService">
 <cronSchedule>0/15 * * * * ?</cronSchedule>
 <webServiceJobDefinition responseInterface="One-Way">
 <service>
 <URI>http://rubiconred.com/
 ckbk/svc/ParcelTrackerService</URI>
 <localName>parceltrackerservice_client</localName>
 </service>
 <port>
 <URI>http://rubiconred.com/
 ckbk/svc/ParcelTrackerService</URI>
 <localName>ParcelTrackerService_pt</localName>
 </port>
 <endpointAddress>http://localhost:7001/soa-infra/
 services/default/ParcelTracker/
 parceltrackerservice_client</endpointAddress>
 <soapRequestBody>
 <syncParcelLocation xmlns="http://rubiconred.com/
 ckbk/svc/ParcelTrackerService">
 <orderNo xmlns:inp1="http://rubiconred.com/
 ckbk/xsd/order">120699</orderNo>
 </syncParcelLocation>
 </soapRequestBody>
 </webServiceJobDefinition>
 </jobDefinition>
</job>

This will cause the Scheduler to invoke ParcelTracker every 15 seconds. If you log in to
Enterprise Manager you should be able to see a list of instances of the ParcelTracker
composite being started every 15 seconds.

If we click on any of the ParcelTracker instances, we'll see the audit trail for a single instance
of this repeatedly executed process.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

125

There's more...
Our Scheduler exposes operations that enable the creation and management of the
scheduled jobs listed as follows:

 f putJob: Creates/updates a scheduled job

 f removeJob: Removes a scheduled job

 f queryJobs: Retrieves all jobs configured for a group

 f getJob: Retrieves the configuration of a job

In this recipe we need to only use putJob to create a new scheduled job. If we run putJob
for an already defined job, the Scheduler will just update that job with the new details. We will
use removeJob to delete the job we just created, in the next recipe.

Depending on our process's requirements, we may need to use the queryJobs operation to
fetch a list of existing jobs from the Scheduler. We can filter this by specifying the job group
groupId (ParcelTracker, in this example), and we can use getJob to fetch the details
of a specific job.

Not only is the Scheduler capable of triggering web services using an SOAP message, but we
can also use it to publish an EDN event.

Deleting a scheduled service within a
composite

Often, scheduled jobs that we create dynamically are temporary in nature. So, once created,
we need the ability to delete them when no longer required.

Getting ready
For the purpose of this recipe, we will delete the scheduled job created in the previous recipe.
So, you will need to complete that recipe before starting this.

Create an SOA application, with a project containing an empty composite (named
CancelParcelTracker in the example detailed in this recipe).

The CancelParcelTracker composite is designed to receive a request containing the
orderNo for a parcel that is being tracked and to delete the corresponding scheduled job.

www.it-ebooks.info

http://www.it-ebooks.info/

Composite Messaging Patterns

126

How to do it...
1. Within CancelParcelTracker, create an external reference to the Scheduler, as

described in steps 1-3 of the previous recipe.

2. Next, drag an Invoke activity onto our BPEL process. Double-click on it to open the
Edit Invoke window. Give it the name removeJob, select Scheduler for the Partner
Link, and select the operation removeJob.

For the input variable, click on the auto-create variable (plus icon) to launch
the Create Variable window. Give the variable a meaningful name (for example,
removeJob Input). Do the same for the output variable.

3. Drag an Assign activity onto our BPEL process just before the Invoke activity. Double-
click on it to open the Edit Assign window, and give it the name setRemoveJob.

4. We need to populate the job element with the unique identity of the job. This is a
composite key defined by the elements jobId and jobGroup.

Use the Assign activity to set jobId to contain the orderNo of the parcel being
tracked and to set the jobGroup to ParcelTracker.

5. Now that our process is complete, deploy it and run it to delete the job we created in
the previous recipe.

You should see that no more instances of the ParcelTracker composite
are created.

How it works...
Removing a scheduled job is as simple as invoking the Scheduler's removeJob operation
with a request message that includes our job's key values as follows:

<?xml version="1.0" encoding="UTF-8"?>
<removeJob xsi:schemaLocation="http://rubiconred.com/
 evs/util.sch.Job util.sch.evs.Job_1.0.xsd"
 xmlns="http://rubiconred.com/evs/util.sch.Job"
 xmlns:job="http://rubiconred.com/ebo/util.sch.Job"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <body>
 <job:jobId>120699</job:jobId>
 <job:jobGroup>ParcelTracking</job:jobGroup>
 </body>
</removeJob>

www.it-ebooks.info

http://www.it-ebooks.info/

OSB Messaging
Patterns

In this chapter, we will cover:

 f Dynamic binding using OSB

 f Splitting out messages using OSB

 f Dynamic Split-Join in OSB

 f Fault handling in dynamic Split-Join in OSB

Introduction
This chapter explores some common message processing design patterns for delegation of
execution to downstream services and provides recipes for implementing them using Oracle
Service Bus.

Sample OSB projects are provided for each of these recipes, copies of these are provided
as Oracle Service Bus Configuration Jars. For each recipe we provide two versions of the
OSB project, one containing enough to get started with the recipe, the other with the
completed solution.

In order to use them you will need to open an empty workspace within Eclipse, then select
File | Import, select Oracle Service Bus – Configuration Jar and browse to, and import, the
required project.

6

www.it-ebooks.info

http://www.it-ebooks.info/

OSB Messaging Patterns

128

Dynamic binding using OSB
One of the key advantages of an Enterprise Service Bus, as well as Service Oriented
Architecture in general is the quality of Agility, that is, the ability to easily compose new
orchestrations of web service operations. In this recipe, we will consider a scenario in
which a standard service contract might be implemented by multiple providers, the
selection of which we want to dynamically configure at runtime.

For example, let us suppose that we are running an online bookstore and wish to automate
stock order requests to multiple publishers. A stock order includes the name of the publisher,
details of the book, and the quantity to order:

<stockOrder>
 <publisher>ACME</publisher>
 <bookOrder>
 <book>
 <isbn>1234567890123</isbn>
 <title>Barry Potter</title>
 …
 </book>
 <quantity>Skylight vampires</quantity>
 </bookOrder>
</stockOrder>

This service could be fulfilled by various publishers and new publishers might be joining our
network all the time. Ideally, rather than needing to re-code and publish our routing logic
every time a new publisher is added, we would like to be able to keep our Stock Order service
running with no outage and simply update the routing rules using a configuration file, such as
the following:

<routing>
 <rule>
 <key>ACME</key>
 <serviceName>PublisherApp/PublisherACME</serviceName>
 </rule>
 <rule>
 <key>Packt</key>
 <serviceName>PublisherApp/PublisherPackt</serviceName>
 </rule>
 <rule>
 <key>Skynet</key>
 <serviceName>PublisherApp/PublisherSkynet</serviceName>
 </rule>
</routing>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

129

Each of these serviceNames are OSB proxy services, wrapping a particular publisher's
online stock ordering service. The idea is that when we want to add a new publisher, we
implement a new proxy service implementing the previous service contract and add a
<rule> element to the configuration file referencing it.

This recipe will demonstrate how this dynamic routing can be implemented in OSB.

Getting ready
In order to use this design pattern, you will need to define a standard WSDL to be
implemented by each of your routing destinations (publishers in our example).

For our purposes, we have defined the WSDL Publisher_Service_1.0.wsdl, which defines
the operation submitBookOrder.

We have provided three basic implementations of this service, as defined in the
following table:

Publisher Proxy service
ACME PublisherApp/PublisherACME
Packt PublisherApp/PublisherPackt
Skynet PublisherApp/PublisherSkynet

These implementations are defined in the PublisherApp OSB project which is included in
the sample for the book. You will need to open this sample in OEPE and deploy to your
instance of OSB.

How to do it...
1. In the Eclipse IDE, open the the PublisherApp OSB project which is included in the

samples. Define a new OSB proxy service, give it the name PublisherService and
select Publisher_Service_1.0.wsdl as the WSDL.

2. The next step is to compose a simple XQuery source file containing a list of routing
destinations similar to the following example:
xquery version "1.0" encoding "Cp1252";
(:: pragma type="xs:anyType" ::)

declare namespace xf = "http://tempuri.org/
 PublisherApp/dynamic-routing-rules/";

www.it-ebooks.info

http://www.it-ebooks.info/

OSB Messaging Patterns

130

declare function xf:dynamic-routing-rules()
as element(*) {
 <routing>
 <!-- dynamic-routing-rules.xq -->
 <rule>
 <key>ACME</key>
 <serviceName>PublisherApp/
 PublisherACME</serviceName>
 </rule>
 <rule>
 <key>Packt</key>
 <serviceName>PublisherApp/
 PublisherPackt</serviceName>
 </rule>
 <rule>
 <key>Skynet</key>
 <serviceName>PublisherApp/
 PublisherSkynet</serviceName>
 </rule>
 </routing>
};

xf:dynamic-routing-rules()

Note that in our example, key is the key field we will use to determine which routing
rule to apply while serviceName indicates the exact path (within OSB) of the
corresponding destination proxy service.

Save this file within your OSB project as dynamic-routing-rules.xq.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

131

3. Open your proxy service and select the Message Flow tab. Drag in a Pipeline Pair
followed by a Stage, naming the stage as LookupDestination. Within the new
stage, add two Assign actions, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

OSB Messaging Patterns

132

4. For the first Assign action, set Variable as routingRules and select
dynamic-routing-rules.xq as the <Expression>.

5. For the second Assign action, set Variable as destination and use the following
XML fragment as your expression:
<ctx:route>
 <ctx:service isProxy="true">{
 $routingRules/rule[key/text()=$body//*:publisher
 /text()]/serviceName/text()
 }</ctx:service>
</ctx:route>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

133

6. Next, drag a Route node to the bottom of the Message Flow and place a Dynamic
Routing action within that. Set the <Expression> within the Dynamic Routing action
as $destination.

www.it-ebooks.info

http://www.it-ebooks.info/

OSB Messaging Patterns

134

How it works…
The key feature of OSB used for this design pattern is the Dynamic Routing action. The
expression used in this action is expected in a very specific format, as per the following
XML fragment:

<ctx:route>
 <ctx:service isProxy="$isProxy">$serviceName</ctx:service>
 <!-- operation is optional -->
 <ctx:operation>$operationName</ctx:operation>
</ctx:route>

Note that isProxy is an xsd:boolean. If set to "true" then serviceName must be the
complete path to an OSB proxy service, otherwise serviceName must be the complete
path of an OSB business service. The complete path should include the OSB project and any
subfolders included in the project structure.

In our example, in the LookupDestination stage, we've used the following XPath to
determine the serviceName:

 $routingRules/rule[key/text()=$body//*:publisher/
 text()]/serviceName/text()

This roughly reads as "return the serviceName corresponding to the rule in routingRules
for which the key matches the publisher element in the request". In other words, it's a
key-value lookup into our configuration file dynamic-routing-rules.xq.

Now, if we need to add a new publisher service, we only need to ensure that its proxy service
is added to dynamic-routing-rules.xq and implements the same WSDL.

There's more…
The generic contract of this service comes at a price. Publisher IDs accepted by the service
are not restricted and so it's possible to submit a stock order for a publisher which may not
exist in the routing rules.

This is easily remedied by adding a conditional block after the LookupDestination stage to
confirm that a valid address was retrieved before attempting to route. The expression to use
for the condition is as follows:

 fn:data($destination/*:service) = ""

The conditional block should include appropriate logic, such as a Raise Error action.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

135

Another potential issue with this design pattern is that the destination service may not exist!
This could be due to a mistake in the routing rules, or because the destination service has not
been deployed for whatever reason.

If this is the case, then OSB will raise the following internal error:

 BEA-382612: Error preparing message for dispatch

To detect this issue at runtime, include the following condition expression in your
Error Handler block:

 $fault/ctx:errorCode = "BEA-382612"

Splitting out messages using OSB
In this next recipe we will consider a common design pattern for processing a list of
independent messages in a batch. In this scenario, a synchronous web service implemented
in OSB will accept a list of messages and respond almost immediately with a response to
indicate that the message was successfully received. Meanwhile, each of the individual
messages will be queued for asynchronous processing by another service.

Getting ready
This recipe also assumes that the downstream, one-way service for processing individual
messages from the batch has already been written using OSB.

This example builds on the result of the previous recipe, the "BookOrder" dynamic routing
service. A sample completed version of this service is included with the code samples for
the book.

How to do it...
1. Log in to the Weblogic console and select Services | Messaging | JMS Modules.

Select New.

This will open the Create JMS System Module window. Name the module
BookModule and click on Next. Target the OSB server(s) and click on Next.
Finally, check the box to add resources and click on Finish.

2. This will take us to the settings for BookModule. Click on New in the
Resources table.

www.it-ebooks.info

http://www.it-ebooks.info/

OSB Messaging Patterns

136

3. This will open the Create a New JMS System Resource dialogue. Select Queue and
click on Next. Name the queue (for example, BookOrderQueue) and assign a JNDI
name (for example, jms.queue.bookorder).

Click on Next, then click on Create a New Subdeployment. Accept the default name
and target the existing wlsbJMSServer. Click on Finish.

4. Next, we need to modify the downstream process to use the JMS queue. Open the
OSB workshop project from the previous recipe. Open the downstream proxy service
(for example, PublisherService.proxy) and select the Transport tab.

i. In the Protocol drop-down list, select jms. Change Endpoint URI to the
queue JNDI name we created earlier, for example:
jms://localhost:7001/weblogic.jms.XAConnectionFactory/
 jms.queue.bookorder

ii. Save your changes.

5. Next, we need to create a new proxy service for handling our batch
requests. Give it the name PublisherBatchService and use
PublisherBatchService_1.0.wsdl as the WSDL.

This WSDL defines the operation submitBookOrderList, which contains a list of
bookOrders that we want to process individually.

6. Select the Message Handling tab and ensure Transaction Required is Enabled.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

137

7. In the Message Flow tab, create OperationalBranch and add Pipeline Pair
and Stage to the submitBookOrderList operation. Next, drag a For Each action
into the Stage.

8. Set the For Each Variable property with a name you would like to use to reference
each element of the batch, for example, bookOrder. Set In Variable to body.
Optionally, declare index and count reference variables.

9. Next, click on the XPath link to open the XPath dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

OSB Messaging Patterns

138

10. Drag the repeating list member element (for example bookOrder) from the request
body over as the XPath expression. Then click on OK.

11. Drag a Publish action from the Design Palette into the body of the For Each loop. Set
the Service and Operation properties of the Publish action to use the proxy service
and operation of the downstream process (for example, PublisherService.
proxy, and submitBookOrder) respectively.

12. Next, drag a Routing Operations action from the Design Palette into the body of
Publish action. Within the Routing Options, enable QoS (Quality of Service) and
select Exactly Once.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

139

13. Finally, place a Replace action within the Publish action body and configure it to have
the values listed in the following table:

Field Value
XPath .

In Variable body
Expression XQuery: PublisherApp/setSubmitBookOrder

Select Replace node contents

14. Configure the expression to use the XQuery resource PublisherApp/
setSubmitBookOrder.xq and pass in the variable bookOrder (set in step 10).

This will create the payload required for the submitBookOrder operation invoked by
the Publish action, based on the content of the ForEach variable defined earlier, for
example, bookOrder.

15. Deploy and test your OSB projects by sending a request to your Batch processor.

How it works…
The key to the asynchronous operation of this pattern is the separation of the initial call from
the bulk of the processing with a JMS queue. If not explicitly defined, OSB will dynamically
generate a generic queue when the JMS transport protocol is selected, but for finer control,
including auditing, repeatability, and the potential to assign a Work Manager it has been
recommended in this recipe to assign a specific named queue.

The logic of the Batch process itself is relatively straightforward. The For Each loop simply
divides the batch implicitly into individual list elements and passes them on to the JMS
transport downstream proxy service.

A key requirement for processing our batch, is that we want to successfully split out all
messages from the batch or if something fails, roll back the entire batch (so we can
re-submit once the error has been resolved). For this purpose we configured the JMS
Transport as follows:

 f Message handling to enable Transaction Required: This will instruct OSB to start a
new transaction if one does not exist in the request received (which it won't as this is
invoked over HTTP).

 f Routing Options on the Publish action to have a Quality of Service of Exactly Once:
This will force the publication of the message to the JMS queue to be included within
the transaction started by the proxy.

 f Use an XA Connection Factory for a JMS Queue: This ensures that the transaction is
propagated to JMS.

www.it-ebooks.info

http://www.it-ebooks.info/

OSB Messaging Patterns

140

In this way, each book order is written to the JMS queue as part of the same transaction.
When the proxy returns a response, then the transaction will be completed. At this point
each bookOrder can be processed independently by the downstream proxy in a separate
transaction, without interfering with the processing of other items in the list.

There's more…
Note that this pattern places very little responsibility on the Batch Processor to perform error
handling. Other than syntactically validating the input request, it is not recommended to
attempt any other validation on the individual list elements at this level, since one bad item
might prevent the entire list from processing.

Instead, consider simply returning "success" to the caller and managing all exceptions
internally, as part of the downstream process. This ensures that any valid items will still be
processed and each error will be handled separately.

Fine-tuning the behavior of the JMS queue can be handled within the Weblogic console. In
particular, you may wish to throttle the activity on the JMS queue to prevent the downstream
process from becoming overloaded.

Dynamic Split-Join in OSB
As part of implementing a web service it is often necessary to delegate portions of the work
to a number of independent subtasks. For a synchronous service, carrying out these tasks
sequentially may take an unacceptable amount of time causing the client to time out waiting
on the service. Therefore, the preferred approach is to process all independent tasks in
parallel and consolidate the results.

This pattern is referred to as a "Split-Join" and comes in two flavors:

 f Static: In this the subtasks are always the same. For example, in planning a holiday
one needs to book both a flight and accommodation, each of which represents an
independent subtask which may be completed in parallel.

 f Dynamic: In this there are a variable number of subtasks, to be determined at
runtime. For example, to complete an internet shopping order a bookstore must query
each book before confirming the total price, but has no way of knowing how many
different items will be required prior to reviewing the order.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

141

This recipe will guide you through a sample implementation of the second example using
Oracle Service Bus.

An alternative way of implementing the previous scenario is to use
a FlowN (BPEL 1.1) or a parallel ForEach (BPEL 2.0) activity
within a BPEL process. As OSB is stateless, it has less overhead
and, therefore, will be more performant. However, another key
consideration is what happens if something goes wrong?

In the case of our example, as we are not modifying any data, our
error handling is relatively straightforward. But, if we were using
the Split-Join to modify data in the target system, for example
splitting out an order into individual line items which are then
ordered separately; then if an error occurred we may want to undo
all the successfully generated line item orders.

It may be tempting to try and do all this within an XA
transaction. However, this has the potential to create
large distributed transactions, with significant impact on
performance and scalability.

In this scenario (that is where we are modifying state) a better
approach would be to implement this pattern in BPEL and use
compensation for error handling.

In summary, where the Split-Join is not a modifying state, it is safe
and more performant to use OSB. But, in cases where the state of
the backend system is being modified you should implement this
pattern in BPEL.

www.it-ebooks.info

http://www.it-ebooks.info/

OSB Messaging Patterns

142

Getting ready
Prior to beginning this recipe, you will need to prepare the target WSDL operation which will be
invoked to process individual items. In the example, this will be the priceCheck operation of
the Book service, which determines how much each book should cost.

If you wish to follow along exactly with these instructions open the BookStoreApp (included
with the code samples for the book) in Eclipse. This contains the required schema and WSDL
files, as well as a mock implementation of the Book service.

How to do it...
1. Right-click on the BookStoreApp project and select New | Split-Join from the

context menu.

2. Enter a descriptive filename (for example, getTotalPriceSplitJoin) and then
click on Next.

3. Expand the project structure to select the parent operation used to invoke the
Split-Join (for example, BookStoreService_1.0.wsdl | BookStoreServiceBinding |
operation: getTotalPrice) and then click on Finish.

A new Split-Join flow will appear in the main editing window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

143

4. Select the root node and expand its properties by clicking on the small triangle on its
left. Select the request variable and click on Edit....

5. Rename the variable to match the parent operation (for example, getTotalPrice).
This will help prevent ambiguity later on.

6. Repeat steps 4 and 5 to rename the response variable (for example,
getTotalPriceResponse).

7. Drag an Assign action from the Design Palette, to between the Receive and
Reply nodes.

8. Label the new scope as Initialisation and the Assign action as Assign
output variable.

9. Click on the new Assign action. In the Properties tab (shown in the following
screenshot), select the variable as the payload of the parent operation's response
(for example, getTotalPriceResponse.payload).

10. Next, click on the <Expression> link. Provide an XML similar to the following and then
click on OK.
<stor:priceCheckResponse
 xmlns:stor="http://rubiconred.com/ckbk/svc/BookStore">
 <stor:totalPrice>0</stor:totalPrice>
</stor:priceCheckResponse>

Note, that in the previous example the aggregate total has been initialized to 0.

www.it-ebooks.info

http://www.it-ebooks.info/

OSB Messaging Patterns

144

11. Drag a For Each construct from the Design Palette to just below the
Initialisation scope.

12. Click on the new For Each construct. In the Properties tab, set the Counter Variable
Name field to counter and the starting value to 1. Click on the ellipses next to Final
Counter Value to launch the expression editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

145

13. Select the XPath Functions tab, and drag the count function out into the Expression
text area.

14. Click on the Variable Structures tab and expand the request structure to find the
recurring element (for example, bookOrder) on which the split should be based.
Drag it out to replace the place-holder $arg-nodeset and then click on OK to
complete the expression.

15. Drag an Invoke Service action into the Scope within the ForEach loop. Label
it as per the child service and operation you intend to loop over (for example,
Book.priceCheck).

www.it-ebooks.info

http://www.it-ebooks.info/

OSB Messaging Patterns

146

16. In the Properties tab (shown in the following screenshot), select the Operation
category. Click on Browse, select the child operation (for example, BookService.
proxy | priceCheck), and click on OK.

17. Select the Input Variable category in the Properties tab. From the Message Variable
drop-down list select Create Message Variable.... Provide the name of the child
operation (in our example, priceCheck) as the name and then click on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

147

18. Use the same method to create and set the output variable (for example, as
priceCheckResponse).

19. Drag an Assign action to the start of the Loop Scope and label it as Extract
Individual Request.

20. Select the Assign action. In the Properties tab, set the variable as the request
payload of the child operation (for example, priceCheck.payload) and then click
on the <Expression> link.

21. We will use the XQuery priceCheck.xq to generate the input request to our call-out to
the Book.priceCheck service. We will need to pass in the ISBN of the book using
the $counter index defined earlier. For example:
$getTotalPrice.payload/book:bookOrderList/book:bookOrder[
 xs:integer($counter)]/book:book/book:isbn

22. Following the Invoke Service action, apply any aggregate logic. For our Book Store
example, we would add a Replace action with the following properties:

Field Value
XPath: ./totalPrice

Variable getTotalPriceResponse.payload
Expression xs:float($getTotalPriceResponse.payload/bind:totalPrice)

+

(xs:float($priceCheckResponse.payload/ns1:price) *

$getTotalPrice.payload/book:bookOrderList/book:bookOrder

[xs:integer($counter)]/book:quantity)

Select Replace node contents

23. Save your progress by selecting File | Save from the menu.

24. Before the Split-Join can be used in a proxy service, it must first be encapsulated in a
standard OSB Business Service.

In the Project Explorer on the left, right-click on the Split-Join file and then select
Oracle Service Bus | Generate Business Service. Accept the default name and
location, and click on OK.

The business service is now ready for use in any OSB Proxy Service. Deploy it and test it out.

www.it-ebooks.info

http://www.it-ebooks.info/

OSB Messaging Patterns

148

How it works…
Refer to the following, more completely labelled version of the Split-Join message flow for an
end-to-end, annotated view of the final solution:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

149

Procedurally, the pseudocode for the BookStore example might look to be (just going by the
annotations) as follows:

Operation getTotalPrice(book_list):
 totalPrice := 0
 for each order in book_list
 loop
 total_price := total_price +
 Book.priceCheck(order.isbn) * order.qty
 end loop
 return total_price

The key difference is that the For Each section has a property called Parallel set by
default to yes (note that if desired, this can be set to no to force sequential execution).
This instructs Oracle Service Bus to execute all (or as many as it has threads) iterations
of the Loop scope within the For Each statement concurrently.

Readers paying close attention will also have noticed that the For Each block does not
actually iterate over the book IDs directly; rather the OSB determines the number of Loop
scopes simply by counting the number of bookOrder nodes and then assigning each scope
a different $counter variable integer between 1 and that total count. So, a more accurate
representation of the pseudocode would be as follows:

Operation getTotalPrice(book_list):
 totalPrice := 0
 for counter in 1 .. size(book_list)
 thread concurrently
 total_price := total_price +
 (Book.priceCheck(order[counter].isbn) *
 order[counter].qty)
 end thread
 return total_price

Performing this addition in parallel allows the BookStore service to compute the total much
faster, dividing the total time of priceChecks by the number of concurrent threads.

There's more…
This recipe represents a reasonably standard, cookie-cutter implementation of how one would
use the Split-Join feature of Oracle Service Bus to iterate over a dynamic sequence of identical
elements in a list. It should be enough to get you started on any similar problem. However, it
only scratches the surface of the possibilities for what can be accomplished with a Split-Join
message flow.

www.it-ebooks.info

http://www.it-ebooks.info/

OSB Messaging Patterns

150

Other aggregation logic
Rather than simply summing up numerical values, you can aggregate the results of service
calls any way you like. A common example is appending the results to a dynamic sequence
using an Insert action.

More service calls
Note that you are not limited to a single Invoke Service action. Multiple "child" operations may
be invoked sequentially or in parallel.

In fact the premise of a "Static" Split-Join is that instead of using a For Each loop, you would
use an explicit Parallel construct (see Flow Control in the Design Palette) and drop a
different Invoke Service action into each lane.

Any combination of flow constructs desired can be layered to create complex concurrent
processing systems within a single Split-Join message flow.

Conflicts
With any software system involving multi-threading, there is always a possibility of
deadlocks or conflicts. Although variables within a Split-Join message flow are protected
from these scenarios, Oracle Service Bus does not provide any built-in mitigation tools for
external systems.

It is outside the scope of this discussion to prescribe how one might resolve concurrent
update issues in external systems. However, designers and developers should always be
aware when there is such a possibility and take appropriate action.

Fault handling in dynamic Split-Join in OSB
Without appropriate Error-Handling logic, the first fault thrown by a service invocation
within any one of the Split-Join's threads will re-raise in the Split-Join and halt the entire
message flow.

In order to prevent this, Catch clauses need to be added to the scope of each thread as
shown next.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

151

How to do it...
1. Right-click on the loop's scope and select Add Catch.

2. Select the new Catch block, label it with the name of the fault you wish to catch
and then review the Properties tab.

3. Click on <Soap Fault Variable Name> and assign any name you like (the default is
simply soapFault which should be fine).

4. Repeat this step for each expected Soap Fault.

5. Select Define Fault and enter the fault name and namespace of the fault you expect
to catch.

6. Drag in a new Scope below the Catch and add any mitigation actions as necessary to
resolve the fault. It may be appropriate to do nothing. Simply log the error, or perhaps
aggregate a default value into the total. All variables available within the normal
scope are also available to you within the Catch block.

7. Optionally, add a Catch All clause to the loop to capture any unexpected faults.

www.it-ebooks.info

http://www.it-ebooks.info/

OSB Messaging Patterns

152

How it works…
Fault handling within a Split-Join in OSB is very similar to fault handling in proxy
services. One simply has to define a Catch block for the appropriate scope and mitigate
each fault appropriately.

By handling faults within the For loop, we ensure that each of the individual threads is
managed separately, without impacting the rest of the batch.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating OSB
with JSON

In this chapter, we will cover the following recipes for working with JSON:

 f Converting between XML and JSON

 f Invoking a JSON service from OSB

 f Dynamically binding to a JSON service in OSB

 f Exposing a proxy service as a JSON service

Introduction
Most often, when working with the SOA Suite or Oracle Service Bus, we'll be transforming data
between different XML formats. It's becoming increasingly common for services to expect and
provide their data in JavaScript Object Notation (JSON).

JSON is a lightweight format, in that it will typically represent data in fewer bytes than the
corresponding XML representation, and that it is relatively simple to generate and parse. It
is also much simpler than XML, in that it has a smaller set of pre-defined data types (object,
array, string, number, and the values true, false, and null) from which an object representation
can be constructed.

As a result, we have the blessing and the curse of considerable freedom when deciding how to
represent even quite simple values; for example, where XML provides the dateTime type with
its standard format, we could choose to use an ISO-8601 conformant string, or the number
of milliseconds since an epoch, or an object with named values for each subcomponent. All
of those representations would be equally valid in JSON, requiring an agreement between the
service provider and clients as to the representation to use, and the interpretation to apply.

7

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating OSB with JSON

154

Converting between XML and JSON
Since JSON formatted data is likely to be needed only when communicating with a partner
system, we'll assume that it's most common to convert between XML and JSON in Oracle
Service Bus. For working with XML, we'll use XMLBeans, as that's what OSB uses. For parsing
and generating JSON, we'll use Jackson (Version 1.9.x).

Getting ready
This recipe assumes the use of an existing OSB configuration project within the OSB
workshop for development. So, ensure that you have installed and familiarized yourself
with it prior to beginning.

Schema
If you wish to follow along exactly with these instructions you will require a copy of the
schema and WSDL files used in this recipe. Copies of these are included with the code
samples for the book.

For the purpose of this example, the JSON format will map very
closely to the XML schema, but this need not necessarily be the
case, and the approach demonstrated next is flexible enough to
allow for arbitrarily complex mapping.

Java libraries
Oracle Service Bus uses XMLBeans to provide its XML/object mapping. We'll use the same
library to make our task simpler.

In order to map between JSON and objects, we'll use the Jackson library. Download Version
1.9.x of the Jackson Core ASL and Mapper ASL libraries from http://wiki.fasterxml.
com/JacksonDownload.

How to do it...
1. From the context menu in the Package Explorer view, select New | Java Project.

For this example, the project is named CreditCardServiceMessages. Keep the
remaining defaults and click on Next.

2. For the Java Settings, set the Default output folder to
CreditCardServiceMessages/build/classes. Click on Finish.

3. For setting up the project structure, select CreditCardServiceMessages within the
Package Explorer view, right-click and select New | Folder. Name the folder dist
and click on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

155

4. Repeat this process to create the folders genbuild, gensrc, lib, resources, and
test in the Java project.

Next, we need to import the schema and WSDL files we are using for this example.

5. Within the Package Explorer view, select resources, right-click and select Import.
This will open the Import Wizard. Select General | File System as the source and
click on Next.

6. Browse to the file directory containing the code samples for this chapter, and within
the directory getting ready, select the folder resources.

7. Within the Import window, ensure resources is checked and the option Create
selected folder structure is selected (as circled in the following screenshot) and
click on Finish.

8. To import the JAR files, select lib within the Package Explorer view, right-click and
select Import. In the Import wizard, select General | File system, and click on Next.

9. Browse to the directory <MIDDLEWARE_HOME>/osb/modules

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating OSB with JSON

156

10. Click on OK and select the file com.bea.core.xml.xmlbeans_2.1.0.0_2-5-1.
jar and click on Finish. This will create a copy of the JAR file in the lib folder within
the Java project.

11. Repeat this step to import the jackson-core-asl-1.9.x.jar and
jackson-mapper-asl-1.9.x.jar libraries. Add the libraries to the
projects build path by selecting the three files, right-clicking, and selecting
Build Path | Add to Build Path.

The structure of our Java Project should resemble the following screenshot:

12. We'll use Ant to build our project. Within the Package Explorer view, select
CreditCardServiceMessages, right-click and select Import. This will open the
Import Wizard. Select General | File System as the source and click on Next.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

157

13. Browse to the file directory containing the code samples for this chapter and select
the folder getting ready. Within the Import window, ensure build.xml is checked
and click on Finish.

The most important target to note at this point within the build.xml file is scomp.
<taskdef name="xmlbean"
 classname="org.apache.xmlbeans.impl.tool.XMLBean"
 classpath="${lib}/com.bea.core.xml.xmlbeans_2.1.0.0_2-
 5-1.jar" />

<!-- Compile the config schema definition with XmlBeans
 -->
<target name="scomp" depends="init" description="compile
 xsd">
 <xmlbean srcgendir="${gensrc}"
 classgendir="${genbuild}"
 destfile="${dist}/$
 {ant.project.name}XmlBeans_1.0.jar"
 failonerror="true"
 classpathref="project.class.path">

 <fileset dir="${schemadir}"
 includes="wsdl/CreditCardService.xsd" />
 </xmlbean>
</target>

This compiles the schemas we have imported using XmlBeans, and will be required
for subsequent steps.

14. To compile the schemas, select Window | Show View | Ant and open the Ant View
in our Eclipse perspective; next drag the build.xml file into the Ant View, and
double-click on the scomp target.

This will run the scomp target, which will use xmlbeans to generate Java classes
which represent the schema types in our imported schemas and package them
into the JAR file, named CreditCardServiceMessagesXmlBeans_1.0.jar.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating OSB with JSON

158

You should see output similar to the following, in the Console view:

The generated JAR file will be placed in the dist directory (refresh the project
structure view if you can't see it).

15. Right-click on this file, and select Build Path | Add to Build Path from the context
menu, as we'll be writing classes that depend on this library later.

16. Next, we need to create Plain Old Java Objects (POJOs) that represent the JSON
objects that we will later be exchanging. These classes have no knowledge of the
Jackson libraries that we will be using to convert between the object and JSON
representations.

For our example we will create the following classes:

 � CreditCard

 � DebitCreditCard

 � DebitCreditCardResponse

An excerpt from the CreditCard class is shown as follows:

package com.rubiconred.ckbk.creditcardsvc.pojo;

public class CreditCard {

 private String cardType;
 private String cardHolderName;
 private String cardNumber;
 private Integer expiryMonth;
 private Integer expiryYear;
 private String securityNo;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

159

 public String getCardType() {
 return cardType;
 }

 public void setCardType(String cardType) {
 this.cardType = cardType;
 }
 public String getCardHolderName() {
 return cardHolderName;
 }

 // …
}

Primitive types are not used for the previous numeric values.
It is common for values in JSON objects to be optional, and
either be omitted entirely from the serialised representation,
or be serialised with a value of null. Java's primitive types
cannot represent the absence of a value, so the object types
should in general be used for numeric.

17. Next we need to create the Java class CreditCardServiceMapperFactory that
will be used to convert between the previous POJOs and their JSON representations.

A snapshot of the code to do this is shown as follows. The full source code is provided
in the sample for the chapter.
package com.rubiconred.ckbk.creditcardsvc.json;

import …

public class CreditCardServiceMapperFactory {

 private static ObjectMapper mapper;
 private static ObjectReader debitCreditCardReader;
 private static ObjectWriter debitCreditCardWriter;

 static {
 mapper = new ObjectMapper();

 // Include null values in generated JSON
 mapper.setSerializationConfig(
 mapper.getSerializationConfig()
 .withSerializationInclusion(Inclusion.ALWAYS));

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating OSB with JSON

160

 debitCreditCardReader =
 mapper.reader(DebitCreditCard.class);
 debitCreditCardWriter =
 mapper.writerWithType(DebitCreditCard.class);

 // …
 }

 public static ObjectReader getDebitCreditCardReader() {
 return debitCreditCardReader;
 }

 public static ObjectWriter getDebitCreditCardWriter() {
 return debitCreditCardWriter;
 }

 // …
}

Jackson makes this very straightforward. The ObjectReader and ObjectWriter
instances that we create are immutable, so they're thread-safe and can be shared
as required.

The ObjectMapper is the object on which the details of the JSON (de-) serialization
are configured. For this example, we'll configure the mapper to include null values,
rather than omitting them.

Now that we have the necessary scaffolding in place, we can write the code that will
convert between the XML format (exposed as an XMLBeans XmlObject instance)
and the JSON format (represented by the POJOs we created earlier). This is the code
that will later be invoked using Java Callout actions in OSB proxy services.

18. In order to convert from JSON to XML, we create a method that accepts the JSON in
a String, and uses the appropriate ObjectReader to parse it into the POJO we
created earlier.

The fields of the POJO are used to populate a new instance of the appropriate
XmlObject. This is illustrated in the following method:

public static XmlObject debitCreditCardJsonToXml
 (String json) {
 ObjectReader reader = CreditCardServiceMapperFactory
 .getDebitCreditCardReader();

 DebitCreditCardDocument debitDoc =
 DebitCreditCardDocument
 .Factory.newInstance();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

161

 DebitCreditCard jsonDebitCreditCard;
 TDebitCreditCard xmlDebitCreditCard;
 TCreditCard xmlCreditCard;

 try {
 jsonDebitCreditCard = reader.readValue(json);
 CreditCard jsonCreditCard = jsonDebitCreditCard
 .getCreditCard();
 xmlDebitCreditCard = TDebitCreditCard.Factory
 .newInstance();
 xmlCreditCard = TCreditCard.Factory.newInstance();
 xmlCreditCard.setCardHolderName(jsonCreditCard
 .getCardHolderName());
 xmlCreditCard.setCardNumber(jsonCreditCard
 .getCardNumber());
 xmlCreditCard.setCardType(jsonCreditCard
 .getCardType());

 // Set Remainder of Credit Card Details…

 xmlDebitCreditCard.setCreditCard(xmlCreditCard);

 Double trnAmount =jsonDebitCreditCard.getTrnAmount();
 if (trnAmount != null) {
 xmlDebitCreditCard.setTrnAmount(
 BigDecimal.valueOf(trnAmount));
 }
 xmlDebitCreditCard.setTrnDesc(jsonDebitCreditCard
 .getTrnDesc());

 debitDoc.setDebitCreditCard(xmlDebitCreditCard);

 } catch (JsonProcessingException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return debitDoc;
}

19. To convert from JSON to XML we simply use the following code fragment:
DebitCreditCardDocument doc;
doc = (DebitCreditCardDocument) DebitCreditCardConverter
 .debitCreditCardJsonToXml
 (DEBIT_CREDIT_CARD_JSON_STRING);

TDebitCreditCard debitCreditCard =
 doc.getDebitCreditCard();

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating OSB with JSON

162

Where DEBIT_CREDIT_CARD_JSON_STRING contains the JSON to convert.
The result of this debitCreditCard is an XMLBeans generated class that gives
us a Java wrapper around the ML conversion of debitCreditCard with
JavaBeans-style accessors.

20. Converting from XML to JSON uses the same approach, starting from an XmlObject
and producing a String containing JSON, as illustrated in the following method:
public static String debitCreditCardXmlToJson
 (XmlObject xml)
{
 ObjectWriter writer = CreditCardServiceMapperFactory
 .getDebitCreditCardWriter();

 DebitCreditCard debitCreditCard = new
 DebitCreditCard();
 String json = null;
 DebitCreditCardDocument debitCreditCardDoc;
 TDebitCreditCard source = null;
 XmlObject doc = null;

 try {
 doc = XmlObject.Factory.parse
 (xml.newXMLStreamReader());

 if (doc instanceof DebitCreditCardDocument) {
 debitCreditCardDoc = (DebitCreditCardDocument) doc;
 source = debitCreditCardDoc.getDebitCreditCard();
 TCreditCard sourceCC = source.getCreditCard();
 BigDecimal trnAmount = source.getTrnAmount();

 if (trnAmount != null) {
 debitCreditCard.setTrnAmount(trnAmount
 .doubleValue());
 }
 debitCreditCard.setTrnDesc(source.getTrnDesc());
 CreditCard creditCard = new CreditCard();

 creditCard.setCardHolderName(sourceCC
 .getCardHolderName());
 creditCard.setCardNumber(sourceCC.getCardNumber());
 creditCard.setCardType(sourceCC.getCardType());
 creditCard.setExpiryMonth
 (sourceCC.getExpiryMonth());
 creditCard.setExpiryYear(sourceCC.getExpiryYear());
 creditCard.setSecurityNo(sourceCC.getSecurityNo());

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

163

 debitCreditCard.setCreditCard(creditCard);
 json = writer.writeValueAsString(debitCreditCard);
 } else {
 System.out.println
 ("debitCreditCardXmlToJson(): PARSE FAILED!!!");
 }
 } catch (XmlException e) {
 e.printStackTrace();
 } catch (JsonGenerationException e) {
 e.printStackTrace();
 } catch (JsonMappingException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 return json;

21. To convert from XML to JSON we simply use the following code fragment:

XmlObject debitCreditCardXmlObject;
debitCreditCardXmlObject = XmlObject.Factory
 .parse(DEBIT_CREDIT_CARD_XML);
String json = DebitCreditCardConverter
 .debitCreditCardXmlToJson
 (debitCreditCardXmlObject);

Where DEBIT_CREDIT_CARD_XML contains the XML to convert, the result of this
JSON is a string containing the JSON representation of our XML object.

It is important to keep in mind, when implementing these conversions,
that some incoming values may be null. One example of such an issue
is when working with numeric values parsed from XML by XMLBeans;
they will typically be instances of BigDecimal or BigInteger.
Should you want to assign these values to a Double or Integer in
your own objects, you must ensure that the returned value is not null
before invoking the doubleValue() or intValue() methods.

Running the dist Ant task will produce a JAR file CreditCardServiceMessages_1.0.j
ar in the dist directory. This will be used later, along with the previously generated CreditC
ardServiceMessagesXmlBeans_1.0.jar, to perform the conversions between XML and
JSON inside the OSB proxy services.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating OSB with JSON

164

How it works...
We use XMLBeans to parse and generate XML, and we use Jackson to parse and
generate JSON. We then implement an adapter that takes care of the translation
between the two representations.

There's more...
It should be noted that there are other simpler frameworks which provide a mechanism for
converting between XML and JSON, for example:

 f http://code.google.com/p/xml2json-xslt/wiki/TransformingRules

 f http://www.bramstein.com/projects/xsltjson/

 f http://json-lib.sourceforge.net/snippets.html#XML to JSONObject

Given the simplicity of the previous example, any of these approaches would be fine. However,
for more complex scenarios we find that Jackson provides the most control (it's also extremely
fast – but that tends to be less relevant).

For example, Jackson provides many features for configuring the serialization and
deserialization of your objects. In the event that the default behavior isn't appropriate for your
use case, there are many options built-in, and custom (de-) serializers can be built very easily.

The final reason for leaning towards Jackson, is that it's leveraged by Coherence for its REST
interface, so is a tried and tested component within the context of the Oracle stack.

Invoking a JSON service from OSB
Invoking a JSON service over HTTP from OSB is quite straightforward. Using the Java code that
we built in the previous recipe will make working with the JSON messages much simpler.

Getting ready
We'll assume that you have an OSB configuration project in OEPE, and that you have the
Jackson and XmlBeans JAR files referred to in the previous recipe, as well as the JAR files
produced by that recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

165

How to do it...
1. We will first create an Oracle Service Bus project. Select the Oracle Service Bus

perspective in Eclipse. Right-click on the OSB configuration project, and select
New | Oracle Service Bus Project. In the dialog box, enter a name for the project
(InvokeJSONCreditCardService) and click on Finish.

We need to import the web service definition used in the Java project in the
previous recipe, as we will implement the DebitCreditCard operation of the
CreditCardService.

2. Right-click on the OSB project, and select Import | Import from the context menu.

3. In the Import dialog, select General | File System and click on Next.

4. Within the Package Explorer view, select resources, right-click and select Import.
This will open the Import wizard. Select General | File System as the source and
click on Next.

i. Browse to the file directory containing the code samples for this chapter,
and within the directory getting ready, select the folder resources.

5. Within the Import window, ensure resources is checked and the option Create
selected folder structure is selected. Click on Finish to import the folder and its
contents into the OSB project.

6. To import the JAR files into the project, right-click on the InvokeJSONCreditCardService
OSB project in the Project Explorer, and select New | Folder from the context menu.

7. Enter the name jars for the folder in the New Folder dialog and click on Finish.

8. Now, import the following JAR files from the CreditCardServiceMessages project into
the jars folder:

 � dist/CreditCardServiceMessages_1.0.jar

 � dist/CreditCardServiceMessagesXmlBeans_1.0.jar

 � lib/jackson-core-asl-1.9.7.jar

 � lib/jackson-mapper-asl-1.9.7.jar

We now need to inform OSB of the dependencies between the JAR files.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating OSB with JSON

166

9. Double-click on the jackson-mapping-asl-1.9.7.jar in the Project Explorer. In the
Modify Jar Dependencies dialog, select the jackson-core-asl-1.9.7.jar file from
the Available jars pane on the left, and click the Add > button to move it to the Jar
references pane. Click on OK.

Do the same for the CreditCardServiceMessages_1.0.jar file, but click on the
Add All >> button to indicate that it depends on all of the other JAR files in the
projecThere will be warnings about classes from the org.joda.time package
not being available. This is an optional dependency in the Jackson Mapper, and
will not be a problem.

10. To create and configure a business service, right-click on the OSB project, and select
New | Business Service from the context menu. Enter a name for the business
service (CreditCardJSON_1.0) and click on Finish.

11. On the General tab, select Messaging Service as the Service Type.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

167

12. On the Messaging tab, select Text as both the Request Message Type and
Response Message Type.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating OSB with JSON

168

13. On the Transport tab, specify the Endpoint URI of the target service, and click on the
Add button (for the purposes of this example, we've used the URI of a mock service
that will help with testing).

We'll accept the default values on the HTTP Transport and Message Handling tabs.

14. Click on the Save icon on the tool bar to save the business service.

15. To create a proxy service, right-click on the OSB project, and select New | Proxy
Service from the context menu. In the Create a new Proxy Service dialog, enter a
name for the proxy service (CreditCardService_1.0) and click on Finish.

16. Next, we will configure the proxy service.

i. On the General tab of the proxy service definition, click the Browse
button to select the binding for the service's interface. Select the
CreditCardBinding in the CreditCardService.wsdl, and click OK.

ii. On the Transport tab, set the Endpoint URI for the service to /ckbk/
svc/CreditCard, as specified in the WSDL.

17. On the Message Flow tab, drag an Operational Branch from the Design Palette and
drop it under the CreditCardService_1.0 icon.

Give the Operational Branch a name (for example,
CreditCardServiceOperation) and ensure that the debitCreditCard
operation is selected.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

169

18. Drag a Pipeline Pair into the debitCreditCard flow, and assign it a name (for example,
debitCreditCardPipelinePair). Then, drag-and-drop a Stage into the Request
Pipeline, and give that a name (for example, debitCreditCardRequestStage).
Drag a Java Callout activity (under Message Processing) into the stage, and click on
the Browse button in the Properties pane to select the Java method to be invoked.

In the Select an Archive Resource dialog, select the CreditCardServicesMessages_
1.0.jar file, and click on OK.

19. In the Select a Java Method dialog, select the debitCreditCardXmlToJson method in
the DebitCreditCardConverter class, and click on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating OSB with JSON

170

20. In the Properties pane for the Java Callout activity, set the Expression for the input
parameter to $body. Set the Result Value to requestJSON; this is the variable to
which the results of the Java method will be assigned.

21. Insert a Service Callout activity after the Java Callout.

i. In the Properties pane for the Service Callout activity, click the Browse
button, this will open the Select a Service Resource dialog, select
CreditCardJSON_1.0.biz and click OK.

ii. Enter requestJSON in the Request Variable field of the Properties
pane, and responseJSON in the ResponseVariable field, as shown in
the following screenshot:

22. Drag a Transport Header activity into the Request Action flow of the Service Callout.

i. In the Transport Headers pane of the Transport Header activity, click on
the Add Header button to add a new header to the Outbound Request.

ii. Set the HTTP header Content-Type to have the value "application/
json"; this is the standard MIME type for JSON data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

171

23. Create a Stage in the Response Pipeline, and give it the name
debitCreditCardResponseStage.

i. Drag a Java Callout activity into the stage. Click on the Browse button
in the Properties pane to select the Java method to be invoked. In the
Select an Archive Resource dialog, select the CreditCardServicesMess
ages_1.0.jar file and click on OK.

ii. In the Select a Java Method dialog, select the
debitCreditCardResponseJsonToXml method in the
DebitCreditCardConverter class and click on OK.

iii. In the Properties for the Java Callout activity, set the Expression for the
input parameter to $responseJSON (the result of the previous Service
Callout), and the Result Value to responseXML.

iv. Add a Replace activity following the Java Callout, and set its properties,
as shown in the following screenshot.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating OSB with JSON

172

24. The proxy service and project are now complete. The project can be deployed to your
Oracle Service Bus server, and tested using a mock JSON service.

For our purposes, we created a mock service using Ruby;
this is the file mockservice.rb, which is included with
the sample code for this chapter.

Before running the mock service, you will need a Ruby
installation, and to also install the JSON gem.

How it works...
The Java Callout actions are used to convert between the XML and JSON message
representations, using the code created in the previous recipe. The Service Callout makes
the call through the Business Service to the JSON service, and uses a Transport Header
activity to set the HTTP Content-Type header to application/json. The final Replace
activity puts the XML response into the body variable, so that OSB will return it to the caller.

Dynamically binding to a JSON service
in OSB

It's common for JSON services to use RESTful interface design principles; as such, the URI
and HTTP method will often combine to indicate what is to be done.

This differs from the common document-literal SOAP/HTTP pattern, where the HTTP
method will always be POST, the URI will be constant for all operations exposed by a
service, and the operation will be selected by the outer-most element inside the SOAP
body or the SOAPAction header.

This difference means that we'll often need to do some extra preparation before calling out to
a JSON service, so that the HTTP method and the URI are correctly configured.

Getting ready
We'll be building on the previous recipes, so we'll assume that you already have an OSB
project in OEPE, with an HTTP business service, and a proxy service that invokes it using
a Service Callout.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

173

How to do it…
1. The HTTP business service will have been configured to use a particular HTTP

method. In the event that a different method is required, the proxy service can
override the method by adding an element to the outbound variable.

2. Add an Insert activity to the Request Action path of the Service Callout and
configure the Properties of the Insert activity described as follows:

i. First, click on <Expression> to open the XQuery/XSLT Expression
Editor and enter the following:

<http:http-method>PUT</http:http-method>

Here, we are specifying PUT as the HTTP method, but it could be
GET, POST, or DELETE as appropriate.

ii. Next, ensure the Location attribute is set to as first child off.

iii. Click on <XPath> to open the XPath Expression Editor. Within the
variable structure browse to outbound | $outbound | transport |
request | request – http and drag it on to the Expression, as shown in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating OSB with JSON

174

iv. Click on OK.

v. Next, set In Variable to outbound.

3. The business service will have been configured with a base URI to use for outgoing
calls. If a suffix is required (to identify a specific resource, for example), the
relative-URI element may be added to the outbound variable to provide this
information to the business service.

To append /1 to the end of the URI, drag an Insert activity to the Request Action
path of the Service Callout. Configure the Properties of the Insert activity (as in
step 2) to have the values listed in the following table:

Field Value
Expression <http:relative-URI>/1</http: relative-URI >

Location as first child of
XPath ./ctx:transport/ctx:request

In Variable outbound

If the Endpoint URI configured for the business service is http://example.
org:8091/CreditCardService/CreditCardJSON_1.0, the outgoing call will
now be made to the following URL:

http://example.org:8091/CreditCardService/CreditCardJSON_1.0/1.

It is, of course, much more likely that you will dynamically construct the relative-URI
value based on the received request.

How it works…
The ./ctx:transport/ctx:request element of the outbound variable is used to supply
transport-specific metadata to the business service, to influence how it makes the outgoing
service invocation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

175

There's more...
In some cases it will be necessary to completely override the business service's endpoint URI.

Assuming that the URI to use has been assigned to a variable requestURI earlier in the
proxy service message flow, the endpoint URI override is performed as follows:

1. Insert a Routing Options activity to the Request Action path of the Service Callout.
Configure the Properties of the Routing Options activity as described next.

2. First, ensure URI is selected, and then click on <Expression> to open the
XQuery/XSLT Expression Editor and enter the text $requestURI.

If we were using a Route, rather than a Service Callout,
and we wanted to select one of a number of business
services bound to different endpoint URIs, a Dynamic
Route activity would be the one to use.

Exposing a proxy service as a JSON service
There will be times when a client is better served by providing a service with a JSON over HTTP
interface, rather than the more common SOAP over HTTP. By re-using the Java code that we
built in the Converting between XML and JSON recipe, we'll expose a JSON interface, while
working with XML internally to take the best advantage of OSB's strengths.

Getting ready
We'll assume that you have an OSB configuration project in OEPE, and that you have the
Jackson and XMLBeans JAR files referred to in the Converting between XML and JSON
recipe, as well as the JAR files produced by that recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating OSB with JSON

176

How to do it...
1. Select the Oracle Service Bus perspective in Eclipse. Right-click on the OSB

configuration project, and select New | Oracle Service Bus Project. In the dialog
box, enter a name for the project (JSONCreditCardService) and click on Finish.

2. Right-click on the InvokeJSONCreditCardService OSB project in the Project Explorer,
and select New | Folder from the context menu.

Enter the name jars for the folder in the New Folder dialog, and click on Finish.

3. Now, import the following JAR files from the CreditCardServiceMessages project into
the jars folder:

 � dist/CreditCardServiceMessages_1.0.jar

 � dist/CreditCardServiceMessagesXmlBeans_1.0.jar

 � lib/jackson-core-asl-1.9.7.jar

 � lib/jackson-mapper-asl-1.9.7.jar

4. We now need to inform OSB of the dependencies between the jars. Double-click on
the jackson-mapping-asl-1.9.7.jar in the Project Explorer.

In the Modify Jar Dependencies dialog, select the jackson-core-asl-1.9.7.jar file from
the Available jars pane on the left, and click on the Add > button to move it to the Jar
references pane. Click on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

177

5. Do the same for the CreditCardServiceMessages_1.0.jar file, but click on the Add
All >> button to indicate that it depends on all of the other JAR files in the project.

There will be warnings about classes from the org.joda.time package not
being available. This is an optional dependency in the Jackson Mapper, and will
not be a problem.

6. Right-click on the OSB project JSONCreditCardService and select New | Proxy
Service from the context menu. In the New Oracle Service Bus Proxy Service dialog
box, enter the name JSONCreditCardService_1.0 for the proxy service and click
on Finish.

7. On the General tab, configure the Service Type to be Messaging Service.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating OSB with JSON

178

8. On the Messaging tab, configure the Request Message Type and Response
Message Type to be Text.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

179

9. On the Transport tab, leave the Protocol set to http, replacing the Endpoint URI with
the value /ckbk/svc/JSONCreditCard, and select the Yes radio-button for the Get
All Headers option.

10. The HTTP Transport, Message Handling, and Security tabs can be left with their
default values.

11. Next, we will create a conditional branch for the HTTP method. On the Message Flow
tab, insert a Conditional Branch activity into the message flow, and assign it a name
(HTTPMethodBranch). For this branch, we will select a path based on the incoming
HTTP method – we'll only support POST for this service.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating OSB with JSON

180

12. Click on the Conditional Branch subtab in the Properties pane and then click on the
<XPath> value to open the XPath Expression Editor. Expand the inbound variable in
the Variable Structures tab, as shown in the following screenshot:

13. Drag the http-method into the Expression field to create the following expression,
and then click on OK:
./ctx:transport/ctx:request/http:http-method

14. Next, enter inbound in the In Variable text field. The conditional branch should be
configured as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

181

15. Next, create a POST branch for the JSON POST request. Click on the branch branch1.
In the Properties pane, enter POST in the Label field, and 'POST' in the Value field.

16. Add a Pipeline Pair to the POST branch, and assign it the name
PostPipelinePair.

17. Add a Stage to the Request Pipeline in the PostPipelinePair, and assign it the
name ProcessPutRequest.

18. Add a Java Callout to the ProcessPOSTRequest stage. In the Properties pane,
click on the Browse button to select the method to be invoked.

This will open the Select an Archive Resource dialog box. Select the CreditCard
ServiceMessages_1.0.jar file in the JSONCreditCardService project and
click on the OK button. In the Select a Java Method dialog box, select the method
debitCreditCardJsonToXml(java.lang.String) and click on OK.

19. In the JavaCallout subtab of the Properties pane, click on the <Expression> value
to specify the input parameter to the Java method. Specify the XPath expression as
$body/text(). The content of the body variable is the received JSON string.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating OSB with JSON

182

20. In the Result Value field of the JavaCallout panel, enter requestXml; the return
value of the Java method will be assigned to this variable.

Click on the ProcessPutRequest stage in the Message Flow view, and select the
Namespaces tab in the Properties pane. Add the three namespace mappings, as
shown in the following table:

Prefix URI
acc http://rubiconred.com/ckbk/xsd/account

cmn http://rubiconred.com/ckbk/xsd/common

ebm http://rubiconred.com/ckbk/ebm/CreditCard

The result will be as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

183

21. Add an Assign activity to the ProcessPutRequest stage, after the Java Callout
activity. Set the Expression to data($requestXml//cmn:cardNumber), and
the Variable to creditCardNumber.

22. We have now converted the received JSON request to XML and used XPath to extract
the credit card number. We will now construct an XML response, and convert it to
JSON for returning to the client.

Insert a Stage named ProcessPostResponse into the Response Pipeline of the
PostPipelinePair, and add the same namespace definitions as we previously
added to the ProcessPutRequest stage.

23. Add an Assign activity to the ProcessPostResponse stage. Set the Expression
to the following:
<ebm:debitCreditCardResponse
 xmlns:ebm="http://rubiconred.com/ckbk/ebm/CreditCard"
 xmlns:cmn="http://rubiconred.com/ckbk/xsd/common">
 <cmn:cardNumber>{$creditCardNumber}</cmn:cardNumber>
 <cmn:cardAuthCode>0000</cmn:cardAuthCode>
</ebm:debitCreditCardResponse>

Set the Variable to responseXml.

24. Add a Java Callout activity following the Assign activity, and select the Java Method
in the same way as in the ProcessPutRequest stage, but select the method debitC
reditCardResponseXmlToJson(org.apache.xmlbeans.XmlObject).

Set the Java Callout activity's input parameter Expression to $responseXml, and
the Result Value to responseJson.

25. Add a Replace activity after the Java Callout. Set the Properties as follows:

 � XPath: .

 � In Variable: body

 � Expression: $responseJson

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating OSB with JSON

184

Select the Replace node contents option.

26. Next, we need to set the Content Type to JSON for the proxy response. Drag a
Transport Header activity into the ProcessPostResponse stage, after the
Replace activity.

27. In the Transport Headers pane of the Transport Header activity, set the Direction to
Inbound Response. Click on the Add Header button to add a new header to the
Inbound Response.

Set the HTTP header Content-Type to have the value 'application/json'; this is
the standard MIME type for JSON data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

185

The completed Pipeline Pair looks like the following screenshot:

28. Your JSON service is now ready to be deployed and tested.

How it works…
Since JSON is just structured text, we can configure an OSB proxy service to accept and
respond with JSON by using the Text messaging type. We then use the Jackson and XMLBeans
libraries to convert between JSON and XML as required.

The Transport Header activity is used to set the Content-Type header in the response to
application/json, in order to inform the client of the data format used for the response.
It's good practice for non-SOAP HTTP interfaces to ensure that the HTTP method, status code,
and headers are used correctly.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating OSB with JSON

186

There's more…
It's possible to build services with OSB that will accept input in multiple formats, by inspecting
the received Content-Type header, which can be accessed at:

$inbound/ctx:transport/ctx:request/tp:headers/http:Content-
 Type/text()

The appropriate transformation of the request payload can then be applied into a common
format. Similar techniques may be used to return the response in a format chosen by the
caller. The caller could indicate its preferred response format by using the Accept header,
or by using something like a suffix on the request URI, which is accessed at:

$inbound/ctx:transport/ctx:request/http:relative-URI/text()

When adding error handling to your JSON services, you will probably want to override the HTTP
status code of your response, to best communicate the error back to the caller. This can be
achieved using an Insert activity, configured as follows:

Parameter Value
Expression <http:http-response-code>404</http:http-

response-code>

Location as last child of
XPath ./ctx:transport/ctx:response

In Variable inbound

Where 404 in the previous table is the HTTP status code that will be returned in the response.

www.it-ebooks.info

http://www.it-ebooks.info/

8
Compressed File
Adapter Patterns

In this chapter, we will cover:

 f Implement GZIP wrapper for OSB
 f Reading compressed files with OSB
 f Writing compressed files with OSB

Introduction
A reasonably common interface convention is to compress the contents of exchanged files, to
reduce the impact on network traffic and archiving requirements. This is particularly common
in Business-to-Business (B2B) scenarios, where network bandwidth is more of a constraint,
as illustrated in the following figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Compressed File Adapter Patterns

188

Although the Oracle Service Bus does not support such interfaces "out of the box," it is
reasonably straightforward to piece together a simple adapter using existing tools.

In this chapter, we will cover recipes that enable us to read/write a GZIP file using the Oracle
Service Bus.

GZIP is a data compression software application, most commonly encountered as the version
implemented by the GNU Project. GZIP only natively supports the compression of one file at a
time (although, of course, that file may itself be the combination of several smaller files), and
has a simple format consisting of compressed binary content between a standard header
and footer.

J2SE includes a standard library of compression/decompression utilities in the java.util.
zip package, which, among other things, includes functionality for working with the GZIP data
compression algorithm.

Implement GZIP wrapper for OSB
Before jumping into creating anything for OSB, we first need to create a Java library that can
be used by the Oracle Service Bus to read and write GZIP files.

Getting ready
Prior to beginning this recipe, you will want to prepare some test data, consisting of XML files
compressed using GZIP.

How to do it...
1. Start up Eclipse and switch to the Java perspective.

2. Right-click in the Project Explorer area and select New | Java Project. Name the
project GzipAdapter and then select Next.

3. Select the Libraries tab and click on Add External JARs.... Select com.bea.core.
xml.xmlbeans_2.2.0.0.jar from the modules subdirectory of your Oracle
middleware installation and click on Open.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

189

4. Click on Finish in the Add External JARs dialog box, and then on Finish again in the
New Java Project dialog box.

5. Right-click on the new project and select New | Class. Set the package name
(com.rubiconred.osb.gzip in the example) and the class name to
GzipAdapter. Leave everything else as default and then click on Finish.

6. Replace the contents of the new file GzipAdapter.java with the following code:
package com.rubiconred.osb.gzip;

import org.apache.xmlbeans.*;
import java.io.*;
import java.util.zip.GZIPInputStream;
import java.util.zip.GZIPOutputStream;

public class GzipAdapter {

 public static XmlObject readGzipObject(Object param)
 throws IOException, XmlException
 {
 byte[] bytes = (byte[]) param;
 if (bytes != null) {
 InputStream input input = new
 ByteArrayInputStream(bytes);
 InputStream gzipInput = new GZIPInputStream(input);

 Writer writer = new StringWriter();

www.it-ebooks.info

http://www.it-ebooks.info/

Compressed File Adapter Patterns

190

 char[] buffer = new char[1024];

 try {
 BufferedReader reader = new BufferedReader
 (new InputStreamReader(gzipInput, "UTF-8"));

 int n;
 while ((n = reader.read(buffer)) != -1)
 writer.write(buffer, 0, n);
 } finally {
 gzipInput.close();
 }

 // return the contents of the file
 return XmlObject.Factory.parse(writer.toString());
 } else {
 // input parameter is null, return null
 return null;
 }
 }

 public static byte[] writeGzipObject(XmlObject input)
 throws IOException, XmlException
 {
 ByteArrayOutputStream output = new
 ByteArrayOutputStream();
 GZIPOutputStream gzipOutput = new
 GZIPOutputStream(output);

 input.save(gzipOutput);
 gzipOutput.close();

 return output.toByteArray();
 }
}

7. Right click on the GzipAdapter Java project and select Export.... Select Java | JAR
file and then click on Next.

Provide the export destination for the JAR file as GzipAdapter.jar in the directory
of your choice and then click on Finish.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

191

How it works…
In the previous code we have implemented two methods that allow us to convert to/from
a binary format (that is GZIP) to an XML Beans Interface. As Oracle Service Bus uses the
standard XMLBeans interface to manipulate XML, this provides a simple wrapper around
the existing GZIP libraries that can be used by OSB to read/write GZIP data.

We will use these methods in the next two recipes to do just that.

There's more…
In addition to GZIP, the Java standard libraries also include support for the popular ZIP file
format. The same design pattern can be used for this format, substituting ZIP for GZIP in the
example code.

For other compression file formats (for example, RAR), there are generally open source
libraries available for manipulation, with which similar approaches may be taken.

Reading compressed files with OSB
This recipe will guide you through a sample implementation of a proxy service which polls a
directory for XML files compressed using the gzip utility, and uses the Java wrapper created
in the previous recipe, to convert it to standard XML which can then be manipulated as
normal within the OSB.

Getting ready
This recipe assumes you have completed the first recipe and created the GzipAdapter.jar.
Alternatively, you can use the Jar file contained with the samples for this recipe.

Prior to beginning this recipe, you will also want to prepare some test data, consisting of XML
files compressed using GZIP.

How to do it...
1. Open Eclipse and create an OSB project. Name it GzipFileAdapter if you want to

follow the example used in this recipe.

2. First we need to import the GzipAdapter jar plus any of its dependencies into the
project. Right-click on the GzipFileAdapter OSB Project in the Project Explorer, and
select New Folder from the context menu.

Enter the name jars for the folder and click on Finish.

www.it-ebooks.info

http://www.it-ebooks.info/

Compressed File Adapter Patterns

192

3. Right-click on the jars folder and select Import | Import…. Select General | File
System and click on Next.

Browse to the modules directory under <FMW Home>\modules and click on OK.
Within the import window select com.bea.core.xml.xmlbeans_2.2.0.0.jar
(as used earlier in the first recipe), and then click on Finish.

4. Right click on the jars folder and select Import | Import…. Select General | File
System and click on Next.

Browse to the directory containing the GzipAdapter.jar, created in the first recipe,
and click on OK. Within the import window, select GzipAdapter.jar and click
on Finish.

5. We now need to inform OSB of the dependencies between the jars. Double-click on
GzipAdapter.jar in Project Explorer. In the Modify Jar Dependencies dialog box,
select com.bea.core.xml.xmlbeans_2.2.0.0.jar file from the Available jars
pane on the left, and click on the Add > button to move it to the Jar references pane.
Click on OK.

6. The next step is to create the file adapter, as a binary file-based message proxy
service, from the Oracle Service Bus IDE.

Right-click on the GzipFileAdapter OSB project in Project Explorer and select
New | Proxy Service. Name it ReadGzipFile and click on Finish.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

193

7. In the General tab of the Proxy Service editor, select Messaging Service as the
Service Type.

8. In the Messaging tab, select Binary as the Request Message Type. Leave Response
Message Type as None.

www.it-ebooks.info

http://www.it-ebooks.info/

Compressed File Adapter Patterns

194

9. In the Transport tab, select file as the Protocol and provide a directory name where
you would like to poll for files from, as the Endpoint URI.

10. In the File Transport tab, customize the adapter to suit. In this example, we'll select
a file mask of *.gz, as well as configuring a Post Read Action to be archive and
specifying all the necessary directory file destinations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

195

11. The next step is to incorporate a call to the readGzipObject Java method into the
proxy service Message Flow.

Start by dragging a new Pipeline Pair from the Design Palette into the Message
Flow editor.

12. Add a new Stage to the Request Pipeline and name it Extract GZIP.

13. Drag an Assign action into the new Stage. In the Properties tab for the Assign
action, set the Expression as $body/ctx:binary-content and the Variable
as gzBinaryContent.

14. Drag a new Java Callout action from the Design Palette to just under the Assign
action. In the Properties tab for the new Java Callout, select Browse next to the
Method field. Select the GzipAdapter.jar and click on OK.

In the Select a Java Method window, select the readGzipObject method and click
on OK.

15. With the Properties tab, click on < Expression> for the only parameter and specify
$gzBinaryContent. Set the Result Value variable to payload.

www.it-ebooks.info

http://www.it-ebooks.info/

Compressed File Adapter Patterns

196

16. To test the new file adapter, you can place a GZIP'd file in the input directory and
confirm the contents are read successfully by following these additional steps:

i. Create a new Reporting stage below the GZIP Extract stage and
drag a new Log action in.

ii. Set the log Expression as $payload and the Annotation as
GzipFileAdapter message payload.

iii. Change the Severity to Error so that it is guaranteed to appear on your
weblogic's console output.

iv. Deploy the service to your server, copy a GZIP'd text file to the input
directory you specified earlier, and observe that the contents are written
to the console.

How it works…
OSB's binary message format capability allows us to accept files of any type, and extract the
binary content using the built-in constructs which are generated by the engine.

From there, the Java Callout allows us to manipulate and parse the content using standard
libraries. Note, that the return type from the Java Callout is org.apache.xmlbeans.
XmlObject, the standard XMLBeans interface which OSB uses to manipulate XML. By using
this return type (as opposed to a String) we are able to immediately start manipulating the
returned content as XML using all the standard OSB message processing actions.

There's more…
In some cases, multiple files may be included in the same compressed archive. There are a
couple of viable strategies for manipulating these files using OSB:

 f Use a 2-stage process with two file adapters, one to decompress and write the files
out, and the other to read the uncompressed files in separately

 f Use a single file adapter which reads all the contained files in a single pass, then
concatenates the contents inside a batch XML element for a downstream process
to separate

Writing compressed files with OSB
In this next section we will consider the inverse scenario, in which files are written using the
same GZIP compression algorithm to the filesystem.

This recipe will demonstrate how a simple proxy service which accepts XML content and writes
GZIP'd XML files can be built using OSB.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

197

Getting ready
This recipe assumes you have created an OSB project GzipFileAdapter and carried out
steps 1 to 5 in the previous recipe, as well as completed the first recipe and created the
GzipAdapter.jar.

How to do it...
1. Right-click on the GzipFileAdapter OSB project in the Project Explorer and select

New | Business Service. Name it GzipFileWriter and click on Finish.

2. On the General Configuration tab, select Messaging Service as the Service Type.

3. On the Messaging tab, select Binary as the Request Message Type. Leave the
Response Message Type as None.

4. On the Transport tab, select file as the Protocol. Enter a directory you would like to
write to as the Endpoint URI, then click on Add.

www.it-ebooks.info

http://www.it-ebooks.info/

Compressed File Adapter Patterns

198

5. On the File Transport tab, set the Suffix as .xml.gz.

Save your changes.

6. Right-click on the GzipFileAdapter OSB project in the Project Explorer and select
New | Proxy Service. Name the service WriteGZipFile and select on Finish.

7. On the Message Flow tab, drag a Route node from the Design Palette into the
main editor.

8. Next, drag a Routing action into the route. Set the Service property to
GzipFileWriter.biz.

9. Drag a new Java Callout action from the Design Palette into the Request Action
section of the Routing action. In the Properties tab for the new Java Callout, select
Browse next to the Method field. Select the GzipAdapter.jar and click on OK.

In the Select a Java Method window, select the writeGzipObject method and
click on OK.

10. With the Properties tab, click on < Expression> for the only parameter and set it to
$body and set Result Value to gzContent.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

199

11. Next, add a Replace action after the Java Callout, and set its properties as follows:

Field Value
XPath .

In Variable body

Expression $gzContent

select Replace node Contents

12. Drag a Transport Headers action into the Request Action section, after the
Replace action.

13. In the Properties tab, click on Add Header. Select the file category and fileName
element and then Set Header to your desired filename. This could be a string
variable or a constant.

Note, that if a constant filename is used, then subsequent uses of the business
service will automatically append an integer to the filename so as not to overwrite
existing files.

www.it-ebooks.info

http://www.it-ebooks.info/

Compressed File Adapter Patterns

200

14. Deploy your project and test out the proxy service. You should see the GZIP'd XML
files being produced containing the content you place in the body of the request.

How it works…
The writeGZipObject()method converts the input XML into an output stream; in our case,
the GZIPOutputStream which compresses the content into the output stream it wraps.

By using the byte[]return type for our Java Callout, we leverage OSB's binary content
capability to include a reference to the raw data produced by our GZIP compression code.

Passing this to a binary messaging business service then automatically pushes the content
out into the file, exactly as expected.

Note, the use of transport headers to set the filename. This is necessary meta-info, and
should usually be used to name the file using variable content.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

201

There's more…
In addition to GZIP, the Java standard libraries also include support for the popular ZIP file
format. The same design pattern can be used for this format, substituting ZipOutputStream
for GZIPOutputStream in the example code.

For other compression file formats (for example, RAR), there are generally open source
libraries available for manipulation with which similar approaches may be taken.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

9
Integrating Java

with SOA Suite

In this chapter, we will examine the following recipes that allow us to integrate Java code into
our SOA composites:

 f Creating a custom XPath function for SOA Suite

 f Calling an EJB from an SOA composite

 f Using a Spring bean in an SOA composite

 f Using an EJB reference in a Spring component

 f Accessing the SOA runtime environment from BPEL

Introduction
Java is a widely used and popular programming language; indeed, SOA Suite is written in
Java. Often we have existing Java code that we wish to use in our composites. The point about
Service Oriented Architecture is that it is language neutral and encourages re-use, so it is
natural to want to re-use existing Java artifacts. In addition to re-using existing artifacts, we
may want to use Java to handle some tasks that are too complicated to handle easily in XML.
The following list summarizes the ways in which we may interact with Java from within the SOA
Suite, and the purpose for which they should be used:

 f Spring container

 � Allows the use of existing Spring beans and other Java objects

 � Allows the implementation of a WSDL interface in Java

 f EJB reference

 � Allows composites to call an Enterprise Java Bean

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Java with SOA Suite

204

 f Java Exec

 � Allows a BPEL process to access an executing environment

 f Custom XPath function

 � Allows custom Java code to be embedded in assign statements and XSLT
transforms

 f EJB service

 � Allows a composite to be invoked by Java code as though it were an EJB

The following use cases outline when to use the different types of Java integration.

Use Case 1 – adding complex logic to XPath
Sometimes, the existing XPath functions are insufficient for our needs. In this case, we can
write custom XPath functions in Java code. These XPath functions can be used in XQuery,
XSLT, and Assign operations in the same way as built-in XPath functions. This allows complex
logic to be embedded in XML processing without requiring complex XPath or Xquery logic
to be added to it; it also helps to avoid having to make callouts to Java code through other
mechanisms and hides the fact that Java is being used from the user of the XPath function.

Use Case 2 – calling existing Java code
Existing Java code can be classified as an EJB, a Spring bean, or some other Java object.
Other Java objects can be wrapped in a Spring bean to make them consumable by SOA
composites. It is possible to select methods to be exposed from existing code. Methods to be
exposed should have only simple types or Java beans as input and output parameters. Java
beans have no argument constructors. If the methods do not meet these criteria, then it will
be necessary to wrap the methods with a Spring bean interface that does meet these criteria
if the method is to be called from non-Java components.

The following flowchart helps you decide how to re-use existing Java code, identifying if there
is a need to wrap the code to make it usable by non-Java components. Use the flow chart to
determine how to re-use your existing Java. Depending on your answers to the questions in
the flow chart, it will suggest if you need to create a Java bean wrapper for your resource to
convert parameter and return types into simple Java types and Java beans. It will also identify
how the resource should be consumed within the SOA Suite, such as by an EJB reference or
as a Spring component.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

205

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Java with SOA Suite

206

Use Case 3 – implementing a service in Java
SOA Suite is generally concerned with orchestrating services together, but it can also be used
to implement the services. Sometimes, we have existing interfaces that need a concrete
implementation behind them that may best be provided in a 3GL, such as Java. In this
scenario, instead of writing a Java web service, deploying it, and operating it separately to our
SOA infrastructure, it may be better to implement the interface in a Spring component inside
an SOA composite. This keeps the service in a managed environment while taking advantage
of Java.

Use Case 4 – accessing BPEL and composite
information

Sometimes, we need to access information about the composite or BPEL process that is
exposed through Java APIs but not available through built-in XPath functions. We could use
custom XPath functions to access this information, but sometimes we want quick, one-off
access that will not be re-used. In this case, we can use a Java Exec activity in a BPEL
process to execute Java code as part of our BPEL process. This code has access to the
BPEL and composite environment.

Creating a custom XPath function for SOA
Suite

In this recipe, we will create a custom XPath function in java that can be used by any
composite component in an assign or transform. This enables us to add complex logic into
our XPath expressions without making an explicit call to Java. We will use the example of
calculating the mean and standard deviation of a set of numbers.

Getting ready
Our XPath function will have a signature, as shown in the following code snippet:

double getStdDev(values as node-set)

It will take the value of each node in the input node set, calculate it, and return the
standard deviation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

207

How to do it...
1. Create a project with the appropriate libraries that are required by XPath.

In JDeveloper create a new Java project. From the new projects Project Properties,
choose the Libraries and Classpath tab and choose Add Library to add the SOA
Runtime library and the Oracle XML Parser v2 library to the project. Click on OK
until the Project Properties dialog closes.

2. Create a new Java Class in the project and add a static method to the class that
takes an oracle.xml.parser.v2.XMLNodeList as the input parameter (this
is the input to our function) and returns a java.lang.Double (the output of our
function). The method name is the name of our XPath function.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Java with SOA Suite

208

This is the method that we will use to provide the implementation of our custom
XPath function. It is also the method we will register with the XSLT engine.

A sample class is shown as follows:

package soa.cookbook.xpath;

import oracle.xml.parser.v2.XMLNodeList;

public class StdDev {
 public static double getStdDev(XMLNodeList nodes)
 {
 return null;
 }
}

3. Access the input values.

The input parameter to our XPath function is a list of nodes that we can iterate over
through each node:
for (int i = 0; i < nodes.getLength(); i++) {
 try {
 Node node = nodes.item(i);

We can then check that the node is of the expected type; in our case we expect
an element:

if (node.getNodeType() == Node.ELEMENT_NODE) {

4. Get the input value.

We can then access the value of the element as a string and parse it into the double
we expect:
double value = Double.parseDouble(node.getTextContent());

We wrap the parameter processing in a try-catch block so that we can ignore any
unexpected data types.
 }
} catch (Exception e) {
 ; // Ignore non-numeric values
}

We can now manipulate the data passed in to our function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

209

5. Add the required libraries.

Our implementation makes use of the Apache Commons Math library, and so we
need to add that library to our Project Properties by going to the Libraries and
Classpath tab and choosing Add Library. We can then click the New button to
add a new library to JDeveloper.

On the Create Library dialog, we can specify a name for the library and then choose
the Class Path and click Add Entry to bring up the Select Path Entry dialog, which
will allow us to choose the JAR file or classpath that we need to add to find the
classes in the library.

We can then specify the Source Path and Doc Path if those are also available for the
library. Finally, we add the library by clicking on OK and then select the library from
the Add Library dialog to include it in our project.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Java with SOA Suite

210

6. Implement the function logic.

To implement the function logic, we begin by executing the initialization code before
we start iterating over the nodes in the XMLNodeList.
DescriptiveStatistics stats = new DescriptiveStatistics();

for (int i = 0; i < nodes.getLength(); i++) {

XMLNodeList nodes = (XMLNodeList)list.get(0);

Within the iteration of XMLNodeList, we then add the value of the element to the
statistics we are gathering.
double value = Double.parseDouble(node.getTextContent());
stats.addValue(value);

Finally, we return the standard deviation as the result of the XPath function by
passing it out as the return value of the method.

return stats.getStandardDeviation();

7. Create a BPEL and Mediator wrapper function.

BPEL and Mediator components can use custom XPath functions, but they
have a slightly different interface than custom XSLT XPath functions, so we
will now implement that interface—oracle.fabric.common.xml.xpath.
IXPathFunction.

We modify our class to implement the interface by right-clicking on the class name
and choosing Source | Implement Interface. We then use the Hierarchy browser in
the Implement Interface dialog to select the IXPathFunction interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

211

This creates a new method in our class:
public Object call(IXPathContext iXPathContext,
 List list) throws XPathFunctionException {
 return null;
}

The call method takes an IXPathContext and a List as the input parameters
and returns an Object. The method should declare that it throws an
XPathFunctionException.

8. Get a single parameter.

The input parameters to the XPath function are available in the list parameter of
our method.

We have only one parameter, so we can access it by getting the first item in the list
and casting it to the expected type, an XMLNodeList:
NodeList nodes = (NodeList)list.get(0);

The iXPathContext provides access to the calling component (Mediator and BPEL)
and to any variables declared in that component.

We need to pass the function input parameters to the static method we previously
implemented, so we'll just call that method from the new method:

return getStdDev(nodes);

9. Create the custom XPath descriptor file.

To tell both JDeveloper and SOA Suite about our custom XPath functions, we must
create their description in an XML file. The file is called ext-soa-xpath-functions-
config.xml and must be created in the project's src/META-INF directory.

This file must have the following content:
<?xml version="1.0" encoding="UTF-8"?>
<soa-xpath-functions
 xmlns="http://xmlns.oracle.com/soa/config/xpath"
 xmlns:stat=
"http://www.oracle.com/XSL/Transform/java/soa.cookbook.xpath.
StdDev" >

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Java with SOA Suite

212

The soa-xpath-functions element is in the http://xmlns.oracle.com/
soa/config/xpath namespace and must specify a target namespace prefix
(with a name of our choosing) that references a namespace made up of two parts.
The first part of the namespace must be http://www.oracle.com/XSL/
Transform/java/ and the final part must be the canonical class name of the class
implementing the static XSLT function, called soa.cookbook.xpath.StdDev.

10. Define the XPath function name.

The function name element is used to register the name of the function. The
function name is used by XSLT to identify the static method in the class that was
previously identified.

<function name="stat:getStdDev">

11. Identify the function implementation class.

The className element identifies the class that implements the BPEL and Mediator
call method.

 <className>soa.cookbook.xpath.StdDev</className>

12. Define the XPath function's return type.

The return element identifies the return type of the function.

 <return type="number"/>

13. Define the XPath function's parameters.

The params element lists the parameters of the function, identifying their names
and types.

 <params>
 <param name="data" type="node-set"/>
 </params>

14. Provide the XPath function's description.

The desc element provides the function summary that will appear in the brief
description in JDeveloper.
 <desc>Returns the Standard Deviation of the values of the
 input node-set</desc>

The detail element provides the detailed description that appears in JDeveloper.

 <detail>Returns the Standard Deviation of the values of
 the top level elements in the node-set passed as
 a parameter. </detail>

 </function>
</soa-xpath-functions>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

213

15. Packaging the XPath functions in a JAR file.

Having created the descriptor file, we now package the XPath function into a JAR file
by going to Project Properties and selecting the Deployment tab. Here, we create a
New deployment that will be used to package the XPath function we have created.

In the Create Deployment Profile dialog, we give the profile a name and choose it to
be of the type JAR File, and then click on OK.

16. Add additional libraries to Deployment Profile.

In the Edit JAR Deployment Profile Properties dialog, we go to the Contributors
section of the Project Output section in File Properties and click on the Add button
to add a new contributor. Here, in the Add Contributor dialog, we enter the path for
any libraries that need to be included in our custom XPath library; in our case we add
the Apache Math library.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Java with SOA Suite

214

17. Generate the JAR file.

Having created the profile, we can now deploy it by right-clicking on the project and
selecting Deploy to generate our JAR file.

18. Register the XPath functions with JDeveloper.

To use the custom function in JDeveloper, we must go to Tools | Preferences and
choose the SOA section.

Clicking on Add allows us to locate our newly created JAR file in the deploy directory
of our project and register it with JDeveloper.

19. Register the XPath functions with SOA Suite.

To use our custom XPath functions in an SOA Suite installation, we need to copy the
generated JAR file to $ORACLE_HOME/soa/modules/oracle.soa.ext_11.1.1.

20. Use the XPath functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

215

We can use our custom XPath function just like any other XPath function by choosing it from
Component Palette. It will be listed under the User Defined section.

How it works...
When we register our XPath JAR file with JDeveloper and SOA Suite, they look in the
META-INF directory for a configuration file that will tell them what functions are being
registered and which classes implement those functions. The name of the configuration
file varies according to which component types we want to allow to access our XPath function.
The format of the file is the same for all the components; the name of the file and the
component types they apply to are shown in the following table:

Filename Registered Component
XSLT BPEL Mediator Human

Workflow
ext-soa-xpath-functions-config.xml Yes Yes Yes Yes
ext-mapper-xpath-functions-config.
xml

Yes No No No

ext-bpel-xpath-functions-config.xml No Yes No No
ext-mediator-xpath-functions-
config.xml

No No Yes No

ext-wf-xpath-functions-config.xml No No No Yes

If we do not wish to register our function with the XSLT mapper, because for instance it made
use of the name of the currently active composite or component, we would need to provide
three identical files to register with BPEL (ext-bpel-xpath-functions-config.xml),
Mediator (ext-mediator-xpath-functions-config.xml), and Human Workflow
(ext-wf-xpath-functions-config.xml).

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Java with SOA Suite

216

When our function is called from XSLT, the parameters to the function map directly onto the
parameters of our static method. The parameter mappings from the XSD type in our XPath
function to the Java type in our static method are shown as follows:

XPath Function Parameter Type
(XSD)

Java Method Parameter Type

String java.lang.String

Boolean boolean or java.lang.Boolean
Number int or java.lang.Integer or float or java.

lang.Float or double or java.lang.Double
node-set oracle.xml.parser.v2.XMLNodeList

tree oracle.xml.parser.v2.XMLDocumentFragment

A node set will have multiple XML elements at the same level and is useful for when we want
to operate across multiple elements; in our example, we used it to pass multiple values for
statistical analysis. A tree has a single, top-level XML element that will usually have a number
of nested XML elements.

When our function is called from BPEL, Mediator, or Human Workflow, the list of parameters
are packaged up into a java.util.List and passed as a single parameter to our registered
class' call method.

There's more...
If we have more than one parameter, we can iterate over the list using a for statement:

For (Object o : list) {
 ...
}

The IXPathContext parameter for the XPath functions registered with BPEL and Mediator
is used to pass information about the calling component. In particular, it can be used to
determine the type and name of the calling component, and provides access to any variables
in that component.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

217

Calling an EJB from an SOA composite
In this recipe, we will call an Enterprise Java Bean Session Bean from within a composite.
This is useful if we have an existing EJB that we wish to re-use.

Getting ready
Make sure that you have opened the composite to which you will add the EJB reference. There
will be one item in the list for each parameter of our function.

How to do it...
1. Add an EJB reference.

Open the composite in JDeveloper and drag the EJB Service from the Component
Palette onto the References section of the composite.xml Design View.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Java with SOA Suite

218

2. Start configuring EJB.

Select a Name for the EJB reference. Select the Type as Reference. Select the
Version of an EJB specification that the EJB has implemented. Set the Interface
to be Java.

3. Select the EJB JAR file.

Click on the magnifying glass and use the SOA Resource Browser to find your EJB
JAR file. After selecting your file and clicking on OK, you will be asked if you want to
copy the file into your project. Click on Yes to copy the file into your project.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

219

4. Select the Java interface that you want to use.

Click on the magnifying glass and use Class Browser to find your EJB's interface in
the class Hierarchy. Select the interface you want and click on OK.

5. Complete the EJB reference creation.

After reviewing your EJB Service settings, you can click on OK to complete the
creation of the reference.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Java with SOA Suite

220

6. Wire the EJB reference to a component.

Wire an EJB reference to a component by selecting the inbound service arrow on
the EJB reference in the External References section of the Design view, and drag
it onto a component in the Components section. The outbound reference arrow will
automatically appear as you move close to a component.

If the component is not a Java component, a dialog box will appear telling you that a
WSDL file was generated for you based on the EJB interface chosen.

The EJB reference is now ready to be used in the selected component. It can be accessed just
like any other reference.

How it works...
The EJB reference is given the Java Naming and Directory Interface (JNDI) location of an EJB
that implements the given Java interface. At runtime, the container will look this JNDI location
up to obtain a reference to the EJB. If this reference is of type "Java", it can be used by other
Java components without requiring any additional translation. If the reference is of type
Java and is consumed by a non-Java component, such as a Mediator or BPEL process, then
a mapping from XML to Java is generated to allow consumption of the EJB by the non-Java
component. Finally, if the type is "WSDL", the Java interface is translated to XML for all the
consumers, and the Java components will access the EJB through a WSDL interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

221

The Java-to-XML translation can only be generated if the EJB interface
has simple types or Java beans as the input parameters and return value.
For example, the schema element for a generic object type cannot be
autogenerated. Similarly, all exceptions thrown must only contain simple types
and/or Java beans. Java beans must have a public no parameter constructor
and only consist of simple types and other Java beans. Finally, the entire
object graph must be instantiated in order for the Java object to be converted
to XML, so lazy loading is not supported.

There's more...
EJBs with complex interfaces can be consumed by other Java components, and so one way
to provide access to an EJB with complex interfaces is to inject it into a Spring component
that provides a wrapper interface to convert the interface into one for which SOA Suite can
automatically generate Java/XML conversions. This approach shows the EJB dependency in
composite.xml, but allows us to use complex Java interfaces.

When consuming an EJB with a non-Java component, we can control the way the Java
interface parameters are mapped onto an XML schema by use of EXD files.

See also
 f The Customizing the XML mapping of an EJB recipe in this chapter

 f The Using an EJB reference in a Spring component recipe in this chapter

Using a Spring bean in an SOA composite
In this recipe, we will call a Spring bean from within a composite. This is useful if we have an
existing Spring bean that we wish to use; it is also a useful way to wrap other Java code.

Getting ready
Make sure that you have a composite open to add the Spring component.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Java with SOA Suite

222

How to do it...
1. Copy Java libraries to a composite.

Copy any JAR file you will be using to the SCA-INF/lib directory and any class
that is not in a JAR file to the SCA-INF/classes directory of your project. Open
the Project Properties by right-clicking on the project name in the Application
Navigator. Select the Libraries and Classpath section and click on the Add JAR
Directory button, and select the JAR file in the SCA-INF/lib directory or the
SCA-INF/classes directory and add it to the project.

2. Add Spring Context to the composite.

Open the composite in JDeveloper and drag the Spring Context from the Service
Components section of the Component Palette onto the Components section of
the composite.xml Design View.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

223

3. Start configuring Spring Context Component.

Select a Name for the Spring Context Component. Select Create New Context
and provide a name for the Spring Context XML file. Then click on OK to create the
Spring component.

4. Add a bean to Spring Context.

Double-click on the Spring component to start configuring Spring Context. This will
open a Source view of the Spring Context XML file. Drag bean from Component
Palette onto the Spring Context XML file immediately after the <!--Spring Bean
definitions go here--> comment.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Java with SOA Suite

224

5. Configure the bean.

Click on the newly created <bean/> tag and then use Property Inspector to set id of
the bean.

Click on the down arrow next to the class property and choose Edit... from the pop
up. This will launch the Edit Property: class dialog from where you can browse the
class hierarchy for the bean class, as shown in the following screenshot:

Your bean should now look like this:

<bean id="employeeBean" class="soa.cookbook.EmployeeEJBClient"/>

6. Configure a service on Spring Context.

Having loaded a bean into our Spring Context, we can now make it available to other
components by dragging a service from the Component Palette onto our Spring
Context XML.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

225

This will bring up the Insert Service dialog where we can enter a name for the
service, a target bean that will receive service requests (the previously created
bean), and the interface type that is being exposed (which must be implemented by
the previously created bean). The type can be selected by using the hierarchy browser
accessed via the ellipsis button to the right-hand side of the type input field.

7. Wire Spring Context to a component.

Wire a Spring component to another component, by selecting the inbound service
arrow on the Spring component in the Components section of the Design view and
dragging it onto a component in the Components section. The outbound reference
arrow will automatically appear as you move close to a component.

If the component is not a Java component, then a dialog box will appear telling you
that a WSDL file was generated for you based on the Java interface that was chosen.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Java with SOA Suite

226

The Spring container is now ready for use in the selected component. It can be accessed just
like any other component.

How it works...
The Spring Context file is a standard Spring Context, and within it we have access to the full
power of Spring. When we wire another component in our application to Spring Context,
we have access in our context to a new interface that can be injected as a parameter to an
existing Spring bean. This has a couple of benefits; first, it makes it easy to consume other
components and references in our Spring bean, and secondly, it makes our dependencies
visually obvious by having them appear as wires in our composite visual editor. It is always
better to have visible references because then developers and maintainers of the code can
clearly see what dependencies exist. There is minimal, if any, runtime overhead to making
Spring dependencies explicitly visible in the composite.

There's more...
Spring is a very powerful development framework for Java that plays well with the JEE platform
that SOA Suite is built on. If we need to implement new functionalities in Java, the Spring
component is a good way to implement that, because the SOA framework takes care of
all the details of deployment and context, and leaves the Spring bean implementer free to
concentrate on providing the business service logic in Java.

See also
 f The Using an EJB reference in a Spring component recipe in this chapter

Using an EJB reference in a Spring
component

In this recipe, we will configure a Spring bean to use an EJB reference from within a composite
as a constructor argument. This is useful if we have a Spring bean that references an EJB,
because it shows the dependency on the composite diagram.

Getting ready
Make sure that you have a composite open to configure the Spring component.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

227

How to do it...
1. Wire Spring component to the EJB reference.

In the design view of composite.xml, drag the reference link from the Spring
component to the service link of the EJB reference.

This will generate a new reference in Spring Context, as shown in the following
code snippet:

<bean id="employeeBean"
 class="soa.cookbook.EmployeeEJBClient"/>
<sca:service name="employeeSpringService"
 target="employeeBean"
 type="soa.cookbook.EmployeeEJBBean"/>
<sca:reference type="soa.cookbook.model.EmployeeEJB"
 name="EmployeeEJBService"/>

2. Use a reference in Spring Context.

Open the composite in JDeveloper and drag the Bean Constructor Argument from
the Component Palette onto the bean in the Spring Context Structure view. This will
add a constructor to the bean.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Java with SOA Suite

228

3. Configure a constructor argument.

Use the Bean Constructor Argument – Property Inspector window to set a
ref. The ref should be the name of the generated sca:reference element
in Spring Context.

This will generate the code, shown as follows, that wires the constructor argument of
the bean to the EJB:

<bean id="employeeBean"
 class="soa.cookbook.EmployeeEJBClient">
 <constructor-arg ref="EmployeeEJBService"/>
</bean>
<sca:service name="employeeSpringService"
 target="employeeBean"
 type="soa.cookbook.EmployeeEJBBean"/>
<sca:reference type="soa.cookbook.model.EmployeeEJB"
 name="EmployeeEJBService"/>

Your bean is now ready to use.

How it works...
When we wire another component service or reference to a Spring bean, then we create a
new interface within Spring Context that can be injected into other Spring beans. In this case,
we injected the EJB interface as a parameter to the constructor of our Spring bean, avoiding
the need to use a JNDI lookup in our Spring code.

There's more...
If we were to wire up a reference from our Spring Context to a non-Java component, then
JDeveloper would generate a JAXB mapping to make available the WSDL reference as a Java
interface in our Spring Context. This makes it easy for our Spring Context to interact with any
other portion of SOA Suite without us having to perform complex, object-XML mapping.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

229

Accessing the SOA runtime environment
from BPEL

In this recipe, we will embed a snippet of Java code into our BPEL process.

How to do it...
1. Open your BPEL process in the BPEL process editor.

2. Drag a Java Embedding activity from va Embedding activity from va Embedding Component Palette under the Oracle
Extensions section onto the BPEL process, to create an Exec activity.

3. Access the BPEL process variables.

Double-click the Java activity to open the Edit Java Embedding dialog, and enter the Edit Java Embedding dialog, and enter the Edit Java Embedding
Java code to be executed.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Java with SOA Suite

230

BPEL variables can be read by using the getVariableData method that is
predefined. This method takes three parameters, namely the variable name, the
message part (if it is a message variable), and the XPath expression (if any).
The XPath expression must use appropriate namespace prefixes declared in
the BPEL process.
org.w3c.dom.Element elem = (org.w3c.dom.Element)getVariableData("i
nputVariable", "payload", "/client:process/client:input");

The setVariableData method is used to write to variables in the BPEL process.
This takes up to four parameters, with the fourth parameter being the data that we
need to store in the BPEL variable.

setVariableData("outputVariable", "payload", "/
client:processResponse/client:result", "Response");

How it works...
The Java embedding activity causes the Java code to be included in the code that is generated
when the BPEL process is compiled. This is actually an instance of an extension of the com.
collaxa.cube.engine.ext.bpel.v1.nodes.BPELXExecLet class. This class is part of
the BPEL process and is used to implement the Exec activity. Any namespace prefixes in the
scope of the BPEL process may be used in XPath expressions in the embedded Java code.

There's more...
Generally, it is more flexible to write a custom XPath function than use Java embedding,
because a custom XPath function can be re-used across BPEL and Mediator components
in different composites.

www.it-ebooks.info

http://www.it-ebooks.info/

10
Securing Composites

and Calling Secure
Web Services

In this chapter we will cover:

 f Restricting a composite to authenticated users with HTTP Basic Security

 f Creating a new, group-based authorization policy

 f Restricting a composite to authorized users

 f Adding keys to a credential store

 f Invoking an HTTP Basic secured web service

Introduction
In this chapter, we will examine recipes that allow us to secure composites or to invoke
secured web services.

Web Services Manager
Oracle Web Services Manager (WSM) is the component that is used by SOA Suite to act as
the policy manager and enforcement agent. WSM is installed as an integral part of SOA Suite.

www.it-ebooks.info

http://www.it-ebooks.info/

Securing Composites and Calling Secure Web Services

232

Key security terms
When dealing with secured services, it is useful to know the terms that are used. The
definitions that follow are those needed to understand how security works in SOA Suite.
If this were a cookbook on identity management, then we would need to be more precise.

User
A user is a person or application program. Typically, the user and their associated attributes,
such as credentials (see next section), are stored in an LDAP directory such as Oracle
Internet Directory or Microsoft Active Directory. The default store is the internal WebLogic
LDAP directory.

Credential
A credential is the token used for validating the identity of a user. This may be a password or
the public certificate for a user.

Group
A group refers to a set of users.

Principal
A principal can be a user or a computer system. A principal is the combination of a user and a
validated credential for that user, and the authenticated resource that is requesting access to
a service.

Role
A role is an abstract name given to a set of permissions required to access a resource. It is
normally granted to a user or a group.

Authentication
Authentication is the task of verifying the identity of a user to create a principal, and may
be done in a variety of ways, including, but not limited to, a password, a client certificate, or
a Kerberos token. Multiple methods of authentication (multifactor authentication) may be
required for this.

Authorization
Authorization is the task of verifying if a principal has the right to access a resource.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

233

Policy
A policy is a collection of security steps or assertions that are applied to an endpoint, which
may be a service or a reference endpoint.

Basic model
The basic security model goes through the following steps:

1. A service request is constructed by a client.

2. The client adds the user identifier (username) and credentials (a password for
example, usually encoded).

3. The service request is received by the service.

4. The service validates the credentials against the provided user identifier, and if they
are valid, creates a principal.

5. The service validates that the principal is authorized to access the service, usually by
checking that the principal has been granted the required role.

6. After authenticating and authorizing the principal, the request is acted upon by the
service.

Note, that in this sequence, we have not identified if SOA Suite is the client or if it is providing
the service. If SOA Suite is providing the service, then security policies are enforced when the
request is received and the policy was applied to a service. If SOA Suite is invoking a service,
then the security policies are enforced when the request is sent and the policy is applied to
a reference.

Identity store
The identity store holds details of users and their associated credentials, groups, and roles.
The identity store is provided through Oracle Platform Security Services (OPSS) and is
usually an LDAP server, either the embedded LDAP in WebLogic or an external LDAP, such
as Oracle Internet Directory or Microsoft Active Directory. The identity store is configured at
the application server level. WebLogic may have multiple identity stores, but WSM just uses
the first unless the Oracle Virtual Directory flag is set. The identity store is where the users,
groups, and roles are stored.

Policy store
The policy store holds the web service manager policies that may be applied to composites.
At runtime, the policy store is maintained in the Meta-Data Repository (MDS). At design
time, the policy store may be held in the filesystem locally to JDeveloper, or JDeveloper may
reference MDS.

www.it-ebooks.info

http://www.it-ebooks.info/

Securing Composites and Calling Secure Web Services

234

Credential store
The credential store holds the credentials required to construct principals in systems that will
be called by SOA Suite.

Secure Sockets Layer (SSL)
WSM is not required to provide basic message integrity and security by using SSL. SSL allows
the communication between service and requestor to be protected from eavesdropping. At
this level, SSL can be thought of as a secure communication channel. By default, a server-
authenticated SSL only validates that the server has a certificate matching its hostname,
and allows for encryption of all traffic between the client and the server. SSL with client
authentication may be used to identify the requestor to the service. This requires client
certificates to be kept in the identity store of the target service.

The use of client authentication in SSL can be taken advantage of by WSM, but it still does not
identify whether the authenticated client has the right to access a particular service. For this,
we require the WSM policies to be applied to the service.

SSL can be used to simplify security by ensuring that communication between machines is
encrypted, potentially removing the need for encryption to occur at a higher level. However,
there may be a performance penalty associated with this, although most modern processors
have special instructions for the symmetric key portion of SSL communication, and the only
significant cost these days is in the establishment of an SSL connection in the first place.

Restricting a composite to authenticated
users with HTTP Basic Security

This recipe will show how to restrict access to a service, to clients that are able to
authenticate themselves as a valid user in the WebLogic domain.

Getting ready
Choose the composite and service endpoint in the composite that you wish to protect.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

235

How to do it...
1. Open the Configure SOA WS Policies dialog.

In the composite, right-click on the service you wish to protect and choose the
Configure WS Policies... option.

This will bring up the Configure WS Policies dialog:

2. Add an HTTP authentication policy.

Click on the plus () icon next to Security to bring up the Select Server Security
Policies dialog. Choose oracle/wss_http_token_service_policy and click on OK.

3. Confirm that the policy is attached.

Verify that the selected policy appears in the Security section of the dialog box and
select OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Securing Composites and Calling Secure Web Services

236

4. Deploy and test the composite.

The composite can now be deployed and the test screen can be used to verify that
the service cannot be called without providing a valid username and password
recognized by the WebLogic domain. Go to the Test Web Service screen and test
the service endpoint without providing the credentials. You should get a Webservice
invocation failed dialog box. Expand the Show Additional Trace Information link
to see the full error. Note that there is a Bad response: 403 Forbidden message
indicating that access to the page has been denied:

Close the dialog and expand the Security section of the Test Web Service page.
Select the HTTP basic Auth radio button and provide the Username and Password
of the user in the WebLogic domain. Then submit the request.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

237

How it works...
We began by attaching a policy to a service in a composite. This tells the WSM agent that it
must apply a particular policy to this endpoint. All requests to this endpoint will be validated
against this policy.

In this case, our policy is to perform HTTP Basic authentication. This policy does two things:

 f It authenticates the incoming request

 f It denies access to the service unless the request can be authenticated

We can think of the policies as acting as filters. In this case, the policy filters out all the
requests to the service that are not authenticated via HTTP Basic authentication.

Note, that the policy oracle/wss_http_token_service_policy that we used has a particular
name structure:

 f oracle/ identifies it as a built-in, Oracle-provided, policy.

 f wss identifies it as associated with web service security.

 f http tells us that the policy is based on HTTP transport properties.

 f token means that there is some kind of credential being passed.

 f service tells us that the policy is restricted to service endpoints and cannot be used
with references. There are usually corresponding client policies that request WSM to
inject credentials into a request made through a reference.

Note, that this naming convention is exactly that, a convention, and we could create our own
policy called antonys_special that does exactly the same thing. Following the convention
is a good idea as it makes it easier to identify the policies that are appropriate for our
particular requirements.

There's more...
All restrictions of access have some form of authentication policy. There are more ways of
authenticating than just HTTP Basic authentication for example, but they all have the same
filtering effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Securing Composites and Calling Secure Web Services

238

Alternative authentication methods
This table outlines some other out of the box authentication policies that are available in SOA
Suite. I have omitted the oracle/ prefix and _policy suffix for the policy names in the interest
of brevity. The Service Policy Name column is used to identify the policy that protects the
resources in SOA Suite. The Client Policy Name column is used to identify the corresponding
policy that injects credentials into requests to references:

Service Policy Name Client Policy Name Notes
wss_http_token_service wss_http_token_client HTTP Basic

authentication
wss_username_token_service wss_username_token_client Username/

password in WS-
Security headers

wss10_saml_token_service wss10_saml_token_client SAML tokens are
passed in the SOAP
message

wss10_saml20_token_service wss10_saml20_token_client SAML 2.0 tokens
are passed in the
SOAP message

wss11_kerberos_token_
service

wss11_kerberos_token_
service

Kerberos
authentication
using Service
Principal Names
(SPN)

The SAML authentication policies mentioned previously are only secure if
used across an SSL connection. To enforce the delivery of a message across
an SSL connection, WSM provides a number of *_over_ssl_* policies
such as oracle/wss_http_token_over_ssl_service_policy. These policies
only allow messages through if they have used, or will use, the SSL protocol.
If a message is received from a non-SSL connection, then it will be rejected
without even an attempt at authentication.

Other policies have a *_with_message_protection_* description that uses WS-Security
to encrypt parts of the message, providing a mechanism for secure passage of messages
through untrusted intermediaries.

Using a different authentication method
This recipe used HTTP Basic authentication to validate the credentials of a requestor. To use a
different mechanism, such as oracle/wss_saml_token_over_ssl_service_policy, just replace
the policy selected in step 2 of the recipe with the desired recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

239

See also
 f The Creating a new, group-based authorization policy recipe in this chapter

 f The Invoking an HTTP Basic secured web service recipe in this chapter

Creating a new, group-based authorization
policy

In this recipe, we will create a policy that will only allow access to a service if the requestor
has been authenticated as the member of a particular group. Note, that all the screens say
that it is a role, but actually the mapping is to a group.

Getting ready
Log in to Fusion Middleware Control.

How to do it...
1. Copy an existing policy.

In Fusion Middleware Control, expand the Farm and WebLogic Domain,
and then right-click on the domain name to bring up the menu. Select
Web Services | Policies:

www.it-ebooks.info

http://www.it-ebooks.info/

Securing Composites and Calling Secure Web Services

240

On the Web Services Policies screen, select the policy oracle/binding_
authorization_permitall_policy and click on the Create Like button to make
a copy of the policy:

2. Modify the policy.

Change the Name of the policy. Accept all the default settings. In the Assertions
section, select the J2EE services Authorization line, and then on the Settings tab
change Roles Authorization Setting to Selected Roles. Click on the plus () sign to
Add a role.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

241

3. Authorize a role.

Choose the group, or groups, you wish to authorize from the Roles Available list, and
click on the Move arrow to move them to the Roles Selected to Add list. Then click
on OK.

The policy may now be saved by clicking on Save.

www.it-ebooks.info

http://www.it-ebooks.info/

Securing Composites and Calling Secure Web Services

242

4. Synchronize the policy with JDeveloper.

In order to use our new policy in JDeveloper, we must make sure that JDeveloper is
retrieving the list of policies from the policy store in the WebLogic domain. To do this
in JDeveloper, go to the Tools menu and select Preferences....

5. Choose to synchronize with App Server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

243

Choose the WS-Policy Store section and select the App Server Connection radio
button, and choose a connection from the Connections drop-down list to the domain
where you just created the new security policy. Then click on OK.

How it works...
Rather than creating a new policy from scratch, we always copy an existing policy and modify it
to suit our needs. Changing a policy will automatically modify the behavior of all the endpoints
that are using the policy.

The authentication policy we created restricts access based on the group that a user is a
member of. We created this policy in the policy store of the SOA Suite runtime environment.
To make this available to JDeveloper, we could have exported the policy from the SOA Suite
runtime and then imported it into JDeveloper. Instead we chose to point JDeveloper to the SOA
Suite run time policy store. This has the advantage that when we add any additional policies in
the future, they will automatically be available in our JDeveloper environment.

Restricting a composite to authorized users
In the previous recipe, we allowed any authenticated user in the WebLogic domain access
to our service. In this recipe, we will further restrict access to only those users that have a
particular role.

Getting ready
Ensure that a suitable policy has been created for the role that we want to use to restrict
access to a service.

How to do it...
1. Add an authentication policy.

Follow the steps given in the Restricting a composite to authenticated users with
HTTP Basic Security recipe in this chapter to add an authentication policy to the
service you want to protect.

2. Add an authorization policy.

Repeat the previous step, except this time choose the policy that you created to grant
access to a particular group.

www.it-ebooks.info

http://www.it-ebooks.info/

Securing Composites and Calling Secure Web Services

244

You should now have an authentication and authorization policy applied to
the service.

3. Confirm that both the policies are attached.

Verify that the two selected policies appear in the Security section of the dialog box
and select OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

245

4. Deploy and test the composite.

The composite can now be deployed and the test screen used, to verify that
the service cannot be called without providing a valid username and password
recognized by the WebLogic domain and the user belonging to the specified group:

i. Go to the Test Web Service screen and test the service endpoint without
providing the credentials for it.

ii. You should get a Webservice invocation failed dialog box.

iii. Expand the Show Additional Trace Information link to see the full error.

iv. Note, that there is a Bad response: 403 Forbidden message indicating
that access to the page has been denied.

Now, provide a valid username and credentials for a user that is not a member of the
allowed group:

i. You should get a Webservice invocation failed dialog box.

ii. Expand the Show Additional Trace Information link to see the full error.

iii. Note, that there is a Failed Authorization message indicating that
access to the page has been denied.

Close the dialog and provide the username and password of the user in the WebLogic
domain that is a member of the requisite group. Then submit the request. This
process should now succeed.

www.it-ebooks.info

http://www.it-ebooks.info/

Securing Composites and Calling Secure Web Services

246

How it works...
An authorization policy is an additional filter on requests. Not only must a client be a
recognized user, as determined by the authentication policy, the principal must also
belong to a particular group.

Authorization policies should always be applied along with an authentication policy.
The authentication policy is required to construct the principal that will be used in the
authorization policy.

There's more...
In addition to the basic, role-based authorization, there is an authorization policy called
oracle/whitelist_authorization_policy that also allows requests from the local network to be
automatically approved, or to automatically approve requests that have a valid SAML Sender
Vouches token.

Policies may also be changed at runtime using the Fusion Middleware Control console.

Adding keys to a credential store
In this recipe, we will examine how to add the credentials required to access an
external system.

How to do it...
1. Navigate to the security credentials store.

From Enterprise Manager, expand the Farm and WebLogic domain and right-click
on the domain name. Choose the Security item in the menu and then click
on Credentials.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

247

2. Add the Web Services Manager map.

If the oracle.wsm.security map does not exist, then click on Create Map.

www.it-ebooks.info

http://www.it-ebooks.info/

Securing Composites and Calling Secure Web Services

248

3. Name the map.

Enter Map Name as oracle.wsm.security, then click on OK.

4. Create a key.

From the Credential Store Provider section, click on Create Key. In the
Create Key dialog:

i. In Select Map choose oracle.wsm.security from the drop-down list.

ii. In the Key field, give the key a name.

iii. Choose Type as Password from the drop-down list.

iv. Provide User Name to be passed as part of the service invocation.

v. Provide Password to be passed to the remote system, and
Confirm Password.

vi. Provide a Description that will remind you of which credentials are
associated with this key.

vii. Click on OK to create the key.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

249

How it works...
The credential store allows us to securely store the credentials of the remote systems that we
will need to invoke. By putting the credentials in a central resource, multiple references can
use the same credentials. The consumer of the credentials can be separated from the user
of the credentials, reducing the number of individuals that know the credentials required to
access a particular system.

Invoking an HTTP Basic secured web
service

In this recipe, we will consume a web service protected by HTTP Basic authentication.

How to do it...
Create a reference to the web service that is protected by HTTP Basic authentication. Ensure
that you have created a credential key that can be used to identify the requestor.

1. Configure WS Policy.

Right-click on the reference that requires HTTP Basic authentication, and select
Configure WS Policies....

2. Attach the HTTP token client policy.

In the SOA Client WS Policies dialog, click on the plus () icon next to Security.
Choose oracle/wss_http_token_client_policy and click on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Securing Composites and Calling Secure Web Services

250

3. Configure the HTTP token client policy.

Select the policy in the SOA Client WS Policies dialog and then click on the pencil
() icon to bring up the Config Override Properties dialog.

Set the csf-key property to be the name of the credential key, previously created,
by entering the name into the Override Value field. Click on OK to set the value of
the key.

4. Finally, in the Configure SOA WS Policies dialog, click on OK to apply the policy to
the reference.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

251

How it works...
After attaching the policy to the outbound endpoint (reference), we needed to identify the
particular set of credentials that we need to use. We did this by pointing to a set of credentials
we previously created in the credential store.

The entry in the credential store can be re-used across multiple references in the same or
different composites.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

11
Configuring the

Identity Service

In this chapter, we will cover how to configure SOA Suite to use the following LDAP providers
for authentication and authorization:

 f Configuring the SOA Identity service to use Oracle Internet Directory

 f Configuring the SOA Identity service to use Oracle Virtual Directory

 f Configuring the SOA Identity service to use Active Directory

 f Configuring the SOA Identity service to use the Sun iPlanet server

Introduction
Oracle Platform Security Services (OPSS) provides a Java Enterprise Edition (Java EE)
platform-independent identity service. The Oracle SOA Suite uses the identity services
provided by OPSS for all its identity related activities, for example when a user logs in to the
BPM worklist application.

When the Oracle SOA Suite is deployed on WebLogic, OPSS (and therefore the Oracle SOA
Suite) uses the authentication providers defined in WebLogic.

Oracle WebLogic includes an embedded LDAP server, which is the default identity provider for
all security related services, such as user authentication and authorization. By default, the
embedded LDAP server stores all information including users, groups, credential mappings
and role mapping, and role mapping providers.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring the Identity Service

254

Most enterprises already have one or more identity stores that are typically based on LDAP
or Active Directory. Rather than replicating the existing identity store in WebLogic, the best
practice is to configure WebLogic to use the external identity store, such as Oracle Internet
Directory, Microsoft Active Directory, or Sun iPlanet, along with the default authenticator.

This will then become the authentication and identity provider for the SOA Suite (via the
OPSS layer). In this chapter, we will examine recipes that allow us to configure WebLogic,
and, therefore, the SOA Suite to use an external identity store as an authentication provider.

Use one or more authentication providers
The WebLogic Security Framework supports multiple authentication providers in a security
realm in WebLogic. Where multiple authentication providers are defined, WebLogic will
attempt to authenticate a user against each provider in turn, according to its control flag,
which can be set to one of the following values:

 f REQUIRED: The authentication test is always called and must succeed. Regardless of
whether the authentication succeeds or fails, the authentication process continues to
the next authentication provider in the list of providers.

 f REQUISITE: The authentication test must succeed. If it succeeds, the authentication
process continues to the next authentication provider in the list of providers. If it fails,
the authentication process fails and the control is returned to the application.

 f SUFFICIENT: The authentication test need not succeed. If it succeeds, the
authentication process is successful and returns the control to the application.
If it fails the authentication process continues to the next authentication provider
in the list.

 f OPTIONAL: The authentication test need not succeed. Regardless of whether it
succeeds or fails, the authentication test proceeds down the list.

Although you can configure multiple authentication providers
for Oracle WebLogic, the Oracle Platform Security Services
does not support multiple LDAP authentication providers. As
a result, the provider you want to use for the Oracle SOA Suite
must be the first one in the list of authentication providers.

Configuring the SOA Identity service to use
Oracle Internet Directory

In this recipe, we will address how to configure Oracle Internet Directory (OID) as an
alternative authentication provider and create users and groups in the authentication
provider using Oracle Directory Services Manager.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

255

Getting ready
You will need to have an instance of OID installed and configured; you will also need to have
installed and configured an instance of Oracle Directory Services Manager (ODSM), OVD,
and Oracle SOA Suite running on Oracle WebLogic.

How to do it...
We need to use the WebLogic Admin console to add our new authentication provider.
To do this:

1. Log in to Oracle WebLogic Server Admin Console at http://host:port/console
as a user with administrator privileges, such as weblogic.

Once logged in, within the Domain Structure select Security Realms; this will list the
currently defined security realms.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring the Identity Service

256

2. Select myrealm; this will display the settings for myrealm.

Click on Lock & Edit to edit the session. Then select the Providers tab, and within
that select the Authentication tab. This will list the authentication providers currently
defined for myrealm.

3. Click on the New button to create a new authentication provider. This will open the
Authentication Provider configuration page.

Enter a name, such as OID LDAP, and select Type as
OracleInternetDirectoryAuthenticator as the authentication provider type and
click on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

257

This will return us to the list of authentication providers; here we can see our newly
created OID authentication provider.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring the Identity Service

258

4. The authentication providers are listed in the order in which they will be called.
We need to move the OID LDAP authentication provider to the top of the list.

To do this, click on Reorder, ensure OID LDAP is selected, then click on the up
arrow to move it to the top of the list and then click on OK.

5. Now, we need to configure our OID Provider to connect to our instances of OID; select
OID LDAP from the authentication provider list and click on the Configuration tab.
From here select the Provider Specific tab.

Here we need to provide our OID-specific connection details as well as the location of
our users and groups within the identity store, as shown in the following table:

Field Description
Host The host of the machine hosting the Oracle Internet Directory LDAP server.
Port The port number on which the Oracle Internet Directory LDAP server is

listening.
SSLEnabled If the connection to Oracle Internet Directory uses SSL, select

SSLEnabled.
Principal The Distinguished Name of the LDAP user that the WebLogic server

should use to connect to the LDAP server.
Credential The credential (password) used to connect to the LDAP server.
User Base DN The base Distinguished Name of the tree in the LDAP directory that

contains users.
Group Base DN The base Distinguished Name of the tree in the LDAP directory that

contains groups.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

259

The settings for your OID Authenticator should look similar to the following:

6. Next, select the Common tab, and set Control Flag to SUFFICIENT and click on Save.

7. Finally, we need to set Control Flag to SUFFICIENT for our default authenticator.

Select Default Authenticator from the authentication provider list, click on the
Configuration tab, and then select the Common tab. From here set Control Flag
to SUFFICIENT and click on Save.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring the Identity Service

260

8. The final step is to put our changes into effect. Within the Change Center, click on
Activate Changes.

Next, shut down and restart the Oracle WebLogic Admin Server and related
managed servers.

9. Next, we will create the demo user and group Administrators in OID and configure
them with the appropriate privileges to log in to the WebLogic Server Admin Console
and Fusion Middleware Control (EM Console).

Log in to Oracle Directory Service (http://oidhost:port/odsm), select
Connection to OID , select the Data Browser tab and click on New Entry.

This will open the Create New Entry dialog. On the Entry Properties page, click on
the green + icon to add Object Class and select inetOrgPerson.

For Parent of the entry specify the User Base Distinguished Name; this should be the
same value we specified in step 5 and click on Next.

10. This will take us to the Mandatory Properties screen; enter demo for both cn and sn,
and set the Relative Distinguished Name to cn. Click on Next and then Finish on the
Status page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

261

We should see our newly created user under Data Tree.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring the Identity Service

262

11. Open cn=demo in the data tree, and then click on the Attributes tab; from here click
on the Optional Attributes icon.

In the All Attributes list, select userPassword and move it to the Shown Attributes
list and then click on the Add Attributes button.

Enter the password for the demo user in the Password textbox and click on Apply.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

263

12. Next, we will create the group Administrators in OID, select Data Browser tab,
and click on New Entry.

This will open the Create New Entry dialog on the Entry Properties page; click on the
green + icon to add Object Class and select groupofNames as the object class and
click on OK.

For Parent of the entry specify Group Base Distinguished Name; this should be the
same value we specified in step 5 and click on Next.

Enter Administrators in the cn textbox and select cn from the Relative
Distinguished Name list and then click on Next, then click Finish. We should see our
newly created group in the data tree.

13. The final step is to add the demo user to the Administrators group. From the Data
Tree, open cn=Administrators, select the Group tab and click on the green + icon
next to Members. Select DN of demo, click on OK, and then click on Apply.

14. Now, we should be able to log in to Oracle WebLogic Admin Console by using the
demo user we created or as the user weblogic (via the embedded LDAP server).

How it works…
We have defined two authentication providers, the first being the OID authentication provider
with the control flag SUFFICIENT, and the second being the default authenticator defined
against the embedded LDAP.

When we log in as the demo user, WebLogic will attempt to authenticate the user against OID.
Assuming the password is correct, the authentication will be successful and the user will be
logged into the application.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring the Identity Service

264

When we log in as weblogic, authentication will fail against OID, but because the OID
authentication provider is defined as SUFFICIENT, WebLogic will attempt to authenticate the
user against the embedded LDAP at the point at which it succeeds and the user will be logged
into the application.

There's more…
If we configure OID as the sole authentication provider, we introduce a point of failure into our
WebLogic configuration. Since WebLogic must authenticate the administrative user as part of
the server startup process, if OID or the network connection to OID is not available, then the
server will be unable to start.

To prevent this, you may want to keep the default authenticator to provide additional
resilience; alternatively, you can configure OID to be highly available to protect against
this scenario.

Configuring the SOA Identity service to use
Oracle Virtual Directory

Many enterprises have multiple identity stores; this can include LDAP, Active Directory, as well
as application specific databases. Oracle Virtual Directory (OVD) allows us to provide a virtual
LDAP layer on top of these disparate identity stores and presents a single unified view across
these data stores.

In this recipe, we will configure OVD to provide a virtual LDAP layer on top of Oracle Internet
Directory (OID), and then configure OVD as the authentication provider for WebLogic.

Getting ready
You will need to have an instance of OID installed and configured; you will also need to
create the demo user and add them to the Administrators group as described in the
previous recipe.

You will also need to have installed and configured an instance of Oracle Directory Services
Manager (ODSM), OVD, and Oracle SOA Suite running on Oracle WebLogic.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

265

How to do it...
1. The first step is to launch ODSM and create a connection to OVD. Enter the URL

http://host:port/odsm into your browser's address field.

Next, click on Create a New Connection. This will open the New Connection dialog.
Enter the details specified in the following table:

Field Value
Directory Type OVD
Name OVDConnection

Server hostname or IP address of OVD server
Port 8899 (default OVD admin SSL port)
SSL Enabled checked
User Name cn=orcladmin

Password Your Password
Start Page Home

Then click on Connect.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring the Identity Service

266

2. We can configure OVD to connect to a variety of identity stores, including LDAP, Active
Directory, an OVD local store, or database. In this recipe, we will create an adapter
for an LDAP server and configure it to connect to the OID server used in the previous
recipe.

Within ODSM, select the Adapter tab, and then click on the Create Adapter icon. This
will launch New Adapter Wizard.

Click on the Create Adapter button in the left-hand side pane.

Select Adapter Type as LDAP, give it the name useOID, and select User_OID as the
Adapter Template. Then click on Next.

3. This will open New LDAP Adapter Wizard. Leave Use DNS for Auto Discovery set to
No and click on the Add Host icon.

Enter the OID hostname and port for your OID server and leave Weight Value set
to 100.

For Server proxy Bind DN and Proxy Password enter the admin DN
(cn=orcladmin, cn=Users, dc=rubiconred,dc=com in our example) and
password for your OID server.

Leave Use SSL/TLS unchecked and click on Next.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

267

4. OVD will now test the connection to the OID server. You should see Success!! Oracle
Virtual Directory connected to all hosts.

If Status is not OK, select Status to get details of the error.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring the Identity Service

268

5. If the Status is OK, click on Next. This will take us to the Namespace page. Here we
need to map the namespace of where we want to connect in the tree of the base
directory (OID) to the namespace we want to appear in OVD.

In this demo, we are using the same namespace (dc=rubiconred,dc=com) in both
the directories. Set Pass Through Credentials to Always and click on Next.

6. Review the values and if everything is fine click on Finish.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

269

7. The next step is to create an authentication provider in WebLogic to connect to OVD.

8. Log in to Oracle WebLogic Server Admin Console (http://host:port/console)
with the user that has an administrator privilege, such as weblogic.

Once logged in, within Domain Structure select Security Realms. Next, select
myrealm. This will display the settings for myrealm.

Click on Lock&Edit to edit the session. Then select the Providers tab, and within
that select the Authentication tab. This will list the authentication providers currently
defined for myrealm.

9. Click on the New button to create a new authentication provider. This will open the
authentication provider configuration page.

Enter a name, such as OVDProvider, and select the
OracleVirtualDirectoryAuthenticator type as the authentication provider type and
click on OK.

This will return us to the list of authentication providers; we can see here our newly
created OVD authentication provider.

10. The Authentication Providers are listed in the order in which they will be called. We
need to move the OVDProvider authentication provider to the top of the list.

To do this, click on Reorder, ensure OVDProvider is selected; then click on the up
arrow to move it to the top of the list and then click on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring the Identity Service

270

11. Now, we need to configure our OVD Provider to connect to our instances of
OVD; select OVDProvider from the authentication provider list, and click on the
Configuration tab. From here, select the Provider Specific tab.

Here, we need to provide our OVD specific connection details, as well as the location
of our users and groups within the identity store, as detailed in the following table:

Field Description
Host The host of the machine hosting Active Directory.
Port The port number on which Active Directory is listening.
Principal The admin DN (for example cn=orcladmin) that the

WebLogic server should use to connect to OVD.
Credential The credential (password) used to connect to OVD.
User Base DN The base Distinguished Name of the tree in the LDAP

directory that contains users.
Group Base DN The base Distinguished Name of the tree in the LDAP

directory that contains groups.

Next select the Common tab, and set the Control Flag to SUFFICIENT and click
on Save.

12. Finally, we need to set Control Flag to SUFFICIENT for our default authenticator.

Select Default Authenticator from the authentication provider list, click on the
Configuration tab, and then select the Common tab. From here set Control Flag
to SUFFICIENT and click on Save.

13. The final step is to put our changes into effect. Within Change Center, click on
Activate Changes. Next, shutdown and restart the Oracle WebLogic Admin Server
and related managed servers.

How it works...
This is similar to our first recipe, in that WebLogic is still authenticating against OID,
the difference being that it is now going via OVD, as this has been defined as the first
authentication provider.

When we log in as the demo user, WebLogic will attempt to authenticate the user against
OVD, which in turn will pass the request to OID. Assuming the password is correct the
authentication will be successful and return control to the application.

When we log in as weblogic, authentication will fail against OVD, but because the OVD
authentication provider is defined as SUFFICIENT, WebLogic will attempt to authenticate the
user against the embedded LDAP at the point at which it succeeds and control is returned to
the application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

271

There's more…
It may seem a bit pointless having WebLogic go via OVD to authenticate a user against OID.
However, OVD offers a number of advantages. Firstly it can be used to present non-LDAP
data as LDAP data to WebLogic (or any other LDAP client); this includes identity information
available via a web service call or in a database (such as PeopleSoft HR or Seibel UCM).

In addition, where an enterprise has multiple identity stores we can use OVD to present a
single unified view.

Although you can configure multiple authentication providers for Oracle WebLogic, the Oracle
Platform Security Service does not support multiple LDAP authentication providers.

As a result, the provider you want to use for Human Workflow authentication must be the
first one listed in the order of authentication providers. Using OVD allows us to work around
this limitation.

Configuring the SOA Identity service to use
Active Directory

In this recipe, we will demonstrate how to configure Active Directory (AD) as an alternative
authentication provider for WebLogic.

Getting ready...
Ensure that you have an instance of Active Directory installed and configured and has the
group administrator defined. For the purpose of following this recipe, create the demo user
and add it to the Administrators group.

You will also need to have installed and configured an instance of Oracle SOA Suite running on
Oracle WebLogic.

How to do it...
1. Log in to Oracle Weblogic Server Admin Console (http://host:port/console)

with the user that has an administrator privilege, such as weblogic.

Once logged in, within the Domain Structure select Security Realms; this will list the
currently defined security realms.

2. Next, select myrealm. This will display the settings for myrealm.

Next, click on Lock&Edit to edit the session. Then select the Providers tab, and
within that, select the Authentication tab. This will list the authentication providers
currently defined for myrealm.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring the Identity Service

272

3. Click on the New button to create a new authentication provider. This will open the
authentication provider configuration page.

Enter a name, such as ADProvider, and select Type as
ActiveDirectoryAuthenticator as the authentication provider type and click on OK.

4. The authentication providers are listed in the order in which they will be called.
We need to move ADProvider to the top of the list.

To do this, click on Reorder, ensure ADProvider is selected; then click on the up
arrow to move it to the top of the list and then click on OK.

5. Now we need to configure our ADProvider to connect to our instances of AD; select
ADProvider from the authentication provider list, and click on the Configuration tab.
From here, select the Provider Specific tab.

Here, we need to provide our Active Directory specific connection details, as well
as the location of our users and groups within the identity store, as detailed in
the following table:

Field Description
Host The host of the machine hosting Active Directory.
Port The port number on which AD is listening (6501 is the

default).
Principal The Distinguished Name of the LDAP user that WebLogic

server should use to connect to Active Directory.
Credential The credential (password) used to connect Active Directory.
User Base DN The base Distinguished Name of the tree in the AD directory

that contains users.
Group Base DN The base Distinguished Name of the tree in the AD directory

that contains groups.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

273

Next select the Common tab, and set Control Flag to SUFFICIENT and click on Save.

6. Finally, we need to set Control Flag to SUFFICIENT for our default authenticator.

Select Default Authenticator from the authentication provider list, click on the
Configuration tab, and then select the Common tab. From here, set Control Flag
to SUFFICIENT and click on Save.

7. The final step is to put our changes into effect. In the Change Center, click on
Activate Changes.

Next, shutdown and restart the Oracle WebLogic Admin Server and related
managed servers.

How it works...
We have defined two authentication providers, the first being Active Directory authentication
provider with control flag SUFFICIENT, and the second being the default authenticator defined
against the embedded LDAP.

When we log in as the demo user, WebLogic will attempt to authenticate the user against AD.
Assuming the password is correct the authentication will be successful and the user will be
logged in to the application.

When we log in as weblogic, authentication will fail against AD, but because the OID
authentication provider is defined as SUFFICIENT, WebLogic will attempt to authenticate the
user against the embedded LDAP at the point at which it succeeds and the user will be logged
in to the application.

Configuring the SOA Identity service to use
Sun iPlanet server

In this recipe, we will demonstrate how to configure Sun iPlanet as an alternative
authentication provider for WebLogic.

Getting ready
Ensure that you have an instance of iPlanet installed and configured that has the group
administrator defined. For the purpose of following this recipe create the demo user and
add it to the Administrators group.

You will also need to have installed and configured an instance of Oracle SOA Suite running on
Oracle WebLogic.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring the Identity Service

274

How to do it...
1. Log in to Oracle WebLogic Server Admin Console (http://host:port/console)

with the user that has an administrator privilege, such as weblogic.

Once logged in, within Domain Structure select Security Realms; this will list the
currently-defined security realms.

2. Next select myrealm; this will display the settings for myrealm.

Next, click Lock&Edit to edit the session. Then, select the Providers tab, and within
that select the Authentication tab. This will list the authentication providers currently
defined for myrealm.

3. Click the New button to create a new authentication provider. This will open the
authentication provider configuration page.

Enter a Name, such as iPlanetProvider, and select Type as IPlanetAuthenticator
as the authentication provider type and then click on OK.

4. The authentication providers are listed in the order in which they will be called. We
need to move iPlanetProvider to the top of the list.

To do this, click on Reorder, ensure iPlanetProvider is selected; then click on the up
arrow to move it to the top of the list and then click on OK.

5. Now, we need to configure our iPlanet Provider to connect to our instances of
iPlanet; select iPlanetProvider from the authentication provider list, and click
on the Configuration tab. From here, select the Provider Specific tab.

Here, we need to provide our iPlanet-specific connection details, as well as the
location of our users and groups within the identity store, as detailed in the
following table:

www.it-ebooks.info

http://host:port/console
http://www.it-ebooks.info/

Chapter 11

275

Field Description
Host The host of the machine hosting the iPlanet server.
Port The port number on which the iPlanet server is listening.
Principal Distinguished Name of the LDAP user that WebLogic server

should use to connect to iPlanet.
Credential The credential (password) used to connect to iPlanet.
SSLEnabled If the connection to iPlanet uses SSL, select SSLEnabled.
User Base DN The base Distinguished Name of the tree in the LDAP

directory that contains users.
Group Base DN The base Distinguished Name of the tree in the LDAP

directory that contains groups.

Next select the Common tab, and set Control Flag to SUFFICIENT and click on Save.

6. Finally, we need to set Control Flag to SUFFICIENT for our default authenticator.

Select Default Authenticator from the authentication provider list, click on the
Configuration tab, and then select the Common tab. From here set Control Flag
to SUFFICIENT and click on Save.

7. The final step is to put our changes into effect. Within the Change Center, click on
Activate Changes.

Next, shutdown and restart the Oracle WebLogic Admin Server and related
managed servers.

How it works...
We have defined two authentication providers, the first being the iPlanet authentication
provider with the Control Flag set to SUFFICIENT, and the second being the default
authenticator defined against the embedded LDAP.

When we log in as the demo user, WebLogic will attempt to authenticate the user against
iPlanet. Assuming the password is correct, the authentication will be successful and the
user will be logged in to the application.

When we log in as weblogic, authentication will fail against iPlanet, but because the iPlanet
authentication provider is defined as sufficient WebLogic, it will attempt to authenticate the
user against the embedded LDAP at the point at which it succeeds and the user will be logged
in to the application.

Now, we are able to use Sun iPlanet for authentication. We should be able to see the users
from iPlanet in WebLogic Administration Console.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

12
Configuring OSB to Use

Foreign JMS Queues

In this chapter we will cover:

 f Creating an OSB proxy service to consume JMS messages from OC4J

 f Creating an OSB business service to publish JMS messages to OC4J

 f Using WebLogic JMS Store-and-Forward for inter-domain messaging

 f Configuring OSB to consume JMS messages from JBoss Application Server 5.1

Introduction
Message Oriented Middleware (MOM) enables applications distributed over heterogeneous
platforms that span multiple operating systems and network protocols, to exchange
information asynchronously with each other in the form of messages.

MOM enables this through the provision of a distributed communications layer that insulates
the application developer from the details of the various operating systems and network
interfaces. MOM is not a new concept, with IBM MQSeries being one of the better known
MOMs launched by IBM in 1992.

Java Message Service (JMS) is a standard-based Java API defined as part of the Java
Enterprise Edition specification. It enables applications that use the JMS API to send or
receive messages using any MOM that supports the JMS API (for example, Oracle WebLogic
JMS, IBM MQ, and JBoss JMS).

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring OSB to Use Foreign JMS Queues

278

Many legacy integrations into today's IT infrastructure are built on top of a variety of JMS
providers; as a result, it is a common requirement to integrate Oracle Service Bus with a
variety of JMS providers. In this chapter of the cookbook, we will look at how to integrate OSB
with some of the more common JMS providers found within the application infrastructure.

Creating an OSB proxy service to consume
JMS messages from OC4J

Prior to Oracle's acquisition of BEA, the underlying application server for Oracle SOA Suite
and many Oracle applications such as E-Business Suite, JD Edwards was Oracle Internet
Application Server (aka OC4J).

As a result, it is a common requirement for Oracle Service Bus to consume messages that
have been published to OC4J. In this recipe, we will configure a proxy service on Oracle
Service Bus to consume messages published to a JMS provider running on OC4J.

The core of this recipe requires us to configure Oracle Service Bus and its Java Naming
and Directory Interface (JNDI) provider in the WebLogic server to access a remote JNDI
provider (on OC4J). Once configured, we can then implement a proxy service to consume
JMS messages as if it was on a local queue.

Getting ready
For this recipe, we have assumed you have a working knowledge of the OC4J JMS provider,
WebLogic server, and JMS itself.

To prepare for this recipe, make sure you have access to the OSB server's console and the
console of your JMS provider, as you'll need access to the required Java libraries.

To configure OSB to connect to OC4J, you will need to have the JNDI details of a connection
factory and queue (or topic) on OC4J.

You need to ensure that Oracle Service Bus has access to the same Java client libraries as
any normal JMS client would. For OC4J, you will need the following JAR files:

 f oc4j-internal.jar

 f optic.jar

These are located in the [OC4JHOME]/j2ee/home/lib directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

279

How to do it...
1. Copy the library files listed in the Getting ready section of this recipe to the lib

directory of your OSB domain; this should be located at the following location:
[ORACLE_HOME]/user_projects/domains/[OSB DOMAIN]/lib

2. You must update your classpath for the OSB Admin server and your OSB server
(if you've split them out during your domain's creation). To do this, you must edit
your setDomainEnv.sh (or .cmd for Windows) file in the following location:
[ORACLE_HOME]/user_projects/domains/[OSB DOMAIN]/bin

3. Add a line, like the following, to the end of your setDomainEnv.sh or
setDomainEnv.cmd file (all in one line):
export CLASSPATH=$CLASSPATH${CLASSPATHSEP}${DOMAIN_HOME}/lib/
optic.jar${CLASSPATHSEP}${DOMAIN_HOME}/lib/oc4j-internal.jar

4. For Windows, edit setDomainEnv.cmd with a line like the following:
set CLASSPATH=%CLASSPATH%%CLASSPATHSEP%%DOMAIN_HOME%/lib/optic.
jar%CLASSPATHSEP%%DOMAIN_HOME%/lib/oc4j-internal.jar

5. If your OSB domain is currently up, now would be a good time to restart; otherwise
start the domain up before continuing.

6. From the domain structure in the WLS console, expand the Services menu and select
Foreign JNDI Providers from the Administration console of your OSB domain.

Click on New and give it a descriptive name (IAS in the following example), click on
Next where you should target this to the OSB server or cluster, and click on Finish.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring OSB to Use Foreign JMS Queues

280

7. Next we need to configure our foreign JNDI provider to point it at the JMS queue on
OC4J. To do this, click on the provider you just created.

This will take you to the JNDI configuration window; here we need to specify the JNDI
client details of our OC4J JMS provider, as shown in the following table:

Property Value
Initial Context Factory oracle.j2ee.rmi.RMIInitialContextFactory

Provider URL opmn:ormi://[HOSTNAME]:[PORT]:[Container
Name]

User Username of an account with privileges to access these JMS
resources on your OC4J server

Password/Confirm Password The password for the user

Your foreign JNDI provider should look somewhat like the following screenshot:

8. Next we need to configure local JNDI links for the OC4J queue or topic that we wish to
consume messages from.

Click on the Links tab of the foreign JNDI provider you created previously, and click on
New. Give the link a descriptive name for the queue or topic that you're going to link
into your OSB's JNDI tree.

For Local JNDI Name, enter a JNDI name for which this resource will appear in OSB's
JNDI tree.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

281

For Remote JNDI Name, enter the JNDI name of the resource in your JMS provider's
JNDI tree. Once this is done, click on OK.

Repeat this process to create a link for the connection factory of the queue or topic.
Once completed, our Foreign JNDI Links window should look somewhat like the
screenshot, shown as follows:

9. Create a proxy service in the OSB console or Eclipse, as you usually would, but
at the Transport Configuration screen in the wizard, select jms as your Protocol
and EndPoint URI should be something like jms://[OSBHOST]:[PORT]/[LINKCF]/
[LINKQUEUE].

Where LINKCF and LINKQUEUE are the local JNDI names of the connection factory
and queue respectively, which you have defined in the previous step.

Ensure the correct Destination Type is selected in the next screen and continue with
the wizard as usual. For testing purposes, add a simple log or report action step to
the pipeline to write out the content of the JMS message.

You can now deploy and test your OSB proxy service; once you have validated that the
proxy service is successfully consuming a message from the OC4J JMQ queue, you
can then implement the remainder of your proxy service as required.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring OSB to Use Foreign JMS Queues

282

How it works…
The foreign JNDI provider and the links work by linking the local names in our JNDI tree to
the remote ones we've configured. The important thing to note is that you need to include
the classes normally required by this remote JNDI provider to Oracle Service Bus because,
even though it's locating the JNDI reference locally, it is still acting as a remote client to the
JMS provider. It will make JMS server connections directly to the providing server via the
connection factory.

Once configured, the OSB proxy service thinks it's accessing the JMS destination as a
local resource.

There's more...
For those readers more experienced with the WebLogic server, you might note that we had
to add the classes to the classpath and not just drop them into the domain's lib folder; this
is because of the WebLogic server's (and Java's) class loading hierarchy. When the WebLogic
server loads the JARs in the lib directory, it loads them as a child to the system class loader
for all J2EE applications. We need these classes loaded in the system class loader to be
available for the server itself, and so we had to adjust the classpath.

For those readers who have used Oracle's JD Edwards (JDE) product and are not on the
WebLogic server yet, this solution would give your OSB installation access to JDE Realtime
Events (RTE) and provide a gateway to SOA Suite for performing business logic based on the
events in JDE.

Creating an OSB business service to publish
JMS messages to OC4J

This recipe provides an example of how to use OSB to publish a message to a remote JMS
queue on OC4J via a JMS message bridge. The JMS message bridge will forward messages
from a local JMS queue to the remote OC4J queue. An advantage of using a JMS message
bridge is that it keeps your OSB configuration clean and simple, and all of the gory details for
connecting to the remote JMS location are configured and managed by the WebLogic server.
Also, the same bridge could be used by multiple JMS clients should this be required.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

283

Getting ready
You will need to adjust your OSB domain's classpath, as we detailed in the Creating an OSB
proxy service to consume JMS messages from OC4J recipe given in this chapter, to bridge
between a local JMS queue and a remote OC4J queue.

You will also need the connection details and the JNDI names for a connection factory
and a queue on your OC4J server. The connection factory should not be an XA-enabled
connection factory.

How to do it…
1. First we create the local queue in our OSB domain from where messages will be

forwarded by the JMS bridge. From the domain structure in the WLS console,
expand the Services menu and the Messaging submenu and select JMS Modules.
Click on the New button, and you will be presented with the Create JMS System
Module wizard.

2. For Name enter OC4JBridge and click on Next.

3. Target this JMS module to your OSB-managed server (normally osb_server1), and
click on Next.

4. Select Would you like to add resources to this JMS system module and click on
Finish. You will be presented with a summary of resources.

5. Click on the New button to start the Create a New JMS System Model
Resource wizard.

6. Select Connection Factory and click on Next.

7. Set Name to OC4JLocalCF and JNDI Name to /jms/OC4JLocalCF and click on
Next, followed by clicking on Finish (you must not just click on Finish, otherwise
the connection factory will not get its default target). You will be taken back to the
summary of resources where you should see your connection factory.

8. Click on the New button again, and this time select Queue and click on Next.

9. Set Name to OC4JLocalQueue and JNDI Name to /jms/OC4JLocalQueue,
and click on Next.

10. Click on the Create a New Subdeployment button accepting the default as
Subdeployment Name, and click on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring OSB to Use Foreign JMS Queues

284

11. Select a JMS server that is targeted to your OSB-managed server in the JMS Servers
table, shown as follows:

12. Click on Finish and you will be taken back to the summary of resources where you
should see your queue and the connection factory you created before, as shown in
the following screenshot:

13. From Domain Structure in the WLS console, expand the Services menu and the
Messaging submenu followed by the Bridges submenu, shown as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

285

14. Click on the JMS Bridge Destinations menu item. This is where we configure the
details of both ends of the bridge. Click on the New button, and you will be presented
with the Create a New JMS Bridge Destination wizard. Enter the values detailed as
follows, and when complete click on OK.

Property Value
Name OC4JLocalQueue
Adapter JNDI Name eis.jms.WLSConnectionFactoryJNDINoTX
Connection URL t3://[OSB Host Name]:[PORT]
Connection Factory JNDI Name /jms/OC4JLocalCF
Destination JNDI Name /jms/OC4JLocalQueue

15. Repeat the previous step for the remote JMS queue using the following values:

Property Value
Name OC4JRemoteQueue
Adapter JNDI Name eis.jms.WLSConnectionFactoryJNDINoTX
Connection URL opmn:ormi://[HOSTNAME]:[PORT]:[Container

Name]
Connection Factory JNDI Name The JNDI name of a connection factory on your OC4J

server
Destination JNDI Name The JNDI name of a queue on your OC4J server

16. You will now see your two JMS Bridge Destinations in the summary, shown
as follows:

17. Click on the OC4JRemoteQueue destination you created and configure it, as shown
in the following table, and then click on the Save button:

Property Value
Initial Context Factory oracle.j2ee.rmi.RMIInitialContextFactory
User Name The username of the account on OC4J that you configured

earlier.
User Password and Confirm User
Password

The password for this account.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring OSB to Use Foreign JMS Queues

286

18. We can create the bridge now that we have created the destinations. Click on the
Bridges item in the domain structure from WLS console and click on New. You will
see the Create a New Bridge wizard. Enter OC4JBridge as Name and select the
Started checkbox. Select Duplicate-Okay as Quality of Service and click on Next.

19. Select OC4JLocalQueue as Existing Source Destination and click on Next.
20. Select WebLogic Server 7.0 or higher as Messaging Provider and click on Next.
21. Select OC4JRemoteQueue as Existing Target Destination and click on Next.
22. Select Other JMS as Messaging Provider and click on Next.
23. Target the bridge of the managed server that your OSB services are running on and

click on Next, followed by Finish.
24. Reboot your OSB-managed server(s) and your Admin server.
25. Once your OSB-managed server(s) has started, confirm that your bridge is functioning

properly by selecting Bridges from the domain structure of the WLS console and
clicking on the Monitoring tab. You should see your bridge is Active and Forwarding
messages, shown as follows:

26. Now we are ready to configure an OSB business server to publish messages to
our local queue, and the message bridge forwards them to OC4J for us. Create a
business service as you normally would, but make sure Service Type is Messaging
Service (as shown in the following screenshot) and click on Next.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

287

27. Configure Request Message Type to Text and Response Message Type to None, as
shown in the following screenshot. Once complete, click on Next.

28. On the Transport Configuration screen (shown in the following screenshot); ensure
that the Protocol is JMS and the Endpoint URI transport is constructed as follows,
and then click on Next:
jms://[OSBHOST]:[PORT]/jms.OC4JLocalCF/jms.OC4JLocalQueue

29. Configure Message TypeMessage TypeMessage T to Text for JMS Transport Screen, and then click on Last
followed by Save and activate your session.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring OSB to Use Foreign JMS Queues

288

30. To create a simple proxy service, create one from the existing business service you
defined previously. In the Transport Configuration screen, you should select Protocol
as HTTP to make testing simple.

How it works…
This recipe publishes JMS messages to an OC4J server via a JMS message bridge. Our
business service publishes messages to our local JMS queue, which is forwarded by the
message bridge to the remote OC4J server. It is important to note (in the setup for this recipe)
that the business service returns when the JMS message is accepted by the local JMS server
and not when it gets to the OC4J server; this is handled by the bridge asynchronously.

There's more…
We could have used this method of a JMS bridge in our first recipe instead of the foreign JNDI
provider, by having a remote OC4J queue as the source for the bridge and a local queue as the
destination; so, the bridge would pull remote messages to our local OSB domain for the proxy
service to pick up.

If you need a high message throughput, you will need to tune the message bridge as it
defaults to only one thread per bridge. This can be done by either creating multiple bridges for
the same JMS bridge destinations or (the preferred option) by creating a work manager for the
JMS bridge. More information on this topic can be found in the Performance and Tuning for
Oracle WebLogic Server documentation at http://docs.oracle.com/cd/E23943_01/
web.1111/e13814/bridgetuning.htm.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

289

This recipe would be simple to extend to other JMS providers by including different libraries on
the classpath and adjusting the connection details appropriately.

In the recipe, we selected the quality of service as duplicate-okay, because some versions
of OC4J do not offer true XA support and selecting anything other than the quality of service
detailed previously will cause the bridge to fail (WebLogic server will try to perform a global
transaction and the OC4J server will not have enrolled in it). If you're using an XA-compliant
JMS provider (a late version of OC4J, another WLS domain, and so on), you may consider
setting a higher quality of service if required.

Using WebLogic JMS Store-and-Forward for
inter-domain messaging

It is getting increasingly common to require messages published to a WebLogic domain on
which OSB is not running to trigger an OSB proxy service.

Store-and-Forward (SAF) allows you to get messages from a remote WebLogic domain to the
OSB domain for processing, without the publisher being aware of OSB. Normally, without SAF
you would have to configure the publisher to publish to a different location, which could cause
problems if the network is slow or goes down, or it might not even be possible to configure
your publisher.

This recipe shows how to use SAF to push JMS messages from a remote WebLogic domain to
your OSB domain for consumption by an OSB proxy service.

Getting ready
For this recipe, you'll need access to your OSB domain, as well as another WebLogic Server
domain (WebLogic 9.x or higher is required to use the Store-and-Forward feature).

You'll need to create a queue in your OSB domain to receive forwarded JMS messages.
For this recipe, we'll assume a default JNDI name of /jms/remote.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring OSB to Use Foreign JMS Queues

290

How to do it…
1. First, we need to create the SAF sending agent on the WebLogic domain.

Log in to the WebLogic console, then within the Domain Structure navigate to
Services | Messaging and select Store-and-Forward Agents, as shown in the
following screenshot:

This will take you to the Store-and-Forward Agents window; click on New and give
the agent an appropriate name (CookbookSAFAgent in our example), and set Agent
Type to Sending-only. Click on Next and target the agent to an appropriate server or
cluster in your WebLogic domain, and then click on Finish.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

291

2. Next, we need to create a JMS module to collect together the configuration for the
SAF sending agent. Within Domain Structure, navigate to Services | Messaging and
select JMS Modules.

This will take you to the JMS Modules window; click on the New button to launch
the Create JMS System Module wizard. Give the module a name (we've assumed
you use SAFAgent), and target it to the same WebLogic server or cluster as the
SAF sending agent.

3. Next we need to create SAF Remote Context, which tells our WebLogic server how
to connect to our remote OSB domain. Click on JMS Module, which we created in
the previous step.

Click on the New button and select the type of resource as Remote SAF Context,
and configure as detailed in the following table:

Property Value
Name OSBDomain.
URL The URL of the remote OSB server is in the format

t3://[osbserver]:[port]. For example,
t3://localhost:8011.

User Name The username of an account with privileges to access
the JMS queue you created before starting this recipe
(/jms/remote). This could be weblogic, but do
not use this for production.

Password The password for the user.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring OSB to Use Foreign JMS Queues

292

The following screenshot shows the properties and their values:

Once you have clicked on OK, you will see the newly created SAF Remote Context in
Summary of Resources of your JMS Module.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

293

4. We now need to tell our WebLogic server how we're going to import our remote
destination from our OSB server. From within the JMS module, click on New and
select the type of resource as SAF Imported Destination, and click on Next and
configure it, as detailed in the following table:

Property Value
Name OSB Imported Destinations
Remote SAF Context OSBDomain (as created in the previous step)

Click on Finish. You will now see your SAF Imported Destination in Summary of
Resources of your JMS module.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring OSB to Use Foreign JMS Queues

294

5. We now need to import the remote destination from the OSB domain to our WebLogic
domain. To do this, click on SAF Imported Destination that you created in the
previous step, and click on the Queues tab.

6. Click on New to create a link to a queue on your OSB domain. Configure it, as detailed
in the following table:

Property Value
Name Local name for the OSB queue that we wish to

forward messages to
Remote JNDI Name JNDI name for the JMS queue on the OSB server

that we wish to forward messages to (/jms/
remote in this example)

The following screenshot shows the properties and their values:

When you have clicked on OK, you will be presented with your imported queue in the
SAF Queues summary.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

295

7. Create a proxy service in the OSB console or Eclipse, as you usually would, but from
the Transport Configuration screen in the wizard, select JMS as your Protocol, and
EndPoint URI should be something like:

jms://[HOST]:[PORT]/weblogic.jms.ConnectionFactory/[QUEUE]

Where QUEUE is the JNDI name of the local queue that SAF is forwarding messages
to, in our examples, /jms/remote is the queue.

Ensure the correct Destination Type is selected in the next screen and continue with
the wizard as usual. For testing purposes, add a simple log or report action step to
the pipeline to write out the content of the JMS message.

You can now deploy and test your OSB proxy service. Once you have validated that the
proxy service is successfully consuming a message from the WebLogic domain, you
can then implement the remainder of your proxy service, as required.

How it works…
The SAF Sending Agent on your remote WebLogic Domain forwards messages published to
Imported Destinations to the OSB Domain. The OSB proxy then consumes these messages
from the local queue as though they were published locally.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring OSB to Use Foreign JMS Queues

296

There's more…
This method could be used to forward messages from a remote domain, perhaps running
an ERP, which publishes the messages you need to process. The advantage of the
Store-and-Forward option is that it allows a JMS producer to produce to a remote destination
without knowing it is a remote destination. This keeps the producer's configuration simple,
or it might be required because the produce doesn't support remote JMS destinations.

You could also use this method to publish from OSB to a remote WebLogic server; you can
do this by configuring the Store-and-Forward on the OSB server and the queue on the remote
WebLogic server.

In step 4 of this recipe, we glossed over the error handling to simplify our configuration.
Error handling is an important aspect of any JMS configuration and SAF is no different. The
SAF error handling configuration allows you to specify an error handling policy to apply to all
imported destinations, or a separate policy for each separate destination. It is common for
such a policy to log and forward failed messages to an error-handling queue.

Configuring OSB to consume JMS messages
from JBoss Application Server 5.1

In this recipe, we will configure Oracle Service Bus to consume messages published to JBoss
Application Server (AS) 5.1.

Getting ready
This recipe assumes that you have access to your JBoss server, and that you have a working
knowledge of JBoss Application Server and JBoss Messaging.

You need to ensure that Oracle Service Bus has access to the same Java client libraries as
any normal JMS client would. For JBoss you need the following JAR files:

 f javassist.jar

 f jboss-aop-client.jar

 f jboss-common-core.jar

 f jboss-logging-spi.jar

 f jboss-mdr.jar

 f jboss-messaging-client.jar

 f jboss-remoting.jar

 f jboss-serialization.jar

 f jnp-client.jar

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

297

 f log4j.jar

 f concurrent.jar

 f trove.jar

These are located in your JBoss installation home (JBOSS_HOME/client).

How to do it…
1. First we need to create a JMS queue in JBoss and then connect to the JBoss admin

console; the URL will be something like:
http://[hostname]:[port]/admin-console

The port normally defaults to 8080.

Use the side menu to go to Resources | JMS Destinations | Queues, as shown in
the following screenshot:

Click on Add New Resource on the right-hand side of the web page, and follow the
wizard to create a queue with the following details:

Property Value
Resource template default (Queue)

Name Cookbook Test Queue

JNDI name /queue/cookbooktest

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring OSB to Use Foreign JMS Queues

298

Leave all the other fields blank or unset.

Once you have completed this, you should see your queue appear, as shown in the
following screenshot:

2. Copy the JBoss library files identified in the Getting Started section of this recipe to
the lib directory of your OSB domain; it will be located here:
[ORACLE_HOME]/user_projects/domains/[OSB DOMAIN]/lib

3. You must update your classpath for the OSB Admin server and your OSB server (if
you've split them out during your domain's creation). To do this, you must edit your
setDomainEnv.sh (or .cmd for Windows) file that is in the following location:
[ORACLE_HOME]/user_projects/domains/[OSB DOMAIN]/bin

4. Add a line, like the following, to the end of your setDomainEnv.sh or
setDomainEnv.cmd (all in one line) file:
export CLASSPATH=$CLASSPATH${CLASSPATHSEP}${DOMAIN_HOME}/lib/
optic.jar${CLASSPATHSEP}${DOMAIN_HOME}/lib/oc4j-internal.jar

For Windows, edit setDomainEnv.cmd, with a line like the following:

set CLASSPATH=%CLASSPATH%%CLASSPATHSEP%%DOMAIN_HOME%/lib/optic.
jar%CLASSPATHSEP%%DOMAIN_HOME%/lib/oc4j-internal.jar

5. If your OSB domain is currently up, now would be a good time to restart; otherwise,
start the domain up before continuing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

299

6. From the Domain Structure in the WLS console, expand the Services menu and
select Foreign JNDI Providers from the Administration console of your OSB domain.

Click on New and give it a descriptive name (for example, JBoss), and click on Next
where you should target this to the OSB server or cluster and then click on Finish.

7. Next, we need to configure our foreign JNDI provider to point it to the JMS queue on
JBoss. To do this, click on the provider you just created.

This will take you to the JNDI configuration window; here we need to specify the JNDI
client details of our JBoss JMS provider, as shown in the following table:

Property Value
Initial Context Factory org.jnp.interfaces.

NamingContextFactory.
Provider URL jnp://[HOSTNAME]:[PORT].

The port is normally 1099.
User The username of an account with privileges to

access these JMS resources on your JBoss server.
Password/Confirm Password The password for this user.

8. Next, we need to configure a local JNDI link(s) for the JBoss queue that we wish to
consume messages from.

Click on the Links tab of the foreign JNDI provider that you created previously, and
click on New. Give the link a descriptive name for the queue or topic you're going to
link into your OSB's JNDI tree (CookBookQueue in the following example).

For Local JNDI Name, enter a JNDI name for which this resource will appear as in
OSB's JNDI tree. For Remote JNDI Name, enter the JNDI of the resource in your JMS
provider's JNDI tree.

For our example, we'll use the value specified in the following table; once this is done,
click on OK.

Property Value
Name CookBookQueue

Local JNDI Name jms/jboss/cookbooktest

Remote JNDI Name /queue/cookbooktest

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring OSB to Use Foreign JMS Queues

300

Repeat this process to create a link for the connection factory of the queue, using the
values specified in the following table:

Property Value
Name ConnectionFactory

Local JNDI Name jms/jboss/cookbookcf

Remote JNDI Name ConnectionFactory

Once completed, our Foreign JNDI Links should look somewhat like the
following screenshot:

9. Create a proxy service in the OSB console or Eclipse, as you usually would, but from
the Transport Configuration screen in the wizard, select JMS as your protocol, and
the EndPoint URI should be something like:

jms://[OSBHOST]:[PORT]/[LINKCF]/[LINKQUEUE]

Where LINKCF and LINKQUEUE are the local JNDI names of the connection factory
and queue respectively, which you defined in the previous step. In our example the
Endpoint URI for this proxy service would be:
jms://[OSBHOST]:[PORT]/jms.jboss.cookbookcf/jms.jboss.cookbooktest

Ensure that the correct Destination Type is selected in the next screen and continue
with the wizard as usual, making sure you add a step to the pipeline.

For testing purposes, a simple log or report action should suffice.

How it works…
This solution essentially would work in exactly the same way, even if the JMS destination
was a local resource. OSB "thinks" it's accessing the JMS destination as a local resource.
The important thing to note is that you need to include the classes normally required by
this remote JMS provider to Oracle Service Bus, because even though it's locating the JNDI
reference locally, it is still acting as a remote client to JBoss. It will connect JMS servers
directly to JBoss via the connection factory you looked up locally.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

301

There's more…
For those readers more experienced with the WebLogic server, you might note that we had
to add the classes to the classpath and not just drop them into the domain's lib folder; this
is because of the WebLogic server's (and Java's) class loading hierarchy. When the WebLogic
server loads the JAR files in the lib directory, it loads them as a child to the system class
loader for all J2EE applications. We need these classes loaded in the system class loader to
be available for the server itself, and so we had to adjust the classpath.

You can easily extend this recipe to configure an OSB business service to publish messages
to a JBoss queue, in a similar way as described in the Creating an OSB business service to
publish messages to OC4J recipe in this chapter.

You might have realized that we used JBoss' default JMS connection factory. This was for
simplicity, but it is recommended you create separate connection factories for JMS consumers
or producers because this is a way of controlling JMS functionality without the need for code
changes in remote clients.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

13
Monitoring and

Management

In this chapter we will cover:

 f Capturing a composite completion status

 f Monitoring message throughput in real time

 f Deploy Monitor Express to BAM

 f Configuring BAM Adapter

 f Configuring a BPEL process to report the status to BAM Monitor Express

Introduction
In this chapter, we will look at how to monitor what is happening with our composites. We will
look at how to check the completion status of composites from Enterprise Manager, as well as
monitor their throughput and response characteristics.

We will also look at how some composite metrics can be quickly surfaced to the business user
through Business Activity Monitoring (BAM).

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring and Management

304

Operational monitoring
Operational monitoring is performed by IT operations staff in order to ensure that the
applications are running with acceptable performance and are available to end users.
The SOA Suite tool for operational monitoring is the Enterprise Manager console. The
focus of operational monitoring is things, such as:

 f System availability

 f CPU utilization

 f Memory utilization

 f Response time or composite duration

All of these can be monitored by Enterprise Manager. The core monitoring in Enterprise
Manager is available out of the box and requires little or no additional configuration. SOA
Management Pack extends the capabilities of Enterprise Manager, providing the ability to
baseline configurations and establishing alerts when performance requirements are not met.

Business monitoring
Business monitoring is performed by business operations staff in order to ensure that
applications are meeting the needs of the business. The SOA Suite tool for business
monitoring is BAM. This can be used to monitor a number of things, such as:

 f Order processing time

 f Compliance to customer SLAs

 f Value of orders with problems

 f Hourly transaction values

 f Load across different call centers

Unlike operational monitoring with Enterprise Manager, business monitoring with BAM
requires work to be done to collect the necessary statistics and additional work to be done to
create reports from those statistics. For statistics directly related to the performance of BPEL
processes in a composite, this can be expedited by the use of the Monitor Express dashboard
provided by SOA Suite, which allows for the monitoring of instrumented BPEL processes.
Instrumentation of BPEL processes for Monitor Express is very quick and easy.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

305

Capturing a composite completion status
By default, the SOA Suite configuration does not capture the final state of a composite,
showing a question mark for Instance State, as shown in the following screenshot. In this
recipe, we will enable capturing of the completion status so that when we list composite
instances in Enterprise Manager, we will be able to see which ones have completed and
which are still running.

Getting ready
Log on to Enterprise Manager using http://hostname:port/em.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring and Management

306

How to do it...
1. Right-click on the soa-infra (AdminServer) item in the EM navigation tree. Choose

SOA Administration from the pop-up menu and then select Common Properties.

2. On the SOA Infrastructure Common Properties screen, select the Capture
Composite Instance State checkbox and then click on Apply.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

307

When prompted, confirm the action.

3. Execute a new composite, and then go to Dashboard for that composite and
verify that rather than a question mark, the completed instance is now marked
as Completed.

How it works...
Enabling Capture Composite Instance State causes SOA Suite to perform some extra work to
track the completion status of the composites. This may have a small impact on performance,
and the operations team will need to decide if the small overhead introduced by this
monitoring is offset by the value of instantly being able to see the status of the composites
in the dashboard.

Monitoring message throughput in real time
During execution, SOA Suite collects statistics on the number of messages received in a time
period, the number of faults, and the execution time for the composites. These statistics are
available through the EM console and provide a real-time updating view of the performance of
SOA Suite. In this recipe, we will see how to monitor these statistics in real time by monitoring
the number of messages processed by the SOA infrastructure over the last 5 minutes.

Getting ready
Log on to Enterprise Manager using http://hostname:port/em.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring and Management

308

How to do it...
1. From Enterprise Manager, right-click on the soa-infra element in the tree and choose

Monitoring | Performance Summary in the pop-up menu.

This brings up the Performance Summary screen that initially shows the total
number of messages processed since the server startup.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

309

2. On the Performance Summary screen, click on the Show Metric Palette button in
the upper-right corner to bring up a list of available metrics.

3. Navigate the tree to SOA Infra Mesh | mesh and select Throughput of messages in
the mesh in the last 5 minutes. This will add a throughput chart to the Performance
Summary screen. Throughput is measured by messages per second.

How it works...
The Performance Summary screen is continuously updated with the metrics requested by the
observer. Unfortunately, it is not possible to save a list of metrics to monitor for later use; they
must be added each time the user logs in to Enterprise Manager.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring and Management

310

There's more...
The Performance Summary screen normally has a 15-minute window. However, it is possible
to use the slider to zoom in on a smaller window within the last 15 minutes. To do this, click
on the Slider link in the Performance Summary pane and adjust the slider to show the
desired time range.

The time period can be set to 15 minutes by clicking on the 15 minutes link, or it can be reset
to all metrics since monitoring started by clicking on the All link.

Types of metrics
Metrics are split into different types, such as:

 f Metrics that provide a number that starts when the SOA infrastructure is started,
such as:

 � The total processing time of synchronous messages

 � The average processing time of asynchronous messages

 � The total number of mediator messages since startup

 f Metrics that provide a point-in-time view, such as:

 � The number of active messages in the mesh

 � The number of active trading partners (a B2B metric)

 f Metrics that cover the last 5 minutes, such as:

 � The throughput of asynchronous messages in the last 5 minutes

 � The throughput of faulted requests in the last 5 minutes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

311

Sources of metrics
Metrics come from different sources, and the source is represented by its position in the
metric tree. For example, B2B metrics can be found under the nodes in Metric Palette that
start with B2B.

In addition to core SOA infrastructure (mesh) and service engines (BPEL, Mediator, rules, and
so on), metrics are also collected for specific service and reference interfaces, allowing the
monitoring of input requests and external calls.

Deploy Monitor Express to BAM
This recipe deploys Monitor Express to BAM so that the Monitor Express dashboard can be
used to monitor the status of BPEL processes. This is an interface that can be given to a
non-technical user, providing them with a view onto the current state of the BPEL processes.
Before Monitor Express can be used, it must be deployed to the BAM server, and this recipe
explains how to perform that deployment.

Getting ready
Open a command prompt (shell) on the machine where SOA Suite is installed. Log on to
Oracle BAM at http://hostname:port/OracleBAM and launch BAM Active Viewer.

How to do it...
1. In the command shell, set the ORACLE_HOME environment variable to point to

SOA Home.

 � For Linux:
$ ORACLE_HOME=/home/oracle/Middleware/OracleSOA1

$ export ORACLE_HOME

 � For Windows:

C:\> set ORACLE_HOME=C:\Oracle\Middleware\OracleSOA1

2. Set the JAVA_HOME environment variable to point to the JDK.

 � For Linux:
$ JAVA_HOME=/home/oracle/jdk1.6.0_31

$ export JAVA_HOME

 � For Windows:

C:\> set JAVA_HOME=C:\Oracle\jdk1.6.0_31

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring and Management

312

3. Edit the $ORACLE_HOME/bam/config/BAMICommandConfig.xml file and set the
following:

 � ServerName: The name of the BAM server or localhost if the command is
run on the same machine as the server

 � ServerPort: The listening port of the BAM server

 � ICommand_Default_User_Name: The administrative username

 � ICommand_Default_Password: The administrative user password

Sample settings are shown as follows:

<ServerName>soavbox</ServerName>
<ServerPort>7001</ServerPort>
<ICommand_Default_User_Name>weblogic</ICommand_Default_User_Name>
<ICommand_Default_Password>welcome1</ICommand_Default_Password>

4. Change the directory to $ORACLE_HOME/bam/samples/bam/monitorexpress/
bin and run the setup command:

 � For Linux:
$./setup.sh

 � For Windows:

C:\> setup.cmd

A sample output is shown as follows:

BAM Home =/home/oracle/Middleware/Oracle_SOA1/bam

Using JAVA_HOME=/home/oracle/jdk1.6.0_31

Creating the Data Objects

Oracle BAM Command Utility [Build 16734, BAM Repository Version
2025] Copyright Â© 2002, 2011, Oracle and/or its affiliates. All
rights reserved.

Importing from file "/home/oracle/app/Middleware/Oracle_SOA1/
bam/samples/bam/monitorexpress/data_objects/MonitorExpress_
DataObjects.xml".

...

Reports successfully created

Setup ends successfully

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

313

5. Verify the Monitor Express report from BAM Active Viewer by pressing the Select
Report button to bring up Select a Report -- Webpage Dialog.

From the drop-down menu, choose Shared Reports and then double-click through
the Samples and Monitor Express folders to reach the Monitor Express Dashboard
report. Double-click on Monitor Express Dashboard to open the report and verify that
it opens.

You have now successfully installed Monitor Express.

How it works...
Monitor Express is shipped as a sample set of reports by Oracle. Before use it must be
deployed, and the setup script uses BAM ICommand to deploy the Monitor Express BAM
objects and Monitor Express reports. After the reports are deployed, it is necessary to
instrument your BPEL processes to feed data to the Monitor Express BAM objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring and Management

314

Now that Monitor Express is deployed in your BAM server, you can start instrumenting your
BPEL processes to be displayed in Monitor Express Dashboard.

There's more...
It is possible to view the associated BAM data object used by Monitor Express using BAM
Architect. It is also possible to view and edit the Monitor Express reports using BAM
Active Studio.

See also
 f The Configuring BAM Adapter recipe in this chapter

 f The Configuring a BPEL process to report status to BAM Monitor Express recipe in
this chapter

Configuring BAM Adapter
This recipe shows how to configure BAM Adapter, which is used by BAM-enabled composites.
The adapter must be configured to point to the BAM server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

315

Getting ready
Log on to the WebLogic console http://hostname:port/console.

How to do it...
1. In WebLogic Server Administration Console, select Deployments from the Domain

Structure pane.

2. Locate OracleBamAdapter (Resource Adapter) and click on it.

3. Navigate to the Outbound Connection Pools tab under the Configuration tab in the
Settings for OracleBamAdapter screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring and Management

316

4. Expand the oracle.bam.adapter.adc.RMIConnectionFactory section and click on the
eis/bam/rmi link.

5. Set the properties to the correct values for your installation, and make sure that you
press the Enter key after any changes.

6. When all the changes have been made, click on the Save button.

If prompted for a Deployment Plan location, make sure that the plan is saved in a location that
is available to both the Admin server and all SOA-managed servers.

How it works...
The Monitor Express sensors in a BPEL process automatically make use of a BAM Adapter
connection factory found at eis/bam/rmi. This provides an RMI route into the BAM server.
Before this can be used, we need to configure it to point to the BAM server. Note, that there is
only one BAM server in a BAM cluster because it is a singleton service. There may be multiple
BAM web servers, but there is only one BAM server that hosts Active Data Cache.

See also
 f The Deploy Monitor Express to BAM recipe in this chapter

 f The Configuring a BPEL process to report status to BAM Monitor Express recipe in
this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

317

Configuring a BPEL process to report the
status to BAM Monitor Express

This recipe enables the monitoring of a BPEL process using the provided Monitor Express
Dashboard. The BPEL process is instrumented so that it can populate the Monitor Express
data object.

Getting ready
Open a BPEL process in JDeveloper.

How to do it...
1. In the JDeveloper BPEL editor, click on to switch to the monitor view.

2. In the monitor view click on the Monitor Configuration icon .

3. In the Monitoring Configuration dialog box, select the Enable Activity Monitoring
checkbox. Leave the Mode as the default of Scopes and Human Tasks Only. Click
on OK to apply the changes and enable activity monitoring for this process.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring and Management

318

4. Using JDeveloper, deploy the modified composite to the SOA server. When deploying,
make sure in the Deploy Configuration step that the Ignore BPEL Monitor
deployment errors checkbox under the BPEL Monitor section is checked.

5. Execute at least one instance of the composite with the modified BPEL process and
then navigate to Monitor Express Dashboard (see step 5 in the Deploy Monitor
Express to BAM recipe). Verify that the modified composite and component are
displayed in the Process Summary section of the dashboard.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

319

How it works...
The Enable Activity Monitoring checkbox allows the BPEL process to update the Monitor
Express BAM object with information about what it is doing. This object is the same for
all BPEL processes and collects information, such as the start and completion times for a
process. The BAM data object is updated using a BAM connection factory found at eis/bam/
rmi. This resource should be correctly configured for the BPEL process to update the BAM
object. Similarly, the Monitor Express objects and reports should have been deployed before
trying to deploy a BPEL process that collects the Monitor Express statistics.

There's more...
Monitor Express allows a BPEL process to be instrumented in multiple ways.

Capture points
The basic configuration of the BPEL process we did in this recipe captures the start and
stop times for each scope and human workflow activity within the process. Other options
are available to capture the start and stop times for all activities (All Activities), only
human workflow (Human Tasks Only) or only the start and end of the BPEL process
(BPEL Process Only).

Custom intervals
If we are interested in how long a process takes to execute between two arbitrary activities,
then we can use the interval monitoring option to specify an interval name and the start and
end activities. For each activity, we can specify the whereabouts of the activity, from where we
wish to collect the data (at the start or the end usually).

Business indicators
Business indicators can be used to collect a business metric, such as the value of a
transaction. They work by specifying the data to be collected as an XPath expression
and then specifying the activities in the process from where the data should be collected.

Counters
Sometimes we just want to know how many times a given activity in a process was executed.
We can do this by using a counter.

See also
 f The Deploy Monitor Express to BAM recipe in this chapter

 f The Configure BAM Adapter recipe in this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A
ability 128
Active Directory. See AD
AD

about 271
configuring, as authentication

provider 271, 272
working 273

admin server 8
AL32UTF8 16
AL32UTF character 18
authentication 232
authentication policies

about 238
wss10_saml20_token_service 238
wss10_saml_token_service 238
wss11_kerberos_token_service 238
wss_http_token_service 238
wss_username_token_service 238

authorization 232

B
BAM

about 303, 304
functionalities 304
Monitor Express, deploying to 311-313

BAM Adapter
configuring 314-316
working 316

BAM cluster 9, 21
basic security model 233
BPEL

SOA runtime environment, accessing
from 229, 230

bpel.config.transaction property
about 52, 54
required value 52
requiresNew value 52
values 52

BPEL engine 52
BPEL process

modifying, for using callers transaction
context 51, 52

rollback faults, catching 56
configuring 317, 318
monitoring, Monitor Express Dashboard

used 317
working 319

BPEL process configuration
business indicators 319
capture points 319
counters 319
custom intervals 319

Business Activity Monitoring. See BAM
business indicators 319
business monitoring 304
Business-to-Business (B2B) scenarios 187

C
CancelParcelTracker composite 125
Capture Composite Instance State

enabling 307
capture points 319
className element 212
Compensate activity 63
compensating transactions

applying 61, 62

www.it-ebooks.info

http://www.it-ebooks.info/

322

composite
message aggregation 96
restricting, to authenticated users 234-237
restricting, to authorized users 243-246

composite completion status
capturing 305-307

composite messaging patterns
dynamic scheduling of BPEL processes,

using 103
message aggregation 96
singleton composite 110

configuration information, SOA Suite cluster
collecting 10
floating IP addresses, identifying for

WebLogic servers 12
physical machines, identifying for

WebLogic servers 11
physical machines, identifying for

web servers 11
port numbers, identifying for

WebLogic servers 12
topology drawing, creating 10

control flag, WebLogic
OPTIONAL 254
REQUIRED 254
REQUISITE 254
SUFFICIENT 254

counters 319
credential 232
credential store

about 234
keys, adding 246-248
working 249

custom intervals 319
custom XPath descriptor file

creating 211
custom XPath function

creating, for SOA Suite 206-216
JAR file, generating 214

D
database

preparing, for SOA Suite cluster 16-18
Dehydrate activity

about 54
adding, to BPEL process 53

deleteMetadata command 47
deployment architecture, SOA Suite 8
desc element 212
detail element 212
dynamic binding

OSB, used 128
dynamic partner links, with BPEL 2.0

using 103-109
working 109, 110

dynamic routing
implementing, in OSB 129-134

E
ednJobDefinition element 123
EDG

reference 7, 15
EJB

calling, from SOA composite 217-220
EJB reference

using, in Spring component 226-228
Enable Activity Monitoring checkbox 319
EndpointReference variable 107
Enterprise Deployment Guide. See EDG
Enterprise Manager console

about 304
functionalities 304

exportMetadata WSLT command 45
external reference, MDS

creating, WSDL used 34, 35

F
fault handling, Split-Join 150-152
fault policy deployed, to MDS

referencing 38, 39
file-based MDS repository

creating, for JDeveloper 26-29
For Each loop 139
ForEach variable 139

G
getJob operation 125
getVariableData method 230
group 232
group-based authorization policy

creating 239-243

www.it-ebooks.info

http://www.it-ebooks.info/

323

Gzip 188
GzipAdapter 188
gzip wrapper

implementing, for OSB 188-191

H
HTTP Basic authentication

using 238
HTTP Basic secured web service

invoking 249, 250
working 251

HTTP Basic Security
used, for restricting composite to

authenticated users 234-237

I
identity store 233
Imported Destinations 295
inter-domain messaging

SAF, using for 289-295
iXPathContext 211
IXPathFunction interface 210

J
J2SE 188
Java 203
Java EE 253
Java embedding activity 230
Java Enterprise Edition. See Java EE
Java integration

use cases 204
Java Message Service. See JMS
Java Naming and Directory

Interface. See JNDI
JavaScript Object Notation. See JSON
java.util.zip package 188
JBoss Application Server 5.1

messages, consuming from 296-300
JD Edwards (JDE) 282
JDE Realtime Events (RTE) 282
JDeveloper

file-based MDS repository, creating 26-29
JMS 277
JMS messages

consuming, from 278-281

JMS Transport configuration 139, 140
JNDI 220, 278
JSON 153
JSON service

binding, in OSB 172-174
invoking, from OSB 164-171

K
key security terms, WSM

about 232
authentication 232
authorization 232
basic model 233
credential 232
credential store 234
group 232
identity store 233
policy 233
policy store 233
principal 232
role 232
Secure Sockets Layer (SSL) 234
user 232

L
leasing.ddl script 18
load balancer 20
LookupDestination 131
LookupDestination stage 134

M
machine 8
managed server 8
MDS

about 24, 233
database repository 24
external reference, creating

with WSDL 34, 35
file-based repository 24
Mediator, creating subcribing to EDL 33, 34
Mediator, creating using WSDL 30-32
Schematron, referencing for validation 36, 37

MDS artifacts
deploying, to SOA infrastructure 39-43

www.it-ebooks.info

http://www.it-ebooks.info/

324

MDS partition
exporting, to filesystem 43, 45

Mediator
creating in MDS, subcribing to EDL 33, 34
creating in MDS, WSDL used 30-32

message aggregation
fixed duration 96
using 96-102
wait for all 96
working 102, 103

Message Oriented Middleware. See MOM
messages

monitoring, in real time 307-309
splitting, OSB used 135-139

Metadata Service. See MDS
metrics

about 310
sources 311
types 310

MOM 277
Monitor Express

deploying, to BAM 311-313
Monitor Express dashboard 314

N
NAS 15
network

preparing, for SOA Suite cluster 19
NFS 15
Node Manager 10
non-SOAP HTTP interfaces 185

O
OC4J

JMS messages consuming, from 278-281
messages, publishing 282-288

OID
about 254
advantages 264
configuring, as authentication

provider 254-263
working 263

operating system
preparing, for SOA Suite cluster 13, 14

operational monitoring 304
OPSS 253
OPTIONAL control flag 254
Oracle Directory Services

Manager. See ODSM
oracle.fabric.common.xml.xpath

.IXPathFunction 210
Oracle Internet Directory. See OID
Oracle Platform Security Services. See OPSS
Oracle Real Application Clusters (RAC) 9
Oracle Service Bus. See OSB
Oracle Virtual Directory. See OVD
Oracle WebLogic 253
Oracle Web Services Manager. See WSM
OSB

compressed files, reading 191-196
compressed files, writing 196-200
configuring, for consuming

messages 296-300
gzip wrapper, implementing 188-190
aggregation logic 150
conflicts 150
fault handling, in Split-Join 150-152
JSON service, binding 172, 174
JSON service, invoking from 164, 166
proxy service, exposing as

JSON service 175-185
service calls 150
Split-Join 140
used, for dynamic binding 128-132
used, for splitting out messages 135-138
XML and JSON conversions 154

OSB business service
creating, for publishing messages 282-288
working 288

OSB Domain 295
OSB proxy service

configuring, for OC4J connection 278
creating, for JMS messages

consumption 278-281
working 282

OVD
about 264
advantages 271
configuring 264-270
working 270

www.it-ebooks.info

http://www.it-ebooks.info/

325

P
params element 212
ParcelTracker composite 124
parent operation 142
Performance Summary screen 309
policy 233
policy store 233
priceCheck operation 142
principal 232
proxy service

exposing, as JSON service 175-185
PublisherApp OSB project 129
PublisherBatchService 136
publisherEndpoint variable 107
PublisherSkynet service 111
purgeMetadata command 47
putJob operation 125

Q
Quartz job 118
queryJobs operation 125

R
removeJob operation 125
REQUIRED control flag 254
RequiresNew process 52
REQUISITE control flag 254
return element 212
reversing transactions

applying 59
role 232
rollback faults

catching 56, 57

S
SAF Sending Agent 295
SAN 15
scheduled service

deleting, in composite 125, 126
scheduleParcelTracker composite 123
Scheduler

about 118
downloading 115
download link 115

Schematron, MDS
referencing for validation 36, 37

Secure Sockets Layer. See SSL
server 8
Server type 12
services

scheduling 115-118
scheduling, in composite 119-123

setVariableData method 230
simpleSchedule element 123
singleton composite

about 110
using 110, 112
working 113

SMB 15
SOA cluster 9
SOA composite

EJB, calling from 217-220
Spring bean, using 221-225

SOA Identity service
configuring, for AD 271, 272
configuring, for OID 254-263
configuring, for OVD 264-270
configuring, for Sun iPlanet 273-275

soainfra schema 17
SOA runtime environment

accessing, from BPEL 229, 230
SOA Suite

authentication policies 238
custom XPath function, creating 206-216

SOA Suite cluster
about 7-10
benefits 7
components 9
configuration information, collecting 10-12
database, preparing 16-18
deployment architecture 8
network, preparing 19-21
operating system, preparing 13-15
target solution 8, 9

SOA Suite entities
about 8
admin server 8
machine 8
managed server 8
server 8

soa-xpath-functions element 212

www.it-ebooks.info

http://www.it-ebooks.info/

326

Split-Join, OSB
about 140
dynamic 140
implementing 141-147
static 140
working 148, 149

Spring 226
Spring bean

using, in SOA composite 221-225
Spring component

EJB reference, using 226-228
Spring Context file 226
SSL 234
static 103
Stock Order service 128
Store-and-Forward (SAF) 289
submitBookOrder 129
submitBookOrderList 136
SUFFICIENT control flag 254
Sun iPlanet

about 273
configuring 273, 274
working 275

SYSDBA privileges 16

T
Throw activity 63
TLogs 15
token 113
transaction manager 50
transactions

aborting 54-56
about 49
committing 52
compensating 50
compensating operations, applying 61, 62
defining 49
reversing operations, applying 59

U
use cases, Java integration

BPEL and composite information,
accessing 206

complex logic, adding to XPath 204
existing Java code, calling 204
service, implementing in Java 206

user 232

W
WebLogic Admin console

using 255
WebLogic clusters 9
WebLogic Domain 295
WebLogic JMS Store-and-Forward

used, for inter-domain messaging 289-295
working 295

WebLogic Security Framework 254
WebLogic server 12
WebLogic Server Administration Scripting

Shell (WLST) 46
WebLogic server machine 11
Web server machine 11, 13
Web Services Manager. See WSM
Web Services Manager cluster 9
writeGZipObject() method 200
WSDL Definition 23
WSM

about 231
key security terms 232

X
XA transaction manager 50
XML and JSON conversions

about 154
code fragment, using 161-163
Jar files, importing 155
Java Callout actions, using 160
Java class, creating 159
Java libraries 154, 155
Plain Old Java Objects (POJOs),

creating 158-160
scaffolding 160
schema 154
schema and WSDL files, importing 155
schemas, compiling 157
working 164

XML artifacts
deleting, from SOA infra MDS 46, 47

XML compressed files
reading, with OSB 191-196
writing, with OSB 196-200

XMLNodeList 210

www.it-ebooks.info

http://www.it-ebooks.info/

327

XML Schema Definition. See XSD
XPathFunctionException 211
XPath function name

defining 212
XPath functions

packaging, in JAR file 213
registering, with JDeveloper 214
registering, with SOA Suite 214
using 214

XSD 23

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Oracle SOA Suite 11g Developer's Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started With
Oracle SOA Suite 11g R1 –
A Hands-On Tutorial
ISBN: 978-1-847199-78-2 Paperback: 482 pages

Fast track your SOA adoption – Build a Service-Oriented
composite Application in just hours!

1. Offers an accelerated learning path for the much
anticipated Oracle SOA Suite 11g release

2. Beginning with a discussion of the evolution
of SOA, this book sets the stage for your SOA
learning experience

3. Includes a comprehensive overview of the Oracle
SOA Suite 11g Product Architecture

Oracle SOA Suite 11g R1
Developer's Guide
ISBN: 978-1-849680-18-9 Paperback: 720 pages

Develop Service-Oriented Architecture Solutions with the
Oracle SOA Suite

1. A hands-on, best-practice guide to using and
applying the Oracle SOA Suite in the delivery of
real-world SOA applications

2. Detailed coverage of the Oracle Service Bus,
BPEL PM, Rules, Human Workflow, Event Delivery
Network, and Business Activity Monitoring

3. Master the best way to use and combine each of
these different components in the implementation
of a SOA solution

4. Illustrates key techniques and best practices using
a working example of an online auction site (oBay)

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

WS-BPEL 2.0 for SOA
Composite Applications
with Oracle SOA Suite 11g
ISBN: 978-1-847197-94-8 Paperback: 616 pages

Defi ne, model, implement, and monitor real-world
BPELbusiness processes with SOA-powered BPM

1. Develop BPEL and SOA composite solutions with
Oracle SOA Suite 11g

2. Efficiently automate business processes
with WS-BPEL 2.0 and develop SOA
composite applications.

3. Get familiar with basic and advanced BPEL 2.0.

Oracle BPM Suite 11g
Developer's Cookbook
ISBN: 978-1-849684-22-4 Paperback: 512 pages

Over 80 advanced recipes to develop rich, interactive
business processes using the Oracle Business Process
Management Suite

1. Full of illustrations, diagrams, and tips with clear
step-by-step instructions and real time examples
to develop Industry Sample BPM Process and
BPM interaction with SOA Components

2. Dive into lessons on Fault ,Performance and Rum
Time Management

3. Explore User Interaction ,Deployment and
Monitoring

4. Dive into BPM Process Implementation as process
developer while conglomerating BPMN elements

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building an SOA
Suite Cluster
	Introduction
	Gathering configuration information
	Preparing the operating system
	Preparing the database
	Preparing the network

	Chapter 2: Using the Metadata Service to Share
XML Artifacts
	Introduction
	Creating a file-based MDS repository for JDeveloper
	Creating Mediator using a WSDL in MDS
	Creating Mediator that subscribes to EDL in MDS
	Creating an external reference using a WSDL in MDS
	Referencing Schematron in MDS for validation
	Referencing a fault policy deployed to MDS
	Deploying MDS artifacts to the SOA infrastructure
	Exporting an MDS partition to the filesystem
	Deleting XML artifacts from SOA infra MDS

	Chapter 3: Working with Transactions
	Introduction
	Modifying a BPEL process to use the callers transaction context
	Committing a transaction
	Aborting a transaction
	Catching rollback faults
	Applying reversing or compensating transactions

	Chapter 4: Mapping Data
	Introduction
	Ignoring missing elements with XSLT
	Ignoring missing elements with Assign
	Creating target elements in Assign
	Array processing with XSLT
	Array processing with BPEL Assign
	Overriding mapping of EJB data to XML
	Ignoring a Java property
	Creating a wrapper element for a Java collection or array
	Handling an abstract class

	Chapter 5: Composite Messaging Patterns
	Introduction
	Message aggregation within a composite
	Using dynamic partner links with BPEL 2.0
	Singleton composite
	Scheduling services
	Scheduling a service within a composite
	Deleting a scheduled service within a composite

	Chapter 6: OSB Messaging Patterns
	Introduction
	Dynamic binding using OSB
	Splitting out messages using OSB
	Dynamic Split-Join in OSB
	Fault handling in dynamic Split-Join in OSB

	Chapter 7: Integrating OSB
with JSON
	Introduction
	Converting between XML and JSON
	Invoking a JSON service from OSB
	Dynamically binding to a JSON service
in OSB
	Exposing a proxy service as a JSON service

	Chapter 8: Compressed File Adapter Patterns
	Introduction
	Implement GZIP wrapper for OSB
	Reading compressed files with OSB
	Writing compressed files with OSB

	Chapter 9: Integrating Java
with SOA Suite
	Introduction
	Creating a custom XPath function for SOA Suite
	Using a Spring bean in an SOA composite
	Using an EJB reference in a Spring component

	Chapter 10: Securing Composites and Calling Secure
Web Services
	Introduction
	Restricting a composite to authenticated users with HTTP Basic Security
	Creating a new, group-based authorization policy
	Restricting a composite to authorized users
	Adding keys to a credential store
	Invoking an HTTP Basic secured web service

	Chapter 11: Configuring the
Identity Service
	Introduction
	Configuring the SOA Identity service to use Oracle Internet Directory
	Configuring the SOA Identity service to use Oracle Virtual Directory
	Configuring the SOA Identity service to use Active Directory
	Configuring the SOA Identity service to use Sun iPlanet server

	Chapter 12: Configuring OSB to Use Foreign JMS Queues
	Introduction
	Creating an OSB proxy service to consume JMS messages from OC4J
	Creating an OSB business service to publish messages to OC4J
	Using WebLogic JMS Store-and-Forward for inter-domain messaging
	Configuring OSB to consume messages from JBoss Application Server 5.1

	Chapter 13: Monitoring and Management
	Introduction
	Deploy Monitor Express to BAM
	Configuring BAM Adapter
	Configuring a BPEL process to report the status to BAM Monitor Express

	Index

