
www.it-ebooks.info

http://www.it-ebooks.info/

The Developer’s
Guide to Social
Programming

www.it-ebooks.info

http://www.it-ebooks.info/

The Developer’s Library Series from Addison-Wesley provides

practicing programmers with unique, high-quality references and

tutorials on the latest programming languages and technologies they

use in their daily work. All books in the Developer’s Library are written by

expert technology practitioners who are exceptionally skilled at organizing

and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-

source programming languages and databases, Linux programming,

Microsoft, and Java, to Web development, social networking platforms,

Mac/iPhone programming, and Android programming.

Visit developers-library.com for a complete list of available products

Developer’s Library Series

www.it-ebooks.info

http://www.it-ebooks.info/

The Developer’s
Guide to Social
Programming

Building Social Context Using
Facebook, Google Friend

Connect, and the Twitter API

Mark D. Hawker

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

www.it-ebooks.info

http://www.it-ebooks.info/

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Hawker, Mark D.
The developer’s guide to social programming : building social context using Facebook,

Google friend connect, and the Twitter API / Mark D. Hawker.
p. cm.

ISBN 978-0-321-68077-8 (pbk. : alk. paper) 1. Online social networks. 2. Entertainment
computing. 3. Internet programming. 4. Google. 5. Facebook (Electronic resource) 6.
Twitter. I. Title.
HM742.H39 2010
006.7’54—dc22

2010020866

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction, stor-
age in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-68077-8
ISBN-10: 0-321-68077-4

Text printed in the United States on recycled paper at RR Donnelley Crawfordsville in Crawfordsville,
Indiana.

First printing, August 2010

www.it-ebooks.info

http://www.it-ebooks.info/

❖

To Mam and Dad, I am forever grateful for your
patience, understanding, love, and support.
More than you will ever know.And to my
brother, Dale, who continues to pleasantly

surprise us all. I will love you always.

“Some dreams are dressed in gossamer and
gumboots; ethereal hope undergirded by

practical endeavour.”

SarahJayne Vivian

❖

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

I: Twitter

1 Working with the Twitter API 1

2 Diving Into the Twitter API Methods 21

3 Authentication with Twitter OAuth 45

4 Extending the Twitter API: Retweets, Lists,
and Location 61

II: Facebook Platform

5 An Overview of Facebook Platform Website
Integration 77

6 Registration, Authentication, and Translations
with Facebook 99

7 Using Facebook for Sharing, Commenting, and
Stream Publishing 115

8 Application Discovery, Tabbed Navigation, and the
Facebook JavaScript Library 137

III: Google Friend Connect

9 An Overview of Google Friend Connect 165

10 Server-Side Authentication and OpenSocial
Integration 193

11 Developing OpenSocial Gadgets with Google
Friend Connect 209

IV: Putting It All Together

12 Building a Microblog Tool Using CodeIgniter 235

13 Integrating Twitter, Facebook, and Google
Friend Connect 267

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

I: Twitter

1 Working with the Twitter API 1
Twitter API Essentials 1

Twitter API Methods 3

Twitter API Parameters 6

Twitter API Return Formats 10

Accessing the Twitter API 11

cURL 12

Twitter-async 14

Twitter API Rate Limiting 17

Twitter API Error Handling 18

Summary 19

2 Diving Into the Twitter API Methods 21
Twitter API Methods 21

User Objects 23

Status Objects 26

Direct Message Objects 28

Saved Search Objects 29

ID Objects 30

Relationship Objects 31

Response Objects 32

Hash Objects 33

Twitter Search API 34

Introducing the Atom Syndication Format 34

Twitter Search API Methods 38

Summary 43

3 Authentication with Twitter OAuth 45
Introducing Twitter OAuth 45

OAuth Benefits 46

OAuth Definitions 46

www.it-ebooks.info

http://www.it-ebooks.info/

viii Contents

Implementing Twitter OAuth 48

Twitter OAuth Workflow 48

Test Tube: A Sample Twitter Application 50

Summary 59

4 Extending the Twitter API: Retweets, Lists,
and Location 61
Extending Twitter’s Core Functionality 61

Retweet API 62

Lists API 64

Geolocation API 68

Twitter Community Evolution 71

Platform Translations 71

Spam Reporting 72

Future Directions 74

Summary 76

II: Facebook Platform

5 An Overview of Facebook Platform Website
Integration 77
Facebook Platform for Developers 77

Facebook Platform 78

Registering a Facebook Application 79

Referencing a Facebook Platform Application 81

Facebook API, FQL, and XFBML 84

Facebook API and FQL 84

XFBML 97

Summary 98

6 Registration, Authentication, and Translations
with Facebook 99
User Authorization and Authentication 99

Logging In and Detecting Facebook Status 101

Logging Out, Disconnecting, and Reclaiming
Accounts 107

www.it-ebooks.info

http://www.it-ebooks.info/

ixContents

Connecting and Inviting Friends 109

Translations for Facebook 111

Preparing Your Application and Registering Text 111

Administering and Accessing Translations 113

Summary 114

7 Using Facebook for Sharing, Commenting,
and Stream Publishing 115
Content-Sharing and Live Conversation 115

Facebook Share 116

Facebook Widgets 118

Social Commenting and Stream Publishing 120

Comments Box 120

Open Stream API 123

Summary 135

8 Application Discovery, Tabbed Navigation,
and the Facebook JavaScript Library 137
Application Dashboards and Counters 138

News and Activity Streams 139

Games and Applications Counters 143

Navigating and Showcasing Your Application
Using Tabs 145

Configuring and Installing an Application Tab 146

Extending an Application Tab 149

Dynamic Content and the Facebook
JavaScript (FBJS) Library 157

Facebook Animation Library 157

Facebook Dialogs 160

Handling Events with an Event Listener 162

Summary 164

III: Google Friend Connect

9 An Overview of Google Friend Connect 165
Components of Google Friend Connect 165

Google Friend Connect Gadgets 166

www.it-ebooks.info

http://www.it-ebooks.info/

x Contents

Google Friend Connect JavaScript API 167

Server-Side Integration 167

Google Friend Connect Plug-ins 168

Using the Google Friend Connect JavaScript API 169

Installing and Configuring the JavaScript Library 169

Working with Google Friend Connect Data 171

An Overview of the OpenSocial API 173

OpenSocial API Methods 173

The DataRequest Object 174

Fetching People and Profiles 176

Fetching and Updating Activities 177

Fetching and Updating Persistence 178

Color Picker: A Google Friend Connect
Application 181

Summary 191

10 Server-Side Authentication and OpenSocial
Integration 193
Server-Side OpenSocial Protocols and Authentication
Methods 193

Google Friend Connect Authentication Methods 194

OpenSocial Client Libraries 196

Using the PHP OpenSocial Client Library
with Google Friend Connect 197

Google Friend Connect Authentication Workflow 197

Setting Up a Server-Side Application 198

OpenSocial Data Extraction Principles 201

Summary 207

11 Developing OpenSocial Gadgets with Google
Friend Connect 209
An Overview of Google Gadgets 209

Anatomy of an OpenSocial Google Gadget 210

OpenSocial v0.9 Specification 214

Advanced OpenSocial Gadget Development 217

Creating a Google Gadget 222

Color Picker, Revisited 222

Testing, Tracking, and Directory Submission 230

Summary 233

www.it-ebooks.info

http://www.it-ebooks.info/

xiContents

IV: Putting It All Together

12 Building a Microblog Tool Using CodeIgniter 235
An Overview of CodeIgniter 235

The Model-View-Controller Architectural Design 236

Installing, Configuring, and Exploring CodeIgniter 237

CodeIgniter Libraries 240

CodeIgniter Helpers 245

Building the Basic Sprog Application 246

Stage 1: Creating the Registration, Login, and Home
Pages 247

Stage 2: Extending the Sprog Application with Updates,
Comments, and Likes 257

Summary 266

13 Integrating Twitter, Facebook, and Google Friend
Connect 267
Implementing Twitter Functionality 267

Setting Up Twitter and Twitter-async Support 268

Stage 3: Extending the Sprog Application
with Twitter Functionality 270

Updating a User’s Twitter Account 276

Implementing Facebook Functionality 279

Registering a Facebook Application and Adding
Facebook Support 279

Stage 4: Extending the Sprog Application with
Facebook Functionality 281

Implementing Google Friend Connect Functionality 292

Registering and Adding Google Friend
Connect Support 292

Stage 5: Extending the Sprog Application
with Google Friend Connect Functionality 294

Summary 301

Index 303

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
The World Wide Web is in constant flux and, since the introduction of utilities such as
Facebook and Twitter, has only recently had social interaction at its core. Currently,
Facebook and Twitter have more than 400 million active users, and the Facebook
Platform alone is integrated with more than 250,000 websites and applications, engaging
over 100 million Facebook users each month.These numbers continue to increase each
day.Another dominant force is Google, who introduced their Friend Connect, which
enables users to add social functionality to any of their websites.All three companies
continue to roll out massive changes to their development platform, rendering previous
best practices obsolete.

However, just knowing the technical aspects of each platform is not a guarantee that
it will succeed. It is important to also see how each is distinct and to prepare you for
changes through examples and sample code.The purpose of these examples is to provide
a springboard to build applications on, so there is plenty of room for extending and
adapting to suit your own needs.This book is one of the first of its kind to bring
together three of the most popular social programming platforms under one hood.
Welcome to social programming.

Who This Book Is For
This book is written for beginner or intermediate developers who are comfortable with
PHP and the major technologies of the Web: (X)HTML, JavaScript, and Cascading Style
Sheets (CSS), as well as Atom, JavaScript Object Notation (JSON), Really Simple
Syndication (RSS), and Extensible Markup Language (XML).The reader should also
have access to a web server, such as Apache or Internet Information Services (IIS), to test
code examples.

No prior experience of social programming is required, although some familiarity
and active user accounts with Facebook, Google, and Twitter is assumed.To be a good
developer for a platform, it helps to understand it from a user’s perspective.

This book will help the reader understand what makes a good Facebook, Google
Friend Connect, and Twitter application; explain and show how to use the core tech-
nologies of each platform; and build your confidence to develop engaging social
applications.

How This Book Is Structured
This book is divided into four main parts:

Part I,“Twitter,” provides an overview of the methods, authentication workflows, and
components of the Twitter API. It explains what is contained within the Twitter API,
including search, retweets, lists, and geolocation using code examples supported by a PHP
client library, twitter-async.

Part II,“Facebook Platform,” provides an overview of the service, including authenti-
cation, sharing, commenting, and publishing.A sample application is created,Test Tube,

www.it-ebooks.info

http://www.it-ebooks.info/

highlighting key features of the platform through both client- and server-side scripting
using the Facebook Platform.

Part III,“Google Friend Connect,” showcases the service and its integration with
OpenSocial through client- and server-side scripting and the creation of a Google
gadget.A sample application, Color Picker, is created to demonstrate Google Friend
Connect in action.

Part IV,“Putting It All Together,” pulls each of the three social platforms together into
a coherent whole and demonstrates how to create your very own microblog from
scratch.A sample application, Sprog, is created using a popular web application frame-
work, CodeIgniter, which is extended using select functionalities from Twitter, Facebook,
and Google Friend Connect.

Contacting the Author
If you have any questions or comments about this book, please send an e-mail to
socialprogramming@gmail.com.You can also visit the book’s website, http://www.
socialprogramming.info, for updates, downloadable code examples, and platform news.
An active code repository will be maintained, http://github.com/markhawker/Social-
Programming, which you can use to post issues you have with the code and to down-
load future updates.

www.it-ebooks.info

http://www.socialprogramming.info
http://github.com/markhawker/Social-Programming
http://github.com/markhawker/Social-Programming
http://www.socialprogramming.info
http://www.it-ebooks.info/

Acknowledgments
Writing this book has been one of, if not the, greatest and most thrilling experiences of
my life.This adventure has been supported by a great number of people. First, I want to
thank my acquisitions editor,Trina MacDonald, who was always there to listen and sup-
port me when I had queries and really helped shape the book. I appreciate the encour-
agement given through some tough and challenging times. Second, I’d like to thank my
development editor, Songlin Qiu, for her advice and insight; my technical editors, Joshua
Gross, Ben Schupak, and Joseph Annuzzi, who did an excellent job testing and correct-
ing my source code; and Olivia Basegio for keeping us all in check. Others who offered
excellent advice and direction include Doug Williams at Twitter, Patrick Chanezon,Arne
Roomann-Kurrik, Bob Aman and Chris Schalk at Google, and Jaisen Mathai.Thanks
also to my connections on Twitter and Facebook for being with me from the beginning,
including Kevin Makice and Dusty Reagan, and to Raj Anand and Dr. Lydia Lau for
their input on my original proposal.

A final, special mention goes to SarahJayne Vivian for keeping me inspired and moti-
vated, and for showing me the true meaning of friendship.Thank you. It truly has been
an amazing journey and one that I will never forget.

About the Author
Mark Hawker is a social applications developer and consultant focused on developing
for social platforms such as Facebook and Twitter. He is a graduate from the University
of Leeds, United Kingdom, with a First-class Honors degree in Informatics.A researcher
in the field of health informatics, Mark focuses his time on how to innovatively apply
social networking technologies in a wide variety of consumer health scenarios.

www.it-ebooks.info

http://www.it-ebooks.info/

1
Working with the Twitter API

The beauty and success of Twitter lies in its simplicity. It’s simple not just for its users but
also within its rich application programming interface (API), which provides you the
tools required to interact with Twitter’s internal services.The Twitter API is responsible
for more than 90% of Twitter server traffic and provides the gateway to much of Twitter’s
core functionality, such as status updates, direct messaging, and searches.As the Twitter
platform evolves, more features will be added to the Twitter API, so this book will serve as
a complement to the expanding online Twitter documentation. Recent enhancements
include the Geolocation API, Lists API, and the Retweet API (each of which is covered in
Chapter 4,“Extending the Twitter API: Retweets, Lists, and Location”).

This chapter explains a number of building blocks, such as methods, authentication,
return formats, and status codes that will enable you to start interacting with the service.
Interaction with the Twitter API is described using a command-line interface (cURL),
and in this chapter, you are introduced to a PHP client library developed by Jaisen Mathai
called twitter-async, which supports basic authentication as well as Twitter OAuth, which
is covered in Chapter 3,“Authentication with Twitter OAuth.”At the end of this chapter,
you will have gained an understanding of the Twitter API and developed the necessary
skills to start interacting with the service. From here, Chapter 2,“Exploring the Twitter
API and Search API,” will guide you through Twitter API return objects to give you an
in-depth understanding of how to interpret responses to suit all of your applications.

Twitter API Essentials
The Twitter API enables desktop and Internet-enabled third-party applications to interact
with Twitter services in a standard and easy-to-use way.An API is a conduit that enables
data from one application or service, in this case Twitter, to be shared with the outside
world. By making requests to the Twitter API, data is returned in a structured format that
makes it easy to parse and extract information from that data.The Twitter API separates
the functionality of the site into small, manageable functions, such as “get a list of fol-
lowers” or “change a profile background” via a number of methods.

www.it-ebooks.info

http://www.it-ebooks.info/

2 Chapter 1 Working with the Twitter API

Counting to 140
Twitter imposes a limit of 140 characters, or more technically 140 bytes, to updates (prima-
rily because of the size restrictions of cell text messages). Although the Twitter API accepts
longer strings of text, those messages are truncated. Because Twitter uses the UTF-8 char-
acter set, it is possible to represent each of the 128 ASCII characters, which consume 1
byte, plus special Unicode and international characters, which can consume up to 4 bytes.
This is why tweets with special characters are truncated even though they are technically
140 characters in length. Twitter uses the Normalization Form C (NFC) convention for count-
ing update length, which can be evaluated using the Normalizer class in PHP.

The Twitter API is a Representational State Transfer (REST)-based resource exposed
over HTTP(S), which means that “accessor” methods (those that retrieve data) require a
GET operation and “mutator” methods (those that create, update, or destroy data) require a
POST operation.

However, the Lists API methods require that you use a PUT operation for updating data
and also a DELETE operation for destroying data.This is discussed in Chapter 4 because it is
slightly removed from the conventional structures of the other Twitter API methods.The
DELETE operation instructs the Twitter servers to remove the requested resource and does
not return a response value to guarantee that this has been performed successfully. It is
recommended that applications use the POST operation wherever possible because both
successful and unsuccessful attempts will be reported to the requestor.

REST-based web services such as the Twitter API consist of three elements:

n HTTP operation

How the request is being transferred to the Twitter API.The transfer operations are
GET, POST, PUT, and DELETE, as described earlier, and which operation is appropriate
depends on the method being executed. Supplying an incorrect operation will result
in an error.

n Method

A URL that points to the location of a resource on Twitter’s servers.A list of meth-
ods appears in the next section, and Chapter 2 further describes these methods.
Methods can also include a number of parameters for customizing requests (for
example, returning only a certain number of values) or for supplying update text.

n Return format

The format in which to return data back, which must be supported by that method.
Twitter accommodates Extensible Markup Language (XML), JavaScript Object
Notation (JSON), Really Simple Syndication (RSS), and Atom return formats
depending on the method that has been executed. For example, changing the URL
extension of a request from .xml to .json will adjust the return format.

The Twitter API has many different components. For example, the REST API and
Search API include methods for accessing Twitter services (for instance, updating time-
lines, status data, and user data), for searching timelines and trend data, and for user
authentication (see Chapter 3).Three other components of the Twitter API are the

www.it-ebooks.info

http://www.it-ebooks.info/

3Twitter API Essentials

Retweet API (for accessing and creating retweets), the Lists API (for accessing and creating
lists), and the Geolocation API (for geotagging tweets).These components are discussed
more fully in Chapter 4. Each Twitter API component functions in a similar way, sharing
parameter conventions and returning data in standard file formats, which makes each
component an intuitive service.

Twitter API Methods

Twitter API Versioning
The Twitter API supports versioning, which means that Twitter will be able to provide beta
functionality without compromising stable code. There are currently two method address
conventions: one for search methods, http://search.twitter.com/; and one for other
methods, https://api.twitter.com/<<version>>/. In the second case, you can replace
<<version>> with the version number that you intend to use, which should be set to 2 (the
latest release version as of this writing). Twitter expects that deprecation between old and
new versions will take approximately six months, and so you have plenty of time to update
code before changes become permanent.

The official Twitter API documentation groups methods into “categories” which can be
identified by the method stub. For example, the users/show method is part of the User
method category.The method stub will help you translate methods back into the language
used by Twitter to describe the methods in their official documentation. Most categories
are organized logically and include methods to perform each of the standard CRUD
(Create, Read, Update, and Delete) operations.The Search API methods that have the
stubs search and trends use the https://search.twitter.com/ prefix, and all other methods
use the https://api.twitter.com/2/ prefix.The Lists API methods have been deliberately
excluded here because they use a slightly different structure and are detailed in Chapter 4.

Where methods show an <<id>> parameter, this must be replaced with a valid Twitter
user identifier, such as a screen name, as explained in the next section.All methods should
be appended with a .<<format>> to denote which format the method should return.

Accessor Methods
These methods require a GET operation for extracting data from Twitter and are split into
the following categories:

n Account methods

The account/rate_limit_status method returns the number of requests that a
user has remaining before his limit is refreshed.At the time of this writing, users
had approximately 150 requests available to them per hour.The account/verify_
credentials method checks whether a user’s credentials, in the form of a username
and password or OAuth tokens, are valid and returns an error or User object (see
Chapter 2) if successful.

www.it-ebooks.info

http://search.twitter.com/
https://api.twitter.com/<<version>>/
https://search.twitter.com/prefix
https://api.twitter.com/2/prefix
http://www.it-ebooks.info/

4 Chapter 1 Working with the Twitter API

n Block methods

The blocks/blocking method returns a collection of users that a user has blocked
on Twitter.The blocks/blocking/ids method returns the same collection of users
as the blocks/blocking method, although you are given only their user identifiers.
The blocks/exists/<<id>> method checks whether a specified user has been
blocked by the authenticated user.

n Direct messages methods

The direct_messages method retrieves a number of messages that a user has
received and works alongside the direct_messages/sent method, which refers to
the messages that the authenticated user has sent.

n Favorites methods

The favorites method returns a number of updates that a user has marked as a
favorite. Favorites in Twitter are similar to bookmarks in a web browser.

n Friendships methods

The friendships/exists method returns a simple true or false if two users are
following each other. In addition, the friendships/show method can be used to
extract more detailed information, such as whether the follow is reciprocated.

n Help methods

The help/test method can be used to check whether the Twitter API is up and
running and does not count toward a user’s rate limit.

n Saved searches methods

The saved_searches method returns a list of search terms that the authenticated
user has saved.A particular search can be retrieved via the saved_searches/show/
<<id>> method.

n Search methods

The search method is used to perform powerful searches and is covered in detail in
Chapter 2.

n Social graph methods

The followers/ids and friends/ids methods return the identifiers of all the fol-
lowers and friends a user has. For users with large numbers of connections, this can
be iterated over to retrieve them all.

n Status methods

The statuses/retweets/<<id>> method retrieves a number of statuses that have
“retweeted” the original <<id>> update.The statuses/show/<<id>> method
simply returns the Status object (see Chapter 2) for a given <<id>>.

n Timeline methods

The statuses/friends_timeline, statuses/home_timeline, statuses/public_
timeline and statuses/user_timeline methods return a collection of Status

www.it-ebooks.info

http://www.it-ebooks.info/

5Twitter API Essentials

objects (see Chapter 2) for a user’s friends, everyone on Twitter, or a specific user. In
addition, mentions (updates that reference a particular user) of the authenticated
user can be retrieved through the statuses/mentions method.Three retweet
methods exist and are covered in Chapter 4: statuses/retweeted_by_me,
statuses/retweets_of_me, and statuses/retweeted_to_me.

n Trends methods

The trends method can be used to return the topics that are currently “trending”
on Twitter.To refine this search, you can also use the trends/current, trends/
daily, and trends/weekly methods. In addition to these three methods,Twitter has
two “local trends” methods—trends/available and trends/location—which
return trends for a given area (for example, the buzz in London or San Francisco).

n User methods

The final set of methods is for returning details about users such as extracting the
details of followers (statuses/followers) and friends (statuses/friends), but
also for specific users via the users/show and users/lookup methods.Twitter
enables you to search for users via the users/search method, and to access sug-
gested users through the users/suggestions and users/suggestions/

<<category>> methods.

The next group of methods is contained within the same categories but is now for cre-
ating, updating, and deleting Twitter data.

Mutator Methods
In addition to the accessor methods described in the preceding section, you might also
want to manipulate Twitter data.These methods require a POST operation for mutating
Twitter data and are split into the following categories of methods:

n Account

Twitter maintains a concise profile for every user that can be updated via the
account/update_profile method.This can be used to update their name, descrip-
tion, and location.You can also update colors and images via the account/update_
profile_background, account/update_profile_colors, and account/update_
profile_image methods. For users who want updates to be sent to their cell
phone, you can set the account/update_delivery_device method. Finally, for
ending a Twitter session, you should use the account/end_session method, which
logs your user out of your application and Twitter.

n Block

One method exists for blocking nuisance users (blocks/create/<<id>>), and
another exists for unblocking should a user change his mind (blocks/destroy/
<<id>>).

www.it-ebooks.info

http://www.it-ebooks.info/

6 Chapter 1 Working with the Twitter API

n Direct messages

Some applications may want to send or delete messages on behalf of their users.The
direct_messages/destroy/<<id>> and direct_messages/new methods exist for
such a use case.

n Favorites

If you want to manage a user’s favorite tweets in your application, both the
favorites/create/<<id>> and favorites/destroy/<<id>> methods should
come in handy. Simply supplying an <<id>> will add or remove a favorite from a
user’s profile.

n Friendships

For managing a user’s friends list, the friendships/create/<<id>> and
friendships/destroy/<<id>> methods are particularly useful for creating and
destroying connections. Like the methods for manipulating favorites, all you need to
provide is an <<id>> of the user to follow or un-follow.

n Notifications

If users request to receive updates to their cell phone, you can use the
notifications/follow/<<id>> and notifications/leave/<<id>> methods to
set which friends they receive updates from.

n Saved searches

Users sometimes may want to store frequently requested searches into their profile
so that they are easy to access at later dates.The saved_searches/create and
saved_searches/destroy/<<id>> methods make this action seamless.

n Statuses

You can use status methods to create statuses (statuses/update) and to delete
them (statuses/destroy/<<id>>).You can also use a status method to retweet a
status (statuses/retweet/<<id>>).

Instead of describing each method (and its parameters) in any more detail in this chap-
ter, this discussion will follow an object-oriented approach, describing each return value as
an “object” (see Chapter 2). From just the methods listed here, you can perhaps start to
understand the size of the Twitter API and get an idea about which methods can be
accessed when connecting to the Twitter API later in this chapter.The remainder of this
section defines the many parameters available to tailor Twitter API method requests. Some
methods require parameters to be set, such as user identifiers or update text, but most do
not (and function just fine).

Twitter API Parameters
Parameters are particularly important because they can be used to customize the outputs
of requests and they affect data sent to the Twitter API in update, create, or delete opera-
tions.Twitter promotes the use of parameters such as since_id, max_id, and cursor in

www.it-ebooks.info

http://www.it-ebooks.info/

7Twitter API Essentials

timeline requests to reduce the burden of requests on its servers (not that a full result set
does not have to be returned each time the method is executed).You can set parameters
by either appending them to the method request if using GET operations such as
https://api.twitter.com/1/users/show.xml?id=markhawker and by adding additional
parameters separated by an ampersand (&) or by including them within POST, PUT, or
DELETE operations.The following section explores both approaches.

Coverage and Deprecation
Not all parameters are available for each of the Twitter API methods and may change over
time. Chapter 2 covers each parameter in detail. Parameters for the Lists API are defined in
Chapter 4 because this is a newer component that uses different naming conventions.

The Twitter API uses UTF-8 character encoding for all parameters, which means that
special characters such as the ampersand (&) and equals (=) characters must be encoded
before being sent to Twitter. Most programming languages contain functions for perform-
ing this conversion for you; for example, htmlentities(). Encoding special characters
will take up more storage than a single-byte character, which means that some requests
may be rejected if they are over Twitter’s 140-character limit.A list of the most popular
parameters that you can use when interacting with the Twitter API have been gathered
and categorized into parameters that affect input and parameters that affect output.
Parameters that can be used in both Search API methods and in other Twitter API
methods are denoted by an asterisk (*) character, whereas parameters exclusive to the
Search API are denoted by a caret (^) character.

Parameters Affecting Input
These parameters affect data that is sent to the Twitter API:

n description, email, location, name, url

These parameters can be any set of alphanumeric characters and should be limited
to a maximum length of 20, 40, 100, 30, and 160 characters, respectively.The email
parameter must be a valid e-mail address.

n follow

Boolean true or false parameter used when you want to enable notifications for a
target user and to follow that user.

n image

Used for setting a user’s profile image or background and requires multipart form
data rather than a URL or raw image bytes.The content-type must be a valid GIF,
JPEG, or PNG image. In addition size restrictions apply: < 2,048 pixels and 800KB
for backgrounds and < 500 pixels and 700KB for profile images.

n in_reply_to_status_id

Used for associating a mention with an original status. If the identifier is not valid,
or not the username mentioned within the update, the parameter is just ignored.

www.it-ebooks.info

https://api.twitter.com/1/users/show.xml?id=markhawker
http://www.it-ebooks.info/

8 Chapter 1 Working with the Twitter API

n lat, long

The latitude and longitude of the update, which must be a number set within the
range -90.0 to +90.0, and where north and east are positive.These parameters are
ignored if outside that range, if not a number, if geo_enabled is disabled, or if they
are not sent in pairs.

n profile_background_color, profile_link_color, profile_
sidebar_border_color, profile_sidebar_fill_color, profile_text_color

Used for setting a user’s profile colors and must be set to a valid hexadecimal value.
Values may be either three or six characters in length; for example, fff and ffffff

are equivalents for the color white.You do not need to include the hash (#) charac-
ter when using this parameter.

n query

The saved search query that the user would like to save.

n source

To help users identify which tool has published a tweet,Twitter has provided this
parameter, which can contain a short string for identifying your application.The
parameter will be returned as a URL-encoded string containing a hyperlink to your
application.Applications that use OAuth have this parameter set by default.

n status, text

Used for setting a user’s status or within a direct message.To avoid truncation, the
string of text should be within 140 characters when encoded.

n tile

Boolean parameter used to set whether a profile background image should be
“tiled” onscreen. Otherwise, it will remain in a fixed position in the top-left corner
of a profile page.

Parameters That Affect Output
These parameters affect data requested from the Twitter API:

n callback*

For client-side JSON requests, the callback parameter can be set to a JavaScript
function name, which will automatically be sent the return data to parse.

n count, page*, rpp^

Twitter imposes pagination limits, but you can combine count and page parameters
to retrieve the maximum number of results. For example, by setting count to 100,
you can iterate through pages 1–32 to extract all available status updates. Note that
the page parameter begins with 1, not 0.These parameters are scheduled to be dep-
recated in favor of cursor-based pagination.The rpp parameter is specific to the
Search API and is akin to the count parameter.The default is 15, but this can be
increased to 100 entries.

www.it-ebooks.info

http://www.it-ebooks.info/

9Twitter API Essentials

You can use the page parameter in conjunction with rpp to extract the maximum
number of results, which is currently 1,500. If you exceed Twitter’s pagination lim-
its, an empty result set will be returned. Currently, the Search API will return results
up to 1.5 weeks in the past, but this might increase or decrease in the future as the
number of updates per day continues to increase.These parameters are set to be
replaced by the cursor parameter.

n cursor

Setting a cursor breaks requests into “pages,” each with 100 results. Providing a
value of -1 begins paging, and the Twitter API will then return next_cursor and
previous_cursor parameters within responses so that you can “scroll” through
requests.Twitter also returns next_cursor_str and previous_cursor_str, which
are the string-based equivalents of the next and previous integers.

n geocode^

For returning updates within a given radius (mi or km) of a latitude/longitude in the
format latitude,longitude,radius. Remember to URL-encode commas (,) to
code %2C.

n id, user, user_a, user_b

When referencing a user, the id parameter can be set to either the integer user_id
or alphanumeric screen_name of a user or an integer identifier of a valid status,
direct message, or saved search.

n lang^, locale^

To search for updates in languages other than English, use this parameter along with
the country’s two-letter ISO 639-1 code.

n lat, long

The latitude and longitude of the location to return trending topics for which must
be a number set within the range -90.0 to +90.0, where north and east are positive.

n max_id*, since_id*

An integer used to return status updates or direct messages that have identifiers
greater or less than that integer. For example, to show all statuses published more
recently than a particular status, say 12345, you set the since_id to 12345.
However, if you want to show all of the statuses that were posted before that partic-
ular status, you set the max_id to 12345 instead.

n per_page

An integer used to control the number of results returned when searching for users.
This must be less than 20.

n q*

The search query or username to be requested, which must be URL-encoded and
no larger than 140 characters.

www.it-ebooks.info

http://www.it-ebooks.info/

10 Chapter 1 Working with the Twitter API

n screen_name, source_screen_name, target_screen_name

The “friendly” alphanumeric name or username of a Twitter user, which is not the
same as a user_id, but it is possible that a screen_name may contain just numeric
characters. In this case, the screen_name parameter would be set to distinguish it
from a user_id. For example, a valid screen_name may be 1234567890, which
could also be interpreted by Twitter as a valid user_id value.

n show_user^

When set to true, this parameter is used to prefix updates with <user>: for
readers that do not display Atom’s author element.The default value for this
parameter is false.

n source_id, target_id, user_id

The numeric identifier for a user, which remains fixed, unlike the screen_name
parameter, which can be changed by the user. It is recommended that you work
with and store this parameter rather than screen_name for your applications.

n woeid

For retrieving location-specific trending topics, a Where on Earth IDentifier
(WOEID) is required.

The final part of this section looks at the return formats accepted by the Twitter API.
With this final piece of knowledge, you can start accessing and interacting with the
Twitter API to retrieve data.

Twitter API Return Formats
For successful requests, you should expect the Twitter API to return data back in the for-
mat that you requested.The Twitter API supports four MIME types for formatting
returned data:

n JSON

JavaScript Object Notation is a lightweight data-interchange format favored in
AJAX applications and is considered a simpler and faster alternative to XML.
Defined in a structured format, JSON is object based, and simple text can be used
to represent many different data types and relationships. It is the favored MIME type
of the twitter-async client library, which is used throughout Chapters 2, 3, and 4.
JSON is the only data format supported by all the Twitter API methods, and so it’s
particularly important for you to understand it.

n RSS and Atom

Really Simple Syndication is a standard form of XML commonly used on blogs and
news sites.Atom was created as an alternative to RSS to accommodate some of the
flaws in the RSS protocol and to improve international support. Both RSS and
Atom are used to accommodate people who want to “subscribe” to Twitter infor-
mation streams, such as the public timeline or a particular user’s timeline.

www.it-ebooks.info

http://www.it-ebooks.info/

11Accessing the Twitter API

n XML

Extensible Markup Language is a general-purpose language for specifying custom
markup languages.The language is extensible in that users can define their own tags
and structure. XML is used to structure data in a way that separates content from
presentation: a guiding principle of Web 2.0.

Not all methods support all of these data formats. Support for each of the methods will
be clearly identified as you explore the Twitter API in more detail in Chapter 2.As a com-
parison to XML, JSON returns a set of “key/value” pairs nested within curly braces. For
example, using the users/show method with the screen_name parameter set to
“markhawker” with JSON output would produce the following, which has been snipped
for brevity because we’re just comparing the two formats:

{

"screen_name":"markhawker", ..., "status":{

"text":"Testing JSON and XML output formats.", ... }

}

Whereas the same users/show request in XML would produce the following:

<user>

<screen_name>markhawker</screen_name>

...

<status>

<text>Testing JSON and XML output formats.</text>

...

</status>

</user>

As you can see, the two formats are comparable and return exactly the same data. It is
easy to “translate” JSON into a PHP object by using the json_decode() function, which
can then be manipulated in your applications.This complexity is handled for you if you
choose to use the twitter-async client library, which handles JSON responses by default.
The basics of the Atom file format are described in Chapter 2 when interacting with the
Search API, although it is not a requirement to use the format at all (because JSON is sup-
ported by all Twitter API methods).

Accessing the Twitter API
Most Twitter API requests require user authentication to access data that is not otherwise
open to the public, such as direct messages or favorites, and to control Twitter rate limit-
ing. Historically,Twitter has implemented Basic Authentication, whereby user credentials
in the form of a username and password combination are sent in the header of a request.
Although this method is easy to use, it is prone to security risks, even if sent over a secure
connection, due to usernames and passwords being transferred across the Internet.A bet-
ter, and safer, method that which implements open authentication (OAuth) has been
developed (see Chapter 3).

www.it-ebooks.info

http://www.it-ebooks.info/

12 Chapter 1 Working with the Twitter API

Authorized Connections
The “Connections” tab inside a Twitter profile lists OAuth applications that users have
authorized on their Twitter account. From there, users can choose the “Revoke Access”
option to de-authorize unwanted applications.

Twitter has not set a deadline for deprecating Basic Authentication, but it is only a mat-
ter of time. For this reason, it is important that you get to grips with OAuth as soon as
possible.You can enable Basic Authentication by either typing the methods into your
browser’s address bar or by using a command-line application known as cURL. For pro-
duction applications, you will require something more sophisticated, and so this section
also details how to make Twitter API requests using a client library called twitter-async. If
you intend to use another client library or programming language, the platform-independ-
ence of cURL should help guide you more than being taught how to interact with the
Twitter API using a specific programming language.The elegance and simplicity of twit-
ter-async makes it a great choice for developing Twitter applications from the ground up.

cURL
The cURL application provides a way of accessing URL resources from the command
line and functions much like a text-based web browser. If cURL is not already installed on
your computer, you can download it for free from http://curl.haxx.se/download.html for
almost any operating system. If you download the version with Secure Sockets Layer
(SSL), you need to ensure that all the necessary files are included in the package.You can
find whether you have all the necessary files by navigating to the directory where you
have saved the cURL files and trying to run the command curl. If you get the following
response, you’ve succeeded:

curl: try "curl --help" or "curl --manual" for more information

If you get an error response saying that your operating system was unable to find a
specified component, it is recommend that you try another download source (of which
there are usually multiple sources for each version of cURL).Alternatively, search for the
component online or check the cURL FAQ (http://curl.haxx.se/docs/faq.html).You can
also run any of the method URLs directly from your web browser, although it is recom-
mended that you change the file format from JSON to XML because browsers display
XML more elegantly inline.The web method works only for accessor methods, those that
pull data from Twitter, and cannot be used for actions such as creating tweets or sending
direct messages, which is why cURL is recommended.

If you are happy to try out cURL, here are some useful commands to help you interact
with the Twitter REST API from the command line:

n curl

After you have navigated to the directory where you installed cURL, you can use
this command in the command line to initiate a cURL request.

www.it-ebooks.info

http://curl.haxx.se/download.html
http://curl.haxx.se/docs/faq.html
http://www.it-ebooks.info/

13Accessing the Twitter API

n -A "Name Of Your User Agent"

This is used to set the user agent of the request.Twitter requires that you set this
parameter so requests can be attributed to particular applications and debugged by
the applications’ respective programmers.

n -d

The –d switch is used to send unencoded data via POST. If you want to send a POST
request without parameters, just use –d "".

n --data-urlencode "status=Hello, world."

The --data-urlencode switch is used to send URL-encoded messages—ones
including special characters and spaces—via a POST request.

n -G

The –G switch is used to send –d data as a GET request so that parameters can be set
in the same way as in the switches described earlier (instead of appending them to
method URLs).

n -H "Expect:"

The Twitter API may reject some cURL requests because it sometimes sets the
header parameter to Expect: 100-continue.This needs to be set to an empty field
to be valid.

n -k

You might receive an error message when using the https:// prefix with requests
stating that the “certificate verify failed.”This verification process can be disabled by
supplying the –k switch.

n -u <<username>>:<<password>>

Used for authentication where <<username>> can be a Twitter screen_name, id or
email, and <<password>>.Although cURL provides some security when sending
these details across the network, they might not be 100% secure. Using cURL with
SSL will help reduce the risk of a third-party phishing your Twitter credentials.

n -v

Standing for verbose, this command-line switch will return the full HTTP headers
and additional server debugging information (for example, port names, user agent,
and cookie details).

As an example, you can run the following via cURL to display the public timeline
(which does not require authentication):

curl –k https://api.twitter.com/2/statuses/public_timeline.xml

www.it-ebooks.info

http://www.it-ebooks.info/

14 Chapter 1 Working with the Twitter API

Returning the timeline of your followers requires user authentication. Remembering
to replace <<username>>:<<password>> with your actual username and password, try the
following:

curl –k –u <<username>>:<<password>>

https://api.twitter.com/2/statuses/home_timeline.xml

Getting more complex, to post an update which requires user authentication and a
status parameter using a POST request, try this:

curl –k –u <<username>>:<<password>> --data-urlencode "status=Testing updating my
status with cURL."

https://api.twitter.com/2/statuses/update.xml

In addition to using the cURL command-line function, code examples using the twit-
ter-async client library are provided in the next section to hint at how the Twitter API
functions inside a programming language such as PHP.

Twitter-async
You can download the twitter-async client library, which requires PHP 5.2+, from
http://github.com/jmathai/twitter-async. It contains just three files, enabling you to exe-
cute (a)synchronous calls to the Twitter API using Basic Authentication or OAuth.The
asynchronous element of twitter-async means that multiple requests can be executed in
parallel, instead of waiting idly for them to be executed serially (for example, sending mul-
tiple direct messages to a number of followers and then returning the results of each back
to the client application).The simplest twitter-async application you can make is one that
makes an unauthenticated call to the Twitter API, such as retrieving search trends:

$twitter = new EpiTwitter();

$trends = $twitter->get_trends();

echo $trends->responseText;

The preceding code shows the creation of the $twitter object, which is one of three
methods of initiating a request.The second is Basic Authentication, which is achieved by
supplying username and password parameters within the request. For example:

$user = $twitter->get_basic("/account/verify_credentials.json", null, "username",
"password");

The third method is using OAuth, discussed in detail in Chapter 3, which is the use of
a consumer key and consumer secret.The EpiTwitter object that was just created has
only two methods, one of which is constructing it! The second is executing the Twitter
API methods, which use the following naming convention:

n The operation in lowercase, such as get, post, or delete, plus an underscore (_).
Operations that end in _basic are specifically for Basic Authentication or no au-
thentication and must not be used for OAuth.

www.it-ebooks.info

http://github.com/jmathai/twitter-async
http://www.it-ebooks.info/

15Accessing the Twitter API

n The path to the Twitter API method that is in lowercase except for when there
needs to be a forward slash (/), which is denoted by a capital letter (for example,
usersShow). Underscores must be retained where appropriate, such as in the
account/verify_credentials method.

n Parameters can be added by including an array inside the request, as follows:
usersShow(array("screen_name" => "markhawker")).

For example, the account/verify_credentials method can be called by using the
following:

$response = $twitter->get_basic("account/verify_credentials.json",

null, <<username>>, <<password>>);

Or, if you are using OAuth, you could use this:

$response = $twitter->get_accountVerify_credentials();

The client library also supports image uploading and exposing response headers, and it
provides additional functionality for exception handling.The following code can be used
to initiate the twitter-async library, assuming that it is stored within a directory called
twitter-async, which should be above your test page, which can be saved as index.php:

<?php

require_once "twitter-async/EpiCurl.php";

require_once "twitter-async/EpiOAuth.php";

require_once "twitter-async/EpiTwitter.php";

$username = "INSERT YOUR TWITTER USERNAME"; // Edit Me

$password = "INSERT YOUR TWITTER PASSWORD"; // Edit Me

$twitter = new EpiTwitter();

try {

$response = $twitter->get_basic("/account/verify_credentials.json",

null, $username, $password);

if($response->code == 200) {

echo "<p>Username: ".$response->screen_name."</p>";

echo "<p>Description: ".$response->description."</p>";

}

}

catch(EpiTwitterException $e){ echo $e->getMessage(); exit; }

catch(Exception $e) { echo $e->getMessage(); exit; }

?>

The preceding code uses Basic Authentication, which you can replace with OAuth
code after reading through Chapter 3.You should replace the $username and $password

parameters with your own Twitter credentials.The example shows how a GET request can
be initiated using your Twitter credentials and how exceptions can be handled. If the
request for verifying a user’s credentials is successful, a status code 200 will be returned
along with a User object (see Chapter 2), which is why you can extract their

www.it-ebooks.info

http://www.it-ebooks.info/

16 Chapter 1 Working with the Twitter API

screen_name and description.With a verified account, you can then extend the exam-
ple index.php file to also retrieve a user’s latest friends by using the following:

1 echo "<h1>Latest Friends</h1>";

2 echo "";

3 $friends = $twitter->get_basic("/statuses/friends.json", null,

$username, $password);

4 foreach($friends as $friend) {

5 echo "".$friend->screen_name.": ".$friend->status->text."";

6 }

7 echo "";

Another way to access the $friends details is to use a for() loop and access each
friend using $friends[$i]["screen_name"], ensuring that your counter is set to $i.
Notice that you can also extract a user’s status via the embedded Status object accessible
via $friend->status->text.The second parameter for this example was set to null, but
you could also insert an array containing the parameters that you want to set. If you want
to extract all the user’s friends, you must set “cursoring” by adding array("cursor" =>
-1) and then extracting the value of the next cursor and rerunning the request:

1 echo "<h1>All Friends</h1>";

2 echo "";

3 $cursor = -1;

4 do {

5 $friends = $twitter->get_basic("/statuses/friends.json",

array("cursor" => $cursor), $username, $password);

6 foreach($friends->users as $friend) {

7 echo "".$friend->screen_name.": ".$friend->status->text."";

8 }

9 $cursor = $friends->next_cursor_str;

10 } while ($cursor > 0);

11 echo "";

This do-while() loop initiates cursoring on Line 3 and then proceeds to return
friends’ details until the cursor returns 0, which means that all the user’s friends have been
returned.The foreach() loop should also be updated to replace $friends with
$friends->users because cursoring places subsequent results within an array called
users.A final example uses the asynchronous capabilities of twitter-async, which delays
accessing results from requests for as long as possible.This might prove useful if you want
to update a number of user accounts simultaneously or send multiple direct messages:

$twitter->useAsynchronous(true);

$users = array("user1", "user2", "user3", "user4"); // Edit Me

$responses = array();

foreach($users as $user) {

$responses[] = $twitter->post_basic("/direct_messages/new.json",

www.it-ebooks.info

http://www.it-ebooks.info/

17Accessing the Twitter API

array("user" => $user, "text" => "Hey, {$user}. What’s up?"),

$username, $password);

}

echo "<h1>Direct Messages</h1>";

echo "";

foreach($responses as $response) {

echo "Direct Message: {$response->id}";

}

echo "";

This code, alongside the other elements of index.php, should be uploaded to your
web server.You’ll need all this in Chapter 2 when you experiment with more of the
Twitter API methods.

Twitter API Rate Limiting
Rate limiting is Twitter’s way of controlling and regulating access to their servers, to pro-
vide equitable performance to all application developers and users.You may have seen the
Fail Whale when you tried to access Twitter on the Web, and perhaps you’ve also seen
“Rate Limit Exceeded” errors appearing on third-party applications that you may be
using to access Twitter.This was their server’s way of saying they were overcapacity and
needed a brief pause for breath.

Two different limits apply to the number of requests per hour made to the Twitter API.
For the Twitter API, the default rate is 150 requests per hour, through a mixture of
account- and IP-based rate limiting.Therefore, if you reach the Twitter API limit on one
third-party application, other applications will also be subject to that limit. In which case,
you should access your account through the Twitter web client until your limits have been
reset.The Search API is limited by IP address, but the rate limits are considered sufficient
to not warrant a number being released on the number of requests per hour.

POST and GET Rate Limiting
Rate limiting affects only methods that request information via a GET request. This means
that methods that use the POST, PUT, or DELETE requests to submit, update, or delete data
(such as tweets) are not affected. Requests to the account/rate_limit_status method
to check limit status are not charged, to provide developers access to how many free
requests a user has.

If you think your application might exceed those rate limits—for instance, if you
intend to send out multiple messages or tweets—you can request to be “whitelisted” by
filling out a request form (http://twitter.com/help/request_whitelisting) to increase your
limits to 20,000 requests per hour.This process may take up to a week, but you will
receive confirmation from the Twitter team if you have been whitelisted.Applications that
repeatedly abuse their rate limits can also be “blacklisted” and are required to e-mail
Twitter Support with further details as to why they keep reaching the limits.You can
avoid the rate limiter in several ways, including caching results, prioritizing active users,
and reducing the number of times a particular search is requested.

www.it-ebooks.info

http://twitter.com/help/request_whitelisting
http://www.it-ebooks.info/

18 Chapter 1 Working with the Twitter API

Twitter API Error Handling
For error handling, methods that require a particular request will return a meaningful sta-
tus code indicating whether the request was successful or not. If you’ve ever encountered
a “404 – Page Not Found” or a “501 – Internal Server Error,” you’ve experienced status
codes.These are just fancy “user-friendly” ways to present a status code error back to the
browser in a meaningful way.The Twitter API uses a similar method of returning response
codes and friendly error messages should a problem arise with a request.

Twitter uses the following three-digit codes to report whether a request was successful
and provides a description of the error encountered within a construct known as a Hash
object (see Chapter 2), which is a simple structure containing the error code and a
description from the Twitter API:

n 200 – OK

Your request was successful, and so you should receive back exactly what you
requested from the Twitter API in the data format that you specified.

n 304 – Not Modified

There was no new data to return, and so you already have the most up-to-date
data.This will occur if you make a request to a timeline in a period sooner than
once per minute.

n 400 – Bad Request

The request was invalid.This could be because a method that required parameters
may have been missed, formatted incorrectly, or a rate limit has been exceeded.

n 401 – Not Authorized

Authentication failed for the user details you provided.This means that a password
has been supplied incorrectly. Check that it is correct and try again.

n 403 – Forbidden

The request was understood, but it was refused. Check the returned error text for
an explanation.This may be due to rate limits being reached.

n 404 – Not Found

The method URL requested is invalid or does not exist.

n 406 – Not Acceptable

The method was formatted incorrectly when being requested from the Search API.
Check that you have properly encoded the URL.

n 500 – Internal Server Error, 502 – Bad Gateway, 503 – Service Unavailable

Something is broken with Twitter; try again later. It may be that it is down or being
upgraded, or perhaps its servers are overloaded with requests.

www.it-ebooks.info

http://www.it-ebooks.info/

19Summary

As an example,Twitter API error messages are returned in the requested format with
an error message. For example, an XML error may look like this:

<?xml version="1.0" encoding="UTF-8"?>

<hash>

<request>/direct_messages/destroy/456.xml</request>

<error>No direct message with that ID found.</error>

</hash>

When you are using twitter-async, you can retrieve an error message from a response
by using the $response->code and $response->error variables to return both the status
code and error message, respectively. It is assumed that any request that does not return a
status code 200 will need to be reformatted and requested again.This model makes it
simple to enclose a request within a conditional statement to test for this occurrence.You
can then choose whether to return this error message directly back to users or return a
meaningful response indicating that they must resubmit their request.The most common
error message will be that a rate limit will have been exceeded, and so sending a request
for this data before submitting the response may be preferable, storing a cached value for
the number of remaining requests for the duration of the session so that it is not being
requested each time.

Summary
This chapter provided an overview of the Twitter API and its many methods, parame-

ters, and return formats.Two tools that you can use to access the Twitter API were de-
scribed: a command-line tool, cURL; and a PHP client library called twitter-async, which
is used throughout Chapters 2, 3, and 4.This chapter also briefly explained how Twitter
handles errors by returning meaningful status codes with requests, which you can use to
either manipulate the data or manage a failed request.The next chapter identifies the
types of data you can expect to retrieve from the Twitter API, including user data and
status updates.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

2
Diving Into the

Twitter API Methods

Chapter 1,“Working with the Twitter API,” explored the Twitter application program-
ming interface and provided essential information you need when interacting with the
Twitter API, such as return formats and response codes.The Twitter API is split into sev-
eral method categories, but these are grouped together in this chapter, except for the
Retweet API, Lists API, and Geolocation API (which are explored in Chapter 4,
“Extending the Twitter API: Retweets, Lists, and Location”).The Twitter API contains a
number of methods, including ones for sending updates, direct messages, following and
unfollowing users, and account management.The Search API contains methods for
extracting search and trend information from Twitter as a means of filtering, finding, and
sorting the huge volumes of data.

This chapter explores the numerous Twitter API methods in detail, illustrating them
using an object-oriented approach focusing on their return values, and giving examples of
each alongside sample output and source code.You can test the examples using the com-
mand-line cURL interface or via twitter-async, as described in Chapter 1. If you do not
want to use cURL, you can access many of the Twitter API methods directly via the
Twitter web interface by typing the commands into your web browser’s address bar and
providing your Twitter username and password when prompted.

Twitter API Methods

Beware, Deprecation!
As the Twitter API evolves, you may find that some attributes become deprecated. Instead of
removing the attributes from their outputs, Twitter will set them to null where applicable.
There is also the possibility that methods will become deprecated, which will result in an
error being returned for method calls.

www.it-ebooks.info

http://www.it-ebooks.info/

22 Chapter 2 Diving Into the Twitter API Methods

+Attribute 1: Type
+Attribute 2: Type
#Attribute 3: Type

+<<HTTP_REQUEST>> Method 1(Parameter 1:Type,
 Parameter 2:Type=20): Return File Format
-<<HTTP_REQUEST>> Method 2(): Return File Format

Object Name

Figure 2.1 Skeleton that will be used to
describe Twitter API objects.

To understand the methods that the Twitter API provides in conjunction with the param-
eters described in Chapter 1, it is important to explore the various outputs that you can
expect when interacting with the service.These return “objects” include several useful
pieces of data about a status or direct message, a user, or even an error or simple Twitter
response.There are eight main objects in the Twitter API:

n User objects

n Status objects

n Direct Message objects

n Saved Search objects

n ID objects

n Relationship objects

n Response objects
n Hash objects

Alongside sample XML responses for each of these methods to illustrate these return
objects, a form of UML (Universal Modeling Language, a universal language and diagram-
ming technique) is used to illustrate these return objects and the methods that can be used
to expose them. Figure 2.1 provides an example of an object and the conventions that
have been adopted in this chapter.

Several conventions have been adopted to fit in with the nature of the Twitter API, as
follows:

n Objects are divided into three “compartments”: a class name; attributes, which
include types such as integer, string, or true/false Boolean values (and attributes
can also be other objects; for example, in some instances, a User object also includes a
Status object); and operations or methods, which will return back that object.

www.it-ebooks.info

http://www.it-ebooks.info/

23Twitter API Methods

n #element defines a protected element that requires user authentication for it to be
returned (for example, when users have protected their status). Methods denoted
with a hash (#) character mean that they can be executed without authentication
but may not return all values.

n -method defines a private method that must be executed with user authentication
or will fail and return an error Hash object.

n +method defines a public method that does not require any user authentication to
return all data.

n <<HTTP_OPERATION>> denotes what operation is required by the method, which can
be one of GET, POST, PUT, or DELETE.

n Parameters are enclosed in brackets, and default values are identified with an equals
(=) character. For example, count=20 means that the default value for the count
parameter is 20. So, if the parameter is omitted, 20 values will be returned.

n Return formats appear after the method name and colon (:) and must be set to one
of json, xml, atom, or rss.

For each of the Twitter API objects, you’ll see an illustration of the object, a descrip-
tion, and example of what values to expect back from the service. In Chapter 1, a sample
file was created, index.php, which is extended in this chapter with more calls to the
Twitter API.

User Objects
User objects (see Figure 2.2) are full of interesting data about an individual or a set of
individuals when wrapped inside a users array, such as when using statuses/friends or
blocks/blocking methods.With any of the methods that use cursors for pagination, you
should expect the return format to look like the following skeleton code block, which
includes a collection of User objects plus indicators of the values of the next and previous
cursors, which can be used to retrieve subsequent results:

<users_list>

<users type="array">...</users>

<next_cursor>...</next_cursor>

<previous_cursor>...</previous_cursor>

</users_list>

User objects are also embedded within Status objects to help reduce the number of
calls made to the Twitter API. In this instance, they do not contain the embedded Status
object as shown above. In Direct Message objects, there are also sender and recipient

objects that are exactly the same as User objects but without the embedded Status object,
which is why it defaults to a null value.

www.it-ebooks.info

http://www.it-ebooks.info/

24 Chapter 2 Diving Into the Twitter API Methods

User

-<<GET>> account/verify_credentials(): json/xml
-<<GET>> blocks/blocking(page:Integer): json/xml
-<<GET>> blocks/exists/<<id>>(): json/xml
-<<GET>> statuses/followers(cursor:Integer,
 id:String,screen_name:String,
 user_id:Integer): json/xml
-<<GET>> statuses/friends(cursor:Integer,
 id:String,screen_name:String,
 user_id:Integer): json/xml
#<<GET>> users/lookup(screen_name:String,
 user_id:Integer): json/xml
#<<GET>> users/search(page:Integer,per_page:Integer=20,
 q:String): json/xml
#<<GET>> users/show(id:String,screen_name:String,
 user_id:Integer): json/xml
-<<POST>> account/update_delivery_device(device:String): json/xml
-<<POST>> account/update_profile(description:String,
 email:String,
 location:String,
 name:String,
 url:String): json/xml
-<<POST>> account/update_profile_background_image(image:Image,
 tile:Boolean=false): json/xml
-<<POST>> account/update_profile_colors(profile_background_color:String,
 profile_link_color:String,
 profile_sidebar_border_color:String,
 profile_sidebar_fill_color:String,
 profile_text_color:String): json/xml
-<<POST>> account/update_profile_image(image:Image): json/xml
-<<POST>> blocks/create/<<id>>(): json/xml
-<<POST>> friendships/create/<<id>>(follow:Boolean): json/xml
-<<POST>> notifications/follow/<<id>>(): json/xml
-<<POST>> notifications/leave/<<id>>(): json/xml
-<<POST>> report_spam(id:String,screen_name:String,
 user_id:Integer): json/xml
-<<POST/DELETE>> blocks/destroy/<<id>>(): json/xml
-<<POST/DELETE>> friendships/destroy/<<id>>(): json/xml

+created_at: Date
+description: String
+favourites_count: Integer
+followers_count: Integer
+following: Boolean = null
+friends_count: Integer
+geo_enabled: Boolean = false
+id: Integer
+location: String
+name: String
+notifications: Boolean = null
+profile_background_color: String
+profile_background_image_url: String
+profile_background_title: Boolean
+profile_image_url: String
+profile_link_color: String
+profile_sidebar_border_color: String
+profile_sidebar_fill_color: String
+profile_text_color: String
+protected: Boolean
+screen_name: String
#status: Status = null
+statuses_count: Integer
+time_zone: String
+url: String
+utc_offset: String
+verfified: Boolean = false

Figure 2.2 Twitter API User object including Status object.

An example of a User object returned by requesting the
https://api.twitter.com/1/users/show.xml?id=markhawker method currently contains the
following keys and values in XML:

<user>

<id>15397909</id>

<name>Mark Hawker</name>

<screen_name>markhawker</screen_name>

<location>West Yorkshire, United Kingdom</location>

<description>Health informatics researcher and social application

developer. Creator of @omnee.</description>

<profile_image_url>http://a3.twimg.com/profile_images/

234974305/me_normal.jpg</profile_image_url>

<url>http://markhawker.tumblr.com/</url>

<protected>false</protected>

<followers_count>1139</followers_count>

<profile_background_color>001313</profile_background_color>

www.it-ebooks.info

https://api.twitter.com/1/users/show.xml?id=markhawker
http://www.it-ebooks.info/

25Twitter API Methods

<profile_text_color>00131e</profile_text_color>

<profile_link_color>1d8395</profile_link_color>

<profile_sidebar_fill_color>e3f0f2</profile_sidebar_fill_color>

<profile_sidebar_border_color>1d8395</profile_sidebar_border_color>

<friends_count>185</friends_count>

<created_at>Fri Jul 11 23:02:14 +0000 2008</created_at>

<favourites_count>131</favourites_count>

<utc_offset>0</utc_offset>

<time_zone>London</time_zone>

<profile_background_image_url>http://a3.twimg.com/profile_background_

images/35364101/collage.gif</profile_background_image_url>

<profile_background_tile>true</profile_background_tile>

<statuses_count>13859</statuses_count>

<notifications/>

<geo_enabled>false</geo_enabled>

<verified>false</verified>

<following/>

<status>...</status>

</user>

Notice the Status object that is returned inside the status element for all nonpro-
tected accounts, and keys, such as <notifications/>, which contain no data and use a
shorthand opening and closing tag.The created_at key is used to show when an individ-
ual first started using Twitter. In this case, it was on July 11, 2008. By default, the majority
of methods will return 100 users per page, so the cursor parameter is required to return
details of all followers. Here are two examples using the twitter-async library and the sam-
ple code created in Chapter 1:

$user = $twitter->get_basic("/users/show.json", array("screen_name" =>

"markhawker"), $username, $password);

// $user = $twitter->get_usersShow(array("screen_name" => "markhawker"),

$username, $password);

$followers = $twitter->get_basic("/statuses/followers.json",

array("cursor" => -1, "screen_name" => "markhawker"), $username,

$password);

// $followers = $twitter->get_statusesFollowers(

array("cursor" => -1, "screen_name" => "markhawker"), $username,

$password);

If successful, each request should return a User object or an array of User objects,
which can be accessed using a foreach($followers->users as $follower) or for()
loop. Note that there are two distinct ways of forming the queries using either
get_basic() or by using the Twitter API method name in the name itself, which will
return equivalent results. In some instances, you might want to use the longhand version
to extract data other than in JSON format. From the $followers data, the relevant
next_cursor_str and previous_cursor_str parameters can be retrieved by using
$followers->next_cursor_str or $followers->previous_cursor_str, respectively,

www.it-ebooks.info

http://www.it-ebooks.info/

26 Chapter 2 Diving Into the Twitter API Methods

which was demonstrated in Chapter 1. Each element of the $user can be accessed by
using $user-> followed by the name of the element; for example, $user->id or $user-
>friends_count. If you want to access the Status object, you just use $user->status-
>id, where the id field can be replaced by any of the elements contained within the
Status object (as described in the following section).

The two variants to these methods are the users/suggestions and users/

suggestions/<<category>> methods, which were not included in Figure 2.2.They can
be used to access Twitter’s suggested user lists—such as users who are recommended from
Business, Health, or Technology categories—and can be accessed as follows:

$users = get_basic("/users/suggestions/health.json", null, $username,

$password);

echo "";

foreach($users->users as $user) {

echo "".$user->screen_name."";

}

echo "";

If you are unsure of category names, you can use the users/suggestions method to
extract a list of categories and their associated “slugs,” which you can then use in the
users/suggestions/<<category>> method.

Status Objects
Status objects (see Figure 2.3) contain data about the user’s latest status update as well as
geolocation data, which is explored in Chapter 4.The truncated key denotes that a status
update was larger than the 140-character limit imposed by Twitter and has been truncated.
The favorited key denotes whether the authenticated user has bookmarked that update,
which can be accessed using any of the favorites methods. Other information contained
within Status objects is the source of the update and information as to whether it was
also a mention.

Each Status object contains a User object minus its nested Status object. Multiple
Status objects are enclosed inside a statuses array and can be accessed in the same way as
the collection of User objects.An example of a Status object returned by requesting the
https://api.twitter.com/2/statuses/show.xml?id=5327214528 method currently contains
the following keys and values in XML:

<status>

<created_at>Sun Nov 01 01:08:45 +0000 2009</created_at>

<id>5327214528</id>

<text>Now, I really must sleep. Good night.</text>

<source>

Gravity</source>

<truncated>false</truncated>

<in_reply_to_status_id/>

<in_reply_to_user_id/>

www.it-ebooks.info

https://api.twitter.com/2/statuses/show.xml?id=5327214528
http://www.it-ebooks.info/

27Twitter API Methods

Status
+created_at: Date
+favorited: Boolean
+geo: String
+id: Integer
+in_reply_to_screen_name: String
+in_reply_to status_id:Integer
+in_reply_to_user_id: String
+source: String
+text: String
+truncated: Boolean
+user: User = null

#<<GET>> favorites(id:String,page:Integer): atom/json/rss/xml
-<<GET>> statuses/friends_timeline(count: Integer=20,
 max_id:Integer,
 page:Integer,
 since_id:Integer): atom/json/rss/xml
-<<GET>> statuses/home_timeline(count:Integer=20,
 max_id:Integer,
 page:Integer,
 since_id:Integer): atom/json/rss/xml
-<<GET>> statuses/mentions(count:Integer=20,
 max_id:Integer,
 page:Integer,since_id:Integer): atom/json/rss/xml
+<<GET>> statuses/public_timeline(): atom/json/rss/xml
-<<GET>> statuses/retweeted_by_me(count:Integer=20,
 max_id:Integer,
 page:Integer
 since_id:Integer): atom/json/rss/xml
-<<GET>> statuses/retweets_of_me(count:Integer=20,
 max_id:Integer,
 page:Integer
 since_id:Integer): atom/json/rss/xml
-<<GET>> statuses/retweeted_to_me(count:Integer=20,
 max_id:Integer,
 page:Integer
 since_id:Integer): atom/json/rss/xml
-<<GET>> statuses/retweets(count:Integer,
 id:Integer): json/xml
#<<GET>> statuses/show/<<id>>(): json/xml
-<<GET>> statuses/user_timeline(id:String,
 screen_name:String,
 user_id,count:Integer=20,
 max_id:Integer,
 page:Integer,
 since_id:Integer): atom/json/rss/xml
-<<POST>> favorites/create/<<id>>(): json/xml
-<<POST>> statuses/update(in_reply_to_status_id:Integer,
 lat:String,long:String,
 status:String): json/xml
-<<POST/DELETE>> favorites/destroy/<<id>>(): json/xml
-<<POST/DELETE>> statuses/destroy/<<id>>(): json/xml
-<<POST/PUT>> statuses/retweet/<<id>>(): json/xml

Figure 2.3 Twitter API Status object including User and Retweet objects.

<favorited>false</favorited>

<in_reply_to_screen_name/>

<geo/>

<user>...</user>

</status>

You will notice that within some Status objects (such as the statuses/home_

timeline method, which replaces the deprecated statuses/friends_timeline) there
are Retweet objects denoting that a particular status was retweeted.These are explained
in more detail in Chapter 4. Like User objects, these may not be included in all situa-
tions, and so they may be null or unavailable. Here is an example using the twitter-async
library to update a status:

$status = $twitter->post_basic("/statuses/update.json",

array("status" => "This is a test status."), $username, $password);

Again, this could also be achieved by using the $twitter->post_statusesUpdate()
convention with equivalent outcomes.The results of this request can be extracted by

www.it-ebooks.info

http://www.it-ebooks.info/

28 Chapter 2 Diving Into the Twitter API Methods

either using $status->responseText or by accessing fields directly such as $status->id,
which returns the identifier for the new status update.

Direct Message Objects
Direct Message objects (see Figure 2.4) contain all you need to know about the message,
the sender, and the recipient.The sender and recipient elements are User objects
without embedded Status objects, which were discussed earlier in this chapter.This is one
of the advantages of adopting an object-oriented approach: Structures can be reused mul-
tiple times.

+created_at: Date
+id: Integer
+recipient: User
+recipient_id: Integer
+recipient_screen_name: String
+sender: User
+sender_id: Integer
+sender_screen_name: String
+text: String

Direct Message

-<<GET>> direct_messages(count:Integer=20,
 max_id:Integer,page:Integer,
 since_id:Integer): atom/json/rss/xml
-<<GET>> direct_messages/sent(count:Integer=20,
 max_id:Integer,
 page:Integer,
 since_id:Integer): atom/json/rss/xml
-<<POST>> direct_messages/new(user:String,
 screen_name:String,
 user_id:Integer,
 text:String): json/xml
-<<POST/DELETE>> direct_messages/destroy/<<id>>(): json/xml

Figure 2.4 Twitter API Direct Message object.

A sample Direct Message object that can be obtained from any of the methods from
Figure 2.4 looks like this:

<direct_message>

<id>154217109</id>

<sender_id>15397909</sender_id>

<text>Testing out the @twitterapi and Direct Message Objects.</text>

<recipient_id>XXXXXXXX</recipient_id>

<created_at>Wed Jun 03 19:49:27 +0000 2009</created_at>

<sender_screen_name>markhawker</sender_screen_name>

<recipient_screen_name>XXXXXXXX</recipient_screen_name>

<sender>...</sender>

<recipient>...</recipient>

</direct_message>

www.it-ebooks.info

http://www.it-ebooks.info/

29Twitter API Methods

+created_at: Date
+id: Integer
+name: String
+position: Integer
+query: String

Saved Search

-<<GET>> saved_searches(): json/xml
-<<GET>> saved_searches/show/<<id>>(): json/xml
-<<POST>> saved_searches/create(query:String): json/xml
-<<POST/DELETE>> saved_searches/destroy/<<id>>(): json/xml

Figure 2.5 Twitter API Saved Search object.

Multiple Direct Message objects are enclosed within a direct-messages array, and
individual message elements are listed as direct_message. Notice the subtle use of an
underscore (_) for individual elements and a hyphen (-) for the array name if you are
looking to parse results using regular expressions or other means.As an example, you
should add the following code to your index.php file:

echo "<h1>Direct Message Objects</h1>";

$direct_messages = $twitter->get_direct_messages(array("count" => 2),

$username, $password);

echo "";

foreach($direct_messages as $direct_message) {

echo "".$direct_message->text."";

}

echo "";

What this code will print out is the text from the authenticated user’s latest two direct
messages.You can modify this by adjusting the count parameter and by adding a page
parameter to view older direct messages.

Saved Search Objects
Four methods enable you to manipulate information about searches that users have saved
to their profile. For example, a search could be saved for a specific keyword (for example,
healthcare), which saves the user time inputting the keyword multiple times across dif-
ferent applications to perform the same search. Saved Search objects (see Figure 2.5) con-
tain five keys for defining a search query that a user has saved: id, name, query, position,
and created_at.

www.it-ebooks.info

http://www.it-ebooks.info/

30 Chapter 2 Diving Into the Twitter API Methods

+id: Integer

ID

-<<GET>> blocks/blocking/ids(cursor:Integer): json/xml
#<<GET>> followers/ids(cursor:Integer,id:String,
 screen_name:String,
 user_id:Integer): json/xml
#<<GET>> friends/ids(cursor:Integer,id:String,
 screen_name:String,user_id:Integer): json/xml

Figure 2.6 Twitter API ID object.

A sample Saved Search object in XML looks like this:

<saved_search>

<id>333753</id>

<name>healthcare</name>

<query>healthcare</query>

<position/>

<created_at>Sun Jun 07 13:36:37 +0000 2009</created_at>

</saved_search>

The position key denotes the absolute position of a Saved Search object in the
saved_searches array, which is returned from the saved_searches method.This value
can be empty or an integer starting from 1. In the instance above, it is empty because it is
the only saved search available.To retrieve a collection of saved searches, you should mod-
ify index.php to include the following:

echo "<h1>Saved Search Objects</h1>";

$saved_search = $twitter->post_saved_searchesCreate(array("query" =>

"test"), $username, $password);

echo "<p>Saved Search: ".$saved_search->id."</p>";

$saved_searches = $twitter->get_saved_searches(null, $username,

$password);

print_r($saved_searches->responseText);

$delete_saved_search = $twitter->post_basic("/saved_searches/destroy/

{$saved_search->id}.json", null, $username, $password);

echo "<p>Deleted Search: ".$delete_saved_search->id."</p>";

The preceding code will create a Saved Search object using the keyword test and
then prints out all the authenticated user’s saved searches.The test search is then deleted,
and its identifier is printed.

ID Objects
ID objects (see Figure 2.6) contain multiple id elements wrapped inside an ids array and
a cursor-based id_list.

www.it-ebooks.info

http://www.it-ebooks.info/

31Twitter API Methods

The two “social graph” methods friends/ids and followers/ids used for retrieving
all followers and people who a user is following are more lightweight than the
statuses/friends and statuses/followers methods, in that they return only a list of
identifiers, not detailed information about the set of users:

<id_list>

<ids>

<id>XXXXXXXX</id>

<id>XXXXXXXX</id>

<id>XXXXXXXX</id>

...

</ids>

<next_cursor>0</next_cursor>

<previous_cursor>0</previous_cursor>

</id_list>

Remember to enable “cursoring” by setting cursor=-1 in the friends/ids or
followers/ids method calls; otherwise, no results will be returned. In the preceding
example, the next_cursor and previous_cursor elements are set to 0 because all the
data was successfully returned by the query.To extract all of a user’s friends, you use the
following code:

echo "<h1>ID Objects</h1>";

$cursor = -1;

do {

$ids = $twitter->get_basic("/friends/ids.json", array("cursor" =>

$cursor, "screen_name" => $username), $username, $password);

foreach($ids->ids as $id) {

echo "".$id."";

}

$cursor = $ids->next_cursor_str;

} while ($cursor > 0);

For this method to work, you must set the initial cursor parameter to -1; otherwise,
Twitter will return an error.As with other methods that require cursors, the twitter-async
library adds next_cursor_str and previous_cursor_str elements as the other cursor
elements are converted to floating-point numbers by PHP.

Relationship Objects
Relationship objects are generated from the method friendships/show for detailing the
relationship between two users known as the source and target.With authentication,
the source parameter is attributed to the logged-in user unless either a source_screen_
name or source_id is provided.A target user must be supplied by setting the

www.it-ebooks.info

http://www.it-ebooks.info/

32 Chapter 2 Diving Into the Twitter API Methods

target_screen_name of target_id parameters.A sample Relationship object using the
friendships/show method is shown here:

https://api.twitter.com/2/friendships/show.xml?target_screen_name=socprog&

source_screen_name=markhawker

The XML response from this query looks like this:

<relationship>

<target>

<followed_by type="boolean">true</followed_by>

<following type="boolean">true</following>

<screen_name>socprog</screen_name>

<id type="integer">109892189</id>

</target>

<source>

<followed_by type="boolean">true</followed_by>

<following type="boolean">true</following>

<notifications_enabled nil="true"/>

<screen_name>markhawker</screen_name>

<blocking type="boolean">false</blocking>

<id type="integer">15397909</id>

</source>

</relationship>

The notifications_enabled and blocking elements will be empty unless user
authentication is provided because this is not publicly available data.This can be re-created
using the sample file by adding the following:

echo "<h1>Relationship Objects</h1>";

$relationship = $twitter->get_basic("/friendships/show.json",

array("target_screen_name" => "socprog", "source_screen_name" =>

$username), $username, $password);

print_r($relationship->responseText);

In this example, the source_screen_name is set to your own username, but this can be
the credentials of any Twitter user.The target_screen_name is set to this book’s account,
but could be any valid user identifier.

Response Objects
Similar to ID objects in that they only return one element, Response objects return a
Boolean value of true or false.Two methods return this response: friendships/exists
and help/test, returning a <friends>true</friends> or <ok>true</ok>.The
friendships/exists uses a GET operation and both user_a and user_b parameters to be
set; these parameters are screen names or identifiers of users, which requires authentication
for protected users.The help/test method does not require any parameters and uses a
GET operation:

echo "<h1>Response Objects</h1>";

www.it-ebooks.info

http://www.it-ebooks.info/

33Twitter API Methods

$friendship = $twitter->get_basic("/friendships/exists.json",

array("user_a" => $username, "user_b" => "socprog"), $username, $password);

echo $friendship->responseText;

The $friendship->responseText should return either true or false for this method
depending on whether you follow this book’s Twitter account.

Hash Objects
The final sets of objects are Hash objects.Two methods will return a Hash object as a sign
of success (blocks/exists/<<id>> and account/end_session), whereas the other meth-
ods return a Hash object to notify you of an error.The blocks/exists/<<id>> and
account/verify_credentials methods both return a Hash object to signify that a block
or user does not exist.Although you can check the status codes for successful and unsuc-
cessful requests, it is possible to use the Hash object to get a description of the particular
problem. Hash objects contain two elements error and request. For example, executing
the account/end_session method will return the following:

<hash>

<error>Logged out.</error>

<request>/account/end_session.xml</request>

</hash>

Other popular error messages include “Not found,”“Could not authenticate you,” and
“This method requires authentication.” Even though other error messages may be added
in the future, they will conform to the key/value pair given above.The
account/rate_limit_status method is the only exception to this rule; it returns the
following response:

<hash>

<remaining-hits type="integer">86</remaining-hits>

<hourly-limit type="integer">100</hourly-limit>

<reset-time type="datetime">2009-06-01T21:05:01+00:00</reset-time>

<reset-time-in-seconds type="integer">1243890301</reset-time-in-seconds>

</hash>

The key remaining-hits indicates the number of requests left to the Twitter API until
the counter is reset and should always be less than or equal to the hourly-limit. Both
reset-time and reset-time-in-seconds are two ways of saying when the user’s rate
limit will be reset. First, reset-time is a Greenwich mean time (GMT) datetime stamp
in the format YYYY-MM-DDTHH:MM:SS+00:00, and reset-time-in-seconds is the equivalent
UNIX timestamp measured in seconds since January 1, 1970. By subtracting the current
UNIX timestamp from reset-time-in-seconds, you will see that it is equivalent to
reset-time.To access these elements programmatically, you use the following:

echo "<h1>Hash Objects</h1>";

$rate_limit_status = $twitter>get_basic("/account/rate_limit_status.json",

www.it-ebooks.info

http://www.it-ebooks.info/

34 Chapter 2 Diving Into the Twitter API Methods

null, $username, $password);

echo "<p>Remaining Hits: ".$rate_limit_status->remaining_hits."</p>";

echo "<p>Hourly Limit: ".$rate_limit_status->hourly_limit."</p>";

echo "<p>Reset Time: ".$rate_limit_status->reset_time."</p>";

echo "<p>Reset Time (Secs): ".$rate_limit_status->reset_time_in_seconds.

"</p>";

One thing to note is that twitter-async has converted the minus character (-) of each
element to an underscore (_), which was discovered by printing out
$rate_limit_status->responseText.

Twitter Search API
The Search API is used to perform Twitter searches and for extracting trend data. Unlike
the methods discussed previously, which support multiple return formats, the Search API
supports only two formats,Atom and JSON, which is why the JSON format is recom-
mended.The Atom syndication format is described in the following section so that you
can see how it compares to JSON before exploring the Search API methods and search
operators.The Twitter API and Search API are separate entities, which means that date
formats, User and Status objects, and screen_name capitalization are not standard across
both, although this is one of the goals of the new version of the Twitter API.

Introducing the Atom Syndication Format
The Atom syndication format is an XML-based data standard considered to be an alterna-
tive to Really Simple Syndication (RSS), which you may have been exposed to through
newsfeed subscriptions.The Atom format is the reason you can subscribe to Twitter
searches in your browser via the web interface.To get you started, here is an example of a
Search API Atom feed for the search term markbook, which is the hashtag used during the
production of this book:

<?xml version="1.0" encoding="UTF-8"?>

<feed xmlns:google="http://base.google.com/ns/1.0" xml:lang="en-US"

xmlns:openSearch="http://a9.com/-/spec/opensearch/1.1/"

xmlns="http://www.w3.org/2005/Atom"

xmlns:twitter="http://api.twitter.com/">

<id>tag:search.twitter.com,2005:search/markbook</id>

<link type="text/html" rel="alternate"

href="http://search.twitter.com/search?q=markbook"/>

<link type="application/atom+xml" rel="self"

href="http://search.twitter.com/search.atom?q=markbook&rpp=1"/>

<title>markbook - Twitter Search</title>

<link type="application/opensearchdescription+xml" rel="search"

href="http://search.twitter.com/opensearch.xml"/>

<link type="application/atom+xml" rel="refresh"

www.it-ebooks.info

http://www.it-ebooks.info/

35Twitter Search API

href="http://search.twitter.com/search.atom?q=markbook&rpp=1&

since_id=2452360691"/>

<twitter:warning>since_id removed for pagination.</twitter:warning>

<updated>2009-07-02T21:47:02Z</updated>

<openSearch:itemsPerPage>1</openSearch:itemsPerPage>

<link type="application/atom+xml" rel="next"

href="http://search.twitter.com/search.atom?max_id=2452360691&

page=2&q=markbook&rpp=1"/>

<entry>

<id>tag:search.twitter.com,2005:2443841666</id>

<published>2009-07-02T21:47:02Z</published>

<link type="text/html" rel="alternate"

href="http://twitter.com/markhawker/statuses/2443841666"/>

<title>Been working on #markbook tonight. Getting a skeleton

chapter ready. Funny how Atom and JSON are *so* different in

@twitterapi.</title>

<content type="html">

Been working on <a href="http://search.twitter.com/

search?q=%23markbook">#markbook tonight.

Getting a skeleton chapter ready. Funny how Atom and JSON are *so*

different in <a href="http://twitter.com/

twitterapi">@twitterapi.</content>

<updated>2009-07-02T21:47:02Z</updated>

<link type="image/png" rel="image" href="http://s3.amazonaws.com/

twitter_production/profile_images/234974305/me_normal.jpg"/>

<twitter:source>TweetDeck

</twitter:source>

<twitter:lang>en</twitter:lang>

<twitter:geo></twitter:geo>

<author>

<name>markhawker (Mark Hawker)</name>

<uri>http://twitter.com/markhawker</uri>

</author>

</entry></feed>

The first thing you will notice is that you are given a wealth of meta-data stored inside
the feed element and related Twitter update information embedded within an entry ele-
ment (or multiple entry elements). Note that in this example, one entry element has
been included by setting the rpp parameter to 1; typically, however, multiple elements are
returned, with the default being 15 entries.

Feed Elements
All feed elements contain meta-data associated with the search query to enable it to be
repeated or traversed programmatically.This includes preformatted links to display the
next results and refresh the page plus any Twitter warning information.They also contain

www.it-ebooks.info

http://www.it-ebooks.info/

36 Chapter 2 Diving Into the Twitter API Methods

information regarding the OpenSearch specifications used by Twitter (for example, in the
link http://search.twitter.com/opensearch.xml).The attributes within a feed element are
as follows:

n entry

Each result is contained within its own entry element, which is described in the
next section.

n id

Unlike numeric identifiers in Twitter API objects, the id element of the Search
object contains a text string describing the search query in general terms.

n link

Several link elements are contained within a feed element, each including three
common attributes detailing their type, href and ref.The link element tagged
with the self attribute details the query that was run along with XML pointers for
OpenSearch, which facilitates the syndication of results. Both the next and refresh

references enable results to be automatically refreshed if desired.

n openSearch:itemsPerPage

This element contains the number of search results returned and should be identical
to the rpp parameter supplied in the query.The default is 15 but can be increased
up to a maximum of 100 entries returned in an instance.

n title

Containing the query appended with the - Twitter Search label, this element
may be useful in saving you time creating an appropriate page title yourself.

n twitter:warning

Any warning messages provided by Twitter will be contained within this element
(in this instance warning that the since_id parameter was excluded).Although this
element can be useful when debugging your applications, it is important to note
that not all Search API responses will contain this element.

n updated

This element describes when the search results were last updated and is in the for-
mat YYYY-MM-DDTHH:MM:SSZ.This can be useful if caching results in a database,
because you can test whether an update needs to be performed based on whether
the data has been refreshed.

Entry Elements
Each update matching the query string is encapsulated within its own entry element.
Although some basic information is returned referencing the update, it is nowhere near as
complete as the data returned in Status or User objects from the Twitter API. In this case,

www.it-ebooks.info

http://search.twitter.com/opensearch.xml
http://www.it-ebooks.info/

37Twitter Search API

should additional information be required by your application, sufficient information is
provided to enable you to make requests using the Twitter API to extract that information:

n author

This value contains a nested set of two elements, name and uri.The name element
contains the name and screen_name of the user enclosed in parentheses and uri
links to the author’s Twitter profile page.

n content, title

Both elements contain the body of the update but the content element also con-
tains HTML that can be used to reconstruct the Status object. Depending on
whether you want to re-present the update or analyze its text will help you decide
which element to use.

n id

Similar to feed elements, the id is a text string used to identify the update in the
search results.The trailing integers of this value are the Status object id of the
update, which provides an opportunity to extract further details using the Twitter
API.The Status object id and full URL is provided in one of the link elements.

n link

Containing the same attributes as in feed elements, the two link values give the
URL to the Status object and a link to the author’s profile image stored by Twitter.

n published, updated

These two values give the creation date of the Status object in the same YYYY-MM-
DDTHH:MM:SSZ format as in feed elements.

n twitter:geo

This element will be populated with status location data if explicitly enabled by
the user.

n twitter:lang, twitter:source

The twitter:source value is the encoded link to the application used to publish
the update and matches the source attribute of the Status object.The
twitter:lang value is the language of the update stored in the two-letter ISO 639-
1 format.

Contrasting Atom and JSON Outputs
In contrast to the Atom syndication format the Search API, JSON output returns a set of
“key/value” pairs enclosed within a parent results object. For the same query for
markbook that was executed earlier, the following JSON data is returned:

{"results":[

{

"text":"Been working on #markbook tonight. Getting a skeleton

www.it-ebooks.info

http://www.it-ebooks.info/

38 Chapter 2 Diving Into the Twitter API Methods

chapter ready. Funny how Atom and JSON are *so* different in

@twitterapi.",

"to_user_id":null,

"from_user":"markhawker",

"id":2443841666,

"from_user_id":924649,

"iso_language_code":"en",

"geo":null,

"source":"<a href="http:\/\/www.tweetdeck.com

\/">TweetDeck<\/a>",

"profile_image_url":"http:\/\/s3.amazonaws.com

\/twitter_production\/profile_images\/234974305\/me_normal.jpg",

"created_at":"Thu, 02 Jul 2009 21:47:02 +0000"

}

],

"since_id":0,

"max_id":2452360691,

"refresh_url":"?since_id=2452360691&q=markbook",

"results_per_page":1,

"next_page":"?page=2&max_id=2452360691&rpp=1&q=markbook",

"completed_in":0.027692,

"page":1,

"query":"markbook"

}

In this example, you can see a results key with entries placed within square brackets
and each enclosed within a pair of curly braces and separated by a comma: "results":.
You will also notice there is meta-data returned similar to feed elements: since_id,
max_id, refresh_url, results_per_page, next_page, completed_in, page, and query.
The attributes returned for each entry are similar to entry elements with a few aesthetic
exceptions. Forward slashes (/) are “escaped” by a backslash (\), because in JavaScript a for-
ward slash is used as an escape character. By escaping the character, it prevents the inter-
preter from performing the action typically associated after the forward slash.You are also
explicitly given the Status object id attribute and a to_user attribute if a user is men-
tioned in the update. Finally, the date format between both outputs is inconsistent, but the
JSON output is comparable to that of the JSON output of the Twitter API.

Twitter Search API Methods
There are two categories in the Search API: Search and Trends. Search allows you to sup-
ply a query and retrieve results based on search terms and a mix of operators and parame-
ters.The Trends category shows you what’s hot or “trending” in the community currently
or for any given date or week.

www.it-ebooks.info

http://www.it-ebooks.info/

39Twitter Search API)]

To conduct a simple search within the index.php sample code, you just add the
following:

echo "<h1>Search Objects</h1>";

$query = "test";

$search = $twitter->get_search(array("q" => urlencode($query),

"rpp" => 2), $username, $password);

echo "<p>Query: ".$search->query."</p>";

echo "";

foreach($search->results as $result) {

echo "".$result->from_user.": ".$result->text."";

}

echo "";

Twitter Search is about more than just simple keywords and parameters, which were
discussed in Chapter 1.You can also use a wealth of operators to customize results or con-
trol how results are returned from the Search API. Operators are similar to the parameters
that you were shown in Chapter 1 and the main operators are listed here.You can find a
full list at http://search.twitter.com/operators, which mirrors some, but not all, of the
functionality of an advanced Twitter search.

There are numerous content-based operators, including those for phrase matching,
hyperlink and source filtering, and word negation. Here is a description of some content-
based operators:

n To search for multiple keywords, you can separate words with a plus (+) character. For
example, twitter+api would find status updates containing both twitter and api.

Search
In its simplest form, a query in the Search API consists of the stem
https://search.twitter.com/search.<<format>>, where <<format>> can be replaced with
json or atom, a q parameter, and a keyword (for example, https://search.twitter.com/
search.json?q=twitter).This will return in JSON format the default number of updates,
15, that include the twitter keyword. Note that keywords must be URL encoded. So,
for example, if you want to find updates mentioning a particular user, an @ symbol is
encoded as %40; for a hashtag, the hash character (#) is encoded as %23; and for searching
for an update containing a question, the question mark character (?) is encoded as %3F.

Set a User Agent
You must supply a user agent to prevent the Twitter API returning a status code 403 for
requests. You can do so by setting the –A switch in cURL, or if you are using twitter-async
this will be set automatically for you.

www.it-ebooks.info

https://search.twitter.com/search.<<format>>
https://search.twitter.com/search.json?q=twitter
https://search.twitter.com/search.json?q=twitter
http://search.twitter.com/operators
http://www.it-ebooks.info/

40 Chapter 2 Diving Into the Twitter API Methods

n Exact phrase matches can be found by enclosing the words within quotation marks
(“”), which are URL encoded using %22. For example, %22twitter+api%22 would
find status updates containing the phrase twitter api.

n To search for one word or another word (or both), you use the logical OR operator
(for example, twitter+OR+api).

n If you want to exclude a word from a search you prefix the word with a minus (-)
character. For example, twitter+-api searches for updates containing twitter but
not api.

n You can return status updates that must include a hyperlink. For this, you would use
the filter:links operator. For example, twitter+filter:links returns status
updates containing twitter and that include a hyperlink.

n If you want to find updates sent from a particular source, such as TweetDeck, you
can use the source:application operator (for example,
twitter+source:tweetdeck).This could prove useful if you have set your own
source parameter and want to track how users are interacting with your application.

In addition to content-based operators, a number of meta-content operators exist for
filtering updates to or from a particular user and updates sent from a geographic region or
before or after specific dates.The operators are as follows:

n To filter by updates sent to or from a user, you can use the from:username and
to:username operators. For example, twitter+from:markhawker would search for
updates containing twitter and sent by markhawker. For filtering updates sent to
markhawker, you would use to:markhawker.

n As devices begin to be supported by the Geolocation API, the
location:place_name operator and geocode parameter will become increasingly
useful for location-based searches (for example, party+location:London).

n Dates can be used to filter updates using since:YYYY-MM-DD or until:YYYY-MM-DD.
For example, you may be running a competition that only accepts entries after a
specified date, or even before a closing date (for example, vote+until:2009-07-
04). Note that Twitter Search currently only provides results up to a week and a half
in the past.

You can experiment with any of these operators by modifying the $query parameter,
which was used in the search example. By outputting the $search->responseText, you
can also start to build up a picture of what elements are returned by the Search API and
how you can use them in your own applications.

Trends
Although search is good for filtering and extracting information at an individual level, you
need trends methods to provide aggregate-level data across the Twitter ecosystem.

www.it-ebooks.info

http://www.it-ebooks.info/

41Twitter Search API

Local Trends Methods
Twitter has two trends methods for providing trends specific to a particular location. The
trends/available and trends/location methods will return trending topics using the
Yahoo! Where On Earth ID (WOEID) convention and will make trend results more relevant to
a user’s specific location.

There are four trends methods.They output in JSON format only and are summa-
rized here:

n To extract the ten topics currently trending on Twitter, use the trends method.
This method will return a trends element containing a name and url for perform-
ing the related Twitter search.An as_of attribute is also included, which gives the
date and time that the results were valid.An example date is Sat, 01 Aug 2009
18:00:00 +0000.

n The trends/current method displays similar information to the ten topics but
uses a non-URL-encoded query attribute in place of a url and provides the as_of
element as the number of seconds since January 1, 1970.This method permits the
use of an exclude parameter, which can be set to hashtags to remove all hashtags
from the trends list.An example date is 2009-08-01 18:00:00.

n The trends/daily method allows for a date parameter to be supplied in the for-
mat YYYY-MM-DD to extract top topics for a given date. If no date is provided, results
are returned for today’s date.The exclude parameter can be supplied to exclude
hashtags.

n The trends/weekly method returns the top 30 topics for each day in a given week
by providing a date parameter and optionally setting the exclude parameter. If no
date is provided, results are returned for the current week.

All methods apart from the trends method return results in a somewhat strange man-
ner. Comparing the two, the trends method will return the following JSON results,
which have been truncated to show only two trends:

{"trends":[

{

"name":"Roger Federer",

"url":"http:\/\/search.twitter.com\/search?

q=%22Roger+Federer%22+OR+%23Federer"

},

{

"name":"A-Rod",

"url":"http:\/\/search.twitter.com\/search?q=A-Rod"

}

],

"as_of":"Sun, 05 Jul 2009 18:34:58 +0000"

}

www.it-ebooks.info

http://www.it-ebooks.info/

42 Chapter 2 Diving Into the Twitter API Methods

In comparison, all three trends/current, trends/daily, and trends/weekly meth-
ods return results in the following format, which (again) has been truncated and general-
ized for the sake of brevity:

{"trends":{

"2009-07-05 19:30:00":[

{

"query":"Wimbledon OR #Wimbledon",

"name":"Wimbledon"

},

{

"query":"\"Roger Federer\" OR Federer",

"name":"Roger Federer"

}

]

},

"as_of":1246822183

}

These short examples demonstrate the varied outputs of the trends methods in terms
of both their structure and date formats.To access the same trends programmatically, you
should add the following code:

echo "<h1>Trends Objects</h1>";

echo "<h2>Current Trends</h2>";

$trends = $twitter->get_trends(null, $username, $password);

print_r($trends->responseText);

echo "<h2>Current Trends</h2>";

$trends_current = $twitter->get_trendsCurrent(array("exclude" =>

"hashtags"), $username, $password);

print_r($trends_current->responseText);

echo "<h2>Daily Trends</h2>";

$date = date("Y-m-d");

$trends_daily = $twitter->get_trendsDaily(array("date" => $date,

"exclude" => "hashtags"), $username, $password);

print_r($trends_daily->responseText);

echo "<h2>Weekly Trends</h2>";

$trends_weekly = $twitter->get_trendsDaily(array("date" => $date,

"exclude" => "hashtags"), $username, $password);

print_r($trends_weekly->responseText);

In addition to these examples, the two local trends methods can be accessed by supply-
ing lat and long parameters or a woeid.The lat and long is used to sort results from
the trends/available method by distance from that particular location.These methods
are accessible via the following code:

echo "<h1>Local Trends Objects</h1>";

www.it-ebooks.info

http://www.it-ebooks.info/

$trends_available = $twitter->get_basic("/trends/available.json",

array("lat" => 37, "long" => -122), $username, $password);

print_r($trends_available->responseText);

This should return the closest matches to San Francisco (the town specified by the lat
and long parameters), which is contained within this JSON response:

"country":"United States",

"url": "http://where.yahooapis.com/v1/place/2487956",

"placeType": {"code": 7, "name": "Town"},

"woeid": 2487956,

"countryCode": "US",

"name": "San Francisco"

}, ...]

The response will return a number of potential matches, starting with the closest,
which was an exact match to San Francisco.The next stage is to extract the WOEID by
using $trends_available[0]["woeid"], which can then be entered into the
trends/location method:

$trends_location = $twitter->get_basic("/trends/".

$trends_available[0]["woeid"].".json", null, $username, $password);

print_r($trends_location->headers);

The results from this query should return the following JSON data:

"as_of": "2010-03-15T22:10:03Z",

"locations": ,

"trends":

This response will return a regular Trends object with an embedded locations ele-
ment for extracting the initial woeid and name of the location.

Summary
This chapter illustrated a number of Twitter API methods that enable you to perform a
multitude of actions to access and mutate data, such as sending updates and exploring a
user’s social graph.You were also given an overview of the Search API, including the
Atom syndication format, methods, and operators that you can use to extract both indi-
vidual-level search data and also aggregate trends data.The next chapter explores how to
use OAuth for user authentication so that you can begin to put your knowledge of Twit-
ter methods to practical use.

43Summary

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

3
Authentication with

Twitter OAuth

Chapter 2,“Exploring the Twitter API and Search API,” covered the various Twitter API
and Search API methods using cURL and twitter-async using Basic Authentication. Basic
Authentication is by no means unique to Twitter, and many sites and social services also
use the same mechanism for user authentication. However, requiring a user’s password
even over a secure connection such as HTTPS can present security concerns.Although
the barrier to entry is higher for an OAuth implementation in comparison to Basic
Authentication, it is an essential tool for accessing the Twitter API because Basic
Authentication will be deprecated in the future.

This chapter investigates Twitter’s implementation of OAuth as an alternative to Basic
Authentication and describes the workflow of Twitter OAuth, with a focus on web appli-
cations. OAuth is a method for interacting with Twitter on behalf of users without
requiring them to supply a password every time they want to use an application.Twitter
OAuth takes the form of the “Sign in with Twitter” service, which enables users to sign in
to your website or application using their Twitter credentials.The chapter then provides a
walkthrough of how to implement Twitter OAuth using twitter-async to create a very
simple application called Test Tube.You can then use the code in this example as a basic
template for your own Twitter application ideas.

Introducing Twitter OAuth
OAuth is an open protocol to facilitate a standard, secure authorization method for desk-
top, mobile, and web applications.The idea behind OAuth is similar to that of valet keys
provided in some of today’s luxury cars.The valet keys give parking attendants access to
certain features of the car but may restrict them to driving only a limited number of miles
or may prevent them from opening the trunk. In this instance, you are giving someone
limited access to your car via a special key, while using another key to unlock everything
else.This is in contrast to Basic Authentication, through which users are giving you their

www.it-ebooks.info

http://www.it-ebooks.info/

46 Chapter 3 Authentication with Twitter OAuth

keys, and thus not only exposing their passwords to prying eyes but also giving you unre-
stricted access to their accounts.

In February 2009,Twitter released the first implementation of OAuth as a closed beta
for developer experimentation.This has now been opened up to all developers through a
new registration process for OAuth applications, available at http://twitter.com/oauth_
clients. (You must have a Twitter account to access this URL.) All the applications that
you have previously registered with Twitter will appear here. Clicking an application
name will give you further details about the application and will enable you to edit your
application settings, reset your consumer key and consumer secret (described in the next
section), or delete your application.

During registration, you are prompted with a series of fields that you must fill out,
including application name, description, and website.You are also asked whether you are
creating a desktop or browser application (because the authentication steps are slightly
different) and whether you require read/write or just read-only access to user data. Read-
only access is just “pulling” data from Twitter, as you have seen with Twitter API accessor
methods, and would include reading a user’s updates, direct messages, or favorites.
Read/write access includes pulling data from Twitter but also “pushing” data back, as you
have seen with mutator methods of the Twitter API.This includes updating a user’s status,
sending a direct message, or marking a favorite.The callback URL is a location where
users are redirected after successfully authenticating your application. For unsuccessful
attempts, a user is returned to the Twitter home page.

OAuth Benefits
In addition to avoiding the impending deprecation of Basic Authentication, both users
and developers can gain a number of benefits by adopting OAuth. For users, they no
longer need to hand out their passwords to applications, and they can view authorized
applications by visiting the Twitter “Connections” tab in their profile. From the Twitter
“Connections” tab, users can de-authorize or “Revoke Access” to unwanted applications,
which was previously subject to a user trusting an application to remove users’ profile
details from their data store or required users to change their password to “break” the
relationship. In the case of “Sign in with Twitter”, users can also use their Twitter creden-
tials to authenticate themselves on third-party websites (using their Twitter details to post
comments, for example). Permissions are also granular, allowing users to select whether
they want to permit read-only or read/write access to an application. For developers, you
will no longer need to worry about users changing their password or storing password
details securely.Adopting OAuth will also show that you care about the progression and
evolution of the Twitter API, which gives users greater confidence in your application.

OAuth Definitions
Before delving into the Twitter OAuth workflow, you need to understand a few terms so
that you can start speaking the OAuth lingo:

www.it-ebooks.info

http://twitter.com/oauth_clients
http://twitter.com/oauth_clients
http://www.it-ebooks.info/

47Introducing Twitter OAuth

n Consumer

A website or application that uses OAuth to access Twitter on behalf of the user:
your application. Consumers are created and developed by individuals or organiza-
tions known as consumer developers (you).Access by the consumer to a user’s pro-
tected resources is controlled by a consumer key and consumer secret, which are
used by Twitter to identify the consumer.The consumer key and consumer secret
are given to a consumer developer when registering a consumer and can be reset at
any time. For brevity, throughout this chapter, the word application is used rather
than the word consumer.

n OAuth protocol parameters

Parameters with names beginning with oauth_ (for example, oauth_consumer_
key, oauth_token, oauth_nonce, oauth_timestamp, oauth_version, oauth_
signature_method, and oauth_signature).These parameters are handled inter-
nally via the twitter-async client library to ensure that OAuth exchanges are
validated.

n Protected resources

Data stored by Twitter that an application can access through authentication (for
example, account data, updates, direct messages, favorites).

n Service provider

A web application that allows access to protected resources via OAuth. In this chap-
ter,Twitter is the service provider.

n Tokens

Used by the application rather than a user’s username and password to gain access
to protected resources on Twitter.Tokens are random strings of letters and numbers
paired with a token secret.There are two types of token: request and access.Twitter
supports the HMAC-SHA1 signature base string.The Twitter OAuth workflow has
two phases: authorization and access.The authorization phase is when the users
give permission to Twitter that an application can “impersonate” them.The access
phase is when the application actually does the impersonating.
In terms of tokens, a request token is required only once during the authorization
phase to generate an access token and token secret, which can then be stored and
used multiple times during action phases.Twitter tokens currently do not expire,
and so once users authorize an application, it will be granted infinite access to their
information unless they choose to revoke access.Access can also be revoked if
Twitter suspends an application.

n User

This is an individual or organization that has signed up for a Twitter account. Users
create protected resources, which they can share with a consumer. For example,
their direct messages or updates can be read (and written) by an application.

www.it-ebooks.info

http://www.it-ebooks.info/

48 Chapter 3 Authentication with Twitter OAuth

The next section explores the full Twitter OAuth workflow, using all these terms in
context (so don’t worry if they don’t make much sense just yet).

Implementing Twitter OAuth
After you have registered your application, you are ready to begin implementing Twitter
OAuth.The Twitter API includes four OAuth methods: oauth/request_token,
oauth/authorize, oauth/authenticate, and oauth/access_token.The official Twitter
documentation for these methods is complex and is best described using workflows and
by giving an example.

Twitter OAuth Workflow
A simplified workflow for browser-based applications is as follows:

1. A user visits an application, and a request token is generated by Twitter by calling
the oauth/request_token method and using the application’s consumer key and
consumer secret.

2. A request can be made to oauth/authorize by following a URL appended with
the request token to request user authorization.The oauth/authenticate method
is reserved for applications using the “Sign in with Twitter” feature, which can be
used to provide “one-click” user authentication. For desktop applications, you must
set the parameter oauth_callback=oob in the oauth/authorize method to initi-
ate PIN-based authorization.Where desktop authorization differs is that after
obtaining approval from the user,Twitter displays a seven-digit PIN that must be
recorded by the user and then entered into the application to be used as the
oauth_verifier parameter. Steps 4 and 5 are the same as web-based authentica-
tion.The twitter-async library does not support this desktop application workflow.

3. Following the URL, the user is redirected to Twitter where the request token is
verified. If not logged in to Twitter, the user is required to log in to grant access to
the application.At this stage, the user is reminded of which application is requesting
access by being shown its logo, description, and developer information, and is then
prompted to allow or deny access to their protected resources. If access is denied, a
prompt will be displayed by Twitter but the user will not be redirected back to the
application.

4. If allowed,Twitter marks the request token as authorized and redirects the user back
to the application using the callback URL together with the request token and
other OAuth protocol parameters.

5. An access token is then generated by passing the request token and OAuth protocol
parameters to the oauth/access_token method, which can then be stored along-
side the token secret by the application.

www.it-ebooks.info

http://www.it-ebooks.info/

49Implementing Twitter OAuth

6. Whenever applications want to access a user’s protected resources, they use the ac-
cess token and token secret along with their consumer key and consumer secret for
each request.

Figure 3.1 shows this workflow, specifically the transition between your application
and Twitter in terms of authentication and redirects. If a user is already signed in to
Twitter and they have authorized your application, this will appear like a “one-click”
process. If users close down their browser window before authenticating their details, the
next time they visit the Twitter site they will be prompted with an error saying that their
request token has expired.

User Visits
Application

Redirect to
Home Page

Application Sends Request to
oauth/authenticate or

oauth/authorize using Request
Token created by

oauth/request_token

User Clicks Button
or Link to Sign In

With Twitter

Is User Logged in to
Twitter?

No

Yes

Yes

Yes

Redirect to Callback URL
Including Access Token

and Token Secret

Store Screen Name, Access
Token and Token Secret

Prompt User to
Authorize

Application

No

NoAuthorized?

Has User Authorized
Application Before?

Your
Application

Domain

Twitter

Your
Application

Domain

Allow User to Enter
Their Credentials

Figure 3.1 Workflow of a “Sign in with Twitter” session.

www.it-ebooks.info

http://www.it-ebooks.info/

50 Chapter 3 Authentication with Twitter OAuth

A number of OAuth client libraries are available to help reduce the complexity of this
workflow. Client libraries are generally supplied by third parties and are tested quite rig-
orously by hundreds, if not thousands, of developers. One such library is twitter-async,
which is used in the sample application described in the next section,Test Tube, which
you can use as a template for your own Twitter applications.

Test Tube: A Sample Twitter Application
Twitter-async is a PHP client library that enables you to integrate with the Twitter API
and Search API using OAuth.Twitter-async was written to maximize the efficiency of
making HTTP requests over cURL using a mixture of synchronous and asynchronous
methods.The twitter-async client file (EpiTwitter.php) has two dependencies contained
within EpiOAuth.php and EpiCurl.php that handle all the authentication and URL
signing relevant to Twitter and for handling the cURL requests. If you like, take some
time to familiarize yourself with them; you will be using them later in this section.

Class Methods
Twitter-async has two methods: __construct and __call.The constructor takes a mini-
mum of two parameters and a maximum of four.The first two parameters are the con-
sumer key and consumer secret that were generated by Twitter during application
registration.The last two are the access token and token secret, which are generated dur-
ing the authorization phase and should be stored to allow requests to be made on behalf
of users.The __call method handles the majority of other requests and uses a simple
naming convention to map onto Twitter API and Search API method names known as
API endpoints.As an example, the account/verify_credentials method maps to
get_accountVerify_credentials, which consists of a lowercase GET request, an under-
score (_) and a lowercase URL which has the forward slash (/) omitted and the first letter
of the preceding method name capitalized. Parameters can be added by adding an array
inside the method call. For example, for statuses/update, you would use
post_statusesUpdate(array("status" => "This is my new status.")).

Uploading Images Using Twitter-async
Twitter-async supports the uploading of images via the account/update_profile_image
and account/update_profile_background_image methods. This is achieved by using
the following:

post_accountUpdate_profile_image(
array("@image" => "@filename.png;type=image/png")

)

Remember to prefix the key and value with an “at” (@) character and that the image must be
an absolute path to a file on your server.

www.it-ebooks.info

http://www.it-ebooks.info/

51Implementing Twitter OAuth

When using OAuth, you should not use the get_basic(), post_basic(), and
delete_basic() methods; these were reserved for Basic Authentication. Instead, twitter-
async provides get(), post(), and delete() methods that require an application’s
consumer key and secret to access Twitter resources. For these methods, you are not
required to supply the user’s screen name and password; these are already catered for
when using OAuth.

Accessing Responses
When you use twitter-async to make a call to the Twitter API, you will be returned an
object with properties.The properties are named identical to what you have previously
seen in both of the Twitter APIs, and dimensions of two or more are returned as arrays
(for instance, when a collection of users or statuses is returned). For example, the follow-
ing code snippet is a JSON response from the account/verify_credentials method
that has been stored in the $user variable:

{

screen_name: "markhawker",

name: "Mark Hawker",

status: {

text: "This is my last status.",

created_at: "Sat Aug 01 12:00:00 +0000 2009"

},

}

In this example, you can access properties in two ways, either directly as member vari-
ables such as $user->screen_name or $user->status->text or through the response
property by using $user->response["screen_name"] or $user->response
["status"]["text"]. For methods that return multiple responses, you can either access
them through the $user[0]->screen_name syntax (remembering that PHP uses zero-
based indexing, and so zero is actually the first response) or via using a looping function
such as for(), foreach() or while(). If you are having trouble accessing data, you should
return the response text via $user->responseText, which will give the full data set. In
some instances,Twitter wraps data within arrays, so instead of using $response->element,
you would use $response[0]->element instead.

Creating a Twitter-async Application
As a developer, it is generally easier to understand a new concept by experiencing it, so in
this section you will develop a simple application to show your ten latest Twitter friends
along with their profile image and a link back to their profile.You can demonstrate both
the oauth/authorize and the oauth/authenticate or “Sign in with Twitter” workflows
using similar codes, but the only difference between the oauth/authenticate and the
oauth/authorize workflow is that in the former the user is only prompted to allow or
deny access to the application once. In the latter, users are prompted to allow or deny
access each time that they use the application.

www.it-ebooks.info

http://www.it-ebooks.info/

52 Chapter 3 Authentication with Twitter OAuth

“Sign in with Twitter” Buttons
Twitter provides a number of ready-made buttons that you can use to standardize the sign-in
experience of users. You can find these on the Twitter API wiki (http://apiwiki.twitter.com/
Sign-in-with-Twitter).

Downloadable source code for this chapter is available via the book’s code repository
(http://github.com/markhawker/Social-Programming/). If you want to start from
scratch, however, it is assumed that you have downloaded the twitter-async client library
and have uploaded the files EpiCurl.php, EpiOAuth.php, and EpiTwitter.php to your
web server inside a twitter-async directory.There are four steps to getting your applica-
tion up and running: registering your application with Twitter, creating a “landing page,”
creating a “master page,” and then testing your application.Although only a simple appli-
cation, you should be able to quickly make modifications to test what you have learned
so far about the Twitter API methods.

Registering Your Application
At the start of every project, you must register your application with Twitter by going to
http://twitter.com/apps/new. From there, the required fields should be self-explanatory
up to callback URL field, which will point to a “master page,” which is the page that the
user will be sent back to once a request token and token secret have been granted,
master.php. For example, if your domain name is http://mytwitterapp.com/, you set
your callback URL to http://mytwitterapp.com/master.php. Because you are just going
to be accessing protected resources and not mutating them, you should select read-only
access and also check the Use Twitter for Login option (because you will be using this
feature). Click Save and create a new PHP file called functions.php, which will be a
utility file for all your Twitter functions, and enter the lines shown in Listing 3.1 using the
consumer key and consumer secret that Twitter has just generated for your application
during the registration process.

Listing 3.1 The functions.php File

1 <?php

2 include "twitter-async/EpiCurl.php";

3 include "twitter-async/EpiOAuth.php";

4 include "twitter-async/EpiTwitter.php";

5 define("TWITTER_CONSUMER_KEY", "XXXXXXXXXXXXXXXXXXXX");

6 define("TWITTER_CONSUMER_SECRET", "XXXXXXXXXXXXXXXXXXXX");

7 define("INDEX", "index.php");

8 define("MASTER", "master.php");

9 define("TITLE", "Test Tube - Sign In With Twitter");

10 function init($oauth_token = null, $oauth_token_secret = null) {

11 return new EpiTwitter(TWITTER_CONSUMER_KEY,

TWITTER_CONSUMER_SECRET, $oauth_token, $oauth_token_secret);

12 }

13 function login() {}

www.it-ebooks.info

http://apiwiki.twitter.com/Sign-in-with-Twitter
http://apiwiki.twitter.com/Sign-in-with-Twitter
http://github.com/markhawker/Social-Programming/
http://twitter.com/apps/new
http://mytwitterapp.com/
http://mytwitterapp.com/master.php
http://www.it-ebooks.info/

53Implementing Twitter OAuth

14 function logout() {}

15 function verify() {}

16 function check() {}

17 function printFriends() {}

18 ?>

The INDEX, MASTER, and TITLE variables can be modified should you want to use dif-
ferent filenames. Remember that if you change the value of MASTER you should also edit
the callback URL from withinTwitter. Be sure to add the consumer key and consumer
secret thatTwitter generated for your application on lines 5 and 6.The init() function on
lines 10 to 12 is used to create the EpiTwitter object using the consumer key and con-
sumer secret but also handles being passed an OAuth token and token secret upon a user
successfully authorizing the application. Methods on lines 13 to 17 are intentionally left
empty because they will be updated later in this section. Now that you have saved your
configuration details within functions.php, you are ready to create the landing page.

Creating the Landing Page
The landing page will serve a single purpose: generating a valid request token, which can
be then passed to the Twitter OAuth authorization and authentication URLs for a user to
click to be taken to Twitter.Twitter-async handles all this complexity for you, so a simple
landing page can be created using the code in Listing 3.2.

Listing 3.2 The index.php File

1 <?php

2 include "functions.php";

3 $twitter = init();

4 try {

5 $authorize_url = $twitter->getAuthorizeUrl();

6 $authenticate_url_forced = $twitter->getAuthenticateUrl(null,

array("force_login" => true));

7 $authenticate_url_unforced = $twitter->getAuthenticateUrl();

8 }

9 catch(EpiOAuthException $e) { echo "There was an error"; exit; }

10 catch(EpiTwitterException $e) {

11 echo "There was an unknown exception"; exit;

12 }

13 ?>

14 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

15 <html xmlns="http://www.w3.org/1999/xhtml">

16 <head>

17 <title><?php echo TITLE; ?></title>

18 <link href="static/css/style.css" rel="stylesheet"

type="text/css" />

19 </head>

www.it-ebooks.info

http://www.it-ebooks.info/

54 Chapter 3 Authentication with Twitter OAuth

20 <body>

21 <div id="main">

22 <h1>Test Tube</h1>

23 <p>This application uses Twitter’s "Sign in with Twitter"

feature to demonstrate what is possible in only a few lines of

code.</p>

24 <p id="authorize"><a href="<?php echo $authorize_url; ?>">

Authorize with Twitter</p>

25 <h2>Forced Login</h2>

26 <p>Whether a user is logged into Twitter or not they will be

prompted to login and then Allow/Deny the application.</p>

27 <p id="authenticate"><a href="<?php echo $authenticate_url_forced; ?>">

<img src="static/img/siwt-darker.png" height="24" width="151" alt="Sign

in with Twitter" /></p>

28 <h2>Unforced Login</h2>

29 <p>The currently logged in user will be used and then prompted to

then Allow/Deny the application.</p>

30 <p id="authenticate"><a href="<?php echo $authenticate_url_unforced;

?>"><img src="static/img/siwt-darker.png" height="24" width="151"

alt="Sign in with Twitter" /></p>

31 </div>

32 </body>

33 </html>

34 ?>

Line 2 is used to include the functions.php file containing the application logic for
convenience.The Twitter object is initiated on line 3 and can be used for a number of
things, but on the landing page you will use it to create an authorization (line 24) and
two authenticate URLs (lines 27 and 30).These URLs map to the Twitter API
oauth/authorize and oauth/authenticate methods.The authenticate URL on line 24
demonstrates how you can pass the force_login parameter to the method, thus prompt-
ing users to log in to Twitter regardless of whether they are already logged in (which
proves useful if they have multiple accounts). Note that Twitter handles the force_login
rather strangely, in that even if it is set to false, it will be accepted and the user will be
forced to log in.The “Sign in with Twitter” button has also been used alongside a simple
Cascading Style Sheet (CSS) containing the following styles:

body { background: #3ea8bc; font-family: Tahoma, Verdana, Arial, sans-

serif; margin: 1em; padding: 1em; }

img { border: 0; }

#main { background: #fff; padding: 1em; border: 5px solid #ccc; text-

align: center; }

.following, .follower { margin: 1em; border: 0; }

.tweet { font-size: 1.5em; color: #ccc; }

Save the code in Listing 3.2 as index.php, and then upload the file to your web server
alongside functions.php, the image, and the CSS.

www.it-ebooks.info

http://www.it-ebooks.info/

55Implementing Twitter OAuth

Creating the Master Page
The next page is the master page, which is the page that was set as the callback URL, and
will have the following functionality:

n Handling of a “sign-in” process

n Handling of a “sign-out” process

n Handling of users who access the page and who have not signed in

n Accessing a user’s protected resources in the form of a friends list
n Handling of simple exceptions to degrade gracefully

For simplicity, you can use cookie-based storage of user credentials, although in prac-
tice you might want to store them in a database or in PHP sessions.You can re-create the
master page with the skeleton code used in Listing 3.3.

Listing 3.3 The master.php File

1 <?php

2 include "functions.php";

3 if (isset($_GET["logout"])) {

4 logout();

5 } else {

6 $twitter = login();

7 $user = verify($twitter);

8 if ($user) {

9 ?>

10 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

11 <html xmlns="http://www.w3.org/1999/xhtml">

12 <head>

13 <title><?php echo TITLE; ?></title>

14 <link href="static/css/style.css" rel="stylesheet" type="text/css" />

15 </head>

16 <body>

17 <div id="main">

18 <h1>Hello, <?php echo $user->screen_name; ?>!</h1>

19 <p><img src="<?php echo $user->profile_image_url; ?>" alt="<?php

echo $user->screen_name; ?>" height="48" width="48" /></p>

20 <p class="tweet">"<?php echo $user->status->text; ?>"</p>

21 <?php

22 // Print Latest Friends

23 printFriends ($twitter, 10);

24 ?>

25 <p><a href="<?php echo MASTER; ?>?logout">Sign Out</p>

26 <?php } else { ?>

27 <h1>Twitter Error</h1>

www.it-ebooks.info

http://www.it-ebooks.info/

56 Chapter 3 Authentication with Twitter OAuth

28 <p>We were unable to verify your Twitter credentials.</p>

29 <?php } ?>

30 </div>

31 </body>

32 </html>

33 <?php } ?>

As with the landing page, you must include the functions.php dependency, which
will be revisited to add the login(), logout(), verify(), check(), and printFriends()
functions. Lines 3 to 8 contain the workflow that first evaluates whether the logout
parameter has been set via the link on line 25. If it hasn’t, this workflow will attempt to
create the Twitter object and verify whether a valid user has visited the page on line 7. If a
valid $user is available, the application will show his or her Twitter username, profile pic-
ture, and latest friends. If not, an error message will display. Save the code in Listing 3.3 as
master.php and reopen functions.php. Edit the logout() function so that it contains
the following code:

function logout() {

$twitter = init($_COOKIE["oauth_token"], $_COOKIE["oauth_token_secret"]);

$twitter->post_accountEnd_session();

setcookie("oauth_token", "", 1);

setcookie("oauth_token_secret", "", 1);

header("Location: ".INDEX."?loggedout");

}

These lines are used to handle the sign-out process by calling the
account/end_session method, clearing the cookie that contained the user’s credentials,
and then redirecting back to the landing page. Next, here’s the login() function:

function login() {

// An OAuth Token has just been granted from Twitter

if (!empty($_GET["oauth_token"])) {

$twitter = init();

$oauth_token = $_GET["oauth_token"];

try {

$twitter->setToken($oauth_token);

$token = $twitter->getAccessToken();

$twitter->setToken($token->oauth_token, $token->oauth_token_secret);

setcookie("oauth_token", $token->oauth_token);

setcookie("oauth_token_secret", $token->oauth_token_secret);

header("Location: ".MASTER."?loggedin");

}

catch(EpiOauthException $e) { header("Location: ".

INDEX."?oauthexception"); }

catch(EpiTwitterException $e) { header("Location: ".INDEX."?exception");

}

} else if (

www.it-ebooks.info

http://www.it-ebooks.info/

57Implementing Twitter OAuth

empty($_COOKIE["oauth_token"]) && empty($_COOKIE["oauth_token_secret"])

) {

setcookie("oauth_token", "", 1);

setcookie("oauth_token_secret", "", 1);

header("Location: ".INDEX);

} else {

return init($_COOKIE["oauth_token"], $_COOKIE["oauth_token_secret"]);

}

}

If an authorized request token has been returned from Twitter, you then need to con-
vert it into an access token.This function checks for the token, attempts to create the
access token, and then stores it alongside the token secret within a cookie.The user is
then redirected or the page is “refreshed” so that the request token cannot be reused. If
you do not do this, users might receive an error if they refresh the page manually with the
request token still in the URL. If an access token and token secret cannot be found in the
cookie, you should redirect the user back to the landing page.

The only case this leaves is if you have a user who has had his credentials stored in the
cookie and has just returned from the automatic refresh and is now logged in. In this case,
the init() function is called using the access token and token secret. If you store the
access token and token secret alongside the user’s screen name, you will be able to per-
form Twitter actions on behalf of the user. In Part IV of this book, you learn how to cre-
ate your own microblog application from scratch.

Just because you have received an access token and token secret does not mean that
the user has been verified as legitimate.This is why you need to call the
account/verify_credentials method, which will return a status code 401 if the user
credentials are incorrect, which is encompassed within the verify() and check() func-
tions, which will return false for all responses that do not have a status code of 200:

function verify($twitter) {

if(is_object($twitter)) {

$response = $twitter->get_accountVerify_credentials();

return check($response);

} else {

return false;

}

}

function check($payload) {

return ($payload->code == 200) ? $payload : false;

}

You now have a test to ensure that you have a verified user and can now work with
his protected resources. Remember that a call to the account/verify_credentials
method returns a User object if valid, so that is why you can extract their profile_
image_url, screen_name, and status on lines 18 to 20 in Listing 3.3.The final function

www.it-ebooks.info

http://www.it-ebooks.info/

58 Chapter 3 Authentication with Twitter OAuth

is printFriends(), which calls the statuses/friends method, passing a count parame-
ter to extract the user’s latest ten friends.The results from this method are ordered by the
latest person added first:

function printFriends($twitter, $count = 10) {

try {

$friends = $twitter->get_statusesFriends(array("cursor" => -1));

if (check($friends)) {

$next_cursor = $friends->next_cursor;

$previous_cursor = $friends->previous_cursor;

echo "<h2>Latest ".$count." Twitter Friends</h2>";

for ($i = 0; $i < $count; $i++) {

$friend = $friends->users[$i];

echo "name."\" href="http://twitter.com/\".

$friend->screen_name."\">

profile_image_url."\" alt=\"".$friend->screen_name."\" height="48"

width="48" />";

}

} else {

return false;

}

}

catch(EpiTwitterException $e) { echo "<p>You have no friends to

list.</p>"; }

}

Save functions.php after adding the new functions, and then upload it alongside
master.php to your web server.

Testing Your Application
Before testing, you should ensure that you have all the files uploaded to your web server
and have successfully registered your test application on Twitter. Navigate to your landing
page in a browser and you should see your landing page with three hyperlinks:“Autho-
rize with Twitter” and two “Sign in with Twitter” buttons, as shown in Figure 3.2.

If you roll your mouse cursor over the links, you should see that you have an
oauth_token parameter appended to the URL, which was automatically generated by
twitter-async. Clicking the first link should redirect you to Twitter, where you can sign in
(if required) and gain access to your application. If all was successful, you should then be
redirected to your master page, which is shown in Figure 3.3.

Feel free to now explore the other links and see where they take you. Consider deny-
ing access to your application or using the forced and unforced login options.You might
also want to be more adventurous and test some other Twitter API methods using the
same principles as used to create the printFriends() method. For example, you could
update the code created in Chapter 2 to use OAuth rather than Basic Authentication.

www.it-ebooks.info

http://www.it-ebooks.info/

59Summary

Figure 3.2 Landing page for the Test Tube application.

Figure 3.3 Master page for the Test Tube application.

Summary
This chapter provided an overview of OAuth as a more secure mechanism for obtain-

ing user credentials for accessing their protected resources from Twitter.The example in
this chapter used a PHP OAuth client library, twitter-async, to show how you can use
OAuth to simplify the Twitter authorization process to create a simple Twitter application.
Combining the skills you have learned in this chapter with those you learned in and
Chapters 1 and 2, you should now feel confident to go on and develop your own applica-
tions. Chapter 4,“Extending the Twitter API: Retweets, Lists, and Location,” covers some
of the newer Twitter API methods, such as the Retweet API and the Geolocation API.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

4
Extending the Twitter API:

Retweets, Lists, and Location

Chapter 1,“Working with the Twitter API,” and Chapter 2,“Exploring the Twitter API
and Search API,” gave an overview of the Twitter API and illustrated the essential Twitter
API methods for account maintenance, updating status, searching, and accessing trends
using Basic Authentication, cURL, and the twitter-async PHP client library. In Chapter
3,“Authentication with Twitter OAuth,” you used OAuth as a means of authenticating
user accounts without handling usernames and passwords within your applications and
created a simple application using this method.As Twitter evolves, new functionality will
be added to the public website and also for developers within the Twitter API.As exam-
ples, new features that were implemented during the writing of this book include the
Retweet API, Lists API, and geolocation functionality:

n The Retweets API provides core functionality for handling retweets.

n The Lists API enables users to curate lists of users that can be subscribed to and
followed and can be either public or private.

n There are many location-based Twitter applications that handle geolocation inter-
nally.Twitter now allows developers to “tag” updates on an opt-in tweet-by-tweet
basis based on a user’s privacy settings.

This chapter takes each of these new functionalities and describes how they work
and, with the aid of simple code examples, shows you how you can implement them in
your Twitter applications.These examples extend the Test Tube application created in
Chapter 3.

Extending Twitter’s Core Functionality
As Twitter continues to gain momentum in the personal and business spheres, it is
inevitable that they will look to increase their core service functionality to both generate
revenue and increase user participation.As has been seen with the introduction of OAuth
and the phased deprecation of Basic Authentication, sometimes these changes can affect

www.it-ebooks.info

http://www.it-ebooks.info/

62 Chapter 4 Extending the Twitter API: Retweets, Lists, and Location

your applications in major ways, which is why OAuth was explained in detail.Twitter has
introduced API versioning, which means that applications can be made to support specific
API versions and Twitter will be able to provide beta functionality without compromising
stable code.The convention that is being used is as follows:

https://api.twitter.com/<<version>>/<<method>>

Here, <version> can be replaced with the version number that you intend to use,
which can currently be set to a 1 or 2.Twitter intends to keep this version control
method simple, and so will not be introducing complex branching and conventional ver-
sion-control features. Introduced in version 2 of the Twitter API was support for retweets,
lists, and geolocation.

Retweet API
The Retweet API enables developers to programmatically create a retweet (an act akin to
forwarding an e-mail) and provides several ways to access retweets that users have created,
that their followers have created, and tweets of their own that have been retweeted. Five
new methods were added, and the statuses/friends_timeline method was superseded
by the statuses/home_timeline method, which includes retweets.The new Retweet
API methods are as follows:

n statuses/retweet

Retweets a tweet and requires an id parameter of the tweet you are retweeting
submitted via POST or PUT.This method supports only JSON or XML output.

n statuses/retweets

Returns up to 100 retweets of a given tweet using GET.An example is https://api.
twitter.com/2/statuses/retweets/1234.xml, where 1234 is the value of a valid status
id.An optional count parameter can be supplied to restrict results.This method
supports only JSON or XML output.

n statuses/retweeted_by_me, statuses/retweeted_to_me

Returns a default of the 20 most recent tweets made by or to the authenticated
user and accepts the count and page parameters using GET.Along with JSON and
XML, this method also supports Atom.

Following its initial release to developers, the majority of feedback for the Retweet
API addressed how to handle multiple retweets, which saw a change in the way retweet
“collapsing” was processed by Twitter.To prevent clutter, a retweet appears only once in
the user’s home timeline, and subsequent retweets of the same tweet have to be retrieved
via the statuses/retweets method, which will return up to a maximum of 100
retweets. For example, if you want to return the five most recent retweets for the tweet
with identifier 1234, you make the following call:

https://api.twitter.com/2/statuses/retweets/1234.xml?count=5

www.it-ebooks.info

https://api.twitter.com/2/statuses/retweets/1234.xml
https://api.twitter.com/2/statuses/retweets/1234.xml
http://www.it-ebooks.info/

63Extending Twitter’s Core Functionality

In the initial specification, it was possible that users would see updates from others
whom they did not follow appearing in their timeline because of retweets being repre-
sented internally as “User B retweeted by User A” rather than “User A retweeted User B.”
In the latest incarnation of the Retweet API, you will see retweets from users you are fol-
lowing returned as Status objects that have a retweeted_status element nested within
them from the original tweeter.This way, users will see a familiar face in their timeline
but the retweeted tweet will be accredited to the original user. If no retweeted_status
element is returned within the Status object, the tweet has not yet been retweeted.To see
an example using twitter-async, open the functions.php file that you created in Chapter
3 and add the printRetweets() function as shown in Listing 4.1.

Listing 4.1 The printRetweets() Function

function printRetweets($twitter, $type = "of", $count = 5, $page = 1) {

try {

$method = "get_statusesRetweets_".$type."_me";

$retweets = $twitter->$method(array("count" => $count, "page" =>

$page));

if (check($retweets)) {

echo "<h2>Latest ".$count." Retweets ".$type." Me</h2>";

echo "";

foreach ($retweets as $retweet) {

echo "".$retweet->id.": "".$retweet-> text."" last

retweeted by: ";

$method = "get_statusesRetweets{$retweet->id}";

$statuses = $twitter->$method(array("count" => 1));

if (check($statuses)) {

$retweeters = "";

foreach ($statuses as $status) {

$retweeters .= $status->user->screen_name.", ";

}

}

echo substr($retweeters, 0, -2)."";

}

echo "";

} else {

return false;

}

}

catch(EpiTwitterException $e) { echo "<p>You have no retweets

to list.</p>"; }

}

The function can be called within master.php underneath the printFriends()
function as printRetweets($twitter, "of", 5, 1).The function makes use of the

www.it-ebooks.info

http://www.it-ebooks.info/

64 Chapter 4 Extending the Twitter API: Retweets, Lists, and Location

statuses/retweets method to get details of the retweeter and prints a single user as the
count parameter is set to 1.The format of the retweeted_status element is exactly the
same as with a Status object.When multiple retweets are requested, they are contained
within a statuses element as an array of status elements, which can be iterated over
using a foreach() loop. In the code listing above, the original status text could be
accessed using $status->retweeted_status->text using data from the statuses/
retweets method call.

Unfortunately, the way in which retweets are handled by Twitter means that com-
menting on the original tweet is not permitted (which has caused some upset in the user
base, and many clients support both the new method of retweeting plus allowing users to
comment and submit as a regular mention).What the Retweet API adds is the ability to
quickly retrieve retweets programmatically so that they can be tracked and managed
gracefully within all third-party applications that choose to implement the new features.

Lists API
Lists are a feature for organizing and sharing “groups” of Twitter users publicly or pri-
vately.These lists are linked through a user’s profile and can be subscribed to (if permit-
ted) by everyone, and therefore have the potential to be the new discovery mechanism for
new and exciting accounts. For developers, the Lists API contains methods for creating,
updating, retrieving, and deleting lists (and their members and subscribers).Another fea-
ture exists for retrieving a timeline of updates from a list that gives users greater control
over their timelines and how information is filtered to prevent overload (for example,
being able to see messages from close friends or work colleagues in a separate timeline
from the home timeline). If group preferences are stored within Twitter, this means that
other applications can share these preferences to provide a more streamlined user experi-
ence (because users will need to create lists only one time rather than multiple times per
application).An example is when switching between desktop and mobile clients and syn-
chronization of groups occurs between the two.

List API Limits
The current incarnation of the Lists API limits users to having a maximum of 20 lists, each
of which can have up to 500 members. There are no known limits for list subscribers. These
numbers may be increased, or decreased, in the future depending on Twitter’s resource man-
agement and capability.

Unlike other Twitter API methods, the Lists API adheres more strictly to the definition
of the Representational State Transfer (REST) design pattern, such as https://twitter.
com/<<username>>/lists/memberships.xml, which returns the public lists that a speci-
fied <<username>> has been added to (see Table 4.1).This structure will decrease the need
for excessive parameters in API method calls and should be a more friendly and under-
standable format for Twitter users.To demonstrate how the information is returned back
to developers in XML the List object looks like this:

www.it-ebooks.info

https://twitter.com/<<username>>/lists/memberships.xml
https://twitter.com/<<username>>/lists/memberships.xml
http://www.it-ebooks.info/

65Extending Twitter’s Core Functionality

<list>

<id>1111</id>

<name>Example List</name>

<full_name>@markhawker/example-list</full_name>

<slug>example-list</slug>

<description>An example list.</description>

<subscriber_count>0</subscriber_count>

<member_count>1</member_count>

<uri>/markhawker/example</uri>

<mode>public</mode>

<user>...</user>

</list>

Table 4.1 Lists Methods, Parameters, and Return Types

Method Description Method Parameters Return Type

POST Creates a new list lists description,
mode, name

List object

POST/

PUT

Updates an
existing list

lists/

<<list_id>>

description,
mode, name

List object

GET Gets the lists that
the user has
created

lists cursor Lists collection

GET Gets the lists that
the user has been
added to

lists/

memberships

cursor Lists collection

GET Gets the lists that
the user
subscribes to

lists/subsc

riptions

cursor Lists collection

DELETE Deletes a
specified list

lists/

<<list_id>>

None List object

GET Gets the timeline
for list members

lists/

<<list_id>>

/statuses

max_id, page,
per_page,
since_id

Statuses
collection

GET Gets the list
details.

lists/

<<list_id>>

None List object

www.it-ebooks.info

http://www.it-ebooks.info/

66 Chapter 4 Extending the Twitter API: Retweets, Lists, and Location

The id element is unique to each list and does not change if elements such as the list
name changes.The slug element is an alphanumeric version of the name, which is in low-
ercase and uses the hyphen character (-) in place of spaces.The Lists API is split into three
categories, each with similar methods: Lists, for creating, reading, updating, and deleting of
lists (see Table 4.1); List Members, for adding and removing of users to the list and for
checking member status for a user and returning all members (see Table 4.2); and List
Subscribers, for subscribing and unsubscribing and for checking subscriber status for a
user and returning all subscribers (see Table 4.3).

Table 4.2 List Member Methods, Parameters, and Return Types

Method Description Method Parameters
Return
Type

POST Adds a member
to a list

<<list_id>>/

members

id List object

GET Gets the list
members

<<list_id>>/

members

cursor Users
collection

DELETE Removes a
member from a list

<<list_id>>/

members

id List object

GET Checks whether a
user is a memberf

<<list_id>>/

members/<<id>>

None User object

Table 4.3 List Subscriber Methods, Parameters, and Return Types

Method Description Method Parameters
Return
Type

POST Subscribes the
authenticated user
to a list

<<list_id>>/

subscribers

None List object

GET Gets the list sub-
scribers

<<list_id>>/

subscribers

cursor Users col-
lection

DELETE Unsubscribes the
authenticated user
from a list

<<list_id>>/

subscribers

None List object

GET Checks whether a
user is a subscriber
of a list

<<list_id>>/

subscribers/

<<id>>

None User
object

www.it-ebooks.info

http://www.it-ebooks.info/

67Extending Twitter’s Core Functionality

The https://api.twitter.com/2/<<username>>/ prefix is used on each of the Lists API
methods where <<username>> must be replaced with the logged-in user’s screen_name in
the methods in Table 4.1 and can be set to any valid screen_name in the methods in
Tables 4.2 and 4.3.

Instead of using <<list_id>>, you should use the appropriate identifier of the list that
you want to access. For the XML example shown earlier, for example, you would use
1111 as the <<list_id>>. Each of these methods should be appended with a format set to
either XML or JSON.The following few examples use twitter-async. In these examples,
the <<username>> parameter is set to the value of $list_user, which is equal to $user-
>screen_name, which can be accessed after calling the verify() function in master.php
of the sample code:

n $new_list = $twitter->post("/{$list_user}/lists.json",

array("description" => "An example list.",

"mode" => "private", "name" => "Example List"));

n $updated_list = $twitter->post("/{$list_user}/lists/

{$new_list->id}.json", array("description" => "An updated

example list."));

n $lists = $twitter->get("/{$list_user}/lists.json",

array("cursor" => -1));

n $deleted_list = $twitter->delete("/$list_user/lists/

{$updated_list->id}.json");

For each of the examples, you can access the responseText, such as $new_list->
responseText, to retrieve the data returned by the Twitter API. In the examples of updat-
ing and deleting the list, these also use the id value of the previous lists within their
method names. Here is an example of extracting all the lists that the authenticated user has
been added to:

echo "<h1>List Objects</h1>";

$cursor = -1;

do {

$lists = $twitter->get("/{$list_user}/lists/memberships.json",

array("cursor" => $cursor));

foreach($lists->lists as $list) {

echo "".$list->id.": ".$list->name." created by ".$list->

user->screen_name."";

}

$cursor = $lists->next_cursor_str;

} while ($cursor > 0);

www.it-ebooks.info

https://api.twitter.com/2/<<username>>/
http://www.it-ebooks.info/

68 Chapter 4 Extending the Twitter API: Retweets, Lists, and Location

The next set of methods (see Table 4.2) is for updating the members of an existing list.
With the exception of the final method, these methods function in the same way as

Lists methods but require a numeric id parameter, which is of the logged-in user. In the
last method, if the user is not a member of the specified list, an appropriate Hash object
will be returned; otherwise, it will be a User object. Each of these methods should be
appended with a format set to either XML or JSON. Here are two sample URLs that use
the public @twitterapi team list:

n https://api.twitter.com/2/twitterapi/team/members.xml
n https://api.twitter.com/2/twitterapi/team/members/3191321.xml

To test the final method using twitter-async, you would use the following:

$id = $response->id;

$membership = $twitter->get("/twitterapi/team/members/{id}.json");

if ($membership->code == 200) {

echo "Yes, the user is a member of this list.";

} else {

echo "Sorry, the user is not a member of this list.";

}

The $id parameter will be that of the authenticated user. However, if you replace it
with 3191321 (a current member of the Twitter API team), you should receive a successful
response.The $membership element will also contain a User object if successful, so the
message could use $membership->name to display the member’s name.The methods listed
in Table 4.3 enable you to update subscribers to an existing list. Unlike the List Member
methods that only allow the authenticated user who created the list to add and remove
members, authenticated users can subscribe and unsubscribe themselves to and from any
public list. Like the List Member methods, you can use the using the final check method
shown in the table to determine whether a user subscribes to a list.

These three categories cover all the current functionalities, but these may be extended
in future implementations of the Lists API (perhaps to include bulk adding and removing
features).

Geolocation API
Many third-party applications that support geolocation do so by using the user-defined
location field within Twitter profiles.This field is not coded in any way and represents an
account-level location for the user. Some applications provide functionality to update pro-
file locations by using the Global Positioning System (GPS) within cell phones or loca-
tion-aware laptops or other Internet-enabled devices.The Geolocation API is the natural
extension to this third-party functionality, enabling applications to tag single updates with
a user’s current latitude and longitude.The feature is an opt-in service, quite understand-
ably, and supports multiple use cases such as providing context-aware advertising or for
browsing updates from users around a neighborhood, arena event, or music concert.

www.it-ebooks.info

https://api.twitter.com/2/twitterapi/team/members.xml
https://api.twitter.com/2/twitterapi/team/members/3191321.xml
http://www.it-ebooks.info/

69Extending Twitter’s Core Functionality

Mozilla Geode and Yahoo! Fire Eagle
Several options are available for supporting geolocation within web browsers and mobile
devices. Two popular choices are Mozilla’s Geode and Yahoo!’s Fire Eagle. In the future,
many more will become available as geolocation becomes a mainstream feature. A browser-
based extension for Mozilla Firefox named Geode can be used to add geolocation features
to the popular web browser through a W3C standards-compliant API. A broker-based solution
is Fire Eagle, a service that allows users to update their location and control its privacy and
access by other applications. It provides an API to access locations, but requires users to
have access to an account.

In terms of the Geolocation API for developers, two new fields were created: one
within the User object, which is a read-only field named geo_enabled, indicating
whether the user has opted-in to the feature; and the geolocation itself, which can be
added as lat and long parameters to a status update request. GeoRSS-Simple is used to
specify the return data format of locations in XML and uses GeoJSON for JSON
requests. For example, specifying a lat of 37.78445 and long of -122.39671 (the
approximate location of the Twitter headquarters in San Francisco) will return the follow-
ing in XML using GeoRSS-Simple:

<geo xmlns:georss="http://www.georss.org/georss">

<georss:point>37.78445 -122.39671</georss:point>

</geo>

And the same request will return the following using GeoJSON:

"geo": {

"type": "Point",

"coordinates": [37.78445, -122.39671]

}

If no geolocation data is available, an empty result set will be returned as <geo /> in
XML or "geo": {} in JSON. If geolocation data is available, coordinates and place

elements will also be included, with further details about the current location of the user.
The place elements will contain all the data described in the Twitter geo methods
described here. Currently, all geolocation data will be removed from an update after seven
days of being posted.Twitter also provides three Geolocation API methods that support
adding a location to updates: geo/reverse_geocode and geo/nearby_places, for return-
ing a set of locations that are closest to a latitude and longitude or IP address; and
geo/id/<<id>>, which returns detailed information about one specific location. It is rec-
ommended that you use the geo/nearby_places method for returning location data spe-
cific to the authenticated user and geo/reverse_geocode for general geographic data.
Both methods will return the same data elements, but the former will return results in an
order specific to the user. If you use the latitude and longitude of the Twitter headquar-
ters, a call to the geo/reverse_geocode method will return the following JSON:

www.it-ebooks.info

http://www.it-ebooks.info/

70 Chapter 4 Extending the Twitter API: Retweets, Lists, and Location

{

"result": {

"places":

}.

"query":{

"type": "reverse_geocode",

"url": "http://api.twitter.com/1/geo/reverse_geocode.json?

lat=37.78445&long=-122.39671&accuracy=0&granularity=neighborhood",

"params": {

"granularity": "neighborhood",

"coordinates": {

"type": "Point", "coordinates": [-122.39671,37.78445]

},

"accuracy": 0

}

}

}

Additional parameters that you can send to this method include max_results (to con-
trol how many results are returned), granularity (which defaults to neighborhood but
could also be set to city), and accuracy (which you can set to a numeric value to
denote a radius in meters or a string for feet which must be suffixed by ft). For example,
to search for results within an 800-foot radius, you set the accuracy parameter to 800ft.
For the geo/nearby_places method, you can also supply an ip parameter rather than a
lat and long.Twitter will convert the ip parameter using Geo-IP. Currently, results are
limited to the United States, but the Twitter people are working on including other loca-
tions eventually.This method returns the coordinates of both the place itself and the
neighborhood or city in which it is situated.This could be used if you wanted to plot the
location in a Geographical Information System (GIS).

If this same query were executed via twitter-async, you would access variables using
the following code:

echo "<h1>Geolocation Objects</h1>";

$response = $twitter->get("/geo/reverse_geocode.json", array("lat" =>

37.78445, "long" => -122.39671, "max_results" => 3));

echo "";

foreach($response->result->places as $geo) {

echo "".$geo->id.": ".$geo->full_name." (".$geo->contained_within[0]

->full_name.")";

}

echo "";

The results are accessed from within the $response->result->places object, and
data from the contained_within element must be extracted by using $geo->con-
tained_within[0].As for accessing the initial query, you would use $response->query
to extract the parameters executed alongside the method.To demonstrate the
geo/id/<<id>> method, you can use one of the id elements returned by the query

www.it-ebooks.info

http://www.it-ebooks.info/

71Extending Twitter’s Core Functionality

above.The closest to the Twitter headquarters is 5c92ab5379de3839, which is South
Beach, San Francisco. If you pass this into the geo/id/<<id>> method, you’ll output the
following JSON:

{

"url": "http://api.twitter.com/1/geo/id/5c92ab5379de3839.json",

"country": "",

"bounding_box": {

"type": "Polygon",

"coordinates": [[...]]

},

"place_type": "neighborhood",

"contained_within": ,

"polylines": ["ioseFd`_jVhKjKxKkHbFdHhD{DjIhEhLiSnDbUo}@bmAoj@su

"full_name": "South Beach",

"geometry": {

"type": "Polygon",

"coordinates": [[...]]

},

"name": "South Beach",

"id": "5c92ab5379de3839",

"country_code": "US"

}

The additional information contained within this method gives access to polygon
coordinates as well as data for drawing a polyline. Unfortunately, the id returned by both
of these methods does not relate to a Yahoo! Where On Earth ID (WOEID), which could
be used by the Local Trends methods. If you are using your own GIS, you could use these
coordinates to plot your own maps or use the Google Maps API to show the locations of
tweets in near real time.

Twitter Community Evolution
Alongside major feature extensions, which offer new opportunities for application devel-
opers in their own applications,Twitter has also started supporting community-driven
tools that promote the growth of its own platform. Currently, these include translations
and spam reporting, but could extend to other features in the future.The translate feature
has huge potential to be extended to third-party developers for providing international-
ized applications based on community submissions of translations, which is something
Facebook and Google Friend Connect already support.

Platform Translations
Translations is a new feature to support Twitter in French, Italian, German, and Spanish
(FIGS) in addition to English and Japanese, which are currently available on the Twitter

www.it-ebooks.info

http://www.it-ebooks.info/

72 Chapter 4 Extending the Twitter API: Retweets, Lists, and Location

website. In the future, this will be extended to other languages, too. For now, however,
Twitter hopes to test the platform using these four new languages first.Twitter is recruit-
ing volunteers to provide these translations. If you’re interested in contributing, you can
visit their official Translate (@translate) page to register to become a translator.

Spam Reporting
The original solution for spam reporting involved following the Twitter spam account
(@spam) and sending it a direct message with the screen name of the suspected spammer.
However, this was found to be too complicated for most users, who often just retweeted
spam messages and therefore were suspected of spamming themselves.As a replacement, a
Report for Spam feature has been added to the Twitter actions context menu. So, you can
now report a particular user without having to follow the spam account and send it a
message.

Twitter also released a new API method for performing this functionality named
report_spam. It enables developers to incorporate spam control directly within their
applications. Spam can be reported by supplying an id, user_id, or screen_name param-
eter via a POST request to the report_spam method, which will return a User object if
successful or a Hash object if unsuccessful. For example, if you suspect iamaspammer13 is
a spam account, you can use the following cURL command:

curl –k -u username:password -d "screen_name=iamaspammer13"

https://api.twitter.com/2/report_spam.json

Calls to this method are limited per user per hour and so should be used sparingly
when in batches.As usual, relevant error responses will be returned once this rate has
been reached. No automated response will be taken by Twitter as a result of a spam
request for reasons such as abuse and mistaken identity, so users should not expect
accounts to be suspended immediately upon submitting a request.To test this feature out
in code, you can use the Test Tube application from Chapter 3, adding the following line
of code to the master.php:

printFollowers($twitter, 10);

The line above will execute the printFollowers() function, which will be detailed
next, should be placed inside the functions.php file.The function will return a list of the
last ten (or however many are provided in the second parameter) followers of the authen-
ticated user along with a radio button next to each so that a user can select a potential
spammer and click Report Spam to send the request to Twitter.The printFollowers()
function is shown in Listing 4.2.

Listing 4.2 The printFollowers() Function

function printFollowers($twitter, $count = 10) {

try {

$followers = $twitter->get_statusesFollowers(array("cursor" => -1));

if (check($followers)) {

www.it-ebooks.info

http://www.it-ebooks.info/

73Twitter Community Evolution

$next_cursor = $followers->next_cursor;

$previous_cursor = $followers->previous_cursor;

echo "<h2>Latest ".$count." Twitter Followers</h2>";

echo "<form name=\"spam\" action=\"".MASTER."\" method=\"post\">";

for ($i = 0; $i < $count; $i++) {

$follower = $followers->users[$i];

echo "name."\" href=\"

http://twitter.com/".$follower->screen_name."\"><img class=\"follower\"

src=\"".$follower->profile_image_url."\" alt=\"".$follower->

screen_name."\" height=\"48\" width=\"48\" />";

echo "<input type=\"radio\" name=\"spammer\" value=\"".$follower->

screen_name."\" />";

}

echo "<input type=\"hidden\" name=\"method\" value=\"spam\" />";

echo "<p><input type=\"submit\" value=\"Report Spam\" /></p>";

echo "</form>";

} else {

return false;

}

}

catch(EpiTwitterException $e) { echo "<p>You have no followers to

list.</p>"; }

}

In this function, the statuses/followers method is called along with a cursor
parameter that returns the latest 100 followers.These are then iterated over using the
$count parameter that was supplied to the function as a limiter. Each follower has a radio
button next to his or her profile picture that will be submitted via the form as a spammer
value alongside a hidden method value, which will be parsed by the master.php file.An
extension to this could be to use a check box to report multiple spammers.You now need
to add the report_spam functionality within the master.php file:

if (isset($_POST["method"])) {

switch($_POST["method"]) {

case "spam":

$response = $twitter->post_report_spam(array("screen_name" =>

$_POST["spammer"]));

echo check($response) ? "<p>Spam user {$_POST[‘spammer’]} reported

successfully.</p>" : "<p>Spam user {$_POST[‘spammer’]} reported

unsuccessfully.</p>";

break;

}

} else {

printFollowers($twitter, 10);

}

www.it-ebooks.info

http://www.it-ebooks.info/

74 Chapter 4 Extending the Twitter API: Retweets, Lists, and Location

The name of the case parameter is the same as the hidden method value of the form,
and the screen_name parameter is set to the value of spammer.The check() function will
validate the method call and return the corresponding User object if successful or false
if unsuccessful. For this example, no further processing was completed on the response,
but the simple text line denoting either a successful or unsuccessful report attempt indi-
cates where you could add extra functionality.The extensibility of the functions.php
library and the power of twitter-async make adding these features relatively easy after you
have suitable architectures in place.

Future Directions
As a platform,Twitter is still in its infancy.The introduction of OAuth and Sign In With
Twitter is their first real step toward being a worthy “connect” provider.Twitter has
already confirmed three features during the writing of this book: the Streaming API, con-
tributions functionality, and Twitter @anywhere.

Streaming API
Twitter has released new Streaming API methods, such as firehose, filter, and
retweet, that enable developers to provide almost real time access to large amounts of
Twitter data.This is also the service that is used to index public statuses by Google and
Microsoft Bing.These methods use streaming HTTP, whereby clients are connected to
continuous data streams and will have to explicitly disconnect themselves to stop receiv-
ing data.The current Streaming API methods are as follows:

n The statuses/filter method returns all public statuses that match one or more
filter parameters.These include follow for mentions, locations for geotagged up-
dates, and track for specific keywords.The default access to this method allows you
to track up to 200 keywords, 200 users, and 10 “bounding boxes” for locations.
These boxes are a combination of longitude/latitude pairs, such that the first pair is
the southwest corner of the box and the second pair is the northeast corner.

n The statuses/firehose method returns all public statuses without any kind of fil-
tering.This is one of the least-used Streaming API methods because of its size and
the fact that other methods that return less data can often be used in combination
to return a more comprehensive set of data.

n The statuses/links method returns all statuses that contain either an http: or
https: link. Like the statuses/firehose method, because of the number of data
items retrieved by this method, it is less widely used.

n The statuses/retweet method returns all retweets made by users. It is generally
not used, in favor of the statuses/filter method, whereby you can set the follow
parameter to track a set of users.

www.it-ebooks.info

http://www.it-ebooks.info/

75Twitter Community Evolution

n The statuses/sample method returns a random sample of all public statuses,
which is a small proportion of the Firehose. For research or data mining,Twitter
also allows you to request access to the Gardenhose, which gives access to a larger
number of samples.

Only public accounts are made available, and so you will not be able to extract infor-
mation from protected Twitter accounts.The Streaming API uses Basic Authentication,
and access to methods other than statuses/filter and statuses/sample must be
explicitly requested from Twitter to prevent abuse and to track usage. Because of the large
amounts of data that will be flowing to your applications, it is recommended that you
decouple stream processing and persistence.This just means that as soon as you receive
data from Twitter it should be stored and then processed using methods other than
attempting to render inline.

An example PHP client for use with the Streaming API is Phirehose (http://code.
google.com/p/phirehose/), which is moderately maintained.The library uses a fairly sim-
ple structure that conforms to the official Streaming API documentation:

require_once("Phirehose.php");

class MyStream extends Phirehose {

public function enqueueStatus($status) {

print $status;

}

}

$stream = new MyStream("<<USERNAME>>", "<<PASSWORD>>");

$stream->consume();

In this example, the Phirehose class is extended, and the enqueueStatus() function
is overridden, and called once for each status successfully retrieved. If you are interested in
using the Streaming API, you should read the documentation provided by Twitter (http:/
/dev.twitter.com/pages/streaming_api) and within Phirehose to ensure that your applica-
tions run smoothly. Because extracting large amounts of data was not the focus of this
book, this section provides just a snapshot of what is possible via the Streaming API.

Contributions
For groups or organizations that have multiple users who post on their behalf from a
shared account,Twitter is implementing a “contributors” feature.An account will have to
explicitly enable the feature, which will set the contributors_enabled parameter within
a User object to true, and thus enable specified user accounts to update its status.Within
a Status object will be a new parameter called contributors containing a set of user
identifiers who will have “signed” the update.A sample can be accessed at https://api.
twitter.com/2/statuses/show/7680619122.xml.The update outputs a regular Status
object plus the following:

<contributors>

<user_id>8285392</user_id>

</contributors>

www.it-ebooks.info

http://code.google.com/p/phirehose/
http://code.google.com/p/phirehose/
http://dev.twitter.com/pages/streaming_api
http://dev.twitter.com/pages/streaming_api
https://api.twitter.com/2/statuses/show/7680619122.xml
https://api.twitter.com/2/statuses/show/7680619122.xml
http://www.it-ebooks.info/

76 Chapter 4 Extending the Twitter API: Retweets, Lists, and Location

The feature enables you to append the contributor’s username to a tweet (for example,
the @twitterapi account invited @raffi to tweet on its behalf) so that users can direct
responses back to the person who was referred to in the tweet.At the time of this writ-
ing, this feature is not yet available within the Twitter API.

Twitter @anywhere
At the time of this writing, the details about Twitter @anywhere are scarce.As a concept,
@anywhere is an attempt to enable Twitter functionality, such as following people, to be
embedded within any web page using just a few lines of JavaScript. Like website integra-
tion with the Facebook Platform (see Part II) and Google Friend Connect (Part III), this
client-side functionality could see new incarnations of Sign In With Twitter and other
related Twitter API methods when used in combination with a server-side library such as
twitter-async.

Summary
Twitter is a continually moving target.As a developer, not only will you have to con-

tend with existing features being changed, you will also have to react to new features be-
ing added or old features being deprecated and removed. During the course of writing
this book,Twitter introduced the Lists API, Retweet API, and Geolocation API, and was
already underway in the development of the Streaming API.This goes to show the pace
of change of the platform in even a short space of time. In this chapter, you were given
examples of these new methods and other community features such as translations and
spam reporting, which are likely to be included as features in the future. Keeping up-to-
date with the Twitter API announcements and blog will ensure you are the first to know
of new Twitter enhancements.

www.it-ebooks.info

http://www.it-ebooks.info/

5
An Overview of Facebook

Platform Website Integration

In today’s networked world, Facebook is a household name enabling users to create rich
profiles and interact with others across the world through wall posts, status updates, mes-
sages, and pokes. For developers, the Facebook Platform has opened up almost infinite
possibilities to create engaging applications that have before been mostly restricted to the
internal Facebook environment.This is where Facebook Platform integration for websites
(previously known as Facebook Connect) is different. It allows developers to hook into
the Facebook ecosystem through external applications on the Web, cell phones, and even
game consoles.

This chapter explores the fundamentals of Facebook for developers, including the
Facebook Platform and website integration.You will learn about core components,
including the Facebook API for manipulating Facebook data, the Facebook Query
Language (FQL) for accessing data, and the Facebook Markup Language (XFBML) for
displaying Facebook components such as profile pictures in your web applications.
You will also learn how to create a sample application that you’ll use in Chapter 6,
“Registration,Authentication, and Translations with Facebook,” for registration, authen-
tication, and internationalization and in Chapter 7,“Using Facebook for Sharing,
Commenting, and Stream Publishing,” for sharing, commenting, and publishing.

Facebook Platform for Developers
On August 15, 2006, Facebook introduced the first version of its Facebook Platform and
API enabling users to share their information with third-party websites and applications
of their choosing.At the official 2007 f8 press conference, Mark Zuckerberg gave a
keynote presentation to 800 developers introducing the next evolution of the Facebook
Platform:“Imagine all the things we’re going to be able to build together”.

www.it-ebooks.info

http://www.it-ebooks.info/

78 Chapter 5 An Overview of Facebook Platform Website Integration

This movement was led by the opening of Facebook registration to users outside of
the United States and the exploitation of network connections through the social graph.
He highlighted three components to the platform:

n Deep integration

Integration points enable applications to create synergies with the Facebook envi-
ronment.These integration points include boxes, tabs, application info sections,
inboxes, bookmarks, the Publisher, activity streams, feed forms, and canvas pages.
Not all integration points suit all applications, and so which features you choose to
exploit depends on what type of application you are developing.Also, Facebook has
deprecated many of these integration points (such as boxes and application info sec-
tions), and Facebook is likely to add more in the future.

n Mass distribution

The integration points provide unique ways to distribute your application through
the social graph.These include notifications and requests that can push messages to
friends, but also serendipitous means (such as via activity streams or via browsing a
user’s profile page). New features also include application and game dashboards, and
counters, which were not available for testing during the production of this book,
but are available on the Facebook Developer Roadmap.

n New opportunity

Applications can create new business opportunities, as within canvas pages you can
display advertisements or use applications to transact through Facebook. By attract-
ing more users to your application, both your business and Facebook benefit
through increased site traffic and creating a richer social graph.

While the Facebook Platform continues to evolve, enabling developers to build within
the Facebook ecosystem, a new movement to integrate Facebook data with external
applications has already started to mature.This is where Facebook Platform website inte-
gration comes into its own.

Facebook Platform
Facebook Platform for websites is the next evolution of the Facebook Platform, enabling
you to integrate Facebook functionality into your own site, desktop application, cell
phone applications, and beyond.This is not just about users collaborating and sharing
within the internal Facebook environment as was the intention of the original Facebook
Platform, this is about bringing Facebook to your own product or service. Plug-ins and
social widgets, as well as custom programming, can get you up and running with the
Facebook Platform in minutes in some cases. Facebook Platform website integration
offers three benefits:

1. Increasing registrations because users can register on your application in just two
clicks using their Facebook user credentials (see Chapter 6). No longer do they

www.it-ebooks.info

http://www.it-ebooks.info/

79Facebook Platform

need to remember yet another password. In addition, through authorized accounts,
you get access to their Facebook data such as name, photo, location, and more.This
allows you to create a richer personalized experience, such as serving them targeted
information based on their location, age, gender, or interests.

2. Driving traffic to your product or service by giving users the opportunity to com-
ment on, share, and stream content through their Facebook social graph and activ-
ity streams so that their friends click back to your site and engage with your
content, completing the viral loop (see Chapter 7).

3. Increasing activity on your site by adding social context to increase user engage-
ment, not just showing users what’s most popular on your site, but what’s most
popular with their friends on your site.This is known as social filtering and adds to
the personalized experience.

Facebook provides a sample application called The Run Around (http://www.
somethingtoputhere.com/therunaround/) that demonstrates the service in action.To
integrate the Facebook Platform into your site, you need to first set up a Facebook appli-
cation, get an API key, and add some snippets of JavaScript code to your existing site.The
next section focuses on concretizing these steps and requires an active Facebook user
account.

Registering a Facebook Application
The process for creating a Facebook application is much the same as for regular Facebook
Platform applications.You’ll need to ensure that you have the Facebook Developer appli-
cation enabled on your account by visiting http://www.facebook.com/developers and
then clicking “Set Up New Application”.You will be presented with a space to enter
your application name and agree to the Facebook terms and conditions.The application
name entered here will be the one that is used within the Facebook Application
Directory and viewable on all correspondence with users. Use a suitable name such as
“Test Tube” and click “Create Application”.

Facebook Principles and Policies
As a developer, you are obliged to adhere to the Facebook Developer Principles and Policies
(http://developers.facebook.com/policy/) to help protect your users, yourself, and Facebook.

The Application Edit page contains seven tabs, containing every setting available to
Facebook Platform developers:

n Basic

n Authentication

n Profiles

n Canvas

n Connect

www.it-ebooks.info

http://www.somethingtoputhere.com/therunaround/
http://www.somethingtoputhere.com/therunaround/
http://www.facebook.com/developers
http://developers.facebook.com/policy/
http://www.it-ebooks.info/

80 Chapter 5 An Overview of Facebook Platform Website Integration

n Widgets

n Advanced
n Migrations

Most of these tabs are applicable to Facebook Platform for website applications with
the exception of Canvas, which is used only if you have an internal Facebook application,
and Advanced, which is for server whitelisting and mobile integration.The “Sandbox
Mode” setting in the “Advanced” tab may prove useful should you only want developers
to view the application (for instance, before being made live).

Basic Tab
The “Basic” tab contains options for controlling how your application appears within the
Facebook Application Directory, such as name, description, logo, icon and language. From
this tab, you can also add other developers to your application (who must be a friend on
Facebook), which will give them full access to the application via their own profile.
Facebook also strongly supports adding user-facing links to help, privacy, and terms of
service URLs, which can contain information such as contact addresses or frequently
asked questions.The bookmark URL must be set if you want to allow users to bookmark
your application via the <fb:bookmark> XFBML element.

The three most important fields on this tab are your application ID,API key, and secret.
These parameters are used to authenticate your application with Facebook. (Only you and
Facebook should know the secret!) These parameters should be added to a configuration
file, which you can create and save as config.php and which will be included on each
page on which you want to use Facebook Platform for websites functionality:

<?php

define("APP_ID", "XXXXXXXXXXXX");

define("API_KEY", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX");

define("SECRET", "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX");

?>

Should your secret ever be compromised, you can reset it by going to the Facebook
Developer application, selecting your application, and clicking the “Reset Secret Key”
option. Because the secret is used to “sign” all Facebook requests, resetting it renders the
old code useless.

Authentication Tab
The “Authentication” tab contains two important authentication callback URLs, which
are “pinged” when a user first authorizes or removes your application.These will be cre-
ated in Chapter 6, where the authentication process is explained, but should be set to
http://myfacebookapp.com/authorize.php and http://myfacebookapp.com/remove.php
(where myfacebookapp.com should be replaced by your own web server details).

www.it-ebooks.info

http://myfacebookapp.com/authorize.php
http://myfacebookapp.com/remove.php
http://www.it-ebooks.info/

81Facebook Platform

Profiles Tab
The “Profiles” tab is usually reserved for Facebook Platform applications, but it also con-
tains options for the Publisher interface (see Chapter 7). Set the “Publish Text” option to
Check Mood and the Publish Callback URL to http://myfacebookapp.com/publish.php
and “Self-Publish Text” to “Update Mood” and the “Self-Publish Callback URL” to
http://myfacebookapp.com/self_publish.php.

Connect Tab
The “Connect” tab contains settings that are available only to Facebook Platform for web-
sites applications, such as the “Connect URL”, which you should set to http://myface-
bookapp.com/, and a setting that enables you to add a logo, which will appear when a
user first registers for your application or when requesting permissions such as reading or
writing to their stream. If you want your implementation to span multiple domains, you
can set the base domain to myfacebookapp.com, which will enable foo.myfacebookapp.
com and bar.myfacebookapp.com.The account reclamation URL, as explained in
Chapter 6, is requested should a user remove his or her account from Facebook and wants
to create an independent account on your site without Facebook integration.Access to
friend linking is being revamped by Facebook and will be available in mid to late 2010.
Further details are available on the Facebook Developer Roadmap and will also be posted
on this book’s website at http://www.socialprogramming.info.

Widgets Tab
The “Widgets” tab is useful if you intend to use the comment boxes or live stream boxes
on your website or application (see Chapter 7). From here, you can control who can
administrate and moderate comments and also control who is able to comment.When
you are happy with all the settings, just click “Save Changes” to be returned back to the
Facebook Developer application.You can make other user-facing changes from here, such
as editing your application’s profile, which is where users can become fans, viewing appli-
cation usage statistics, and handling translations (see Chapter 6).The next section explains
how to reference your application using both the server-side PHP and client-side
JavaScript client libraries.

Migrations Tab
The “Migrations” tab was created to provide backward functionality to help developers
transition their applications to use Facebook’s new features (for example, the handling of
empty arrays in JSON and other potentially application-breaking platform adjustments).
From this tab, developers can disable new features until they are happy that their applica-
tion can support them.

Referencing a Facebook Platform Application
To reference Facebook Platform on your site, you need to upload a small file called a
cross-domain communication channel file onto your web server to enable authenticated

www.it-ebooks.info

http://www.socialprogramming.info
http://myfacebookapp.com/publish.php
http://myfacebookapp.com/self_publish.php
http://myfacebookapp.com/
http://myfacebookapp.com/
http://www.it-ebooks.info/

82 Chapter 5 An Overview of Facebook Platform Website Integration

communication between your site and Facebook.The file can be created by creating a
new file called xd_receiver.htm and adding the following HTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<body>

<script src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/

XdCommReceiver.js" type="text/javascript"></script>

</body>

</html>

Only one of these channel files is required per domain, and so you can specify its loca-
tion as a relative path using a forward slash (/) to denote relativity to your root directory.
For instance, /example/xd_receiver.htm would look at the location http://www.
example.com/example/xd_receiver.htm, whereas if your root directory were set to
http://www.example.com/example already then you could just use xd_receiver.htm
without the forward slash.After uploading the file and setting its permissions to 644 using
chmod, you then need to add some JavaScript code to each of your pages that use
Facebook. Listing 5.1 shows a simple implementation of this that you can save as
index.php and store in the same directory as config.php and xd_receiver.htm.

Listing 5.1 A Simple Facebook Platform Page

1 <?php

2 include "config.php";

3 ?>

4 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

5 <html xmlns="http://www.w3.org/1999/xhtml"

xmlns:fb="http://www.facebook.com/2008/fbml">

6 <head>

7 <title>Test Tube</title>

8 </head>

9 <body>

10 <h1>Test Facebook Platform Page</h1>

11 <script src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/

FeatureLoader.js.php" type="text/javascript"></script>

12 <fb:login-button autologoutlink="true" onlogin="login();">

</fb:login-button>

13 <script type="text/javascript">

14 FB.init("<?php echo API_KEY; ?>", "xd_receiver.htm",

{"reloadIfSessionStateChanged":true});

15 function login() {

16 alert("Logged into Facebook.");

www.it-ebooks.info

http://www.example.com/example/xd_receiver.htm
http://www.example.com/example/xd_receiver.htm
http://www.example.com/example
http://www.it-ebooks.info/

83Facebook Platform

17 }

18 </script>

19 </body>

20 </html>

The code in Listing 5.1 is the simplest implementation of Facebook Platform website
integration utilizing the JavaScript client library to log a user in and out. In Chapter 6,
you will learn how to extend this basic authentication to use the post-authorize and post-
remove callback URLs so that you can start tracking which users are interacting with your
application.This client-side code can be extended to use a server-side library such as the
official Facebook PHP Client Library to access the Facebook API.

Using the official client libraries means that a user’s session can be shared between
client-side and server-side code, but if you want to use a third-party client, you will have
to verify the signature of requests yourself by adding the following function to a
functions.php file and uploading that to your web server:

function valid_facebook_session($expires, $session_key, $ss, $user,

$valid_signature, $secret) {

$signature = md5("expires=".$expires."session_key=".$session_key."ss=".

$ss."user=".$user.$secret);

return ($signature == $valid_signature ? true : false);

}

The function ensures that parameters sent from Facebook are authentic and have not
been tampered with. If you send a request to Facebook and receive a true response, then
you know that it is genuine.Adding to the index.php file that you created in Listing 5.1,
add the following code below line 2:

include "functions.php";

include "facebook-platform/php/facebook.php";

$facebook = new Facebook(API_KEY, SECRET);

$official_user = $facebook->get_loggedin_user();

$valid_facebook_session = valid_facebook_session(

$_COOKIE[API_KEY."_expires"], $_COOKIE[API_KEY."_session_key"],

$_COOKIE[API_KEY."_ss"], $_COOKIE[API_KEY."_user"],

$_COOKIE[API_KEY], SECRET);

$unofficial_user = ($valid_facebook_session ? $_COOKIE[API_KEY."_user"] :

false);

After adding the code into index.php, you can reference the $official_user and
$unofficial_user by adding the following code within the <body> tags:

<p>Official Client User: <?php echo $official_user; ?></p>

<p>Unofficial Client User: <?php echo $unofficial_user; ?></p>

www.it-ebooks.info

http://www.it-ebooks.info/

84 Chapter 5 An Overview of Facebook Platform Website Integration

Notice that both parameters will output the same identifier, but if the Facebook
cookie (which is used in the unofficial clients) is tampered with, the signature will not
match and will return false.With the client-side and server-side libraries now referenced
successfully, you can now begin to use the Facebook API to access and manipulate user
details and use the Facebook Markup Language (FBML) to display the results.

Facebook API, FQL, and XFBML
The Facebook Platform is split into four core components that comprise its REST-based
API and give developers the tools to perform Facebook actions such as creating events,
getting a list of friends, or updating a status through accessor (retrieval) and mutator (cre-
ating, updating, or deleting) methods and accessing Facebook data through the Facebook
Query Language (FQL). For consistent formatting and user experience, you can use
FBML for canvas applications and XFBML for <iframe> and Facebook Platform applica-
tions to replicate the appearance of Facebook controls (for example, displaying usernames
and profile photos, creating secure areas through privacy settings, and for hooking into
Facebook’s integration points).

A client-side version of the REST-based API is provided by Facebook JavaScript
(FBJS) for creating rich, interactive user experiences through a sandboxed JavaScript envi-
ronment. Select uses of the Facebook JavaScript appear throughout this chapter and
Chapters 6 and 7, but the majority of requests will be managed using server-side applica-
tion logic.There is currently an open source version of the Facebook JavaScript SDK in
production that is slimmer than the existing client library and will be continually updated
throughout 2010 and beyond.

Facebook Platform Developer Roadmap
Facebook has published a roadmap of future developments for developers to keep up-to-date
with changes to the Facebook Platform. Because the Platform is constantly evolving, you
should keep track of this page to ensure future applications are compatible with new ver-
sions. The two features that could not be included in this book but that are important are the
creation of an inbox for user content sharing, and invites for inviting friends to applications.

For those of you who want to dive straight into coding, the Facebook Test Console
(http://developers.facebook.com/tools/) can be used to test a number of features, such as
finding friends and publishing to the stream.The Console is a great resource to begin
exploring how the Facebook API works, which can then be extended and customized
using the server-side client library.The next two sections cover the Facebook API, FQL,
and FBML in more detail.

Facebook API and FQL
Facebook provides two ways to access user data: through FQL (Facebook’s own SQL-like
query language, which can be used to craft complex queries); or via predefined Facebook

www.it-ebooks.info

http://developers.facebook.com/tools/
http://www.it-ebooks.info/

85Facebook API, FQL, and XFBML

Using the Facebook PHP client library, you can conveniently access many of the
Facebook API functions through the $facebook object. For example, to access and dis-
play a user’s friends, you can use the following within index.php:

if($official_user) {

try {

$friends = $facebook->api_client->friends_get();

foreach($friends as $friend) {

echo '<p><fb:name uid="'.$friend.'" /></p>';

}

}

catch(Exception $e) {

print_r($e);

}

} else {

echo "<p>User not logged in.</p>";

}

API methods, which are less customizable but provide a user-friendly interface to
Facebook data.With the Facebook API, you can add social context to your application by
using profile, friend, page, group, photo, and event data.The Facebook API is a REST-
based resource that sends data over the Internet using GET and POST operations though
the Facebook API REST server http://api.facebook.com/restserver.php.

Facebook Open Graph
At the f8 Developer Conference in 2010, Facebook announced a new evolution of the
Facebook Platform, the open graph. The open graph puts people at the center of the Web
with the introduction of “social plug-ins” (http://developers.facebook.com/plugins). These
plug-ins enable users to add (via one line of HTML) Facebook functionality to their websites
that are aware of users’ Facebook connection status. These include adding Like or
Recommend buttons, which can be used to show site visitors whether their friends have
liked a blog post, a photo, or a piece of music (to give just a few examples). This activity can
then be streamed via an activity feed plug-in for alerting users to their friends’ interactions.
The final plug-in that was announced enables recommendations, to highlight content based
on popular items generated by site visitors. Implementing these features will allow visitors
to take actions on your site and will become more relevant to them and their friends as they
find and share what matters most to them. Facebook also announced the Open Graph
Protocol (http://developers.facebook.com/docs/opengraph), which is Facebook’s move
toward a semantically enabled social web and the Graph API (http://developers.facebook.
com/docs/api), which simplifies the way in which developers read and write data to
Facebook. All of these changes will unfold in time, and so keeping up with the Facebook
developer resources and this book’s blog, http://www.socialprogramming.info, will help you
make the best choices for your applications.

www.it-ebooks.info

http://www.socialprogramming.info
http://api.facebook.com/restserver.php
http://developers.facebook.com/plugins
http://developers.facebook.com/docs/opengraph
http://developers.facebook.com/docs/api
http://developers.facebook.com/docs/api
http://www.it-ebooks.info/

86 Chapter 5 An Overview of Facebook Platform Website Integration

Many other Facebook API methods are available and can be viewed within the
facebookapi_php5_restlib.php file contained within the Facebook PHP client library,
which also indicates their return types and optional parameters.These methods are cate-
gorized as follows:

n Administration methods

n Login/authentication methods

n Data-retrieval methods

n Publishing methods

n Mobile methods

n Dashboard API methods

n Photos API methods

n Events API methods
n Custom Tags API methods

It’s impossible to cover every one of these methods here, because they are too numer-
ous, but we will take a look at some of the most useful methods in this chapter. It is
worth checking the facebookapi_php5_restlib.php file itself to see how each method
works and what data you can expect to be returned.

Administration Methods
These methods are used to administer your applications and their users—such as using
the admin.banUsers and admin.unbanUsers to ban and unban users, admin.
getBannedUsers to get banned users, and links.getStats to get Facebook share statis-
tics for a link—and for checking allocation limits using admin.getAllocation, which
prevent applications from spamming users.Another useful method is admin.getMetrics,
which returns specific metrics for your application, such as active_users, canvas_page_
views, and api_calls.An example of this method in action is shown here:

$end_time = time();

$period = 86400;

$start_time = $end_time - $period;

$metrics = $facebook->api_client->admin_getMetrics(

$start_time, $end_time, $period, array("active_users",

"canvas_page_views"));

foreach($metrics as $metric) {

echo "Active Users: ".$metric["active_users"];

echo "Canvas Page Views: ".$metric["canvas_page_views"];

}

Because the UNIX time is being used, the $period in this instance must be set to
either 1 day (86,400 seconds), 1 week (604,800 seconds), or 30 days (2,592,000 seconds).

www.it-ebooks.info

http://www.it-ebooks.info/

87Facebook API, FQL, and XFBML

The value of $end_time must not be greater than thirty days after the $start_time
parameter.This method proves particularly useful if you want to track your own applica-
tion statistics for storage automatically within an external database.

Login/Authentication Methods
You can use these methods for advanced session management, particularly for desktop
applications. For Facebook Platform for websites, the most useful methods are for session
expiration using auth.expireSession, getting a session via auth.getSession (which
returns a session key, user ID, and a session expiry time), and creating temporary sessions
with the auth.promoteSession method. In particular, you may want to call the
auth.getSession method after a user has connected and store the details within a tem-
porary encrypted session for future use. For sessions that have an expiry of zero, this
means that the user has granted offline access to his account, meaning that you can per-
form actions on his behalf irrespective of whether he has logged in to Facebook. For
users who want to completely remove your application, the auth.revokeAuthorization
method logs them out of Facebook and revokes access to their details until they authorize
your application again.The same is true of the auth.revokeExtendedPermission
method, which will remove access to a previously authorized extended permission such
as offline_access or read_stream.

Data-Retrieval Methods
You can use a number of methods to return Facebook data: from comments, friends,
groups, and notes, to accessing a user’s stream and profile information. Included in these
methods is also the ability to execute FQL, which is explored in the next section via the
fql.query and fql.multiquery methods.All of these methods are for retrieving data
and contain methods such as comments.get, friends.get, groups.get, notes.get,
status.get, and stream.get. Because many of these methods are used throughout later
chapters in this book, they are not explored in great detail in this section. However, meth-
ods such as friends.areFriends, friends.getAppUsers, users.getInfo, and
users.getStandardInfo are useful for extracting data about users and their friends.An
example of the user.getStandardInfo method is shown here:

$users = $facebook->api_client->users_getStandardInfo(

array($official_user), array("first_name", "last_name"));

echo "";

foreach($users as $user) {

echo "Name: ".$user["first_name"]." ".$user["last_name"]."";

}

echo "";

The results from this method must not be displayed to the user (that’s what users.
getInfo is for), but it can be used to gather analytics data. Other fields that can be used
include uid, name, timezone, birthday, sex, affiliations, locale, profile_url,

www.it-ebooks.info

http://www.it-ebooks.info/

88 Chapter 5 An Overview of Facebook Platform Website Integration

proxied_email, current_location, and allowed_restrictions.The allowed_
restrictions field is particularly useful for restricting content based on a user’s age,
country of residence, and type of content (for example, alcohol-related content). It can be
used in conjunction with admin.setRestrictionInfo and admin.setRestrictionInfo

to set restrictions that prevent users from accessing an application if they fail to meet your
criteria. For example, if the following were set, it would restrict an application to anybody
over the age of 18 from the United Kingdom:

$info = array("age" => "18+", "location" => "UK", "type" => "alcohol");

$success = $facebook->api_client->admin_setRestrictionInfo($info);

Because the alcohol type was set, this automatically restricts access for each country’s
minimum age rather than setting them individually.The allowed_restrictions field
will return alcohol if the user is able to view the content.Another way to restrict con-
tent that does not completely prevent users from access is to use the <fb:restricted-
to> XFBML element, which can be wrapped around potentially sensitive material.

Publishing Methods
Unlike data-retrieval methods, these methods are used to create and delete Facebook data
(comments, links, notes, statuses, streams, and such). Most methods require extended per-
missions, as discussed in Chapter 7.The majority of the publishing methods are described
in Chapters 6, 7, 8, and 13, and so we do not discuss them in this section. However, the
one set of methods that may be of use are for creating and handling notes. Facebook pro-
vides three methods for working with notes, which are similar to blog posts and require
the create_note extended permission:

n notes.create

n notes.edit
n notes.delete

A note consists of a suitable title plus a string of content, which can include some
HTML elements (see http://www.facebook.com/notes_cheatsheet.php) for added visual
effect. New lines are supported by either wrapping content within two <p> tags or by
using the
 element.An example note would be created as follows:

$note_id = $facebook->api_client->notes_create("Test Note", "This is a

bold paragraph.<p>This is a normal paragraph.</p>");

If successful, a note_id will be returned, which can then be used to make edits or
delete. For retrieving notes, you can use the notes.get method, which includes an
optional note_ids parameter, which accepts an array of note identifiers that you may
have collected via the creation methods.

www.it-ebooks.info

http://www.facebook.com/notes_cheatsheet.php
http://www.it-ebooks.info/

89Facebook API, FQL, and XFBML

Mobile Methods
For applications that use the Mobile platform, you can use two methods to check
whether a user has enabled Short Message Service (SMS): for an application, via
sms.canSend and for sending a message to their cell phone, sms.send.

Dashboard API Methods
A new set of integration points for both applications and games is exposed via the
Dashboard API (see Chapter 8,“Application Discovery,Tabbed Navigation, and the
Facebook JavaScript Library”). Methods in this category are used for sending users short
notifications and displaying counters related to actions generated by users and their
friends.These experimental methods were not available to test at the time of this writing,
but they were described on the Developer Roadmap.

Photos API Methods
Photos are an important component of the Facebook Platform and user experience.
Facebook provides a set of methods for creating and viewing data about albums, upload-
ing and getting photos, and for creating and reading photo tags.The best way to demon-
strate each method is by way of example.This will involve creating a new album,
uploading a photo, adding a tag, and then retrieving all of this data programmatically:

1 $album = $facebook->api_client->photos_createAlbum("Test Album",

"This is a test album.", "Everywhere", "everyone");

2 $photo = $facebook->api_client->photos_upload("photo.jpg",

$album["aid"], "This is a test photo.");

3 $tag = $facebook->api_client->photos_addTag($photo["pid"],

$official_user, null, 50.0, 50.0, null);

4 $albums = $facebook->api_client->photos_getAlbums(null, null);

5 echo "";

6 foreach($albums as $album) {

7 if($album["name"] != "Profile Pictures") {

8 echo "".$album["aid"].": ".$album["name"]."";

9 $photos = $facebook->api_client->photos_get(null, album["aid"],

null);

10 echo "";

11 foreach($photos as $photo) {

12 echo "".$photo["pid"].": ".$photo["caption"]."";

13 $tags = $facebook->api_client->photos_getTags($photo["pid"]);

14 if(is_array($tags)) {

15 echo "";

16 foreach($tags as $tag) {

17 echo "".$tag["subject"].": (".$tag["xcoord"].", ".

$tag["ycoord"].")";

www.it-ebooks.info

http://www.it-ebooks.info/

90 Chapter 5 An Overview of Facebook Platform Website Integration

18 }

19 echo "";

20 }

21 }

22 echo "";

23 }

24 }

25 echo "";

An album is created on line 1, which includes setting its name, description, and loca-
tion details.The final parameter is for setting privacy permissions and can be set to one of
everyone, friends, friends-of-friends, or networks. Unless you are going to display
an advanced user interface for your users to select particular permissions, it is recom-
mended that you set this to null.The resulting $album array includes keys such aid,
owner, name, created, and a link to the album on Facebook. Once an album has been
created, you can then upload a photo to that album using the returned $album["aid"].
If you do not supply an album identifier, the photo will be uploaded to the application’s
default album, which can contain up to 1,000 photos.The first parameter should be set to
an existing image file located on your web server, which in this instance is called
photo.jpg.The $photo array will contain the newly created pid and aid and links to the
photo src, src_big, src_small, and link.All applications can upload photos.The photos
remain in a “pending” state until the user authorizes them or grants the photo_upload
extended permission.The only storable values from this method are aid, pid, and the
owner who uploaded the photo.

After a photo has been uploaded to Facebook, users can add tags to specific sections to
indicate the locations of their friends or other details.The photos.addTag method is used
to reference users and provide the horizontal and vertical coordinates of the tag. In the
preceding code, line 3 includes a reference to the authenticated user, but this could be the
Facebook identifier of any user. If this were set to null, the next parameter could contain
a string of text to identify an object in the photo.

On line 4, an array of albums is extracted, which could be restricted to a particular
user by inserting a Facebook identifier as the first parameter, or to a set of albums by sup-
plying an array of aid values as the second parameter.This array of albums is then iterated
over and the relevant photos are extracted on line 9 and associated tags for each photo on
line 13.Although the photos.getTags uses just a single pid, you could also use an array
of multiple pid values, and for the photos.get method you could set the first parameter
as a Facebook identifier or the third parameter as an array of pid values.

Events API Methods
As with photos, Facebook provides an extensive Events API for creating, editing, and can-
celing events and for inviting friends and setting RSVP status. Creating events on behalf
of a user requires the create_event extended permission. Setting RSVP status requires
rsvp_event, which is explored in Chapter 7. For now, you should visit the following

www.it-ebooks.info

http://www.it-ebooks.info/

91Facebook API, FQL, and XFBML

two URLs, replacing <<API_KEY>> with your own API key, which will grant extended
permissions to your application:

n http://www.facebook.com/authorize.php?api_key=<<API_KEY>>&v=
1.0&ext_perm=create_event

n http://www.facebook.com/authorize.php?api_key=<<API_KEY>>&v=
1.0&ext_perm=rsvp_event

When handling events, your application will be added as an administrator for the event
and the authenticated user as the creator.Therefore, you can edit and cancel events as
required. Events created by the events.create method require the creation of an Events
object, which must be converted to JSON.The one tricky element with creating events is
that Facebook handles time data very strangely.The time is converted to UTC (coordi-
nated universal time) based on the assumption that the date already exists in Pacific time
format (Facebook server’s time), which could have major implications on your applica-
tions if they are using another time zone, such as Greenwich mean time (GMT).
However, you can counteract this by creating a function using DateTime and
DateTimeZone objects:

function prepare_time($time) {

$date_string = date("r", $time);

$datetime = new DateTime($date_string);

$facebook_time = new DateTimeZone("America/Los_Angeles");

$datetime->setTimezone($facebook_time);

$offset = $datetime->getOffset();

$offset = $offset * (-1);

$datetime->modify($offset." seconds");

return $datetime->format("U");

}

This function will take a time and then reverse the offset that is applied by Facebook
so that when it is stored it is translated to the original time.To find the original function,
go to http://forum.developers.facebook.com/viewtopic.php?pid=129685.

With this function at hand, you can then create an event using the three required
parameters (name, start_time, and end_time):

$start_time = gmmktime(22, 0, 0, 3, 25, 2010);

$start_time = prepare_time($start_time);

$end_time = gmmktime(23, 0, 0, 3, 25, 2010);

$end_time = prepare_time($end_time);

$event_info = array(

"name" => "Test Event",

"start_time" => $start_time,

"end_time" => $end_time

);

$event_info = json_encode($event_info);

$event = $facebook->api_client->events_create($event_info,

"event_logo.png");

www.it-ebooks.info

http://www.facebook.com/authorize.php?api_key=<<API_KEY>>&v=1.0&ext_perm=create_event
http://www.facebook.com/authorize.php?api_key=<<API_KEY>>&v=1.0&ext_perm=create_event
http://www.facebook.com/authorize.php?api_key=<<API_KEY>>&v=1.0&ext_perm=rsvp_event
http://www.facebook.com/authorize.php?api_key=<<API_KEY>>&v=1.0&ext_perm=rsvp_event
http://forum.developers.facebook.com/viewtopic.php?pid=129685
http://www.it-ebooks.info/

92 Chapter 5 An Overview of Facebook Platform Website Integration

This code creates an event whose date is March 25, 2010, with a start time of 10
p.m. and an end time of 11 p.m.An optional file parameter is also passed to the
events.create method, which must be a file saved on your web server. If successful,
the $event variable will contain a numeric Facebook event identifier.To demonstrate
the other parameters that can be set, you can use the events.edit method on the
returned $event:

$event_info = array(

"name" => "Updated Test Event",

"category" => 1,

"subcategory" => 1,

"location" => "My House",

"street" => "1 Test Lane",

"city" => "London",

"phone" => null,

"email" => null,

"page_id" => null,

"description" => "This is a test event.",

"privacy_type" => "SECRET",

"tagline" => null,

"host" => "Me"

);

$event_info = json_encode($event_info);

$updated_event = $facebook->api_client->events_edit($event, $event_info);

The additional values include an event category and subcategory (http://wiki.devel-
opers.facebook.com/index.php/Event_Categories).These are set to a “Party > Birthday
Party”, a page_id (which can be used to associate an event with a particular group or
page), and privacy_type (which can be one of OPEN, CLOSED, or SECRET, depending on
how discoverable you want your event to be).Again, an image can be supplied as the third
parameter in the call to events.edit if you want to update it. If the update was success-
ful, the $updated_event value will be set to 1.

After your event has been created and users have granted the rsvp_event extended
permission, you can set their RSVP status by using the following:

$rsvp = $facebook->api_client->events_rsvp("<<EVENT_ID>>", "unsure");

The values for status can be one of attending, unsure, or declined. Users attending
an event might want to invite their friends.This is catered for via the events.invite
method, which accepts an event identifier as its first parameter, an array of the user’s
friends’ identifiers, and an optional message to be sent along with the invitation.Another
useful method is events.getMembers, which helps you display which members have
been invited to an event and their RSVP status.You can use this if you want to provide
your own events interface and allow users to view others who are attending on your own
site. It can be used as follows:

$members = $facebook->api_client->events_getMembers("<<EVENT_ID>>");

www.it-ebooks.info

http://wiki.developers.facebook.com/index.php/Event_Categories
http://wiki.developers.facebook.com/index.php/Event_Categories
http://www.it-ebooks.info/

93Facebook API, FQL, and XFBML

The $members variable will contain four array keys: attending, unsure, declined, and
not_replied.These contain arrays of user identifiers according to RSVP status. If you are
unsure about an event identifier, you can use the events.get method to extract all the
events for a specified user.You can filter this by start and end times and by RSVP status.
For example, to find the test event that was just created, you just use the following:

$events = $facebook->api_client->events_get($official_user, null,

$start_time, $end_time, "attending");

The method will return an array of events that match the query, and any or all the
parameters can be set to null to include more results.The second parameter can be an
array of event identifiers if you want to extract details from a list of known events that
have been created by your application or within Facebook. Finally, events can be canceled
by calling the following:

$facebook->api_client->events_cancel("<<EVENT_ID>>", "This event has been

cancelled by the organisers due to bad weather.");

The second parameter is a message that is sent to all users detailing why the event has
been canceled. If you do not want to provide an explanation, you can exclude this param-
eter from the method call.The Facebook API gives access to many of the events functions
which can be used within applications to create, update, and delete Facebook events.They
also enable you to set RSVP status for users and create simple ways for them to invite a
list of friends.

Custom Tags API Methods
The final set of methods can be used for registering, retrieving, and deleting custom tags.
Custom tags allow developers to extend existing FBML tags by defining their own and
optionally sharing them with others.Tags consist of FBML snippets that are rendered dur-
ing parse time and can be either private or public. Custom tags can be defined with the
fbml.registerCustomTags method and are referenced by importing them into a name-
space using the xmlns attribute of the <fb:fbml> tag. Unfortunately, at the time of this
writing, there is no way to use custom tags in Facebook Platform for website applica-
tions. So, your best option is to keep tracking the Facebook Developer Roadmap for an
alert about this addition.

An Overview of FQL
FQL can be used to perform many of the retrieval functions of the Facebook API, but it
even enables greater customization such as multiquery support. FQL queries can be made
more efficient than Facebook API counterparts because you can specify which fields you
want returned, which condenses request outputs, and allows for a standard interface for
data extraction.A number of FQL tables are available (and which you’ll be using
throughout Chapters 6 and 7).With these tables, you’ll be able to access the following:

n Application data via the application, developer, metrics, notification, and
cookies tables

www.it-ebooks.info

http://www.it-ebooks.info/

94 Chapter 5 An Overview of Facebook Platform Website Integration

n Event data via the event and event_member tables

n Family and friends data via the connection, family, friend, friend_request,
standard_friend_info, friendlist, and friendlist_member tables

n Group data via the group and group_member tables

n Inbox data via the mailbox_folder, message, and thread tables

n Links data via the link and link_stat tables

n Page data via the page, page_admin, and page_fan tables

n Photo data via the album, photo, and photo_tag tables

n Privacy data via the permissions, permissions_info, and privacy tables

n Stream data via the comment, like, status, stream, and stream_filter tables

n User data via the profile, standard_user_info and user tables

n Video data via the video and video_tag tables
n Plus, other data such as notes and translations via the note and translation tables

Through these tables, you can access almost any element of Facebook data provided
that you have sufficient permissions.To get you started, here is what a typical FQL query
looks like:

$fql = "SELECT uid2 FROM friend WHERE uid1=".$official_user." LIMIT 10";

$friends_fql = $facebook->api_client->fql_query($fql);

foreach($friends_fql as $friend) {

echo '<p><fb:name uid="'.$friend["uid2"].'" /></p>';

}

This query is equivalent to the Facebook API function used in the previous section to
retrieve a user’s friends using the friends.get method, but this one has been limited to
ten friends. Note also how the user identifier is extracted using $friend["uid2"], which
maps to the fields returned by the FQL query.Table 5.1 provides some examples of the
commutability of the Facebook API and FQL queries.

The main difference is that when you are using the Facebook API methods, you must
include the <<UIDS>> and <FIELDS> parameters as an array (but these must be a comma-
separated list when using FQL).The <<FLID>> parameter exists only in the Facebook API
for specifying a friends list identifier and alongside <<UID>> must be supplied as a single
string. Data from the user information method cannot be stored but can be displayed,
whereas the standard information method may be used to store user data for internal ana-
lytics but cannot be used to display user information.

www.it-ebooks.info

http://www.it-ebooks.info/

95Facebook API, FQL, and XFBML

Table 5.1 Common Relationships between Facebook API Methods and FQL

Description Facebook API FQL

Get user information users_getInfo(

<<UIDS>>,

<<FIELDS>>

)

SELECT <<FIELDS>>

FROM user

WHERE uid IN (

<<UIDS>>

)

Get a user’s friends friends_get(

<<FLID>>,

<<UID>>

)

SELECT uid2

FROM friend

WHERE uid1 =

“<<UID>>”

Get user standard
information (for example,
name, birthday, locale,
and sex)

users_getStandardInfo(

<<UIDS>>,

<<FIELDS>>

)

SELECT <<FIELDS>>

FROM

standard_user_info

WHERE uid IN (

<<UIDS>>

)

Unlike database SQL, in FQL you can supply only one table name in the FROM clause,
which is where you can use the FQL multiquery functionality. For example, suppose you
want to get some data about users who are members of a group.You’d have to perform
two queries in a row, waiting for the results of the first query before running the second
query, because the second query depends on data from the first one.With $facebook-
>api_client->fql_multiquery(), you can run both results at the same time and get all
results at once, which is more efficient than running single queries.An example follows:

$queries = array(

"group_members" => "SELECT uid, positions FROM group_member

WHERE gid='2205007948' LIMIT 5",

"members_details" => "SELECT id, name, url, pic FROM profile WHERE id IN

(SELECT uid FROM #group_members)"

);

$queries = json_encode($queries);

$data = $facebook->api_client->fql_multiquery($queries);

www.it-ebooks.info

http://www.it-ebooks.info/

96 Chapter 5 An Overview of Facebook Platform Website Integration

Notice that your queries need to be JSON encoded before being passed to the multi-
query method.Assuming that a valid gid was provided, the $data variable will return the
following:

Array (

[0] => Array (

[name] => group_members

[fql_result_set] => Array (

[0] => Array ([uid] => XX [positions] =>)

[1] => Array ([uid] => YY [positions] =>)

...

)

)

[1] => Array (

[name] => members_details

[fql_result_set] => Array (

[0] => Array ([id] => XX [url] => XX [name] => XX [pic] => XX)

[1] => Array ([id] => YY [url] => YY [name] => YY [pic] => YY)

...

)

)

)

To access the results, you can use the following code:

$group_members = $data[0]["fql_result_set"];

$members_details = $data[1]["fql_result_set"];

$i = 0;

foreach($group_members as $group_member) {

echo '<fb:name uid="'.$group_member["uid"].'"></fb:name>

'.$members_details[$i]["name"].'
';

$i++;

}

The ordering of results is the same as supplied to the query, which is why
$group_members accesses the first set of data and $members_details the second. Inside
those arrays, the data is also ordered symmetrically so that the first result in one is also the
first result in the other. In the example above, this should produce two identical name
values.The multiquery functionality can prove quite useful when used in conjunction
with the FQL to get the user’s friends who are application users by using the following
base and replacing <<UID>> with the logged-in user’s Facebook identifier:

SELECT uid FROM user

WHERE uid IN (

SELECT uid2 FROM friend WHERE uid1="<<UID>>"

) AND is_app_user

Using this base, an application can use the user’s set of friends who have also added the
application to make features more prominent to them or to help a user find those friends

www.it-ebooks.info

http://www.it-ebooks.info/

97Facebook API, FQL, and XFBML

who have not added the application to invite them to do so.The results can then be
wrapped within <fb:name> or <fb:profile-pic> XFBML tags to reveal the user’s
friends’ names and profile pictures.You can also request other features via the
<fb:prompt-permission> XFBML element, such as allowing an application to send
e-mail to users, updating status, uploading and tagging photos, creating and modifying
events, and many other Facebook functionalities.These permissions can then be queried
via the $facebook->api_client->users_hasAppPermission() method to test whether
a user has granted application access before executing Facebook events.

XFBML
XFBML, the Facebook Markup Language for websites, is the Facebook equivalent of
HTML and can be used to provide social context to your applications. For example, the
<fb:name> element can be used to render a user’s name if you supply a uid parameter
such as $official_user.The full list of XFBML parameters is available from the
Facebook Developer wiki, and most are explored in Chapters 6 and 7. Here is a sample of
common XFBML elements you can use in your applications:

n fb:bookmark

The <fb:bookmark> tag renders an Add Bookmark button on your website so that
a user can add your application to a user’s profile. If the user already bookmarked
your application, the bookmark will not be shown.To adhere to Facebook’s terms
of service, you cannot force a user to bookmark your application but could high-
light the additional benefits, such as how a bookmark contributes to applications
and game dashboards, as discussed in Chapter 8.

n fb:name

The <fb:name> tag can be used to render the user’s name and requires a uid
parameter to be set. Optional parameters include firstnameonly, which can be set
to true to just display the user’s first name, linked to add a link to the user’s pro-
file, or possessive to make the user’s name possessive (for example, Mark’s).You
can use other parameters such as reflexive and ifcantsee to render a string of
text for users whose names cannot be retrieved for privacy reasons.As with the
<fb:profile-pic> tag (described next), this tag ensures that you always have the
user’s most recent name rendered by your application.

n fb:profile-pic

The <fb:profile-pic> tag renders a profile picture of the user supplied in the
required uid parameter. For Facebook Platform for websites applications, an
optional facebook-logo parameter can be set to display a Facebook logo in the
bottom corner of the user’s profile picture. Using this tag will ensure that whenever
you want to show a user’s photograph it will be his or her most current one.

www.it-ebooks.info

http://www.it-ebooks.info/

98 Chapter 5 An Overview of Facebook Platform Website Integration

n fb:pronoun

For applications that want to display a he, she, or they within text the <fb:pronoun>
tag can be used.This option reduces the need to store the user’s gender in an appli-
cation to perform the same logic.

n fb:user-status

The <fb:user-status> tag can be used to show the status of the user supplied in
the uid parameter.

Unlike FBML parameters used within canvas pages, XFBML elements must use a clos-
ing tag, such as <fb:name uid="512973464"></fb:name>.All XFBML tags can contain
an optional condition attribute, which can be used to hide or show elements such as the
following:

<fb:container condition="FB.XFBML.Conditions.ifCanSee('512973464',

'profile')">

<p>This is only visible if the user can see the profile of user

512973464.</p>

</fb:container>

This could be particularly useful to adhere to privacy restrictions set by users if they
have blocked access to their details to specific users.As you can see, the extensibility of
XFBML means that you can start building applications that use Facebook data with as lit-
tle data as a user’s identifier.When used in combination with the Facebook API and FQL,
you can integrate the look and feel of Facebook within your web pages just by including
the Facebook libraries.This can also be extended by making use of the dialog and anima-
tion libraries provided by Facebook (see Chapter 8) for adding greater functionality to
your applications.

Summary
Facebook is one of the most visited sites on the Web, with millions of users coming back
each day. Since the release of the Facebook Platform on May 24, 2007, thousands of
applications have been developed.As an evolutionary step for the Facebook Platform,
you can use Facebook to integrate with your own site, desktop application,Apple iPhone
application, and beyond. Now you can leverage your existing user base and attract new
and existing users using the power of the Facebook social graph. In this chapter, you were
given an overview of the Facebook Platform.This included setting up a new application,
Test Tube, which will be used in Chapters 6 and 7.The next chapter explores authentica-
tion and application translations in more detail.

www.it-ebooks.info

http://www.it-ebooks.info/

6
Registration,Authentication,

and Translations with Facebook

Chapter 5,“An Overview of Facebook Platform Website Integration,” introduced you
to the Facebook Platform as a technology that facilitates identity and friend connection
sharing with any Internet-enabled device through client-side and server-side libraries that
can be used to access many of the Facebook resources described in this chapter and in
Chapter 7,“Using Facebook for Sharing, Commenting, and Stream Publishing.”The
Facebook Platform for website integration toolset is split into two interrelated sections:
one for registration, authentication, and translations (discussed in this chapter); and one
for adding social interactions such as commenting, publishing, and for content sharing
(see Chapter7).

This chapter explores how to handle the user registration and authentication process
via Facebook.This includes handling users logging in and out of Facebook and helping
them reclaim accounts if they have deactivated their Facebook account.When users are
connected to a site through Facebook, either for the first time or as a returning user, they
may want to search for friends. Doing so is facilitated through the Facebook API client
libraries, both client and server side. Once registered via Facebook, you can begin to per-
sonalize content and publish to a user’s stream (as covered in Chapter 7).

User Authorization and Authentication
Facebook can be used as a login mechanism for users of any website or Internet-enabled
application such as a cell phone or game console. If a user registers an account using
Facebook and already has an account and profile on the third-party application, this can
be linked to the user’s Facebook account and that user can start finding his or her friends
who have already connected their accounts.Three of the main processes for handling
Facebook logins will be described in this section:

n Logging users in with Facebook for the first time, registering their details, and
when they revisit the application, detecting whether they can be logged in auto-
matically using their Facebook account

www.it-ebooks.info

http://www.it-ebooks.info/

100 Chapter 6 Registration, Authentication, and Translations with Facebook

n Logging users out of the application using Facebook and handling de-registration if
they choose to disconnect their account

n Helping users reclaim their third-party application accounts if they choose to de-
activate their Facebook accounts

Both the Facebook API PHP client library and the JavaScript API provide functional-
ity to handle each of these processes, which can be integrated seamlessly into existing
code. Most of the functionality is contained within the post-authorize callback URL,
post-remove callback URL, and account reclamation URL, which were explained in
Chapter 5. In the case of the first two URLs these are “pinged” by Facebook without
redirecting the user anywhere.The account reclamation URL should be a branded page
that users visit, enabling them to create an independent, non-Facebook account.

The workflow of a Facebook authorization is shown in Figure 6.1. It shows the
exchange between your application server, the user’s web browser, and Facebook in ren-
dering login buttons and creating a session.

The workflow keeps user information secure through several means.These include
signing the user’s session with a secret key that can be verified within your applications to
ensure that the information came from Facebook and not a malicious source.The
browser mediates all communication, meaning user identifiers are kept private unless

Yes No

Send HTML Response
Including Code to
Render Facebook
Connect Button

Execute Facebook
Connect JavaScript

Retrieve, Verify
and Store User

Details

Prompt to Authorize
Application

Render Facebook
Connect Button

User Clicks Button Prompt to Log In

User Visits
Application

Retrieve User’s
Connect Status

Application Server Web Browser Facebook

Yes

Yes

No

Logged In?

Authorized
Application?

Set Facebook
Cookies and

Execute Callback
Function

Figure 6.1 Standard Facebook Platform for websites authentication workflow.

www.it-ebooks.info

http://www.it-ebooks.info/

101User Authorization and Authentication

users who have accessed your application have authenticated themselves within
Facebook. Finally, during the authentication step, no information about the application is
passed to Facebook apart from your API key.

Logging In and Detecting Facebook Status
When users visit a website or application that is using Facebook, they can be in one of
three states: Connected, which means that they are logged in to Facebook and have author-
ized the application; Not Logged In, which means that they are not logged in to Facebook,
and so their Facebook status cannot be evaluated (and so need to be prompted to log in
or create a Facebook account); or they are Not Authorized, which means they have logged
in to Facebook but have not connected to the application. For most applications, the dis-
tinction between Not Logged In and Not Authorized is not important because they both
require users to log in to their Facebook account.This detection is handled using the
Facebook JavaScript library using the FB.Connect.get_status() function:

FB.Facebook.init("<?php echo API_KEY; ?>");

FB.ensureInit(function() {

FB.Connect.get_status().waitUntilReady(function(status) {

switch (status) {

case FB.ConnectState.connected:

loggedIn = true;

break;

case FB.ConnectState.appNotAuthorized:

loggedIn = false;

break;

case FB.ConnectState.userNotLoggedIn:

loggedIn = false;

}

});

});

For users who are not logged in, Facebook provides an <fb:login-button> XFBML
element that handles the process of registering users, which can be shown or hidden
depending on their connection state.The <fb:login-button> element is displayed
whether a user is logged in or not, and so its visibility should be handled programmati-
cally to prevent confusion.This could be performed server side by testing whether
$facebook->get_loggedin_user() or the FB.Connect.get_loggedInUser() function
returns a user identifier or null. If a user is logged in, you can set the autologoutlink
parameter of the <fb:login-button> element to true to show logout text instead.

For applications that do not use the XFBML element, the FB.Connect.require
Session() function can be used.This function contains three parameters for providing a
callback: for a successful session creation, for an unsuccessful session creation, and a final

www.it-ebooks.info

http://www.it-ebooks.info/

102 Chapter 6 Registration, Authentication, and Translations with Facebook

parameter that must be set to true for registering a user action hint. Usage of this func-
tion could be as follows:

<a href="#" onclick="FB.Connect.requireSession(function() { alert(true); },

null, true); return false;"> Connect with Facebook

Once users are logged in using Facebook, the application can make Facebook API calls
on their behalf. If this is the first time they’ve connected to the site, their details will be
pinged to the post-authorize callback URL, which is detailed in the “Using the Post-
Authorize Callback URL” section. If they are returning users, they will be connected and
a new session created for the application.

Detecting and Handling Facebook State Changes
For sites that generate content using server-side processing, it is often simplest to refresh
the page when users connect or log out or redirect them depending on their connection
state.This is to prevent having to update all elements using client-side scripts, which may
become complex if multiple states are tested.Within the FB.init() function, three
parameters can be provided to handle state changes: reloadIfSessionStateChanged,
which can be set to true to refresh the current page; ifUserConnected, which can be set
either to a URL for redirection or to a JavaScript function to perform client-side process-
ing; and ifUserNotConnected, which can be set in the same way as ifUserConnected.
An example, which now includes a URL to the cross-domain communication channel
file xd_receiver.htm explored in Chapter 5, is as follows:

FB.init(

"<?php echo API_KEY; ?>", "xd_receiver.htm",

{

"ifUserConnected":"http://myfacebookapp.com/member.php",

"ifUserNotConnected":"http://myfacebookapp.com/register.php"

}

);

In the example above, http://myfacebookapp.com/member.php and http://
myfacebookapp.com/register.php would need to exist on your web server, and so could
be replaced by JavaScript functions such as onConnected() and onNotConnected() to
process the connection client side.A single user parameter will be passed to the
onConnected() function:

FB.init(

"<?php echo API_KEY; ?>", "xd_receiver.htm",

{

"ifUserConnected": onConnected(user),

"ifUserNotConnected":onNotConnectd()

}

);

www.it-ebooks.info

http://myfacebookapp.com/member.php
http://myfacebookapp.com/register.php
http://myfacebookapp.com/register.php
http://www.it-ebooks.info/

103User Authorization and Authentication

The reloadIfSessionStateChanged parameter could also be set to refresh the page,
which promotes the use of the $facebook->get_loggedin_user() method to test for
user credentials. Listing 6.1 shows a simple skeleton Facebook implementation that
includes status change handling and uses both client-side and server-side processing.You
should save this as index.php and upload it to your web server alongside the Facebook
client files.

Listing 6.1 A Sample Facebook Page

1 <?php

2 include "config.php";

3 include "functions.php";

4 include "facebook-platform/php/facebook.php";

5 $facebook = new Facebook(API_KEY, SECRET);

6 $user = $facebook->get_loggedin_user();

7 ?>

8 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

9 <html xmlns="http://www.w3.org/1999/xhtml"

xmlns:fb="http://www.facebook.com/2008/fbml">

10 <head>

11 <title>Facebook Integration</title>

12 </head>

13 <body>

14 <fb:login-button autologoutlink="true" onlogin="connected(); return

false;"></fb:login-button>

15 <?php echo "<p>User Identifier: ".($user ? $user : "Unknown").

"</p>"; ?>

16 <p>Facebook Name: Unknown</p>

17 <p>Facebook Status: Unknown</p>

18 <script src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/

FeatureLoader.js.php/en_GB" type="text/javascript"></script>

19 <script type="text/javascript">

20 function connected() {

21 document.getElementById("facebook_name").innerHTML =

‘<fb:name uid="loggedinuser" useyou="false"></fb:name>’;

22 FB.XFBML.Host.parseDomTree();

23 }

24 function not_connected() {

25 document.getElementById("facebook_name").innerHTML = "Unknown";

26 }

27 FB.init("<?php echo API_KEY; ?>", "xd_receiver.htm", {

"reloadIfSessionStateChanged":true, "ifUserConnected":connected,

"ifUserNotConnected":not_connected});

28 FB.ensureInit(function() {

29 FB.Connect.get_status().waitUntilReady(function(status) {

www.it-ebooks.info

http://www.it-ebooks.info/

104 Chapter 6 Registration, Authentication, and Translations with Facebook

30 switch (status) {

31 case FB.ConnectState.connected:

32 document.getElementById("connect_status").innerHTML =

"Connected";

33 break;

34 case FB.ConnectState.appNotAuthorized:

35 document.getElementById("connect_status").innerHTML =

"Not Authorized";

36 break;

37 case FB.ConnectState.userNotLoggedIn:

38 document.getElementById("connect_status").innerHTML =

"Not Logged In";

39 }

40 });

41 });

42 </script>

43 </body>

44 </html>

This sample code demonstrates how to handle a Facebook login using both client-side
and server-side code.The <fb:login-button> on line 14 uses an additional onlogin
parameter that links to the JavaScript function on lines 20 to 23.This function simply
updates the element facebook_name and includes a call on line 22 that is required to
parse and render the XFBML.The connected() function is also referenced on line 27
along with a not_connected() function that will update the facebook_name element
without having to click the login button.As the page is refreshed on status change, the
$user variable on line 6 will remain current.

Storable User Data
To adhere to Facebook Platform policies, you cannot cache any user data you receive from
Facebook for more than 24 hours. The exception to this rule is if an application is being run
on a device controlled by and possessed by the user, such as a desktop or mobile device.
However, data cannot be stored remotely and must be stored locally in the absence of a
user’s Internet connection. There are values that can be stored indefinitely, including uid,
aid, eid, email, flid, gid, page_id, pid, and post_id. You cannot store relationships
between these values, though, because these must be extracted programmatically via the
Facebook API or via FQL tables.

Facebook utilizes cookies upon a user logging in, so you can extract cookie data via
the data.getCookies method or via the cookies FQL table:

$cookie = $facebook->api_client->data_getCookies($user, null);

This method will return a multidimensional array of cookie parameters, with each
including uid, name, value, expires, and path keys. For added security, and to ensure the

www.it-ebooks.info

http://www.it-ebooks.info/

105User Authorization and Authentication

cookies remain unique, each value for name is suffixed by your application’s API key. For
example, you can access the value of the session key by using $cookie[1]["<<API_
KEY>>_session_key"] as the session key is returned as the second value in the array.
Alternatively, you can supply <<API_KEY>>_session_key as the second parameter of the
data.getCookies method, replacing <<API_KEY>> with your application’s session key.

It is possible to take advantage of Facebook’s cookie mechanism by setting your own
values via the data.setCookie method.Although this might be beneficial for small-scale
data storage, you must be aware that cookies are embedded within each request.A
workaround to storing user preferences is to use the Data Store API, which is Facebook’s
scalable storage solution.

Storing User Preferences via the Data Store API
The Data Store API is a collection of specialized tables and object-oriented “distributed”
tables with associations. Storing user preferences is catered for via a set of specialized
tables and methods.The four User Preference API methods are as follows:

n data.setUserPreference for updating one preference
n data.setUserPreferences for updating multiple preferences
n data.getUserPreference for retrieving one preference
n data.getUserPreferences for retrieving all preferences

Applications can store up to 201 preferences for each user.These preferences are given
an identifier between 0 and 200.As with other Facebook API methods, these are sup-
ported by the client library.An example follows:

$preference = $facebook->api_client->data_setUserPreference(0, "male");

echo $facebook->api_client->data_getUserPreference(0);

The first parameter in the data.setUserPreference is the numeric identifier for the
preference, and the second parameter must be a string that is 128 characters or fewer.To
remove a preference, you pass an empty string or a value of 0 to the method.You can set
multiple preferences by providing an associative array as the first parameter of the
data.setUserPreferences method along with a Boolean parameter for telling
Facebook that you want to replace existing preferences or whether they should be
merged with existing preferences. For example, if a user has set the first, third, and fourth
preferences, you might want to set the second preference at a later stage.The associated
data.getUserPreferences will return an array of preferences for an optional user iden-
tifier.This means that you can extract preferences for any user as well as the current user
via these methods.

User Registration Using the Post-Authorize Callback URL
When a user first connects to an application, Facebook pings its post-authorize callback
URL, which was set in Chapter 5, via a POST operation with the following fields so that
the user’s details can be stored for future reference:

n fb_sig_added, fb_sig_authorize, and fb_sig_in_new_facebook

www.it-ebooks.info

http://www.it-ebooks.info/

106 Chapter 6 Registration, Authentication, and Translations with Facebook

These three fields will always be set to 1.

n fb_sig_api_key, fb_sig_app_id, fb_sig_expires, fb_sig_session_key, and
fb_sig_ss

The fb_sig_app_id and fb_sig_api_key fields should already be available to the
host but can be used if multiple applications are maintained on a single domain to
perform customized addition on a per-application basis.The remaining parameters
can be used to perform Facebook API actions for the fb_sig_user and will remain
valid until the value of fb_sig_expires or if the user uninstalls.The session secret
(fb_sig_ss) is a session-only secret key that can be used to perform Facebook API
actions in the place of the fb_sig_session_key (and should never be revealed to
the user).

n fb_sig_cookie_sig

The signature of the cookie saved for the Facebook user.

n fb_sig_ext_perms

This will be set to auto_publish_recent_activity, which is a permission to pub-
lish entries to the user’s wall and which can be extended to publish_stream and
read_stream (described in Chapter 7).

n fb_sig_locale

This is the user’s locale—including language, which is a two-character ISO 639-1-
alpha-2 code, plus their country, which is an ISO 3166-1-alpha-2 code separated by
an underscore (_) character. For example, for a British English user, it is set to en_GB.

n fb_sig_profile_update_time and fb_sig_user

The UNIX time when the user last updated his profile and the identifier for the
user, which should be the identifier stored within the host to link accounts.

n fb_sig_time

The UNIX time in seconds when the callback was performed.

n fb_sig

The signature of the POST, which is used to validate that all fields that have been
returned from Facebook have not been tampered with maliciously.

Fields have an fb_sig prefix that can be accessed via the $facebook->fb_params array
with the prefix removed. For example, fb_sig_authorize becomes $facebook->fb_
params["authorize"].The Facebook signature, fb_sig, is not accessible via the
$facebook->fb_params array and must be accessed via $_POST["fb_sig"]. Once con-
nected, the user does not get transferred to the post-authorize callback URL, so this must
not contain any Facebook-framed processing information. Listing 6.2 shows a typical page
using the Facebook API PHP client library, which is used to verify the connect request,
which should be saved as authorize.php and uploaded to your web server alongside the
Facebook client files.

www.it-ebooks.info

http://www.it-ebooks.info/

107User Authorization and Authentication

Listing 6.2 A Sample Facebook Post-Authorize Callback URL

1 <?php

2 include "config.php";

3 include "facebook-platform/php/facebook.php";

4 $facebook = new Facebook(API_KEY, SECRET);

5 $facebook_parameters = $facebook->get_valid_fb_params($_POST, null,

"fb_sig");

6 try {

7 if (!empty($facebook_parameters) && $facebook->fb_params["authorize"]

== 1) {

8 // Add the user’s details to storage using $facebook->

fb_params["user"] as the identifier

9 } else {

10 // Log unsuccessful addition attempt due to incorrect parameters

11 }

12 }

13 catch (Exception $e) {

14 // Log unsuccessful addition attempt due to exception

15 }

16 ?>

The $facebook object that is created on line 4 can be used to manipulate the
Facebook API and handle all the Facebook processes.With the Facebook API initialized,
the $facebook object can be used to validate the parameters sent to the post-authorize
callback URL on line 5.This method passes in the $_POST fields and sets the field “slug,”
which in this instance is fb_sig, because all fields are prefixed with these characters,
except for the underscore (_) character, which is appended within the function itself. If
the fields are not valid, an empty array is returned; otherwise, a full set of fields is made
accessible via the $facebook_parameters variable or $facebook->fb_params.

Logging Out, Disconnecting, and Reclaiming Accounts
Logging users out of a website or application also means logging them out of Facebook,
in a process known as single sign out. The single sign out process is used because users may
log out of a third-party application but forget to log out of Facebook where their session
is still active. If you are using the <fb:login-button> element with the autologoutlink
parameter set to true, this process is automatically catered for. If this is not convenient,
Facebook provides two JavaScript functions, FB.Connect.logout() and FB.Connect.

logoutAndRedirect(), that you can place within an onclick parameter of a link or but-
ton.The former accepts a callback parameter that is executed on a successful logout, and
the latter requires a URL string that redirects users after they have been logged out. In
PHP, a logout can be performed by the $facebook->logout() method, which also
accepts a URL redirection URL.

www.it-ebooks.info

http://www.it-ebooks.info/

108 Chapter 6 Registration, Authentication, and Translations with Facebook

User Disconnection Using the Post-Remove Callback URL
Disconnecting users from a website or application takes a bit more care and processing.
Users can either de-authorize applications via the Facebook Edit Applications page or this
can be achieved programmatically via the $facebook->api_client->auth_revoke
Authorization() method passing in a user identifier; otherwise, the currently logged-in
user will be selected.The method will return a 1 if successful or 0 if unsuccessful.

Setting a post-remove callback URL is important because if users want to disassociate
their Facebook account with a website or application that has stored details about them,
this removal request must be honored. If users choose to sever the link between an appli-
cation and their Facebook account, the post-remove callback URL will be pinged via a
POST operation, which will return the following fields:

n fb_sig_uninstall

This field will always be set to 1, indicating removal.

n fb_sig_added, fb_sig_api_key, fb_sig_app_id, fb_sig_in_new_facebook,
fb_sig_locale, fb_sig_time, fb_sig_user and fb_sig

These fields will be the same as those returned by the post-authorize callback URL,
except for fb_sig_added, which will be set to 0.

Listing 6.3 shows a post-remove callback URL page using the Facebook API PHP
client library, which is used to verify the disconnect request and should be populated with
code to remove a user’s details from the host. Save this code as remove.php and upload it
to your web server alongside the Facebook client files.

Listing 6.3 A Sample Facebook Post-Remove Callback URL

1 <?php

2 include "config.php";

3 include "facebook-platform/php/facebook.php";

4 $facebook = new Facebook(API_KEY, SECRET);

5 $facebook_parameters = $facebook->get_valid_fb_params($_POST, null,

"fb_sig");

6 try {

7 if (!empty($facebook_parameters) && $facebook->fb_params["uninstall"]

== 1) {

8 // Remove the user’s details from storage using $facebook->

fb_params["user"] as the identifier

9 } else {

10 // Log unsuccessful removal attempt due to incorrect parameters

11 }

12 }

13 catch (Exception $e) {

14 // Log unsuccessful removal attempt due to exception

15 }

16 ?>

www.it-ebooks.info

http://www.it-ebooks.info/

109Connecting and Inviting Friends

With the Facebook API initialized, the $facebook object can then be used to validate
the parameters sent to the post-remove callback URL on line 5.The remaining lines 6 to
15 are the skeleton code suggesting where to place code to remove a user’s details or to
log an exception.

Reclaiming Deactivated User Accounts
In the unlikely event that users deactivate their Facebook account, there must be ade-
quate controls in place to help them recover their profile on sites that they have already
connected to using Facebook.When users deactivate their Facebook account, they are
sent an e-mail that includes any Facebook accounts they have linked to and which have
provided an account reclamation URL in their application settings.Alongside the applica-
tion’s logo and name, they are given a URL that directs them to the site and that includes
two parameters:

n A user identifier (u) containing the Facebook ID of the user wanting to set up the
independent account on the site

n An MD5 hash (h) of the user identifier and the application’s secret, which should be
used for validating legitimate requests

These parameters can be conveniently validated using the $facebook-

>verify_account_reclamation($_GET["u"], $_GET["h"]) method, which returns a
true or false depending on the result of the validation.You could then prompt users to
create a new account and update their entry in your database using the validated user
identifier parameter.

Connecting and Inviting Friends
After users have connected their Facebook account to an application, they may also want
to recommend that their friends connect.A special connect request can be sent to friends
to encourage them to sign in via Facebook. Facebook provides this functionality via the
<fb:connect-form> XFBML element, which renders an invitation widget on a page, or
via the recommended FB.Connect.inviteConnectUsers() function, which renders the
same information but within a Facebook pop-up that allows users to select their uncon-
nected friends. Before rendering these options, an application should first test whether a
user has any friends whom to invite, which can be displayed via the <fb:unconnected-

friends-count> XFBML element or the $facebook->api_client->connect_
getUnconnectedFriendsCount() method. Note that these two features are set to be
deprecated but will be replaced by similar methods in the future.A suggested implementa-
tion follows:

if($user) {

try {

$unconnected_friends_count =

$facebook->api_client->connect_getUnconnectedFriendsCount();

echo "<p>You have <fb:unconnected-friends-count>

www.it-ebooks.info

http://www.it-ebooks.info/

110 Chapter 6 Registration, Authentication, and Translations with Facebook

</fb:unconnected-friends-count>friends who have not connected

their Facebook accounts.</p>";

if($unconnected_friends_count > 0) {

echo ‘<p><a href="#" onclick="FB.Connect.inviteConnectUsers();

return false;">Invite Facebook Friends</p>’;

}

}

catch (Exception $e) {

// There was an exception

}

}

An alternative is to use <fb:connect-form> in place of the FB.Connect.invite
ConnectUsers function link, which you could do as follows:

<fb:serverfbml style="width: 350px;">

<script type="text/fbml">

<fb:connect-form action="connect_request.php"></fb:connect-form>

</script>

</fb:serverfbml>

The <fb:connect-form> must be placed within an <fb:serverfbml> XFBML ele-
ment, which renders FBML inside an <iframe> for security reasons.The optional action
parameter will be pinged with a list of invited friends via an ids[] array within a POST
operation.This can be used to track the individual invitation habits of Facebook users or
to analyze invitation conversions. Facebook intends to transition invitations to a tab in
their inbox that will display along with private messages and other updates.The inbox will
also be the place where users can send shared content to their friends rather than display-
ing it in their stream.

Facebook Friend Linking
Specific details of friend-linking capabilities were not available at the time of this writing
because Facebook was updating its deprecated $facebook->api_client->connect_

registerUsers() and $facebook->api_client->connect_unregisterUsers()

methods. You can find further information on the Facebook Developer Roadmap. As new
details emerge, code will be added to this book’s repository and to the blog at http://www.
socialprogramming.info.

As Facebook registration also requires users to enter their e-mail address.These func-
tions could be extremely useful for linking Facebook accounts with existing accounts on
your website. For example, if you have collected the e-mail addresses of users on your site,
you can register these with Facebook, which will then prompt them to link their
accounts.An example without using these friend-linking methods is demonstrated in
Chapter 13,“Integrating Twitter, Facebook Connect, and Google Friend Connect.”

www.it-ebooks.info

http://www.socialprogramming.info
http://www.socialprogramming.info
http://www.it-ebooks.info/

111Translations for Facebook

Translations for Facebook
Translations for Facebook is a free tool for developers. It provides a simplified process to
translate a website or application into any of the languages currently supported by
Facebook.There are more than 65 locales available, which can be constructed by taking
the two-letter ISO 639 language code and joining it with an underscore (_) character to
a two-letter ISO 3166 country code. For example, en_US represents U.S. English. Locales
generally follow these standards, but there are two exceptions: ar_AR and es_LA, which
are “umbrella” locales for Arabic and Spanish. Developers have complete control over the
translation process, from registering text for translation to administering and accessing
translations.Translations are still a work in progress as Facebook reaches out to communi-
ties to provide additional translations for the platform.They are also looking to incorpo-
rate translations into other elements with internationalization set for stream attachments
(as described in Chapter 7,“Using Facebook Connect for Sharing, Commenting, and
Stream Publishing”).

Preparing Your Application and Registering Text
To prepare an application for translation, you must set a default locale via the Application
Settings panel, which is found on the “Basic” tab of the Application Settings page, which
then allows a developer to access the Translations Administration panel (http://www.face-
book.com/translations/), as shown in Figure 6.2.

From this Administration panel, you can enable a language for translation, which will
make text strings available to connected users.Translation progress can be reviewed by
administrators or designated language managers, and existing translations can be made
live, which makes the application appear in the Facebook Application Directory in the
new locale.

Once enabled, text that is to be translated can originate from many different sources.
Facebook automatically registers the application name, description, and the publish and

Figure 6.2 Facebook Translations Administration panel.

www.it-ebooks.info

http://www.facebook.com/translations/
http://www.facebook.com/translations/
http://www.it-ebooks.info/

112 Chapter 6 Registration, Authentication, and Translations with Facebook

self-publish text alongside any text contained within <fb:intl> elements.Additional
strings such as static text contained within databases or within stream stories can be
uploaded via the $facebook->api_client->intl_uploadNativeStrings() method,
translated from within Facebook and then retrieved via the $facebook->api_
client->intl_getTranslations() or via the Translation FQL table.An example using
XFBML follows:

1 <fb:intl desc="Label displaying a location that a user has visited">

2 <fb:name uid="loggedinuser" useyou="false" firstnameonly="true">

</fb:name> has visited {location}.

3 <fb:intl-token name="location"><fb:intl desc="United States of

America">United States</fb:intl></fb:intl-token>

4 </fb:intl>

The code demonstrates how a description can be used (on line 1) that will be shown
to the users translating the string. On line 2, the <fb:name> element is included alongside
a location token, which is contained within curly parentheses ({}).This is accompanied
by an <fb:intl-token> XFBML element on line 3 containing a country name.This
arrangement means that if a different country is submitted, the whole string does not
need to be translated again.A list of country names from a database would be submitted
to Facebook via the $facebook->api_client->intl_uploadNativeStrings() method:

$locations = array(

array(

"text" => "United States",

"description" => "United States of America"

)

);

$uploaded_strings = $facebook->api_client->intl_uploadNativeStrings(

$locations);

If successful, the $uploaded_strings will contain the number of strings uploaded (1)
to Facebook, which will then be made available within the Translations Administration
panel.Another example using the <fb:intl> and <fb:intl-token> tags follows:

<fb:intl desc="Label for my favorite number.">

My favorite number is {number}

<fb:intl-token name="number">5</fb:intl-token>

</fb:intl>

If you are rendering a button or text field that uses a prepopulated value attribute, use
the <fb:tag-attribute> XFBML element:

<input type="submit">

<fb:tag-attribute name="value">

<fb:intl desc="Button: Submit Form">Submit</fb:intl>

</fb:tag-attribute>

</input>

www.it-ebooks.info

http://www.it-ebooks.info/

113Translations for Facebook

Finally, if you want to translate the title of your application, use the <fb:window-
title> XFBML element within the <body> tag:

<fb:window-title>

<fb:intl desc="Page Title">Test Tube<fb:intl>

</fb:window-title>

The source code for this chapter, which is available from this book’s code repository at
http://github.com/markhawker/Social-Programming/, includes the internationalized
version of the sample application created in the previous section.

Administering and Accessing Translations
After you have registered all of your text for translation, you can guide your users to the
Translations Administration panel for your application via the following:

http://www.facebook.com/translations/index.php?translate?app=<<APP_ID>>

The <<APP_ID>> parameter should be replaced by the application identifier created in
Chapter 5.As the application creator, you can follow the progress of translations via the
Administration panel, and when you have a significant proportion of you application
translated, you can publish the translations to make them available to your users (see
Figure 6.3). Strings contained within <fb:intl> elements will be translated inline transla-
tion but could also be retrieved via FQL. For example:

SELECT best_string, native_string, translation, approval_status

FROM translation

WHERE locale="<<LOCALE>>"

AND pre_hash_string IN ("United States:::United States of America:")

Figure 6.3 Administering, viewing, and publishing
user-provided translations.

www.it-ebooks.info

http://github.com/markhawker/Social-Programming/
http://www.it-ebooks.info/

114 Chapter 6 Registration, Authentication, and Translations with Facebook

The <<LOCALE>> should be replaced by the locale of the user, which can be retrieved
using the $facebook->api_client->users_getInfo() method and requesting the
locale parameter. If the result of the method was stored within a $locale parameter, it
can then be extracted by using $locale[0]["locale"]. If the locale parameter cannot
be extracted, Facebook will assume that it is en_US. Using the results from this query, you
can then decide how to present the translation back to the user. For example, if the
approval_status is set to approved, you may want to use that translation. If it is set to
unapproved, you might choose to keep the original translation.

As well as using FQL for specific translations, you can retrieve all translations using the
$facebook->api_client->intl_getTranslations("all", true) method or for a spe-
cific locale by replacing the parameters with the locale code (such as en_GB) and setting
the second parameter to false.The approval status for each translated string will be one
of auto-approved, approved, or unapproved, which will dictate whether a localized
translation is appropriate for use.When you are confident that you have translations ready,
you can append FeatureLoader.js.php with a forward slash (/) and the short code for
the locale, such as FeatureLoader.js.php/es_LA to display your application in Spanish
for a Latin American audience.

Summary
This chapter explored how the Facebook Platform can provide functionality for user
authentication and authorization as well as for inviting and connecting with friends across
websites and applications.Through the client- and server-side libraries, users can log in,
log out, and disconnect seamlessly using only their Facebook account. Facebook can also
be used to connect users with their existing Facebook friends, reducing the barrier to
entry of mapping their social graph or re-creating networks time and time again.The
next chapter describes how the Facebook Platform can be used for content-sharing,
commenting, and publishing.

www.it-ebooks.info

http://www.it-ebooks.info/

7
Using Facebook for Sharing,

Commenting, and
Stream Publishing

Chapter 6,“Registration,Authentication, and Translations with Facebook Connect,”
explained how to use Facebook for user authorization and authentication, which enables
users to log in to a website or application using their Facebook credentials. Once con-
nected, it is possible to access users’ Facebook details to personalize an application to their
needs, such as providing custom content for males or females or international visitors and
interacting with their friends. For activity publishing, the Open Stream API can be used
to track user activities such as comments, likes, or shares, which can then be retrieved for
users and their friends.This creates a “virtuous cycle of sharing” whereby shared content
will be made more prominent, thus encouraging further commenting and liking.

This chapter explores how the sharing of multimedia is facilitated using Facebook,
which enables users to “push” content to Facebook, and describes how Facebook widg-
ets, such as the Like Box and Live Stream Box, provide scalable solutions for driving traf-
fic and increasing engagement using only a few lines of code.The second section of this
chapter discusses social commenting and stream publishing and how you can integrate
them into an existing website to enable users to share comments with their friends both
inside and outside of the Facebook environment.

Content-Sharing and Live Conversation
Prior to the Facebook Platform for websites, the only option for promoting third-party
content was inside Facebook through Facebook pages or groups or by directing users to
an external website and attempting to create a custom solution for providing social con-
text.Although users were able to share content such as links, photos, and videos through
social bookmarks, e-mail, and other media, there was no easy way for them to share con-
tent with their friends on Facebook.There was also no easy way for them to discuss con-
tent in real time with friends and others around the world. Facebook Share and widgets

www.it-ebooks.info

http://www.it-ebooks.info/

116 Chapter 7 Using Facebook for Sharing, Commenting, and Stream Publishing

attempt to fill this gap by providing easy-to-use services to enable streamlined content
sharing and live conversation with Facebook.

Facebook Share
Facebook Share allows you to place a button or link onto a page so that its content can
be shared on Facebook.The content can be set to appear in a user’s stream or as a mes-
sage in a friend’s inbox. Content can be a link to a page or blog article or other multime-
dia such as audio, photo, or video, which controls how the content is parsed and displayed
when returned to Facebook.You can use either the Facebook <fb:share-button>
XFBML tag or use the following code, which includes the FB.Share library:

Share

<script src="http://static.ak.fbcdn.net/connect.php/js/FB.Share"

type="text/javascript"></script>

The <a> tag contains three attributes: to initialize Facebook Share (name), to decide
how the button will be rendered (type), and the link itself (share_url). If the type and
share_url attributes are omitted, the button will default to button_count and the URL
of the page in which it is placed. Button styles will be explored later in this section, but
note that the Share text between the anchor tags can be replaced with any text, of any
language, to support internationalization of the button.As a comparison to this syntax, the
<fb:share-button> equivalent looks like this:

<fb:share-button class="url" href="http://example.com/"

type="button_count">

</fb:share-button>

<script src="http://static.ak.connect.facebook.com/js/api_lib/

v0.4/FeatureLoader.js.php/en_GB" type="text/javascript"></script>

<script type="text/javascript">

FB.init("<?php echo API_KEY; ?>");

</script>

The <fb:share-button> tag contains a class attribute, which must be set to url, a
href attribute in replace of share_url, and an equivalent type attribute. If none of these
are supplied, the button will default to the URL for the current page.Whichever method
is used to share content, the URL sent to Facebook will be in the format
http://www.facebook.com/sharer.php?u=<<url>>&t=<<title>>, where <<url>> and
<<title>> must be URL-encoded strings containing the URL of the content that is
being shared and its title (for example,
http://www.facebook.com/sharer.php?u=www.cnn.com&t=CNN).

Facebook Share can also be used to share other content, such as audio, photo, and
video, which can be passed to Facebook so that the content can be accompanied by
other meta-data, such as a link to an audio or video file or an album title and artist. Using
multimedia tags will enhance the richness of the share because content will be made

www.it-ebooks.info

http://www.facebook.com/sharer.php?u=<<url>>&t=<<title>>
http://www.facebook.com/sharer.php?u=www.cnn.com&t=CNN
http://www.it-ebooks.info/

117Content-Sharing and Live Conversation

playable or viewable directly within the user’s feed (for example, aYouTube video or an
audio track).

Facebook Share and Multimedia Content
As well as links, Facebook Share enables the posting of other multimedia content to
Facebook through <link> and <meta> tags.The process of sharing means that Facebook
parses the HTML of the shared content before being published, which means that certain
tags can be used to configure its display.To provide a content preview, Facebook will
always look for the title of the page, a summary of the content, and an image.These tags
must be added within the <head> element of pages, such as the following:

<head>

<meta name="title" content="Example Page" />

<meta name="description" content="This is an example page." />

<link rel="image_src" href="http://www.example.com/image.png" />

...

</head>

These basic tags can be extended (depending on the content being shared) by setting
the medium <meta> tag and supplying one of audio, image, video, news, blog, or mult.
Additional <meta> and <link> tags for specific content are as follows:

n Audio

There are two required tags: one <meta> tag containing the audio_type, which
must be set to the content type of the audio (for example, audio/mpeg3 or
audio/wav); and a <link> to the source of the audio setting the audio_src.
Optional <meta> tags are audio_title, audio_artist, and audio_album, which
are all self-explanatory.

n Video

There are four required tags: three <meta> tags containing the video_height,
video_width, and the video_type, which must be set to the Adobe Flash content
type (application/x-shockwave-flash), which is the only supported
video_type; and a video_src <link> tag provides Facebook with the source
URL of the video, which must be registered via the Developer Help Contact Form
(http://www.facebook.com/developers/developer_help.php). Providing the
domain names that are to be used in the video_src attribute ensures that videos
will play correctly when content is shared back to Facebook.

Facebook Share tags make it convenient for users to post content back to their feed or
via messages. In the examples, the button_count type was used to format the button to
display a counter with the Facebook Share button, which is 96 pixels wide and 18 pixels
high. Other values can be supplied. For example, you can show the counter above the
button via box_count (57x57px), button (56x18px), icon (18x15px), or icon_link
(51x15px).You can find more information about this on the Facebook Developer wiki.

www.it-ebooks.info

http://www.facebook.com/developers/developer_help.php
http://www.it-ebooks.info/

118 Chapter 7 Using Facebook for Sharing, Commenting, and Stream Publishing

Retrieving Shares, Likes, Comments, and Clicks Using FQL
Although counters can be displayed visually on a page, counts can also be accessed pro-
grammatically via the Facebook API.This can prove useful for extracting statistics for a
batch of URLs or for triggering events in applications once a given count has been
achieved. If you reference the link_stat table using the Facebook Query Language
(FQL), the following fields can be retrieved from Facebook: normalized_url,
share_count, like_count, comment_count, total_count, and click_count.The
click_count is the number of times users have clicked the share on Facebook and
returned back to the original source. Here is what a simple implementation extracting
statistics for two URLs (facebook.com and google.com) looks like:

<?

include "config.php";

include "facebook-platform/php/facebook.php";

$facebook = new Facebook(API_KEY, SECRET);

try {

$response = $facebook->api_client->fql_query(

‘SELECT url, normalized_url, share_count, like_count, comment_count,

total_count, click_count FROM link_stat WHERE url IN ("facebook.com",

"google.com")’);

print_r($response);

}

catch (Exception $e) { print_r($e); }

?>

The $response from the Facebook API will be a 0-based array of results, which can
then be iterated over using a foreach() loop. Note that in FQL you cannot supply an
asterisk (*) for the SELECT clause to return all fields, so these must be entered separately
into the query. Individual fields can be returned by using $response[n]["field"].
For example, $response[0]["normalized_url"] would return the normalized URL
http://www.facebook.com.When passing URLs into the WHERE clause of the FQL query,
these must be URL encoded, which can be achieved by wrapping them within the PHP
urlencode() function, which ensures that Facebook is able to parse the location. In the
code example above, this was not required because the http:// prefix was excluded for
brevity.The data returned by queries is cached for 2 minutes by Facebook and is updated
in near real time every 10 to 20 minutes based on network capacity.

Facebook Widgets
Facebook provides a number of widgets that you can use to promote Facebook content
on external websites (for example, the Like Box and Live Stream Box widgets). In com-
parison to Facebook Share, widgets can be used to “pull” users in to Facebook rather than
push content to it or do both simultaneously, as is the case with the Live Stream Box.
These widgets are highly customizable and use the Facebook Platform library to display
dynamically updated “live” information from Facebook pages.To utilize the functionality

www.it-ebooks.info

http://www.facebook.com
http://www.it-ebooks.info/

119Content-Sharing and Live Conversation

of widgets, you must have access to a Facebook page and administrator privileges. So, this
option might not be appropriate in all situations if you are not an administrator (although
it is recommended that one is created to supplement the website of an organization,
product, or service).

For users’ personal profiles, Facebook widgets can also be used to embed a profile
badge or photo badge on their web pages, or for sharing their favorite pages via the page
badge.These badges are generated dynamically by Facebook and involve adding a chunk
of HTML to a web page.

Like Box
Like boxes allow users to become a fan (using the old Facebook terminology which is
now being transitioned to mean “those who like a page”) of a Facebook page, see how
many users are also fans and whether their friends are fans, and to view its activity stream
on an external site without having to visit Facebook.A like box can be created using the
Like Box Wizard or the <fb:fan> XFBML tag.The following example also includes the
Facebook Platform library for completeness, which must be omitted if it has already been
initialized when using Facebook Share:

<fb:fan profile_id="XXXXXXXXXXX" stream="1" connections="10"

width="300"></fb:fan>

<script src="http://static.ak.connect.facebook.com/js/api_lib/

v0.4/FeatureLoader.js.php/en_GB" type="text/javascript"></script>

<script type="text/javascript">

FB.init("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX");

</script>

In the example, the profile_id must be replaced by the Facebook page identifier.You
can find this by moving your cursor over its profile photo and extracting the id parame-
ter of the URL.Alternatively, the name parameter can be supplied in replace of
profile_id if a Facebook page has been secured.The stream parameter indicates
whether the page’s activity stream is to be included, the connections parameter is the
number of fans who should be displayed (and can range from 0 to 100), and width is used
to control the width of the like box.There are also two optional parameters: a height
parameter that you can use to control the height of the like box (which is 554 pixels high
if all features are included and only 64 pixels high if only the “Like” button is shown), and
a css parameter for setting an external style sheet.

Live Stream Box
The Live Stream Box widget allows users to share activity and comments around an event
in real time.As compared to the Comments Box widget, which is explored in the next
section, the Live Stream Box widget works best in situations where events are occurring
in real time and supports millions of simultaneous users. Users can see comments from
their friends as well as others viewing the live stream, which can also be posted back to

www.it-ebooks.info

http://www.it-ebooks.info/

120 Chapter 7 Using Facebook for Sharing, Commenting, and Stream Publishing

Facebook (including a URL link back to the referring website).You can add a Live
Stream Box widget by using the <fb:live-stream> XFBML tag, as follows:

<fb:live-stream event_app_id="<?php echo APP_ID; ?>" xid="default"

width="300" height="500"></fb:live-stream>

To identify the live stream box, either the event_app_id (the application ID that can
be found for your application in the Facebook Developers section of the site) or an
apikey parameter must be supplied. If multiple live stream boxes exist on the same web-
site, the optional xid parameter must be used to help separate the updates and is set to
default if not supplied. Unlike a comments box, updates from a live stream box cannot
be accessed programmatically via the Facebook API.

Social Commenting and Stream Publishing
Facebook widgets are a great way of engaging users and driving traffic to a website, but
two additional functionalities can be exploited using the Facebook Platform library: the
comments box and stream publishing. Social comments can increase the authenticity and
quality of conversation on websites and can increase traffic through the power of the
social graph, where users discover new content on Facebook through friends’ comments.
It is reported that websites that have implemented comments with Facebook Platform
integration have seen as much as a 15% to 20% increase in users who register to com-
ment, and even more in total comment activity.

Comments Box
You can use the Comments Box widget to allow users to comment on content from
within a website or application. Users have the option of sharing the comment on
Facebook, with the comment appearing both on their wall and in their friends’ streams.
This is a great way to have your users engage in an asynchronous way, whether for a
blog, news site, or review application.As with the other Facebook widgets, a comments
box can be created through a single <fb:comments> XFBML tag that can be customized
to suit the particular application.The simplest version of the comments box is using the
tag itself, <fb:comments></fb:comments>, but the following parameters are available for
customization:

n css, numposts, width, simple, and reverse

These parameters are used to control the aesthetics of a comments box: css for
providing an external style sheet; numposts for controlling the number of displayed
posts (if set to 0, all comments will be hidden, which allows for comment modera-
tion); width for controlling the width of the comments box (and which must
include px at the end of the value [for example, 600px]); simple, which can be set
to true to prevent each comment being enclosed within a rounded box; and
reverse for ordering the comments so that the most recent one appears at the
bottom of the list when set to true.

www.it-ebooks.info

http://www.it-ebooks.info/

121Social Commenting and Stream Publishing

Figure 7.1 Sample rendering of a comments
box with inline administration.

n quiet, title, and url

These parameters are used when posting comments back to Facebook and default
to the title of the current web page and its URL.The quiet parameter can be set
to true so that comments don’t send any notifications to Facebook.

n xid

A unique identifier for the comments box if multiple instances exist on the website
and can contain alphanumeric characters plus any that are created by the
urlencode() function; for example, hyphens (-) or percentages (%).

For administrators, comments can be moderated by clicking the “Administrate
Comments” link inline on the comments box (see Figure 7.1).This link gives the option
of adding new administrators and moderators as well as enabling settings for global and
local comments boxes (such as whitelist and blacklist modes and allowing anonymous
comments). Comments that have been entered can also be deleted from here, or this can
be done programmatically (as explained in the following section).

One feature is unique to the Facebook Platform: the ability to “listen” for comment
submissions via the JavaScript library.You can use the following code within applications
that want to trigger an external event upon adding and deleting a comment. It must be
placed within the <script> tag with the FB.init() method:

1 FB_RequireFeatures(["Comments"],

2 function() {

3 FB.CommentClient.add_onComment(

4 function(comment) {

5 alert("ID: " + comment.user + " Comment Added: " + comment.post);

6 }

7);

8 }

9);

www.it-ebooks.info

http://www.it-ebooks.info/

122 Chapter 7 Using Facebook for Sharing, Commenting, and Stream Publishing

On line 1, the JavaScript API ensures that the comments feature is loaded, and then the
callback function is executed on lines 2 to 8.The function adds a comment listener on
line 4 that includes a function to display an alert() that accepts a comment object con-
taining user and post values, which hold the unique Facebook identifier for the user and
the comment text. Extracting the callback on lines 4 to 6 and instead referencing it by
name would mean that the FB.CommentClient.remove_onComment() method could also
be used to deregister the function.This functionality could be used in conjunction with
the detection of whether a user is logged in or out of Facebook (as discussed in Chapter
6) so that functionality can be tailored to non-Facebook users.

Retrieving Comments Using FQL and the Facebook API
As with Facebook Share, comments on Facebook can be accessed programmatically using
the Facebook API and FQL. Comments can be retrieved in two ways, both of which have
equivalent responses. However, unlike Facebook Share, the Facebook API provides a
comments_get() method that accepts an xid (the unique identifier of the comments box)
as its only parameter. Calls to this method will execute the equivalent FQL statement:

SELECT xid, object_id, post_id, fromid, time, text, id, username,

reply_xid

FROM comment

WHERE xid = "<<xid>>"

If you are using this Facebook API method, only a single xid can be requested at a
time. If the fql_query() method is used, however, multiple xid parameters can be sup-
plied in the same call.The object_id, post_id, username, and reply_xid parameters
will return null values because the comment FQL table is also used for returning com-
ments on videos, notes, photos, and other Facebook objects as well as some stream com-
ments. Other returned values include a fromid, which is the identifier of the commenter;
time, which returns a UNIX time stamp of when the comment was posted; and id,
which is the unique identifier for the comment and local to the xid.To add further social
context to comments, the friends_getAppUsers() can be called.This retrieves a list of
the user’s friends who have also connected to the calling application.The list can be
passed alongside the xid inside the WHERE clause as a list of fromid values.

Adding and Removing Comments Using the Facebook API
As well as retrieving comments, the Facebook API provides functionality for adding and
removing comments via the Comments API.You can use the Comments API to integrate
an existing comments system with Facebook if the functionality of the comments box is
too restrictive (for example, if comments need to be sent in a particular format or exter-
nal validation checks are required on the inputs).The comments_add() method can be
used to optionally publish comments to the user’s stream (as described in the next sec-
tion) if it has been granted by the user and contains the following parameters:

www.it-ebooks.info

http://www.it-ebooks.info/

123Social Commenting and Stream Publishing

n publish_to_stream, title, and url

These optional parameters can be used to publish a comment to the user’s stream.
The publish_to_stream parameter will default to false if the user has not
granted extended permissions to the calling application.This functionality will be
discussed in the following section on stream publishing.

n text, uid, and xid

There are two required parameters, xid and text (which must be URL encoded)
and an optional uid parameter that defaults to the identifier of the logged-in user.
This parameter can also be accessed by using $facebook->get_loggedin_user(),
which will return null if the user is not logged in. In this instance, the user can be
prompted to log in using Facebook.

When you are using the Facebook API PHP client library, there is no need to pass in
the extra session_key parameter to this method, although this is required for the desk-
top and JavaScript client library applications.

Facebook Developer Principles and Policies
When using the Comments API to add or remove comments, users should be made aware
explicitly of their actions. For example, an application should not post to their stream without
their prior knowledge or use any functionality that may deceive them into adding comments
inadvertently. A simple “Also Post Comment to Facebook” check box should satisfy this plat-
form policy.

If successful, the comments_add() method returns a comment_id that can be stored by
the calling application, because this is a required parameter for the comments_remove()
method.The comments_remove() method also requires an xid parameter and the
optional session_key parameter. Remember that users can delete their own comments
either on Facebook or in the comments box itself.Therefore, this method may return an
error if unsuccessful or will return true if the comment has been deleted.The three
Comments API methods for retrieving, adding, and deleting comments show that aside
from the simple installation of the comments box, the Facebook Platform provides greater
functionality for administering comments without using the standard tools.

Open Stream API
An accompaniment to the comments box is provided by the Open Stream API.This API
allows users to post content, add comments, and create content “likes” (on their profile or
on the wall of a Facebook page, group, or event). Not only can the Open Stream API be
used to stream content to Facebook (such as that which is provided by Facebook Share or
to update their status), but it can also be used to retrieve content, comments, and likes
from the user’s stream. Using the Open Stream API requires special permissions to be
granted by the user in the form of the publish_stream and read_stream permissions.

www.it-ebooks.info

http://www.it-ebooks.info/

124 Chapter 7 Using Facebook for Sharing, Commenting, and Stream Publishing

Setting these permissions enables applications to publish and read to the user’s stream
automatically without prompting again unless the user chooses to revoke permissions via
his Settings page. Facebook provides the FB.Connect.showPermissionDialog() method
for streamlining this authorization process, which can be utilized as follows:

function get_permissions(names) {

FB_RequireFeatures(["Connect"],

function() {

FB.Connect.showPermissionDialog(names,

function(response) { alert(response); }, true, null);

}

);

}

get_permissions("publish_stream,read_stream");

The get_permissions() function can be used to show the Permissions dialog box and
could be used within a function for writing to or reading from the stream.This is dis-
cussed in the next section. On success, the callback function returns a string with a
comma-separated list of the permissions that the user has granted. On failure, or if the user
cancels the Permissions dialog, a null value is returned.Two optional parameters were also
supplied to the method:The first is for displaying a drop-down menu so that the user can
select pages that they administer and also want the application to write to its stream; and
the second parameter can be an array of page or user identifiers to be shown in the drop-
down menu. For example, if a user administers two pages, 12345 and 67890, the method
call is as follows:

FB.Connect.showPermissionDialog("publish_stream", <<callback>>, true,

[12345,67890]);

A list of all the pages where the user is an administrator can be retrieved using the
following FQL:

SELECT uid, page_id, type

FROM page_admin

WHERE uid = "<uid>"

As good practice, the Extended Permissions dialog should be shown the first time the
user chooses to publish content from an application rather than the first time it is visited,
which is why it has been placed within the get_permissions() function. It is also possi-
ble to access whether a user has already granted publish_stream and read_stream per-
missions by using FQL:

SELECT uid, publish_stream, read_stream

FROM permissions

WHERE uid = "<uid>"

The result of this FQL query will return a 0 if the user has not granted extended
permissions or a 1 if the user has granted permissions. If you are using the get_
permissions() function, this will always return the permissions that have been granted.

www.it-ebooks.info

http://www.it-ebooks.info/

125Social Commenting and Stream Publishing

So, if publish_stream has been allowed, this will always be returned to the callback.
Remember that the uid parameter can also be that of a page, and so it can be combined
with the FQL for identifying the pages that a user administrates.

Writing Data to the Stream
There are two related processes for writing data to a stream depending on the required
workflow of the calling application: via feed forms, which work in a similar way to
Facebook Share, where users are first prompted to confirm the content before posting to
the stream; or via direct publishing, which requires extended permissions so that content
can be streamed directly to Facebook. Generally, it’s better to use feed forms rather than
direct publishing because feed forms provide users with the most control over what gets
posted to their profiles. If using direct publishing, it must be made clear to users that they
are publishing to Facebook, and they should always be given the option to opt out of this
feature. Both processes use the FB.Connect.streamPublish() or stream_publish()
methods, but their functionality depends on which parameters are supplied to them.

Working with Stream Attachments and Action Links
Stream attachments work in a similar way to the meta elements used by Facebook Share
in that they give the opportunity to expand on the post by describing what the user did
in an application (for instance, sharing a blog post to the stream alongside an image, link,
and textual description). Stream attachments are optional, and if one is not supplied the
stream function will just update a user’s status message. Stream attachments must be
JSON-encoded strings and can contain any of the following optional elements:

n name, href, and description

The name, href, and description are used to provide further details about the
story and should be as concise as possible so that they are displayed correctly to the
user.The caption parameter is a subtitle and should describe the action that the
user has taken and can contain the {*actor*} token, which gets replaced by a link
to the profile of the session user.An example caption parameter is {*actor*} just
posted a new high score!.All these parameters must contain plain text and href
should be no longer than 1,024 characters.

n properties and comments_xid

The properties parameter can be used to pass in an array of key/value pairs which
are shown to the user and are stored by Facebook.These could be used to store data
such as high scores for games or ratings for book reviews.To store values that are
not shown to the user you would pass in a key/value pair within the method, such
as longitude and latitude values for location-based applications.The comments_
xid is an application-specific identifier for the comment and can be used to retrieve
comments and likes for that comment and for associating it with a comments box.

n media

The media parameter enables rich media to be associated with the stream post and
can be of the type image, flash, or mp3. Only one of these types will be displayed

www.it-ebooks.info

http://www.it-ebooks.info/

126 Chapter 7 Using Facebook for Sharing, Commenting, and Stream Publishing

within the stream story, although an array can be supplied, such as for sending mul-
tiple photos that can be viewed by clicking a “See More” link that gets appended to
the story. Unfortunately, the parameters for each type are not the same as with
Facebook Share.

Here are three variations of stream attachments shown as PHP arrays and which can be
JSON encoded using the json_encode() function:

$example_1 = array(

"name" => "Facebook",

"href" => "http://www.facebook.com/",

"description" => "Facebook Home Page",

"media" => array(

array(

"type" => "image",

"src" => "http://static.ak.facebook.com/images/wiki_logo.png",

"href" => "http://www.facebook.com/"

)

)

);

In this example, the user is publishing the Facebook home page to his stream alongside
a Facebook logo that directs them to the home page when clicked.The next example
demonstrates how the flash type can be used within applications:

$example_2 = array(

"name" => "Facebook Song",

"href" => "http://www.youtube.com/watch?v=rSnXE2791yg",

"description" => "Rhett and Link’s Facebook Song",

"media" => array(

array(

"type" => "flash",

"swfsrc" => "http://www.youtube.com/v/rSnXE2791yg&hl=en&fs=1",

"imgsrc" => "http://i3.ytimg.com/i/bochVIwBCzJb9I2lLGXGjQ/1.jpg",

"width" => 100,

"height" => 30,

"expanded_width" => 320,

"expanded_height" => 260

)

)

);

In this example, the user can share a YouTube video, which will be playable within
their stream.The user can also share an audio file by using the mp3 type, which will be
rendered using Facebook’s MP3 Player widget. (Note that in the third example the src
parameter is not set.)

$example_3 = array(

"name" => "Flight of the Bumble Bee",

www.it-ebooks.info

http://www.it-ebooks.info/

127Social Commenting and Stream Publishing

"href" => "http://www.last.fm/music/Maksim+Mrvica/_/ The+Flight+of+the+Bumble-Bee",

"description" => "Flight of the Bumble Bee performed by Maksim Mrvica",

"media" => array(

array(

"type" => "mp3",

"src" => "XXXXXX",

"title" => "Flight of the Bumble Bee",

"artist" => ‘Maksim Mrvica",

"album" => "The Piano Player"

)

)

);

As shown by the examples, stream attachments are highly extensible and can be used
in multiple ways depending on your needs.They can also be combined with an action
link, which is a short string of text that accompanies a stream story and invites the user to
take some action related to that story.An example of an action link for an MP3 could be
to purchase it via an online store. Like with stream attachments, an action link should be
a JSON-encoded string containing two parameters, text and href, which could be as
follows:

[{"text":"Buy Song", "href":"<<URL>>"}]

Stream attachments and action links are only a small part of the wider scope of pub-
lishing and need to be placed in context to be useful.You can see other examples in “The
Publisher” section. (The Publisher is used to update a user’s status from within Facebook).

Feed Forms and Direct Publishing
Publishing to the stream is achieved through either the FB.Connect.streamPublish() or
stream_publish() methods, depending on whether the application wants to use client-
or server-side scripting. Both methods contain similar, but not identical, parameters for
publishing to the stream after a user has granted extended permissions to the publish_
stream functionality.The following optional parameters are shared by both publish
methods:

n action_links and attachment

As detailed above, rich content can be added to a user’s stream via the
attachment and action_links, which allows media such as images and video
to be added to posts.

n target_id

By default, content is published to the logged-in user’s stream. By supplying a
target_id, however, it can be pushed to a page, group, or event or to a friend’s wall
instead if a valid identifier is provided.This mimics the action of posting on a
friend’s wall on Facebook.

When you are using the stream_publish() server-side method, a message parameter
should be supplied containing the short update that will be posted alongside any content

www.it-ebooks.info

http://www.it-ebooks.info/

128 Chapter 7 Using Facebook for Sharing, Commenting, and Stream Publishing

such as stream attachments or action links. Because this is a direct publishing method, this
can be automated if users have granted an application access to post directly to their
stream.As an example from the stream attachments, a call to this method may look like
the following:

$message = "Check out this great song!";

$attachment = $example_3;

$action_links = ‘’;

$target_id = null;

$uid = null;

$response = $facebook->api_client->stream_publish($message, $attachment,
$action_links, $target_id, $uid);

print_r($response);

Upon success, the $response parameter will contain a post_id to the published post
or will return an error if unsuccessful.As with the Comments API methods, an optional
session key or session secret can be supplied to this method, and that is used alongside the
uid parameter for posting content on behalf of another user or page. If the user is an
administrator of a page and this is supplied in both the target_id and uid parameters, the
post will appear as if published by the page itself and not the user.

Removing Stream Posts Programmatically
Removing stream posts is achieved through the stream_remove() method, which requires
a post_id parameter and an optional session_key and uid. Posts can be removed only
by the application that created them, and therefore it is good practice to save post_id val-
ues stored when publishing to the stream. The method returns true if the post was
removed or false and an error code if the post could not be removed.

Feed forms can be activated by setting the auto_publish parameter of the
FB.Connect.streamPublish() method to false, which prompts the user to add or ver-
ify the user_message as advised by the user_message_prompt parameters. Feed forms
can be displayed even if the user has not granted extended permissions to the calling
application.A callback parameter can be supplied to the method, and this will return
post_id, exception and data.user_message values back to the application for further
processing.The method uses an actor_id in place of the uid parameter of
stream_publish(). Listing 7.1 gives a suggested implementation of a
get_write_permission() function.

Listing 7.1 get_write_permission() Method

1 function get_write_permission() {

2 FB_RequireFeatures(["Connect"],

3 function() {

4 FB.Connect.showPermissionDialog("publish_stream", publish_to_stream,

false, null);

5 }

www.it-ebooks.info

http://www.it-ebooks.info/

129Social Commenting and Stream Publishing

6);

7 }

8 function publish_to_stream(response) {

9 if(response == "publish_stream") {

10 FB_RequireFeatures(["Connect"],

11 function() {

12 user_message = "This is a test.";

13 attachment = action_links = target_id = actor_id = null;

14 user_message_prompt = "What’s on your mind?";

15 auto_publish = false;

16 FB.Connect.streamPublish(user_message, attachment, action_links,

target_id, user_message_prompt, function(post_id, exception, data)

{ alert(post_id + ", " + exception + ", " + data.user_message); },

auto_publish, actor_id);

17 }

18);

19 } else {

20 alert("Extended Permissions Denied");

21 }

22 }

Lines 1 to 7 define the get_write_permission() function, which will check that the
publish_stream permission has been accepted and then execute the callback function
publish_to_stream().The publish_to_stream() function exists on lines 8 to 22 and
first checks that a valid publish_stream response has been received and if null will
create an alert box on line 20.A post is then created, and then the FB.Connect.
streamPublish() method is called on line 16, passing in all the defined parameters.A
simple alert box is used as a callback to display the response of the request. Functionality
can be tested by adding an onclick="get_write_permission();" attribute to any
HTML link or button.This basic skeleton code can be used to increase complexity such
as adding stream attachments or posting to a friend’s wall.

Adding and Removing Comments and Likes
As well as posting content to the stream, it is possible for users to both comment and like
a post, which can be achieved using the stream_addComment() and stream_addLike()

methods. Both methods require a post_id as an identifier, and the stream_addComment()
method also requires a comment parameter containing the user’s comment. If successful,
the stream_addComment() method will return a comment_id, whereas the
stream_addLike() method will return a true value. Both methods will return false and
an error code if unsuccessful. Comments and likes can be removed via the
stream_removeComment() and stream_removeLike() methods, which require a
comment_id or post_id parameter, respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

130 Chapter 7 Using Facebook for Sharing, Commenting, and Stream Publishing

Reading Data from the Stream
Facebook enables you to read users’ streams, including content from both their news feed
and wall. Reading the stream retrieves all the content of a user’s stream, including posts,
comments, and likes from the user and their friends (regardless of privacy settings of the
posts).Two Facebook API methods that can also be accessed using FQL exist for retriev-
ing posts and comments:

n stream_get()

By default, calls to the stream_get() method will return the last 50 posts associated
with the logged-in user from the past 180 days.This can be restricted in numerous
ways such as supplying source_ids, start_time, end_time, or limit parameters
but can also contain a filter_key.A list of filter_key values can be extracted by
querying the stream_filter FQL table, but it is useful to note that an application-
level filter exists in the form app_XXXXXXXXXXX, where XXXXXXXXXXX is an applica-
tion identifier.Applying filters will restrict results to the past 9 days.

n stream_getComments()

This method works in an identical way to the comments_get() method of the
Comments API, but instead indexes the FQL query by post_id rather than xid.
Original posts must have been created by the calling application; otherwise, they
will not be retrieved and a successful call will return an array of comments, each
containing the fields from the comment table.

Both of these methods require the read_stream extended permission, so this must be
first tested for in the same way as the publish_stream permission before requesting the
stream or comments.An example call follows:

$viewer_id = $source_ids = $start_time = $end_time = $filter_key = null;

$limit = 5;

$metadata = ‘’;

$response = $facebook->api_client->stream_get($viewer_id, $source_ids,

$start_time, $end_time, $limit, $filter_key, $metadata);

print_r($response);

A successful $response will return an array of posts in reverse chronological order,
which can be iterated over to extract all of their values.Values include additional property
and metadata that was set using stream attachments, profile data for retrieving thumbnails
and URLs, plus access to likes and comment data.To retrieve additional data associated
with albums, profiles, and photo tags, you can set the $metadata parameter to a JSON-
encoded array that includes albums, profiles, and photo_tags.An alternative is to use
activity streams, which are Atom-based syndications of user feeds and which can be
accessed via the following URL:

http://www.facebook.com/activitystreams/feed.php?source_id=<<uid>>

&app_id=<<app_id>>&session_key=<<session_key>>&sig=<<checksum>>&v=0.7&read

&updated_time=<<time>>

www.it-ebooks.info

http://www.it-ebooks.info/

131Social Commenting and Stream Publishing

The <<uid>> must set the user identifier that is to be retrieved, <<app_id>> is the
application identifier, <<session_key>> must be a valid session key or session secret for
the user, and the <<checksum>> is used to verify that the request was sent from a valid
application.This parameter is computed by performing the md5() function on the combi-
nation of an <<app_id>>, <<session_key>>, and <<uid>> appended with the applica-
tion’s secret. For example, if the user identifier is 12345, application identifier is 67890, the
session key is ABCDE, and the application secret is ZYXWV, the <<checksum>> is as follows:

app_id=67890session_key=ABCDEsource_id=12345ZYXWV

This would result in a value of 47fdd4fe6cc4f19f58f1485c33749a9b that should be
passed as the <<checksum>>.The <<time>> parameter is an optional UNIX time stamp
indicating that results should be returned only for posts after this time.The functionality
of activity streams might not suit all applications and so has not been covered in great
detail, although it could be used if you want to subscribe to activity within a news reader.

All of these Open Stream API methods can be used to make rich applications that
users and their friends can interact with both inside and outside of the Facebook environ-
ment.As you can see, some overlap exists between the Open Stream API and other serv-
ices, such as the Comments API and Facebook widgets, that you can use to hide some of
the complexities of stream publishing for people who are not developers.The extensibility
of the methods provided by the Facebook API PHP client library and JavaScript client
library reduce the barriers to entry in creating rich device-independent applications,
whether client or server side.

The Publisher
The Publisher is the primary feature for users to post information and messages on their
own wall or on their friends’ walls. Applications can create their own Publisher interface,
which enables users to post rich content to profiles and which will appear in their stream.
Applications are sorted with default applications first such as for photos, videos, and
events, and then by how recently the application was used by the user. The Publisher inter-
face looks similar to users when viewing their own profile as when viewing a friend’s profile,
but its content may differ if supported by an application. For example, the Photos application
allows users to post a photo to a friend’s profile, but allows them to create an album on
their own profile. An application’s Publisher interface can be accessed by using
http://www.facebook.com/?pub=<<app_id>> and replacing the <<app_id>> parameter
with a valid application identifier.

A Publisher can contain custom HTML, CSS, and FBJS for interactive content that is
handled by a callback URL. Once a user authorizes an application, its Publisher interface
will be shown to that user.Two registration options are available to developers when set-
ting up a Publisher within the “Profiles” tab of an application’s settings:

n For publishing content to a user’s own profile, a developer can set the self-publish
text and self-publish callback URL.

www.it-ebooks.info

http://www.facebook.com/?pub=<<app_id>>
http://www.it-ebooks.info/

132 Chapter 7 Using Facebook for Sharing, Commenting, and Stream Publishing

n For publishing content to a user’s friend’s profile, a developer can set the publish
text and publish callback URL.

The Text fields determine the label that is shown to the user (for instance,“Add
Photo” or “Update Status”), and an application can set one or both of the callback URLs.
A Publisher can be in one of two states: for rendering the Publisher interface, and for
posting content to the user’s stream.The states can be differentiated by the method value,
which is sent as a POST parameter.A skeleton Publisher for displaying on a user’s profile
would be coded in the following way:

1 <?php

2 function render_publisher_css() {

3 return ‘<style type="text/css">#self_publish_frame { padding: 10px;

}</style>’;

4 }

5 function render_publisher_js() {

6 return ‘<script type="text/javascript">function enable_publish() {

Facebook.setPublishStatus(true); }</script>’;

7 }

These two utility functions generate the CSS and JavaScript for the Publisher interface
which must be embedded within the FBML and cannot be references to external files.
The JavaScript contains a function to enable the Share button of the Publisher interface,
which is disabled by default.This technique proves useful if users are required to input
data before publishing to their stream:

8 function error_and_exit($error_title, $error_message) {

9 $data = array(

"errorCode" => 1,

"errorTitle" => $error_title,

"errorMessage" => $error_message

);

10 echo json_encode($data);

11 exit;

12 }

If an error occurs in the Publisher, it is appropriate to provide a function that will
return an error code and message back to Facebook. Currently, the only supported error
code is 1, which is then returned with a title and message as a JSON-encoded string.
Further processing is then halted via the exit command. In addition, a developer may
want to log the error along with the user who interacted with the Publisher, which is
contained within the $_POST["fb_sig_user"] parameter, or if they were interacting
with a friend’s profile, via the $_POST["fb_sig_profile_user"] parameter:

13 if ($_POST["method"] == "publisher_getInterface") {

14 $fbml = render_publisher_css();

15 $fbml .= render_publisher_js();

16 $fbml .= ‘<div id="self_publish_frame">’;

www.it-ebooks.info

http://www.it-ebooks.info/

133Social Commenting and Stream Publishing

17 $fbml .= " <form>";

18 $fbml .= ‘ <label for="mood">How are you feeling today?</label>

’;

19 $fbml .= ‘ <select name="mood" onclick="enable_publish();

return false;">’;

20 $fbml .= " <option value="undecided">Undecided</option>";

21 $fbml .= " <option value="happy">Happy</option>";

22 $fbml .= " <option value="sad">Sad</option>";

23 $fbml .= " </select>";

24 $fbml .= " </form>";

25 $fbml .= "</div>";

26 $content = array(

"fbml" => $fbml,

"publishEnabled" => false,

"commentEnabled" => true

);

27 }

This is where the Publisher interface is constructed and contains references to the CSS
and JavaScript functions on lines 14 and 15.This simple Publisher will post a “mood” to
the user’s profile which uses a drop-down menu with three options. On line 19, the
enable_publish() function that enables the Share button is called.The content of the
interface is packaged into an array on line 26 containing the FBML for the interface
alongside settings for whether the publish facility and comments are enabled by default.
The enable_publish() function sets the value of the publishEnabled parameter to
true when executed:

28 else if ($_POST["method"] == "publisher_getFeedStory") {

29 $attachment = array(

"name" => "I’ve just updated my mood.",

"href" => "http://www.example.com/",

"caption" => "Today, {*actor*} is feeling ".

$_POST["app_params"]["mood"].".",

"properties" => array(

"mood" => $_POST["app_params"]["mood"]

)

);

30 $content = array("attachment" => $attachment);

31 }

When users select and publish their mood, this branch of code is executed. It contains
any submitted parameters within an $_POST["app_params"] array. For this Publisher, this
is determined by the mood drop-down box on line 19. For users who also submit a com-
ment with their update, this is packaged within the $_POST["comment_text"] parameter.
In this example, the content is then packaged within a stream attachment because these
can also contain rich media such as images or video. From here, you might want to store

www.it-ebooks.info

http://www.it-ebooks.info/

134 Chapter 7 Using Facebook for Sharing, Commenting, and Stream Publishing

Figure 7.2 Final rendering of the Update
Mood self-publisher.

Figure 7.3 Final rendering of the Update
Mood self-publisher within the stream.

interactions using the $_POST["fb_sig_user"] and $_POST["fb_sig_profile_user"]

parameters or perform other Facebook actions using the
$_POST["fb_sig_session_key"], $_POST["fb_sig_expires"] and
$_POST["fb_sig_ss"] parameters if a user has authorized the application:

32 else {

33 error_and_exit("Method Error", "Unknown method passed.");

34 }

If the method isn’t set to publisher_getInterface or publisher_getFeedStory, the
error function will be called.

35 $data = array("method" => $_POST["method"], "content" => $content);

36 echo json_encode($data);

37 ?>

The content is wrapped inside another array that is then JSON-encoded and posted to
Facebook. Figure 7.2 shows how the Publisher would be rendered within a user’s profile
on Facebook, and Figure 7.3 shows the same within his stream.

The code provides an example of what a self-publish callback URL may look like, but
the code could also be used for a regular publish callback URL. However, the attachment
on line 29 and any other processing would have to be modified to be made suitable for a
friend interaction.

www.it-ebooks.info

http://www.it-ebooks.info/

135Summary

Summary
This chapter explored how the sharing of multimedia is facilitated using the Facebook

Platform through Facebook widgets such as the Like Box and Live Stream Box and how
you can use social commenting and feed publishing to enable users to share updates and
feedback with their friends both inside and outside of the Facebook environment.The
Open Stream API can be an incredibly powerful tool for integrating threaded conversa-
tions into websites and Facebook through a multitude of methods for publishing content
and enabling comments and likes.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

8
Application Discovery,Tabbed
Navigation, and the Facebook

JavaScript Library

Facebook can be used as a mechanism for sharing content, commenting, and stream
publishing, as you learned in Chapter 7,“Using Facebook Connect for Sharing,
Commenting, and Stream Publishing.” However, the Facebook environment contains
three other ways in which users and their friends can interact: application dashboards,
which focus on the discovery and reengagement of games and applications; counters, for
alerting users that they need to take action on an application or game (perhaps taking
their next turn) or that a report is ready for them to view; and application tabs, which can
be shown on a user’s profile alongside other profile information.These three channels can
be used by a Facebook Platform application to engage users both within and outside of
Facebook.

This chapter explores how you can use dashboards in your Facebook Platform applica-
tion through the Dashboard API.Through the Dashboard API, you can post news items
to a user’s dashboard, promote friends’ activities, and utilize activity counters.The second
part of this chapter focuses on application tabs as a way of sharing your application’s
information with users and their friends. Following the deprecation of profile boxes,
application tabs are the only mechanism for enabling users to personalize their profiles
and showcase their favorite applications.This section includes details about how to con-
figure, install, and develop an application tab through the use of “Mock AJAX”.The final
section showcases Facebook JavaScript (FBJS) and how you can use it for events, anima-
tions, and Facebook dialogs.

www.it-ebooks.info

http://www.it-ebooks.info/

138 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

Figure 8.1 Screenshot of the Games dashboard.

Application Dashboards and Counters

Dashboard API
At the time of this writing, the methods from the Dashboard API were not available to test
and could be subject to change. When the Dashboard API becomes fully available, examples
will be added to this book’s code repository. A blog post will also be added to the book’s
website denoting that the functionality in this section is available.

Because of the popularity of social gaming applications on Facebook, their recent
redesigns have started to put more emphasis on highlighting specific features for games.
There are now two types of “dashboards”: Games (http://www.facebook.
com/?sk=games) and Applications (http://www.facebook.com/?sk=apps).These are
accessible via a user’s home page alongside bookmarks.The goal of each of the dashboards
is to make it easier for Facebook users to access games or applications that they or their
friends have recently used and to discover new applications through their friends or the
Application Directory (see Figure 8.1).

Various key features are available within the dashboards:

n Recently used applications or games display right at the top so that users can
quickly and easily find applications they use on a daily basis.The number of friends
who also use the application is also highlighted next to each application’s title.

n News items can be used to allow applications to communicate with users either to
display news to all users or alert individual users that they need to take action. For
example, a game news item may say “It’s your turn to play, Mark!”You can also use
news items to mention a user’s friends and invite them to play a game with you.

www.it-ebooks.info

http://www.facebook.com/?sk=games
http://www.facebook.com/?sk=games
http://www.facebook.com/?sk=apps
http://www.it-ebooks.info/

139Application Dashboards and Counters

n A user’s friends’ recent activity is shown, which is used to promote applications and
games that a user might not have installed.This can also be toggled to display the ac-
tivities that an individual has recently completed, which can be privacy controlled.

n A list is maintained of all friends who recently interact with applications that appear
below the activities.These take the form of a list and are updated dynamically based
on usage.

n The legacy Facebook Application Directory is displayed right at the bottom of the
dashboards for searching for applications in particular categories.When submitting
your own application to the directory, this will be the category or categories that
you have provided.

n Facebook also runs features on particular applications or sponsored applications,
which are shown to the right side of a profile.These are generated by combining a
users’ and their friends’ activities to suggest the most suitable applications or games
to their profile.

n Counters can be shown alongside an application’s name for games or applications
that a user has bookmarked.These are discussed further in the “Games and Applica-
tions Counters” section, later in this chapter.

When submitting an application to the directory, a developer will choose whether the
application should be listed as a “game” or as a regular “application.”This designation dic-
tates which dashboard it will be placed within. Both dashboards contain the same func-
tionality and so differ only in content.A new Dashboard API was released in February
2010 to encompass all the features of dashboards (the subject of the remainder of this
section), including adding to news and activity streams and updating counters.

News and Activity Streams
As you have seen in the Games and Application dashboards, Facebook has concentrated a
lot of their efforts on keeping users updated as to what they and their friends are up to.
One of the main ways in which this is achieved is through activity streams.Activities are
reported on the Games and Application dashboards in two distinct ways, through news
and activities:

n News items can be set to display global and personal items to an individual or set of
individuals.These could be that a new feature has been added to your game or
application or if a friend has initiated an action involving a particular user.

n Activity items display actions performed specifically by the individual that appear in
that individual’s stream but could also reference one of their friends. In which case,
that individual’s activity will also appear in a friend’s news items.

The methods for each of these streams are similar to those regarding stream publishing
discussed in Chapter 7.The only real difference here is that news and activities are
restricted to the dashboards rather than the user’s stream, which helps to reduce unneces-
sary clutter.

www.it-ebooks.info

http://www.it-ebooks.info/

140 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

Working with News Items
News items are a way of sharing announcements with your users or for indicating that a
friend has performed an activity that has referenced them.There are two types of news
items, global and personal, depending on what method was called to create the item.
Facebook displays just two news items within either the Games or Applications dashboard,
and so they also provide a convenient method to clear news items from a user’s stream.

Adding News Items

Dashboard API Naming Conventions
Although Facebook lists these methods as including add in their name, this might change to
set in the future. In the most recent version of the Facebook API PHP client library, the
dashboard.addNews method was actually dashboard.setNews but returned an error
when executed.

News items can be added using the following methods either individually, globally, or for
multiple individuals using the following:

n dashboard.addNews

n dashboard.addGlobalNews

n dashboard.multiAddNews

Each method requires a slightly different set of parameters, such as providing a uid
(which is that of the user whose dashboard you are updating) for individual news and
which is not required for global news items. For updating multiple users, an array of uids
is required instead.This array contains a number of user identifiers that require updating.
Note that you cannot set multiple messages for each of these individuals, so each news
item will be the same for each of the identifiers you provide.An array of up to eight news
items is also required.This must contain a message and an optional action_link that
includes text and a href. If you want, you can also supply an optional image parameter.
This must be an absolute URL that is formatted as a 64x64px square.An example of each
method is shown here:

$user = $facebook->get_loggedin_user();

$users = array("1", "2", "3");

$news = array(

array(

"message" => "Hey, {*actor*}. Your friend @ just invited

you to play chess.",

"action_link" => array (

"text" => "Play Now!",

"href" => "http://myfacebookapp.com/?game=chess"

)

)

);

$global_news = array(

www.it-ebooks.info

http://www.it-ebooks.info/

141Application Dashboards and Counters

array(

"message" => "Hey, {*actor*}. There is a new game to play, chess.",

"action_link" => array (

"text" => "Play Chess!",

"href" => "http://myfacebookapp.com/?game=chess"

)

)

);

$image = "http://29.media.tumblr.com/avatar_abad48dbd089_96.png";

$individual_news = $facebook->api_client->dashboard_addNews($user, $news,

$image);

$global_news = $facebook->api_client-

>dashboard_addGlobalNews($global_news, $image);

$multi_news = $facebook->api_client->dashboard_multiAddNews($users, $news,
$image);

If successful, the $global_news and $individual_news items will return a news_id if
the call succeeds, and the $multi_news item will return an associative array of uid keys
that contain either a news_id if successful or false if unsuccessful.These news_id values
are important and should be stored because they will be required if news items need to be
cleared from a dashboard. In addition, two conventions were demonstrated in the message
values:You can use the {*actor*} token, which is also available within stream attach-
ments, to be rendered as the user whose dashboard is being updated; and you can use
<<USER_ID>>, where <<USER_ID>> can be replaced by any user identifier. In your own ap-
plications, this would form part of a two-stage process of updating an individual’s activity
stream but also updating the news streams of that user’s friends that he or she was playing
against or wanting to update.

Clearing News Items
As with adding news items, three methods enable you to clear updates that have already
been created by an application. Clearing individual news will not remove global news and
vice versa, and so these methods may be used alongside each other:

n dashboard.clearNews

n dashboard.clearGlobalNews

n dashboard.multiClearNews

All of an individual’s news items can be removed by using the dashboard.clearNews

method and supplying their uid as the single required parameter or by additionally pass-
ing in an array of news_id values. For global news, the dashboard.clearGlobalNews

method can be called without any parameters to remove all news or can include an array
of news_id values similar to the individual news item method. Clearing multiple indi-
viduals’ news items is slightly more complex. Here is an example assuming that the
$multi_news parameter that was presented in the “Adding News Items” section above
returned the following:

www.it-ebooks.info

http://www.it-ebooks.info/

142 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

$multi_news = array(

"1" => 111,

"2" => 222,

"3" => 333

);

$ids = array(

"1" => array("111"),

"2" => array("222"),

"3" => array()

);

$removed_multi_news = $facebook->api_client->dashboard_multiClearNews($ids);

A successful response from the individual and global methods is an associative array of
news_id keys and Boolean values depending on whether the news item has been
removed.When you are removing multiple individuals’ news items, an associative array
will be returned equivalent to the individual and global methods if news_id values were
supplied. Otherwise, if no news_id values were supplied (such as the last $ids parameter),
an associative array will be returned containing the uid as the key and a Boolean value of
whether the news item was removed or not.

Getting News Items
The final sets of methods are used to extract a user’s or group of users’ news streams.
Simply put, these methods provide you with the original news and image values that were
set when adding news items.The method names are as follows:

n dashboard.getNews

n dashboard.getGlobalNews

n dashboard.multiGetNews

These methods prove particularly useful should you not want to store news_id values
within your database of file stores.

Working with Activity Items
Unlike news items, activity items are an experimental feature and may be removed by
Facebook in the future.Activity streams are used to broadcast to a user’s friends what that
user been up to within a game or application (for example, posting high scores or whether
the user has uploaded new files or photos).There are only three methods for working
with activity items, and these cannot be called for multiple individuals like news items:

n dashboard.getActivity

This method will return the latest 100 activities recorded for the current user.The
method can be called with an optional activity_ids array if you have recorded
each activity_id for your users.

www.it-ebooks.info

http://www.it-ebooks.info/

143Application Dashboards and Counters

n dashboard.publishActivity

This method works in exactly the same way as dashboard.addNews, but rather than
being a news object, it is an activity.The same conventions for using {*actor*}
and <<USER_ID>> tokens can be used when setting activity items. Successful publishing
of an activity will return a numeric activity_id.

n dashboard.removeActivity

Activities can be removed by supplying an array of activity_id values, which will
return an associative array of activity_id keys and a Boolean value indicating suc-
cess or failure.

When setting up your application in Chapter 5,“An Overview of Facebook Platform
Website Integration,” you may have noticed a setting called Hide User Activity within the
“Advanced” tab.This setting can be checked if you think that your application will gener-
ate activities that a user might want to keep private and not share with friends.Although
further details were not available at the time of this writing, Facebook intends to give
users sufficient control over which news and activity items they both send and receive.
Like items being posted to their stream, it may be that they want to inform certain friends
of their activities but exclude others.

Games and Applications Counters
Before an application or game can utilize counters, it must first be bookmarked by the
user.This can be done from within Facebook using the links provided on each of the
dashboards. However, it can also be facilitated through embeddable <fb:bookmark>
FBML and XFBML tags.A bookmark URL must be set.You can find this within the
“Basic” tab of an application; otherwise, the application’s connect URL or canvas page
URL will be used. For Facebook Platform applications, you can set the type attribute of
the button to off-facebook, which will render a blue button in place of the standard gray
used within canvas applications. Upon clicking the button, users are prompted with a dia-
log box to add the application to their profile (see Figure 8.2).

If a user has already bookmarked your application, the button will not appear.You can
also check this by querying the permissions FQL table, as follows:

$bookmarked = $facebook->api_client->fql_query(‘

SELECT uid, bookmarked

FROM permissions

WHERE uid = "‘.$official_user.’"

‘);

The result of this FQL query will be either a 1 or a 0 that can be extracted by using
$bookmarked[0]["bookmarked"]. New bookmarks will appear underneath the links to
the Games and Applications dashboards and can be rearranged by users after clicking the
“More” link below their bookmarks.After an application has been bookmarked, you can
start exploiting the features of counters via the Dashboard API.

www.it-ebooks.info

http://www.it-ebooks.info/

144 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

There are two types of counter methods. One type of method enables you to update
an individual’s counter.The other type of method can be used to update a number of
individuals’ counters. Users could utilize this to let a group of friends know of an action
they’ve taken in a game and that it is now their turn.There are four methods for updating
the first type of counter for individuals:

n dashboard.decrementCount

n dashboard.getCount

n dashboard.incrementCount

n dashboard.setCount

These methods can be run either using the logged-in user’s credentials or by supplying
a uid alongside your application secret. Unlike internal Facebook applications or games,
when using website integration you must ensure that every time a user visits your book-
mark URL that the user’s counter is reset to zero. For applications that want to update a
group of individuals’ counters at the same time, the second type of counter method, a
number of batch methods are available:

n dashboard.multiDecrementCount

n dashboard.multiGetCount

n dashboard.multiIncrementCount

n dashboard.multiSetCount

These batch methods all request that an array of uids be supplied and will return an
array of uids as the key and a Boolean value for whether the request was successful. It is
suggested that when users visit your application, either on a canvas page or via an external
website, that their counter is set to zero to ensure that users do not get confused as to
what actions they are required to take.

Figure 8.2 Example bookmark dialog for the
Test Tube application.

www.it-ebooks.info

http://www.it-ebooks.info/

145Navigating and Showcasing Your Application Using Tabs

Navigating and Showcasing Your Application
Using Tabs
In the early days of Facebook, a number of “integration points” were available to develop-
ers to showcase their applications.These integration points included profile boxes, news
feeds, and notifications.As a greater mass of developers started using the platform,
Facebook quickly became a dumping ground for spam because insufficient controls and
policies failed to prevent malicious developers abusing the platform.Today, Facebook has
become a lot more of a controlled environment, which means that many developers have
been forced away, but many others have gone on to produce really impressive applica-
tions.With the introduction of Games and Applications dashboards alongside a unified
stream social application, developers have to focus a lot more of their attention on users’
experiences.

Add Application Tab FBML Element
Like the deprecated <fb:add-section-button> FBML element, Facebook intends to cre-
ate a related element for adding an application tab. However, at the time of this writing, no
information was available as to its name or related attributes.

Facebook officially deprecated boxes and application info sections, which left applica-
tion tabs as the only way for users to showcase their favorite applications on their profile.
There are still modifications being made to how application tabs will be rendered, but the
information in this section should give you enough information to start implementing
them in conjunction with your Facebook applications.The deprecation has meant that
many methods have been removed from the API, including the following:

n profile.getFBML

n profile.getInfo

n profile.getInfoOptions

n profile.setFBML

n profile.setInfo

n profile.setInfoOptions

If you are a new Facebook developer, the changes will mean that you now only have a
single integration point to worry about. For developers who have been working with the
platform for a longer period of time, these changes have been met with some negativity.
Ultimately, however, these should improve the platform.They also allow you to focus
more on users’ experience of your applications and will be replaced by newer features as
time goes by.

www.it-ebooks.info

http://www.it-ebooks.info/

146 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

Configuring and Installing an Application Tab
Application tabs are displayed within Facebook next to a user’s Wall, Info, and Photos tabs,
and must be added explicitly by the user.An application tab is currently 520 pixels wide
and can be used to render information pulled directly from your application servers as
either an <iframe> or FBML. Other features of application tabs are that they can be used
to load AJAX but cannot autoplay Adobe Flash, onload JavaScript, or use <iframes>.
When interacting with an application tab on a friend’s profile, a user’s identifier is passed
within an $facebook->fb_params["user"] parameter alongside the owner’s identifier,
which is passed within an $facebook->fb_params["profile_user"] parameter.An
example of how these two parameters can be used is shown in the next section.

Other Canvas Settings
A number of other canvas settings are available within the Canvas tab that are not used
within this book but are essential if you want to create an internal Facebook application. The
default setting for Facebook Platform website applications is an <iframe> render, which
means that any standard page will be wrapped within a Facebook frame and displayed to the
viewer. For example, if you set the canvas callback URL to the location where you uploaded
your files from Chapters 5–7, you will be presented with your index.php page.

Because application tabs are used within the Facebook environment, their location
must be set relatively to a canvas page URL.And because Facebook Platform website
integration has been the focus of this book, a canvas page URL has not yet been set.We
can rectify this by navigating to the “Canvas” tab of your application’s settings and by pro-
viding a unique base URL prefixed by http://apps.facebook.com/.You should also set a
canvas callback URL, which is the file or directory on your web server that will be served
by Facebook as content for internal canvas pages. For example, if you set your canvas page
URL to http://apps.facebook.com/myfacebookapp/ and your canvas callback URL to
http://myfacebookapp.com/canvas/, that means that if a user visits http://apps.facebook.
com/myfacebookapp/foo.php, it will be rendered from http://myfacebookapp.com/can-
vas/foo.php. Before continuing, check that the render method on the “Canvas” tab is set
to “IFrame” because the Facebook Platform library will be used in this section.

Modifying Your config.php File
The config.php file that was used in Chapters 5, 6, and 7 should be updated with two
new parameters called CANVAS_PAGE_URL and CANVAS_CALLBACK_URL. These should be
inserted as with the other parameters within that file and without their trailing forward
slash (/).

For this chapter, you should create a new directory called canvas within your existing
file structure from Chapters 5, 6, and 7, and upload two files, index.php and tab.php,
along with an xd_receiver.htm file. Ensure that the references to the Facebook API PHP
client library in index.php and tab.php are relative to your existing directory structure.
The code in Listing 8.1 demonstrates a sample Facebook canvas page showing a simple
greeting along with a user’s identifier and name.

www.it-ebooks.info

http://apps.facebook.com/
http://apps.facebook.com/myfacebookapp/
http://myfacebookapp.com/canvas/
http://apps.facebook.com/myfacebookapp/foo.php
http://apps.facebook.com/myfacebookapp/foo.php
http://myfacebookapp.com/canvas/foo.php
http://myfacebookapp.com/canvas/foo.php
http://www.it-ebooks.info/

147Navigating and Showcasing Your Application Using Tabs

Listing 8.1 The index.php File Demonstrating a Simple Facebook Canvas Page

1 <?php

2 include "../config.php";

3 include "../functions.php";

4 include "../facebook-platform/php/facebook.php";

5 $facebook = new Facebook(API_KEY, SECRET);

6 $user = $facebook->get_loggedin_user();

7 ?>

8 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

9 <html xmlns="http://www.w3.org/1999/xhtml"

xmlns:fb="http://www.facebook.com/2008/fbml">

10 <head>

11 <title>Test Tube</title>

12 </head>

13 <body>

14 <h1>Canvas Page – Test Tube</h1>

15 <?php echo "<p>User Identifier: ".($user ? $user : "Unknown").

"</p>"; ?>

16 <?php echo ‘<p>Facebook Name: <fb:name uid="’.$user.’"

useyou="false"></fb:name></p>’; ?>

17 <script src="http://static.ak.connect.facebook.com/js/api_lib/

v0.4/FeatureLoader.js.php" type="text/javascript"></script>

18 <script type="text/javascript">

19 FB.init("<?php echo API_KEY; ?>", "xd_receiver.htm");

20 </script>

21 </body>

22 </html>

This basic page will be rendered inside an <iframe>, which means that the Facebook
PHP client library alongside the client-side Facebook Platform library will be utilized.
The PHP library and configuration files are included on lines 2 to 5, and the current user
is assigned on line 6. Because any Facebook user can view this page, it might be that you
do not have a $user available.Therefore, this must be tested on line 15.To require that a
user has logged in when visiting your canvas page, you add $facebook->require_
login(); before the call on line 6.The Facebook Platform library is included on line 17
and initialized on line 19, referencing the recently uploaded xd_receiver.htm file. Save
the code in Listing 8.1 as index.php and upload it to your canvas directory, which
should be set as your canvas callback URL. If you visit your canvas page URL, you should
be presented with a page similar to that shown in Figure 8.3.

Unlike pages within a canvas, which can be an <iframe>, your tab.php file must be
rendered as valid FBML, which is demonstrated by the following code by wrapping con-
tent within two <fb:fbml> tags:

www.it-ebooks.info

http://www.it-ebooks.info/

148 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

Figure 8.3 Example canvas page for the Test Tube application.

Figure 8.4 Example application tab for the
Test Tube application.

<fb:fbml>

<h1>Tab Page - Test Tube</h1>

<p>Hello, World!</p>

</fb:fbml>

The <fb:fbml> tag has an optional version parameter that, if omitted, will render the
content in the latest version of FBML.To view this number, you can use the
<fb:fbmlversion /> to render the version number within your application.After you’ve
uploaded the tab.php, go back into your application’s settings and enter a tab name and
tab URL on the Profiles tab. In this instance, the tab URL should be set to tab.php to
mirror the file you have just uploaded, and the tab name should be set appropriately.
Once you have saved your settings, visit your own Facebook profile and, if you have
installed your application, you should be able to click the plus sign (+) next to the Wall,
Info, and Photos tabs and select the tab you just created, as illustrated in Figure 8.4.

www.it-ebooks.info

http://www.it-ebooks.info/

149Navigating and Showcasing Your Application Using Tabs

Up until now, the application tab contains only static content, and so the next section
looks at how these tabs can be extended to add more personalized information tailored to
its owner and viewers.

Extending an Application Tab
Before adding additional functionality, it is worth evaluating which Facebook parameters
are contained within an application tab, both when viewing a friend’s profile and when
interacting with it (such as sending a message).When you are viewing a canvas page, the
following parameters are exposed and can be accessed by using the $facebook->fb_
params array:

n in_canvas, added, in_profile_tab, and in_new_facebook

These parameters should all be set to a 1, indicating that the profile owner has
added the application and that the viewer is located within the “Profile” tab.The
in_new_facebook parameter is used for legacy reasons when Facebook was transi-
tioning between old and new layouts. If the in_profile_tab is not set to 1, you
should code in functionality to redirect the user to your application’s canvas page or
display an error message.

n friends, locale, profile_update_time, profile_user, profile_id, and
ext_perms

These parameters are associated with the profile owner and contain a comma-sepa-
rated list of their friends alongside their identifiers and any extended permissions
they have granted the host application.

n request_method, time, expires, profile_session_key, api_key, and app_id

The final parameters are used when handling Facebook actions that require sessions,
such as extracting the profile owner’s friends.When you are using the official client
libraries, parameters such as api_key are less important because the library handles
much of its complexity for you.

These parameters are also accompanied by a signature that can be accessed by using
$_POST["fb_sig"].All the parameters above are made available whether the viewer has
added the application or not. However, if users intend to interact with the application (for
example, submitting a form) but they have not added your application, only the following
parameters will be exposed within the $facebook->fb_params array: profile; locale;
in_new_facebook; sig_time; added, which will be set to 0; api_key; and app_id. In the
instance, the identity of the viewer is not accessible to your application. If the viewer has
added your application, this will expose the following additional parameters:

n profile_update_time, expires, session_key, and ext_perms, which were
detailed earlier, although the session_key is linked with the profile viewer and not
the owner.

n The viewer identifier is now also made available via the user parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

150 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

Figure 8.5 Extended application tab for the Test Tube application.

One of the great features about application tabs is their capability to utilize Mock
AJAX calls to perform dynamic actions or to submit forms inline without having to redi-
rect the user. In the remainder of this section, you learn how to create an application tab
that enables viewers to leave a basic text comment for their friend to view. Figure 8.5
gives an example of what the final page should look like. It consists of a form that handles
submissions using Mock AJAX, a comments box, and functionality to prompt users who
have not already authorized your application to add it and grant extended permissions to
write data to their stream.

To create the application tab shown in Figure 8.5, you must amend tab.php and create
a new file for handling the comment submissions called post.php.The first step is to cre-
ate the skeleton of the application tab, which will include the Facebook API PHP client
library.This library will be used to validate all parameters and to ensure that the user is, in
fact, viewing from within Facebook. Because the canvas callback URL exists on your own
web server, it is possible for users to type that file location into their web browser outside
of Facebook, which means that they must be redirected back to Facebook to prevent any
malicious access.This can be achieved by adding the code in Listing 8.2 to tab.php.

Listing 8.2 Example for the tab.php File Demonstrating a Simple Application Tab

1 <?php

2 include "../config.php";

3 include "../functions.php";

4 include "../facebook-platform/php/facebook.php";

5 $facebook = new Facebook(API_KEY, SECRET, $_POST["fb_sig_profile_

session_key"]);

www.it-ebooks.info

http://www.it-ebooks.info/

151Navigating and Showcasing Your Application Using Tabs

6 $facebook->require_frame();

7 $facebook_parameters = $facebook->get_valid_fb_params($_POST, null,

"fb_sig");

8 $profile_user = $facebook_parameters["profile_user"];

9 if($facebook_parameters["in_profile_tab"] == 1) {

10 ?>

11 <fb:fbml>

12 // Your Application Logic Goes Here

13 </fb:fbml>

14 <?php

15 } else {

16 // Either redirect the user by setting $facebook->redirect(CANVAS_

PAGE_URL); or by presenting them with a warning saying that they are

not within an application tab.

17 }

18 ?>

On line 6, a function has been added that ensures that if users type in the URL to your
tab on your domain in their web browser they will be redirected back to a Facebook-
hosted page. Before you add any application logic, it is worth drafting out what use your
new application tab should be able to handle. Because it will have been added by a user, it
is known that the user has already authorized your application, and it is possible that you
can use the user identifier or other details to extract data that you hold about that user
from your database and display that on your tab. Because you are provided with a session
key, a number of functions can be performed on the tab itself (for example, extracting the
user’s friends, photos, or events). However, you will not be able to publish to the user’s
stream or retrieve any protected data on the user’s behalf.When a user’s friends access your
application tab, they will be in a “passive” mode.This means you cannot access their user
identifier, and so cannot determine whether they have authorized your application.
Facebook provides two mechanisms for handling this issue:

n Adding a requirelogin="true" parameter to all links.This will pop up a Facebook
dialog box so that users can authorize your application before proceeding if they
have not already.

n When using Mock AJAX, you can add an ajax.requireLogin=1 parameter so that
if viewers submit your comment form and they are not a user of your application,
they will be prompted to authorize first before the comment is posted.

Both mechanisms should arrive at the same results. However, because you’ll be learning
about Mock AJAX in this example, the second option is used.When submitting their
comment, viewers can also select whether they want to post their comment to their
stream via the comments.add method. Note that you could post the response as a stream

www.it-ebooks.info

http://www.it-ebooks.info/

152 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

attachment or even via the Dashboard API (described earlier in this chapter).The
comments.add method is used for convenience because a comments box can be placed on
the application tab to show feedback to the user. Posting to their stream also requires that
a viewer has granted the publish_stream extended permission, which will be prompted
by the Facebook.showPermissionDialog() JavaScript function.

The comments form can be constructed using the following code, which you should
use in place of the comment on line 12 of Listing 8.2:

1 <h1>Tab Page - Test Tube</h1>

2 <p id="comment_response">You can submit a test comment by using the

form below. On submitting the form you will be prompted to grant

permission to write to your stream which will enable your comment to

be submitted.</p>

3 <form>

4 <p><label for="comment_text">Comment Text: </label><input type="text"

name="comment_text" id="comment_text" value="" size="50"

maxlength="140" /></p>

5 <p><label for="publish_comment">Publish To Stream: </label><input

type="checkbox" name="publish_comment" id="publish_comment" /></p>

6 <p><input type="submit" value="Publish Comment" onclick="

submit_form(‘comment_response’); return false;" onsumbit="return

false;" /></p>

7 </form>

8 <h2>Comments</h2>

9 <div id="comments_box">

10 <fb:comments xid="c_<?php echo $profile_user; ?>" canpost="true"

candelete="true"></fb:comments>

11 </div>

The code above displays a simple prompt to the user on line 2.This prompt will be
replaced when the form is submitted by either a success or error response.The form itself
is defined in lines 3 to 7. It does not include traditional action and method attributes
because you will be using the onclick action of the Submit button to post a comment.
Form elements include a mixture of name and id attributes because their values and states
need to be evaluated for validation and submission.The comments box on line 10 is
wrapped inside a <div> because when a user submits a comment there is no way of
“refreshing” its contents without refreshing the application tab.The xid of the
<fb:comments> FBML element is set to that of the profile owner and is prefixed by a c_,
because Facebook sometimes has issues displaying comments boxes that are purely
numeric.

The next element that needs to be created is the JavaScript function submit_form(),
which includes the id of the element to update after submission.The JavaScript for this
example is split into two parts.The first detects whether comment text was added and
whether viewers have chosen to publish their comment to their stream. If both are true,
they are presented with a Permissions dialog box to grant extended permissions. If per-
missions are granted, a successful callback will be triggered, and the comment will be

www.it-ebooks.info

http://www.it-ebooks.info/

153Navigating and Showcasing Your Application Using Tabs

posted to their stream. If denied, the comment will still be posted but will not appear in
their stream.The second part is the Mock AJAX itself, which is used to submit the com-
ment and update the user interface.The submit_form() function looks like this and
should be placed inside a <script type="text/javascript"> element:

1 function submit_form(form) {

2 comment_text = document.getElementById("comment_text").getValue();

3 if(!comment_text == "") {

4 publish_comment = document.getElementById("publish_comment").

getChecked();

5 if(publish_comment) {

6 Facebook.showPermissionDialog(

7 "publish_stream",

8 function(response) {

9 if(response) { do_ajax(form, publish_comment); }

10 else {

11 do_ajax(form, false);

12 document.getElementById("publish_comment").setChecked(false);

13 }

14 }

15);

16 } else {

17 do_ajax(form, false);

18 }

19 } else {

20 document.getElementById("comment_text").setStyle({color: "white",

background: "red"});

21 }

22 }

Facebook’s implementation of JavaScript, FBJS, is slightly different to JavaScript in han-
dling variable names. In all instances, variables are prefixed by your application ID, which
creates a more controlled and sandboxed environment that prevents malicious screen
refreshes and other potentially dangerous scripting abilities. Some useful FBJS commands
are shown on line 2 for getting the value of a text box, on lines 4 and 12 for getting and
setting the state of a check box, and on line 20 for setting the style of a text field. Further
details are available in the next section for how to add event listeners and other advanced
functionalities to your application tab.The Facebook.showPermissionDialog() function
on lines 6 to 15 is broken down as follows:

n Line 7 defines the extended permission or permissions that are being requested. In
this instance, you require only the publish_stream permission, but multiple per-
missions can be requested by supplying a string of comma-separated values.

n Lines 8 to 14 are the callback function, which is invoked if the user allows the
permission that leads to the call on line 9. If the user denies permission or closes
the Permissions dialog box, the response will be null.This will still submit the

www.it-ebooks.info

http://www.it-ebooks.info/

154 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

comment but will ensure that it does not attempt to publish to their stream. Because
this function is being called as a result of the user checking the Publish Comment
check box and then being denied, the check box is set to “unchecked” to improve
user experience should the user attempt to submit again. Both callback paths will
call a do_ajax() function (detailed below).

The remainder of the submit_form() function is to handle if users do not want to pub-
lish to their stream. Under this scenario, the do_ajax() function is called, much like if they
deny the publish_stream extended permission. If they do not provide any comment text,
the background of the text field will be set to red and the text to white.The do_ajax()

functions should be placed below submit_form() and contains the following code:

1 function do_ajax(div, publish_comment) {

2 comment_text = document.getElementById("comment_text").getValue();

3 if(!comment_text == "") {

4 var ajax = new Ajax();

5 ajax.responseType = Ajax.JSON;

6 ajax.ondone = function(data) {

7 document.getElementById(div).setInnerFBML(data.fbml_response);

8 document.getElementById("comments_box").

setInnerFBML(data.fbml_comments);

9 document.getElementById("comment_text").setValue("");

10 document.getElementById("comment_text").setStyle({

color: "black", background: "white"

});

11 }

12 ajax.onerror = function() {

13 document.getElementById(div).setInnerFBML(‘<fb:error message="There

was an error submitting the form." />’);

14 }

15 var params = {

16 "comment_text": comment_text,

17 "owner": <?php echo $profile_user; ?>,

18 "publish_comment": publish_comment

19 };

20 ajax.requireLogin = 1;

21 ajax.post("<?php echo CANVAS_CALLBACK_URL; ?>/post.php", params);

22 }

23 }

As with the submit_form() function, the do_ajax() function first tests to see that
comment text has been entered. If it hasn’t been, it will not submit any data to Facebook.
On line 4, an AJAX object is created, and its responseType is set on line 5.The
responseType can be set to Ajax.JSON, Ajax.RAW, or Ajax.FBML, which dictates the for-
mat in which the AJAX object expects data to be returned.The most flexible format is

www.it-ebooks.info

http://www.it-ebooks.info/

155Navigating and Showcasing Your Application Using Tabs

Ajax.JSON, which will be demonstrated in the example in this chapter. Lines 7 and 8 use
two JSON strings, fbml_reponse and fbml_comments, which will become clear after
exploring the server-side file generating the response.There are two cases for AJAX
requests, which are ajax.ondone and ajax.onerror for handling successful or other
responses.The ajax.ondone function on lines 6 to 11 is used to update the comments_box
and for resetting the Comments text field to its original state.The final part of the func-
tion is shown on lines 15 to 21, which are used to set up POST parameters, comment_text,
owner, and publish_comment, to require that users have authorized the application and to
actually post the data.

The <fb:js-string> FBML Element
When setting the innerFBML of an element, you might find that Facebook refuses to add
the content that you specify. The <fb:js-string> FBML element is provided specifically for
this case—another is for Facebook Dialogs—and contains a single var parameter, which is
the name that it will be referenced by and will contain the FBML that you want to be added.
The <fb:js-string> should be placed within an <fb:fbml> element and will not be dis-
played to users. The var should be passed as the single parameter to an innerFBML()
function.

Your post.php is used to perform specific server-side Facebook functions and to
return the response back to the do_ajax() function.The CANVAS_CALLBACK_URL parame-
ter that was set within the config.php should include the canvas directory to ensure that
the post.php file can be found. Listing 8.3 defines an example post.php file.This should
be uploaded to your web server alongside tab.php and index.php.

Listing 8.3 Example post.php File Demonstrating Adding a Comment and Returning
Data Back to an Application Tab

1 <?php

2 include "../config.php";

3 include "../functions.php";

4 include "../facebook-platform/php/facebook.php";

5 $facebook = new Facebook(API_KEY, SECRET);

6 $facebook_parameters = $facebook->get_valid_fb_params($_POST,

null, "fb_sig");

7 if(empty($facebook_parameters)) {

8 $facebook->redirect(CANVAS_PAGE_URL);

9 exit;

10 }

11 if($facebook_parameters["is_ajax"] == 1) {

12 $owner = $_POST["owner"];

13 } else {

14 $owner = $facebook_parameters["profile"];

15 }

www.it-ebooks.info

http://www.it-ebooks.info/

156 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

16 $viewer = $facebook_parameters["user"];

17 $comment_text = $_POST["comment_text"];

18 $publish_comment = $_POST["publish_comment"];

19 $facebook->set_user($viewer, $facebook_parameters["session_key"]);

20 $json = array();

21 $json["fbml_comments"] = '<p>The page <a href="http://www.facebook.com/

profile.php?id='.$owner.'&v=app_'.$facebook_parameters["app_id"].'">

must be refreshed to view recently-submitted comments.</p>';

22 try {

23 $title = "Test Tube";

24 $url = CANVAS_PAGE_URL;

25 $comment = $facebook->api_client->comments_add("c_".$owner,

$comment_text, $viewer, $title, $url, $publish_comment);

26 $json["fbml_response"] = '<fb:success message="Your comment was added

and will be viewable the next time you visit this tab." />';

27 }

28 catch(Exception $e) {

29 $json["fbml_response"] = '<fb:error message="'.$e->getMessage().

'" />';

30 }

31 echo json_encode($json);

32 ?>

As with the tab.php file, you must cater for the fact that your post.php file will be
accessed externally, which is the reason for including lines 7 to 10. Because Mock AJAX is
being used, Facebook adds another parameter called is_ajax but does not pass the profile
parameter, which is why the owner POST parameter was set within the do_ajax() func-
tion. Other parameters are set on lines 16 to 18, and then the profile viewer is set as the
active user on line 19.An empty array is created on line 20, which is finally converted to a
JSON string on line 31 and which is returned to do_ajax().As an example, line 21 is the
text that replaces the initial comments_box container and is accessed within do_ajax()
using data.fbml_comments. If you want to return data that is to be set using
setInnerFBML, it must be prefixed with fbml_ within the $json parameter.The
comments.add method is called on line 25 using the comment_text, and the final parame-
ter dictates whether the comment is published to the viewer’s stream.

After you have created the post.php file, you should upload it to your web server, and
you should be ready to test out your new application tab. From here, you could try out
another publishing method such as stream.publish or add additional functionality such
as listing the owner’s friends who have commented or displaying richer comments that
include images.The final section looks at how to use the FBJS, and in particular the
Animation library, which can be used to create “tweening” CSS fading background colors
and styles, to hide and show block-level elements, and to ease animations for smoother
transitions.

www.it-ebooks.info

http://www.it-ebooks.info/

157Dynamic Content and the Facebook JavaScript (FBJS) Library

Dynamic Content and the Facebook JavaScript
(FBJS) Library
The Facebook JavaScript (FBJS) library is a solution prepared by Facebook to enable
developers to execute JavaScript within their applications. Because allowing developers to
perform the full range of JavaScript commands could lead to malicious use, FBJS attempts
to provide a happy medium for providing access to simple animations and to utilizing
event listeners and implementing Facebook dialog boxes.As you may have seen if you
have tried to use JavaScript within Facebook before, all your variable names and functions
are prefixed with an application ID. If your application ID is 1234567890 and you have a
function named foo(), it becomes a1234567890_foo(). In the code for the application
tab in the previous section, it was not possible to simply refresh the tab using
window.location.reload() because of this, although you could use
document.setLocation(), which is provided in the FBJS library. Because application tabs
are the only way of enabling a user to showcase your application, it is important to add
features such as Mock AJAX and animations to improve the usability of your work and to
distinguish yourself from others.

Including JavaScript Files
If you have a rather large JavaScript file, you can use a <script> tag and set the src to
include the remote file. As Facebook caches the file to reduce the burden on your own
servers, you should suffix your files with a version number after each major update (for
example, foo.js?v=0.1) to ensure that Facebook caches the new file.

The FBML Test Console (http://developers.facebook.com/tools.php?fbml) is a great
resource for testing out your FBJS before deploying to an application tab (see Figure 8.6).
It can also be used to test out a Facebook Platform application or to trial Facebook API
methods before production.

You can set the Position drop-down menu to tab to ensure that the correct propor-
tions are being shown onscreen.When previewing your application in the Test Console,
you are presented with a preview of how your application tab will look, the contents of
the HTML that Facebook will generate, and a simple list of errors (as well as the ability to
view a profile from the perspective of another user by setting the Profile text field).The
remainder of this section uses the FBML Test Console to experiment with the various
features of the FBJS library.

Facebook Animation Library
Facebook provides an easy-to-use library for creating a richer user interface for your users
via CSS both inside Facebook and outside through an animation library (http://develop-
ers.facebook.com/animation/).This library could therefore be used to create animations
for other applications that are not Facebook driven but utilize basic animations such as

www.it-ebooks.info

http://developers.facebook.com/tools.php?fbml
http://developers.facebook.com/animation/
http://developers.facebook.com/animation/
http://www.it-ebooks.info/

158 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

creating shading effects that “tween” between background or text colors or hiding and
showing page elements.These could be used to animate a particular element and can be
achieved in the following ways by populating the onclick() parameter of any element:

n Animation(this).to("background', "#000").go();

This function will transition the element’s current background color to black
(#000) and is “executed” by supplying the final .go() method.The use of this
ensures that the animation is performed on the current element but any other
DOM object could also be passed into this function for manipulating elements in
other areas of a page.

n Animation(this).to("background", "#f00").to("color", "#fff").go();

You can string multiple styles together, such as background and color, as shown in
the example. Both transitions will run smoothly in parallel, which means that as the
background is changing color, so will the color of the text.

n Animation(this).to("background", "#fff").from("#000"). go();

To transition between two styles irrespective of the current style, you can use a
.from() method. In this instance, this meant changing the background from white
(#fff) to black (#000).

n Animation(this).by("font-size", "1px").go();

The .by() method can be used to increment or decrement an attribute, such as
font-size, width, height, or left or right positioning.

Figure 8.6 Screen shot of the FBML Test Console showing
an example application tab.

www.it-ebooks.info

http://www.it-ebooks.info/

159Dynamic Content and the Facebook JavaScript (FBJS) Library

n Animation(element).to("height", 0).to("opacity", 0).

blind().hide().go();

By setting the height and opacity of a supplied element, you can automatically
hide it from view.You should also set the element’s overflow style to hidden, which
will prevent images contained within the element from still being shown despite it
having no size.The .blind() method is used to prevent automatic text wrapping
from occurring while the element is being resized.

n Animation(element).to("height", "auto").from(0). to("width",

"auto").from(0).to("opacity", 1).

from(0).blind().show().ease(Animation.ease.end).go();

Revealing elements that have a display style set to none works in a similar way to
hiding them but requires both a .to() and .from() method as well as .show() in
replace of .hide().A final, .ease() method was added to the animation, which
will mean the element will “ease” into being revealed. Other options are
Animation.ease.begin and Animation.ease.both, which will start slow and end
fast or start and end slow, respectively.

All the animations above will occur over a duration of 1,000 milliseconds (1 second),
but you can add a .duration() method right before .go() should you want the anima-
tion to last a longer or shorter time.The code examples available for this chapter contain a
few animations to demonstrate how they function on application tabs and how they could
be implemented in your own applications.A final advanced feature of the Animation
library is checkpoints. Checkpoints are useful if you want to build an animation that con-
sists of two or more logical steps that are part of a single animation. Example could be first
increasing a width and then increasing its height or increasing the size of an element and
then changing its color.This can be demonstrated using a simple example:

<div id="test_1" style="display: none; border: 1px solid #ccc; padding:

5px;">

This is a test message which will first increase in width and

then in height.

</div>

<a href="#" onclick="Animation(document.getElementById('test_1')).

to('height', 0).from(0).to('width', 'auto').from(0).show().blind().

checkpoint().to('height', 'auto').blind().go(); return false;">Click

to Expand.

It is also possible to “stagger” checkpoints so that an action can be executed midway
through the first animation.To implement this feature, you can add an additional parame-
ter to the .checkpoint() function, which must be a number that ranges from 0 to 1,
where 0 will not render the animation at all and a value of 1 will render the animation
straight after the first has finished. For example, in the code above, you could set the
checkpoint to 0.5 to start growing the height of the element halfway through its width
increase.This can also be accompanied by a .duration(500) function just before .go()

www.it-ebooks.info

http://www.it-ebooks.info/

160 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

to ensure that both animations finish at the same time.A trick to delay animations is to
use the following:

Animation(element).duration(3000).checkpoint().to("width", "auto").go();

This code would pause for 3,000 milliseconds (3 seconds) and then adjust the width of
the given element.A use case for this may be to present a message after a certain period
of time to the user or to hide a message after a number of seconds has elapsed.The final
advanced feature of checkpoints is to use callbacks within the .checkpoint() function
for performing animations on other elements as well as the current element.This can be
achieved by using .checkpoint(1, function() { Animation(...); }) and nesting
your animation within the two parentheses. Remember that you can also save these ani-
mation chains as functions and thus greatly reduce the amount of code you are typing and
make it more readable if you call functions such as expand(), contract() or
growThenFadeToBlack().

Facebook Dialogs

The <fb:dialog> FBML Element
Facebook has a beta version of an <fb:dialog> element that is a condensed version of
the FBJS equivalent discussed in this chapter. The element can be invoked by adding a
clicktoshowdialog attribute to any element. It is recommended that you use the FBJS
version until Facebook confirms the <fb:dialog> element, which is expected in mid-2010.

Facebook uses dialog boxes to alert users of messages that they have deleted and to alert
them about errors and many other scenarios.To make your application blend in with
their environment, they provide a Dialog object that can be manipulated to show a pop-
up message called Dialog.DIALOG_POP or a contextual message called
Dialog.DIALOG_CONTEXTUAL, which displays an inline dialog box rather than a pop-up.
Both types of dialog work in similar ways, except that the contextual dialog can be dis-
played close to where the user’s cursor is pointing or around a certain element.A simple
dialog box can be created by using the following code:

<p><a href="#" onclick="new Dialog(Dialog.DIALOG_POP).showMessage('Test

Dialog Box', 'Hello, World!', 'Close'); return false;">Click to Test

Dialog Box</p>

The dialog box shows a message which has the title Test Dialog Box, the content set
to Hello, World!, and its only button set to Close.The .showMessage() function could
be replaced by .showChoice(), which accepts an additional parameter for allowing a can-
cel option.A more thorough example of using dialogs is to evaluate which action the user
has chosen and to update an element:

1 <p>Do you like social programming? <a href="#" onclick="confirm('Do

you like social programming?', this);">Click to Answer</p>

2 <p id="response">Unknown Response</p>

3 <script type="text/javascript">

4 <!--

www.it-ebooks.info

http://www.it-ebooks.info/

161Dynamic Content and the Facebook JavaScript (FBJS) Library

5 function confirm(text, context) {

6 var dialog = new Dialog(Dialog.DIALOG_CONTEXTUAL);

7 dialog.setContext(context).showChoice("Social Programming", text,

"Yes", "No");

8 dialog.onconfirm = function() {

9 document.getElementById("response").setTextValue("Yes, I do.");

10 };

11 dialog.oncancel = function() {

12 document.getElementById("response").setTextValue("No, I don't.");

13 };

14 return false;

15 }

16 //-->

17 </script>

In this example, the results of the dialog box lead to the response element being
updated either on being confirmed (lines 8 to 10) or canceled (lines 11 to 13).You can
also see how the .setContext() function was used to ensure the dialog appeared
close to the Click to Answer text.The final example of dialogs makes use of the
<fb:js-string> FBML element to show a rich select box to the user within a message
and enables them to update a string of text based on the color that they select:

<p id="body_text">This is some standard text.</p>

<p>Update Text Color</p>

<fb:js-string var="color_picker">

<p>What is your favorite color?</p>

<p>

<select id="color_select">

<option value="black">Default</option>

<option value="red">Red</option>

<option value="green">Green</option>

<option value="pink">Pink</option>

</select>

</p>

</fb:js-string>

<script type="text/javascript">

<!--

function update_text_color() {

var dialog = new Dialog(Dialoh.DIALOG_POP).showChoice("Color Picker",

color_picker, "Pick", "Cancel");

dialog.onconfirm = function() {

var color_text = document.getElementById("color_select").getValue();

document.getElementById("body_text").setStyle({color: color_text});

};

return false;

}

//-->

</script>

www.it-ebooks.info

http://www.it-ebooks.info/

162 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

The main difference in this example is that instead of passing a string of text into the
.showChoice() function, the var of the <fb:js-string> element is used.This method
can prove particularly effective if you intend to create a rich form that the user has to fill
out or if you intend to include multimedia in your dialog box.The only methods that
have not been explored are .hide(), which can be used to hide a dialog box if it is
already opened (such as if you intend to open multiple dialog boxes or ensure that they
are all properly closed), and .setStyle(), which can add styling to the dialog box.

Handling Events with an Event Listener
You might sometimes want to detect whether users have clicked an element on your
application tab or moved their mouse over a text field or image. In these instances, you
can set up an event listener that sits in the background of your code waiting for actions to
occur. Facebook provides its own facilities to “listen” for events and has thus extended the
W3C addEventListener() method. Event listeners are broken into three components:

n A string related to the event type that is being listened for, which includes mouse
events such click, mousedown, mouseup, mouseover, mousemove, mouseout, or key-
board events like keyup, keydown, or keypress.To detect a particular key press, you
can use the keyCode property of an Event object to perform specific functions
dependent on keys.You can also use the Event object to detect whether the
ctrlKey, shiftKey, or metaKey were pressed.

n A callback function that handles the event and triggers whatever functionality you
want to implement.This could be updating a text box, adding text to row tables, or
performing search “typeahead” functions.Two important functions can be set
within this function: stopPropagation(), for preventing the listener from being
added to any parent elements; and preventDefault(), for stopping an element’s
“normal” behavior (such as preventing clicking a link from directing the user). In
the case of a link, you must also set its onclick attribute to return false;.

n The final parameter must be set and relates to a useCapture behavior, which
should be set to false.This will prevent events being triggered for descendants of
the element that triggers that particular listener.

You can use event listeners in two ways depending on what types of actions you want
to capture.The first type of listener is used to encompass multiple elements and handle
their logic within the callback function. For example, suppose you have a catalog of
images and you want to update a text box to describe the image based on what product
the user has rolled his mouse cursor over.You can do so using the following code:

<p id="product_description">Roll your mouse over an image to update this

description.</p>

<div id="products">

<p id="image_1"></p>

<p id="image_2"></p>

</div>

www.it-ebooks.info

http://www.it-ebooks.info/

163Dynamic Content and the Facebook JavaScript (FBJS) Library

<script type="text/javascript">

<!--

function handler(event) {

var product_description = document.getElementById("product_description");

if (event.type == "mouseout") {

product_description.setTextValue("Roll your mouse over an image to

update this description.");

return true;

}

var product_id = event.target.getId();

var product_text = "";

switch(product) {

case "image_1":

product_text = "This is the first product.";

break;

case "image_2":

product_text = "This is the second product.";

break;

default:

product_text = "This is an unknown product.";

}

product_description.setTextValue(product_text);

}

document.getElementById("image_1").addEventListener("mouseover", handler);

document.getElementById("image_1").addEventListener("mouseout", handler);

document.getElementById("image_2").addEventListener("mouseover", handler);

document.getElementById("image_2").addEventListener("mouseout", handler);

//-->

</script>

The code above would display two images and accompanying text and has two listen-
ers, mouseover and mouseout, which will either update the product_description ele-
ment with a product description or reset it to its default text.The
event.target.getId() function ensures that the correct element is identified, and then
the JavaScript logic is tailored to that identifier.Another way to add an event listener is to
completely separate the code from your application tab content:

<div id="test" style="border: 1px solid #ccc; padding: 5px; height: 50px;

width: 100px;" onclick="return false;"></div>

<script type="text/javascript">

<!--

function random_number(low, high) {

return Math.floor((Math.random() * (high - low)) + low);

}

function color(obj) {

var red = random_number (0, 255);

var blue = random_number(0, 255);

www.it-ebooks.info

http://www.it-ebooks.info/

164 Chapter 8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library

var green = random_number(0, 255);

var color = red + ", " + green + ", " + blue;

obj.setStyle("color", "rgb(" + color + ")");

}

function load() {

var obj = document.getElementById("test");

obj.addEventListener("click",

function(event){

color(obj);

event.stopPropagation();

event.preventDefault();

return false;

}, false);

}

load();

//-->

</script>

The code above will display a box that is clickable and that will change to a random
color generated by the color() function.The difference in this example is that a click
event is being captured and so the preventDefault() function is called to prevent the
usual action of clicking an object. Note that only this second event listener can be vali-
dated using the FBML Test Console and the previous example of the product catalog
must be hosted on a live application tab. Event listeners are the final component of the
FBJS library explored in this section and can be used in combination with the Animation
library and Mock AJAX.You should now feel well enough equipped to create an interac-
tive and dynamic application tab that will keep your users coming back and that will per-
suade their friends to add one of their own.

Summary
This chapter described how you can use dashboards in your Facebook Platform appli-

cation through the Dashboard API.Through the Dashboard API, you can post news items
to a user’s dashboard, promote friends’ activities, and utilize activity counters.The second
part of this chapter focused on application tabs as a way of sharing your application’s in-
formation with users and their friends. Following the deprecation of profile boxes, appli-
cation tabs are the only mechanism for enabling users to personalize their profiles and
showcase their favorite applications.You were shown how to configure and install an ap-
plication tab and how to add Mock AJAX functionality.The final part of this chapter de-
tailed the Facebook JavaScript (FBJS) library, which you can use to add animations,
dialogs, and event listeners.

www.it-ebooks.info

http://www.it-ebooks.info/

9
An Overview of Google

Friend Connect

Google Search was their first venture, but now Google offers other products and serv-
ices, such as e-mail, online mapping, video sharing, web browsing, and mobile operating
systems (to name but a few). Google also invests a lot of time in social networking with
their Facebook and MySpace competitor orkut and Google Friend Connect, enabling
users to connect with friends on third-party social applications.With the Google Friend
Connect JavaScript API, you can access content such as user profiles and friends and can
generate “activities” from a Google Friend Connect site directly using JavaScript.

This chapter explores (through code snippets, discussion, and a sample application
called Color Picker) the inner workings of the Google Friend Connect JavaScript API
and demonstrates how it integrates with the OpenSocial API.At the end of this chapter,
you should understand how to implement fully interactive Google Friend Connect
JavaScript code into your website to create functionality such as site members list mainte-
nance, activity generation, and persistent “app data” storage.

Components of Google Friend Connect
Google Friend Connect is a service that provides website owners with tools to add social
features for community building and increasing engagement.These features are known as
gadgets and plug-ins and are suitable for people with little or no programming experience.
For example, the Members gadget enables visitors to join a website and see and interact
with other members through comments, messages, and reviews. Google Friend Connect
was developed to lower two barriers to entry:

n Many website owners want to add social features that enable their visitors to do
things with their friends without necessarily wanting to become a social network. It
is about helping the “long tail” of sites become more social as simply as possible so
that they can publish their activities back to their social network, attracting even
more visitors.

www.it-ebooks.info

http://www.it-ebooks.info/

166 Chapter 9 An Overview of Google Friend Connect

n People are tiring of needing to create new logins and profiles and of re-creating
friend lists wherever they go online. Google Friend Connect offers a solution to
this issue through partnering with networks such as OpenID,Twitter, and Yahoo!,
enabling users to sign in using existing credentials. For larger publishers, this could
be perceived negatively because site owners do not “own” users and their data like
they would if Facebook or Twitter were used, but it does not preclude them from
having direct relationships with gadget users on their sites.

The skill sets required to adopting Google Friend Connect range from basic copying
and pasting code snippets known as gadgets and plug-ins into your website via wizard-
like interfaces through to full client- and server-side integration using the Google Friend
Connect JavaScript and OpenSocial APIs. Basic gadgets and plug-ins are not explored in
detail because their usage is as simple as copying and pasting code into your website.What
is explored is how to build your own gadgets to provide deeper integration into your site
with Google Friend Connect. Several examples are available from Google (http://code.
google.com/apis/friendconnect/code.html) demonstrating how to integrate Google
Friend Connect with your website using the Google Friend Connect JavaScript API and
server-side integration.You can use these alongside the Google AJAX API Playground
(http://code.google.com/apis/ajax/playground/), which is useful for debugging code and
exploring features before deployment.

Google Friend Connect Gadgets
Google Friend Connect gadgets are the simplest way to add social capabilities to websites
without any programming experience. Gadgets allow visitors to sign in with OpenID and
preexisting Google,Yahoo!, and other OpenID accounts; integrate existing profiles from
social networks and services; discover existing friends from other linked social networks;
and make friends across networks and interact with fully scalable and tested social gadgets
created by Google and the broader OpenSocial development community. Current
Google Friend Connect gadgets include the Social Bar and the Members gadget.

The Social Bar gives site visitors easy access to social features such as discovering new
friends, reading and posting comments, and exploring new site activities.An example
installation is available on this book’s website at http://www.socialprogramming.info and
shows how the Social Bar works and looks in a live environment (see Figure 9.1).

The Members gadget comes in two forms: a more feature-rich interactive gadget
allowing visitors to join your site, sign in and out, see other members, invite friends, and
use other social features; and a smaller gadget for signing in and out of your site (see
Figure 9.2).

A Gadget Gallery (http://www.google.com/friendconnect/directory/) hosts other
gadgets created by Google (for example, Comments, Ratings and Reviews, Events, and
Recommendations). Other gadgets created by other social application developers are also
contained in the Gadget Gallery.

www.it-ebooks.info

http://www.socialprogramming.info
http://www.google.com/friendconnect/directory/
http://code.google.com/apis/friendconnect/code.html
http://code.google.com/apis/friendconnect/code.html
http://code.google.com/apis/ajax/playground/
http://www.it-ebooks.info/

167Components of Google Friend Connect

Figure 9.1 Demonstration of the Social Bar with comments enabled.

Figure 9.2 Demonstration of the Members
gadget with invitations enabled.

Google Friend Connect JavaScript API
The Google Friend Connect JavaScript API works in addition to the basic usage of
Google Friend Connect, where access to OpenSocial content is through the hosting of
gadgets or via server-side integration.The Google Friend Connect JavaScript API allows
you to directly access OpenSocial content from a Google Friend Connect site using
JavaScript.The <iframe> approach to design makes getting up and running with Google
Friend Connect fast and easy, but it keeps Google Friend Connect social data locked
inside of the <iframe> itself.This means that you can’t call Google Friend Connect
JavaScript methods directly from your website.

Server-Side Integration
In combination with the Google Friend Connect JavaScript API, server-side integration
is possible through support for the OpenSocial RESTful and RPC protocols.As well as
running social gadgets on your website and displaying social information, Friend Connect

www.it-ebooks.info

http://www.it-ebooks.info/

168 Chapter 9 An Overview of Google Friend Connect

can be integrated with existing server-side code on any desktop, web, or mobile clients
(see Chapter 10,“Server-Side Authentication and OpenSocial Integration”).As an exam-
ple, integration could be with an existing login system, letting anyone with a supported
Google Friend Connect account log in to your website without having to complete a
registration process. Processes will differ from site to site, but most login integrations fol-
low the same processes:

1. Give users an option to log in with Google Friend Connect, which you can do by
adding a few lines of JavaScript code.You don’t need to worry about customizing
another user interface or handling a complicated authorization process because
Google Friend Connect handles much of this centrally.

2. After users have joined your site, their information is made available through the
Google Friend Connect server-to-server APIs. For authentication, a dynamically
generated fcauth cookie is placed on the domain of the site; an alternative method
is to use two-legged OAuth, which is discussed in Chapter 10.

3. Sites need to be able to check for logged-in Google Friend Connect users and
integrate that data with existing accounts so they are treated as “just another” regis-
tered users. Data models need to be extended to keep track of a Google Friend
Connect ID per account and pull profile fields from the server-to-server APIs
because data cannot be persisted.

4. Google Friend Connect provides additional controls that will help users manage
their settings on your site.These include linking to options for configuring their
accounts, managing friends and un-joining your site, and for inviting friends to join
your website.

5. Logging out can be as simple as a single JavaScript call, which can be problematic if
you need to do server-side processing such as ending a session or clearing cookies.

6. Take some time to think how best to present your site’s data in a social way.
Through the login process, you have access to a “friendship model.”Therefore, de-
sign considerations include whether friends might be interested in the content a
user has just added or listing what activities their friends have been performing on
your site (such as sharing reviews or posting high scores).

Several open source client libraries (http://wiki.opensocial.org/
index.php?title=Client_Libraries) written in popular programming languages such as
PHP, Ruby, Java, and Python are available to make it easy to access the OpenSocial
RESTful and RPC protocols.

Google Friend Connect Plug-ins
Third-party plug-ins are available for popular blogging, forum, and content management
systems such as WordPress, Drupal, and phpBB.These make it easier for visitors to log in
with a Google account,Yahoo! account, or to log in via any site that implements

www.it-ebooks.info

http://wiki.opensocial.org/index.php?title=Client_Libraries
http://wiki.opensocial.org/index.php?title=Client_Libraries
http://www.it-ebooks.info/

169Using the Google Friend Connect JavaScript API

OpenSocial 0.8 (such as Plaxo, hi5, and MySpace) and comment on material. Developing
Google Friend Connect plug-ins can prove particularly rewarding if your work is used by
a number of other users. For example, you could build a plug-in for a new blogging plat-
form or content management system.This could then be reused by other users and
extended by other developers. Remember when developing plug-ins that you should not
include your own site ID and should allow users to customize every aspect of the design
and functionality of the plug-in.

Using the Google Friend Connect JavaScript API
Every website that uses Google Friend Connect automatically becomes an OpenSocial
container.This means that you can access people, activities, and persistence data (applica-
tion data) through the Google Friend Connect JavaScript API, gadgets, and plug-ins, or
via the OpenSocial RESTful and RPC protocols.Although gadgets can be copied and
pasted easily into web pages, they are run inside an <iframe>, which means that data is
locked inside that frame and cannot be accessed externally.The JavaScript Library pro-
vides a convenient way to access Google Friend Connect and OpenSocial methods,
which you can embed directly into any HTML page.

Installing and Configuring the JavaScript Library
Before you can install the JavaScript Library, you must first register a new Google Friend
Connect site (http://www.google.com/friendconnect/) by filling out the web form.
Every Google Friend Connect site is allocated a unique identifier known as a site ID,
which is the ticket that links interactions back to your container.You will find it by
checking the id parameter in the URL when inside Google Friend Connect and having
selected your application.

You can find the embeddable JavaScript API code under the Plug-ins & APIs section
of the Google Friend Connect site.An example page is shown in Listing 9.1 and is used
throughout this chapter.

Listing 9.1 A Simple Google Friend Connect page.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <title>Test Tube</title>

6 <!-- Load the Google AJAX API Loader //-->

7 <script type="text/javascript" src="http://www.google.com/jsapi">

</script>

8 <!-- Load the Google Friend Connect javascript library. //-->

9 <script type="text/javascript">

10 google.load("friendconnect", "0.8");

www.it-ebooks.info

http://www.google.com/friendconnect/
http://www.it-ebooks.info/

170 Chapter 9 An Overview of Google Friend Connect

11 </script>

12 </head>

12 <body>

13 <h1>Test Tube</h1>

14 <!-- Initialize the Google Friend Connect OpenSocial API. //-->

15 <script type="text/javascript">

16 google.friendconnect.container.setParentUrl("/");

17 google.friendconnect.container.initOpenSocialApi({

site: "XXXXXXXXXXXXXXXXXXXX",

onload: function(securityToken) { initAllData(); }

});

19 function initAllData() {

20 alert("Hello, world!");

21 }

22 function onData(data) {}

23 function createActivity() {}

24 </script>

25 </body>

26 </html>

The two most important lines in this code snippet are the following:

1. For legacy applications, Google Friend Connect required that you uploaded two
files to your web server for verification. Line 16 is the relative or absolute location
of the rpc_relay.html and canvas.html files that needed to be uploaded. In
newer installations, this line is now redundant because you no longer need to
upload any files.

2. Line 17, which is already prepopulated with your site ID. In this instance, it has
been removed for security reasons.The line also contains a reference to a callback
function that is passed a security token so that Google Friend Connect data can be
retrieved.This callback function is called every time the user’s identity becomes
known or changes.You will be populating the initAllData() function in the fol-
lowing section.

Save the code in Listing 9.1 and upload it to your web server as index.html, which
should match the URL you provided when you first set up Google Friend Connect. If all
was successful, when viewing the file in a web browser you should be greeted with a
pop-up and the words “Hello, world!”. If this wasn’t the case, recheck that your site ID
and callback function are correct.The three functions initAllData(), onData(), and
createActivity() will be updated as you progress through this chapter; you are now
ready to retrieve Google Friend Connect data.

www.it-ebooks.info

http://www.it-ebooks.info/

171Using the Google Friend Connect JavaScript API

Working with Google Friend Connect Data
Google Friend Connect data is accessed through two sets of methods: the Google Friend
Connect JavaScript API, which is used to set up the container, initiate the OpenSocial
API, handle sign-in and -out processes, and render other OpenSocial gadgets; and the
OpenSocial API, for fetching and updating people, activities, and persistence.The
OpenSocial v0.8 specification, which is the current standard for Google Friend Connect,
is particularly extensive, so this section focuses on the most important methods and points
you in the right direction to explore the finer details of the OpenSocial API at your
leisure.

Google Friend Connect JavaScript API Methods
Methods in the Google Friend Connect JavaScript API fall into four categories: container
setup, pre-registration, post-registration, and gadget interaction. For methods that support
or require additional parameters, these take the form of a series of "key": "value" pairs
separated by a comma (,) and enclosed within curly parentheses ({}), which is one of the
data structures supported by JSON.

Container Setup Methods
You have used the two container setup methods, google.friendconnect.container.
setParentUrl() and google.friendconnect.container.initOpenSocialApi(), in the
code in Listing 9.1.The first accepts a single url parameter that points to the location of
rpc_relay.html and canvas.html.The second accepts two parameters: a required string
called site containing the site ID; and onload, which is an optional parameter giving the
name of the JavaScript callback function run every time the user’s identity becomes
known or changes.

Pre-Registration Methods
There are two pre-registration methods for prompting a user to sign in using Google
Friend Connect:

n For visual consistency, Google offers several options for generating buttons for
handling signing in to Google Friend Connect sites.To display a standard
Google Friend Connect button, you can use the google.friendconnect.

renderSignInButton() method, which accepts three parameters: id is a required
string containing the HTML element identifier where the button will be rendered;
text is an optional string containing the text to be displayed inside the button; and
style is the button style that can be set to standard, long, or text. For more
information about visual styles, visit the Google Friend Connect Buttons page
(http://code.google.com/apis/friendconnect/gfc_buttons.html).

n Alternatively, you can use the google.friendconnect.requestSignIn() method
to prompt a user to sign in using a link rather than a button.This method requires
visible attribution of the words “Friend Connect” in proximity to the link.A typical

www.it-ebooks.info

http://code.google.com/apis/friendconnect/gfc_buttons.html
http://www.it-ebooks.info/

172 Chapter 9 An Overview of Google Friend Connect

usage is this: <a href="#" onclick="google.friendconnect.
requestSignIn();">Sign In with Google Friend Connect.

The pre-registration methods are part of a workflow of events, because you must
change the content of pages when a user’s identity becomes known or changes. For
example, once signed in, you will no longer have to display the Sign In with Google
Friend Connect button.

Post-Registration Methods
There are three post–registration methods.These are displayed only to signed-in users. In
other words, the display of a button or link for signing in and the options presented by
post-registration methods are binary. So, when one is on, the other should be off:

n A site becomes a lot more social with friends, and so the google.friendconnect.
requestInvite() method gives users a convenient way to invite their friends to
your site.With a single line of code, a highly interactive invitation pop-up window
is created, which can be customized via an optional opt_message string for pre-
populating the invitation message field.

n It is important that users have full control over their Google Friend Connect iden-
tity.The google.friendconnect.requestSettings() method enables users to
manage their account and friends or un-join your site. Like the invitation method,
the settings method opens up a pop-up window with a single line of code.

n The google.friendconnect.requestSignOut() method logs the user out of the
Google Friend Connect site.As with signing in, the method then calls the onload
handler when done.This can prove problematic if you need to perform any server-
side processing, such as maintaining a session, and so utilizing a counter for the
number of times the page has been loaded is a useful technique (see Chapter 10).

Although these methods are not mandated, they show good practice and are recom-
mended to ensure users have full control over their Google Friend Connect profile.As an
added bonus (and with little programming effort), the invitation method can promote
your site to a wider audience if members share details with their friends.

Gadget Interaction Methods
None of the methods in this section can be used within gadgets, but the google.

friendconnect.container.renderOpenSocialGadget() and google.friendconnect.

container.setNoCache() methods are useful for testing gadgets in a Google Friend
Connect environment. For example, you can combine ready-made gadgets such as
Activities or Members with custom code on your website.To disable gadget caching, you
just supply a 1 as the parameter, which is useful if you are debugging a gadget that is
being continually updated (e.g., the trunk of version-controlled source code). If you
explore any of the copy and paste gadgets from the Google Friend Connect Gadget
Gallery, you will notice the use of the renderOpenSocialGadget() method. In some

www.it-ebooks.info

http://www.it-ebooks.info/

173An Overview of the OpenSocial API

instances, Google has created specialized methods, such as renderMembersGadget() and
renderSocialBar(), but the majority of gadgets do not use these specialized methods.

An Overview of the OpenSocial API
OpenSocial is a set of common APIs for social network applications developed by Google
along with MySpace and a number of other social network partners. It is now maintained
by the OpenSocial Foundation, a “non-profit, private foundation dedicated to the sustain-
able and open development of the OpenSocial initiative and related intellectual property.”

OpenSocial Specifications
At the time of this writing, the most current version of OpenSocial is v0.9, which added a
Lightweight JavaScript API using a new osapi namespace. This specification is used for
gadgets, but the v0.8 specification is used for the Google Friend Connect JavaScript API.

OpenSocial enables applications, social networks known as “containers,” and other
clients such as web, desktop, and mobile devices to collaborate and share social data. Every
OpenSocial container exposes the same set of APIs so that applications are portable across
all social networks.What OpenSocial does is provide an easy way for developers to create
applications that work across all social networks, in essence learning once and writing
everywhere.The OpenSocial JavaScript API and other client libraries provide access to
common concepts such as people and friends, activities, persistence (application data) and
messages. Unlike the Facebook Platform, OpenSocial does not have its own markup lan-
guage, but instead uses regular JavaScript and HTML so that developers are not locked
into the Google platform.

Apache Shindig
For those interested in hosting your own OpenSocial container like LinkedIn, hi5, or Zing,
check out Apache Shindig (http://shindig.apache.org/). Apache Shindig comprises of a
JavaScript container and implementations of the back-end APIs and proxy required for host-
ing OpenSocial applications. Apache Shindig is built on code donated by Ning, Inc. based on
their OpenSocial implementation.

For OpenSocial application developers, Google Friend Connect provides a whole new
audience for applications. Now every site that adopts Google Friend Connect is also an
OpenSocial container.

OpenSocial API Methods
The Google Friend Connect JavaScript Library provides “helper” methods for initiating
requests, but you will need to use the OpenSocial API to fetch and update Google Friend
Connect data.Two of the most popular methods from the opensocial namespace for
interacting via Google Friend Connect are as follows:

www.it-ebooks.info

http://shindig.apache.org/
http://www.it-ebooks.info/

174 Chapter 9 An Overview of Google Friend Connect

n opensocial.newDataRequest()

n opensocial.requestCreateActivity()

A number of object “definitions,” such as opensocial.Person and opensocial.

Activity, provide references to the fields and types available for each object. For example,
an opensocial.Person contains fields such as NAME, THUMBNAIL_URL, and CURRENT_
LOCATION, which maps to an opensocial.Address object. In some instances, these fields
are not returned by default and therefore need to be referenced manually via additional
method parameters.

OpenSocial API Field Names
In the OpenSocial API documentation, many of the field names are listed in uppercase and
are separated with an underscore (_). However, in all cases, these can be used interchange-
ably with a “camel case” version. For example, CURRENT_LOCATION becomes
currentLocation. This is a matter of preference, and functionality will be the same
whichever naming structure is chosen (although you should stick to a single convention).

If you want to dive straight in and experience some of the OpenSocial API or the
Google Code AJAX APIs, Playground has an interactive sandbox for editing and debugging
code.You can use your own site ID in examples to imitate the Google Friend Connect
logic on your website.The remainder of this section focuses on the three popular methods
and introduces how to handle errors and use OpenSocial API “identifier specifications” and
parameters to customize methods.

The DataRequest Object
The best place to start is the DataRequest object, which is initiated via a call to the
opensocial.newDataRequest() method.Although initiating the object does not request
any OpenSocial data, it provides a mechanism for “attaching” other requests, which are
then pooled so that you can retrieve all the information that you need by sending a single
request rather than initiating multiple asynchronous requests and handling their responses
individually.After a DataRequest object has been created, requests can be attached using
the add() method and finally submitted via the send() method.This is best explained via
an example, which should be added inside the initAllData() function that you have
already created in Listing 9.1:

1 function initAllData() {

2 var req = opensocial.newDataRequest();

3 req.add(req.newFetchPersonRequest("VIEWER"), "viewer");

4 req.add(req.newFetchPersonRequest("OWNER"), "owner");

5 req.send(onData);

6 }

The DataRequest object is initiated in line 2 and is assigned to the req JavaScript vari-
able. Lines 3 and 4 contain two requests for OpenSocial person data, which will be
explained further in the “Fetching People and Profiles” section.The add() method

www.it-ebooks.info

http://www.it-ebooks.info/

175An Overview of the OpenSocial API

requires two parameters to be set: the request itself, and a unique label for that request so
that responses can be handled separately. Finally, the request is sent on line 5, which
includes a parameter representing the JavaScript callback function to be executed after the
request has been completed (with errors or not).All responses are packaged inside an
opensocial.ResponseItem object, which provides methods for testing whether there was
an error and for getting the data from within the response.To extend the example above,
replace the onData() function in Listing 9.1 with the following code:

1 function onData(data) {

2 if (!data.get("viewer").hadError()) {

3 var viewer_data = data.get("viewer").getData();

4 alert(viewer_data.getDisplayName());

5 } else {

6 alert("Viewer is anonymous");

7 }

8 if (!data.get("owner").hadError()) {

9 // Process "owner" data

10 } else {

11 // Process "owner" error data

12 }

13 }

If you resave and upload the new index.html file to your web server, you should see
an alert box containing either your Google Friend Connect display name if already logged
in or an alert box saying Viewer is anonymous. In lines 2 and 8, you can see an example
of the hadError() method of the opensocial.ResponseItem object, which also returns
true for a null value such as the viewer not being signed in the code above. Line 3
demonstrates the getData() method, and line 4 the getDisplayName() method of the
opensocial.Person object.The parameter in the get() method on lines 2, 3, and 8 is set
to the unique labels for viewer and owner data.

Debugging with Firebug
If you use Mozilla Firefox, it is recommended that you install the Firebug developer plug-in for
interrogating the JSON outputs of each of the methods. If you enable the console and
browse to the Net tab and then look for the request beginning with POST rpc, you can ana-
lyze the response from the console.

The code snippet could be used for toggling between the pre- and post-registration
controls from the Google Friend Connect JavaScript Library; if the viewer is not known,
he or she could be requested to sign in with Google Friend Connect.Through the
DataRequest object, you can request social information such as people, activities, and per-
sistence, which will be explored in the remainder of this section.A full integration exam-
ple provided by Google (http://ossamples.com/api/) demonstrates each of these methods
should you want to edit the source and experiment with other parameters.

www.it-ebooks.info

http://ossamples.com/api/
http://www.it-ebooks.info/

176 Chapter 9 An Overview of Google Friend Connect

Fetching People and Profiles
You have already seen one of the people methods when calling
newFetchPersonRequest() with the VIEWER and OWNER parameters. In the context of a
Google Friend Connect site, the use of the OWNER parameter in this request returns the
site’s profile information, and VIEWER returns the logged-in user. If you want to access the
site’s owner and administrators, its members, or a user’s friends who are also members of
the site, you use the newFetchPeopleRequest() and provide an opensocial.IdSpec to
define which you would like. For example:

1 function initAllData() {

2 var req = opensocial.newDataRequest();

3 var idspec = new opensocial.IdSpec({

4 "userId": "OWNER",

5 "groupId": "FRIENDS"

6 });

7 var params = {

8 "max": 8,

9 "profileDetail": [

10 opensocial.Person.Field.ID,

11 opensocial.Person.Field.NAME,

12 opensocial.Person.Field.THUMBNAIL_URL,

13 opensocial.Person.Field.PROFILE_URL

14],

15 "sortOrder": [

16 opensocial.DataRequest.SortOrder.NAME

17]

18 };

19 req.add(req.newFetchPeopleRequest(idspec, params), "members");

20 req.send(onData);

21 }

The userId can be one of OWNER or VIEWER depending on whether you want the site’s
“friends” (members) or the viewers’ friends. In most, but not all, instances, groupId can be
set to ADMINS, ALL, FRIENDS, or SELF. If the userId is set to OWNER and groupId to
ADMINS, you can display the site’s owner and administrators. In the example above, param-
eters were used to request a maximum of eight members and additional profile informa-
tion. Not all fields are returned by default, so PROFILE_URL needed to be included
manually.The fields that are available by default can be found in the opensocial.Person
documentation. In the code from “The DataRequest Object” section, you used the
getDisplayName() method, but if you had included PROFILE_URL in your parameters,
you could have added a call to getField("profileUrl") to get the profile URL of the
viewer. Other parameters can be found within the documentation for the DataRequest
object, including filters and sorting:

function onData(data) {

members = data.get("members").getData();

var member_list = document.getElementById("members");

www.it-ebooks.info

http://www.it-ebooks.info/

177An Overview of the OpenSocial API

Table 9.1 The Activities Fetched by the OpenSocial API

Method Data

newFetchActivitiesRequest("OWNER") Not supported.

newFetchActivitiesRequest(

new opensocial.IdSpec({

"userId": "OWNER",

"groupId": "FRIENDS"

})

)

Returns all the site member’s activities.

member_list.innerHTML = "";

if (members.size() > 0) {

members.each(

function(member) {

member_list.innerHTML += "<p>" + member.getDisplayName() + "</p>";

}

);

} else {

member_list.innerHTML = "There are no site members";

}

}

Inside the callback function, you can use a combination of the JavaScript size() and
each() functions to iterate through the members and parse the data in any way you like.
In this case, updating a predefined HTML element <div id="members"></div> for each
member or displaying a paragraph “There are no site members” if no persons have added
themselves to the site.

Fetching and Updating Activities
The OpenSocial API lets users share activities with their friends through an activity
stream.An activity can be anything from modifying an application’s state to writing an
online book review. Google Friend Connect site members can specify whether they want
their activities posted to other Google Friend Connect-enabled sites and linked in other
social networks such as orkut or Twitter. Users can set this preference in their Google
Friend Connect settings; this is not a default action. Site owners may want to offer this as
a recommendation for their users by making them aware of that functionality.

Activities can be requested through the DataRequest object’s
newFetchActivitiesRequest() method but are created via the
opensocial.requestCreateActivity() method.Table 9.1 summarizes the activities that
can be requested via Google Friend Connect:

www.it-ebooks.info

http://www.it-ebooks.info/

178 Chapter 9 An Overview of Google Friend Connect

Table 9.1 The Activities Fetched by the OpenSocial API

Method Data

newFetchActivitiesRequest("VIEWER"

)
If the user is signed out, this returns null;
otherwise, it returns the viewer’s activities
across all Google Friend Connect sites.

newFetchActivitiesRequest(

new opensocial.IdSpec({

"userId”: "VIEWER",

"groupId": "FRIENDS"

})

)

If the user is signed out, this returns null;
otherwise, it returns the friends’ activities of
the viewer across all Google Friend Connect
sites.

In addition to the activities automatically generated when users join a Google Friend
Connect site to their profile, you can add your own activities through the opensocial.
requestCreateActivity() method.The opensocial.Activity object contains both
title and body parameters for specifying the primary text and an optional expanded ver-
sion of an activity. For gadgets, it is suggested that Activity templates be used to support
internationalization and that message variables be replaced (but that’s not required in this
instance). Using the code from Listing 9.1, you can now add the createActivity()
function:

function createActivity() {

var activity = opensocial.newActivity({

title: viewer.getDisplayName() + " created an activity."

});

opensocial.requestCreateActivity(

activity,

"HIGH",

function() { setTimeout(initAllData, 1000); }

);

}

In the code example, an activity is constructed and then created via a call to the
opensocial.requestCreateActivity() method.The HIGH parameter is the activity pri-
ority, which means it will be created even if it requires asking the user for permission.A
LOW priority means it will not be created if the user has not given permission for the cur-
rent application to create activities. Finally, a callback function is provided and will be run
after 1,000ms.A simple way to test this function is to use a <button
onclick="createActivity();">Create Activity</button>.

Fetching and Updating Persistence
The OpenSocial API defines a data store that applications can use to read and write per-
user and per-application data known as app data. An in-depth view of The Persistence API
is documented on the OpenSocial wiki

www.it-ebooks.info

http://www.it-ebooks.info/

179An Overview of the OpenSocial API

(http://wiki.opensocial.org/index.php?title=The_Persistence_API), although this can be
reduced to three primary functions of updating, fetching, and removing data.All functions
utilize the DataRequest object explored earlier and use the
newUpdatePersonAppDataRequest(), newFetchPersonAppDataRequest(), and
newRemovePersonAppDataRequest() methods.The basic premise is that each piece of
data contains a unique identifier for associating the stored data item with a particular user,
a “key” for this data, and the data itself, which must be a formatted as a JSON string.

Translating JavaScript Values to JSON Strings
The gadgets.json object provides two utility methods for converting JavaScript values into
JSON strings. The stringify() and parse() methods prove particularly useful when you
are creating JSON for updating app data if you have more than one value that you want to
update at once.

If you try to update a person’s app data using a previously defined key, the new value
will just replace the existing value.This means that you can set and reset app data as many
times as you want. For example:

1 function initAllData() {

2 var currentTime = new Date().getTime().toString();

3 var currentDate = new Date().getDate().toString();

4 var dateAndTime = {

"currentTime": currentTime,

"currentDate": "" + currentDate + ""

};

5 var json = gadgets.json.stringify(dateAndTime);

6 var req = opensocial.newDataRequest();

7 var idspec = new opensocial.IdSpec({

"userId": "VIEWER",

"groupId": "SELF"

});

8 var params = {

"escapeType": [

opensocial.EscapeType.HTML_ESCAPE

]

};

9 req.add(req.newUpdatePersonAppDataRequest("VIEWER", "time",

json), "update");

10 // req.add(req.newFetchPersonRequest("VIEWER"), "viewer");

11 // req.add(req.newFetchPersonAppDataRequest(idspec, "time",

params), "data");

12 // req.add(req.newRemovePersonAddDataRequest("VIEWER","time"));

13 req.send(onData);

14 }

An optional callback has been included to check whether an error has occurred, which
is important for general OpenSocial applications because some containers do not support

www.it-ebooks.info

http://wiki.opensocial.org/index.php?title=The_Persistence_API
http://www.it-ebooks.info/

180 Chapter 9 An Overview of Google Friend Connect

the persistence layer.A successful update does not return any data.The fetch data parame-
ter can be set to HTML_ESCAPE or NONE and is used to HTML-escape outputs, which may
corrupt the display or could even expose security vulnerabilities if left as NONE. If you
choose to set the HTML_ESCAPE parameter, you must unescape the “stringified” JSON
object before parsing.The gadgets.util object has an unescapeString() method that
can be used as follows:

var unescaped_string = gadgets.util.unescapeString(json_data);

var json = gadgets.json.parse(unescaped_string);

If you comment out lines 2 to 9 and uncomment lines 10 and 11, you can add the fol-
lowing callback for fetching the app data:

function onData(data) {

var viewer_data = data.get("viewer");

var data_data = data.get("data");

if (!viewer_data.hadError() && !data_data.hadError()) {

var viewer = viewer_data.getData();

var data = data_data.getData();

var viewer_data = data[viewer.getId()];

if (viewer_data) {

var unescaped_string = gadgets.util.unescapeString(

viewer_data["time"]);

var json = gadgets.json.parse(unescaped_string);

alert(json["currentTime"]);

alert(json["currentDate"]);

} else {

alert("Time not found");

}

} else {

// Process "viewer" and "data" error data

}

The returned app data is contained in a JavaScript map indexed by a data key, which is
in turn contained within another map indexed by an OpenSocial ID.To access the
viewer’s data, you also need the viewer’s ID, which is why the viewer is also fetched.
Because app data can be fetched for several individuals simultaneously, it is necessary to be
contained within this structure. Using the method above, you can access each of the stored
values via the json object, which is the parsed version of the unescaped string stored in
the data store.

You might sometimes want to remove app data from the data store.Again, the
DataRequest object is used, and a request is made to the
newRemovePersonAppDataRequest() method, which accepts an OpenSocial ID as its first
parameter and the name of a key or set of keys as the second parameter. If you uncom-
ment line 12 in the code above, this will remove the time app data that you stored for the
current viewer. Multiple keys can be removed by specifying ["key1", ..., "keyN"] in

www.it-ebooks.info

http://www.it-ebooks.info/

181An Overview of the OpenSocial API

Figure 9.3 Color Picker: A sample application using Google Friend
Connect.

replace of the time parameter, and if you want to clear all keys simultaneously, you can use
the asterisk (*) character.

Color Picker: A Google Friend Connect Application
Having explored some of the most popular methods of both the Google Friend Connect
JavaScript API and the OpenSocial API, you should now be able to pool together all this
knowledge into creating a simple Google Friend Connect application. Being a developer,
sometimes the best way to learn something is to be able to dissect a worked example. For
this, a sample site has been created to showcase Google Friend Connect in action: http:/
/socprog.thebubblejungle.com/google/.

The example demonstrates how to access site member details, sign in with Google
Friend Connect, publish and display activities, and store and fetch app data (see Figure 9.3).

Once signed in to Google Friend Connect, you can pick a color and it will automati-
cally be created as an activity.The application also uses app data to store when users last
logged in and displays the most recent members at the top of the application to demon-
strate how users can be extracted, instead of using the embeddable Members gadget.

www.it-ebooks.info

http://socprog.thebubblejungle.com/google/
http://socprog.thebubblejungle.com/google/
http://www.it-ebooks.info/

182 Chapter 9 An Overview of Google Friend Connect

Known Limitations
At the time of this writing, the Google Friend Connect JavaScript Library does not function
correctly in the Opera web browser. Two issues prevent gadgets from being rendered and
sign-in functions working correctly (due to reported security errors). In time, these issues will
most likely be resolved, and this will be reflected in the code examples.

You can get this example up and running on your own web server in three steps:

1. Register your site on the Google Friend Connect website and install and configure
the JavaScript Library.

2. Download the HTML source code from the sample site, edit the variables SITE_ID
and FILE_LOCATION to mirror your web server, save as index.html, and then
upload the file to your web server.

3. Finally, visit your newly uploaded page in a web browser and test that you can sign
in and pick a color. If you find that your page throws an error, double-check your
SITE_ID and FILE_LOCATION.

The application construction can be broken into five associated phases: registering and
configuring the Google Friend Connect library, enabling sign-in functionality, retrieving
members, posting and retrieving activities, and storing (and retrieving) app data.These are
explored in the remaining sections of this chapter.Along with the HTML code, you
should also create the following CSS file containing all the styles used in the application:

body { font-family: Arial, sans-serif; text-align: center; }

h1 { color: #07c; font-size: 1.3em; font-weight: normal; }

h2 { color: #666; font-size: 1em; font-weight: normal; padding: 0 0 4px 0;

margin: 0; }

h3 { color: #666; font-size: 0.9em; font-weight: normal;

padding: 0 0 4px 0; margin: 0; }

.page { width: 700px; margin: 0 auto; padding: 5px; text-align:left; }

.left { float: left; width: 40%; border-right: 1px solid #666;

padding-right: 50px; }

.right { float: left; padding-left: 50px; width: 40%; }

.clear { clear: both; height: 5px; }

.footer { font-size: 0.8em; color: #666; text-align: center; }

#recentMembers { padding: 10px 0; }

#recentActivities { width: 300px; border: 1px solid #ddd; }

#colorTable { width: 100%; }

#colorPicker { margin: 20px 40px; }

#redCell { border: 3px solid #666666; }

.color { width: 20px; height: 20px; border: 3px solid #e5ecf9; }

.red { background-color: red; }

.orange { background-color: orange; }

.green { background-color: green; }

.yellow { background-color: yellow; }

www.it-ebooks.info

http://www.it-ebooks.info/

183An Overview of the OpenSocial API

.blue { background-color: blue; }

.pink { background-color: pink; }

.memberPhoto { width: 65px; height: 65px; border: 0; padding-right: 5px; }

This file should be saved as style.css and uploaded to your server alongside the
HTML file, which should be named index.html.

Registering and Configuring Google Friend Connect
To get started, you must first register a new application by visiting http://www.google.
com/friendconnect and clicking the “Add New Site” link, which is located in the lower
left of the main window.The form requires a website name,“Color Picker”, and website
URL, which must be set to a location on your web server where the style.css and
index.html are to be uploaded.After these two parameters have been saved, you should
be able to input the site ID into line 14 of the code below, which will be shown as an id
parameter in your browser’s address bar:

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

3 <head>

4 <meta http-equiv="Content-type" content="text/html;charset=UTF-8" />

5 <title>Color Picker</title>

6 <script type="text/javascript" src="http://www.google.com/jsapi">

</script>

7 <script type="text/javascript">

8 /* <![CDATA[*/

9 google.load("friendconnect", "0.8");

10 /*]]> */

11 </script>

12 <script type="text/javascript">

13 /* <![CDATA[*/

14 var SITE_ID = "ADD YOUR SITE ID HERE";

15 var FILE_LOCATION = "/";

16 google.friendconnect.container.setParentUrl(FILE_LOCATION);

17 google.friendconnect.container.initOpenSocialApi({

18 site: SITE_ID,

19 onload: function(securityToken) { initAllData(); }

20 });

21 /*]]> */

22 </script>

23 <link href="style.css" media="screen" rel="stylesheet"

type="text/css" />

24 </head>

With your new site ID added to line 14, the remainder of the <head> element con-
tains Google Friend Connect initialization code.After the library has been initialized, a
call is made to the initAllData() JavaScript function, which is described later in this

www.it-ebooks.info

http://www.google.com/friendconnect
http://www.google.com/friendconnect
http://www.it-ebooks.info/

184 Chapter 9 An Overview of Google Friend Connect

section.The naming of this function is not fixed, but it is conventional to use this descrip-
tor. If you have named the style sheet anything other than style.css, line 23 is where
you reference your renamed file.With the header complete, it is time to move on to the
document body:

25 <body>

26 <div class="page">

27 <h1>Welcome to this site</h1>

28 <p>This site demonstrates in-page integration with Google Friend

Connect and its JavaScript API.</p>

29 <!-- Placeholder for Members HTML //-->

30 <div class="left">

31 <h2>Instructions</h2>

32 <p>To get started, click the button below to become a member of

this site. After joining, you will automatically appear above as

a recent member.</p>

33 <!-- Placeholder for Sign In HTML //-->

34 <!-- Placeholder for App Data HTML //-->

35 <!-- Placeholder for Activity HTML //-->

36 </div>

37 <div class="right">

38 <!-- Placeholder for Activity HTML //-->

39 </div>

40 <div class="clear"></div>

41 <div class="footer">

42 <p>Example inspired by "Color

Picker".</p>

43 </div>

44 </div>

The first part of the <body> element contains the HTML, which will be dynamically
updated by JavaScript. For example, on line 27 the site name will be updated appropri-
ately if it can be retrieved. Other placeholders, such as on lines 29, 33 to 35, and 38, are to
be replaced during the remaining sections (for displaying a login button and site mem-
bers, for instance).The second part of the <body> element contains the JavaScript for
updating the HTML elements:

45 <script type="text/javascript">

46 /* <![CDATA[*/

47 var viewer, owner, members;

48 function initAllData() {

49 // var buttonHtml = document.getElementById("button").disabled

= true;

50 var params = {

51 "max": 8,

52 "profileDetail": [

53 opensocial.Person.Field.ID, opensocial.Person.Field.NAME,

www.it-ebooks.info

http://www.it-ebooks.info/

185An Overview of the OpenSocial API

54 opensocial.Person.Field.THUMBNAIL_URL,

opensocial.Person.Field.PROFILE_URL

55]

56 };

57 var idspecOwner = new opensocial.IdSpec({"userId": "OWNER",

"groupId": "FRIENDS"});

58 var idspecViewer = new opensocial.IdSpec({"userId": "VIEWER",

"groupId": "SELF"});

59 var req = opensocial.newDataRequest();

60 req.add(req.newFetchPersonRequest("OWNER", params), "owner");

61 req.add(req.newFetchPersonRequest("VIEWER", params), "viewer");

62 req.add(req.newFetchPeopleRequest(idspecOwner, params), "members");

63 req.add(req.newFetchPersonAppDataRequest(idspecViewer, "time",

params), "data");

64 req.send(onData);

65 }

The JavaScript is split into two sections containing the initAllData() function for
extracting OpenSocial data and the onData() function for parsing responses.To ensure
that variables are available to all functions, viewer, owner, and members are defined on
line 47. Data from lines 57, 58, and 61 to 63 are used later in this section for extracting
details about the viewer of the site (a logged-in Google Friend Connect user), its mem-
bers, and a user’s app data. Finally, the batch of requests is sent on line 64, including the
name of a callback function, which is defined on lines 66 to 78:

66 function onData(data) {

67 var siteNameHtml = document.getElementById("siteName");

68 if (!data.get("owner").hadError()) {

69 owner = data.get("owner").getData();

70 siteNameHtml.innerHTML = owner.getDisplayName();

71 } else {

72 siteNameHtml.innerHTML = "this site";

73 }

74 <!-- Placeholder for Sign In JavaScript //-->

75 <!-- Placeholder for Members JavaScript //-->

76 <!-- Placeholder for App Data JavaScript //-->

77 <!-- Placeholder for Activity JavaScript //-->

78 }

79 /*]]> */

80 </script>

81 </body>

82 </html>

The onData() function will be expanded in later sections but already contains code to
update the siteName element on line 27. If there was an error retrieving this
value, the text will be set to this site.

www.it-ebooks.info

http://www.it-ebooks.info/

186 Chapter 9 An Overview of Google Friend Connect

Enabling Sign-In Functionality
With the core of the application complete, it’s time to start adding specific functionality.
The first set of code is for enabling users to sign in using Google Friend Connect.This
includes replacing the HTML on line 33 with the following:

<div id="viewerInfo"><h3>Login</h3></div><p id="gfcButton"></p>

This code will display a heading and element to be replaced by a rendered Google
Friend Connect button.To enable this, you must update the JavaScript on line 74 to make
use of the viewer data requested on line 61:

var viewerInfoHtml = document.getElementById("viewerInfo");

var gfcButtonHtml = document.getElementById("gfcButton");

if (data.get("viewer").hadError()) {

google.friendconnect.renderSignInButton({

"id": "gfcButton",

"style": "standard"

});

gfcButtonHtml.style.display = "block";

viewerInfoHtml.innerHTML = "<h3>Login</h3>";

} else {

gfcButtonHtml.style.display = "none";

viewer = data.get("viewer").getData();

var html = '<img src="' + viewer.getField("thumbnailUrl") +

'" height="65" width="65" alt="' + viewer.getDisplayName() +

'" />
';

html += "Hello, " + viewer.getDisplayName() + ".
";

html += '

Settings | ';

html += '

Invite | ';

html += '

Sign Out';

var buttonHtml = document.getElementById("button").disabled = false;

viewerInfoHtml.innerHTML = html;

// updateAppData();

}

This code first creates references to the two HTML elements, viewerInfo and
gfcButton, which will be updated dynamically. If there was an error retrieving user data,
such as if the user is not logged in, the Google Friend Connect login button will be
shown; otherwise, the gfcButton element will be hidden, and viewerInfo replaced with
the user’s display name and three links to edit the user’s settings, invite friends, and sign
out.The final line, which references the updateAppData() function, has been commented
out because it has not been created yet.

www.it-ebooks.info

http://www.it-ebooks.info/

187An Overview of the OpenSocial API

Retrieving Site Members
After allowing users to sign in, it is now possible to start retrieving a list of members and
displaying them in the application.The first snippet of HTML replaces the original line 29:

<h2>Recent Members</h2><p id="recentMembers">Loading...</p>

The HTML element is supported by a block of JavaScript that parses the data
requested on line 62, which replaces the placeholder on line 75:

var membersHtml = document.getElementById("recentMembers");

if (!data.get("members").hadError()) {

members = data.get("members").getData();

membersHtml.innerHTML = "";

if (members.size() > 0) {

members.each(

function(member) {

membersHtml.innerHTML += '<a href="' + member.getField("profileUrl") +

'" title="' + member.getDisplayName() + '"><img class="memberPhoto"

src="' + member.getField("thumbnailUrl") + '" height="65" width="65"

alt="' + member.getDisplayName() + '" />';

}

);

} else { membersHtml.innerHTML += "There are no site members."; }

} else {

membersHtml.innerHTML = "There was an error retrieving site members.";

}

The code first registers the link between the recentMembers HTML element to be
updated dynamically with the retrieved data. If no members are available or there was an
error gathering data, an appropriate error message is shown. Because the params on lines
50 to 56 define the fields and number of results to be returned, a maximum of eight
members will be returned along with a profile URL, display name, and thumbnail URL.
If these additional fields were not added as parameters, they would not be available to be
displayed.

Posting and Retrieving Activities
After users have logged in, you can get them to create events on your site such as posting
status updates, rating articles, or updating their mood.These interactions are stored by
Google, but can also be sent to users’ other social accounts (e.g.,Twitter) if they have
added them to their Google profile.To add activities to Color Picker, you should add the
following HTML, which replaces line 35 of the code above:

<p>Once you've joined you can generate an activity by clicking a color

below and pressing the "Pick" button:</p>

<div id="colorPicker">

<table id="colorTable" cellspacing="10">

<tr>

www.it-ebooks.info

http://www.it-ebooks.info/

188 Chapter 9 An Overview of Google Friend Connect

<td><div class="color red" onclick="pickColor(this, 'red');"

id="redCell"></div></td>

<td><div class="color orange" onclick="pickColor(this, 'orange');">

</div></td>

<td><div class="color green" onclick="pickColor(this, 'green');">

</div></td>

<td style="width: 10px;" rowspan="2"><button onclick="

createActivity();" id="button" disabled="disabled">Pick</button></td>

</tr>

<tr>

<td><div class="color yellow" onclick="pickColor(this, 'yellow');">

</div></td>

<td><div class="color blue" onclick="pickColor(this, 'blue');">

</div></td>

<td><div class="color pink" onclick="pickColor(this, 'pink');">

</div></td>

</tr>

</table>

</div>

This HTML generates a selection palette of colors that executes a pickColor()
JavaScript function that parses the color name and creates an activity. By default, the
Submit button is disabled because when users first visit a page they will not be logged in.
After they have logged in, it will execute the createActivity() function. Because this is
the client-side version, all the event handling is in JavaScript. However, this functionality
could also be executed server-side using AJAX if you want. Chapter 10 provides more
information on the server-side implementation of Google Friend Connect and
OpenSocial.The code below should replace the placeholder on line 77:

var color = "red";

var lastColorDiv = document.getElementById("redCell");

function pickColor(div, newColor) {

color = newColor;

div.style.border = "3px solid #666666";

lastColorDiv.style.border = "3px solid #e5ecf9";

lastColorDiv = div;

};

function createActivity() {

if (viewer) {

var activity = opensocial.newActivity({

title: viewer.getDisplayName() + " picked " + color + " as

their favorite color."

});

opensocial.requestCreateActivity(activity, "HIGH", function() {

setTimeout(initAllData, 1000); });

} else { alert("There was an error creating an activity"); }

}

www.it-ebooks.info

http://www.it-ebooks.info/

189An Overview of the OpenSocial API

The important part about this code is that it sets the first color, red, as the active ele-
ment.This ensures that a value is always sent to the pickColor() function.The function
updates the HTML depending on the color that the user has picked and highlights the
particular color cell with a colored border.The createActivity() function tests to see
whether the viewer parameter has been set and then creates a new Activity object.The
activity itself will contain the user’s display name along with the color that the user
picked.The activity will then be created, and after 1,000ms the initAllData() callback
function will be executed.This could also be used to update an element or display a suc-
cess or failure message to the user:

<h2>Latest Site Activity</h2><p id="recentActivities"></p>

To display activities, the prebuilt Activities gadget will be used.To initiate the gadget,
you are required to create a placeholder element that replaces line 38 of the code above.
The gadget itself is created within the JavaScript code block, which should be appended
underneath the pickColor() and createActivity() functions:

var skin = {};

skin["HEIGHT"] = "250";

skin["BORDER_COLOR"] = "#cccccc";

skin["ENDCAP_BG_COLOR"] = "#e0ecff";

skin["ENDCAP_TEXT_COLOR"] = "#333333";

skin["ENDCAP_LINK_COLOR"] = "#0000cc";

skin["ALTERNATE_BG_COLOR"] = "#ffffff";

skin["CONTENT_BG_COLOR"] = "#ffffff";

skin["CONTENT_LINK_COLOR"] = "#0000cc";

skin["CONTENT_TEXT_COLOR"] = "#333333";

skin["CONTENT_SECONDARY_LINK_COLOR"] = "#7777cc";

skin["CONTENT_SECONDARY_TEXT_COLOR"] = "#666666";

skin["CONTENT_HEADLINE_COLOR"] = "#333333";

google.friendconnect.container.renderOpenSocialGadget({

id: "recentActivities",

url: "http://www.google.com/friendconnect/gadgets/activities.xml",

height: 250,

site: SITE_ID,

"view-params": {"scope": "SITE"}

}, skin);

The gadget itself scopes the whole site, but could also be set to FRIENDS, which would
display activities that the viewer’s friends have made. Feel free to change any of these
parameters to change the colors of the gadget itself.

Storing and Retrieving Application Data
The final benefit of using Google Friend Connect is the ability to store user-level data via
its application data store.This data must be JSON encoded and can contain anything from
user preferences to new profile data. For this example, it is used to store the date that the
user last logged in. Before delving into the details of this function, first uncomment the

www.it-ebooks.info

http://www.it-ebooks.info/

190 Chapter 9 An Overview of Google Friend Connect

updateAppData() line used in the sign-in process.This line ensures that each time a user
logs in, a new date is recorded.The following HTML replaces the placeholder on line 34
for displaying a simple text block:

<p id="date">Loading...</p>

Within the onData() function on line 76, the following code checks whether app data
has already been set and then renders it to users. If this is the first time that they have
logged in, no data will be available for their last login, which is displayed to them. In this
code snippet, the date JSON, which contains two keys, currentTime and currentDate, is
parsed and set using the toLocaleDateString() function:

var dateHtml = document.getElementById("date");

if (!data.get("data").hadError()) {

var data = data.get("data").getData();

var viewer_data = data[viewer.getId()];

if (viewer_data) {

var unescaped_string = gadgets.util.unescapeString(viewer_data["time"]);

var json = gadgets.json.parse(unescaped_string);

var date = new Date();

date.setTime(json["currentTime"]);

dateHtml.innerHTML = "Last Login Date: " + date.toLocaleDateString();

} else {

dateHtml.innerHTML = "Last Login Date: Not Available.";

}

} else { dateHtml.innerHTML = ""; }

To update the app data for a user, add the following function to your JavaScript code
block. It gets the current date and time and translates it into a JSON string.The string is
then associated with the user and sent to storage:

function updateAppData() {

var currentTime = new Date().getTime().toString();

var currentDate = new Date().getDate().toString();

var dateAndTime = {

"currentTime": currentTime,

"currentDate": "" + currentDate + ""

};

var json = gadgets.json.stringify(dateAndTime);

var req = opensocial.newDataRequest();

req.add(req.newUpdatePersonAppDataRequest("VIEWER", "time",

json), "update");

req.send();

}

With the code now complete, you can save the file as index.html and upload it
alongside the style.css file to the location set in the Google Friend Connect settings
page. Either using the sample site or the one that you have just created and uploaded, test

www.it-ebooks.info

http://www.it-ebooks.info/

191Summary

out signing in and out or picking a color, and then investigate the “behind the scenes”
interactions via a developer tool such as Firebug or the in-built developer tools in
Internet Explorer, Google Chrome, or Apple Safari.Also, why not update the code by
adding a new gadget, displaying more member information, or storing additional infor-
mation via the data store?

Summary
The beauty of Google Friend Connect is its simplicity and extensibility. For example,

its wizard-like interface is great for beginners who want a copy-and-paste solution to add
interactivity to their website through gadgets and plug-ins. For developers, there are a
wide range of options for adding interactivity through the client-side JavaScript API or
server-side through utilizing the OpenSocial RESTful and RPC protocols.The Google
Friend Connect JavaScript API and OpenSocial API provide you with a way of integrat-
ing social features into your website, such as profiles and friends and the ability to gener-
ate “activities.” Some of the ways in which these can be used are for recording site
members, registering comments, and providing login functionality. Because the libraries
are client side, you can embed them directly into static pages without having to worry
about creating complex server-side code.This chapter explored some of the most com-
mon methods contained within these libraries and ended with an example that brought
together all the functions that were discussed.The next chapter examines server-side inte-
gration using OpenSocial and Google Friend Connect.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

10
Server-Side Authentication

and OpenSocial Integration

Chapter 9,“An Overview of Google Friend Connect,” explored the Google Friend
Connect JavaScript API and OpenSocial API for integrating social features directly into
websites. However, what if you already have a login system and want to extend it to
accept Google Friend Connect logins? Because Google Friend Connect supports the
OpenSocial RESTful and RPC protocols, it is possible to access OpenSocial data from a
website or any other Internet-enabled device outside of a gadget or a standard web page.
With authentication and secure server-to-server communication handled through
OAuth, and the fcauth authentication cookie or the security token for gadgets provided
by Google Friend Connect, you can give users peace of mind that their data is being han-
dled securely and safely away from prying eyes.

This chapter demonstrates how to use the PHP OpenSocial client library in conjunc-
tion with the skills learned in Chapter 9 for Google Friend Connect and OpenSocial
server-side integration.This includes fetching site members and creating and fetching
activities and app data. Many of the steps and advice should be transferable to any of the
other available client libraries (including Java, Python, and Ruby).

Server-Side OpenSocial Protocols and
Authentication Methods
Two major disadvantages for advanced developers of Google Friend Connect are that
their application code is exposed to the public through viewing the source of their pages
when using the client-side JavaScript libraries and that they cannot take advantage of fully
integrating with their server-side systems (for example, linking a Google Friend Connect
profile to an existing profile on your website so that data you have already stored can be
displayed to the user).Working in conjunction with the client-side Google Friend
Connect JavaScript API for authentication, you can soon start to build some complex
applications using the knowledge you have already acquired via easy-to-use OpenSocial
client libraries. Using the server-side implementation of these technologies, you can

www.it-ebooks.info

http://www.it-ebooks.info/

194 Chapter 10 Server-Side Authentication and OpenSocial Integration

Table 10.1 Google Friend Connect OpenSocial RESTful and RPC Protocol Endpoints

API Endpoint Supported Requests

People REST /people/ GET

Activity REST /activity/ GET, POST, DELETE, PUT

App Data REST /appdata/ GET, POST, DELETE, PUT

All RPC /rpc POST

extend Google Friend Connect past websites and onto any Internet-enabled platform
such as mobile phones or game consoles.

Both the OpenSocial RESTful and RPC protocols enable developers to access and
update OpenSocial container data via HTTP through a number of URL-addressable
endpoints. Google Friend Connect supports four such endpoints for accessing data:
through GET (or POST in the case of the All RPC endpoint), updating through POST and
PUT, and deleting through DELETE requests. In the case of Google Friend Connect, not all
endpoints support all operations, as shown in Table 10.1. (All endpoints have the common
http://www.google.com/friendconnect/api URL stub.)

You may have noticed that when debugging your code in Chapter 9 that you came
across requests that began with POST rpc.This was in fact a call to the All RPC endpoint
with additional parameters supplied for the authentication method, which would have
taken the form of a gadget security token (st) parameter.Three Google Friend Connect
authentication methods are explored in the following section.To access data, you make a
request using one of the endpoints either using cURL from the command line or inside
your server-side code adding two additional parameters (userId such as @me) and
groupId (such as @self or @friends).A typical request looks something like this:

http://www.google.com/friendconnect/api/people/@me/@self?fcauth=XXXX

Instead of handling requests in this raw form, you should use a specialized client
library that has been purpose built to reduce the barrier to entry for developers new to
OpenSocial. But first, let’s look at the three authentication methods supported by
Google Friend Connect: gadget security tokens, authentication cookies, and standard
two-legged OAuth.

Google Friend Connect Authentication Methods
Google Friend Connect provides three authentication methods to apply in different sce-
narios. For example, the client-side example in Chapter 9 used a security token, which
was passed via the onload parameter of the

www.it-ebooks.info

http://www.google.com/friendconnect/apiURLStub
http://www.it-ebooks.info/

195Server-Side OpenSocial Protocols and Authentication Methods

google.friendconnect.container.initOpenSocialApi() method without you even
realizing.A security token is preferred for gadget developers because it provides a short-
lived token that offers access to information about the site, gadget, and the viewer (which
is discussed further in Chapter 11,“Developing OpenSocial Gadgets with Google Friend
Connect”).Two additional authentication methods are provided for use by site owners for
online and offline processing: the Friend Connect authentication cookie, and standard
two-legged OAuth.

The Google Friend Connect Authentication Cookie
Whenever a user signs in using Google Friend Connect, an fcauth cookie is placed on
the domain of the site named fcauthXXXXXXXXXXXXXXXXXXXX, where
XXXXXXXXXXXXXXXXXXXX should be replaced by the numeric site identifier found in the
Google Friend Connect administration page for your site.The cookie is long-lived,
meaning that it will expire after a number of days or until the user signs out of your site
and is unique to the user who signed in. Using a developer plug-in such as Firecookie,
you should be able to identify the fcauth cookie if you select the Cookies tab within the
application. In PHP, this fcauth cookie can be retrieved using the following code:

$cookieIdentifier = "fcauthXXXXXXXXXXXXXXXXXXXX";

$cookie = (isset($_COOKIE[$cookieIdentifier]) ?

$_COOKIE[$cookieIdentifier]

: null);

The code checks to see whether the fcauth cookie has been set, and if so, it assigns its
value to the $cookie parameter; otherwise, $cookie is set to null.You now know that if
a cookie is available, and more important valid, you can start requesting OpenSocial data.
The advantage of this method is that the presence of a cookie can be checked every time
a request is to be made, but the major disadvantage is that it is not suitable for offline pro-
cessing through which actions are performed in the absence of the user. For this, you can
utilize the standard two-legged OAuth authentication method.

Standard Two-Legged OAuth
There are two flavors of OAuth: two-legged authentication and three-legged authentica-
tion.When the term OAuth is used, it is most frequently used to describe the three-
legged version through which users go through a “dance” when they start on an OAuth
“consumer” site and are then redirected to the OAuth “provider,” site where they are
asked to approve access by the consumer site to their data. If approval is given, they are
then bounced back to the OAuth consumer site, where it can start using their authenti-
cated credentials to access data.Two-legged OAuth, on the other hand, does not require
this dance. Instead, is can perform its “signed fetch” or “phone home” authentication
without needing the additional steps for three-legged OAuth.

www.it-ebooks.info

http://www.it-ebooks.info/

196 Chapter 10 Server-Side Authentication and OpenSocial Integration

Two-Legged OAuth Request Anonymity
When you are requesting a specific user’s details, such as using the @me syntax, you need to
explicitly set the identity of the user who is requesting the data. In OAuth terms, this is done
by setting the xoauth_requestor_id parameter to the user ID along with using the @me
syntax or by replacing @me directly with the user ID. If the parameter is not set, it will execute
as an anonymous user.

In Google Friend Connect, developers are provided with a consumer key and secret
that they use to “sign” requests.You can find these under the REST API tab of the Plug-
ins and APIs section within the main Google Friend Connect administration page for
your site.These OAuth credentials never expire, but you will notice an option to regener-
ate your consumer secret should the security of your application become compromised.
This makes OAuth ideal for requesting user data offline; all you need to store is their user
ID and your consumer key and secret.This particular functionality is used in the walk-
through described in Chapter 13,“Integrating Twitter, Facebook, and Google Friend
Connect,” to allow user activities to be created “offline.”

While the creation of a valid OAuth request is quite complex because each request
must be digitally signed by the container, this is handled elegantly via the OpenSocial
client libraries. In comparison to the authentication cookie method, OAuth requires the
storage of user IDs or for offline requests to be iterated over the site owner’s friends
(members) using the relevant OpenSocial API method.Any data that is stored about the
user should be noted in your site’s privacy policy. For security, it is recommended that this
is limited to a single user ID, because other information such as name or URLs may
change over time.

OpenSocial Client Libraries
A number of OpenSocial client libraries are available in PHP, Java, Ruby, and Python as an
alternative to the OpenSocial JavaScript API. New libraries are also available for .NET and
ActionScript 3.0 for Adobe Flex or Adobe Flash applications. Each library is open sourced
under an Apache 2.0 license that welcomes and encourages user contributions and patch
submissions. Both the Ruby and Python libraries include fully featured sample applica-
tions that you can customize and use as templates for your own containers.An issue
tracker is also available, as are source downloads and SVN access.The OpenSocial Client
Library Google group is also a great place to search for issues and through which to
receive notifications about new SVN code submissions.

The client libraries provide a simple way to access the OpenSocial RESTful and RPC
protocols by taking care of the complex authentication processes, creation of data models,
and provision of services to fetch, update, and delete people, activities, and app data. For
other OpenSocial containers, there is also support for other features such as groups, media
items, and messages. It is recommended that you use the source code from your chosen
client’s SVN directory; this is generally a more up-to-date version than that provided in
the Downloads section. For example, support for fcauth cookie does not exist in version

www.it-ebooks.info

http://www.it-ebooks.info/

197Using the PHP OpenSocial Client Library with Google Friend Connect

1.01 of the PHP client library.Through the Source Checkout functionality, you can view
changes and browse the code before checking out the latest version.

Using the PHP OpenSocial Client Library with
Google Friend Connect
The best way to understand the details of the server-side implementation of Google
Friend Connect and OpenSocial is to work through a sample code snippet.Two main
issues are faced: the changeover from the client-side login authentication provided by
Google Friend Connect to the server-side requests made via OpenSocial; and the fact that
Google Friend Connect does not function in the Opera web browser.The key to working
with this transition is to understand the workflow of the client-side authentication
process.

Google Friend Connect Authentication Workflow
You will remember that in Chapter 9 two container setup methods, google.
friendconnect.container.setParentUrl() and google.friendconnect.

container.initOpenSocialApi(), were used to initialize the Google Friend Connect
JavaScript library. In the second method, an onload function was supplied. It was to be
called every time a user’s state changed, such as signing in or out.When updating the page
dynamically using client-side JavaScript and innerHTML, it was sufficient that this page
“refresh” did not affect the workflow of the application. However, if you want to perform
server-side requests, you must act on this page refresh accordingly.This is made possible
through a modified onload function, which would look like the following:

1 google.friendconnect.container.initOpenSocialApi({

2 site: "XXXXXXXXXXXXXXXXXXXX",

3 onload: function(securityToken) {

4 if (!window.timesloaded) {

5 window.timesloaded = 1;

6 } else {

7 window.timesloaded++;

8 }

9 if (window.timesloaded > 1) {

10 // User signed in or out

11 } else {

12 initAllData();

13 }

14 }

15 });

The use of the window.timesloaded counter means that when the page is initially
loaded the counter is set to 1, and then subsequent refreshes which occur when a user
signs in or out increment the counter. If the counter is greater than 1, the workflow
begins on line 10. For now, this contains a simple comment. In production, however, this

www.it-ebooks.info

http://www.it-ebooks.info/

198 Chapter 10 Server-Side Authentication and OpenSocial Integration

would contain a server redirect to an authentication page or function that handles the
authentication process.

Setting Up a Server-Side Application
Let’s begin by creating a new file called test.php that you’ll upload to your web server
under the same location as set in Chapter 9. Initially, this page will contain the following
lines of PHP code:

1 <?php

2 $SITE_ID = "XXXXXXXXXXXXXXXXXXXX";

3 $PARENT_URL = "/";

4 $FILE_NAME = "test.php";

5 if(isset($_REQUEST["authenticate"])) {

6 $request = $_REQUEST["authenticate"];

7 switch ($request) {

8 case "login":

9 header("Location: ".$PARENT_URL.$FILE_NAME."?loggedin");

10 break;

11 case "logout":

12 header("Location: ".$PARENT_URL.$FILE_NAME."?loggedout");

13 break;

14 default:

15 header("Location: ".$PARENT_URL.$FILE_NAME);

16 }

17 } else {

18 $cookieIdentifier = "fcauth".$SITE_ID;

19 $cookie = isset($_COOKIE[$cookieIdentifier]) ?

$_COOKIE[$cookieIdentifier] : null;

20 $isLoggedIn = $cookie ? true : false;

21 $userAgent = $_SERVER["HTTP_USER_AGENT"];

22 $unsupportedBrowsers = array("Opera");

23 $isBrowserSupported = true;

24 foreach ($unsupportedBrowsers as $unsupportedBrowser) {

25 $isBrowserSupported = preg_match("/".$unsupportedBrowser."/i",

$userAgent) ? false : true;

26 }

27 }

28 ?>

Line 5 tests to see whether the authenticate parameter has been set and branches
appropriately depending on whether the application should redirect the user to the
“logged in” or “logged out” page. On lines 18 to 20, you store three new variables:
$cookie, containing the value of the authentication cookie; $isLoggedIn, which is a
Boolean indicating whether a user is logged in; and $isBrowserSupported, which is
another Boolean indicating whether the user’s browser is supported by Google Friend

www.it-ebooks.info

http://www.it-ebooks.info/

199Using the PHP OpenSocial Client Library with Google Friend Connect

Connect.To extend the code above, you should also translate these server-side variables
into client-side variables in the next HTML code snippet:

29 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

30 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

31 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

32 <head>

33 <title>My OpenSocial Test Page</title>

34 <!-- Load the Google AJAX API Loader //-->

35 <script type="text/javascript" src="http://www.google.com/jsapi">

</script>

36 <!-- Load the Google Friend Connect javascript library. //-->

37 <script type="text/javascript">

38 google.load("friendconnect", "0.8");

39 </script>

40 <!-- Initialize the Google Friend Connect OpenSocial API. //-->

41 <script type="text/javascript">

42 <?php

43 if ($isBrowserSupported) { echo "var isBrowserSupported = true;"; }

else { echo "var isBrowserSupported = false;"; }

44 if ($isLoggedIn) { echo " var isLoggedIn = true;"; } else {

echo " var isLoggedIn = false;"; }

45 ?>

46 google.friendconnect.container.setParentUrl("<?php echo $PARENT_URL;

?>");

47 // Initialize OpenSocial

48 </script>

49 </head>

You can replace the comment on line 47 with the code created in the previous section,
and you can also replace the line 10 comment from that snippet with the following:

window.location = '<?php echo $PARENT_URL.$FILE_NAME; ?>?

authenticate=<?php echo !$isLoggedIn ? "login" : "logout"; ?>';

What this line does is redirect users depending on whether they are logged in or not. If
they are not logged in, the authenticate parameter will be set to login; otherwise, it will
be set to logout.These two values correspond directly to the two case switches on lines
9 and 12 of the code above. Note also on lines 43 and 44 that the client-side variables
isLoggedIn and isBrowserSupported are set to match the server-side code.You are now
left with two final tasks to complete: defining the <body> HTML and creating the
initAllData() JavaScript function.With these two tasks completed, you can then start
exploring how to fetch and update data using the client library:

50 <body>

51 <h1>An OpenSocial Test Page</h1>

52 <div id="viewerControlPanel">

53 <p id="gfcButton"></p>

www.it-ebooks.info

http://www.it-ebooks.info/

200 Chapter 10 Server-Side Authentication and OpenSocial Integration

54 </div>

55 <?php

56 if($cookie) {

57 echo "<p>We have the Google Friend Connect authentication

cookie.</p>";

58 } else {

59 echo "<p>We don't have the Google Friend Connect authentication

cookie.</p>";

60 }

61 ?>

62 <script type="text/javascript">

63 function initAllData() { onData(); }

64 function onData() {}

65 </script>

66 </body>

67 </html>

To keep this OpenSocial example simple, there are just two <body> elements: the
“viewer control panel” on lines 52 to 54, which will include the Google Friend Connect
login button when not signed in and an edit settings and sign out links for when they are
signed in; and a simple PHP echo statement on lines 55 to 61 indicating whether you
have an authentication cookie. Remember, an authentication cookie exists only when a
user is logged in.The initAllData() function points directly to the onData() function
to remain consistent with code examples in Chapter 9.To reduce client-side server calls,
the onData() function looks like this:

1 var viewerControlPanelHtml = document.getElementById(

"viewerControlPanel");

2 if (isBrowserSupported) {

3 if (!isLoggedIn) {

4 viewerControlPanelHtml.innerHTML = '<p id="gfcButton"></p>';

5 google.friendconnect.renderSignInButton({

6 "id": "gfcButton",

7 "style": "standard"

8 });

9 } else {

10 html = "<p>";

11 html += '<a href="#" onclick="google.friendconnect.

requestSettings();">Settings | ';

12 html += '<a href="#" onclick="google.friendconnect.

requestSignOut();">Sign Out';

13 html += "</p>";

14 viewerControlPanelHtml.innerHTML = html;

15 }

16 } else {

17 viewerControlPanelHtml.innerHTML = "<p>We're sorry, but your

current browser is not supported by Google Friend Connect.</p>";

18 }

www.it-ebooks.info

http://www.it-ebooks.info/

201Using the PHP OpenSocial Client Library with Google Friend Connect

Two conditional statements on lines 2 and 3 are used to test that the user’s browser is
supported and if the user is logged in or out. Because the authentication cookie is being
used as a test of whether a user is logged in, you do not need to make any calls to the
OpenSocial API to retrieve data.You will have noticed that as of yet there has been no real
server-side processing of user data, just stating that you have access to an authentication
cookie.The next section demonstrates how to use this authentication cookie to set up the
Google Friend Connect provider object.

OpenSocial Data Extraction Principles
Having downloaded the PHP OpenSocial client library, you should find a directory called
osapi.You want to upload this to a suitable location on your web server. For this exam-
ple, it is placed in the same directory as the test.php file and can be loaded with the fol-
lowing code:

require_once "osapi/osapi.php";

To save on resources, it is recommended that this library be loaded only when you
have an authentication cookie. In the code covered in the preceding section, you replace
line 57, which contains a simple echo statement indicating that you had access to the
authentication cookie.You can create the Google Friend Connect provider object with
three lines of code:

1 $provider = new osapiFriendConnectProvider();

2 $authentication = new osapiFCAuth($cookie);

3 $opensocial = new osapi($provider, $authentication);

On line 2, an $authentication parameter is created that could also be an
osapiSecurityToken($securitytoken) for gadgets or an
osapiOAuth2Legged($consumerKey, $consumerSecret, $userId) for standard two-
legged OAuth.The latter would be used for offline processing if you had stored a list of
user identifiers or were programmatically iterating over your site’s members. If you are
unsure as to how to get the user ID for a Google Friend Connect user, you can use the
cookie-based method to initially log the user in and then user $viewer->getID() to
extract the user’s parameter to be stored in your file store.

Inside the OpenSocial Client Directory
Within the osapi directory are several other directories that detail the supported authentica-
tion methods (auth), OpenSocial component definitions (models and service), and each of
the supported providers (providers). The client library also supports a simple storage
mechanism (storage) for XRDS and three-legged OAuth implementations.

With the $opensocial object created, you can now start accessing some data.You do
this through a process whereby all requests are batched together, which is similar to
client-side requests in Chapter 9.A batch is created using $batch = $opensocial-
>newBatch();, and then requests are added using $batch->add($request, "key");,

www.it-ebooks.info

http://www.it-ebooks.info/

202 Chapter 10 Server-Side Authentication and OpenSocial Integration

where $request could be anything from getting all members or creating an activity to
updating application data.The key is a placeholder for referencing the $request data
after it has been returned. Finally, a $response = $batch->execute(); will execute all
the requests and save them in a $response variable. It is important that if you are intend-
ing to use batching that you do not create the $batch parameter several times.You should
be able to create it once, add all your requests that you require for the page, and then exe-
cute the command.To request the viewer’s data, you may use the following code:

1 $batch = $opensocial->newBatch();

2 $viewerParameters = array(

3 "userId" => "@me",

4 "groupId" => "@self",

5 "fields" => "@all"

6);

7 $getViewer = $opensocial->people->get($viewerParameters);

8 $batch->add($getViewer, "viewer");

9 $response = $batch->execute();

10 $viewer = $response["viewer"];

11 if ($viewer instanceof osapiError) {

12 $code = $viewer->getErrorCode();

13 $message = $viewer->getErrorMessage();

14 // Process OpenSocial API Error

15 } else {

16 $viewerName = htmlentities($viewer->getName());

17 $viewerThumbnailUrl = htmlentities($viewer->getThumbnailUrl());

18 echo "<p>Hello, ".$viewerName.".</p>";

19 }

Most of the code should appear familiar.The userId on line 3 is set to @me for the
current viewer, but could also be set to a specific user ID. groupId on line 4 can be set to
@self or @friends depending on whether you want to return a single person or group
of people. fields is set to @all to retrieve all fields but could be set to an array of sup-
ported person fields, including the following:

id

name

displayName

profileUrl

thumbnailUrl

You will also find that within the $viewer parameter is the ability to access photos and
URLs that the user has associated with his account.These can be accessed as follows:

echo "<p>Profile URL: ".$viewer->profileUrl."</p>";

echo "<p>Thumbnail URL: ".$viewer->thumbnailUrl."</p>";

echo "<h2>Photos</h2>";

echo "";

foreach($viewer->photos as $photo) {

www.it-ebooks.info

http://www.it-ebooks.info/

203Using the PHP OpenSocial Client Library with Google Friend Connect

echo "".$photo["type"].": ".$photo["value"]."";

}

echo "";

echo "<h2>URLs</h2>";

echo "";

foreach($viewer->urls as $url) {

echo "".($url["type"] ? $url["type"] : "none").':

'.(!empty($url["linkText"]) ?

$url["linkText"] : "Unknown")."";

}

echo "";

Optional parameters such as start and startIndex have been excluded but can be
used for paging through multiple results. For example, if you want to extract the first
three members of your site (fixed ordering by user ID), you can use the following code:

$batch = $opensocial->newBatch();

$memberParameters = array(

"userId" => "@owner",

"groupId" => "@friends",

"fields" => "@all",

"count" => 3,

"startIndex" => "3"

);

$getMembers = $opensocial->people->get($memberParameters);

$batch->add($getMembers, "members");

$response = $batch->execute();

$members = $response["members"];

if ($members instanceof osapiError) {

$code = $members->getErrorCode();

$message = $members->getErrorMessage();

// Process OpenSocial API Error

} else {

echo "";

foreach($members->list as $member) {

echo "".htmlentities($member->getName())."";

}

echo "";

echo "<p>Total Results: ".$members->totalResults."</p>";

}

The use of the count and startIndex parameters enables you to extract specific sets
of users rather than returning the full list.The $members->totalResults value can then
be used to display the total number of members on your site who have connected via
Google Friend Connect.This number can then be used to ensure that you extract all
users from the list. Unfortunately, the sortBy and sortOrder parameters do not appear to

www.it-ebooks.info

http://www.it-ebooks.info/

204 Chapter 10 Server-Side Authentication and OpenSocial Integration

Table 10.2 Additional Parameters to userId and groupId Required by activities
and App Data Requests (All requests must also use "appId" => "@app" to set the
application identifier).

Request
Required
Parameters Example

Fetch Activities None See Below

Create activity activity $activity = new

osapiActivity(null, null);

$activity->setTitle("Test

Title");

$activity->setBody("This is a

test.");

Fetch and delete app data fields array("key", ...)

Create and update app
data

data array(

"key" => "value"
)

work with Google Friend Connect, although it could be used to sort the results by name
or updated in ascending or descending order.

For fetching and creating activities or fetching, creating, updating, and deleting app
data, the client library works slightly different than with people data.Table 10.2 summa-
rizes the subtle differences in these methods, which are discussed in further detail using
live code examples building on the Color Picker application created in Chapter 9.

Successful responses to creating, updating, or deleting data are denoted by the response
not being an instance of osapiError. Using the Color Picker application as an example
from Chapter 9, you should be able to request the recent activities for the logged-in user
by using the following code, which extends the test.php code described in the previous
section, ensuring that the osapi library is included:

$provider = new osapiFriendConnectProvider();

$authentication = new osapiFCAuth($cookie);

$opensocial = new osapi($provider, $authentication);

$batch = $opensocial->newBatch();

$viewerParameters = array(

"userId" => "@me",

"groupId" => "@self",

"fields" => "@all"

);

$getActivities = $opensocial->activities->get($viewerParameters);

$batch->add($getActivities, "activities");

$response = $batch->execute();

www.it-ebooks.info

http://www.it-ebooks.info/

205Using the PHP OpenSocial Client Library with Google Friend Connect

$activities = $response["activities"];

if ($activities instanceof osapiError) {

$code = $activities->getErrorCode();

$message = $activities->getErrorMessage();

// Process OpenSocial API Error

} else {

echo "";

foreach($activities->list as $activity) {

echo "".htmlentities($activity->getTitle())."";

}

echo "";

}

This code shows how to retrieve a list of activities that a user has performed on your
site.To iterate over results requires using the list element of the $activities object
because multiple activities are being returned.After these results have been retrieved, you
can then easily extract the title or body of the activity by using $activity->getTitle()
or $activity->getBody().Another potentially useful element of the Activity object is
the post time, which you can retrieve via $activity->getPostedTime(), which returns a
UNIX time stamp (which can then be reformatted).

Creating an activity is a similar process to that when using the client-side library: an
Activity object is created, and then the activity creation method is called, passing in the
object.To re-create a “dummy” choice of picking the color black, you could use the fol-
lowing code, which will be executed each time that you refresh the test.php page:

$activity = new osapiActivity(null, null);

$activity->setTitle("You picked black as your favorite color.");

$batch = $opensocial->newBatch();

$activityParameters = array(

"userId" => "@me",

"groupId" => "@self",

"activity" => $activity

);

$setActivity = $opensocial->activities->create($activityParameters);

$batch->add($setActivity, "activity");

$response = $batch->execute();

$activity = $response["activity"];

if ($activity instanceof osapiError) {

$code = $activity->getErrorCode();

$message = $activity->getErrorMessage();

// Process OpenSocial API Error

} else {

echo "<p>The activity was created successfully.</p>";

}

The code adds the create activity request to the batch request, and if no errors
occurred you can assume that the activity was created successfully.You should notice that

www.it-ebooks.info

http://www.it-ebooks.info/

206 Chapter 10 Server-Side Authentication and OpenSocial Integration

if you save the new code and refresh the page, the fetch activities request now contains
the new activity. Note that you cannot delete activities programmatically via the client
library, but they can be removed via the Administration panel on the Google Friend
Connect website.

Retrieving app data is similar to retrieving activities, apart from the fact that you must
add a fields (if you require a specific field to be returned) and an appId parameter to
the initial request, as follows:

$batch = $opensocial->newBatch();

$appDataParameters = array(

"userId" => "@me",

"groupId" => "@self",

"appId" => "@app"

);

$getAppData = $opensocial->appdata->get($appDataParameters);

$batch->add($getAppData, "appdata");

$response = $batch->execute();

$appdata = $response["appdata"];

if ($appdata instanceof osapiError) {

$code = $appdata->getErrorCode();

$message = $appdata->getErrorMessage();

// Process OpenSocial API Error

} else {

// Process Returned App Data

}

Unfortunately, it appears that at the time of this writing the client-side and server-side
versions of the Persistence API handle data in different ways for Google Friend Connect.
This means that the two time fields that were stored in Chapter 9 are not retrieved by
this method call. However, you can add your own server-side app data using the follow-
ing code:

$batch = $opensocial->newBatch();

$appDataParameters = array(

"userId" => "@me",

"groupId" => "@self",

"appId" => "@app",

"data" => array(

"test" => "1"

)

);

$setAppData = $opensocial->appdata->create($appDataParameters);

$batch->add($setAppData, "appdata");

$response = $batch->execute();

$appdata = $response["appdata"];

if ($appdata instanceof osapiError) {

www.it-ebooks.info

http://www.it-ebooks.info/

207Summary

$code = $appdata->getErrorCode();

$message = $appdata->getErrorMessage();

// Process OpenSocial API Error

} else {

echo "<p>The App Data was stored successfully.</p>";

}

If, having stored this app data, you run the retrieval method again, you should have
returned a multidimensional array containing the user ID as the key and an array of app
data items.To retrieve this specific test item, you could add a "fields" =>
array("test") parameter to $appDataParameters before retrieving the results. If you
change the userId parameter to @owner and the groupId to @friends, you can retrieve
all app data for the members of your site.Although you cannot delete app data, you can
update it using the same method as adding data, except that you just replace the value of
the key that you want to change with new data.

Summary
The client-side Google Friend Connect JavaScript API and OpenSocial API are not the
only ways to access people, activity, and app data from OpenSocial containers. Server-side
access through the OpenSocial RESTful and RPC protocols enables deep integration
onto your Internet-enabled applications, where your code logic can be hidden away from
site visitors.This chapter explored the workflow of a server-side Google Friend Connect
implementation and the various ways that authentication is performed using authentica-
tion cookies and standard two-legged OAuth.And now that you’ve seen the principles of
the PHP OpenSocial client library demonstrated, you should have enough knowledge to
begin transforming your application into a fully functioning OpenSocial container.
Chapter 11,“Developing OpenSocial Gadgets with Google Friend Connect,” explores
how to create an OpenSocial gadget with Google Friend Connect.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

11
Developing OpenSocial Gadgets

with Google Friend Connect

With your experience with the Google Friend Connect JavaScript API and
OpenSocial API and server-side using the OpenSocial RESTful and RPC protocols,
how about expanding your social reach even further through gadgets? Gadgets are self-
contained applications that can be rendered on any Google Friend Connect container or
in a standalone service like iGoogle. Data processing can be performed client side using
JavaScript, or secure, authenticated requests can be made to retrieve server-side resources.
Built-in JavaScript libraries make it easy to create gadgets that include tabs,Adobe Flash
content, persistent storage, dynamic resizing, preferences, skins, and more. Gadgets pro-
mote the reach of your service because they can be installed by anyone and listed in the
Google Friend Connect Gadget Directory.

This chapter explores the fundamentals of creating, testing, and submitting Google
Friend Connect gadgets. Many of the skills you will learn in this chapter will draw on
those you have already learned in Chapter 9,“An Overview of Google Friend Connect,”
and Chapter 10,“Server-Side Authentication and OpenSocial Integration.” Being
OpenSocial compatible, Google Friend Connect gadgets work in much the same way as
ones from other containers, such as orkut, LinkedIn, and Ning.Therefore, once you grasp
the fundamentals, they are transferable across all OpenSocial platforms with little modifi-
cation.The best way to learn about gadgets is by exploring a worked example and being
pointed to further resources for expansion and personalization.

An Overview of Google Gadgets
Google gadgets are applications that are built using HTML with JavaScript,Adobe Flash,
or Microsoft Silverlight for dynamic features.They are structured as XML and can be
made more interactive using feature extensions such as Maps, Calendar, and of course,
OpenSocial which can be included in a gadget through the <ModulePrefs> tag.The
simplest gadget comprises just a few lines of code:

www.it-ebooks.info

http://www.it-ebooks.info/

210 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

<?xml version="1.0" encoding="UTF-8" ?>

<Module>

<ModulePrefs title="Hello, World!">

// Feature Extensions

// User Preferences

</ModulePrefs>

<Content type="html" view="default">

<![CDATA[

Hello, World!

]]>

</Content>

</Module>

This section explains what makes up a gadget and examines some of the features avail-
able.As with the majority of the examples in this book, it is impossible to cover the entire
breadth of the subject, but this chapter touches on the fundamentals and provides refer-
ences to resources to further your understanding.

Anatomy of an OpenSocial Google Gadget
Google gadgets contain several “compartments” that you can use to extend their func-
tionality: module preferences, feature extensions, user preferences, and the content itself.
The OpenSocial Gadgets API Specification, alongside the common Gadgets API
Reference, describes the built-in features and core JavaScript API functionality, including
processing inputs and outputs, JSON, tabbed content, and internationalization.The core
JavaScript features are as follows:

n gadgets.io for retrieving remote content

n gadgets.json for translating objects to and from JSON

n gadgets.Prefs for handling and storing gadget preferences
n gadgets.util for providing utilities such as a HTML escaping a string via
gadgets.util.escapeString(<<STRING>>) and un-escaping strings with
gadgets.util.unescapeString(<<STRING>>)

The best way to explore these features is to use and experiment with them and under-
stand how they can be implemented in different situations.This chapter will be focusing
on the newer gadgets.* API and not on the deprecated Legacy API.All the JavaScript
functionality should be used within <Content> sections, such as programmatically getting
and setting user preferences.

Module Preferences
The <ModulePrefs> tag specifies characteristics of the gadget such as title, title_url,
author, author_email, description, screenshot, and thumbnail. Users cannot change

www.it-ebooks.info

http://www.it-ebooks.info/

211An Overview of Google Gadgets

these attributes, although they can be automatically rendered using user preference substi-
tution variables using the __UP_userpref__ syntax within <ModulePrefs> or the
gadgets.Prefs() JavaScript function within <Content> sections. For example:

<ModulePrefs title="__UP_title__" />

<UserPref name="title" display_name="Title" default_value="Test" />

</ModulePrefs>

For clarity, if you submit to any of the gadget directories, you should also provide a
directory_title, which is the default title for your gadget if you plan on allowing users
to change titles.This can be set programmatically using the JavaScript
gadgets.window.setTitle(_hesc(newTitle)) function of the gadgets.window library
and adding the <Require feature="settitle" /> feature.

Top iGoogle Developers Directory
If you plan on submitting to the iGoogle Directory (http://www.google.com/ig/directory), you
can also supply author_photo (a 70px by 100px image), author_aboutme, author_link,
and author_quote parameters. Setting these will mean that you will also appear in the
iGoogle Developers Directory (http://www.google.com/ig/directory?type=authors).

Other attributes such as screenshot and thumbnail have specific requirements such
as being 280px wide and 120px by 60px, respectively. It is important when setting these
attributes that special characters such as an ampersand (&) are HTML escaped and URLs
encoded and that no ISO 8859-1 symbols are used.The _hesc(string) or
gadgets.util.escapeString(string) JavaScript functions can be used to facilitate
special HTML-character encoding, but this does not need to be performed within
CDATA blocks.

The tag also serves as a container for other elements such as feature extensions, icons,
OAuth, preloads, links, and locale.

Feature Extensions
Feature extensions are dependencies that can be loaded alongside the gadget to provide
additional functionality. For example, you have already used the <Require
feature="settitle" /> tag to support the setting of the gadget title. Including these
features loads an additional JavaScript library that is hidden away but that can be refer-
enced using the supported methods of that feature.Two types of feature can be included
using <Require ... /> or <Optional ... /> and must have a name attribute.The core
gadgets.* API provides features such as setprefs for user preferences, dynamic-height
for controlling the height of gadgets, tabs for tabbed content, minimessage for temporary
messages, and flash for Adobe Flash rendering. Other third-party feature extensions also
exist, including skins, which are supported by Google Friend Connect.

Skins
Skins are an essential feature that enables color personalization of your gadgets.This means
that when users install your gadget, they can select which colors they want to use (or stick

www.it-ebooks.info

http://www.google.com/ig/directory
http://www.google.com/ig/directory?type=authors
http://www.it-ebooks.info/

212 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

with the default palette). Using <Optional feature="skins" /> will enable this func-
tionality, which requires a number of skin parameters. Skin colors can be extracted by
using gadgets.skins.getProperty(property), where property is one of the available
skin parameters, such as CONTENT_TEXT_COLOR or CONTENT_BG_COLOR.The Google Friend
Connect version of the skins feature extends from the OpenSocial specification, which
supports four parameters: ANCHOR_COLOR, BG_COLOR, BG_IMAGE, and FONT_COLOR.

User Preferences
For gadgets that require a bit of extra personalization, such as a weather gadget requesting
a user’s location, a <UserPref> can be used to support user input. User preferences require
a unique name attribute, which is used as both the request reference and label that is dis-
played to the user unless the display_name attribute is set. Other attributes include
datatype, which can be one of string, bool, enum, hidden (users are not permitted to
change these values) or list; required, which can be set to true or false; and
default_value, for if no user value is set. User preferences can be retrieved and set using
the JavaScript gadgets.Prefs class within <Content> sections. Using the title example,
you could use the following:

var userPrefs = new gadgets.Prefs();

var title = userPrefs.getString("title");

Storing JSON Values as Strings
When storing user preferences, you can take advantage of the two gadgets.json functions
for parsing (parse) and “stringifying” (stringify) values. Remember to convert back to
JavaScript values for processing and note that OpenSocial performs automatic HTML escap-
ing on app data, so you must “unescape” stringified JSON objects before parsing via
gadgets.util.unescapeString().

The enum and list data types function slightly differently to the string, bool, and
hidden data types.The enum data type is presented to the user as a drop-down menu of
choices, which are constructed within an <EnumValue>. For example:

<UserPref name="size" display_name="Drink Size" datatype="enum"

default_value="2">

<EnumValue value="1" display_value="Small" />

<EnumValue value="2" display_value="Medium" />

<EnumValue value="3" display_value="Large" />

</UserPref>

Each <EnumValue> must contain a value attribute, and an optional display_value is
used within the interface as a user-friendly name. Unlike the list data type, the enum
should be used for predefined values because there is no method to programmatically
change their values.The list data type should be used if you want to allow users to
supply an arbitrary list of values, which can be retrieved as an array using the
userPrefs.getArray(list) function or as a string where values are separated using the

www.it-ebooks.info

http://www.it-ebooks.info/

213An Overview of Google Gadgets

pipe (|) character using userPrefs.getString(list) if you were to use the userPrefs
variable demonstrated earlier. By using <Require feature="setprefs" />, you can set
this list by providing an array as the second parameter to the userPrefs.
setArray(name, list) function. For example, here’s a code snippet:

<UserPref name="destinations" display_name="Destinations" datatype="list"

default_value="Leeds|Sydney" />

</ModulePrefs>

<Content type="html">

var userPrefs = new gadgets.Prefs();

userPrefs.setArray("destinations", ["New York","London"]);

var destinations = userPrefs.getArray("destinations");

User preferences are also great for saving state, because by including <Require
feature="setprefs" />, you can set preferences using the userPrefs.set(key,
value) function.The only other important feature of user preferences is that they can be
made shareable with other gadget users by including <Optional feature="shareable-
prefs" />. For example, this could be used to define a “to do” list across a set of room-
mates or to share a reading list across classmates.Adding the feature extension enables the
user to share the gadget with friends and allows them to view and edit content dynami-
cally. Note that this is available only to friends who have been authorized to edit user
preferences.

Module Content and Views
Finally, <Content> sections are where the gadget attributes and user preferences are com-
bined with programming logic to render the display to the user.These sections can either
hold the content itself, which is set using the type="html" attribute, or can link to exter-
nal content using the type="url" and setting the href attribute, or via proxied content,
which is explored in the next section. It is possible to provide multiple <Content> sec-
tions, which are known as “views” and which have different characteristics, such as being
shown on a default or canvas page. In Google Friend Connect, you can pass data into a
gadget by using <Require feature="views" /> and setting "view-params": {"name":
"value"} within the google.friendconnect.container.renderOpenSocialGadget()
method.These parameters can be accessed by using the following:

var params = gadgets.views.getParams();

var value = params["name"];

For Google Friend Connect, it is recommended that you stick to the single
type="html" view because a special “lightbox” version of the canvas view is provided,
although you could use the canvas and default views to navigate through the content
should you want.The introduction of the lightbox is a move to simplify the Google
Friend Connect install process for beginners, which used to require uploading two files
(but that is now being phased out). If you want to use a custom canvas.html file, you can
set the useLightBoxForCanvas attribute as false within the render method shown
above. If you do not supply a default view, no content will be shown if you explicitly set a

www.it-ebooks.info

http://www.it-ebooks.info/

214 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

canvas or default view.The best way around this is to either use <Content
type="html"> on its own to cover all cases or to combine it with multiple views by using
<Content type="html" view="canvas,default">.

URL Content Types
The gadget content type can also be set to url, which means that any other content within
the <Content> tag is ignored. Use of this content type is similar to how a “ping” works in
network communications. The gadget assumes that all the programming logic is performed
server side, and so no actual response data will be rendered. This could prove useful if you
want to track any usage statistics of your gadget without using the <Link> tag.

If you include the views feature, you can navigate through them by using the following:

1 function getViewName() {

2 return gadgets.views.getCurrentView().getName();

3 }

4 function navigateTo(view, params) {

5 var supported_views = gadgets.views.getSupportedViews();

6 gadgets.views.requestNavigateTo(supported_views[view], params);

7 }

8 if (getViewName() == "canvas") {

9 document.write('

10 Go To Default View');

11 } else {

12 document.write('

13 Go To Canvas View');

14 }

By utilizing the gadgets.views class, you can easily navigate between views and also
pass data between instances. Because the requestNavigateTo() function on line 6
requires a view as its first parameter, you must use the getSupportedViews() function on
line 5 to extract all the views currently used in the container gadget. Note that Google
Friend Connect supports only the canvas and default views and not profile.

OpenSocial v0.9 Specification
The OpenSocial v0.8 specification is being used as of this writing because it is the current
version supported by Google Friend Connect. However, for gadgets, you can take advan-
tage of the new features supported by the OpenSocial v0.9 specification, including the
following:

n A lightweight JavaScript API that makes requesting and parsing data simpler by
making the code more intuitive and smaller. For example, to request the viewer, you
use osapi.people.getViewer().execute(callback). Batching is also supported,
and so multiple requests can be strung together to reduce server calls.A separate
namespace is used for backward compatibility and can be activated by using

www.it-ebooks.info

http://www.it-ebooks.info/

215An Overview of Google Gadgets

<Require feature="osapi"> or <Require feature="opensocial-0.9"> for the
old APIs.

n Proxied content, which reduces latency by enabling the display of an external web
page within a gadget and thus eliminates the need to use excessive HTML and
JavaScript to re-create content. Data can also be cached to provide minimum
render time.

n Data pipelining eliminates the process whereby a gadget has to be loaded fully
before data is requested from OpenSocial. In this instance, the user may receive a
“Loading...” message while content is fetched. Data pipelining works hand in hand
with proxied content and OpenSocial templates to make data available as soon as
the gadget is loaded.

n OpenSocial templates provide a simpler mechanism for rendering data within
gadgets using OpenSocial Markup Language (OSML) tags. OSML is also extensible,
which means that developers can also create their own tags for use in their applica-
tions and gadgets.

Other minor additions can be found in the OpenSocial Specification Release Notes
and include content rewriting, upload support, international formatting, and messaging
support.There are no incompatible changes from the OpenSocial v0.8 specification, and
so it should be fairly painless to update a gadget to support this new specification.When
newer versions of OpenSocial become available, the Release Notes provide a useful
overview and pointers for finding out information about changes and issues that may
affect your legacy applications. Unfortunately, at the time of this writing, Google Friend
Connect did not support this version of the specification, and so some elements such as
data pipelining will not function correctly.

The final addition to OpenSocial is the release of the OpenSocial App Directory
(http://directory.opensocial.org/gadgets/directory), which is a centralized container for
developers to submit, review, and share OpenSocial applications.There is no specific
Google Friend Connect category because this is provided externally by Google, but all of
the gadget specifications are made available should you want to explore the inner work-
ings of the most popular gadgets.This highlights an important issue: gadgets are public by
their nature, and so you shouldn’t store any sensitive information such as passwords within
your specification. If you want your gadget to remain as elusive as possible (for example,
for testing), do not submit it to any directories or link to it from an external web page.

Proxied Content
In its simplest form, proxied content enables the gadget developer to specify an external
URL to be rendered for a <Content> section. For example:

<Content view="canvas" href="http://example.com/canvas.html"></Content>

Setting the refreshInterval attribute to the number of seconds you want your con-
tent to be cached can prove useful in development if set to 0, but for production-level

www.it-ebooks.info

http://directory.opensocial.org/gadgets/directory
http://www.it-ebooks.info/

216 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

Figure 11.1 The four stages of a data pipelining
and proxied content request for OpenSocial data.

applications, caching provides significant benefits for scaling and latency. Proxied content
can also be used to make unsigned requests to content (as discussed later in this chapter in
the “Advanced OpenSocial Gadget Development” section). Because Google Friend
Connect does not always having access to the viewer of the gadget, this means that signed
requests using data pipelining cannot be performed.

Data Pipelining and OpenSocial Templates
Data pipelining is a declarative syntax for OpenSocial data requests that you can use to
retrieve proxied content for sending a POST request to a third-party server or OpenSocial
data such as owners, viewers, and activities, which can be rendered through OpenSocial
templates or the OpenSocial JavaScript API. Data pipelining reduces the number of
requests to your server, thus reducing the render time of gadgets.A simple process flow is
shown in Figure 11.1:A client requests an application view from a container (1), which
sends social data to the remote server (2), which combines the social data with application
data and returns it back to the container (3), ready to be rendered by the client (4).

A data pipelining example of retrieving a list of songs for use in the OpenSocial tem-
plate detailed below is as follows:

<script type="text/os-data" xmlns:os="http://ns.opensocial.org/

2008/markup">

<os:HttpRequest key="songs" href="http://example.com/songs.json"

format="json" />

</script>

At the time of this writing, many of the data pipelining features were still in draft and
were not fully implemented in Google Friend Connect containers. For this reason, it will
not be used for accessing social data, although it will be an essential feature in the future.
The alternative is to use the OpenSocial JavaScript API methods for batches and requests.
Their use requires a <Require feature="osapi" /> feature extension in place of
<Require feature="opensocial-data" />. However, data pipelining can be used
alongside OpenSocial templates for external application data using authentication and
signed requests (as detailed in the next section).

www.it-ebooks.info

http://www.it-ebooks.info/

217An Overview of Google Gadgets

OpenSocial templates are a way of generating a user interface without manipulating a
DOM element’s innerHTML and/or dynamically creating elements.The feature can be
added using <Require feature="opensocial-templates" /> and works inside any
content section. By separating markup and programming logic, OpenSocial templates
create cleaner code that is more streamlined, reusable, and much easier to maintain.
OpenSocial templates support looping and conditional display, giving you the flexibility
to create more elaborate elements with less code. For example, if you have an array of
songs requested using data pipelining, you can use a template to iterate and render them
onscreen:

1 <script type="text/os-template" xmlns:os="http://ns.opensocial.org/

2008/markup" require="songs">

2

3 <li repeat="${songs.content}" var="song">

4

${song.title} by ${song.artist} from ${song.album}

5

6

7 </script>

In this example, the repeat function was used on line 3, and each subsequent refer-
ence was prefixed by song, which was set by the var parameter.An alternative to the
OpenSocial template approach is to use
opensocial.data.getDataContext().getDataSet("songs") to take advantage of the
OpenSocial JavaScript API to handle the requested data. It is a matter of preference
which you use (although OpenSocial templates are the preferred method because of their
render speed).

Advanced OpenSocial Gadget Development
With the basics under your belt, it’s time to start looking at the more advanced features
supported by Google gadgets. Up until now, you have not looked at how to extract any
OpenSocial data or work with remote content.

Working with OpenSocial Data
Google Friend Connect enables you to work with people, activities, and app data within
gadgets just like the client- and server-side applications explored in Chapters 9 and 10.
This data can be accessed via data pipelining (currently not supported) or via OpenSocial
JavaScript API requests.A request to retrieve the owner of the gadget can be made by
using <Require feature="osapi" /> and the following code inside a <Content> section:

1 <p id="owner"></p>

2 <script type="text/javascript">

3 gadgets.util.registerOnLoadHandler(init);

4 function init() {

www.it-ebooks.info

http://www.it-ebooks.info/

218 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

5 initAllData();

6 }

7 function initAllData() {

8 var batch = osapi.newBatch();

9 batch.add("owner", osapi.people.getOwner());

10 batch.execute(onData);

11 }

12 function onData(data) {

13 if(!data.owner.error) {

14 var owner = data.owner;

15 var ownerName = owner.displayName;

16 document.getElementById("owner").innerHTML = ownerName;

17 } else {

18 // Process Error

19 }

20 }

21 </script>

Line 3 registers the init() callback function to be executed when the gadget is
loaded, which in this instance calls another function initAllData() on line 5, which
contains data-retrieval commands.The init() function is a useful place to call other func-
tions, such as setting your gadget’s skin or requesting other external data. It is often useful
to separate out all your functions so that they can be called individually when required.

Google Friend Connect Owner and Viewer
Unlike other containers, in Google Friend Connect the owner represents the site’s profile infor-
mation and not the owner who created it. Site administrators can be extracted by setting the
groupId to ADMINS. Remember that unlike containers such as orkut, often your gadget view-
ers will not be logged in, and so your gadget should be capable of dealing with this use case.

Inside the initAllData() function, an osapi.BatchRequest is created to retrieve the
owner data, which is the most efficient way to request data because multiple requests can
be executed within the batch. On line 10, the request is executed and data is fed back into
the onData() function.The displayName of the owner is then extracted on lines 15 and
6, and rendered inside the <p> tag on line 1.

Working with Remote Content
You may want your gadget to request or manipulate data that is held externally where
some server-side processing is performed and data is returned back to the viewer. In cases
where you want to send identifiers to your server, it is imperative that you “sign” requests,
because they could be vulnerable to manipulation by malicious gadget users. For example,
a user could execute an external gadgets.io.makeRequest() method passing custom
opensocial_owner_id and opensocial_viewer_id parameters to spoof those used in
your application. OpenSocial provides a convenient way to sign requests in a way that

www.it-ebooks.info

http://www.it-ebooks.info/

219An Overview of Google Gadgets

transmits these values via OAuth to your server-side code. For this, you will require a
server-side validation file called sign.php and available within this book’s resources that
signs requests and client-side JavaScript to invoke that script.The validation file uses a file
that is contained within the PHP OpenSocial client library (http://code.google.com/p/
opensocial-php-client/), so it is assumed that this file exists in your directory structure
along with the osapi client directory.The contents of sign.php are as follows:

1 <?php

2 require_once("osapi/external/OAuth.php");

3 class FriendConnectSignatureMethod extends

OAuthSignatureMethod_RSA_SHA1 {

4 protected function fetch_public_cert(&$request) {

5 return <<<EOD

6 -----BEGIN CERTIFICATE-----

7 MIICSjCCAb...

8 ...Pq1pUdWig=

9 -----END CERTIFICATE-----

10 EOD;

11 }

12 }

13 $request = OAuthRequest::from_request(null, null, array_merge(

$_GET, $_POST));

14 $signature_method = new FriendConnectSignatureMethod();

15 @$signature_valid = $signature_method->check_signature($request,

null, null, $_GET["oauth_signature"]);

16 $payload = array();

17 if ($signature_valid == true) {

18 $payload["validated"] = true;

19 } else {

20 $payload["validated"] = false;

21 }

22 $payload["query"] = array_merge($_GET, $_POST);

23 $payload["rawpost"] = file_get_contents("php://input");

24 print(json_encode($payload));

25 ?>

On line 7, you need to paste in the remainder of the Google Friend Connect signed
request public key (http://www.google.com/friendconnect/certs/friendconnect.pem),
which has been cut out from the code. Lines 12 to 14 are used to validate the request, and
this is passed as the $payload["validated"] parameter back to the application.The code
on lines 21 and 22 is used for debugging and returns the concatenation of GET and POST

requests along with the raw POST data. Instead of passing all of these values back to the
gadget, you could also do some further processing using the $_POST["token"] gadget
authentication token parameter, such as creating an OpenSocial object to update app data
or an activity.You could also look to pass back an entire view to display inline. In the
client-side code, this would be invoked by using the following code:

www.it-ebooks.info

http://www.google.com/friendconnect/certs/friendconnect.pem
http://code.google.com/p/opensocial-php-client/
http://code.google.com/p/opensocial-php-client/
http://www.it-ebooks.info/

220 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

1 var token = shindig.auth.getSecurityToken();

2 makeRequest("http://example.com/sign.php", {"token" : token});

3 function makeRequest(url, postdata) {

4 var postdata = gadgets.io.encodeValues(postdata);

5 var params = {};

6 params[gadgets.io.RequestParameters.AUTHORIZATION] =

gadgets.io.AuthorizationType.SIGNED;

7 params[gadgets.io.RequestParameters.CONTENT_TYPE] =

gadgets.io.ContentType.JSON;

8 params[gadgets.io.RequestParameters.METHOD] =

gadgets.io.MethodType.POST;

9 params[gadgets.io.RequestParameters.POST_DATA]= postdata;

10 params[gadgets.io.RequestParameters.REFRESH_INTERVAL] = 60;

11 gadgets.io.makeRequest(url, response, params);

12 }

13 function response(payload) {

14 alert(payload.data.validated);

15 }

The code on line 1 extracts the gadget authentication token, which is passed as a
parameter to the makeRequest() function on line 2, where the POST data is encoded on
line 4.The response parameter is the name of the callback function, which accepts the
data request, and this just creates an alert box stating whether the request was validated.
You can optimize your call by adding the URL to your sign request to a <Preload> tag
within module preferences:

<Preload href="http://www.example.com/sign.php" authz="signed"

sign_owner="true" sign_viewer="true" views="canvas" />

If you do not need to use owner or viewer details, you can prevent sending them dur-
ing the signing process by setting the sign_owner or sign_viewer parameters to false.
You can restrict preloads to specific views by setting the views parameter. In this instance,
data is preloaded only for the canvas. Preloads that do not take advantage of signed
requests can omit the authz parameter or replace signed with none.

“Don’t Be Evil”
When debugging your makeRequest, you might come across the following response: throw
1; < "don't be evil" >, which suffixes your data calls. This is known as an
“Unparseable Cruft” and is used to create an illegal JavaScript syntax that defeats XSRF
attacks and does not affect your code.

As you will appreciate, there are multiple ways to access data, such as data pipelining,
proxied content, and using the OpenSocial JavaScript API with the
gadgets.io.makeRequest() method. It is recommended that if you are working with
any OpenSocial data such as people, activities, or app data that you use the OpenSocial
JavaScript API as Google Friend Connect doesn’t support some of the more advanced

www.it-ebooks.info

http://www.it-ebooks.info/

221An Overview of Google Gadgets

data-retrieval features.Therefore, any signed requests must also use this method.Any
unsigned requests such as retrieving standard data could be made using data pipelining,
OpenSocial templates, and proxied content.

Gadget Internationalization (i18n) and Localization (L10n)
Because your gadget may be used worldwide, English might not be your user’s first lan-
guage.Translations are achieved fairly easily using message bundles for all your user-visible
text and are stored as external XML files that support UTF-8 encoding. Internationali-
zation is the process of structuring your gadgets so that they can be localized. Localization
is the process of making your gadget accessible based on a user’s country/language.A sam-
ple message bundle would look like this:

<?xml version="1.0" encoding="UTF-8" ?>

<messagebundle>

<msg name="red">Red</msg>

<msg name="orange">Orange</msg>

<msg name="green">Green</msg>

</messagebundle>

Each message bundle should contain only a single language translation and should be
stored using a <<LANGUAGE>>_<<COUNTRY>>.xml naming convention. For example,
en_ALL.xml applies to all English-speaking users independent of their country.The default
or “fallback” message bundle is set to ALL_ALL.xml if no exact match can be found.
Languages should be one of the two-character ISO 639-1 codes, and countries should be
one of the two-character ISO 3166-1-apha-2 codes.You initialize a message bundle by
setting the <Locale> tag inside <ModulePrefs>, as follows:

<Locale messages="http://example.com/ALL_ALL.xml" />

<Locale lang="en" messages="http://example.com/en_ALL.xml" />

An optional country attribute can be set for cases such as distinguishing U.K. or U.S.
English. Using the colors message bundle, you can use substitution variables, and thus
<p>__MSG_red__</p> would display the “Red” text within a paragraph.Alternatively, you
can use a gadgets.Prefs object:

var prefs = new gadgets.Prefs();

var red = prefs.getMsg("red");

var orange = prefs.getMsg("orange");

var green = prefs.getMsg("green");

You can use a message as your gadget’s title, but remember that if you allow the user to
set this manually, you may lose out on this functionality. Consider localizing the
directory_title instead, because this is the one that will appear if you submit to the
gadget directory.You should also consider localizing your gadget description. It might
be best to get a native speaker to translate this for you, instead of relying on an online
translation tool.

www.it-ebooks.info

http://www.it-ebooks.info/

222 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

Detecting Country and Language
You can detect a user’s country and language by using a gadgets.Prefs object and then
calling the prefs.getCountry() or prefs.getLanguage() methods. These can prove
useful if sent as POST variables for server-side processing and rendering.

Gadgets also support bidirectional text, which reads from right to left (for languages
such as Hebrew and Arabic).This is achieved by specifying a language_direction="rtl"
attribute within <Locale> for the specific language. Four special substitution variables are
made available by the BIDI (Bi-Directional) API and can prove useful for setting padding
and alignment of characters: __BIDI_START_EDGE__ and __BIDI_END_EDGE__, which rep-
resent the start and endpoints of the letters that are set to left or right; and __BIDI_DIR__
and __BIDI_REVERSE_DIR__, which are set to rtl or ltr for the two modes.To set the mar-
gin of an element you could use the following style element:

style="margin-__BIDI_START_EDGE__: 10px;"

Because the __BIDI_START_EDGE__ will be updated to reflect the user’s preference, this
will change either the right or the left margin.

Creating a Google Gadget
To bring this chapter together, a simple OpenSocial gadget has been created that does
some basic retrieval of social data using some of the techniques explored in this chapter.
The Color Picker application that was created in Chapter 9 has been adapted to suit a
gadget container.The client-side implementation of Google Friend Connect enabled
viewers to pick their favorite color, which was then submitted as a site activity.The gadget
also displays a section with the five most recent members, along with their thumbnail
photos.This section also includes some tips for testing and submitting your gadget and for
adding Google Analytics for user tracking.

Color Picker, Revisited
The quickest and easiest way to get your gadget up and running is to use the Google
Gadget Editor (http://gadgeteditor.appspot.com/editor) created by Arne Roomann-
Kurrik. It provides a convenient place for testing your gadget with Google Friend
Connect and other containers (see Figure 11.2). (The link requires a Google account to
access.) Although not suited for production gadget storage, it will give you a good idea of
how your gadget will function in the Google Friend Connect environment.

The gadget source code (gadget.xml) is split into several pieces, which can be edited
directly in a new Google Gadget Editor page:

1 <?xml version="1.0" encoding="utf-8"?>

2 <Module>

3 <ModulePrefs author="Mark Hawker" author_email="mark@example.com"

description="A test Google Gadget." title="Color Picker"

directory_title="Color Picker" height="100" scrolling="true">

4 <Require feature="opensocial-0.9" />

www.it-ebooks.info

http://gadgeteditor.appspot.com/editor
http://www.it-ebooks.info/

223Creating a Google Gadget

Figure 11.2 The Google Gadget Editor.

Every Google gadget is initiated via a <Module> element, which must contain
<ModulePrefs> and <Content> child elements. Inside the module preferences are details
such as the author’s name and e-mail address along with information about the gadget
such as its name and description. Specific gadget requirements are also set in this opening
code block, which is for including the OpenSocial libraries and skin capabilities.With all
the preferences now set, you can start building the gadget content:

9 <Content type="html" view="default">

10 <![CDATA[

11 <html>

12 <head>

13 <title>Color Picker</title>

14 <style type="text/css">

15 body { padding: 2px; margin: 2px; }

16 p { font-size: 10px; padding: 2px; margin: 2px; }

17 h1 { font-size: 12px; }

18 h2 { font-size: 11px; }

19 h3 { font-size: 10px; }

20 #gadget { width: 250px; }

21 #colorTable { width: 100%; }

22 #colorPicker { margin: 20px 40px; }

23 #redCell { border: 3px solid #666666; }

24 .color { width: 20px; height: 20px; border: 3px solid #e5ecf9; }

25 .red { background-color: red; }

26 .orange { background-color: orange; }

5 <Require feature="osapi" />

6 <Require feature="dynamic-height" />

7 <Optional feature="skins" />

8 </ModulePrefs>

www.it-ebooks.info

http://www.it-ebooks.info/

224 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

27 .green { background-color: green; }

28 .yellow { background-color: yellow; }

29 .blue { background-color: blue; }

30 .pink { background-color: pink; }

31 .memberPhoto { width: 46px; height: 46px; border: 0;

padding-right: 2px; }

32 </style>

33 </head>

This initial code block sets the header of the gadget, which utilizes the default view
and includes a number of style sheet elements. Instead of referencing an external file, they
have been included inline, but it is possible that you could use an external style sheet if
required.The next block of code is for displaying a welcome message to the gadget view-
ers and enables those who have logged in to Google Friend Connect to pick a color for
submission:

34 <body>

35 <div id="gadget">

36 <h1>Welcome to </h1>

37 <p>This application demonstrates <a href="http://www.google.com/

friendconnect/">Google Friend Connect and its Google Gadget

38 capabilities.</p>

39 <h2>Recent Members</h2>

40 <p id="recentMembers"></p>

41 <p>Once you've signed in you can generate an activity by clicking

a color below and pressing the "Pick" button:</p>

42 <div id="colorPicker">

43 <table id="colorTable" cellspacing="10">

44 <tr>

45 <td><div class="color red" onclick="pickColor(this, 'red');"

id="redCell"></div></td>

46 <td><div class="color orange" onclick="pickColor(this,

'orange');"></div></td>

47 <td><div class="color green" onclick="pickColor(this,

'green');"></div></td>

48 <td style="width: 10px;" rowspan="2"><button

onclick="createActivity();" id="button" disabled="disabled">

Pick</button></td>

49 </tr>

50 <tr>

51 <td><div class="color yellow" onclick="pickColor(this,

'yellow');"></div></td>

52 <td><div class="color blue" onclick="pickColor(this, 'blue');">

</div></td>

53 <td><div class="color pink" onclick="pickColor(this, 'pink');">

</div></td>

54 </tr>

www.it-ebooks.info

http://www.it-ebooks.info/

225Creating a Google Gadget

55 </table>

56 </div>

57 <h2>Recent Activities</h2>

58 <p id="recentActivities"></p>

59 </div>

The code above is very similar to that discussed in Chapter 9, in that it contains a
placeholder on line 40 for displaying recent members, a color picker between lines 42 and
56, and recent activities to be rendered on line 58.The Submit button is initially disabled
on line 48 because you cannot guarantee that you’ll have a logged-in viewer available.
Clicking each of the colors will run the pickColor() function, which is created on lines
152 to 157 below. No further content is to be shown to the viewer of the gadget, so the
remainder of the code is to define specific JavaScript functionalities of Color Picker:

60 <script type="text/javascript">

61 var viewer;

62 gadgets.util.registerOnLoadHandler(init);

63 function init() { skin(); initAllData(); }

64 function skin() {

65 var borderColor = gadgets.skins.getProperty("BORDER_COLOR");

66 var endcapBgColor = gadgets.skins.getProperty("ENDCAP_BG_COLOR");

67 var endcapTextColor = gadgets.skins.getProperty(

"ENDCAP_TEXT_COLOR");

68 var endcapLinkColor = gadgets.skins.getProperty(

"ENDCAP_LINK_COLOR");

69 var alternateBgColor = gadgets.skins.getProperty(

"ALTERNATE_BG_COLOR");

70 var contentBgColor = gadgets.skins.getProperty(

"CONTENT_BG_COLOR");

71 var contentLinkColor = gadgets.skins.getProperty(

"CONTENT_LINK_COLOR");

72 var contentTextColor = gadgets.skins.getProperty(

"CONTENT_TEXT_COLOR");

73 var contentSecondaryLinkColor = gadgets.skins.getProperty(

"CONTENT_SECONDARY_LINK_COLOR");

74 var contentSecondaryTextColor = gadgets.skins.getProperty(

"CONTENT_SECONDARY_TEXT_COLOR");

75 var contentHeadlineColor = gadgets.skins.getProperty(

"CONTENT_HEADLINE_COLOR");

76 html = new Array();

77 html.push('<style type="text/css">');

78 html.push(' body { color: " + contentTextColor + ';

background-color: " + contentBgColor + "; }');

79 html.push("</style>");

80 document.write(html.join(""));

81 }

www.it-ebooks.info

http://www.it-ebooks.info/

226 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

As with previous Google Friend Connect examples, the main functionality of the
application is contained within the initAllData() and onData() functions, which gather
and render data. However, unlike web pages, which can load JavaScript when a page is
loaded, you need to explicitly tell a Google gadget to execute a function on load.This is
achieved by setting the code on line 62 that executes the init() callback function on line
63.The init() function calls two functions for constructing the gadget’s skin and for
extracting data.The skin() function accepts the colors that a user has set when rendering
the gadget on the user’s site (for example, in the following JavaScript, which could be ren-
dered on another web page):

var skin = {};

skin["CONTENT_BG_COLOR"] = "#ffffff";

skin["CONTENT_TEXT_COLOR"] = "#333333";

google.friendconnect.container.renderOpenSocialGadget({

id: "colorPicker",

url: ".../gadget.xml",

height: 250,

site: SITE_ID,

}, skin);

The url given in the example above is not complete and should point to the absolute
reference to your gadget hosted on your server. Note that only a few of these properties
are actually rendered as gadget styles on lines 76 to 80, and you could’ve used any number
of them in your own gadgets:

82 function initAllData() {

83 var buttonHtml = document.getElementById("button").

disabled = true;

84 var batch = osapi.newBatch();

85 var viewerParams = {"fields": [opensocial.Person.Field.NAME]};

86 var membersParams = {

87 "count": 5,

88 "fields": [

opensocial.Person.Field.ID,

opensocial.Person.Field.NAME,

opensocial.Person.Field.THUMBNAIL_URL,

opensocial.Person.Field.PROFILE_URL

]

89 };

90 var activitiesParams = {

91 "userId": "@owner",

92 "groupId": "@friends",

93 "count": 2

94 }

95 batch.add("owner", osapi.people.getOwner());

96 batch.add("viewer", osapi.people.getViewer(viewerParams));

97 batch.add("members", osapi.people.getOwnerFriends(

www.it-ebooks.info

http://www.it-ebooks.info/

227Creating a Google Gadget

membersParams));

98 batch.add("activities", osapi.activities.get(activitiesParams));

99 batch.execute(onData);

100 }

The initAllData() function is used to collect all the data to be rendered by the
gadget.The parameters for a viewer and members are set on lines 85 to 89, which define
which fields to return, and those for an activity are set on lines 90 to 94, ensuring that
only two activities for the site’s members are shown by the gadget.The request batch is
split into owner, viewer, members, and activities data, which are executed and passed to
the callback function on line 99.The content of the onData() function have been split
into groupings that parse each of the batch requests:

101 function onData(data) {

102 if(!data.owner.error) {

103 var owner = data.owner;

104 var ownerName = owner.displayName;

105 document.getElementById("owner").innerHTML = ownerName;

106 } else {

107 document.getElementById("owner").innerHTML = "this site";

108 }

The owner is the one parameter that should be available irrespective of whether users
are signed in with Google Friend Connect.This parameter will set the name of the site in
which the gadget is placed or will use a standard placeholder if an error has occurred:

109 if(!data.viewer.error) {

110 viewer = data.viewer;

111 var buttonHtml = document.getElementById("button").

disabled = false;

112 } else {

113 // data.viewer.error.code

114 // data.viewer.error.message

115 }

The viewer parameter will return an error if the user is not logged in. In this case, no
further processing is required. However, you could use the space on lines 113 and 114 to
display a warning message to the user. If the viewer is available, the Submit button on line
48 can be enabled.

116 var membersHtml = document.getElementById("recentMembers");

117 if (!data.members.error) {

118 var members = data.members;

119 membersHtml.innerHTML = "";

120 if (members.totalResults > 0) {

121 for (var i in members.list) {

122 membersHtml.innerHTML += '<a href="' +

members.list[i].profileUrl + '" title="' +

members.list[i].displayName + '"><img class="memberPhoto"

www.it-ebooks.info

http://www.it-ebooks.info/

228 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

src="' + members.list[i].thumbnailUrl + '" height="65"

width="65" alt="' + members.list[i].displayName + '" />

';

123 }

124 } else {

125 membersHtml.innerHTML = "There are no site members.";

126 }

127 } else {

128 membersHtml.innerHTML = "There was an error retrieving

members.";

129 }

The members data set is slightly more complex that owner and viewer in that it con-
tains an array of elements.A test is made on line 120 to determine whether the gadget has
any members associated with it. If so, the list is iterated over, and a link is created on line
122 containing the member’s name, thumbnail photo, and profile URL.The members are
sent automatically to the HTML element created on line 40, along with appropriate error
messages if no members were returned or if there was an exception.The final JavaScript
code that needs to be created is for handling activities:

130 var recentActivitiesHtml = document.getElementById(

"recentActivities");

131 if (!data.activities.error) {

132 var activities = data.activities;

133 recentActivitiesHtml.innerHTML = "";

134 if (activities.totalResults > 0) {

135 var title, body;

136 for (var i in activities.list) {

137 title = unescape(activities.list[i].title);

138 body = unescape(activities.list[i].body);

139 recentActivitiesHtml.innerHTML += "<p>" + title + body +

"</p>";

140 }

141 } else {

142 recentActivitiesHtml.innerHTML = "There are no site

activities.";

143 }

144 } else {

145 recentActivitiesHtml.innerHTML = "There was an error retrieving

site activities.";

146 }

147 adjustHeight();

148 }

149 function adjustHeight() { gadgets.window.adjustHeight(); }

www.it-ebooks.info

http://www.it-ebooks.info/

229Creating a Google Gadget

On line 130, the activities are associated with the HTML element on line 58, which
iterates over the two requested activities and displays their title and body values.All that
remains to do is to create a new activity via the gadget itself:

150 var color = "red";

151 var lastColorDiv = document.getElementById("redCell");

152 function pickColor(div, newColor) {

153 color = newColor;

154 div.style.border = "3px solid #666666";

155 lastColorDiv.style.border = "3px solid #e5ecf9";

156 lastColorDiv = div;

157 }

158 function createActivity() {

159 if (viewer) {

160 var activity = opensocial.newActivity({

"title": viewer.displayName + " picked " + color + " as their

favorite color."

});

161 opensocial.requestCreateActivity(activity, "HIGH",

function() { setTimeout(initAllData, 1000); });

162 } else {

163 alert("There was an error creating an activity.");

164 }

165 }

166 </script>

167 </body>

168 </html>

169]]>

170 </Content>

171 </Module>

The code on line 150 and 151 ensures that the red cell is selected by default, which
can then be used by the pickColor() function.An activity is created in much the same
way as via the client-side and server-side libraries.This activity consists of creating an
Activity object on line 160 and sending the request on line 161. On success, the
initAllData() function is called, but could also be used to update other gadget elements
or to display a message to the user depending on whether the activity was created success-
fully or not.The final part of this code is for closing the appropriate <Content> and
<Module> elements ready for the gadget to be saved.

Click “Save Gadget”, and then click the “View on Google Friend Connect” link.You
should see a developer’s sandbox that enables you to sign up to the container and then test
out the gadget’s functionalities for both an anonymous and named viewer (see Figure 11.3).

www.it-ebooks.info

http://www.it-ebooks.info/

230 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

Figure 11.3 The completed Color Picker
Google gadget.

Because you are writing to the site’s activities register, it’s possible that if the site
administrators have other gadgets running that they, too, will be added to the activity
stream.Why not implement the Color Picker functionality using app data instead? Or add
internationalization? Or add a different canvas page view showing what colors the
viewer’s friends have picked? The possibilities are endless.

Testing, Tracking, and Directory Submission
Before submitting your gadget to a directory, test it for common coding errors and ensure
that is it optimized for heavy traffic.A common misconception with Google Friend
Connect gadgets is that you will always have the viewer details.You should test your gadg-
ets both with and without the viewer details available using a browser extension such as
Firebug or with other similar development tools.You can use these tools to test gadget
latency in many interesting ways.

Google Gadget Checker
Google has its own Gadget Checker, which runs inside iGoogle and checks for common errors
such as client-side latency, correct syntax, and XML well-formedness. This is useful for check-
ing the simpler bugs within your gadgets and offers quick fixes to the issues it identifies.

www.it-ebooks.info

http://www.it-ebooks.info/

231Creating a Google Gadget

The Google Speed project (http://code.google.com/speed/) provides some useful tips
for ensuring your gadget is as optimized as possible for high traffic.This includes “minify-
ing” your internal JavaScript and CSS and reducing the number of browser fetches of con-
tent by combining JavaScript files.You could also use image “sprites” to combine multiple
images together, distribute connections across multiple servers, and use cache tools such as
the gadgets.io.getProxyUrl() method.This method works by passing in the URL of
an image or JavaScript file, which will return the cached URL of the file. For example:

var imgUrl = "http://example.com/logo.png";

var cachedImgUrl = gadgets.io.getProxyUrl(imgUrl);

Adobe Flash developers can also use the gadgets.flashembedCachedFlash() method
to achieve the same effect with their content.

Google AJAX Libraries API
If you want to use dynamic content libraries such as jQuery or Prototype, it is recommended
that you include them using the methods provided by the Google AJAX Libraries API (http:/
/code.google.com/apis/ajaxlibs/). Not only do they provide minified versions of each library,
but the API also handles caching and loading automatically.

A great resource for general information about gadget publishing is the Google
Gadget Center (http://www.google.com/webmasters/gadgets/about/), which provides
details about promoting, tracking, and optimizing your gadget.

Installing and Configuring Gadget Analytics
For in-depth analytics, you can install the Google Analytics feature for Google gadgets.
Unlike with regular websites, gadgets are all hosted as a subdomain of gmodules.com.
Therefore, for each gadget that you are tracking, you need a unique Google Analytics
identifier. Creating an identifier requires you to visit https://www.google.com/analytics/
and either sign up for a new account or log in using an existing account.You should then
proceed to add a new site profile.The required website URL is only a string that the
Google Analytics software pairs with the identifier, and so this URL can be set to any
valid URL string, whether fabricated or real.An appropriate URL may be your domain if
you have not already created a Google Analytics account for that URL. Because you are
installing the tracking code on a gadget and not a web page, you will not need access to
the website URL that you set.After completing the registration process, you will be given
a web property ID that will be in the form UA-123456789-1 and should be stored within
your gadget.To enable Google Analytics using the Color Picker example above, you must
make the following changes:

n Add a <Require feature="com.google.gadgets.analytics" /> element within
the module’s preferences to enable tracking.

www.it-ebooks.info

http://www.google.com/webmasters/gadgets/about/
https://www.google.com/analytics/
http://code.google.com/speed/
http://code.google.com/apis/ajaxlibs/
http://code.google.com/apis/ajaxlibs/
http://www.it-ebooks.info/

232 Chapter 11 Developing OpenSocial Gadgets with Google Friend Connect

n Create the Tracker object by adding a var ga = new _IG_GA("UA-123456789-1");
line at the top of the JavaScript code block.This should be your own web property
ID because the example is simply a placeholder.

Google Analytics provides two ways to track user interactions for different situations:
virtual URL, for gadget statistics such as special page views; and event tracking.When you
are using virtual URL, each call is recorded as a page request for the string that you pro-
vide as a parameter to the method.This is typically a fabricated string that can be used if
you have multiple gadgets or want to track separate views by using different string param-
eters.You can use event tracking to log user interactions (for example, the user picking a
color or submitting a new activity).At the time of this writing, this feature was in closed
beta. So, until this has been fully released, you should use the virtual URL method. Here
are a few examples of using the virtual URL method within the Color Picker gadget:

ga.reportPageview("/view/colorPicker");

This method call would be placed right underneath the creation of the tracker object
and would be called each time the gadget was rendered. If you want to track when a user
submits his choice of color, you can update the createActivity() function to include
the following:

ga.reportPageview("/colorpicker/link/submit");

Using the event tracking method, you can track which colors are being clicked the
most by adding the following to the pickColor() method:

ga.reportEvent("Color Picker", "Pick", color);

It is best practice to set the first parameter as the name of your gadget and then the
action as the second parameter.The final parameter is for adding another categorical layer
to events so that you can then segment by color. For example, if you also have an
“Unpick” action, this would group both events together for each color.These parameters
are just guides, and you can actually use any string combination within your event report-
ing, but it does help if you apply the relevant groupings shown.

Submitting Your Google Gadget
Remember that you do not have to publish your gadget anywhere! You can use it pri-
vately without letting anybody know where to find it. But, if you want to submit your
creation, you can use either the iGoogle Directory (http://www.google.com/ig/
directory) or the Google Friend Connect Directory (http://www.google.com/
friendconnect/submitgadget) and thus allow others to see, build upon, and use your
gadget.With the iGoogle Directory, you must integrate specific Google Friend Connect
functionality into your gadget, such as signing in, because a user’s iGoogle home page
does not include that facility.

www.it-ebooks.info

http://www.google.com/ig/directory
http://www.google.com/ig/directory
http://www.google.com/friendconnect/submitgadget
http://www.google.com/friendconnect/submitgadget
http://www.it-ebooks.info/

233Summary

When submitting to the Google Friend Connect Directory, you must ensure that you
have set the title, description, author, author_email, screenshot, thumbnail, and
directory_title elements in the module preferences and ensure that your gadget han-
dles having a viewer’s details both available and unavailable.

Summary
Google gadgets present another opportunity to showcase your newly found skills with
Google Friend Connect and OpenSocial.The applications are limited only by your imag-
ination, and this chapter just scratches the surface of what is possible with the extensible
format afforded by the various gadget specifications.This chapter explored the anatomy of
a Google gadget, including setting gadget and user preferences, and discussed feature
extensions such as skinning and dynamic heights.The chapter also explored content types
and views and then looked at more advanced features provided by the OpenSocial v0.9
specification.Although data pipelining, proxied content, and OpenSocial templates do not
work perfectly using Google Friend Connect, they will be a major feature in the future.
Remote content using signed requests was explored, and then some internationalization
features for creating multilanguage gadgets were highlighted.The Color Picker example
from Chapter 9 was revisited and transformed into a gadget, and to conclude, gadget test-
ing and analytics were referenced and developed.

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

12
Building a Microblog Tool

Using CodeIgniter

In Part I, you were given an overview of Twitter and how it can be used for user authen-
tication via “Sign in with Twitter,” which allows you to post updates, send direct messages,
and perform other functionalities on behalf of a user. In Part II, Facebook Platform inte-
gration for websites was described, which you can use for user authentication, content
sharing, commenting, and stream publishing. Google Friend Connect was explored in
Part III, using client- and server-side technologies. It can be used for posting activities,
storing application data, and fetching people and profiles. In isolation, each of these tech-
nologies can make an application more social, but when used together, you can create
rich solutions that are more accessible and interactive for your users and their friends.

In this chapter, you will learn how to create a “social programming microblog” called
Sprog from scratch using a PHP framework called CodeIgniter.The final version of Sprog
will implement many of the features that have been described in this book, including user
authentication, status updates, commenting,“likes,” and social context through Twitter,
Facebook, and Google Friend Connect integration.This chapter is split into two sections:
looking at elements of the CodeIgniter framework, and building the bare bones of the
microblog. Chapter 13,“Integrating Twitter, Facebook, and Google Friend Connect,”
incorporates many of the social features described in Parts I, II, and III of this book.

An Overview of CodeIgniter
CodeIgniter (http://codeigniter.com/) is a community-driven PHP framework with a
very small footprint and is built for programmers who need a simple and elegant toolkit
to create rich web applications.The beauty of CodeIgniter lies in its vibrant user commu-
nity and extensive help documentation, which enables you to focus on creating your
applications rather than struggling with messy command-line solutions.You will also
find a wealth of video tutorials on the CodeIgniter website (http://codeigniter.com/
tutorials/) containing many more features than are discussed in this chapter.These fea-
tures include sending e-mails to users, working with images, performing unit tests, and
uploading files.

www.it-ebooks.info

http://codeigniter.com/
http://codeigniter.com/tutorials/
http://codeigniter.com/tutorials/
http://www.it-ebooks.info/

236 Chapter 12 Building a Microblog Tool Using CodeIgniter

Handling GET Parameters
The one downside to using CodeIgniter is its inability to handle GET parameters without seri-
ously affecting the complexity of the framework. This is particularly important when using
Twitter because it sends an oauth_token parameter back to your applications. A
workaround will be used that just reformats the Twitter callback as a POST parameter to
work with inside your applications.

CodeIgniter uses the Model-View-Controller (MVC) architectural pattern, which sep-
arates application logic from presentation and database extraction. In case you have not
used MVC before, this section includes a brief overview with examples and prompts of
how to set up the first stages of Sprog. Even for beginners, it will take only a matter of
hours before you start to appreciate the benefits of MVC and wonder why you have never
used it before! For experienced programmers, you can use the more advanced features of
CodeIgniter, such as benchmarking, File Transfer Protocol (FTP), and caching, to increase
performance of large-scale applications.

The Model-View-Controller Architectural Design
The MVC pattern is one of the most commonly used architectures used in web applica-
tions today.The clearest benefit of MVC is its separation of presentation and application
logic, which is akin to the separation of HTML and CSS. For example, although your
data-retrieval functionality might be the same you may want to present content to a num-
ber of devices from laptops to cell phones.What MVC enables is the ability to make max-
imum reuse of existing code that is easier to test and build upon.Applications are divided
into three components:

n The model (or models) is the conduit between a controller and your application’s
data store.

n The controller (or controllers) manages user requests such as GET or POST opera-
tions and in turn requests data from a model and then sends it to a view for presen-
tation. In practice, a controller will contain all the logic for handling form inputs or
requests to view specific pages.You may want to use a master controller, which con-
nects to multiple other controllers to handle requests from multiple devices.

n The view (or views) handles data passed via the controller, and then presents the
data onscreen or to the requesting device.A view should be parsing only prefetched
data and should not make requests to your data store (because that is the role of a
model). Often, you can use a template engine such as Smarty (http://www.smarty.
net/) to promote greater reuse of views across multiple devices.

The remainder of this chapter and Chapter 13 focus on MVC using a web application
framework called CodeIgniter.The benefits of a framework are that most of the complex-
ity of using common features such as working with databases, sessions, and form handling
are already coded for you.All that you then need to do is configure the framework to
your specific needs without worrying about creating your own potentially error-prone

www.it-ebooks.info

http://www.smarty.net/
http://www.smarty.net/
http://www.it-ebooks.info/

237An Overview of CodeIgniter

functions. Many of the frameworks available today have been tested extensively and are
updated continually when new vulnerabilities are discovered.

Installing, Configuring, and Exploring CodeIgniter
You can download CodeIgniter from http://codeigniter.com/downloads/. It requires
PHP 4.3.2+ and supports MySQL (4.1+), MySQLi, MS SQL, Postgres, Oracle, SQLite,
and ODBC database platforms. Because you are using the twitter-async library, it is
assumed that you are working with PHP 5.2+.The latest version of CodeIgniter at the
time of this writing, and that is included with source code examples, is 1.7.2.After you have
downloaded the framework, unzipped it to a location of your choice, and renamed the base
folder to codeigniter, you will notice a directory structure similar to the following:

n system

The system directory contains all the files required to make CodeIgniter work. It
includes directories for saving an application cache, for storing logs, and for storing
core helpers and libraries. Each helper file is just a collection of functions in a par-
ticular category that help you with specific tasks. For example, URL Helpers assist
with creating links, Form Helpers help you create form elements, and Text Helpers
perform various text-formatting routines. Libraries, on the other hand, are suites of
functions that perform tasks such as maintaining a database, uploading files, and
sending e-mails.You will also see a plug-in directory, which is used for installing
code created by the CodeIgniter community to use in your applications.

n system\application

One of the most important directories in system is application.This directory
stores all the models, views, and controllers used in your applications. It also stores
configuration and error page details.Although not explored in this book, it is possi-
ble to have multiple applications running from a single CodeIgniter installation.

n user_guide

The user_guide directory should be exactly the same as the one that can be found
at http://codeigniter.com/user_guide/, and so you can delete this if you want to
save space on your web server.

n index.php

This is the main file that runs all the CodeIgniter functions and is where you can
change the names of the system and application directories for enhanced security.

n license.txt

The license associated that must be adhered to when using the framework.

The system directory contains all the CodeIgniter functionality, such as libraries and
helpers, which are explored later in this section.You will also notice an application
directory, which is where all the models, views, and controllers are stored. For security rea-
sons, this directory should be moved up one level alongside the system and user_guide

directories. Because you cannot place static files such as images, JavaScript, or CSS within

www.it-ebooks.info

http://codeigniter.com/downloads/
http://codeigniter.com/user_guide/
http://www.it-ebooks.info/

238 Chapter 12 Building a Microblog Tool Using CodeIgniter

Figure 12.1 Screen shot of the default CodeIgniter application.

the application directory, you should create another directory called static to be used
to host such files in the future.Your new directory structure should look like this:

n application

n static

n system

n index.php

n license.txt

For added security, you might also consider renaming the system directory and updat-
ing $system_folder variable within the index.php file with the new name you’ve
chosen. For the examples in this chapter, this will remain as system. If you upload all the
CodeIgniter files to your server and then visit the URL of your new codeigniter folder,
you should be prompted with a screen similar to that shown in Figure 12.1.

With the framework successfully installed on your web server, you can open the two
local files application\controllers\welcome.php and application\views\welcome_

message.php to glimpse at what a simple CodeIgniter application looks like.This is
explained in more detail in the “Building the Basic Sprog Application” section, and so you
are not expected to look at these files in too much detail (although they should be self-
explanatory).The next section covers how to set your application configuration, such as
your base URL and database settings.

You can find the CodeIgniter configuration within the application\config\config.
php file. It contains a number of important settings related to your application or applica-
tions.This includes setting your base URL, so if you uploaded to http://sprog.com/
codeigniter/, that is what this parameter should be set to.Although you could theoretically
use a localhost connection for the initial steps within this chapter, it will not be suitable
when interacting with the Twitter, Facebook, and Google Friend Connect resources. In
this case, it is recommended that you install CodeIgniter in a “world-facing” location.

www.it-ebooks.info

http://sprog.com/codeigniter/
http://sprog.com/codeigniter/
http://www.it-ebooks.info/

239An Overview of CodeIgniter

Removing index.php from Site URLs
CodeIgniter prefixes all URLs with index.php. Therefore, if you create a new directory
called sprog on the domain http://sprog.com/codeigniter/, its URL will be
http://sprog.com/codeigniter/index.php/sprog/. If your web server supports
mod_rewrite, you can fix this by ensuring the $config["index_page"] parameter is
blank and adding the following to an .htaccess file and uploading it to the codeigniter
directory:

DirectoryIndex index.php
RewriteEngine on
RewriteCond $1 !^(index\.php|static)
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d

RewriteRule ^(.*)$./index.php/$1 [L,QSA]

This .htaccess file should work for almost every Apache web server irrespective of
whether your application is placed within a subdomain or across multiple directories.

You can also use this configuration file if you want to enable encryption or control
cookie or session data.You may also want to set the $config["global_xss_filtering"]
parameter to TRUE, which will enable XSS filtering on all user inputs. Other configuration
files located within the application\config directory that you may want to modify
include the following:

n autoload.php

When an application is loaded, you can also set CodeIgniter to include libraries,
helpers, and plug-ins automatically. In this chapter, the main libraries that are used
are database, pagination, and session, which should be added to the
$autoload["libraries"] array.As for helpers, the url and form helpers will be
essential for handling inputs and URL parsing.You can also load models automati-
cally, as well as multiple configuration files, if you have more than one application
using CodeIgniter.

n constants.php

This file contains parameters that are addressable within your applications. For
example, a Twitter consumer key and consumer secret could be added to this file
alongside your Facebook API key and other details added to the config.php file
used in Chapters 5–8. In the sample code for this chapter, prompts in this file
remind you of what parameters you should be adding.

n database.php

All database parameters should be added in this file to be used by CodeIgniter to
connect to your database. It is possible to add multiple database connections to this
file if you intend to use a local and production database by following the array nam-
ing conventions and updating the $active_group parameter to the appropriate
array. For this chapter, you will be required to create a database and ensure that you
can connect to it through CodeIgniter.

www.it-ebooks.info

http://sprog.com/codeigniter/
http://sprog.com/codeigniter/index.php/sprog/
http://www.it-ebooks.info/

240 Chapter 12 Building a Microblog Tool Using CodeIgniter

n routes.php

The final important configuration file is used for loading the default controller and
setting up URI routing.You may have noticed that when you navigated to your live
CodeIgniter folder that you were redirected to the Welcome page.This can be
found within the $route["default_controller"] parameter, which corresponds
to application/controllers/welcome.php.This parameter will be modified later
in this chapter to point to Sprog. URI routing is explored in a little more detail in
the “URI Class” section and more within this chapter’s sample code.

Before starting on the Sprog application, it is worth first exploring some of the libraries
and helpers provided by CodeIgniter.The next two sections are not meant to be exten-
sive, but should give you an impression of the extensibility of the framework and how
simple it is to perform tasks that would be very mundane to have to create from scratch.

CodeIgniter Libraries
Libraries contain a suite of functions for performing tasks such as uploading files, validat-
ing forms and handling sessions. In the CodeIgniter User Guide these can be found in the
Class Reference section.The four libraries that will be used within the Sprog application
are the Database Class, URI Class, Pagination Class, and the Session Class. Most libraries
need to be loaded explicitly via autoload.php with the exception of a handful of core
libraries such as the URI Class, Config Class, and Loader Class. It is assumed that you have
loaded the database, pagination and session classes within the
$autoload["libraries"] array.

Database Class
The Database class can be used to perform the four CRUD (create, read, update, and
delete) operations and to handle transactions and caching.There are three ways in which
you can manipulate records using the Database class:

n Standard Structured Query Language (SQL) can be used to formulate requests and
then execute them based on your query parameters.

n A technique known as query binding can be used. It combines standard SQL with
PHP variables that are automatically escaped by CodeIgniter.This is required if you
want to execute safe queries in your applications.An example query is to set a $sql
variable to “SELECT * FROM test WHERE id = ?” and then use $this->db-
>query($sql, array(3)) to extract the user whose id was set to the number 3.

n The Active Records class enables you to formulate queries using PHP-like methods
for performing each of the CRUD operations. Using active records means that SQL
is generated “on-the-fly” and is customized depending on which database platform
you are using.As with query binding, all queries are automatically escaped.

In this chapter, active records are used because they provide the greatest flexibility and
are structured in a logical manner. Here are some examples assuming the database table

www.it-ebooks.info

http://www.it-ebooks.info/

241An Overview of CodeIgniter

Table 12.1 Sample data Used to Demonstrate Functionality of Active Records

id screen_name full_name

1 johndoe John Doe

2 janedoe Jane Doe

3 richardroe Richard Roe

structure shown in Table 12.1 and that you have correctly set your database parameters in
database.php. Copy the data into your own database and save the table as test.

The simplest way to retrieve results from the test table is to use the following:

$query = $this->db->get("test", 2, 0);

if ($query->num_rows() > 0) {

foreach($query->result() as $row) {

echo $row->screen_name;

echo $row->full_name;

}

}

The $query variable will return results from the test table and has had optional LIMIT
and OFFSET parameters added. Using the data from Table 12.1, the code above would
echo the screen_name and full_name of John and Jane Doe.The $query->num_rows()
method is used to test whether results have been received; otherwise, the $query-
>result() object is iterated over.To retrieve specific fields from a table, you use this:

$this->db->select("screen_name");

This would be placed above the $this->db->get("<<TABLE>>") method and could
also be set to select_max("<<FIELD>>"), select_min("<<FIELD>>"), select_sum
("<<FIELD>>") or select_avg("<<FIELD>>") to perform arithmetic operations on
numeric fields. Specifying $this->db->distinct() before running a query will only
return unique rows from your database. If you have multiple tables, you can also perform
joins by using a combination of $this->db->from("<<TABLE 1>>") and $this->db-

>join("<<TABLE 2>>", "<<TABLE 1>>.<<ID>> = <<TABLE 2>>.<<ID>>") methods to
amalgamate results based on a shared identifier.

Query Helper Functions
A number of “query helper” functions exist for extracting the number of rows within a table
by using $this->db->count_all("<<TABLE>>"), within a returned query using $this-
>db->num_rows() or $this->db->affected_rows() to count the number of rows
affected by an insert, update, or delete operation. To free up system memory, you can also
call the $query->free_result() method after processing query results, which deletes the
result’s associated PHP resource ID.

www.it-ebooks.info

http://www.it-ebooks.info/

242 Chapter 12 Building a Microblog Tool Using CodeIgniter

To select a particular record you can use the $this->db->get_where("<<TABLE>>",
array("<<FIELD>>" => "<<VALUE>>")) method.This requires an array just after the
table name such as array("id" => 1) and is followed by the LIMIT and OFFSET parame-
ters. It is also possible to use $this->db->where("id", 3) to perform the same function.
In this instance, however, you can use id != to find users whose id was not equal to 3 or
to combine multiple methods to combine results with an AND. Other restriction methods
include or_where(), where_in(), or_where_in(), where_not_in(), or_where_
not_in(), like(), or_like(), not_like(), or_not_like(), group_by("<<FIELD>>"),
having("<<FIELD>>", "<<VALUE>>"), or_having("<<FIELD>>", "<<VALUE>>"), and
order_by("<<FIELD>>", "<<DIRECTION>>"). In the order_by() method, you can use
either asc, desc, or random to order your results randomly.

Inserting data into a table can be achieved by using the following:

$data = array(

"screen_name" => "babydoe",

"full_name" => "Baby Doe",

);

$this->db->insert("test", $data);

echo $this->db->insert_id();

This query could also be assembled using the set("<<FIELD>>", "<<VALUE>>")
method:

$this->db->set("screen_name", "babydoe");

$this->db->set("full_name", "Baby Doe");

$this->db->insert("test");

Updating works in a similar way to the first insert example except that a
$this->db->where() method is first called and then the $data array is passed into a
$this->db->update("<<TABLE>>", <<DATA>>) method. Finally, data can be deleted in
three ways:

n You can use the $this->db->delete("<<TABLE>>", array("<<FIELD>>" =>
"<<VALUE>>")) or use a combination of $this->db->where() methods to first
specify what data should be deleted and then call $this->db->delete() method
omitting the second parameter.

n If you want to delete the same identifier from multiple tables, you can use a combi-
nation of $this->db->where() methods and specify an array of tables as the only
parameter to the $this->db->delete() method.

n Deleting all the data from a table can be achieved by using either $this->db-
>empty_table("<<TABLE>>") or $this->db->truncate("<<TABLE>>"). If the
TRUNCATE operation is not available on the database platform that you are using, a
DELETE operation will be performed.

As you can see, even for a seemingly simple function of manipulating data in a data-
base, multiple use cases are available. CodeIgniter aims to satisfy all these use cases and

www.it-ebooks.info

http://www.it-ebooks.info/

243An Overview of CodeIgniter

more. Don’t worry if you think you’ve missed some of the finer details of the Database
class; some of these methods are used in practice when we create the Sprog application.

URI Class
By default, CodeIgniter uses segmenting to link a URL to a corresponding controller
class/function. For example, the URL http://sprog.com/codeigniter/sprog/profile/
johndoe would call the profile() function of the test controller passing in johndoe as
the identifier.The URI class can be used to extract the identifier component of the URL
through $this->uri->segment(3, "unknown").The second parameter sets the default
value for the method call if the segment does not exist. If you want to override the default
mapping between the URL and functions, you can use the routes.php configuration file
to assign new mappings. For example, the link above could be changed to http://sprog.
com/codeigniter/profile/johndoe and set $route["profile/(:any)"] = "sprog/
profile_lookup/$1" to call the profile_lookup function of the sprog controller
passing in the value johndoe. In this instance, you would use $this->uri->rsegment(3,
"unknown") to extract the screen_name.The sample code and example for this chapter
use the URI class, so its uses will become more apparent.

Pagination Class
Pagination is used to split database records into “chunks” that can be navigated using fully
customizable links. CodeIgniter provides a Pagination class that makes this as simple as
specifying three parameters and that can be integrated with the Database and Table classes
as follows:

$this->load->library("table");

$config["base_url"] = site_url("/sprog/members");

$config["total_rows"] = $this->db->get("test")->num_rows();

$config["per_page"] = 2;

$this->pagination->initialize($config);

$results = $this->db->get("test", $config["per_page"],

$this->uri->segment(3, 0));

echo $this->table->generate($results);

echo $this->pagination->create_links();

The $config["base_url"] includes the site_url() of the application, which will be
appended with the page that is currently being viewed, so this would be the members
function of the sprog controller. For example, if the user has clicked the third page, this
would produce sprog/members/3.The $config["total_rows"] parameter is set to the
total number of rows in the test table, and the $config["per_page"] parameter dictates
how many results are shown per “page.”The $results variable is where the appropriate
results are extracted from your database and uses the LIMIT and OFFSET parameters to
extract the appropriate number of records.The records are then passed into the Table class

www.it-ebooks.info

http://sprog.com/codeigniter/sprog/profile/johndoe
http://sprog.com/codeigniter/profile/johndoe
http://sprog.com/codeigniter/profile/johndoe
http://sprog.com/codeigniter/sprog/profile/johndoe
http://www.it-ebooks.info/

244 Chapter 12 Building a Microblog Tool Using CodeIgniter

to generate a table of results, which is then followed by the pagination links.A number of
optional configuration options for the Pagination class can be used:

n $config["num_links"]

Sets the number of “digit” links you would like before and after the selected page
number. For example, the number 2 will place two digits on either side.

n $config["full_tag_open"] and $config["full_tag_close"]

If you would like to surround the entire pagination with some markup, you can set
this here (for example, wrapping the pagination inside a <div> or <p>).

n $config["first_link"], $config["first_tag_open"],

$config["first_tag_close"], $config["last_link"],

$config["last_tag_open"], $config["last_tag_close"],

$config["next_link"], $config["next_tag_open"],

$config["next_tag_close"], $config["prev_link"],

$config["prev_tag_open"] and $config["prev_tag_close"]

These parameters can be used to customize the “first,”“last,”“next,” and “previous”
links and related opening and closing tags.

n $config["cur_tag_open"], $config["cur_tag_close"],

$config["num_tag_open"] and $config["num_tag_open"]

To customize the display of the current page or other numbers, you can wrap them
with tags supplied in these parameters.

Note that this sample code has not been introduced into the MVC architecture and is
demonstrated in the “Building the Basic Sprog Application” section.

Session Class
CodeIgniter provides a Session class that permits you to maintain a users’“state” and track
their activity while they browse your site. Session information is serialized (and optionally
encrypted) within a cookie.You can also store the session data in a database for added
security by matching the session ID in the cookie to one stored in your database. By
default, only the cookie is saved. If you choose to use the database option, you must create
the session table as indicated in the CodeIgniter User Guide for the Session class (http:/
/codeigniter.com/user_guide/libraries/sessions.html).

Session Cookies Update Time
Session cookies are updated only every five minutes to reduce processor load, even if a
page is repeatedly reloaded. If you want to update this more regularly, you can set
$config["time_to_update"] in the config.php file.

Within a session you have access to four variables alongside any others that you want
to store: session_id; ip_address; user_agent; and last_activity, which is a time

www.it-ebooks.info

http://codeigniter.com/user_guide/libraries/sessions.html
http://codeigniter.com/user_guide/libraries/sessions.html
http://www.it-ebooks.info/

245An Overview of CodeIgniter

stamp when the cookie was last written. For added security, you can load the Encryption
class and set the $config["encryption_key"] within the config.php file.This encryp-
tion key should be at least 32 characters in length and is very similar to the keys provided
by Twitter and Facebook.You can then use $this->encrypt->encode(<<TEXT>>) and
$this->encrypt->decode(<<ENCRYPTED TEXT>>) to reveal the original text. If you have
enabled encryption, you access session data as follows:

$session_id = $this->encrypt->decode($this->session->

userdata("session_id"));

Sometimes you might want to store custom session data, such as a user’s e-mail
address, username, or logged-in status.You can do so as follows:

$user = array(

"username" => $this->encrypt->encode("johndoe"),

"logged_in" => true

);

$this->session->set_userdata($user);

To “unset” or remove session data, you can use $this->session->unset_user-
data(<<KEY>>), where <<KEY>> in the example above would be username or
logged_in. If you want to destroy all data at once, you can use the $this->session-
>sess_destroy() (for example, when a user logs out of your application). CodeIgniter
also supports “flashdata,” which is session data that will be available only for the next
server request and is then automatically cleared.These can be manipulated using three
methods:

n $this->session->set_flashdata("<<KEY>", "<<VALUE>>");

n $this->session->flashdata("<<KEY>>");

n $this->session->keep_flashdata("<<KEY>>");

The example in this chapter uses sessions and encryption.

CodeIgniter Helpers
Helpers are sets of functions that perform a particular task such as working with URLs or
forms.You have already come across one of the methods of the URL Helper, which gath-
ered your site_url(). Unlike libraries, you don’t need to use the $this syntax to initial-
ize helper methods.The URL Helper also includes these useful methods:

n base_url().

n current_url().

n uri_string(), which returns the segments after the base_url().
n For creating links, you can use anchor("sprog/profile/johndoe", "John Doe",
array("title" => "John Doe's Profile")) to render a hyperlink.

www.it-ebooks.info

http://www.it-ebooks.info/

246 Chapter 12 Building a Microblog Tool Using CodeIgniter

The URL Helper contains a number of other methods, which you can find in the
CodeIgniter User Guide (http://codeigniter.com/user_guide/helpers/url_helper.html).

The Form Helper, as the name suggests, can be used to create form elements such as
input boxes, hidden fields, and buttons.The following example uses most of the methods
from the Form Helper:

$this->load->helper("form");

$hidden = array("time" => microtime());

echo form_open("sprog/login", array("id" => "login"), $hidden);

$username_input = array(

"name" => "username",

"id" => "username",

"maxlength" => 128,

"style" => "width: 50%;"

);

echo form_input($username_input);

echo form_password("password");

echo form_submit("submit", "Log In", 'onsubmit="function() {}"');

echo form_close();

This generates the following in HTML:

<form action="sprog/login" method="post" id="login">

<input type="hidden" name="time" value="0.06839700 1267274117" />

<input type="text" name="username" value="" id="username" maxlength="128"

style="width: 50%;" />

<input type="password" name="password" value="" />

<input type="submit" name="submit" value="Log In" onsubmit="function() {}"

/>

</form>

The Form Helper contains a number of other methods, which you can find in the
CodeIgniter User Guide (http://codeigniter.com/user_guide/helpers/form_helper.html).
The example in this chapter uses both of these helpers and some of their associated
methods.

Building the Basic Sprog Application
Now that you understand a bit about CodeIgniter and some of its libraries and helpers, it
is time to start creating our Sprog application.The application itself will be similar to
Twitter (and other microblog tools) in functionality and will contain the following core
components:

n It will enable users to register an account and sign in using a Sprog username and
password, or to authenticate using their Twitter, Facebook, or Google Friend
Connect credentials.

www.it-ebooks.info

http://codeigniter.com/user_guide/helpers/url_helper.html
http://codeigniter.com/user_guide/helpers/form_helper.html
http://www.it-ebooks.info/

247Building the Basic Sprog Application

n It will enable users to post short status updates. In later sections, these updates will
also be posted to their Twitter/Facebook or linked to Google accounts.

n It will enable users to post a comment on or “like” another user’s status updates
from a profile page.

The aim of this section is to build a simple prototype that satisfies these basic applica-
tions, which will be extended when adding Twitter, Facebook, and Google Friend
Connect functionality in Chapter 13.The prototype will adhere as closely as possible to
the MVC architectural pattern to ensure that presentation, application logic, and data
extraction and manipulation are separated (which increases scalability and code reusabil-
ity). Models are used to interact with your database or other file store, reading and writing
to files, and many other tasks that manipulate data.Views, on the other hand, are used to
present data back to your users and should not contain any data processing at all apart
from iterating over a results set.The logic that binds these two components together is the
controller.The controller is the main hub of your application. It requests data from the
model and then “feeds” it into a view. It is possible to have more than one controller for
your applications, although in this example only one will be used. Multiple models will
be defined for specific functionalities for Twitter, Facebook, and Google Friend Connect.

Stage 1: Creating the Registration, Login, and Home Pages
First, we must set up the CodeIgniter environment to support the new Sprog application.
To do this, you will need to complete the following:

1. Using the CodeIgniter files that you downloaded earlier, edit autoload.php to load
the following libraries: database, session, pagination, table, and encrypt; the
url and form helpers; and a sprog_model model, which will be created later in this
section.Your config.php should have the full path to your web server added to
$config["base_url"], and if you intend to use the .htaccess “fix” to remove
index.php from URLs, you should ensure that $config["index_page"] is blank.
In this file, you should also set your $config["encryption_key"] to at least a
32-character random string and ensure that $config["global_xss_filtering"]
and $config["sess_encrypt_cookie"] are set to TRUE.You should add your data-
base configuration to the database.php file, which will be used throughout the
remainder of this chapter. Finally, set the $route["default_controller"] variable
in routes.php to sprog, which will be created shortly.

2. Add empty Sprog model and controller files, named sprog_model.php and
sprog.php, to the application\controllers and application\models directo-
ries. In the application\views directory, add a new directory called sprog.

3. Ensure that you have a static directory located in the root of your server along-
side your application and system directories.

www.it-ebooks.info

http://www.it-ebooks.info/

248 Chapter 12 Building a Microblog Tool Using CodeIgniter

Figure 12.2 Screen shot of the Sprog index page.

4. Upload the new files to your web server and visit your CodeIgniter URL.
For example, if you have uploaded your files to a local host, you would use
http://localhost/codeigniter/. Because no further data has been added to the
controller, a “404 Page Not Found” error will display.

The first page that will be created is the index page and will look something like
Figure 12.2, which shows a logo, header, and a log in or create a new account prompt.
A page will also be created for a new user to register, and a simple page will be generated
upon successful login. Other features that will be added include form validation, storing
values inside a session, database manipulation, and exception handling.

A number of steps will lead you to the application shown in Figure 12.2, which is only
the beginning.The first step is to create a template that contains standard header and
footer code for your application. Navigate to the application\views\sprog\ directory
and create a directory in there called includes. Inside the includes directory, create
three new files: templates.php, header.php, and footer.php.The templates.php
should contain the following code:

<?php

$data["title"] = $title;

$this->load->view("sprog/includes/header", $data);

$this->load->view($content);

$this->load->view("sprog/includes/footer");

?>

Both the $title and $content variables are explained later because these are passed
from the application controller.You can see that three views are loaded.These correspond

www.it-ebooks.info

http://localhost/codeigniter/
http://www.it-ebooks.info/

249Building the Basic Sprog Application

to header.php, footer.php, and a variable tat is used to pass in dynamic content that
will enable the reuse of this template.Again, this is explored further by way of example.
Your header.php file should contain the following code, which accepts a $data array
that contains a title variable:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title><?php echo $title; ?> - Sprog</title>

<link rel="stylesheet" href="<?php echo base_url(); ?>static/style.css"

type="text/css" />

</head>

<body>

<div id="header">

<h1 class="title"><img src="<?php echo base_url(); ?>static/logo.png" />

 Sprog a social programming blog</h1>

<div id="description">

<p><?php echo $title; ?></p>

</div>

</div>

<div id="wrap">

<div id="content">

Notice that the title element is now accessed via the $title variable and used as
both the title of the window and is displayed in the description bar shown in Figure 12.2
with the text “Log In, Please!”A reference is also made to an external style sheet,
style.css, which is located inside the static directory.You can find the contents of this
file in this book’s code repository.The corresponding footer.php file, which is located in
the includes directory alongside template.php and header.php, should contain the fol-
lowing code:

</div>

<div id="footer">

<p>Themed by markhawker using

original theme by <a href="http://www.tumblr.com/themes/by/

sparo">sparo.</p>

</div>

</div>

</body>

</html>

This file simply closes the content <div> element and displays some standard footer
information. Upload the new includes directory, and then we’re on to creating the
Welcome screen, which displays a form and a button to create a new account.The first
thing to do is to create the register view.The register view is what users see when they
first visit the application and is supported by a simple controller.You should store this

www.it-ebooks.info

http://www.it-ebooks.info/

250 Chapter 12 Building a Microblog Tool Using CodeIgniter

view inside the application\views\sprog directory and name it login.php.This file
contains the code for constructing a username and password input box and two buttons
for submitting the form and creating a new account and utilizes the Form helper:

<div id="login">

<?php

if(!empty($error)) { echo '<p class="error">'.$error."</p>"; }

echo form_open("sprog/login");

echo form_label("User Name", "username");

echo form_input("username");

echo form_label("Password", "password");

echo form_password("password");

echo form_submit("submit", "Log In");

echo anchor("sprog/register", "Create an Account");

echo form_close();

?>

</div>

The $error variable is utilized if a user supplies invalid login credentials or leaves the
form blank.The form submits to the login() function, which must be created inside the
sprog.php file alongside the register() function.The contents of this file are wrapped
inside the template, so that is why no header and footer information is required. Finally,
you should open the sprog.php file located within application\controllers and add
the code in Listing 12.1, which includes the index() function (the default controller).

Listing 12.1 The sprog.php File Demonstrating the Default index() Function

1 <?php

2 class Sprog extends Controller {

3 function Sprog() {

5 parent::Controller();

6 }

7 function index($error = false) {

8 $data["error"] = ($error == "error" ? "The username or password

you supplied was incorrect, please try again." : false);

9 $data["content"] = "sprog/login";

10 $data['title'] = "Log In, Please!";

11 $this->load->view("sprog/includes/template", $data);

12 }

13 }

14 ?>

The code in Listing 12.1 shows a standard CodeIgniter controller architecture, which
is initiated on lines 2 to 6. Note that the class name and constructor must be the same
name as your filename, which in this instance is sprog.php. Lines 7 to 12 define the
index() function, which sets up three variables to add to the $data array: error,

www.it-ebooks.info

http://www.it-ebooks.info/

251Building the Basic Sprog Application

content, and title.These variables are then passed to the template view for parsing. In
particular, the content is used to render the application\views\sprog\login.php file.
If you save sprog.php and upload it to your web server within application\
controllers, you should be presented with the page illustrated in Figure 12.2, assuming
that you have also added style.css and logo.png to the static directory. Clicking either
of the “Log In” or “Create an Account” options should present you with a warning mes-
sage from CodeIgniter (because these controllers have not been set up yet).

Before we continue and add the login() and register() functions, a database table
should be created that will contain all the user data.This can be created with the follow-
ing SQL:

CREATE TABLE IF NOT EXISTS "user" (

"username" varchar(24) NOT NULL,

"password" varchar(32) NOT NULL,

"fullname" varchar(64) NOT NULL

PRIMARY KEY ("username")

);

Because passwords are to be encrypted using an md5(), this will give a length of 32
characters, and the username and fullname fields are to be restricted via the front-end
code to the appropriate lengths.After your database has been created, you’re ready to add
the first bit of advanced functionality: inserting a user to the database. Inside the
sprog.php file, add the following code, which is similar to the index() function:

function register($error = false) {

$data["error"] = ($error == "error" ? "The username you supplied already

exists, please choose another." : false);

$data["content"] = "sprog/register";

$data["title"] = "Register, Please!";

$this->load->view("sprog/includes/template", $data);

}

The only difference here is that the error message has been updated and a reference is
made to a sprog/register view, which hasn’t been created yet.This view should look
something like Figure 12.3.

The main features of the registration page will be form validation using the Form
Helper, which can be used to perform multiple checks on the submitted data. Because
the XSS filtering option has already been set, this is something that does not have to be
checked in your application.As with the index page, the Form Helper is used to con-
struct a form that also uses its set_value() methods in case there are validation errors
and the form needs to be prepopulated with data that the user previously submitted:

<div id="register">

<?php

if(!empty($error)) { echo '<p class="error">'.$error."</p>"; }

echo validation_errors('<p class="error">');

echo form_open("sprog/create");

www.it-ebooks.info

http://www.it-ebooks.info/

252 Chapter 12 Building a Microblog Tool Using CodeIgniter

Figure 12.3 The Sprog registration page.

echo form_label("User Name", "username");

echo form_input(array("name" => "username", "value" =>

set_value("username")));

echo form_label("Full Name", "fullname");

echo form_input(array("name" => "fullname", "value" =>

set_value("fullname")));

echo form_label("Password", "password");

echo form_password(array("name" => "password", "value" =>

set_value("password")));

echo form_label("Confirm Password", "confirm_password");

echo form_password(array("name" => "confirm_password", "value" =>

set_value("confirm_password")));

echo form_submit("submit", "Create Account");

echo anchor("sprog/index", "Cancel");

echo form_close();

?>

</div>

The code above constructs appropriate form labels and inputs that post to the
create() function, which has not been created yet.Another feature is the validation_
errors() method.This method shows any errors with the form input and is initiated
from within the controller as per the rules of MVC. Save this code as register.php

www.it-ebooks.info

http://www.it-ebooks.info/

253Building the Basic Sprog Application

within application\views\sprog and upload it to your web server.You should now be
able to visit your home page and navigate to the registration page, as shown in Figure
12.3.The create() function will be the first instance in which the sprog_model is initi-
ated to insert a record into the database but also to validate form output, update a user’s
session data with encrypted details, and redirect to the home page. Listing 12.2 shows the
code for this function.

Listing 12.2 The create() Function within the Main Controller

1 function create() {

2 $this->load->library("form_validation");

3 $this->form_validation->set_rules("username", "User Name",

"trim|required|min_length[4]|max_length[24]");

4 $this->form_validation->set_rules("fullname", "Full Name",

"trim|required|max_length[64]");

5 $this->form_validation->set_rules("password", "Password",

"trim|required|min_length[4]|max_length[32]");

6 $this->form_validation->set_rules("confirm_password", "Confirm

Password", "trim|required|matches[password]");

7 if($this->form_validation->run() == false) {

8 $this->register();

9 } else {

10 $username = $this->input->post("username");

11 $fullname = $this->input->post("fullname");

12 $password = md5($this->input->post("password"));

13 $user = $this->sprog_model->create($username, $fullname, $password);

14 if(!empty($user)) {

15 $data = array(

16 "username" => $this->encrypt->encode($user["username"]),

17 "fullname" => $this->encrypt->encode($user["fullname"]),

18 "is_logged_in" => true,

19 "source" => $this->encrypt->encode("s")

20);

21 $this->session->set_userdata($data);

22 redirect("sprog/home");

23 } else {

24 $this->register("error");

25 }

26 }

27 }

The complexity of this controller lies in the multiple paths that need to be covered
from all data being correct and a value being added to the database to invalid details or
attempts to re-register an existing username. Form validation is performed on lines 3 to 6
on each of the input fields after first loading the Form Validation Helper on line 2.The
first parameter of the set_rules() method corresponds to the input field name, the

www.it-ebooks.info

http://www.it-ebooks.info/

254 Chapter 12 Building a Microblog Tool Using CodeIgniter

second its “friendly” name, and the third is the validation to be performed. In the exam-
ples in Listing 12.2, this includes trimming whitespace, testing required elements, maxi-
mum and minimum length, and checking that the confirm_password matches the
password field.The validation is then executed on line 7. true is returned if there are
none, and false if any have been found. If errors are found, the registration page is re-
loaded, and the errors will be shown by the validation_errors() method.

On lines 10 to 12, the data from the form is extracted and the password is hashed.
These fields are then passed into the create() function, which is shown in Listing 12.3.
On success, the function returns an array of a username and fullname, which is
encrypted alongside is_logged_in and source parameters, which are stored in a session
on lines 15 to 21.The source parameter will be important in the future because it stores
the authentication mechanism used to log in.The user is then redirected to the home
page, or, if the create() function is unsuccessful, the user is redirected to the registration
page, where an error will be shown.The contents of the home page, which you want to
upload to application\views\sprog as home.php, will simply contain the following,
which will be extended in the next section:

<h1>Success!</h1>

<p><?php echo anchor("sprog/logout", "Logout"); ?></p>

In the sprog.php file, a controller should be added for both logout() and home(), as
shown here:

function home() {

$this->is_logged_in();

$fullname = $this->encrypt->decode($this->session->userdata("fullname"));

$data["content"] = "sprog/home";

$data["title"] = "Welcome, ".$fullname."!";

$this->load->view("sprog/includes/template", $data);

}

function logout() {

$this->session->sess_destroy();

redirect("sprog/index");

}

function is_logged_in() {

$is_logged_in = $this->session->userdata("is_logged_in");

$uri_segment = $this->uri->segment(2);

if((isset($is_logged_in) && $is_logged_in == true) &&

($uri_segment == "index" || $uri_segment == "register")) {

redirect("sprog/home");

}

elseif((!isset($is_logged_in) || $is_logged_in != true) &&

$uri_segment != "index" && $uri_segment != "register") {

redirect("sprog/index");

}

}

www.it-ebooks.info

http://www.it-ebooks.info/

255Building the Basic Sprog Application

Because you do not want users who are not logged in to access the home page, an
extra is_logged_in() function has been included that tests for the existence of the ses-
sion value. If the session value does not exist, the user is redirected to the index.You
should also add a $this->is_logged_in() call to the first line of the index() and
register() controllers, because if users have already logged in and they visit these pages,
they should be redirected to the home page.The home page decodes the fullname vari-
able, which is stored within the session, and also presents a logout link to destroy the ses-
sion and return the user to the index page. In your application\views\sprog folder,
add a new file called home.php and which contains the following code:

<div id="update">

<p>You are logged in!</p>

</div>

<p><?php echo anchor("sprog/logout", "Logout"); ?></p>

This code above just presents a message to the user saying that he or she has logged in
(alongside a link to log out). In the next section, this is greatly extended. Just as with the
controller, setting up a model requires a constructor and class name that match the name
of the file, sprog_model.php, and must be named differently to your controller. Listing
12.3 shows the create() function, which tests whether a username is already stored in
the database on line 7, and if so, the function returns false on line 25. Otherwise, a
$user array is created consisting of the variables passed to the function from the con-
troller and then inserted into the database.

Listing 12.3 The Sprog Model and the create() Function

1 <?php

2 class Sprog_Model extends Model {

3 function Sprog_Model() {

4 parent::Model();

5 }

6 function create($username, $fullname, $password) {

7 $query = $this->db->get_where("user", array("username" =>

$username));

8 if($query->num_rows() == 0) {

9 $user = array(

10 "username" => $username,

11 "fullname" => $fullname,

12 "password" => $password

13);

14 $query = $this->db->insert("user", $user);

15 if($query) {

16 $data = array(

17 "username" => $username,

18 "fullname" => $fullname

19);

www.it-ebooks.info

http://www.it-ebooks.info/

256 Chapter 12 Building a Microblog Tool Using CodeIgniter

20 return $data;

21 } else {

22 return false;

23 }

24 } else {

25 return false;

26 }

27 }

28 }

The result of the query will return true or false, and if true, a $data array is con-
structed containing the username and fullname, which is processed by the controller.
Again, this function will return false if there was an error. If you save the sprog_model.
php into the application\models directory and upload it to your web server, you
should now be able to register your own account! Test that validation works as expected
and that when you register an account the appropriate data is being added to your data-
base.The final part of this section is to create the login() function of the index page for
returning users.The login() function takes some of its code from the registration con-
troller because you want to test whether the user exists in your database and redirect as
appropriate.Add the following code to the sprog.php controller:

function login() {

$username = $this->input->post("username");

$password = md5($this->input->post("password"));

$user = $this->sprog_model->validate($username, $password);

if(!empty($user)) {

$data = array(

"username" => $this->encrypt->encode($user["username"]),

"fullname" => $this->encrypt->encode($user["fullname"]),

"is_logged_in" => true,

"source" => $this->encrypt->encode("s")

);

$this->session->set_userdata($data);

redirect("sprog/home");

} else {

$this->index("error");

}

}

The difference in this code is that it calls the validate() function of the model
before storing the user data within a session and redirecting as appropriate.This final
model function consists of the following code:

function validate($username, $password) {

$this->db->where("username", $username);

$this->db->where("password", $password);

$query = $this->db->get("user");

www.it-ebooks.info

http://www.it-ebooks.info/

257Building the Basic Sprog Application

if($query->num_rows() == 1) {

$data = array(

"username" => $query->row()->username,

"fullname" => $query->row()->fullname

);

return $data;

} else {

return false;

}

}

In this code, the $username and $password are cross-checked against the database. If a
match is found, the user’s username and fullname is passed back to the controller; other-
wise, the function returns false.This final piece of code should be saved within the
sprog_model.php file and uploaded to your web server alongside all the files that have
been modified in this section, which are also available within the stageone directory of
the code repository.This directory should be renamed codeigniter and include your
customized configuration files. If all is well, you should have created the following files
and functions and added the static directory, which includes logo.png and style.css

from the code repository:

n applications\controllers\sprog.php: index(), login(), register(),
create(), home(), logout(), and is_logged_in()

n applications\models\sprog_model.php: create() and validate()

n applications\views\sprog\includes\header.php

n applications\views\sprog\includes\footer.php

n applications\views\sprog\includes\template.php

n applications\views\sprog\home.php

n applications\views\sprog\login.php

n applications\views\sprog\register.php

The next section extends the Sprog application to include the ability to post status
updates, view profiles, comment, and “like” other user’s updates.

Stage 2: Extending the Sprog Application with Updates,
Comments, and Likes
The next step in creating the Sprog application is to add the functionality that enables
users to post and delete short updates, comment on updates, and “like” updates.To keep
this application fairly simple, users will not be able to “unlike” or delete their comments,
but will be able to delete their updates. Users will also be given a simple profile with their
latest updates listed. By the end of this section, you should have something resembling the
home page shown in Figure 12.4.

www.it-ebooks.info

http://www.it-ebooks.info/

258 Chapter 12 Building a Microblog Tool Using CodeIgniter

Figure 12.4 The Sprog home page.

In addition to the home page, there will be a page listing all the updates made by all
users; this page can be commented on or liked. In the future, you could add the ability to
search for updates or other users. Before getting started on coding the application, you
need to create three new database tables:

n update

This table will store all the updates made by users and contains five fields: id, which
is a BIGINT(30) and is set to auto_increment; text, which is a TEXT field that
contains the update text; datetime, containing the date and time that the update
was made; username, for storing the user who posted the update; and source, for
storing which method was used to post the update, which is a CHAR(1) and which
can be set to s for Sprog, t for Twitter, f for Facebook, and g for Google Friend
Connect.

n comment

This table is almost identical to update except that a new field is added called
update_id, which is a BIGINT(30) and is used to link comments to an original
update.

n like

The like table contains only two fields: an update_id that references the update
table; and a count, which is a simple INT(12) for counting the number of times an
update is liked.

www.it-ebooks.info

http://www.it-ebooks.info/

259Building the Basic Sprog Application

You can create these tables using the following SQL:

CREATE TABLE IF NOT EXISTS "update" (

"id" bigint(20) NOT NULL auto_increment,

"text" text NOT NULL,

"datetime" datetime NOT NULL default "0000-00-00 00:00:00",

"username" varchar(12) NOT NULL,

"source" char(1) NOT NULL,

PRIMARY KEY ("id")

)

CREATE TABLE IF NOT EXISTS `comment` (

"id" bigint(20) NOT NULL auto_increment,

"update_id" bigint(20) NOT NULL default "0",

"text" text NOT NULL,

"datetime" datetime NOT NULL default "0000-00-00 00:00:00",

"username" varchar(12) NOT NULL,

"source" char(1) NOT NULL,

PRIMARY KEY ("id")

)

CREATE TABLE IF NOT EXISTS "like" (

"update_id" bigint(20) NOT NULL default "0",

"count" int(12) NOT NULL default "0",

PRIMARY KEY ("update_id")

);

There is no need to add any records to these tables yet because methods will be cre-
ated to insert, update, and delete values.This section focuses on the creation of four new
views, which should be stored within application\views\sprog and which will per-
form the following functions:

n The home.php view will display an update form which will be validated and posts
to the update table.This view will also display the user’s latest update, which can be
deleted alongside the user’s recent comments.This page will also contain links to
the user’s profile and to the global page for user updates.

n The latest.php view displays the latest updates made by all users and grants the
ability to like and comment on updates. Unlike home.php, this view will not let
users delete their updates.

n The profile.php is very similar to the latest.php view, although it will be used
to display a specific user’s updates. For now, no further profile information is sup-
plied to this view.

n The comments.php view presents users with a form to submit their comment and
to view other comments.This form will be validated and will redirect the com-
menter back to the home.php view on success.

www.it-ebooks.info

http://www.it-ebooks.info/

260 Chapter 12 Building a Microblog Tool Using CodeIgniter

These four new views are supported by various controller methods that make further
use of the application’s mode. In all cases, there is a corresponding controller that will be
added to sprog.php and some helper functions for updating and deleting an update, lik-
ing, and commenting.The accompanying style sheet for this new stage will be included
within the source code for this chapter and is not included here.The best place to start
this section is with the hub of our application, home(), where you should add the follow-
ing code to the sprog.php controller:

1 function home() {

2 $this->is_logged_in();

3 $fullname = $this->encrypt->decode($this->session->

userdata("fullname"));

4 $username = $this->encrypt->decode($this->session->

userdata("username"));

5 $config["base_url"] = site_url("/sprog/home");

6 $config["total_rows"] = $this->db->get_where("update", array(

"username" => $username))->num_rows();

7 $config["per_page"] = 15;

8 $config["full_tag_open"] = '<div id="pagination">';

9 $config["full_tag_close"] = "</div>";

10 $this->pagination->initialize($config);

11 $data["updates"] = $this->sprog_model->updates($username,

$config["per_page"], $this->uri->segment(3, 0));

12 $data["comments"] = $this->sprog_model->my_comments($username);

13 $data["pagination"] = $this->pagination->create_links();

14 $data["username"] = $username;

15 $data["content"] = "sprog/home";

16 $data["title"] = "Welcome, ".$fullname."!";

17 $this->load->view("sprog/includes/template", $data);

18 }

This function first makes sure that issuers are logged in and then extracts their user-
name and full name from the encrypted session on lines 3 and 4. Because you don’t want
to show all the user’s updates at once, the Pagination class is initiated on lines 5 to 10 and
passed to the view on line 13.To ensure that the page links can be styled using the exter-
nal style sheet, you just wrap the pagination controls within a <div>.The next two lines
call specific functions within the sprog_model.php file, which extracts a user’s updates,
passing in the pagination variables, and extracts the user’s comments, which are then stored
in the $data array passed to the template view. Listing 12.4 shows these two functions.

Listing 12.4 The updates() and my_comments() Functions

1 function updates($username, $limit, $offset) {

2 $this->db->select("*")->from("update")->join("like", "like.update_id =

update.id", "left")->where("username", $username)->order_by(

"datetime", "desc")->limit($limit, $offset);

3 $query = $this->db->get();

www.it-ebooks.info

http://www.it-ebooks.info/

261Building the Basic Sprog Application

4 if($query->num_rows() > 0) {

5 $updates = array();

6 foreach($query->result() as $row) {

7 $comment_count = $this->comment_count($row->id);

8 $updates[] = array("id" => $row->id, "text" => $row->text,

"source" => $row->source, "time" => strtotime($row->datetime),

"like_count" => $row->count, "comment_count" => $comment_count);

9 }

10 return $updates;

11 } else {

12 return array(array("id" => -1, "text" => "There are no updates,

yet.", "source" => "n", "time" => -1, "like_count" => -1,

"comment_count" => -1));

13 }

14 }

15 function my_comments($username) {

16 $this->db->where("username", $username)->order_by("datetime",

"desc")->limit(10, 0);

17 $query = $this->db->get("comment");

18 if($query->num_rows() > 0) {

19 $my_comments = array();

20 foreach($query->result() as $row) {

21 $my_comments[] = array("id" => $row->update_id, "text" =>

$row->text, "source" => $row->source, "time" => strtotime(

$row->datetime));

22 }

23 return $my_comments;

24 } else {

25 return array(array("id" => -1, "text" => "There are no comments,

yet.", "source" => "n", "time" => -1));

26 }

27 }

Both functions shown in Listing 12.4 demonstrate how the Database class can be used
to extract data from your database.“Chaining” is used to string together the components
of the query, which is then tested using the $query->num_rows() method on lines 4 and
18.The updates() function also iterates over each update and searches for related com-
ments, on line 7, which contains the following code:

function comment_count($update_id) {

$query = $this->db->get_where("comment", array("update_id" =>

$update_id));

return $query->num_rows();

}

Results from the updates() and my_comments() functions are stored within arrays,
which are then passed back to the controller. If no updates or comments are found, a

www.it-ebooks.info

http://www.it-ebooks.info/

262 Chapter 12 Building a Microblog Tool Using CodeIgniter

dummy array is created with appropriate error messages.You should update the
sprog_model.php and sprog.php files and save them to the application\models and
application\controllers directories. Before you can run the application, update the
home.php view to correspond to the data that has just been added to the controller:

<div id="update">

<?php

echo validation_errors('<p class="error">');

echo form_open("sprog/update");

echo form_label("Update Me?", "update", array("style" => "font-size:

2em;"));

echo form_input(array("name" => "update"));

echo form_submit("submit", "Update");

echo form_close();

?>

</div>

This first section constructs the update form, which requires the creation of the
update() function in the main controller, which is shown in Table 12.2 below, alongside
its corresponding model functions:

<div id="latest">

<h2>My Updates</h2>

<?php

foreach($updates as $update) {

echo '<div class="update '.$update["source"].'">';

echo "<p>".($update["time"] != -1 ? ''.date("m-d-Y",

$update["time"])."" : " ").$update["text"]."</p>";

echo '<div class="controls">';

if($update["like_count"] != -1) {

echo 'Likes: '.($update["like_count"] ?

$update["like_count"] : 0)."";

}

if($update["comment_count"] != -1) {

echo 'Comments: '.($update["comment_count"]

? $update["comment_count"] : 0)."";

}

if($update["id"] != -1) {

echo ''.anchor("sprog/delete/".$update["id"],

"Delete")."";

}

echo "</div>";

echo "</div>";

}

echo $pagination;

?>

<h2>My Latest Comments</h2>

www.it-ebooks.info

http://www.it-ebooks.info/

263Building the Basic Sprog Application

Table 12.2 Controller and Model Functions for Deleting and Posting an Update

Controller Model

function update() {
$this->load->library(
"form_validation");
$this->form_validation->
set_rules("update",
"Update", "trim|
required");
if($this->
form_validation->
run() == false) {
$this->home();

} else {
$username = $this->
encrypt->decode(
$this->session->
userdata("username"));
$update = $this->input->
post("update");
$source = $this->
encrypt->decode(
$this->session->
userdata("source"));
$this->sprog_model->
update($username,
$update, $source);
redirect("sprog/home");

}
}

function update($username,
$update, $source) {
$data = array(
"id" => null,
"text" => $update,
"datetime" => date(
"Y-m-d H:i:s",
time()),
"username" =>
$username,
"source" => $source

);
$this->db->insert(
"update", $data);
return $this->db->
insert_id();
}

<?php

foreach($comments as $comment) {

echo '<div class="update '.$comment["source"].'">';

echo "<p>".($comment["time"] != -1 ? ''.date("m-d-Y",

$comment["time"])."" : " ").($comment["id"] != -1 ?

anchor("sprog/view_comment/".$comment["id"], $comment["text"]) :

$comment["text"])."</p>";

echo "</div>";

}

?>

</div>

<p><?php echo anchor("sprog/profile/".$username, "My Profile"); ?> |

<?php echo anchor("sprog/latest", "Latest Updates"); ?> | <?php echo

anchor("sprog/logout", "Logout"); ?></p>

www.it-ebooks.info

http://www.it-ebooks.info/

264 Chapter 12 Building a Microblog Tool Using CodeIgniter

Figure 12.5 The Sprog Latest Updates page.

The remainder of this code is used to iterate over both the $updates and $comments

variables and to display links to the delete() function and to redirect users to the
profile and latest views. Save this code as home.php and upload it to your web server,
where you should be able to log in and view this page.

The three views that still need to be created are profile and latest, plus a comments
view for submitting responses to updates.These are saved in the
application\views\sprog directory as profile.php, latest.php, and comments.php.
Because these views contain similar methods and controllers, these are not described in
detail here, but are included in the sample code for this chapter.The latest updates view is
shown in Figure 12.5, which, unlike the home page, allows a user to like an update and
links to the comments view.The code for this page is produced by the latest() con-
troller function, supported by the like() function and model functions
latest_updates() and like().

Table 12.2 Controller and Model Functions for Deleting and Posting an Update

Controller Model

function delete() {
$update_id = $this->uri->
segment(3);
$this->sprog_model->
delete($update_id);
redirect("sprog/home");
}

function delete(
$update_id) {
$this->db->where(
"id", $update_id);
$this->db->delete(
"update");
$tables = array(
"like", "comment");
$this->db->where(
"update_id",
$update_id);
$this->db->delete(
$tables);

return true;
}

The final comments view is shown in Figure 12.6, which shows a comments box
and the latest comments posted by other users.This view is supported by the

www.it-ebooks.info

http://www.it-ebooks.info/

265Building the Basic Sprog Application

Figure 12.6 The Sprog Comments page.

view_comment() controller function, which requires the get_comments() model func-
tion, alongside the comment() controller function, for posting a comment, which
requires the post_comment() model function and get_original() for retrieving the
details of an update.

After saving the newly created controller, model, and views files to your web server
and ensuring that you have created the specified databases, you should be able to visit
your fully functional Sprog application.You can find the files in the github code reposi-
tory inside the stagetwo directory.This directory should be renamed codeigniter and
include your customized configuration files. If all is well, you should have created or
modified the following files and functions and updated the static directory with the
new style.css file from the repository:

n applications\controllers\sprog.php: home(), update(), delete(),
profile(), latest(), like(), comment(), and view_comment().

n applications\models\sprog_model.php: updates(), my_comments(),
comment_count(), update(), delete(), latest_updates(), like(),
get_comments(), post_comment(), and get_original().

n applications\views\sprog\comment.php

n applications\views\sprog\latest.php

n applications\views\sprog\profile.php

n applications\views\sprog\home.php

n applications\views\sprog\login.php

n applications\views\sprog\register.php

www.it-ebooks.info

http://www.it-ebooks.info/

266 Chapter 12 Building a Microblog Tool Using CodeIgniter

With the framework for the microblog tool complete, the next chapter looks at how to
add Twitter, Facebook, and Google Friend Connect functionality to the Sprog application.

Summary
This chapter described how you can use the CodeIgniter web application framework

to create your very own microblog tool.The tool enables users to register, log in, post up-
dates, leave comments, and “like” updates.The extensibility and simplicity of CodeIgniter
makes it an excellent resource suitable for beginners through to advanced programmers.
The next chapter looks at how to incorporate social features into Sprog, such as authenti-
cation via Twitter, Facebook, and Google Friend Connect, as well how to post updates,
comments, and likes to each of the services.

www.it-ebooks.info

http://www.it-ebooks.info/

13
Integrating Twitter, Facebook,

and Google Friend Connect

This chapter extends Chapter 12,“Building a Microblog Tool Using CodeIgniter,”
which built a “social programming microblog” from scratch using CodeIgniter.The final
version of Sprog, which you will build in this chapter, will implement some of the fea-
tures that have been described in this book, including user authentication, status updates,
commenting, and “likes” through Twitter, Facebook, and Google Friend Connect.The
chapter is split into three sections for each technology platform, giving examples of how
to first integrate them with CodeIgniter and then how to extend the functionality that
was created in Chapter 12.At the end of this chapter, you will understand how to incor-
porate social features into your own web applications. However, don’t think of this sample
application as production ready.You would still need to modify it appropriately to ensure
that it was secure enough to be released in the wild.The best strategy to adopt while
developing is to continually test it with your own Twitter, Facebook, and Google
accounts to gauge how it will function in the real world.

As with all code examples in this book, be aware that any one of the Twitter,
Facebook, or Google Friend Connect services could update their libraries to add or
remove features. Following the appropriate developer forums and blogs will help you
identify the breaking changes to your applications.You should also follow the book’s blog
http://www.socialprogramming.info/ and code repository, which will be updated with
new code as time progresses.

Implementing Twitter Functionality
The two main ways in which Twitter will be used is to provide login functionality using
“Sign in with Twitter,” which will create a new user account or will update an existing
account with Twitter credentials, and to post updates to their stream. For this to work,
another table needs to be created in your database, twitter, which will store the user’s

www.it-ebooks.info

http://www.socialprogramming.info/
http://www.it-ebooks.info/

268 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

Twitter ID, access token, and token secret, plus a reference to a record in the user table (if
one already exists).To create the twitter table, just execute the following SQL:

CREATE TABLE IF NOT EXISTS "twitter" (

"id" bigint NOT NULL,

"access_token" varchar(50) NOT NULL,

"token_secret" varchar(50) NOT NULL,

"user_username" varchar(24) NULL,

PRIMARY KEY ("id")

);

For users who already have a Sprog account, once they have logged in with Twitter
they will be prompted to link their accounts.Those users who do not already have a
Sprog account are prompted to create one after authenticating with Twitter. Other
changes that will be required are adding a twitter_id field to the update table.This will
store the status ID of an update posted when logged in via Twitter and is required to be a
bigint. For this example, comments are not included (but would function in exactly the
same way as regular updates).

Setting Up Twitter and Twitter-async Support
Before proceeding, you must first register a Sprog application on Twitter by visiting
http://twitter.com/apps/new and submitting the following:

n Application icon:This can be any image of your choosing, but you could use the
logo.png located within the static directory.

n Application Name:An appropriate name for this application would be Sprog,
although this can be anything that you want.

n Description:This can be left blank or you could add the following:‘A test application
for @markhawker’s book entitled:“The Developer’s Guide to Social Programming”’.

n Application Website:You can set this to your own URL or use the book’s URL,
which is http://www.socialprogramming.info/.

n Organization and Website:These can be set to your own company name and
URL, if required.

n Application Type:For this example, this should be set to “Browser.”

n Callback URL:As CodeIgniter does not readily support GET operations, which are
how Twitter responds to a successful authentication.This should be set to a URL
outside of the application directory. For now, set this to point to your static direc-
tory in a new subdirectory called php. For example, if your URL is http://sprog.
com/codeigniter/, this should be set to http://sprog.com/codeigniter/static/php/.
Create a new file in this directory called index.php and add the following code:

<?php header("Location: http://sprog.com/codeigniter/sprog/twitter/".
$_GET["oauth_token"]); ?>

www.it-ebooks.info

http://www.socialprogramming.info/
http://twitter.com/apps/new
http://sprog.com/codeigniter/
http://sprog.com/codeigniter/
http://sprog.com/codeigniter/static/php/
http://www.it-ebooks.info/

269Implementing Twitter Functionality

This code should redirect the user back inside your application to the twitter
function of the sprog controller, which will expect a token appended to the URL.
Note that this URL should be located on your own server!

n Default Access Type:Because this application will be updating a user’s Twitter
profile, this will need to be set to “Read & Write” so that we can support this
functionality.

n Use Twitter for Login:Again, because “Sign in with Twitter” is to be used, you
should check this option.

After all of these details have been submitted, you are given a consumer key and con-
sumer secret.These should be added to your constants.php configuration file using the
following names:

define("TWITTER_CONSUMER_KEY", "XXXXXXXXXXXXXXXXXXXXXX");

define("TWITTER_CONSUMER_SECRET", "XXXXXXXXXXXXXXXXXXXXXX");

By adding these two constants you ensure that they are both addressable within the
application, instead of having to worry about storing them as an external reference.The
final step is to download the twitter-async library from http://github.com/jmathai/
twitter-async and upload it to the application\libraries directory.To make this a
pseudo-CodeIgniter library, a twitter.php class must be created that will include the
twitter-async library and includes some standard functions such as creating an EpiTwitter
Object and checking responses, which were explored in Chapter 3,“Authentication with
Twitter OAuth,” when creating the Test Tube application:

<?php if (!defined("BASEPATH")) exit("No direct script access allowed");

include "twitter-async/EpiCurl.php";

include "twitter-async/EpiOAuth.php";

include "twitter-async/EpiTwitter.php";

class Twitter {

function init($oauth_token = null, $oauth_token_secret = null) {

return new EpiTwitter(TWITTER_CONSUMER_KEY, TWITTER_CONSUMER_SECRET,

$oauth_token, $oauth_token_secret);

}

function get_url() {

$twitter = $this->init();

try {

return $twitter->getAuthenticateUrl(null, array("force_login" =>

true));

}

catch(EpiOAuthException $e) { return "oauthexception"; }

catch(EpiTwitterException $e) { return "twitterexception"; }

}

function verify($twitter) {

if (is_object($twitter)) {

$response = $twitter->get_accountVerify_credentials();

www.it-ebooks.info

http://github.com/jmathai/twitter-async
http://github.com/jmathai/twitter-async
http://www.it-ebooks.info/

270 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

return $this->check($response);

} else {

return false;

}

}

function check($payload) { return ($payload->code == 200) ? $payload :

false; }

}

?>

Within this file, you directly import the twitter-async library so that whenever the
$this->load->library("twitter") method is called, these files are immediately
loaded. By constructing the library in this way, you can then access $this->twitter-
>init() to initialize a session as well as the get_url(), verify(), and check() func-
tions. Because you will be using this library throughout the application, it should be
loaded automatically by adding twitter to the $autoload["libraries"] variable in
autoload.php.You can create any number of libraries in the way that was just described,
which is the basis for the Facebook and Google Friend Connect sections.

Stage 3: Extending the Sprog Application with Twitter
Functionality
This stage builds on the two previous stages from Chapter 12, which included creating
the skeleton of the Sprog application using CodeIgniter.You might want to revisit that
chapter to refresh your mind on the basic functionalities of Sprog and use the CodeIgniter
references if any of the libraries or helper functions are not readily apparent to you.

The goal of adding Twitter functionality is to enable users to log in using Twitter cre-
dentials so that they can post their Sprog updates to their Twitter stream easily and conve-
niently.There is one major issue in how this needs to be implemented, which is illustrated
via an example scenario. Suppose a user has created an account,“markhawker,” via Sprog,
but then wants to log in via Twitter, too.The user will click the “Sign in with Twitter”
button, shown in Figure 13.1, authenticate, and then be returned to the callback URL
that has already been set.

Which username would you use? Suppose that the user logged in using the Twitter
account “markhawker.”Would you assume that this account was held by the user who
created the markhawker Sprog login? In this event, you can’t assume that these two are
linked, and so an intermediate stage needs to be added that acknowledges that a user has
logged in via Twitter but it is unknown which Sprog account is the user’s (or even
whether the user has created one).This will occur only once because as soon as the user’s
accounts have been linked, you will have stored this in your database for future reference.
Although this might sound complex, it can be achieved by modifying the original Sprog
files to account for having a Twitter login.

www.it-ebooks.info

http://www.it-ebooks.info/

271Implementing Twitter Functionality

Figure 13.1 Screen shot of the Sprog index page with
Twitter functionality.

The first step that needs to be addressed is populating the twitter() function inside
the main sprog.php controller, which was referenced via the callback URL and which
appends an access token to the third segment of the URL.This function is similar to
login() function created in Chapter 3, in that the token is parsed and if available an
EpiTwitter Object is created and initialized.The difference in this function is that the
access token and token secret are being stored in encrypted sessions rather than simple
cookies:

1 function twitter() {

2 $token = $this->uri->segment(3);

3 $oauth_token = $this->encrypt->decode(

$this->session->userdata("oauth_token")

);

4 $oauth_token_secret = $this->encrypt->decode(

$this->session->userdata("oauth_token_secret")

);

5 if (!empty($token)) {

6 $session = $this->twitter_model->set_tokens($token);

7 $this->check_link(

$this->encrypt->decode($session["oauth_token"]),

$this->encrypt->decode($session["oauth_token_secret"])

);

8 } else if(empty($oauth_token) && empty($oauth_token_secret)) {

9 $this->session->set_userdata("oauth_token", "");

10 $this->session->set_userdata("oauth_token_secret", "");

11 redirect("sprog/index");

12 } else {

13 $this->check_link($oauth_token, $oauth_token_secret);

14 }

15 }

www.it-ebooks.info

http://www.it-ebooks.info/

272 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

Lines 3 and 4 are used just in case a user has already been authenticated, which will
execute the check_link() function on line 13 using the stored credentials. If a token is
available, the branch on lines 5 to 7 is executed.This sets the tokens using a function that
needs to be created in a new twitter_model.php model file and that then parses its out-
put and executes the check_link() function. If neither of the tokens is available, the user
is redirected back to the index page on line 11.

Autoloading Models
Don’t forget to autoload commonly accessed models within the autoload.php configura-
tion file (for example, twitter_model) that is created in this section. This ensures all avail-
able functions within the model are accessible to your application.

Create a new twitter_model.php file.This will be stored alongside sprog_model.php
in the application\models directory and should be autoloaded by your application.This
model will host the specific functionality for interacting with the twitter library and
updating Twitter-specific tables.The first function that is required is set_tokens(), which
accepts the oauth_token sent from Twitter as its only parameter:

<?php

class Twitter_Model extends Model {

function Twitter_Model() {

parent::Model();

}

function set_tokens($oauth_token) {

$twitter = $this->twitter->init();

try {

$twitter->setToken($oauth_token);

$token = $twitter->getAccessToken();

$twitter->setToken($token->oauth_token, $token->oauth_token_secret);

$data = array(

"oauth_token" => $this->encrypt->encode($token->oauth_token),

"oauth_token_secret" => $this->encrypt->encode(

$token->oauth_token_secret)

);

$this->session->set_userdata($data);

return $data;

}

catch(EpiOAuthException $e) { redirect("sprog/index/oauthexception"); }

catch(EpiTwitterException $e) { redirect("sprog/index/

twitterexception"); }

}

}

The set_tokens() function is used to extract the access token and token secret for
the authenticated user, which is then stored within an encrypted session.These two vari-
ables will be accessible for the duration of the time that the user is logged in and will be

www.it-ebooks.info

http://www.it-ebooks.info/

273Implementing Twitter Functionality

used to access the numerous Twitter methods. If an error occurs during processing of the
token, the user is redirected to the index page.The next step in this process now that a
user’s tokens have been stored is to validate the user’s Twitter credentials and to check
(via the check_link() function within the main controller) whether the user has already
created a Sprog account. If so, the user is redirected to the home page with the source
parameter set to “t” for Twitter. If not, the user is redirected to the home page, but this
time you will have saved the user’s account ID and tokens within a session so that the
user can be “remembered” when the application is linking accounts:

function check_link($oauth_token, $oauth_token_secret) {

$twitter = $this->twitter->init($oauth_token, $oauth_token_secret);

$twitter_user = $this->twitter_model->get_user($twitter);

$check_user = $this->twitter_model->check_user($twitter_user["id"]);

if(!$twitter_user) {

redirect("sprog/index/twitterexception");

} else {

$this->session->set_userdata("twitter_id",

$this->encrypt->encode($twitter_user["id"])

);

if($check_user) {

$data = array(

"username" => $this->encrypt->encode($check_user["user_username"]),

"fullname" => $this->encrypt->encode($twitter_user["fullname"]),

"is_logged_in" => true,

"source" => $this->encrypt->encode("t")

);

$this->session->set_userdata($data);

redirect("sprog/home");

} else {

redirect("sprog/index");

}

}

}

The aim of this function is to extract the User object of authenticated users and to
check whether they already exist in the database. If they do, their details are stored in the
session, and they are redirected to the home page. If they have not authenticated, they are
redirected to the home page, where they must create a Sprog account or log in as normal.
Remember, because the twitter_id has been stored within the session, it is accessible in
other methods when linking accounts.The get_user() and check_user() should be
placed within the twitter_model.php model file and contain the following code:

function get_user($twitter) {

$twitter_user = $this->twitter->verify($twitter);

if (!empty($twitter_user)) {

$user = array(

"id" => $twitter_user->id,

www.it-ebooks.info

http://www.it-ebooks.info/

274 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

"fullname" => $twitter_user->name

);

return $user;

} else {

return false;

}

}

function check_user($id) {

$query = $this->db->get_where("twitter", array(

"id" => $id, "user_username !=" => "")

);

if($query->num_rows() == 0) {

return false;

} else {

return array("id" => $id, "user_username" => $query->

row()->user_username);

}

}

These two functions make use of the Twitter library as well as the Database class for
extracting user details from the twitter table.The next step is to reconfigure the index
page to acknowledge that users have authenticated via Twitter so that when they log in or
register, an entry is added to both the user table and the twitter table.Your index()
function should be updated to include the following lines, which create an authenticate
URL and display a simple message to the user:

$data["twitter_url"] = $this->twitter->get_url();

if($this->session->userdata("twitter_id")) {

$data["has_twitter"] = "You are signed in with Twitter, but you must

login or register with us to link accounts. You will only have to do

this once.";

}

In the login.php view, you then need to toggle this message and either show or hide
the “Sign in with Twitter” button (depending on whether you have an active session):

if(!empty($has_twitter)) { echo '<p class="twitter_message">'.

$has_twitter."</p>"; }

if(empty($has_twitter)) {

echo "<h2>Alternative Logins</h2>";

echo '<p><img src="'.base_url().

'static/siwt-darker.png" height="24" width="151" alt="Sign in with

Twitter" />

</p>';

}

Similar code should be added to the register() function in the controller and the
register view to show the information message. No “Sign in with Twitter” button

www.it-ebooks.info

http://www.it-ebooks.info/

275Implementing Twitter Functionality

should be shown on this page, and the authentication URL is also not required.The final
steps in this process are to validate the user details against your database and to link both
of the accounts.After all this has been completed the details are stored within the session.
The modified query within the validate() method of the sprog_model.php file should
be as follows:

$this->db->select("*")->from("user")->join("twitter",

"twitter.user_username = user.username", "left");

This query is used to join the user and twitter tables, and also return all results from
the user table that do not have a related record in the twitter table.This is important
because not all of your users will have linked a Twitter account.What also needs to be
added within this function is to return users’ access tokens and token secrets within the
$data array so that if they log in via their Sprog account, their Twitter credentials will be
automatically included:

"oauth_token" => $query->row()->access_token,

"oauth_token_secret" => $query->row()->token_secret

The new login() function within the main controller now contains the following:

1 function login() {

2 $username = $this->input->post("username");

3 $password = md5($this->input->post("password"));

4 $user = $this->sprog_model->validate($username, $password);

5 if(!empty($user)) {

6 $source = "s";

7 $data = array();

8 if($this->session->userdata("twitter_id")) {

9 $this->twitter_model->link($this->session->userdata("twitter_id"),

$username);

10 $source = "t";

11 } else {

12 $data["oauth_token"] = $this->encrypt->encode($user["oauth_token"]);

13 $data["oauth_token_secret"] = $this->encrypt->encode(

$user["oauth_token_secret"]);

14 }

15 $data["username"] = $this->encrypt->encode($user["username"]);

16 $data["fullname"] = $this->encrypt->encode($user["fullname"]);

17 $data["is_logged_in"] = true;

18 $data["source"] = $this->encrypt->encode($source);

19 $this->session->set_userdata($data);

20 redirect("sprog/home");

21 } else {

22 $this->index("error");

23 }

24 }

www.it-ebooks.info

http://www.it-ebooks.info/

276 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

This modified login() function now enables the $source variable to be changed to
either an “s” or a “t,” depending on the authentication model, which is then encoded on
line 18. If the user has already authenticated with Twitter, on line 8, their details are linked
using the link() method, which needs to be created in the twitter_model.php file.
Otherwise, the user’s pre-existing tokens are stored on lines 12 and 13, which are then set
within the session on line 19.Within the create() function of the main controller, lines
6 and 8 to 11 should be added within the if(!empty($user)) conditional. On line 8,
however, you don’t need to open the else case because you already have the user’s Twitter
tokens stored within a session.

The final method, link(), is the method that actually stores a user’s credentials within
a database:

function link($id, $username) {

$id = $this->encrypt->decode($id);

$oauth_token = $this->encrypt->decode($this->session->

userdata("oauth_token"));

$oauth_token_secret = $this->encrypt->decode(

$this->session->userdata("oauth_token_secret")

);

$user = array(

"id" => $id,

"access_token" => $oauth_token,

"token_secret" => $oauth_token_secret,

"user_username" => $username

);

$query = $this->db->insert("twitter", $user);

return true;

}

Now that the Twitter login process has been tweaked to enable users to link their
Twitter and Sprog accounts together, it’s time to allow them to post updates to their
newly linked accounts.

Updating a User’s Twitter Account
The ability to post updates to a user’s Twitter account is much simpler than the authenti-
cation process.This is because you already have access to an access token and token secret,
which can now be passed into the init() function of the Twitter library. First, the
home() function in the main controller needs to be updated to test whether a user has
linked a Twitter account.You can do so by adding the following line:

$data["has_twitter"] = $this->twitter_model->has_twitter($username);

The associated model function is as follows:

function has_twitter($username) {

$query = $this->db->get_where("twitter", array("user_username" =>

www.it-ebooks.info

http://www.it-ebooks.info/

277Implementing Twitter Functionality

$username));

return ($query->num_rows() > 0 ? true : false);

}

This simple function tests whether a user can be found in the twitter table and
returns either true or false.Within the sprog\home view, the following can then be
added within the form. It will display a check box with which users can choose whether
to also post the update to their Twitter account:

if($has_twitter) {

echo form_label("Post to Twitter?", "twitter");

echo form_checkbox("twitter", 1, true);

echo "

";

}

When the user submits the form, a twitter parameter is passed to the update() func-
tion of the main controller, which must be modified to include the following:

$id = $this->sprog_model->update($username, $update, $source);

if($this->input->post("twitter") == 1) {

$this->twitter_model->update($update, $id);

}

This addition stores the recently added update identifier to the $id variable, which is
then passed a new function called update() in the twitter_model.php file.The reason
for this is to set the value of the newly created Twitter status to a new field in the update

table called twitter_id, which must be a bigint. By doing this, it is then possible to
reference an update to a Twitter status seamlessly.The update() function should be as
follows:

function update($text, $id) {

$oauth_token = $this->encrypt->decode($this->session->

userdata("oauth_token"));

$oauth_token_secret = $this->encrypt->decode(

$this->session->userdata("oauth_token_secret")

);

$twitter = $this->twitter->init($oauth_token, $oauth_token_secret);

$response = $twitter->post_statusesUpdate(array("status" => $text));

if($this->twitter->check($response)) {

$this->db->set("twitter_id", $response->id);

$this->db->where("id", $id);

$this->db->update("update");

}

}

In this function, the statuses/updateTwitter method is called, and then the identifier
of the Status object is set to the update table. Figure 13.2 shows an example of a status
posted to Twitter.

www.it-ebooks.info

http://www.it-ebooks.info/

278 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

Figure 13.2 Screen shot of Sprog update posted to
Twitter.

It is also important that when users logs out of Sprog their Twitter session should also
be terminated.You can achieve this by extending the logout() function in the controller
to include the following:

$oauth_token = $this->encrypt->decode($this->session->

userdata("oauth_token"));

$oauth_token_secret = $this->encrypt->decode(

$this->session->userdata("oauth_token_secret")

);

if(!empty($oauth_token) && !empty($oauth_token_secret)) {

$this->twitter_model->logout($oauth_token, $oauth_token_secret);

}

And change the logout() function of the twitter_model.php file to the following:

function logout($oauth_token, $oauth_token_secret) {

$twitter = $this->twitter->init($oauth_token, $oauth_token_secret);

$twitter->post_accountEnd_session();

}

You can find the files for this section in the online github code repository inside the
stagethree directory.This directory should be renamed codeigniter and include your
customized configuration files. If all is well, you should have created or modified the fol-
lowing files and functions and updated the static directory with the new style.css file
and added the siwt-darker.png image and the static\php\index.php file from the
code repository:

n applications\controllers\sprog.php: twitter(), check_link(), index(),
register(), login(), create(), home(), update() and logout()

n applications\models\sprog_model.php: validate().

n applications\models\twitter_model.php: set_tokens(), get_user(),
check_user(), link(), has_twitter(), update() and logout()

n applications\views\sprog\home.php

n applications\views\sprog\login.php

n applications\views\sprog\register.php

www.it-ebooks.info

http://www.it-ebooks.info/

279Implementing Facebook Functionality

In addition, you should have also uploaded the twitter-async library to application\
libraries\twitter-async and added the twitter.php file. Extensions to this code
would be to also post comments to Twitter that link back to the original update, handling
when users revoke access to your application and providing support for “liking” updates,
which would add them as a Twitter favorite.The possibilities are almost limitless.The next
section looks at how to add Facebook functionality alongside Twitter to increase the
reach of your application even further.

Implementing Facebook Functionality
Because Facebook uses a JavaScript library to detect status, this makes the implementation
of this technology slightly easier than Twitter.This section details how to add the func-
tionality to sign in using Facebook, link accounts, and then post updates, comments, and
likes back to Facebook.You will also add a little more social context through highlighting
what a user’s friends have updated on Sprog.As with the “Implementing Twitter
Functionality” section, you will have to create a new table in your database, facebook, for
storing user credentials, but also extend other tables to include Facebook functionality,
such as tying an update to a Facebook update.The Facebook PHP client library will also
be translated to work with CodeIgniter, and a new model will be created,
facebook_model.php, to contain code specific to Facebook.

The facebook table will store the user’s Facebook ID and session key plus a reference
to a record in the user table (if one already exists).The following SQL should be exe-
cuted to create this table:

CREATE TABLE IF NOT EXISTS "facebook" (

"id" bigint NOT NULL,

"session_key" varchar(50) NOT NULL,

"user_username" varchar(24) NULL,

PRIMARY KEY ("id")

);

For users who already have a Sprog account, after they have logged in with Facebook
they are prompted to link their accounts. If users do not already have a Sprog account,
they will be prompted to create one after authenticating with Facebook. Other tables will
be modified, as indicated throughout this section.The next stage is to register an applica-
tion with Facebook and to reference the various Facebook libraries within Sprog.

Registering a Facebook Application and Adding Facebook Support
Before proceeding, you must first register a Sprog application on Facebook by visiting
http://www.facebook.com/developers/createapp.php and submitting the following:

n Application Name:An appropriate name for this application would be Sprog,
although this can be anything that you want.

www.it-ebooks.info

http://www.facebook.com/developers/createapp.php
http://www.it-ebooks.info/

280 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

n Description:This can be left blank or you could add the following:‘A test application
for @markhawker’s book entitled:“The Developer’s Guide to Social Programming”’.

n Icon and Logo:A sample application icon and logo have been included in the
static directory but these can be modified as appropriate.

n Post-Authorize Callback URL and Post-Remove Callback URL:These param-
eters are located within the Authentication tab and should reference your
CodeIgniter base URL plus sprog/facebook/authorize and sprog/facebook/

remove, which are functions that need to be created within the main controller.

n Connect URL:This parameter is located in the “Connect” tab and should be set to
your CodeIgniter base URL plus sprog.

n Base Domain:If your CodeIgniter base URL were http://sprog.com/codeigniter/,
the base domain would be sprog.com.This parameter will vary depending on
whether you have installed CodeIgniter on a subdomain or not.

n Facebook Logo:As with the icon and logo, a logo has been included in the static
directory or can be left blank for this example.

After all these details have been saved, you will be given an application ID,API key,
and secret alongside the path to your xd_receiver.htm file, which should be added to
your constants.php configuration file using the following names:

define("APP_ID", "XXXXXXXXXXXX");

define("API_KEY", "XXXXXXXXXXXXXXXXXXXXXXXX");

define("SECRET", "XXXXXXXXXXXXXXXXXXXXXXXX");

define("XD_RECEIVER", "...\xd_receiver.htm");

By adding these constants, you ensure that they are addressable within the application,
instead of having to worry about storing them as an external reference. Note that this
application is going to utilize just a subset of the entire Facebook library, so possible
extensions include adding a canvas page, application tab, or a Publisher interface.

The final step is to download Facebook PHP client library and upload it to the
application\libraries directory.To make this a pseudo-CodeIgniter library, a
facebook_library.php class will need to be created that will include the library plus
some standard functions, such as creating the Facebook object:

<?php if (!defined("BASEPATH")) exit("No direct script access allowed");

include "facebook-platform/php/facebook.php";

class Facebook_Library {

function get_facebook() {

return new Facebook(API_KEY, SECRET);

}

}

?>

www.it-ebooks.info

http://sprog.com/codeigniter/
http://www.it-ebooks.info/

281Implementing Facebook Functionality

Within this file, you directly import the library so that whenever the $this->load-
>library("facebook_library") method is called, these files are immediately loaded. By
constructing the library in this way, you can then access $this->facebook_library-
>get_facebook() to initialize a Facebook session. Because you will be using this library
throughout the application, it should be loaded automatically by adding facebook_
library to the $autoload["libraries"] variable in autoload.php.

Stage 4: Extending the Sprog Application with Facebook
Functionality
The goal of adding Facebook functionality is to enable users to log in using their
Facebook credentials so that they can post their Sprog updates to their Facebook stream
easily and conveniently.As with the complexities encountered in adding Twitter function-
ality, you have to handle cases in which users already have a Sprog account and want to
“link” this with their Facebook account. In this instance, it is required that they log in via
Facebook and then log in using their Sprog credentials to create the link that will then be
automatic the next time they authenticate.The first hurdle is to add the Facebook library
to the template files to ensure that they are loaded on each page. Inside the
application\views\sprog\includes directory, you should open the global template
file, template.php, and add the following:

$source = $this->encrypt->decode($this->session->userdata("source"));

switch($source) {

case "s":

$data["via"] = "Sprog";

break;

case "t":

$data["via"] = "Twitter";

break;

case "f":

$data["via"] = "Facebook";

break;

case "g":

$data["via"] = "Google Friend Connect";

break;

default:

$data["via"] = false;

}

This code snippet will pass a variable to the header.php that will be used to display a
simple prompt to users letting them know which authentication mechanism was used to
log them in.This is important because if users have not logged out from Facebook and
visit your site, they will automatically be logged in.The code to display the prompt inside
header.php should be placed just below the description container:

www.it-ebooks.info

http://www.it-ebooks.info/

282 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

<?php if($via) { ?>

<div id="logged_in_via">

<p>You are currently logged in via <?php echo $via; ?>.</p>

</div>

<?php } ?>

As with all the styles used in this chapter, the accompanying style.css file is included
within the code repository.The final template file that needs to be modified is
footer.php, which will contain the references to the Facebook library.These should be
placed just above the closing </body> tag:

<script src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/

FeatureLoader.js.php" type="text/javascript"></script>

<script type="text/javascript">

FB.init("<?php echo API_KEY; ?>", "<?php echo XD_RECEIVER; ?>",

{"reloadIfSessionStateChanged":true});

</script>

This addition makes use of the constants that were saved earlier and should reference
the xd_receiver.htm file, which should be uploaded to the static directory and given
644 permissions. So far, all that has been achieved is to reference the Facebook files and
not to detect whether users have authenticated or linked their account to Sprog.To
begin, the main controller should be updated with the reference to the facebook() func-
tion to support the post-authorize and post-remove callback URLs:

function facebook() {

$function = $this->uri->segment(3);

switch($function) {

case "authorize":

break;

case "remove":

$this->facebook_model->remove();

break;

case "logout":

$this->session->set_userdata("facebook_logout", true);

redirect("sprog/index");

break;

}

}

In this application, the first authorize case is not used because it is already part of the
process to add a user’s details to the database. Because Facebook simply “pings” this func-
tion, you could use it to store authorization attempts to your database if you suspect that a
user might not fully complete the linking of their accounts.The remove case accesses a
remove() function, which needs to be created within a new model, facebook_
model.php, and which will contain all your Facebook functionality.The final case is used
to clear a Facebook-specific session variable that will be created after a user has logged in

www.it-ebooks.info

http://www.it-ebooks.info/

283Implementing Facebook Functionality

to detect his status.Your initial facebook_model.php should be stored within
application\models and will contain the single remove() function for deleting a user
from the facebook table:

<?php

class Facebook_Model extends Model {

function Facebook_Model() {

parent::Model();

}

function remove() {

$facebook = $this->facebook_library->get_facebook();

$facebook_parameters = $facebook->get_valid_fb_params($_POST, null,

"fb_sig");

if (!empty($facebook_parameters) && $facebook->fb_params['uninstall']

== 1) {

$this->db->delete("facebook", array("id" => $facebook->

fb_params["user"]));

}

}

}

?>

The two main view files that need to be modified are login.php and register.php,
which must be able to detect Facebook connectivity.Their related controller functions,
index() and register(), should include the following two code blocks, which should
be placed at the top of each function:

$this->facebook_model->is_facebook_logged_in();

if($this->facebook_model->get_user()) {

$data["has_facebook"] = "You are signed in with Facebook, but you

must log in or register with us to link accounts. You will only have

to do this once.";

}

As with the $data["has_twitter"] variables, a related entry should be added to the
two views for displaying the message itself:

if(!empty($has_facebook)) {

echo "<p class="facebook_message">".$has_facebook."</p>";

}

Within the login.php file, you also want to show the Facebook login button as an
alternative login option alongside the “Sign in with Twitter” button created in the
“Implementing Twitter Functionality” section, earlier in the chapter:

if(empty($has_twitter) && empty($has_facebook)) {

echo "<h2>Alternative Logins</h2>";

echo '<p><img src="'.base_url().

www.it-ebooks.info

http://www.it-ebooks.info/

284 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

'static/siwt-darker.png" height="24" width="151" alt="Sign in with

Twitter" /> <fb:login-button></fb:login-button></p>';

}

Before you can run your application, the facebook_model.php needs to be updated
with the is_facebook_logged_in(), get_user() and related methods.These methods
are used to test whether a Facebook session has been initiated and to check whether the
users have already linked their Facebook and Sprog accounts. Of course, this functionality
has not been added yet, and so they will not be able to log in fully but will be shown the
message that they have authenticated via Facebook.

function get_user() {

$facebook = $this->facebook_library->get_facebook();

return $facebook->get_loggedin_user();

}

This helper method is used to test whether a Facebook ID is available via the client
library. Remember, both the client-side and server-side Facebook libraries work in uni-
son, and so if issuers are logged in via clicking the Facebook button, their session will be
made available to you:

function check_user($facebook_id) {

$this->db->select("*")->from("user")->join("facebook",

"facebook.user_username = user.username", "left");

$this->db->where("id", $facebook_id);

$query = $this->db->get();

if($query->num_rows() == 0) {

return false;

} else {

$user = $query->row();

$data = array(

"username" => $this->encrypt->encode($user->username),

"fullname" => $this->encrypt->encode($user->fullname),

"is_logged_in" => true,

"source" => $this->encrypt->encode("f")

);

$this->session->set_userdata($data);

return true;

}

}

Another helper method, this will check whether users have already authenticated their
account and will store their details within the active session if they have.These two helper
methods are tied together in the main is_facebook_logged_in() method:

function is_facebook_logged_in() {

$is_logged_in = $this->session->userdata("is_logged_in");

$facebook_logout = $this->session->userdata("facebook_logout");

$facebook_user = $this->get_user();

www.it-ebooks.info

http://www.it-ebooks.info/

285Implementing Facebook Functionality

if($facebook_user && !$is_logged_in && !$facebook_logout) {

$this->check_user($facebook_user);

}

$this->session->set_userdata("facebook_logout", false);

}

This function tests whether issuers are already logged in or have just logged out of
the application and will update their session accordingly.After saving this model and
uploading it with the amended views and controller, you should be able to click the
Facebook button and be presented with the message stating that you have logged in via
Facebook.This final step is to integrate this within the login() and create() controller
functions so that details are stored within the database and made accessible in future ses-
sions. Both functions require the following code to be added within the
if(!empty($user)) conditional:

if($this->facebook_model->get_user()) {

$this->facebook_model->link($this->facebook_model->get_user(), $user

name);

$source = "f";

}

This simple addition shows the true power of the MVC architecture in that no major
changes were required to customize the login functionality.All that remains is to create
the link() method within the model:

function link($facebook_id, $username) {

$query = $this->db->get_where("facebook", array("id" => $facebook_id));

if($query->num_rows() == 0) {

$user = array(

"id" => $facebook_id,

"session_key" => "",

"user_username" => $username

);

$query = $this->db->insert("facebook", $user);

return true;

} else {

return false;

}

}

This method is simple, in that all that needs to be done is to check whether users have
already been added to the facebook table. If not, they should be added as appropriate.The
rest of the functionality has already been created in previous iterations to handle other
complexities.The final addition is to flesh out the logout() function within the con-
troller to log a user out of Facebook, too, which can be achieved by using the following:

if($this->facebook_model->get_user()) {

$this->facebook_library->get_facebook()->logout(

base_url()."sprog/facebook/logout");

www.it-ebooks.info

http://www.it-ebooks.info/

286 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

Figure 13.3 Screen shot of Sprog home page with
Facebook permissions prompt.

} else {

redirect("sprog/index");

}

This code tests whether a Facebook user is present, and if so, the logout() method of
the client library is executed, which requires a parameter instructing Facebook where to
redirect the user after he or she has been logged out (in this instance, referencing the
facebook() function detailed at the beginning of this section). Now that you have access
to Facebook users’ credentials, it’s time to add some functionality to post updates, com-
ments, and likes to their stream, which requires three extended permissions: read_stream,
publish_stream, and offline_access.

When users visit their home page for the first time, they will be prompted with the
message shown in Figure 13.3, which will invite them to grant Sprog access to their
stream and an “infinite” session key.To achieve this, you need to add a mixture of client-
side code to prompt them for the permissions and server-side code for displaying controls
based on what permissions they have granted.When they click the link to grant permis-
sions, the FB.Connect.showPermissionDialog() function will be called and open a dia-
log box for them to confirm the application’s access to their stream.They will not be
shown the message on subsequent visits to this page because their permissions will have
already been retrieved from Facebook.

The first edit that needs to be made is within the JavaScript inside footer.php.A new
function will need to be created called get_permissions() with a callback function
parse_permissions(), which will check to see that all three were granted and will
refresh the page.This code should be placed just after the FB.init() call:

function get_permissions() {

FB_RequireFeatures(["Connect"],

function() {

FB.Connect.showPermissionDialog("publish_stream,read_stream,

offline_access", parse_permissions, false, null);

www.it-ebooks.info

http://www.it-ebooks.info/

287Implementing Facebook Functionality

}

);

}

function parse_permissions(response) {

var permissions = new Array();

permissions = response.split(",");

if(permissions.length == 3) {

document.getElementById("facebook_permissions").style.display = "none";

window.location.reload();

}

}

The parse_permissions() function splits the string returned by the get_
permissions() function and tests whether it has three elements. If so, the prompt is hid-
den and the page is refreshed.The next step is to update the home.php view file, but first
the home() function within the main controller needs to be updated with two new
$data items:

$data["has_facebook"] = $this->facebook_model->has_facebook($username);

$data["has_facebook_permissions"] = $this->facebook_model->

has_permissions($username);

These two items first check that the users have connected their Facebook details and
then will check that they have allowed access to the three permissions requested in the
call to FB.Connect.showPermissionDialog() above. Both requests utilize a username to
look up values from your database and return Boolean true or false values.The two
functions should be added to facebook_model.php:

function has_facebook($username) {

$query = $this->db->get_where("facebook", array("user_username" =>

$username));

return ($query->num_rows() > 0 ? true : false);

}

function has_permissions($username) {

$facebook = $this->facebook_library->get_facebook();

$user = $facebook->get_loggedin_user();

if($user) {

try {

$data = $facebook->api_client->fql_query(

'SELECT uid, publish_stream, read_stream, offline_access FROM

permissions WHERE uid = "'.$user.'"');

if(is_array($data)) {

$permissions = array(

"publish_stream" => $data[0]["publish_stream"],

"read_stream" => $data[0]["read_stream"],

"offline_access" => $data[0]["offline_access"]

);

}

www.it-ebooks.info

http://www.it-ebooks.info/

288 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

if($permissions["publish_stream"] && $permissions["read_stream"] &&

$permissions["offline_access"]) {

$session_key = (isset($_COOKIE[API_KEY."_session_key"]) ?

$_COOKIE[API_KEY."_session_key"] : false);

$expires = (isset($_COOKIE[API_KEY."_expires"]) ?

$_COOKIE[API_KEY."_expires"] : -1);

if($expires == 0 && $session_key) {

$this->db->set("session_key", $session_key);

$this->db->where("id", $user);

$this->db->update("facebook");

}

return true;

} else { return false; }

}

catch (Exception $e) { return false; }

} else {

$query = $this->db->get_where("facebook", array("user_username" =>

$username, "session_key !=" => ""));

return ($query->num_rows() == 1 ? true : false);

}

}

The complexity of the has_permissions() function is due to the fact that you want
to display the option to post to Facebook even if users have not logged in via Facebook
(for example, if they have linked accounts and then logged in via Twitter). By granting the
offline_access permission, you are able to retrieve the session key located within the
Facebook cookie and then store it within your database.This session key will remain valid
unless they revoke access to your application, which would be an extension for this appli-
cation because in this example it is not checked.The results of both functions are then
passed to the home.php view for displaying the permissions prompt but also the option to
post to Facebook:

<?php if($has_facebook && !$has_facebook_permissions) { ?>

<p id="facebook_permissions">To fully-utilize this application you must

grant extended Facebook

permissions to publish to and read from your stream.</p>

<?php } ?>

The option to post to Facebook should be placed alongside the option to post to
Twitter and can be added with the following code:

echo "<table><tr>";

if($has_twitter) {

echo "<td>";

echo form_label("Post to Twitter?", "twitter");

echo form_checkbox("twitter", 1, true);

echo "</td>";

}

www.it-ebooks.info

http://www.it-ebooks.info/

289Implementing Facebook Functionality

if($has_facebook && $has_facebook_permissions) {

echo "<td>";

echo form_label("Post to Facebook?", "facebook");

echo form_checkbox("facebook", 1, true);

echo "</td>";

}

echo "</tr></table>";

This simple addition will send a value within the form as to whether to post to
Facebook or not.The next function that needs to be amended is update() within the
controller. It will check for this value and then execute the update() function of the
Facebook model.This test should be placed within the controller just underneath the test
for the twitter value:

if($this->input->post("facebook") == 1) {

$this->facebook_model->update($username, $update, $id);

}

The associated update() function within facebook_model.php has to extract the
user’s Facebook details from the database, set the correct session, post the update, and then
set the returned Facebook identifier to a new facebook_id field within the update table.
The field should be a varchar(64) and can be NULL (because not all updates relate to
Facebook):

function update($username, $update, $id) {

$query = $this->db->get_where("facebook", array("user_username" =>

$username));

$user = $query->row();

$facebook = $this->facebook_library->get_facebook();

$facebook->set_user($user->id, $user->session_key);

try {

$post_id = $facebook->api_client->stream_publish($update);

$this->db->set("facebook_id", $post_id);

$this->db->where("id", $id);

$this->db->update("update");

return true;

}

catch (Exception $e) { return false; }

}

The $facebook->set_user() method is extremely useful because you can mimic the
“presence” of users irrespective of how they have logged in.The update is published to
their stream and the record is updated.The reason why the Facebook identifier is stored is
that you can then extract the post from Facebook and get its likes and comments. In this
application, you will only be posting data to Facebook rather than extracting data from it,
which could be an addition, should you want to show comments made inside Facebook
in your applications.

www.it-ebooks.info

http://www.it-ebooks.info/

290 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

The like() and comment() functions within the main controller need to be updated
so that they are also posted to Facebook. Both functions require you to test whether the
user has appropriate permissions but also to extract the relevant Facebook identifier (if
available) for an update:

$has_facebook_permissions = $this->facebook_model-

>has_permissions($username);

$facebook_id = $this->facebook_model->get_facebook_id($update_id);

The like() function then requires an if($has_facebook_permissions &&
$facebook_id) { $this->facebook_model->like($facebook_id); } to be added
which calls the like() function within the Facebook model:

function like($facebook_id) {

$facebook = $this->facebook_library->get_facebook();

$user = $facebook->get_loggedin_user();

if($user) {

try {

$like = $facebook->api_client->stream_addLike($facebook_id);

return $like;

}

catch (Exception $e) { return false; }

} else { return false; }

}

Because this function requires a valid Facebook identifier, this can be extracted from
$update_id within the following function:

function get_facebook_id($update_id) {

$query = $this->db->get_where("update", array("id" => $update_id,

"facebook_id !=" => ""));

return ($query->num_rows() == 1 ? $query->row()->facebook_id : false);

}

Comments are slightly more complex, in that it’s good practice to store the returned
Facebook identifier within your database, and so the controller function should be modi-
fied with this code:

if($has_facebook_permissions && $facebook_id) {

$comment_id = $this->facebook_model->comment($facebook_id, $comment);

} else {

$comment_id = null;

}

$this->sprog_model->post_comment($update_id, $username, $comment, $source,

$comment_id);

Here, the returned Facebook identifier is passed into the post_comment() function,
which should be updated to accommodate the final parameter.Again, the comment table
should be updated with a facebook_id field, which is a varchar(64).The comment()

www.it-ebooks.info

http://www.it-ebooks.info/

291Implementing Facebook Functionality

Figure 13.4 Screen shot of an update, comment,
and like submitted to Facebook.

function within the Facebook model is similar to the like() function, although uses the
$facebook->api_client->stream_addComment($facebook_id, $comment) method. If
all is successful and you submit an update, comment, or like to Facebook, you should be
greeted with a screen shot similar to Figure 13.4.

You can find the files for this section in the online github code repository inside the
stagefour directory.This directory should be renamed codeigniter and include your
customized configuration files. If all is well, you should have created or modified the fol-
lowing files and functions and updated the static directory with the new style.css file
and added the xd_receiver.htm file and updated the following files and functions:

n applications\controllers\sprog.php: facebook(), index(), register(),
login(), create(), home(), update(), logout(), like() and comment()

n applications\models\sprog_model.php: post_comment()

n applications\models\facebook_model.php: remove(), get_user(),
check_user(), is_facebook_logged_in(), link(), has_facebook(),
has_permissions(), update(), get_facebook_id(), like() and comment().

n applications\views\sprog\home.php

n applications\views\sprog\login.php

n applications\views\sprog\register.php

n applications\views\sprog\includes\header.php

n applications\views\sprog\includes\footer.php

n applications\views\sprog\includes\template.php

In addition, you should have also uploaded the Facebook API PHP client library to
application\libraries\facebook-platform and added the facebook_library.php
file. Extensions to this code would be to retrieve comments and likes from Facebook,
display a user’s friends’ updates and comments more prominently using $facebook-
>api_client->friends_getAppUsers(), and more efficient handle details of whether

www.it-ebooks.info

http://www.it-ebooks.info/

292 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

users revoke access to their account.The final section shows how to add Google Friend
Connect functionality alongside Twitter and Facebook to increase the reach of your
application further.

Implementing Google Friend Connect
Functionality
As with Twitter and Facebook, you can use Google Friend Connect to authenticate users
and to post updates.Widgets such as Comments and the Social Bar can be used to good
effect to maintain a members list but also to surface updates and replies to users who do
not have a Sprog account.The combination of client-side and server-side technologies
makes the integration of Google Friend Connect similar to that of Facebook, where you
can use a combination of cookie-based authentication and OAuth for “offline” updates.
A new table needs to be created in your database, google, for storing user credentials.
The OpenSocial client library will also be translated to work with CodeIgniter, and a
new model will be created, google_model.php, to contain code specific to Google
Friend Connect.

The google table will store the user’s Google account ID plus a reference to a record
in the user table (if one already exists). Because Google Friend Connect uses only two-
legged OAuth, no other keys are required to authenticate a user.The following SQL
should be executed to create this table:

CREATE TABLE IF NOT EXISTS "google" (

"id" bigint NOT NULL,

"user_username" varchar(24) NULL,

PRIMARY KEY ("id")

);

For users who already have a Sprog account, after they have logged in with Google
Friend Connect they will be prompted to link their accounts. If users do not already have
a Sprog account, they will be prompted to create one after authenticating with Google
Friend Connect.The next stage is to register an application with Google and to reference
the client- and server-side OpenSocial libraries within Sprog.

Registering and Adding Google Friend Connect Support
Before you can add Google Friend Connect functionality, you must first register a Sprog
application by logging in to your Google account and visiting http://www.google.com/
friendconnect/admin/site/setup and entering the following details:

n Website Name:An appropriate name for this application would be Sprog, although
this can be anything that you want.

n Website URL:This should be set to the domain (or subdomain) where you have
installed CodeIgniter. For example, if you have installed your application at
http://sprog.com/codeigniter/, this should be set to http://sprog.com/.

www.it-ebooks.info

http://www.google.com/friendconnect/admin/site/setup
http://www.google.com/friendconnect/admin/site/setup
http://sprog.com/codeigniter/
http://sprog.com/
http://www.it-ebooks.info/

293Implementing Google Friend Connect Functionality

After all these details have been saved, you will be able to access a site ID from the
address bar and a consumer key and secret within the REST API tab of the Plug-ins &
APIs section.You should add these to your constants.php configuration file using the
following names:

define("GFC_SITE_ID", "XXXXXXXXXXXX");

define("GFC_CONSUMER_KEY", "XXXXXXXXXXXXXXXXXXXXXXXX");

define("GFC_CONSUMER_SECRET", "XXXXXXXXXXXXXXXXXXXXXXXX");

define("GFC_PARENT_URL", "/");

By adding these constants, you ensure that they are addressable within the application,
instead of having to worry about storing them as an external reference. In particular, if
the GFC_PARENT_URL is set incorrectly, the Google Friend Connect gadgets will not be
loaded.Therefore, you must ensure that this is configured appropriately. In the examples
in this section, this should be set to “/” because your domain (or subdomain) was set as
the website URL.

The final step is to download OpenSocial PHP client library and upload it to the
application\libraries directory.To make this a pseudo-CodeIgniter library, a
google.php class will need to be created that will include the library plus some standard
functions such as creating the OpenSocial object:

<?php if (!defined("BASEPATH")) exit("No direct script access allowed");

include "osapi/osapi.php";

class Google {

function get_google_oauth($userId) {

$provider = new osapiFriendConnectProvider();

$authentication = new osapiOAuth2Legged(GFC_CONSUMER_KEY,

GFC_CONSUMER_SECRET, $userId);

return new osapi($provider, $authentication);

}

function get_google_cookie($cookie) {

$provider = new osapiFriendConnectProvider();

$authentication = new osapiFCAuth($cookie);

return new osapi($provider, $authentication);

}

}?>

Within this file, you import the library so that whenever the $this->load->library
("google") method is called, these files are immediately loaded. By constructing the
library in this way, you can then initialize a Google Friend Connect session via either an
authentication cookie or via OAuth. Because you will be using this library throughout
the application, it should be loaded automatically by adding google to the
$autoload["libraries"] variable in autoload.php.

www.it-ebooks.info

http://www.it-ebooks.info/

294 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

Stage 5: Extending the Sprog Application with Google Friend
Connect Functionality
As with Facebook, the Google Friend Connect workflow can be handled using client-
side code to display the sign-in button and then via server-side code to detect the pres-
ence of login credentials such as an authentication cookie.The first two files that need to
be modified are the header.php and footer.php views, which will include the client-
side library and attempt to extract user data. In the header.php file, you should add the
following code into the <head> element of the page:

<script type="text/javascript" src="http://www.google.com/jsapi"></script>

<script type="text/javascript">

google.load("friendconnect", "0.8");

</script>

<script type="text/javascript">

google.friendconnect.container.setParentUrl("<?php echo

GFC_PARENT_URL; ?>");

google.friendconnect.container.initOpenSocialApi({

site: "<?php echo GFC_SITE_ID; ?>",

onload: function(securityToken) { initAllData(); }

});

</script>

This simple snippet includes the library using the constants that were defined in the
section above and finally calls the initAllData() function, which should be placed
within footer.php:

<script type="text/javascript">

var viewer;

function initAllData() {

var params = {

"profileDetail": [opensocial.Person.Field.ID,

opensocial.Person.Field.NAME, opensocial.Person.Field.THUMBNAIL_URL,

opensocial.Person.Field.PROFILE_URL]

};

var req = opensocial.newDataRequest();

req.add(req.newFetchPersonRequest("VIEWER", params), "viewer");

req.send(onData);

}

function onData(data) {

var gfcButtonHtml = document.getElementById("gfcButton");

if (data.get("viewer").hadError()) {

google.friendconnect.renderSignInButton({

"id": "gfcButton",

"style": "standard"

});

gfcButtonHtml.style.display = "block";

www.it-ebooks.info

http://www.it-ebooks.info/

295Implementing Google Friend Connect Functionality

Figure 13.5 Screen shot of the index page with
Google Friend Connect button.

} else {

gfcButtonHtml.style.display = "none";

window.location.reload();

}

}

</script>

The code above is used to try to retrieve a Google Friend Connect viewer’s details
and will then show or hide the sign-in button depending on whether the request is suc-
cessful or not. If successful, the button is hidden and the page is then refreshed, where the
authentication cookie can then be extracted.The final modification in terms of views is
to add the gfcButton element to the index page, which will produce the screen shot
shown in Figure 13.5.

Like the code added to the login.php view for authenticating via Twitter and
Facebook, a message needs to be displayed if a user has signed in to Google Friend
Connect but not linked his accounts.You can do so as follows:

if(!empty($has_google)) {

echo '<p class="google_message">'.$has_google."</p>";

}

The small snippet of code above should also be added to the register.php view.The
conditional for displaying the alternative login options should also be updated to include
the following:

if(empty($has_twitter) && empty($has_facebook) && empty($has_google)) {

...

$userAgent = $_SERVER["HTTP_USER_AGENT"];

$unsupportedBrowsers = array("Opera");

$isBrowserSupported = true;

www.it-ebooks.info

http://www.it-ebooks.info/

296 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

foreach ($unsupportedBrowsers as $unsupportedBrowser) {

$isBrowserSupported = preg_match("/".$unsupportedBrowser."/i",

$userAgent) ? false : true;

}

if($isBrowserSupported) { echo '<p id="gfcButton"></p>'; }

}

Because the Google Friend Connect functionality doesn’t appear to work correctly
within the Opera browser, it must be omitted as an option for those users.The code to
create the $has_twitter variable should be added to both the index() and register()

functions of the main controller, which reference a Google model, which is created next:

if($this->google_model->get_viewer()) {

$data["has_google"] = "You are signed in with Google Friend Connect, but

you must log in or register with us to link accounts. You will only have

to do this once.";

}

This conditional calls the get_viewer() function of the Google model, which will
return a viewer’s details if successful and return false if not. Create a new file called
google_model.php and save it into application\models and add it to the
autoload.php configuration file:

<?php

class Google_Model extends Model {

function Google_Model() {

parent::Model();

}

function get_viewer() {

$cookieIdentifier = "fcauth".GFC_SITE_ID;

$cookie = isset($_COOKIE[$cookieIdentifier]) ?

$_COOKIE[$cookieIdentifier] :

null;

if ($cookie) {

$opensocial = $this->google->get_google_cookie($cookie);

$batch = $opensocial->newBatch();

$viewerParameters = array("userId" => "@me", "groupId" => "@self",

"fields" => "@all");

$getViewer = $opensocial->people->get($viewerParameters);

$batch->add($getViewer, "viewer");

$response = $batch->execute();

$data = $response["viewer"];

if ($data instanceof osapiError) { return false; }

else {

$data = array("id" => $data->getId(), "name" => htmlentities(

$data->getName()), "thumbnailUrl" => htmlentities($data->

getThumbnailUrl()));

return $data;

www.it-ebooks.info

http://www.it-ebooks.info/

297Implementing Google Friend Connect Functionality

}

} else { return false; }

}

}

?>

This code attempts to extract the authentication cookie using the site ID parameter
and then creates the OpenSocial object to access a user’s details.These details are then
returned via a $data array; otherwise, the function will return false. One of the benefits
of Google Friend Connect and the OpenSocial library is that you can create the
OpenSocial object either via the authentication cookie or via two-legged OAuth.With
the cookie, you can then store the user’s identifier within the database for future use.This
next step is supported by the is_google_logged_in() function within the model, which
is called right at the top of index() and register():

function is_google_logged_in() {

$is_logged_in = $this->session->userdata("is_logged_in");

$google_user = $this->get_viewer();

if($google_user && !$is_logged_in) {

return $this->check_user($google_user);

} else { return false; }

}

This method calls the check_user() function, passing in a user’s Google Friend
Connect details, which are then verified against your database to check whether users
have previously authenticated their account. If so, their session is saved and they are
logged in, otherwise they are prompted to link their accounts:

function check_user($google_user) {

$this->db->select("*")->from("user")->join("google",

"google.user_username = user.username", "left");

$this->db->where("id", $google_user["id"]);

$query = $this->db->get();

if($query->num_rows() == 0) { return false; }

else {

$user = $query->row();

$data = array(

"username" => $this->encrypt->encode($user->username),

"fullname" => $this->encrypt->encode($user->fullname),

"is_logged_in" => true,

"source" => $this->encrypt->encode("g")

);

$this->session->set_userdata($data);

return true;

}

}

www.it-ebooks.info

http://www.it-ebooks.info/

298 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

The next step is to add code to both the login() and create() controller methods to
link a user’s accounts together, which is achieved by adding the following just below
where the Facebook code was added:

if($this->google_model->get_viewer()) {

$this->google_model->link($this->google_model->get_viewer(), $username);

$source = "g";

}

The final step in the authentication process is to create the link() function within
google_model.php, which creates a reference in the google table in your database:

function link($google_user, $username) {

$query = $this->db->get_where("google", array("id" =>

$google_user["id"]));

if($query->num_rows() == 0) {

$user = array("id" => $google_user["id"], "user_username" => $username);

$query = $this->db->insert("google", $user);

return true;

} else { return false; }

}

You will notice that only a single identifier is required for a Google Friend Connect
user because two-legged OAuth requests their individual identifier. If you save and upload
the following files to your web server, you should now be able to sign in via Google
Friend Connect:

n applications\controllers\sprog.php: index(), register(), login() and
create()

n applications\models\google_model.php: get_viewer(),
is_google_logged_in(), check_user() and link()

n applications\views\sprog\login.php

n applications\views\sprog\register.php

n applications\views\sprog\includes\header.php

n applications\views\sprog\includes\footer.php

In addition, you should have also uploaded the OpenSocial PHP client library to
application\libraries\google and added the google.php file. Now that you have an
authenticated user, you can now add a Comments gadget for users to reply to updates and
also post original updates to their Google Friend Connect accounts.The first addition
requires a new parameter to be added to the view_comment() controller function:

$data["is_google"] = ($this->encrypt->decode($this->session->

userdata("source")) == "g" ? true : false);

With this piece of additional information, a user will be shown a Google Friend
Connect Comments gadget rather than the standard comments form in the

www.it-ebooks.info

http://www.it-ebooks.info/

299Implementing Google Friend Connect Functionality

comments.php view.Alongside the conditional test, you also need to add a snippet of
JavaScript to render the gadget:

<?php if($is_google) { ?>

<div id="google_comments" style="width: 610px; border: 1px solid

#ccc;"></div>

<?php } else { ?>

<div id="comment">

...

</div>

<?php } ?>

<script type="text/javascript">

var skin = {};

skin["BORDER_COLOR"] = "#cccccc";

skin["ENDCAP_BG_COLOR"] = "#e0ecff";

skin["ENDCAP_TEXT_COLOR"] = "#333333";

skin["ENDCAP_LINK_COLOR"] = "#0000cc";

skin["ALTERNATE_BG_COLOR"] = "#ffffff";

skin["CONTENT_BG_COLOR"] = "#ffffff";

skin["CONTENT_LINK_COLOR"] = "#0000cc";

skin["CONTENT_TEXT_COLOR"] = "#333333";

skin["CONTENT_SECONDARY_LINK_COLOR"] = "#7777cc";

skin["CONTENT_SECONDARY_TEXT_COLOR"] = "#666666";

skin["CONTENT_HEADLINE_COLOR"] = "#333333";

skin["DEFAULT_COMMENT_TEXT"] = "- add your comment here -";

skin["HEADER_TEXT"] = "Comments";

skin["POSTS_PER_PAGE"] = "5";

google.friendconnect.container.renderWallGadget({

id: "google_comments",

site: "<?php echo GFC_SITE_ID; ?>",

"view-params":{

"disableMinMax":"true", "scope":"PAGE", "features":"video,comment",

"startMaximized":"true"

}

}, skin);

</script>

By using the Comments gadget, you do not have to store any of the comments in
your own database, which makes this quite a useful replacement for those who log in via
Google Friend Connect. However, for original updates, you might want them to be
stored and posted as activities to a user’s linked Google accounts.This can be achieved by
updating the update() controller function, which then points to the Google model to
execute the update:

$has_google_id = $this->google_model->get_google_id($username);

if($has_google_id) { $this->google_model->update($username, $update, $id);

}

www.it-ebooks.info

http://www.it-ebooks.info/

300 Chapter 13 Integrating Twitter, Facebook, and Google Friend Connect

The code that must be added to google_model.php consists of the get_google_id()
function for extracting a user’s connected Google identifier as well as the update()
function itself:

function get_google_id($username) {

$query = $this->db->get_where("google", array("user_username" =>

$username));

return ($query->num_rows() == 1 ? $query->row()->id : false);

}

function update($username, $update, $id) {

$google_id = $this->get_google_id($username);

$opensocial = $this->google->get_google_oauth($google_id);

$batch = $opensocial->newBatch();

$activity = new osapiActivity($id, $google_id);

$activity->setTitle($username);

$activity->setBody($update);

$parameters = array("userId" => "@me", "groupId" => "@self",

"activity" => $activity);

$addActivity = $opensocial->activities->create($parameters);

$batch->add($addActivity, "activity");

$response = $batch->execute();

$data = $response["activity"];

return ($data instanceof osapiError ? false : true);

}

The update() function attempts to construct an OAuth session and then create an
Activity object, which must be passed a unique identifier ($id) plus the user’s identifier
($google_id).The title of the activity is set to their username, and the body is the update
itself. On success, an activity will be published, and then the function will return true.
Alongside comments, you can view activities and members by adding the Social Bar to
footer.php, as shown in Figure 13.6.

The final addition to the code is to modify the logout anchor in home.php to also sign
a user out of Google Friend Connect by adding array("onclick" =>
"google.friendconnect.requestSignOut();") as the third parameter to the anchor()
helper function.As with the additions of Twitter and Facebook, only a small portion of
the many Google Friend Connect functionalities is demonstrated by this application.
Additions could include posting likes as activities; improving user profiles by prepopulat-
ing them with data available via each of the services; adding handling for expired
accounts and removals; and highlighting updates, comments, and likes specific to a user’s
social graph.The opportunities for building on top of the Sprog application are endless.
As with the other sections, code for this section is available from the online code reposi-
tory within the stagefive directory.This directory should be renamed codeigniter and
include your customized configuration files.

www.it-ebooks.info

http://www.it-ebooks.info/

301Summary

Figure 13.6 Screen shot of the home page demonstrating the
Social Bar with comments, members, and activities.

Summary
This final chapter, along with Chapter 12, provided an example of how to integrate Twit-
ter, Facebook, and Google Friend Connect into a real-world web application. By incor-
porating the authentication workflows of each platform, you can then quickly and easily
build social features on top of a preexisting infrastructure.Through building a sample ap-
plication, you should have picked up how this can be achieved easily and be left with nu-
merous ideas about how to improve it!

www.it-ebooks.info

http://www.it-ebooks.info/

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A
accessing responses, Test Tube application

(Twitter), 51

accessor methods, Twitter API, 3-5

account methods, Twitter API, 3-5

accounts, Twitter, updating, 276-279

action links, Open Stream API, 125-126

activities

Color Picker sample application,
posting and retrieving, 187-189

Google Friend Connect, fetching, 177
activity streams, Dashboard API, 139-143

administration methods, Facebook Platform,
86-87

animation library, Facebook, 157-160

Apache Shindig, OpenSocial API, 173

API methods, FQL (Facebook Query
Language), 95

APIs (Application Programming Interface), 1

Facebook, 77-97
Open Stream API, 123-134

Google Friend Connect
JavaScript API, 167-173
OpenSocial API, 173-177

Twitter, 1-19
accessing, 11-19
authorized connections, 12
direct message objects, 28-29
error handling, 18-19

www.it-ebooks.info

http://www.it-ebooks.info/

extending, 61-62
Geolocation API, 68-71
hash objects, 33
ID objects, 30-31
Lists API, 2-3, 61-68
location-based APIs, 61
methods, 3-33
parameters, 6-10
rate limiting, 17
relationship objects, 31-32
response objects, 32
REST (Representational State

Transfer) API, 2-14
return formats, 10-11
Retweets API, 61-64
saved search objects, 29-30
Search API, 3-43
status objects, 26-28
Streaming API, 74-75
user objects, 22-26
versioning, 3

application data, Color Picker sample
application, storing and retrieving, 189-190

Application Edit page (Facebook Platform),
79-81

application tabs

configuring and installing, 146-147
extending, 149-156

applications

Color Picker sample application
(Google Friend Connect), 181-191

configuring, 183-185
creating, 222-233
posting and retrieving activities,

187-189
registering, 183-185
retrieving site members, 187

sign-in functionality, 186
storing and retrieving application

data, 189-190
Facebook

referencing, 81-82
registering, 79-81
tags, 145-156

Sprog application, building, 246-266
building, 246-266
comments, 257-266
create() function, 253
Facebook, 279-292
Google Friend Connect, 292-300
home pages, 247-257
index() function, 250
index page, 248
likes, 257-266
logins, 247-257
registering, 247-257
Twitter, 268-279
Updates, 257-266

Test Tube application (Twitter), 50
class methods, 50-51

Translations for Facebook, preparing,
111-113

entry elements, 36-37
feed elements, 35-36

Atom syndication format

Search API (Twitter), 34-38

versus JSON, 37-38
authentication, 45

Facebook, 99-107
Facebook Platform, 87
Google Friend Connect, 194-196

cookies, 195
standard two-legged OAuth,

195-196
Twitter, OAuth, 45-59

304 APIs (Application Programming Interface)

www.it-ebooks.info

http://www.it-ebooks.info/

Authentication tab (Application Edit
page), 80

authentication workflow, Google Friend
Connect, 197-198

authorized connections, Twitter API, 12

B
Basic Authentication, twitter-async client

library, 16-17

Basic tab (Application Edit page), 80

block methods, Twitter API, 4-5

C
callback parameter (Twitter API), 8

character limit, Twitter, 2

class methods, twitter-async client library,
50-51

client libraries

OpenSocial client libraries, 196-197
PHP OpenSocial client library,

Google Friend Connect, 197-207
code listings

3.1 (functions.php file), 52
3.2 (index.php file), 53-54
3.3 (master.php file), 55-56
4.1 (printRetweets function), 63
4.2 (printFollowers function), 72
5.1 (Simple Facebook Platform Page),

82
6.1 (Sample Facebook Page), 103-104
6.2 (Sample Facebook Post-Authorize

Callback URL), 107
6.3 (Sample Facebook Post-Remove

Callback URL), 108
7.1 (get_write_permission method),

128
8.1 (index.php File Demonstrating a

Simple Facebook Canvas Page), 147

8.2 (Example for the tab.php File
Demonstrating a Simple Application
Tab), 150

8.3 (Example post.php File
Demonstrating Adding a Comment
and Returning Data Back to an
Application Tab), 155

12.1 (sprog.php File Demonstrating
the Default index() Function), 250

12.2 (create() Function within the
Main Controller), 253

12.3 (Sprog Model and create()
Function), 255

12.4 (updates() and my_comments()
Function,)264

CodeIgniter, 235-266

configuring, 237-240
directory structue, 237-238
GET parameters, handling, 236
helpers, 245-246
installing, 237-240
libraries, 240-244

Database class, 240-243
pagination class, 243-244
session class, 244-245
URI class, 243

MVC (Model View Controller)
architectural design, 236-237

Sprog application
building, 246-266
comments, 257-266
create() function, 253
home pages, 247-257
index() function, 250
index page, 248
likes, 257-266
logins, 247-257
registering, 247-257
updates, 257-266

305CodeIgniter

www.it-ebooks.info

http://www.it-ebooks.info/

Color Picker sample application (Google
Friend Connect), 181-191

activities, posting and retrieving,
187-189

application data, storing and
retrieving, 189-190

configuring, 183-185
creation, 222-233
registering, 183-185
sign-in functionality, 186
site members, retrieving, 187

commands, cURL, REST API access, 12-14

comments

Open Stream API, adding and
removing, 129

Sprog application, 257-266
Comments Box widget (Facebook), 120-123

communities, Twitter, 71

future directions, 74-76
platform translations, 71
spam reporting, 72-74

configuration

application tabs, 146-147
CodeIgniter, 237-240
Color Picker sample application

(Google Friend Connect), 183-185
JavaScript Library, Google Friend

Connect, 169-170
Twitter, 268-270

Connect tab (Application Edit page), 81

connecting Facebook friends, 109-110

consumers, OAuth, 47

container setup methods, Google Friend
Connect, 171

content types, URLs, 214

content-sharing, Facebook, 115-120

contributions, Twitter, 75-76

cookies, Google Friend Connect, 195

count parameter (Twitter API), 8

counters, Games and Application counters,
143-144

coverage, Twitter API parameters, 7

create() Function within the Main Controller
listing (12.2), 253

cURL, Twitter API, accessing, 12-14

cursor parameter (Twitter API), 9

custom tags API methods, Facebook
Platform, 93

D
Dashboard API, 137-164

methods, Facebook Platform, 89
naming conventions, 140
news and activity streams, 139-143

data extraction principles, OpenSocial,
201-207

Database class, CodeIgniter, 240-243

DataRequest object, OpenSocial API,
174-175

data-retrieval methods, Facebook
Platform, 87

depreciation

Twitter API methods, 21-22
Twitter API parameters, 7

description parameter (Twitter API), 7

dialogs, Facebook, 160-162

direct message objects, Twitter API, 28-29

direct messages methods, Twitter API, 4-6

direct publishing, Open Stream API, 127-129

directory structure, CodeIgniter, 237-238

disconnecting, Facebook accounts, 107-109

dynamic content, FBJS (Facebook
JavaScript), 157-164

306 Color Picker sample application (Google Friend Connect)

www.it-ebooks.info

http://www.it-ebooks.info/

E
email parameter (Twitter API), 7

entry elements, Atom syndication
format, 36-37

error handling, Twitter API, 18-19

Event Listener (FBJS), handling events,
162-164

events, handling, FBJS Event Listener,
162-164

events API methods, Facebook Platform,
90-93

Example for the tab.php File Demonstrating
a Simple Application Tab listing (8.2), 150

Example post.php File Demonstrating
Adding a Comment and Returning Data
Back to an Application Tab listing
(8.3), 155

extending

application tabs, 149-156
Sprog application

Facebook, 281-292
Google Friend Connect, 294-300
Twitter, 270-276

F
Facebook

adding support, 279-281
animation library, 158-160
API, 77-97

Open Stream API, 123-134
applications

registering, 79-81
tabs, 145-156

content-sharing, 115-120
dashboards, Games and Application

dashboard, 139-143
dialogs, 160-162
disconnecting accounts, 107-109

Facebook Platform, 77-98
developers, 77-78
Open Stream API, 123-134
referencing applications, 81-84
website integration, 78-84

Facebook Share, 116-118
FQL (Facebook Query Language),

118
multimedia content, 117

Facebook Widgets, 119-120
Comments Box widget, 120-123

FQL (Facebook Query Language),
77-97

friends, connecting and inviting,
109-110

functionality, 279-292
implementing, 279

live conversation, 115-120
logging out accounts, 107-109
Open Graph, 85-86
reclaiming accounts, 107-109
Sprog application

extending, 281-292
registering with, 279-281

state changes, detecting and handling,
102-105

status detection, 101-107
Translations for Facebook, 111-114

administering and accessing
translations, 113-114

preparing applications, 111-113
registering text, 111-113

user authentication, 99-107
user registration, post-authorize

callback URL, 105-107
XFBML (Facebook Markup

Language), 77-98

307Facebook

www.it-ebooks.info

http://www.it-ebooks.info/

Facebook JavaScript (FBJS). See FBJS
(Facebook JavaScript)

Facebook Markup Language (XFBML),
77-98

Facebook Platform, 77-98. See also
Facebook

administration methods, 86-87
Application Edit page, 79-81
applications, referencing, 81-84
authentication methods, 87
custom tags API methods, 93
Dashboard API, 137-144

methods, 89
news and activity streams, 139-143

data-retrieval methods, 87
developers, 77-78
events API methods, 90-93
FQL (Facebook Query Language),

93-97
friends, connecting and inviting,

109-110
login methods, 87
mobile methods, 89
Open Stream API, 123-134

action links, 125-126
adding and removing comments,

129
direct publishing, 127-129
feed forms, 127-129
Publisher, 131-134
reading data from streams, 130-134
removing stream posts, 128
stream attachments, 125-126
writing data to stream, 125

photos API methods, 89-90
publishing methods, 88
Translations for Facebook, 111-114
user authentication, 99-107

website integration, 78-84
XFBML (Facebook Markup

Language), 97-98
Facebook Query Language (FQL). See FQL

(Facebook Query Language)

Facebook Share, 116-118

FQL (Facebook Query
Language), 118

multimedia content, 117
Facebook Widgets, 119-120

Comments Box widget, 120-123
favorites methods, Twitter API, 4-6

FBJS (Facebook JavaScript), 137-164

animation library, 158-160
dialogs, 160-162
dynamic content, 157-164
Event Listener, handling events,

162-164
Test Console, 158

FBML (Facebook Markup Language),
elements, adding application tabs to, 145

feature extensions, OpenSocial gadgets, 211

feed elements, Atom syndication format,
35-36

feed forms, Open Stream API, 127-129

field names, Open Stream API, 174

follow parameter (Twitter API), 7

FQL (Facebook Query Language), 85-97

API methods, relationships, 95
Facebook Share, 118

friends, connecting and inviting, Facebook,
109-110

friendships methods, Twitter API, 4-6

functionality

Facebook, implementing, 279-292
Google Friend Connect,

implementing, 292-300
Twitter, implementing, 267-279

308 Facebook JavaScript (FBJS)

www.it-ebooks.info

http://www.it-ebooks.info/

functions

create(), 253
index(), 250

functions.php file listings (3.1), 52

G
gadget-interaction methods, Google Friend

Connect, 172

gadgets

Google Friend Connet, 166
Google gadgets, 209-233

creating, 222-233
submitting, 232-233
testing, 230-233

OpenSocial gadgets, developing, 209
Games and Application dashboard

(Facebook), 139-143

Geolocation API (Twitter), 68-71

GET parameters, CodeIgniter, handling, 236

get_write_permission() method listing
(7.1), 128

Google. See also Google Friend Connect

gadgets, 209-233
creating, 222-233
submitting, 232-233
testing, 230-233

iGoogle Directory, 211
Google Friend Connect, 165-193

authentication methods, 194-196
cookies, 195
standard two-legged OAuth,

195-196
authentication workflow, 197-198
Color Picker sample application,

181-191
configuring, 183-185
posting and retrieving activities,

187-189

registering, 183-185
retrieving site members, 187
sign-in functionality, 186
storing and retrieving application

data, 189-190
container setup methods, 171
functionality, implementing, 292-300
gadget-interaction methods, 172
gadgets, 166
index page, 295
JavaScript API, 167-173

methods, 171
JavaScript Library, installing and

configuring, 169-170
OpenSocial API, 173-177

DataRequest object, 174-175
fetching activities, 177
fetching persistence, 178-181
fetching profiles, 176-177
field names, 174
methods, 173-174

OpenSocial client libraries, 196-197
OpenSocial gadgets, 210-214

creating, 222-233
developing, 209
feature extensions, 211
gadget internationalization and

localization, 221-222
module content, 213-214
module preferences, 210-211
module views, 213-214
OpenSocial v.0.9 specification,

214-217
remote content, 218-221
skins, 212
user preferences, 212-213
working with data, 217-218

309Google Friend Connect

www.it-ebooks.info

http://www.it-ebooks.info/

OpenSocial RESTful endpoints, 194
PHP OpenSocial client library,

197-207
data extraction principles, 201-207
setting up server-side applications,

198-201
plug-ins, 169
post-registration methods, 172
pre-registration methods, 171-172
RPC protocol endpoints, 194
server-side integration, 167-169
server-side OpenSocial protocols,

193-197
Sprog application

adding support, 292-293
extending, 294-300
registering, 292-293

Google Gadget Editor, 223-230

Google Gadget Tester, 230

H
hash objects, Twitter API, 33

help methods, Twitter API, 4

helpers, CodeIgniter, 245-246

home pages, Sprog application, 247-257

HTTP operation, Lists API, 2

I
ID objects, Twitter API, 30-31

id parameter (Twitter API), 9

iGoogle Directory, 211

image parameter (Twitter API), 7

in_reply_to_status_id parameter
(Twitter API), 7

index() function, Sprog application, 250

index page, Sprog application, 248

index.php File Demonstrating a Simple
Facebook Canvas Page listing (8.1), 147

index.php file listings (3.2), 53-54

installing

application tabs, 146-147
CodeIgniter, 237-240
JavaScript Library, Google Friend

Connect, 169-170
internationalization, Google gadgets,

221-222

inviting, Facebook friends, 109-110

J
JavaScript API, Google Friend Connect,

167-173

methods, 171
JavaScript Library, Google Friend Connect,

installing and configuring, 169-170

JSON (JavaScript Object Notation)

versus Atom, 37-38
strings, saving values as, 212
Twitter API, 10

L
landing pages

Test Tube application (Twitter),
creating, 53-54

lang parameter (Twitter API), 9

lat parameter (Twitter API), 8-9

libraries, CodeIgniter, 240-244

Database class, 240-243
pagination class, 243-244
session class, 244-245
URI class, 243

like box, Facebook Widgets, 119

310 Google Friend Connect

www.it-ebooks.info

http://www.it-ebooks.info/

likes

Open Stream API, adding and
removing, 129

Sprog application, 257-266
listings

3.1 (functions.php file), 52
3.2 (index.php file), 53-54
3.3 (master.php file), 55-56
4.1 (printRetweets function), 63
4.2 (printFollowers function), 72
5.1 (Simple Facebook Platform Page),

82
6.1 (Sample Facebook Page), 103-104
6.2 (Sample Facebook Post-Authorize

Callback URL), 107
6.3 (Sample Facebook Post-Remove

Callback URL), 108
7.1 (get_write_permission method),

128
8.1 (index.php File Demonstrating a

Simple Facebook Canvas Page), 147
8.2 (Example for the tab.php File

Demonstrating a Simple Application
Tab), 150

8.3 (Example post.php File
Demonstrating Adding a Comment
and Returning Data Back to an
Application Ta), 155

12.1 (sprog.php File Demonstrating
the Default index() Function), 250

12.2 (create() Function within the
Main Controller), 253

12.3 (Sprog Model and create()
Function), 255

12.4 (updates() and my_comments()
Function), 260

Lists API (Twitter), 2-3, 61-68

live conversation, Facebook, 115-120

live stream box, Facebook Widgets, 119-120

localization, Google gadgets, 221-222

location parameter (Twitter API), 7

location-based APIs, Twitter, 61

logging out, Facebook accounts, 107-109

login methods, Facebook Platform, 87

logins

Facebook, authentication, 101-107
Sprog application, 247-257

long parameter (Twitter API), 8

M
mas_id parameter (Twitter API), 9

master page, Test Tube application (Twitter),
creating, 55-57

methods

container setup methods, 171
Facebook Platform

administration methods, 86-87
authentication methods, 87
custom tags API methods, 93
dashboard API methods, 89
data-retrieval methods, 87
events API methods, 90-93
login methods, 87
mobile methods, 89
photos API methods, 89-90
publishing methods, 88

gadget-interaction methods, 172
Google Friend Connect, 173-174

authentication, 194-196

JavaScript API, 171

OpenSocial API (Google Friend
Connect), 173-174

post-registration methods, 172
pre-registration methods, 171
Twitter API, 3-33

accessor methods, 3-5
depreciation, 21-22

311JavaScript API

www.it-ebooks.info

http://www.it-ebooks.info/

mutator methods, 5-6
Search API, 38-43

microblog tools. See Sprog application

Migrations tab (Application Edit page), 81

mobile methods, Facebook Platform, 89

module content, OpenSocial gadgets,
213-214

module preferences, OpenSocial gadgets,
210-211

module views, OpenSocial gadgets, 213-214

multimedia content, Facebook Share, 117

mutator methods, Twitter API, 5-6

MVC (Model View Controller) architectural
design, CodeIgniter, 236-237

N
name parameter (Twitter API), 7

naming conventions, Dashboard API, 140

news streams, Dashboard API, 139-143

notifications methods, Twitter API, 6

O
OAuth

Google Friend Connect, 195-196
Twitter, 45-59

benefits, 46
consumers, 47
implementing, 48-57
protected resources, 47
protocol parameters, 47
service providers, 47
Test Tube application, 50-57
Test Tube application (Twitter),

57-58
tokens, 47
users, 47
workflow, 48-50

twitter-async client library, 14-15

objects, Twitter API

direct message objects, 28-29
hash objects, 33
ID objects, 30-31
relationship objects, 31-32
response objects, 32
saved search objects, 29-30
status objects, 26-28
user objects, 22-26

Open Graph, Facebook, 85-86

Open Stream API (Facebook), 123-134

action links, 125-126
comments, adding and removing, 129
direct publishing, 127-129
feed forms, 127-129
Publisher, 131-134
stream attachments, 125-126
stream posts, removing

programatically, 128
streams

reading data from, 130-134
writing data to, 125

OpenSocial, v.0.9 specifications, 214-217

OpenSocial API (Google Friend Connect),
173-177

DataRequest object, 174-175
fetching

activities, 177
persistence, 178-181
profiles, 176-177

field names, 174
methods, 173-174

OpenSocial client libraries, Google Friend
Connect, 196-197

OpenSocial gadgets, Google Friend Connect,
210-214

creating, 222-233
developing, 209

312 JavaScript API

www.it-ebooks.info

http://www.it-ebooks.info/

feature extensions, 211
gadget internationalization and

localization, 221-222
module content, 213-214
module preferences, 210-211
module views, 213-214
OpenSocial v.0.9 specification,

214-217
remote content, 218-221
skins, 212
user preferences, 212-213
working with data, 217-218

OpenSocial RESTful endpoints, Google Friend
Connect, 194

P
page parameter (Twitter API), 8

pagination class, CodeIgniter, 243-244

parameters, Twitter API, 6-10

coverage, 7
depreciation, 7

people, Google Friend Connect, fetching,
176-177

per page parameter (Twitter API), 9

persistence, Google Friend Connect, fetching
and updating, 178-181

photos API methods, Facebook Platform,
89-90

PHP OpenSocial client library, Google Friend
Connect, 197-207

data extraction principles, 201-207
setting up server-side applications,

198-201
platform translations, Twitter, 71

plug-ins, Google Friend Connect, 169

post-authorize callback URL, user
registration, Facebook, 105-107

posting activites, Color Picker sample
application (Google Friend Connect),
187-189

post-registration methods, Google Friend
Connect, 172

pre-registration methods, Google Friend
Connect, 171-172

printFollowers() function listing (4.2), 72

printRetweets() function listing (4.1), 63

profile_background_color parameter (Twitter
API), 8

profile_link_color parameter (Twitter API), 8

profile_sidebar_border parameter (Twitter
API), 8

profile_text_border parameter
(Twitter API), 8

profiles, Google Friend Connect, fetching,
176-177

Profiles tab (Application Edit page), 81

protected resources, OAuth, 47

protocol parameters, OAuth, 47

Publisher (Facebook Platform), 131-134

publishing methods, Facebook Platform, 88

PUT operation, Lists API, 2

Q
q parameter (Twitter API), 9

query parameter (Twitter API), 8

R
rate limiting, Twitter API, 17

Really Simple Syndication (RSS), Twitter
API, 10

reclaiming, Facebook accounts, 107-109

referencing, Facebook Platform applications,
81-84

registering

Color Picker sample application
(Google Friend Connect), 183-185

313registering

www.it-ebooks.info

http://www.it-ebooks.info/

Facebook applications, 79-81
Sprog application, Google Friend

Connect, 292-293
Facebook, 279-281
Twitter, 268-270

Test Tube application (Twitter), 52-53
relationship objects, Twitter API, 31-32

remote content, OpenSocial gadgets,
218-221

response objects, Twitter API, 32

responses, accessing, Test Tube application
(Twitter), 51

REST (Representational State Transfer) API,
Twitter, 2-3

CURL commands, 12-14
return formats, Twitter API, 10-11

Retweets API (Twitter), 61-64

RPC protocol endpoints, Google Friend
Connect, 194

RSS (Really Simple Syndication), Twitter
API, 10

S
Sample Facebook Page listing (6.1),

103-104

Sample Facebook Post-Authorize Callback
URL listing (6.2), 107

Sample Facebook Post-Remove Callback
URL listing (6.3), 108

saved search objects, Twitter API, 29-30

saved searches methods, Twitter API, 4-6

screen_name parameter (Twitter API), 10

Search API (Twitter), 3-43

Atom syndication format, 34-38
entry elements, 36-37
feed elements, 35-36
JSON (JavaScript Object Notation)

outputs, 37-38

methods, 38-43
search methods

Search API (Twitter), 38-40
Twitter API, 4

server-side applications, Google Friend
Connect, setting up, 198-201

server-side integration, Google Friend
Connect, 167-169

server-side OpenSocial protocols, Google
Friend Connect, 193-197

service providers, OAuth, 47

session class, CodeIgniter, 244-245

show_user parameter (Twitter API), 10

sign-in functionality, Color Picker sample
application (Google Friend Connect), 186

Simple Facebook Platform Page listing
(5.1), 82

site members, Color Picker sample
application (Google Friend Connect),
retrieving, 187

skins, OpenSocial gadgets, 212

social graph methods, Twitter API, 4

source parameter (Twitter API), 8

source_id parameter (Twitter API), 10

spam reporting, Twitter, 72-74

Sprog application

building, CodeIgniter, 246-266
comments, 257-266
Facebook

adding support, 279-281
extending, 281-292
registering with, 279-281

Google Friend Connect
adding support, 292-293
extending, 294-300
registering, 292-293

home pages, 247-257
index() function, 250

314 registering

www.it-ebooks.info

http://www.it-ebooks.info/

index page, 248
likes, 257-266
logins, 247-257
main controller, create() function, 253
registering, 247-257
Twitter

extending with, 270-276
registering with, 268-270
updating accounts, 276-279

updates, 257-266
Sprog Model and create() Function listing

(12.3), 255

sprog.php File Demonstrating the Default
index() Function listing (12.1), 250

standard two-legged OAuth, Google Friend
Connect, 195-196

state changes, Facebook, detecting and
handling, 102-105

status detection, Facebook, 101-107

status methods, Twitter API, 4

status objects, Twitter API, 26-28

status parameter (Twitter API), 8

statuses methods, Twitter API, 6

storing application data, Color Picker sample
application, 189-190

stream attachments, Open Stream API,
125-126

Streaming API (Twitter), 74-75

streams

Dashboard API, news and activity
streams, 139-143

reading data from, Open Stream API,
130-134

strings, JSON (JavaScript Object Notation),
saving values as, 212

submitting, Google gadgets, 232-233

support, Facebook, 279-281

T
tabs, Facebook applications, 145-156

configuring and installing, 146-147
extending, 149-156

Test Console (FBJS), 158

Test Tube application (Twitter), 50

accessing responses, 51
creating, 51-52
landing pages, creating, 53-54
master page, creating, 55-57
registering, 52-53
testing, 58

testing

Google gadgets, 230-233
Test Tube application (Twitter), 58

text, registering, Translations for Facebook,
111-113

text parameter (Twitter API), 8

tile parameter (Twitter API), 8

timeline methods, Twitter API, 4

tokens, OAuth, 47

Translations for Facebook, 111-114

applications, preparing, 111-113
registering text, 111-113
translations, administering and

accessing, 113-114
trends methods

Search API (Twitter), 40-43
Twitter API, 5

Twitter, 76

accounts, updating, 276-279
API, 1-19

accessing, 11-19
authorized connections, 12
direct message objects, 28-29
error handling, 18-19

315Twitter

www.it-ebooks.info

http://www.it-ebooks.info/

extending, 61-62
Geolocation API, 68-71
hash objects, 33
ID objects, 30-31
Lists API, 2-3, 61-68
location-based APIs, 61
methods, 3-6, 21-33
parameters, 6-10
rate limiting, 17
relationship objects, 31-32
response objects, 32
REST (Representational State

Transfer) API, 2-14
return formats, 10-11
Retweets API, 61-64
saved search objects, 29-30
Search API, 3, 34-43
status objects, 26-28
Streaming API, 74-75
user objects, 22-26
versioning, 3

character limit, 2
community, 71

future directions, 74-76
spam reporting, 72-74

configuring, 268-270
contributions, 75-76
functionality, implementing, 267-279
Geolocation API, 68-71
Lists API, 61-68
location-based APIs, 61
OAuth, 45-59

benefits, 46
consumers, 47
implementing, 48-57
protected resources, 47

protocol parameters, 47
service providers, 47
tokens, 47
users, 47
workflow, 48-50

platform translations, 71
Retweets API, 61-64
Search API

Atom syndication format, 34-38
methods, 38-43

Sprog application
extending with, 270-276
registration, 268-270

Streaming API, 74-75
Test Tube application, 50

accessing responses, 51
class methods, 50-51
creating, 51-52
landing pages, 53-54
master page, 55-57
registering, 52-53
testing, 58

Twitter @anywhere, 76

twitter-async client library

accessing responses, 51
class methods, 50-51
configuring, 268-270
creating, 51-52
registering, 52-53

two-legged OAuth, Google Friend Connect,
195-196

U
updates, Sprog application, 257-266

updates() and my_comments() Function
listing (12.4), 264

316 Twitter

www.it-ebooks.info

http://www.it-ebooks.info/

updating

activities, Google Friend Connect, 177
persistence, Google Friend Connect,

178-181
Twitter accounts, 276-279

URI class, CodeIgniter, 243

url parameter (Twitter API), 7

URLs, content types, 214

user authentication, Facebook, 99-107

user methods, Twitter API, 5

user objects, Twitter API, 22-26

user preferences, OpenSocial gadgets,
212-213

user registration

Facebook, post-authorize callback
URL, 105-107

V
values, JSON (JavaScript Object Notation),

saving as strings, 212

versioning, Twitter API, 3

W
website integration, Facebook Platform,

78-84

Widgets tab (Application Edit page), 81

woeid parameter (Twitter API), 10

workflow, OAuth, 48-50

X
XFBML (Facebook Markup Language),

77-98

XML (eXtensible Markup Language), Twitter
API, 11

317XML (eXtensible Markup Language), Twitter API,

www.it-ebooks.info

http://www.it-ebooks.info/

InformIT is a brand of Pearson and the online presence

for the world’s leading technology publishers. It’s your source

for reliable and qualified content and knowledge, providing

access to the top brands, authors, and contributors from

the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-

ing timely and relevant information and tutorials? Looking for expert opin-

ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by

subscribing to a wide variety of newsletters.

Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at

informit.com/articles.

• Access thousands of books and videos in the Safari Books

Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the

hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

www.it-ebooks.info

http://www.it-ebooks.info/

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

www.it-ebooks.info

www.informit.com/safaritrial
http://www.it-ebooks.info/

Your purchase of The Developer’s Guide to Social Programming includes access to a
free online edition for 45 days through the Safari Books Online subscription service.
Nearly every Addison-Wesley Professional book is available online through Safari Books
Online, along with more than 5,000 other technical books and videos from publishers
such as Cisco Press, Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at

www.informit.com/safarifree

STEP 1: Enter the coupon code: BMEFHBI.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

www.it-ebooks.info

www.informit.com/safarifree
http://www.it-ebooks.info/

	Table of Contents
	I: Twitter
	1 Working with the Twitter API
	Twitter API Essentials
	Accessing the Twitter API
	Summary

	2 Diving Into the Twitter API Methods
	Twitter API Methods
	Twitter Search API
	Summary

	3 Authentication with Twitter OAuth
	Introducing Twitter OAuth
	Implementing Twitter OAuth
	Summary

	4 Extending the Twitter API: Retweets, Lists, and Location
	Extending Twitter’s Core Functionality
	Twitter Community Evolution
	Summary

	II: Facebook Platform
	5 An Overview of Facebook Platform Website Integration
	Facebook Platform for Developers
	Facebook Platform
	Facebook API, FQL, and XFBML
	Summary

	6 Registration, Authentication, and Translations with Facebook
	User Authorization and Authentication
	Connecting and Inviting Friends
	Translations for Facebook
	Summary

	7 Using Facebook for Sharing, Commenting, and Stream Publishing
	Content-Sharing and Live Conversation
	Social Commenting and Stream Publishing
	Summary

	8 Application Discovery, Tabbed Navigation, and the Facebook JavaScript Library
	Application Dashboards and Counters
	Navigating and Showcasing Your Application Using Tabs
	Dynamic Content and the Facebook JavaScript (FBJS) Library
	Summary

	III: Google Friend Connect
	9 An Overview of Google Friend Connect
	Components of Google Friend Connect
	Using the Google Friend Connect JavaScript API
	An Overview of the OpenSocial API
	Summary

	10 Server-Side Authentication and OpenSocial Integration
	Server-Side OpenSocial Protocols and Authentication Methods
	Using the PHP OpenSocial Client Library with Google Friend Connect
	Summary

	11 Developing OpenSocial Gadgets with Google Friend Connect
	An Overview of Google Gadgets
	Creating a Google Gadget
	Summary

	IV: Putting It All Together
	12 Building a Microblog Tool Using CodeIgniter
	An Overview of CodeIgniter
	Building the Basic Sprog Application
	Summary

	13 Integrating Twitter, Facebook, and Google Friend Connect
	Implementing Twitter Functionality
	Implementing Facebook Functionality
	Implementing Google Friend Connect Functionality
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

