
www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Oracle
Event Processing 11g

Create and develop real-world scenario Oracle
CEP applications

Alexandre Alves

Robin J. Smith

Lloyd Williams

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Oracle Event Processing 11g

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2013

Production Reference: 1150313

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-454-5

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Authors
Alexandre Alves

Robin J. Smith

Lloyd Williams

Reviewers
Jeffrey A. Myers, Ph.D.

Ahmet Fuat Sungur

Prakash Jeya Prakash

Acquisition Editor
Grant Mizen

Lead Technical Editor
Dayan Hyames

Technical Editors
Vrinda Amberkar

Dominic Pereira

Project Coordinator
Leena Purkait

Proofreader
Samantha Lyon

Indexer
Hemangini Bari

Graphics
Sheetal Aute

Valentina D'Silva

Aditi Gajjar

Production Coordinators
Nitesh Thakur

Prachali Bhiwandkar

Cover Work
Nitesh Thakur

Prachali Bhiwandkar

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Alexandre Alves has over 12 years of experience in software development
working for large companies, such as IBM and Oracle. He has worked with
network management, CORBA, JEE, web services, OSGi, BPEL, CEP, and
middleware technologies in general. He is the co-author of the WS-BPEL 2.0
specification, co-author of BPEL for Java specification, author of the OSGi in
Depth book, and a steering committee member of the Event Processing Technical
Society (EPTS).

I would like to thank my family for giving me the support I needed
to continue my work regardless of all other problems that life
throws at you. I would like to thank my sons, Gabriel and Lucas, for
providing for the fun-filled book-writing breaks, and understanding
when I was in the book-writing, no-breaks (as they saw it) mode.
I would like to especially thank Juliana, my wife-to-be, for her
unyielding support, her caring, and especially for her lifelong
understanding. For you, all is worth. Words put into a book are
everlasting, so is our love.

Finally, I would like to thank my excellent co-authors and colleagues
at Oracle for giving me the material and the experience I needed for
writing this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Robin J. Smith, as a Product Management/Strategy Director at Oracle Corporation,
is responsible for the Event Driven Architecture and Complex Event Processing
technologies, focused on the evolution and delivery of the award winning and
innovative Oracle Event Processing product, a corner-stone technology of the Oracle
Event Driven Architecture strategy. Previously at BEA Systems, he successfully
delivered the BEA WebLogic Event Server, the industry's first and only EDA CEP
Java Application Server based on an exposed customized OSGi™ framework. At Sun
Microsystems, as a software Product Line Manager for 8 years, he focused on the
product management and marketing for the core SOA technologies, Netscape Process
Manager and the award-winning Sun Java™ Studio Enterprise, a visual development
and infrastructure environment focused on SOA, UML design tools and Java
application profiling techniques. Over his career, Robin has worked in all of the major
computing domains acquiring expertise as an architect for a leading Universal Content
Management System and designed, engineered and implemented unique performance
and systems management software for the Java Platform, AS/400, and VM Operating
systems that have been used worldwide.

My deepest thanks to Phil Wilmshurst, who after a chat in the
Bowlers Arms in Margate recommended me for my first computing
job, starting a career at a young age which has now taken me
around the world and to my computing successes in Silicon Valley,
California. To Mike Leamer, who as a friend and manager motivated
me to learn more and guided me to excel in my programming
efforts in London. To the team at VM Software Inc., who gave me
my "Famous for Fifteen Minutes" time when they purchased my
unique VMMonitor product and finally, my family that inspires me
to leap out of bed each morning and enjoy my continuing computing
days of adventure, at my office in Redwood Shores, just south of the
beautiful San Francisco.

www.it-ebooks.info

http://www.it-ebooks.info/

Lloyd Williams has over 17 years of experience in the software development and IT
industry. Lloyd graduated from Memorial University of Newfoundland in 1995 with
a Bachelor of Commerce (Honors) specializing in Management Information Systems
and Operations Management. He then moved to California to start consulting in the
telecommunications industry. Since then, he has worked with numerous Fortune 500
companies around the globe in every industry. Lloyd's experience ranges from large
telecommunications and automotive projects working with global systems integrators
to leading the development of small event-driven RFID solutions at a small start-up.

He is currently an outbound product manager working for Oracle within the
Business Integration team of the Oracle Fusion Middleware product family.
He works with customers around the globe developing solutions that integrate
Oracle Event Processing with SOA and BPM solutions.

I would like to thank my friends and family for their support,
patience and help in producing this book as well as during many
late nights and weekends working on many software development
projects. I would like to thank my managers throughout the years
who have provided me with opportunities to learn new skills and
take on challenging tasks, as well as many clients and colleagues
whom have provided invaluable opportunities for me to expand
my knowledge and shape my career.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Jeffrey Myers holds a Ph.D. in Physics from the University of Michigan, where
he studied energy transfer mechanisms in proteins and developed new experimental
techniques in ultrafast optics. He has over 10 years of experience in experimental
design, algorithm development, and data analysis. In his professional career, he has
utilized relational databases and complex event processing to provide innovative
analytic solutions. Dr. Myers currently works as an engineer with Northrop
Grumman. His technical interests include pattern recognition, machine learning,
sensors, and Big Data analytics.

Ahmet Fuat Sungur has 6 years of experience in working with Oracle products.
Since 2008 he has been working in Telecommunication Industry. In his professional
career, data processing technologies are his favorite subjects. He participated in
several business intelligence-oriented applications, which was developed by using
Java and Oracle technologies. Software architecture, distributed processing, Big Data
and NoSQL databases are his other main interests. He has attended many national
and international technical congresses as a speaker.

He is currently working for Turkcell, which is the biggest telecommunication
company in Turkey, third in Europe. Also he holds a degree in computer
engineering.

www.it-ebooks.info

http://www.it-ebooks.info/

Prakash Jeya Prakash is an Oracle Certified SOA Expert and SOASchools certified
SOA professional.

He started his career as a Java developer with TechMahindra and after a couple
of years his career shift towards SOA started. Since then he has been working on
the Oracle middleware stack. From 2008 to 2010, he worked as Tech Lead for BSS
productized solution development at Nokia Siemens Networks, Bangalore, India.
In July, 2010, he moved to UK and started his own company as a freelancer SOA
consultant. Since October, 2011, he has been working as a Lead SOA consultant at
Logica, UK.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: An Overview of Complex Event Processing 7

What is event processing? 7
Relating this to a business in computing terms 9
Use case: A solution for customer problems 12
Key elements of event stream processing 16

An event 17
An event stream 17
An event type 18
Event Processing Network 19

Event processing languages and extensibility 21
Processor event node methodologies 23
Processor extensibility 26
Event processor "Intelligence Injection" 27

Holistic Event-Driven and Service Orientated Architectures 28
Predicting an event 29
Summary 30

Chapter 2: An Overview of Oracle Event Processing 31
Understanding the heritage of Oracle Event Processing 31
The Java Event-Driven Server, the bits
and bytes of the architecture 33
The adopted event language 38

CQL concepts 38
The philosophy and fundamentals of developing 41

Creating an Oracle Event Processing application 43
Some hints and tips 54

Controlling from the command line 55
Watching things happen and changing what happens 58
Summary 64

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 3: Adapting Events for OEP 65
Creating and converting events 65
Event type system 65
Platform adapters 68

The JMS adapter 68
The CSV adapter 70
HTTP pub-sub adapter 72

Configuring your own custom adapter 78
Leveraging OSGi services to create an adapter 82
Packaging custom adapters 83

Summary 88
Chapter 4: Assembling and Configuring OEP Applications 89

Implementing the component model 90
Exploring the EPN extensions 90

Defining a simple Spring bean 90
Creating the event type repository 91
Setting up the adapters 91
Configuring channels 92
Implementing event-beans 93
Enabling the power of CQL processors 94
Defining a database table 94
Using caching 94

Understanding the application configuration 96
Adapter configuration 96
Channel configuration 97
Cache configuration 98

Defining resources in the server configuration 99
Extending the component type infrastructure 105
Summary 106

Chapter 5: Coding with CQL 107
Introducing CQL 107
Understanding CQL fundamentals 108

Establishing your sources and destinations 109
Processing models 110

The structure and semantics of event processing 111
Restricting streams with Windows 112

Tuple-based windows 116
Partitioned windows 119

Output 120
Controlling output with slides 126

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

The unbounded window 128
The constant value range window 129
The NOW window and the Last Event window 130

SQL as a foundation 130
Joins 131

External sources 136
Aggregations 136
Ordering 137
Views 139
Set operations 140

Typing and expressions 142
Timing models 144
Summary 146

Chapter 6: Managing and Monitoring Applications 147
Configuring the logging service 147
Provisioning applications 151
Changing application configuration 155
Managing server-wide configuration 159

Controlling concurrency with work managers 159
Accessing contextual data with data sources 160
Browsing metadata with the event type repository 164

Monitoring progress 165
Summary 170

Chapter 7: Using Tables and Caches for Contextual Data 171
Setting up JDBC data sources 172
Enriching events using a database table 173
Setting up caching systems 174
Enriching events using a cache 176
Using caches as event sources and sinks 177
Implementing an event bean to access a cache 179
Monitoring Coherence in the Visualizer 183
Summary 183

Chapter 8: Pattern Matching with CQL 185
Extending CQL with OEP cartridges 185
Blending CQL and Java 186

Class loading in CQL 189
Handling ambiguities between Java and CQL 192
Using the JavaBeans conventions in CQL 193

Processing XML with CQL 194
Handling XML document sources 197

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Pattern matching 199
Partitioning events for matching 202
Patterns as regular expressions 203

Controlling the number of matches 204
Working with correlation groups 207
Expiring patterns 211

Summary 213
Chapter 9: Implementing Performance Scaling, Concurrency,
and High Availability for Oracle Event Processing 215

Scalability versus high availability 216
Understanding performance and ways to influence 217
Scaling Oracle Event Processing 219

The threading model 219
Optimizing threading in channels 220

The EventPartitioner example 223
Using concurrency with processors 224

Partitioned versus pipelined parallelism 227
Improving performance with batching 228
General event processing, network performance tuning,
and memory sizing observations 229

High availability in Oracle Event Processing 230
Failure scenarios 232

A sample HA Event Processing application 233
High availability quality of services 234

Simple failover 234
Simple failover with buffering 236
Lightweight queue trimming 236
Precise recovery with JMS 239

The HA application 240
ActiveMQ server 241
The JMS Message Client 241
Running the HA solution sample 244
Studying the Visualizer tooling for HA implementation 247

Summary 248
Chapter 10: Introducing Spatial: A Telemetric Use Case 249

Introduction to Oracle Spatial with Oracle Event Processing 249
Basic geospatial concepts and use cases 251

Geo-streaming 251
Geo-fencing 253
Bus tracking movement event patterns 256

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

The Oracle Spatial Data Cartridge 258
Oracle geospatial features 260
Tracking vehicles with an Oracle Event Processing application 261

Key application elements 261
Bus tracking EPN 262
BusSpatialProcessor 264
Bus tracking visual user interface 268
How to run this bus tracking sample application 269

Summary 270
Chapter 11: Extending CQL with Spatial and JDBC 271

Creating geometries 271
Determining if geometries relate to each other 275
Configuring the spatial context 281
Retrieving external tables using SQL 283
Summary 288

Chapter 12: Looking Ahead: The Future of
Oracle Event Processing 289

Possible technology strategic directions 289
Evolving developer environments 291
Service-oriented Architecture integration 292
Event intelligence on the computing edge with Sensor integration 293

Event container platform manipulation profiles 298
The Embedded profile 298

Fast Data for Big Data 299
Fast data sample 302

Looking around the corner with predictive analytics 305
More on analytics 305
A Predicting Use Case 306
Understanding the "Fuzzy" results 307
Extending insurance solutions and JDBC data cartridge summary 308

Advancing performance with embedded hardware 310
The growing event processing standards 311
Summary 312

Index 313

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Events are everywhere. Events can have either positive or negative impacts on our
lives and affect important business decisions. These events can impact a company's
success, failure, and profitability.

Getting Started with Oracle Event Processing 11g will allow you to be benefited from
the skills and years of experience from the original pioneers who were the driving
force behind this immensely flexible, complete, and award-winning Event Stream
Processing technology. It provides all of the information needed to rapidly deliver
and understand Event Driven Architecture (EDA) applications.

After an introduction to the benefits and uses of Event Stream Processing, this
book uses tutorials and practical examples to teach you how to create valuable and
rewarding event-driven foundational applications. This book will provide a unique
perspective on product creation, evolution, and a solid understanding of how to
effectively use the product.

What this book covers
Chapter 1, An Overview of Complex Event Processing, provides an overview of the
event processing technology, including the event processing language, the event
processing network, and event-driven architectures.

Chapter 2, An Overview of Oracle Event Processing, provides an overview of the Oracle
Event Processing, including the Eclipse-based design time, the management console,
and other tools.

Chapter 3, Adapting Events for OEP, describes how to adapt external events into an
OEP event, and how to convert back OEP events into external events through the
use of the adapter SDK.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 4, Assembling and Configuring OEP Applications, describes how to assemble
an event processing network together as an OEP application and how to configure
its components.

Chapter 5, Coding with CQL, describes Oracle's event processing language, called
CQL, and how it can be used to filter events, correlate events, aggregate events,
and perform several other event processing tasks.

Chapter 6, Managing and Monitoring Applications, teaches you to perform
management and monitoring tasks, such as deploying OEP applications,
configuring work-managers, and using the logging service.

Chapter 7, Using Tables and Caches for Contextual Data, explains how to use data
residing in tables and caches as contextual data when processing events.

Chapter 8, Pattern Matching with CQL, teaches you to pattern match events using
CQL, a very powerful feature that can be used to find missing events, and other
complex patterns.

Chapter 9, Implementing Performance Scaling, Concurrency, and High Availability for
Oracle Event Processing, explores several mechanisms to improve performance of
OEP applications and how to set up a OEP cluster supporting high availability.

Chapter 10, Introducing Spatial: A Telemetric Use Case, walks you through a
real-world event processing case study, which makes extensive use of spatial
features and telemetric.

Chapter 11, Extending CQL with Spatial and JDBC, teaches you to make use of
geometry types in CQL using the Spatial cartridge, and how to invoke arbitrary
SQL using the JDBC cartridge.

Chapter 12, Looking Ahead: The Future of Oracle Event Processing, takes a candid look
at the future of event processing, including emerging topics such as event processing
in Big Data, machine-to-machine architectures, and event intelligence.

What you need for this book
To make full use of this book, you need to install Oracle Event Processing 11g, which
is available at Oracle Technology Network website, http://www.oracle.com/
technetwork/middleware/complex-event-processing/overview/index.html.
Select the 11g version, as this book is targeted toward this particular version.

Some examples make use of the Oracle Database 11g Release 2, which likewise
can be found at http://www.oracle.com/technetwork/database/enterprise-
edition/overview/index.html.

www.it-ebooks.info

http://www.oracle.com/technetwork/middleware/complex-event-processing/overview/index.html
http://www.oracle.com/technetwork/middleware/complex-event-processing/overview/index.html
http://www.oracle.com/technetwork/database/enterprise-edition/overview/index.html
http://www.oracle.com/technetwork/database/enterprise-edition/overview/index.html
http://www.it-ebooks.info/

Preface

[3]

Who this book is for
This book is aimed for both developers as well as architects that need to learn about
event processing, stream processing, and the event-driven architecture. Having some
background knowledge of Java and SQL will help, but is not a must.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "By using this method, you can define
event types as a Java bean, java.util.Map, or tuple."

A block of code is set as follows:

<event-type-repository>
 <event-type name="Customer">
 <property name="name" type="char"/>
 <property name="address" type="Address"/>
 </event-type>
 <event-type name="Address">
 <class-name>postal.Address</class-name>
 </event-type>
<event-type-repository>

Any command-line input or output is written as follows:

com.bea.wlevs.adapters.jms;version="11.1.1.7_0",

com.bea.wlevs.adapters.jms.api;version="11.1.1.7_0",

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "From
within the EPN Editor screen, right-click and select New and then Adapter".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.it-ebooks.info/

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Complex
Event Processing

In this chapter, you will be introduced to the basic concepts of Complex Event
Processing (CEP), its impact today on businesses across all industries, and the key
artifacts that together constitute an Event-Driven Solution Platform. Some of the
topics we will cover are as follows:

• What is event processing
• Relating this to a business in computing terms
• Use case: A solution for customer problems
• Key elements of event stream processing
• Event processing languages and extensibility
• Holistic event-driven and service-orientated architectures
• Predicting an event

What is event processing?
In the world around us, every second of every minute of every hour, the human
brain is bombarded with a limitless number of things that happen either at the same
time or sequentially, or in a totally and seemingly erratic way that may not make
sense immediately but as more of these things happen, we can start to understand
their relevance and importance.

For example, we hear cheering in the distance, we see balloons flying in the air,
music starts to play, police cars and trucks appear pulling brightly covered trailers
with puppets and people waving on them, followed by ambulances, and today's
date is July 4th. Individually, these events could mean anything, but together? It's
probably an Independence Day Carnival Parade!

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Complex Event Processing

[8]

Our brain can easily determine this fact in the blink of an eye" and while not overly
simple to define in computing terms, we could describe a "Parade Event Pattern"
as follows:

One (or more) police cars + followed/preceded by, or adjacent to +
one (or more) carnival trucks + followed/preceded by, or adjacent to +
one (or more waving people) + followed/preceded by, or adjacent to
+ one (or more emergency vehicles) + where music can be heard + and
today's date is 4th July

Your brain is not restricted to sending information and just waiting until there is
a response, or forced into following a series of fixed steps to get something done.
As with this example, it is able to take the events happening now, their relevance
to additional external factors such as today's anniversary date and understand a
"parade" event pattern.

So as you learn more about Complex Event Processing, we focus on how this
technology can take continuously flowing, never-ending information, from a
potentially unlimited number of different places, and immediately understand
how it relates to things happening right now and in the very near future,
commonly known as Real-Time Situation Awareness.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Relating this to a business in computing
terms
The problem now in the world of computers is the proliferation of data. Information
arrives from many different systems, in vast quantities, at different times, at different
speeds, some of importance now to certain other systems, people or processes, and
some stored for later recovery and determination. Why the proliferation now?

There are many issues involved, but here are just a few major ones:

• The cost of computer power and sophisticated environmental sensor
devices has become less expensive

• Networking capacities increase and become more intelligent
• The many different functional computing silos (finance systems,

manufacturing systems, sales systems, and so on) are broken down,
rewritten, enabling processes that can span more and more business demands

• New computer solution demands expand beyond the enterprise
to include partners, customers so more and more data sources
and other inputs are brought online

• Computing technology architectures such as Service Orientated
Architecture (SOA) becomes increasingly successful, resulting
in an ever more elaborate ecosystem of re-usable services

• A Big Data explosion, a term now used widely for information that
arrives in high volumes, with extreme velocity, and in a wide variety
of mostly unstructured formats emanating from social media sites,
cell phones, and many other sources

• A growing demand from businesses that expect their Information
Technology (IT) teams to respond to market situations much more
effectively in real time

As we evolve and the complexity of these systems "pour" more and more huge
volumes of information at computer applications, we are reaching a "tipping point"
where traditional point-to-point or request-reply-based solutions of the world break
down and become unmaintainable and not extendable.

A company business can be influenced instantaneously from things (events) that can
happen, not only in the "cozy" understandable world within its own environment but
also from activities (events) from beyond, such as from "the Internet of things"—real-
time sensor device that can measure and report on a multitude of situations, including
"the impending danger from a sudden rise in temperature in a food storage facility"
or "the global positioning system location of a shipping container which is having an
unauthorized opening with movement detection sensed from within".

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Complex Event Processing

[10]

Immediate impact to a company's business can also come appear "out of nowhere"
emanating from a change in global business conditions indicated from the ever-
expanding social media outlets, for example, Twitter, instant messaging, and so
on. Millions of people at the same time can all comment on the poor condition of
a new product, highlighting an immediate need to change a product design. This
will inevitably affect profits and will probably significantly affect the value of the
business. So companies are now inevitably being manipulated by a wide range of
both understood and misunderstood events.

In the past, probably going back over 15 years ago, business applications have had
to conform to the methodologies, structure, and interfaces from the then available
computing technologies (such as databases) where information must be inserted
and statically placed. Only after this can users then analyze and respond. Traditional
JEE Application Servers were generally implemented, expecting a client application to
send an initial request and will then only process that request through, in most cases a
significant amount of logic code, before it can respond back to the client. While these
technologies enable, and will continue to provide benefit in more batch-orientated, less
real-time approaches, newer lower latency and faster in-memory middleware products
are now available.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Event-Driven (Architecture) based systems are intrinsically smarter, or better
"equipped" to handle these types of situations, processing an entire business
infrastructure as events that can be immediately interpreted and handled, spanning
across the many departmental "silos" such as finance, manufacturing, and sales.
These types of systems are also context aware and execute when they detect changes
in the environment or business world, rather than occurring on a predefined
(nightly) schedule or requiring someone to initiate an execution.

As the problems associated with Big Data grow substantially over the coming years
in terms of the capture, management, and the ability to process the information
within a tolerable amount of time, Event-Driven technologies (specifically Complex
Event Processing) can provide Fast Data capabilities to apply a greater level of
"intelligence" and decisioning to the originating data streams much closer to the
"point of occurrence".

So the benefits of an Event-Driven technology approach is to turn that proliferation
of data into real-time knowledge by firstly representing events (things that happen
from anywhere) in standard ways, providing an ability to factor out events, route
events, filter events, aggregate events, and correlate events intelligently, so that in
most cases fragmented events can be evolved into holistic, solid, understandable
business events, enabling the business to better view, control, and adapt to
situations relatively instantaneously.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Complex Event Processing

[12]

Use case: A solution for customer
problems
So how are Complex Event Processing Platforms used now to solve business
problems? Certainly over the past few years, this technology is being used across
most, if not all, of the different types of industries.

The financial services capital markets companies are using this technology for real-time
algorithmic trading and real-time risk management types of solutions. As the stock
markets stream their endless financial instrument data with values which can instantly
fluctuate, there is an ever growing need to effectively handle this huge volume of
information, understand its impact and potential risk, and then react as quickly as
possible. The better the capability to evaluate and predict the consequences of the
information, and the quicker the ability to respond to the results of this analysis, the
more successful the business and the more money that can be made with less exposure
to business risks and threats. This type of real-time trading information can be usually
visualized using heat maps and scatter charts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

In the Electricity industry, customers are using the Complex Event Processing
(CEP) platform for many new types of applications, which include Smart Meter,
Smart Grid, and outage detection monitoring solutions. Sophisticated Demand
Response (DR) solutions bring together system operators and the power generation
companies, who contract with energy management and monitoring companies
to provide energy usage load reduction services on demand. These technology
companies that are using CEP-based applications contract with commercial and
industrial businesses that are large consumers of energy, whom agree to curtail
energy usage on demand. Streaming event devices are installed at client locations
to measure energy usage and, in some cases, proactively control the load using
continuous energy demand and usage data at minute or, even second, intervals.
The generated profit revenue received from system operators is then passed
back to the clients, relative to the number of associated load reduction dispatches.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Complex Event Processing

[14]

Handling real-time events has a long history in the telecommunications industry,
such as those generated by the various devices on the network, events from mobile
phones, or perhaps streaming Call Detail Record (CDR) events indicating the time
of calls made and whether some of these calls failed. Complex Event Processing
platforms provide the technology for many new applications and solutions in this
domain. As in other industries, Event-Driven platforms have a broad base of possible
implementations. Some businesses have created powerful network management and
monitoring solutions, which can detect hardware failure-related events continuing
over certain time periods, or situations where equipment has not been issuing events
for some time and in these circumstances alert messages are distributed and escalated.

In the context of an enterprise-level mobile telecommunication IT infrastructure,
there are many different applications coming from many different suppliers. When
the overall performance is not immediately meeting expectations, it's not easy to
identify which component is the offending issue in the supply chain. Therefore
these next-generation management and monitoring applications (based on Complex
Event Processing) provide the capabilities to show the complete, holistic "picture",
providing full visibility to the situation of a business through flexibility and fully
integrated features, enabling agility for the infrastructure to react quickly to
changing scenarios, and providing full operability enabled by a solution
designed to meet business needs.

A very powerful capability of Complex Event Processing platforms which is being
leveraged in the Transportation, Telecommunications, and Public Sector domain is
real-time integrated spatial analysis.

A business can use this technology in applications where there is the need to
monitor the movements of its assets and resources. Using, for example, GPS
(global positioning systems) the movement patterns of someone, or something
can be tracked in real time as it passes through boundary points (such as security
checkpoints in an airport) to identify its route and, to some extent, predict where
this person or object may subsequently move next. Also, this capability can be
used to analyze a current position and its relationship to geofenced areas. A
geofenced area being the definition of a geographical shape (polygon) defined
or declared by a series of spatial coordinates.

When a resource gets near, inside, or enters and exits the geofenced area, various
actions can be immediately performed, such as a warning message of an imminent
exposure to a dangerous natural disaster, or offering a big discount on a second
coffee at the person's current location or soon to be, position, based on his or her
current movement pattern.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

First Responder emergency services solutions can use integrated spatial technologies
to not only monitor a fire or hundreds of simultaneous fires, but also dynamically
track the movement on the fire, affected by weather conditions (wind) or
igniting hazardous materials. These types of systems can evaluate immediately
the relevance, importance, and applicability of all of the related assets (fire engines,
police vehicles, and so on) close to these areas. For example, if a fireman does not
move in certain number of seconds when close to a fire, this could indicate a serious
life threatening situation.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Complex Event Processing

[16]

There are many other types of business solution implementations using Complex
Event Processing platforms that range from online retail monitoring systems,
real-time data center infrastructure management, fleet vehicle transportation
monitoring, traffic flow monitoring with variable toll charging and speed control,
oil fields and rig monitoring/automation, and a host of real-time sensing device
opportunities, where these devices can monitor the environment inside shipping
containers, or air pollution situations. The scope and different type of applications
that can now benefit from using Complex Event Processing technologies are
evolving just as quickly as the world is changing, with a growing need to predict
and pre-empt and in, some cases, prevent situations from even happening.

Key elements of event stream processing
During the next few sections we will explore some of the basic principles and
concepts commonly used in the creation of event-driven applications. These are
the major "building blocks" for any solution that handles streaming event data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

An event
What is an event and how is it defined? Many people and technical societies define
an event in many different ways, but in the context of this book, an event is an object
that has a change in its state immediately, or over a period of time.

For example, let's take an everyday object, a house front door.

The door's "properties" is that it is made of wood, it has hinges, perhaps separate
wooden panels, screws to keep it together, a handle or knob, and it has a color,
blue. When the door opens, then it has changed its "state" and effectively an
event has happened.

The door can have many event states: open, closed, opening, closing, and so on.
It can even have a "non-event" state, for example, if somebody turns the door
handle or knob, but the door does not open in 10 seconds, then this could be a
situation when although the door should have opened it didn't in a certain time
period, so this is an event that did not happen, but probably should have happened,
based on the fact that the door handle did turn.

Anticipation or expecting some event to happen in a certain period of time
is something that your brain can easily process but in computing terms it is
something that is, on most occasions, difficult to program.

An event stream
Generated by hardware sensor devices, distributed anywhere from the "Internet of
things", computer applications, database triggers, or generated from any of hundreds
of different sources, events arrive for processing in an event stream or streams. Event
streams can have events that are continuously flowing at high volumes or arrive in
sporadic intervals, but the events never end and are always
time ordered, just like in the real world.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Complex Event Processing

[18]

A market data feed in the financial services world, the GPS signals from your
mobile telecommunications device and business events from a Service Orientated
Architecture Application (SOA) are all examples of event streams.

In general terms, event streams can be simple, streaming, or high volume.

Traditional computing systems based on database or Java Enterprise Edition (JEE)
infrastructures are not designed to effectively handle this type of continuously
flowing event data, as the reading and writing demands to disk, or "send/reply"
implementation paradigms involve increased and detrimental processing latencies
or delays. So there is a need to evolve a new approach to handing these requirements
and with an event-driven infrastructure it can "impose" itself "over" the event
streams in memory using a defined window of time or number of events count.

An event type
The event types that flow "along" the event stream defines the properties associated
with the event. Event type definitions can range in their levels of complexity, but in
most applications can be declaratively defined with a simple notation.

Using the door event example discussed earlier in this chapter, a house event stream
that is continuously monitoring things that are related to all doors in a building
could have a specific door event type defined with a collection of property names
and their associated values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

Event Processing Network
So now we have an event, probably thousands or millions of them that need to be
effectively handled and processed. As these events continuously flow they need
to be identified, have a response very quickly and are often "transported" only in
memory, so using a database is not a recommended design option.

For this purpose, many Complex Event Processing platforms provide the Event
Processing Network (EPN) (otherwise known as a Directed Flow Graph).

Provided as the best approach for handling streaming event data, the EPN can
be generally designed and modeled using various tooling offerings. The EPN is
designed as a loosely-coupled collection of event nodes, each performing a unique
action on the events as they pass through the network. Each event node subscribes
to one or many other event nodes with the state (conditions/properties) held in the
event definition itself.

This application model design approach provides the ability for extreme event
processing in low latencies with a simple way of extending and/or changing
the event handing as real-time situations happen. It also facilitates a mechanism
(foreign stages) to enable new event nodes to be introduced into the solution
either dynamically or statically during the actual deployment life cycle of the
executing application.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Complex Event Processing

[20]

A well-structured EPN will probably perform beyond expectations and set the
foundation for easy extensibility, integration, and solution maintenance.

While many kinds of event nodes are evolving, most can be one or more of the
following types:

• Event adapters provide the connectivity to event sources and sinks, and
are relatively simple code implementations that normalize the incoming
or outgoing data stream and convert this into event types that are processed
downstream or upstream in the EPN. For example, an inbound event adapter
can provide the connection to a TCP/IP socket and an outbound event
adapter can provide an interface to a visual user interface.

• Event channels are the conduits that effectively handle the routing of events,
these event nodes not only play an important role in ensuring that the various
events are analyzed efficiently, but they also can have properties that can
powerfully effect the performance of the application, such as controlling the
amount of memory used for the events and the number of processing threads.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

• Event cache and event POJO Bean nodes provide the in-memory persistence
of long-term reference data and the solution-specific business logic written as
a "Plain Old Java Object". These event nodes ensure that information needed
for long periods of time can be managed, interrogated, and safely held in
computing memory, and that any type of additional processing logic can
be implemented. POJOs can sometimes act as event sources or event sinks.
An example of using Event POJO Beans would be to include and enhance
old legacy code, which has been mature and stable for a long period of time
in other coded solutions, and would continue to provide additional value
in the new Event Processing Network. One caveat when using this type of
"old" code is to clearly understand the additional "cost", in terms of memory
usage and processing load that will be incurred and how this will impact
the overall performance of the new solution and this should be considered
during the design phase.

• Event processors are the meta-containers for the powerful event analysis
needed for any type of solution. There can be one or many event processor
nodes in an application and they store the event processing language, which
can be rules or queries that statically executes continuously on the flow
of arriving events. The event processors are the core engine service of a
Complex Event Processing solution, and the capabilities of such engines
in most cases, dictate how successful the technology will be in delivering
the desired business solution.

Event processing languages and
extensibility
In most Complex Event Processing platform technologies, the Processor Event Node,
or a similarly-defined construct (event engine), will execute the language of choice
for the analysis of the events in an event stream.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Complex Event Processing

[22]

For example, a car rental company might use the following business rule:

Offerings in the industry currently include; State-oriented, Inference rule, Script-
orientated, and Agent-orientated SQL-idioms. Some people are familiar with the
business rules approach and so decide to use the traditional "what-if-then" kind of
analysis. Most others decide to leverage their SQL database skills and extend that
knowledge to encompass the handling of streaming data in a way that is familiar to
how they interact with data that is stored and processed in a database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

The benefits of a SQL-based event continuous query language extends the rigor
of the relational model to event stream processing that can result in a more robust
implementation with broader application.

These types of CEP language implementations can incorporate the well-known
SQL '99 plus standards and relatively easily introduce the language extensions
for the temporal and event count windowing requirements. For many, using
this type of event handling approach provides now, and for the future, a single
consistent language that can be used for all database and middleware application
analysis processing.

Processor event node methodologies
The processor event node provides the direct analysis on the events and uses
a number of various techniques.

Event filtering is applicable when thousands or even millions of events flow
into an application and there is a need to ensure a time effective handling of
the more important information. This can involve either removing or sending
the events of no concern to another channel or path, where it can be handled
separately. In this way only the events that indicate a relevance to the current
application requirement are passed for further "heavy lifting" complex analysis.
By using this capability the event load is more evenly spread through the
application, making it far more efficient.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Complex Event Processing

[24]

Event correlation and aggregation is generally employed after any event filtering
has been performed and is a methodology to understand the relationship between
different events and then join or merge these events together. For example, when
thousands of events from a temperature sensor arrive providing individual values
for each room in microseconds, one approach is to determine which rooms are
of interest, then identify the sensors only in these rooms and finally calculate the
maximum, minimum, and average temperatures over a one minute time period.

Event pattern matching enables the identification of a certain distinct occurrence in
either a specific time window, that is, the last five minutes, or in the last number of
events. For example, this can be an event pattern where one can identify an "order"
event, followed by a "completed packaging" event, followed by a "truck loaded"
event, followed by a "arrived at customer house" event, all for a specific item, in
three hours. This could trigger a SMS message to the customer stating "your order
has arrived". Event patterns can be without limit but are generally dependent on the
semantics of the specific industry. They can incorporate "not events", where you can
define an event pattern that expects event A, followed by event B, but not a C event,
followed by a D event.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

A synthetic or business event often represents the dynamic construction of an
event from a collection of events or elements of events (fragmented events). In
many cases, an event may arrive that has little meaning alone but when joined with
contextual or reference data, it has significant meaning. Let's take again, for example,
the temperature sensor in a room. This sensor may send an event that provides
an ID of 005 and a value of 60. Now if we had previously saved information that
indicates and ID of 005 refers to a sensor on the tenth floor of a building at San Pedro
Square, in the kitchen, attached to the ceiling at the right corner, then by joining this
information with the current sensor temperature value of 60 degrees Fahrenheit, we
now have a much more concrete (business) event that can be passed to another piece
of business logic or system for action.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Complex Event Processing

[26]

Processor extensibility
With the implementation flexibility offered by the Event Processing Network, it is
important not to restrict the event processor with a limiting language implementation
which does not support specialized language extensions. These extensions are
driven by the changing analysis demands from the advances in the various related
technologies of the future, but are also focused on enabling additional industry and
domain-specific capabilities that are required by specific users.

Some event processor implementations provide the ability for easy extensibility
using a capability called data cartridges.

A data cartridge concept provides the notion of directly adding or plugging in new
functionality to a Complex Event Processing system, so that event analysis can be
added for any type of circumstance.

It would typically define a set of new object types and their behavior, and/or
provide implementations for various extensibility interfaces. The purpose of data
cartridges is to enable users to capture business logic and processes associated with
specialized or domain-specific data in user-defined data types. It constitutes one
or more of the following components: user-defined data types, implementation for
these types, new operators and aggregate functions, and implementation of certain
extensibility interfaces.

An example of data cartridge extensibility is to integrate specialized spatial or Java
language analysis directly as part of the CEP engine service.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

Event processor "Intelligence Injection"
Another topic to briefly cover in this section is the ability for event processors to
be dynamically updated or changed with the rules or queries "on the fly" while the
application continues to execute.

When events change in real life, your brain does not need to "reboot" in order
to reassess the situation, it simply continues with the additional "event pattern"
information to make a more informed decision. It may be implemented in different
ways depending on the Complex Event Processing platform but most now, can
provide this capability, and as these types of implementations evolve in the future,
Event-driven systems potentially will have a self-awareness, self-learning, and a
self-determination allowing them to adapt far more effectively to the changing
dynamics of the world that surrounds us.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Complex Event Processing

[28]

Holistic Event-Driven and Service
Orientated Architectures
So as you can now understand, a Service Orientated Architecture design approach
(send-reply paradigm) for many real-time, event-driven applications is perhaps
not a good choice, and Complex Event Processing platforms have evolved over
the years to address that growing need. However, in many ways an Event Driven
Architecture (EDA) compliments a Service Orientated Architecture (SOA) and in
many comprehensive industry solutions, these two implementation design patterns
work together to solve overall requirements.

We call the combination of architectures as Event Driven SOA (ED-SOA).

Imagine the requirement for an airport to provide a complete system that will
immediately identify missing luggage from a flight and in addition, the monitoring
of passenger movements in real time to provide additional VIP services (such as a
fast-path access through security checks).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[29]

The Complex Event Processing platform could be utilized to process the events
from sensor devices that are reading the bag locations, using an event pattern that
identifies immediately when bag A has passed by sensor 5, and sensor 6, but has
not passed by sensor 7 within two minutes, with this event pattern applied to every
bag on every conveyer belt in every part of the airport. At the same time, perhaps
from movement events using Bluetooth technology, every "opted in" passenger
location event (normally longitude/latitude data) is also sent to the Complex Event
Processing platform, which has an event pattern, continuously analyzing each
individual passengers position in the airport against general known transit times
to his or her required gate.

This system could also get immediate events from each plane which, in addition to
being able to transport people around the world, are also really big event "devices"
that send information such as a "pushing back from the gate" event or "wheels
up and departed" event. This valuable information could assist in the real time
determination on whether the plane has in fact not left the gate yet even though
the fixed departure time has been passed.

As all of this real-time activity is taking place, and the results are visualized on a
SOA Business Activity Monitor technology or SOA Business Processes are initiated,
other relevant SOA applications such as Ticketing and Reservations leveraging a
traditional SOA Service Bus could also be included in the architecture as they can
provide information about the "importance" of the passenger based on his or her
class of service and which gate should be associated with each passenger.

While Complex Event Processing can be used as a standalone platform, particularly
where extreme high event throughput is needed together with immediate or very
low processing latencies, many complete solutions now need the combination of
both implementation design pattern technologies.

Predicting an event
The capability to look around the corner and predict what might happen next
based on what is happening now is an extension to the event pattern matching
over time or event windows used in ED-SOA solutions.

An example is when Complex Event Processing is used to monitor real-time
CDRs (Call Detail Records) streaming in a telecommunications network and
identifies subscriber calls that are dropping in a short period of time. Once the
event-driven system has determined that a problem is happening now for a
specific subscriber number, the next step is to "look back" over past persisted
data, which could be large, and evaluate whether this person is more or less
likely to change his or her telephone company.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Complex Event Processing

[30]

The analysis of the potentially vast amount of historical data creating models that
use a collection of algorithms to predict behavior is generally handled by other
technologies such as data mining or real-time decisions. However, Complex Event
Processing platforms can leverage these models and then use them in real time.

The value in this use case would be that the person experiencing the dropped calls
could immediately get a call from customer support or a SMS text message that
could automatically offer an incentive to stay with his current supplier.

Summary
Complex Event Processing Platforms are now evolving from the early adoption
phase and becoming much more mainstream for many companies. There are a
fair few choices on the type of event-driven platform you can invest your time
in to evaluate, and deploy your next generation event-driven solutions.

In the next chapter, we will delve into the main components of the Oracle Event
Processing Solution Platform, such as the EDA Java Application Container that
has been optimized for performance and scalability. We focus on the evolution
of the technology and its unique modular approach enabling this technology to
be used in a wide variety of event-driven implementations.

More importantly, we will get you involved with the Oracle product directly,
by stepping you through the process of creating an application and publishing
(deploying) on your own installed version of the system, and we also show you
the capabilities provided in a rich Internet application, how to monitor, and
manage the system.

As you progress through the chapter, you will build up a solid foundation
of knowledge that will be needed in the remaining sections of this book,
and hopefully inspire you to become experts in Oracle Event Processing.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Oracle
Event Processing

In this chapter, we will cover the general history behind the creation of the Oracle
Event Processing product, its modular service bundle architecture, and how to use
the provided tooling to develop, monitor, and manage the platform. Some of the
topics we will cover are as follows:

• Understanding the heritage of Oracle Event Processing
• The Java Event-Driven Server architecture
• The adopted event language
• The philosophy and fundamentals of developing
• Controlling from the command line
• Watching things happen and changing what happens

Understanding the heritage of Oracle
Event Processing
Before we delve into the inner workings of the technology, let us start with a little
nostalgia of how it all began.

"Welcome to the Time and Event Driven (TED) team.". This is what you heard
when you were selected to join a new engineering project back in early 2007 at BEA
Systems Inc. The evolution of the Oracle Event Processing, Real-time Event Stream
Processing Application, and Integration Platform began with a collection of top
innovative engineers, individually selected because in the past they had worked
their magic to create several of the major components for the industry-leading
and award-winning WebLogic Server product.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Oracle Event Processing

[32]

With a dynamic, constantly motivating team director and a "wise old" software
product manager who had been in the industry for 30 years but never tired of
exploring new ideas and concepts, the group evolved to deliver this next generation
"breakthrough" technology that would lead the company into new domains and
allow it to embrace new customers in a way never before possible.

The team affectionately called the product, Elvis. Why? Well, it was planned to be
eventually called, the WebLogic Event Server, and using a few of the letters we came
up with that code name, and on the first general availability release, we proudly
declared and printed nice coffee cups with the words "Elvis has left the building".

To get the attention and funding for such an elaborate new product, the TED team
met and interviewed several potential customers in New York and London, focusing
on the financial services industry, and particularly a select target audience called
Capital Markets, otherwise known as the Financial Front Office. When it came to
providing a new event-driven platform, the logical place for us to start was with
people that already understood the need for the complex analysis of stock trading
data, with one person telling us on more than one occasion that if this technology
could save one millisecond of processing time a year, it was worth one hundred
million dollars to them. We never figured out how they ever came to that conclusion,
but I can tell you that nothing inspires computer company executives more, and
encourages high profile attention and project development spending, than having
that kind of statement heard from customers.

So after several "man years" of effort, this built "from the ground up" technology
was released with its first release on July 16, 2007 from the company, BEA Systems.
The core foundational platform was ready for customer adoption with some basic
developer tooling to get them started.

In the following year, 2008, from within the Oracle organization, the team expanded
with a new strategic goal to combine, integrate, and release, what was believed as
two best of breed technologies, the first, the WebLogic Event Server, and the second
was a Complex Event Processing "engine", evolved after many years of research by
the Oracle engineering team, as one of the most complete and powerful in-memory
extensible event analytics technologies available.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

Incoming Data Streams Latency

Instantaneous Perceptive Responses(low microseconds)

Aggregate, correlate,filter data

Can Handle Unlimited Queries

Data/Msg.

Feeds
Listerns

Handle triggers raised

by the processors

Processors

Set of queries applied

to the streams

Events

Implemented as

JavaBean or Map

Resulting Data fed to vast

business opportunities with

Java language

Data Feed

Adapters

Process

Events

(CEP)

Listener/SINK:

User Code

(plain Java)

EDA Java Application Container

Adapters

Translate external

events/data into

Java objects for

processing

Enriched Streams

From any source:

data stream, web

services, Java,

Database

On July 1, 2009, these two technologies came together to create the first release of
the Oracle Event Processing Solution 11gR1. Over the years since, the product has
matured as a rock solid, dependable, highly available industry leading solution,
now used by customers across all different kinds of industries.

The Java Event-Driven Server, the bits
and bytes of the architecture
The initial design goal that came from the financial services customers was to create
a new lightweight software computing platform that could efficiently process
events at speed, fifty-thousand, one hundred-thousand, even one million a second,
and beyond, without compromising on the ability to provide the real-time analysis
needed. This analysis being the ability to identify complex event patterns in the
streams of data coming from their market data feeds, such as a "W" stock trading
pattern, all processed with the results, in perceptively instantaneous response times,
in reality less than one millisecond and over time in the low microseconds.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Oracle Event Processing

[34]

As the "art of the possible" was realized for the baseline design goals, the customers'
requirements grew to encompass the need for this lightweight computing platform
to be completely Java language based. This was due to the fact that in those days,
and even today, C/C++ developers are generally more costly and these types of
solutions are hard to modify and maintain. They asked for a Java Event Server, while
similar to a traditional JEE Application Server, it could be used for the management
of the complete life cycle of these unique, new applications, but did not have all the
processing overhead needed to handle Web Services, Enterprise Java Beans (EJBs),
Java Connector Architecture (JCA), and other JEE capabilities, which are not needed
directly for an event-driven platform.

With the Java platform approach, one dreaded issue arose, that being its data
garbage collection (GC) pauses, generally handled automatically and efficiently by
the Java Virtual Machine, but a major bottleneck in high-performance, low-latency
applications. This was resolved with work conducted by a team of Java Virtual
Machine specialists, who made available a new deterministic implementation
that would allow for the configuration to efficiently manage the amount memory
recovery within the confines of an allowable latency period.

1 9 12 19

days

SELECT FIRST (a.time), LAST (c.time)

From ticker MATCH_RECOGNIZE (ONE ROW PER MATCH PARTITION BY name

PATTERN (A+ B+ C+ D+)

DEFINE AS (price < PREV(price))

B AS (price < PREV(price))

C AS (price < PREV(price))

D AS (price < PREV(price)))

A

B
C

D

The other major requirement was for this solution platform to completely
support the Event Driven Architecture (EDA) Event Processing Network
application model, in reality the most efficient methodology for processing
continuous streaming event data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

This was achieved by leveraging the Spring programming framework, which enables
each event node to be connected or "wired" together. This type of implementation
would eventually provide the capability for users to dynamically manipulate
the processing logic of the application during execution time, and simplify the
visualization representation for developers, by facilitating a canvass/palette
approach in the evolving development and deployment environments.

The lightweight Java container would need the capability to be deployed and
executed across every facet or tier of a business, even on the sensor/device edge of
the infrastructure so the amount of disk space and memory used had to be relatively
small. In addition, it should provide the ability to dynamically add or remove event-
related components (services/bundles) depending on the particular business/
solution requirement.

To address these requirements, the architectural team selected the use of OSGi™ so
that each eventing component was modularized in such a way that each could be
packaged together to form a functionally-rich Java Event Server.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Oracle Event Processing

[36]

OSGi is best suited for this type of platform implementation as the Open Services
Gateway initiative framework is a module system and service platform for the Java
programming language that implements a complete and dynamic component model.
Applications or components, which are in the form of deployment bundles, can be
remotely installed, started, stopped, updated, and uninstalled without requiring the
server to be restarted.

Bundles are JAR files that contain resources and classes for providing a set of
functionality, and they contain an OSGi manifest (as shown in the preceding
screenshot) describing the bundle and its dependencies. Bundles use the JAR file
manifest format composed of name-value pairs.

The foundational services needed (or the Core Engine as it was called) was
gathered from the already industry grade, mature capabilities evolved over many
years for the WebLogic Server (JEE) Container. This modularity, enabled by the
OSGi Dynamic Module System, eventually included over 230 modules, all providing
a variety of common services with some also from open source, such as Equinox
(OSGi Backplane), Jetty, Tomcat, Spring.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

CE: OSGi+

module subset

The Deterministic JVM (Jrockit)

OSGi Framework

Base (work manager,times, logging, units, etc)

http-base spring

jetty JAXB

Stream
Processor

CEP
Engine Real-Time Kernel

enterprise Securityconnectivity

enterprise-base

With this base functionality now in place, a series of new services (OSGi bundles)
were written and packaged together to support the new requirements for customer's
event-driven applications. These included Stream Management, Event Repository,
a HTTP publish and subscribe engine, Coherence, and the powerful Complex Event
Processor service.

One bundle of interest is the functionality provided by the JMX API framework,
which facilitates the dynamic programmatic modification and monitoring of the
entire Java container itself. Later we will describe how this framework is used by
the Visualizer Monitoring and Management tooling.

Advanced Tooling

Oracle Event Processing

L
a
te

n
c
y

A
n
a
ly

z
e
r Core Event Infrastructure

Real Time

Kernel

Stream

Management

Complex

Event

Processor

App Framework

JDBC

POJO
Spring Services

Extended Event Infrastructure

HTTP

Pub/Sub

Engine
Event

Repository

Data

Caching

Cluster

Management

Foundation Services

Config/

Admin

Logging &

Administration
Coherence

JRockit Real Time JVM

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Oracle Event Processing

[38]

As a standards-based Java Container (Event Server), customers can use any
standards-compliant Java Virtual Machine, but in situations where extreme high
performance and low latencies is demanded, the provided JRockit JVM can be used
with its determinism capabilities in addition to the wealth of additional tooling to
interrogate and optimize the applications executing. JVM determinism is an important
requirement for event-driven applications that demand low latency response times
because this capability ensures the use of an optimized Java garbage collection (GC)
algorithm that, in most cases, guarantees it will complete GC pause times within a
certain period. With the JRockit JVM, this can be a time as low as 10 milliseconds.

For now it will suffice that you are aware of the basic foundational architecture
and modular design, however over the following chapters you will encounter
the functionality provided by these and the many other services included in
the Oracle Event Processing Platform.

The adopted event language
Let's now turn our attention to the abstracted event language used by the Oracle
Event Processing Platform, which must provide the wealth of analysis on the
streaming event data. Each event processor node in an event-driven application
will contain one or more query statements.

Introducing the Continuous Query Language (CQL), based on †Stanford University
research, and encompasses the SQL-99 standards with specific additions which
extends the rigor of the relational model to event stream processing, resulting in
a more robust implementation with broader in-memory application.

This language approach was adopted in part so that most customers who are
already familiar with database SQL could easily extend their knowledge into the
world of streaming event data only needing to learn the addition semantics for
temporal and event-driven querying. With one key factor being that the queries are
executing in-memory on an event stream in-memory rather than a database table
on disk. This language is explained in greater detail at http://ilpubs.stanford.
edu:8090/758/1/2003-67.pdf.

CQL concepts
CQL provides the formal model for describing time, streams, and relations and
enables the construction of "windows" over event streams, bounded by time or
count (which is also extensible via an API), and includes event partitioning based
on values and the ability to process events incrementally or in batches.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

CQL defines a "working set" of events upon which you would apply queries such as
filtering, aggregation, and the correlation of events. It also adds pattern matching,
supporting track-and-trace scenarios (for example, detecting missing events) with
Data Cartridge Domain Specific Extensibility involving specialized technologies,
such as real-time geographical spatial analysis, as shown in the following screenshot:

Later chapters describe the Continuous Query Language in detail, but to get a taste
for the completeness and power of the language, following are some examples with
a general description of its purpose, which are commonly used and re-used by
various companies:

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Oracle Event Processing

[40]

Purpose: Identify a specific value in the event data and will only pass events that
contain that value, effectively a filter for the stream.

Purpose: Create a synthetic event, which includes both streaming event data with
reference data that was been previously persisted in the in-memory data grid.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

Purpose: Calculates aggregate values over a sliding one-second window with output
every half second.

Purpose: The MEASURES clause gives a name to the value in the events timestamp
so it can be used in the SELECT statement. The PATTERN clause defines that you are
looking for an A event followed by the B event (These are defined in the DEFINE
clause). The DURATION clause defines the period between events.

The philosophy and fundamentals of
developing
Now that the basics have been covered in terms of the event-driven Java Container
and the Continuous Query Language (CQL), let us introduce you to developing
Oracle Event Processing applications. We feel the best way to understand this
technology is to use it, and so we intentionally made the product relatively easy
to install and get started quickly.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Oracle Event Processing

[42]

We provided a single installer media kit for each of the major platforms and when
executed, with just a few basic responses Oracle Event Processing can be ready for use.

Currently available as the Integrated development environment platform is Eclipse, so
in the filesystem the installer provides a plugin which should be installed into Eclipse.

This is well documented in the Oracle Event Processing documentation, so we will
not dwell too much on the process, but the folder called eclipse-update-site
(which is shown in the preceding screenshot) contains the software that you must
install in your Eclipse IDE.

The Oracle Event Processing development environment is targeted at Java
developers who understand the basics of Java application development techniques.
All of the artifacts created during the event-driven application development process
can be inspected and modified directly, so there is no "hidden black box" approach.

The main goals for this development approach is to provide first-class tooling
for development of Oracle Event Processing applications, while at the same time
retaining the power and flexibility of the Oracle Event Processing programming
model, allowing for higher-level editing at the same time.

As the Oracle Event Processing tooling evolves, you can expect much more visual
editing capabilities, which allow the developers to easily create Event Processing
Network (EPN) nodes on the available canvass, join the nodes together and re-use
common node implementations, such as Event Adapter Nodes for connectivity to
various protocols and Event Query patterns in the processor nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

For those familiar with these types of development environments, not only can the
application be created and debugged, but also the Oracle Event Processing server can
be completely provisioned, started, stopped, and your application bundles published
(deployed) and removed (undeployed) as desired.

Creating an Oracle Event Processing
application
Now we will step you through building your first Oracle Event Processing
application. By following this methodology, your installation of the product
will be significantly validated so that any further efforts in building more
sophisticated event-driven applications should go relatively smoothly.

The functionality of this sample application is again well described in the Oracle
Event Processing documentation, however in summary the signal generation
application receives simulated market data using the integrated load generation
testing tooling and verifies if the price of a security has fluctuated by more than
a certain percentage (initially two percent). The application also detects if there
is a trend occurring by keeping track of successive stock prices for a particular
symbol. If more than three successive prices fluctuate more than two percent,
this is considered a trend.

Firstly ensure that you have successfully installed the Oracle Event Processing
plugin into your Eclipse environment you will be able to confirm the status by
selecting the Help menu and the About Eclipse Options.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Oracle Event Processing

[44]

We will now start to create the sample application in the development environment.
Using the menu options, select New and then Other. This will direct you to a context
menu showing the Oracle Event Processing options available:

While there are currently three Oracle Event Processing-related options available,
select the Oracle Event Processing Application Project menu option, which will
invoke the integrated wizard for creating a new event-driven application from
scratch or leverage one of the available sample template applications:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

As we step through the creation wizard, we are generating the required project, Java,
and metadata code for our financial services signal generation sample application.

The next step of the wizard is to request a name for the project.

Once you have specified the name (you can use the same name as shown in the
following screenshot), for the first time only, you will need to specify the target
runtime for the Oracle Event Processing Server:

This is the location of the Oracle Event Processing software that you specified during
the installation process. Select the New button and proceed.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Oracle Event Processing

[46]

As shown in the following screenshot, select the Oracle Event Processing v11.1
Server runtime and create a new local server by selecting the option box on the
wizard panel:

The location of the Oracle Event Processing software was determined during the
installation process. In the following example, it is /root/Oracle/Middleware:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

Generally, selecting the default JRE (Java Runtime Environment) is adequate for a
base installation.

At this point, the Finish button can be selected, although it is best practice to select
the Next button, leave the next default to local server and then on the final wizard
selection panel review and validate the information so that your entries carry no
errors and point to the correct Oracle Event Processing server instance:

As the server wizard returns to the application creation wizard, you will now
observe the new Oracle Event Processing target runtime that has been defined
and ready for use.

Whenever you develop applications with this Eclipse plugin, what you have
specified here is the location where the application will be deployed (published)
for execution.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Oracle Event Processing

[48]

While a configurable option, it is usually good practice to leave the default location
for the resultant project artifacts:

The Next button will take you to the wizard panel indicating the application bundle
properties. What you have already specified can be left as the default parameters:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

On the next panel of the wizard, you should select the Create an Oracle Event
Processing Application using an application template checkbox. This will highlight
the available sample applications that can be dynamically created. Here you will
select the Signal Generation application and press the Finish button:

The Oracle Event Processing application creation wizard will now automatically
create all of the project artifacts that are needed for this sample application, and
visually represent the new application Event Processing Network (EPN).

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Oracle Event Processing

[50]

Now let's execute this sample application:

With the new Oracle Event Processing application created, the next step is to start
the server by pressing the green start icon, as shown here:

Note that the Oracle Event Processing server may take a few minutes to completely
start, so wait until the Server Started message is displayed in the console.

At this point you can now publish (deploy) the Signal Generation sample application
by right-clicking on Oracle Event Processing v11.1 at localhost, select the application
and use the Add and Remove button to place onto the server:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[51]

The configured selection box will show all of the selected Oracle Event Processing
applications that will be published to the server, once the Finish button is pressed:

Now that the application is configured for publishing (deployment), press the Finish
button to execute the application on the server.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Oracle Event Processing

[52]

After the application is successfully published to the Oracle Event Processing
server, informational messages will instantly begin to appear in the console
window indicating that the application is executing but as yet, does not have
any stock symbol events to process, as shown in the following screenshot:

To make the execution of this sample easy to implement, during the application
creation process some additional files where added to the project. The first is the
Signal Generation Dashboard URL file, by double-clicking on this project
element, a basic visual user interface will be initiated that will show the stock
symbol event information:

Press the Start button to prepare the user interface to receive the output from
your Oracle Event Processing Network application:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[53]

To start the simulation of stock symbol event data streaming to your adapter in the
EPN, a file was added to your project called startDataFeed, depending on your
operating system platform, double-click this project element to begin the activity:

You may need to select the Update button to force a display refresh.

As the Oracle Event Processing application executes, you will see the results shown
on the visual dashboard:

Congratulations, you have successfully entered the world of Oracle Event Processing
application development!

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Oracle Event Processing

[54]

Some hints and tips
As you will now start to use the development environment, it will be useful
to remember a few developer-focused features that have been introduced over
time to make applications easier to develop.

This is not an extensive list as the Eclipse environment also provided many features
for rapid application development, but we do touch upon some key areas:

• Creation and manipulation of the EPN on the canvas
• Available keyword prompting
• Event type repository review and updating

The first concept is using the IDE to dynamically create EPN nodes using the right
mouse click anywhere on the canvas window, and then selecting the event node
from the available drop-down context window. Once the relevant event node
appears, you can select its preceding event source node and then drag a line to
connect to this new node by selecting and holding down the left mouse button.
All of the Java and metadata code needed is automatically created for you:

The next ease-of-use feature is to use the Ctrl + Space bar together both in
generated assembly files and the CQL processor nodes. Where applicable,
this request will invoke the currently available keywords in a drop-down
selection box, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[55]

The final concept to be introduced is the visualization of the available event
types for the application. By using the Event Types tab at the bottom of the EPN
viewer window, a display window becomes available to not only review the event
properties, but also to create and remove event types:

Controlling from the command line
Before we investigate the visual monitoring and management tooling capabilities of
the Oracle Event Processing Platform, it is worth pausing here to also highlight some
of the available interactions possible with the server from the command line. There are
many situations when an IT department or developer would like to control the Oracle
Event Processing server environment remotely or from within their own scripts.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Oracle Event Processing

[56]

As one would expect with a comprehensive event-driven Java platform, a wide and
varied collection of commands are available.

Let's begin with the basics and use the Oracle command line to start and then stop
the Oracle Event Processing Server:

In the lower panel of the preceding screenshot, the following command
was executed:

startwlevs.cmd

This command initiated the Oracle Event Processing Server. Once this had
successfully completed and the <Server STARTED> message was shown, the
following command was executed:

 java -jar wlevsadmin.jar -username wlevs -password wlevs SHUTDOWN

Using this command will gracefully shutdown the server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[57]

Now we can be a little more adventurous and publish (deploy) and then remove
(undeploy) the sample signal generation application that we created in the previous
section; refer to the following screenshots:

In the folder that has the created application bundle JAR file (in this case our new
signalgeneration application), use the following command to publish it to the
Oracle Event Processing Server:

java -jar D:\OraclePS5\ocep_11.1\bin\wlevsdeploy.jar -url http://
localhost:9002/wlevsdeployer -user wlevs -password wlevs -install com.
myapp.signalgeneration_1.0.0.jar

It should be noted that the deployments.xml file that resides in the domain/
defaultserver folder contains the applications that are currently deployed
for this server.

To remove this application from the Oracle Event Processing Server, use the
following command:

java -jar D:\OraclePS5\ocep_11.1\bin\wlevsdeploy.jar -url http://
localhost:9002/wlevsdeployer -user wlevs -password wlevs -uninstall com.
myapp. signalgeneration

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Oracle Event Processing

[58]

In this section, we have only touched on a few of the commands that are available
with the Oracle Event Processing Platform, but the examples here will provide you
with the basic understanding to initially evaluate the capabilities and then explore
what else is possible.

Watching things happen and changing
what happens
As Oracle Event Processing applications are published and executed on the server,
it is important to be able to monitor and manage its deployment aspects. In the
same way as an Admin Console is provided for traditional JEE Application Servers,
a Rich Internet Application (RIA) is provided for Oracle Event Processing, called
the Visualizer:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[59]

Using the URL indicated in the preceding screenshot, the browser user can use
the Visualizer to effectively observe all of the major aspects of the executing Oracle
Event Processing Server(s), configure, and manipulate that runtime environment.

The default user ID and password for the Visualizer are wlevs and wlevs.

The features and capabilities are significant. So in this section, we will focus on
some of the typical uses of this tool with a typical usage pattern and leave you with
enough details to explore in more depth using the available product documentation.

A good starting point when using the Visualizer is to review the actual published
(deployed) Event Processing Network of the application currently executing on the
Oracle Event Processing Server.

This is achieved, by expanding the visual nodes available on the left-hand side
navigation tree and then under the Applications node selecting the application
of interest. On the right-hand side of the Visualizer, you can select the Event
Processing Network tab at the top of the window.

This representation of the EPN will mirror the visualization of the EPN that was
created in the development environment; the difference is that what is shown in
the Visualizer is the actual application deployed which can be manipulated
during its execution:

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Oracle Event Processing

[60]

Now we can review an application executing, we can manipulate its processing
dynamically using the Visualizer. For example, let's change the CQL query that is
currently executing in the processor, by right-clicking on the processor node:

Select the CQL Rules option from the context menu and press Enter. In a tabular
format, the Visualizer will show the existing CQL queries in that processor. To see
a more visual representation of a query, select the query with a Rule ID of percent,
and then press the Query Wizard button:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[61]

The Query Wizard tab can be used to visually manipulate and construct CQL that
can be deployed to the processors found in an application. For now, we will use this
capability to change some of the parameters of the already defined CQL which will
dynamically change the real-time analysis and results provided by the application:

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Oracle Event Processing

[62]

Double-click on the output node of the displayed CQL statement; this will display
the generated and available query, which can now be modified as desired.

Change the parameters indicated. What are you doing?

Well, in this query you are changing the percentage change spread analysis for the
displayed stock symbol event data shown on the user interface dashboard. At this
point, our goal here is to show you how easily you can manipulate CQL queries and
immediately inject them for execution in the processors. In our subsequent chapters,
we will focus a lot of attention on the semantics and clauses of the Continuous Query
Language, so you can learn in more detail how to build and understand these queries:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[63]

Once you have modified the values, in this case, change from 2 to 5, in the two
required locations, you should press the Validate button and, if the validation is
successful, then press the Replace Rule button, to immediately influence the processor:

A message box will be displayed to indicate that the injection process has completed.
The Visualizer, under the cover, uses the Oracle Event Processing JMX framework to
implement this functionality and in fact, this can also be done programmatically as
you learn more of the capabilities of this event-driven platform:

Finally, as you return to reviewing the provided Signal Generation Dashboard,
you will observe that under the Change column on the left-hand side of the display,
the stock symbols that have had a change spread greater or less than five percent
are only shown. Importantly to note, is that your sample application continued to
execute without the need to stop and restart.

www.it-ebooks.info

http://www.it-ebooks.info/

An Overview of Oracle Event Processing

[64]

Summary
We have described in this chapter the history behind the technology, the basic
architecture of the Oracle Event Processing event-driven platform, and how you
can leverage both the command line and visual tooling available to create application
bundles and execute them on the server, in addition to managing and monitoring the
environment of the server.

Also we learned how to dynamically manipulate a CQL query in the Visualizer
and update an event processor, while the application continues to execute.

Over the subsequent chapters, we take you through a much more detailed review of
the major artifacts, elements, and capabilities of Oracle Event Processing, focusing
next on how to define and adapt the use of events in your event-driven applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Adapting Events for OEP
The first step in processing events is to set up adapters that receive and prepare
the events for processing. Adapters are the event sources and event sinks at the
beginning and the end of an application. This chapter explains how to use the
out-of-the-box adapters (such as JMS, CSV, and HTTP pub-sub) and also how
to create your own adapter for other protocols. We also demonstrate how you
can enable re-use by packaging events and adapters in a separate bundle.

This chapter will cover the following topics:

• Creating and converting events
• Event type system
• Platform adapters
• Configuring your own custom adapter

Creating and converting events
One of the first tasks when writing an OEP application is to get the event data
into our application. We classify any streaming input data that we would like
to use in our application as an event. Each event will have a name and attributes
with defined data types.

Event type system
Every OEP application needs a way to specify how the incoming data will
be processed in a manner that the OEP container understands.

www.it-ebooks.info

http://www.it-ebooks.info/

Adapting Events for OEP

[66]

There are two main ways of accomplishing this:

• One way is to define all of the details regarding the specification of your
events purely in XML within the application's spring assembly file. By using
this method, you can define event types as either: a Java bean, java.util.
Map, or tuple.

• The other way is to create a Plain Old Java Object (POJO) and map the class
name to the name that you provide for the event. We will look at each of
these ways in more detail.

The first main way to declare events is to explicitly define the event name,
its properties, and data types in the spring assembly file of the application.
You would define a type-name attribute for your event and then the properties,
as shown in the following example:

Using the OEP Java data cartridge, you can use Java class event-type definitions
within Java bean event definitions, as shown here:

<event-type-repository>
 <event-type name="Customer">
 <property name="name" type="char"/>
 <property name="address" type="Address"/>
 </event-type>

 <event-type name="Address">
 <class-name>postal.Address</class-name>
 </event-type>
<event-type-repository>

The more common way to define an event is to provide a Java class that has the
attributes that you would like to use. You need to generate the getter and setter
methods for each attribute.

You can easily generate the getters and setters using a feature in Eclipse, which can
be accessed from the Source menu with the Generate Getters and Setters option:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

It is also a good idea to generate a toString() method with your POJO. This can
be helpful in logging event output, especially during application development.
Again, the Eclipse IDE has an option to generate this for you.

Once you've created your Java class, you simply reference it in the application's
spring assembly file, as shown in the following code snippet:

An important point to keep in mind is that event type names are global to the
server, so you want to make sure that you don't duplicate event type names and
or definitions with another application running on the same server. If this is a
possibility for your environment or you are considering a large-scale deployment
of OEP applications, it is recommended that you package events in their own bundle.
This will be explained later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Adapting Events for OEP

[68]

Platform adapters
The platform adapters are out-of-the-box adapters, which you can use to receive
data and create events without having to write your own Java code. They provide
you with technical implementations of specific protocols while still giving you the
flexibility to convert data as you wish, if necessary.

The JMS adapter
One of the most common ways to receive and send events into your OEP application
is to set up a JMS adapter. OEP does not have the JMS server capabilities, but it does
have all of the WebLogic JMS client libraries readily available for use.

The JMS adapter will create events from JMS map messages when you specify the
name of the event that you would like to create. It will look for names in the JMS
map message that correspond exactly to attribute names in your event type and map
the values accordingly. Likewise, in the case of an outbound JMS adapter, it will take
the attributes for the event that you specify and create a JMS map message that has a
set of names and values according to the attributes and values of the outgoing event.

When the incoming JMS message type is not a Map message, you can still use the JMS
adapter, but you should use a converter to convert the incoming type to the desired
event type using a few lines of your own Java code. For example, the incoming JMS
message could be a text message in an XML format. You would supply a converter
bean that had a few lines of code, which parsed the XML, and created the desired
event. You return that list of events in the convert method of the inbound converter.

You simply define the converter bean in the spring assembly file and pass it as an
attribute of the JMS adapter.

Here is an example of the configuration for an input JMS adapter that uses a
converter bean to convert an XML message to an event. In the assembly file,
specify the adapter configuration and the converter bean definition:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

The converter bean will contain the code to convert the XML to your event type
using the convert method:

For the JMS adapter, we must supply the configuration that provides the details
about the JMS server and the JNDI names of the queues or topics, the connection
factory, and any usernames and passwords, if necessary.

In the wlevs folder under META-INF, we can add to an existing configuration file or
supply a new configuration file specific to adapter configuration that contains the
configuration of our input adapter. If you need a new configuration file to place in
the wlevs folder, you can easily generate a template for one using the New option
under the File menu. You will find an option to generate a configuration file under
the Oracle Event Processing section:

www.it-ebooks.info

http://www.it-ebooks.info/

Adapting Events for OEP

[70]

In order to use the JMS adapters in our application, we must import the following
additional packages in our manifest file:

com.bea.wlevs.adapters.jms;version="11.1.1.7_0",
com.bea.wlevs.adapters.jms.api;version="11.1.1.7_0",

The CSV adapter
The CSV adapter is a great, simple way to start creating and getting data into your
OEP application. It allows you to create a simple comma-delimited file as the input
to your application and have it processed in a predictable manner according to
the timing settings that you specify. This is extremely helpful, since a lot of OEP
applications are time-sensitive. The output of an application can often be highly
dependent on the rate upon which the data is received.

The three important instance properties to specify when defining the CSV adapter
are the port, eventTypeName, and eventPropertyNames properties. The CSV
adapter is a type of socket adapter. When an OEP application starts with an
adapter having the provider name csvgen, it will open a server socket connection
on the specified port number. The adapter will attempt to create an event with the
specified eventTypeNames property. The mapping between the data in the CSV
file and the attributes of the event is determined by the order in which you specify
the eventPropertyNames property for each of the attributes that you would like to
populate from the file.

First, create a CSV file with the data you want to read. You can do this with a simple
text editor. Then simply create a properties file that specifies, among other things, the
name of the CSV file that you want read. Use one of the existing CSV properties files
from the samples as an example.

Here is an example of a csvgen adapter configuration:

In this example, an adapter called ShipPositionGen will open a socket connection on
port 9022 and will create events of type ShipPos, which must be defined in the event
type repository. It will map the first data element in the file to the shipID attribute, the
second to seq, and the third and fourth to latitude and longitude respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

Make sure that the attributes defined in the eventPropertyNames property are in
the same order as the data that you provide in your CSV file.

Here's an example of the CSV file for the preceding adapter configuration:

The loadgen utility will read from the CSV file and try to connect to the TCP/IP
socket by using the port number, which is provided as a property of the properties
file that is passed to the loadgen utility as an argument. In addition to the name of
the CSV file and the port number, there are some other useful properties to set.

Here is an example of a properties file for the csvgen adapter:

www.it-ebooks.info

http://www.it-ebooks.info/

Adapting Events for OEP

[72]

Notice, in the preceding example, that you can set how long the load generator
should run (test.secs) and the rate at which it should send messages in seconds
(test.rate). It's also possible to run the load generator for an OEP instance that
is running on another server, simply set the host property (test.host) to the host
that is running OEP.

A CSV adapter can be useful for getting started before connections to the actual
data source are available. It is also helpful for testing various speeds by configuring
the loadgen properties file accordingly.

The loadgen utility is the driver for the CSV adapter. The loadgen utility can
be found in \ocep11.1\utils\load-generator.

HTTP pub-sub adapter
OEP includes a pub-sub server that programmers can use to implement HTTP
publish-subscribe functionality in their applications.

The HTTP pub-sub adapter is an adapter that is designed to allow you to take
advantage of the pub-sub capabilities provided by the OEP server, which leverage
the Bayeux protocol from the cometd project. This is an HTTP protocol that
maintains an open HTTP connection. This is much more efficient than plain HTTP
since the connection is not continually opened and closed between messages. This is
not to be confused with implementing REST. This is a protocol designed to help you
build dynamic web pages.

By default, the HTTP pub-sub adapter will communicate by using Java Script Object
Notation (JSON). It works in a manner similar to the JMS adapter described earlier,
in the sense that it will automatically map JSON to the event attributes (in the case
of an inbound adapter) or automatically generate JSON according to the attribute
names of the event you are sending (outbound).

The OEP Visualizer has some useful tools for helping you both send HTTP pub-sub
messages to be received by your configured inbound HTTP pub-sub adapter and to
view the events that are generated by your outbound adapter.

Here is an example of an adapter within an OEP application that is used to subscribe
to a HTTP pub-sub channel:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

Notice that the provider attribute is set to httpsub, because this will be an adapter
that subscribes to a server to receive events into our OEP application.

The possible configuration for this adapter looks as follows:

This configuration shows a server URL, which references the local host, but it could
refer to an external server that implements the Bayeux protocol. In this case, you
could also simply use /pubsub since the server is the local OEP server.

To test sending events into our application, we can use the View Stream feature
of the OEP Visualizer. Remember to first initialize the client, select the channel to
which you would like to publish the event, insert the JSON string (with attributes
that correspond to the event you are creating) into the box provided, and click on
the Publish button to publish the event:

More commonly, you would use the HTTP pub-sub adapter to publish messages to a
web-based client in the latter part of your event processing network as an event sink.

www.it-ebooks.info

http://www.it-ebooks.info/

Adapting Events for OEP

[74]

Let's look at how to create this adapter by using the Eclipse IDE tools. From within
the EPN Editor screen, right-click and select New, then Adapter. A wizard will
appear, which allows you to name the adapter and fill in the configuration details,
as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

Select httppub as the provider and choose to create a new configuration file
specific to this adapter or include it in an existing configuration file, perhaps
one that contains all of your other adapter configurations. Click on the Next
button to fill in the specific configuration information for the new adapter:

www.it-ebooks.info

http://www.it-ebooks.info/

Adapting Events for OEP

[76]

This time we will publish the events to the local pub-sub server implementation
that is included with OEP. Use /pubsub to reference the local server's context path.
Also, enter the name of the HTTP pub-sub channel and the type of event you are
publishing. When you are ready with the configuration, click on the Finish button
and the configuration XML will be generated for you. Be sure to connect the adapter
in the EPN to the channel from which you will be receiving the events:

Make sure that you have the necessary pub-sub channels configured in the server's
config.xml configuration file (that is, the configuration file for the domain, not the
application's configuration file). You will need to define the channel pattern within
the <http-pubsub> section, as shown in the following code snippet:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

You can use the OEP Visualizer to see the output of the pub-sub adapter.

From the View Stream section, initialize the client, choose the channel that you are
interested in, and click on the Subscribe button. After you've published the events,
you should see the results:

www.it-ebooks.info

http://www.it-ebooks.info/

Adapting Events for OEP

[78]

This will not affect your other clients from getting the results. Any other client
subscribing to the same HTTP pub sub channel will receive the same events.

To implement this web page with the map (as shown in the preceding screenshot),
we used the Oracle MapViewer. We will cover the Oracle Spatial capabilities
integrated with OEP in more detail in a later chapter.

Remember, if you stop your OEP server, you may need to reconnect the subscribed
clients. This can be done by simply refreshing the page in the browser.

Configuring your own custom adapter
OEP allows you to easily add your own custom adapter code. You shouldn't be
afraid of the idea of creating your own adapter. It can be as simple as creating a
single Java class. An adapter has optional APIs provided for life cycle notifications,
allocating an execute thread, injecting service references, and receiving events.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[79]

Before creating your own adapter, you should review the OEP adapter APIs.

Interface Role
StageIdentityAware Provides a reference to the name of this node.
StreamSource Allows you to get a reference to the

downstream listeners.
ApplicationIdentityAware Provides a reference to the name of the

application.
InitializingBean Provides you with access to the adapter after

the properties have been set, so that you can
do your own initialization.

ResumableBean Provides you with an opportunity to perform
the tasks that should be done to allow the
adapter to start functioning again after it has
been suspended.

RunnableBean Provides you with a thread to execute the main
processing logic of your adapter.

DisposableBean Provides you with an opportunity to do any
necessary cleanup or closing of connections
before the adapter is shut down.

www.it-ebooks.info

http://www.it-ebooks.info/

Adapting Events for OEP

[80]

The sample HelloWorld application contains an example of a custom OEP adapter.
It is an adapter that is generating its own event data. While it is more common to
receive data from an outside source, it shows you how easily you can create an
adapter of your own with a few lines of Java code:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[81]

As you can see in the preceding code snippet, HelloWorldAdapter implements
RunnableBean and StreamSource from the com.bea.wlevs.ede.api
package. StreamSource allows you to send events downstream by calling the
sendInsertEvent method. RunnableBean is where you will implement the code to
receive the events. In this case, the adapter is generating its own events for simplicity.
Also notice that you must implement a suspend method when using RunnableBean.
Here is where you will provide the logic to help suspend the receiving of events in
order to temporarily stop your adapter when the user makes a request to suspend it
(for example, via the OEP Visualizer):

The setEventSender method is the mechanism used to connect the adapters
to downstream listeners.

www.it-ebooks.info

http://www.it-ebooks.info/

Adapting Events for OEP

[82]

Leveraging OSGi services to create an
adapter
Since OEP is an OSGi-based platform, a useful thing to do is to inject OSGi service
references into your adapter. A common reason to do this is to implement a simple
HTTP adapter.

To do this, we add org.osgi.service.http to the list of imports in the
application's manifest file (MANIFEST.MF). You will also need javax.servlet
and javax.servlet.http. By using annotations, set the reference to the OSGi
HTTPService, as shown in the following code snippet:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[83]

Define your adapter by using the class attribute. Perhaps you will like to set the
HTTP context string here as well:

Packaging custom adapters
In some cases, it may be useful to package adapters separately so that they
can easily be re-used across multiple applications on the same server or across
multiple OEP servers.

Let's take a look at the HelloWorld application and see how we can repackage
it so that the adapter and the associated events are in a separate bundle. Then
we will modify the application so that it uses the separately packaged adapter
and event types.

First, we'll create a new OEP application project. Let's call it com.oracle.cep.
helloworld.adapter.

Create a package called com.oracle.cep.helloworld.event and move
HelloWorldEvent from the sample. Let's put our adapter code in a package
called com.oracle.cep.helloworld.adapter and move the code from the
HelloWorld example. Fix the package references as appropriate.

Now make HelloWorldAdapter implement the Adapter interface com.bea.wlevs.
ede.api.Adapter:

www.it-ebooks.info

http://www.it-ebooks.info/

Adapting Events for OEP

[84]

To use the adapter in a separate bundle, we need to create an adapter factory. In the
adapter package, create a new class called HelloWorldAdapterFactory. It should
implement the com.bea.wlevs.ede.api.AdapterFactory interface. You'll need
to implement the create method to return an instance of HelloWorldAdapter:

In the spring context file for this bundle, we need to define the event type and
the adapter:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[85]

Notice that we used the OSGi service tags <osgi:service> to define the
adapter factory.

In the manifest file (MANIFEST.MF), we'll want to export the com.oracle.cep.
helloworld.event and com.oracle.cep.helloworld.adapter packages.
To do this, go to the Runtime tab of the manifest editor and in the Exported
Packages section, use the Add button to add these packages:

Export the bundle to the user_projects\domains\<domain_name>\<servername>\
modules directory within your OEP server installation. Use the File menu to select
Export and select Oracle Event Processing Applications; the following dialog
window will be displayed:

www.it-ebooks.info

http://www.it-ebooks.info/

Adapting Events for OEP

[86]

If the server is started, you'll need to stop and restart it before you can deploy
any application that uses this bundle.

Now let's create a new application. We will call it com.oracle.cep.helloworld.
application. This time we won't use the HelloWorld application template, so we
start with an empty EPN.

We'll need to add a required bundle to this manifest file for the bundle that we
just exported. For the new application, use the manifest editor and go to the
Dependencies tab. In the Required Plug-ins section, click on the Add button and
start typing in the box to find and then select com.oracle.cep.helloworld.adapter:

Be sure to save this change after you click OK.

Create a new package called com.oracle.cep.helloworld.bean.
Copy the HelloWorld bean from the example. Change the import
of the event to com.oracle.cep.helloworld.event.HelloWorldEvent.

If you are having trouble getting the new application to recognize the dependency
on the adapter bundle, then try re-starting the Eclipse IDE.

Let's configure this new version of the application. Instead of providing a class
name to define the adapter, use the following:

type="myHelloAdapter"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[87]

There is no need for an event-type repository definition since the only event that
we are using is defined within the event-type repository section of the adapter
package. The rest of the configuration is the same, with the exception of the
change in the package name of the output bean. Make sure to include the
processor configuration from the wlevs folder.

Use the same CQL Processor configuration, as in the example:

We will discuss coding CQL in more detail in Chapter 5, Coding with CQL.

www.it-ebooks.info

http://www.it-ebooks.info/

Adapting Events for OEP

[88]

Summary
In this chapter you learned how to receive data into your application in the form
of an event. You've seen the different ways an event and its attributes with types
can be defined in XML or associated with a simple Java class.

We saw how to define a name for each event and discussed how events have a
global scope in the entire OEP server on which they are deployed.

We looked at the out-of-the-box adapters and saw how we can customize them
with a converter class to implement any specific data conversion logic that we
may need while still leveraging the adapter's protocol capabilities.

We showed how easy it is to create your own adapter and how you take advantage
of the lifecycle of an adapter to implement specific features of your adapter at
the appropriate time. We also looked at how to leverage OSGi services when
implementing our own custom adapter.

Finally, we looked at how we can package adapters and events separately from
the main application so that they could be re-used. It is a good idea to package
your events as separate bundles when you have large systems that are likely
to have multiple applications that will be required to share the same event types.

In the next chapter, we will cover assembling and configuring Oracle applications.
This includes creating an Event Processing Network (EPN), which defines the
structure and flow of events for your application. We'll also look at both application
and server configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Assembling and Configuring
OEP Applications

In Chapter 2, An Overview of Oracle Event Processing, we learned about the Oracle Event
Processing development environment for Eclipse. This included importing, deploying,
and running a sample application. In Chapter 3, Adapting Events for OEP, we learned
about one of the most fundamental parts of any OEP application, namely, creating
adapters for OEP so that you can receive data into your application.

In this chapter, we will look more closely at other elements of an OEP application
and explain in detail the Event Processing Network (EPN). The EPN defines the flow
of events through your application and contains various nodes that control the flow
and perform different types of processing. We will explain each of the types of nodes,
discuss why they are used, and demonstrate how they are connected to form your
own application. Each of these nodes can also have associated configuration elements.
We will explore the configuration of the various components and investigate how we
can extend the configuration for cases where we would like to further customize the
components to make them more easily configurable.

OEP applications may also rely on configurations that are defined at the server level.
We will look at the server configuration elements and some of the more commonly
used additions to the standard server configuration file.

This chapter will cover the following topics:

• Implementing the component model
• Exploring the EPN extensions
• Understanding the application configuration
• Defining resources in the server configuration
• Extending the component type infrastructure

www.it-ebooks.info

http://www.it-ebooks.info/

Assembling and Configuring OEP Applications

[90]

Implementing the component model
OEP leverages the Spring development framework for developing applications. The
EPN is documented in the form of a Spring assembly file. This chapter doesn't cover
the Spring Framework in great detail, but we will mention a couple of important
points that you will need to know in order to develop an OEP application. An in-depth
knowledge of Spring is not necessary in order to build an OEP application, but we
encourage you to read more on your own as you become more proficient in building
OEP applications.

One important point to remember about the Spring framework is that it allows
you to instantiate components by expressing them in the XML configuration file.
This component could be an adapter or CQL processor.

Another important point is that you can set or inject values into your components
using the XML configuration. For example, you may have a Java class that could
potentially be used more than once to listen for events. Perhaps this class uses a
TCP/IP socket connection that requires a server name and port number. Rather
than hardcoding this information into the adapter itself, it can be supplied via the
Spring configuration so that it is set when the adapter is instantiated. In this way,
you will be able to re-use the same Java code to create multiple socket connections
with varying server and port numbers.

You may have noticed by now that the EPN, while visible using the EPN Editor
within the Eclipse environment, is expressed in XML that resides in the spring
folder within META-INF in the project's structure.

Exploring the EPN extensions
In this section we will explore all of the elements of an EPN that we can use to
build our application. You can find the schema that contains the EPN extension
elements at <MIDDLEWARE_HOME>\ocep_11.1\xsd\spring-wlevs-v11_1_1_7.xsd.

Defining a simple Spring bean
The simplest element that you can define within an EPN is a Spring bean. This is not
an EPN extension, but we wanted to point out that you may still use this element. It
can be defined at the top level within your EPN XML file, as done in the following
example for a converter bean:

<bean id="InboundJmsJaxbMessageConverter" class="com.oracle.cep.
adapter.InboundJmsJaxbMessageConverter"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

You can also define it within a listener element to act as the listener for processing
the output:

<wlevs:listener>
 <bean class="com.oracle.cep.listener.EventListener">
 <property name="nodeName" value="TransactionChannel" />
 </bean>
</wlevs:listener>

You'll notice that the elements which make up the set of extensions for EPN have the
wlevs prefix.

Creating the event type repository
We saw in the previous chapter that an important part of any application is
the definition of events which are used in an OEP application. The event type
repository contains all of the event definitions that are used within any OEP
application running on that server. As we saw in the previous chapter, event
definitions are global to the server, so we can define an event in a separate
bundle and use it from one or more applications running on the same server.

To define an event type repository, we use the <wlevs:event-type-repository>
element. Within the repository definition, we supply the event type definitions. For
this we use the <wlevs:event-type> element. These elements have a type-name
attribute defining the name that will be used throughout the rest of the application
when referring to this event type. As we saw in the previous chapter, there are
several ways to define an event, the most common being to use <wlevs:class>
and specify the class which represents that event.

Setting up the adapters
One or more adapters are usually the starting point for an OCEP application. We
create an adapter either graphically, using the EPN Editor in Eclipse, or manually, by
specifying the <wlevs:adapter> tag in the spring assembly file of our application.
An adapter should always have an ID and have either a class or a provider. In the
case of the out-of-the-box adapters, you specify the provider attribute. If you were
to create your own adapter for which the custom Java code was provided within
your application, you could simply use the class attribute and supply the name of
the Java class including the package name.

www.it-ebooks.info

http://www.it-ebooks.info/

Assembling and Configuring OEP Applications

[92]

A common requirement of many adapters is to use <wlevs:instance-property> to
specify properties which the adapter requires. You will need to supply the name of
the property that you are setting and either a value or a reference (ref) to a <bean>
element, which is also defined in the Spring assembly file, whichever is appropriate
for that specific property that you are setting.

To connect the adapter to downstream components, you need to supply one or more
<wlevs:listener> elements to express where the output events from the adapter
should go next to be processed. For the listener elements, you supply a reference
(ref) to another node defined in the EPN.

Besides setting some properties here, you can also supply some optional configuration,
which can override the configuration that is supplied in the Spring assembly file. As
we've seen in the previous chapter, adapters have specific configuration associated
with them depending upon the type of adapter. This configuration resides in the wlevs
folder under META-INF. We'll cover that in more detail in the next section.

Configuring channels
A channel represents the physical conduit through which events flow between
other types of components. When using channels in conjunction with a CQL
processor, the channels must specify a single event type. We create a channel by
creating a <wlevs:channel> element in our Spring assembly file. You will supply
an id attribute and, in most cases, and an event-type. You can also supply the
max-size and max-threads attributes, but these are probably best left for the
optional configuration of a channel, which we will cover in the next section. Also
note that instead of a channel getting its input data from an adapter or other node
specifying it as a listener, a channel can have a <wlevs:source> configured to
integrate a source. For example, <wlevs:source ref="MyAdapter" />.

A very interesting aspect of OEP is its ability to give developer control to the
application over the concept of time. When beginning to use OEP, you may
simply want to let the system control the concept of time. Here, the server
assigns a timestamp to each event, which is received on the channel, by using
System.nanoTime(). Optionally, you can specify the time by providing the
optional <wlevs:application-timestamped> element and by specifying an
expression to use for the time using one of the attributes in your event within
the <wlevs:expression> element, as shown in the following code snippet:

 <wlevs:channel id="evEventStream" event-type="EvseEvent">
<wlevs:listener ref="EVProcessor" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

 <wlevs:application-timestamped>
 <wlevs:expression>myTimeAttribute</wlevs:expression>
 </wlevs:application-timestamped>
 </wlevs:channel>

This allows the concept of time to be driven by your event data. This can be very
important when you want to create applications that are capable of doing a what-if
analysis over a long time frame of data and you wish to run data through the system
at a rate faster than it naturally would. It's also useful when you have very precise
system timing requirements and would like to get exact results from two different
servers even if their system clocks can differ from each other slightly. Therefore, for
very precise HA across multiple physical systems, you may wish to use channels that
are application time-stamped.

Implementing event-beans
The distinguishing factor in event-beans is that they are able to both receive events
and send events to downstream listeners. They are primarily used for putting your
own Java code in the middle of an EPN. For many reasons, it is often best to try to
express your logic in CQL within a CQL processor. This is because logic within a
CQL processor can be dynamically modified even when the application is running,
(without needing to redeploy the application or restart the server. Changing Java
logic within an event-bean will require you to redeploy the application). But there
are many cases where you would want to include some custom Java logic within
an EPN. You may have something involving many steps, which are quite complex
(especially when this logic is not likely to change very often). Another reason might
be to access one or more Coherence Java APIs in a way that is not supported with the
out-of-the-box OEP-Coherence integration features or would be difficult to model
in CQL. While Coherence is a separate product within Oracle, the JAR files are
bundled in OSGi format with OEP. Many applications use Coherence features within
their application, because Coherence, among other things, is great at holding large
amounts of data in-memory across multiple JVMs. Often OEP applications need
low-latency access to reference data while processing incoming data streams. OEP
integration with Coherence will be discussed later in the chapter and in more detail
in later chapters.

To use an event-bean within an application, you would supply the <wlevs:
event-bean> tag, We will need to supply the id attribute and the class containing
the Java implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

Assembling and Configuring OEP Applications

[94]

Enabling the power of CQL processors
We have dedicated an entire chapter to cover CQL processing in great detail
(Chapter 5, Coding with CQL). For now, we will note that you define a CQL processor
by specifying the <wlevs:processor> tag. We provide the id attribute to define the
name of the CQL processor. We will most certainly have channels with a defined
event-type supplying data to the CQL processors and also have <wlevs:listener>
elements defined within the CQL processor definition to indicate where the resulting
output events should be sent.

While the definition of the CQL processor is quite simple within the EPN, the
real power comes from defining the specific CQL queries, which is done using
the standard OEP application configuration files placed in the wlevs folder. Like
other configuration files, the name of the file itself doesn't matter as long as it has
an .xml extension. It is a common practice to name the XML file after the name
of the CQL processor.

Defining a database table
We can integrate database tables within the EPN by introducing the <wlevs:table>
element. You need to define a data source in the server's configuration file. We will
discuss this later in this chapter. For this element, you would define the id,
event-type, and the data-source attributes. For example:

<wlevs:table id="RegistrationTable" event-type="RegistrationEvent"
data-source="RegistrationDataSource"/>

Once this configuration is in place, you can join a data stream with a table in a
manner similar to joining two database tables.

This can be useful for joining an incoming event from a data stream with its related
reference data, but you might want to consider using a cache for better performance.

Using caching
Cache components can also be integrated with the EPN. This is useful in many ways.
It can be used to connect to reference data for your CQL queries to join incoming
data streams with more static data that is needed for either the CQL logic or the
output messages. It can also be used to store data for future use or, in the case of a
Coherence cache, be used to send data to the database in a simple low-latency way
so that the OEP processing threads are made available for processing more incoming
data without the need to wait for commits to occur against the database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

We can include caching within our application by first defining a caching system
using the <wlevs:caching-system> tag. For this we use the id attribute to define
the name and the provider attribute to specify which caching implementation is
used. Oracle Event Processing contains a local cache implementation, supports
Coherence, and allows for integration of third-party caches. If you are not familiar
with the Oracle Coherence product, you should read a little about it because it
contains useful features that can help you complete your OEP application.

To declare a caching system that uses the OEP implementation declaratively in
the EPN assembly file, use the <wlevs:caching-system> element without any
additional attributes. Since the local cache implementation is the default provider,
you can simply specify the id attribute for the cache:

<wlevs:caching-system id="LocalCache"/>

Oracle Event Processing contains specific integration features for integration with
Coherence. To use Coherence for development, there's nothing extra that you need
to install. The Coherence libraries are included with the OEP install as OSGi bundles.
To implement Coherence, you simply need to supply coherence as the provider
when you define the caching system. For example:

<wlevs:caching-system id="MyCachingSystem" provider="coherence"
advertise="true"/>

Of course, Coherence requires some configuration files. We will provide the same
Coherence cache configuration files that we would supply to any other Coherence
client JVM. We will discuss this further in the chapter.

Once we have a caching system defined, we can then define some specific caches
using the <wlevs:cache> element. We will provide an id attribute to name our
cache, the caching-system attribute to refer to the caching system defined earlier,
the value-type attribute referring to an event type defined in the event type
repository, and either the key-properties or key-class attribute depending on
which one you are using to define the key for this cache. For key-properties, you
supply one of more attributes of the event that will serve as the key. With key-
class, you supply the name of the Java class that is implementing the key.

We will also stress here that the value-type used for our cache should be defined
in the event type repository. This is a common mistake when configuring a cache.
Also, the Java class used here needs to implement java.io.Serializable or for
a better performing serialization when using Coherence as the provider, use the
PortableObjectFormat Coherence.

www.it-ebooks.info

http://www.it-ebooks.info/

Assembling and Configuring OEP Applications

[96]

Especially during development, it is often useful to define a cache listener using
<wlevs:cache-listener> with a reference to a bean that implements the cache
listener logic. The cache listener should implement the appropriate listener for
the caching implementation. In the case of Coherence, it should implement com.
tangosol.util.MapListener.

Here's an example of the configuration of a Coherence caching system and a cache
with a cache listener:

 <!-- Caching Configuration -->
 <wlevs:caching-system id="CoherenceCachingSystem"
provider="coherence" advertise="true"/>

 <wlevs:cache id="AccountCache" caching-system="CoherenceCachingSys
tem"
 value-type="Account" key-properties="accountID">
 <wlevs:cache-listener ref="CacheListener"/>
 </wlevs:cache>

 <bean id="CacheListener" class="com.oracle.cep.listener.
CacheListener"/>

Understanding the application
configuration
The components within an application are configurable with parameters that
either configures the technical properties of an adapter, such as a port number,
some custom application logic such as a message to display to the user or some
application-tuning parameters.

The entire application-specific configuration resides within the wlevs folder in the
META-INF directory. It is important to note that the names of the files in this folder
are not important, you can use any naming convention that you feel would be most
convenient for your application. The only rule to follow is that the file names should
have an .xml extension.

Adapter configuration
In Chapter 3, Adapting Events for OEP, we covered getting started with OEP by
explaining how to define events and implement the various types of adapters,
including explaining the configuration for each.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[97]

When we created an adapter, we specified the configuration that is appropriate for
that adapter. Recall that wizards in the Eclipse IDE can not only help you define
the adapter in the Spring assembly file, but also help you complete the specific
configuration.

Channel configuration
The default channel configuration is typically adequate for most applications.
However, if you want to change this configuration, you must create a channel
element in a component configuration file. In this channel element, you can specify
channel configuration that overrides the defaults. Let's take a look at the possible
configuration elements of a channel.

You can specify the max-size configuration element when you want to allow the
channel to hold events in the event that they cannot be processed immediately. This
will cause the events to be placed in a queue and processed by a new thread. The
default configuration value for this element is 0, which implies there will not be a
thread context switch and that processing will continue on the current thread. You
should specify a value greater than 0 when you want to allow events to queue here,
if necessary, and asynchronously process events from this point using one or more
threads. You specify the maximum number of threads to use in this case using the
max-threads attribute. Keep in mind that setting max-threads to a value greater
than 1 can lead to the possibility of events being processed out of order depending
upon what is happening after this channel. Also note that setting max-threads
greater than 0 without specifying a max-size element other than 0 will have no effect.

Another important configuration of channels is the ability to control from where
inputs are received when preceded by a CQL processor. The selector element
allows you to choose which queries will provide input to this channel.

For this example, imagine that there are two queries within the same processor
and the downstream channels are TotalTypeChannel and TotalChannel. If
you wanted the results of TypeTotalQuery to go on the TotalTypeChannel
and the results of TwentyFourHourTotalQuery to go on the TotalChannel,
you would use a configuration like this:

 <channel>
 <name>TotalTypeChannel</name>
 <max-size>10000</max-size>
 <max-threads>2</max-threads>
 <selector>TypeTotalQuery</selector>
 </channel>

www.it-ebooks.info

http://www.it-ebooks.info/

Assembling and Configuring OEP Applications

[98]

 <channel>
 <name>TotalChannel</name>
 <max-size>10000</max-size>
 <max-threads>2</max-threads>
 <selector>TwentyFourHourTotalQuery</selector>
 </channel>

Cache configuration
To configure a local cache, we provide some caching-system configuration within
a configuration file in the META-INF\wlevs directory.

For the OEP caching implementation, you can optionally configure these elements:

• max-size: The number of cache elements in memory after which
eviction occurs.

• eviction-policy: The eviction policy to use when max-size is reached.
Supported values are: FIFO, LRU, LFU, and NRU; default value is LFU.

• time-to-live: The maximum amount of time, in milliseconds, that an
entry is cached. Default value is infinite.

• idle-time: Amount of time, in milliseconds, after which cached entries
are actively removed from the cache. Default value is infinite.

• work-manager-name: The work manager to be used for all asynchronous
operations. The value of this element corresponds to the name child element
of the work-manager element in the server's config.xml configuration file.
We will discuss the server configuration file later in this chapter.

Here is an example of the configuration for an OEP caching system implementation:

 <caching-system>
 <name>LocalCache</name>
 <cache>
 <name>DrawDownStatusCache</name>
 <max-size>1000</max-size>
 </cache>
 </caching-system>

When using Coherence, you provide the same configuration files as you would for
any other Coherence JVM. The important thing to note when configuring OEP as a
member of the Coherence cluster is that there is a simple way to allow the server to
find the configuration files. You simply create a folder called coherence in the META-
INF\wlevs folder and use the default names coherence-cache-config.xml and
optionally tangosol-coherence-override.xml.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[99]

Coherence cache configuration is a complex topic by itself. You can learn more
about Coherence on OTN at http://www.oracle.com/technetwork/middleware/
coherence/overview/index.html.

Defining resources in the server
configuration
The OEP server configuration contains many important elements that you should
be aware of.

Here's where you will find the name of the domain. The default is
WLEventServerDomain:

<domain>
 <name>WLEventServerDomain</name>
</domain>

A very important configuration element is netio. This is where you will find the
default port number and the SSL port numbers configured:

 <netio>
 <name>NetIO</name>
 <port>9002</port>
 </netio>

 <netio>
 <name>sslNetIo</name>
 <ssl-config-bean-name>sslConfig</ssl-config-bean-name>
 <port>9003</port>
 </netio>

The default work manager is called JettyWorkManager. Here is where you can tune
the minimum and maximum number of threads to be made available to adapters
and other components that use work managers:

 <work-manager>
 <name>JettyWorkManager</name>
 <min-threads-constraint>5</min-threads-constraint>
 <max-threads-constraint>10</max-threads-constraint>
 </work-manager>

OEP comes bundled with the Jetty web server. The server's configuration file allows
you to configure it:

<jetty>
 <name>JettyServer</name>

www.it-ebooks.info

http://www.oracle.com/technetwork/middleware/coherence/overview/index.html
http://www.oracle.com/technetwork/middleware/coherence/overview/index.html
http://www.it-ebooks.info/

Assembling and Configuring OEP Applications

[100]

 <network-io-name>NetIO</network-io-name>
 <work-manager-name>JettyWorkManager</work-manager-name>
 <scratch-directory>Jetty</scratch-directory>
 <secure-network-io-name>sslNetIo</secure-network-io-name>
 </jetty>

There are configuration elements that allow you to configure RMI, the JNDI context,
JMX, and SSL.

You can optionally define a data-source element if you need to use it in your
application. Here is an example of the data-source configuration; you can also
configure connection pool and driver details:

 <data-source>
 <name>oracledb</name>
 <data-source-params>
 <global-transactions-protocol>None</global-transactions-
protocol>
 </data-source-params>
 <connection-pool-params>
 <test-table-name>SQL SELECT 1 FROM DUAL</test-table-name>
 <initial-capacity>2</initial-capacity>
 <max-capacity>10</max-capacity>
 </connection-pool-params>
 <driver-params>
 <url>jdbc:oracle:thin:@localhost:1521/lloywill.us.oracle.
com</url>
 <driver-name>oracle.jdbc.driver.OracleDriver</driver-name>
 <properties>
 <element>
 <name>user</name>
 <value>ocep</value>
 </element>
 <element>
 <name>password</name>
 <value>password</value>
 </element>
 </properties>
 <use-xa-data-source-interface>false</use-xa-data-source-
interface>
 </driver-params>
 </data-source>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[101]

If you are configuring the record and playback capability, you will need a data
source, but you might want to use an embedded database such as derby. Here
is an example of this configuration:

 <!-- start config for record playback -->
 <data-source>
 <name>derby1</name>
 <connection-pool-params>
 <initial-capacity>15</initial-capacity>
 <max-capacity>50</max-capacity>
 </connection-pool-params>
 <driver-params>
 <url>jdbc:derby:dbtest1;create=true</url>
 <driver-name>org.apache.derby.jdbc.EmbeddedDriver</driver-name>
 </driver-params>
 </data-source>
 <rdbms-event-store-provider>
 <name>test-rdbms-provider</name>
 <data-source-name>derby1</data-source-name>
 </rdbms-event-store-provider>
 <!-- end config for record playback -->

If necessary, configure transaction managers in the server configuration file:

 <transaction-manager>
 <name>TM</name>
 <rmi-service-name>RMI</rmi-service-name>
 </transaction-manager>

We discussed in Chapter 3, Adapting Events for OEP, the HTTP pub-sub adapter. The
server configuration file allows you to configure the pub-sub server. The default
server is called pubsub with the path as /pubsub. If you decide to use the pub-sub
capability in your own application, you can add additional pub-sub servers or
extend the default one with additional channels by providing more channel elements
as in the following example. Here, we provide three additional channels for a ship
tracking application:

 <http-pubsub>
 <name>pubsub</name>
 <path>/pubsub</path>
 <pub-sub-bean>
 <server-config>
 <supported-transport>

www.it-ebooks.info

http://www.it-ebooks.info/

Assembling and Configuring OEP Applications

[102]

 <types>
 <element>long-polling</element>
 </types>
 </supported-transport>
 <publish-without-connect-allowed>true</publish-without-
connect-allowed>
 </server-config>
 <channels>
 <element>
 <channel-pattern>/evsmonitor</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsalert</channel-pattern>
 </element>
 <element>
 <channel-pattern>/evsdomainchange</channel-pattern>
 </element>
 <element>
 <channel-pattern>/ship/shippos</channel-pattern>
 </element>
 <element>
 <channel-pattern>/ship/shipoutput</channel-pattern>
 </element>
 <element>
 <channel-pattern>/ship/shiparrival</channel-pattern>
 </element>
 </channels>
 </pub-sub-bean>
 </http-pubsub>

The server's configuration file also allows you to configure clustering. The
clustering capability can use Coherence, in which case you would provide
some cache configuration details and add the Coherence configuration files
to the server's configuration directory:

<cluster>
 <server-name>myServer1</server-name>
 <multicast-address>239.255.0.1</multicast-address>
 <identity>1</identity>
 <enabled>coherence</enabled>
 <security>encrypt</security>
</cluster>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[103]

Finally, the server configuration allows you to control logging. Add additional
entries as needed. You may choose to log a particular class by including the full
class name including the package:

 <logging-service>
 <name>myLogService</name>
 <log-file-config>myFileConfig</log-file-config>
 <stdout-config>myStdoutConfig</stdout-config>
 <logger-severity>Notice</logger-severity>
 <logger-severity-properties>
 <entry>
 <key>LifeCycle</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>Management</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>CQLProcessor</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>EplProcessor</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>Stream</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>Ede</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>Cache</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>Adapters</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>Spring</key>

www.it-ebooks.info

http://www.it-ebooks.info/

Assembling and Configuring OEP Applications

[104]

 <value>Notice</value>
 </entry>
 <entry>
 <key>Channel</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>Recplay</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>Monitor</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>Server</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>Deployment</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>EventTrace</key>
 <value>Notice</value>
 </entry>
 <entry>
 <key>XMLOutputChannel</key>
 <value>Debug</value>
 </entry>
 <entry>
 <key>AreaChangeEvents</key>
 <value>Debug</value>
 </entry>
 <entry>
 <key>AreaDefinitionEventChannel</key>
 <value>Debug</value>
 </entry>
 <entry>
 <key>ShipArrivalOutputChannel</key>
 <value>Debug</value>
 </entry>
 </logger-severity-properties>
 </logging-service>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[105]

By default, the logfile configuration keeps all of the logfiles on your system. Especially
during development, you may wish to change the logging to a strategy that keeps only
the last few logfiles and automatically rotates the logfiles for you, so that you don't
have logfiles, which you no longer need taking up disk space on your system:

 <log-file>
 <name>myFileConfig</name>
 <number-of-files-limited>true</number-of-files-limited>
 <rotated-file-count>4</rotated-file-count>
 <rotate-log-on-startup-enabled>true</rotate-log-on-startup-
enabled>
 <log-file-severity>Debug</log-file-severity>
 <log-file-rotation-dir>logs</log-file-rotation-dir>
 </log-file>

Also, configure the log level severity that's best for your standard output:

 <log-stdout>
 <name>myStdoutConfig</name>
 <stdout-severity>Debug</stdout-severity>
 </log-stdout>

Extending the component type
infrastructure
It is possible to extend the configurability of various components of your application
by performing custom extensions of the XML schema. This is often very important
for adapters. We discussed how you could use the Spring framework to inject a
configuration value into our adapter. Often you want not only to set these values
in the EPN so that you can re-use the adapter, but you would like to make them as
optional configuration that can be changed after the application has been initially
deployed successfully.

We should take a moment to discuss an important feature of OEP related to
deployment. When an application is developed, it is packaged into a single JAR file.
This is often referred to as a module or OSGi bundle. Upon successful deployment,
a folder is created in the server's applications directory and this JAR file is
deployed there. It is important to note that at this time all the configuration files in
the META-INF\wlevs directory are extracted and deployed here as well. This is the
configuration that the server will use when it starts. This is a useful feature, because
if you need to change a configuration attribute of an adapter, you can stop the server,
make the change to the appropriate file that is already extracted and available,
and re-start the server. You need not worry about going back to the development
environment to make changes to the application, re-package and re-deploy it.

www.it-ebooks.info

http://www.it-ebooks.info/

Assembling and Configuring OEP Applications

[106]

When you have your own adapters with their own configurable properties, you
may like to have this same level of flexibility that you have out-of-the-box with the
adapters that are provided. The idea is to make any custom attributes configurable
from files in the wlevs folder.

Take, for example, the helloworld sample. It allows you to set the message that is
displayed each time the time interval for generating a message has elapsed. We set
this message using the <wlevs:instance-property> element in the EPN. We can
easily re-use this adapter within the same application and have different messages
by setting a different message for a second instance of the same adapter. But what if
we wanted to change the message that is displayed after the application is deployed
the first time. We would need to re-build the JAR file with a change to the EPN. If
we were able to make the message property configurable as an attribute in the wlevs
folder, we wouldn't need to do that. We could simply change the configuration file
and, in this case, restart the server to pick up the change. Of course, in this example,
you might want to consider a better way of implementing this using CQL so that you
don't need to restart the server at all.

Another better example would be if you had a socket adapter that used a hostname
and a port number. If, for some reason, the host or the port number for the socket
connection changed, it would be easy to make that change to a text file that is already
extracted rather than needing to repackage the application's JAR file.

Summary
You have already learned how to implement the structure of an OEP application
according to the programming model. In this chapter, you learned a great deal about
application configuration and server configuration. By now, you should be able to
see how flexible an OEP application can be. You can design it to accomplish any
type of event processing use case and integrate with other systems in many different
ways. There are also many performance-tuning options available to you for your
application and for the server.

In the next chapter, we will cover CQL processing in great detail. This is one of the
most important aspects of the product. It will allow you to easily program complex
constructs into your application logic.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL
In this chapter, you will learn how to program with CQL, Oracle event processing
language. CQL provides a high-level descriptive language for performing event
processing tasks such as event filtering and event summarisation. Further, it is highly
optimised and extremely efficient, therefore allowing your application to handle the
ever increasing volume of events in today's systems. Some of the topics we will cover
are as follows:

• Introducing CQL
• CQL fundamentals
• The structure and semantics of event processing
• SQL as a foundation
• Typing and expressions
• Timing models

Introducing CQL
As you have learned so far, one of the main components of Oracle Event Processing is
the CQL processor. The CQL processor is the brain of the EPN. In the CQL processor,
you will code rules that determine the processing of the events. Common examples are
rules that perform filtering of the events, or that aggregate input events into summary
output events. The following diagram shows a CQL processor in an EPN:

CQL - processor

inputChannel outputChannel

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL

[108]

The CQL processor is programmed using a language called Continuous Query
Language (CQL). This may sound a bit odd, but the rationale for the name will
become apparent later on when we understand the proper semantics of CQL.

CQL is an extension to SQL, the common language of databases. These extensions,
as you shall see in the next sections, deal with additional logic for handling time
and events that are not part of the standard SQL.

Without further ado, let's immerge into the interesting world of CQL, which many
may find to be a paradigm shift in the way they think about programming. We start
by looking at the basic concepts.

Understanding CQL fundamentals
The starting point for CQL is the CQL query. A CQL query is a single statement that
defines how input events are to be processed and transformed into output events.

Oracle Event Processing considers an event as a collection of named key-value pairs.
This is sometimes known as tuples. Each one of these pairs defines an attribute
or property of the event, so henceforth we shall refer to them as event properties.
Considering this, a better definition of a CQL query is that it specifies how particular
properties of the input events are processed and result into output events with their
own set of properties.

Let's take a look at an example. Consider an event e1 that contains two properties,
p1 and p2, whose values are respectively set to 1 and "hi". We will represent this
event as follows:

e1 => {p1 = 1, p2 = "hi"}

Next, the CQL query Q1 simply transforms this input event into an output event
containing just p1 and dropping p2. So, the output for the input e1 is e2, where e2
is represented as follows:

e2 => {p1 = 1}

This is a very simple naive example, but highlights the behavior of a valid CQL query.

The name and data type of the set of all event properties of an event is called
its event type. For example, for e1, its event type, which we shall name
InputEventType, which can be defined as:

InputEventType = { p1 = Integer, p2 = String}

Next, let's take a look at how a query receives the input events and where the output
events are dispatched.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[109]

Establishing your sources and destinations
The input events arrive from a set of named and typed sources, and conversely are
output to a set of named and typed destinations.

The sources and destinations of a query are defined by the EPN where the CQL
processor containing the query resides. More precisely, it is defined by the adjacent
components in the EPN to the CQL processor in question. For example, consider the
following diagram for source and destinations for Q1:

CQL - processor

inputTable

inputChannel outputChannle1

outputChannel2

In this case, the channel inputChannel and the table inputTable are the potential
sources for query Q1, where as the channel outputChannel1 and outputChannel2
are the potential destinations.

Why potential? The EPN gives us all the components of the application and their
connections, but the CQL query can further narrow down this list by specifying
which one of the connected components are being used. You shall see this in the
next section, but for the time being we are interested in understanding the concepts
that make up CQL rather than defining precisely how they can be used.

The type of the source and of the destination defines the type of the event.
If a channel named inputChannel is of the event type InputEventType,
events that flow through inputChannelto the query are of this type. This
determines the metadata that the query can make use of. For example,
consider the InputEventType defined previously as:

• p1 = Integer
• p2 = String

This means that the query Q1 only sees the event properties p1 and p2, and that
they are respectively defined as being an Integer and a String. We discuss the
supported data types later on in this chapter in the Typing and expressions section.

In addition to the event type, a source and a destination define the model of
processing of an event, which is explained in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL

[110]

Processing models
The model of processing demonstrates how events should be interpreted so that they
can be processed correctly in some systematic form. For CEP, which deals with a timed
continuous flow of events, this translates to how events are seen when in an ever-
changing collection. There are two ways of interpreting this continuous flow of events:

• The flow of events form a stream
• The flow of events contribute to a relation

A stream is a collection of events where the events are inserted into the collection, that
is, the stream, at a particular moment in time. In this conceptional model, the events
are never deleted from the stream (don't worry about implementation details such as
running out of memory!). In other words, once inserted into the stream, the events live
forever and are never dropped or even changed. For example, event e1 is added to the
stream at time t = 0, and event e2 is added to the stream at time t = 1:

insertion t = 1 :

e2

t = 0 :

e1...

A relation is a collection of events that supports the operations of insertion, deletion,
and update. In this sense, a relation is very similar to a standard database table. In
other words, you can add event e1 to the relation; you can change it, and then delete
the event. The only difference between a standard table and our concept of a relation
is that a relation must always be referenced at a particular instance of time. For
example, considering the previous case, at time t = 0, the relation is empty, at time
t = 1, the relation has event e1, and at time t = 2, the relation is again empty:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[111]

Understanding these two concepts is absolutely fundamental to understanding how
CQL works. So let's spend a bit more time on this, and try to relate it to some other
more common day-to-day ideas. Say we have a swimming pool that gets filled up
from a water hose coming from the public water system in the street.

What we want to do is to clean the water by adding chlorine to it. To do this, you
can't just place the chlorine in the water hose; you have to place the chlorine in the
swimming pool.

Another way of looking into this is that the water hose is our stream of water, or
stream of water events. Water flows continuously through it. A particular liter of
water flowed through the hose at a particular time of the day. Once that happens,
you can't really change this fact. You can't go back in time and change that liter of
water. Further, trying to remove that liter of water from the hose makes no sense;
there is no such concept.

Conversely, the swimming pool is like a relation of water. Water is continuously
added to it, up to a point where the pool gets fool and water starts splashing out of
the pool. But at a particular time, we know precisely the amount of water in the pool,
and we can change it, as we will. In fact, we can process the water in the pool, which
we do by adding chlorine to it. In other words, the pool gives us a bounded amount
of water that can be worked on, transformed, filtered, and so on.

CEP as a technology is the same thing. The enterprise is a world of events; it is a hose
where events flow continuously. CEP gives us the ability of pooling these events into
relations and henceforth being able to process it effectively in real time.

You now understand the basic concepts. Next, let's look at the syntax or structure
of CQL queries.

The structure and semantics of event
processing
The structure of CQL queries is very similar to that of SQL. In fact, CQL is based
on a subset of SQL99. Let's revisit the simple example from the beginning of the
previous section:

SELECT p1
FROM inputChannel

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL

[112]

In this case, the FROM inputChannel clause informs the query that the input events
arrive from the source called inputChannel, which happens to be the upstream
channel to this CQL processor in the EPN. Further, the SELECT p1 clause states that
the query is selecting only the event property p1 for output. The behavior of this
query is best described with the following table:

Timet Input event Output event
0 {p1 = 1, p2 = "hi"} {p1 = 1}

In other words, at time t = 0, we receive event {p1 = 1, p2 = "hi"} and output
event {p1 = 1}. For the time being, ignore the time-related aspect of processing.

Here is a slightly more complicated case:

SELECT p2
FROM inputChannel
WHERE p1 = 1

In this second query, we make use of a WHERE clause. This clause is used to specify a
predicate condition that must be met before the input event is selected for output. In
this case, the predicate condition is that the property p1 of the input event must be
equal to the value 1. The following table provides an example of the application of
this second query:

Time Input event Output event
0 {p1 = 1, p2 = "hi"} {p2 = "hi"}

1 {p1 = 2, p2 = "bye"}

In this example, the interesting aspect is that there is no output for the second event,
as its property p1 does not evaluate to true for the predicate condition. When this
happens, the event is essentially filtered out of the output.

Next, let's introduce the notion of time to the CQL queries.

Restricting streams with Windows
So far we have dealt directly with processing events from a stream, that is, an event
arrives, we process it, and we immediately output its result. Due to the nature of the
processing done so far, we have been able to perform it directly in events on a stream
without having to rely on the notion of relations. Next, let's tackle the contrary.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[113]

Say we want to find out the average value of an event property. For example,
we could be receiving stock prices from a stream of market stock feed and we are
interested on finding the average price of a particular stock.

The first question that comes up is that, as we have learned, a stream is unbounded,
that is, it has no end, and therefore we couldn't simply find the average price for all
possible events that flowed through it at all possible time. At least, not effectively!
Instead, we need to define some kind of window that contains the events that are of
interest to us. For example, let's assume we are interested on finding the average of
the price for the last minute of events from the market feed stream. We can state this
in CQL by using a window operator, as follows:

SELECT AVG(price)
FROM marketFeed [RANGE 1 MINUTE]

First, we receive the events from the marketFeed stream; next we convert this
stream into a relation that contains a range of 1-minute of events. Why do we need
to do this? By creating a relation, we can now apply the average operation on it. An
average of a relation is a well-defined operation; it is after all just like applying an
average on a bag of tuples of a standard RDBMS table. Further, by having a relation,
we can now add and remove events to it, whereas we can't remove events from a
stream, as we learned in the previous sections. For example, as time progresses, we
can now delete an event from the relation when it expires past the 1-minute window.

Before we go on, we need to establish a few assumptions for the purpose of
simplifying the examples. These are as follows:

• The system ticks in seconds
• We only receive one input event at every tick, unless otherwise noted
• Initially we will only show the new values in the output, that is, we don't

show the delete of the old value

Later, when we discuss outputs and application time-stamped systems, the rationale
for these assumptions will be clear.

The following table illustrates an example of processing for this query:

Time (in secs) Input event Output event
00 {AVG(price) = 0.0}

01 {symbol = "aaa",
price = 4.0}

{AVG(price) = 4.0}

10 {symbol = "bbb",
price = 2.0}

{AVG(price) = 3.0}

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL

[114]

Time (in secs) Input event Output event
59 {symbol = "aaa",

price = 5.0}
{AVG(price) = 3.6}

61 {AVG(price) = 3.5}

70 {AVG(price) = 5.0}

80 {symbol = "aaa",
price = 6.0}

{AVG(price) = 5.5}

At time t = 0, there are no input events, yet the query still outputs a value of 0 for
the average. You may find this odd, but the reason for this is that, as in a database,
the defined value for an average of an empty table is zero; hence CQL duplicates
this same behavior.

At time t = 1, we have a single input event, and the output is its own value as the
average. At time t = 10, the relation now contains two events, that is, {symbol =
"aaa", price = 4.0} and {symbol = "bbb", price = 2.0}, so the average of
the property price is (4.0 + 2.0) / 2 = 3.0. At time t = 59, the relation has three events
and the average becomes (4.0 + 2.0 + 5.0) / 3 = 3.6.

At time t = 60, we get an output event, even though there is no input event. Why
is that? The reason is that even though there is no input event, the CQL processor is
still continuously working, and a change of an internal state has happened, which
caused the state of the output to change. Specifically, at time t = 60, a one-minute
interval has elapsed. That is, t = 0, t = 1, … t = 60 is equal to 60 + 1 progress of
time. When this happened, the relation is changed to a window starting (inclusive)
at 01 to (inclusive) 60, expiring any event that happened at t = 00, which in this
case is none.

However, at t = 61, the relation now moved from 02 to 61, causing the event
{symbol = "aaa", price = 4.0} to be expired from the relation. This means
that the output state is no longer accurate, and thus an event with the new average
is output, which is (2.0 + 5.0) / 2 = 3.5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[115]

The following diagram demonstrates time-window expiration:

NOW

t = 0 t = 1

STREAM

STREAM

STREAM

STREAM

STREAM

t = 0 t = 1

t = 0 t = 1

t = 0 t = 1

t = 0 t = 1

NOW

NOW

NOW

NOW

t = 10

t = 10

t = 10

t = 10

t = 59

t = 59

t = 59

t = 60

t = 60 t = 61

1-minute window

...

... ...

... ...

... ...

1-minute window

1-minute window

“aaa”

4.0

“aaa”

4.0

“bbb”

2.0

“bbb”“aaa”

2.04.0

“aaa”

5.0

“aaa”

4.0

“bbb”

2.0

“aaa”

5.0

“aaa”

4.0

“bbb”

2.0

“aaa”

5.0

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL

[116]

At time t = 70, the second event, {symbol = "bbb", price = 2.0}, expires from
the window, therefore the new output becomes 5.0 / 1 = 5.0. Finally, at time t = 80,
there is a new input of {symbol = "aaa", price = 6.0}, and the output is (5.0 +
6.0) / 2 = 5.5. The following diagram shows the complete interaction for this scenario:

"aaa", 5.0

"aaa", 6.0

"aaa", 4.0

"bbb", 2.01

m

i

n

u

t

e

t ime t=1 t ime t=10 t ime t=59 t ime t=61 t ime t=70 t ime t=80

"aaa", 4.0

"bbb", 2.0

"aaa", 4.0 "aaa", 4.0

"bbb", 2.0

"aaa", 5.0

"bbb", 2.0

"aaa", 5.0 "aaa", 5.0

The RANGE operator is a time-based window operator, as it is driven by time. There
are several other types of window operators, such as tuple-based and partitioned.

The continuous behavior is very important and the reason Oracle CEP's
event processing language is called Continuous Query Language.

Tuple-based windows
A tuple-based window is a window that is driven by events. For example, say we
want to calculate the average price of the last three events received. This can be done
with the following query:

SELECT AVG(price)
FROM marketFeed [ROWS 3]

Let's take a look at the output resulting from this query using the same set of events
from the last example:

Time Input event Output event
00

01 {symbol = "aaa",
price = 4.0}

{AVG(price) = 0.0},
{AVG(price) = 4.0}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[117]

Time Input event Output event
10 {symbol = "bbb",

price = 2.0}
{AVG(price) = 3.0}

59 {symbol = "aaa",
price = 5.0}

{AVG(price) = 3.6}

61

70

80 {symbol = "aaa",
price = 6.0}

{AVG(price) = 4.3}

Note the difference where the query does not output any event in time t = 61 and t =
70. The reason being is that in this case the relation is defined by a window containing
3 events, which don't expire any events until the fourth event arrives at time t = 80.
At this point, the event {symbol = "aaa", price = 4.0} leaves the window and the
event {symbol = "aaa", price = 3.0} enters the window, causing a state change at
the output, which now has the average of (2.0 + 5.0 + 6.0) / 3 = 4.3.

There is also another minor difference; the first event of {AVG(price) = 0.0} is only
output when the first event arrives. The reason for this is that the window relation
only starts working when it is trigged by an event. In the case of a time-window, this
start event is the first instance of time. However, in the case of tuple-window, the
start event is the arrival of the first tuple:

NOW

t = 0 t = 1

STREAM

STREAM

STREAM

STREAM

t = 0 t = 1

t = 0 t = 1

t = 0 t = 1

NOW

NOW

NOW

t = 10

t = 10

t = 10

t = 59

t = 59 t = 80

3-rows

window

“aaa”

4.0

“aaa”

4.0

“bbb”

2.0

“bbb”

2.0

“aaa”

5.0

“aaa”

4.0

“bbb”

2.0

“aaa”

5.0

“aaa”

4.0

“aaa”

6.0

3-rows

window

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL

[118]

There is subtle problem with these last two queries; the average output is of all the
events and not of the events relating to a particular symbol, which would be the most
common scenario. In other words, we are getting the average price regardless of the
stock, where what we really want is the average for symbol "aaa" separately from
symbol "bbb". The following query fixes this:

SELECT AVG(price), symbol
FROM marketFeed [ROWS 3]
GROUP BY symbol

Here is the output table for this case:

Time Input event Output event
00

01 {symbol = "aaa",
price = 4.0}

{AVG(price) = 4.0,
symbol = "aaa"}

10 {symbol = "bbb",
price = 2.0}

{AVG(price) = 2.0,
symbol = "bbb"}

59 {symbol = "aaa",
price = 5.0}

{AVG(price) = 4.5,
symbol = "aaa"}

61

70

80 {symbol = "aaa",
price = 6.0}

{AVG(price) = 4.5,
symbol = "aaa"}

The GROUP BY clause works as in a regular RDBMS. It groups the content of the
window relation, which happens to contain the last 3 events, per the property
symbol. So, at time t = 1, we get the average for symbol "aaa", which is 4.0 / 1 =
4.0. At time t = 10, we get the average for "bbb", which is 2.0 / 1 = 2.0. Note how
this already differs from the previous case, where at time t = 10, we had got 3.0 as
the average. At time t = 59, the average for "aaa" becomes (4.0 + 5.0) / 2 = 4.5. One
crucial note is that at this time we only get the output for "aaa", as only the "aaa"
tuple changed, that is, the average for "bbb" does not change, and therefore is not
output at this time. Finally, at time t = 80, the output is (5.0 + 6.0) / 2 = 5.5.

The astute reader should ask, "why 5.5 and not (4.0 + 5.0 + 6.0) / 3 = 5.0 instead?
Aren't we supposed to keep the last three events?" This is a very good question, what
is happening is that our relation window does keep the last three events, however
it is doing it for the last three events regardless of the GROUP BY expression. In other
words, at time t = 80, the content of the window relation is:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[119]

{{symbol = "bbb", price = 2.0},
 {symbol = "aaa", price = 5.0},
 {symbol = "aaa", price = 6.0}}

We need to fix this, as it is obviously not what we intended. You can do so by using a
partitioned window.

Partitioned windows
Partitioned windows are easier to understand by following an example:

SELECT AVG(price), symbol
FROM marketFeed [PARTITION BY symbol ROWS 3]
GROUP BY symbol

If you run the same set of inputs, we get the following result:

Time Input event Output event
00

01 {symbol = "aaa",
price = 4.0}

{AVG(price) = 4.0,
symbol = "aaa"}

10 {symbol = "bbb",
price = 2.0}

{AVG(price) = 2.0,
symbol = "bbb"}

59 {symbol = "aaa",
price = 5.0}

{AVG(price) = 4.5,
symbol = "aaa"}

61

70

80 {symbol = "aaa",
price = 6.0}

{AVG(price) = 5.0,
symbol = "aaa"}

Notice how this query outputs the expected result of 5.0 at time t = 80. A
partitioned window creates separate relation-windows for each partition.
In this case, a separate partition is created for symbol "aaa" and another
for symbol "bbb". By segregating the events into separate partitions, we
make sure that the windows are only filled by the right events.

Each distinct value of the partition by property uses a distinct
window, increasing memory usage.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL

[120]

The following diagram shows how the partitions look at time t = 80:

partition: “aaa”

partition: “bbb”

STREAM

“aaa”

4.0

“aaa”

6.0

“aaa”

5.0

“bbb”

2.0

t=0 t=80

NOW

3-rows

partitioned

window

In the next section, let's revisit how the events are output.

Output
Previously in this chapter, you learned that sources and destinations have an event-
type and are defined as being either a stream or a relation. You also learned that the
source of events are specified using the FROM clause in a CQL query. However, how
is the destination specified in CQL? The destination is whatever is being output by
the query, which is roughly specified by the SELECT clause.

Consider the following query you looked in the beginning of this section:

SELECT AVG(price)
FROM marketFeed [RANGE 1 MINUTE]

In this case, the output consists of the single event property AVG(price), and the
processing model for this output is of a relation. Why a relation and not a stream?
The query outputs a relation because the Window operator [RANGE 1 MINUTE],
which happens to be the last operator to be executed before the projection, generates
a relation. This is easier to understand when looking at the logical query plan that
represents the execution of this query:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[121]

ProjectionWindowSource Output

The query starts with a Source operator that receives the events as a stream, then
a Window operator that converts the stream into a relation, a Projection operator
that maintains the relation, and finally the Output operator that emits the resulting
relation to the next downstream node in the EPN.

Because the query outputs a relation, there is only need to emit an event out when
the relation changes. In other words, if the query receives an event that does not
cause the average to change, then there is no need to output an event, as the content
of the relation is still valid. However, if the average changes, the query sends a delete
event to remove the previous average, and then an insert event to add the new
average into the relation.

If the destination is indexed, the query can output an update event
instead of a delete followed by an insert event.

By definition, CQL does a value comparison between the events to determine if
something changed. In this previous example, our relation always contains a single
row (or event) with a single column (or event property), named AVG.

You can change the name of the output event property by using
the AS expression, as in the following example:

SELECT AVG(price) AS avgPrice …

There are cases when you want to always output an event, regardless if the value
changed, or you may want to output only if a value has been inserted, or only if a
value has been deleted from the relation. This can be accomplished by converting the
output from a relation to a stream. CQL defines three operators that convert relations
to streams; these are the ISTREAM (insert stream), the DSTREAM (delete stream), and
the RSTREAM (relation stream) operators.

RANGE and ROW are stream-to-relation operators. ISTREAM, DSTREAM,
and RSTREAM are relation-to-stream operators.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL

[122]

The ISTREAM operator converts a relation to a stream in such a way that only the
insert events are considered. In other words, every time an event is inserted into the
input relation, the ISTREAM operator generates an insert event in the output stream.
Events being deleted or updated in the relation are ignored.

RELATION STREAM

ISTREAM

insert

insert

update

delete

Another way of looking at this is that the output stream only contains events that
exist at time t in the input relation, but do not exist at time t – 1 in the input relation.
The following query, which have used previously, provides an example of the
ISTREAM operator being used:

ISTREAM (SELECT AVG(price)
FROM marketFeed [RANGE 1 MINUTE])

To better understand this example, take a look at the following table. Insert events
are represented by a leading + (plus sign), and delete events are represented by a
leading – (minus sign).

Time Input event WINDOW output ISTREAM (query)
output

00 +{AVG(price) =
0.0}

+{AVG(price) =
0.0}

01 +{price = 4.0} -{AVG(price) =
0.0},

+{AVG(price) =
4.0}

+{AVG(price) =
4.0}

10 +{price = 2.0} -{AVG(price) =
4.0},

+{AVG(price) =
3.0}

+{AVG(price) =
3.0}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[123]

Time Input event WINDOW output ISTREAM (query)
output

59 +{price = 5.0} -{AVG(price) =
3.0},

+{AVG(price) =
3.6}

+{AVG(price) =
3.6}

61 -{AVG(price) =
3.6},

+{AVG(price) =
3.5}

+{AVG(price) =
3.5}

70 -{AVG(price) =
3.5},

+{AVG(price) =
5.0}

+{AVG(price) =
5.0}

80 +{price = 6.0} -{AVG(price) =
5.0},

+{AVG(price) =
5.5}

+{AVG(price) =
5.5}

Remember that the previous examples ignored the delete events.
This was done for simplification purpose. In reality, the output
of the query 5.X in section 5.X should be similar to the WINDOW
output in this example.

Next, let's consider the DSTREAM operator. As expected, in this case the operator
generates an (insert) event into the output stream only when a delete event happens
in the input relation. Events being inserted or updated in the relation are ignored.
Another way of looking into this is that the output stream only contains events that
exist at time t - 1 in the input relation, but do not exist at time t in the input relation.

RELATION STREAM

DSTREAM

insert

insert

update

delete

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL

[124]

When would this be useful? The DSTREAM operator is useful when you want to
find out when a situation is no longer valid. For example, consider a query that
calculates special discounts for items being sold by a store. In this case, you want
to be informed when a discount for an item is no longer valid, even if a new
discount is not available.

The following query provides an example of the DSTREAM operator being used:

DSTREAM (SELECT AVG(price)
FROM marketFeed [RANGE 1 MINUTE])

The corresponding input and output events are provided in the following table:

Time Input event WINDOW output DSTREAM (query)
output

00 +{AVG(price) =
0.0}

01 +{price = 4.0} -{AVG(price) =
0.0},

+{AVG(price) =
4.0}

+{AVG(price) =
0.0}

10 +{price = 2.0} -{AVG(price) =
4.0},

+{AVG(price) =
3.0}

+{AVG(price) =
4.0}

59 +{price = 5.0} -{AVG(price) =
3.0},

+{AVG(price) =
3.6}

+{AVG(price) =
3.0}

61 -{AVG(price) =
3.6},

+{AVG(price) =
3.5}

+{AVG(price) =
3.6}

70 -{AVG(price) =
3.5},

+{AVG(price) =
5.0}

+{AVG(price) =
3.5}

80 +{price = 6.0} -{AVG(price) =
5.0},

+{AVG(price) =
5.5}

+{AVG(price) =
5.0}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[125]

Finally, the RSTREAM operator outputs the whole relation as insert events in the
stream. In other words, the RSTREAM operator generates insert events for the current
state of the input relation. The outcome of this is that the query emits events even
when the window's relation does not change. This is useful when you need to react
in the downstream system for every input, in spite of the input causing a change to
the output value.

RELATION STREAM

RSTREAM

insert

insert

update

delete

To understand the RSTREAM, let's use a different query and set of input events, which
demonstrates this operator a little better. The new query is as follows:

RSTREAM (SELECT *
FROM marketFeed [ROWS 2])

Next, consider the following input/output table:

Input event WINDOW output RSTREAM (query) output
+{price = 1.0} +{price = 1.0} +{price = 1.0}

+{price = 2.0} +{price = 1.0},
+{price = 2.0}

+{price = 1.0},
+{price = 2.0}

+{price = 3.0} -{price = 1.0},
+{price = 3.0}

+{price = 2.0},
+{price = 3.0}

+{price = 3.0} -{price = 1.0},
+{price = 3.0}

+{price = 3.0},
+{price = 3.0}

+{price = 3.0} +{price = 3.0},
+{price = 3.0}

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL

[126]

Now, contrast the output for the three relation-to-stream operators for the same set
of inputs:

Input event ISTREAM DSTREAM RSTREAM
+{price = 1.0} +{price = 1.0} +{price = 1.0}

+{price = 2.0} +{price = 2.0} +{price = 1.0},
+{price = 2.0}

+{price = 3.0} +{price = 3.0} +{price = 1.0} +{price = 2.0},
+{price = 3.0}

+{price = 3.0} +{price = 3.0} +{price = 2.0} +{price = 3.0},
+{price = 3.0}

+{price = 3.0} +{price = 3.0},
+{price = 3.0}

+{price = 3.0} +{price = 3.0},
+{price = 3.0}

As you can see, CQL provides a lot of flexibility on defining exactly the events to be
output. Next, let's take a look at another dimension of processing, how to control the
rate of the output.

Controlling output with slides
In the examples from the previous sub-section, the CQL queries output the changes
to the window's relation immediately as they happen. This is not always desirable,
for example if you have a very fast paced input, you may end up outputting more
events that the CQL destination can cope with. One way of avoiding this is to batch
the output events, and send them at a later time. In CQL, you can do this by using
the SLIDE subclause in the Window specification.

The SLIDE subclause delays the output from the Window operator until either a
certain number of events have been received in a row-based Window, or until t
time units have progressed in a time-based Window. For example, consider the
following query:

SELECT * FROM marketFeed[ROWS 3 SLIDE 2]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[127]

Next, let's take a look at its input/output table for some sample inputs:

Input event Output events
+{price = 1.0}

+{price = 2.0} +{price = 1.0}, +{price = 2.0}

+{price = 3.0}

+{price = 4.0} - {price = 1.0}, +{price = 3.0}, +{price =
4.0}

Note how this query does not output events for the first and third input events.
The [ROW r SLIDE n] window only outputs events every n events. So, in this
case, at n = 2, 4, 6, 8,....

Further, for the fourth input event, it not only outputs two insert events, that is
for {price = 3.0} and {price = 4.0}, but it also outputs the delete event of
{price = 1.0}. Yet, it does not output the delete event of {price = 2.0}.

2-rows

slides

2-rows

slides

2-rows

slides

3-rows

windows

1.0 2.0 3.0 4.0STREAM

The reason being is that even though the slide changes when the events are output,
it does not influence the actual state of the window's relation, which in this case still
maintains three events. This is easier to see when a RSTREAM operator is used:

RSTREAM(SELECT * FROM marketFeed[ROWS 3 SLIDE 2])

In this case, the input/output table is:

Input event Output events
+{price = 1.0}

+{price = 2.0} +{price = 1.0}, +{price = 2.0}

+{price = 3.0}

+{price = 4.0} + {price = 2.0}, +{price = 3.0},
+{price = 4.0}

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL

[128]

The SLIDE subclause works similarly with time windows, except for the first batch.
Say you have specified a slide of 10 seconds, and the first event received is at time
t = 03. It would be odd if the first output is emitted at time t = 13 seconds and
henceforth the batch is at t = 23, 33, 43,.... Instead, CQL tries to keep the
output at time that is a multiple of the slide specification. So, in this case, the output
should be at time t = 10, 20, 30, 40,.... This means that the first batch is actually
smaller and only contains events from the time interval from time t = 03 to t = 10,
but the following batches would include the full 10 seconds of events. Formally, the
output batch time (batchTime) is defined (in Java) as:

timeInterval = actualTime / slideSpecification
if((actualTime % slideSpecification) == 0) //no remainder
 batchTime = timeInterval * slideSpecification
else
 batchTime = (timeInterval + 1) * slideSpecification

There is one final caveat regarding range windows with slides—it is an error to
specify a slide larger than the range value.

When a slide value is not specified, it assumes the default value
of 1 row for tuple-based windows and 1 time tick for time-based
windows. This is the reason that the previous examples worked
even when no slides were specified.
On a separate topic, CQL's default time tick unit is a nanosecond.
In the Application-time section, we explore this subject in details.

Next, we take a look a few special cases of windows.

The unbounded window
You can specify a window as unbounded so as that it never expires any events.
This is useful only when using aggregation functions that are incremental in
nature, such as average, as in this case there is no need to keep the entire history
of events to calculate the result. Otherwise, unbounded windows should be used
with care, as they can be extremely heavy. The following example specifies an
unbounded window:

SELECT AVG(price) FROM marketFeed[RANGE UNBOUNDED]

Note that even though this is specified as a range window, it has the same effect
as if it were tuple-based.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[129]

The constant value range window
A constant value range window is a window that maintains the events in
the window based on the difference between an event property value and
a constant value.

For example, let's say you want to keep only the events in the window whose
prices are less than 10 dollars a part. You can do this with the following query:

SELECT * FROM marketFeed[RANGE 10 ON price]

Here is the input/output table for the preceding query:

Input event Output events
+{price = 1.0} +{price = 1.0}

+{price = 4.0} +{price = 4.0}

+{price = 11.0} -{price = 1.0}, +{price = 11.0}

+{price = 12.0} +{price = 12.0}+{price = 5.0},
+{price = 5.0}

+{price = 14.0} -{price = 14.0}, +{price = 14.0}

The first two events are inserted and kept in the window, then when the query
receives the event {price = 11.0}, the difference between the price of the third
event (11.0) and the first event (1.0) is not less than 10 (11.0 – 1.0 = 10.0) and
therefore the first event is removed from the window. Following, the next two
events are inserted and do not cause any events to be deleted, as 12.0 – 4.0 < 10.0
and |5.0 – 12.0| < 10.0. However, when the event {price = 14.0} is received,
then the second event is removed from the window as 14.0 – 4.0 = > 10.0.

Constant value range windows may grow very large if the
event properties cause the events to never expire!

Interestingly, you can specify a timestamp or an interval as the constant, as in
the following example:

SELECT * FROM marketFeed[RANGE INTERVAL "0 0:10:0.0DAY TO SECOND
ONtimestampProperty]

By doing this, and using a time-stamped event property, you can create your
own time-based window implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL

[130]

The NOW window and the Last Event window
The NOW window contains the event that happened at the last tick of the system. Let's
look at the syntax of the NOW window through the following example:

SELECT * FROM marketFeed[NOW]

Although this sounds simple enough, it should be observed that the event of the
last tick is not necessarily the last input event! The system moves continuously,
therefore an input may be received now at the last known tick, and then it is
immediately removed in the next time tick, as it is no longer "now". The best
way of understanding this is to compare the previously defined [NOW] query
with the following query:

SELECT * FROM marketFeed[ROWS 1]

This latter query indeed functions as the last event received. Let's take a look at
their input/output table:

Time Input event [NOW] output [ROWS 1] output
00

01 +{price = 1.0} +{price = 1.0} +{price = 1.0}

02 -{price = 1.0}

03

04 +{price = 2.0} +{price = 2.0} -{price = 1.0},
+{price = 2.0}

05 -{price = 2.0}

As it can be seen, dealing with time has its caveats!

So far, we have gone through several ways of converting the streaming model to
the relational model. In the next section, we explore more ways of leveraging the
relational model in Oracle CQL.

SQL as a foundation
You have learned how to transform a stream into a relation by using WINDOW
operators, and then how to convert a relation back to a stream by using the ISTREAM/
DSTREAM/RSTREAM family of operators. But why do we convert to relations to begin
with? By converting streams to relations, you can leverage the full power of SQL, as
we are used to it in a database. After all, SQL works directly on top of relations.

CQL supports most of the SQL99 commands, which we explore in this section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[131]

Joins
In CQL, you can join multiple sources, but all sources must be relations or streams
that have been converted to relations using a window operator.

Joins are very useful as a mechanism for enriching events with contextual data that
don't change often. For example, consider the following query that enriches a stock
market feed event with the full address of the said stock:

SELECT
 S1.symbol as symbol
 fullName
FROM
 reutersMarketFeed[RANGE 60 SECONDS] AS S1,
 tickerListing AS R1
WHERE
 S1.symbol = R1.tickerSymbol

Assume that the tickerListing relation contains the following rows (events):

tickerSymbol fullName
ORCL Oracle Corp
IBM International Business Machine Corp
MSFT Microsoft Corp.

Here is an example of the input/output events for this example query:

Time Input S1 (Reuters Output
00 +{symbol = ORCL,

price = 29.0}

+{symbol = ORCL,

fullName = 'Oracle
Corp'}

30 +{symbol = IBM,

price = 100.0

+{symbol = ORCL

fullName =
'International
Business Machine
Corp'}

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL

[132]

The following diagram shows how the rows of the different sources are
joined together:

International Business Machine Corp.

Microsoft Corp.

Oracle Corp.ORCL

IBM

MSFT

tickerSymbol fullName

TickerListing

Reuters

time symbol price

0

30

ORCL 29.0

IBM 100.0

CQL joins are not limited only to joining events and data across two sources. You can
join an arbitrary number of sources, making this feature a very powerful and usable
one. Here is an example of a join across three sources:

SELECT
 S1.price AS price1,
 S2.price AS price2,
 fullName
FROM
 reutersMarketFeed[RANGE 60 SECONDS] AS S1,
 bloombergFeed[RANGE 60 SECONDS] AS S2,
 tickerListing AS R1
WHERE
 S1.symbol = S2.symbol AND
 S2.symbol = R1.tickerSymbol

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[133]

In this case, we have two streams that contain market feeds, one coming from
Reuters, and another from Bloomberg, and the same relation called tickerListing
that contains the company details for a particular stock symbol (for example, ORCL),
such as the company's full name (for example, Oracle Corporation) and address. The
query converts the two streams to a relation using the RANGE operator, and then joins
all three resulting relations using the join condition specified in the WHERE clause.
The join condition links the events that have the same symbol together. Finally, the
SELECT clause projects properties from all three relations, namely the price property
from the streams reutersMarketFeed and bloombergeFeed, and the fullName
property from tickerListing.

When the names of the event properties coming from different
sources collide, they must be prefixed by the source name.

In the previous example, both the Reuters and the Bloomberg feeds have a price
property; therefore references to this property must be prefixed by S1 or S2, or by
the source name (for example, bloombergFeed.price). One important difference
between a regular RDBMS and CEP is that in the latter case the queries are run in
a continuous mode, this means that as the window in the relations slide, you will
get a continuous flow of output.

An example of the input/output events for this example query is as follows:

Time Input S1 (Reuters) Input S2
(Bloomberg)

Output

00 +{symbol = ORCL,

 price = 29.0}

+{symbol = ORCL

price = 29.5}

+{price1 = 29.0,

 price2 =
29.5,

fullName =
'Oracle Corp'}

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL

[134]

Time Input S1 (Reuters) Input S2
(Bloomberg)

Output

30 +{symbol = ORCL

price = 28.5

+{symbol = ORCL,

price = 30.0}

+{price1 =28.5,

price2 = 29.5

fullName =
'Oracle

Corp'},

+{price1 = 28.5,

price2 = 30.0,

fullName =
'Oracle Corp'},

+{price1 = 29.0,

price2 = 30.0

fullName =
'Oracle Corp'}

60 +{symbol = IBM,

price = 100.0}

-{price1 = 29.0,

 price2 = 29.5,

fullName =
'Oracle Corp'},

-{price1 = 28.5,

price2 = 29.5,

fullName =
'Oracle Corp'},

-{price1 = 29.0,

price2 = 29.5,

fullName =
'Oracle Corp'}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[135]

Continuous joins may not be so intuitive to grasp. Note how at time t = 30 there are
three output events! The reason being is that at this time the total number of events
that match the join condition across all sources are 2 (for S1) x 2 (for S2) x 1 (for S3) =
4 rows. However, the output relation already contains one row, which was output at
time t = 00, therefore we only need to insert three additional outputs at time t = 30.

International Business Machine Corp.

Microsoft Corp.

Oracle Corp.ORCL

IBM

MSFT

tickerSymbol fullName

TickerListing

Reuters

time symbol price

0

30

ORCL

ORCL

29.0

28.5

Bloomberg

time symbol price

0

30

ORCL

ORCL

29.0

30.0

At time t = 60, the first event from S1 and S2 have expired, and the new event
from S2 does not match the join criteria, therefore we need to remove three events
from the output relation and maintain only the event {price1= 28.5, price2 =
30.0, …}.

This type of join is called an inner join. CQL also supports left and right outer joins,
but those are outside the scope of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL

[136]

External sources
So far, all the sources we have used in the examples of this chapter are streaming
sources. Sources that actively send events are streaming sources and generally map
to channels in the EPN. However, there is also the case of regular pull-based sources.
Examples of pull-based sources are a table from an external database, or a cache
from a caching system like Coherence. These two examples of pull-based sources
map respectively to a table and a cache component in the EPN. As these sources are
maintained by an external system, they are called external sources. You will have a
in-depth look into the usage of external sources in Chapter 7, Using Tables and Caches
for Contextual Data.

CQL supports joins between streaming sources (like we have seen in the previous
examples) and external sources. These external sources are generally more static,
and provide data to be used for enriching the events. When joining to external
sources, the external sources are (logically) pulled every time a new event arrives
that needs data from this external source.

A CQL join must have at least one streaming source. In other
words, you cannot define a CQL query that is composed of only
external sources, as it would become a strictly pull-based query,
contrary to CQL's continuous nature.

Next, let's look how aggregations are realized in CQL.

Aggregations
In past sections, you have already seen the usage of the AVG function, which is
an example of an aggregation function. CQL supports other standard aggregation
functions, such as COUNT, SUM, MAX, and MIN. The aggregate functions AVG, COUNT,
and SUM are calculated incrementally, however the MAX and MIN functions are not
incremental, so beware when using these latter two with large windows.

As in SQL, you can check for conditions on the aggregate results by using the
HAVING clause, as in the following example:

SELECT AVG(price) FROM marketFeed[RANGE 1 HOUR]
HAVING AVG(price) > 10

In this case, only averages that is higher than 10 will be output. Note that you cannot
specify this condition in the WHERE clause as the WHERE clause is processed before the
average can be calculated.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[137]

Further, CQL supports a plethora of additional math and statistical related
aggregate functions provided by the built-in COLT open-source library.
These include mean, median, variance, and so on. Please take a look at
COLT's website for further details.

Ordering
You can order the result of a query's relation output by using the ORDER BY
property [ASC|DESC] ROWS n clause. In this case, the relation is ordered using
the specified event property (row attribute) in ascending or descending order, and
only the top n events are output. By default it is ordered in ascending order.

It is mandatory to specify the top n rows when ordering a relation
output. The reason being is that a relation may be very large, and
therefore the top n rows help restrict the processing.

Let's take a look at an example to better understand this:

SELECT price FROM marketFeed[ROWS 4]
ORDER BY price DESC ROWS 2

This query is stating that you are interested in ordering the results from the
marketFeed window in descending order of price (from largest price to smallest
price) and to only keep the two largest results. Next, consider the input/output
table for this query:

Input event Output events
+{price = 5.0} +{price = 5.0}

+{price = 3.0} +{price = 3.0}

+{price = 4.0} -{price = 3.0}, +{price = 4.0}

+{price = 6.0} -{price = 4.0}, +{price = 6.0}

+{price = 0.0} -{price = 5.0}, +{price = 4.0}

The first two sets of input/output are clear, but it starts getting interesting from
there on. When the query receives the third input event, the marketFeed window
relation is updated to:

Window: {{price = 5.0}, {price = 3.0}, {price = 4.0}}

In this window, {price = 3.0} is no longer part of the two top prices, so it is
removed from the output relation and replaced with {price = 4.0}. In other
words, the ordered output relation has become:

Output: {{price = 5.0}, {price = 4.0}}

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL

[138]

Likewise, when the query receives the event {price = 6.0}, the window relation
is updated to:

Window: {{price = 5.0}, {price = 3.0}, {price = 4.0}, {price = 6.0}}

For this window, the ordered output relation is changed to:

Output: {{price = 6.0}, {price = 5.0}}

Finally, when the query receives the last event, its window output becomes:

Window: {price = 3.0}, {price = 4.0}, {price = 6.0}, {price = 0.0}}

In other words, the first event of {price = 5.0} is expired from the [ROWS 4]
window. Now, the ordered output is changed to:

Output: {{price = 6.0}, {price = 4.0}}

Note how the event {price = 4.0} is moved back into the ordered output with
the absence of the event {price = 5.0} from the window relation.

The change of the location (order) of the rows in a relation does
not cause its update. In other words, when comparing the relation
{{price = 5.0}, {price = 4.0}} and the relation {{price
= 6.0}, {price = 5.0}}, the (set) difference is that the event
{price = 4.0} has been removed and the event {price = 6.0}
has been added. The fact that event {price = 5.0} has moved from
the first to the second location is not considered a change.

In the ORDER BY clause, you can specify multiple properties. This means that
should there be multiple rows with the same value for a property, then these
rows are ordered using the second specified property, and so on.

Furthermore, you can specify the location of the event property in the event type
definition rather than its name. The location starts at 1. Let's extend the previous
query to make use of both of these two features:

SELECT price, symbol FROM marketFeed[ROWS 4]
ORDER BY 1 DESC, symbol ASC ROWS 2

In this case, events that have the same price are further ordered by their symbol
in ascending order.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[139]

So far, you have seen how to use the ORDER BY clause on top of relations. Yet, CQL
also supports ORDER BY with streams. You may find this strange, as we have always
seen a single output per time t for a stream. However, this has been for simplification
purpose of the examples used so far, CQL can output more than a single event in the
same time t. These are called simultaneous events. The ORDER BY clause can be used to
order simultaneous events.

Here is a simple example:

SELECT price FROM marketFeed
ORDER BY price DESC

We have a sample input/output table for this query:

Time Input event Output events
00 +{price = 5.0}

00 +{price = 10.0}

00 +{price = 1.0}

01 +{price = 10.0},
+{price = 5.0},
+{price 1.0}

In this case, note how the event {price = 10.0} is output first before the event
{price = 5.0}, even though the former was received after the latter.

When used with streams, it is not mandatory to specify the top n
events in the ORDER BY clause. This is so because it is expected
that the number of simultaneous events is not large.

It is worth noting that the output only happens after the time t has moved from 0 to
1. This is necessary for CQL to know that no more events with time t = 0 will be
received. We explore CQL's timing model in details in a later section in this chapter.

Views
CQL queries, similarly to SQL, can get overwhelming very quickly, so there is a need
to be able to compose queries together in an efficient and productive form. This is
solved in CQL by using views. A view is a CQL statement that can be re-used by
different CQL queries. You can make use of the full CQL syntax in a view, except
that views can only be used as sources of a query. In other words, views do not
output events directly out of a CQL processor, but only to other CQL queries.

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL

[140]

Let's take a look at an example of a view:

SELECT price FROM marketFeed

The name of this view is MarketFeedView.

Next, let's define two queries that re-use this view:

• SELECT price FROM MarketFeedView WHERE price > 10.0

• SELECT price FROM MarketFeedView WHERE price < 5.0

From the perspective of the queries, the MarketFeedView view behaves just like
any other source, and therefore can emit either streams or relations.

However, it is important to make sure the views and the queries type-check
correctly. In other words, if a view is projecting a price string property, then
the query must use only a price string property when referencing the view
source. For example, the following view and query fail to compile:

View V1: SELECT symbol FROM marketFeed
Query Q1: SELECT price FROM V1

In this case, Q1 is referencing to a price property that has not been projected
by the V1 view, even though it may exist in the original marketFeed source.

Set operations
CQL supports the usual set operations between relations, such as EXCEPT, MINUS,
INTERSECT, UNION, UNION ALL, IN, and NOT IN.

These operators are binary and need to reference queries (or views) in both their
left and right hand-side. To better understand their usage, consider the following
two views:

View V1: SELECT symbol
 FROM reutersMarketFeed[RANGE 1 MINUTE]
View V2: SELECT symbol
 FROM bloombergMarketFeed[RANGE 1 MINUTE]

Next, consider the following queries:

Query Q1: V1 EXCEPT V2
Query Q2: V1 MINUS V2
Query Q3: V1 INTERSECT V2
Query Q4: V1 UNION V2
Query Q5: V1 IN V2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[141]

Finally, let us assume that the feeds reutersMarketFeed and bloombergMarketFeed
respectively output the following events in the last minute:

reutersMarketFeed:
 {symbol = "ORCL"},{symbol = "IBM"},{symbol = "ORCL"}
bloombergMarketFeed:

 {symbol = "IBM"},{symbol = "MSFT"}

In this case, the result from the previous Q1 to Q5 queries at the end of the one-
minute period is:

Q1: {symbol = "ORCL"}
Q2: {symbol = "ORCL"}
Q3: {symbol = "IBM"}
Q4: {symbol = "ORCL"},{symbol = "IBM"},{symbol = "MSFT"}
Q5: {symbol = "IBM"}

Remember that comparison between events is done based upon their value. All
of the previous operators remove duplicates, hence the reason that query Q1 only
outputs a single {symbol = "ORCL"} event, even though the reutersMarketFeed
stream received two such events in the last minute of execution.

UNION ALL is slightly different; it does not remove duplicates. More importantly,
it can be used directly with streams. Consider the following set of statements that
make use of UNION ALL:

View V1: SELECT symbol AS ticker
 FROM reutersMarketFeed
View V2: SELECT symbol
 FROM bloombergMarketFeed
Query Q1: V1 UNION ALL V2

Here is a sample input/output table for these statements:

Time V1 output V2 output Q1 output
00 +{ticker =

"ORCL"}
+{ticker =
"ORCL"}

01 +{ticker =
"ORCL"}

+{symbol
= "IBM"}

+{ticker =
"ORCL"},

+{ticker =
"IBM"}

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL

[142]

Time V1 output V2 output Q1 output
02 +{symbol

= "MSFT"}
+{ticker =
"MSFT"}

03 +{ticker =
"ORCL"}

+{symbol
= "ORCL"}

+{ticker =
"ORCL"},

+{ticker =
"ORCL"}

As noted, the interesting behavior of this example is that at time t = 03, the
query outputs two simultaneous events that are equal. This is only possible as
we are outputting a stream, otherwise the two similar events would have been
considered as if they were the same in the case of a relation, and the second one
wouldn't have been output.

Further, notice how the output property is always called ticker, rather than symbol,
which happens to be the event property name for the relation at the left-hand side
of the UNION ALL. For all binary set operators in CQL (and SQL for that matter),
the schema of the left-hand side and of the right-hand side relations must match
in number and type, and the properties (row attributes) of the output events are
named using the name of the event properties of the left-hand side relation.

The type of a property is very important not only for these set operators, but also
in general to dictate what kind of operations is supported with a particular data.
In the next section, we explore CQL's type system.

Typing and expressions
CQL native types are similar to Java with some additional RDBMS types.
They are defined as follows:

• BIGINT: This is equivalent to Java long
• BOOLEAN: This is equivalent to Java boolean
• BYTE(size): This is equivalent to an array of Java byte
• CHAR(size): This is equivalent to a Java String or an array of Java char
• DOUBLE: This is equivalent to Java double
• FLOAT: This is equivalent to Java float
• INTEGER: This is equivalent to Java int
• INTERVAL: This represents an interval of time, and is similar to Oracle

RDBMS interval data type
• TIMESTAMP: This is equivalent to Java DateTime class
• XMLTYPE: This represents XML data

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[143]

The numeric data types of bigint, double, and integer support the following
comparison operators:

• = (equality)
• <> (inequality)
• < (greater than)
• > (less than)
• <= (greater than or equal)
• >= (less than or equal)
• Range

Most of these are intuitive, except for range. Range is true if the value is in
between a range, as in the following example:

WHERE price BETWEEN 10 AND 30

The char type supports the like operator, which allows you to match a String
with another String or even to a regular expression. Here is an example:

WHERE symbol LIKE "ORCL"
WHERE symbol LIKE "[A-C][A-C]"

This latter case matches symbol to "AA", "AC", but not to "DD", or "AAA".

Explaining the full syntax of regular expressions is beyond the
scope of this book.

The date-time types timestamp and interval likewise support all the previous
comparison operators. Here is an example:

WHERE INTERVAL "1 12:00:30" DAY TO SECOND > INTERVAL "1 12:00:00" DAY
TO SECOND

You can construct compound comparisons by combining terms with the AND, OR,
NOT, and XOR. Here is a simple example:

WHERE (price = 10 AND symbol like "ORCL")
OR (price between 100 and 200 and symbol like "IBM")

This matches events whose price are 10 and symbol is "ORCL" or events whose prices
are in between the values 100 and 200 and the symbol is "IBM".

You can also check with an event property is null by using is [not] null operator,
as in the following example:

WHERE symbol is not null

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL

[144]

In most cases, you won't need to worry about all this different data types, as the
server will take care of converting Java to CQL types automatically. You can also
explicit convert the data-types by using the following cast functions:

• to_bigint()

• to_boolean()

• to_char()

• to_double()

• to_float()

• to_timestamp()

In future chapters, you will learn more about how to use Java with CQL, and about
the XML data type.

Timing models
As you have without a doubt realized, time is an essential part of CQL. It dictates
how the streams are computed, how the windows behave, and ultimately the
continuous nature of Oracle CEP.

Oracle CEP supports two different timing models:

• System time-stamped streams
• Application time-stamped streams

In system time-stamped streams, the system automatically timestamps the
events as the events arrive. The CQL processor does this as events arrive from
upstream channels. This is the default modus operandi. In this mode, time is
measured in nanoseconds.

In application time-stamped streams, it is the responsibility of the application
to provide a timestamp. Placing the timestamp in an event property does this.
In this mode, it is up to the application to define how time progresses, and time
is measured in application time ticks. An application could determine that every
one hour of wall-clock time equals to one application time tick, and so on. For
example, consider an event whose ts property is the application time-stamped
property, and a query as the following:

SELECT * FROM S[range 2 nanoseconds].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[145]

At lunch time, you send your first event as {ts = 0, id = 1}, and you will get
the following output:

+{ts = 0, id = 1}

Later, at midday, you send another event as {ts = 1, id = 2}. The output is:

+{ts = 1, id = 2}

At night, you send the event {ts = 2, id = 3}. The output now is:

-{ts = 0, id = 1}
+{ts = 2, id = 3}

So even though several hours progressed on the wall-clock, in your application only
three nanoseconds have gone by.

The timing model you choose also has two other implications. First, in system time-
stamped streams, if no events arrive, the progress of time can be trigged by periodic
heartbeats. For example, considering still the same query as previously, even if
no events arrive after 3 nanoseconds, the server knows that the system time has
progressed by looking at the CPU clock, and so can automatically generate the
delete event -{ts = 0, id = 1} when necessary. This doesn't work for application
time-stamped streams, as the server cannot assume that the application time has
moved by looking at the CPU clock. The implication of this is that there is no
heartbeat for application time-stamped streams.

You can configure the periodicity of the heartbeat for system
time-stamped streams using the following MBean operation:
com.bea.wlevs.management.configuration.
EventChannelMBean.setHeartbeatTimeout(long)

The second implication is that in system time-stamped streams, you may get more
than one event in a single tick. However, in application time-stamped streams,
the application can determine if every event in the stream arrives with a different
increasing time-stamp. This property of having strictly increasing time-stamps is
called a total ordered time-stamped stream. By informing the CQL processor that
a stream is totally ordered, it allows the CQL processor to perform optimizations.

You can configure an application time-stamped stream
as total-order by setting the XML attribute of a channel
is-total-order to true in the EPN assembly

www.it-ebooks.info

http://www.it-ebooks.info/

Coding with CQL

[146]

One optimization is that the CQL processor does not have to wait for the next
time-stamp before being able to assume that time has progressed. For example,
still considering the same query, take a look at the input/output table for the
application time-stamped stream S1 that is not totally ordered, and for the
application time-stamped stream S2 that is totally ordered:

Time Input Event Output S1 Output S2
0 +{ts = 0, id =

1}
+{ts = 0, id =
1}

+{ts = 0,
id = 1}

1 +{ts = 1, id =
2}

+{ts = 1, id =
2}

+{ts = 1,
id = 2},

-{ts = 0,
id = 1}

2 +{ts = 2, id =
3}

-{ts = 0, id =
1},

+{ts = 2, id =
3}

+{ts = 2,
id = 3},

-{ts = 1,
id = 2}

As you can see, dealing with time is not exactly trivial, but its understanding is
crucial in CEP systems.

Summary
CQL is a powerful language for performing event processing. In this chapter, you
learned the foundations of CEP, one important aspect of which is the difference
between streams and relations. You can now convert a stream to a relation by
applying window operations. CQL supports several useful Window operators
such as tuple-based windows, time-based windows, and partitioned windows.
You can also convert a relation to a stream by using the ISTREAM, DSTREAM, and
RSTREAM operations.

When using relations, you can apply most SQL operations, such as joins,
aggregations, and ordering. The main difference is that these operations
are executed in a continuous form.

We also learned how CQL native types are similar to that of Java and the RDBMS,
and provide several functions for casting.

Finally, we looked into how CQL interprets time and different timing models
supported, such as system time-stamped and application time-stamped streams.

In the next chapter we will be moving onto how to manage, monitor, and test
Oracle OEP applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring
Applications

In the previous chapters, you learned how to develop and run OEP applications.
For example, you learned how to develop CQL queries and configure adapters
that receive events. Next, you learned how to deploy these applications. In this
chapter, you will learn how to manage and monitor these deployed running
applications to make sure they are functioning correctly and to tune them as
the load in your system changes.

Specifically, you will learn how to:

• Enable and check log messages for OEP server components
• Deploying, suspending, resuming, and undeploying applications

through the Visualizer
• Dynamically manage the configuration of EPN adapters, channels,

and processors
• Dynamically manage the configuration of OEP server-wide services,

such as the embedded Jetty HTTP server, and data sources
• Monitor the throughput and latency of OEP applications

Configuring the logging service
The first step in managing and debugging a running application is to selectively
enable logging for the different OEP server components and check their log records.
You can do this by using the Visualizer.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring Applications

[148]

Start an OEP server in the helloworld sample domain. You have learned how
to do this in the previous chapters, but as a recap, here are the detailed steps
in a Unix-based environment:

1. Execute the following command:
cd Oracle/Middleware/ocep_11.1/samples/domains/helloworld_domain/
defaultserver

./startwlevs.sh

2. Next, log into the Visualizer through your web browser. Remember, that by
default the URL should be http://localhost:9002/wlevs, and the user ID
and password are both wlevs.

3. Next, select your server in the Domain Browser window, which is located
in the left panel. The Domain Browser window allows you to explore all the
servers of your domain. By default, a domain contains a single server called
NonClusteredServer. Within each server, you can see all the applications
that are deployed. Within each application, you can further drill-down in
all the stages of the application, that is, the EPN nodes. The next screenshot
shows the Domain Browser window for the sample hello-world domain
included in the product:

www.it-ebooks.info

http://localhost:9002/wlevs
http://www.it-ebooks.info/

Chapter 6

[149]

4. Further, when you select a server, you will get several tabbed panels in the
right-hand window representing the different services you can manage.
Select the Logging tab. This is shown in the following screenshot:

5. Next, select the sub-panel titled Component Log Setting. This provides a
list of all the available components of the server. For example, the Channel
component can be used to control the log messages for channels in the EPN.
Similarly, the CQLProcessor component controls logging for CQL processors
in the EPN. By default, all of the logging components are set to severity
Notice. This means that only logs whose severity are Notice or of higher
severity, such as Warning, Error, Critical, Alert, or Emergency are logged.

6. Select the EventTrace component, then press the Edit button, and change its
severity to Info.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring Applications

[150]

7. The EventTrace component is a very useful log category. It allows you
to trace the events as they flow through the EPN. Let's take a look at how
it works. You can check all the log messages that are being output to the
console by selecting the NonClusteredServer/Services/Console Output
node in the Domain Browser window. When you do this, you will see the
console output in the right-hand side window. For example, you should see
the following log messages:
Message: HelloWorld - the current time is:11:26:53 AM

<Jul 6, 2012 11:26:53 AM PDT> <Info> <EventTrace> <BEA-000000>
<Application [helloworld], Stage [helloworldInputChannel] received
insert event>

<Jul 6, 2012 11:26:53 AM PDT> <Info> <EventTrace> <BEA-000000>
<Application [helloworld], Stage [helloworldProcessor] received
insert event>

 <Jul 6, 2012 11:26:53 AM PDT> <Info> <EventTrace> <BEA-000000>
<Application [helloworld], Stage [helloworldOutputChannel]
received insert event>

8. If you change the severity of the EventTrace component back to Notice, the
previous <EventTrace> messages will no longer be output.

9. Let's try a different category. Change the severity of CQLProcessor category
to DEBUG. The DEBUG severity is useful when problems arise, and you
need a finer grain of details showing what's happening. Also, if you run
into a bug, Oracle support may enquire that you send a debug-level logging
file. The following is an example of the CQLProcessor component's debug
logging messages:
<Nov 22, 2012 1:47:32 PM EST> <Debug> <CQLProcessor> <BEA-
000000> <Event com.bea.wlevs.event.example.helloworld.
HelloWorldEvent@4a8e91eb incoming to processor:
helloworldProcessor>

<Nov 22, 2012 1:47:32 PM EST> <Debug> <CQLProcessor> <BEA-000000>
<onEvent [eventType=HelloWorldEvent object=helloworldInputChannel
kind=PLUS time=0 _this=com.bea.wlevs.event.example.helloworld.
HelloWorldEvent@4a8e91eb, message=HelloWorld - the current time
is:1:47:32 PM isTotalOrderGuarantee=false] to helloworld_$ocep$_
helloworldProcessor_$ocep$__s1640586218>

<Nov 22, 2012 1:47:32 PM EST> <Debug> <CQLProcessor> <BEA-
000000> <processor [helloworldProcessor] output tuple =
object=helloworldRule kind=null time=1353610052612109000
helloworldInputChannel._this=com.bea.wlevs.event.example.
helloworld.HelloWorldEvent@4a8e91eb, helloworldInputChannel.
message=HelloWorld - the current time is:1:47:32 PM
isTotalOrderGuarantee=true isBatchDestination=false
propagateHeartbeat=false>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[151]

10. Finally, in the Logging Service sub-panel, you have several logging service
properties, such as the location of the logfile name, and the rotation size
of the file.

In the next section, you will learn how to manage the deployment of applications.

Provisioning applications
In the previous chapters, you deployed and undeployed applications using
the Integrated Development Environment (IDE). This is the norm when you are
developing the applications and need to test them. However, after development,
you will generally deploy and manage your deployed applications in your
production environment using the Visualizer.

Let's start by using the helloworld sample domain. Log into the Visualizer
as usual, and navigate to the Deployment node, which is the first node underneath
WLEventServerDomain in the Domain Browser panel. In the right-hand panel, you
will see a list of all the deployed applications, the first of which is the helloworld
application. This is demonstrated in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring Applications

[152]

Next, select the helloworld application, and then click on the Suspend button in
the bottom of the window. Go back to the Console Output node, and you should
see the following log message:

<Jul 7, 2012 10:17:47 AM PDT> <Notice> <Spring> <BEA-2047005> <The
application context "helloworld" was suspended successfully>

You can also go to the server's dashboard, by selecting the Home shortcut at
the top of the window. In the dashboard, there is a Management Events window
that shows all the management-related log messages. This is demonstrated in the
next screenshot:

Notice how there is also a shortcut at the bottom-left corner for all recent windows
you have selected so far. For example, you will see the Console Output window
there, as you had just used it previously.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[153]

You can resume your helloworld application by going back to the
Deployment window, selecting the helloworld application, and then
clicking on the Resume button.

When you suspend and resume an application, the application is informed of this
action so that it can take the appropriate actions, such as releasing and acquiring
resources. A stage in the EPN that wishes to be informed of these actions must
respectively implement the com.bea.wlevs.ede.api.SuspendableBean and
com.bea.wlevs.ede.api.ResumableBean.java interfaces.

Next, undeploy the helloworld application by selecting the helloworld application
and clicking on the Uninstall button. It will be undeployed and no longer part of the
deployed applications list.

You can redeploy the helloworld application by clicking on the Install button.
The first step to deploy an application is to upload its JAR file to the server. You
do this by choosing a file in your local file-system by clicking on the ... button.
Navigate to the source location of the helloworld application, and select the
JAR file in the dist directory.

The sources for all samples are located at Oracle/Middleware/
ocep_11.1/samples/source/applications in Unix and Oracle\
Middleware\ocep_11.1\samples\sources\applications in
Windows.
To build an application from its source, make sure you have Ant and
Java in your environment path, and run Ant from the root location of the
sample. For example, for the helloworld application, the steps are:
cd Oracle/Middleware/ocep_11.1/samples/source/
applications/helloworld

ant

The output JAR file is placed in the dist directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring Applications

[154]

Next, click on the Upload button. The JAR file will be uploaded to the server, and a
new window is shown. Select the uploaded JAR file and click Deploy. This is shown
in the next screenshot:

Finally, confirm by clicking on the Ok button, and the helloworld application will
be deployed and its status shown as Running in the list of deployed applications.

By now, you are able to deploy, suspend, resume, and undeploy applications.
In the next section, let's explore what other management actions you can do
on a deployed application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[155]

Changing application configuration
The Visualizer not only allows you to manage the server, but also to change the
configuration of the deployed applications. In the Domain Browser window,
select the helloworld node under NonClusteredServer/Applications. You will
get a general description of the application in the panel that appears on the right.
Next, select the Event Processing Network tab, which shows you a graphical
representation of the application's EPN. This is demonstrated in the next screenshot:

This graphical view is not only a useful visualization aid for understanding the EPN,
but also allows you to easily select any of the stages of the EPN.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring Applications

[156]

As you have learned, the EPN is a directed graph representing the flow of events
from left to right. The first stage, which is the left-most upstream node in the graph,
is helloworldAdapter. Double-click this node and you will get a new panel with the
adapter's configuration, as is shown in the next screenshot:

The helloworldAdapter has a lot of interesting properties, particularly the last
one, which is called the Message property. This property has the content of the
message that is being printed.

Different adapters have different properties. For example, the CSV adapter has
a port, eventPropertyNames, and eventTypeName properties.

The helloworldAdapter doesn't have any configuration that can be changed
dynamically, therefore there is no Edit button. However, this is not the case for
some of the other adapters, which can have editable configurations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[157]

Next, go back to the EPN view, and double-click the helloworldInputChannel
channel. You will see all the properties of a channel in the General tab. This is
shown in the next screenshot:

A channel does have editable properties, such as the Max Size, Max Threads,
and Automatic Heartbeat Interval properties. You can see this by clicking on the
Edit button. The Max Size and Max Threads properties control the concurrency
behavior of the channel. You can change any of these properties and then press
the Save button for the change to take effect. A full description of these attributes
can be found in Chapter 9, Implementing Performance Scaling, Concurrency, and
High-Availability for Oracle Event Processing.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring Applications

[158]

Next, select the CQL processor. You have seen this before in Chapter 2, An Overview of
Oracle Event Processing. The CQL processor has a lot of changeable configuration, the
most important of which is the actual configuration of the CQL queries being executed.
Select the CQL Rules tab. Next, select the Query ratio button in the upper right-hand
side, and then the Edit Query button. This is shown in the next screenshot:

Type the following CQL query in the Query window:

select 'Welcome to Oracle CEP' as message
from helloworldInputChannel

Finally, press the Save button. Go back to the Console Output window and confirm
that the message has been changed.

In the next section, you will learn how to manage the server-wide configuration,
such as data sources, work managers, and the event type repository.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[159]

Managing server-wide configuration
There are a number of configurations that are related to server-wide services.
Let's start with work managers.

Controlling concurrency with work managers
Work managers are responsible for controlling the threading behavior of the server,
such as the thread pool size. By default, there is a single work manager that is
associated to the embedded Jetty web server. The Jetty web server is used to service
HTTP requests for all HTTP servlets that may be deployed in the OEP server.
The Jetty web server is also used by the deployment service, when you deploy
an application. However, as you will learn in Chapter 9, Implementing Performance
Scaling, Concurrency, and High-Availability for Oracle Event Processing, the concurrency
established by a channel is not directly related to a work manager.

You can find its description by selecting the server in the Domain Browser window,
and then opening the HTTP Server tab in the service panel. This is the same panel
where we previously selected the logging service. This panel is shown in the
next screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring Applications

[160]

You will notice that the Jetty server is associated to a work manager named
JettyWorkManaager. Next, select the Work Manager tab. This tab lists all the
available work managers in the server. Select JettyWorkManager and click on the
Edit button. You will be able to edit the Min Threads and Max Threads properties.
These are used to respectively limit the minimum and maximum number of threads
available in this work manager. You can change these values, and then save them by
clicking on the Save button, as shown in the next screenshot:

Next, let's take a look at data sources.

Accessing contextual data with data sources
Data sources represent connections to databases, and therefore are very useful. In
later chapters, you will learn how to create CQL queries, which enrich events with
contextual data that lives in database tables, however before you can do that, you
need to configure data sources to their respective relational database systems.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[161]

In the Visualizer, you can add a data source by selecting the DataSource tab in
the Service panel, which is the tab just prior to the HTTP Server tab you used
previously. You will see a list of data sources, which by default is empty. Click on
the Add button. You will be presented with three panels, where you can respectively
set the data source parameters, the connection pool parameters, and the database
driver parameters. Let's go through a simple scenario where you add a data source
to a Oracle database. In the first panel, set a name for the data source, such as
myDataSource. Generally, you don't need to set a JNDI name. This is shown
in the next screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring Applications

[162]

Select the Global Transactions Protocol tab. In the Database Type drop-down
list, select Oracle. The URL is configured for a default installation of an Oracle
database, change it if necessary. Finally, set the username and password in the
User Name and Password fields respectively, and optionally set the Use XA
property to false. This is shown in the next screeshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[163]

Finally, in the Connection Pool tab, you can keep the default configuration, and click
on the Save button to add the data source to the sever. A noteworthy mention is
the Test option, which allows you to specify a SQL statement to be used as a sanity
check when a connection is first established to the database. This is shown in the
following screenshot:

Data sources are global, and can be used by one or more applications.

There are several other useful server-wide services. One of them is the event
type repository service, which we take a look at next.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring Applications

[164]

Browsing metadata with the event type
repository
The event type repository is a server-wide repository that contains all
registered event types by all deployed applications. You can inspect it by
navigating to WLEventServerDomain | NonClusteredServer | Services |
Event Type Repository. You can select an event type, and see a short description
of its event properties and their types, as shown in the following screenshot:

So far, you have learned how to configure the server, how to deploy applications,
and how to configure them. In the next section, you learn how to monitor the
running applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[165]

Monitoring progress
When your application is in production, one of the major tasks is to make sure that
your applications are running as expected. You can verify this by monitoring the
throughput and the latency of the events being processed by your applications.

In the Visualizer, first select the application and the stage that you wish to monitor
in the Domain Browser window. For example, let's select helloworldAdapter. Next,
click on the Create Diagnostics button, which is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring Applications

[166]

When you do this, a new panel with three sections named Profile Information,
Latency, and Throughput shows up. In the Profile Information section, you need
to give your monitoring profile a name, and optionally set the State option to On.
Keep in mind that a profile can monitor both latency and throughput. Next, we
show how to monitor latency:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[167]

Next, select the Latency section. In this section, you can enable the monitoring of the
latency of the events that flow through the EPN. The latency of an event is the time it
takes to go from point A to point B. In our case, points A and B are the stages in the
EPN. This is called a path in the EPN. In the Latency section, first select if you are
interested in the maximum latency or the average latency. Next, you need to specify
the collection interval. For example, should the server check the latency every second,
every ten seconds, and so on. Finally, go to the Path Information sub-section, and
specify the starting point and the ending point used for determining the latency. All
this is shown in the next screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring Applications

[168]

You have configured how to monitor the latency, next you can optionally configure
how to monitor the throughput. The throughput is the number of events that flow
through a particular stage per some interval of time. For example, if an adapter
is sending 10 events every millisecond, then its throughput is of 10 events per
millisecond, or 10000 events per second. This is shown in the next screenshot:

You are now ready to save this monitoring profile. You can do this by clicking on the
Save button. To see the profile in action, you need to drag it into the dashboard. Go
back to the main dashboard window by clicking on the Home button. In the Domain
Browser window, you should see the profile you created named monitor underneath
helloworldAdapter. Drag it into the Profile Table in the lower-bottom area of the
window. When you do this, the latency and throughput graphs will get populated with
the monitoring results as specified in your profile. This is shown in the next screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[169]

The graphs are updated in real time, as the application is running. You can create
multiple profiles, and monitor different stages of your EPN. Further, you can also
define thresholds that cause management events to be raised when crossed.

Monitoring the throughput and the latency of an application
consumes CPU, therefore be conscious and monitor your
application only when needed.

In the next section, you will learn how to manage and monitor your applications
using JMX rather than going through the Visualizer. Using the JMX API gives you
additional flexibility, and allows you to create your own manager for OEP servers.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing and Monitoring Applications

[170]

Summary
In this section, you learned how to enable and check the log messages of OEP server
components. A useful log component or category is the EventTrace component,
which allows you to follow the flow of the events in the EPN.

Next, you learned how to deploy and undeploy applications through the Visualizer
without having to use the development environment. This is especially useful when
moving applications from a testing environment to your production environment.

You learned how to view and to dynamically change the configuration of deployed
applications. For example, how to change threading behavior of channels, and how
to add and remove CQL queries in CQL processors.

You learned how to view and to dynamically change the configuration of server-wide
services, such as work managers, the embedded HTTP server, and how to add new
data sources.

Finally, you learned how to monitor the latency and the throughput of the events
being processed by a running application.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Tables and Caches
for Contextual Data

So far we've learned how to create events, assemble, and configure Oracle Event
Processing applications. You've learned how CQL is used to process incoming data
streams. Sometimes incoming data streams do not contain all of the information
that we need for the business logic. In most instances, incoming data streams
contain some information about a current transaction, but other information such
as customer alert preferences are contained elsewhere. This contextual information
is often held in a database table and ideally for low latency applications, pushed to
an in-memory cache. It is also sometimes convenient to have application-specific
thresholds or other contextual information in a cache as well for lower latency access
to drive better application performance.

This chapter will cover the following topics:

• Setting up JDBC data sources
• Enriching events using a database table
• Setting up caching systems
• Enriching events using a cache
• Using caches as event sources and event sinks
• Implementing an event bean to access a cache
• Monitoring Coherence in the Visualizer

www.it-ebooks.info

http://www.it-ebooks.info/

Using Tables and Caches for Contextual Data

[172]

Setting up JDBC data sources
In Chapter 4, Assembling and Configuring OEP Applications, we discussed the event
server's configuration file (config.xml). One of the sections of this file is used for
making connections to a database. We'll review this configuration as it relates to
including a reference to a table in our application.

Let's suppose that we have a reference database that has a table containing customer
information, such as their name and their loyalty program status.

To make the connection to a data source, you define the data source along with its
connection pool and driver parameters as in the following example:

<data-source>
<name>ReferenceDB</name>
<data-source-params>
<jndi-names>
<element>ReferenceDB</element>
</jndi-names>
<global-transactions-protocol>None</global-transactions-protocol>
</data-source-params>
<connection-pool-params>
<credential-mapping-enabled></credential-mapping-enabled>
<test-table-name>
SQL SELECT 1 FROM MYREFERENCETABLE
</test-table-name>
<initial-capacity>1</initial-capacity>
<max-capacity>15</max-capacity>
<capacity-increment>1</capacity-increment>
</connection-pool-params>

<driver-params>
<use-xa-data-source-interface>false</use-xa-data-source-interface>
<driver-name>oracle.jdbc.OracleDriver</driver-name>
 <url>jdbc:oracle:thin:@localhost:1521:XE</url>
 <properties>
<element>
<value>refuser</value>
<name>user</name>
</element>
<element>
<value>password1</value>
<name>password</name>
</element>
</properties>
</driver-params>
</data-source>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[173]

Enriching events using a database table
Now that you have a JDBC connection in place in the server's configuration file,
you can use this to join to a table. Suppose that we have an OEP application that is
processing the key attributes of a customer's complaints. We may want to evaluate
the important details of each complaint in real time to establish the priority of each
complaint in order to provide better customer service. To do this, we will want to
include a reference to the customer table in our application.

You would use the <wlevs:table> tag to include a table within your EPN.
For example:

<wlevs:table id="CUSTOMER" event-type="CustomerData" data-
source="ReferenceDB"/>

Of course, you would need to define an event type with the appropriate attributes
corresponding to the columns in the CUSTOMER table.

You must then specify the table as a <wlevs:table-source> for a processor
that requires the data:

<wlevs:processor id="CustomerComplaintProcessor">
 <wlevs:listener ref="ComplaintEventChannel " />
 <wlevs:table-source ref="CUSTOMER"/>
</wlevs:processor>

We want to find the customer's information, including the name and loyalty program
status, corresponding to the complaint.

Within the processor that has the table source defined, you can create CQL to join
the event stream to the database table in the same manner as you would if you were
joining two tables in SQL, as in the following example:

<processor>
<name>CustomerComplaintProcessor</name>
<rules>
<query id="LoyaltyStatusQuery">
<![CDATA[
SELECT E.customerID,
 E.complaint,
E.employeeID,
E.location,
C.loyaltyStatus,
C.firstname,

www.it-ebooks.info

http://www.it-ebooks.info/

Using Tables and Caches for Contextual Data

[174]

C.lastname
FROM ComplaintEventChannel [NOW] as E, CUSTOMER as C
WHERE E.customerID = C.customerID
]]>
</query>
</rules>
</processor>

The resulting output event will now contain both the desired attributes from the
event stream and the selected columns from the database table. This allows us to take
action immediately on complaints from customers with a particular loyalty status.
When the most loyal customers have a complaint, it is best to address it as soon as
possible since they represent important repeat business for the company, which
could be lost if not addressed in a timely manner.

Setting up caching systems
A cache is an in-memory storage area. In OEP, a cache is often used to store events.
While it is not strictly necessary to use a cache in your application, it can significantly
improve performance over retrieving data from the database.

In Chapter 4, Assembling and Configuring OEP Applications, we briefly looked at how
to set up a caching system. Now we'll cover that in a little more detail.

A caching system is a configured instance of a caching implementation. A caching
system includes the configuration information needed to connect to one or more
named caches defined in the caching system. Setting up Coherence requires specific
configuration files which must also be made available to the OEP JVM, just as
they would need to be part of the configuration of any Coherence JVM that is
part of the cluster. This is a rich topic which you should learn more about if you
plan to implement caching within OEP. A good place to start to experiment with
the different configurations of caching systems is to extract the example cache
configuration file from the Coherence JAR file. It contains comments explaining the
logic behind each type of sample configuration.

OEP supports a local in-memory single-JVM cache as well as Oracle Coherence.
Oracle Coherence is a JCache-compliant in-memory distributed data grid solution for
clustered applications and application servers. The main advantages of Coherence
are that it coordinates updates to the data using cluster-wide concurrency control,
replicates data modifications across the cluster using the highest performing
clustered protocol available, and delivers notifications of data modifications to any
servers that request them. Oracle Coherence uses the standard Java collections API to
access and modify data, and uses the standard Java Bean event model to receive data
change notifications.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[175]

Since this book is not intended to teach you all the aspects of Coherence, we
recommend that you do your own research on how to develop an application using
Coherence. In this section, we will specifically point out areas that are specific to
integrating with OEP.

We'll start with looking at an example of setting up a caching system. One best
practice to consider implementing is the creation of a separate JAR file for the classes
that relate to Coherence. The reason for doing this is so that these classes can be
easily added to both the OEP application and the classpath of the Coherence server.
A good way to implement this is to have an Ant script that not only builds the JAR
file but also updates the OEP application project and copies the file to any other
locations you want to update.

An important point to consider is getting any Coherence Portable Object Format
(POF) configuration files in the classpath, especially the OEP application's classpath.
One way to do this is to place the configuration files in the JAR file. You can add
them to your source folder and make sure that your Ant script includes them in the
creation of the JAR file.

Now that you have a JAR file with the required Coherence classes, you should
include it in your OEP application. A simple way to do this is to add a folder to
your OEP application, such as lib and then add it to the Bundle-Classpath in the
MANIFEST.MF file:

Bundle-ClassPath: .,
 lib/creditcard-demo-cache.jar,

The Eclipse editor for the manifest will easily help you do this from the Runtime tab
after you double-click the MANFEST.MF file, which is under META-INF.

Next, you'll want to configure your cache. As mentioned in Chapter 4, Assembling and
Configuring OEP Applications, you need to define a caching system and a cache using
the <wlevs:caching-system> and <wlevs:cache> tags:

<!-- Caching Configuration -->
<wlevs:caching-system id="CoherenceCachingSystem" provider="coherence"
/>
<wlevs:cache id="DeviceCache"
caching-system="CoherenceCachingSystem"
value-type="Device" key-properties="deviceID">
</wlevs:cache>

Once this is done, you have a cache set up and ready to use. The next few sections
will show you some examples on how you can use the cache.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Tables and Caches for Contextual Data

[176]

Enriching events using a cache
Once the caching system and cache is in place, one common use case is to use it to
enrich events. In most cases, applications are designed so that the incoming event
contains the key that you'll need to access the cache. Just as you've seen previously
how a database table can be incorporated into the EPN, a cache is also a first-class
citizen in an OEP application. Once we've linked the cache to the CQL processor
as a source, you can refer to it in the CQL in the same way that you referenced the
database table in the previous section. This will allow you to join an event stream on
an incoming channel with its associated cached attributes.

You will use the key attribute from the incoming data stream to join to the cache just
like you would do if you were making a join between two tables in SQL.

Let's take a look at some examples. Suppose you are collecting data from various types
of devices. The data stream may simply send you the device ID and the measured
value. You may need to determine if the measured value has exceeded a predefined
threshold depending upon the type of device. The Coherence cache may contain
the device IDs and their types as well as other information that may be of interest to
business users that doesn't get sent with each event, such as the device location.

As we receive each event (for example, D100, 70.3), where D100 is the device ID
and 70.3 is a temperature reading, we need to enrich the event with the device
type and location. Subsequently, we can evaluate whether to send an alert. We
can join the incoming data stream to the cache using CQL and extract the additional
information. A good idea might be to use a CQL view to do this, and then execute
queries against the view.

First, you'll need to inject the cache as a source for the processor using
<wlevs:cachesource>. The processor now has access to the cache:

<wlevs:processor id="DeviceProcessor">
<wlevs:listener ref="DeviceAlertOutput" />
<wlevs:cache-source ref="DeviceCache" />
</wlevs:processor>

Then you can join incoming event streams with configured cache sources as
in this example:

<processor>
<name>DeviceProcessor</name>
<rules>
<query id="DeviceTypeQuery">
<![CDATA[
SELECT M.deviceID,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[177]

 M.measuredValue,
D.location,
D.deviceType
FROM MeasurementEventChannel [NOW] as M, Device as D
WHERE M.deviceID = D.deviceID
]]>
</query>
</rules>
</processor>

The resulting output event will have the measured values as well as the location
and device type.

Using caches as event sources and sinks
Besides using a cache for contextual data, another good use is to use it as the supplier
of input data or as the final event sink for processed results.

The Oracle Coherence cache has a simple way for you to listen for changes that
occur. By implementing a Map Listener interface, you can receive data into your
OEP application and then connect a channel so that it acts similar to how an input
adapter would.

At the end of an EPN, you could use a cache as the result sink. This provides a
low latency way to output your events.

First, let's look at using the cache in place of an input adapter to supply events
to your application as an event source. You need to set up the caching system as
described at the beginning of this chapter, but you will make one important addition
to the configuration. You will use <wlevs:cache-listener> to set up an event-bean
class that implements MapListener and StreamSource, which can listen for changes
in the cache and forward events to downstream channels:

<wlevs:cache id="CardTransactionCache" caching-
system="CoherenceCachingSystem" value-type="CardTransactionEvent"
key-properties="cardID">
<wlevs:cache-listener ref="TransactionCacheListener"/>
</wlevs:cache>

Create a class that receives events from the cache, performs any necessary logic,
and sends the events to downstream channels:

<wlevs:event-bean id="TransactionCacheListener" class="com.oracle.cep.
listener.TransactionCacheListener">
 <wlevs:listener ref="CardTransactionChannel"/>
 </wlevs:event-bean>

www.it-ebooks.info

http://www.it-ebooks.info/

Using Tables and Caches for Contextual Data

[178]

Here is an example:

This configuration will notify your application of any changes in the cache. Let's
assume that another application is putting credit card transaction events into
CardTransactionCache. There may be a number of reasons to do this. Perhaps there
is logic that needs to occur as these events are placed into the cache. Coherence can
replicate these events to provide reliability in the event of a hardware failure and
help batch insert them into a database. Other applications may also be interested
in subscribing to these events. There may also be a need to insert these events into
a database. This is something that Coherence can help do more efficiently versus
inserting them a single transaction at a time. Coherence-specific implementation
parameters should be taken into consideration to manage how long these events
stay in cache. Also cache sizing should be planned appropriately.

By using the sendInsertEvent() method, you have made the events available to
any channels configured as listeners to this wlevs:event-bean.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[179]

Another useful role for the cache is to receive the alerts or other events that are to
be processed downstream. The cache is used in this case for a number of reasons.
It provides a low latency way for the OEP application to distribute events to other
applications. The cache can be configured to replicate the events, so that this valuable
information, which we have learned, is not lost in the event of a system failure. If
this information needs to be written to the database, Coherence can perform this
functionality thereby freeing up the OEP application thread from the responsibility
of making sure that the database transaction commits successfully. Coherence also
has other features that could potentially be beneficial when writing the results to
the database.

OEP provides Coherence integration features that assist the application developer
with inserting the output events into Coherence as an event sink. It is sufficient to
configure the channel receiving the events to be put into cache with a cache as a
listener. The OEP infrastructure will automatically perform the put() operation.
There is no need to explicitly write code to do this. For very high-performance
situations, you may want to explicitly batch the insert of events into the cache using
the putAll() operation or modify your cache configuration to have Coherence
handle this automatically using a preconfigured time interval for batching events.

Using the cache as an event sink can be as simple as supplying the cache as a listener
to a channel that has the correct event type to be cached:

<wlevs:channel id="AccountChannel" event-type="Account">
<wlevs:listener ref="AccountCache"/>
</wlevs:channel>

Implementing an event bean to access a
cache
Sometimes the logic that you want to implement goes beyond simply joining to the
cache using CQL or listening for and pushing events to the cache. Perhaps, you want
to implement one or more of the Java APIs for Coherence. A common example is to
implement an invoke operation on the cache. You can do this by implementing an
<wlevs:event-bean> event bean. The event bean implements both the StreamSource
and StreamSink interfaces, so that you can receive incoming events, do whatever logic
you need using the Coherence cache APIs, and then create your outgoing events to
downstream channels. Here is an example of the event bean configuration:

<wlevs:event-bean id="GetAccountCustomers"
 class="com.oracle.cep.eventbean.GetCustomersForAccount">

www.it-ebooks.info

http://www.it-ebooks.info/

Using Tables and Caches for Contextual Data

[180]

 <wlevs:listener ref="CustomerThresholdChannel"/>
 <wlevs:instance-property name="accountCache" ref="AccountCache" />
</wlevs:event-bean>

One important point to notice is that we are able to set a reference to the cache using
the <wlevs:instance-property> tag. This allows us to use the Spring framework to
set the reference to the cache.

Define an attribute of type java.util.Map for the cache and an appropriate
setter method:

private Map accountCache;
public void setAccountCache(Map accountCache)
{
this.accountCache = accountCache; }

A common reason to use an event bean to access the Coherence cache is to take
advantage of the Coherence entry processor pattern.

You need to implement a class that extends com.tangosol.util.processor.
AbstractProcessor.

Be sure to add the appropriate dependency entries in the MANIFEST.MF file or you
will get an error when you deploy the application and start the server.

In the process() method, you can check if an entry is present based upon the key
and perform any logic you need performed within the cache. You can then return
any object you desire to OEP for further processing by sending the existing or any
new event to downstream listeners of your event bean. This is useful in cases where
you are checking for entries in the cache (such as cases where you want to check if
an alert has already been sent) or performing complex logic that would best be done
within the cache. Keep in mind that you should always try to keep logic that may
need to change frequently within OEP since application logic within CQL processors
can easily be updated.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[181]

Here is an example of using the Coherence entry processor functionality within an
OEP event bean to check if an entry is present for a key. If the entry is not present, the
object is added to the cache. If an entry is present, the cache is updated, but the old
entry is returned to the OEP application so that CQL logic downstream of the event
bean can compare the old and the new entries and perform some business logic.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Tables and Caches for Contextual Data

[182]

The following code runs within the Coherence cache to process incoming data and
compare it with a previous entry for the same key if it exists:

There are many reasons to do something like this. One example would be in a
healthcare application where the CQL logic is not simply about whether values have
crossed a specific threshold, but rather attempts to determine if a patient's condition
is getting worse.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[183]

Monitoring Coherence in the Visualizer
Although it is possible to configure a cache entirely within an OEP application,
it is best to configure the cache at the server level (in the server's config.xml file).
When this is done, the ability to monitor the cache within the OEP Visualizer tool
is available.

This is an interesting feature of the product as it will enable you to view important
statistics at runtime including cache misses, hit statistics, total requests, cache size,
coherence topologies, and packet traffic.

Summary
In this chapter, you learned about configuring a database and using it to connect to
a table within CQL. You also learned about configuring a cache in your application
and the many ways that you could use it. We used it as a data source for contextual
information in a manner similar to joining to a database table, but we also used it
as a source of events and as an event sink for output to other systems. We saw how
implementing an event sink within the application and using that to access the
Oracle Coherence APIs can be a very interesting and useful design pattern. While
we learned a little about Oracle Coherence here, it is a very in-depth topic that you
should continue to explore.

In the next chapter, we will cover blending CQL with Java. This will provide you
even more ways to leverage the flexibility that developing business logic in CQL
provides for your application.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Pattern Matching with CQL
In Chapter 5, Coding with CQL, you learned the basics of event processing languages
with CQL and how it relates with SQL. In this chapter, you will learn advanced
event processing features such as pattern matching, and further learn how to
intermingle CQL with Java and XML.

Specifically, you will learn how to:

• Extend CQL with OEP cartridges
• Blend CQL with the Java programming language
• Process XML documents with CQL
• Perform pattern matching on events

Extending CQL with OEP cartridges
As we have learned, CQL is a very powerful, declarative language for processing
events; however sometimes you may need to do simple programming tasks such as
string manipulation, and for those cases you may find that CQL is just too high-level.
These types of tasks are commonly called programming in the small, and are best
done with imperative languages, such as Java. Fortunately, Oracle CEP provides a
framework that can be used to extend the CQL language itself. This is done through
the plugin of Oracle CEP cartridges.

www.it-ebooks.info

http://www.it-ebooks.info/

Pattern Matching with CQL

[186]

By default, Oracle CEP comes installed with several cartridges, as shown in the
following diagram:

The pre-installed Java cartridge seamlessly blends CQL with the Java language.
In the next section, we take a look at how to program day-to-day tasks in CQL
by leveraging Java.

Blending CQL and Java
We explore the CQL and Java integration by walking through several scenarios.
Let's start with a simple scenario, where we want to get a sub-string from the
symbol event property, whose type is the CHAR native type. This is illustrated
in the following example:

SELECT symbol.substring(0,2)
FROM marketFeed

First, CQL performs an implicit conversion between the CQL native CHAR data
type and the Java String class. Next, you can invoke an instance method of a Java
class instance in CQL by using the . (dot) operator, very much like you would do
normally in Java. In other words, the expression symbol.substring(…) invokes the
method String java.lang.String.substring(intbeginIndex, intendIndex)
in the object represented by the property symbol. You can even go further, and nest
invocations as in the following example:

SELECT symbol.substring(0,2).toUpperCase()
FROM marketFeed

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[187]

In this case, you first invoke the substring() method, and then invoke the
toUpperCase() method in the returning String object.

Next, let's say you want to create a new Java String object and use it in CQL.
This is done in the following example:

SELECT symbol.substring(0,2).toUpperCase()
FROM marketFeed
WHERE symbol.startsWith(String("ORCL"))
= true
)

The creation of a new Java String happens on line three, in the expression
String("ORCL"). In this case, there is a difference to the Java language.
In CQL, there is no need of a new keyword. Instead, CQL determines that
a constructor is being invoked by considering the context of usage.

Functions are an intrinsic core piece of CQL. This is one reason why
there is no need for a new keyword in CQL and instead a Java class
constructor is invoked as if it is a function.

Further, note how the result of the startsWith() method returns a Java Boolean
native type, which is automatically converted to a CQL boolean and compared with
the CQL literal true. This implicit conversion back and forth between CQL and Java
types greatly improves usability.

Let's look at another example of data type conversions:

SELECT symbol
FROM marketFeed
WHERE Integer.valueOf(priceAsStringValue) > 10

Assume that the incoming event in the marketFeedstream has a CHAR (for example,
String) property named priceAsStringValue that contains the symbol's price and
you want to filter out all events whose price are less than or equal to 10. Because
priceAsStringValue is a CHAR type, you need first to convert it to a native CQL
integer type. You could do this by using the built-in casting function called
intto_int(CHAR). However, an arguably simpler approach for Java developer
would be to use the static method Integer Integer.valueOf(String). This
returns an Integer object, which is automatically unboxed as a native Java integer,
and following converted to a native CQL integer for the comparison evaluation.

www.it-ebooks.info

http://www.it-ebooks.info/

Pattern Matching with CQL

[188]

CQL literals are not converted to Java literals. For example,
the following expression is illegal:

SELECT "hi".toUpperCase() …

So far you have invoked Java instance methods, static methods, and constructors.
There are two remaining cases to be looked at, which is that of field reference and
that of arrays. These are explored in the following example:

SELECT
address.zipcode as zipcode,
address.phones[0] as mainPhone
FROM marketFeed

In this case, consider that the type of the address property is the following Java class:

package myorg.app1;

public class Address
{
 public String city;
 public String state;
 public String zipcode;
 public String [] phones;
}

So, as expected, field referencing and array indexing in CQL is also no different
than in Java.

Oracle CEP 11g does not support instantiation of array objects
in CQL. For example, the following is illegal:

SELECT String[0] {"ORCL"} FROM marketFeed

In the beginning of this section, the queries were referencing to JDK types such as
Integer and String, which are always present in the classpath. However, this is not
the case for this last example, where the query is using the user-defined class called
Address. How is the CQL processor able to load this class? Next, we answer this
question by looking into the class-loading rules for accessing Java classes in CQL.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[189]

Class loading in CQL
The class loading rules for accessing Java classes in CQL is determined by the
Oracle CEP application that defines the CQL queries (or views) that reference
to these Java classes.

By default, a CQL query has the same class-path visibility as of its defining
application.

For example, say we have three applications, named A1, A2, and A3. Application
A1 defines and exports the myorg.app1.Address class, application A2 imports
this class and also defines and exports the myorg.app2.Book class, and application
A3 defines and does not export the myorg.app3.Student class. A3 also doesn't
import either myorg.app1.Address, or myorg.app2.Book. This is illustrated in
the following diagram:

In this case, CQL queries (and views) in application A1 can make use of the myorg.
app1.Address class, but cannot make use of the myorg.app2.Book and myorg.
app3.Student classes, whereas the application A2 can make use of myorg.app1.
Address myorg.app2.Book. Finally, application A3 can only make use of the
myorg.app3.Student class.

As the myorg.app1.Address class is defined by A1, it is clear why CQL queries in
A1 can load this class, but why can also A2 load it? A2 can also load it because A1 is
exporting it and A2 is importing it. This is done respectively by the Export-Package
and Import-Package OSGi manifest header entries in these applications.

Oracle Event Processing makes extensive use of the OSGi technology
(www.osgi.org) for its deployment model, application modularity, and
service abstraction. It is beyond the scope of this book to describe OSGi,
please refer to the OEP documentation or the OSGi documentation for
further details around OEP's usage of the OSGi technology.

www.it-ebooks.info

http://www.it-ebooks.info/

Pattern Matching with CQL

[190]

Here is an example of application A2's manifest file:

Bundle-ManifestVersion: 2
Bundle-SymbolicName: A2
Import-Package: myorg.app1

Conversely, A3 is not importing this class and therefore cannot use it. Its queries
can only load the class it defines, which is the myorg.app3.Student class.

This default policy is called the application class-space policy. Oracle CEP
also defines an alternative policy called server class-space policy. You can
enable this policy by including the following manifest header entry in the
application's manifest file:

OCEP_JAVA_CARTRIDGE_CLASS_SPACE: SERVER_CLASS_SPACE

In the case of the server class-space policy, a CQL query can load all Java
classes being exported by all Oracle CEP applications and libraries.

Considering the previous example, if applications A1, A2, and A3 should all be
changed to use the server class-space policy, then applications A1, A2, and A3 will
be able to access the classes myorg.app1.Address and myorg.app2.Book, as these
classes are being exported to all components in the Oracle CEP server. However,
even with the server class-space policy, still only application A3 is able to access the
myorg.app3.Student class, as this class (or rather its package) is not being exported
by the A3 application.

The following table summarizes these results:

Query visibility for: A1 A2 A3
App class space Address Address, Book Student

Server class
space

Address, Book Address, Book Address, Book,
Student

The added visibility provided by the server class-space policy doesn't come without
a price. This policy breaks modularity, doesn't react well to application updates, and
performs worse, and therefore should generally be avoided aside when testing.

Avoid the server class-space policy in production systems.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[191]

Now, you understand the visibility of Java classes in CQL, however it still remains to
be seen how you should be referencing to these classes, should you be including the
full Java class name or just its simple name? In other words, should it be java.lang.
String and myorg.app1.Address or just String and Address?

Generally, you should use the full Java class name, which consists of the package
name and the actual class name, such as in myorg.app1.Address. For example,
if you need to create a new Address class in a query, you should do it like this:

SELECT myorg.app1.Address() as address …

However, there are a couple of exceptions created to improve usability. First, you
don't need to specify the package name if it is java.lang. That's the reason why
the previous examples referencing to the class Integer and String worked as it is.

Furthermore, if you are using the default application class-space policy, then the Java
cartridge automatically looks into your Import-Package definitions and checks if
the referenced classes could be loaded by using these in an unambiguous form. For
example, application A2 imports the package myorg.app1, and therefore its queries
could use the simple class name of Address, as in the following example:

SELECT Address() as address …

Yet application A1 does not import this package, and even though the class is
defined in its own application, its queries would need to use the full Java class
name myorg.app1.Address.

This auto-importing only works if it can be done in an unambiguous form. Should
application A2 also have defined a class named Address in its myorg.app2 package,
then the Java cartridge wouldn't be able to infer if the expression Address() is
related to myorg.app1.Address or myorg.app2.Address and would return it as an
error. In this case, you would need to specify the full Java class name in the query.

Finally, you can disable the auto-import by specifying the following manifest header
entry in the application:

OCEP_JAVA_CARTRIDGE_CLASS_SPACE:
APPLICATION_NO_AUTO_IMPORT_CLASS_SPACE

This option forces the CQL queries to hard-code the full Java class name and
therefore avoids confusion and ambiguities.

www.it-ebooks.info

http://www.it-ebooks.info/

Pattern Matching with CQL

[192]

Speaking of ambiguities, in addition to determining the Java class to load, there
are other cases where ambiguities may arise when working with Java in CQL.
This is covered in the next section.

Handling ambiguities between Java and CQL
Consider an application that defines the following class in the default package:

public class S
{
 public static String myProp;
}

Next, let's say that we are sending an event containing a single property called
myProp to the following query:

SELECT S.myProp
FROM S

Does S.myProp refer to the static property in the class named S or does it refer to the
myProp event property from the stream S? The expression S.myProp actually refers
to the latter case, that is, S maps to the stream S and myProp to an event property.

Whenever there is an ambiguity, CQL symbols, such as the event
source name, have preference over Java-cartridge symbols, such
as Java class methods, fields, and constructors.

What if the ambiguity is only related to Java? For example, consider a class that
overloads several of its methods, as following:

public class Address
{
 voidsetNumber(Integer) {...}
 voidsetNumber(Object) {...}
 voidsetNumber(int) {...}
 voidsetNumber(long) {...}
}

And the following expression:

... address.setNumber(10) ...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[193]

Which method gets invoked? The Java cartridge follows the rules for method
resolution as determined by the Java Language Specification (JLS).

The Java Cartridge supports all forms of method overloading,
except overloading based on variable arity.

So, in this example, the resolution would be (in order of precedence):

• setNumber(int)

• setNumber(long)

• setNumber(Integer)

• setNumber(Object)

As you can see, the Java cartridge follows the JLS. Furthermore, it also allows you to
use the Java-Bean coding-style conventions, as you shall see next.

Using the JavaBeans conventions in CQL
The Java cartridge also supports the JavaBeans coding-style conventions, allowing
the CQL queries to be further simplified. In a nutshell, the JavaBeans specification
says that the Java methods getName() and setName() can be interpreted
respectively as implicit getters and setters for a JavaBean property called name.
Further, should name be of Boolean type, you can also use the convention of
isName() as the getter.

For example, consider the following query:

SELECT
 student.getAddress().getState() as state
FROM R
WHERE student.isRegistered() = true

Using the JavaBeans conventions, this can be changed to:

SELECT
 student.address.state as state
FROM R
WHERE student.registered = true

This is a great improvement to the readability of the CQL queries, preserving their
declarative aspect, and therefore the preferred approach.

www.it-ebooks.info

http://www.it-ebooks.info/

Pattern Matching with CQL

[194]

Keep in mind that in terms of precedence, CQL first checks for a stream or relation
name, then for an event property (column) name, only then for a Java property.
However, Java properties do have precedence over Java fields. In other words,
an expression such as student.address would prefer a method Student.
getAddress() over a public field Student.address should both be present.

The Java cartridge does not support indexed, bound, or constrained
JavaBean properties.

The blending of Java with CQL is a powerful tool for performing event processing in
Oracle CEP, as it allows the user to not only program the structure of the processing
using CQL, but also to perform day-to-day tasks better done in Java all together in
the same environment. Next, we take a look at how to expand CQL to also include
processing of events that include XML documents.

Processing XML with CQL
With the progress of web services and XML technologies, it is not uncommon
for an Oracle CEP application to have to receive and output XML documents as
part of event processing. Let's start our study of how to work with XML in CQL
by first tackling the case where queries need to output strings containing valid
XML documents.

XML Primer
Here is a quick primer on the XML vocabulary. Using the following XML
as a reference:

<docElem>

 <elementAattributeA="v1">content</elementA>

 <elementBattributeB="v2">content</elementB>

</docElem>

The tags <docElem>, <elementA>, and <elementB> are called
XML elements. XML elements contain content between their start
(<elementA>) and end tag (</elementA>), which can be other XML
elements, or just character data.
The tag <docElem> is the root of the document and is called the
document element. Proper XML documents must have a single root.
Unrooted XML are called XML fragments. XML fragments with multiple
roots are called XML forests.
The keys attributeA and attributeB are called XML attributes. XML
attributes have values, as v1 and v2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[195]

Consider the case where a query receives stock tickers, as you have seen in the past,
and it needs to output the following XML for each symbol it receives:

<stock>
<symbol>ORCL</symbol>
<price>30.0</price>
</stock>

To be able to do this, you can use the built-in XML function xmlelement, as in the
following example:

SELECT
XMLELEMENT(
 NAME "stock",
 XMLELEMENT(NAME "symbol", symbol),
 XMLELEMENT(NAME "price", price)
) as xml
FROM marketFeed

Initially, this may look a bit elaborate, but it is mostly because we had to nest
calls to several xmlelement functions together. If you take a single expression
such as XMLELEMENT(NAME "price", price), it boils down to specifying the
name of the XML element and its value. The value is a standard CQL expression,
and in most cases it is just a reference to an event property, but potentially it could
be expressions containing calls to other XML functions.

Let's say that the marketFeed stream receives the events as shown in the
following table:

Time Input event
0 {symbol = "AAA", price = 10.0}

1 {symbol = "BBB", price = 100.0}

In this case, the output of the query is:

Time Input event
0 {xml = "<stock><symbol>AAA</symbol><price>10.0</

price></stock>"}

1 {xml = "<stock><symbol>BBB</symbol><price>100.0</
price></stock>"}

The type of the event property xml is the native CQL data type called XMLTYPE.
When converted to Java, it becomes a Java String type.

www.it-ebooks.info

http://www.it-ebooks.info/

Pattern Matching with CQL

[196]

Next, let's say we want to change the output XML fragment to:

<stock symbol="ORCL" price="30.0" />

This is done with the following query:

SELECT
XMLELEMENT(
 NAME "stock",
 XMLATTRIBUTE(symbol AS "symbol"),
 XMLATTRIBUTE(price AS "price")
) as xml
FROM marketFeed

No surprises here, you just replace the inner elements by xmlattribute functions.

One other variation is to output an XML forest instead of a XML document, as we
have done in the previous example. The reason you may want to do this is because
each output event may be collated together as content for a parent global element.
Here is an example of an XML forest output:

<symbol>"ORCL"</symbol>
<price>"30.0"</price>

You can achieve this by using the following query:

SELECT
XMLFOREST(
 XMLELEMENT(NAME "symbol", symbol),
 XMLELEMENT(NAME "price", price)
) as xml
FROM marketFeed

Finally, let's say that rather than outputting individually each stock as a separate
XML document, we would like to aggregate them all together and output a single
document, as in the following example:

<stocks>
<stock>
<symbol>AAA</symbol>
<price>10.0</price>
</stock>
<stock>
<symbol>BBB</symbol>
<price>15.0</price>
</stock>
</stocks>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[197]

The following query generates the desired outcome:

SELECT
 XMLELEMENT(NAME "stocks",
 XMLAGG(
 XMLELEMENT(
 NAME "stock",
 XMLELEMENT(NAME "symbol", symbol),
 XMLELEMENT(NAME "price", price)
)) as xml
FROM marketFeed [RANGE 10 MINUTES SLIDE 10 MINUTES]

This is no different than using any other aggregation function, such as avg, max,
and min. First, we need to convert the stream to a relation, and then we can apply
the xmlagg function. Instead of summarizing the aggregated rows as a single value,
the xmlagg function generates an XML fragment for each aggregated row. In this
particular case, the query generates an XML document containing the last 10
minutes of stocks every 10 minutes coming from the markedFeed stream.

So far, you have seen how to generate XML documents. In the next section, you
will learn how to process events that contain XML documents.

Handling XML document sources
The xmltable function is a function that returns a relation from a source event
property. Because it returns a relation, that is, a collection of rows or events, such
functions are called table functions.

Let's use the xmltable to revert what we have done in the previous example.
That is, say we receive an event that has a property called stocks of type
xmltype with the following content:

<stocks>
<stock>
<symbol price="10.0">AAA</symbol>
</stock>
<stock>
<symbol price="15.0">BBB</symbol>
</stock>
</stocks>

The following query receives its input as an XML document and generates separate
events representing the individual stocks:

SELECT
 R.sym, R.pri

www.it-ebooks.info

http://www.it-ebooks.info/

Pattern Matching with CQL

[198]

FROM
stocksXmlFeed
 XMLTABLE (
 "/stocks/stock"
 PASSING BY VALUE
 stocksXmlFeed.stocks as "."
 COLUMNS
 sym char(16) PATH "fn:data(symbol)",
 pri float PATH "fn:data(@price)"
) as R

As xmltable is a table function, it can only be used in the FROM clause, as a relation
source. The first task you have is to establish which event property contains the XML
document and how you want to set it as the context node. The context node is your
root node against which you will later execute XPath (and XQuery) functions. This
is done with the PASSING BY VALUE clause in line 7 and 8 in the preceding example.
In our case, we state that the stocks property in the stocksXmlFeed source contains
the XML document and that its root, using the expression ".", is the context node.

Next, you need to establish the rows you will be working with. This is done by
querying the context node with the XPath expression "/stocks/stock", this is done
in line 6 in our example. In our case, remember that the context node is the whole
document. The XPath expression "/stocks/stock" then returns a forest containing
the two stock elements. Had we changed the context node to "/stocks", we could
have achieved the same result by using the expression "/stock".

Finally, we need to assign each element from the returned forest to one or more
properties. We do this with the COLUMNS clause. In our example, we had got two
stock elements in the previous step. Now we will assign the returning node from
the expression "symbol" to the sym property, and the returning node from the
expression "@price" to the pri property. Both of these properties are properties
of the R relation, which contains two rows. The "symbol" XPath expression returns
the inner symbol element. The "@price" XPath expression returns the XML
attribute called price in the stock element.

In XPath and XQuery, XML attributes must referenced by using
the @ prefix.

At the end, running this query against a single input event with the stocks property
containing the given XML document generates the following two events:

{sym = "AAA", pri = 10.0}
{sym = "BBB", pri = 15.0}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[199]

By now you have learned how to use all the major CQL data types. In the next section,
we take a look at the one remaining key CQL feature, that of pattern matching.

Pattern matching
One of the main features of CEP is the ability to detect patterns of events directly on
a stream, even complex conditions such as sequences, alternations, and non-events
(missing events). For example, detect if a particular event is followed by another
event within some time period. This feature is generally called pattern matching.

In CQL, pattern matching is realized through the MATCH_RECOGNIZE operator. Being
a streaming-processing related feature, MATCH_RECOGNIZE is a stream-to-stream
operator, meaning that it applies directly to a stream, without the need to convert it
to a relation using a Window operator as you have done in the past for some of the
other features like joins.

Let's take a look at the basic skeleton for MATCH_RECOGNIZE with the
following example:

SELECT M.goingUpPrice
FROM marketFeed
MATCH_RECOGNIZE (
 MEASURES
 B.price as goingUpPrice
 PATTERN (A B)
 DEFINE
 A as price < 29.0,
 B as price > 30.0
) as M

The skeleton is rather large, but as you will see, it is mostly intuitive. Let's start with
the subclause PATTERN. This is at the heart of pattern matching, and defines the
general pattern of events that must be matched. In this case, we are stating that some
event, which henceforth is named A, is followed by another event, named B. The
identifiers A and B are called correlation variables. A sequence of events in the input
stream that satisfies the correlation variables is considered a match of the pattern.

We then define exactly what A and B are by using the DEFINE clause. You can use
any regular CQL expression in the define clause. In this query, we define that A is
an event whose price property is less than 29.0, and B is an event whose price
is larger than 30.0.

A correlation variable that is not defined is always true for all
input events.

www.it-ebooks.info

http://www.it-ebooks.info/

Pattern Matching with CQL

[200]

When the pattern is matched, we need a way of referencing to these matched events.
This is the role of the MEASURES subclause. For this particular case, the MEASURES is
very simple, it just names the price of the matched event B as goingUpPrice. The
whole result of the pattern matching is associated to the M alias, which can then be
used in the SELECT clause, as we have done with M.goingUpPrice.

The input/output table for the pattern-matching query is as follows:

Number Input event Output event
1 +{symbol = 'ORCL',

price = '28.0'}

2 +{symbol = 'ORCL',
price = '31.0'}

+{M.goingUpPrice =
31.0}

3 +{symbol = 'ORCL',
price = '28.0'}

4 +{symbol = 'ORCL',
price = '28.0'}

5 +{symbol = 'ORCL',
price = '31.0'}

+{M.goingUpPrice =
31.0}

6 +{symbol = 'ORCL',
price = '28.0'}

7 +{symbol = 'ORCL',
price = '29.5'}

8 +{symbol = 'ORCL',
price = '31.0'}

When the query receives the first event, it is able to match the correlation variable A.
You can think of this as a state machine, as shown in the following diagram:

When we match correlation variable A, we move to state A. When the query receives
the second event, the state machine moves to state B, and hence the pattern is
considered complete, and an output is emitted.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[201]

Next, the query clears both correlation variables and starts a new instance of the
state machine. When it receives the third event, it again moves to state A. However,
when it receives the forth event, it doesn't match with B, as the price is not higher
than 30.0, so it remains in state A. In fact, because our pattern states that the next
immediate event must match correlation B, this state machine instance will never
be realized, and terminates. However, at the same time this instance terminates,
a new instance of the state machine is created, as the fourth event does match the
correlation variable A. When the query receives the fifth event, the state machine
moves to state B, sends an output, and terminates successfully. This scenario is
illustrated in the following diagram:

Finally, the query receives event six and starts a new instance of the state machine
in state A. When it receives the seventh event, it doesn't match with correlation
variable B, thus terminating the current machine. Likewise, seventh event doesn't
match with correlation variable A, therefore not triggering the creation of a new state
machine instance. When event eight arrives, it would have matched with correlation
variable B if there had been a state machine in state A. But as there is none, the event
is simply discarded.

Think of pattern matching as instances of state machines where
each state is defined by a correlation variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Pattern Matching with CQL

[202]

The MATCH_RECOGNIZE clause is similar to a sub-query in the way that it defines a
new source. In the case of the previous example, it is called M. However, the original
source is no longer available, so it would be an error to try to use the properties
price or symbol in the select or where clause, as they are no longer available.
Only the properties explicitly defined as measures of M can now be used in the
select or in the where clause of the outer query. In other words, in the previous
case, only the goingUpPrice property from the base source can be projected in
the output. Further, keep in mind that the where clause is applied after the pattern
matching has occurred. If you need to apply it before, define a view and use it in
the view, and then have the MATCH_RECOGNIZE clause reference the view.

In the next section, you will learn how to improve this example.

Partitioning events for matching
In the previous example, we made no distinction around a stock's symbol, but, as
we have done in the case of a partitioned window, we should likewise partition the
stream so that the query is looking at the variation of price for a particular company.
Luckily, this is easily done with the PARTITION BY subclause, as shown in the
following example:

SELECT M.goingUpPrice
FROM marketFeed
MATCH_RECOGNIZE (
 PARTITION BY symbol
 MEASURES
 B.price as goingUpPrice
 PATTERN (A B)
 DEFINE
 A as price < 29.0,
 B as price > 30.0
) as M

This query matches the goingUpPrice per partition of symbol.

Be conscious of the use of the PARTITION BY clause, as a separate
partition is created for each distinct value of the partition by property,
therefore potentially being a resource drain if the matches are very long.

Next, let's say that rather than hard coding the prices 29 and 30, you would like to find
out if the price is going up, in other words, if there is an upward trend in the price.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[203]

To do this, we need to improve two aspects of the query: we need a more elaborate
pattern that matches more than a single event, and a way of referencing to previous
events in the define clause. In other words, a mechanism for using aggregate
functions in the define clause. Let's tackle the first problem in the next section.

Patterns as regular expressions
CQL has a rich set of pattern operators that can be used to specify pattern
expressions, as regular expressions. These are called pattern quantifiers
and are defined as follows:

• *: Zero or more events
• +: One or more events
• ?: Zero or one event
• |: Alternation (or)
• (): Grouping

Supporting regular expressions in the pattern sub-clause makes
sense as the match recognize clause can be visualized as an
evaluation of state machine.

Most of these are very intuitive, and should be familiar to those used to working
with regular expressions. Let's walk through a couple of examples. However,
before we start, let's put in place a simple convention. Uppercase letters represent
a correlation variable, and a corresponding lowercase letter corresponds to an event
that matches the condition defined for the uppercase letter's condition. Now consider
the following example:

PATTERN (A+ B*)

This pattern matches with the following sequence of events:

• a

• aa

• ab

• aabb

But, it fails to match the following sequences:

• b

• bb

• acb

www.it-ebooks.info

http://www.it-ebooks.info/

Pattern Matching with CQL

[204]

Next, consider the following pattern:

PATTERN ((A B?) | (B A?))

Examples of sequences that match this pattern are:

• a

• ab

• b

• ba

Examples that fail to match are:

• abb

• baa

As you can see, the alternation operator is useful when you need to match
permutations, such as (A B) | (B A), which means either A followed B, or B
followed by A.

Controlling the number of matches
When performing a pattern match, a query may either try to match the longest set of
events as possible, or match the smallest set and terminate as soon as possible. The
former case is known as a greedy match, and the latter as a reluctant match. Let's
take a look at a simple example:

PATTERN (A+)
DEFINE
 A as val like 'a'

Next, say the query receives the following sequence of events:

aaab

The pattern is greedy and therefore matches the sequence of events aaa at the time it
receives event b. Why only when it receives event b? Because only when it receives
event b, it will know that no other longer match can be realized.

You can configure a pattern as reluctant by appending the ? character to a pattern
match operator. For example, consider the following reluctant pattern:

PATTERN (A+?)
DEFINE
 A as val like 'a'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[205]

Also, consider that this query receives the same sequence of events as the
previous case:

aaab

The pattern is reluctant and therefore matches the sequence of events aa as soon as it
is seen. In other words, the query won't try to match aaa, and instead is contented on
matching the smaller set of aa.

Next, let's take a look at a more elaborate scenario. Say that a correlation variable
BandC establishes conditions that can be matched by both events B and for events C.
Next, say we have the following sequence of events:

abcc

The pattern (A BandC+ C+) is greedy; therefore the correlation variable BandC
would try to maximize the number of events it matches. In this case, BandC would
be correlated with the sequence bc and C would correlate to c.

However, if we change the pattern to be reluctant, as in (A BandC+? C+), then BandC
would correlate to the minimum sequence of b and C would correlate to cc.

Yet, what if you are interesting on finding out all results, in other words, both the
reluctant matches, as well as the greedy ones? Rather than creating two queries, one
that is reluctant, and another that is greedy, you can use the ALL MATCHES subclause.

Again, considering the previous example, let's change it to:

SELECT M.countOfBandC, M.countOfC
FROM stream
MATCH_RECOGNIZE (
 MEASURES
 count(BandC.*) as countOfBandC,
 count(C.*) as countOfC
 ALL MATCHES
 PATTERN (A BandC+ C+)
 DEFINE
 A as val like 'a'
 BandC as val like 'b' or val like 'c'
 C as val like 'c'
) as M

www.it-ebooks.info

http://www.it-ebooks.info/

Pattern Matching with CQL

[206]

The input/output table for this query is shown in the following table:

Number Input event Output events
1 +{val = "a"}

2 +{val = "b"}

3 +{val = "c"} +{countOfBandC = 1,
countOfC = 1}

4 +{val = "c"} +{countOfBandC =
2, countOfC = 1},
+{countOfBandC = 1,
countOfC = 2}

As expected, there are no outputs for the first two events. When the query receives
the third event, the sequence becomes abc, which does match with the pattern (A
BandC C). Now comes the interesting part—when the query receives the fourth
event, the query emits two output events. In the first one, the correlation variable
BandC matches to bc and C matches to c. In the second one, BandC matches to b and C
matches to bc.

The ALL MATCHES subclause matches not only to the maximum and minimum cases,
but actually to all possible cases. For example, if you send one additional event
whose value is c, the query emits three events as follows:

+{countOfBandC = 3, countOfC = 1},
+{countOfBandC = 2, countOfC = 2},
+{countOfBandC = 1, countOfC = 3}

This is equivalent to the following matches to the correlation variables:

BanC = "bcc", C = "c"
BanC = "bc" , C = "cc"
BanC = "b" , C = "bcc"

As it should be obvious, there is no need to specify the reluctant
operator (?) when using the ALL MATCHES subclause.

Now that you have learned how to create complex patterns, and correlate multiple
events to a single correlation variable, you need a way to reference to a particular
event within a correlation variable group, as we have done with the count function
in the previous example. This is explained in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[207]

Working with correlation groups
Correlation variables can match to a single event, or to a group of events. One
example of the former case is a pattern such as (A); this type of correlation variables
is called singleton correlation variables. One example of the latter case is a pattern
such as (A*). Specifically, for this latter case, the correlation variable may correlate
to a group (or bag) of events. These are called correlation variable groups.

A correlation variable (both singletons and groups) may be used in the context of
three different scopes:

• In the DEFINE clause, while it is being defined. For example, this is the case
of correlation variable A in A as A.price = 10. In this case, the correlation
variable is still matching, that is, it is still running.

• In the DEFINE clause, by a different correlation variable. For example, this is
the case of correlation variable A in B as B.price>A.price. Likewise, in this
case, the correlation variables are still running.

• In the MEASURES clause. In this case, the correlation variables have already
matched and are final.

Next, let's explore the semantics of referencing correlation variables in these three
different scopes.

If you are referencing a singleton correlation variable, then the semantics is simple.
For the first case, that is, referencing a correlation variable in a define clause while
it is being defined, the correlation variable points to the current event. For example,
in the case A as A.price = 10, the identifier A points to the current event being
evaluated. This is similar to specifying A as price = 10, as in this case the non-
qualified price identifier points to the current event in the input source stream.

For the latter two cases, the correlation variable points to the single event that matched
the correlation conditions. For example, consider the following query fragment:

DEFINE
 A as A.price = 10
 B as B.price>A.price

As we have understood this before intuitively, the identifier A.price in the
definition of B points to the event that matched correlation variable A, which is
essentially the event whose price is 10.

www.it-ebooks.info

http://www.it-ebooks.info/

Pattern Matching with CQL

[208]

Next, let's consider the case of correlation variable groups. As we are now working
with aggregates, we need to either aggregate the value of the group, or use an
aggregate function that returns a particular event within the group. For this purpose,
in addition to the standard aggregate functions we learned about previously, avg,
max, min, and count; when working with match_recognize, you can also make
use of the following new aggregates:

• first: This returns the first event of a correlation variable group. If you
optionally specify an integer, which works as an offset from the first event.

• last: This returns the last event of a correlation variable group. If the
correlation variable is running (which is the case of scopes two and three),
then be aware that this value changes as new events are received. Likewise
you can specify an integer, which works as an offset from the last event.

• prev: This returns the last event matched in the correlation variable
group. This can only be used in the case of the first scope, that is, while the
correlation is being defined. prev() returns null if there is no previous event.

Summing up the rules, when referencing to a correlation variable group, you need
to use an aggregate function. There is one exception to this rule. If you are in the
context of the first scope, that is, when defining the correlation variable on its own
term, you may also reference the current event that is being matched.

Finally, remember that for running correlation variables, the value returned by an
aggregate may change as new events are matched. Next, let's consider an example:

PATTERN (A B+ C+ D)
DEFINE
 A as price = 10,
 B as B.price>A.price,
 C as C.price<avg(B.price),
 D as D.price>prev(D.price)

Let's explore the define statements one by one. The first statement is a simple case
of a singleton correlation variable being defined.

The second statement is a case of a group correlation variable, as B is defined with
a quantifier (+). In its condition, we first reference B.price. This normally would
be illegal as we are trying to reference a single event in a group, however in this
particular case it is allowed as it is done in the definition of B itself, and therefore
applies to the current event. Next, we reference to A.price, this is likewise valid
as A is a singleton.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[209]

In the third statement, we can't reference to B.price any longer, as B is a group. So
instead we use an aggregate function that returns the average for the current events
that have matched so far in the correlation group B.

Finally, in the fourth statement, we make use of prev, which returns the previous
event in the D group. Note that we would not have been able to use prev to reference
any other correlation variables such as A, B, or C, as prev can only be used with the
definition of the correlation variable itself.

The count aggregate also has special meaning within match_
recognize:

• count(*) returns the total number of events received by the
input source.

• count(A.*) returns the total number of events so far in the
correlation variable group named A.

• count(A.p) returns the total number of events so far in the
correlation variable group named A whose property p is not null.

Having understood all the scoping and referencing rules, let's improve our pattern-
matching query from the beginning of this section. Let's try a more elaborate scenario
where you want to detect a down-trend followed by an up-trend. This can be done
with the following query:

SELECT M.downTrendPrice, M.upTrendPrice
FROM marketFeed
MATCH_RECOGNIZE (
 PARTITION BY symbol
 MEASURES
 FIRST(A.price) as downTrendPrice,
 LAST(B.price) as upTrendPrice
 PATTERN (A+ B+)
 DEFINE
 A as A.price < prev(price),
 B as B.price > prev(price)
) as M

For an example of its execution, consider the following input/output table:

Input event Output event
+{symbol = "ORCL", price = 30.0}

+{symbol = "ORCL", price = 29.0}

+{symbol = "ORCL", price = 30.0}

www.it-ebooks.info

http://www.it-ebooks.info/

Pattern Matching with CQL

[210]

Input event Output event
+{symbol = "ORCL", price = 31.0}

+{symbol = "ORCL", price = 30.5} +{downTrendPrice = 29.0,

upTrendPrice = 31.0}

The first event kicks off the pattern match, however it is not included in the matched
correlation variable A, as, per definition, the prev() function returns null when there
are no previous events, therefore excluding the first event from the group. The third
event terminates the match for correlation variable A and starts the matching for
correlation variable B, which is terminated by the fifth event. Interestingly, because
of its greedy pattern, you need at least 5 events to match the query.

Furthermore, you can group the correlation variables together creating larger groups.
This is done using the SUBSET clause. For example, in the previous query, we are
using the highest price of the correlation variable B. However, this is not necessarily
the highest price overall as the down-trend could actually have started with a higher
price than the highest price of the up-trend. Should we want to find the highest price
overall, we would need to consider both correlation variables A and B. So rather than
doing it separately for correlation variable A and then for B, you can group them
together and then apply the maximum aggregation function in this new set, which
contains the union of all events from A and B. This is shown in the next example:

SELECT M.maxUpPrice
FROM marketFeed
MATCH_RECOGNIZE (
 PARTITION BY symbol
 MEASURES
 MAX(AB.price) as maxUpPrice
 PATTERN (A+ B+)
 SUBSET AB = (A,B)
 DEFINE
 A as A.price < prev(price),
 B as B.price > prev(price)
) as M

You can create multiple subsets, as in the following example:

SUBSET S1 = (A,B) S2 = (C,D) S3 = (E,F)

Let's say that our stock goes up forever, then when would we terminate this pattern
matching? Should we just let it run unbounded forever? In most real scenarios, you
do want to restrict the amount of time that a pattern matching has. This is the subject
of the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[211]

Expiring patterns
There are two situations where you may need to limit the execution time of a pattern
match. The first case is when you want to terminate any ongoing matching because
some period of time has already elapsed. The previous query is one such case; for
example, if the stocks continue to go up, simply terminate the matching after an
hour. You can do this using the within subclause, as in the following example:

SELECT M.maxUpPrice
FROM marketFeed
MATCH_RECOGNIZE (
 PARTITION BY symbol
 MEASURES
 MAX(AB.price) as maxUpPrice
 PATTERN (A+ B+) WITHIN 1 HOUR
 SUBSET AB = (A,B)
 DEFINE
 A as A.price < prev(price),
 B as B.price > prev(price)
) as M

Essentially, you are telling the query that it needs to match within a time period,
otherwise simply terminate any ongoing potential matches.

The second case is the opposite, that is, you want to match if a pattern is still valid
(has potential matches) after some duration of time. For example, still considering
our up-trend pattern, let's say rather than terminating the query, we want to be
notified with an event if the up-trend continues even after 10 minutes. In other
words, let us know if an up-trend started and a down-price event does not happen
after the duration of 10 minutes. You can do this with the duration subclause, as in
the following example:

SELECT M.maxUpPrice
FROM marketFeed
MATCH_RECOGNIZE (
 PARTITION BY symbol
 MEASURES
 MAX(AB.price) as maxUpPrice
 INCLUDE TIMER EVENTS
 PATTERN (A+ B+) DURATION 10 MINUTES
 SUBSET AB = (A,B)
 DEFINE
 A as A.price < prev(price),
 B as B.price > prev(price)
) as M

www.it-ebooks.info

http://www.it-ebooks.info/

Pattern Matching with CQL

[212]

In this case, you will receive the maxUpPrice event after 10 minutes even if the
correlation variable B never matches. Another way of looking into this is that the
DURATION subclause allows us to detect missing events. In this case, the missing
event is the lack of the down-price event.

The DURATION subclause must always be accompanied with
the include timer events subclause. This is needed because this
pattern matches with timer events in addition to input events
from the stream source.

We can even go further, and state that we want to be continuously notified every 10
minutes while the up-trend continues and no down-event is received. This is done
with the addition of the multiple of option in the duration sub-clause, as in the
following example:

SELECT M.maxUpPrice
FROM marketFeed
MATCH_RECOGNIZE (
 PARTITION BY symbol
 MEASURES
 MAX(AB.price) as maxUpPrice
 INCLUDE TIMER EVENTS
 PATTERN (A+ B+) DURATION MULTIPLE OF 10 MINUTES
 SUBSET AB = (A,B)
 DEFINE
 A as A.price < prev(price),
 B as B.price > prev(price)
) as M

Note that the query terminates without an output event as soon as the
down-event occurs.

We have gone through all the major features of this incredible world of event
processing with CQL. If you are feeling a bit overwhelmed, do not worry. As with
most new languages, it takes some time for the concepts and ideas to sink in!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[213]

Summary
In this chapter, we learned that CQL is extensible using cartridges, and that it comes
with a Java cartridge, which allows CQL to be seamlessly blended with Java.

The syntax for using Java in CQL is very similar to plain programming in Java. CQL
also supports the JavaBeans programming conventions.

CQL has several functions for processing XML, you can break XML documents into
events using the xmltable function, and you can generate XML documents using
the xmlelement and xmlattribute functions.

One of the most important features in CQL is pattern matching, which allows you to
find patterns in a stream. Pattern matching is realized through the match_recognize
clause, and supports the specification of regular expressions. It also supports the
definition of a within and duration time.

In the next chapter, we move on to learning how to scale Oracle CEP applications.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Performance
Scaling, Concurrency, and
High Availability for Oracle

Event Processing
You've learned how to build OEP applications, but now it's time to discuss some
important topics relating to making them production ready. We'll look at the factors
involved in scaling your application, concurrency, and making your application
highly available.

In this chapter, we will consider the issues and challenges involved in creating
high-performance applications using Oracle Event Processing and describe some
of the many ways in which this technology can be tailored to meet the needs of any
Use Case. The topics we will cover are as follows:

• Scalability versus high availability
• Understanding performance and ways to influence
• Scaling Oracle Event Processing
• Using concurrency with processors
• High availability in Oracle Event Processing
• A sample HA Oracle Event Processing application

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Performance Scaling, Concurrency, and High Availability for Oracle Event Processing

[216]

Scalability versus high availability
When approaching scalability and high availability, many people often discuss
them with a goal to accomplish both at the same time but often use these words
and concepts interchangeably. While the presence of state in Oracle Event
Processing can make it more challenging to tackle these issues concurrently,
particularly HA, we will now discuss how these requirements can be addressed
and successfully implemented.

Like any computing resource, Oracle Event Processing servers can be subject to
both hardware and software faults that can lead to temporarily unavailability of
services and/or loss of data. OEP high availability features give you the capability
to mitigate both of these possibilities at a level of reliability that suits your
application requirements.

OEP supports an "active/active" high availability architecture; meaning the
additional servers in the architecture are in an active state in the event that there
is a failure, but both (or all of the servers, if there are multiple backup/secondary
servers) are processing all of the incoming events. This approach was chosen because
it provides a simple way to achieve extremely high performance and short failover
time, and also because OEP applications often hold complex states in memory. This
state could take significant time to re-build if a passive architecture was used. As
usual, the beauty of OEP is that it is an open, flexible event-processing platform,
so it is possible to implement many types of high-availability architectures.

When you require that your application be highly available, you should deploy it
to an OEP cluster configured with two or more server instances (ideally running on
separate hardware). OEP will automatically choose one server in the group to be
the active "primary". The remaining servers become active "secondary" servers. This
means that all servers are running processing input events. You want to configure
the deployment architecture so that both servers are processing all of the same input
events. This is so if one server fails, another one can become the primary and begin
correctly sending the output events. You can choose one of several available
quality-of-service options depending upon your specific application requirements;
for example, tolerance for duplicates or missing events.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[217]

Secondary servers don't generate output events, as this would create duplicate data
in downstream systems. OEP provide a mechanism for secondary servers to buffer
their output events using in-memory queues and the primary server keeps the
secondary servers up-to-date with which events the primary has already output.
In the event of a failure, you can have the secondary server that automatically
becomes primary pick-up sending output events in exactly the place where the
primary left off before it failed.

In this chapter, we'll discuss various qualities of service for high availability. These
involve a variety of strategies for sharing state and have implications on scalability.

Understanding performance and ways to
influence
As we turn to the topics that focus on the performance, availability, failover, and
application scaling in event stream processing, we start to address a very important
domain that in essence should be covered in other publications since there is a wealth
of important concepts to be addressed. In this chapter we will focus on the major areas
of interest and concern, and provide you with the solid foundation to fully understand
and implement various performance optimization related techniques.

The "out-of-the-box" pre-configured Oracle Event Processing platform provides
a comprehensive collection of default settings and options, so that even basic
event-driven applications will execute at high speed, with in most cases, acceptable
latencies. However, these types of applications do have fairly unique performance
challenges that differ from general JEE application server workloads. These can
be a combination of any of the following:

• Very high streaming data rates (that could exceed 100,000 events/second)
• Low and deterministic application latency
• Determinism requirements on worst case (or 99.999 percentile) latencies
• Ordered processing within streams

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Performance Scaling, Concurrency, and High Availability for Oracle Event Processing

[218]

Millisecond or lower latency can be a competitive differentiator for many businesses
and work has progressed to provide a significantly increased performance on the
Oracle Engineered Systems, and in particular, Exalogic. While benchmark use cases
can be very subjective, a relatively common and often referenced sample the "signal
generation" application was used to give a reasonable baseline to indicate possible
performance numbers. With a slight implementation variation, this application,
which receives simulated market data and verifies if the price of a security has
fluctuated more than 2 percent, and also detects if there is a trend occurring by
keeping a track of the successive stock prices for a particular symbol, was executed
on a single node achieving impressive results, processing 1 million events per
second. The fully documented scenario, hardware and software configurations,
tuning options used and more, can all be found in an Oracle Event Processing
whitepaper on the Oracle Technology Network (OTN) website.

With the application deployed as two instances on one Exalogic node, the result
was a constant latency rate of around 30 microseconds, which remained relatively
flat throughout the ramping up of the load. With all of the nodes available in a full
rack Exalogic machine, it might be possible to enable the processing of 30 million
events per second and beyond while obtaining the same extremely low latencies.
The application latency was measured from the point the events entered the input
adapter (at the start of the EPN) until the matched results were posted to an output
bean (at the end of the EPN).

While all benchmarks are subjective and very Use-Case specific, this example shows
the impressive potential performance capability of Oracle Event Processing, which
in a distributed architecture makes its scaling possibilities phenomenal.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[219]

We will now explore in more detail on how you can effectively impact the
performance of your own Oracle Event Processing applications.

Scaling Oracle Event Processing
Unlike other event-stream processing products on the market, which are effectively
"closed black-box" platforms, Oracle Event Processing facilitates performance-scaling
optimization for your applications in many ways using many available attributes
and options, to scale up and scale out. In this next section, we will describe and
recommend some techniques to help you implement these powerful capabilities.

The threading model
A clear understanding of Oracle Event Processing threading and how threads interact
within the EPN is fundamental to performance optimization. Threads can originate:

• In input adapters
• In beans/adapters implementing RunnableBean (The Oracle Event

Processing runtime will call the run method)

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Performance Scaling, Concurrency, and High Availability for Oracle Event Processing

[220]

• In channels
• From work managers such as java.util.concurrent.Executor

It is important to understand where threads originate in your EPN. Threading is
easily configurable for your application and is an area where you can significantly
influence the performance of your applications.

Optimizing threading in channels
So let's focus now on threading in channels. There are many different ways to
configure an event channel that will impact the control flow. If the max-size
and max-threads attributes of a channel are set to 0 (or if no max-size/max-threads
attributes are specified at all), this channel will act as a pass-through channel. In
this case, you will have one or more producer threads going into the channel, and
a given thread will simply call into the channel and pass through the channel
calling any listeners that are configured on the channel in sequence. Alternatively,
it is possible to configure a queue and a thread pool on a channel by setting the
max-size and max-threads attributes to values greater than 0. This provides a
classic producer/consumer model where you can have asynchronous execution
and create a higher level of concurrency downstream which can improve the
throughput and parallelism, but it does not guarantee the ordering of events
because there is no way to know which consumer threads will get which events.

There is also an opportunity for partitioning within the channel, which allows
you to specify an event property that you want to use to partition on at the channel
level. Instead of the channel broadcasting the event to all its listeners and calling
them in sequence, a given event will get routed to a single listener based on the
value of the property.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[221]

The primary related function of channel components is to create and
control concurrency.

There are three basic types that are configured in the Spring configuration files or
dynamically in the component's config file:

• Pass Through (max-threads=0, max-size=0): Continue to run on the callers
thread.

• Synchronous Handoff (max-threads>0, max-size=0): Synchronous handoff
from callers thread to thread pool associated with the channel. The caller
thread is blocked until the event is schedule by the pool.

• Concurrent Queue (max-threads>0, max-size>0): Asynchronous queuing
onto queue of specified size, serviced by thread pool.

Note that the use of the EventPartitioner property as described above is
orthogonal to the configuration of threading/queuing via the max-threads and
max-size values, and that also helps with the concurrency in your application.
In many cases, it is sufficient to the use the default, "Pass Through" option but
under certain circumstances as described below, you may be able to get better
performance using the "Concurrent Queue" capability.

Now armed with this knowledge, let's understand recommended approaches
on when to use each type of channel configuration. Your goal is to get as much
concurrency in the system while still honoring any ordering requirements in
your application.

If the parallelism in your EPN is sufficient coming into channel (for example,
multiple upstream threads) and you are not seeing low CPU utilization, the
default, pass-through option may be the best choice for low latency. You do not
need a thread pool to create more concurrency and having thread scheduling on
the channel will just add more latency.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Performance Scaling, Concurrency, and High Availability for Oracle Event Processing

[222]

If your application requires ordering your queries, you do not want multiple
threads servicing the queue, potentially allowing the events to get out of sequence
downstream then you can specify a queue with max-threads=1 which provides
pipelined model which allows concurrency between producer and consumer
while preserving ordering.

If ordering is unimportant downstream from the channel, the CPU utilization
is too low, you are not seeing the concurrency required and there are a small
number of producer threads, we would recommend using a larger number of
threads (max-threads > 0).

The main purpose of the channel queue itself is to act as a buffer, balancing the
relative rates of the producer and consumer. While manipulating the threading
can assist in this process, if the rates vary over time, a large queue size can mitigate
this performance issue. Try to never put a large queue in a latency critical path and
if queue is consistently empty or consistently full, it is not going to help and if it is
consistently full you may lose events.

Try to address the bottleneck in producer or consumer to get better balance. In
general, while there is no upper limit on the queue size (only limit would be your
hardware and operating system resources available), it is recommended that you
do not exceed a value of more than 2000, otherwise it will be using memory and
increasing latencies unnecessarily, and in practice you should be tuning elsewhere.

As a side note, using the Visualizer tooling or the JMX API framework
programmatically could be the methods that you employ to monitor the
channels and their related queue sizes and facilitate the tuning process.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[223]

The EventPartitioner example
While the use of an EventPartitioner has been superseded to some extent with the
newer capabilities in Oracle Event Processing for enabling concurrency in a single
event processor instance, it is still worthwhile mentioning this important capability.

Typically, you can partition events onto threads upstream to the channel, and in the
following example, we have two threads each carrying a subset of the input "stock
symbols". In this particular case, the channel partitions the input events by hashing
the specified property "symbol". This means that events containing the same value
for symbol will be partitioned always to the same processor. The hash function used
is one that minimizes the number of collisions. The result of the hash is then divided
by the number of listeners and the remainder used to select the proper listener. This
can effectively reduce lock contention in the processors because each one will get
fewer events, and there is no lock shared across processor instances'. This works best
if you can bind these threads to the partition's upstream data so the same thread is
always carrying the same set of "symbols" in the same partition of the data. In which
case, you can completely eliminate the contention in the processors in many cases.

To set up event partitioning in an event channel, you must configure the instance
property partitionByEventProperty, as shown in the following example:

<wlevs:channel id="MyChannel" event-type="MyChannelEventType" >
<wlevs:instance-property name="partitionByEventProperty"
value="symbol" />
<wlevs:channel>

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Performance Scaling, Concurrency, and High Availability for Oracle Event Processing

[224]

Using concurrency with processors
We will turn now to improving the performance in your Event Processors using
the concurrency feature with the Continuous Query Language (CQL). For CQL
queries that requiring ordering, the CQL engine uses internal locks, as you would
expect to maintain integrity, however this can result in lock contention and slower
performance if multiple threads are active in a single processor instance.

In Oracle Event Processing 11.1.1.6 and later releases, the support for parallelism
in the CQL engine has been enhanced, allowing lock contention to be minimized
or eliminated for CQL queries with specific types of ordering constraints. This
capability is implemented using the ordering-constraint attribute.

Use ordering-constraint="UNORDERED" for stateless queries where order doesn't
matter (filtering). This will allow your application to scale to large number of
threads/CPU cores without contention.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[225]

Use ordering-constraint="PARTITION ORDERED" guarantees that ordering will
be maintained within any given partition of the input data (based on a user-specified
partitioning key), but events from different partitions are not guaranteed to be
ordered. Relaxing the ordering constraint of the query in this way allows the CQL
engine to reduce its locking and provide a greater level of concurrency (essentially
threads handling events from different partitions can run in parallel).

This option will allow your application to scale well when there are large numbers of
partitions in the input data (unique partition keys).

An additional capability that is documented but easy to miss is the partition-
order-capacity property used on input channel to the processor. This is applicable
only when using queries that specify an ordering constraint PARTITION ORDERED. In
concept, this will specify the number of unique partition buckets that will be allocated
in the processor, which determines the locking granularity or the degree of parallelism
you can expect from the processor. The default value is 4, but if you still see contention
on a processor instance you can increase this value and it is not too "expensive" to
make it a fairly high value, for example 64. Internally, it requires just a few additional
data structures that will be allocated for the processor and it will give you more unique
locks and associated partition buckets so therefore less contention.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Performance Scaling, Concurrency, and High Availability for Oracle Event Processing

[226]

Use ordering-constraint="ORDERED", which is the default option and is specified
for queries that require all events in a given processor be handled in order (not
partitionable). As you would expect, this requires the most locking in the CQL engine.

The use of processor parallelism can have a substantial effort of overall performance of
your application. To emphasize the performance implications of this type of capability,
Oracle created an event processing application with an EPN that included an event
processor created with a collection of queries using the default ORDERED execution.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[227]

With an input event source streaming 3000 events, and using a max-threads=5
on the channel attribute on a 4-CPU processor, the total processing time amounts
to 605 milliseconds.

When the same application, modified with the UNORDERED option, is run again using
the same criteria, the performance result is significant. It takes just 204 milliseconds
to process all the events.

Once again the results of this kind or implementation is very subjective, but is
provided to give an indication of the performance gains possible using these tuning
attributes and options.

Partitioned versus pipelined parallelism
There are conceptually a couple of dimensions to understand related to improving
performance through the implementation of parallelism. Let us delve into the aspects
of partitioned and pipelined parallelism and clarify the differences.

Partitioned parallelism, will partition input events into independent streams that
don't require shared state or ordering among events in different streams. Partitioning
can achieve parallelism within an EPN or even across a cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Performance Scaling, Concurrency, and High Availability for Oracle Event Processing

[228]

Pipelined parallelism executes different stages within the EPN on separate threads
(for example, by using channels with max-threads > 0) to achieve parallelism
within each stream. Note if ordering is required, each stage in pipeline should
run on a single thread (channel max-threads=1).

In general, partitioning is a better approach when the application use case can
support this type of implementation. Pipelining is a poor choice for latency
sensitive applications because of thread switching.

Improving performance with batching
Another concept to address is end-to-end event batching which can also provide
performance advantages, and is now supported in Oracle Event Processing.
Java code implemented in custom adapters or event beans can be used to send/
receive batches in your application EPN using the BatchStreamSender API and
implementing BatchStreamSink (and respectively BatchRelationSender and
BatchRelationSink for relations). Event channels will keep batches intact, unless
using the EventPartitioner capability as described earlier. The CQL processor
will handle input events in batch, if the input channel is system time-stamped and
it will batch output events with same timestamp if the "batching" attribute is set on
processor's output channel.

Batching can improve application throughput and latency (but don't hold events
in input adapters waiting for more to arrive). If ordered processing is required, use
batching with extreme caution.

Collection<Object> events = new LinkedList<Object>();

String message = "Hi";
HelloWorldEvent event = new HelloWorldEvent();
event.setMessage(message);

events.add(event);

message = "Bye";
event = new HelloWorldEvent();
event.setMessage(message);

events.add(event);

eventSender.sendInsertEvents(events);

The preceding code fragment shows two events batched and sent together
for processing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[229]

General event processing, network
performance tuning, and memory sizing
observations
The recommended approach for best performance is to carefully consider the control
flow and threading as part of your design process before you create the application.
Map out and design the full control flow, giving thought to where threads start/
pickup and handoff events, and how they flow through the EPN. Identify any latency
critical paths through the EPN and keep the processing for the path on a single thread.
Understand application ordering constraints and strive for as much parallelism as
possible while honoring ordering requirements, and finally, and fairly obviously but
try to reduce data volume (filter) as early as possible in the processing path.

In Oracle Event Processing the use of computing memory while generally internally
optimized is used in some form across your entire EPN application and we address
memory (heap) sizing based on the sum of short- and long-term allocations.

Long-term allocations are typically objects that live beyond a full JVM Garbage
Collection (GC). These tend to be in a few specific places in most OEP applications.

The following are the three main areas:

• The event objects retained in CQL query windows
• Any data that is cached in the Coherence in-memory grid
• Any long-term allocations that you can write in custom beans (POJO code)

There can be a significant amount of short-term allocations associated with
processing of events in transit through the EPN. This can be substantial for
high-data rates.

In general terms, to estimate how much memory may be needed for capacity
planning, it is recommended to use a baseline size of 200 MB for long-term
allocations. In addition to this, use the size of your CQL windows and data rates
to estimate how much data will be stored. You must also evaluate how much
(reference) data you may be storing into any data grid (Coherence). This should
allow you to predict what the long-term memory requirements may reach.

Short-term allocations are really proportional to input data rate, so the best way to
get an estimate would be to measure the heap allocation rate under a fixed load.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Performance Scaling, Concurrency, and High Availability for Oracle Event Processing

[230]

So the general guidance for the heap sizes is to size the heap so that long-term
data (live data after full GC) is no more than 40 percent of maximum heap size
(or 30 percent if using JRockit JVM deterministic GC); avoid 64 bit-heaps if possible.
For partitionable workloads it is generally better to run multiple clustered CEP
instances each less than 4 GB. Finally, when sizing physical memory, allow for
the JVM's non-heap memory requirements.

For the available Java Virtual Machines, there are many additional options to
configure and optimize your Oracle Event Processing Platform. Over time, we
see consistently improved performance being made available with optimized
algorithms for handing garbage collection more efficiently.

High availability in Oracle Event
Processing
Oracle Event Processing's high availability (HA) differs from other kinds of systems
in that the data involved (events) is usually very dynamic, changing constantly. In
a typical system, such as a database, the data is relatively static and HA systems,
for example, both improve the reliability of the stored data and the availability of
querying against that data. Since the Oracle Event Processing data changes so fast,
storing it reliably can become problematic from a performance standpoint, or may
even be pointless if the only relevant data is the latest data.

In a similar vein, Oracle Event Processing is often highly stateful, building up a
historically influenced view of incoming event streams, and HA must take account
of this statefulness. Of course, the state of the Oracle Event Processing is likely to be
changing as rapidly as the incoming events are arriving and so preserving this state
reliably and accurately can also be quite problematic. Typically, the problem of the
statefulness of the system itself is solved in one of three ways:

• By replicating the behavior of the system—termed active/active
• By replicating the state of the system—termed active/passive
• By saving the stream of events that produced the state so that the state can be

rebuilt in the event of failure—termed upstream backup

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[231]

Oracle Event Processing supports an active/active HA architecture. The active/
active approach has the advantages of high performance, simplicity, and short
failover time relative to other approaches, as was mentioned previously. An Oracle
Event Processing application that needs to be highly available is deployed to a
group composed of two or more Oracle Event Processing server instances running
in an Oracle Event Processing cluster. Oracle Event Processing will choose one
server in the group to be the active primary. The remaining servers become active
secondaries. It is not possible to specify the server that will be the initial primary as
it is chosen automatically.

The number of active secondaries depends, of course, on the number of servers in
the group hosting the application. If the group contains n server instances then there
will be n-1 secondary instances running the application. The number of secondaries
in the group determines the number of concurrent server failures that the application
can handle safely. A server failure may be due to either a software or hardware
failure, which effectively causes termination of the server process. Note that most
applications require just one or possibly two secondaries to ensure the required
level of availability.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Performance Scaling, Concurrency, and High Availability for Oracle Event Processing

[232]

During normal operation—prior to a failure occurring—all server instances hosting
the application process the same stream of input events. The active primary instance
is responsible for sending output events to the downstream clients of the application.
The active secondary instances, on the other hand, typically insert the output events
that they generate into an in-memory queue. Events are buffered in the queue
in the event that they are needed to recover from a failure of the active primary
instance. Queued events are proactively discarded, or "trimmed", when Oracle Event
Processing HA determines that they are no longer needed for recovery.

Failure scenarios
Failure of an active secondary instance does not cause any change in the behavior of
the remaining instances in the group, but it does mean that there is one less secondary
available in case the active primary instance should fail. The active primary continues
to be responsible for sending output events to downstream clients, while the remaining
active secondaries continue to enqueue their output events.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[233]

Failure of the active primary instance, on the other hand, results in failover to an
active secondary instance. The secondary instance becomes the new active primary
and takes over the responsibility of sending output events to downstream clients.
The new active primary will begin by sending the output events that are currently
contained in its output queue(s) before sending any new output events that are
generated following failover.

A sample HA Event Processing
application
Understanding the concepts and principles for high availability and zero
event-loss failover with Oracle Event Processing can be daunting and sometimes
confusing. During this chapter, we have described many of the aspects and various
configuration options available, but to help simplify and bring together the basic
requirements and implementation to get you "up and running" relatively quickly.
We will now walk you through a very simple high availability configuration for
the Oracle Event Processing platform.

As discussed earlier in this chapter, Oracle Event Processing supports the active/
active model for high availability. In this type of configuration, a typical topology
consists of a primary server and several secondary servers in the same cluster group,
as you will encounter in our HA sample described in more detail below which has
two servers are configured in a cluster group in a domain.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Performance Scaling, Concurrency, and High Availability for Oracle Event Processing

[234]

When the application is deployed to the cluster group, the server that is the first
in the group will take the primary role. Both primary and secondary servers are
able to receive events from upstream, but most applications only want the primary
server that is able to forward events to downstream so that the receiving application
does not receive duplicates, while the secondary servers need to cache the events
in a queue to be able to recover correctly in the event of a failure and trim them
according the trimming message from the primary server when it is determined that
the receiving application has definitely received the corresponding event. When
the primary fails for any reason, one of the secondary servers will take up the new
primary role to continue processing events from the failure point.

The artifacts required for this scenario involve the Oracle Event Processing HA
sample application, a JMS server (in this case we use the open source and freely
available ActiveMQ technology0, and a JMS client that places a continuous stream
of messages (events) onto a JMS topic to be processed by Oracle Event Processing.

High availability quality of services
Oracle Event Processing provides several HA adapters out of the box to allow you
to create HA capable applications with different levels of precision and performance.
After having understood Oracle Event Processing HA architecture, the next step is
to learn Oracle Event Processing HA adapters and how to configure your desired
quality of service.

Oracle Event Processing supports four active/active HA options with different
quality of service (QoS) as follows:

• Simple failover
• Simple failover with buffering
• Light-weight queue trimming
• Precise recovery with JMS

These are detailed in the next sub-sections.

Simple failover
When configured for simple failover, there is negligible performance degradation,
however your application may lose many events in case of a failure, and may receive
a few duplicate events while recovering.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[235]

To configure for simple failover, you need to follow these steps:

1. Add a ha-buffering adapter to your EPN downstream to your output
adapter. This is demonstrated in the following example:
 <wlevs:channel id="helloworldOutputChannel"
 event-type="HelloWorldEvent" advertise="true">
 <wlevs:listener ref="myHaSlidingWindowAdapter"/>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:channel>

 <wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-
buffering" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.
HelloWorldBean"/>
 </wlevs:listener>
 </wlevs:adapter>

2. Configure the windowLength property of the ha-buffering adapter to 0.
This is demonstrated in the following example:
 <wlevs:adapter id="myHaSlidingWindowAdapter" provider="ha-
buffering" >
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.
HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:instance-property name="windowLength" value="0"/>
 </wlevs:adapter>

3. Finally, there is a chance that the results output during the recovery may
very slightly if the clustered nodes do not use the same time. So, to guarantee
that the different nodes use the same timestamp, you can configure your
input channel to use application timestamps.

This is demonstrated in the following example:

<wlevs:channel id="helloworldInputChannel" event-
type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="myHaInputAdapter"/>

 <wlevs:application-timestamped>
 <wlevs:expression>arrivalTime</wlevs:expression>
 </wlevs:application-timestamped>

 </wlevs:channel>

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Performance Scaling, Concurrency, and High Availability for Oracle Event Processing

[236]

Keep in mind that you must be running a clustered Oracle Event Processing domain
with at least two nodes, or as many nodes as you need to protect your system against
simultaneous node failures.

Next, we take a look at the next quality of service for HA.

Simple failover with buffering
When configured for simple failover with buffering, there is some (low) performance
degradation, however your application potentially loses less events in case of a failure.
In fact, the number of events lost is proportional to the size of the buffering window
configured. In other words, if the buffering window is configured to be high enough,
then no events are lost.

For example, if your application receives 10 events per second, and the HA buffering
window is configured to 500 milliseconds, then your application may potentially lose
up to 5 events, that is, 1/2 second of events at the rate of 10 events per second.

You can configure the buffering size using the windowLength property as you have
seen in the previous section.

Here is an example that sets the buffering window to 500 milliseconds:

<wlevs:instance-property name="windowLength" value="500"/>

The larger your windowLength configuration, the more memory is needed and the
further performance degradation is seen, therefore choose wisely and always opt for
the smallest window that still fulfills your application requirements.

In the next section, you learn how to configure Oracle Event Processing applications
so that they do not lose events in case of a failure.

Lightweight queue trimming
This high availability quality of service is characterized by a low performance
overhead with a relatively faster recovery time and increased data integrity (no
missed events; but a few duplicate events are possible during failover).

The active primary server sends messages to secondary servers to notify them of the
events that it has completely processed. This enables the secondary servers, which
are holding buffers of events, to trim their buffers to only contain events that have
not been sent by the primary. Events are only trimmed after they have been sent by
the current primary; this allows the secondary servers to avoid missing sending the
correct output events. If a fail-over occurs, that secondary becomes the primary.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[237]

The frequency with which the active primary sends queue trimming messages to
active secondary servers is configurable to a certain number of event or a specific
amount of time.

If it is configured to a use a number of events, this limits the number of duplicate
output events at failover.

If it is configured to use a specific interval, the queue-trimming adapter requires a
way to identify events consistently among the all of the servers. The recommended
approach is to use application time to identify events, but any key value that
uniquely identifies events will do.

The advantage of queue trimming is that output events are never lost. There is
a slight performance overhead at the active primary, however, for sending the
trimming messages and this overhead increases as the frequency of queue
trimming messages increases.

To implement this high availability quality of service, you must configure your
EPN with a high availability input adapter after each input adapter and a high
availability broadcast output adapter before each output adapter.

The following code shows the configured inbound adapter sending messages
to the HA inbound adapter:

<wlevs:adapter id="helloworldAdapter" class="com.bea.wlevs.adapter.
example.helloworld.HelloWorldAdapter" >
<wlevs:instance-property name="message" value="HelloWorld - the
current time is:"/>

<wlevs:listener ref="myHaInputAdapter"/>
</wlevs:adapter>

The HA inbound adapter is part of the EPN and sends events to
downstream processing:

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound">
 <wlevs:instance-property name="timeProperty"
value="arrivalTime"/>
</wlevs:adapter>

<wlevs:channel id="helloworldInputChannel" event-
type="HelloWorldEvent" >
 <wlevs:listener ref="helloworldProcessor"/>

 <wlevs:source ref="myHaInputAdapter"/>
</wlevs:channel>

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Performance Scaling, Concurrency, and High Availability for Oracle Event Processing

[238]

The final output channel is configured to send results to a ha-broadcast adapter:

<wlevs:channel id="helloworldOutputChannel" event-type="HelloWorldEven
t"advertise="true">

 <wlevs:listener ref="myHaBroadcastAdapter"/>
 <wlevs:source ref="helloworldProcessor"/>
</wlevs:channel>

<wlevs:adapter id="myHaBroadcastAdapter" provider="ha-broadcast" >
 <wlevs:listener>
 <bean class=
"com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
</wlevs:adapter>

Optionally, configure the component configuration file to include the OEP high
availability input adapter and buffering output adapter:

<ha:ha-inbound-adapter>
 <name>myHaInputAdapter</name>
</ha:ha-inbound-adapter>

<ha:ha-broadcast-adapter>
 <name>myHaBroadcastAdapter</name>
 <trimming-interval units="events">10</trimming-interval>
</ha:ha-broadcast-adapter>

If your OEP application must generate exactly the same sequence of output events as
existing secondary servers, you need to configure the warm-up-window-length for
the broadcast output adapter. This ensures that, in the event of another failure, this
server does not get chosen to become the primary until the adequate warm-up time
has passed so that the state of the server is correct.

As always, the appropriate import package definitions must be included in the
MANIFEST.MF file. In this case, the definitions are com.bea.wlevs.ede.api.cluster,
com.oracle.cep.cluster.hagroups, com.oracle.cep.cluster.ha.adapter, and
com.oracle.cep.cluster.ha.api.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[239]

Precise recovery with JMS
This quality of service has a high performance overhead (slower recovery time) but
maximum data integrity (no missed events and no duplicate events during failover).
It is only compatible JMS input and output adapters. It is not concerned with
transactional guarantees along the event path for a single-server, but rather a single
output from a set of servers. To achieve this, secondary servers listen, over JMS, to
the event stream being published by the primary. This incoming event stream is
essentially a source of reliable queue-trimming messages that the
secondary servers use to trim their output queues.

If JMS is configured for reliable delivery, we can be sure that the stream of events
seen by the secondary is precisely the stream of events output by the primary
and thus failover will allow the new primary to output precisely those events not
delivered by the old primary.

The JMS inbound adapter immediately sends events to the HA inbound adapter:

<wlevs:adapter id="JMSInboundAdapter" provider="jms-inbound">
 <wlevs:listener ref="myHaInputAdapter"/>

</wlevs:adapter>

The HA inbound adapter is configured with the key properties and the
time properties:

<wlevs:adapter id="myHaInputAdapter" provider="ha-inbound" >
 <wlevs:instance-property name="keyProperties" value="sequenceNo"/>
 <wlevs:instance-property name="timeProperty" value="inboundTime"/>
</wlevs:adapter>

All of the CQL processing is type application-timestamped using the chosen
time property:

<wlevs:channel id="channel1" event-type="StockTick">
 <wlevs:listener ref="processor1" />

 <wlevs:source ref="myHaInputAdapter"/>
 <wlevs:application-timestamped>
 <wlevs:expression>inboundTime</wlevs:expression>
 </wlevs:application-timestamped>

</wlevs:channel>

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Performance Scaling, Concurrency, and High Availability for Oracle Event Processing

[240]

The HA correlating adapter is configured in the application with a correlated source
that is receiving the queue-trimming messages from an inbound JMS adapter.

<wlevs:adapter id="myHaCorrelatingAdapter" provider="ha-
correlating" >
 <wlevs:instance-property name="correlatedSource" ref="clusterCor
relatingOutstream"/>

 <wlevs:instance-property name="failOverDelay" value="2000"/>
 <wlevs:listener ref="JMSOutboundAdapter"/>
</wlevs:adapter>

<wlevs:channel id="channel2" event-type="StockTick">
 <wlevs:listener ref="myHaCorrelatingAdapter" />
</wlevs:channel>

<wlevs:adapter id="JMSOutboundAdapter" provider="jms-outbound"/>
<wlevs:adapter id="JMSInboundAdapter2" provider="jms-inbound"/>

<wlevs:channel id="clusterCorrelatingOutstream" event-type="StockTick"
advertise="true">
 <wlevs:source ref="JMSInboundAdapter2"/>
</wlevs:channel>

Use the same import package definitions mentioned in the previous section
regarding lightweight queue trimming in the MANIFEST.MF file.

The HA application
At a high-conceptual level, the sample application receives events from JMS
topic and populates output events to the downstream system. The basic EPN
for this application is:

The JMS adapter is configured to connect to an ActiveMQ topic. The EPN HA
adapter is a broadcast queue-trimming adapter. It can be configured to narrow down
the number of lost events or duplicate events. On the primary server, the HA adapter
forwards events to downstream and the events will be outputted at console by an
output bean.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[241]

ActiveMQ server
This is a simplified version of ActiveMQ. The server is bound to the URL,
tcp://0.0.0.0:61616, where 0.0.0.0 can be replaced with the hostname
(for example, "localhost"). In this case, a JMS topic is defined with the JNDI
name, cepTopic.

The JMS Message Client
This is used to send messages to the topic destination. Now the content and the
format of the message are generated internally and can't be configured. This client
is placed at the ActiveMQ's bin directory in order to simplify the configuration
and the execution. It reads jndi.properties from the conf directory to retrieve
the JNDI configuration of the topic. Thus, you can change the configuration of the
JMS topic as you desire. In order to configure a cluster, we need to add the cluster
configuration in the server's config.xml file. The configuration sample is shown
in the following screenshot:

For other servers, the server name and identity should be different while the
domain name, multicast address, cluster type, and groups remain the same.
The cluster configuration is simple. In order to use ActiveMQ, the ActiveMQ
libraries need to be added in the Oracle Event Processing server's bootstrap
classpath in the server's startup script (for example, startwlevs.sh):

"%JAVA_HOME%\bin\java" %DGC% %DEBUG% -Xbootclasspath/a:activemq-all-
5.4.2.jar

For Windows, enter the following in startwlevs.cmd:

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Performance Scaling, Concurrency, and High Availability for Oracle Event Processing

[242]

"%JAVA_HOME%\bin\java" %DGC% %DEBUG% -Xbootclasspath/a:activemq-all-
5.4.2.jar -Dorg.apache.commons.logging.Log=org.apache.commons.logging.
impl.SimpleLog -Dorg.apache.commons.logging.simplelog.defaultlog=error
-Dwlevs.home="%USER_INSTALL_DIR%" -Dbea.home="%BEA_HOME%" -jar "%USER_
INSTALL_DIR%\bin\wlevs.jar" %ARGS%

In the sample HA application, the JMS inbound adapter and HA adapter are
configured as shown in the following screenshot:

Note that for ActiveMQ, customContextProperties is required for the extra
configuration. The HA adapter is broadcast queue trimming adapter. The
keyProperties property is required to identity the events it received.

In the application configuration file, more details of the components are provided:

These configurations are persistent and can be changed from the Visualizer tooling
or using a JMX client. The JMS adapter's event-type element specifies the event
type to which the JMS adapter will convert the JMS messages. The jndi-provider-
url is as configured in the ActiveMQ's activemq.xml. The HA adapter's element
trimming-interval specifies that the primary server will send trimming message
to secondary servers every 100 milliseconds.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[243]

Note that in the application's configuration file the cluster namespace is required to
be included, the header should look similar to the following:

In the MANIFEST.MF file, the following packages are needed additionally to address
the library dependency:

The com.bea.wlevs.ede.api.cluster package is required for cluster dependency,
com.oracle.cep.cluster.ha.adapter is for HA adapters, com.tangosol.*
packages are for coherence, while javax.jms is for JMS.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Performance Scaling, Concurrency, and High Availability for Oracle Event Processing

[244]

Running the HA solution sample
Follow these steps to run the sample:

1. To start the JMS server, open a terminal and change directory to activemq/
bin. Run the following command:
java –jar run.jar start

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[245]

2. To start to feed messages to JMS server, open a terminal and change the
directory to the activemq/bin. Run the following command:
java –jar jmsfeeder.jar

With the ActiveMQ Server started and the JMS client executing and sending
messages to the topic, you should start the Oracle Event Processing Servers
(Server1 and Server2).
If you observe the directory structures used in our sample, we have used the
following to start each Oracle Event Processing Server:

${INSTALL_HOME}/ocep_11.1/samples/domains/ha_domain/server1

(similar for server2)

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Performance Scaling, Concurrency, and High Availability for Oracle Event Processing

[246]

3. With the CMD, enter the following command:

 startwlevs.cmd

When the primary Oracle Event Processing server 1 "fails" (in this case we simply
terminate the process), you can see that the secondary server immediately takes over
and continues to process the events without any message loss.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[247]

Studying the Visualizer tooling for HA
implementation
As we conclude this chapter, we will review fairly quickly the use of the
Visualizer tooling available with Oracle Event Processing and take a look
at some of the information that is made available.

Let us take a look at the general configuration display that shows, in this
case the two Oracle Event Processing Servers in a Cluster and associated
configuration information:

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing Performance Scaling, Concurrency, and High Availability for Oracle Event Processing

[248]

With Coherence providing in this configuration, the HA foundational technology
to support this Oracle Event Processing implementation, the Visualizer tooling
can also provide a wealth of statistics relating to its execution, to assist in tuning
and optimization.

Summary
While generally a difficult subject to grasp, in this chapter we have covered the
major issues of performance analysis and application-level optimization techniques,
especially relevant to its relationship with event-driven requirements, guiding you
through some of the aspects that can be configured and can influence how well
your solutions perform in terms of event throughput and related latency. We have
also introduced you to the general concepts and capabilities for implementing high
availability and failover with the Oracle Event Processing platform.

As you gradually scale out your applications to multiple Oracle Event Processing
servers using the clustering capabilities, it is highly recommended that you first
evaluate fundamental configurations in a testing environment, in the same way as
with the sample HA application and server infrastructure shown in this chapter to
fully understand the best approaches for your specific application requirements.

In the next chapter, we will embark on a journey of understanding involving the world
of geospatial real time event analysis. This topic covers the foundational information
for creating Oracle Event Processing applications that can follow the movement
patterns of any type of resource, and very importantly, how these resources are
interacting with each other and with specific geographical areas of interest.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Spatial:
A Telemetric Use Case

In this chapter, we will cover an overview of geospatial event processing real-time
analysis, the spatial data cartridge integration approach, highlight basic real-time
spatial features, and step through each fundamental requirement in creating and
executing a real-world geo-streaming Oracle Event Processing Application. The
topics we will cover are as follows:

• Introduction to Oracle Spatial with Oracle Event Processing
• Basic geospatial concepts and use cases
• The Oracle Spatial Data Cartridge
• Oracle geospatial features
• Tracking vehicles with an Oracle Event Processing application

Introduction to Oracle Spatial with Oracle
Event Processing
As we delve more into the capabilities of Oracle Event Processing, one very important
and unique collection of features apply to the real-time, location-based analysis of
moving objects, geo-streaming, and their relationship to other objects whether they
are fixed or dynamically created geographical areas, otherwise known as geo-fencing.
Holistically, Oracle Event Processing provides a feature-rich platform for geospatial
context-aware, real-time analysis.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Spatial: A Telemetric Use Case

[250]

The spatial capabilities of geo-streaming and geo-fencing are important for any
Event Processing technology and provides the ability to constantly evaluate the
continuous streaming events that arrive rapidly from Global Positioning Systems
(GPS) enabled sensors in vehicles, or from many different mobile devices.

For example, by understanding the exact location of all the fire trucks in a given
region and the current position of all the new fire outbreaks, Event Processing
systems can immediately evaluate the best emergency resources to dispatch.
This may not be a decision based only on which truck is close but also by added
computing intelligence dynamically determining the skills of the firemen and the
equipment available on the truck.

This additional complex analysis can be achieved by using profiling information
that is either held in a database, big data stores or from an in-memory grid.
The firemen and equipment profile data can be easily joined with the streaming
location-based events and analyzed to enrich the events with information that
describes each fireman's certified fire fighting capabilities and for each fire asset,
its purpose, usage criteria, and configuration.

This is important because the fire might be expanding rapidly due to chemicals and
also be a burning inferno on the 17-floor of a tall building. So we need the firemen
with the correct skills in tackling this specific type of fire and also, we need a fire
truck that has ladders that can reach a distance high enough for such a building.
With lives at stake, wasting time with human interactions desperately trying to
find the right vehicle or just sending the nearest but badly equipped truck can
have devastating consequences:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[251]

This is a very mission critical Use Case but there are also many less dramatic cases
and in this chapter we will discuss the fundamentals of tracking any kind of objects
such as on-land and off-shore vehicles and how they can be related to areas of
interest, such as bus stops, bus stations, and shipping hazards.

While there are already systems that can provide these types of capabilities,
most are generally hand coded industry and company-specific solutions that
involve very complicated software that is hard to write and maintain, difficult
to dynamically change, and very complex to implement. You will discover that
by using Oracle Event Processing, with its combination of a Java-based platform
and abstracted continuous query language, creating such applications can be
relatively fast and easy to implement.

In this chapter we will only be focusing on the key aspects of using geo-streaming
and geo-fencing in the context of Oracle Event Processing. Various vendors do
provide varying collections of spatial capabilities and some provide a vast array of
materials that discuss related topics. In reality this content could fill another book or
even a collection of books, so if you want to learn more details, we recommend that
you simply search the Internet for "Oracle Spatial".

Basic geospatial concepts and use cases
We will focus now on some specific terms and their definitions used by Oracle
Event Processing relating to its implementation of geospatial techniques during the
development of event-driven applications.

Geo-streaming
When studying geo-streaming for Oracle Event Processing, the event-types that
are generated by the moving object include a collection of tracking-related context,
generally an identifier such as a license plate number, bus route name, or bus
number together with the current longitude and latitude position of that vehicle.
The latitude and longitude values are the geographic coordinates used to define
any location on Earth and are measured in degrees, since the Earth is a sphere.

For example, consider the following values:

8,2,-122.473419676926,37.7241533792509

The first value in this .csv (comma-separated value) file entry is the identification
number for a bus, bus number 8. By having this event-type property Oracle Event
Processing can be used to collect comprehensive profiling information about the
bus, such as the capacity of this bus, its general route, and previous travel times
between bus stops.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Spatial: A Telemetric Use Case

[252]

The next value, 2, is simply a sequence number that can indicate an incremental
value or the current event time.

The next two values are the longitude and latitude position values that relate to
the immediate bus position, -122.473419676926, 37.7241533792509. By using
one of the many free Internet tools, you can use these values to identify this related
point on a map:

Using these concepts we can create an event stream in a Java application, or have
the information read from a .csv file using the available load generation testing tool
(RUNLOADGEN) provided by Oracle Event Processing. This can simulate the event flow
from the real-world GPS device or sensor.

For example, the following content is of a .csv file of vehicle movement events:

8,15,-122.471259972159,37.7088702786799
8,16,-122.47139451801,37.7076677852903
8,17,-122.471550447123,37.706466872009
8,18,-122.471696850204,37.7052652951831
8,19,-122.471770960283,37.7040596480638
8,20,-122.471805885683,37.7028528367994
8,21,-122.47177428746,37.701645791032 < -------- Note this
position

Using this technique it is a great way to test new geo-streaming based Oracle Event
Processing applications, as you will learn later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[253]

Geo-fencing
Once we can effectively track the movement of an object using geo-streaming
capabilities, in most use cases we would like to associate that movement position
in relation to something else. In the same way as indicated previously, you can use
CQL to compare the moving events with a specific point such as a bus stop.

For example:

Bus Stop Location --- > 1,1,-122.47177428746,37.701645791032 < ------
Look Familiar?

If you study the event-type properties described in the vehicle movement event
.csv file in the geo-streaming section, you will notice that the last movement's
event coordinates match the bus stop event-type properties shown in the preceding
example. In the next section on the Oracle Spatial Data Cartridge we will show how
easy it is now to define a CQL statement that will enable the determination of when
and where a moving bus vehicle reaches a new bus stop.

Before we continue and study the fairly simple capability for a spatial geo-fencing
event pattern matching to a single location point, you should be aware that many
moving object applications need to be more sophisticated and require a comparison,
not to a single point, but to an area or a complex polygon shape. More difficult
still is that this area can also be constantly moving, its shape definition potentially
frequently changing.

These areas can be stored in a database as complex spatial object definitions and
can generate new events by using various programming techniques such as
Advanced Queuing. Oracle Advanced Queuing provides a database-integrated
message queuing functionality and leverages the functions of the Oracle database
so that messages can be stored and propagated between queues on different
machines and databases. By using this kind of capability, these object definitions
that change can invoke an event message which can be passed to Oracle Event
Processing for immediate re-evaluation against the currently monitored associated
geo-streaming resources.

Geographical tools, such as Oracle Mapviewer, can be used to relatively easily define
these area definitions and store them into a database. Using these tools you can also
define buffer zones surrounding the areas, making the computed determination of
"near an area" or "in an area" more straightforward.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Spatial: A Telemetric Use Case

[254]

For example, if you wanted to create geo-fenced areas that represented fire zones in
the city of London, you can use the tool to select multiple points around the required
area, in any form of complex shape. As the first and last points are joined, the tool
will take this area definition and place the required spatial data into the database.
This final action could then be used to trigger a spatial area definition event message
to be sent dynamically to the Oracle Event Processing application for assessment:

In a mission critical situation room or a control and command center, these areas
can be created and removed on demand, but at the same time more elegant Event
Processing applications can be written to programmatically manipulate (create/
replace/update/delete) these areas, so as to automate much of the needed human
interaction requirements.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[255]

These areas do not need to be fire outbreaks but could easily be related to traffic
congestion, toll charging, or air pollution zones and locations in the oceans which
represent hazards such as coral reefs or sand banks:

Oracle MapViewer is a JEE service for rendering maps using spatial data managed
by Oracle Spatial and Oracle Event Processing. It provides services and tools that
hide the complexity of spatial data queries and cartographic rendering, while
providing customizable options for more advanced users, such as geo-fencing
creation, manipulation, and deletion.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Spatial: A Telemetric Use Case

[256]

To clarify the relevance of these specific components, Oracle Spatial technology
has been integrated with Oracle Event Processing using the Spatial Data Cartridge.
Geospatial data geometries, such as geo-fence areas or points, can be stored in
a database accessed by both, Oracle Event Processing applications and Oracle
MapViewer. Oracle Event Processing applications can generate location events
that will update mapping information rendered by MapViewer.

This is described later in this chapter, in the case of the bus location example, where
Oracle Event Processing location events are sent out as HTTP publish messages to
its integrated HTTP Publish-Subscribe server, so that web applications can subscribe
to these HTTP pub-sub events and when they arrive the web application can invoke
MapViewer server functions to render updated geo-location data.

Bus tracking movement event patterns
We have described, in general, how Oracle Event Processing applications can be
implemented using its geo-streaming and geo-fencing capabilities, so now we will
review the real-world use case relating to a government land transportation bus
transit service improvement project requirements.

Many bus and light rail public services now have sophisticated sensors and passenger
monitoring devices that can not only provide the streaming GPS signals but also
personalized pocket cards which introduce methods that can be used to indicate when
a person steps onto a bus and when that person departs.

All of these, and other related events, such as real-time weather satellite information,
streaming video cameras on the lamp posts, bridges can be consolidated and used
in an effective Oracle Event Processing transportation application. This application
could provide immediate alerts to waiting passengers as to the location of their bus,
time to arrival, and whether its capacity has been reached. It could also dynamically
provide insight as to congestion and weather related delays automatically initiating
requests for more buses to satisfy the passenger space demands either by rerouting
empty buses on other routes or calling out reserve buses from bus terminals.

As you research the many different requirements for a transportation monitoring
and management solution, you will discover many obvious and perhaps some more
obscure use cases. Some of the common requirements in any bus tracking solution
will encompass the following vehicle movement event patterns:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[257]

• Detect when a bus deviates from the predefined route and send an alert. The
alert event can be visualized on a custom user interface or used to invoke a
business process to take specific actions. While this deviation could be due to
traffic congestion from an accident, weather, natural disaster, or simply human
error, all of these factors can be dynamically assessed by the event processing
application and included in the alert text. A prediction methodology could
also be invoked to evaluate, based on historical vehicle movement patterns,
possible trends in which different routes are or could be taken:

• When on the pre-defined path, detect when the bus is at a bus depot,
bus stop, or school. Each static bus depot, bus stop, or place of interest,
such as a school, is geo-fenced (or classified as an Event Region) and these
areas stored in a relational database. The GPS events are compared to these
areas and when the distance between them is less than a certain value, an
informational message is generated and processes are invoked to prepare
for the arrival of the vehicle.
When the GPS event is IN-VOID, a general term use to describe when
the resource is completely inside one of the geo-fenced areas, the system
generates an alert message that is visualized on a custom user interface:

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Spatial: A Telemetric Use Case

[258]

• Provide Event Processing spatial analysis for reassignment and
redistribution of all buses in transportation network. When the system
detects transportation network "fault" conditions, these can be defined
as traffic congestion, road work disruption, vehicle breakdown, or poor
weather conditions, the application will invoke processes to optimize
available vehicles usage:

These kinds of innovative systems based on Oracle Event Processing can provide
better customer satisfaction and the improved management of passenger flow
ensuring all buses are effectively utilized. This, in turn, reduces costs for the
government authority in many ways, in fuel costs, staffing levels and even by
a reduction in complaint telephone calls from angry disillusioned passengers.

The Oracle Spatial Data Cartridge
So how does all this spatial magic happen? Let us now focus directly on the enabling
features provided by the Oracle Event Processing technology, the Oracle Spatial Data
Cartridge, and discuss how it can be used in a development context.

In previous chapters we have described the capability to extend the Oracle CQL
CEP engine event analysis capabilities in many powerful and rich ways using
Data Cartridges. This pluggable architecture also extends to integrate one of the
leading industry spatial technology platforms provided with the Oracle Enterprise
Edition Database.

The Oracle Spatial Data Cartridge encapsulates the major features of this
technology and enables Oracle Event Processing developers to execute these spatial
functions directly in the event language and thus can be modified dynamically and
reintroduced into the application, changing its logic flow, without stopping and
restarting the application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[259]

As we have already introduced various bus tracking scenarios we can now review
how using the Oracle Event Processing Spatial Data Cartridge can simplify Bus
movement event analysis tasks.

Rather than using many complicated lines of software code, you can match the
moving bus vehicle positional event properties relative to its known fixed bus stop
position by using a Continuous Query Language (CQL) statement which includes
an Oracle Spatial Data Cartridge function call. In this statement you can compare the
bus stop geometry (its longitude and latitude position, busstop.geom) to the moving
bus geometry position (bus.geom) and ensure that for the correct bus, the spatial
points match exactly.

Note the use of the CONTAIN@spatial geometric relation operator which directly
invokes the use of the Spatial Data Cartridge technology. This operator returns true
if the defined point values are contained by the geometry and false otherwise:

As the Oracle Event Processing architecture is based on OSGi, the Oracle Spatial Data
Cartridge itself is defined as part of the application manifest and can be found in the
MANIFEST.MF file within the application project. The name of this Data Cartridge is
com.oracle.cep.cartridge.spatial:

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Spatial: A Telemetric Use Case

[260]

Oracle geospatial features
There are many Oracle Event Processing Spatial features, so you should review
the very detailed product documentation on this subject. However, in this section,
we will highlight some of the most commonly used Oracle Spatial Data Cartridge
statements from various worldwide implemented solutions.

In the previous section we have introduced you to the CONTAIN Oracle Spatial
geometric relation operator. As this is not a method of the com.oracle.cep.
cartridge.spatial.Geometry class you invoke this operator without a package
prefix simply using CONTAIN@spatial:

Another useful Oracle Spatial method used in many applications is DISTANCE,
together with the NN Spatial operator.

DISTANCE is a com.oracle.cep.cartridge.spatial.Geometry method that
calculates the distance between two geometries and returns a double value.

NN is a Spatial operator that returns the objects (nearest neighbors) from geom that are
nearest to the key. In determining how near two geometry objects are, the shortest
possible distance between any two points on the surface of each object is used.

For example, you can use these Oracle Spatial capabilities as part of a more
complex telecommunication solution to compare the current distance of a
customer's smartphone within close proximity to a Wi-Fi base station:

At this point, we have included this rather complex CQL query purely as a reference
but we will describe this statement, concepts and its usage aspects in much more
detail in a subsequent chapter.

One of the main goals for the Oracle Event Processing Spatial Data cartridge is not
only to integrate a comprehensive collection of spatial-related capabilities in the Oracle
Event Processing technology but also to provide a simplification and abstraction for
the complex methods and operators involved, and enable their use with the CQL CEP
processor engine. It should be also noted that in general terms all of these capabilities
can be executed without the need for any installed relational database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[261]

Tracking vehicles with an Oracle Event
Processing application
We have now introduced the basic features and concepts, and all of the major functions
needed for a vehicle tracking solution. So now we will step through the requirements
for building and implementing such as solution, using all of these elements.

In the following sections we will show the entire application in the form of its Event
Processing Network (EPN) and then focus on the specific areas related to the use
of spatial analysis. Interestingly, most of this application is metadata defined and
driven, so in reality there is not a substantial amount of actual Java code required.

Key application elements
The following bus tracking application is a packaged sample that is distributed with
the Oracle Event Processing software (in the samples directory/folder) and can
provide a useful foundation for more elaborate spatial monitoring and management
solutions, which not only applies to vehicle monitoring but also to many other
geospatial use cases such as those involving mobile devices. For simplicity, we have
packaged this sample as an exported Eclipse project for use with this chapter:

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Spatial: A Telemetric Use Case

[262]

Bus tracking EPN
The bus tracking application Event Processing Network starts with two
event adapters:

The BusPositionGen adapter is an out of the box adapter that listens for events
arriving at a specific TCP/IP port which are sent from the runloadgen tool:

The runloadgen tool reads records from a bus_positions.csv file that contains the
individual movement event data for the bus and streams them into the application.
This simulates the actual event data that would come from a GPS device or sensor.
The adapter is defined as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[263]

The main processing of the second adapter, BusStopAdapter, starts once the
application has started to process the individual bus movement position events.
It reads from another file called, bus_stops.csv and stores the positions of the
bus stops in memory for later analysis by the BusSpatialProcessor event node,
and this adapter is defined as follows:

For reference, the bus_stops.csv file read by this second adapter is deployed as
an Application artifact from within the META-INF/wlevs project folder. The events
then flow through the BusPosStream and BusStopRelation channels using the
event-types of BusPos and BusStop respectively:

Both of these event-types are defined in the Oracle Event Processing development
tooling together with the event-types that are used by the created user interface to
visualize the information:

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Spatial: A Telemetric Use Case

[264]

BusSpatialProcessor
Next we have the event processor queries that utilize CQL VIEWS and are transient
virtual streams or relations. In this case they are used to add geospatial geometry
objects to entities in the bus position stream and in bus stop location relation:

The BusSpatialProcessor event node creates a bus view with an ID of
BusPosGeomStream which uses the Spatial Data Cartridge features to create the
geom geometry object which relates to the current position of the moving bus.

The BusArrival query then uses the bus view with another Spatial Data Cartridge
feature to compare the geometry object value of the moving bus position to the bus
stop geometry object values relating to each of the bus stop positions that have been
stored in the processors memory. In this example the value 0.0d is defined so that a
match is made if the moving bus position exactly matches the bus stop position.

When the geometries match exactly and the bus.busId event-type property of the
moving bus is the same as the busstop.Id event-type property then this query will
send the output event to the BusStopArrivalChannel:

There is a HTTP publish and subscribe channel adapter that receives the
events from the BusStopArrivalChannel and the user interface will receive
these events and show an bus stop arrival alert message. This application also
has a BusStopArrivalOutputBean event bean node which is used to show
informational messages on the output console.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[265]

The remaining two queries in this processor are used to provide information for the
user interface with the output events sent to the BusPosChannel and BusStopChannel
channel event nodes. These together with the BusStopArrivalChannel channel event
node are again used by the HTTP publish and subscribe channel adapter event nodes:

This processor event node definition concludes with three channel definitions that will
route the event output as required. Note the usage of the <selector> element on the
<channel> definition. This will ensure that the events are sent to the correct channel.

The remaining section of the Event Processing Network dictates the routing
of the events from the channel event nodes to the HTTP publish and subscribe
adapter nodes:

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Spatial: A Telemetric Use Case

[266]

In this sample:

• The BusStopChannel channel event node will send related events to the
BusStopPub HTTP Publish-Subscribe adapter node.

• The BusPosChannel channel event node will send related events to the
BusPosPub HTTP pub-sub adapter node.

• The BusStopArrivalChannel channel event node will send related events
to the BusStopArrivalPub HTTP pub-sub adapter node.

These HTTP pub-sub adapter nodes described in the application using the <http-
pub-sub-adapter> tags will push the arriving events for any web client user
interface that is "listening" for these events and is ready to consume:

All of the HTTP pub-sub channels used by Oracle Event Processing Applications and
managed by the server must each be defined in the Oracle Event Processing domain
configuration file.

Each of the required HTTP pub-sub channels are specified using the <channel-
pattern> tag under the <http-pubsub> tag section.

Published HTTP pub-sub events from the Oracle Event Processing application
are sent to an HTTP pub-sub server. This HTTP pub-sub server could be accessed
directly by using the integrated component of the Oracle Event Processing runtime
system or an external HTTP pub-sub server available as part of other application
servers, such as the Oracle Weblogic Server:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[267]

As a developer note, HTTP pub-sub adapters can be created and defined, in addition
to other event node adapters such as JMS adapters using the available IDE wizard:

To summarize the use of the HTTP pub-sub component of Oracle Event Processing,
here are some major advantages:

• It supports transporting events between OEP server and web clients
• Clients don't need to poll for updates (unlike traditional HTTP)
• Clients subscribe to and publish to these special channels, using the

Bayeux protocol
• It is a very light weight implementation and the payload is JSON

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Spatial: A Telemetric Use Case

[268]

Bus tracking visual user interface
The user interface for this type of Oracle Event Processing Application can be
constructed in many ways using many different types of visualization tools.
For this sample application an Adobe™ Flex user interface is provided:

As a reference, the provided code snippet shows how an Adobe™ Flex application
defines access to the HTTP publish and subscribe channel, then uses the
OnMessageReceived function to receive each event message:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[269]

The Adobe™ Flex application then processes each event and displays the moving
bus on the defined map, which in the view provided is shown in the left-hand side
window and an alert message as the bus passes through each defined bus stop
location is shown on the right-hand side window.

How to run this bus tracking sample application
Assuming you have reviewed the readme.txt file in the imported project and
followed the required configuration and application setup, there are only three
steps to successfully evaluate this sample application.

Firstly, using the development tooling, deploy (publish) the Oracle Event Processing
Application to an executing server. When you see the messaging in the console
indicating a successful loading of the application, you are ready for step two:

The recommended next step involves starting the user interface, and this can be
done with the pre-configured URL. Simply double-click on this project artifact
to start a browser and the UI. This is called Bus Tracking Dashboard.URL:

The final step is to generate the simulated GPS events using the runloadgen
tool with the pre-configured windows script file called startDataFeed.cmd (on a
Windows platform). Again, simply double-click on the project artifact:

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Spatial: A Telemetric Use Case

[270]

Summary
We have described in this chapter the basic concepts for spatial analysis and
introduced you to the major related terms and definitions used by the Oracle
Event Processing Spatial Data Cartridge and the Oracle Continuous Query
Language (CQL).

By stepping you through the bus tracking sample application we have provided
you with the information, taken from a real-world example, that can form a solid
foundation of knowledge for real-time spatial analysis of moving objects in your
own Oracle Event Processing Applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending CQL with
Spatial and JDBC

In the previous chapter, you learn how to develop use cases that made use of Oracle
Event Processing spatial features. In this chapter, you will learn the details of the
Spatial cartridge, which allows you to extend CQL with spatial types and operations.
Further, you will also learn how to make arbitrary SQL calls to the database in cases
when you need to make use of additional features in the database, for example, that
are not yet supported in Oracle Event Processing.

Specifically, you will learn how to:

• Create spatial objects representing points, rectangles, and general polygons
• Determine the spatial relationship between spatial objects
• Understand different coordinate systems, such as the Cartesian and geodetic

coordinate system
• Apply table functions that return collections of events
• Make use of SQL statements wrapped in CQL

Creating geometries
In Oracle Event Processing, an event may contain one or more properties that represent
a geometry form. These properties are typed as com.oracle.cep.cartridge.
spatial.Geometry, which is a Java class provided by the Spatial cartridge.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending CQL with Spatial and JDBC

[272]

A geometry type may represent the following forms:

• Point
• Rectangle
• Line String
• Polygons

Rectangles and polygons, in general, are also called closed shapes, as they are made
of lines that link together. The following diagram describes some of these forms:

The line (or arc) separating the interior of a polygon from its external is called
its boundary.

To create an event property containing a point form, you can use the following
static Java method on the Geometry class:

com.oracle.cep.cartridge.spatial.Geometry.createPoint
 @spatial(double x, double y)

This method takes two arguments, representing the x and y coordinate of a
two-dimensional point, and returns an object of Geometry type.

To avoid having to type the full package name for the Geometry class, you can
change the application's MANIFEST.MF file to import the spatial package, as follows:

Import-Package: com.oracle.cep.cartridge.spatial

For example, the following query outputs an event containing a geometry point
that is created using the properties x and y from an input event:

SELECT
 Geometry.createPoint@spatial(i.x, i.y) as point
FROM
 inputChannel as i

Very importantly, note how you need to specify the cartridge link named spatial.
This is needed as the Geometry type is an extended CQL type provided by the Spatial
cartridge. The Spatial cartridge is installed out of the box with Oracle Event Processing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[273]

Next, you can use the following method to create a two-dimensional rectangle:

Geometry.createRectangle@spatial(
 double minX, double minY,
 double maxX, double maxY)

The first two arguments represents the minimum left-most point of the rectangle,
and the latter two arguments represents the maximum right-most point of the
rectangle. This is shown in the following diagram:

Points and rectangles are by far the most useful forms you will work with when
processing events. However, as known, there are other forms of shapes, as the
following ones:

• Circles
• Other n-sided polygons, such as pentagons, hexagons, and heptagons
• Line-strings: collection of non-closed lines
• Arc polygons: polygons made of arcs (curves)
• Compound polygons: polygons made of lines and arcs

These shapes are described in the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Extending CQL with Spatial and JDBC

[274]

In Oracle Event Processing 11g, you need to use a generic createGeometry()
method to create forms other than points and rectangles. The createGeometry()
signature is:

Geometry.createGeometry(int gtype, int[] elemInfo,
 double[] ordinates)

However, understanding all the semantics of the arguments for this method is
beyond the scope of this book. For further details, please refer to the Oracle Event
Processing Spatial cartridge reference guide at http://docs.oracle.com/cd/
E23943_01/apirefs.1111/e12048/datacartspatial.htm#CHDIBJHI.

Oracle Event Processing 12c will provide convenient methods for creating
circles, line-strings, arbitrary (linear) polygons, and general three-
dimensional shapes.

How do you interpret the coordinates used as arguments to the create methods in
the Geometry type? For example, are the x and y coordinates used when creating
a point related to the Cartesian plane or do they represent longitude and latitude
in Earth's geodetic sphere? This interpretation of the coordinates, that is, how they
relate to each other, is determined by its coordinate system, also called the spatial
reference system. This is demonstrated in the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[275]

The Spatial cartridge supports two-coordinate systems:

• Cartesian coordinate system: These coordinates measure the position
of a point from a defined origin along axes that are perpendicular in the
represented two-dimensional or three-dimensional space.

• Geodetic coordinate system: This is sometimes called geographic
coordinates. The coordinates are angular coordinates (longitude and
latitude), and are defined relative to a particular Earth geodetic datum.
By default, these coordinates are measured in meters.

The Spatial cartridge uses the geodetic coordinate system as its default coordinate
system, however you can specify the Cartesian coordinate system by using a
Spatial Reference ID (SRID) of value 0 in the following overloaded methods
for creating polygons:

• createPoint(int SRID, double x, double y)

• createRectangle(int SRID, double x1, double y1, double x2,
double y2)

• Geometry createGeometry(int gtype, int SRID, int[] elemInfo,
double[] ordinates)

In other words, these are the supported SRID values:

• Cartesian SRID = 0

• Geodetic (latitude/longitude) SRID = 8307 (as defined by the
World Geodetic System of 1984 - WGS84)

Further, you can also change the default coordinate system by defining an
application-specific spatial context, a subject we discuss later in this chapter.

In the next section, you will learn how to apply spatial operations in the geometry
objects you have created.

Determining if geometries relate to
each other
The spatial operations allow you to determine the relationship between two or more
geometry objects. Some examples are:

• Geometries are next to each other
• Geometries are contained by one another
• Geometries intersect boundaries

www.it-ebooks.info

http://www.it-ebooks.info/

Extending CQL with Spatial and JDBC

[276]

In the last chapter, you used the contain operation. Let's start by revisiting it:

boolean contain@spatial(
 Geometry containingGeometry,
 Geometry containedGeometry,
 double tolerance)

The contain() function returns true if the containedGeometry is contained by
the containingGeometry, otherwise it returns false. A geometry is considered
contained by another geometry if all the points that make up the former is
completely within the shape of the latter. In particular, a geometry is not considered
contained by another geometry if they touch boundaries. This is exemplified in the
following diagram:

The tolerance argument is used as a measure of accuracy of the data. When you
specify a tolerance for the spatial operations, you can think of it as a fuzzy boundary
around the geometries. That is, the boundary of a polygon is usually a line with zero
thickness. With tolerance, you can imagine a boundary line with a thickness equal to
the tolerance.

As the contain operation does not consider the boundary of the geometries, the
tolerance argument is only applicable for contains when the geometries involved
deal with arcs. In this case, the tolerance value is used as a mechanism of densifying
the arcs.

In Oracle Event Processing 11g, only two-dimensional points are
supported as the second argument (contained geometry) for the
contains operation.

As you have seen in the previous chapter, the more interesting use case is not just to
check if a geometry contains another geometry, but rather the more general case of
checking if any geometry within a collection of geometries contains a determined key
geometry. In other words, another way of looking at it is by changing the signature
of the contain operation to the following pseudo code:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[277]

boolean contain@spatial(
 /* relation defined with event property of type Geometry */
 Collection<Geometry> anyContainingGeometries,
 Geometry containedGeometry,
 double tolerance)

Considering this, here is an example of this usage in a CQL query:

SELECT loc.customerId as customerId, shop.name as inShop
FROM locationStream[now] as loc, shopRelation as shop
WHERE contain@spatial(shop.rect, loc.point, 0.0d) = true

In this case, there are two input sources. locationStream is a stream containing the
current location of customers. ShopRelation is a relation that contains a rectangle
geometry objects representing the physical location of shops in a mall. The query
verifies if a point geometry representing the current location of a customer is inside
any of the registered shops that are part of the relation, and if it is, outputs the
customer ID and the name of the shop that contains the customer location.

The inside operation is the exact opposite of the contain operation. Its pseudo-code
signature is defined as follows:

boolean inside@spatial(
 /* relation defined with event property of type Geometry */
 Collection<Geometry> anyContainedGeometries,
 Geometry containingGeometry,
 double tolerance)

In this case, the operation is true if any geometries in the first argument is contained
by the geometry of the second argument. Another way of stating this is that if
geometry A contains geometry B, then geometry B is inside geometry A.

In Oracle Event Processing 11g, only two-dimensional points
are supported as the first argument (contained geometry) to
the inside operation.

Next, let's take a look at the most general spatial operation, the anyinteract function:

boolean anyinteract@spatial(
 /* relation defined with event property of type Geometry */
 Collection<Geometry> geometriesA,
 Geometry geometryB,
 double tolerance)

www.it-ebooks.info

http://www.it-ebooks.info/

Extending CQL with Spatial and JDBC

[278]

Anyinteract returns true if geometryB has any spatial interaction at all—be it
contained, inside, or touching— with any of the geometries in the geometriesA
collection. In other words, it is a spatial catch all of sorts. This is demonstrated in
the following diagram:

Anyinteract is one function where the tolerance value is very useful, as it allows
you to effectively increase the boundary of the geometries. For example, consider
the following diagram:

In the first case, a zero tolerance is used, and anyinteract returns false. In the
second case, a tolerance of n is used, which effectively increases the boundary of
the polygon, resulting in a positive return of anyinteract.

In Oracle Event Processing 11g, only two-dimensional points are
supported as the second argument to the anyinteract operation.

The withindistance function allows you to determine if a geometry is within a
certain distance of another geometry. It is defined as:

boolean withindistance@spatial(
 /* relation defined with event property of type Geometry */
 Collection<Geometry> geometries,
 Geometry keyGeometry,
 double distance)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[279]

The withindistance returns true if there is a point in keyGeometry that is at
least the specified distance from a point in geometries. In other words, the
withindistance function considers the shortest possible distance between any two
points of the geometry objects it uses. For example, you can use withindistance to
determine if your car, represented as a point, is within 10 miles of a gas station, the
latter represented as a rectangle.

In Oracle Event Processing 11g, only two-dimensional points
are supported as the second argument (key geometry) in the
withindistance operation.

The last remaining spatial operation you will look at in this chapter is the nearest
neighbor function, which is defined as:

boolean nn@spatial(
 /* relation defined with event property of type Geometry */
 Collection<Geometry> geometries,
 Geometry keyGeometry,
 double tolerance)

The nn operation returns true for all geometries in the collection that are the nearest
to the key geometry. Let's look at a CQL query as an example:

SELECT loc.customerId as customerId, shop.name as nearestShop
FROM locationStream[now] as loc, shopRelation as shop
WHERE nn@spatial(shop.rect, loc.point, 0.0d) = true

Next, consider the following diagram as the input to the query:

The shopRelation contains rectangles R1, R2, R3, R4, and R5. When point P1 arrives
as the first event in locationStream, the nn function is true for rectangle R1. For
point P2, the nn function is true only for R2. Finally, when point P3 arrives, the nn
function is true for both R4 and R5. This means that in the case of P3, the query
outputs two events, one for R4 and another for R5.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending CQL with Spatial and JDBC

[280]

The nearest neighbor can be a bit misleading when used in complex queries.
For example, let's say you want to find out the nearest shop that sells shoes to
your current location. You may mistakenly attempt to do this by authoring a
query such as:

SELECT loc.customerId as customerId, shop.name as nearestShop
FROM locationStream[now] as loc, shopRelation as shop
WHERE
 nn@spatial(shop.rect, loc.point, 0.0d) = true AND
 shop.type = 'shoes'

At a glance, the predicate may look correct, that is, selecting the nearest neighbor that
sells shoes. However, what is actually happening is that the query is looking for the
nearest neighbor and then makes sure it sells shoes. A better idea would have been
to create a view that filters all shops for only those that sells shoes and then apply the
nn operation.

You may be wondering if finding the nearest neighbor amongst all geometries of a
relation for each incoming event is too time consuming. To improve the efficiency
of spatial operations, the geometries objects need to be indexed. The Spatial
cartridge provides its own spatial-optimized indexing implementation for relations
containing geometries, which takes care of improving queries that make use of the
spatial operations. The spatial index is based upon a R-tree implementation. The
R-tree index provides the first level of filtering for the spatial operations. This is done
by creating Minimum Bounding Rectangles (MBRs) for all inserted geometries,
and then overlaying these MBRs to improve searching. The following diagram
demonstrates the MBR for a (compound) polygon:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[281]

Next, let's take a look at a pictorial representation of how an R-tree would look after
being used for indexing the shopRelation of the previous example:

In this section, you learned how to make use of the spatial operations contain,
inside, anyinteract, withindistance, and nn using the geometries you created
in the previous section. Next, you will learn how to change the default settings of
the spatial cartridge.

Configuring the spatial context
The spatial context provides the configuration needed when creating geometries, and
using the spatial operations. You can define a spatial context in the EPN of the Oracle
Event Processing application, as demonstrated in the following code snippet:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xmlns:spatial="http://www.oracle.com/ns/ocep/spatial"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd

www.it-ebooks.info

http://www.it-ebooks.info/

Extending CQL with Spatial and JDBC

[282]

 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs-v11_1_1_6.xsd"
 http://www.oracle.com/ns/ocep/spatial
 http://www.oracle.com/ns/ocep/spatial/ocep-spatial.xsd">

 <spatial:context
 id="mySpatialContext"
 srid="0"
 tolerance="10"
 />

 <!-- EPN -->
</beans>

Next, you can use this context in CQL, as shown in the following example:

SELECT
 Geometry.createPoint@mySpatialContext(i.x, i.y) as point
FROM
 inputChannel as i

As you have learned, the default spatial context, which is defined by the link name of
spatial, uses the geodetic coordinate system. In the previous example, you changed
the createPoint() and other spatial operations to instead use the Cartesian
coordinate system.

The configuration parameters of a spatial context with their defaults are:

• SMA: This configuration defines the semi-major axis to be internally by the
spatial operations when buffering and applying projections for geodetic
geometries. Its default is 6378137.0.

• ROF: This configuration defines the reciprocal of flattening that may occur
with the SMA parameter. It is likewise used for buffering and projection. Its
default is 298.257223563.

• tolerance: This is the minimum distance to be ignored in geometric
operations. The default is 0.000000001.

By now, you have gone through all the major features of the Spatial cartridge, and
should be able to develop very useful and unique applications that make use of both
time and space in Oracle Event Processing!

In this section, you learned how to use spatial in CQL. Next, you will learn how to
extend CQL to interact directly to a RDBMS through JDBC.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[283]

Retrieving external tables using SQL
As you have learned in Chapter 5, Coding with CQL, CQL supports the concepts of
both streams and relations. Relations are an abstract definition that can represent a
database table. So much so that in Chapter 7, Using Tables and Caches for Contextual
Data, you learned how to populate a relation with data coming from either a RBMS
table or a distributed cache. This is done by respectively specifying a table or a cache
and linking them to a processor in the EPN.

However, there are cases where you may need additional flexibility when retrieving
data from a RDBMS table to be used in CQL. For example, you may need to invoke
some PL/SQL function, or you may want to aggregate the data in some particular
way before getting the result into CQL for the processing of events.

This fine-grained control can be achieved by using the JDBC cartridge. The JDBC
cartridge allows you to define CQL functions whose implementation are done in
SQL, and return collections to be treated as relations.

Let's look at the JDBC cartridge by means of a use case. One spatial function that is
not supported by the Spatial cartridge in Oracle Event Processing 11g is the touch
function. The touch function returns true if the boundaries of the geometries
intersect. One potential use case for use of touch is to determine if a customer
is in the entrance of a shop.

We can still use touch by going directly to the Oracle database and invoking the
database's version of the spatial functions. The following SQL query illustrates
this scenario:

SELECT shop.name, shop.type
FROM shopTable as shop
WHERE SDO_TOUCH(shop.rect,
 SDO_POINT(:xpos, :ypos)) = 'TRUE'

The SQL query has two parameters, which are xpos and ypos. It uses these
parameters to create a point, and then checks if the point touches any of the rectangle
geometries that represent the shops and are part of the shopTable. If the point
touches any of the shops, the query returns the shop name and type (sells shoes).

The SDO package defines all the spatial-related types and
functions for the Oracle Enterprise Database.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending CQL with Spatial and JDBC

[284]

As it can be noted, this SQL query is making use of the SDO_TOUCH and SDO_POINT
functions, which only exist in the Oracle database and therefore couldn't be invoked
directly from CQL or by specifying a table component in the EPN.

To be able to make use of this SQL, you need to wrap it as a CQL table function.
This is done by creating a JDBC cartridge context as follows:

<jc:jdbc-ctx>
 <name>myJdbcContext</name>
 <data-source>ShopDataSource</data-source>
 <function name="getShopsThatAreTouched">
 <param name="xpos" type="long" />
 <param name="ypos" type="long" />
 <return-component-type>
 packtpub.ioep.ShopInfo
 </return-component-type>
 <sql><![CDATA[
 SELECT shop.name, shop.type
 FROM shopTable as shop
 WHERE SDO_TOUCH(shop.rect,
 SDO_POINT(:xpos, :ypos)) = 'TRUE'
]]></sql>
 </function>
</jc:jdbc-ctx>

The getShopsThatAreTouched() function is a standard user-defined CQL function,
however its implementation is done in SQL, rather than in Java. In the definition of
this function, you need to specify the input arguments, which in this case are the
parameters xpos and ypos, and the type of the returned component.

The actual execution of the SQL statement occurs in the database
through the use of JDBC, therefore be aware of the additional latency.
One way of improving this is to batch the processing of events using
the API com.bea.wlevs.ede.api.BatchStreamSender and
com.bea.wlevs.ede.api.BatchRelationSender.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[285]

It is very important to understand that a SQL query returns a table, that is, a
collection of components. In this particular case, the query returns a row per shop
that is touched by the point. Even if it is a single row, you have to keep in mind
that the row is returned as part of a collection that potentially may have more than
a single row. Therefore, in the CQL function's signature you need to specify the
type of the row (or component) being returned. As a row generally has more than
one column, you will generally specify the return component type as a complex
type, that is, a Java-cartridge CQL extended type. Said complex type must support
the setting of its component. In Java, this means that the Java Class must provide
appropriate setters. In this particular case, it is specified as ShopInfo, whose Java
class is defined as follows:

public class ShopInfo
{
 String name;
 String type;

 public String getName()
 {
 return name;
 }

 public void setName(String name)
 {
 this.name = name;
 }

 public String getType()
 {
 return type;
 }

 public void setType(String type)
 {
 this.type = type;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Extending CQL with Spatial and JDBC

[286]

The Java class must have both a setter and getter, as the JDBC cartridge uses the
setter to populate the returned component, and the CQL query invoking the JDBC
cartridge function (getShopsThatAreTouched) uses the getter to retrieve the
columns' data. Likewise, the type of the JDBC cartridge function arguments can be
any CQL type, including the Java-cartridge extended types. In this particular case,
the parameters xpos and ypos are of type long.

The JDBC cartridge context has two additional configurations:

• name: This is the link ID used in the CQL queries to invoke the JDBC
cartridge functions.

• data-source: This is the name of the data-source configuration that must
exist in the server's global configuration that has access to the Oracle
database in question being used.

The JDBC cartridge context must be part of the application's configuration, as in the
following example:

<ocep:config
 xmlns:ocep="http://www.bea.com/ns/wlevs/config/application"
 xmlns:jc="http://www.oracle.com/ns/ocep/config/jdbc">

 <jc:jdbc-ctx>
 <name>myJdbcContext</name>
 <data-source>ShopDataSource</data-source>
 <function name="getShopsThatAreTouched">
 <param name="xpos" ""type=" long" />
 <param name="ypos" type="long" />
 <return-component-type>packtpub.oep.ShopInfo
 </return-component-type>
 <sql>
 <!-- SQL impl -->
 </sql>
 </function>
 </jc:jdbc-ctx>

 <processor>
 <name>Proc</name>
 <rules>
 <query id="q1">
 <!-- CQL impl -->
 </query>
 </rules>
 </processor>
</ocep:config>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[287]

The final aspect of this is the actual invocation of the JDBC cartridge functions in
CQL. As expected, you need to specify a link name that maps to the JDBC cartridge
context that defines the functions being invoked. However, there is one additional
step. Remember how the functions are table functions that return collections, rather
than a single element? Because of this, you need to make use of a TABLE construct
in CQL, informing that the return of the called function represents a relation and
therefore can be used in the CQL's FROM clause. This is demonstrated in the
following code snippet:

SELECT loc.customerId, shopRelation.shopInfo.name
FROM
 locationStream[now] as loc,
 TABLE(
 getShopsThatAreTouched@myJdbcContext(loc.xpos, loc.ypos) AS
 shopInfo) as shopRelation

The table construct takes as argument a table function, and two aliases. The inner
alias, in this case shopInfo, is associated to the return component (row), and the
outer alias, in this case shopRelation, is associated as the name of the relation
being created to support the table function.

Interestingly, the TABLE construct can be used not only with JDBC cartridge
functions, but also with any function or Java method that returns a Java iterable type.
This allows you to create relations on the fly, as shown in the following example:

SELECT loc.customerId, addrRelation.addrInfo.tel
FROM
 locationStream[now] as loc,
 TABLE(
 getShopsThatAreTouched@myJdbcContext(loc.xpos, loc.ypos) AS
 shopInfo) as shopRelation,
 TABLE(packtput.oep.Shop.getPhoneNumbers(
 shopRelation.shopInfo.name)
 AS addrInfo OF CHAR) AS addrRelation

The Shop.getPhoneNumbers() method is naively implemented in the following
code:

public static List<String> getPhoneNumbers(String shopName)
{
 // Map<String, List<String>> directory = ...
 return directory.get(shopName);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Extending CQL with Spatial and JDBC

[288]

When used with Java methods, you need to explicitly define the type of the return
component by using the OF clause. In this case, as the method returns a list of Strings,
the OF clause is specified as a String (native CQL CHAR).

As you can see, the combination of the TABLE construct with the JDBC cartridge
allows you to leverage advanced features of external databases and systems.

Summary
In this chapter you learned how to create different geometry types in CQL using
the Spatial cartridge, such as points, rectangles, and arbitrary polygons. The
geometry objects are layered on different coordinate systems. The Cartesian
coordinate system and the geodetic coordinate system are supported.

Next, you learned how to use different spatial operations. These operations allow
you to determine if a geometry contains, is inside, is within distance, or interacts
with another geometry. Further, you can find the nearest neighbor a geometry
in relation to another collection of geometries. All of these spatial operations are
executed in memory during processing of CQL queries and optimized by being
indexed using an R-tree data structure.

A spatial context can be created in the EPN to set spatial-related configuration,
such as the default coordinate system to be used.

You also learned how to use the JDBC cartridge to invoke any arbitrary SQL
statement. This is done by wrapping the SQL statements as CQL table functions.
Table functions are functions that return a collection of components and thus can
be materialized as a CQL relation in the FROM clause.

In the next and final chapter, you will look into the future of Oracle Event Processing

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Ahead: The Future of
Oracle Event Processing

In this chapter, we will consider the future of Oracle Event Processing and describe
some of the many ways this technology may evolve over the coming years. The
topics we will cover are as follows:

• Possible technology strategic directions
• Evolving development environments
• Service-oriented architecture integration
• Event intelligence on the computing edge with sensor integration

 ° Digital inclusion
 ° M2M – enabling the Internet of Things

• Fast data for big data enablement
• Looking around the corner with predictive analytics
• Advancing performance with hardware embedded
• The growing event processing standards

Possible technology strategic directions
The future for Event Processing is bright, filled with innovation and growth. We
expect that over the next few years many new businesses will adopt and embrace
these next generation platforms that do not force you to conform to the limitations
of imposed, rather mechanical, technology implementations but is designed as life
is itself, to handle a world full of events that bombard you all the time, from many
different sources and in most cases in many unexpected ways.

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Ahead: The Future of Oracle Event Processing

[290]

As you have learnt through the proceeding chapters, Oracle Event Processing has
been architected to create and enable boundless numbers of powerful event-driven
applications that can provide a self awareness and self discovery approach that
some day may let machines manage and control many aspects of a person's lifestyle.
Humans are fast, but machines are faster and traditional legacy technologies for
business are in many cases just not "equipped" for the demands of the future.
Event-driven features may eventually be bonded into the hardware itself, as
we discuss later, driving instantaneous response times not in microseconds
but nanoseconds and beyond.

While all industries have a place for Oracle Event Processing, the Internet of Things
as it relates to telecommunications, transportation and energy and in particular,
health and life sciences will unleash a new breed of solutions. Entertainment
monitoring will spawn another collection of Event Processing solutions, from
smart next generation theme parks, to online gaming, with a collection of use
cases only limited by ones imagination from improving a guests experience
to sample as many rides as possible in the shortest period of time or trapping
fraudulent playing event patterns in a game of poker.

Other examples of these next generation solutions for telecommunications will provide
dynamic manipulation of everyone's communication smart devices, switching services
from standard cellular networking to digital WIFI optimizing and thus reducing
critical overloading based on a person's temporal static spatial movement patterns. A
new generation of biodata analysis devices will emerge that constantly monitor body
event patterns and functions watching for a fluctuation that might be the difference
between life and death. In fact, ones entire existence as a citizen of the world can be,
and probably will be monitored to improve the quality of life and effectively protect it:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[291]

In this chapter we will take a look at just some of the technology advancements
where Oracle Event Processing may focus to further enable these business needs
and give you an exciting insight to those capabilities.

Evolving developer environments
The ongoing need to create innovative event-driven solutions quickly, efficiently
and to comprehend the vast array of emerging features is always a challenge for
developers. The fact that Oracle Event Processing is 100 percent Java platform-based
does blend itself to enabling a large community of software developers already
familiar with this language.

However, continuing to simplify the developer experience of Oracle Event Processing
is always a major goal. With the many Oracle products there is a growing demand to
integrate and consolidate the development capabilities from the many diverse coding
disciplines ranging from WebLogic Server Web application creation to the definition of
SOA EDN events using the Event Definition Language (EDL). All of this functionality
provided in a single development environment will enable this collective innovative
community to more rapidly create, test, implement, and maintain holistic solutions
that encompass not only Oracle Event Processing but also Oracle Service-orientated
Architecture and Java Enterprise Edition solutions at the same time.

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Ahead: The Future of Oracle Event Processing

[292]

The Oracle JDeveloper Integrated Development Environment (IDE) would be a
logical choice to embrace this initiative and is a free development platform that
simplifies the evolution of Java-based SOA and Java EE applications. JDeveloper
offers complete end-to-end development for Oracle Fusion Middleware and Oracle
Fusion Applications with support for the full development life cycle. Consequently
to include a substantially enhanced collection of Oracle Event Processing application
development capabilities in JDeveloper that emulate what is currently available in
the plugin environment for the Eclipse IDE, would bring together a new and exciting
Event Stream Processing (ESP) dimension.

These capabilities would augment the existing Eclipse Developer capabilities by
additionally including a more wizard-based approach to the creation of Event
Processing Network artifacts, such as Event Adapters and Event Processors. A new
event adapter palette of out of the box event driven items could be available that
will immensely simplify the "drag-and-drop" construction of applications, ease of
maintenance and a significantly reduced time to production deployments.

Service-oriented Architecture integration

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[293]

A more productive integration with other SOA technologies could be realized
by enabling the definition and integration of familiar SOA frameworks such as
the EDN, the Event Delivery Network. This event-driven framework emits and
consumes business events from the various components of SOA and Business
Process platforms such as when an event message is placed on an Enterprise
Service Bus message queue or when a new Business Process starts.

All of the events used by the EDN are stored in a common repository which can be
interrogated and used by an Integrated Development Environment so the creation
and modification of each event type definition will be significantly simplified. In
addition, these persisted event definitions can now be used globally across not only
a single application but any application that can connect to the repository.

As with the EDN integration, embedding with the Oracle WebLogic Server (WLS)
Java Enterprise Edition (JEE) so that the CEP engine itself is directly available,
enabling other communities of Java developers to leverage the power of the CQL,
with the caveat that this is for a category of applications that may not need the
performance and low latencies as in most event-driven solutions, but may still
require the analysis of a complex set of SOA business events.

Event intelligence on the computing edge
with Sensor integration
A major artifact of the Internet of Things is Sensor devices. These types of
event-driven equipment can range dramatically from a relatively "dumb"
temperature sensor that may transmit an ID followed by an environmental
value on a fairly constant basis, to sophisticated analysis sensors that not only
detect movement, but combine with the distribution of light sensitivity,
accelerometer movement (otherwise known as tilt or gesture analysis) and
even radar movement assessment providing an advanced fusion sensor
architecture that does not just rely on one integrated sensor but consolidates
all of sensors together to make more intelligent assessments.

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Ahead: The Future of Oracle Event Processing

[294]

Over the past few years, we have encountered most of these types of sensors and
even a collection of more obscure sensing devices. A common sensor now that is
often integrated with Oracle Event Processing is the Sensor Platform for Oracle
Technology (SPOT). This kind of Oracle sensor is popular with the academic
communities around the world and the basic device has three layers, the first being
a sensor board (intrusion, humidity, temperature, shock), the next layer is the
processor board with support for GPS, GPRS, Iridium communication and finally,
a battery, which does not have an extended life, but holds enough power for a few
hours. The SPOT is connected using wireless communication and supports both
Mesh Networking and over the air programming. The user programs executing on
this device are entirely in Java and it is estimated that over 25,000 of these SPOT
devices being used worldwide.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[295]

Fairly recently, the SPOT device has evolved into a much more commercially
accepted Enterprise grade sensor, which has many applications, such as part of a
shipping container tracking solution, where it is a self-contained, self-sufficient unit
with a very long, possibly days of, extended battery life which has additional satellite
communication and embraces the sensor fusion architecture.

We have already discussed in much detail the use of devices in various
geo-spatial and geo-streaming analysis scenarios using GPS signals, which
applies not only to transportation, but also to a wide varying collection of
possible military applications. As we delve deeper into this topic let's now
imagine and focus on a world of Digital Inclusion.

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Ahead: The Future of Oracle Event Processing

[296]

Digital Inclusion is part of another vast array of Event-Driven use cases that we often
call Smart Cities, where every aspect of a person's life and their communities are
monitored and managed. Just a few of these monitored life elements could include a
person's movement patterns around the home, individual and collective vehicle and
traffic flow management, surrounding pollution and general environment monitoring
and management, personal usage of utilities, water, power, and shopping pattern
analysis. This latter use case is a common requirement in the retail industry where
immediate, personalized and targeted coupons or offer incentives can be provided to
shoppers based on their real-time movement patterns. These are just a few capabilities
for Smart City solutions. Digital Inclusion itself is a fascinating topic as it requires
a large amount of varied sensing devices and ensures that everyone could benefit
from event-driven technologies, even those with medical issues such as those with
significant mental disabilities.

These people suffering with, for example, dementia, could have their daily
movement patterns monitored with a connected Smart Home of the future, using
floor sensors, their food and beverage consumption and menus monitored with
sensor tags on each food or drink item, and an accelerometer sensor as part of each
utensil, this so that each unique movement event pattern when stirring a coffee or
making a cake can be recorded. A whole collection of individual environmental
sensors could be included to monitor the surrounding temperature, humidity, and
light sensitivity to help maintain a complete real-time event life pattern analysis of
that individual patient. So that repetitive acceptable life patterns are ignored, but on
that one occurrence when his or her life pattern is abnormal and indicates a potential
danger, then a mission critical event-driven solution can notify nearby emergency
services to react and avert a possible life threatening situation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[297]

Before we close this introduction on the Oracle Event Processing Sensor integration
strategy, we should also touch on Machine-to-Machine (M2M) enablement.

M2M is basically a framework that allows devices to communicate with business
applications or other automated intelligent devices. M2M has a whole slew of related
characteristics, such as dealing with a multitude of different devices with different
features, low powered, generally critical in nature, limited functionality, and no
human intervention. Most M2M solutions now, such as a remote hardware printer
management and monitoring platform, are custom and one-off propriety solutions,
and if assembled separately would frequently have issues with latency in response
times, data loss, resilience, low agility, no diagnostics, and high support costs.

As we look to the future, we envisage Oracle Event Processing as the core
component of a published reference M2M architecture that encompasses the three
main domains—the device, the Java platform, and the associated streaming data.
This would provide an integrated event processing system to track and analyze
data in real time enabling real-time intelligence on the device, which leads us to
the powerful embedding capabilities now supported by Oracle Event Processing,
enabled with by the OSGi-based architecture discussed later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Ahead: The Future of Oracle Event Processing

[298]

Due to its modular implementation architecture, Oracle Event Processing blends
itself to enabling another new world of event-driven intelligence on the "edge",
with some businesses already using this technology, discovering that they can
"manipulate" the Oracle Event Processing Java Container and unleash its powerful
event analysis on a new collection of "smart" devices that had past restrictions
because of the available disk and memory footprints. Using the embedded profile
it could be possible to not only leverage this technology at the Enterprise tier but
at both the department and computing "edge" tiers.

Event container platform manipulation
profiles
An embedded profile, and the many other profiles that may arrive in the future
is a capability that has its concept history entrenched back in the early days of the
products design and evolution, and came from demands that businesses would like
to have complete flexibility in configuring an event server Java container technology
for any specific type of domain or machine implementation. This would provide the
ability to use an event-driven platform in very specific ways, to solve any specific
collection of related event-driven business problems in a very distributed and
scalable architecture.

This powerful technology implementation capability goes far beyond what most, if not
all, other current software vendors can deliver, providing a business methodology to
manipulate every functionality module component within the product stack.

Hence a main design goal for Oracle Event Processing was to be built on an Equinox
OSGi-based backbone, leveraging existing mature services from the WebLogic Server
platform such as the threading model and management, logging and a web container
and then "layering" on top with those additional services specific to event-driven
requirements, all constructed in this very modular fashion.

The Embedded profile
An Embedded OSGi profile for Oracle Event Processing, when available could
be configured to enable functionality appropriate for edge device deployments,
where there is limited device or gateway processor power, memory, or disk foot
print. For example, to optimize memory usage, GUI management tool capabilities
could be removed (command line is supported), clustering, event record/playback,
a subset of adapters, spatial and JDBC data cartridges could also be removed. Also
the Oracle Coherence bundle could be removed as generally, this in-memory caching
data grid capability would be defined and managed at the Enterprise Tier. For more
details on the configuration of the embedded profile see the future Oracle Event
Processing documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[299]

Embedding Oracle Event Processing on edge devices allows initial processing,
such as early event filtering and pattern matching, to be pushed to the actual event
sources which will improve scalability and responsiveness for the entire solution.
This additional level of "intelligence on the edge" also distributes the processing
analysis to encourage extremely high performance.

Determining the Oracle Event Processing modules that will be loaded and used is
specified during the Server startup and so the required command could be defined
as follows, depending of the operating system involved:

-./startwlevs.sh -disableregistry -loadFeatureSet com.bea.wlevs.embedded

This enablement of intelligent edge event processing will ensure a highly scaleable
and distributed event-driven architecture, encourages another endless collection of
opportunities which now arise due to this unique functionality, and as these features
evolve may need to be the subject of another specialized publication.

Fast Data for Big Data
As we have highlighted many times in this book, the Internet of Things, including a
vast array of sensor devices, streaming video data, more diverse and complicated
business applications and the exploding world of online social media outlets have
given rise to a proliferation of not only structured, but now unstructured data that
needs to be stored and analyzed efficiently and effectively. This demand has driven a
new data persistence domain called Big Data.

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Ahead: The Future of Oracle Event Processing

[300]

Big Data is being defined in many different ways, and in many cases the views and
definitions by the various vendors vary and are generally swayed in favor of their
particular solutions. However, in general, it is agreed that Big Data is categorized
using the three Vs. This refers firstly, to the Volume of data that now exists and will
substantially increase of the coming years, then we have the Velocity of the data
which can, in many cases stream into a company's computing infrastructure at data
rates making it virtually impossible to analyze effectively before most of its time
sensitive value has perished. Finally there is the Variety of the data, which may
be formed of unstructured information that can arrive in many ways, from many
diverse event sources such as Instant Messenger (IM) text messages or comments
from social media data feeds, or from video cameras now populating most towns
and cities around the globe.

Oracle Event Processing could provide features to interact transparently with Big
Data stores such as the Hadoop Distributed File System (HDFS) and Oracle NoSQL
Database, and would subsequently provide a holistic Fast Big Data solution platform
that enables businesses to "Get ahead of the Curve".

So Oracle Event Processing, in this context is now being classified as Fast Data,
that fills the real-time processing analysis latency gap inherent in many Big Data
implementations, to filter out "noise" (stock data ticks with no change), add context
(by correlating multiple sources) and increase relevance, identifying certain critical
conditions as you insert data into a data warehouse and therefore, move time-critical
analysis to the front of the process.

A typical example would be to leverage Big Data for the long-term historical analysis
of traffic patterns and congestion for future urban planning—where to build a new
road or position new traffic signals, using country wide image traffic cameras.
However, at the same time use Fast Data, Oracle Event Processing for the monitoring
in real time of the metadata from these cameras to ensure license plates/tags are not
used on multiple vehicles in different towns at the same time, immediately alerting
law enforcement or security agencies on these suspicious circumstances for response
and resolution. In conjunction with facial recognition cameras on bridges and traffic
light gantries, this use case could be extended to immediately identify who possibly
may be driving the offending vehicle, and whether they have a criminal record or are
flagged on some kind of "watch list".

Other Fast Data value in monitoring the streaming metadata from traffic cameras
could be for real-time Toll Road charging, so that individual vehicles would be
levied an immediate cost based on the current congestion, time of day and perhaps,
even weather conditions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[301]

These kinds of solutions would need a comprehensive hardware and software
architecture that would not only encompass an Event Processing technology but
would also need transparent Big Data integration to quickly profile the vehicles and
drivers, perhaps an in-memory prediction/behavioral product to assess possible next
location movement patterns, a method to effectively visualize the information and
inevitably Engineered Systems/Hardware to handle the massive amounts of stored
data and the required processing power.

So an additional V is for the Value that can now be extracted from this data even
before it is stored in Big Data using Oracle Event Processing. Understanding the
veracity in these Big Data event streams will become an ever increasing challenge for
a business and combining Oracle Event Processing together with Big Data offerings,
a complete Fast Big Data platform will mature to effectively address these needs.

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Ahead: The Future of Oracle Event Processing

[302]

Fast data sample
If we delve more into the potential use of Oracle Event Processing as the Fast
Data solution for Big Data, we can explore the basic principles on how a possible
basic event-driven application can be implemented with the required integration
to the HDFS. To kick off, assuming Hadoop has been successfully installed on the
required operating system (we will assume Linux in the following scenario) the start
script for Oracle Event Processing (startwlevs.sh) should be slightly modified to
add this location:

As the application is constructed, the access to the data in the HDFS could
be defined in the associated Projects String context file. In the case of this
hypothetical solution, the data that will be referenced in the CQL is using
a path called /events/message.txt:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[303]

The Event Processing Network (EPN) sample application, which in this case
could be a simple extension to the standard "hello world" application would
have the message file visualized with an event node that is directly connected
to the processor node:

The CQL in this case, held in the helloworldProcessor event node, checks if
the MessageEvent's "messageNumber" can be found in message.txt file's
field called serial:

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Ahead: The Future of Oracle Event Processing

[304]

As this sample would be using a new Oracle Event Processing Data Cartridge for
Hadoop as one would expect, the application's manifest file would also have a
reference to this capability. The specific name of this data cartridge could be com.
oracle.cep.cartridge.hadoop.spring.

Finally, the possible application output in a console could show the interaction with
the Hadoop system and the relevant results. More details on this type of capability
may evolve in subsequent versions of Oracle Event Processing. So watch out for
emerging samples on Oracle Technology Network (OTN) pages.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[305]

Looking around the corner with
predictive analytics
In the same way as we discussed "Getting ahead of the Curve" in relation
to Big Data, Oracle Event Processing solutions invariably entail some form
of Predictive Event Analysis requirements to anticipate and prepare for longer
term situations as a business's solutions become more advanced and they want
to "Look around the Corner".

In many cases, Oracle Event Processing facilitates various methods for Predictive
Analysis, for example, the identification of a single event, or collection of events in a
pattern can indicate with much certainty, that a future event or set of events will also
occur. This can be achieved using the standard integral features already available
in the technology. However the ability to leverage longer term data, collected over
a period of weeks, months, or years and then using a "model" from this data to
score against current streaming event data is sometimes also needed. This is a more
"fuzzy" prediction and the scoring results are never usually 100 percent certain, but
will provide enough accuracy to determine an action in your EPN processing.

More on analytics
Before we study a possible related use case and the concepts of future Oracle Event
Processing predictive capabilities, let's broadly touch upon the meaning of analytics.

Analytics is generally the analysis of data, in a batch processing oriented
mode, for patterns, trends, insights, and what-if scenarios and encompasses
two broad categories

• Precise
• Predictive or probabilistic

The short-term Precise category can relate to the scenario described at the beginning
of this section already supported by Oracle Event Processing. The second provides
for Frontline Analytics that is the analysis of data "in motion" (Real Time Streaming
Predictive Analytics) using Data at Rest, which is from persisted information in a
relational database, or data that is accumulated and modeled in memory.

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Ahead: The Future of Oracle Event Processing

[306]

These more "fuzzy" kinds of predictive analytics can be achieved by integrating
additional Oracle or other vendors technologies, such as Oracle Real Time Decisions
(RTD) an in-memory behavioral and prediction engine or using various techniques
available with the Oracle Data Mining (ODM) solution, which is an option of the
Oracle Relational Database Management System Enterprise Edition. This technology
contains many data mining and data analysis algorithms such as classification,
prediction, regression, associations, anomaly detection, feature extraction, and
more specialized analytics.

A Predicting Use Case
Let's review, at a high level, the steps one could use for predicting fraud in
an insurance monitoring scenario, where vehicle insurance claims are being
constantly "streamed" and visualized using a solution platform, from all over
the state of California:

Based on the long history information stored in an Oracle Enterprise Edition
database for each insured driver and all of the past claim data, a prediction model
can be dynamically created and used by the Oracle Event Processing CQL engine to
compare each new insurance claim streaming event with this model resulting in a
related "score" that will reflect the likelihood of a fraudulent claim submission. The
results of each analysis could then be simply reflected on the output console, sent
to another technology for downstream analysis or shown visually on a real time
command and control dashboard display that could portray the current vehicle
location and owner details who is now submitting the claim.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[307]

This kind of solution can be achieved by combining Oracle Event Processing with
Oracle Data Mining and leverages the latter's rich set of algorithms and functionality
to do predictive analytics on the available historical data with the real time model
scoring on the individual streaming insurance claim events performed by Oracle
Event Processing.

This introduces another capability to extend the event-driven platform by invoking
any arbitrary external computation using RDBMS from within the CQL engine and
this extensibility facility is known as the JDBC Data Cartridge.

Understanding the "Fuzzy" results
When executing this type of solution, unlike the precise pattern matching results in
other Oracle Event Processing applications, we can see how the returned responses
from the scoring processing provides only an indication of possible issues with the
specific insurance claims. To emphasize the kind of analysis provided, below are two
events from an extract of some possible console output: one relatively "normal" and
other relatively "abnormal".

A "normal" looking output event could have its probability of being anomalous
being less than 60 percent (%).

Event is: eventType=DataMiningOutEvent object=q1 time=2904821976256
S.CQLMONTH=Dec, S.WEEKOFMONTH=5, S.DAYOFWEEK=Wednesday, S.MAKE=Honda,
S.ACCIDENTAREA=Urban, S.DAYOFWEEKCLAIMED=Tuesday, S.MONTHCLAIMED=Jan,
S.WEEKOFMONTHCLAIMED=1, S.SEX=Female, S.MARITALSTATUS=Single,
S.AGE=21, S.FAULT=Policy Holder, S.POLICYTYPE=Sport - Liability,
S.VEHICLECATEGORY=Sport, S.VEHICLEPRICE=more than 69000, S.FRAUDFOUND=0,
S.POLICYNUMBER=1, S.REPNUMBER=12, S.DEDUCTIBLE=300, S.DRIVERRATING=1,
S.DAYSPOLICYACCIDENT=more than 30, S.DAYSPOLICYCLAIM=more than 30,
S.PASTNUMOFCLAIMS=none, S.AGEOFVEHICLES=3 years, S.AGEOFPOLICYHOLDER=26
to 30, S.POLICEREPORTFILED=No, S.WITNESSPRESENT=No, S.AGENTTYPE=External,
S.NUMOFSUPP=none, S.ADDRCHGCLAIM=1 year, S.NUMOFCARS=3 to 4,
S.CQLYEAR=1994, S.BASEPOLICY=Liability, probability=.58931702982118561
isTotalOrderGuarantee=true\nAnamoly probability: .58931702982118561

An "abnormal" output event that indicates a possible anomaly could have a much
higher probability result of 89 percent. The determination of the scoring percentage
that indicates either, normal or abnormal is fairly subjective and really depends
on the use case and Service Level Agreement (SLA) thresholds determined by
the specific business.

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Ahead: The Future of Oracle Event Processing

[308]

However, in terms of an insurance claim situation, when your event-driven
solution application does identify a higher probability result and there is likely
to be something wrong with it, this particular request could be passed for human
intervention where a close look would reveal that the value of the "deductible" field
{10} is not "normal", and has influenced the analysis.

What exactly constitutes normal here? This requires further research but for example,
if you run a query on the database to find all distinct values for the "deductible" field
and it returned the set {300, 400, 500, 700}, as the amounts generally selected by
customers, then a value {10} would seem suspicious.

Event is: eventType=DataMiningOutEvent object=q1 time=2598483773496
S.CQLMONTH=Dec, S.WEEKOFMONTH=5, S.DAYOFWEEK=Wednesday, S.MAKE=Honda,
S.ACCIDENTAREA=Urban, S.DAYOFWEEKCLAIMED=Tuesday, S.MONTHCLAIMED=Jan,
S.WEEKOFMONTHCLAIMED=1, S.SEX=Female, S.MARITALSTATUS=Single,
S.AGE=21, S.FAULT=Policy Holder, S.POLICYTYPE=Sport - Liability,
S.VEHICLECATEGORY=Sport, S.VEHICLEPRICE=more than 69000, S.FRAUDFOUND=0,
S.POLICYNUMBER=1, S.REPNUMBER=12, S.DEDUCTIBLE=10, S.DRIVERRATING=1,
S.DAYSPOLICYACCIDENT=more than 30, S.DAYSPOLICYCLAIM=more than 30,
S.PASTNUMOFCLAIMS=none, S.AGEOFVEHICLES=3 years, S.AGEOFPOLICYHOLDER=26
to 30, S.POLICEREPORTFILED=No, S.WITNESSPRESENT=No, S.AGENTTYPE=External,
S.NUMOFSUPP=none, S.ADDRCHGCLAIM=1 year, S.NUMOFCARS=3 to 4,
S.CQLYEAR=1994, S.BASEPOLICY=Liability, probability=.89171554529576691
isTotalOrderGuarantee=true\nAnamoly probability: .89171554529576691

Extending insurance solutions and JDBC data
cartridge summary
Other sophisticated solutions by insurance companies could be evolved that would
combine more event properties streaming from individual motor vehicles, where
each vehicle would have an embedded Oracle Event Processing technology that is
immediately and constantly determining the driver's profile in terms of excessive
breaking, swerving corners at high speed, not driving on the correct side of the road,
performance in bad weather conditions, and so on. Vehicle insurance companies
could then use these capabilities for including services such as dynamic variable
insurance charging each week or month based on this real-time analysis.

To conclude, the JDBC Data Cartridge is another Oracle Event Processing enabling
capability that can be used within the Event processor engine that lets you execute a
SQL query against a database, and then use it's returned results in a CQL query. This
functionality being achieved by associating, the SQL query with a JDBC cartridge
function definition, as we show below in this sample code extract:

<?xml version="1.0" encoding="UTF-8"?>
<jdbcctxconfig:config

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[309]

 xmlns:jdbcctxconfig="http://www.bea.com/ns/wlevs/config/
application"
 xmlns:jc="http://www.oracle.com/ns/ocep/config/jdbc">
 <jc:jdbc-ctx>
 <name>Oracle11gR2</name>
 <data-source>DataMining</data-source>
 <function name="prediction2">
 <param name="CQLMONTH" type="char"/>
 <param name=".
 <return-component-type>char</return-component-type>

 <sql><![CDATA[
 SELECT to_char(PREDICTION_PROBABILITY(CLAIMSMODEL, '0'
USING *))
 AS probability
 FROM (
 SELECT :CQLMONTH AS MONTH,
 :.
 FROM dual)
]]>
 </sql>
 </function>
 </jc:jdbc-ctx>
</jdbcctxconfig:config>

Using a CQL query you can subsequently call the JDBC cartridge function, which
executes the associated SQL query against the database. In terms of the specific
implementation, the function call must be enclosed in the TABLE clause, which
lets you use the SQL query results as a CQL relation in the CQL query making
that function call.

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config xmlns:wlevs="http://www.bea.com/ns/wlevs/config/
application">

 <processor>
 <name>DataMiningProc</name>
 <rules>
 <query id="q1"><![CDATA[
 ISTREAM(
 SELECT S.CQLMONTH,
 ,
 S.BASEPOLICY,
 C.F AS probability
 FROM
 StreamDataChannel [NOW] AS S,
 TABLE(prediction2@Oracle11gR2(
 S.CQLMONTH,

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Ahead: The Future of Oracle Event Processing

[310]

 S.BASEPOLICY) AS F of char) AS C)
]]></query>
 </rules>
 </processor>
</wlevs:config>

This type of sophisticated prediction and probabilistic analysis is a capability that
will be constantly enhanced in the event-driven platforms of the future as we strive
to a higher "plain" where these technologies and the associated hardware have the
ability to be self aware and self determining, and thus making far more intelligent
immediate assessment decisions.

Advancing performance with embedded
hardware
Another topic to review in this futuristic chapter was discussed somewhat in the
Event intelligence on the computing edge with sensor integration section. But here we
refer to expanding the capabilities by enhancing the latest engineered systems which
are a combination of both hardware and software to provide completely integrated
advanced Application solution platforms.

Oracle Event Processing, to some extent, already includes hardware assist
capabilities, inherited from the integration with Oracle Coherence using Oracle
Exalogic InfiniBand and Flash memory on Oracle Exa Series hardware. However, the
ability for the event-driven platform to be more tightly "coupled" with the available
hardware systems and to directly leverage and interact with specific hardware
features that will accelerate logic processing performance and radically minimize
application latencies, will be a focus area for the future.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[311]

The other interesting direction may involve "imprinting" some or most of the event
processing application model directly in the firmware. This would undoubtedly
provide phenomenal performance and low latencies for the event driven applications
that execute and could enable neural-like processing capabilities that could eventually
empower machines to a higher level of intelligent multitasking decision execution.

The growing event processing standards
As at the time of writing this chapter, there are no official major standards for
Event Processing languages. As we have discussed in other chapters there are
various forms of language implementations depending on the vendor. However,
there is a technical body called the Event Processing Technical Society (EPTS)
that is striving to set some guidelines and taxonomy of terms for this domain.

Oracle Corporation is one of the steering committee members of EPTS and its objective
is the development of shared understanding for event processing terminology.

The society believes that through communicating the shared understanding
developed within the group it would assist in driving the emergence of effective
interoperation standards, would encourage academic research, and the creation of
training curriculum. In turn it would lead to the establishment of event processing as
a discipline in its own right. The EPTS members hope that through a combination of
academic research, vendor experience/participation and customer data they will be
able develop a unified glossary, language, and architecture that would homogenize
Event Processing.

The EPTS has provided some very useful information on common nomenclature
and particularly sharing some of the same terms as used in the Oracle Event
Processing Event Processing Network (EPN). For more information on this topic,
we recommend that you search the Internet for Event Processing Glossary.

However, while a formal standardized language is still pending, as you have
observed in this book the CQL statements are extremely close to the semantics of
SQL, which as an existing standard, and is generally very familiar to most IT groups.
The pattern matching capabilities of the language has been submitted to the ANSI
SQL Standards board and this submission has received a positive reception.

For more information on this specific pattern matching standard you can search the
Internet for Information Technology – Database Language SQL – Row Pattern Recognition
(SQL/RPR) - INCITS 500-2012 specifies the syntax and semantics of database language
facilities that support row pattern matching using regular expressions.

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Ahead: The Future of Oracle Event Processing

[312]

In any case, adopting CQL as your event processing language of choice should
not be a radical or worrying learning curve, as it does already have its roots in
familiar "territory", so its users can just leverage their existing Structured Query
Database (SQL) language knowledge, and very quickly implement powerful
event-driven applications.

The only new major challenges, which we have covered in significant detail
through-out this book, come with the language extensions relating to the temporal
or event number window definitions needed in stream processing, event pattern
matching and the capabilities of the growing ecosystem of Oracle Event Processing
Data Cartridges.

Summary
We have described in this chapter just a few of the expected evolutionary strategy
directions for the Oracle Event Processing technology over the coming years, which
will simplify the development life cycle for building event-driven applications,
extend the event intelligence to the computing edge, combine with Big Data to
resolve the processing latency analysis gap, integrate extreme processing event
hardware driven performance and how it may eventually form an implementation
foundation for evolving event language standards.

While most the content provided was hypothetical and conceptual, there are already
ongoing projects and initiatives by academic groups and technology companies that
may make some or all of these capabilities a reality very soon.

During your journey through this book we have provided a considerable amount
of conceptual and in many chapters, significant detail on the major topic of using
Oracle Event Processing. This will provide you will a complete foundation of
knowledge on what is, and what may be the future of this fast moving and exciting
technology. If you want to learn more, we recommend that you research the Oracle
Technology Network (OTN) on the Internet, to augment your now growing skills,
with a collection of interesting whitepapers, presentations, and samples.

Good luck to you as you leap into our world of Event Processing.

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
<channel> definition 265
<selector> element 265
<wlevs:event-type> element 91

A
active/active 230
ActiveMQ server 241
active/passive 230
adapter configuration, OEP application 96
Adobe Flex user interface 268
Anyinteract 278
application class-space policy 190
application configuration

about 96
adapter configuration 96
cache configuration 98
channel configuration 97
server configuration 99

ApplicationIdentityAware interface 79

B
Big Data 300
Big Data explosion 9
bloombergMarketFeed 141
boundary

about 272
requisites 256, 257

bundles 36
BusArrival query 264
bus.busId event-type property 264
BusPosChannel 265
BusPosChannel channel event node 266
BusPositionGen adapter 262

BusSpatialProcessor 264-266
BusSpatialProcessor event node 263
BusStopAdapter 263
BusStopArrivalChannel 264
BusStopArrivalChannel channel event

node 265, 266
BusStopArrivalOutputBean event bean

node 264
BusStopChannel 265
BusStopChannel channel event node 266
busstop.Id event-type property 264
bus tracking application

about 261
key application elements 261
running 269

bus tracking EPN 262, 263
bus tracking movement event patterns 256-

258
bus tracking visual user interface 268, 269

C
cache

about 174
used, as event sources abd sinks 177-179

cache configuration, OEP application
about 98
elements 98
eviction-policy element 98
idle-time 98
max-size element 98
time-to-live 98
work-manager-name 98

caching system
about 174
setting up 174, 175

www.it-ebooks.info

http://www.it-ebooks.info/

[314]

Call Detail Record (CDR) events 14
Capital Markets 32
CardTransactionCache 178
cartesian coordinate system 275
CEP

about 7, 111
used, for solving customer problems 12-16

CEP languages
about 21
event processors 27
example 22
processor event node 23
processor extensibility 26

channel 92
channel configuration, OEP application 97
class loading 189
closed shapes 272
coherence

monitoring, in Visualizer 183
coherence cache configuration 99
command line, Oracle Event Processing

controlling 55-57
Complex Event Processing. See CEP
component model

implementing 90
component type infrastructure

extending 105
conceptional model 110
concurrency

implementing, with processors 224-227
configuration parameters, spatial context

ROF 282
SMA 282
tolerance 282

constant value range window 129
containedGeometry 276
contain() function 276
CONTAIN@spatial geometric

relation operator 259
continuous joins 135
Continuous Query Language. See CQL
coordinate system 274
Core Engine 36
correlation variable groups

about 207
DEFINE clause 207

MEASURES clause 207
working with 207

correlation variables 199
CQL

about 38, 107, 108
concepts 38, 39
destinations, establishing 109
examples 40, 41
extending, with OEP cartridges 185, 186
external tables, retrieving with SQL 283-287
fundamentals 108
geometric relationship,

determining 275-281
geometries, creating 271
models, processing 110, 111
native types 142
numeric data types 143
pattern matching 199
sources, establishing 109
spatial context, configuring 281, 282
SQL 130
timing models 144, 145
XML, processing with 194-196

CQL and Java integration
about 186-188
ambiguities, handling 192
class loading 189-191
JavaBeans conventions, using 193

CQL CEP processor engine 260
CQL join 136
CQL query

about 108
structure 111, 112
syntax 111

createGeometry() method 274
CSV adapter

about 70, 71
eventPropertyNames 70
eventTypeName 70
port 70

csvgen 70
custom adapters

configuring 78
OEP adapter APIs, reviewing 79, 80
OSGi services, leveraging 82, 83
packaging 83-86

www.it-ebooks.info

http://www.it-ebooks.info/

[315]

customer problems
solving, CEP platforms used 12-16

D
Data Cartridge Domain Specific

Extensibility 39
data cartridges 26
Demand Response (DR) solutions 13
destinations 109
Digital Inclusion 296
Directed Flow Graph 19
DisposableBean interface 79
DSTREAM operator 123

E
Eclipse environment

features 54, 55
IDE 54
visualization 55

Elvis 32
Embedded profile 298, 299
Enterprise Java Beans (EJBs) 34
EPN

about 19, 303
event adapters 20
event cache 21
event channels 20
event processors 21
structure 20

EPN extensions
adapters, setting up 91, 92
caching 94, 95
channels, configuring 92
CQL processing, enabling 94
database table, defining 94
event-beans, implementing 93
event type repository, creating 91
exploring 90
Spring bean, defining 90

EPN HA adapter 240
event

about 17
enriching, with cache 176
enriching, with database table 173, 174
predicting 29

event adapters 20

event bean
implementing 179-182

event cache 21
event channels 20
event container platform manipulation

profiles 298
event correlation and aggregation 24
Event Definition Language (EDL) 291
Event Delivery Network (EDN) 293
Event Driven Architecture (EDA) 28
Event Driven SOA (ED-SOA)

about 29
diagrammatic representation 28

Event-Driven Solution Platform 7
Event-Driven technology

benefits 9, 11
event filtering 23
event intelligence

extending, to computing edge with Sensor
integration 293-298

EventPartitioner example 223
event pattern matching 24
event processing

about 7, 229
example 7, 8

Event Processing Network. See EPN
Event Processing Technical Society

(EPTS) 311
event processors

about 21, 27
concurrency, using with 224

events, Oracle Event Processing
creating 65

event stream 17, 18
event stream processing

elements 16
event type

about 18
example 18

eventTypeNames property 70
event type repository

about 164
used, for browsing metadata 164

event type system, Oracle Event
Processing 65-67

evolving developer environments 291, 292
Exalogic node 218

www.it-ebooks.info

http://www.it-ebooks.info/

[316]

exciting Event Stream Processing (ESP)
dimension 292

external tables, CQL
retrieving, SQL used 283-287

F
Fast Data 300
Fast Data capabilities 11
Fast Data sample 302-304
Financial Front Office 32

G
Garbage Collection (GC) 229
geodetic coordinate system 275
geo-fencing 249, 253-255
geometric relationship

determining 275-281
geometries

boundary 272
closed shapes 272
creating 271-275

geospatial event processing 249
geospatial techniques

bus tracking movement event patterns 256
geo-fencing 253
geo-streaming 251

geo-streaming 251, 252
getName() method 193
Global Positioning Systems (GPS) 250
goingUpPrice property 202
greedy match 204
growing event processing standards 311

H
HA adapter 240
HA application

about 240
ActiveMQ server 241
JMS Message Client 241-243
solution sample, running 244-246
Visualizer tooling, reviewing 247

Hadoop Distributed File System (HDFS)
300

HA solution sample
running 244, 245

heat maps 12
HelloWorldAdapterFactory 84
high availability, OEP

about 230
failure scenarios 232, 233
issues 230-232

high availability QoS
about 234
lightweight queue trimming 236-238
precise recovery with JMS 239, 240
simple failover 234, 235
simple failover, with buffering 236

HTTP pub-sub adapter 72-78
HTTP pub-sub adapter nodes 266
HTTP pub-sub component

about 266
advantages 267

I
InitializingBean interface 79
inputChannel 109
InputEventType 109
Integrated Development Environment (IDE)

292
IN-VOID 257
isName() method 193
ISTREAM operator 122

J
Java Boolean native type 187
Java Connector Architecture (JCA) 34
Java Event-Driven Server

about 33, 35, 38
Bundles 36
OSGi 36

Java Language Specification (JLS) 193
Java platform approach 34
Java Script Object Notation (JSON) 72
JDBC data sources

setting up 172
JMS adapter 68, 69, 240
JMS Message Client 241, 242
JMX API framework 37
joins

about 131, 132

www.it-ebooks.info

http://www.it-ebooks.info/

[317]

external sources 136
streaming sources 136

JRockit JVM 38

K
key application elements, bus

tracking application
about 261
BusSpatialProcessor 264
bus tracking EPN 262
bus tracking visual user interface 268

key elements, event stream processing
about 16
EPN 19
event 17
event stream 17, 18
event type 18

L
Last Event window 130
lightweight queue trimming

about 236, 237
advantages 237
implementing 237, 238

like operator 143
loadgen utility 71
locationStream 277

M
M2M (Machine-to-Machine) 297
marketFeed stream 195
MATCH_RECOGNIZE clause 202
MATCH_RECOGNIZE operator 199
memory sizing observations 229
Minimum Bounding Rectangles

(MBRs) 280
model of processing 109
myProp property 192

N
native types, CQL

BIGINT 142
BOOLEAN 142
BYTE(size) 142

CHAR(size) 142
DOUBLE 142
FLOAT 142
INTEGER 142
INTERVAL 142
TIMESTAMP 142
XMLTYPE 142

network performance tuning 229
NOW window 130
numeric data types, CQL

XMLTYPE 143

O
OEP adapter APIs

ApplicationIdentityAware 79
DisposableBean 79
InitializingBean 79
ResumableBean 79
RunnableBean 79
StageIdentityAware 79
StreamSource 79

OEP applications
configuration, changing 155-158
logging service, configuring 147-151
progress, monitoring 165-169
provisioning 151-154
server-wide configuration, managing 159

OEP cartridges
CQL, extending with 185, 186

OEP threading model
about 219
threading, optimizing in channels 220-222

OEP Visualizer 72
OnMessageReceived function 268
Open Services Gateway initiative. See OSGi
Oracle CEP cartridges 185
Oracle Data Mining (ODM) solution 306
Oracle Event Processing

about 31
bus tracking application 261
caches, using as event sources

and sinks 177-179
caching systems, setting up 174, 175
coherence, monitoring in Visualizer 183
command line, controlling 55-57
custom adapter, configuring 78

www.it-ebooks.info

http://www.it-ebooks.info/

[318]

event bean, implementing 179-182
event language 38
events, converting 65
events, creating 65
events, enriching with cache 176
events, enriching with database

table 173, 174
event type system 65
geospatial techniques 251
high availability 230
Java platform approach 34
JDBC data sources, setting up 172
performance 217
platform adapters 68
scaling 219
Visualizer 58

Oracle Event Processing applications
creating 43-53
developing 41-43
tips 54

Oracle Event Processing Data Cartridge 304
Oracle Event Processing, future

event intelligence, extending to
computing edge with Sensor
integration 293-298

evolving developer environments 291, 292
Fast Data for Big Data 299
growing event processing standards 311
performance, advancing with embedded

hardware 310
Predictive Analysis 305
Service-oriented Architecture

integration 293
technology strategic directions 289, 290

Oracle geospatial features 260
Oracle MapViewer 78, 255
Oracle NoSQL Database 300
Oracle Spatial 249-251
Oracle Spatial Data Cartridge 258, 259
Oracle Technology Network (OTN) 218
Oracle Technology Network (OTN)

pages 304
Oracle WebLogic Server JEE 293
ordering-constraint attribute 224

ordered 226
partition ordered 225
unordered 224

OSGi 36
output events 108

P
partitioned parallelism

about 227
versus, pipelined parallelism 227, 228

partitioned windows 119
path 167
pattern matching

about 199, 201
controlling 204, 206
correlation groups, working with 207-210
expiring patterns 211, 212
greedy match 204
partitioning events 202
pattern expressions 203
reluctant match 204

pattern-matching query 200
pattern quantifiers 203
performance

about 217
advancing, with embedded

hardware 310, 311
improving, with batching 228

pipelined parallelism 228
Plain Old Java Object (POJOs) 21
platform adapters, Oracle Event Processing

about 68
CSV adapter 70, 71
HTTP pub-sub adapter 72-78
JMS adapter 68, 69

Portable Object Format (POF) 175
precise recovery with JMS 239
Predictive Analysis

abnormal looking output event 307
about 305
analytics 305
fuzzy results 307
insurance solutions, extending 308
JDBC data cartridge summary 308-310
normal looking output event 307
use case, predicting 306, 307

priceAsStringValuethat 187
Processor Event Node 21
processor event node methodologies

www.it-ebooks.info

http://www.it-ebooks.info/

[319]

about 23
event correlation and aggregation 24
event filtering 23
event pattern matching 24
synthetic or business event 25

processor extensibility 26
proliferation

about 9
issues 9

Q
query

event properties 108

R
Real-Time Situation Awareness 8
relation 110
reluctant match 204
ResumableBean interface 79
reutersMarketFeed 141
Rich Internet Application (RIA) 58
RSTREAM operator 125
runloadgen tool 262
RunnableBean interface 79

S
sample HA Event Processing application

233, 234
scalability

versus, high availability 216
scatter charts 12
sendInsertEvent() method 178
Sensor integration

used, for extending event intelligence to
computing edge 293

server class-space policy 190
server configuration, OEP application

resources, defining 99, 101, 103, 105
server-wide configuration, managing

concurrency, controlling with work
managers 159, 160

contextual data, accessing with
data sources 160-163

metadata, browsing with event type
repository 164

work managers 159
Service Orientated Architecture (SOA) 9
setName() method 193
set operations

about 140
EXCEPT 140
IN 140
INTERSECT 140
MINUS 140
NOT IN 140
UNION 140
UNION ALL 140

ShipPositionGen 70
ShopRelation 277
simple failover

about 234
configuring 235

simple failover, with buffering 236
SLIDE subclause 128
SOA EDN events 291
SOA integration 293
sources 109
spatial context

configuration parameters 282
configuring 281, 282

Spatial Reference ID (SRID) 275
spatial reference system 274
SPOT (Sensor Platform for Oracle

Technology) 294
Spring development framework 90
SQL

about 130
aggregations 136
external sources 136
joins 131-133
ordering 137-139
set operations 140
views 139

SQL99 commands 130
StageIdentityAware interface 79
startsWith() method 187
stream 110, 113
StreamSource interface 79
structure, CQL query 111

www.it-ebooks.info

http://www.it-ebooks.info/

[320]

Structured Query Database (SQL)
language 312

substring() method 187
symbol event property 186
synthetic or business event 25

T
technology strategic directions 289, 290
Time and Event Driven (TED) team 31
toUpperCase() method 187
trend 218

U
upstream backup 230

V
view 139
Visualizer 58

application executing, reviewing 60
Event Processing Network tab 59
features 59
parameters, changing 62, 63
Query Wizard tab 61
using 59

Visualizer Monitoring and Management
tooling 37

Visualizer tooling
reviewing, for HA implementation 247

W
water events 111
Web Services 34
withindistance 279
window

constant value range window 129
Last Event window 130
NOW window 130
output 120-125
output, controlling with slides 126, 127
partitioned windows 119
streams, restricting with Windows 112-116
total ordered time-stamped stream 145
tuple-based window 116-118
unbounded window 128

work managers
used, for controlling concurrency 159, 160

W stock trading pattern 33

X
XML

processing, with CQL 194-197
xmlattribute functions 196
XML document sources

handling 197, 198
XML fragments 194
xmltable function 197

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Getting Started with Oracle

Event Processing 11g

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle SOA Suite 11g R1
Developer's Guide
ISBN: 978-1-84968-018-9 Paperback: 720 pages

Develop Service-Oriented Architecture Solutions with
the Oracle SOA Suite

1. A hands-on, best-practice guide to using and
applying the Oracle SOA Suite in the delivery
of real-world SOA applications

2. Detailed coverage of the Oracle Service
Bus, BPEL PM, Rules, Human Workflow,
Event Delivery Network, and Business
Activity Monitoring

3. Master the best way to use and combine
each of these different components in the
implementation of a SOA solution

Do more with SOA Integration:
Best of Packt
ISBN: 978-1-84968-572-6 Paperback: 702 pages

Integrate, automate, and regulate your business
processes with the best of Packt's SOA books

1. Get to grips with SOA integration in this
comprehensive guide which draws on the
value of eight separate Packt SOA books!

2. Learn about SOA integration through both
step-by-step tutorial and cookbook chapters

3. A mash-up book from a range of expert
SOA professionals, and a total of eight
Packt titles - professional expertise distilled
in a true sense.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle Fusion Middleware
Patterns
ISBN: 978-1-84719-832-7 Paperback: 224 pages

10 unique architecture patterns enabled by Oracle
Fusion Middleware

1. First-hand technical solutions utilizing
the complete and integrated Oracle
Fusion Middleware Suite in hardcopy
and ebook formats

2. From-the-trenches experience of leading
IT Professionals

3. Learn about application integration and how
to combine the integrated tools of the Oracle
Fusion Middleware Suite - and do away with
thousands of lines of code

Oracle SOA Infrastructure
Implementation Certification
Handbook (1Z0-451)
ISBN: 978-1-84968-340-1 Paperback: 372 pages

Successfully ace the 1Z0-451 Oracle SOA
FoundationPractitioner exam with this
hands on certifi cation guide

1. Successfully clear the first stepping stone
towards becoming an Oracle Service Oriented
Architecture Infrastructure Implementation
Certified Expert

2. The only book available to guide you through
the prescribed syllabus for the 1Z0-451 Oracle
SOA Foundation Practitioner exam

3. Learn from a range of self-test questions to fully
equip you with the knowledge to pass this exam

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: An Overview of Complex Event Processing
	What is event processing?
	Relating this to a business in computing terms
	Use case: A solution for customer problems
	Key elements of event stream processing
	An event
	An event stream
	An event type
	Event Processing Network

	Event processing languages and extensibility
	Processor event node methodologies
	Processor extensibility
	Event processor "Intelligence Injection"

	Holistic Event-Driven and Service Orientated Architectures
	Predicting an event
	Summary

	Chapter 2: An Overview of Oracle Event Processing
	Understanding the heritage of Oracle Event Processing
	The Java Event-Driven Server, the bits and bytes of the architecture
	The adopted event language
	CQL concepts

	The philosophy and fundamentals of developing
	Creating an Oracle Event Processing application
	Some hints and tips

	Controlling from the command line
	Watching things happen and changing what happens
	Summary

	Chapter 3: Adapting Events for OEP
	Creating and converting events
	Event type system
	Platform adapters
	The JMS adapter
	The CSV adapter
	HTTP pub-sub adapter

	Configuring your own custom adapter
	Leveraging OSGi services to create an adapter
	Packaging custom adapters

	Summary

	Chapter 4: Assembling and Configuring OEP Applications
	Implementing the component model
	Exploring the EPN extensions
	Defining a simple Spring bean
	Creating the event type repository
	Setting up the adapters
	Configuring channels
	Implementing event-beans
	Enabling the power of CQL processors
	Defining a database table
	Using caching

	Understanding the application configuration
	Adapter configuration
	Channel configuration
	Cache configuration

	Defining resources in the server configuration
	Extending the component type infrastructure
	Summary

	Chapter 5: Coding with CQL
	Introducing CQL
	Understanding CQL fundamentals
	Establishing your sources and destinations
	Processing models

	The structure and semantics of event processing
	Restricting streams with Windows
	Tuple-based windows
	Partitioned windows

	Output
	Controlling output with slides
	The unbounded window
	The constant value range window
	The NOW window and the Last Event window

	SQL as a foundation
	Joins
	External sources

	Aggregations
	Ordering
	Views
	Set operations

	Typing and expressions
	Timing models
	Summary

	Chapter 6: Managing and Monitoring Applications
	Configuring the logging service
	Provisioning applications
	Changing application configuration
	Managing server-wide configuration
	Controlling concurrency with work managers
	Accessing contextual data with data sources
	Browsing metadata with the event type repository

	Monitoring progress
	Summary

	Chapter 7: Using Tables and Caches for Contextual Data
	Setting up JDBC data sources
	Enriching events using a database table
	Setting up caching systems
	Enriching events using a cache
	Using caches as event sources and sinks
	Implementing an event bean to access a cache
	Monitoring Coherence in the Visualizer
	Summary

	Chapter 8: Pattern Matching with CQL
	Extending CQL with OEP cartridges
	Blending CQL and Java
	Class loading in CQL
	Handling ambiguities between Java and CQL
	Using the JavaBeans conventions in CQL

	Processing XML with CQL
	Handling XML document sources

	Pattern matching
	Partitioning events for matching
	Patterns as regular expressions
	Controlling the number of matches

	Working with correlation groups
	Expiring patterns

	Summary

	Chapter 9: Implementing Performance Scaling, Concurrency, and High Availability for Oracle Event Processing
	Scalability versus high availability
	Understanding performance and ways to influence
	Scaling Oracle Event Processing
	The threading model
	Optimizing threading in channels

	The EventPartitioner example
	Using concurrency with processors
	Partitioned versus pipelined parallelism
	Improving performance with batching
	General event processing, network performance tuning, and memory sizing observations

	High availability in Oracle Event Processing
	Failure scenarios

	A sample HA Event Processing application
	High availability quality of services
	Simple failover
	Simple failover with buffering
	Lightweight queue trimming
	Precise recovery with JMS

	The HA application
	ActiveMQ server
	The JMS Message Client
	Running the HA solution sample
	Studying the Visualizer tooling for HA implementation

	Summary

	Chapter 10: Introducing Spatial: A Telemetric Use Case
	Introduction to Oracle Spatial with Oracle Event Processing
	Basic geospatial concepts and use cases
	Geo-streaming
	Geo-fencing
	Bus tracking movement event patterns

	The Oracle Spatial Data Cartridge
	Oracle geospatial features
	Tracking vehicles with an Oracle Event Processing application
	Key application elements
	Bus tracking EPN
	BusSpatialProcessor
	Bus tracking visual user interface
	How to run this bus tracking sample application

	Summary

	Chapter 11: Extending CQL with Spatial and JDBC
	Creating geometries
	Determining if geometries relate to
each other
	Configuring the spatial context
	Retrieving external tables using SQL
	Summary

	Chapter 12: Looking Ahead: The Future of Oracle Event Processing
	Possible technology strategic directions
	Evolving developer environments
	Service-oriented Architecture integration
	Event intelligence on the computing edge with Sensor integration
	Event container platform manipulation profiles
	The Embedded profile

	Fast Data for Big Data
	Fast data sample

	Looking around the corner with predictive analytics
	More on analytics
	A Predicting Use Case
	Understanding the "Fuzzy" results
	Extending insurance solutions and JDBC data cartridge summary

	Advancing performance with embedded hardware
	The growing event processing standards
	Summary

	Index

