
www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with
Oracle Tuxedo

A practical guide to client/server technology using
Tuxedo and extending it to SOA and cloud quickly

Biru Chattopadhayay

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Oracle Tuxedo

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2013

Production Reference: 1280513

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-688-4

www.packtpub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Biru Chattopadhayay

Reviewers
Ransford Hewitt

Aivars Kalvans

Acquisition Editor
Rukhsana Khambatta

Commissioning Editor
Meeta Rajani

Technical Editor
Hardik B. Soni

Copy Editor
Aditya Nair

Project Coordinator
Michelle Quadros

Proofreader
Paul Hindle

Indexer
Tejal R. Soni

Graphics
Ronak Dhruv

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

Cover Image
Valentina Dsilva

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Biru Chattopadhayay has more than 20 years of international and diverse IT
experience with a strong technical background and deep understanding of the
relationship between technology and strategic business interests. He is of that
rare breed of individuals who are very creative and who excel in highly technical
assignments as well as in leadership roles. He has worked for product companies
in the US and held senior positions in multinationals, where he has provided
consulting and delivered solutions for various organizations around the world. He
has been working with middleware since the early stages of his career and has a
commanding knowledge of middleware, enterprise application integration (EAI),
and SOA. Biru has worked for some of the best companies in the industry, such
as BEA, Oracle, Tech Mahindra, and Dell. He has spoken in various international
technical conferences on middleware, SOA, and e2e solutions.

I would like to thank my parents, Late Asha and Bhabani
Chattopadhayay, for their blessings and for what I am today. My
children, Bodhit and Ishani, for their effervescent curiosity as an
added motivation, and most importantly my wife Kakoli for her
unconditional support and encouragement.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Ransford Hewitt has over 10 years of experience in the design and development
of distributed systems, and specializes in designing and troubleshooting large,
high-performance, mission-critical systems built with various middleware
technologies. Prior to joining Rogers Communications Partnership, Ransford
spent two years as a system integrator, deploying the Amdocs Customer Care
and Billing application mostly to large telecommunication companies, and spent
another 18 years working with Cable & Wireless specializing in deploying and
troubleshooting large, high-speed data communication systems. Ransford is
currently a technical manager at Rogers Communications Partnership.

Aivars Kalvans holds the position of Lead Software Architect at Tieto Latvia
and is working on the Card Suite payment-card system. Card Suite provides
solutions for every single part of the payment-card business—issuing, acquiring,
switching and clearing POI management, fraud and dispute management, and
u-commerce.

During his career of more than 10 years, Aivars has been involved in a number of
projects related to credit card issuing and acquiring utility payments through mobile
phones, ATMs, and POS terminals. Aivars has been using Oracle Tuxedo (formerly
BEA Tuxedo) since Version 8 in 2003. He enjoys solving both design and technical
problems, and likes to work on personal and open source projects in his free time.

Aivars holds a Bachelor's degree in Computer Science from Riga Technical
University and a Software Architecture Professional Certificate from the
Carnegie Mellon Software Engineering Institute.

I would like to thank my lovely wife Anete and sons Kārlis and
Gustavs for making life much more interesting.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Getting Started with Tuxedo 7

Introduction to the distributed client/server
architecture using Tuxedo 7

Some of the benefits of client/server technology 9
The history of Tuxedo 9
Tuxedo architecture and anatomy 10

Installation of Tuxedo 14
Hardware and software requirements 14
Tuxedo installation components 15
Installation procedures 16

Graphical user interface (GUI) installation 16
Console installation 17
Silent installation 17

Summary 18
Chapter 2: Configuration and Administration of Tuxedo 19

Tuxedo administration 20
Responsibility of a Tuxedo administrator 20
Configuring and setting up a Tuxedo application 21

Environment variables 21
Configuring and structuring a Tuxedo application 22

The RESOURCES section 26
The MACHINES section 28
The GROUPS section 30
The NETWORK section 30
The SERVER section 31
The SERVICE section 32
The ROUTING section 34

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

The NETGROUPS section 34
Things to remember 35

Tuxedo commands 36
The buildclient command 36
The buildserver command 37
The buildtms command 37
The tmloadcf command 38
The tmboot command 38
The tmshutdown command 39
List of Tuxedo commands 39

Monitoring and changing a Tuxedo application 42
The command-line interface 43
The Tuxedo MIB application programming interface 45
Tuxedo System and Application Monitoring (TSAM) 45

Installing TSAM 46
Various administrative tasks using TSAM 51
Using TSAM for monitoring – quick path 53

The logfiles 57
The important features of Tuxedo 57

Security 57
Data-dependent routing (DDR) 58

Horizontally partitioned 58
Rule-based servers 59
Distributed applications 59

Data encryption 59
Data compression 60
Load balancing 60

Administering the Tuxedo queue (/Q) 60
Configuration of resources for /Q 61
Creation of queue space and queues 61
Monitoring /Q 63

The Tuxedo domain 63
The domain configuration file 64
The domain gateway server 64
The domain administrative server 64
Administrative tools for the domain 65

Creating a domain transaction log 65
A brief example of how to configure and run a Tuxedo domain 66

Tuning the application 67
Summary 69

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 3: Development of Tuxedo – Various APIs 71
Introduction to the Application Programing Interface 71
Developing a Tuxedo client 76

Sample client code structure 77
Compiling the native or workstation client 78
Tuxedo client ATMI functions 78

Developing a Tuxedo server 79
Sample server code structure 80
Advertising a service 80
Tuxedo server ATMI functions 81
How to compile a server 81

Tuxedo buffer types 82
The STRING buffer 82
The CARRAY buffer 83
The VIEW buffer 83
The FML buffer 84
The XML buffer 86

Client/server communication paradigms 86
Request/reply 87
Conversational 87
Queues (Tuxedo /Q) 87
Event-based communication 89

Transaction in Tuxedo 90
The XA interface and two-phase commit 91
Creating or initiating a transaction 92
Tuxedo's transactional functions 92
Tuxedo Transaction Log (TLOG) 93

Summary 93
Chapter 4: SALT – Service Architecture Leveraging Tuxedo 95

Getting acquainted with SALT 95
The SALT gateway (GWWS) and service metadata repository server 97
WSDL utilities for SALT 97
The SCA concept and Tuxedo service 97

SALT installation 98
GUI-based installation 99

Installing on Windows 99
Installing on Unix 99

Console-based installation 100
Silent installation 100

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Configuration of a SALT application 101
SCA container APIs and utilities 101

The buildscaclient command 101
The buildscacomponent command 102
The buildscaserver command 102
The GWWS command 103

Configuring the Tuxedo web services 106
The UBBCONFIG file 106
The Tuxedo service metadata repository 107
Configuration of the native web services 109
Configuration of external web services 110
Compiling the SALT configuration 113

Configuring SCA components 113
SCA ATMI client configuration 113
SCA JATMI client configuration 114
SCA workstation client configuration 114
SCA web service client configuration 114
SCA ATMI server configuration 115
SCA web service server configuration 115
SCA client security configuration 115

Configuring the service contract discovery 116
Configuring the SALT WS-TX support 116

Administration of SALT 116
GWWS administration 117

Tuning the GWWS server 117
Monitoring the GWWS server 118
Browsing to the WSDL document from the GWWS server 118

Administrating the SCA components 119
Tracing the SCA ATMI server and client 119
Monitoring the SCA servers 120

SALT programming 120
Web services programming 120

Invoking Tuxedo services (inbound) through SALT 121
Invoking external web services (outbound) through SALT 121

SCA programming 121
SCA client programming 122
SCA component server programming 122
SCA transactions 122

Summary 123
Chapter 5: Oracle Tuxedo Joining the Exalogic Family 125

What is Exalogic? 125
Tuxedo installation on an Exalogic machine 126
Tuxedo configuration and runtime 127

The UBBCONFIG file 128

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Tuxedo Socket Direct Protocol support 129
The MP mode 129
GWTDOMAIN 130
The workstation listener (WSL) 131
The workstation (/WS) client 132
The jolt service listener (JSL) 132
The WebLogic Tuxedo connector (WTC) 132
Databases 133
The EXALOGIC_MSGQ_CACHE_SIZE variable 133

Running Oracle Tuxedo 133
Start/stop tux_msgq_monitor 134

Start tux_msgq_monitor 134
Stop tux_msgq_monitor 135

Summary 136
Index 137

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
The client/server architecture is versatile and has a modular infrastructure. This
technology is described as a cost-reduction technology. It includes fourth-generation
languages, relational databases, distributed computing, and much more. Furthermore,
it's been there for decades now; we can easily say that it's been there for multiple
generations since the 80s. This book has been designed to give a quick reference to
Tuxedo and the client/server architecture. Many books have been written on this
technology, but this is the first book that bridges the gap between previous generations
and the future generation. As I said, the client/server architecture, or Tuxedo, has
been around for the past few decades now, and it is expanding every day! Today
when we talk about Service Oriented Architecture (SOA) or Service Component
Architecture (SCA), they are basically seen as new approaches to the client/server
architecture. In this book, we are using our good old friend Tuxedo as a client/server
platform, and we will learn how to build a distributed application using Tuxedo. What
is the functionality of the Tuxedo components and the various APIs/parameters for
development and configuration that make the Tuxedo-based applications so scalable,
reliable, and highly-available in nature? Another question can be asked too, that is,
is this Tuxedo still relevant for our current IT scenarios? The answer is obvious; it
can be extended to the SOA world very easily, and you can call a Tuxedo service as a
component of a composite when you are building an SCA-based application. Today,
Tuxedo leverages one of the most futuristic machines, called Exalogic; it is easy to use
and still gives you better ROI. In this book, there are some simple examples to explain
the subject matter in an easier and practical way. Tuxedo has numerous out-of-the-box
features and various ways to implement them to get best out of it; we have discussed
as much as possible to give you the overall picture of how to build Tuxedo-based
application leveraging these features.

Your feedback is very valuable to us. You can contribute by reporting any errors you
find in the book, making suggestions for new content that you'd like to see in future
updates, and by commenting and blogging about it.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

What this book covers
Chapter 1, Getting Started with Tuxedo, introduces you to the distributed client/server
technology using Tuxedo and tells you how it has evolved over the past decades.
You will get an overview of the Tuxedo architecture and it's various important
components and their functionalities. It also discusses various Tuxedo installation
procedures, hardware and software requirements, and guidelines.

Chapter 2, Configuration and Administration of Tuxedo, guides you on how to
configure a Tuxedo application and all its parameters with their syntax and
relevant values. It covers the various Tuxedo administrative tools that are very
important for a Tuxedo administrator to perform his/her daily work, and finally
wraps up with tuning suggestions.

Chapter 3, Development of Tuxedo – Various APIs, discusses how to use Tuxedo
APIs to build your applications, which are the clients combined with the server
modules. Their syntax and value range has been provided as applicable. Also,
it briefly describes all the Tuxedo buffer types, communication paradigms, and,
most importantly, transactions processing (XA).

Chapter 4, Service Architecture Leveraging Tuxedo, covers SALT; this is an add-on
product that allows external web service applications to invoke Tuxedo services
and vice versa. It covers the basics of SALT and how to use SALT to connect a
Tuxedo service from or to an SOA environment.

Chapter 5, Oracle Tuxedo Joining the Exalogic Family, discusses the Exalogic machine
and its architecture briefly, and then discusses how to configure and deploy the
Tuxedo application in this environment.

What you need for this book
You may need to download Tuxedo and SALT from the Oracle site at the
following URL:

http://www.oracle.com/technetwork/middleware/tuxedo/downloads/
index.html

Please make sure you download the right version of Tuxedo for your specific
operating system.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Who this book is for
This book is for anyone who wants to learn the client/server architecture using
Tuxedo. It has been written in such a way that anyone who has a minimal
knowledge of the client/server architecture can understand it and build the
fundamental knowledge of Tuxedo and its APIs, commands, various important
parameters, configuration file, and administrative tools. This book can be very
helpful for architects, designers, developers, and administrators as a quick
reference guide or as a guideline on how to build a Tuxedo application. The
primary objective of this book is to show you how to develop distributed
systems using Tuxedo and extend that to an SOA environment. It also gives
the fundamentals of the Exalogic machines and how the Tuxedo application
can leverage these new high-end machines for enterprise needs.

This book also helps business users to understand this technology, its various
features and functionalities, and the related business benefits.

Many people in the IT field are not familiar with the general concept of the client/
server technology, so a short overview of this is included in the introductory chapter.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"You need to run wsdlcvt on the WSDL to produce a WSDF file."

A block of code is set as follows:

char *carrayPtr;
long carraysize;
. . .
carraysize = 1024;
carrayPtr = tpalloc ("CARRAY", NULL, carraysize);

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

char *carrayPtr;
long carraysize;
. . .
carraysize = 1024;
carrayPtr = tpalloc ("CARRAY", NULL, carraysize);

Any command-line input or output is written as follows:

buildserver [-C] [-M] [-s services[:func[()]]][-v] [-o outfile] [-f
firstfiles] [-l lastfiles] [{-r|-g} rmname] [{-r|-g} rmid:rmname] [-E
envlabel] [-t]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click
on NEXT to proceed with the installation."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works, in any form, on the Internet,
please provide us with the location address or website name immediately so that
we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Tuxedo
In this introductory chapter, we'll discuss Oracle Tuxedo for distributed client/
server technology and how it has evolved over the past decades. It gives you
a comprehensive overview of Tuxedo architecture and its various important
components and their functionalities. It then follows with Tuxedo installation
procedures in brief and hardware and software requirement guidelines.

Introduction to the distributed client/
server architecture using Tuxedo
Tuxedo is a middleware for building multitier client/server applications in
heterogeneous distributed environments. It stands for Transactions under UniX
Extended for Distributed Operation (TUXEDO). It is also called the Transaction
Monitoring (TP Monitor) system. Tuxedo has been around for more than
three decades now and it is expanding every day. Today, the Service Oriented
Architecture (SOA) or Service Component Architecture (SCA) is considered as
the new architectural approach, but Tuxedo has been based on this approach
from the beginning. Tuxedo has been used to build various mission-critical
distributed applications around the world that are extremely scalable, reliable,
and highly available in nature. One may question whether Tuxedo is still relevant
in the current IT scenarios? The answer is YES! It can easily be extended to an
SOA environment, where the Tuxedo service can be called as a component of a
composite in SCA-based applications. The latest Tuxedo can run on an Exalogic
machine, one of most futuristic machines for cloud computing. All these features
are very natural to the Tuxedo environment and returns better ROI.

In Tuxedo, a client program acts like a consumer who initiates a call to the service
or a server, which is the provider for the service. The service is always in a ready
state to accept a request from the client.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Tuxedo

[8]

Some of the basic features of Tuxedo in the distributed client/server model are
as follows:

• The server and the client are functional modules with distinct interfaces.
The APIs are standards-based (SCA, XATMI, and CORBA). The functions
performed by a client and a server can be implemented by a set of software
modules run on the same or different machines.

• Each client/server association is established between two functional
components when a client component initiates a service request for a
server, which responds to the service request.

• Transaction management is one of the most important features of Tuxedo;
for example, two-phase commit protocol, which is also known as XA.

• Tuxedo provides a reliable message queuing mechanism called /Q, which
supports XA. It provides a reliable and persistent queuing technique that
allows applications to unequivocally queue requests to a queue.

• The following additional features, although not required, are typical of the
client/server model:

 ° There are various types of message-passing mechanisms, which
are typically asynchronous, synchronous, unsolicited notification,
conversational, or publish/subscribe.

 ° Clients and servers typically reside on separate machines connected
through a network, but they can reside in the same machine too.

• There are various security features such as auditing, authorization,
authentication, and encryption available for use.

Response

Request

Clients

Data Center-1 (LAN)

Server

Clients

Data Center-2 (LAN)

Server
WAN

Response

Request

Clients

Response

Request

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Some of the benefits of client/server
technology
The advantages or benefits of a clean client/server model are manifold; some
of them are as follows:

• Modular application design – Divides application processing across
multiple machines, with the following conditions:

 ° Non-critical data and functions are processed on the client
 ° Critical functions are processed on the server

• Optimization – Optimizes the server for data processing and storage
(for example, large computers and disk space)

• Reduced network traffic – Due to the three-tier architecture,
data doesn't need to travel back and forth from frontend clients
to databases multiple times

• Scales horizontally – Multiple servers, each having capabilities and
processing power, can be added to distribute processing load

• Scales vertically – Can be moved to more powerful machines,
such as a minicomputer or a mainframe, to take advantage of the
larger system's performance

• Reduces data duplication – Data is stored on the servers instead of
clients, reducing the amount of data replication for the application

The history of Tuxedo
Tuxedo was developed by Bell Labs in 1983 to achieve multiuser access and
manipulate a database on a mainframe computer simultaneously. In 1989, the
Unix System Laboratories (USL) promoted Tuxedo as a client/server framework
and launched this product. In 1993, Novell acquired USL and Tuxedo became
Novell's product. In 1996, BEA bought the rights for Tuxedo from Novell. Tuxedo
did wonders for many Fortune 500 companies around the world. In 2008, Tuxedo
became an Oracle product along with all the other BEA Systems products, for
example, WebLogic server, and others.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Tuxedo

[10]

Tuxedo architecture and anatomy
Clients and servers are the application-processing components of a Tuxedo system.
Server processes provide one or more named services. Client processes can request
services without having to know where they are located. The named service feature
provides a directory of services that result in the request being routed to one of
the servers providing the service. Clients and servers communicate by sending
messages. When the clients and servers are distributed over different machines,
Tuxedo makes the networking infrastructure by connecting the client and server
machines, while keeping the client/server request-response model transparent.
Programmers therefore do not have to worry about where the service is located or
what the underlying network protocols are. The application's code remains the same
whether the clients and servers are running on a single machine or distributed over
multiple machines.

The basic middleware characteristics that Tuxedo supports are as follows:

• Simplifies the segregation of the clients' and servers' logic.
• Manages and helps in monitoring distributed transactions among multiple

data sources.
• Extremely modular in nature; one or more servers may fail without affecting

the applications running on the same Tuxedo environment.
• Communicates with heterogeneous databases using various resource

managers within a single application for transactional integrity.
• Integrity of the code and data for a server are centrally maintained, making

it is easy to maintain and protect data integrity. This supports the horizontal
and vertical scalability of applications. Horizontal scaling is adding or
removing of hardware with only a small performance effect. Vertical scaling
is moving to a bigger and faster server or adding servers.

• Supports service-requests prioritization, load balancing, data-dependent
routing, and queuing.

• The clients and servers are loosely coupled processes that can exchange
service requests and replies using messages.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

DBBL BBL
Server-1
Service-A
Service-B

BB
Servers
Services

DMADM GWADM GWTDOMAIN

LMS

WSL

WSH

TSAM

Client
Application
Code ATMI

TLOG

ULOG

TMS Bridge

TMQUEUE

TMQFORWARD

Master-Node

BBL
Server-2
Service-C

BB
Servers
Services

LMS

JSL

JSH

TSAM

Client
Application
Code ATMI

TLOG

ULOG

TMSBridge

TMQUEUE

TMQFORWARD

GWWS

Slave Node

Server-3
Service-d
Service-f

NETWORK

TSAM Web Admin

Other Tuxedo
Applications
(Domain)

Weblogic
Domain

SALT
WebService

Calls

SCA Component
Client

Tuxedo Native Client

Mainframe

WS Client

Jolt Client

Admin console

Tuxedo has a very rich set of internal components (shown in the previous
diagram) that provide runtime support for application availability, scalability, and
extendibility. I will briefly introduce them to you in this chapter and we will be
discussing them in detail in the following chapters; they are as follows:

• Bulletin Board (BB): This is the first process as you start Tuxedo; it stores
the configuration and dynamic information for the whole Tuxedo system. It
stays in the shared memory and is available to all the processes of the Tuxedo
system. The BB translates a service name to a specific server. When a client
calls a service, the BB is used to look up which servers offer the requested
service, and based on this information, the request message is put on the
request queue of the correct server. Once the message is ready to be passed
on to the client, it enqueues it to reply queue for the designated client.

• Bulletin Board Liaison (BBL): This Tuxedo administrative process monitors
the other processes of Tuxedo systems.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Tuxedo

[12]

• Distinguished BBL: The DBBL is the master monitor for a multimode
(clustered) Tuxedo environment, responsible for overseeing the BB on each
node. Also, for networked applications, a backup node may be designated
for the DBBL.

• Bridge: This process is used for multinode (MP mode) configurations, which
are responsible for inter-node communications in networked applications.

• TMS: This is the transaction manager server dedicated to a particular
resource when distributed transaction processing is employed.

• Master machine/node: In a multiple machine configuration (clustered), the
Tuxedo domain that holds the UBBCONFIG file is called the master machine.
All the administering tasks, such as starting, stopping, and monitoring, can
be done from this server in a Tuxedo domain.

• Tuxedo server processes: These are the executable programs that offer
named services through the Tuxedo system. They are normally customer-
developed programs. One server (program/executable) may contain one or
more service (functions) in it.

• Tuxedo client processes: These are executable programs that call services
through the Tuxedo system. They are usually customer-developed programs.

• Workstation Listener (WSL): This is the Tuxedo server process that
works as a listener for the WS client (workstation). As a handshaking
process, this server listens to the WS clients and assigns connections to a
WS Handler (another Tuxedo-provided server) accordingly for the rest of
the correspondence with the WS client until it disconnects from a Tuxedo
instance. The WSL manages the pool of WS Handler processes and the
demands by starting and stopping them in response to the load.

• Workstation Handler (WSH): This is another process provided by Tuxedo
that works in conjunction with WSL. This gateway process handles
communications between WS clients and the Tuxedo server application. This
WSH handles multiple WS clients within the same Tuxedo domain. A WSH
works like a multiplexer to accommodate all the requests and replies with a
particular WS client over a single connection.

• Jolt Listener/Handler (JSL/JSH): These are Tuxedo listening and gateway
processes for Java-based workstation clients; they are similar to WSL/WSH
in terms of functionality.

• TMQUEUE: This message-queuing manager is a Tuxedo-system-supplied
server that enqueues and dequeues messages on behalf of programs.

• TMQFORWARD: This message-forwarding server is a Tuxedo-system-
supplied server that forwards messages from a queue to other servers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

• DMADM: This is one of the three servers provided by Tuxedo for using the
Tuxedo domain configuration. This is an administrative server that provides
a registration service for gateway groups. The DMADM server works with other
domain gateway admin servers (GWADM); during the initialization process, it
registers the configuration information that is mandatory for the requesting
gateway group. The DMADM server preserves all the names of registered
gateway groups, and it also proliferates changes to these groups as they are
made in the domain configuration file (BDMCONFIG). We will discuss domain
configuration in Chapter 3, Development of Tuxedo – Various APIs.

• GWADM: This Tuxedo system gateway admin server registers with the DMADM
server to get the configuration data used by the other gateway group. This
server accepts requests from the domain admin server for runtime information
or changes occurred during runtime for a gateway group.

• GWTDOMAIN: This Tuxedo system server is called Domain Gateways,
and it is very asynchronous in nature. It has the multi-tasking functionality
and can handle outgoing and incoming service requests to or from other
remote domains.

• LMS: The Local Monitor Server (LMS) is a Tuxedo system server. A LMS
is required on each Tuxedo machine if the node needs to be monitored; we
will discuss this in detail in Chapter 2, Configuration and Administration of
Tuxedo, under Tuxedo System and Application Monitoring (TSAM).

• GWWS: This is a Tuxedo system server and a major component for Service
Architecture Leveraging Tuxedo (SALT). It works like a bidirectional
(inbound and outbound) adapter that connects with other web service
applications using SOAP over HTTP/S protocols.

• Connecting WebLogic Domain: The WebLogic Tuxedo connector is an
add-on product that works as a bidirectional adapter for Tuxedo services
and WebLogic server applications. The adapter helps the WebLogic server's
clients to call a Tuxedo service and Tuxedo clients to call any WebLogic
server's Enterprise Java Beans (EJBs).

In this section, we introduced Tuxedo's client/server concepts in brief, its overall
architecture, and its various important components. We will discuss them in detail
in the following chapters to understand their functionalities and usage patterns. In
the following section, we will see how to install Tuxedo and also see what the post-
installation tasks are that you must carry out to make sure the installation is successful.
The installation of Tuxedo is very simple even though it supports a wide variety of
operating systems and hardware. We will focus on the basic installation procedure
and its guidelines, which covers your primary requirement of installing Tuxedo.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Tuxedo

[14]

Installation of Tuxedo
As mentioned before, Tuxedo supports various OSs and hardware; you need to
make sure you get the right installable file.

Hardware and software requirements
The Oracle Tuxedo software needs to be installed on each server that will run the
Tuxedo application, or can be called Tuxedo domain.

• x86 or x86-64 – This denotes various CPUs based on x86 or x86-64
architecture. Most of the current platforms are supported; the following
are the most common ones:

 ° HP 11i (32-bit/64-bit)
 ° IBM AIX 5.3 (32-bit/64-bit)
 ° IBM AIX 6.1 (32-bit/64-bit)
 ° MS Windows 7 (32-bit)
 ° MS Windows 2008 server (32-bit/64-bit)
 ° Oracle Enterprise Linux 5.0 (32-bit/64-bit)
 ° Oracle Solaris 10 (32-bit /64-bit) on x86-64
 ° Red Hat Linux Enterprise AS 5 (32-bit) on x86

• Memory requirements – The following are the minimum memory
requirements recommended by Oracle to run your application:

 ° 1 GB of RAM
 ° 4 MB of RAM for each Oracle Tuxedo system server

• Hard disk – The following is the minimum hard disk requirement
recommended by Oracle:

 ° 2 GB of disk space is required for Tuxedo installation

Note that the Oracle Tuxedo installation program creates a temporary
directory to extract the files from the archive prior to installing Tuxedo
on the target system. So, it is important to have sufficient space during
installation. The JRE is moved to the Oracle home directory from the
temporary file at the end of the installation process.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

For more details on hardware and operating systems, Oracle Tuxedo's support
policy, or more related information, please refer to the following link:

http://docs.oracle.com/cd/E26665_01/tuxedo/docs11gr1/install/inspds.
html

Platform-specific installer files for the Oracle Tuxedo product software are available
for download at Oracle's corporate website:

http://www.oracle.com/technetwork/middleware/tuxedo/downloads/index.
html

Tuxedo installation components
You can start your installation once you have downloaded the installation file, but
it is good to know that there are seven installation sets bundled in Tuxedo, and you
can choose any one of them during installation. They are listed as follows:

• Full: All components of the Oracle Tuxedo 11g Release, that is, the server and
client components

• Server: The server components of Tuxedo
• Full client: The client components of Tuxedo
• ATMI (/WS) client: The workstation component of Tuxedo
• CORBA client: The C++ client and SSL components of Tuxedo
• Jolt client: The Java client (Jolt) components of Tuxedo
• .NET client: The .NET version of the workstation client components of Tuxedo

The Oracle home directory is where all the common files (executable and
internal files) that are accessed by other Oracle components (residing on
the same machine) are stored. It is very important to keep in mind that
the home directory is important for ensuring that the Oracle software
behaves correctly. During the installation, you are asked for this home
directory. According to best practices, you need to have one home
directory, though you may choose to have multiple in a system.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Tuxedo

[16]

Installation procedures
The Oracle Tuxedo can be installed in three different ways; we will briefly go
through each of them in the following sections.

Graphical user interface (GUI) installation
The graphical user interface installation is the GUI-based Oracle Tuxedo installation
program that runs on Unix- and Windows-based systems. This is the most popular
way to install Tuxedo.

The following are the steps to be followed for a GUI-mode installation on a
Windows system:

1. Log in to the Windows system as an administrator (preferred), as you need
admin privileges to install Oracle Tuxedo server components on a Windows
system. To install Tuxedo client components, you do not need to be logged
in as an administrator.

2. To install Oracle Tuxedo, click on the installer file to start the installation.
3. Continue running the GUI-mode installation process.
4. Log in to the system again after the Tuxedo installation is completed.

The following are the steps for a GUI-mode installation on a Unix system:

1. You need to log in as the Oracle Tuxedo administrator.
2. You need to go to the directory where you downloaded the installer and run

the installation program, as shown in the following sample command:
UnixPrompt> sh filename.bin

Here, filename is the name of the Oracle Tuxedo installer file.

You will get an error message and the installation process will fail
if the GUI interface in your system is not available. In this case, you
may want to use the silent or console-mode installation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

Console installation
The console installation is a text-based installation that is only available for
Unix systems.

1. You need to log in as the Oracle Tuxedo administrator.
2. You need to go to the directory where you downloaded the installer and run

the installation program, as shown in the following sample command:
UNIXprompt> sh filename.bin -i console

Here, filename is the name of the Oracle Tuxedo installer file.

3. To complete the installation, follow these steps:

1. Enter the number of your choice or press Enter to accept the default.
2. Enter back or previous at the prompt to review or change your

selection.
3. Enter quit in response to any prompt to exit the installation process.

Oracle strongly recommends Unix users to create a separate user
account for the Oracle Tuxedo administrator and have the ownership
of the Oracle Tuxedo files for that account.

Silent installation
The silent installation is a more automated way of installing Tuxedo. This installation
reads the strings from a text file that you can create prior to beginning the installation.
This can be used as the standardized installation for all installations in the enterprise
in such a way that you set the installation configurations only once and use it multiple
times. You need to create a properties file for the installer; for detailed step-by-step
instructions, please go to the following link:

http://docs.oracle.com/cd/E26665_01/tuxedo/docs11gr1/install/inssil.
html

As we are done with the installation (by either of the three processes), it is
recommended to verify the Tuxedo ATMI software installation by running simpapp.
The sample applications are installed during the Tuxedo installation. You can find
this simple application under your Tuxedo directory; \samples\atmi\simpapp.
There is a README file in the same directory for a walkthrough.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Tuxedo

[18]

Summary
In this chapter, we introduced Tuxedo as a client/server platform where you can
build your distributed application, and its benefits. We also discussed Tuxedo
architecture and how it has evolved over the past years. We briefly discussed the
various components of Tuxedo, and finally saw how to install Tuxedo in various
modes for different operating systems. I have mentioned some of the important
guidelines and prerequisites to help you set up the environment for your Tuxedo
installation. The installation is very interactive and simple, so I have not put in any
screenshots or line-by-line instructions.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and
Administration of Tuxedo

In this chapter, we will discuss the essentials of Tuxedo configuration and
administration and the tools used by a Tuxedo administrator to perform
day-to-day operations.

In this chapter, we will cover the following topics:

• Administration of a Tuxedo application
• Structure of a Tuxedo application (configuration file)
• Parameters in the configuration file
• Environment variables
• Commands and tools to build, monitor, and change the Tuxedo system

configuration
• Various important components and built-in features of Tuxedo
• Tuning and monitoring guidelines

This chapter is basically dedicated to Tuxedo administrators and is divided into two
main categories. The first one is configuring and setting up a Tuxedo application, and
the other is monitoring/administrating a Tuxedo application. It is very important to
understand how to structure a Tuxedo application using a configuration file called
UBBCONFIG, as well as to understand each and every parameter in the configuration
file, their dependency and hierarchy, and the environment variables. For monitoring
purposes, we need to know the various commands and tools, how to change the
Tuxedo system configuration at runtime, and how to tune various parameters for
higher throughput. At the end of the chapter, I will share some tuning/monitoring
guidelines, which may help you to get the best out of a Tuxedo application.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[20]

Tuxedo administration
In this section, we will discuss the elements of the Tuxedo administration, such as
the role of an administrator, how to configure and structure a Tuxedo application,
various useful commands, how to manage or monitor a Tuxedo application, some
important built-in features of Tuxedo, components such as queue and domain, and
tuning guidelines.

Responsibility of a Tuxedo administrator
The Tuxedo administrator needs to play a central coordinating role by working
closely with application designers, operating system administrators, network
administrators, and database administrators to ensure end-to-end management of
the Tuxedo application, which is distributed in nature. The primary responsibilities
of a Tuxedo administrator are configuring, managing, and monitoring the Tuxedo
application. The most important one for a Tuxedo administrator is how to plan,
execute, and maximize the use of computing resources. He/she also needs to use
various administrative tools in a centralized manner, just like a cockpit for his/her
enterprise, and perform proactive actions to keep the Tuxedo application available
in the most efficient manner. Tuxedo administrators need to know the status of a
machine, network failures, database system failures, and other problems that have a
global impact on the operation of an application.

Some important tasks of an administrator are as follows:

• Installation: Installing the software and verifying it to make sure that the
software is installed properly and the integrity of the directory structure is
maintained as per the recommendation

• Ensuring that all machines are properly tuned: It is very important to have
OS-level parameters tuned as per Oracle Tuxedo's recommendation so that
the Tuxedo application runs optimally

• Designing and organizing: Designing and organizing an application
built on Tuxedo in such a way that all the components of the application
(workstations, servers, resource managers, and system resources) work
as expected

• Deployment architecture: The administrator needs to have a clear footprint
of the Tuxedo components and how all the applications are deployed in the
platform as well as their relationships and dependencies

• Monitoring the application: This is the most important task that needs to be
done 24/7; alert messages should be implemented in such a way that he/she
can be proactive and detect issues before they interfere with business

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

• Security: A strong security module needs to be in place to ensure that the
application (services) is used in a proper manner; no one other than the
administrator should be able to change anything in the system

• Diagnosing and rectifying Tuxedo issues: He/she should diagnose
problems occurring in the operation of the application and then take
corrective action

• Upgrade plan: This could be upgrading Tuxedo or the OS patch; he/she
needs to plan accordingly to ensure that the system downtime is minimal
and does not affect the flow of business

• Governance module: Implementing a strong governance module to
ensure that all the applications getting deployed on the Tuxedo platform
meet quality standards, thus maintaining the stability and scalability of
the applications

Configuring and setting up a Tuxedo
application
Under this section, we will discuss how a Tuxedo application is structured and
configured using the UBBCONFIG file as well as the associated environment variables
to set up the environment before you use Tuxedo.

Environment variables
There are various environment variables that need to be properly set so that the
Tuxedo application works in the expected manner.

Variables for the Tuxedo application/server node are as follows:

• TUXDIR – This is the directory where your Tuxedo is installed
• TUXCONFIG – This is the full path where you have the TUXCONFIG file
• PATH – This is the directory path for the Tuxedo binary application that has

to be added in the PATH variable (for example, $TUXDIR/bin:Application
Directory:$PATH)

The following are the environment variables if you use the VIEW/VIEW32 buffer:

• VIEWFILES – The name of the VIEW/VIEW32 file; a comma-separated list if
you have multiple files

• VIEWDIR – The application directory where you have the VIEW/VIEW32 file;
a colon-separated list of the VIEW/VIEW32 file directories

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[22]

The following are the environment variables if you use the FML/FML32 buffer:

• FIELDTBLS – The name of the FML file; a comma-separated list of files in case
you have multiple files

• FLDTBLDIR – The application directory where you have the FML file; a colon-
separated list of the FML file directories

• FIELDTBLS32 – The name of the FML32 file; a comma-separated list of files in
case you have multiple files

• FLDTBLDIR32 – The application directory where you have the FML32 file; a
colon-separated list of the FML file directories

In Unix, the LD_LIBRARY_PATH variable is used to load the libraries dynamically in
the memory as you run the application. This variable is called differently in various
versions of Unix and even Microsoft operating systems; please make sure you are
using the proper name, as follows:

LD_LIBRARY_PATH = $TUXDIR/lib

For the queue, the QMCONFIG variable must contain the full pathname of the file or
raw device that will contain the queue device; see the following example:

QMCONFIG = Full path of the queue file/device

Configuring and structuring a Tuxedo
application
The Tuxedo configuration file, also called the UBBCONFIG file, is the most important
configuration file for a Tuxedo environment or application. The UBBCONFIG file
is a text file that contains various sections to structure your application, and
each section has parameters with respective values to configure and manage the
Tuxedo application. It has eight sections, of which five sections are required for all
configurations: RESOURCES, MACHINES, GROUPS, SERVERS, and SERVICES; the rest of
the sections (NETGROUPS, NETWORK, and ROUTING) are optional. This is a text file, so
it can be created or maintained using any text editor that works with a text file.

Let's see an example of the UBBCONFIG file to show the overall structure of a
Tuxedo application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

The following UBBCONFIG file shows the two-machine (MP mode) configuration
along with the most important parameters. I have added the NETWORK and ROUTING
sections to give you a real-life example:

*RESOURCE
IPCKEY 80952 # key for well known address
DOMAINID My_Domain
UID 0777 # use it for inter process communication
GID 007 # use it for inter process communication
PERM 0707 # Access permissions for inter process
 communication
MAXSERVERS 40 # Number simultaneous servers
MAXSERVICES 50 # Number of services can be publish within same
 domain
MAXGTT 25 # Number of simultaneous global transactions
MASTER SITE1
SCANUNIT 10
SANITYSCAN 12
BBLQUERY 180
BLOCKTIME 30
OPTIONS LAN,MIGRATE
MODE MP # single or Multi node configuration
LDBAL Y # To set the load balancing

#
*MACHINES
machUnix LMID=SITE1 TUXDIR="/usr/tuxbin"
 MAXACCESSERS=20
 APPDIR="/usr/Biru/apps/MyApps"
 ENVFILE="/usr/Biru/apps/MyApps/ENVFILE"
 TLOGDEVICE="/usr/Biru/apps/MyApps/TLOG"
 TLOGNAME=TLOG
 TUXCONFIG="/usr/Biru/apps/MyApps/tuxconfig"
 ULOGPFX="/usr/Biru/apps/MyApps/ULOG"

machNT LMID=SITE2 TUXDIR="C:\Biru\apps\MyApps\tuxbin"
 MAXACCESSERS=20
 MAXWSCLIENTS=25
 APPDIR="C:\Biru\apps\MyApps"
 ENVFILE="C:\Biru\apps\MyApps\ENVFILE"
 TLOGDEVICE="C:\Biru\apps\MyApps\TLOG"
 TLOGNAME=TLOG
 TUXCONFIG="C:\Biru\apps\MyApps\TLOG\tuxconfig"

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[24]

 ULOGPFX="C:\Biru\apps\MyApps\TLOG\ULOG"
#
*GROUPS

Branch1 LMID=SITE1 GRPNO=11
Branch2 LMID=SITE2 GRPNO=21

#
*NETWORK
SITE1 NADDR="machUnix.80952" BRIDGE="/dev/starlan"
 NLSADDR="machUnix.serve"
#
SITE2 NADDR="machNT.80952"
 NLSADDR="machNT.serve"

*SERVERS
#
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT="-A"

Teller SRVGRP=Branch1 SRVID=11
Account SRVGRP=Branch1 SRVID=12
Balance SRVGRP=Branch1 SRVID=13

Teller SRVGRP=Branch2 SRVID=21
Account SRVGRP=Branch2 SRVID=22
Balance SRVGRP=Branch2 SRVID=23

*SERVICES
DEFAULT: LOAD=50 AUTOTRAN=N
WITHDRAWAL PRIO=50 ROUTING=ACCOUNT_ID
DEPOSIT PRIO=50 ROUTING=ACCOUNT_ID
CLOSE_ACCT PRIO=40 ROUTING=ACCOUNT_ID
OPEN_ACCT PRIO=40 ROUTING=BRANCH_ID
ABAL PRIO=30 ROUTING=b_id
TBAL PRIO=30 ROUTING=b_id
#
*ROUTING
ACCOUNT_ID FIELD=Bank_ACCOUNT_ID BUFTYPE="FML"
 RANGES="MIN - 9999:*,100-599:Branch1,600-
 9999:Branch2,*:*"
BRANCH_ID FIELD=Bank_BRANCH_ID BUFTYPE="FML"
 RANGES="MIN - 999:*,1-499:Branch1,500-999:Branch2,*:*"
b_id FIELD=b_id BUFTYPE="VIEW:aud"
 RANGES="MIN - 0:*,1-5:BA Branch1,6-10: Branch2,*:*"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

The following diagram depicts the relationship between the sections within the
UBBCONFIG file mentioned previously:

“ “
“ “

machUnix LMID=SITE1

*GROUPS
Branch1 LIMID=SITE1 GRPNO=11

*NETWORK
SITE1 NADDR= machUnix.80952

NLSADDR= machUnix.serve

Teller SRVGRP=Branch1 SRVID=11

SERVICE Withdrawal
Deposit

*SERVERS

SRVGRP=Branch1

SRVGRP=Branch1

SERVICE

SERVICE

ROUTING
Account ID for withdrawal, Deposit and Close_acct Service
Branch ID for Open_Acct Service
B_ID for Abal Service

IPCKEY, DOMAINID, UID, GID, PERM, MAXSERVERS, MAXSERVICES, MAXGTT, MASTER, SCANUNIT, SANITYSCAN, BBLQUERY,
BLOCKTIME, NOTIFY, OPTIONS, SECURITY, AUTHSVC, MODE

Account SRVID=12

Close_acct
Open_account

Balance SRVID=13

Abal

*GROUPS
Branch2 LIMID=SITE1 GRPNO=21

*NETWORK
SITE2 NADDR= machUnix.80952

NLSADDR= machUnix.serve

Teller SRVGRP=Branch2 SRVID=21

SERVICE Withdrawal
Deposit

*SERVERS

SRVGRP=Branch2

SRVGRP=Branch2

SERVICE

SERVICE

Account SRVID=22

Close_acct
Open_account

Balance SRVID=23

Abal

*RESOURCES

TUXDIR, MAXACCESSERS, APPDIR, ENVFILE,
TLOGDEVICE, TUXCONFIG, ULOGPFX, SPINCOUNT

*MACHINES

“ “
“ “

UBB Config

*MACHINES
machNT LMID=SITE2

TUXDIR, MAXACCESSERS, APPDIR, ENVFILE,
TLOGDEVICE, TUXCONFIG, ULOGPFX, SPINCOUNT

We will now discuss all the important parameters in brief for each of the eight
sections of the UBBCONFIG file.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[26]

The RESOURCES section
This section contains information pertaining to all the resources in the domain; for
example, the number of servers and services under the SERVICE section.

Parameter name and values Required/
optional

Comments/values – what it means

IPCKEY = numeric_value Required This is the unique address of the inter-
process communication (IPC) resources.
It is also used to derive a number of other
addresses (for example, the name of BB in a
multimode system).

UID = numeric_value
GID = numeric_value

Optional This is the security access for a Tuxedo
application—the user ID (UID) / Group ID
(GID) of the administrator. The default is the
user ID of the user who runs tmloadcf.

MAXACCESSERS =
numeric_value

Optional The maximum number of processes that can
concurrently be attached to a Bulletin Board
(BB), which includes clients and system-
supplied as well as application servers
where the administrative processes are not
counted.

MAXSERVERS = numeric_
value

Optional The number of servers in a domain; the
MAXSERVERS value can range from 0 to
8,192; the default value is 50.

MAXSERVICES = numeric_
value

Optional The number of services in a domain; the
MAXSERVICES value can range from 1 to
8,192; the default value is 100.

MAXINTERFACES =
numeric_value

Optional The maximum permissible number of
CORBA interfaces.

MAXOBJECTS = numeric_
value

Optional The maximum permissible number of
CORBA objects.

SCANUNIT = numeric_
value

Optional This defines the time interval (seconds).
You can set the number of times the BBL
will periodically check the sanity of servers
local to its machine. In addition, you can set
the number of timeout periods for blocking
messages and transactions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

Parameter name and values Required/
optional

Comments/values – what it means

DBBLWAIT = numeric_
value

Optional In the MP mode configuration, the DBBL
waits for the reply/response from BBL in
(SCANUNIT * DBBLWAIT) seconds, and the
timeout occurs accordingly.

BBLQUERY = numeric_
value

Optional This is the heartbeat interval used by DBBL
to check the health of all the BBLs, so the
product of BBLQUERY and SCANUNIT is the
interval time.

MASTER = String1
[,String2]

Required Here, String1 is the master machine's
name and String2 is the backup master
machine's name.

MODEL = {SHM | MP} Required This indicates the type of system; SHM means
a single node and MP means multiple nodes
in the system.

SECURITY = {NONE |
APP_PW | USER_AUTH |
ACL | MANDATORY_ACL}

Optional This is to set the security feature for an
application; NONE means default will be
used.

DOMAINID = String Optional This is the name of the domain; it sets to
null if you do not input anything.

LDBAL = {Y | N} Optional To turn off and turn on the load balancing.
TMNETLOAD can be used for local preference.

MAXBUFTYPE = numeric_
value

Optional The maximum number of buffer types and
subtypes.

MAXCONV = numeric_
value

Optional The maximum number of conversations
allowed on a machine.

MAXNETGROUPS =
numeric_value

Optional The highest number of network groups that
can be defined under the NETWORK section.

BLOCKTIME = numeric_
value

Optional This is the multiplier of SCANUNIT and
BLOCKTIME, which is to set the time out for
a blocking call; it must be more than zero.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[28]

The MACHINES section
The MACHINES section is where you define the logical names for a physical machine's
configuration. All parameters need to specify a specific machine. In this section, you
need to define all the parameters for all the physical machine(s) for an application
under the same Tuxedo domain.

Parameter name and values Required/
optional

Comments/values – what it means

NETLOAD = number Optional This is used to control the communication
between the local server and the remote
server. The load is the extra cost to go to the
remote server over the network.

LMID = String Required The logical name(s) of the physical
machine(s).

SPINCOUNT = number Optional The number of attempts to lock the Bulletin
Board at the user level before blocking calls.

TYPE = String Optional This is to group the same type of machines;
for example, data encoding/decoding can be
avoided between the same type of machines
during communication.

TUXCONFIG = String Required The complete pathname of the TUXCONFIG
file.

TLOGSIZE = numeric
(size in page)

Optional The size of the transaction log.

ENVFILE = String Optional This is used to set the environment for the
clients or servers on any particular machine
from a named file. If the value specifies an
invalid filename, no values are added to the
environment.

TLOGDEVICE = String Optional The name of the device or file where the
transaction log (TLOG) for this application
resides.

TLOGNAME = string_vlue Optional You can specify the name of the transaction
logfile; Tuxedo uses TLOG as the default
name.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

Parameter name and values Required/
optional

Comments/values – what it means

MAXACCESSERS = number Optional The maximum number of processes
(including clients and servers) that can be
concurrently associated with the Bulletin
Board. This should be more than 0 but less
than 32,768.

MAXOBJECTS = number Optional This is specifically for a CORBA-based
application to specify the number of CORBA
objects that can be simultaneously housed in
the Active Object table.

MAXGTT = number Optional The highest permissible number of
concurrent transactions (global) in a
particular domain.

MAXWSCLIENTS = number Optional This is to specify the number of accessed
entries on a machine to be reserved for /WS
or SALT clients.

GID = number
UID = number

Optional This is the group ID and user ID to be
associated with the IPC structures created
for the Bulletin Board.

TUXDIR = String Required The absolute pathname of the Tuxedo
installation.

APPDIR = String Required One or more absolute pathnames (colon-
separated list) to specify all the application
and administrative servers booted within
the same environment.

CMPLIMIT = number Optional This is the threshold message size for the
messages; automatic data compression will
be performed beyond this value.

ULOGPFX = String Optional The pathname for the user's logfile on a
machine.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[30]

The GROUPS section
The GROUPS section helps to specify a logical name for a group of the same type of
servers and/or services within a machine. At least one server group needs to be
defined in this section.

Parameter name and values Required/
optional

Comments/values – what it means

GROUPNAME = string_
value

Required This specifies the logical name of a group; the
maximum value can be 30 characters long.

GRPNO = number Required This is the number associated with a server
group and it needs to be unique; the value
can range from 1 to 30,000.

CLOSEINFO = string_
value

Optional This is used to close the resource manager.

OPENINFO = string_value Optional This is used to open the resource manager.

ENVFILE = string_value Optional The environment under which all the
servers in the group are to be executed; this
environment is specified in the named file.

LMID = string_value1 [,
string_value2]

Required This maps the servers for one or multiple
machines; refer to the previous section, The
MACHINES section.

TMSNAME = string_value Optional This is to map a transaction manager server
with a group.

TMSCOUNT = number Optional This is to specify the instances of transaction
manager servers to begin with for a group,
and to automatically set up in an MSSQ.

The NETWORK section
In the NETWORK section, you need to configure a network for a LAN environment for
communication between the Tuxedo application and the various domain nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

Parameter name and values Required/
optional

Comments/values – what it means

BRIDGE = String Optional The BRIDGE parameter uses this device on
the same LMID value to access the network.

NADDR = String Required This is the network ID / hostname of a
machine and port number for a BRIDGE
process, which is the listener process within
the same LMID value. For example,
//host.name:port_number.

MINENCRYPTBITS = {0 |
40 | 56 | 128}

Optional The minimum level of encryption that
is required when the network link is
established.

MAXENCRYPTBITS = {0 |
40 | 56 | 128}

Optional The maximum level of encryption that
is required when the network link is
established.

NETGROUP = String Optional The network group related with this
network entry.

NLSADDR = String Optional The network and port to define the
tlisten process. For example,
//#.#.#.#:port.

The SERVER section
The SERVER section provides information on the initial conditions for servers started
in the system. This is an executable program created by buildserver; so as a
process, this executable continually runs and waits for service requests.

Parameter name and values Required/
optional

Comments/values -- what it means

CONV = {Y | N} Optional This is used to configure the server as a
conversational server.

SEQUENCE = number Optional The sequence of a server: when it should boot
up or shut down relative to other servers.

MIN = number Optional The minimum number of instances of the
server to be booted by tmboot.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[32]

Parameter name and values Required/
optional

Comments/values -- what it means

MAX = number Optional The maximum number of instances of the
server that can be booted.

CLOPT = String Optional During boot up, the servopts options can
be conceded to a server process. So, this is
a string of command-line options that are
passed to the Tuxedo servers when they are
booted.

ENVFILE = String Optional You may use this to set more environment
variables for a server during its initialization.

SRVGRP = String Required The logical name related to a server group in
the GROUPS section.

SRVID = number Required This unique number is used to classify a
server within a group.

RQADDR = String Optional This is the name of the request queue for the
server.

RQPERM = number Optional The numeric representation of permissions
for the request queue; by default, it is 0666.

REPLYQ = {Y | N} Optional This is to say if we can have a reply queue for
the process or not.

MAXGEN = number Optional This is to restart the server the specified
number of times.

GRACE = number Optional This is the interval in seconds for restarting
the server.

RESTART = {Y | N} Optional This is to turn off or turn on the option of
restarting for a server.

The SERVICE section
The SERVICE section provides information on services used by an application.
Tuxedo does not require listing services in this section. It is best practice for an
administrator to list all the services here for future reference or ease of maintenance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

Parameter name and values Required/
optional

Comments/values -- what it means

AUTOTRAN = {Y | N} Optional This is used to automatically turn the
transaction on if the request is not part of a
transaction.

BUFTYPE =
"type1[:subtype1
[,subtype2 . . .]]
[;type2[:subtype3[, .
. .]]] . . . "

Optional The types of data buffers used for this service.

LOAD = number Optional This is to weigh the service with a number
proportionate to its load on the system. This
is used for tuning purposes; the higher the
number, the higher the load.

ROUTING = String Optional The name of the routing criteria used for
this service when data-dependent routing
is used. If this parameter is not specified,
data-dependent routing is not done for this
service. A string must be 15 characters or
less in length. If multiple entries exist for the
same service name but with different SRVGRP
parameters, the ROUTING parameter must be
the same for all of these entries.

SRVGRP = String Optional The name of the server group from which
SVCNAM gets all the group parameter settings.

PRIO = number Optional The dequeuing priority of SVCNM.

BLOCKTIME = number Optional This sets the non-transactional blocking time
value, in seconds, of the indicated service.

SVCTIMEOUT = number Optional The amount of time, in seconds, that is
allowed for the processing of the indicated
service. The value must be greater than or
equal to zero. A value of zero indicates that
the service will not be timed out.

TRANTIME = number Optional This is the default timeout value, in seconds,
for a transaction automatically started for the
associated service. The default is 30 seconds.
A value of zero implies that no timeout occurs
for the machine.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[34]

The ROUTING section
The ROUTING section provides information for data-dependent routing of service
requests using Tuxedo buffer types such as the FML, VIEW, and XML buffers.

Parameter name and values Required/
optional

Comments/values -- what it means

ROUTING_CRITERIA_NAME =
string_value

Required This is a name assigned to a routing
parameter for a service defined in the
SERVICE section.

FIELD = string_value Required This is the actual routing based on the values
of the field from the FML or FML32 buffer,
XML element or the element attribute, or
the VIEW or VIEW32 field name.

FIELDTYPE = string_value Required The type of routing field specified in the
FIELD parameter, which can be one of CHAR,
SHORT, LONG, FLOAT, DOUBLE, or STRING.

RANGES = string_value Required A range is either a single value or a range of
the lower-upper form.

BUFTYPE = string_value Optional This can be one of FML, FML32, XML, VIEW,
VIEW32, X_C_TYPE, or X_COMMON. No
subtype can be specified for types FML,
FML32, or XML.

The NETGROUPS section
The NETGROUPS section describes the network groups available to the application in
a LAN environment. There are only three parameters in this group: NETGROUP is the
name of the network group, while NETGRPNO and NETPRIO with numeric values are
used to specify the priority of this network group.

Parameter name and values Required/
optional

Comments/values -- what it means

NADDR = String Required This specifies the network address (as its
listening address) for the BRIDGE process
under LMID, so that other BRIDGE processes
are contacted through this address within
the same application. For example,
//host.name:port_number.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

Parameter name and values Required/
optional

Comments/values -- what it means

BRIDGE = String Optional The device name to be used by the BRIDGE
process placed on that LMID to access the
network.

FADDR = String Optional This is to specify the network address
used by one machine connecting to other
machines. This parameter, along with the
FRANGE parameter, determines the range
of the TCP/IP ports to which a process will
attempt to bind before making an outbound
connection.

FRANGE = number Optional This is to specify the range of TCP/IP ports
to which a native process will attempt
to bind before making an outbound
connection. The FADDR parameter specifies
the base address of the range.

NETGROUP = String Optional String is the network group associated
with this network entry. If unspecified,
the default, DEFAULTNET, is assumed.
The NETGROUP parameter, if not set to
DEFAULTNET, must have previously
appeared as a group name in the
NETGROUPS section of the file.

Things to remember
The following are the things to remember when configuring and structuring a
Tuxedo application:

• Once you have your UBBCONFIG file, you need to run the tmloadcf command
to create the TUXCONFIG file, which is a binary version of UBBCONFIG. As
with UBBCONFIG, the TUXCONFIG file may be given any name (for example,
tmloadcf –y ubbconfig).

• The TUXCONFIG environment variable defines the location on the master
machine where the tmboot command uses the binary TUXCONFIG file, so it
must be set to an absolute pathname ending with the device or the system
file where TUXCONFIG is to be loaded.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[36]

• In a multimachine Tuxedo domain running different releases of the Tuxedo
system software, the master machine must run the latest release of the
Tuxedo system software in the domain.

• The master machine for a Tuxedo domain contains the master copy of the
TUXCONFIG file, which gets propagated to all the other server machines as
you run tmboot to boot the application.

In the previous section, we have discussed the various environment variables that
need to be set in the Tuxedo application, and we have also described all the sections
and parameters of the UBBCONFIG file to set up your Tuxedo application, which is the
most important file for a Tuxedo application.

Tuxedo commands
There are a huge number (around 100) of commands with various options to
administrate a Tuxedo system. I have listed all the commands in this section and
picked up the most important ones to discuss in brief.

The buildclient command
This is used to construct a Tuxedo ATMI client module; its syntax is as follows:

buildclient [-v] [{-r rmname | -w }][-o name] [-f firstfiles] [-l
lastfiles]

Let's discuss the attributes of this command:

• -v: The buildclient command should work in verbose mode to ensure that
all the messages can be seen during compilation.

• -r: This option specifies the resource manager associated with this client to
be part of a transaction.

• -w: This option specifies that the client is to be built using the workstation
libraries; native mode is default.

• -o: This option specifies the filename of the output load module. If not
supplied, the load module is named a.out.

• -f: This option specifies one or more user files to be included first in the
compilation and link edit phases of buildclient, before the Oracle Tuxedo
ATMI libraries.

• -l: This option specifies one or more user files to be included last in the
compilation and link edit phases of buildclient, after the Oracle Tuxedo
ATMI libraries.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

The buildserver command
This command constructs the Tuxedo ATMI server module. Its syntax is as follows:

buildserver [-C] [-M] [-s services[:func[()]]][-v] [-o outfile] [-f
firstfiles] [-l lastfiles] [{-r|-g} rmname] [{-r|-g} rmid:rmname] [-E
envlabel] [-t]

Let's discuss the attributes of this command:

• -C: This option stipulates the COBOL compilation.
• -M: This option specifies the server to be associated with multiple XA-

complaint resource managers; this option is mandatory.
• -s: The names of services that can be advertised when the server is booted.
• -v: The buildserver command should work in verbose mode to ensure that

all messages can be seen during compilation.
• -o: This option specifies the filename of the output load module. If not

supplied, the load module is named SERVER.
• -f: This option specifies one or more user files to be included first in the

compilation and link edit phases of buildserver, before the Oracle Tuxedo
ATMI libraries.

• -l: This option specifies one or more files to be included last in the
compilation and link edit phases of buildserver, after the Oracle Tuxedo
ATMI libraries.

• -r: This option specifies the resource manager associated with this server.

The buildtms command
This command is used to construct a transaction manager server module. When
integrating a new resource manager into the Tuxedo system, the $TUXDIR/
udataobj/RM file must be updated to include the information about the resource
manager. The format of this file is as follows:

rm_name:rm_structure_name:library_names

The following is the syntax of the buildtms command:

buildtms [-v] -o name -r rm_name

Let's discuss the attributes of this command:

• -v: The buildtms command should work in verbose mode
• -o: This option specifies the name of the output file
• -r: The resource manager associated with this server; the value rm_name

must appear in the resource manager, as previously mentioned

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[38]

The tmloadcf command
This command is used to convert the text version of the UBBCONFIG file to its
equivalent binary configuration to boot the Tuxedo application. It reads the
UBBCONFIG file and checks the syntax. If the SECURITY parameter is specified in
the RESOURCES section of the UBBCONFIG file, tmloadcf will ask for the application
password as you run it. The following is the syntax of this command:

tmloadcf [-n] [-y] [-c] [-b blocks] {UBBCONFIG_file | -}

Let's discuss the attributes of this command:

• -n: This option is used for checking the syntax of the UBBCONFIG file
without updating the TUXCONFIG file.

• -y: This option is used for prompting on the console.
• -c: This option is used to calculate and display the minimum IPC

resources needed for this configuration.
• -b: This option specifies the block size for the device. It is a recommended

option if you are using a raw device. You may ignore it if the filesystem
already exists.

The tmboot command
The tmboot command brings up the Tuxedo application instance. This can be
invoked by the Tuxedo administrator to bring up the Tuxedo application in
whole or in a part by using the following parameters:

tmboot [-l lmid] [-g grpname] [-i srvid] [-s aout] [-o sequence]
[-S] [-A] [-b] [-B lmid] [-e command] [-w] [-y] [-g]
[-n] [-c] [-m] [-M] [-d1]

Let's discuss the attributes of this command:

• -l lmid: All the groups associated with this LMID value will boot and all
associated TMSs and gateway servers will also boot accordingly.

• -g grpname: The same as above for group names mentioned by grpname.
• -s server name: All servers in the SERVERS section are executed by

server name.
• -o sequence: All servers with the sequence parameter are executed.
• -S: All servers in the SERVERS section are executed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

• -A: All administrative servers for machines in the MACHINES section are
executed. Use this option to guarantee that the DBBL, all BBLs, and the
BRIDGE processes are brought up in the correct order.

• -b: Boot the system from the BACKUP node (without making this machine
the master).

• -B lmid: A BBL is started on a processor with the logical name lmid.
• -m 1-n: Temporarily resets the runtime MIN values for servers specified with

the -s option with a common MIN value.
• -M: This is used to boot all the administrative processes on the master machine.
• -d1: This is used to display on the standard output; it is very useful when

you use sdb to debug application services.
• -e command: This option causes the command to be executed if any process

fails to boot successfully.
• -w: This option should be used with caution. It informs tmboot to boot

another server without waiting for servers to complete initialization.
• -y: This option means that you need to boot all the administrative and

server processes.
• -q: This option suppresses the printing of the execution sequence on the

standard output. It implies -y.
• -n: The execution sequence is printed but not performed.
• -c: The minimum IPC resources needed for this configuration are printed.

The tmshutdown command
This command shuts down a set of Tuxedo servers. Only the Tuxedo application
administrator can run this command. It can only be invoked from the master
machine. It also shuts down the entire server if no other parameter is passed.

tmshutdown [options]

List of Tuxedo commands
The following is the list of Tuxedo commands:

• buildwsh: This command builds a customized workstation handler process
• buildclient: This command compiles and builds a Tuxedo client module

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[40]

• buildclt: This command compiles and builds a Tuxedo workstation client
program on the MS platform

• buildserver: This command compiles and builds a Tuxedo server
• buildtms: This command compiles and builds a TMS load module
• buildwsh: This command compiles and builds a customized workstation

handler process
• cobcc: This command is the COBOL compilation interface
• dmadmin: This is the administration command interpreter for Tuxedo domains
• dmunloadcf: This command unloads a BDMCONFIG file (a binary domain

configuration file)
• gencat: This command generates a formatted message catalog
• mkfldhdr/mkfldhdr32: This command creates FML/FML32 header files

from field tables
• mklanginfo: This command compiles language-information constants for

a locale
• qmadmin: This is an administration command interpreter for the

queue manager
• rex: This command is an offline regular expression, compiler, and tester
• tidl: This is an Interface Definition Language compiler
• tlisten: This is a generic listener process
• tmadmin: This is the command interpreter for Tuxedo Bulletin Boards
• tmboot: This command brings up a Tuxedo configuration
• tmconfig: This command dynamically updates and retrieves

information about a running Tuxedo application as either a native
client or a workstation client

• tmipcrm: This command removes IPC resources allocated by a Tuxedo
application on a local machine

• tmloadcf: This command parses a UBBCONFIG file (a text-format
configuration file) and loads a TUXCONFIG file

• tmshutdown: This command shuts down a set of Tuxedo servers
• tmunloadcf: This command unloads a TUXCONFIG file (a binary

configuration file)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

• tpacladd: This command adds a new access control list entry on
the system

• tpaclcvt: This command converts Tuxedo's security data files
• tpacldel: This command deletes an access control list entry
• tpaclmod: This command modifies an access control list entry on

the system
• tpadduser: This command creates a Tuxedo password file
• tpdelusr: This command deletes a user from a Tuxedo password file
• tpgrpadd: This command adds a new group to the system
• tpgrpdel: This command deletes a group from the system
• tpmodusr: This command maintains a Tuxedo system password file
• tpusradd: This command adds a new principal to the system
• tpusrdel: This command deletes a user from the system
• tpusrmod: This command modifies user information on the system
• tuxadm: This is the CGI gateway for the Tuxedo Web GUI
• tuxwsvr: This is the mini web server for use with the Tuxedo Web GUI
• txrpt: This is the Tuxedo system's server/service report program
• ud, wud, and /ud32/wud32: These are Tuxedo's universal client programs
• uuidgen: This command generates a Universal Unique Identifier (UUID)
• viewc and viewc32: These commands view the (data) compiler for Tuxedo
• viewsviewdis and viewdis32: These commands view the disassembler for

binary view files
• wlisten: This is the Tuxedo Web GUI listener process

For detailed options on all these Tuxedo commands, please refer to the following URL:

http://docs.oracle.com/cd/E26665_01/tuxedo/docs11gr1/rfcm/rfcmd.
html#wp1330814

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[42]

Monitoring and changing a Tuxedo
application
The administrator needs to be able to constantly monitor and tune parameters,
add or remove a user, deploy or undeploy an application, and create or change
queues, access control lists, and so on. The Tuxedo MIB contains all the information
needed for the operation of an Oracle Tuxedo application. There are two different
administrative tools that access the MIB and allow for dynamic configuration of a
Tuxedo application. The third one is the Tuxedo Admin Console, which has not
been updated since Tuxedo 8, and hence it is not included in our discussion.

TUXEDO Administrator

ULOG

Command Line
Utilities MIB API Admin Console Event Broker

MIB Events

TUXCONFIG TLOG BB

The following is a list of the MIB's components:

• WS_MIB: For workstation groups and the processes associated with them
• ACL_MIB: For administrating access control lists
• APPQ_MIB: For administrating queues
• EVENT_MIB: For event notification and the subscription request database
• DM_MIB: For administrating the Tuxedo domains' (multiple-domain)

configurations

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

The command-line interface
This is a set of commands used to manage, activate, configure, and deactivate
the application (for example, tmadmin, and so on). Each of these commands
have various options to get administrative information or control.

The tmadmin() command provides 51 interactive commands that allow the
administrator to monitor a Tuxedo application's performance, reconfigure,
troubleshoot, or take corrective actions. Normally, it runs on an active node;
for an inactive application, it can only be run on the master node.

tmadmin [-r] [-c] [-v]

The following are the attributes of this command:

• -r: This invokes tmadmin as a client (read-only) instead of as the administrator
• -c: This invokes tmadmin in the configuration mode.
• -v: This invokes tmadmin to display the Tuxedo version number

and license number

Once tmadmin has been invoked, commands can be entered at the prompt (>). Some
of the most important of the 51 commands are mentioned in the following list:

• bbclean machine: It removes a hanged server process and the resources
associated with it. It also reboots the process if it is configured as restartable.
It also makes the DBBL check the status of the BBL(s).

• bbparms: It gives you a summary of the Bulletin Board's parameters; for
example, the maximum number of servers, objects, interfaces, and services.

• help [{command | all}]: This provides help for all commands; if a
command is specified, the abbreviation, arguments, and description for
that command are printed.

• master [-yes]: This command is run on the master node when the
backup node is acting as the master. It migrates the DBBL to the master
node; the backup node is no longer acting as the master node.

• printqueue [qaddress]: This gives you the queue information for all the
application and administrative servers; qaddress can be used to restrict
information to a specific queue.

• printserver [-m machine] [-g groupname[-R rmid]] [-i srvid]
[-q qaddress]: This command gives information about the application
or administrative server. Various options can be used to filter the
server information.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[44]

tmconfig() allows the administrator to examine and modify the TUXCONFIG files
for the Tuxedo application. These changes are dynamic in nature, as changes made
to the TUXCONFIG file are propagated to all machines under the same application as
soon as possible. Most of the parameters can be modified in TUXCONFIG and can take
immediate effect dynamically, without rebooting the application.

1. When you run tmconfig, it prompts for the desired section.
%promt%> Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL 10) NETGROUPS 11)
NETMAPS 12) INTERFACES [1]:

2. It then prompts for the desired operation.
%promt%> Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [1]:

3. It then prompts you to indicate whether or not you want to edit the
input buffer.
%promt%> Enter editor to add/modify fields [n]?

%promt%> Enter editor to correct?

4. Finally, tmconfig asks whether the operation should be performed.

%promt%> Perform operation [y]?

Performing the preceding steps gives you the return value after completion of the job.

If you decide to quit the application and select an option, it prompts you to create
a backup text version of the configuration (as you may have changed the
configuration file).

%promt%> Unload TUXCONFIG file into ASCII backup [y]?

If you select a backup, tmconfig prompts for a filename.

%promt%> Backup filename [UBBCONFIG]?

It indicates that a backup was created successfully, otherwise, an error is printed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

The Tuxedo MIB application programming
interface
We have discussed how to use the GUI and command-line interfaces for monitoring
the Tuxedo applications, but you can also write a program using a Management
Information Base (MIB) interface for monitoring purposes that can modify the
TUXCONFIG file for you if you need to make changes to any configuration. The MIBs
provide the framework for programmed administration of the Tuxedo system. For
more information, please refer to Oracle online documentation.

Tuxedo System and Application Monitoring
(TSAM)
TSAM is an Oracle Tuxedo add-on product that provides comprehensive monitoring
and reporting for the Tuxedo application. It monitors runtime performance
bottlenecks and business-data fluctuations, determines service models, and provides
notification when predefined thresholds are violated. In this section, we will discuss
and provide an overview on its architectural components and the relation between
them, the installation procedure, and a quick start guideline to monitor your Tuxedo
application using TSAM. TSAM comprises of the following two components:

Web Browsers

TSAM ManagerTuxedo Node..1

Tuxedo Process

Plug In

TSAM
Framework

LMS

Tuxedo Node..N

Tuxedo Process

Plug In

TSAM
Framework

LMS

.

TSAM

DATA

Server

Database

TSAM

Console

Web Container

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[46]

TSAM Manager runs on a Java application server; for example, the Oracle WebLogic
server and Apache Tomcat. It provides a graphical user interface to correlate and
aggregate performance metrics collected from one or more Tuxedo domains and
then displays it in real time.

TSAM Manager also has two major components:

• Oracle TSAM Data Server is the communication interface to TSAM. It
accepts requests from a Local Monitor Server (LMS) and metrics-query
requests from the web browser. It also does the following tasks:

 ° Accepting data from the LMS and storing them into the database
 ° Accepting requests from the representation layer and data processing
 ° Communicating with the LMS for configuration instructions

• Oracle TSAM Console is the web application that provides a GUI for
administration and data presentation. After logging on to the TSAM Console,
you have access to all the TSAM functionalities.

The TSAM Agent collects various performance metrics for applications, including XA
and non-XA transactions, services, and system servers. The TSAM Agent handles all
the Tuxedo-side backend logic. It works in conjunction with the TSAM Manager. The
TSAM Agent must be installed on top of Tuxedo. It has three components, as follows:

• Local Monitor Server (LMS): The LMS is a Tuxedo system server (that needs
to be configured in UBBCONFIG) that gets the data from TSAM's default plugin
and passes the data to the TSAM Manager through an HTTP protocol. The
LMS is required on each Tuxedo machine if the node needs to be monitored.

• TSAM Framework: This is a data-collection engine working between the
Tuxedo infrastructure and other TSAM components. It collects the runtime
metrics, alerts evaluation, and monitors policy enforcement.

• TSAM Plug In: The TSAM Agent provides default plugins for sending
data to the LMS and then to the TSAM Manager. The plugin allows
custom plugins to be hooked to intercept the metrics. The default plugin
communicates with the LMS with shared memory. Applications will not be
blocked at the metrics-collection point.

Installing TSAM
TSAM can be installed basically in two modes: GUI mode in Unix or Windows, and
console mode for Unix machines. We will be using the console-mode installation in
this book. GUI-mode installation is very self-explanatory, and it goes through the
same steps as console installation, so please refer to the following instructions for
GUI installation too.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

The following steps are required to install the TSAM Manager and the TSAM
Agent software in console mode on a certified Unix platform. Please read the
prompt carefully, as these displays are very interactive and you need to give the
input accordingly. You may go through the following 11 steps and write down
your input before you start your installation. It is also a good idea to look at steps
1 and 2 under the Using TSAM for monitoring – quick path section to ensure that
you understand how TSAM works and the components you will need and how to
deploy them. Otherwise, you may need to do lot of manual work even when there
are lots of scripts provided to you for ease of use. I am giving you the following
step-by-step displays, but there could be a little variation between this and the one
on the screen, so please be careful:

1. Execute the installation program, which launches the installation script.
sh <installer_name> -i console

The following is the installation script:

Preparing to install...

Extracting the JRE from the installer archive...

Unpacking the JRE...

Extracting the installation resources from the installer
archive...

Configuring the installer for this system's environment...

2. Press the Enter key to continue.
3. The next screen prompts you to choose the Oracle TSAM 11g Release 1

(11.1.1.2.0) install set.
Choose Install Set

Please Choose the Install Set to be installed by this installer.

 1- Full Install

 2- Agent Install

 3- Manager Install

ENTER THE NUMBER FOR THE INSTALL SET OR PRESS <ENTER> TO ACCEPT
THE DEFAULT (Full Install):

4. The next screen prompts you to choose the Oracle home directory.
Oracle Home Directory Selection

 1- Choose existing Oracle Home directory

 2- Specify Oracle Home directory

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[48]

If you select 2, you must specify an Oracle home directory. The path of this
directory must be an absolute existing pathname with write permission,
otherwise the following message is displayed:

 Overwrite feature?

 The following TSAM 11gR1 feature is found under

 /apps/OracleHomes/tsam11gR1

 ...

 Do you want to overwrite it?

 1- No

 2- Yes

5. Modify or change the default Oracle TSAM Manager installation folder.
Choose Install Folder

1- Modify Current Selection (/apps/OracleHomes/tsam11gR1)

2- Use Current Selection (/apps/OracleHomes/tsam11gR1)

ENTER AN ABSOLUTE PATH, OR PRESS <ENTER> TO ACCEPT THE DEFAULT:

6. Choose the authentication type. If you choose the Full or Manager install set,
the Choose Authentication Type screen appears as follows:
 Choose Authentication Type

User information can be stored in the Oracle TSAM database or an
existing LDAP server.

The authentication type "Local first" supports both.

"LDAP only" exclusively supports LDAP authentication.

 1- Local first

 2- LDAP only

ENTER THE NUMBER FOR YOUR CHOICE, OR PRESS <ENTER> TO ACCEPT THE
DEFAULT:

If you choose Local first, the installer prompts the following:

Do you want to specify an LDAP configuration file now?

1- No

Yes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

If you choose No, you can specify the LDAP configuration file by running the
LDAP deployment utility, LDAPDeployer, after installation.
Note that if you choose No in this process, there is no LDAP configuration
file deployed. You must deploy an LDAP configuration file manually after
installation by using the LDAP deployment utility (LDAPDeployer.sh or
LDAPDeployer.cmd) if you want to enable LDAP authentication. For more
information, see the Deploying Oracle TSAM Manager in the Oracle TSAM
Deployment guide.
If you choose LDAP only as the authentication type, or Yes, you must input
the path of the LDAP configuration file, as follows:

Enter an existing LDAP configuration file:

7. Specify the database type; if you choose the Full or Manager install set, the
Choose Database Type screen appears as follows:
Choose the TSAM Manager database type you want to install:

1- Bundled Derby database

2- An existing Derby database

3- An existing Oracle database

4- Skip, I will deploy TSAM 11gR1 to an existing database server
after the installation

8. Specify the database connection. If you choose to connect to an existing
Derby or Oracle database, the Specify Database Connection screen appears
as follows:
Specify the host name:

Specify the port:

Specify the database name:

Specify user name:

Specify the password:

If you choose to create a new database, Oracle TSAM 11g R1 creates a user
with the name admin. You are prompted to specify and verify the password
accordingly.
Enter the administrator group ID (DEFAULT: 0):

Enter the viewer group ID (DEFAULT: 1):

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[50]

9. If the install mode Full Install or Manager Install is selected, you are
prompted to choose an application server.
Choose an application server

1- Bundled Tomcat Server

2- An existing Tomcat Server

3- An existing WebLogic server

4- Skip, I will deploy TSAM 11gR1 to an existing application
server after the installation

If 1 is selected, Oracle TSAM startup/shutdown script/ and the
Oracle TSAM Manager war package is copied to Install Directory.

If 2 is selected, you are prompted to specify an existing Tomcat
folder. Enter an existing Tomcat folder.

If 3 is selected, you are prompted to specify an existing WebLogic
Server directory.

Oracle WebLogic Server directory selection

1- Choose an existing WebLogic Server directory

2- Specify an existing WebLogic Server directory

Note that if you select 4, Oracle TSAM Manager will not be deployed
during installation. You must deploy it manually to an existing application
server by using the application server utility (AppServerDeployer.sh or
AppServerDeployer.cmd).
If you choose to deploy to an existing WebLogic server, you are required to
input the following WebLogic server connection parameters:
 Enter Oracle WebLogic admin url:

 Enter Oracle WebLogic user name:

 Enter Oracle WebLogic password:

The existing WebLogic server is expected to be located on the local
installation machine. WebLogic servers that exist remotely are not supported.

10. Please review the preinstallation summary information printed on the screen;
please make sure that you have the information you desired to have.
 PRESS <ENTER> TO CONTINUE:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[51]

11. Once the installation is complete, the following message is displayed:

Installation Complete

::

::

Congratulations….. installed to:

PRESS <ENTER> TO EXIT THE INSTALLER:

For a GUI-based installation, you need to run the Oracle TSAM installation program.
It can run on both Windows and Unix systems. Once you launch the GUI, the inputs
are the same as the current installation.

Various administrative tasks using TSAM
TSAM is a very useful tool for a Tuxedo administrator, as he/she can use it for many
useful monitoring, tuning, or reporting tasks that he/she needs to perform daily to
keep the Tuxedo system healthy:

• Tuxedo has several important system servers: BRIDGE, GWTDOMAIN, and GWWS.
As you know, BRIDGE connects multiple Tuxedo machines within a Tuxedo
domain. Similarly, GWTDOMAIN connects one Tuxedo domain with others and
GWWS is the web service gateway for all the SALT components. The system
server monitors and tracks message throughput, awaiting the reply messages
on each network connection for BRIDGE and GWTDOMAIN. For GWWS, the web
service requests statistics will be collected.

• There are various performance-related monitoring tasks; some of them are
as follows:

 ° Service name: The name of an Oracle Tuxedo service.
 ° Location: The set of metrics to identify the process that sends the

performance metrics. It includes information about the domain,
machine, group and process names, and so on.

 ° IPC queue length: The message number in an IPC queue.
 ° IPC queue ID: The Oracle Tuxedo identifier of an IPC queue.
 ° Execution time: The time spent in milliseconds for executing an

Oracle Tuxedo service or an XA call.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[52]

 ° Wait time: The time taken by a message in the transportation stage.
 ° CPU time: The CPU time consumed by the service for processing

the request. It only applies to single-threaded servers.
 ° Message size: The Oracle Tuxedo message size.
 ° Execution status: The tpreturn service-return code. It is defined

by the Oracle Tuxedo ATMI interface.
 ° Elapse time: The time elapsed for a call is monitored.
 ° Pending message number: The number of pending messages to

the network.
 ° Message throughput: The total number of messages and volume

accumulated in the system server monitoring intervals.
 ° Waiting reply message number: The number of requests in

GWTDOMAIN awaiting a reply from the remote domain.
 ° J2EE-based solution: This is a pure web-based solution with WEB 2.0

technologies; easy to deploy, configure, and use. The TSAM Console
can be used from anywhere using any standard web browser.

 ° Easy-to-understand metrics database schema. The metrics can be
used for data mining or further business analysis.

• TSAM helps analyze global distributed transactions and correlate transactions
across multiple domains in the tree style. TSAM supports the transaction
monitoring propagation; that is, if monitoring is enabled for the transaction
initiator, the whole transaction path will be monitored.

• A powerful monitoring policy can help achieve the exact monitoring results
while reducing the impact on performance. The sampling can be based on
interval, ratio, and runtime data. The monitoring can be turned on or off
dynamically without restarting the application.

• Comprehensive SLA alert configurations based on monitoring metrics.
Alert evaluation is based on Tuxedo FML Boolean expressions. The event
generated by alert can be posted to the Tuxedo Event Broker. Some alert
types can also drop stale service requests.

• Programming APIs that retrieve the metadata packaged in a monitored
call help developers make application decisions dynamically.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[53]

Using TSAM for monitoring – quick path
We have installed TSAM and gone through its monitoring capabilities. Now we will
take a quick path to start monitoring an existing Tuxedo application using TSAM.
The steps are described assuming that we have chosen all the default choices during
installation (for example, the database, web server, and so on) to ensure that we
do not need to do any manual deployment or configuration. Therefore, we will be
using all automated scripts provided by TSAM to deploy and configure TSAM or
the required components before we start monitoring. In the following examples, we
will use Unix script; there are similar Windows script available for Windows. I have
picked up WebLogic and an Oracle database, as these are the natural choices.

1. Deploy the Oracle TSAM Agent.
You need to add the LMS to each MACHINES section of the UBBCONFIG file,
as follows:
*MACHINES
Site1
...
*GROUPS
LMS-GRP LMID=Site1
...
*SERVERS
LMS SRVGRP=LMS-GRP SRVID=1
 MINDISPATCHTHREADS=1
 MAXDISPATCHTHREADS=5
 CLOPT="-A -- -l tsamweb.abc.com:8080/tsam"
...

The -l option specifies the Oracle TSAM Data Server address, which is
configured in the Oracle TSAM Manager.
Now, as normal procedure, you need to run tmloadcf on this new
UBBCONFIG file and reboot the application.

2. Deploy the Oracle TSAM Manager:
 ° Oracle TSAM Manager LDAP Deployment: The TSAM Manager

works as a web application in a servlet/JSP container. It uses the
database to store persistent Tuxedo performance and monitoring
data. Before using the Oracle TSAM Manager, it must be deployed
to a database server and a web application container. If you
have provided LDAP information during installation, the LDAP
deployment is done automatically; otherwise, you must do the LDAP
deployment using the LDAPDeployer.sh/LDAPDeployer.cmd utility,
which you can find under the deploy directory under the TSAM
installation folder, if you want to enable the LDAP authentication.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[54]

 ° Oracle TSAM Manager Database Server Deployment: Also, if you
select a database during installation, the Oracle TSAM Manager is
deployed on the specified database server automatically; otherwise,
you must deploy the Oracle TSAM Manager to a database server
using the DatabaseDeployer.sh/DatabaseDeployer.cmd utility,
which you can find under the deploy directory under the TSAM
installation folder. For example, to deploy TSAM to an Oracle
database with the user Tuxedo and the password ADMIN in Unix, do
the following (use .cmd for Windows):
Prompt> cd < TSAM_DIR >/deploy

Prompt> ./ DatabaseDeployer.sh -type oracle -hostname
localhost -port 1521 -dbname TSAM -user Tuxedo -password
ADMIN -overwrite no -admingid 0 -viewergid 1 -adminpassword
admin1

For more information on deployment or manual deployment,
please refer to http://docs.oracle.com/cd/E26665_01/tsam/
docs11gr1/deployment/deploy.html#wp1065923.

 ° Oracle TSAM Application Server Deployment: Oracle
TSAM provides application server deployment utilities called
AppServerDeployer.sh/AppServerDeployer.cmd, which help
you to deploy it to an existing application server (WebLogic or
Tomcat) automatically after installation; otherwise, you will have
to do it manually.
For example, for deploying TSAM to a WebLogic server in Unix,
do the following (use .cmd for Windows):

Prompt> cd < TSAM_DIR >/deploy

Prompt>./AppServerDeployer.sh -type weblogic -adminurl
localhost:7001 -directory /home/oracle/wlserver_10.3 -user
weblogic -password weblogic1

 ° Changing the configuration parameters: The TSAM Manager can
be run on Oracle WebLogic or the Apache Tomcat server without
changing any configuration parameters.
On WebLogic, you can change Listening Port, Session Timeout,
HTTP KeepAlive, POST Maximum Byte Size, Maximum Thread
Simultaneous Processing, or Maximum Incoming Connection
Requests, as required.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[55]

On a similar note, for the Apache Tomcat server, you can change
Minimum JAVA Option Memory Size, Listening Port, Session
Timeout, HTTP KeepAlive, POST Maximum Byte Size, Maximum
Thread Simultaneous Processing, or Maximum Incoming
Connection Requests, as required.

 ° Starting up the Oracle TSAM Manager: If you have chosen the
bundled Apache Tomcat server and the bundled Derby database
during installation, the startup/shutdown script files are installed
in the Oracle TSAM /bin folder.

For example, start the Oracle TSAM Manager in Unix as follows
(use .cmd for Windows):

Prompt> cd <TSAM_DIR>/bin

Prompt> ./startup.sh

3. Find your Oracle Tuxedo configuration.
Log in to the Oracle TSAM Manager Console (for example,
http://localhost:8080/tsam/faces).
In the console page, the user accessibility settings can be adjusted as follows:

 ° The login screen – In the upper left-hand corner of the login screen,
click on the Settings drop-down menu. You can select the following
three options; the settings take effect immediately:

• I use a screen reader: Accessibility specific constructs are
added to improve the screen's reader behavior.

• I use high contrast colors: The application's display uses
high-contrast instead of the default contrast.

• I use large fonts: The application's display uses large fonts
instead of the default-size fonts.

 ° The console page – In the upper right-hand corner of the Oracle
TSAM Console page, click on Accessibility. The Accessibility
Preferences page appears; it has the same three user accessibility
options as the login screen.
When you have selected your options, click on OK; the settings will
take effect immediately.
Your Oracle Tuxedo configuration information can be found in the
Oracle Tuxedo component tree panel.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[56]

4. Configure the monitoring policy.
TSAM provides comprehensive monitoring control of the Tuxedo
infrastructure, and the monitoring policy defines what and how you
want to monitor.
On the menu bar, click on Policy and select Tuxedo Application Runtime
Monitoring Policy from the drop-down menu. The Monitoring Policy List
page appears. It displays the existing defined Tuxedo application runtime
monitoring policies and allows you to view, add, edit, or delete policies.
The following are the steps to monitor a call path initiated from a
particular client:

1. On the left-hand side panel of the Tuxedo component, select
Domain from the drop-down list.

2. On the right-hand side panel, the Call Path tab, select the Enable
checkbox.

3. Select the Filter checkbox with Workstation Client.
4. Input a client name in the Client Name input box.
5. Click on the Add & Enable button.

The following step will help you to monitor the services of a particular server:
The steps are similar to the call path monitoring policy, where you need to
select options on the Service tab. In Filter, you can select a service from a list
or input it manually.

5. Start to monitor Tuxedo.

Log in to the TSAM console and start to monitor the Tuxedo system.
The menu bar at the top contains the following Oracle TSAM monitoring
console functionalities:

 ° Policy: Define and manage system policies
 ° Tuxedo Metrics: Query Tuxedo monitoring metrics
 ° Tuxedo Application Runtime Metrics: Query Tuxedo Application

Runtime monitoring metrics
 ° Management: Define user management, data management, and

global parameter settings
 ° Alert: Define and query alerts
 ° Help: The online help page

For details on the TSAM console user guide, you may refer to http://docs.oracle.
com/cd/E26665_01/tsam/docs11gr1/userguide/tsamconhelp.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[57]

The logfiles
Though we can monitor Tuxedo in various ways (as previously discussed), logfiles
are very important for an administrator for monitoring any Tuxedo application.
Many times, the most important monitoring information will come from logfiles (for
example, the TLOG, ULOG, and application logs). This type of information could be
in the form of an error or warning message, a debug message, and an informational
message, which is helpful in tracking and resolving problems in the system. Tuxedo
provides the tracing capability through the tmtrace() function, and it can be used
for ATMI servers and clients. All the messages are logged in the ULOG file as you set
the TMTRACE environment variable (TMTRACE=atmi:ulog).

So, in this monitoring section, we have discussed four different ways a Tuxedo
application can be monitored and changed: GUI, command-line interface, writing an
MIB program, and looking at logfiles.

The important features of Tuxedo
In this section, we will discuss various important built-in features (security, data-
dependent routing, encryption, and so on) that come with the Tuxedo system and
how these features can be used to make your application more secure, effective, and
responsive to address your business needs. These features are configurable, and
there is no need to do any custom development, hence they are very cost-effective
and easy to use.

Security
Security is one of biggest concerns for a Tuxedo administrator, and that is why
Tuxedo provides mainly three levels of security features; in addition, Kerberos can
be added for more.

• First level: This is provided by the operating system. This security imposes
restrictions on the clients and the administrator.

• Second level: This is provided by Tuxedo. By default, any client program can
join a Tuxedo application, but an application can be configured to ensure that
all clients joining the application need to provide the password. There are
many ways to restrict the client's access to the application.

• Third level: This is provided by an authentication service that checks for the
combination of user identification, password, and client name, and it can
connect to the Tuxedo application only if it passes this security.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[58]

There are mainly five types of incremental security provided by Tuxedo, which are
as follows:

• No authentication (NONE): This level might be used in a development
environment or in physically secured environments, as the clients do not
need to be authenticated to join the application.

• Application password (APP-PW): This is a single password for the entire
application; all the clients must provide this password to join the application.

• End user authentication (USER_AUTH): In this level, the client needs to provide
a username and password; this is to customize the security for application-
specific users to ensure that they can access the Tuxedo application.

• Optional access control (ACL): For all the previously mentioned levels,
information needs to be provided by the client and the administrator so
that access can be controlled to services, application queues, and events
with access control lists. This level allows you to configure access only for
those resources that need security; there is restricted access to a certain set of
services while still allowing unprotected access to other services.

• Mandatory access control (MANDATORY_ACL): This is very similar to the
ACL level; the only difference is that the resources without an ACL are
considered restricted, that is, access is not granted to resources that do not
have an ACL permission.

In this section, we have discussed all the different types of security features that
you may like to consider to secure your Tuxedo application.

Data-dependent routing (DDR)
Data-dependent routing (or context-based routing) is used to enable a client to send
requests for a service to have multiple/distributed copies of it; this is determined by
the data in the requested message. Once an administrator has set up data-dependent
routing for an application, the client requests can be routed automatically to servers
based on the data in the requests. This DDR can be used in three different ways; we
will discuss this in the following sections.

Horizontally partitioned
When a Tuxedo service is associated with a horizontally partitioned database (which
means the database has been divided into segments), each segment is used to store
a different category of information. As an example, there are different sections in a
hospital (for example, ENT and cardiology). So, the same service can be called from
different clients, but the request will be routed to the service-particular department
server as the database was designed as horizontally partitioned.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[59]

Rule-based servers
A rule-based server is a server that determines whether service requests meet certain
application-specific criteria before forwarding them to service routines. For example,
in Banking, they have a Primer customer and a Normal customer, a distinction
made for certain business reasons (high-value transactions), and the same service is
served using two different servers. So, the features of the rule-based servers can be
used when you want to handle requests that are almost the same, by taking slightly
different actions for business reasons.

Distributed applications
In a distributed application, you may have a mix of local and remote clients that
communicate with multiple servers that could be distributed in multiple geographic
locations or machines across organizations over the network. A request is sent for a
particular service; it is determined by the data identifying the server that can fulfill
the request. The Tuxedo system selects a server to receive the request by matching
the data to the routing criteria provided in the Bulletin Board. The ROUTING section
of the UBBCONFIG file provides information for data-dependent routing of service
requests using the FML, XML, and VIEWS types of buffer. You can also use DDR as a
load-balancing mechanism by routing certain requests to a specific server.

Data encryption
Data encryption means converting data into a coded format that is unintelligible to
all users except the user for which the data is intended. When encrypted data arrives
at its destination, it is decrypted to convert back to its original format. Encrypting
does not increase the data size, but it adds to processing time as the system needs
to encrypt and decrypt the data. The data is compressed during encryption, so
you may gain some time as less data is being sent across the network. When data
is compressed, it helps to increase data security because the data is somewhat
scrambled during compression. In the UBBCONFIG file, ENCRYPTION_REQUIRED can be
specified in any of the four sections in the configuration hierarchy: the RESOURCES,
MACHINES, GROUPS, or SERVICES section. Setting ENCRYPTION_REQUIRED to Y at a
particular level means that encryption is required for all the running processes at
that level or below it.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[60]

Data compression
This option shrinks an application buffer so that it can be transmitted more quickly
over a network to different machine(s). You can set a maximum threshold value for
the buffer size to ensure that it automatically compresses the buffer when it crosses
the mark. The buffer gets compressed, but it gets decompressed as it reaches the
destination. Data compression happens before the data is transported between
machines; it improves network performance and enhances the security to a limit as
it involves coding/decoding the data. In the UBBCONFIG file, the parameter CMPLIMT
under the MACHINES section helps you set the threshold message size for messages
bound to remote processes and local processes respectively, on which the automatic
data compression will take place.

Load balancing
The load-balancing technique is used to distribute service requests evenly among
servers that offer the same service(s) to ensure that some servers will not be
overburdened while some are idle or infrequently used. The LDBAL parameter in the
RESOURCES section of the UBBCONFIG file can be used to set the load balancing with Y.
Also, the LOAD parameter under the SERVICES section refers to a number; this is very
much a relative number you need to come up with according to the time required
to execute that service. The statistics are generated based on this weightage for each
server, and the Bulletin Board preserves this for each machine. Each Bulletin Board
keeps a track of the increasing load associated with each of its servers; this is to
ensure that when all the servers are busy, the Tuxedo system can select the one with
the minimum load. You do need to do this if you have only a single service in one
server, or servers in a single-queue (MSSQ) configuration.

In this section, we have discussed various important features of Tuxedo – security,
routing, encryption, compression, and load balancing. Each of these features should
be considered more carefully during the application, design, and deployment stage
to make your application run more efficiently and to address your various business
needs without any custom code.

Administering the Tuxedo queue (/Q)
Tuxedo provides a reliable queue based on the XA-compliant resource manager
(TMS – Transaction Manager Server), which provides the framework to store
messages in a reliable storage and forward it to different components. These could be
services, clients, or components within different Tuxedo processes. The purpose of a
queue is to perform time-independent communication. Any client or server can store
onto (enqueue) and retrieve (dequeue) a message from the queue. Tuxedo provides
the TMQUEUE server, which provides this enqeuing and dequing service.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[61]

Tuxedo also provides a server called TMQFORWARD, which dequeues a message and
forwards it to other services. Messages can be retrieved in any of several ordering
schemes, including Last In, First Out (LIFO), First In, First Out (FIFO), priority order,
and time-based order. More than one client or server can access the same queue. In
Chapter 3, Development of Tuxedo – Various APIs, I have discussed the Tuxedo queue
in more detail; I am avoiding repetition, so please refer to the Queues (Tuxedo /Q)
section of that chapter.

There are three primary tasks for a Tuxedo administrator to carry out. They are
configuring, maintaining, and monitoring the Tuxedo queue.

Configuration of resources for /Q
There are three servers (TMS, TMQUEUE, and TMQFORWARD) provided by the Tuxedo
system that need to be configured in the SERVER section of the UBBCONFIG file.

Also, there must be a server group defined for each queue space as per the
application usage or design. The TMSNAME and OPENINFO parameters need to be set
accordingly; please see the following example in the UBBCONFIG file:

*GROUPS
TMQUEUE-G1 GRPNO=1 TMSNAME=TMS_QM
 OPENINFO="TUXEDO/QM:/dev/deviceONE:QueueSpace1"

*SERVERS
TMQUEUE SRVGRP="TMQUEUE-G1" SRVID=1550 RESTART=Y GRACE=0 \
 CLOPT="-s CUSTOMER:TMQUEUE"

In this example, the -s flag of the CLOPT parameter is used to name the queue space
served by a given instance of the server.

We mentioned that the environment variable for the queue (/Q)
is QMCONFIG, which needs to be set in the environment.

Creation of queue space and queues
To use a queue, we need to create the queue devices, queue space, and queues, in
that order; qmadmin is the tool provided by the Tuxedo system to do this for us.

%UnixPromt%> qmadmin

> crdl /home/applicationQ/CustomerQdev 0 500

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[62]

At this point, your device is created with a size of 500 physical pages beginning/
offset at block 0; you need to create the queue space next.

> qspacecreate

Queue space name: QueueSpace1

IPC Key for queue space: 12345

Size of queue space in disk pages: 300

Number of queues in queue space: 3

Number of concurrent transactions in queue space: 4

Number of concurrent processes in queue space: 4

Number of messages in queue space: 20

Error queue name: ErrorQ

Initialize extents (y, n [default=n]): y

Blocking factor [default=16]: 16

You have created the queue space and now you need to create a queue using the
same qmadmin command.

> qcreate

Queue name: Customer

Queue order (priority, time, fifo, lifo): fifo

Out-of-ordering enqueuing (top, msgid, [default=none]): none

Retries [default=0]: 2

Retry delay in seconds [default=0]: 30

High limit for queue capacity warning (b for bytes used, B for blocks
used,

% for percent used, m for messages [default=100%]): 80%

Reset (low) limit for queue capacity warning [default=0%]: 0%

Queue capacity command:

No default queue capacity command

Queue Customer created

You have created the Customer queue; use the same steps to create ErrorQ before
you exit out of this tool.

Note that if you need more space for the queue space, you can do that by using the
qaddext command.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[63]

Monitoring /Q
Using qmadmin as the command-line tool or using the Tuxedo console, you can
configure, monitor, and change queues in a Tuxedo application. It has a rich set of
options (30+) to choose from.

In this section, we discussed Tuxedo /Q, which is one of the most important
components of Tuxedo for reliable messaging. Tuxedo itself uses /Q for its internal
process communication. The Tuxedo administrator is responsible for defining
servers and creating queue spaces and queues using qmadmin, as described, and
must define at least one queue server group with TMS_QM as the transaction manager
server for the group. For more information, please refer to the Queues (Tuxedo /Q)
section of the next chapter.

The Tuxedo domain
The Tuxedo domain can be used for large-federated or distributed-application
architecture across cities, countries, or different parts of the world. The Tuxedo domain
facilitates interoperate or extend the scope of various applications to include access
to other Tuxedo and non-Tuxedo-based applications. The Tuxedo domain provides
transparency between applications to ensure that any client can get services from
another domain (remote service) by maintaining the security norms. The Tuxedo
administrator can define/design different domains based on the geographical location
of the data center or to enforce inter-organizational boundaries. The Tuxedo domains
are autonomous, which means they are administered independently of each other.
Domains are defined by the administrator; he/she defines how the services in one
domain are made available to another. There are basically three components for
the Tuxedo domain architecture: DoMain Administrative server (DMADM), GateWay
Administrative server (GWADM), and Domain Gateway server (GWTDOMAIN), which I
have briefly discussed later.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[64]

Please refer to the following diagram for more clarity:

BBL

BB
Servers
Services

Client
Application
Code ATMI

DMADM

BDMCONFIG TLOG GWTDOMAIN

TMS

Server-OMGMT
Create OR
Cancel OR

GWADM

Order MGMT

Client request for “create cust”

BBL

BB
Servers
Services

Client
Application
Code ATMI

TLOGGWTDOMAIN

TMS

GWADM

Client

Server - CUST
Create Cust
Update Cust

DMADM

BDMCONFIG

Customer MGMT

BBL

BB
Servers
Services

Client
Application
Code ATMI

TMS

TLOGGWTDOMAIN

GWADM DMADM

BDMCONFIG

Server - INVEN
Update Status

New Item

Inventory MGMT

Client

Network

Request
Reply

The domain configuration file
The domain configuration file is a text file very similar to the UBBCONFIG file, and
it is called the DMCONFIG file. The dmloadcf command converts this text file to a
binary file called BDMCONFIG. You need to create a separate DMCONFIG file for each
Oracle Tuxedo domain participating in the configuration. Please make sure that the
DMCONFIG environment variable is set on each domain.

The domain gateway server
This Tuxedo-provided server communicates with other domains. It also supports
multiple networks, multiple domains, transaction management, multiple
communication modules (request/reply, queue-based, and conversational), and
Tuxedo buffer types.

The domain administrative server
Tuxedo's Domain Administrative server, DMADM, is used to administer a domain
configuration. A domain gateway group has a GWADM server, which is a gateway
administrative server, one GWTDOMAIN, which is a domain gateway server, and a
TLOG, which is optional. Please refer to the previous diagram. The GWADM server
allows runtime administration of the domain gateway. A DMADM server helps with
the administration of the Tuxedo domain configuration file (BDMCONFIG).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[65]

Administrative tools for the domain
Like all other Tuxedo components, an administrator has to monitor and maintain
the Tuxedo domain. There are three basic administrative commands provided by
the Tuxedo system, and they are as follows:

• dmloadcf() – This reads and checks the syntax of the DMCONFIG file
and converts it to a binary BDMCONFIG configuration file.

• dmunloadcf() – This translates the BDMCONFIG configuration file to
text format.

• dmadmin() – This is the runtime tool to enable administrators to configure,
monitor, and tune domain gateway groups dynamically, and to update the
domain configuration files. The dmadmin command with the –c option enters
into the configuration mode to update or add new configuration information
to the BDMCONFIG file of the domain's configuration file. It requires the use of
the DMADM server for the administration of the BDMCONFIG file, and the GWADM
server for the reconfiguration of active domain gateway groups. So, you
need to run one DMADM server and one GWADM server for each domain gateway
group in a domain.

Creating a domain transaction log
You need to create a domain transaction log before you start a domain gateway
group. This needs to be created for the local domain; the machine on which DMADM
is running.

You need to use the dmadmin tools to create it.

>dmadmin crdmlog crdlog -d local_domain_name

This command uses the parameters specified in the DMCONFIG file. This command fails
if the local domain name is active on the current machine or if a log already exists.

The dmadmin command has a huge set of options, so please refer to following URL
for more details:

http://docs.oracle.com/cd/E26665_01/tuxedo/docs11gr1/rfcm/rfcmd.
html#wp998708

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[66]

A brief example of how to configure and run a
Tuxedo domain

1. Edit your UBBCONFIG file to add the domain administrative servers and the
TDomain gateway server.
*GROUPS
DMADM-GROUP LMID=Alpha GRPNO=1
GWT-GROUP LMID=Beta GRPNO=2

*SERVERS
DMADM SRVGRP=DMADM-GROUP
SRVID=2001
REPLYQ=N
RESTART=Y
GRACE=0
GWADM SRVGRP=GWT-GROUP
SRVID=2002
REPLYQ=N
RESTART=Y
GRACE=0
GWTDOMAIN SRVGRP=GWT-GROUP
SRVID=3003
RQADDR="GWT-GROUP"
REPLYQ=N
RESTART=Y
GRACE=0

2. Create TUXCONFIG by running tmloadcf() on this new UBBCONFIG file.
3. Now you need to edit the DMCONFIG file, as follows:

*DM_LOCAL
LOCAL-ONE GWGRP=GWT-GROUP
 TYPE=TDOMAIN
 ACCESSPOINTID="USA. 01"
 BLOCKTIME=30
 CONNECTION_POLICY=ON_STARTUP
 MAXRETRY=5
 RETRY_INTERVAL=100
*DM_REMOTE
REMOTE-ONE TYPE=TDOMAIN ACCESSPOINTID="USA.02"
REMOTE-TWO TYPE=TDOMAIN ACCESSPOINTID="USA.03"
*DM_EXPORT
LTOLOWER LACCESSPOINT=LOCAL-ONE
 CONV=N
 RNAME="TOLOWER"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[67]

*DM_IMPORT
RTOUPPER AUTOTRAN=N
 RACCESSPOINT=REMOTE-ONE
 LACCESSPOINT=LOCAL-ONE
 CONV=N
 RNAME="TOUPPER"
*DM_TDOMAIN
LOCAL-ONE NWADDR="//203.0.0.01:4444"
REMOTE-ONE NWADDR="//305.0.0.99:4455"
REMOTE-TWO NWADDR="//309.0.0.99:4466"

The DMCONFIG file should be in the same machine where the DMADM server is
running.

4. You should run dmloadcf on this DMCONFIG file to create the BDMCONFIG
binary file to the location referenced by the BDMCONFIG environment variable.

5. Start the Oracle Tuxedo application servers by running tmboot. You may
check if all the domain-related servers are up and running.

In this section, we discussed the Tuxedo domain, which is mainly used when a
company grows. A company's IT department may need to organize and manage
their business information in a different manner, which consists of various
applications with different functionality or located in multiple locations. This Tuxedo
domain's feature helps in segregating infrastructure for simplifying the solution
while maintaining seamless interoperability among the business applications.

For more detailed information on Tuxedo domain configuration, please refer to the
Oracle website at http://docs.oracle.com/cd/E26665_01/tuxedo/docs11gr1/
add/addomc.html.

Tuning the application
Planning the architecture of a Tuxedo system is a very important and critical task,
as there are a number of components that have various parameters that can impact
performance, scalability, reliability, and security. There are basically two major areas
we need to look at: modularity (which makes applications more manageable), and
agile and resource management (which means sharing common resources to reduce
maintenance, that is, time and cost). As an administrator, you need to keep these two
in mind, and you don't need to predefine the application configuration all at once.
The initial/default values for parameters in UBBCONFIG usually provide acceptable/
standard performance in most cases. If the performance, measured by response time,
is not as high as required, the administrator should monitor the system to determine
the bottleneck and change parameters as necessary. I am sharing some practical
experiences with you, which are very common, but critical for a Tuxedo system.

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Administration of Tuxedo

[68]

You may need to look at the following areas:

• The service is running slow:
 ° It could be SQL, which is running slow because of join or indexing.
 ° You could be making a large number of database accesses or

retrieving a large amount of data.
 ° The queue may fill up with a number of waiting service

requests, increasing the number of instances of the servers
providing the services.

 ° Many times, one server can have multiple services in it, and one
or more of them can be a long-running service. This long-running
service(s) can hold the process for a longer time, and no other
services can be used during that time, making sure that the mixing
of services in a server is properly done.

• Queues are very important in the system; you need to monitor queues
very closely, as they may get full and the whole system can become slow
or even hang.

• The network is another area that we usually overlook, but it can also affect the
Tuxedo application. You may use tmadmin to monitor the basic network usage,
but having a good tool for network management will be very helpful.

• Hardware is another area that can cause slowdowns. If the platform
is heavily loaded, it may be necessary to tune the server (Unix kernel
parameters – shared memory, message queues, and semaphores); if
you think you have done enough and it is still slow/loaded, add more
hardware to take up the load.

• Check if a service uses too many CPU cycles. You may need to involve
the development team to redesign the service.

• The database needs to be tuned many times as it tends to be overlooked.
• It is not recommended to have a service calling another service in the same

server, as it may cause a bottleneck.
• Do not use the Multiple Server Single Queue (MSSQ) without looking at

its usage and throughput.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[69]

• There could be some problem when servers restart themselves multiple
times, and you may not notice it as you see some of them are up at any given
time. Restarting a server loads the system a great deal, and that can slow
down the application, so please look at the ULOG and check for any kind of
behavior like this.

• Many times we can use multiple nodes (MP mode), but do not use the
Migrate feature in the RESOURCE section.

Summary
In this chapter, we discussed various components of a Tuxedo application from the
administrative perspective. I explained the configuration file and its structure and
the relevance of its parameters. I have listed all the Tuxedo commands and how
to monitor a Tuxedo application using these commands and TSAM's web-based
GUI interface. I have also explained the Tuxedo queue and the reliable-messaging
mechanism and how to create and administer it. The Tuxedo domain is another
important component that can be used for real-time distributed applications spread
across geographical and organizational boundaries. We discussed various built-in
features of Tuxedo (for example, load balancing and data-dependent routing) that
make Tuxedo more robust, scalable, and easy to use. Each of these sections itself is a
vast topic, and a book can be written on each of them. The intention of this book is to
give you a quick overview of each of these important components of Tuxedo. In the
end, we discussed some of the practical tuning guidelines you should consider for
better throughput, utilization, and stability of a Tuxedo system.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Development of
Tuxedo – Various APIs

The Tuxedo application interface is called Application-to-Transaction Monitor
Interface (ATMI). In this chapter, we will discuss how to use these interfaces to
build your applications—combinations of the client and server modules, Tuxedo
buffer types, communication paradigms, and transactions (XA). These ATMIs are
very rich and could be overwhelming to start with, so my intention is to give you
a quick overview of each of their categories and some brief characteristics so that
you are able to design and build a standard Tuxedo application quickly. The two
primary languages used for writing a Tuxedo application are C and COBOL; C++
is also used for the object-oriented version of Tuxedo, which is CORBA-based (this
is not discussed in this book).

Introduction to the Application
Programing Interface
The core interfaces for Tuxedo are defined in C and COBOL, but there are also some
third-party languages available for developing a Tuxedo application. As a developer,
you will be able to choose the platform for a Tuxedo client/server based on the ease
of development, debugging tools, performance/overhead, and expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Development of Tuxedo – Various APIs

[72]

Here I have listed most of the Tuxedo ATMI interfaces for C and COBOL for quick
reference. We will discuss them in more detail in the following sections of this chapter.

ATMI type C API COBOL API Comments
Client tpinit() TPINITIALIZE Allows a client

program to join an
application

tpterm() TPTERM Allows a client to
leave the application

tpchkauth() TPCHKAUTH Checks if
authentication is
needed

Communication
(request/
response)

tpcall() TPCALL Synchronous call to a
service

tpacall() TPACALL Asynchronous call to a
service

tpgetreply() TPGETREPLY Gets a reply back for
an asynchronous call

tpcancel() TPCANCLE Cancels an
asynchronous call to a
service

Communication
(conversational)

tpconnect() TPCONNECT Used to start a
conversational
connection with a
service

tpdiscon() TPDISCON Disconnects from
a conversational
connection

tpsend() TPSEND Sends a message
during a conversation

tprecv() TPRECV Receives a message
during a conversation

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

ATMI type C API COBOL API Comments
Communication
(event-based)

tpnotify() TPNOTIFY Notifies the client with
an unsolicited message

tpbroadcast() TPBROADCAST To send an unsolicited
message to all clients

tpsetunsol() TPSETUNSOL Set a callback for an
unsolicited message

tpchkunsol() TPCHKUNSOL To check if there is any
unsolicited message

tppost() TPPOST To post an event
message

tpsubscribe() TPSUBSCRIBE To subscribe for an
event

tpunsubscribe() TPUNSUBSCRIBE Unsubscribes an event
- TPGETUNSOL Catches an unsolicited

message
Message
precedence

tpgprio() TPGPRIO Gets the last request's
priority

tpsprio() TPSPRIO To set the next
request's priority

Memory
management

tpalloc() - Creates a message-
allocate memory

tprealloc() - Reallocates (resizing) a
message

tpfree() - Free message
tptypes() - Gets a message type

Server/service tpsvrinit() TPSVRINIT To initialize a server
tpsvrdone() TPSVRDONE To terminate a server
tpreturn() TPRETURN End of service
tpforward() TPFORWARD Forwards a request to

another service
- TPSVCSTART Gets service

information; only for
the COBOL interface

www.it-ebooks.info

http://www.it-ebooks.info/

Development of Tuxedo – Various APIs

[74]

ATMI type C API COBOL API Comments
Transaction
management
(XA)

tpbegin() TPBEGIN To start an XA/
transaction

tpcommit() TPCOMMIT Commits a transaction
tpabort() TPABORT Aborts or rolls back a

transaction
tpgetlev() TPGETLEV To check the mode of a

transaction
tpsuspend() TPSUSPEND To suspend a

transaction
tpresume() TPRESUME To resume a

suspended transaction
tmscmt() TPSCMT Controls a commit

return
Resources
management

tpopen() TPOPEN Opens a resource
manager (RM) to
which a caller is linked

tpclose() TPCLOSE To close a resource
manager (RM)

Queuing tpenqueue() TPENQUEUE To push a message in
a queue

tpdequeue() TPDEQUEUE To pick up a message
from a queue

Dynamic service
advertisement

tpadvertise() TPADVERTISE Advertises a service
dynamically

tpunadvertise() TPUNADVERTISE Dynamically
unadvertises a service
name

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

ATMI type C API COBOL API Comments
Buffer-related tpconvert() - Transforms the

structures to/from a
string

tpconvmb() - Transforms the
encoded characters in
an input buffer to a
named target

tpexport() - Transforms a typed
buffer into an
exportable, machine-
independent string,
which embraces
encryption seals and
digital signatures

Security and
administration

tpcryptpw() - Administrative
request to encrypt an
application's password

tpgetadmkey() - To get an
administrative
authentication key

tuxgetenv() - Returns a value for
environment variables
set for Tuxedo

tuxputenv() - To dynamically add/
change a value to the
environment variable

tpadmcall() - Administers may use
this to retrieve and
update the attributes
of a service

System error-
handling

tpstrerror() - To capture an error
message for a Tuxedo
ATMI

tpstrerrordetail() - To capture the detailed
error message for a
Tuxedo ATMI

userlog() USERLOG To write a message
(error or warning)
from any Tuxedo
application to the
system's central log

www.it-ebooks.info

http://www.it-ebooks.info/

Development of Tuxedo – Various APIs

[76]

The C language interface for the previously mentioned interfaces makes use of the
full range of C language features—pointer, allocation of buffer, C data structure,
and so on. The COBOL interfaces provide similar semantics and functionality as
that of the C interfaces. The COBOL programmer will find it comfortable to use
these semantics. In our book, we will only be describing all the ATMI interfaces for
the C language.

Developing a Tuxedo client
A client is an application program that initiates requests in the Tuxedo application.
This can be built in different platforms (for example, in both terminal and graphical
interfaces). A client has to join the application before it can make any request to a
server/service and must leave the application before exiting.

There are basically two types of clients:

• Native client: This runs on the same platform as the Tuxedo domain,
meaning it is attached locally

• Workstation (WS) client: This runs on a different machine and joins over the
network to a Tuxedo application running on a different machine

The design, coding, and operation of these two types of clients are the same—the
ATMI for both are identical. There are some differences in the way these clients are
compiled using the buildclient command, which will be described later.

Your client application uses tpinit() to attach to a Tuxedo application and
tpterm() to detach from it. When a client joins an application, a username and client
name can be passed to the tpinit() structure; these are string values of up to 30
characters. The user and client name are used to identify a client program in several
important ways:

• Security: This is used when the application security is configured on a per-
user-password basis; the client program must provide a password that
matches the password for the user/client

• Administration: The administrator can see who is connected to the
application

• Communication: Either one or all the clients can be communicated to via
their individual name using tpbrodcast()/tpnotify()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

There are four paradigms for client/server communication:

• Request/response: A client program sends a request to a server/service and
waits for the server/services' response before it executes any other operation
that is synchronous in nature. A client uses the tpcall() function to invoke
this kind of communication in Tuxedo. There is an asynchronous way of
doing such communication where the client can send the request and get the
reply later, as needed. This is a stateless communication, and tpacall() and
tpgetreply() are used for this type of communication.

• Conversational: This is similar to request/reply, but in a more
conversational mode, where request and reply come back and forth from the
client and servers. This is a stateful communication, and Tuxedo provides the
tpconnect(), tpsend(), tprecv(), and tpdiscon() ATMI functions.

• Queuing: Many times, a client program may need to communicate in online
mode (as in the previous two paradigms); we can call it a time-independent
communication, where the client puts the message(s) in a reliable queue and
not in an online mode with those that pick up the message from the queue.
There are two functions in ATMI, namely tpenqueue() and tpdequeue().

• Publish and subscribe (Pub-sub): This communication between the client
and servers is based on an event. There are three functions associated with
it, namely tpsetunsol(), tpnotify(), and tpbroadcast(). A client has to
register to an application using tpsetunsol(); and then, if anybody (client
or server) generates an unsolicited message using one of tpnotify() or
tpbroadcast(), it gets that notification accordingly.

Sample client code structure
The basic client code structure using Tuxedo ATMI is shown in the following
code snippet:

Include Tuxedo and c lib using #include
main()
{
Use tpalloc() to allocate TPINIT buffer
You may require to pass user/cltname/password in the TPINIT buffer as
per you security set up.
tpinit() to join the Tuxedo application
Send service request using tpcall()/ tpacall()
Receive reply – you need to use tpgetreply() for using tpacall()
Process the reply as per your requirements
leave application using tpterm()
}

www.it-ebooks.info

http://www.it-ebooks.info/

Development of Tuxedo – Various APIs

[78]

Once you write the client code, you need to compile it using the buildclient
command provided by Tuxedo. The same code can be used for the native or
workstation client; please check the following section for more details.

Compiling the native or workstation client
Tuxedo provides the buildclient command to compile a Tuxedo client.

 buildclient [-C] [-v] [{-r rmname | -w }] [-o name] [-f 1st-file
name] [-l last-file name]

• -v – Verbose mode; to display the compilation message
• -w – To build the workstation client in such a way that it uses WS libraries
• -r – This specifies the resource manager (RM) related/linked with this client
• -o – The outputted executable filename
• -f – The source code file(s) to be included first in the compilation and link-

edit phases of buildclient
• -l – The file(s) to be included last in the compilation and link-edit phases of

buildclient

• -C – This is to specify COBOL compilation

An example of compiling a native client call, my_client, is as follows:

 > buildclient –o my_client –f my_client.c

An example of compiling a WS client call, my_client, is as follows:

 > buildclient –w –o my_client –f my_client.c

Tuxedo client ATMI functions
The following is a list of Tuxedo client ATMI commands along with their syntax:

• tpinit – int tpinit(TPINIT *tpinfo)
• tpcall – int tpcall(char *service, char *indata, long ilen, char

**outdata, long *olen, long flags)

• tpacall – int tpacall(char *service, char *indata, long length,
long flags)

• tpgetreply – int tpgetrply(int *cd, char **indata, long *length,
long flags)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[79]

• tpenqueue – int tpenqueue(char *q-space, char *q-name, TPQCTL
*ctl, char *indata, long length, long flags)

• tpdqueue – int tpdequeue(char *q-space, char *q-name, TPQCTL
*ctl, char **indata, long *length, long flags)

• tpnotify – int tpnotify(CLIENTID *client-id, char *indata, long
length, long flags)

• tpbroadcast – int tpbroadcast(char *lmid-clt, char *usr-name,
char *clt-name, char *indata, long length, long flags)

• tpsetunsol – void (*tpsetunsol (void (_TMDLLENTRY *)(*displ)
(char *indata, long length, long flags))) (char *indata, long
length, long flags)

• tpconnect – int tpconnect(char *service, char *indata, long
length, long flags)

• tpsend – int tpsend(int c-descriptor, char *indata, long length,
long flags, long *r-event)

• tprecv – int tprecv(int c-descriptor, char **indata, long
*length, long flags, long *r-event)

• tpdiscon – int tpdiscon(int c-descriptor)
• tpforward – tpforward(char *service, char *indata, long length,

long flags)

• tpalloc – char * tpalloc(char *Btype, char *sub-type, long
sizeofbuf)

• tpchkauth – int tpchkauth(void)
• tpterm – int tpterm(void)

For more information on each of these interfaces, please refer to the following URL:

http://docs.oracle.com/cd/E26665_01/tuxedo/docs11gr1/rf3c/rf3c.
html#wp1022852

Developing a Tuxedo server
We discussed the Tuxedo client in the previous section and now we'll discuss how
to develop a Tuxedo server for a client's request or for other servers that call a server
to get some work done and finally return it to the client. The Tuxedo server provides
services (business functions) to the client or other servers. It starts the process as it gets
the request and replies back to its caller. A service must be made known (advertised) in
such a way that another client or server can call it.

www.it-ebooks.info

http://www.it-ebooks.info/

Development of Tuxedo – Various APIs

[80]

The servers are started when a Tuxedo application is booted (tmboot), and they do the
following two things:

• tpsvrinit(), which is a callback function, is called after the server is
connected to an application, but before processing any application request. If
an XA resource manager is being used with the server, tpopen() connects to
the resource manager using OPENINFO from the UBBCONFIG file.

• The server registers itself with a Bulletin Board as available for processing
any request and waits for a new request to come in.

Sample server code structure
There are basically three sections of a server: tpsvrinit() to initialize the server;
MyService() to specify the service in the business logic; and lastly tpsvrdone()
when you need to close any connections to the database or resources manager. The
default function can be used if there is no termination logic.

/* Need to "#include" c and Tuxedo library and header files */
tpsvrinit (int argc, char *argv[])
{
 /* do all initialization working for server e.g. connecting to
database etc. */
 return(0);
 }

MyService(TPSVCINFO *rqst)
 {

 /* Write My Service logic here to do specific job */
 tpreturn (TPSUCCESS, 0, rqst->data, 0L, 0);
 }
tpsvrdone (void)
{
/* close any connection to database before server get shutdown */

 }

Advertising a service
There are four different ways we can advertise a service:

• Compile time: This is the normal way, where we mention the service name
when compiling the server using the buildserver command with the –S
option in it. By default, a service name is assumed to map to a service's
entry-point name with an identical name. This approach is static and
determined at build time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[81]

• Configuration time: The command-line options can be used to specify
the service names to be advertised.

• Administratively: This administrative GUI- or API-based approach
can be used to advertise or unadvertise a service. This is basically a
dynamic approach.

• Runtime using ATMI: A service can be dynamically advertised using
tpadvertise(). This is usually done during the server-initialization routine.
It is also possible to advertise a service dynamically from another service.

Tuxedo server ATMI functions
The following is a list of Tuxedo server ATMI commands along with their syntax:

• tpsvrinit – int tpsvrinit (int argc, char **argv)
• tpsvrdone – tpsvrdone()
• tpreturn – tpreturn(int r-val, int r-code, char *indata, long

length, long flags)

• tpforward – tpforward(char *servicename, char *indata, long
length, long flags)

• tpadvertise – int tpadvertise(char *servicename, void *function)
• tpunadvertise – tpunadvertise(char * servicename)

For more detailed information on each of these interfaces, please refer to the
following URL:

http://docs.oracle.com/cd/E26665_01/tuxedo/docs11gr1/rf3c/rf3c.
html#wp1022852

How to compile a server
Tuxedo provides the buildserver command to construct a Tuxedo server module.

buildserver [-C] [-M] [-s services[:func[()]]] [-v] [-o out-file] [-f
1st-file] [-l last-file] [{-r|-g} RM-name] [{-r|-g} rmid:RM-name] [-E
env-label] [-t]

The following are the attributes of the previous command:

• -C – This attribute stipulates the COBOL compilation
• -M – This specifies the server to be associated with multiple XA-compliant

resource managers, and this his option is mandatory

www.it-ebooks.info

http://www.it-ebooks.info/

Development of Tuxedo – Various APIs

[82]

• -s – This specifies the name(s) of the service(s) that can be advertised when
the server boots

• -v – This option puts the compilation on verbose mode; all messages during
compilation can be seen

• -o – This option specifies the filename of the executable
• -f – The filename(s) that needs to be included for linking before the Tuxedo

ATMI libraries
• -l – The filename(s) that needs to be included for linking after the Tuxedo

ATMI libraries
• -r – The resource manager (RM) related to the server or that needs to be

attached to the server

In this section, we have discussed the structure of the server along with the various
essentials to build a server module.

Tuxedo buffer types
The Tuxedo-based application is a message-driven application, and these messages
can use different types of buffers. In this section, we will be focusing on all five types
of buffers. Tuxedo supports STRING, VIEW, CARRAY, FML, and XML. All these buffer
types can be transmitted over a network within heterogeneous systems. The Tuxedo
system handles translations and data conversions between machines with different
operating systems.

The STRING buffer
This is the most simple type of buffer with a string of characters. It has a null-
terminated string. This buffer cannot be used for data-dependent routing. tpalloc()
can be used to allocate the STRING buffer with the desired length. The following code
snippet helps you with allocating the STRING buffer type:

char *stringPtr;
 . . .
stringPtr = tpalloc("STRING", NULL, 0);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[83]

The CARRAY buffer
This is another simple form of buffer that is basically used to transmit binary data.
The Tuxedo system does not interpret the character of the CARRAY buffer type in
any other way. The CARRAY buffer is not self-describing like other buffer types. This
buffer cannot be used for data-dependent routing. You can use tpalloc() with the
type set to CARRAY with the desired length. The following code snippet helps you
with how to allocate the CARRAY type:

char *carrayPtr;
long carraysize;
. . .
carraysize = 1024;
carrayPtr = tpalloc ("CARRAY", NULL, carraysize);

The VIEW buffer
This type of buffer is very similar to the standard C language structure or a COBOL
record that has an associated definition for the fields with their types. This does
not support a structure inside the structure or arrays of structures or pointers. VIEW
supports integral types (integer, char, and decimal) and can be converted to
FML and vice versa. There are two variations of VIEW: normal VIEW, which uses C
language's short integer to store a field; and VIEW32, which uses a long integer to do
the same.

You need to take the following steps to use VIEW/VIEW32:

1. Define the VIEW structure in a file.
2. You need to compile using viewc or viewc32 with the –n option to create a

view file and a header file, which needs to be included in your program for
both the client and the server.

3. Then set the environment variable VIEWFILES/VIEWFILES32 with your view
file and VIEWDIR/VIEWDIR32 pointing to the directory of the view file.

The following is a sample of a VIEW file:

VIEW SampleView
#TYPE CNAME FBNAME COUNT FLAG SIZE NULL
String Str1 Str1 4 - 10 -
Char Char1 Char1 1 - - -
Long Long1 long1 1 - - -
END

www.it-ebooks.info

http://www.it-ebooks.info/

Development of Tuxedo – Various APIs

[84]

The following are the attributes of a VIEW file:

• TYPE – This specifies the data type (Short, Long, Char, and so on)
• CNAME – This is the variable name in the structure
• FBNAME –This is the FML name that is needed to exchange the VIEW and FML

types and vice versa
• COUNT – This specifies the fields with multiple occurrences
• FLAG – This is to control mapping types for VIEW with other buffer types
• SIZE –This specifies the size of the field
• NULL – This is the application-defined null value for the field

The following code snippet helps you with allocating the VIEW type:

struct SampleView * SampleViewPtr; /* pointer to SampleView
structure */
:::
SampleViewPtr = (struct SampleView *) tpalloc("VIEW", " SampleView",
sizeof(struct SampleView));

The FML buffer
FML stands for Field Manipulation Language. This is very much like a tag/value
pair. It provides a rich set of C functions to manipulate the buffer, where you can
create, modify, delete, and access a field, and much more. There are two types of FML:
FML16 and FML32.

You need to perform the following steps to use FML16/FML32:

1. Create the FML field table files.
2. Use the mkfldhdr or mkfldhdr32 command to create a header file for both

the client and server programs.
>mkfldhdr [-d path for header files are written] [FML_field_
table….]

It will create a header file with the .h extension.

3. Set the environment variable FIELDTBLS/FIELDTBLS32 with the name of
the header files separated by a comma and FLDTBLDIR/FLDTBLDIR32 with
directories separated by a colon for the FML16/FML32 files.

The following is a sample of an FML file:

SampleFML
* Base 200

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[85]

#NAME NUMBER TYPE FLAGs Comments
Name 200 String - Customer name
Age 220 long - Customer age

The following are the attributes of an FML file:

• *Base value – This specifies a baseline for offsetting succeeding field numbers
• NAME –This specifies the identifier for the field
• NUMBER – This specifies the relative value of the field in numbers
• TYPE –This specifies the type of the field
• FLAGs – This is not used at present
• Comments – This is just for documentation purposes

The following code snippet helps you with allocating memory for the FML buffer:

FBFR *fmlPrt; /* c-pointer to an FML type buffer */
 ::
fmlPtr = (FBFR *) tpalloc("FML", NULL, Fneeded(f, v))

FML has a very rich set of functions as a manipulation language—they number
around 100. So, I do not intend to explain them in this section, but I have listed them
so that you know what they are.

CFadd, CFadd32(), CFchg, CFchg32(), CFfind, CFfind32(), CFfindocc,
CFfindocc32(), CFget, CFget32(), CFgetalloc, CFgetalloc32(), F_error,
F_error32(), Fadd, Fadd32(), Fadds, Fadds32(), Falloc, Falloc32(l),
Fboolco, Fboolco32, Fvboolco, Fvboolco32(), Fboolev, Fboolev32, Fvboolev,
Fvboolev32(), Fboolpr, Fboolpr32, Fvboolpr, Fvboolpr32(), Fchg, Fchg32(l),
Fchgs, Fchgs32(), Fchksum, Fchksum32(), Fcmp, Fcmp32(), Fconcat, Fconcat32(),
Fcpy, Fcpy32(), Fdel, Fdel32(), Fdelall, Fdelall32(), Fdelete, Fdelete32(),
Fextread, Fextread32(), Ffind, Ffind32(), Ffindlast, Ffindlast32(),
Ffindocc, Ffindocc32(), Ffinds, Ffinds32(), Ffloatev, Ffloatev32, Fvfloatev,
Fvfloatev32(), Ffprint, Ffprint32(), Ffree, Ffree32(), Fget, Fget32(),
Fgetalloc, Fgetalloc32(), Fgetlast, Fgetlast32(), Fgets, Fgets32(),
Fgetsa, Fgetsa32(), Fidxused, Fidxused32(), Fielded, Fielded32(), Findex,
Findex32(), Finit, Finit32(), Fjoin, Fjoin32(), Fldid, Fldid32(), Fldno,
Fldno32(), Fldtype, Fldtype32(), Fidnm_unload, and Fidnm_unload32().

Refer to the following URL for more information:

http://docs.oracle.com/cd/E26665_01/tuxedo/docs11gr1/fml/fml05.
html#wp1056761

www.it-ebooks.info

http://www.it-ebooks.info/

Development of Tuxedo – Various APIs

[86]

The XML buffer
The XML buffer type can be used by a Tuxedo application for messaging. The
Tuxedo application can use the simple XML buffers. All the logic to manipulate XML
documents (for example, parsing) exists in the application. You can use tpalloc()
to create the buffer with a maximum size of 4 GB. Data-dependent routing can be
used with XML.

An XML document has the following:

• The characters in an order that encodes the text of a document
• An explanation of the logical structure of the document and information

about that structure
• An XML parser in the Tuxedo systems, which works as follows:

 ° Auto-detection of encoded characters
 ° Character code conversion
 ° Detection of element content and attribute values
 ° Data type conversion

XML has been accepted as a standard buffer type and is widely used. Tuxedo has
adopted it and many new developments have been done using XML rather than using
any other buffer types. The old traditional Tuxedo FML buffer can be converted to and
from XML. There are more steps to follow, and third-party tools can also be helpful. For
more information on the XML buffer type, please refer to the following URL:

http://docs.oracle.com/cd/E26665_01/tuxedo/docs11gr1/pgc/pgbuf.
html#wp1274232

So, in this section, we have discussed all the five types of buffers that Tuxedo
supports, and you will be able to pick the best fit for your application design.

Client/server communication paradigms
In this section, we will discuss client/server communication paradigms. There
are four different ways these communications can take place, namely request/
reply, conversational, communication by using a queue, and event-based. There
is a single namespace for all the service names, so from an administrative point of
view, a service name can be defined as either request/response or conversational.
A request/reply service can be called using tpcall(), tpacall(), or tpforward();
tpconnect() can only be used to call a conversational service.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[87]

Request/reply
This works in the following ways:

1. First it receives one request at a time and handles one request at a time.
2. Then it returns (using tpreturn()) or forwards (using tpforward())

the result.

Using tpforward() to invoke a service in the same server works,
but it is not considered a best practice as it defeats the purpose of
using tpforward() to free up the server to process more requests.

Conversational
A service can become conversational by configuring and cannot be called using any
other ATMI interface except tpconnect(). The following are the characteristics of
conversational communication:

• May send and receive one or multiple messages with the caller
• May initiate with other conversational services
• Should not be using tpforward()
• Must end the conversation with the caller with tpreturn()

tpconnect (“Price_list”’...)
:
:

tprecv(..Data..)
:

tpsend(...Data..)
:
:

tprecv(....Data...)
:

Price_List(svcinfo)
{

tpsend(...Data..)
:
:

tprecv(...Data..)
:

tpreturn(...Data..)
}

Client Service Price_ListRequest

Response

Request
Response

Queues (Tuxedo /Q)
Tuxedo's reliable queue is another communication paradigm that has been used
internally within Tuxedo's internal process communication, and it can be used for
client/server communication as well. We have discussed the Tuxedo queue in the
two previous chapters from an administrative point of view, and in this section we
will be discussing how a developer can use the Tuxedo queue APIs to initiate more
reliable communication within the application's components.

www.it-ebooks.info

http://www.it-ebooks.info/

Development of Tuxedo – Various APIs

[88]

The application queue is ideal to use when an application needs to communicate in
an asynchronous manner or both parties are not online at the same time. This allows
an application to put a message into the disk-based (or file-based) queue so that a
message can be dequeued in a logical order. Both the enqueuing and dequeuing
process can be done by a client or server and both these processes are transactional
(XA-compliant), which ensures no message loss and therefore improved reliability.
TMS_QM is the transaction resource manager, which works with all the queue servers
(TMQUEUE and TMQFORWARD) provided by Tuxedo.

The TMQUEUE server provides enqueuing and dequeuing services. The enqueuing
process calls tx_begin() to start a transaction and then enqueues the message and
ends the transaction with tx_commit(). The message is ready to be dequeued once
enqueuing is done. Similarly, to dequeue a message, this dequeue process starts the
transaction, dequeues the message, and delivers it to the other party; when the tx_
commit() function called by the dequeuing process returns successfully, it means the
message has been removed from the queue.

The TMQFORWARD server provides a service that dequeues a message and passes
them to a service, therefore providing a mechanism to call a service using a queue.
One common use of an application queue is for storing requests and then using
TMQFORWARD to forward them to a service routine. Also, online service requests that
failed can be enqueued in an application queue for later processing.

Local enqueue()

Local dequeue()

Local enqueue()

tpcall()

Local dequeue()

tpenqueue(..Message)

:
:

tpdequeue(..Message..)

TMS_QM

Service P_List

Service C_List

Client_Reply

ERRORQ

Application Q space

Client TMQUEUE
SERVER SERVER

TMQFORWAD

qmadmin

Tuxedo Server Side

enQ

deQ

Service C_List

{

tpreturn()
}

{

tpreturn()
}

Service P_List

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[89]

The syntax for the tpenqueue and tpdequeue function is as follows (you also need to
include <atmi.h>):

• tpenqueue() – int tpenqueue(char *q-space, char *q-name, TPQCTL
*ctlptr, char *indata, long length, long flags)

• tpdequeue() – int tpdequeue(char *q-space, char *q-name, TPQCTL
*ctlptr, char **indata, long *length, long flags)

The flags value can be set using one of these four different ways: TPNOTRAN,
TPNOBLOCK, TPNOTIME, and TPSIGRSTRT.

Event-based communication
So far we have discussed the request/response communication paradigm and
using a queue for communication, but many times we may be required to handle
unexpected real-world events that, if not properly handled, may affect the business.
Tuxedo basically offers two kinds of event-based communications, unsolicited client
notification and the event-broker server.

Unsolicited notifications are used to communicate with the client. Tuxedo provides
two mechanisms to manage these simple events: single-program notifications and
multiple-program broadcasting. These help to communicate unsolicited notifications
to the clients only, as the servers are designed to receive solicited communication in
the form of service requests. The tpnotify() function is used to send an unsolicited
message to another client. The CLIENTID parameter is the ID for a client, data is the
message to be passed, len is the length, and the flags parameters are TPNOBLOCK,
TPNOTIME, or TPSIGRSTRT. On the other hand, tpbroadcast() is used to send
a message to all or a group of clients by using the first three parameters (LMID,
USERNAME, and CLIENTID); setting null values for these make them wildcards.
The rest of the three parameters are all the same as tppost(). A client uses
tpsetunsol() to register a callback function to get the unsolicited notification.

The Tuxedo event-broker server provides the capability for posting messages, which
are received by the processes that have subscribed to it. A process (server or client)
can subscribe to an event with a name or set a rule to prescribe event subscription. We
should remember that the event-broker server should be used to handle exceptional
cases, but not as a normal communication mechanism for passing messages.

The following are the characteristics of the Tuxedo event-broker server:

• The server or a client can post or subscribe to an event
• The same event can be posted by many processes and vice versa
• Tuxedo provides a set of system event that can be subscribed to by a client

or server

www.it-ebooks.info

http://www.it-ebooks.info/

Development of Tuxedo – Various APIs

[90]

Tuxedo provides an event-broker server called TMUSREVT. It helps to store the
subscription information as tpsubscribe() is being called; similarly, tppost()
invokes it to post an event for the subscriber(s). In the case of unsolicited
subscription, this server creates a message using tppost() and sends an unsolicited
message to the clients that subscribed to that unsolicited event. Let us look at how
we can subscribe, post, and unsubscribe from an event:

• Subscribe to an event by name using the tpsubscribe() function. The
event-expr argument is the name of one or more events, filterptr is the
rule to select the specific event, ctlptr is the pointer to an event-control
structure (it is NULL for unsolicited notifications), and the flags parameter is
TPEVSERVICE, TPEVQUEUE, TPEVTRAN, or TPEVPERSIST. The tpsubscribe()
function returns a handler for a specific subscription, which should be used
for unsubscription.
tpsubscribe – long tpsubscribe (char *event-expr, char
*filterptr, TPEVCTL *ctlptr, long flags)

• Post (initiate or notify) an event by using tppost(). It posts an event
identified by event-name; indata is the message you would like to pass to
its subscriber(s), length is the message length, and flags can have values
TPSIGRSTRT, TPNOTRAN, TPNOREPLY, TPNOBLOCK, and TPNOTIME.
tppost – tppost(char *event-name, char *indata, long length,
long flags)

• Unsubscribe from the event by using tpunsubscribe(). The subscription is
a valid handler returned by tpsubscribe(). A client must use this function
before it calls tpterm().

tpunsubscribe –int tpunsubscribe (long subscription-name,
long flags)

So, there are two ways to use event-based communication, namely unsolicited client
notification by using the tpnotify() and tpbroadcast() functions, and event-
broker server by using the tppost() and tpsubscribe() functions.

Transaction in Tuxedo
This is one of the most important sections in client/server architecture. The
foundation of Tuxedo ATMI is a proven, reliable transaction processor, also known
as a Transaction Processing (TP) monitor. This transaction processing has very
unique characteristics consisting Atomicity, Consistency, Isolation, and Durability,
also known as ACID.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[91]

• Atomicity: All changes to data are committed in a single operation, which
means all the changes are done at once, otherwise they are rolled back

• Consistency: This means that the data has to be in a consistent state
before and after the transaction

• Isolation: This means that transactions run concurrently and appear
to be serialized; the intermediate state of a transaction is unseen to
other transactions

• Durability: Once a transaction is committed, the changes to data should
be saved and cannot be lost, even in the event of a system failure

The XA interface and two-phase commit
In a real-life scenario, we need to have a single function that needs to update or
insert the data in multiple resources (of multiple databases or file systems). To
achieve this, one needs to use a Distributed Transaction Processing (DTP) model.
The eXtended Architecture (XA) standard defines the two-phase commit protocol
that helps to achieve this challenging task. The XA was originally conceived in
the Tuxedo project and has been standardized by the X/Open Company, Ltd.,
an independent, worldwide, open-system organization supported by most
IT organizations in the world. In this scenario, a communication between a
transaction manager (TM) and a resource manager (RM) is done through APIs
based on Tuxedo XA. An RM is a system service (for example, database system)
that manages durable data. A TM manages distributed transactions, which may
span multiple resource managers. It manages a two-phase commit (to maintain
the ACID properties), which involves coordination among multiple resource
managers to commit distributed transactions, or it rolls them back if one of them
fails to commit, and instead coordinates failure recovery.

In a Tuxedo-based application, the Tuxedo system plays both the role of TM and
RM. We have discussed a Tuxedo queue as a reliable messaging queue, as it uses
this XA standard to make the queue-based messaging "ACIDic" in nature, where
the application's queuing manager is an RM.

In Tuxedo, a TM does the following for a transaction:

• Creates a global transaction identifier (GTI) when the application initiates
a transaction

• Tracks all the participants (RMs) of the transaction
• The TM notifies the RM with GTI during communication
• Performs the two-phase commit, which means communication for phase-1

(preparation and ready) and phase-2 for the commit

www.it-ebooks.info

http://www.it-ebooks.info/

Development of Tuxedo – Various APIs

[92]

• It performs the rollback process if the application designates that the
transaction is to be aborted

• It performs a recovery procedure when failures occur

Creating or initiating a transaction
There are mainly two ways to initiate a transaction in a Tuxedo system: initiated
explicitly by the application, or implicitly by an administrator.

• In your application code, you can use the tpbegin() function to initiate your
transaction. It creates the GTI and starts the transaction and communicates
it to the TM. This function has two parameters: a transaction time-out value
and a flag, which is currently undefined and must be set to 0. The application
module that called tpbegin() should also call a termination-of-transaction
function, tpcommit() to commit, or tpabort() to abort the transaction.

• The Tuxedo system provides a built-in administrative configuration option
called AUTOTRAN. The service that is marked with it in the UBBCONFIG file is part
of a global transaction of its caller. If it is not being called under a transaction,
the Tuxedo system initiates the transaction prior to invoking this service.

Tuxedo's transactional functions
The following is a list of Tuxedo's transactional functions along with their syntax:

• tpbegin – int tpbegin(unsigned long timeout, long flags)
• tpcommit – int tpcommit(long flags)
• tpabort – int tpabort(long flags)
• tpgetlev – int tpgetlev()
• tpsuspend – int tpsuspend(TPTRANID *t_id,long flags)
• tpresume – int tpresume(TPTRANID *t_id,long flags)
• tpopen – int tpopen(void)
• tpclose – int tpclose(void)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[93]

Tuxedo Transaction Log (TLOG)
The Tuxedo system saves information about all the participants in a transaction for
tracking in the TLOG (Transaction LOG). The information (the reply from the global
transaction participants) for a global transaction is stored in the TLOG file during
the process of being committed. The TLOG holds the record for a global transaction
that needs to be committed. The TLOG doesn't hold any records for transactions that
need to be rolled back. Please make sure you create the Universal Device List (UDL)
by using the following command:

tmadmin –c crdl –z "full path of device" –b "block size to be allocated"
for using TLOG.

Also, you must set the TLOGNAME, TLOGDEVICE, TLOGSIZEE, and TLOGOFFSET
parameters in the MACHINES section of the UBBCONFIG file. You can create the TLOG
in a filesystem or by using the Oracle database.

Summary
In this chapter, we have discussed various Tuxedo ATMI interfaces to develop our
client/server application using different types of Tuxedo buffers, as well as various
communication patterns such as request/reply, conversational, queue-based, and
event-based communication. The event-based communication can be of two types:
unsolicited client notification and event-broker server. It should not be used as a
normal communication protocol, and should be used rather to handle an exception.
We also discussed XA transactions and how to communicate in transactional mode
in such a way that we are able to maintain data integrity and persistence.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

SALT – Service Architecture
Leveraging Tuxedo

In this chapter, we will discuss Service Architecture Leveraging Tuxedo (SALT).
The Service Oriented Architecture (SOA) has been proven in the industry today,
and SALT was introduced to make the Tuxedo application an integral part of the
SOA environment. By looking at the Tuxedo architecture, we can certainly claim
that Tuxedo is one of the oldest forms of SOA platforms. Everything in Tuxedo is a
service and invoked as a service, and they are very loosely coupled. It is known for
its performance, scalability, and reliability. The SCA-based (Service Component
Architecture) development provides us with a more complete SOA solution, and
with SALT we can connect with the Tuxedo framework, enabling the re-use of
its services and giving a better ROI. SALT is a Tuxedo add-on product; one of its
components is the SCA container, which enables any applications based on web
services to call Tuxedo services and vice versa. The other component is a native
web-service stack.

Getting acquainted with SALT
SALT enables Tuxedo users to expose Tuxedo-based services as web services to
ensure that any external web-service-based application can call a Tuxedo service
just like calling another web service. Also, SALT helps Tuxedo applications to call
external web services without any code development.

www.it-ebooks.info

http://www.it-ebooks.info/

SALT – Service Architecture Leveraging Tuxedo

[96]

SALT is an integral solution for a Tuxedo application and web services, and
it enables seamless integration between Tuxedo applications and external
web-service-based applications. It increases the possibility of SOA adoption
for any organization with distributed applications spanning over large physical
distances with diverse hardware and software platforms. So, you can use SALT
to extend your Tuxedo application in a more loosely coupled manner and re-use
and protect your ROI.

Java Client Java App

Server

ATMI Client

ATMI Server CORBA Server

CORBA Client

ATMI/XA/

Web

Integration

Messaging

Module
OA&M

Service

Metadata

Repository

Transaction

Processor

c/C++/

COBOL

Container

Event Security

Domain Connectivity

SALT Gateway

(GWWS)
Domain Gateway Mainframe Adapter

WebService
Weblogic Tuxedo

Connector
Tuxedo Applications

Mainframe

Application

SCA Component/

Client

Tuxedo Environment

To use SALT, we need to know its components and some of the important
concepts behind it. Let us look at them in detail.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[97]

The SALT gateway (GWWS) and service
metadata repository server
The SALT gateway (GWWS) is a Tuxedo server that works as an adapter to
communicate with other web service applications using a SOAP over an HTTP/S
protocol. Like all other Tuxedo system servers, the GWWS server needs to be
configured in the UBBCONFIG file and works bi-directionally (inbound/outbound).
It issues a native Tuxedo service call as it gets a SOAP request over an HTTP/S.
On the other hand, it also takes the Tuxedo requests and issues the SOAP calls to
external web-service applications. The Tuxedo service metadata repository provides
Tuxedo's service contract information to GWWS during its boot time. It also gets the
SALT-related information from the configuration file. This GWWS server also works
like a web server and provides simple functionalities such as downloading the
WSDL or XML file. The service metadata repository server called TMMETADATA (also a
Tuxedo-provided server) has a service called TMMETAREPOS to process requests or to
retrieve or update the Tuxedo service metadata repository information.

WSDL utilities for SALT
There are two utilities that come with SALT. The first one is tmwsdlgen, which helps
to generate SCA, SCDL, and server-side interface files for Tuxedo services. The
second one is wsdlcvt, a WSDL converter to ensure that a Tuxedo services can be
exposed as a web service using SALT. This WSDL document can be used to integrate
the Tuxedo service as a web service. This wsdlcvt utility takes WSDL as an input
and converts it to a definition file for Tuxedo. The GWWS server utilizes the SALT
deployment file, which needs to be imported from SALT's web service definition file.
On the other hand, interface information for Tuxedo client programming is provided
by the Tuxedo service metadata repository's definition file and the FML32 field table
definition file.

The SCA concept and Tuxedo service
There is a trend in the IT industry today of organizations moving from application-
centric architecture to service-oriented architecture (SOA). SOA is all about
building the functionality of an application by using a set of services or components
stitched together (called a work flow), to ensure that they meet certain end-to-
end business needs. The SCA models have a standard guideline, which basically
gives recommendations on how to build and implement services, the mechanism
of reusing services, and how to accumulate or constitute services into solutions so
that your SOA implementation is more efficient and flexible. The SCA model helps
you with service deployment and constructing and assembling a service prior to its
deployment.

www.it-ebooks.info

http://www.it-ebooks.info/

SALT – Service Architecture Leveraging Tuxedo

[98]

In SCA, components can be built in various standard languages and can be deployed
in the related container. You may access them using various standard methods. So, a
component provides some business functions that can be published as a service. The
implementation can have dependencies on the services of other components, which
can be accessed through references. Each of these components can have properties,
which can be set using an XML file. So, multiple components can be joined
logically to provide an e2e business solution; in an SCA model, these are known
as composites. As an example, a composite may contain one or more components
connected through a reference (for example, under the WebLogic environment).
SALT provides mechanisms to use a Tuxedo service as one of the components of a
composite or business solution.

Web Environment

Cust

Info

Reference:

Binding:

- Java Interface

- WSDL PortType

WebService, SCA,

JCA, JMS

Tuxedo Service

(Component)

Customer SCA

Proxy

Component
Customer

Broker

Components

Customer

Component
Customer

Service

Service:

Binding:

- Java Interface

- WSDL PortType

Web Service, SCA, JCA, JMS

JATMI SCA

Binding

Component

Component

Cust Create

Tuxedo Environment

Tpcall()

Service

Reference

Property

In this section, we have briefly gone through the major components and concepts of
SALT. This basic knowledge will help us configure and build a SALT application,
which is explained in the following sections.

SALT installation
As we discussed earlier, SALT is an accompanying product for Tuxedo, and it can be
installed in the same three ways as Tuxedo—GUI-based, console-based, and silent
installation. The SALT executable comes as an installer file. You can execute it on
Windows or Unix platforms using various methods.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[99]

The SALT distribution contains the following components, which get installed under
the TUXDIR directory:

• SALT service component architecture support
• SALT web service gateway server software
• SALT web service development assistant utilities
• SALT administrative utilities
• SALT sample applications

A supported version of Tuxedo must be installed before you install SALT; you need
the correct compatible versions of Tuxedo and SALT to work together. If you already
have the Tuxedo server installed, you can install the SALT client and/or server,
and of course, the server-side sample applications. On the other hand, you can only
install the SALT client component if you have the Tuxedo client.

GUI-based installation
For SALT's GUI-based installation on Windows or on Unix, you need to carry out
the steps pointed out in the following sections.

Installing on Windows
Carry out the following steps for SALT's GUI-based installation on Windows:

1. Go to Run on the Start menu.
2. Select the Windows installer executable file, salt11gR1_tux11gR1_32_

win2k8_x86_vs2008.exe.
3. Click on Open.
4. InstallAnywhere runs and the Introduction screen appears.
5. Click on NEXT to proceed with the installation. The rest of the steps are

very user friendly and self-explanatory; just make sure the home directory
is properly chosen.

Installing on Unix
Log in as a root, or another user with sufficient permissions, and perform the
following steps:

1. Execute the installation program. For example:
UNIXPrompt> sh salt11gR1_tux11gR1_64_hpux_1123_ia.bin

www.it-ebooks.info

http://www.it-ebooks.info/

SALT – Service Architecture Leveraging Tuxedo

[100]

2. The Introduction screen will appear. Click on Next to proceed with the
installation. The rest of the steps are very user friendly and self-explanatory;
just make sure the home directory is properly chosen.

Console-based installation
SALT's console-based installation is only for Unix; follow the ensuing steps:

1. Log in as a root or any other user with sufficient permissions.
2. Execute the installation program. For example, for the HP-UX platform,

select either of the following:
UNIXPrompt> # salt11gR1_tux11gR1_64_hpux_1123_ia.bin -i console

Or

./salt11gR1_tux11gR1_64_hpux_1123_ia.bin –i console

3. The installation program runs and prompts you for responses (see the the
Listing 3-1 section at http://docs.oracle.com/cd/E15261_01/salt/
docs11gr1/install/instcon.html#wp1036651 for an example).

4. InstallAnywhere will guide you through the installation. So, just follow
the instructions and you will get a completion message once you are done
with the installation.

Silent installation
For silent-mode installation, you need to create a template file; they are
different for Unix and Windows. Please refer to following URL for more
details on silent-mode installation:

http://docs.oracle.com/cd/E15261_01/salt/docs11gr1/install/instsil.
html

In this section, we have gone through the various installation processes for SALT on
Windows and Unix systems. As a post-installation task, you may consider verifying
SALT's directory structure; for example, you will find all the utilities/functions
(previously listed) under the /bin directory. Similarly, there will be some header
files (ws*, SCA, and SOA) under the /include directory, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[101]

Configuration of a SALT application
In the previous sections, we have discussed the various components of SALT and
how to install them; now we will discuss how to configure these components in
brief. In this configuration section, we will touch base on most of the important
components of SALT; for example, Tuxedo web services, Tuxedo SCA components,
service contract discovery, and SALT WS-TX support.

SCA container APIs and utilities
In this section, we will discuss SALT's command-line utilities and some of the
functions. Some of the most commonly used commands are explained in detail here.

The buildscaclient command
The buildscaclient command is used to build a client program to call SCA-based
components running on the Tuxedo environment.

buildscaclient -c default_component [-v] [-h] [-k] [-o name] [-s SCAroot]
[-f firstfiles] [-l lastfiles] [-S structurefiles]

The following are the attributes of this command:

• -c – This specifies the component to be used for this application
• -v – This is a pacifier to turn off/on the verbose mode of this command
• -k – This is to maintain the generated proxy files that allow dynamic

interfacing of clients and references
• -o – This is the name of the client application generated by this command
• -s – The location of the SCA root where the required components are located

(the SCDL files)
• -f – This is used to include the files first (before the SCA libraries) during the

compile time of this command
• -l – This is used to include the files last during compile time of this command
• -S – A source or binary file that specifies the SCA structure

www.it-ebooks.info

http://www.it-ebooks.info/

SALT – Service Architecture Leveraging Tuxedo

[102]

The buildscacomponent command
The buildscacomponent command is used to build the SCA components from the
SCDL source file where the component(s) in the composite(s) file(s) is(are) specified,
and it then produces equivalent executable libraries.

buildscacomponent [-v] [-s scaroot] [-f firstfiles] [-l lastfiles] [-S
structurefiles] -c compositename[/componentname]
[,compositename,..]] [-y] [-k] [-h]

The following are the attributes of this command:

• -v – This is a pacifier to turn off/on the verbose mode of this command
• -s – The location of the SCA root where the required components are located

(SCDL files)
• -f – This is used to include a file first (before the SCA libraries) during

compile time
• -l – This is used to include a file at the last during compile time of this

command
• -c – This specifies the name of the composite(s) processed
• -K – This is used to retain the generated proxy and wrapper source
• -S – A source or binary file that specifies the SCA structure

The buildscaserver command
The buildscaserver command is used to create a Tuxedo server from the SCDL
definitions and interfaces.

buildscaserver -o servername -wp1160640 composite[,composite] [-v][-s
scaroot] [-w] [-r rmname][-y] [-k] [-t] [-S]

The following are the attributes of this command:

• -o – This specifies the executable name of the server
• -c – This specifies the list of the composite(s) hosted
• -v – This is a pacifier to turn off/on the verbose mode of this command
• -s – The location of the SCA root where the required components are

located (the SCDL files)
• -w – This specifies that the generated server will host the web-service,

binding-enabled components
• -r – This specifies the resource manager (RM) attached with this server

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[103]

• -k – This is to retain the server's main stub
• -t – This flag is not used in the current release
• -S – This is required if you use the C-structure input or output buffers in

the server or if you use the -w option

The GWWS command
The Tuxedo system provides a web service gateway server, and like all other Tuxedo
servers, it needs to be configured in the UBBCONFIG file.

GWWS SRVGRP="identifier" SRVID=number [other_parms]CLOPT="-A -- – i
InstanceID"

Here, the -i option is to identify the GWWS server with an exclusive ID; it is required
to differentiate when you have more than one GWWS server in the same Tuxedo
environment. So, this identifier needs to be exclusive with all GWWS servers in the
UBBCONFIG file.

The following table lists the rest of the SALT-related functions and utilities along
with their descriptions and the syntax you need to know to use SALT along with the
commands we discussed previously:

Command/function() Syntax Comments
mkfldfromschema
and mkfld32from
schema

mkfldfromschema [{-i
schema|-u schemaurl}]
[-b basenumber]]-o
outputfile]

The mkfldfromschema/
mkfld32fromschema
command takes an XML
schema and creates a field
table; the options are the same
for both commands.

mkviewfromschema
and mkview32from
schema

mkviewfromschema [{-i
schema|-u schemaurl}]
[-o outputfile]

The mkviewfromschema/
mkview32fromschema
command takes an XML
schema and creates a view file;
the options are the same for
both commands.

scaadmin scaadmin -v {for
verbose}

This is the SCA server
management command
interpreter. It has multiple
options for monitoring or
changing the SCA components
hosted in the Tuxedo
environment. Use help all
for all the options available.

www.it-ebooks.info

http://www.it-ebooks.info/

SALT – Service Architecture Leveraging Tuxedo

[104]

Command/function() Syntax Comments
SCAHOST SCAHOST

SRVGRP="identifier"
SRVID="number"
CLOPT="[-A] [servopts
options] -- -w -c
composite"

The Tuxedo server needs
information from the metadata
repository, so you need to
specify this in the UBBCONFIG
file on the TMMETADATA
system process.

scapasswordtool scapasswordstore -i
passwordidentifier
-[a|d]

This is to encrypt a password
and store it in a file that is
used by SCA components to
refer to Tuxedo-based services.
You can also use this to delete
the password.

scastructc32 and
scastructc

scastructc32 [-n] [-d
viewdir] structfile
[structfile . . .]

This works like a compiler for
the structure's description;
it takes the structure's
description file as input and
creates an equivalent binary
file (which is interpreted at
runtime to determine data
mapping between the FML
buffers and C++ structures)
and multiple header files.

scastructdis32
and scastructdis

scastructdis32 [-E
envlabel] viewobjfile
[viewobjfile...]

This produces and displays
view information in the view
file's format from a binary
file, which is created using
scastructc32 or viewc32.

scatuxgen scatuxgen (-c
<composite file name>
| -i <interface file
name> [-I <inbuf>] [-O
<outbuf>])-s <service
name> [-t <string-type>]
[-w [-n <namespace> -a
<network address>]] [-v]

This parses the SCDL file and
creates metadata repository
interface information that is
based on SCA's abstract class.

setSCAPassword
Callback()

#include <tuxsca.h>void
setSCAPasswordCallback
(char * (_
TMDLLENTRY *)(*disp)
(char*identifier))

This is the function that allows
you to get the password
dynamically.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[105]

Command/function() Syntax Comments
tmscd tmscd start|stop|status

[-e] [-f <file>][id1 [
id2 [...]]]

This command activates and
deactivates service contract
discovery.

tmwsdlgen tmwsdlgen – c wsdf_file
[-y] [-o wsdl_file]
[-m {pack|raw|mtom}]
[-t{wls|axis}]

This helps to create a WSDL
document (this has been
discussed previously).

tuxscagen tuxscagen [-s <target-
root-directory>] [-d
<service-name>][-C
<TUXEDO_cltname>][-u
<TUXEDO_username>][(-S
| -j <java_package_
name>)][-o <output_SCDL_
filename>][-i <output_
interface_filename>[-m
<max-intf-arguments>]
[-y] [-v] [-F] [-c]
[-h][-g<i|a|s>]
[-trepository=<filename>
| -tinfile=<metarepos.
infile> | -tmetadata]

This helps to create SCA,
SCDL, and server-side
interface files for Tuxedo
services (this has been
discussed previously).

wsadmin wsadmin [-v] This is the administrative
command for the GWWS server,
which helps you to monitor
this process. Use help with
this command for a list of
commands.

wsdlcvt wsdlcvt -i WSDL_URL -o
output_basename [-m]
[-v] [-y] [-w][-sh]
[-sp]

This command converts
the WSDL document to a
metadata-input file, FML32
mapping file, and a SALT Web
Service Definition file (WSDF).

wsloadcf wsloadcf [-n][-y][-D
loglevel] saltdeploy_
file

This creates a binary
SALTCONFIG file from the
SALT deployment file and
other referenced artifacts.

www.it-ebooks.info

http://www.it-ebooks.info/

SALT – Service Architecture Leveraging Tuxedo

[106]

Configuring the Tuxedo web services
In this section, we will discuss most of the web-services-related configuration to
set up your SALT environment, such as the UBBCONFIG file, the Tuxedo metadata
repository, configuring native or external web services, the deployment file, and
compiling the SALT configuration.

The UBBCONFIG file
We all know the importance of the UBBCONFIG file for a Tuxedo application. To
incorporate SALT in your application, you need to include some entries for SALT
components in this file; some of them are musts and some of them are optional, as
described here:

• The TMMETADATA server in the *SERVERS section (required):
TMMETADATA is the server provided by Tuxedo. It has the TMMETAREPOS
service, which processes requests to retrieve or update the Tuxedo service
metadata repository information. For example:
*SERVERS

TMMETADATA

SRVGRP=MyGrp SRVID=202 RESTART=Y MAXGEN=4

GRACE=2500 CLOPT="-A -- -f /usr/MyApps/Metadata"

• The GWWS servers in the *SERVERS section (required): This is the web
service gateway server that we discussed a couple of times. The GWWS server
refers to the SALTCONFIG file during boot up, so the environment variable
SALTCONFIG must be set prior to starting up this GWWS server. Also, the
TMMETADATA server should be booted up before GWWS, because this server calls
the services of TMMETADATA. One or more GWWS servers can be configured in
the same Tuxedo domain, but each GWWS server must have a unique instance
ID using the -i option. For example:
*SERVERS

GWWS

SRVGRP= MyGrp SRVID=210

 SEC_PRINCIPAL_NAME="gwws_ PASSWD " optional(#4 points
below)

 SEC_PRINCIPAL_PASSVAR="gwws_PASSWD" optional(#4 points
below)

 CLOPT="-A -- – i MyGWWS1"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[107]

• Parameters in the UBBCONFIG file (required): You need to consider
MAXSERVERS, MAXSERVICES, and MAXACCESSERS in the RESOURCES section
of UBBCONFIG as you start adding the GWWS and TMMETADATA servers.
Also, you need to consider MAXWSCLIENTS under the MACHINES section,
as GWWS inbound-communication connectivity for web services is
controlled by this variable.

• Certificate a password phrase for the GWWS servers (optional): To set SSL
link-level encryption for GWWS, you need to configure a certificate password.

• Configuring Tuxedo authentication for web service clients (optional): To
check the validity of the web service's clients, SALT's GWWS servers leverage
the Tuxedo authentication framework. So, the client has to send the user
credentials through the SOAP/HTTP message header.

• Configuring the Tuxedo security level for outbound HTTP basic
authentication (optional): The USER_AUTH, ACL, or MANDATORY_ACL options
can be defined in the UBBCONFIG file and in the Tuxedo client's uid/gid for
outbound HTTP basic authentication username/password mapping.

The Tuxedo service metadata repository
As we previously discussed, the service metadata repository is a collection of Tuxedo
service characteristics that are particularly useful in clarifying the request/response
details of a Tuxedo service. The GWWS depends on the Tuxedo service metadata
repository for communication between the Tuxedo request/response format and the
standard message of type SOAP. Here we will discuss some important command-
line utilities provided by Tuxedo that are used to configure or monitor the metadata
repository. Some of these utilities are briefly described in the previous table.

• tmloadrepos: This is the command-line tool that produces or updates
the metadata repository binary file and loads it with the service
parameter information.
Prompt> tmloadrepos [-e|-d service1[,...]] [-y] [-i repository_
input file] repository_file

The input file contains the service information you need to run with
tmloadrepos to create the binary file; an example of the file is as follows:
service=Ballance

svcdescription=This service returns account Balance

export=Y

inbuf=FML

outbuf=FML

www.it-ebooks.info

http://www.it-ebooks.info/

SALT – Service Architecture Leveraging Tuxedo

[108]

param=ACCOUNT_ID

type=string

paramdescription=Account ID

access=in

count=2

requiredcount=2

param=BALANCE

paramdescription=The Balance value.

type=integer

access=out

count=2

requiredcount=2

• tmunloadrepos: This displays the file service information from the Tuxedo
service metadata repository.
Prompt> tmunloadrepos [-s service_regular_expression1[,...]] [-t|-
c] repository file

The -t option is for a text file and -c is for C pseudocode options, and they
are mutually exclusive.

• tpgetrepos: This function uses the FML32 buffer to get service information
from the metadata repository dynamically.
int tpgetrepos(char *reposfile, FBFR32* idata, FBFR32** odata)

• tpsetrepos: This function also uses the FML32 buffer to set the add, update,
or delete information on the service parameter in the metadata repository
file dynamically.

int tpsetrepos(char *reposfile, FBFR32* idata, FBFR32** odata)

This metadata repository is one of the most important components in SALT; we have
discussed the most important and basic steps for it. There are many other operations
and options available that will help you to administrate this repository on a larger
scale. Please refer to the following URL for more information about this:

http://docs.oracle.com/cd/E15261_01/salt/docs11gr1/admin/config.
html#wp1093834

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[109]

Configuration of the native web services
This is done to expose a Tuxedo service as a web service to the outer world; there are
mainly three steps to do this:

1. Creating a native WSDF: A native WSDF is needed to expose a Tuxedo
service as a web service through the HTTP/S endpoints. Please consider the
following steps; we have picked up the simapp application as an example:

1. Configuring the SOAP header: The wssoapflds.h file comes with
SALT, and it is where you find the mapsoapheader attribute to
configure SOAP headers. False is the default for this parameter,
which means that the GWWS server does not do any mapping
between the FML fields and the SOAP header.

2. Configuring the WSBinding object: The <WSBinding> element
needs to have a unique WSBinding ID in the WSDF. So, the
SALTDEPLOY file, which gets referred by the GWWS server, is the
required indicator of the WSBinding object.

3. Configuring the service object: The <Service> element is basically
the name of the Tuxedo service to be published.

4. Configuring the message conversion handler: To modify the SOAP
XML payload and the Tuxedo buffer types, convert the routine to
fit your own plugins. For more information on this, refer to Oracle's
SALT user manual. For example:

<Definition ...>
 <WSBinding id="simpapp_binding">
 <Servicegroup id="simpapp">
 <Service name="toupper" />
 <Property name="mapsoapheader" value="true" />
 </Service>
 </Servicegroup>
 <SOAP version="1.2" style="rpc" use="encoded">
 <AccessingPoints>
 ...
 </AccessingPoints>
 </SOAP>
 </WSBinding>
</Definition>

2. Using the WS-Policy files: To use advanced features (such as reliable
messaging or web-service message-level security), you may need to
configure the WS-Policy files.

www.it-ebooks.info

http://www.it-ebooks.info/

SALT – Service Architecture Leveraging Tuxedo

[110]

3. Generating a WSDL file from a native WSDF: You need to use tmwsdlgen
on WSDF to create a WSDL file; for example:

Prompt> tmwsdlgen -c MyApp.wsdf -o MyApp.wsdl

So, in this section, we have briefly discussed the steps to expose Tuxedo services as
web services.

Configuration of external web services
Tuxedo can invoke an external web service, and to do that you need to carry out the
following steps:

1. Converting a WSDL file into Tuxedo definitions: The command wsdlcvt is
a wrapper script that provides a user friendly WSDL converter interface.
Prompt> wsdlcvt -i ExWebService.wsdl -o tuxDefinition

The following files are created by this tool:

 ° Oracle Tuxedo service metadata repository input file: The GWWS
server refers to the repository and advertises SALT's proxy services
to ensure that they will be recognized by any ATMI call from a
Tuxedo service.

 ° FML32 field table definition file: This is just a data-mapping
mechanism between the Tuxedo FML32 buffer and a WSDL message.

 ° Non-native WSDF file: A WSDF file needs to be deployed for the
GWWS server to work as an outbound connector; you need to create
this WSDF file from the WSDL file using a wsdlcvt converter.

 ° XML schema file: The WSDL and XML (embedded or imported)
files used by GWWS servers are saved as .xsd under the same
file directory.

2. Post conversion tasks: Tools do most of the work for you, but during
conversion, some naming conflicts may occur, so you need to be careful
about data points and their correctness:
The following is the naming convention for SALT's proxy service definitions:

 ° Removing the duplicated name of the service in the metadata
keyword (tuxservice) definitions

 ° Removing the duplicated field names in the FML32 buffer definitions

3. How to load SALT proxy service metadata definitions: You need to run
tmloadrepos to load the SALT proxy service metadata definitions into the
service metadata repository once you have resolved all naming conflicts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[111]

4. Environment variables for GWWS runtime: Please make sure your
environment variables FLDTBLDIR32 and FIELDTBLS32 are set accordingly.
You may set these two environment variables already if you are using
an existing environment. Also, you need to set XSDDIR and XSDFILES
accordingly to access all the XML schema(s) under one directory.

The SALTDEPLOY file is an XML-type file and is used for SALT deployments. This is
to define SALT's GWWS server deployment data, which is based on each Tuxedo
environment (machine). It takes care of three basic tasks:

• Lists all the necessary Web Service Definition files (WSDF)
• Defines the number of GWWS servers that are deployed on a Tuxedo machine
• Associates endpoint access for each inbound or outbound web service

The following is an example of the SALTDEPLOY file format:

<Deployment xmlns="…">
 <WSDF>
 <Import location="…" /> Zero or more entry
 </WSDF>
 <WSGateway>
 <GWInstance id="…"> Zero or more entry
 <Inbound> Zero or one entry
 <Binding ref="…"> Zero or more entry
 <Endpoint use="…"/> One or more entry
 </Binding>
 </Inbound>
 <Outbound> Zero or more entry
 <Binding ref="… "/> Zero or more entry
 <WSAddressing="… "/> Zero or one entry
 <Endpoint use="…"/> Zero or more entry
 </Outbound>
 <TLogDevice> Zero or more entry
 <TLogName> Zero or more entry
 <WSATEndPoint> Zero or more entry
 <MaxTran> Zero or more entry
 <Properties> Zero or one entry
 <Property="… "/> Zero or more entry
 </Properties>
 </GWInstance>
 </WSGateway>
<System>
 <Certificate> Zero or one entry
 <PrivateKey>"…" </PrivateKey>

www.it-ebooks.info

http://www.it-ebooks.info/

SALT – Service Architecture Leveraging Tuxedo

[112]

 <VerifyClient "…"/> Zero or one entry
 </Certificate>
 <Plugin> Zero or one entry
 <Interface library="…" /> Zero or more entry
 </Plugin>
</System>
</Deployment>

The previous SALTDEPLOY file format example gives you detailed information
on this file, which is a major input for the web service application in the binary
SALTCONFIG file.

To create a SALTDEPLOY file, carry out the following steps:

1. Import the WSDF files: You need to import your WSDF file to a SALT
deployment file; make sure the name is a unique WSDF name, as it's
required by the GWWS servers to make deployment relations.

2. Set up the GWWS servers: Multiple outbound or inbound objects (WSBindin)
can be defined in the WSDF file, which is used during deployment. For each
inbound object, there should be one access endpoint as an inbound endpoint;
on the other hand, for an outbound endpoint, there can be zero or more access
endpoints. These endpoints are from the list of WSBinding objects.

3. Set up system-level resources: In SALT, all global resources shared by all the
GWWS servers are defined in the SALTDEPLOY file. The certificate and libraries
for the plugins for the system-level resources need to be configured in this
file; please refer to the previous example.

Tuxedo Environment

GWWS
-1

GWWS
-N

SALTDEPLOY

Inbound
WSDF

Inbound
WSDF

Outbound
WSDF

Outbound
WSDF

WSDL Generator

WSDL Generator

Service
Metadata
Definition

WSDL Converter

WSDL Converter

WSDL

WSDL

WSDL

WSDL

HTTP/s

HTTP/s

Reference

Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[113]

In this section, we have briefly discussed the structure of the deployment file and
how to configure its major components. There are some advanced options for
SALT; for example, security, configuring advanced web-service messaging, and
SALT in MP mode. For more information on these topics, you may refer to the
following URL:

http://docs.oracle.com/cd/E15261_01/salt/docs11gr1/ref/deploy.html

Compiling the SALT configuration
We have learned how to create the XML-based deployment file, SALTDEPLOY, for the
GWWS server. The command wsloadcf takes the SALTDEPLOY file and the WSDF file to
crosscheck with the WS-Policy to validate the syntax according to the XML schema
of each file format, and it then loads a binary configuration file called SALTCONFIG.
The command wsloadcf validates the SALT deployment file according to the XML
schema files, which stay in the $TUXDIR/udataobj/salt path (under your Tuxedo/
SALT installation folder).

Prompt> wsloadcf [-n][-y][-D loglevel] saltdeploy_file

The wsloadcf command can be executed to validate SALTDEPLOY without generating
the binary version using the -n option.

Configuring SCA components
There are seven different SCA components for Tuxedo; we will briefly discuss
how to configure them in this book, but for a detailed example, please refer to the
following URL:

http://docs.oracle.com/cd/E15261_01/salt/docs11gr1/admin/config.
html#wp1095184

SCA ATMI client configuration
The SCA ATMI client is a native Tuxedo client that you build by following the SCA
model and compile using the buildscaclient command utility. This client program
should stay in the same directory where the root.composite file is located; the path
of this file should be included in the APPDIR environment variable.

www.it-ebooks.info

http://www.it-ebooks.info/

SALT – Service Architecture Leveraging Tuxedo

[114]

SCA JATMI client configuration
This is the composite file and part of the Java .jar file for the JATMI client, located
at the base of the .jar file. The Java runtime loads the composite file when the
application is run. The CLASSPATH variable should be set with the client application
.jar file along with binding-jatmi-extension.jar, com.oracle.jatmi.
dataxfm_1.0.0.0.jar, com.bea.core.jatmi_1.2.0.3.jar, tuscany-sca-
manifest.jar, and com.bea.core.i18n_1.4.0.0.jar.

SCA workstation client configuration
The configuration of the SCA WS clients is similar to the SCA native
clients we previously discussed; the difference is that you need to have the
<workStationParameters> element and its subelements in the composite. The SCA
runtime automatically detects whether the client is built as an SCA native client or
an SCA WS client, and it loads the correct reference binding library accordingly. The
environment variable $APPDIR needs to point to the client's application directory.

SCA web service client configuration
The SCA web service client uses the <binding.ws> element, unlike the SCA native
client, which uses <binding.atmi>. The environment variable $APPDIR needs to be
pointed to the client's application directory.

The appropriate proxy stub needs to be built in <interface.cpp>. The WSDL file
needs to be in the client directory where the endpoints are defined in the <binding.
ws> element. Also, you need to carry out the following steps for configuring the
GWWS server:

1. Shutdown TMMETADATA and GWWS if they are up and running.
2. Run wsdlcvt on the WSDL to produce a WSDF file, a Tuxedo metadata

repository interface definitions file, the FML32 field tables, and XML schemas.
3. Check and update (if needed) the WSDF file for the correct endpoint address

used at runtime.
4. Run tmloadrepos to load the interface definitions into the TMMETADATA

server from the Tuxedo metadata repository.
5. Alter the reference to the WSDF file in the configuration input file for GWWS.
6. Run wsloadcf to reload the binary configuration file for GWWS.
7. Reboot GWWS and TMMETADATA.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[115]

SCA ATMI server configuration
For the SCA ATMI server, you need one composite file that defines the SCA
application. During runtime, it loads all the composite and component-type files
for SCA server applications that are running on a Tuxedo environment. The $APPDIR
variable is the SCA root, the same as that for the SCA ATMI server.

SCA web service server configuration
The configuration of the web services binding for components is similar to the ATMI
binding for hosting SCA components. The SCA component needs to be built using
the buildscaserver command with the -w option (web services) to be hosted in the
Tuxedo application. Just as a reminder, this server needs to have an entry under the
*SERVERS section of UBBCONFIG.

Also, the GWWS configuration has to be incorporated with the same changes; follow
the same seven steps mentioned previously for SCA web service client configuration
to do this.

SCA client security configuration
The SCA components of Tuxedo leverage Tuxedo's security infrastructure and
basically support two types of security: Tuxedo application domain and link-level
security. The command-line utility scapasswordtool, provided by Tuxedo SALT,
}is used to configure security for SALT's SCA client. This tool helps you to populate
the encrypted password in the password.store file, but the user ID stays in text
form. If the Tuxedo security is set with APP_PW or higher, an SCA component has
to refer to it by searching in the password.store file.

Carry out the following steps to add/create a user ID / password (the password is
not echoed on the screen):

1. Prompt> Enter scapasswordtool -i userID -a

2. Prompt> Enter password: password

3. Prompt> Confirm password: password

Run the following command to delete a password (user ID and password):

Prompt> scapasswordtool -i userID -d

In the previous section, we have briefly discussed all the different types of SCA-
client and server-related configurations and security modules. For more detailed
information, please refer to the following URL:

http://docs.oracle.com/cd/E15261_01/salt/docs11gr1/admin/config.
html#wp1095401

www.it-ebooks.info

http://www.it-ebooks.info/

SALT – Service Architecture Leveraging Tuxedo

[116]

Configuring the service contract discovery
The internal service of the TMMETADATA server gets the service contract information
from the server that provides the service.

The TMMETADATA server's job is to produce a service contract by summarizing the
collected data. This information is stored in the metadata repository. SALT uses the
tmscd command to control the service contract runtime collection. The generated
service's contract information contains the service name, request buffer information,
and response buffer information, as well as the error buffer information if there is
a failure. The collected service contract information is discarded if it fails to send
information to the TMMETADATA server.

Configuring the SALT WS-TX support
This is to support a transaction for SALT components—inbound or outbound.
Configuring the TLOG device for GWWS is the most important task, and it is similar
to the way you create a TLOG file. The TLOGDevice element is added to the
SALTDEPLOY file, and you will be sharing the same TLOG device for all GWWSs.
Please refer to the format of this file, which we have discussed earlier. When Tuxedo
is the coordinator (outbound direction) of a transaction, the GWWS system server
permits either Volatile 2PC or Durable 2PC registration requests and handles
them accordingly. To configure the maximum number of transactions, you can use
MaxTran to configure the size of the internal transaction; the default is MAXGTT.

In this section, we have briefly discussed the configuration of SALT components;
for example, the service metadata repository, the UBBCONFIG file, the GWWS server,
SCA components (client and servers), and some examples of property files for
more clarity.

Administration of SALT
In the previous section, we have seen the various tools and utilities to configure
the SALT components; you may need to use these tools for administering and
monitoring SALT. We have discussed most of the tasks involved in monitoring
the service metadata repository. We have also discussed the service-deployment
model, various SCA components, and GWWS during configuration. In the next
section, we will briefly discuss some of the other tools and utilities that are going
to serve this purpose with some tuning recommendations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[117]

GWWS administration
The GWWS server is one of the most important components of SALT, and there are
various tasks involved with it for administration purposes. We will discuss them
in brief in this section.

Tuning the GWWS server
Some of the parameters of the GWWS property file should be looked at more carefully
for tuning purposes. We are going to pick up a couple of them for our discussion.
The following is an example of the properties file:

<Deployment ..>
 <WSGateway>
 <GWInstance id="MyGWWS">

 <Properties>
 <Property name="thread_pool_size" value="30"/>
 <Property name="max_content_length" value="2M"/>
 <Property name="timeout" value="700"/>
 </Properties>
 </GWInstance>
 </WSGateway>
</ Deployment>

Thread pool size
The GWWS server uses a thread pool working model to maximize the performance
in a multiprocessor server environment. The default for the thread_pool_size
parameter is 16, but you need to conduct a usage analysis to tune this parameter
for large concurrent clients.

Network timeout control
The timeout parameter is used to set the network timeout value in the configuration
file. The default timeout value is 300 seconds, but you should use it or tune
it accordingly.

Maximum content length control
The max_content_length parameter is used to define the buffer size for an
incoming HTTP message a client can send; by default (zero), there is no limit.

www.it-ebooks.info

http://www.it-ebooks.info/

SALT – Service Architecture Leveraging Tuxedo

[118]

Benefits of multiple GWWS instances
To avoid bottlenecks due to network or low CPU resources, you may like to configure
multiple GWWS instances and deploy them with the same web service binding on a
distributed Tuxedo environment, which will help you boost application performance.

To tune your application, conduct a typical usage analysis so that you get a better
estimate, for example, of the number of concurrent clients, the maximum message size
being used or you want to control, and how timeout is working for the clients, and
then set the parameters accordingly. If you need more throughputs even after this kind
of activity, you may need to consider multiple GWWS servers to boost performance.

Monitoring the GWWS server
The command-line option wsadmin, which we have listed above, is the monitoring
tool for the GWWS server. Both the TUXCONFIG and SALTCONFIG environment
variables need to be set first and then you can execute wsadmin. You can run this
command in either the active or the inactive mode. Here, we will discuss the various
options (subcommands) you can use for monitoring purposes:

• gwstats: This shows various administrative data of a GWWS server on its
services or instance

• configstats: This displays the configuration information
• default: This specifies the default -i option
• printtrans: This prints the transaction information for the GWWS instance
• verbose: This switches the verbose mode on/off
• quit: This is used to exit a program

Browsing to the WSDL document from the GWWS
server
The WSDL gets created automatically by the GWWS server for each deployed
inbound native WSDF. This WSDL can be downloaded from any of the HTTP/S
listening endpoints via HTTP GET. You can use the following URL to browse the
WSDL document:

http(s)://<host>:<port>/wsdl[? [id=<Value>] [&mappolicy=<Value>]
[&toolkit=<Value>]]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[119]

The following are the attributes of the previous URL:

• id: This specifies the native WSDF name for the WSDL.
• mappolicy: There are three options for this: pack, raw, and mtom.
• toolkit: There are two options for this: wls and axis. You can use these

options only when you are using the raw type of mappolicy. SALT supports
the WebLogic server (wls) and axis for SOAP with attachments; the default
value is wls.

In the previous section, we have discussed how to administrate, tune, and monitor
the GWWS server using various command-line utilities.

Administrating the SCA components
In this section, we will discuss how to administrate and monitor Tuxedo's SCA
components. From the administrator's point of view, we can turn on the trace for
SCA server/client and check them. For monitoring, we can use the command-line
utility. Let us discuss these options briefly.

Tracing the SCA ATMI server and client
Tuxedo provides the tracing capability through the tmtrace() function, and it can
be used for SCA ATMI servers and clients. All the messages are logged in the ULOG
file as you set the TMTRACE environment variable, TMTRACE=atmi:ulog.

There are two environment variables for SCA runtime and reference binding and
tracing, which can be used for Tuxedo server builds using buildscaserver and SCA
client builds using buildscaclient:

• SCACPP_LOGGING: This numerical value is used to define the number of trace
messages produced

• SCACPP_ULOG: You need to set the value to yes to send the trace messages to
the ULOG file

For the SCA JTMI client, if you set the $APPDIR variable or the com.oracle.jatmi.
APPDIR Java property is specified, you will see multiple logfiles (for example,
jatmi<numeric>.log) under $APPDIR. By default, there will be 10 logfiles with the
maximum size of 1 MB, and files are overwritten as you start the application.

www.it-ebooks.info

http://www.it-ebooks.info/

SALT – Service Architecture Leveraging Tuxedo

[120]

Monitoring the SCA servers
The command-line utility scaadmin is to monitor the SCA servers, and it shows
various service-related information and enables administrative tasks. You must set
the TUXCONFIG environment variable accordingly as you run this utility. Here we
will discuss the various options (subcommands) for scaadmin, which can be used for
monitoring purposes:

• default: This sets the machine name, group name, server ID, or server name
to default.

• reload: This dynamically reloads the SCA components hosted in a Tuxedo
server. There are some limitations with some OSs for reloading.

• printstats: This displays the list of services within the Tuxedo
environment, as well as the related methods, number of queries, and status.

• verbose: This is used to turn on the verbose mode.
• echo: This is used to echo the input on/off.
• quit: This is used to exit a session.

In this section, we have discussed most of the administrative tasks that should be
performed in conjunction with tasks involved with the SALT configuration. We have
also briefly brought up tuning issues and the various aspects of it.

SALT programming
SALT programming involves mainly two areas, namely web services programming
and SCA programming, which are very much standard programing practices today.
In this section, I will briefly introduce the programming paradigms for SALT, but I
do not intend to go into the details, as we do want to cover how to do web service /
SCA programing in this small book. Most of the SALT-related APIs are listed in the
table in one of the previous sections of this chapter; we will be using them along with
our web service / SCA programming knowledge.

Web services programming
As we have previously discussed, SALT provides bi-directional communication
between the Tuxedo applications and web-service-based applications, and any
existing Tuxedo services can be easily exposed as a web services without much
coding. SALT helps you create a WSDL file that describes the Tuxedo web service
contract so that any standard web service client can call or access Tuxedo services.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[121]

Invoking Tuxedo services (inbound) through SALT
As we have seen, the SALT components are configurable and we do not need to
do too much of coding; it also helps you expose Tuxedo services as standard web
services. So, a client needs to utilize the SALT's WSDL file to build a web service
client program.

The following steps will help you develop a web service client program:

1. Create a WSDL file.
2. Create a client stub using the web-service client-side toolkit that parses

the WSDL.
3. Develop a client application that can call a SALT web service utilizing the

functions defined in the client stub.
4. Compile the application. You are now ready to run your client application.

Invoking external web services (outbound) through
SALT
One of the features of SALT is to allow you to import external web services into
Tuxedo domains. The conversion utility, wsdlcvt, should be used on WSDL in
such a way that it translates each operation(s) specified in this file into a SALT
proxy service. The translated SALT's proxy service can be invoked directly through
the standard Tuxedo ATMI functions. These service calls are routed through the
GWWS server. The request is translated from Tuxedo-type buffers into the SOAP
message and then sent to the corresponding external web service. The response from
an external web service is translated into Tuxedo-type buffers and returned to the
Tuxedo application. Like any other Tuxedo development, you can use tperrno in
case a call returns with an error; the GWWS server sets it accordingly. This enables
you to detect and handle the SALT proxy service call's error status.

SCA programming
As we have seen in the first section, the SCA components use ATMI binding to run
on a Tuxedo environment. The ATMI binding is built to set the communication
paradigms between the SCA components and Tuxedo clients or servers. The
runtime checks are encapsulated in an exception defined in a header (tuxsca.h)
provided with the ATMI binding. This exception (ATMIBindingException) is
derived from ServiceRuntimeException and thrown back to the caller. SALT's SCA
programming utilities are listed in the first section of this chapter. You can build a
client or server using the SCA components with these utilities.

www.it-ebooks.info

http://www.it-ebooks.info/

SALT – Service Architecture Leveraging Tuxedo

[122]

SCA client programming
The following steps are needed to build an SCA client:

1. Set up the client directory structure to define the physical representation of
an application; refer to the root.composite file.

2. Create the client application using a single API.
3. Compose the SCDL descriptor to create a link between the local and the

actual component.
4. Build the client executable using buildscaclient.
5. Execute the client while making sure that the APPDIR and SCA_COMPONENT

variables are set.

SCA component server programming
The following steps are required for developing an SCA component program:

1. Set up the component directory to define the physical representation of
the application.

2. Develop the component implementation.
3. Compose the SCDL descriptor to define the binding between actual

components and local implementation.
4. Compile and link the components using buildscacomponent.
5. Build the Tuxedo server host using buildscaserver.

SCA transactions
The ATMI binding schema supports SCA transaction policies by using the
/binding.atmi/@requires attribute and the three transaction values Not
Specified, suspendsTransaction, and PropagatesTransaction.

The various important areas in SCA programming that developers would be
interested in are Python and Ruby scripts and integration with Tuxedo SALT for
more development advantage; for example, no compilation, dynamic data typing,
and garbage collection. SALT provides a set of APIs to perform SCA calls from the
Python or Ruby client, and language extensions to call Python or Ruby components.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[123]

SALT programming is a huge topic and can have different aspects; for more
information, refer to the program guide under the Oracle site:

http://docs.oracle.com/cd/E15261_01/salt/docs11gr1/prog/index.html

Also, there are some good examples provided by Oracle on the following site:

http://docs.oracle.com/cd/E15261_01/salt/docs11gr1/samples/index.html

Summary
Tuxedo provides many ways to connect with other SOA platforms and environments.
As one of the original SOA platforms, SALT was introduced to make the Tuxedo
platform more adaptable and extendable to the SOA world. By providing support
for the SCA, SALT allows customers to quickly develop and compose SOA-based
applications running on the most robust infrastructure in the industry. We have
discussed how to configure and administrate various SALT components in this
chapter. One important characteristic of SCA is the outlining of a new software design
model, which has been picked up by IT community very well today. However, it is a
huge topic and I do not intend to cover it in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle Tuxedo Joining
the Exalogic Family

We have discussed how SALT helps us to integrate Tuxedo with the SOA
environment; similarly, we will discuss how Exalogic extends a Tuxedo service
into the cloud environment in this chapter. To start, we will briefly discuss the
Exalogic machines and their architectural components and as well as benefits they
bring to any IT organization. We will then move on to the installation of Tuxedo on
an Exalogic machine. Finally, we will cover the most important part of this section:
configuration of Tuxedo on an Exalogic machine. In the end, we will see how to
run Tuxedo on Exalogic and some supporting tools to use for better usage.

What is Exalogic?
Exalogic is hardware and software engineered together to provide extreme
performance for Java applications and all other enterprise applications. Exalogic
uses the InfiniBand fabric to connect internal hardware such as processors,
storage, memory, and external network interfaces inside the Exalogic machine,
which works like one unified big and powerful computing device. What this means
to us is that Exalogic is a machine where hardware, operation systems, networking,
middleware, and applications are optimized under one umbrella to give you the
best performance and stability. You should consider Exalogic as the foundation
for your cloud environment where Exabus, a performance-boosting hardware;
firmware; and software work together. Exabus eliminates I/O bottlenecks, which
is ideal for cloud or application clustering. This is designed for virtualization.

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle Tuxedo Joining the Exalogic Family

[126]

The protocol bridging chipset for Ethernet network virtualization is unique to
Exalogic. According to Oracle, Tuxedo gives 80 to 400 percent improvement
and 8 times faster response time on an Exalogic machine.

Fusion Middleware & Application

WebLogic Coherance

Jrockit & HotSpot
Tuxedo

Exalogic Cloud Software

Exabus & Exalogic System Utilities

Linux Solaris

Exalogic Elastic Cloud

Exalogic machine Need to install

En
te

rp
ris

e
M

an
ag

er

An Exalogic machine is built with Sun Fire X4170 M2 servers and the very
high-speed Sun ZFS storage, and uses InfiniBand (switched-fabric communications
link) and Ethernet networking components. It has four varieties: full rack with 32
nodes (Sun Fire X4170 M2), half rack with 16 nodes, quarter rack with 8 nodes, and
eighth rack with 4 nodes.

Tuxedo installation on an Exalogic
machine
The installation procedure of Tuxedo on an Exalogic machine is very similar to any
other Unix- or Linux-based system. You need to make sure your Exalogic machine is
commissioned, which includes networking configurations, IP address assignments,
and setting up the storage. Please refer to the Initial Configuration of an Exalogic Machine
Using Oracle OneCommand section in the Oracle Exalogic machine owners guide.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[127]

You need to pick the Oracle Tuxedo home directory; the recommendation is to
install Oracle Tuxedo in one of the shares on Sun ZFS storage appliance locations
so that you can run Oracle Tuxedo on any Exalogic node by having only one copy
of Tuxedo executable.

You need to log in as a Tuxedo administrator and go to the installer directory where
you downloaded it. The installation is very self-explanatory and simple. Please run
the following command:

Prompt> sh./tuxedo111130_64_Linux_01_x86.bin-i console

You will be given options; pick a number to proceed with the installation of Tuxedo
on an Exalogic machine.

Pick 1 for Local screen

Pick 1 for full install

Pick 1 for Oracle Home

Enter Oracle Home Directory (Shared file system)

Pick 2 for product directory

You may installed Samples by choosing "Y"

You need to press <Enter> as you see ready to install screen

Configure tlisten as installation finishes

SSL installation is not mandatory, you need to setup LDAP if you like to
have SSL.

Your installation is complete and presses <Enter> to exit the installer.

So far, we have discussed what Exalogic is and how to install Tuxedo on it. The
installation is very simple as long as you have commissioned the Exalogic
machine properly.

Tuxedo configuration and runtime
We know how to configure various Tuxedo components quite well by now, so in
this section we will discuss only the configuration relating to an Exalogic machine.

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle Tuxedo Joining the Exalogic Family

[128]

The UBBCONFIG file
In this section, we will discuss all the configuration related tasks using the
UBBCONFIG file. We will be introduced to some more parameters in the UBBCONFIG
file and some environment variables that need to be set for running Tuxedo on an
Exalogic box. In MP mode, communication between two nodes is done through a
bridge, but in Exalogic's cross-node, communication can be leveraged using remote
direct memory access (RDMA). You need to specify RDMA with option values in the
MACHINES section; there are four options, which are as follows:

• RDMADAEMONIP: This is the IP (IPoIB) address, but it is not an Ethernet-based
IP address, and the Msgq_daemon process is bound with it. You need to
configure a one-to-one configuration for Msgq_daemon and the logical machine.

• DMADAEMONPORT: This is a listener port for the Msgq_daemon listener process.
• RDMAQSIZE: This is the queue (EMSQ) size; it's default value is 65,536 bytes if

not defined in the UBBCONFIG file.
• RDMAQENTRIES: This is the entry number for a queue (EMSQ), which is the

maximum number of messages in that queue.

Also, under the *RESOURCES section, you need to set the following:

• For the MODEL parameter – MP (for SHM mode, you need not use RDMA)
• For the OPTIONS parameter – LAN, EXALOGIC, and RDMA

Please make sure that the following things are checked and configured according to
the guidelines mentioned:

• The shared directory for all Exalogic nodes needs to be enabled to leverage
the RDMA feature. You need to make sure that the access permissions are
properly set for it. The default name is /u01/common/patches/tuxtmpfile;
you can also set your own directory using the EXALOGIC_SHARED_PATH
environment variable. Tuxedo uses this file for message transfers when the
EMSQ queue is full or the message size exceeds the queue size.

• Users from different Exalogic nodes must have read, write, or execution
permission to the shared APPDIR variable, as it is shared by all nodes.

• Please set a different path for TUXCONFIG for each node.
• Please set a different path for ULOGPFX for each node.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[129]

• You need to set the /etc/securitylimits.conf parameter with the
following values:

memlock [Msgq_daemon shared memory size] * 2 + MAXACCESSERS *
14000(KB)

hard memlock 1853030

soft memlock 1853030

So, there are not too many changes to make in your UBBCONFIG file when compared
to the normal Tuxedo configuration. I put in the /etc/securitylimits parameters
and the EXALOGIC_SHARED_PATH environment variable as I want to make sure that
we do all the basic things right before we bring up Tuxedo on an Exalogic box.

Tuxedo Socket Direct Protocol support
The Socket Direct Protocol (SDP) feature enables Tuxedo components using
BSD socket APIs that can leverage the advantages of the SDP network protocol
provided by Exalogic. This feature is high-bandwidth, low-latency, and needs
reduced CPU involvement. To enable SDP in Tuxedo, you must specify EXALOGIC
for OPTIONS in the *RESOURCE section, which we have seen earlier, and set the
relevant configuration in the UBBCONFIG file or the DMCONFIG (in the DOMAIN
configuration) file. We will now show you how to use SDP for the MP mode,
DOMAIN, WSL and WS Client, and JSL and WTC.

The MP mode
In the MP mode, both master and slave machines are inside the IB cluster, so
only consider that SDP and IPoIB are being used inside the IB cluster; in the
bootstrap phase, tmboot, tlisten, bsbridge, and bridge are using socket
APIs to communicate with each other.

To configure SDP in the MP mode, you need to add sdp: as a prefix to the network
address, and the network address the must be an IPoIB address. You can refer to the
following example:

*NETWORK
Node1 NADDR="sdp://IB_IP: 9933"
 NLSADDR="sdp://IB_IP: 3355"
Node2 NADDR="sdp://IB_IP: 9933"
 NLSADDR="sdp://IB_IP: 3355"

To start tlisten, you can use Prompt> tlisten –d /dev/tcp –l sdp://IB_IP:
3355.

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle Tuxedo Joining the Exalogic Family

[130]

To configure IPoIB in the MP mode, use the IPoIB address as the network address.

*NETWORK
Node1 NADDR="//IB_IP: 9933"
 NLSADDR="//IB_IP: 3355"
Node2 NADDR="//IB_IP: 9933"
 NLSADDR="//IB_IP: 3355"

To start tlisten, you can use Prompt> tlisten –d /dev/tcp –l //IB_IP:
3355.

GWTDOMAIN
Functionally, if you look at the domain architecture, you may find that the GWTDOMAIN
server acts as both server and client. As a server, it will listen on a configured IP
address and port number in the DMCONFIG file to accept a connection request from
another GWTDOMAIN. As a client, it will initiate a connection request to another
GWTDOMAIN by the policy configured in the DMCONFIG file. It is more useful to use an
explicit IP address when configuring GWTDOMAIN in the DMCONFIG file, though you can
configure it with a hostname.

Normally, every Exalogic node has at least two types of network interface: an IB
interface and an Ethernet interface. So, to configure GWTDOMAIN, you take the IB
interface to bind with the IP address IB_IP, and the Ethernet interface to bind with
IP address ETH_IP. We have the following four examples listed to show you how to
configure GWTDOMAIN in the DMCONFIG file to use SDP or IPoIB as server and client
respectively in an Exalogic environment.

Configuring GWTDOMAIN to listen on SDP
To configure the gateway domain to listen to SDP, you need to add NWADDR with a
port number as shown in the following example:

*DM_LOCAL
Node1 GWGRP=DOMGRP
 TYPE=TDOMAIN
*DM_TDOMAIN
 Node1 NWADDR="sdp://IB_IP: 27766"

Configuring GWTDOMAIN to connect using SDP
To configure the gateway domain to connect to SDP, you need to add NWADDR with a
port number as shown in the following example:

*DM_LOCAL
Node1 GWGRP=DOMGRP
 TYPE=TDOMAIN

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[131]

*DM_REMOTE
Node2 TYPE=TDOMAIN
 DOMAINID="EXALOGIC_Node2"
*DM_TDOMAIN
 Node2 NWADDR="sdp://IB_IP: 27766"

Configuring GWTDOMAIN to listen on IPoIB
To configure the gateway domain to listen to IPoIB, you need to add NWADDR with
a port number as shown in the following example:

*DM_LOCAL
Node2 GWGRP=DOMGRP
 TYPE=TDOMAIN
*DM_TDOMAIN
 Node2 NWADDR="//IB_IP: 27766"

Configuring GWTDOMAIN to connect using IPoIB
To configure the gateway domain to connect through IPoIB, you need to add NWADDR
with a port number as shown in the following example:

*DM_LOCAL
Node2 GWGRP=DOMGRP
 TYPE=TDOMAIN
*DM_REMOTE
Node3 TYPE=TDOMAIN
 DOMAINID="EXALOGIC_ Node3"
*DM_TDOMAIN
Node3 NWADDR="//IB_IP: 27766"

The workstation listener (WSL)
To configure WSL on SDP or IpoIB, you need to use the following option in the
DMCONFIG file:

• WSL listening on SDP – Refer to the following example on using the WSL
configuration using SDP:
*SERVERS
DEFAULT: CLOPT="-A"
WSL SRVGRP=WSGRP SRVID=1001
 CLOPT="-A -- -n sdp://IB_IP: 11101 -m1 -M10 -x1"

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle Tuxedo Joining the Exalogic Family

[132]

• WSL listening on IPoIB – Refer to the following example on using the WSL
configuration using IPoIB:

*SERVERS
DEFAULT: CLOPT="-A"
WSL SRVGRP=WSGRP SRVID=1001
 CLOPT="-A -- -n //IB_IP: 11101 -m1 -M10 -x1"

The workstation (/WS) client
For the workstation (/WS) client, you need to set the WSNADDR environment variable
in the following ways:

• SDP: export WSNADDR=sdp://IB_IP:1001
• IpoIB: export WSNADDR=//IB_IP:1001

The jolt service listener (JSL)
The JSL setup is similar to WSL; you need to use the following option in the
DMCONFIG file:

• JSL listening on SDP – Refer to the following example on working with
the JSL configuration using SDP:
*SERVERS
DEFAULT: CLOPT="-A"
JSL SRVGRP=WSGRP SRVID=1001
 CLOPT="-A -- -n sdp: //IB_IP: 11101 -m1 -M10 -x1"

• JSL listening on IPoIB – Refer to the following example on working with
the JSL configuration using IPoIB:

*SERVERS
DEFAULT: CLOPT="-A"
JSL SRVGRP=WSGRP SRVID=1001
 CLOPT="-A -- -n //IB_IP: 11101 -m1 -M10 -x1"

The WebLogic Tuxedo connector (WTC)
You need to do the following two steps to enable an SDP connection between the
WTC and Tuxedo:

1. Specify the NWADDR value of the WTC service local/remote access points
as follows:
sdp://IB_IP:port

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[133]

It is the same as the GWTDOMAIN's NWADDR configuration in the
DMCONFIG file.

2. You need to put an additional Java option in the WLS start-up command
as follows:

-Djava.net.preferIPv4Stack=true java command-line

Databases
There is nothing special you need to do to use the database or XA interface, as
this standard is widely supported on all the major database vendor products. You
may want to use SDP for Oracle database invocations, but again, you don't need to
perform anything special in a Tuxedo application. You do however need to configure
the database to support InfiniBand. You can set the two parameters in /etc/
modprobe.conf on the server node for better performance (for example, options
ib_sdp sdp_zcopy_thresh=0 recv_poll=0). It's default value is 64 KB, but the
recommendation is to set it with zero.

The EXALOGIC_MSGQ_CACHE_SIZE variable
The EXALOGIC_MSGQ_CACHE_SIZE environment variable can be used to improve
the performance of the Tuxedo application. This value can be set between 32 and
2,048. One thing to notice is that increasing the number can improve Tuxedo's
performance, but Msgq_daemon consumes more shared memory. So, setting this
environment variable will help you to get better performance during the process
of sending multiple messages to many queues.

Please read the following recommendation from Oracle:

If there are 40 remote Oracle Tuxedo servers providing the same service and clients
call the service 100 times, setting EXALOGIC_MSGQ_CACHE_SIZE to a value
equal to or greater than 40 on the client improves performance.

If there are 50 WSHs, and each WSH receives response messages from the same
remote server, setting EXALOGIC_MSGQ_CACHE_SIZE to a value equal to or
greater than 50 on the server environment improves performance.

Running Oracle Tuxedo
In this section, we will discuss how to start and stop Tuxedo and the tools that are
available for various administrative purposes. There are some differences in running
Tuxedo on a non-Exalogic platform with RDMA features. The tux_msgq_monitor
function must be started before booting a Tuxedo application.

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle Tuxedo Joining the Exalogic Family

[134]

Start/stop tux_msgq_monitor
As we just discussed, tux_msgq_monitor should be started before booting the Oracle
Tuxedo application. The tux_msgq_monitor function is responsible for starting
Msgq_daemon and checking its running status. Before starting tux_msgq_monitor,
ensure that the environment variables TUXCONFIG, LD_LIBRARY_PATH, and TUXDIR
are properly set. If Msgg_daemon terminates abnormally for some reason or other, it
restarts using tux_msgq_monitor. One monitor can only serve one Oracle Tuxedo
application on one logical machine.

Start tux_msgq_monitor
The following command is an example to start tux_msgq_monitor:

Prompt> tux_msgq_monitor -i <IPoIB> -d <port#> -M <size> -K < key>

The following are the attributes of this command:

• -i – This IPoIB address should be equal to the RDMADAEMONIP parameter in in
the UBBCONFIG file.

• -d – This port number should be the same number as that mentioned in
RDMADAEMONPORT in the UBBCONFIG file.

• -M – The shared memory gets allocated as you start Msgq_daemon. So, it is
very important for you to estimate the size of the shared memory. You can
get the memory size by using tmloadcf -c ubb.

• -K – This is the key number to access the shared memory by Msgq_daemon.

When tux_msgq_monitor is running, you should check and make sure that the tux_
msgq_monitor and Msgq_daemon processes are running. After starting tux_msgq_
monitor successfully, you can boot the Tuxedo application.

You can also use a shell script that helps you start all the processes in the master
node, that is, tux_msgq_monitor and a Tuxedo application. Please make sure
that the environment variables TUXCONFIG, LD_LIBRARY_PATH, and APPDIR are
set properly before you run this command. So, to be very specific, the following
script starts up tux_msgq_monitor, executes tmboot to start the Oracle Tuxedo
application, and starts tlisten if the option -l is specified:

Prompt> tmboot.sh –i daemon_ip –d daemon_port –M shm_size –K shm_key
[-l nlsaddr]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[135]

On the slave node, you can run the following command to start the tux_msgq_
monitor and tlisten functions:

Prompt> tlisten_start.sh –l nlsaddr –i daemon_ip –d daemon_port –M shm_
size –K shm_key

On an MP mode configuration, you need to run the commands in the
following order:

Prompt> tmlisten_start.sh on all the slave nodes

Prompt> tmboot.sh on the master node

Stop tux_msgq_monitor
You need to use the kill command while using the -9 option with pid of tux_
msgq_monitor; use ipcrm to clear the IPC resources.

Prompt> kill -9 "pid of Msgq_daemon"

Prompt> ipcrm – m "shmid"

Like the start-up shell script, you can also run a shutdown command on the
master node to stop both the Tuxedo application and tux_msgq_monitor.

Prompt> tmshut.sh

On the slave node, you can run the following command:

Prompt> tlisten_stop.sh

To shut down all the processes on an MP mode configuration, you need to run
the commands in the following order:

Prompt> tmshut.sh on the master node.

Prompt> tmlisten_stop.sh on all the slave nodes.

So, this basically concludes all the relevant topics we intended to cover regarding
Tuxedo on an Exalogic machine. We discussed the Exalogic machine and its
various benefits and components, how to install Tuxedo on it and then configure
it, and finally how to start and stop a Tuxedo application.

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle Tuxedo Joining the Exalogic Family

[136]

Summary
We have discussed the importance of SOA and cloud-based elastic capacity
for enterprise IT organizations to provide more demanding performance and
reliability to meet business requirements and agility. It is not so easy to build
custom, special-purpose systems for different applications, as it would be very
complex, time consuming, and expensive. The Exalogic elastic cloud is considered
to be one of the first integrated middleware machines; it far surpasses the
alternatives and provides enterprises with the best possible foundation for running
applications. The good news for Tuxedo users is that it runs on Exalogic while
leveraging all of Exalogic's features to the fullest, and it gives much better results
on performance, reliability, and scalability for IT.

In this book, we have covered how to install, configure, and develop a Tuxedo
application and its various components in brief. To do this, we have basically
covered the last 30 years of client/server technology in 90 pages! We started with
the basics of client/server architecture, where I depicted all the components in
one diagram to show how Tuxedo does it seamlessly. It's been a great platform
to build your applications for the last 20 years, and it seems it is true for the
present too! The idea of having a service or business services was introduced
by Tuxedo from its initial days. We have seen how we can design a Tuxedo
application in a loosely coupled manner in a distributed environment that is also
very transparent in nature. We have discussed how to make a Tuxedo application
scalable and available, and which maximizes resource utilization by using its
load-balancing algorithm. We have seen the richness of Tuxedo APIs, which are
proven, and you can build a mission-critical application easily by using them.
We have also discussed how to use Tuxedo in your SOA environment using its
SALT plugins. Service Components Architecture (SCA) is the new buzzword in
today's BPEL world, and Tuxedo is up there to be used as a component that is a
part of a composite, or vice versa. Last but not least, Tuxedo is in the cloud— a
Tuxedo application running on an Exalogic platform. You need to do very few
things to run Tuxedo on an Exalogic box; you only have to change some common
parameters in UBBCONFIG and DMCONFIG. So, it seems Tuxedo is going to be here
for a long time with it's adaptability on the technology front. I am very proud
as a Tuxedo user, and it is very satisfying for me that I could share some of my
experience with you in this book. It is a small book, but I have tried to include the
most important aspects of Tuxedo; I hope this book helps you to build a foundation
on Tuxedo and that you will carry it forward from here.

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
/Q 8
/ud32/wud32 command 41

A
ACID 90
ACL_MIB 42
administrative servers, Tuxedo domain 64
administrative tasks, TSAM 51, 52
administrative tools, Tuxedo domain

about 65
dmadmin() 65
dmloadcf() 65
dmunloadcf() 65

agile and resource management 67
anatomy, Tuxedo 10
application domain 115
Application-to-Transaction Monitor

Interface (ATMI) 71
APPQ_MIB 42
architecture, Tuxedo 10
ATMI functions, Tuxedo

about 79
tmscmt() 74
tpabort() 74
tpacall() 72
tpadmcall() 75
tpadvertise() 74
tpalloc() 73
tpbegin() 74
tpbroadcast() 73
tpcall() 72
tpcancel() 72
tpchkauth() 72

tpchkunsol() 73
tpclose() 74
tpcommit() 74
tpconnect() 72
tpconvert() 75
tpconvmb() 75
tpcryptpw() 75
tpdequeue() 74
tpdiscon() 72
tpenqueue() 74
tpexport() 75
tpforward() 73
tpfree() 73
tpgetadmkey() 75
tpgetlev() 74
tpgetreply() 72
tpgprio() 73
tpinit() 72
tpnotify() 73
tpopen() 74
tppost() 73
tprealloc() 73
tprecv() 72
tpresume() 74
tpreturn() 73
tpsend() 72
tpsetunsol() 73
tpsprio() 73
tpstrerror() 75
tpstrerrordetail() 75
tpsubscribe() 73
tpsuspend() 74
tpsvrdone() 73
tpsvrinit() 73
tpterm() 72
tptypes() 73

www.it-ebooks.info

http://www.it-ebooks.info/

[138]

tpunadvertise() 74
tpunsubscribe() 73
tuxgetenv() 75
tuxputenv() 75
userlog() 75

ATMI functions, Tuxedo client 78
ATMI functions, Tuxedo server 81
ATMI type

buffer-related 75
client 72
communication (conversational) 72
communication (event-based) 73
communication (request/response) 72
dynamic service advertisement 74
memory management 73
message precedence 73
queuing 74
resources management 74
security and administration 75
server/service 73
system error-handling 75
transaction management (XA) 74

B
bbclean machine command 43
bbparms 43
BDMCONFIG file 64
BEA 9
Bridge 12
buffer types, Tuxedo

CARRAY 83
FML 84, 85
STRING 82
VIEW 83, 84
XML 86

buildclient command
about 36, 39, 76, 78
attributes 36

buildclt command 40
buildscaclient command

about 101
attributes 101

buildscacomponent command
about 102
attributes 102

buildscaserver command
about 102
attributes 102

buildserver command
about 37, 40, 81
attributes 37, 81

buildtms command
about 37, 40
attributes 37

buildwsh command 39, 40
Bulletin Board (BB) 11
Bulletin Board Liaison (BBL) 11

C
C 71
C++ 71
CARRAY buffer 83
client program 7
client/server communication

paradigms 77, 86
client/server technology, Tuxedo

benefits 9
cobcc command 40
COBOL 71
command-line interface, Tuxedo

application 43, 44
commands, Tuxedo

buildclient 39
buildclient command 36
buildclt 40
buildserver 37, 40
buildtms 37, 40
buildwsh 39, 40
cobcc 40
dmadmin 40
dmunloadcf 40
gencat 40
mkfldhdr 40
mkfldhdr32 40
mklanginfo 40
qmadmin 40
rex 40
tidl 40
tlisten 40
tmadmin 40

www.it-ebooks.info

http://www.it-ebooks.info/

[139]

tmboot 38, 40
tmconfig 40
tmipcrm 40
tmloadcf 38, 40
tmshutdown 39, 40
tpacladd 41
tpaclcvt 41
tpacldel 41
tpaclmod 41
tpadduser 41
tpdelusr 41
tpgrpadd 41
tpgrpdel 41
tpmodusr 41
tpusradd 41
tpusrdel 41
tpusrmod 41
tuxadm 41
tuxwsvr 41
txrpt 41
ud 41
/ud32/wud32 41
uuidgen 41
viewc 41
viewc32 41
viewdis32 41
viewsviewdis 41
wlisten 41
wud 41

components, MIB
ACL_MIB 42
APPQ_MIB 42
DM_MIB 42
EVENT_MIB 42
WS_MIB 42

components, TSAM
TSAM Agent 46
TSAM Manager 46

components, TSAM Agent
Local Monitor Server (LMS) 46
TSAM Framework 46
TSAM Plug In 46

components, TSAM Manager
Oracle TSAM Console 46
Oracle TSAM Data Server 46

components, Tuxedo
Bridge 12

Bulletin Board (BB) 11
Bulletin Board Liaison (BBL) 11
Distinguished BBL 12
DMADM 13
GWADM 13
GWTDOMAIN 13
GWWS 13
Jolt Listener/Handler (JSL/JSH) 12
LMS 13
master machine/node 12
TMQFORWARD 12
TMQUEUE 12
TMS 12
Tuxedo client processes 12
Tuxedo server processes 12
WebLogic Tuxedo connector 13
Workstation Handler (WSH) 12
Workstation Listener (WSL) 12

composites 98
configuration, external web services 110
configuration file, Tuxedo domain 64
configuration, GWTDOMAIN

connecting, IPoIB used 131
connecting, SDP used 130
for listening, on IPoIB 131
for listening, on SDP 130

configuration, native web services 109, 110
configuration, SALT application 101
configuration, SALT WS-TX support 116
configuration, SCA ATMI client 113
configuration, SCA ATMI server 115
configuration, SCA client security 115
configuration, SCA components 113
configuration, SCA JATMI client 114
configuration, SCA web service client 114
configuration, SCA web service server 115
configuration, SCA workstation client 114
configuration, service contract discovery 116
configuration, Tuxedo application

about 22
tips 35, 36

configuration, web services 106
console-based installation, SALT 100
console installation, Tuxedo 17
conversational communication

characteristics 87
CORBA 8

www.it-ebooks.info

http://www.it-ebooks.info/

[140]

D
data compression 60
Data-dependent routing (DDR)

about 58
distributed applications 59
horizontally partitioned 58
rule-based servers 59

data encryption 59
Distinguished BBL (DBBL) 12
distributed client/server model, Tuxedo

features 8
Distributed Transaction Processing

(DTP) 91
DMADM 13
dmadmin command 40, 65
DMCONFIG file 64
dmloadcf command 64, 65
DM_MIB 42
dmunloadcf command 40, 65
DoMain Administrative server

(DMADM) 63
Domain Gateways 13
Domain Gateway server

(GWTDOMAIN) 63

E
Enterprise Java Beans (EJBs) 13
environment variables, Tuxedo application

about 21
FIELDTBLS 22
FIELDTBLS32 22
FLDTBLDIR 22
FLDTBLDIR32 22
VIEWDIR 21
VIEWFILES 21

event-broker server 89
EVENT_MIB 42
Exabus 125
Exalogic 125, 126
Exalogic machine

about 7
Tuxedo, installing on 126, 127

EXALOGIC_MSGQ_CACHE_SIZE
variable 133

eXtended Architecture (XA) 8, 91
external web services

configuring 110
invoking, through SALT 121

F
features, Tuxedo

data compression 60
Data-dependent routing (DDR) 58
data encryption 59
load balancing 60
security 57, 58

Field Manipulation Language (FML) 84
FIELDTBLS32 variable 22
FIELDTBLS variable 22
First In, First Out (FIFO) 61
FLDTBLDIR32 variable 22
FLDTBLDIR variable 22
FML buffer 84, 85
FML/FML32 buffer 22

G
GateWay Administrative server

(GWADM) 13, 63
gateway servers, Tuxedo domain 64
gencat command 40
graphical user interface installation,

Tuxedo 16
GROUPS section

about 30
parameters 30

GUI-based installation, SALT
about 99
for Unix 99
for Windows 99

GWTDOMAIN 13, 130
GWWS administration 117
GWWS command 103
GWWS instances

benefits 118
GWWS server

monitoring 118, 119
tuning 117

www.it-ebooks.info

http://www.it-ebooks.info/

[141]

H
help [{command | all}] 43
history, Tuxedo 9

I
InfiniBand fabric 125
installation components, Tuxedo 15
installation procedures, Tuxedo

about 16
console installation 17
graphical user interface installation 16
silent installation 17

installation, TSAM 46-51
installation, Tuxedo

on Exalogic machine 126, 127

J
Jolt Listener/Handler (JSL/JSH) 12
Jolt service listener (JSL)

about 132
on IPoIB 132
on SDP 132

K
kill command 135

L
Last In, First Out (LIFO) 61
LDBAL parameter 60
LD_LIBRARY_PATH variable 22
link-level security 115
load balancing 60
LOAD parameter 60
Local Monitor Server (LMS) 13
logfiles 57

M
MACHINES section

about 28
parameters 28, 29

Management Information Base. See MIB
master machine/node 12

master [-yes] command 43
max_content_length parameter 117
MIB

about 45
components 42

middleware characteristics, Tuxedo 10
Migrate feature 69
mkfld32fromschema function 103
mkfldfromschema function 103
mkfldhdr32 command 40
mkfldhdr command 40
mklanginfo command 40
mkview32fromschema function 103
mkviewfromschema function 103
modularity 67
monitoring console functionalities,

TSAM 56
MP mode 129
multiple-program broadcasting 89
MyService() function 80

N
native client

about 76
compiling 78

native web services
configuring 109, 110

NETGROUPS section
about 34
parameters 34

NETWORK section
about 30
parameters 31

Novell 9

O
Oracle TSAM Application Server

Deployment 54
Oracle TSAM Console 46
Oracle TSAM Data Server 46
Oracle TSAM Manager Database Server

Deployment 54
Oracle TSAM Manager LDAP

Deployment 53
Oracle Tuxedo

running 133

www.it-ebooks.info

http://www.it-ebooks.info/

[142]

P
paradigms, for client/server communication

conversational 77, 87
event-based communication 89, 90
publish and subscribe (Pub-sub) 77
Queues (Tuxedo /Q) 87-89
queuing 77
request/reply 87
request/response 77

PATH variable 21
performance-related monitoring tasks,

TSAM 51, 52
printqueue [qaddress] command 43

Q
qmadmin command 40, 62, 63
QMCONFIG variable 22

R
RDMADAEMONIP option 128
RDMADAEMONPORT option 128
RDMAQENTRIES option 128
RDMAQSIZE option 128
remote direct memory access (RDMA) 128
RESOURCES section

about 26
parameters 26, 27

rex command 40
ROUTING section

about 34
parameters 34

S
SALT

about 13, 95, 98, 125
administering 116
console-based installation 100
external web services, invoking

through 121
GUI-based installation 99
silent-mode installation 100
Tuxedo services, invoking through 121

SALT application
configuring 101

SALT configuration
compiling 113

SALTDEPLOY file
about 111
creating 112, 113

SALT gateway (GWWS) 97
SALT programming 120
SALT WS-TX support

configuring 116
SCA 7, 97
scaadmin function 103
SCA ATMI client

configuring 113
tracing 119

SCA ATMI server
configuring 115
tracing 119

SCA client programming 122
SCA client security

configuring 115
SCA components

administering 119
configuring 113

SCA component server programming 122
SCAHOST function 104
SCA JATMI client

configuring 114
scapasswordtool function 104, 115
SCA programming 120, 121
SCA servers

monitoring 120
scastructc32 function 104
scastructc function 104
scastructdis32 function 104
scastructdis function 104
SCA transactions 122, 123
scatuxgen function 104
SCA web service client

configuring 114
SCA web service server

configuring 115
SCA workstation client

configuring 114
sections, UBBCONFIG file

about 25

www.it-ebooks.info

http://www.it-ebooks.info/

[143]

GROUPS section 30
MACHINES section 28, 29
NETGROUPS section 34, 35
NETWORK section 30, 31
RESOURCES section 26, 27
ROUTING section 34
SERVER section 31, 32
SERVICE section 32, 33

security
about 57
application password (APP-PW) 58
end user authentication (USER_AUTH) 58
mandatory access control

(MANDATORY_ACL) 58
no authentication (NONE) 58
optional access control (ACL) 58

SERVER section
about 31
parameters 31, 32

service
about 7
advertising, ways 80, 81

Service Architecture Leveraging Tuxedo.
See SALT

Service Component Architecture. See SCA
service contract discovery

configuring 116
service metadata repository

about 97, 107
tmloadrepos utility 107
tmunloadrepos utility 108
tpgetrepos utility 108
tpsetrepos utility 108

Service Oriented Architecture (SOA) 7, 95
SERVICE section

about 32
parameters 32, 33

setSCAPasswordCallback() function 104
silent installation, Tuxedo 17
silent-mode installation, SALT 100
single-program notifications 89
Socket Direct Protocol (SDP)

about 129
database 133
EXALOGIC_MSGQ_CACHE_SIZE

variable 133
GWTDOMAIN 130

Jolt service listener (JSL) 132
MP mode 129
WebLogic Tuxedo connector (WTC) 132
workstation listener (WSL) 131
workstation (/WS) client 132

STRING buffer 82

T
tidl command 40
tlisten command 40
tmadmin() command

about 40, 43
attribues 43

tmboot command
about 35, 38, 40
attributes 38

tmconfig command 40, 44
tmipcrm command 40
tmloadcf command

about 38, 40
attributes 38

tmloadrepos command 107
TMMETADATA server 97
TMMETAREPOS server 97
TMQFORWARD server 12, 61, 88
TMQUEUE server 12, 60
TMS 12
tmscd function 105
tmscmt() method 74
tmshutdown command 39, 40
tmtrace() function 57, 119
tmunloadcf command 40
tmunloadrepos command 108
tmwsdlgen utility 97, 105
tpabort() method 74
tpacall() method 72
tpacladd command 41
tpaclcvt command 41
tpacldel command 41
tpaclmod command 41
tpadduser command 41
tpadmcall() method 75
tpadvertise() method 74
tpalloc() method 73, 82
tpbegin() method 74
tpbroadcast() method 73, 77

www.it-ebooks.info

http://www.it-ebooks.info/

[144]

tpcall() method 72, 77
tpcancel() method 72
tpchkauth() method 72
tpchkunsol() method 73
tpclose() method 74
tpcommit() method 74
tpconnect() method 72, 77
tpconvert() method 75
tpconvmb() method 75
tpcryptpw() method 75
tpdelusr command 41
tpdequeue() method 74, 77
tpdiscon() method 72, 77
tpenqueue() method 74, 77
tpexport() method 75
tpforward() method 73
tpfree() method 73
tpgetadmkey() method 75
tpgetlev() method 74
tpgetreply() method 72, 77
tpgetrepos command 108
tpgprio() method 73
tpgrpadd command 41
tpgrpdel command 41
tpinit() method 72, 76
tpmodusr command 41
tpnotify() method 73, 77
tpopen() method 74
tppost() method 73
tprealloc() method 73
tprecv() method 72, 77
tpresume() method 74
tpreturn() method 73
tpsend() method 72, 77
tpsetrepos command 108
tpsetunsol() method 73, 77
tpsprio() method 73
tpstrerrordetail() method 75
tpstrerror() method 75
tpsubscribe() method 73
tpsuspend() method 74
tpsvrdone() method 73, 80
tpsvrinit() method 73, 80
tpterm() method 72
tptypes() method 73
tpunadvertise() method 74

tpunsubscribe() method 73
tpusradd command 41
tpusrdel command 41
tpusrmod command 41
transactional functions, Tuxedo 92
transaction log, Tuxedo domain

creating 65
Transaction Monitoring (TP Monitor) 7
transactions

about 90
initiating 92
two-phase commit 91
XA interface 91, 92

Transactions under UniX Extended for
Distributed Operation. See Tuxedo

TSAM
about 45
administrative tasks 51, 52
components 45, 46
installing 46-51
monitoring console functionalities 56
performance-related monitoring

tasks 51, 52
used, for monitoring 53-56

TSAM Agent
about 46
components 46

TSAM Manager
about 46
components 46
deploying 53

tuxadm command 41
TUXCONFIG file 40
TUXCONFIG variable 21
TUXDIR directory 99
TUXDIR variable 21
Tuxedo

about 7
anatomy 10
architecture 10
buffer types 82
client/server technology, benefits 9
commands 36
components 11-13
distributed client/server model, features 8
features 57-60

www.it-ebooks.info

http://www.it-ebooks.info/

[145]

hardware requisites 14
history 9
installation components 15
installation procedures 16
installing, on Exalogic machine 126, 127
middleware characteristics 10
software requisites 14
transactional functions 92
transactions 90

Tuxedo administration
about 20
tasks 20, 21

Tuxedo application
command-line interface 43, 44
configuring 22
environment variables 21, 22
modifying 42
monitoring 42
tuning 67, 69

Tuxedo client
ATMI functions 78, 79
developing 76
native client 76
sample client code structure 77
WorkStation (WS) client 76

Tuxedo client processes 12
Tuxedo domain

about 63, 64
administrative servers 64
administrative tools 65
configuration file 64
configuring 66, 67
gateway servers 64
running 66, 67
transaction log, creating 65

Tuxedo MIB Application Programming
Interface 45

Tuxedo queue
administering 60
monitoring 63
queue devices, creating 61
queues, creating 61
queue space, creating 61
resources, configuring 61

Tuxedo server
ATMI functions 81
compiling 81, 82

developing 79
sample server code structure 80
service, advertising 80, 81

Tuxedo server processes 12
Tuxedo service

about 97
invoking, through SALT 121

Tuxedo System and Application
Monitoring. See TSAM

Tuxedo Transaction Log (TLOG) 93
tuxgetenv() method 75
tux_msgq_monitor function

about 133
starting 134
stopping 135

tuxputenv() method 75
tuxscagen function 105
tuxwsvr command 41
txrpt command 41

U
UBBCONFIG file 12

about 21, 22, 106
parameters 107
sections 25
about 128

ud command 41
Universal Device List (UDL) 93
Universal Unique Identifier (UUID) 41
Unix

GUI-based installation, of SALT 99
UNIX System Laboratories (USL) 9
unsolicited client notification 89
userlog() method 75
uuidgen command 41

V
variables, Tuxedo

PATH 21
TUXCONFIG 21
TUXDIR 21

VIEW buffer 83, 84
viewc32 command 41
viewc command 41
VIEWDIR variable 21
viewdis32 command 41

www.it-ebooks.info

http://www.it-ebooks.info/

[146]

VIEWFILES variable 21
viewsviewdis command 41
VIEW/VIEW32 buffer 21

W
WebLogic Tuxedo connector (WTC) 132
web services

configuring 106
web services programming 120
Windows

GUI-based installation, of SALT 99
wlisten command 41
work flow 97
Workstation Handler (WSH) 12
workstation listener (WSL)

about 12, 131
on IPoIB 132
on SDP 131

workstation (/WS) client
about 76 132
compiling 78

wsadmin function 105
wsdlcvt utility 97, 105
WSDL utilities

for SALT 97
wsloadcf function 105, 113
WS_MIB 42
wud command 41

X
XATMI 8
XML buffer 86

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Getting Started with
Oracle Tuxedo

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Oracle Data
Integrator 11g: A Hands-On Tutorial
ISBN: 978-1-84968-068-4 Paperback: 384 pages

Combine high volume data movement, complex
transformations and real-time data integration with
the robust capabilities of ODI in this practical guide

1. Discover the comprehensive and sophisticated
orchestration of data integration tasks made
possible with ODI, including monitoring and
error-management

2. Get to grips with the product architecture
and building data integration processes with
technologies including Oracle, Microsoft SQL
Server and XML files

3. A comprehensive tutorial packed with tips,
images and best practices

Oracle Advanced PL/SQL
Developer Professional Guide
ISBN: 978-1-84968-722-5 Paperback: 440 pages

Master advanced PL/SQL concepts along with plenty
of example questions for 1Z0-146 examination

1. Blitz the 1Z0-146 exam

2. Master the advanced features of PL/SQL to
design and optimize code using real-time
demonstrations

3. Efficiently design PL/SQL code with cursor
design and subtypes

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle Business Intelligence
Enterprise Edition 11g: A
Hands-On Tutorial
ISBN: 978-1-84968-566-5 Paperback:620 pages

Leverage the latest Fusion Middleware Business
Intelligence offering with this action-packed
implementation guide

1. Get to grips with the OBIEE 11g suite for
analyzing and reporting on your business data

2. Immerse yourself in BI upgrading techniques,
using Agents and the Action Framework and
much more in this book and e-book

3. A practical, from the coalface tutorial, bursting
with step by step instructions and real world
case studies to help you implement the suite's
powerful analytic capabilities

Oracle WebCenter 11g PS3
Administration Cookbook
ISBN: 978-1-84968-228-2 Paperback: 348 pages

Over 100 advanced recipes to secure, support,
manage, and administer Oracle WebCenter

1. The only book and eBook in the market that
focuses on administration tasks using the new
features of WebCenter 11g PS3

2. Understand the use of Wiki and Discussion
services to build collaborative portals

3. Full of illustrations, diagrams, and tips with
clear step-by-step instructions and real-world
examples

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Tuxedo
	Introduction to the distributed client/server architecture using Tuxedo
	Some of the benefits of client/server technology
	The history of Tuxedo
	Tuxedo architecture and anatomy

	Installation of Tuxedo
	Hardware and software requirements
	Tuxedo installation components
	Installation procedures
	Graphical user interface (GUI) installation
	Console installation
	Silent installation

	Summary

	Chapter 2: Configuration and Administration of Tuxedo
	Tuxedo administration
	Responsibility of a Tuxedo administrator
	Configuring and setting up a Tuxedo application
	Environment variables

	Configuring and structuring a Tuxedo application
	The RESOURCES section
	The MACHINES section
	The GROUPS section
	The NETWORK section
	The SERVER section
	The SERVICE section
	The ROUTING section
	The NETGROUPS section
	Things to remember

	Tuxedo commands
	The buildclient command
	The buildserver command
	The buildtms command
	The tmloadcf command
	The tmboot command
	The tmshutdown command
	List of Tuxedo commands

	Monitoring and changing a Tuxedo application
	The command-line interface
	The Tuxedo MIB application programming interface
	Tuxedo System and Application Monitoring (TSAM)
	Installing TSAM
	Various administrative tasks using TSAM
	Using TSAM for monitoring – quick path

	The logfiles

	The important features of Tuxedo
	Security
	Data-dependent routing (DDR)
	Horizontally partitioned
	Rule-based servers
	Distributed applications

	Data encryption
	Data compression
	Load balancing

	Administering the Tuxedo queue (/Q)
	Configuration of resources for /Q
	Creation of queue space and queues
	Monitoring /Q

	The Tuxedo domain
	The domain configuration file
	The domain gateway server
	The domain administrative server
	Administrative tools for the domain
	Creating a domain transaction log

	A brief example of how to configure and run a Tuxedo domain

	Tuning the application
	Summary

	Chapter 3: Development of Tuxedo – Various APIs
	Introduction to the Application Programing Interface
	Developing a Tuxedo client
	Sample client code structure
	Compiling the native or workstation client
	Tuxedo client ATMI functions

	Developing a Tuxedo server
	Sample server code structure
	Advertising a service
	Tuxedo server ATMI functions
	How to compile a server

	Tuxedo buffer types
	The STRING buffer
	The CARRAY buffer
	The VIEW buffer
	The FML buffer
	The XML buffer

	Client/server communication paradigms
	Request/reply
	Conversational
	Queues (Tuxedo /Q)
	Event-based communication

	Transaction in Tuxedo
	The XA interface and two-phase commit
	Creating or initiating a transaction
	Tuxedo's transactional functions
	Tuxedo Transaction Log (TLOG)

	Summary

	Chapter 4: SALT – Service Architecture Leveraging Tuxedo
	Getting acquainted with SALT
	The SALT gateway (GWWS) and service metadata repository server
	WSDL utilities for SALT
	The SCA concept and Tuxedo service

	SALT installation
	GUI-based installation
	Installing on Windows
	Installing on Unix

	Console-based installation
	Silent installation

	Configuration of a SALT application
	SCA container APIs and utilities
	The buildscaclient command
	The buildscacomponent command
	The buildscaserver command
	The GWWS command

	Configuring the Tuxedo web services
	The UBBCONFIG file
	The Tuxedo service metadata repository
	Configuration of the native web services
	Configuration of external web services
	Compiling the SALT configuration

	Configuring SCA components
	SCA ATMI client configuration
	SCA JATMI client configuration
	SCA workstation client configuration
	SCA web service client configuration
	SCA ATMI server configuration
	SCA web service server configuration
	SCA client security configuration

	Configuring the service contract discovery
	Configuring the SALT WS-TX support

	Administration of SALT
	GWWS administration
	Tuning the GWWS server
	Monitoring the GWWS server
	Browsing to the WSDL document from the GWWS server

	Administrating the SCA components
	Tracing the SCA ATMI server and client
	Monitoring the SCA servers

	SALT programming
	Web services programming
	Invoking Tuxedo services (inbound) through SALT
	Invoking external web services (outbound) through SALT

	SCA programming
	SCA client programming
	SCA component server programming
	SCA transactions

	Summary

	Chapter 5: Oracle Tuxedo Joining the Exalogic Family
	What is Exalogic?
	Tuxedo installation on an Exalogic machine
	Tuxedo configuration and runtime
	The UBBCONFIG file
	Tuxedo Socket Direct Protocol support
	The MP mode
	GWTDOMAIN
	The workstation listener (WSL)
	The workstation (/WS) client
	The jolt service listener (JSL)
	The WebLogic Tuxedo connector (WTC)
	Databases
	The EXALOGIC_MSGQ_CACHE_SIZE variable

	Running Oracle Tuxedo
	Start/stop tux_msgq_monitor
	Start tux_msgq_monitor
	Stop tux_msgq_monitor

	Summary

	Index

