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Abstract 

The Center for International Rehabilitation (CIR) is a non-profit organization working in developing 

countries to rehabilitate those who have lost their mobility after an amputation.  CIR has developed a 

lower limb prosthetic (monolimb) for transtibial amputees, which is then rigidly attached to a prosthetic 

foot.  CIR requested a study of  the effect of coupling their monolimb with two existing prosthetic foot 

designs; the International Committee of the Red Cross’s SACH foot and Northwestern’s Shape and Roll 

(SR) prosthetic foot.   

The combination of the prosthetic feet and monolimb were modeled and studied using finite element 

analysis (FEA).  The FEA results were then compared to the physical testing of the prosthetics under 

various static loading conditions seen during walking.  These results suggest that the SR foot does not 

perform as well as the SACH foot under high loading conditions and could result in premature wear of 

the prosthetic combination.  The results of this work will aid CIR in their efforts to provide appropriate 

prostheses to populations in developing countries. 
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Executive Summary 

The Center for International Rehabilitation (CIR) is a non-profit organization working in developing 

countries to rehabilitate those who have lost their mobility after an amputation.  These amputees are 

generally victims of landmines.  CIR has developed a lower limb prosthetic (monolimb) for transtibial 

amputees, which is rigidly attached to a prosthetic foot.  CIR requested a study of the effect of coupling 

their monolimb with two existing prosthetic foot designs: the International Committee of the Red 

Cross’s Solid Ankle Cushioned Heel (SACH) foot and Northwestern’s Shape and Roll (SR) prosthetic foot.   

These prosthetics are low cost appropriate technologies for developing countries.  The monolimb is 

custom made from a polypropylene polyethylene plastic to fit each user.  The SACH foot, which is 

imported into the developing countries, is created using injection molding of polyurethane foam.  The 

SR foot, which is able to be manufactured within developing countries, is made by heating copolymer 

sheets with an aluminum stock material inserted into the base of the foot to provide extra support. 

Both physical testing and finite element analysis (FEA) were performed to compare the effect that each 

foot has on the monolimb.  The orientations and loading for the physical testing were drawn from ISO 

standards.  ISO 10328 [Structural testing of lower-limb prostheses] specified testing methods, loading 

conditions, and other parameters.  The 2006 ISO 22675 [Testing of ankle-foot devices and foot units] 

states the loading conditions that can be used to mimic natural gate loading and specifies a static test 

that can be performed on prosthetic ankle-foot devices.  In addition, the alignment of the foot to the 

prosthetic leg is stated.   

The prosthetics were tested in an Instron 5544 compression/tension machine.  The evaluation of the 

prosthetic feet was conducted at three orientations in both the physical testing and FEA.  The first 

position was the heel-strike that occurs during the initial contact, the second position was midstance, 

where the foot is flat and the third position was pre-swing, where the majority of the weight is on the 

toe before the swing phase,.  The heel-strike and toe-off orientations required the use of an angled 

block to simulate the angle the foot makes with the ground.  This angle was 15° for heel-strike and 20° 

for toe-off.   

For the physical testing, the appropriate angle block was attached to the base of the Instron 5544 with a 

rod through the center of the angle block.  Tests of the monolimb/foot assembly were performed at 
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10% load increments to 1300N at a rate of 75N/min, or until the experimental set-up showed signs of  

potential damage to the equipment or sample.  The tests were held after each 10% increment for 45 

seconds to allow for data collection.  Each test was performed twice, once using pressure paper to 

indicate if there were any irregularities in orientation and pressure with the angle block and once 

without the paper.  Strain gauges were applied on the anterior and posterior of the monolimb just 

above the metal insert that is used to attach the foot.  This was identified as a critical region by CIR 

based on a case study.  A rosette strain gauge was attached to the anterior section of the monolimb and 

a uniaxial strain gauge was attached to the posterior seam.  The tests were controlled and loading and 

displacement data were recorded using the BlueHill software program.  The strain gauges were read 

using Vishay’s SB-10 Switch & Balance Unit and Vishay’s Model P-3500 Digital Strain Indicator.   

For the FEA, all of the prosthetics were reverse engineered in Pro/Engineer Wildfire 2.0.  Accurate 

computer aided design (CAD) models were made for the monolimb, SR foot, and SACH foot.  A simpler, 

less accurate model of the SACH foot was also modeled to ease meshing in the FEA.  ANSYS Workbench 

was chosen as the FEA software package because of its ability to accept a 3D CAD model and  an 

assembly of high complexity. In addition to the modeling of contact surfaces and large deflection, the 

ANSYS program also allowed for the accurate placement of angled pressures and loads.  The FEA models 

were evaluated at the full loading of 1300N.  Each foot in each orientation had the same constraints and 

loads applied.  The bottom surface of the angle or midstance block was selected as a fixed surface and 

the top block connected to the monolimb was constrained by a fixture to only allow movement in the 

vertical direction.  In addition, the foot was frictionally connected to the angle or midstance block. 

The results of the physical testing and FEA were compared to draw conclusions regarding the 

performance of the foot monolimb combinations.  From the physical testing, it was apparent that higher 

strains were exhibited on the posterior uniaxial gauge positioned vertically (90o) and the anterior 90° 

rosette gauge when the SR foot was affixed to the monolimb as compared to the SACH foot in both 

heel-strike and toe-off orientations.  The heel-strike test for the SR foot was stopped at 910N because 

plastic deformation began to occur near the heel of the foot; the foot did not undergo fracture.  The 

SACH foot was loaded to the full 1300N.  Under the same loading conditions the magnitude the strains 

recorded by the uniaxial and 90° rosette gauge were greater in magnitude for the SR foot.  For example, 

at 910N the SR uniaxial gauge showed an average reading of -1745µε and the 90° rosette gauge showed 
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an average reading of 614 µε.  For the SACH, at 910N the uniaxial gauge showed an average reading of -

1280µε and the 90° rosette gauge showed an average reading of -78 µε. 

To aid in comparing the FEA testing to the physical testing, the physical test data were linearly 

extrapolated to show trendlines.  These trendlines were used to predict potential strain values that may 

have occurred if the physical testing was run to the full loading of 1300N.  Comparing these potential 

trendlines adds some validity to the FEA generation of the SR foot because these trendlines show strain 

values on the monolimb similar to the FEA results at full loading (1300 N).   In addition, the FEA for the 

SR foot showed that both the von Mises and principal stresses in the heel exceeded the yield strength of 

the SR polypropylene copolymer during heel-strike at the 1300N load.  The plastic deformation that 

occurred in the physical testing appeared at 910N.  For the SACH foot the FEA results did not parallel the 

physical results, possibly due to inaccuracies in modeling the SACH foot.  

The physical results for compression of the monolimb with the SACH foot and SR were compared from 

the physical testing.  For the heel-strike orientations for both of the prosthetic combinations at 910N 

(where the SR test was stopped), the monolimb with the SR and SACH compressed in magnitude by 

10.8mm and 18.0mm respectively.  These results showed that the prosthetic assembly with the SACH 

foot compresses more therefore showing that the monolimb with the SACH foot is less stiff than the 

monolimb with the SR. 

The assembly of the monolimb with the SR foot causes strains of a greater magnitude to occur in the 

monolimb than the assembly with the SACH foot.  The resulting von Mises stresses and the principal 

stresses in both assemblies from the FEA are less than the tensile yield strength of the polypropylene 

copolymer of the monolimb.  This therefore indicates that the monolimb will not undergo plastic 

deformation when affixed with the SACH foot or the SR foot.  This conclusion can only be made based 

the on the static loading conditions that were performed in this study.   

 

It is recommended that future physical tests be performed to take into consideration cyclic and dynamic 

loading.  Because the SR foot underwent plastic deformation before reaching 910 N in our heel-strike 

test, we are led to believe that repeated cyclic loading at even lesser values would produce similar 

plastic deformation.  Completing this test according to the ISO standards mentioned earlier could lead to 

a better understanding of the longevity of the SR foot. 
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The potential errors that affected our FEA results were primarily associated with the SACH foot.  The 

intricate CAD model that was developed did not run in ANSYS because of its complex shape and rounds.  

More models of the SACH need to be made to analyze in ANSYS.  The complexity of the foot made it 

difficult for the program to mesh the features.  If a future study is performed on the SACH foot, the two 

types of polyurethane foam used in the foot need to be modeled.  This would yield more accurate 

results because the model that was used for this study did not include the two material properties for 

the base of the foot and the body of the foot.  Also, time should be spent to find the exact material 

properties through material testing.  

 

This study compared the interaction of the traditionally used SACH foot and the new, low-cost Shape 

and Roll prosthetic foot with the Center for International Rehabilitation’s monolimb.  Through the static 

physical testing and FEA it was seen that the stiffer Shape and Roll assembly produced higher strains on 

the monolimb, but did not exceed the yield strength of the monolimb.  This information will aid in the 

future development and refinement of low cost prosthetics for low income countries. 
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1. Introduction 

Global conflict is something that has been prevalent for years.  The sad fact of combat is that many of 

those affected are not soldiers.  Victims are still being counted for wars that have taken place years ago.  

Landmines have killed or injured over one million people since 1975.  Afghanistan, Angola and Cambodia 

have suffered eighty-five per cent of the world's land-mine casualties.  Currently, there are over one 

hundred million active landmines around the world (Landmines: A Deadly Inheritance 2005).  While the 

cost for making one landmine is on the order of three dollars, the cost to deactivate a landmine is one 

thousand dollars.  The cost to deactivate these landmines is not feasible for the developing countries in 

which many of the landmines are located.  It has been estimated by the World Health Organization that 

“ten percent of the global population, or more than five hundred million people, have a disability.  Two-

thirds of those people live in developing countries, and that number is rising due to poverty, poor 

healthcare, disasters, landmines, war, and other forms of violence” (Stanton 2006). 

Landmine victims lose their place in society along with losing their limbs.  Many countries see amputees 

as a burden since they lack mobility and the skills to work.  Many organizations have gathered to combat 

this issue by having countries sign treaties against the use of landmines.  The most well-known treaty, 

which bans the use of landmines, was presented at the Ottawa Convention in 1997.  The treaty was 

supported by governments, the United Nations, and international organizations such as the 

International Committee of the Red Cross (ICRC), and over 1,400 non-governmental organizations 

(Metzger 2007). 

Although great strides have been made in landmine awareness, there are still countless victims in need 

of assistance and rehabilitation.  The Center for International Rehabilitation (CIR), started by Physicians 

Against Landmines, is working to provide appropriate prosthetic technology to help integrate victims 

back into society.  As part of this effort they are in the process of developing a monolimb; a simple 

prosthetic leg that can be coupled with a prosthetic foot.   

This Major Qualifying Project has been conducted to test the interaction of the Solid Ankle Cushioned 

Heel (SACH) and Shape and Roll (SR) prosthetic feet when coupled with the CIR’s monolimb.  The SACH 

foot, (Figure 1) has been traditionally used in low-income countries, while the SR foot (Figure 2) was 

recently developed by researchers at Northwestern University.  There is concern among the researchers 

that the new SR foot might be too stiff to couple with the monolimb, thus potentially causing premature 
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failure to the monolimb.  By evaluating and comparing these prosthetic foot designs through both 

computer modeling and experimentation, we were able to understand the interaction between the 

prosthetic feet and monolimb.   

 

Figure 1: ICRC SACH Foot (“Prosthetic Feet”) 

 

Figure 2: SR Foot (“Lower Limb Prosthetics: The Shape&Roll”)  
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2. Background  

The Center for International Rehabilitation is developing appropriate prosthetics for low-income 

countries.  To establish a basis for the need for appropriate prosthetics, factors that social scientists 

have deemed important when working with developing nations have been reviewed.  The current work 

of the Center for International Rehabilitation, specifically their work with the monolimb for below knee 

amputees is important to gain a better understanding of the background of the center.  Since the 

prosthetic feet undergo loading similar to that of a human performing natural gait, overviews of the 

multiple phases that occur in the gait cycle are explained, including the contribution of the foot and 

ankle through each stage of the gait cycle.  The forces and moments that occur within the foot and ankle 

system are also included.  Other current foot prosthetics available for low-income countries are 

investigated to gain a better understanding of similar technology.  The manufacturing processes and the 

properties of the ICRC’s SACH and the SR foot are presented.  Finally, the International Organization for 

Standardization (ISO) Standards that apply to testing prosthetic feet are explained, in order to develop a 

valid methodology for the testing and analysis of these low cost prosthetics. 

2.1. Prosthetics in Developing Nations 

This project aims to model and analyze the mechanical functioning and interactions of the SACH foot 

and SR foot when coupled with the CIR’s monolimb.  For the overall success and sustainability of the 

prosthetic foot and monolimb, the product must be able to be made, distributed, and used in the 

country where it is needed.  The distributors and users of the foot also need it to have the longest 

potential lifespan where funding and technology to repair the prosthetic may be limited.  Industrialized 

nations often overlook this aspect when they are seeking to provide aid.   

Vossberg writes in Prosthetics and Orthotics International that imported products strain the local budget 

and require developing countries to be dependent upon foreign aid.  He suggests the following six 

factors that one must be aware of when providing technical assistance: economic, social, cultural, 

pathological, environmental, and humanitarian.  A country should be assessed and each factor 

established when research is being done for the prosthetic design and implementation procedures.  

Economic factors are a concern because if the cost is too high then a country will not be able to sustain 

its growth.  Since most of the amputees in need of prosthetics are destitute, they will not be able to 

provide for their medical costs, nor will they likely be able to receive assistance from their governments.  

Socially, people in some cultures may not be accepting of those with prosthetics, so the prosthetist 
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should aim to bring someone back into society.  Additionally, cultures have different needs, making it 

unfeasible to create a universal design.  Pathological factors are a concern where many of these 

countries are located in disease ridden areas.  Environmental factors limit the resources that are 

available to produce the prosthetics.  The humanitarian factor means that not all of the most costly 

donated items will be the best in non-industrialized environments (Vossberg 1999).  The consideration 

of all these factors can increase the chances that a prosthetic will be accepted and continually used.   

2.2. Center for International Rehabilitation 

The Center for International Rehabilitation (CIR) was started in 1998 in the city of Chicago by William 

Kennedy Smith and a group of doctors.  Prior to starting the CIR these doctors were involved in an 

organization called Physicians Against Landmines (PALM).  The center focuses its efforts toward 

rehabilitating amputee victims affected by landmines.  The CIR’s mission is “to assist people with 

disabilities worldwide in achieving their full potential” (The Center for International Rehabilitation 2007). 

The CIR’s efforts span the globe, offering education, technology, and resources to the following regions: 

Africa, North America, Central America, Middle East, Europe, Asia, and South America (Stanton 2006).  

The CIR is able to reach out to these countries through E-learning initiatives to teach international 

prosthetic technicians.  The CIR aims to produce products that are sustainable and can be produced in 

the host country using local materials and tools.  The CIR also operates a Rehabilitation Engineering 

Research Center (RERC) which is nationally recognized for its accomplishments (The Center for 

International Rehabilitation 2007). 

2.3. CIR’s Monolimb 

In an attempt to bring effective and inexpensive prosthetics and orthotics to low-income countries, the 

Center for International Rehabilitation has developed a transtibial prosthetic leg and foot unit.  They 

have developed and are in the process of refining a monolimb, which is the prosthesis between the knee 

and prosthetic foot. 

The first step of developing the monolimb is measuring the patient to find the center of the knee.  Each 

monolimb is custom made for each patient.  A cast of the residual limb is then made using clay.  The clay 

is built up as seen in Figure 3.   
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Figure 3: Clay Casting of Residual Limb and Plaster Casting of Residual Limb (CIR 2006) 

A nylon sheath is then applied over the clay and layers of plaster are put over the sheath.  As the plaster 

is layered, splints are added to add to the structure of the casting.  When the casting has dried, the 

alignment marks are put onto the cast.  The cast is then put onto a system where a positive plaster mold 

will be made of the monolimb.  The cast is put onto a mandrel and plaster is poured into the cast as seen 

in Figure 5. 

  

Figure 4: Monolimb Alignment and Cast Holder (CIR 2006) 

The next step is to make the actual monolimb.  The mandrel must be sanded and prepped.  The mandrel 

with the positive mold is then covered by a stockinette and covered in talcum powder.  The plastic is 

prepped by heating it in an oven for 27 minutes until it turns completely clear.  The clear plastic is then 

drape molded over the mandrel and positive mold.  From the distal end of the mandrel, the plastic is 

pressed together to seal it around the mold.  This is done until the mold is completely encased with the 

plastic.   



10 

 

   

Figure 5: Pouring Plaster into Limb Casting, Mandrel with Positive Mold, and Cutting the Plastic (CIR 2006) 

The excess plastic is then cut off and when it cools, edges are sanded and smoothed. 

 

Figure 6: Finished Monolimb with Prosthetic Foot (CIR 2006) 

The monolimb is made of 90% polypropylene and 10% polyethylene.  The properties are found in Table 

1.  The shank of the monolimb is a hollow cylinder two inches in diameter and 0.2 inches thick (Kim 

2006). 

Property Value 

Modulus of Elasticity 1500 MPa 

Poisson’s Ratio 0.3 

Tensile Yield Strength 30 MPa 

Compressive Yield Strength 50 MPa 

Table 1: Polypropylene Copolymer Properties 

According to Kim Reisinger, Ph.D.  former Director of Engineering Research at the CIR, the monolimb is 

to be attached to a separate prosthetic foot by a standard bolt.  Researchers from CIR are currently 

performing field testing of the monolimb with the SR foot.  These tests have occurred in Nicaragua and 

are planned for Guatemala and Honduras.  The preliminary feedback from the tests has been largely 
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positive.  There are currently about sixty users in the field that are using this circular cross sectioned 

monolimb with the SR prosthetic foot.  The monolimb is used by the thousands with the ICRC’s SACH 

foot (Personal Communication, Casanova, Feb.  21, 2008).   

One concern has arisen from a study done on the SR foot with the monolimb in the United States.  

Stress marks have appeared on the anterior of the monolimb directly above the metal insert.  This took 

place when a larger user, of about 185 pounds was using the monolimb for rigorous activities, like 

karate.  Generally, the monolimb is prescribed for users less than 165-175 pounds.  The concerns that 

were raised from the test where stress marks were found brought up some concern for the overall 

stiffness that is exhibited when the SR foot is coupled with the monolimb when used by more active and 

heavier patients. 

Previous analysis of the monolimb has been conducted in China to study ability of the monolimb to 

withstand the forces applied during gait.  One study had found that the depth of the posterior seam on 

the back of the monolimb had little effect on the stresses that occur on the monolimb (Lee 2005).  A 

study conducted at Worcester Polytechnic Institute modeled the monolimb, seen in Figure 7, to study 

the peak stresses that occurred at the connection between the socket and shank portion of the 

monolimb (Kim 2006).  There have not been any experimental studies done regarding the interaction 

between the monolimb and the ICRC’s SACH foot or the SR prosthetic foot. 

 

Figure 7: CIR Monolimb (Kim) 
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2.4. The Gait Cycle 

In order to understand the behavior of lower limb prosthetics, the act of walking must be understood.  

The process of walking is broken down into a series of repeated events in which a person’s weight is 

supported by one leg while the other leg moves forward, with the weight being transferred between the 

two.  This sequence of actions, occurring on one leg, is called the gait cycle (Perry 1992) 

The gait cycle is broken into two periods, the stance period and the swing period.  The term stance 

refers to the “period of time that the foot is on the ground.”  The term swing refers to the “time that the 

foot is in air for limb advancement” (Perry 1992).  The gait cycle can also be subdivided into three main 

tasks: weight acceptance, single limb support, and limb advancement.  These main tasks are 

accomplished through the eight distinct phases that occur within the gait cycle, as seen in Figure 8.   

 

Figure 8: Divisions of the Gait Cycle (Perry 1992) 
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The body’s weight is accepted onto the limb during the initial contact and loading response phases.  

There is then single limb support, where only one limb is supporting the weight of the body, during the 

midstance, terminal stance, and pre-swing phases.  Finally, the limb advances forward during the pre-

swing, initial swing, mid swing, and terminal swing phases. 

2.4.1. Stance Period 

Weight Acceptance: Initial Contact  

The initial contact phase (Figure 9) occurs in the first 0-2% of the gait cycle, and begins the moment the 

foot touches the ground.  At this point the other limb is at the end of the terminal stance.   

 

Figure 9: Initial Contact (Perry 1992) 

In the initial contact phase, the foot is at a neutral position perpendicular to the lower leg.  The heel is in 

contact with the ground, in preparation for the upcoming loading phase in which it acts as a heel rocker 

(Perry 1992).   

Weight Acceptance: Loading Response  

The loading response phase (Figure 10) occurs in the first 0-10% of the gait cycle and allows for shock 

absorption, weight bearing stability, and the continuation of progression.  This phase starts from the 

foot’s initial contact with the floor through until the other foot lifts from the ground to begin the swing 

period.  The other limb is in pre-swing phase at this time. 

 

Figure 10: Loading Response (Perry 1992) 
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In the loading response phase, the ankle undergoes plantar flexion as the foot rapidly rotates about the 

heel to the ground.  As the foot drops to the ground pretibial muscles act to decelerate the drop, and as 

result the tibia moves forward.  This causes the body’s weight to shift from behind the heel to in front of 

it.  This is called the heel rocker.  Since the pretibial muscles act to decelerate the falling foot, some of 

the force due to initial contact is reduced.  If the body is unable to achieve exactly neutral position at 

initial contact, instead having 3 to 5° of ankle plantar flexion, the heel rocker is reduced (Perry 1992).   

Single Limb Support: Midstance 

The midstance phase (Figure 11) occurs during the 10-30% of the gait cycle, and in this phase the body 

moves forward over the stationary foot while maintaining stability.  This phase starts when the other 

foot ends contact with the ground and ends when the weight of the body is directed over the forefoot.  

At this time the other limb is in the mid-swing phase.   

 

Figure 11: Midstance (Perry 1992) 

In the midstance phase, the ankle undergoes dorsiflexion and acts as an ankle rocker.  The foot remains 

fully on the ground while the tibia rotates forward to an eventual 5 ° dorsiflexion.  During midstance the 

soleus muscle, which connects the tibia and heel, provides the majority of force to decelerate the ankle 

dorsiflexion (Perry 1992). 

Single Limb Support: Terminal Stance  

The terminal stance phase occurs during the 30-50% of the gait cycle, and in this phase the body 

continues to move forward past the foot on the ground.  This phase begins as the heel of the foot rises 

and ends when the other foot first comes in contact with the ground.  The other limb is in the terminal 

swing phase during this time. 

In the terminal stance phase, the tibia is continuing its movement forward, but at this phase raises the 

heel as it moves forward.  The foot rotates about the forefoot, which consists of the metatarsal heads 
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and proximal phalanges.  With the rising of the heel and dorsiflexion of the ankle, the body’s center of 

gravity moves anterior to the point of rotation on the foot.  This causes the foot to rotate further, and 

leads to a point where the center of gravity has moved so far that the foot cannot support the body on 

its own.  At this point the other foot touches the ground and the terminal stance phase is complete 

(Perry 1992). 

2.4.2. Swing Period 

Limb Advancement: Pre-Swing  

The pre-swing phase occurs during the 50-60% of the gait cycle, and in this phase support of the body’s 

weight is transferred to the other foot in preparation for the swing period.  Because of this, the pre-

swing phase is also called the weight release or weight transfer phase.  This phase begins when the 

other foot touches the ground and ends when the foot being studied lifts off the ground.  The other limb 

is in the loading response phase. 

In the pre-swing phase, as soon as the other foot comes in contact with the floor, the ankle begins to 

plantar flex to 20°.  The soleus and gastrocnemius muscles, which had been working in the terminal 

stance phase, quickly reduce their activity, which in turn accelerates the limb forward.  The foot plantar 

flexes, which allows the toe to be stabilized on the ground (Perry 1992). 

Limb Advancement: Initial Swing  

The initial swing phase occurs during the 60%-73% of the gait cycle, and during this phase the foot clears 

the floor while the leg begins to move forward.  It begins when the foot has ended contact with the floor 

through until the foot is in line with the other foot on standing on the ground.  The other limb is in the 

beginning of the midstance phase. 

In the initial swing phase, the foot begins in plantar flexion of 20°.  The foot is not interfering with the 

advancement of the leg because of this position.  The foot then begins to dorsiflex until it is at 5° of 

plantar flexion by the time it crosses the other foot in stance position.  The toes of the foot also undergo 

dorsiflexion at this time (Perry 1992). 
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Limb Advancement: Mid Swing  

The mid swing phase occurs during the 60-73% of the gait cycle, and during this phase the leg advances 

while the foot continues to remain above the floor.  This period starts when the swinging limb and other 

stance limb are opposite each other, and ends when the swinging limb is in front of the body with the 

tibia in a vertical position.  The other limb is in the latter part of the midstance phase (Perry 1992). 

In the mid swing phase, the ankle continues its dorsiflexion.  It moves to a neutral position, or just 

below, in the early part of this phase, but this position is not maintained completely throughout (Perry 

1992). 

Limb Advancement: Terminal Swing  

The terminal swing phase occurs during the last 87-100% of the gait cycle, and during this phase the 

body completes moving the limb forward while preparing to enter the stance period.  This phase begins 

when the tibia is vertical, continues as the lower leg moves ahead of the thigh, and ends the moment 

the foot comes in contact with the floor.  The other limb is in early terminal stance (Perry 1992). 

In the terminal swing phase, the ankle is held at the neutral position.  While pretibial muscles act to hold 

this position, the ankle will often move to 3 to 5° of plantar flexion.  This is in preparation for the initial 

contact phase that will be occurring (Perry 1992).   

2.4.3. Biomechanics of the Foot and Ankle 

As seen by the gait cycle, the ankle-foot group has complex movement and does not stay in the same 

configuration the entire time.  The ankle and subtalar joints have a range of motion which extends past 

the neutral position in both directions (Perry 1992).  There are three “rockers” that occur during the gait 

cycle, changing the angle of the foot and ankle: heel rocker, ankle rocker, and forefoot rocker (Figure 

12).  Each rocker contributes to the progression of the limb. 



17 

 

 

Figure 12: Rockers Occurring In Gait Cycle (Perry 1992) 

In addition to the plantar flexion and dorsiflexion of the ankle during gait, the metarsaophalangeal 

joints, otherwise known as the toes, also move.  The toes have a maximum of 55° of dorsiflexion (Figure 

13), occurring during the pre-swing phase, and a minimum angle of zero (Perry 1992). 

 

Figure 13: Flexion of Toes (Perry 1992)  

2.5. Prosthetic Feet 

Prosthetic feet are a highly customizable product.  Each foot serves to provide for the needs of a slightly 

different user than the next.  A prosthetic provides a stable weight-bearing surface, absorbs shock, 

replaces lost muscle function, replicates the anatomic joint, and restores cosmetic appearance (‘Lower 

Limb Prosthetics’).   

Users of prosthetic feet can be broken down into functional levels which relate to their activity level and 

needs for their prostheses.  A Level 0 amputee does not have the ability to go through the gait cycle due 

to massive injuries.  A prosthetic would not help someone at a Level 0.  A Level 1 has the ability to 

ambulate, but does not have the stability to walk on sloped ground.  A Level 2 amputee can travel on 

some varying terrain and slopes.  A Level 3 can traverse ranging slopes and conditions.  They have 
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varying activity levels and many need a prosthesis for a vocational task.  The last level, a Level 4, has high 

mobility and will subject their prosthetic to high impact and high stress situations (Clinical UM Guideline 

2007). 

2.5.1. Roll-Over Shape 

The roll-over shape of a foot is better understood as the geometric representation of the shape which 

the studied foot takes throughout the stance period of the gait cycle, which includes the loading 

response, mid-stance, and terminal-stance phases.  This shape is the movement of the location of the 

center of pressure (COP) during gait, in reference to the hip joint center position.  It is believed that a 

better understanding of a foot’s roll-over shape will explain why similar gait analysis results have been 

observed for feet that exhibit drastically different mechanical properties (Hansen 2005). 

For a normal limb structure, the roll-over shape of a specific foot is calculated using sagital plane 

markers attached to the lateral malleolus (ankle), left and right anterior superior iliac spines (LASIS and 

RASIS), and the sacral (three lowest vertebrae).  These four markers are then used to estimate a “hip 

joint center position,” from which a coordinate system may be established (Figure 14).  This coordinate 

system makes it possible to plot the COP throughout the gait cycle. 

 

Figure 14: Roll-Over Shape Coordinate System with Marker Locations 

2.5.2. Energy Storage and Return 

It is important for a prosthetic foot to be able to store energy expended by the user and return it later in 

the gait cycle.  This return of energy makes gait both less energy intensive and more realistic because 

human feet are naturally able to return energy throughout the gait cycle.  To achieve this return of 

energy most feet use a deformable forefront keel to act as a leaf-spring and either a foam heel or 
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another leaf-spring as the heel.  These leaf-springs elastically deform and then return to their original 

position, and thus releasing the energy originally put into them to cause deformation (Geil 2001). 

2.5.3. Mechanical Properties 

In the design and analysis of a prosthetic foot many different mechanical properties must be considered, 

including fatigue resistance, stiffness, and ductility.  Fatigue resistance describes an object’s resistance 

to changes in shape or material properties over a period of cyclic loading.  The loads applied during this 

period may be fixed or varying to represent the loads during actual use (Fatigue Test 2007).  Stiffness 

describes a design’s resistance to deflection or deformation caused by an applied force (Figure 15).  All 

materials and therefore prosthetic feet exhibit characteristics of both the elastic and plastic ranges of 

deformation over their lives.  As previously mentioned to achieve energy return a foot must undergo 

elastic deformation, which is completely reversible.  When a foot deforms past the point of elastic 

deformation it undergoes plastic deformation, which is only party reversible due to the fact that the foot 

has passed through into the plastic region. 

 

Figure 15: Diagram of Deformation ("Deformation") 

2.5.4. SACH Foot 

The Solid Ankle Cushioned Heel (SACH) prosthetic foot was designed in 1958 by Eberhart and Radcliffe 

(Gailey 2005).  The SACH design has a solid ankle, made of wood, metal, or plastic, which is then 

surrounded by rubber or foam with a cushioned heel.  The cushioned heel is for absorbing shock in the 

initial phases of the gait cycle to allow the user to mimic more nature gait patterns.  The rigid keel also 
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provides a stable weight-bearing platform, which provides the user with confidence in their prosthetic.  

The cushioned heel lessens impact of weight transfer and the flexible material of the toe allows for a 

smoother rollover at the end of the gait cycle (Supan 2005).  The SACH foot will be the major focus of 

research and comparison with the SR prosthetic.   

 

Figure 16: Examples of SACH Feet 

ICRC SACH Foot 

The International Committee of the Red Cross’ (ICRC) SACH foot is one of the two feet being tested in 

this project.  The foot is currently used by 20,000-30,000 amputees in the field (personal 

communication, Cassanova, Feb 21, 2008).  The foot is made of polyurethane foam that is injection 

molded in an aluminum casing.  The inner keel of the foot is made of polypropylene plastic to be shown 

in the CAD modeling section of the report.  The foot is actually manufactured by CR Equipments in 

cooperation with the ICRC in Geneva. 

 

Figure 17: ICRC SACH Foot 
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Advantages  

The SACH prosthetic design has many variations, but they are all based on a similar concept.  A SACH 

foot is generally used when mid-stance stability is desired for the user (Supan 2005).  The SACH foot has 

been considered the standard prosthetic prescribed to those with low function and activity levels.  The 

SACH foot was the first prosthetic foot to exhibit roll-over shape (Hansen 2005).  The minimal parts 

allow for easier use and maintainability.  The SACH foot is available at low cost because of the minimal 

parts needed and is the most prescribed (Supan 2005). 

Disadvantages  

Several shortcomings of the SACH foot have been discovered in clinical trials and in human subject 

testing.  A study completed at Northwestern indicated that the SACH foot often exhibits shortcomings in 

plantar flexion due to its rigid design (Stark 2005).  This aspect of the foot also plays into its success 

because the rigidity in turn offers stability in the early phases of the gait cycle.  The SACH foot has also 

had issues with low energy return when compared to the Flex Foot (Stark 2005).  It has also been found 

that the SACH foot has a shorter roll-over shape than a human foot and other prosthetic feet, such as 

the SR, which means that at the toe region it is not as able to support weight (Sam 2004). 

2.5.5. Shape and Roll Foot 

The Shape and Roll (SR) Prosthetic foot was developed by a team of researchers at Northwestern 

University in 2004.  It was created for use in low-income countries, as an alternative to the prosthetic 

feet commonly distributed.  The design is based on the roll-over shape characteristics of a human foot, 

and can be manufactured using low cost materials (Figure 18). 

 

Figure 18: SR Foot (Sam 2004) 
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The SR Prosthetic design is based on the idea that the roll-over shape of a prosthetic foot should match 

the roll-over shape of a human foot.  The foot consists of a wedge shape with parallel cuts through the 

center.  The prosthetic can be used with or without a commercially available foot cover (Sam 2004). 

 

Figure 19: Sagital Plane Cross-Section of SR Foot (Sam 2004) 

As seen in Figure 19 shows a sagital cross-sectional view of the foot, the height begins low at the toe 

region and increases in height until the ankle connection point.  The spacing of the vertical cuts was 

determined through a computer algorithm, which attempted to give the foot the “desired bending 

radius based on the individual’s stature” (Sam 2004).  At the ankle connection point, the prosthetic has a 

flat surface that can be connected to a standard endoskeletal pyramid plate or other connection types.  

The heel of the foot has a wedge-shaped piece removed, which allows the foot to provide shock 

absorption during the initial contact phase when the heel-strikes the floor.  This wedge also provides the 

foot with roll-over shape similar to a human normal foot.  The foot is also hollow, in order to reduce the 

weight (Sam 2004). 

The bottom plate of the foot can be created in various thicknesses in order to provide different levels of 

stiffness.  This allows the foot to be used with people with different weights and different activity levels.  

The level of stiffness does not affect the roll-over shape, up until the point where the vertical cuts are 

unable to come together.  Because of this, the roll-over characteristics and stiffness of this prosthetic 

foot can be selected independently, as required by the user (Sam 2004). 



23 

 

The SR Foot is made out of a polypropylene-polyethylene copolymer, because this material meets all of 

the desired properties: “high fatigue resistance, acceptable stiffness, easily thermoformed, available in 

most countries, water resistant, ductile failure characteristics, and low cost” (Sam 2004).  It is 

compression molded using technology that is available in most countries.   

Manufacturing 

Copolymer sheets are placed between wooden or aluminum molds (Figure 20).  The bottom part of the 

mold shapes the bottom part of the foot, while the middle section, otherwise known as the mandrel, 

shapes the hollow inside of the foot.  The top part of the mold forms the top part of the foot (Sam 

2004). 

 

Figure 20: SR Prosthetic Foot Pressure Mold (Sam 2004) 

After the heated copolymer sheets are placed between the layers of the mold the top and bottom mold 

pieces are bolted together to compress the copolymer and left to cool.  After several hours the 

copolymer is removed, and the mandrel is removed using a simple tool consisting of a threaded rod and 

nuts on a pipe.  An aluminum tube, which will be the support for the pyramid connector, is inserted into 

the hollow inside of the foot (Figure 21).  The pre-calculated cuts are made on the top surface of the 

wedge and the heel wedge is removed (Sam 2004).   
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Figure 21: Aluminum Insert Piece and Attachment Point (Sam et al., 299) 

There are other options for the manufacture of the SR Prosthetic Foot, including a compression molding 

apparatus that utilizes levers.  It has been found that the lever methods reduce the number of tools and 

complexity of the mold, while decreasing the time required to manufacture the foot (Sam 2004). 

Laboratory Testing of SR Foot 

The roll-over shape of the SR Foot was created using a quasi-static roll-over method.  The roll-over 

shape was compared to those of a Flex-Walk prosthetic, SACH prosthetic, and a typical physiological 

ankle-foot (AF) complex.  The SR Foot has a roll-over shape similar to the normal human foot (Figure 

22)(Sam 2004).   
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Figure 22: Roll-Over Shape Comparisons (Sam 2004) 

Figure 22 shows that the distance between the prosthetic foot and place of attachment to the leg, 

otherwise known as the profile, is less for the SR foot than any of the other feet tested.  This would 

allow people with longer residual limbs to use the prosthetic.  (Sam 2004). 

The foot was also fatigue tested on a privately made tester according to ISO standards.  While ISO 

standards state that a sine wave loading should be applied, the researchers applied a more square-wave 

shape load.  It was justified by the argument that a square-wave produces a more severe loading than a 

sine-wave.  Four feet were tested to over two million cycles and another to 3.8 million cycles, all without 

failure, before the decision was made to stop testing (Sam 2004). 

Disadvantages 

Several limitations of the SR Foot have been noted by the developers.  One weakness is the flat area 

located underneath the ankle connection attachment point.  Some of the subjects that have used the 

foot have noticed this area, which does not bend as much as the rest of the foot during walking, but 

according to the designers it cannot be reduced without introducing premature failures.  A second 

weakness is that the copolymer takes a set after being used, but it has been found that the foot still has 

good energy-return properties, although these results are unpublished.  It is thought that using 



26 

 

alternative materials could provide higher energy storage and return and not undergo setting.  There is 

also a need for testing of the foot and recording of the roll-over shape on actual subjects with and 

without proper alignment in order to study the roll-over shape (Sam 2004). 

2.5.6. Additional Prosthetics for Developing Countries 

Niagara Foot 

The Niagara Foot (Figure 23) is a low-cost high energy prosthetic 

designed by engineers from Queen’s University in Kingston, Ontario.  

The designers were set on the mission of designing for victims of 

landmines in developing countries.   

The foot is made with impact resistant DuPont plastic in order to 

sustain the wear and tear of those living in rural areas.  The foot’s 

energy storing design decreases the overall muscular effort required 

by the user.  There is considerable flexibility under loading in the heel region, which is beneficial during 

stride, but it can also lead to instability during standing.   

Studies of the Niagara foot began in November of 2001 and several design iterations have been made, 

although the overall response from users has been positive.  Test patients did not experience any 

failures in the heel of the Niagara Foot, a seemingly weak design characteristic, over a yearlong study of 

the device at the Aranyaprathet Clinic in Thailand.  The wear was also limited in other contact areas.  

The study found that there were no failures of the device after one year (Niagara Foot: Pilot Study).   

Jaipur Foot 

The Jaipur Foot (Figure 24) is an economical prosthetic foot 

designed for developing countries.  The foot was created in 

Jaipur, India by doctor Pramod Karan Sethi.  The foot is made 

from local materials such as discarded rubber tires and waste 

items which are readily available in areas similar to Jaipur, India 

(Serlin 2001).  The foot has a wooden keel with a carriage bolt to connect it to an upper prosthetic.  The 

foot’s main form is created in an aluminum mold.  The body of the foot is then created using a plastic 

Figure 23: Niagara Foot (IDEAnet) 

Figure 24: Jaipur Foot ("Jaipur Foot" 2005) 
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which is hand cut to match the mold and then is covered in tyre cord and the foot is covered with a 

cushioning compound and placed back into the mold.  The foot is then vulcanized in an oven. 

 

Figure 25: Jaipur Foot Mold ("Jaipur Foot" 2005) 

The Jaipur Foot is different from most prosthetics because was designed to be fitted quickly to the user, 

generally in less than an hour.  Normal daily activities like sitting, running, squatting, and climbing can be 

accomplished using this prosthetic foot.  The foot was designed in India after its designers discovered 

that most of those in need of prosthetics are below the poverty line.  They designed the prosthetic to 

retail for less than thirty-five United States dollars.  This improves the sustainability of this product.   

Studies have suggested that the Jaipur Foot is preferred over the SACH foot for various reasons.  The 

bolting of the Jaipur is just at the ankle, whereas the wooden keel of the SACH foot extends to the mid-

foot restricting movement.  The Jaipur Foot better mimics the appearance of a natural foot.  The Jaipur 

Foot does not require the use of a cosmetic shoe cover, although it still remains an option.  Another 

important aspect in many developing countries is squatting; the Jaipur Foot allows the user to squat, 

unlike many prosthetics.  Users are able to walk barefoot.  Most importantly, the Jaipur foot can be 

manufactured using local materials (Jaipur Foot 2005).  The Jaipur foot has already helped over 900,000 

amputees around the world. 
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Mobility For Each One 

Mobility for Each One (Figure 26) is another prosthetic that has been 

developed for use in developing countries.  This prosthetic is the winner 

of the 2007 Index Award for innovative design.  The design can be 

produced for $8.  The prosthetic foot can be fitted to several types of leg 

prostheses and it was created to meet the ICRC’s standards (Index Award 

2007).   

The foot is made of composite material and it based on the premise of 

energy storage.  It is made of glass fiber instead of carbon fiber, which is 

about ten times cheaper.  The prosthetic can be molded on a wooden 

frame by hand.  Also, less material is needed because the curved design inherently adds structure and 

support (Mobility for Each One 2006). 

2.6. Ground Reaction Forces during Gait 

There are reaction forces during the stance phase of the gait cycle as the foot interacts with the ground.  

These forces form a typical shape for the average person.  The normalized horizontal and vertical forces 

during the gait cycle are seen Figure 27. 

 

Figure 27: Ground Reaction Forces During Fast Walking (Winter 1991) 
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The horizontal, or lateral, forces are seen to be negative, acting in the posterior direction, during the 

first part of the cycle through to approximately mid-stance when they become positive, acting in the 

anterior direction.  They peak at an average of 2 N/kg during natural walking and almost 3 N/kg for fast 

walking.  For an 80 kg person, this would be 160N for natural walking and 240N for fast walking.  The 

average vertical forces are much greater, at the greatest point being almost 11 N/kg during natural 

walking and almost 13N/kg for fast walking.  For the 80 kg person, this is 880N for natural walking and 

1040 N for fast walking.  The vertical forces have a double hump shape, which represents the period of 

initial contact with the ground and the period prior to swing.  During the first peak in force, the body’s 

center of mass endures an upward acceleration as it is moving downwards.  At the second peak, where 

the leg is pushing off before swing, the body’s center of mass is again accelerated upwards (Winter 

1991).   

The moments of force during gait can be calculated using inverse dynamics.  Inverse dynamics derives 

the forces and moments acting on a joint from the kinematics of walking (Kirtley 2007).  Another 

method is to calculate the “joint moment by calculating the product of the ground reaction force vector 

and the perpendicular distance from the joint center to that vector” (Winter 1991).  This method does 

not account for the moments at a joint due to the acceleration of the limbs.  The errors are 

compounded as the moments are calculated up the ankle, knee, and hip.  It also does not allow for the 

calculation of the moments during the swing phase.  According to Winter, this method should only be 

used as a first approximation of the moments at a joint (Winter 1991). 

2.7. Strain Gauges 

The strain at the ankle is critical to the overall functioning of the coupled monolimb and prosthetic foot.  

If the stiffness of the foot is too high, the interaction of the foot and the monolimb could potentially 

result in premature deformation or fracture of the monolimb.  When seeking to assist those in 

developing countries, the CIR would like to ensure the highest life of the monolimb that is possible.  For 

the purposes of this project the strain gauges were used to determine the resultant strains in the 

monolimb due to the interaction between the monolimb and the prosthetic feet. 

Uniaxial strain gauges are used to measure strain in one single axis.  The strain gauge has a grid in a 

single direction.  A rosette strain gauge provides the stresses along multiple axes.  The equations to 

transform the strain from the gauge coordinate system to the x, y, x coordinate system are seen in 



30 

 

Figure 28, where εx is the strain in the horizontal direction, εy is the strain in the vertical direction, and 

εxy is the shear strain. 

 

Figure 28: Rosette Strain Gauge and Applicable Strain Equations (Rosette Strain Gauges 2008) 

The 0, 45, 90 rosette strain gauge, also known as the rectangular rosette, is one type of rosettes used to 

measure strain along multiple axes.  The delta rosette is another type, with gauges placed at 60 degree 

increments.  For a 45° strain gauge (Figure 29) where α is 0°, β is 45°, and γ is 45°, the equations are 

simplified to the following. 

 

Figure 29: Rectangular Rosette Strain Gauge and Strain Equations (Rosette Strain Gauges 2008) 

 

2.8. ISO Standards 

There are two standards that outline procedures for testing prosthetic leg and foot systems.  These ISO 

standards were created for prosthetics to ensure that prostheses are adequate and safe for users.   

The first is ISO 10328 [Structural testing of lower-limb prostheses].  According to ISO 10328, ‘the term 

prosthetic means an externally applied device used to replace wholly, or in part, an absent or deficient 

limb segment.’   The standards specify testing methods, loading conditions, and other parameters.  The 
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standards in ISO 10328 apply to transtibial, knee-disarticulation, and transfemoral knee prostheses (ISO 

10328 1996). 

 There are three types of testing structures indicated in ISO 10328: complete, partial, and any other 

structure.  This research primarily dealt with the complete structure testing.  In preparation for testing, 

all cosmetic components must be removed if they do not provide structural strength to the device (ISO 

10328 1996).  The products being tested were fitted normally, further description on this method can be 

found in the methodology. 

The 2006 ISO 22675 [Testing of ankle-foot devices and foot units] standard was used more heavily in the 

research for this project.  This ISO standard discusses the proper procedure for cyclic testing of ankle-

foot devices.  It reviews the loading conditions that can be used to mimic natural gait loading.  In 

addition to the cyclic loading tests, the ISO 22675 specifies a static test that can be performed on 

prosthetic ankle-foot devices.  It shows appropriate lines of action for the static loading tests (ISO 22675 

2006).   

During testing the sample must be aligned appropriately being aware of the effective ankle joint 

centerline, the effective ankle joint center, the effective knee joint centerline, and the effective knee 

joint center.  All tests should be conducted using the standard’s outlined worst-case alignment.   

Through the use of ISO standards and following proper protocol, one can have a better chance of 

obtaining valuable results for a wide range of applications.  The standards can also ensure safety during 

testing.   
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3. Methods 

Evaluation of the foot prosthetics was conducted in two partially concurrent phases in order to 

determine and compare the stiffness of the prosthetic systems and the stresses that occur on the 

monolimb when coupled with the SACH and SR feet.  The first phase was analytical modeling the 

foot/monolimb assemblies and conducting finite element analysis (FEA).  The second phase was the 

validation of the FEA through the physical testing of the feet. 

3.1. Determination of Axes for Prosthetic Components 

In order to ensure consistent and comparable measurements and results, it was important to determine 

the alignment for all of the testing components.  The coordinates that were used to describe the 

alignment were the Cartesian coordinate system with positive Y in the upwards vertical direction, 

positive X in the right horizontal direction, and Z outwards.   

3.1.1. Prosthetic Feet 

The alignment for the prosthetic feet was determined using the ISO 22675.  The ISO standard indicates 

that the longitudinal axis of the foot should pass through two identified points.  One is located at the 

center of the widest part of the foot, and the other is located at the center of the ankle region, 

specifically one quarter of the distance from the posterior of the foot.  The centerline is then considered 

the zero/neutral axis for the alignment of the test setup.  Figure 30 shows the ISO 22675 diagram for the 

determining the central axis for the feet (ISO 22765 2006). 

 

Figure 30: Determining Longitudinal Axis 
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The ISO 22675 indicates that the prosthetic feet should be placed at an angle of 7˚ outward from the 

neutral axis that was determined using the methods above (ISO 22765 2006).   

Figure 31 gives an example of the calculated longitudinal datum for the SR foot, along with the rotated 

axis used in the model to align the foot with the monolimb. 

 

Figure 31: SR Model with Longitudinal Axis 

3.1.2. Monolimb 

It was important to ensure that during testing the forces applied to the prosthetic assembly occurred 

along a central axis.  Since the monolimb was made in an environment where little precision was taken, 

the axis was not located in the visual center of the hole of the monolimb.  The axis created by the 

threaded hole through the metal insert was chosen as the axis for the monolimb.  The forces for testing 

would be applied along this axis.  To ensure that the forces were applied accordingly it was necessary to 

determine where that axis was located in reference to the monolimb’s top surface. 

First, a one meter long M10 threaded rod was inserted into the metal insert and secured it using M10 

washers and nuts on either side.  The top surface of the monolimb was then milled perpendicular to the 

rod, and therefore the axis.  Next, the top surface of the monolimb was marked at 22.5° intervals, with 

the center at the center of the threaded rod, staring from one side of the posterior seam and ending just 

below it (Figure 32).   
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Figure 32: Marked Monolimb 

The distance (D1) between the inner-wall of the monolimb and the edge of the threaded rod at each 

mark was measured.  The total distance between the central axis of the threaded rod and the inner-wall 

of the monolimb (D2) was calculated by adding the radius of the threaded rod (5 mm, 0.197 in) to each 

value of D1.  The points can be seen in Figure 33.   

 

Figure 33: Graph of Monolimb Center (inches) 

3.2. CAD Modeling 

In order to conduct the finite element analysis, all of the components needed to be modeled.  All of the 

components to be tested were modeled in Pro/Engineer Wildfire 2.0.   

3.2.1. SR Foot 

The SR foot consists of a polypropylene foot shape with a metal insert inside.  Both components were 

measured using calipers.  To obtain the shape of the bottom portion of the foot, a line was drawn 
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lengthwise through the foot.  Points were measured at regular intervals around the outline with respect 

to a temporary origin (Figure 34).  These points, listed in Appendix A, were then input into Pro/Engineer 

to form the outline of the foot.  The outline was then extruded to form the base of the foot, and the 

bottom edge was rounded. 

 

Figure 34: Outline of SR Base 

The wedge-like shape was then drawn on a datum plane (DTM1).  The shape used datum planes RIGHT 

and DTM2, which were offset from each other the exact length of the wedge, as end points  The wedge 

was then extruded to form a solid shape, and from the outline of the base an extruded cut trimmed the 

overhanging sides (Figure 35).   

 

Figure 35: Datums for SR Foot 

The inside of the wedge was the then cut through a sketch drawn on DTM2 (Figure 36).  Next, the cuts 

on the top portion of the foot were then extruded at the measured intervals.  Finally, the wedge shaped 

cut at the back of the foot was extruded through.  The bolt hole at the top of the foot was placed offset 

from the upper cut and the side of the top of the wedge, and the larger tool access hole at the bottom 

of the foot was placed coaxial to it. 
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Figure 36: Inside Cut for SR Foot 

The insert was first created as a single solid extrusion.  The inside material was then removed in a single 

cut (Figure 37). 

 

Figure 37: SR Insert 

An assembly was created with the insert to ensure that there was no interference between the two 

parts (Figure 38). 

 

Figure 38: Assembly of SR and Insert 

3.2.2. SACH Foot 

The SACH foot was more difficult to model due to the complex geometry of the foot.  The SACH was 

modeled as an assembly of two parts, the polypropylene inner keel and polyurethane foam outer cover.  

The two parts were modeled separately, then assembled together and used to modify the construction 

of the outer cover. 
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The inner plastic keel of the SACH was measured using a QC-5000 Metronics Coordinate Measuring 

Machine (CMM).  The points were then used to create spline curves on the outline of the insert (Figure 

39).  The coordinate system origin for the insert was selected to be the center of the bolt hole. 

 

Figure 39: CMM SACH Foot Insert 

The spline curves were used to accurately create the spline running down the front of the insert, the top 

curved surface, and the bottom curved surface.  The spline curve and the bottom curved surface curves 

were used to make the initial extrusion, while the top curved surface curve was used to cut material 

away (Figure 40). 

 

Figure 40: Initial Extrusion and Cut Using Spline Curves 

 The back of the foot was then cut to create the elliptical surface.  From this surface the rear angled cut 

and support rib could be created.  Finally the center hole and the pockets were modeled.  The final solid 

model appears in Figure 41. 
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Figure 41: Final Solid Model of SACH Foot Insert 

The complex outer SACH foot shell was created using the CMM.  Three dimensional points were taken 

periodically at horizontal planes. These were taken at four parallel planes at 0.6 inch intervals. In 

addition, points were taken along the seam at the bottom of the SACH and along the top surface of the 

foot.  Fourteen points were taken around each plane.  These were saved as separate Excel files.  These 

files were then converted to *.ibl files (IBasic Component Language) and imported into Pro/Engineer as 

datum points.  Closed spline curves were then created through these points.  A solid blended surface 

was then created using a smooth general blend from spline to spline (Figure 42). 

 

Figure 42: SACH Model with Curves from CMM 

The bottom profile of the foot was also measured using the CMM and imported into Pro/Engineer using 

the same method as the previous spline curves.  This sketch was then created from this curve and it was 

extruded as a cut from the bottom of the foot.  The new edge was then rounded. 

The SACH insert was then assembled to the SACH foot outer shell, and cut out of the shell (Figure 43).  

Finally, assembly datum planes were created by making a central axis based on the specifications of ISO 

22675 and offsetting a datum plane from it by 7°. 



39 

 

 

Figure 43: Multiple Views of Complex SACH Model 

This model was found to be too complex when loaded into ANSYS and it was not able to mesh the foot.  

Because of this, a simpler, less refined model was created.   

The simplified SACH foot was created using only one set of points taken from the CMM.  This set was 

taken near the base of the foot around the outermost edge.  Again the points were imported as an .ibl 

file and converted into a closed spline curve.  This curve was then converted into a sketch and extruded 

to the height of the foot.  A round was then placed on the bottom edge. 

The profile of the fore foot was then estimated and cut from the solid model.  The sharp edges of the 

fore foot were then rounded.  Finally assembly datum planes were created by making a central axis and 

offsetting a datum plane from it by 7°. The SACH insert was then assembled and the insert shape was 

cut out.  

 

Figure 44: Simplified SACH Foot 
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3.2.3. Monolimb 

The monolimb was measured using calipers.  There is variation in the dimensions of the monolimbs 

created by the CIR, because of the imprecise method of construction.  Because of this, the CAD model 

was created based on the design intent for the monolimb.  The dimensions of five monolimbs were 

measured, identified as monolimbs A through E, and monolimb B was selected to be used for the 

modeling dimensions, as it had a limited number of imperfections, including variable edge thickness at 

the bottom and above the metal insert.  The model was created to capture design intent.  The actual 

physical monolimb does not have a perfect circular shape, as seen from Figure 33 in the determinaton of 

the axes.  In addition, the posterior seam is not always perpendicular to the monolimb shank, and 

therefore its plane does not always pass through the center axis of the monlimb..  This variation was 

eliminated in the model, and the monolimb was modeled as a perfect cylinder with a constant wall 

thickness.  In addition, the posterior seam was modeled to be perpendicular to the shank and aligned 

with the monolimb center axis. 

The monolimb shank consists of a metal insert with plastic molded around it.  These two components 

were modeled separately then joined in an assembly.  The metal insert was modeled as a revolved 

protrusion, creating a short cylinder.  The coordinate system origin was placed on the bottom surface, 

on the center axis, to correspond with the chosen coordinate system.  Cuts were then made on either 

side of the front plane.  The top and bottom holes were added last (Figure 45). 

 

Figure 45: CAD Model of Monolimb Insert 

The base was created as a revolved protrusion cylinder with two sections.  The coordinate system origin 

was placed on the bottom surface, on the center axis, to correspond with the chosen coordinate system.  

The upper portion has a smaller diameter than the lower portion, where the metal insert is located.  

Side cuts were then placed on opposite sides of the monolimb.  The monolimb was then shelled to a 

thickness of 5mm.   
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The posterior seam was centered on the front plane, since the design intent of the monolimb is to have 

the posterior seam equidistant from the flat edges of the monolimb and perpendicular to the ground.   

It was determined that the most critical round on the monolimb was the bottom round, as it is in 

contact with the foot.  Other rounds, including the ones between the posterior seam and cylinder, and 

around the side cuts, are formed only as a result of the manufacturing process and are not critical to the 

model (Figure 46). 

 

Figure 46: CAD Model of Monolimb 

An assembly of the monolimb and insert was built in order to ensure that there was no interference 

between the monolimb and insert.  The insert was mated to the bottom inside surface of the monolimb 

and aligned with the assembly front plane.  This meant that the flat edges of the monolimb and insert 

were aligned.  Since interference did occur, the interfering material was cut from the monolimb. 

3.3. Coefficient of Friction 

In the physical testing, all of the feet were pressed against a 1/8” thick aluminum surface to limit surface 

deformation during testing.  To have the CAD model accurately reflect the behavior of the physical 

testing, the coefficient of friction (µ) between each prosthetic foot and the aluminum board was 

determined experimentally through a slip test.  Each prosthetic foot was placed on an aluminum that 

was later affixed to the angle blocks during the experimental testing.  The plate was then tilted upward 

in five degree increments until the foot began to slip.  The plate was moved at approximately 5° per 

second between increments and held for three seconds at each increment for this rough estimate.  The 
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test was accurate within one degree.  The test was rerun, starting 10° below the estimated slip angle 

and held at increasing one degree increments, in order to establish the angle of the plate when slipping 

occurs to the nearest angle.  The plate was moved at one degree per second between increments for 

this more precise estimate.  Five trials for each foot were run, in order to find the average angle of 

slippage.  From this angle the coefficient of friction was then be estimated using the relationship µ= 

tan(θ). 

The feet were each tested and the gathered results can be found in Table 2.  The raw data for these 

tests can be found in Appendix D. 

 ICRC 
SACH 

SR 

Toe Down μ 0.49 0.32 

Heel Down μ 0.39 0.28 
Table 2: Coefficient of Friction Results 

3.4. Finite Element Analysis 

ANSYS Workbench was chosen as the FEA software package because of its ability to accept a 3D 

computer aided design (CAD) model and assembly of high complexity.  The program also allows for the 

accurate placement of angled pressures and loads, in addition to the modeling of contact surfaces and 

large deflection.   

In the finite element analysis, the element type was chosen based on the geometry of the prosthetic 

foot, the information available to input, and the results that are to be extracted.  Each element type has 

different available degrees of freedom, real constants, material properties, allowance of surface and 

body loads, and other special features (ANSYS).  This analysis required element types that have three 

degrees of freedom, can undergo potentially large deflections, and model contact forces.  Previous FEA 

studies of prosthetics have used tetrahedral elements, including a previous study on the monolimb (Kim, 

6) and one on a SACH foot (Saunders, et al.  80).  For this study 10 node 3D tetrahedral elements, 

SOLID187, were used as the solid elements.   

3.4.1. Simple Test Case 

Before the complex model of the assembly was analyzed, simple test cases were used to select the 

proper analysis methods and choices including element type, contact element type, and supports.  For 

these tests a SR foot was used.  The assembly was created with each part modeled with simple 
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geometries (Figure 47).  For example, the monolimb was modeled as a cylinder.  The configurations of 

toe-off and midstance were used for these initial test setups. 

 

Figure 47: Toe-off and Midstance Simple Geometry Assemblies  

Each assembly configuration was modeled using the contact properties seen in Table 3.  The first part is 

the contact surface while the second part is the target surface. 

No Separation Bonded Frictional 

SR to Monolimb SR to Bolt SR to Lower Block 
SR to Insert SR Insert to Bolt  

Monolimb  to Monolimb Insert Monolimb Insert to Bolt  
 Monolimb to Top Block  

Table 3: Contact Properties Between Surfaces 

The No Separation contact was selected for the parts that were able to move relative to each other, but 

would remain touching the entire time.  The Bonded contact was selected for all contacts with the bolt, 

since in actuality the bolt would be secured with Loctite® and therefore unable to move relative to the 

other parts.  It was also selected for the upper block, as it is only used to apply the force to the 

monolimb.  The frictional contact, with a coefficient of friction of 0.4, was selected for the connection 

between the foot and lower block, since in reality there would be frictional forces between the foot and 

lower block.  This coefficient of friction was chosen from the initial testing to determine the coefficient 

of friction between the SR foot and the metal plate. 

It was important to ensure that the model created in ANSYS would behave similarly to the actual 

prosthetic setup.  To confirm this, theoretical calculations using the basic equations for stress and strain 
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were completed to determine the approximate total axial deformation that would occur in the 

midstance setup under a compressive 1300N load (Appendix C). 

 

 The resulting calculated change in length was 0.311 mm.  An analysis was run on the midstance setup 

with a compressive pressure on the top block of 1300N divided by the area of the attached block.  The 

resulting deformation in the vertical direction can be seen in Figure 48.  The total deformation was 0.288 

mm, giving a percent difference of 8%.  This error could be a result of the approximations made in the 

hand calculations.  It could also be a result of the insertion of the metal inserts and bolt in the FEA 

model, and the interaction between the contact surfaces of the parts, which were not included in the 

hand calculations.   

 

Figure 48: Y Directional Deformation in Midstance Assembly 

3.4.2. Meshing of SR Foot 

In the modeling of SR foot, the standard tetrahedral elements were used.  The contact surfaces in Table 

4 were defined.  The connections between the majority of parts were bonded, in order to allow the 

model to solve.  The connection between the contact portion of the foot and the block was frictional, 

with a value of 0.3, determined as an average from friction testing, as seen in Table 2 of the 

determination of the coefficent of friction.  A rough connection was created between the bottom 



45 

 

surface of the foot and the base to allow pontential contact as the load was applied (Figure 49).  A rough 

contact allows for gaps to occur between contact surfaces.  This was important for the contact surfaces 

between the bottom of the foot and ground block, between the cut surfaces of the heel, and between 

the cuts on the forefoot, as these surfaces are either in partial contact or have no contact initially and 

after the applied load. 

Bonded Frictional Rough 

SR to Monolimb Heel/Toe Contact Area 
to Lower Block 

Bottom Foot Potential 
Contact Area 

SR to Insert  Toe Cuts 
Monolimb  to Monolimb Insert  Heel Cut 

SR to Bolt   
SR Insert to Bolt   

Monolimb Insert to Bolt   
Monolimb to Top Block   

Table 4: SR Contact Surfaces 

 

Figure 49: SR Contact Surfaces 

For the toe-off and heel-strike positions, special contact surfaces were placed on the foot.  In toe-off 

(Figure 50), contact surfaces were placed between the cuts on the top of the foot, to allow these 

surfaces to bend towards each other and touch.  For the heel-strike position (Figure 51), contact 

surfaces were defined between the top and bottom portions of the heel cut, to allow the cut to touch 

during loading. 
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Figure 50: Toe Cut Contact Surfaces 

 

Figure 51: Heel Cut Contact Surfaces 

The automatic size control was used to mesh the three models (Figure 52), with refined meshing 

occurring at key areas such as the bottom of the SR foot and around the heel cut (Figure 53). 

 

Figure 52: Meshed SR Foot Models 
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Figure 53: Refined Mesh at SR Heel 

3.4.3. Meshing of SACH Foot 

For the SACH foot, the initial accurate CAD model of the foot was not able to be meshed because of the 

complex spline surfaces.  The simplifed SACH model was used for the FEA instead.  In the modeling of 

SACH foot, the standard tetrahedral elements were used.  The contact surfaces in Table 5 were defined.  

The connections between the majority of parts was bonded, in order to allow the model to solve.  The 

connection between the contact portion of the foot and the block was frictional, with a value of 0.3, 

determined as an average from friction testing, as seen in Table 2 in the determination of the coefficent 

of friction.  A rough connection was created between the bottom surface of the foot to allow pontential 

contact as the load was applied (Figure 54). 

 

Bonded Frictional Rough 

SACH Insert to Monolimb Heel/Toe Contact Area to Lower 
Block 

Bottom Foot Potential Contact 
Area 

SACH Outside to SACH Insert   
Monolimb  to Monolimb Insert   

SACH Insert to Bolt   
Monolimb Insert to Bolt   
Monolimb to Top Block   

Table 5: SACH Contact Surfaces 
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Figure 54: SACH Contact Surfaces 

 

The automatic size control was used to mesh the heel-strike and toe-off orientations (Figure 55), with 

refined meshing at the bottom of the foot. 

 
Figure 55: Meshed SACH Foot Models 
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3.4.4. Model Constraints 

Each foot in each orientation had the same constraints and loads applied (Figure 56).  The bottom 

surface of the block was selected as a fixed surface.  The top block connected to the monolimb was 

constrained to no movement in the X and Z directions.  Lastly, a vertical force of 1300N was applied to 

the monolimb.  To accomplish this, a pressure of 2.03MPa was evenly applied to the top of the 0.08m x 

0.08m block. 

 

Figure 56: FEA Model Constraints and Loads 

3.5. Physical Testing 

Physical testing was performed to use as a method of comparison for finite element analysis.  There are 

many components to the physical testing that was performed.  The alignment of the test setup, the foot 

orientations, strain gages are all explained along with the BlueHill programming software for the testing, 

force application, data collection and analysis. 

3.5.1. Alignment 

The testing of the prosthetic feet took place on an Instron 5544.  A coordinate system was set up at the 

initial ankle position of the monolimb-prosthetic foot system.  The origin was located in the center of 

the ankle joint (Figure 57).   
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Figure 57: Test Setup with Coordinate System 

In order to connect the monolimb to the Instron compression testing machine, a custom adaptor was 

required.  This aluminum adaptor was designed so that the force was transmitted through the center 

axis of the monolimb as determined previously.  The top of the adaptor was designed to fit around the 

circular protrusion at the top connection point of the Instron machine, and it was secured with a dowel 

pin that was inserted though the adaptor and machine protrusion.  The bottom of the adaptor was 

designed to fit snugly inside the top of the monolimb, with set screws used to secure the monolimb in 

place.  The monolimb profile was determined previously, and the points were used to design the bottom 

face of the adaptor.  The final design can be seen in Figure 58, with the red dashed line showing the axis 

of alignment. 
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Figure 58: Instron to Monolimb Connection Adaptor 

3.5.2. Foot Orientations 

Testing of the prosthetic feet was conducted at three orientations.  The first position was the heel-strike 

that occurs during initial contact, henceforth referred to as heel-strike.  This was accomplished in the 

physical testing through the use of a 15° angle block made out of wood with a 1/8” thick aluminum 

surface to limit surface deformation during testing.  The aluminum surfaces were affixed by six nails 

attached to the sides of the angle block as to not interfere with the contact surface where the feet were 

tested.  The second position was midstance, where the foot is flat on a level 1/8” piece of aluminum.  

The last position was pre-swing, where the majority of the weight is on the toe before the swing phase, 

henceforth referred to as toe-off.  This required the use of a 20° angle block also with an aluminum 

surface mounted to the surface (Figure 59).  These blocks were attached to the base of the Instron 5544 

with a rod that was inserted through the center of the angle block and connection cylinder on the 

Instron machine.   

 

Figure 59: Toe-off Angle Block 
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During the physical testing, pressure paper was placed between the foot and the angle block, as 

described in the next section.  It was attached using tape lined up against a mark on the block.  This 

position was determined when the final test set-up was established in the lab.  This ensured that each 

piece of pressure paper is attached at the same spot in relation to the coordinate system. 

3.5.3. Strain Gauges 

In order to measure the strain that occurs on monolimb, strain gauges were attached to the monolimb 

shank.  The strain gauges (Figure 60) were a uniaxial gauge mounted to the posterior seam and a 

rectangular rosette strain gauge mounted to the anterior of the monolimb.  Both of the gauges were 

located on the outside of the monolimb, directly above the metal insert.  These locations were chosen 

because the CIR indicated them as a critical region for failure.  Failure was seen above the metal insert in 

a case study performed on an active 185lb male (personal communication, Cassanova, Feb 21, 2008). 

 

Figure 60: Strain Gauge Placement on Physical Test Setup 

The rectangular rosette gauge was selected since the principal axes of the strains are not known for the 

monolimb.  The rectangular rosette strain gauge was selected because it is easier to determine the 

directions of the principal strains when compared to a delta rosette.  The rosette gauge so that a gauge 

was located horizontal (0°), 45°, and vertical (90°). 
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The strain gauges and the mounting surface on the ankle portion of the monolimb were prepped for 

testing using a fine grade polishing paper and then applying alcohol to the surface to remove any oils or 

fingerprints that may be on the surface.  The strain gauges were then applied with super glue. 

3.5.4. BlueHill Software 

The testing for this project was run through the use of the BlueHill software.  The BlueHill program 

allows for load and timing input to be read from the screw driven compression apparatus of the Instron 

machine (Figure 62).   

  

Figure 61: BlueHill Program Sample Screenshot 

BlueHill is ideal for this test because it allows for the user to generate a custom test based upon the 

loading, materials, and timing required for each experiment (BlueHill 2007).  For the purposes of this 

study, only compression tests were used.  Ten separate BlueHill files were created to apply the forces for 

the physical testing.  Specifically, the individual tests were 0-130N, 130-260N, 260-390N, 390-520N, 520-

650N, 650-780N, 780-910N, 910-1040N, 1040-1170N, and 1170-1300N.  After running one file, the test 

held the force so that the data from the strain gauges could be recorded.  Time, force, and extension 

were automatically read from the BlueHill program and recorded to Excel. 

3.5.5. Compression Testing Machine 

For the testing of the prosthetic feet coupled with the monolimb, the Instron 5544 compression/tension 

machine was used (Figure 62).  The Instron 5544 is capable of applying 2000N of force, where the 
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testing for this project only required a maximum of 1300N.  Since the test required only about one foot 

of vertical test space, the forty-two inches of available space with the Instron machine easily met the 

needs of the experiment.  The machine is capable of + 0.5% load accuracy and has a precision accuracy 

of ±0.02mm. 

 

Figure 62: Instron 5544 

3.5.6. Force Application 

The prosthetic foot and monolimb were attached to the top grip location of the Instron machine.  To 

begin, a baseline measurement was taken at 10N of force which allowed for the initial compression of 

the gaps in the assembly.  The force was applied to the monolimb/foot setup at 75N/min.  The force was 

applied to the levels indicted in Table 6.  The position was then held for 45 seconds while the strain 

gauge data was manually recorded from the P-3500.   

Test 
# 

Percent Total 
Loading 

Force 
Applied (N) 

Pressure 
Paper? 

1 10% 130 * 
2 20% 260 

 3 30% 390 
 4 40% 520 
 5 50% 650 * 

6 60% 780 
 7 70% 910 
 8 80% 1040 
 9 90% 1170 
 10 100% 1300 * 

Table 6: Test Procedure 

Each test shown in Table 6 was performed twice for each foot in each orientation.  The first test run 

included the use of pressure paper while the second test was just the force application.  The same 

alignment was used, so that the data gathered from the pressure paper and any realignment was carried 

http://www.instron.us/wa/products/images/5540_enlarge.jpg
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through each test.  The purpose of the pressure paper was to determine if there were any loading 

irregularities or pressure distributions that were not expected.  The pressure paper that was needed was 

predetermined by predicting the expected contact area and force relationship.  The table of these 

predictions can be found in Appendix E.   

The asterisks on the table indicate the tests where the pressure paper was used.  The 130N force was 

applied, the load arm was lifted and the pressure paper was removed and read.  In the event of any 

discrepancies, like spotting or other unexpected loading, the alignment of the assembly was modified 

and the test was rerun.  Once there were no issues with the pressure paper, a new paper was mounted 

and the foot was reloaded and the force was applied to 50% as indicated in the table, the tests were run 

to each 10% increment and strain gauge data were recorded.  The paper was checked again at 50% and 

if there were no errors, a new paper was inserted and the test was run at 10% increments of force up to 

1300N.   

3.5.7. Data Collection 

 

Figure 63: SB-10 Switch & Balance Unit and P-3500 Digital Strain Indicator 

Data were collected using the uniaxial and rosette strain gauges as seen in Figure 60.  The strain gauge 

data were read using Vishay’s SB-10 Switch & Balance Unit and Vishay’s Model P-3500 Digital Strain 

Indicator.  The SB-10 Switch & Balance Unit is designed to provide a method of reading the output of ten 

strain gauges on a single strain indicator.  For the purposes of this test, only four strain gauges were 

used, each in a quarter bridge configuration.  The strains were read on the P-3500 which is a portable 

battery powered strain gauge reader. 



56 

 

3.5.8. Data Analysis 

The loading and displacement were recorded from the physical testing and were compared with the FEA 

along with the posterior uniaxial, anterior 90˚, and anterior 0˚ strain values.  The principal strains were 

calculated using the rosette strain 0, 45, and 90˚ gauges.  The stiffness of the foot-monolimb system, k, 

was calculated from the displacement of the Instron arm.  This displacement is measured from the 

center of the Instron arm and was set to zero when the load equaled 10N in compression.  This was 

done to compensate for any movement in the test setup.  The vertical displacement of the top surface 

of the top block from the neutral zero force position to final deformed position in the FEA model was 

also recorded.  The equation k = F/d was used to calculate this stiffness, where k is stiffness, F is the 

force applied, and d is the displacement.   
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4. Results 
From the physical testing and FEA models, data were collected regarding the strain on the monolimb 

and the compression of the prosthetic assembly. In addition, information collected from the FEA 

included the principal stresses on the monolimb and the von Mises stresses. 

4.1. Physical Results 
The physical testing that was performed was directed at establishing the reactions that the monolimb 

displayed when under the specified loading conditions.  Each foot and monolimb combination was 

loaded as indicated in the methodology.  The uniaxial gauge located on the posterior seam of the 

monolimb, and three strain gauges of the rosette were read and recorded.  The data from these tests 

are compared in the analysis section of this report.  Values may be seen in Appendix E. 

4.1.1. Heel-strike 

During the heel-strike test for the assembly with the SR foot was stopped at a load of 910N because 

plastic deformation began to occur near the heel of the foot.  This deformation is shown as a bright 

white spot on the foot indicated with the arrow in Figure 64a.  The foot did not undergo fracture.  The 

SACH foot assembly was run to the full 1300N loading (Figure 64b). 

 
(a) 

 
(b) 

Figure 64: Heel-strike End Loading (SR, 910N; SACH 1300N) 
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The results from the heel-strike testing of both the SR and SACH foot assemblies are shown in Figure 65.  

Data collected from uniaxial strain gauges are labeled as “Uniaxial” while data collected from the rosette 

strain gauges is labeled by the angle of the corresponding strain gauge. The 0° gauge was horizontal 

while the 90° gauge was vertical.  Each point represents the averaged value of two tests. 

 

Figure 65: Heel-strike Strain Results 

The foot loading was distributed as seen in Figure 66 on the pressure paper.  There were not any 

concerns with the loading distribution. 

 

Figure 66: Top View of Pressure Paper Results from SR Heel-strike Test 
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4.1.2. Midstance 

The results from the midstance testing of both the SR and SACH feet are shown in Figure 67.  Data 

collected from uniaxial strain gauges are labeled as “Uniaxial” while data collected from the rosette 

strain gauges are labeled by the angle of the corresponding strain gauge. Each point represents the 

averaged value of two tests. 

 

Figure 67: Midstance Strain Results 
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4.1.3. Toe-off 

The toe-off test for the SR foot assembly was stopped at 520N because the test setup was creating a 

torsional force on the Instron machine that could have been detrimental to the test setup (Figure 68b).  

The SACH foot assembly test was stopped at 910N for the same reason (Figure 68a).   

 

 
(a) 

 
(b) 

Figure 68: Toe-off End Loading (SR, 520 N; SACH, 910) 

 

The results from the Toe-off testing of both the SR and SACH feet are shown in Figure 69.  Data collected 

from uniaxial strain gauges are labeled as “Uniaxial” while data collected from the rosette strain gauges 

are labeled by the angle of the corresponding strain gauge.  Each point represents the averaged value of 

two tests. 



61 

 

 

Figure 69: Toe-off Strain Results 

The foot loading was distributed as seen in Figure 70 and Figure 71 on the pressure paper.  There were 

not any concerns with the loading distribution. 

 
Figure 70: Top View of Pressure Paper Results from SR Toe-off Test 

 
Figure 71: Top View of Pressure Paper Results from SACH Test Toe-off Test 
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A summary of the strain data at the maximum loading applied for each test from the physical testing is 

shown in Table 7. 

Table 7: Strain Data from Physical for Comparison 

  
Load (N) 

Posterior Uniaxial 

Strain (µε) 

Anterior Uniaxial 

Strain (µε) 

Anterior Horizontal 

Strain (µε) 

SR 

Heel-strike 910 -2542 942 -95 

Midstance 1300 -80 -2262 463 

Toe-off 520 14780 -15567 5052 

SACH 

Heel-strike 1300 -1538 -362 178 

Midstance 1300 2942 -5403 1397 

Toe-off 910 5896 -10690 317 

 

4.1.4. Compression Results 

The displacement of the Instron arm, from the starting position at a loading of 10N to the final loading 

condition was recorded.  The total compression for each test found in Appendix F.  Table 8 shows the 

average of two trials of vertical displacement of the top arm of the Instron from 10N to position to final 

position at the given loading. 

Table 8: Compression from Physical Testing 

  Loading 
(N) 

Compression 
(mm) 

SACH Heel-strike 1300 22.60 

Toe-off 910 41.62 

SR Heel-strike 910 10.79 

Toe-off 520 33.86 

 

The tests were stopped at different final loading conditions. it was shown that under heel strike, the 

SACH foot assembly deformed more than the SACH foot assembly.  At 910N (where the SR assembly test 

was stopped) the assembly with the SR and SACH compressed in magnitude by 10.79mm and 18.08mm 

respectively, thus showing that the SACH foot assembly deformed almost 7mm more than the SR. 
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4.2. FEA Results 
FEA was performed at the maximum loading of 1300N to compare to the physical testing.  The FEA 

testing showed the following results for the SR foot assembly and the SACH foot assembly.  The data 

points were called out on the FEA at the specific sites of the strain gauge application on the FEA for each 

experimental test that was run, specifically the SR assembly at heel-strike, midstance, and toe-off, and 

the SACH assembly at heel-strike and toe-off (Table 9).  For each model, ten points were sampled within 

a circular 10 mm in diameter located 10 mm above the metal insert.  The data are further explained and 

compared in the analysis section of the report.  The FEA screenshots of the models can be found in 

Appendix G.  

Table 9: Strain Data from FEA 

  Posterior Vertical 
Strain (µε) 

Anterior Vertical 
Strain (µε) 

Anterior Horizontal 
Strain (µε) 

SR 

Heel-strike -2550 to -2650 650 to 990 -240 to -420 

Midstance -280 to -350 -1550 to -1580 80 to 85 

Toe-off 7300 to 7600 -9300 to -11000 2700 to 3600 

SACH 
Heel-strike -0.0009 -0.0012 to -0.0013 0.0006 

Toe-off 6400 to 6800 -7800 to -8850 2900 to 3400 

 

The von Mises stresses were also extracted from the FEA models, and the resulting images can be found 

in Appendix G.  The von Mises stress (Figure 72) will be important for the analysis of the monolimb and 

the feet.  The von Mises stress is an indicator of failure.  It is an index that combines the three principal 

stresses of the material.  Although the material may not indicate failure based on the principal stresses 

alone, the von Mises stress can show how these principal stresses combined can potentially cause a 

failure in the material.  For analysis the von Mises stress is compared to the tensile yield strength of the 

material (Engineer’s Edge 2008).   

 
Figure 72: von Mises Stress (Engineer's Edge 2008) 
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The compression of the entire prosthetic assembly was also extracted.  Table 10 shows a summary of 

the vertical displacement of the top surface of the top block from the neutral zero force position to final 

deformed position in the FEA model. 

 

Table 10: Total Prosthetic Compression 

  Compression (mm) 

Shape & Roll 

Heel-strike 7.40 

Midstance 0.253 

Toe-off 21.33 

SACH 
Heel-strike 14.90 

Toe-off 19.43 
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5. Analysis 

After gathering the data from the physical tests and FEA, the data were analyzed and compared in order 

to draw conclusions about the interaction of the SR foot and the SACH foot with CIR’s monolimb.  The 

strain data collected from the physical testing were compared to the data computed using FEA.  The FEA 

results were then used to determine the stresses on the monolimb and their effects.  The observed 

behavior of the SR heel during the physical testing was very similar to the observed behavior of the FEA 

model, while the SACH model did not exhibit the same behavior during physical testing as the FEA 

model.   

5.1. Strains on the Monolimb 

The physical testing indicated that the strain produced on the monolimb by the SR foot was higher 

under the same loading conditions as compared to the SACH foot (Figure 73 and Figure 74).  This 

comparison can be seen in the blue lines of the SR uniaxial and 90˚ rosette strain gauge readings as 

compared to the red lines of the SACH uniaxial and 90˚ rosette strain gauge readings. 

The extended trend lines of the physical data, shown as dotted lines, represent the predicted values for 

the strains at higher loading conditions.  These trend lines were calculated using a regression analysis to 

fit a first order polynomial to the measured data points, averaged from the two trials.  These equations 

were used to calculate the expected values at higher loading conditions.  These trend lines may be 

inaccurate due to the fact that the relationship between strain and loading will not be linear if the 

monolimb undergoes any plastic deformation.  
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Figure 73: Toe-off Strain Results 

 
Figure 74: Heel-strike Strain Results 
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The extrapolated points were compared to the values from the FEA at 1300N.  The strain data from the 

FEA appears in Table 11.  The table shows that the data from the FEA was approximately equal to the 

physical data and actually very comparable for the heel-strike.  The values calculated from the 

extrapolated physical test data for the heel-strike uniaxial gauge was 940 µε as compared to the FEA 

value range of 650 µε to 990 µε.  The values calculated from the extrapolated physical test data of the 

90˚ rosette strain gauge mounted to the anterior of the monolimb showed a predicted value of     -2540 

µε as compared to the value of -2550 to -2650 µε. 

Table 11: Comparison of Strains from Physical Tests and FEA 

* Values linearly interpolated from test data 

Due to the correlation of the data between the physical strain data and the calculated FEA strains, the 

FEA models for the SR were accepted to be an accurate model of the behavior of the prosthetic 

assembly.  There were some varying values, but this could be due to experimental error.  The strain 

values from the FEA on the monolimb coupled with the SACH foot for heel-strike were much less than 

the strains actually exhibited in the physical testing. This difference could be attributed to the simplified 

SACH model that was used for the FEA.  

5.2. Stiffness of Prosthetics 
The CIR was concerned that the SR foot would cause more strain on the monolimb than the SACH foot 

because it is  stiffer than the SACH foot.  Stiffness (k) is defined as the force applied over the 

displacement, or k =F/d.  Rearranging this equation gives F = kd.  This means that for two objects, at the 

same applied force, the stiffer object will deform less than the other.  A comparison of the compression 

  Posterior Vertical 
Strain (µε) 

Anterior Vertical 
Strain (µε) 

Anterior Horizontal 
Strain (µε) 

  FEA Physical FEA Physical FEA Physical 

SR 

Heel-strike -2550 to   
-2650 

-2542* 650 to 
990 

942* -240 to -420 -95* 

Midstance -280 to     
-350 

-80 -1550 to   
-1580 

-2262 80 to 85 463 

Toe-off 7300 to 
7600 

14780* -9300 to   
-11000 

-15567* 2700 to 
3600 

5052* 

SACH 

Heel-strike -0.0009 -1538 -0.0012 to 
-0.0013 

-362 0.0006 178 

Toe-off 6400 to 
6900 

5896* -7800 to   
-8850 

-10690* 2900 to 
3400 

317* 



68 

 

of the foot and monolimb combinations can allow for comparison of the stiffness of the feet. This is 

because all of the components in the assembly were the same in each case, except the foot that was 

coupled with the monolimb.  Table 12 contains a summary of the final compression values for the FEA 

and physical testing. 

Table 12: Total Prosthetic Compression for FEA and Physical Testing 

  Compression (mm) 

  FEA Physical 

Shape & Roll Heel-strike 7.40 at 1300N 10.8 at 910N 
Toe-off 21.33 at 1300N 33.9 at 520N 

SACH Heel-strike 14.90 at 1300N 22.6 at 1300N 
Toe-off 19.43 at 1300N 41.6 at 910N 

 

The displacements for the physical testing were greater than the FEA results, even though the physical 

tests with the SR at heel-strike and toe-off and with the SACH at toe-off stopped at a lower loading level.  

In addition, the compression of the assembly with the SR foot was always less than the compression of 

the assembly with the SACH foot.  Since a smaller deflection means a stiffer assembly, the SR foot 

assembly can be considered stiffer than the SACH foot assembly. 

5.3. Stresses On Monolimb 
From the FEA, the maximum and minimum principal stresses that occurred throughout monolimb with 

the full 1300N load were extracted (Appendix G).  The principal stresses on the monolimb were found to 

be lower than the tensile yield strength, 30 MPa, and compressive yield strength, 50 MPa, of the 

polypropylene copolymer.  The stresses apparent at the top of the monolimb were neglected because 

the bonding of the steel top block to the monolimb is not how the monolimb is attached to a body.  The 

actual monolimb’s shank is attached to the socket of the prosthetic  that attaches to a person’s leg. 

 

Because the forces applied to the prosthetic assembly are not just uniaxial, the von Mises stresses on 

the monolimb are important to consider, in addition to the principal stresses.  The failure criterion for 

von Mises stress is the tensile yield strength, which is 30 MPa.  The von Mises stresses on the monolimb 

shank for both the SACH (Figure 75) and SR foot (Figure 76) are under this limit.  The von Mises stresses 

(Figure 72) on the monolimb are higher during toe-off than during heel-strike, but the highest value, 

approximately 20 MPa, is still less than the tensile yield strength. 
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Figure 75: von Mises Stresses with SR for Heel-strike, Midstance, and Toe-off (scale in MPa) 

 

 

Figure 76: von Mises Stresses with SACH for Heel-strike and Toe-off (scale in MPa) 
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5.4. Deformation of SR Heel 
During physical testing, the SR foot deformed at the heel in the heel-strike orientation (Figure 77).  This 

picture shows the SR heel at 910N, with the circled region containing the area where white markings 

appeared. 

 
Figure 77:  Deformation at SR Heel 

This area is similar to the areas that exhibited high stresses in the FEA study on the SR foot at 1300N.  

The von Mises stresses around the cut and bottom surface of the foot (Figure 78) are above the tensile 

yield strength of polypropylene, 30MPa.  The von Mises stress at the bottom surface is double the yield 

strength, while the cut area has a maximum three times the yield strength.  Since these values are above 

the tensile yield strength, the material will fail and deform plastically at the 1300N loading. 

 

Figure 78: Von Mises Stress at SR Heel During Heel-Strike 
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The foot began to show deformation marks at 910N, which is 70% of the 1300N applied to the FEA. This 

suggests that at 910N, the von Mises stresses were near 70% of the stresses seen at 1300N. At 1300N 

the von Mises stresses at the bottom surface of the heel were 60 MPa, so at 910N the stresses were 

approximately 40 MPa.  That is well over the tensile yield strength of polypropylene, and it can be 

assumed that the foot was deforming plastically at that point. 
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6. Discussion 
The goal of this study was to investigate the interaction of the monolimb coupled with the SACH and SR 

under static loading conditions. The study compared the physical testing of the monolimb-foot 

assemblies to FEA models under the same conditions. Using the results and analysis, conclusions were 

made regarding the acceptability of the SR foot coupled with the monolimb.  Suggestions were also 

given for future testing and design changes to the SR foot.  

6.1. Comparison of FEA and Physical Testing 

The physical testing results of the prosthetic assemblies were compared to the FEA models. This was 

done in order to provide evidence that the FEA model was an accurate representation of the behavior of 

the prosthetics. The strains on the monolimb and total compression of the prosthetics were used to 

compare the accuracy of the FEA for each assembly.  

The SR assembly heel-strike FEA model when loaded to 1300N showed strains which closely correlated 

with the strains seen during physical testing when the data were extrapolated.  The physical tests were 

stopped at 910N when the test setup showed influence of large moments and plastic deformation of the 

SR foot.  FEA results for midstance and toe-off generally had similar magnitudes of strain when 

compared to the extrapolated physical test data.  

For the SACH foot assembly, a midstance FEA model was not created due to time constraints. The strain 

values for the FEA heel-strike were nearly zero compared to the values seen in the physical testing, 

while the FEA strain for toe-off was of a similar magnitude to the physical testing. Since there was a 

large difference between the FEA and physical testing strains for the assembly connected to the 

simplified model of the SACH at heel-strike, the corresponding FEA model was considered to not 

accurately reflect the behavior of the assembly. 

A comparison of the total compression of the prosthetic assemblies during physical testing and FEA was 

to be used as a criterion for determining if the FEA model was accurate. The amount that the prosthetic 

assembly compressed during the physical testing was consistently much greater than what was seen in 

the FEA, potentially due to identified errors discussed in the following section, so the amount of 

assembly compression was not used to determine if the FEA model was accurate. The compression of 

the prosthetic assembly from the physical testing shows that the SR foot compresses approximately 

7mm less than the SACH assembly in the heel-strike orientation, thus making it stiffer than the SACH 

assembly. 
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5.2. Potential Errors in Study 

The results from the physical testing and FEA have highlighted areas that could be improved for future 

studies, in order to reduce the error.  The physical testing setup was seen have multiple areas in which 

displacement could occur separate from the prosthetic assembly. The tolerances of the holes in the 

adaptor and the angle blocks may have led to some overall inaccuracies in the compression 

measurements that were seen in the physical testing.   The hole of the aluminum adaptor that fit over 

the Instron shaft was one or two millimeters too large, allowing for some slight rotation.  To compensate 

for this, extension was measured from a load of 10N, to allow for the rotation to occur prior to 

recording. This load may not have been large enough, as shifting could have occurred during the test. 

Therefore we would recommend that tighter tolerances be held in the manufacturing of test fixtures. In 

addition, the wooden angle blocks were surfaced with a thin aluminum plate, which may have deflected 

at the higher loading levels. Future testing should use a plate of at least a ¼ inch thick, to prevent this 

deflection. 

 

Potential errors in the strain measurements could have come from the recording method. Since the 

strain data were recorded by hand, there may be some human error in the recordings; therefore it 

would be valuable to use LabView with National Instruments data acquisition hardware.  Using such 

data recording methods would allow future researchers to export data in real time to Excel 

spreadsheets, rather than holding the prosthetics at each load and switching between each strain gauge 

to record them. This could provide more information regarding the behavior of the monolimb as a load 

is applied. 

 

The errors that affected the FEA results were mainly associated with the SACH foot.   The intricate CAD 

model of the SACH outer cover that was constructed was unable to mesh in ANSYS because of the 

complex spline curves created from the CMM.   The simple SACH CAD model was not as accurately 

dimensioned, due to time constraints, and the differences might have affected the behavior of the 

model. In addition, the SACH outer cover was modeled as only one material. Future SACH models should 

include the two materials that make up the outer SACH cover. The modulus of elasticity used for the 

current study was found using simple weights and measurements of deformation. More accurate 

material properties could provide a more accurate model of the SACH foot behavior. 



74 

 

6.3. Feet Acceptability 

The strains above the metal insert in the monolimb were recorded on the posterior and anterior sides, 

as this was a location that marks had appeared during field testing with the SR foot. In the physical 

testing it was seen that the magnitudes of the strains were consistently higher on the monolimb with 

the SR than with the SACH foot. Higher strains are an indication of higher stresses occurring on the 

monolimb.  Therefore it was important to confirm that the monolimb was able to withstand the stresses 

that would occur with the SR. It was seen from the FEA models that the principal stresses were less than 

the yield strength of polypropylene. 

 Because the monolimb is potentially loaded in a complex manner, the von Mises failure criteria were 

used to ensure that the monolimb could withstand the stresses. The von Mises stresses were found to 

be less than the tensile yield strength, leading to the conclusion that the monolimb, coupled with the SR 

foot, can withstand the 1300N loading at the three orientations evaluated.  However as noted, it 

appears that the SR foot itself would exhibit plastic deformation at heel-strike. 

6.4. Recommendations 

Based on our test results we would recommend that future testing be done to take into consideration 

cyclic and dynamic loading.   Because the SR foot underwent plastic deformation before reaching 910N 

in our heel-strike test, we believe that repeated cyclic loading at even lower loads could produce similar 

plastic deformation.   Cyclic testing should be performed as outlined in ISO standards 22675.  In 

addition, the dynamic loading, either by machine or with human subjects, will provide information 

regarding the strain on the monolimb during a complete gait cycle. The results of these future tests 

could lead to a better understanding of the longevity of the SR foot. 

 

Regarding the SR foot, we would recommend considering altering the foot geometry to minimize the 

effect of the metal insert.   The plastic deformation occurred directly at the back edge of the metal 

insert.   This back edge of the insert is also coincident with the vertex of the angled cut-out on the heel 

of the SR foot.  It is possible that selecting a different geometry for the cut-out could help to better 

distribute the load and prevent plastic deformation. 
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7. Conclusion 
The Center for International Rehabilitation has created a low-cost monolimb that is to be attached to a 

low cost prosthetic foot.  In this study, the traditionally used SACH foot was compared to the newer SR 

prosthetic foot.  The feet were tested under static loading conditions in order to compare the behavior 

of the monolimb when coupled with each of the feet. 

The physical testing results of the prosthetic assemblies were compared to the FEA models.  The strains 

on the monolimb and total compression of the prosthetic assemblies were used as methods to compare 

the accuracy of the FEA for each assembly.  The SR heel-strike FEA model showed strains which closely 

correlated with the strains seen during physical testing when data were extrapolated to the same 

loading levels.  Midstance and toe-off generally had similar magnitudes of strain.  For the SACH foot, the 

strain values for the FEA heel-strike were nearly zero compared to the values seen in the physical 

testing.  The FEA strains for toe-off were of similar magnitudes to the strains exhibited in the 

extrapolated data from the physical testing. Since there were large differences between the FEA and 

physical testing data, the FEA model was considered to not accurately reflect the behavior of the 

assembly. 

The compression of the prosthetic assembly from the physical testing shows that the SACH foot 

assembly compresses more in all orientations presented, thus making it less stiff than the SR assembly. 

The physical testing also showed that the SR foot shows strains of greater magnitude than the SACH on 

the critical region above the metal insert.  However, the resulting principal and von Mises stresses do 

not exceed the tensile yield strength of the polypropylene copolymer of the monolimb with either 

assembly.   This leads to the conclusion that based on the testing conducted, both feet are acceptable 

during static loading conditions even though the higher strains are seen on the SR monolimb 

combination.  More testing should be performed to verify these results, specifically through cyclic and 

dynamic testing. 

This study compared the interaction of the traditionally used SACH foot and the new, low-cost Shape 

and Roll prosthetic foot with the Center for International Rehabilitation’s monolimb.  Through the static 

physical testing and FEA it was seen that the stiffer Shape and Roll assembly produced higher strains on 

the monolimb, but did not exceed the yield strength of the monolimb.  This information will aid in the 

future development and refinement of low cost prosthetics for low income countries. 



76 

 

Works Cited 

ANSYS.  “Chapter 2.  General Element Features” ANSYS Release 9.0 Documentation ANSYS, Inc.  

2004.   

Arbogast, Robert and Joseph Arbogast.  “The Carbon Copy II – From Concept to Application.” Journal 

of Prosthetics & Orthotics 1.1 (1989): 32-36 

“BlueHill Power Features.”  Instron.  2006.  

http://www.instron.us/wa/products/software/bluehill/features/power.aspx#testing 

Accessed: 2/14/08. 

 

The Center for International Rehabilitation.  ‘IDEAnet.’ 

http://www.cirnetwork.org/content.cfm?id=5B&newCommunity&CFID=1714313&CFTOKEN=

34116128.  Accessed: 9/6/07. 

‘Clinical UM Guideline.’ 

http://medpolicy.bluecrossca.com/policies/guidelines/DME/lower_limb_prosthesis.html.  

Accessed: 9/10/07. 

 “Deformation." Wikipedia, The Free Encyclopedia.  29 Sep 2007, 23:32 UTC.  Wikimedia Foundation, 

Inc.  4 Oct 2007 <http://en.wikipedia.org/w/index.php?title=Deformation&oldid=161209779>.  

Accessed: 1/23/08 

Engineer’s Edge.  http://www.engineersedge.com/strength_of_materials.htm.  2008.  Accessed: 

4/22/08 

 “Fatigue Test” Instron.  http://www.instron.us/wa/applications/test_types/fatigue/default.aspx 

Accessed: 9/6/07. 

"Strain gauge." Wikipedia, The Free Encyclopedia.  3 Oct 2007, 05:13 UTC.  Wikimedia Foundation, 

Inc.  4 Oct 2007 

<http://en.wikipedia.org/w/index.php?title=Strain_gauge&oldid=161955202>.  Accessed: 

2/13/08 

http://www.instron.us/wa/products/software/bluehill/features/power.aspx#testing
http://en.wikipedia.org/w/index.php?title=Deformation&oldid=161209779
http://en.wikipedia.org/w/index.php?title=Strain_gauge&oldid=161955202


77 

 

Gailey, Robert.  “Functional Value of Prosthetic Foot/Ankle Systems to the Amputee.”  Journal of 

Prosthetics and Orthotics 17.4s (2005): 39-41 

Geil, Mark.  “Energy Loss and Stiffness Properties of Dynamic Elastic Response Prosthetic Feet.” 

Journal of Prosthetics and Orthotics 13.3 (2001): 70-73 

Hansen, AH, DS Childress, and EH Knox.  “Prosthetic Foot Roll-Over Shapes and Implications for 

Alignment of Trans-tibial Prosthesis.” Prosthetics and Orthotics International 24 (2000): 205-

215 

Hansen, Andrew.  “Scientific Methods to Determine Functional Performance of Prosthetic Ankle 

Foot Systems”.  American Academy of Orthotists and Prosthetists.  

http://www.oandp.org/jpo/library/2005_04S_023.asp.  Accessed: 9/20/07. 

Jenkyn et.  al.  Noninvasive muscle tension measurement using the novel technique of magnetic 

resonance elastography (MRE).  Journal of Biomechanics.  36.12 (2003):1917-1921 

 “Index Award” Index.  

http://www.indexaward.dk/2007/default.asp?id=706&show=nomination&nominationid=163.  

Accessed: 9/29/07. 

Kim, Donghak.  “Finite Element Analysis of Monolimb.” Worcester Polytechnic Institute.  2006 

Kirtley, Chris.  "Inverse Dynamics." Clinical Gait Analysis.  29 Nov 2007 

<http://guardian.curtin.edu.au/cga/teach-in/inverse-dynamics.html>.  Accessed: 12/1/07. 

Krajowy Punkt Kontaktowy.  http://www.kpk.gov.pl/centra_doskonalosci/coe/midi/data/603.html 

“Landmines: A Deadly Inheritance.” http://www.unicef.org/graca/mines.htm.  2005.  Accessed: 

9/21/07. 

‘Lower Limb Prosthetics.’ http://www.emedicine.com/pmr/topic175.htm.  Accessed: 9/10/07. 

“Lower Limb Prosthetics: The Shape&Roll Prosthetic Foot for Use in Low-Income Countries” 

Prosthetics Research Laboratory and Rehabilitation Engineering Research Program.  

http://www.medschool.northwestern.edu/depts/repoc/sections/research/projects/ambulate

/srfoot_lowincome.html.  Accessed: 10/1/07. 

http://www.sciencedirect.com/science/journal/00219290


78 

 

Lee, Winson CC and Ming Zhang.” Design of monolimb using finite element modeling and statistics-

based Taguchi method.” Clinical Biomechanics 20.  (2005):759-766 

Mara, GE, AR Harland, and SR Mitchell.  ”Virtual Modeling of a Prosthetic Foot to Improve Footwear 

Testing.” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Materials: 

Design and Applications.  220 (2006): 207-213 

“Mechanics Laboratory.” Northwestern University.  

http://www.medschool.northwestern.edu/depts/repoc/sections/facilities/fac_mechanics.htm

l.  Accessed: 10/3/07. 

“Mechanics Property Analysis.” Shanghai Institute of Ceramics Chinese Academy of Sciences.  

http://www.sic.ac.cn/List/science/analysis/ceshi_xm/ceshi_11/49_1.htm.  Accessed: 

11/14/07  

Metzger, Sherry.  ‘Rotary: Changing Lives in Developing Countries.’ April 2007.  

http://www.oandp.com/edge/issues/articles/2007-08_01.asp.  Accessed: 9/22/07. 

Miff SC, et al.“Roll-Over Shapes of the Able-Bodied Knee–Ankle–Foot System During Gait Initiation, 

Steady-State Walking, and Gait Termination.” Gait Posture (2007) 

doi:10.1016/j.gaitpost.2007.04.011 

Omega.http://www.omega.com/search/esearch.asp?start=0&perPage=10&summary=yes&sort=ran

k&search=STRAIN+GAUGE&submit=Search.  Accessed: 1/20/08. 

Perry, Jacquelin.  Gait Analysis: Normal and Pathological Function New York: McGraw-Hill, 1992. 

“Prosthetic Feet.” University of Vienna.  http://www.univie.ac.at/cga/courses/be524/feet/ Accessed 

12/11/07. 

Reisinger, Kim D.  “Re: CIR responses to your questions.” Email to the author.  15 Sept 2007. 

“Rosette Strain Gauge.” Efunda: Engineering Fundamentals.  2008.  

http://www.efunda.com/formulae/solid_mechanics/mat_mechanics/strain_gauge_rosette.cf

m Accessed: 2/25/08.   



79 

 

“SACH w/ Molded Pyramid” Ohio Willow Wood.  2007.  

http://www.owwco.com/CategoryDetail.aspx?Key=63 Accessed: 10/1/07. 

Sam, Michel, et al.  “The ‘Shape&Roll’Prosthetic Foot: I.  Design and Development of Appropriate 

Technology for Low-Income Countries.” Medicine, Conflict and Survival 24.4 (2004): 294-306 

Saunders, Marnie M., et al.  Finite Element Analysis as a Tool for Parametric Prosthetic Foot Design 

and Evaluation.  Technique Development in the Solid Ankle Cushioned Heel (SACH) Foot.  

Computer Methods in Biomechanics and Biomedical Engineering.  6:1 (2003) 75-87 

Serlin, David.  “The Clean Room/Making the Jaipur Foot.”  Cabinet Magazine.  Issue 4, Fall 2001.  .  

http://www.cabinetmagazine.org/issues/4/jaipurfoot.php.  Accessed: 10/9/07. 

Stanton, Mary.  “CIR Brings Prosthetic Services to Developing Nations.” April 2006.  

http://www.oandp.com/resources/humanitarian/organization.asp?frmId=5BF96CEF-F32A-

47B0-9248-C7BA8B1A292E.  Accessed 9/14/07. 

Stark, Gerald.  “Perspectives on How and Why Feet are Prescribed.” Journal of Prosthetics and 

Orthotics 17:4s (2005) 18-22  

“Strain Gauge Rosettes: Selection, Application, and Data Reduction” Measurements Group: 2000.  

http://www.davidson.com.au/products/strain/mg/technology/technotes/tn515.pdf.  

Accessed: Feb.  13, 2008. 

“Student manual for Strain gauge Technology.” Vishay Measurements Group, Inc.  pp.  17-23.  1992 

Supan, Terry.  “Clinical Perspectives on Prosthetic Ankle-Foot Designs.”  Journal of Prosthetics and 

Orthotics 17:4s (2005) 33-34  

“Theory of Operation.” National Instruments.  SCXI-1520 User Manual. 

Wheeler, Anthony J.  Introduction to Engineering Experimentation.  Second Edition.  Pearson 

Prentice Hall.  2003. 

Winter, David A..  The Biomechanics and Motor Control of Human Gait: Normal, Elderly, and 

Pathological.  2nd Edition.  Waterloo, Ontario: University of Waterloo Press, 1991. 



80 

 

Appendix A 
Measured Points For SR Base (in) 

 

 

  

X Y  X Y 

0 0  4 0.90625 

0.0625 0.1875  4.5 0.783 

0.125 0.1875  5 0.625 

0.25 0.15625  5.5 0.557 

0.375 0.15625  6 0.53125 

0.5 0.15625  6.5 0.614 

0.625 0.1875  7 0.71875 

0.75 0.21875  7.5 0.78125 

0.875 0.25  8 0.75 

1 0.3125  8.5 0.437 

1.0625 0.4375  8.6875 0 

1.0625 0.75  8.5 -0.55 

1 0.84375  8 -0.84375 

0.875 0.90625  7.5 -1.017 

0.5 0.9375  7 -1.09375 

0.125 1  6.5 -1.155 

0 1.03125  6 -1.1875 

-0.09375 1.09375  5.5 -1.25 

-0.15625 1.25  5 -1.3125 

0.125 1.625  4.5 -1.339 

0.25 1.625  4 -1.47063 

0.5 1.625  3.5 -1.46875 

1 1.625  3 -1.5 

1.5 1.625  2.5 -1.588 

2 1.5625  2 -1.5 

2.5 1.46875  1.5 -1.227 

3 1.34375  1 -0.96875 

3.5 1.09375  0.5 -0.681 
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Appendix B 
Bill of Materials and Exploded View of Test Set-ups 

Bill of Materials 

Find Number Description QTY 

1 Angle Block (15° and 20°) 2 

2 M6 Threaded Rod 2 

3 M6 Washer 4 

4 M6 Nut 4 

5 Metal Plate 2 

6 Nail 6 

7 M10 Bolt 1 

8 M10 Washer 1 

9 Prosthetic Foot Assembly 2 

10 Monolimb 1 

11 Adaptor 1 

12 Set Screw 6 
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Appendix C 
Calculations for the Approximate Deformation of Simple Midstance SR Assembly 

 

 



84 
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Appendix D 
Raw Data From Coefficient of Friction Test 

Foot Orientation Measured Angle 

ICRC SACH Foot Toe Down 25 

    27 

    25 

    26 

    27 

  Avg: 26 

  μ 0.4877 

  Heel Down 22 

    21 

    21 

    22 

    20 

  Avg: 21.2 

  μ 0.3878 

 

Foot Orientation Measured Angle 

SR Toe Down 18 

    16 

    16 

    19 

    19 

  Avg: 17.6 

  μ 0.3172 

  Heel Down 17 

    15 

    16 

    15 

    15 

  Avg: 15.6 

  μ 0.2792 
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Foot Orientation Measured Angle 

SR Cover Toe Down 41 

    40 

    39 

    38 

    40 

  Avg: 39.6 

  μ 0.8273 

  Heel Down 40 

    41 

    41 

    39 

    40 

  Avg: 40.2 

  μ 0.8451 
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Appendix E  

Testing Procedure 
 

Micro 
Ultra 
Low Super Low Low 

 

  
2-20 psi 

28-85 psi 
70-350 psi 

350-1400 
psi 

 SR Foot no Cover 
  

  
      

Test Run 1: Heel-strike           

              

Test 
Number 

Percent 
Total 
Loading Force Applied 

Pressure 
Paper 

Expected Load 
Area (cm

2
) 

Max 
Pressure 
(psi) 

Pressure Paper 
Gradient 

1 10% 130 * 0.5 179.26 Super Low Pressure 

2 20% 260   0.5 358.53 Super Low Pressure 

3 30% 390   1 268.90 Super Low Pressure 

4 40% 520   1 358.53 Super Low Pressure 

5 50% 650 * 2 224.08 Super Low Pressure 

6 60% 780   2 268.90 Super Low Pressure 

7 70% 910   2 313.71 Super Low Pressure 

8 80% 1040   4 179.26 Super Low Pressure 

9 90% 1170   4 201.67 Super Low Pressure 

10 100% 1300 * 4 224.08 Super Low Pressure 

   
 

   SR Foot no Cover 
  

  
      

Test Run 2: Mid-Stance           

              

Test 
Number 

Percent 
Total 
Loading Force Applied 

Pressure 
Paper 

Expected Load 
Area (cm

2
) 

Max 
Pressure 
(psi) 

Pressure Paper 
Gradient 

1 10% 130 * 100 0.90   

2 20% 260   100 1.79   

3 30% 390   100 2.69 Micro Pressure 

4 40% 520   100 3.59 Micro Pressure 

5 50% 650 * 100 4.48 Micro Pressure 

6 60% 780   100 5.38 Micro Pressure 

7 70% 910   100 6.27 Micro Pressure 

8 80% 1040   100 7.17 Micro Pressure 

9 90% 1170   100 8.07 Micro Pressure 

10 100% 1300 * 100 8.96 Micro Pressure 
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SR Foot no Cover 
  

  
      

Test Run 3: Toe-off 
    

  
      

              

Test 
Number 

Percent Total 
Loading Force Applied 

Pressure 
Paper 

Expected Load 
Area (cm

2
) 

Max 
Pressure 

Pressure Paper 
Gradient 

1 10% 130 * 0.25 358.53 Low Pressure 

2 20% 260   0.25 717.06 Low Pressure 

3 30% 390   0.5 537.79 Low Pressure 

4 40% 520   1 358.53 Low Pressure 

5 50% 650 * 2 224.08 Super Low Pressure 

6 60% 780   2 268.90 Super Low Pressure 

7 70% 910   3 209.14 Super Low Pressure 

8 80% 1040   4 179.26 Super Low Pressure 

9 90% 1170   4 201.67 Super Low Pressure 

10 100% 1300 * 4 224.08 Super Low Pressure 

              
SR Foot with Cover 
  

  
      

Test Run 4: Toe-off 
    

  
      

              

Test 
Number 

Percent Total 
Loading Force Applied 

Pressure 
Paper 

Expected Load 
Area (cm

2
) 

Max 
Pressure 

Pressure Paper 
Gradient 

1 10% 130 * 6 14.94 Micro Pressure 

2 20% 260   6 29.88 Ultra Low Pressure 

3 30% 390   6.5 41.37 Ultra Low Pressure 

4 40% 520   6.5 55.16 Ultra Low Pressure 

5 50% 650 * 7 64.02 Ultra Low Pressure 

6 60% 780   7 76.83 Ultra Low Pressure 

7 70% 910   7 89.63 Super Low Pressure 

8 80% 1040   7.5 95.61 Super Low Pressure 

9 90% 1170   7.5 107.56 Super Low Pressure 

10 100% 1300 * 8 112.04 Super Low Pressure 
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SR Foot with Cover           

Test Run 5: Midstance           

              

Test 
Number 

Percent Total 
Loading Force Applied 

Pressure 
Paper 

Expected Load 
Area (cm

2
) 

Max 
Pressure 

Pressure Paper 
Gradient 

1 10% 130 * 120 0.75 Micro Pressure 

2 20% 260   120 1.49 Micro Pressure 

3 30% 390   120 2.24 Micro Pressure 

4 40% 520   120 2.99 Micro Pressure 

5 50% 650 * 120 3.73 Micro Pressure 

6 60% 780   120 4.48 Micro Pressure 

7 70% 910   120 5.23 Micro Pressure 

8 80% 1040   120 5.98 Micro Pressure 

9 90% 1170   120 6.72 Micro Pressure 

10 100% 1300 * 120 7.47 Micro Pressure 

   
 

   SR Foot with Cover           

Test Run 6: Heel-strike           

              

Test 
Number 

Percent Total 
Loading Force Applied 

Pressure 
Paper 

Expected Load 
Area (cm

2
) 

Max 
Pressure 

Pressure Paper 
Gradient 

1 10% 130 * 4 22.41 Ultra Low 

2 20% 260   4 44.82 Ultra Low 

3 30% 390   4.5 59.75 Ultra Low 

4 40% 520   4.5 79.67 Low Pressure 

5 50% 650 * 4.5 99.59 Low Pressure 

6 60% 780   4.5 119.51 Low Pressure 

7 70% 910   5 125.48 Low Pressure 

8 80% 1040   5 143.41 Low Pressure 

9 90% 1170   5 161.34 Low Pressure 

10 100% 1300 * 5 179.26 Low Pressure 
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SACH Foot 
    

  
      

Test Run 7: Toe-off 
    

  
      

              

Test 
Number 

Percent Total 
Loading Force Applied 

Pressure 
Paper 

Expected Load 
Area (cm

2
) 

Max 
Pressure 

Pressure Paper 
Gradient 

1 10% 130 * 5.5 16.30 Micro Pressure 

2 20% 260   5.5 32.59 Ultra Low Pressure 

3 30% 390   6 44.82 Ultra Low Pressure 

4 40% 520   6 59.75 Ultra Low Pressure 

5 50% 650 * 6.5 68.95 Ultra Low Pressure 

6 60% 780   6.5 82.74 Ultra Low Pressure 

7 70% 910   6.5 96.53 Super Low Pressure 

8 80% 1040   7 102.44 Super Low Pressure 

9 90% 1170   7 115.24 Super Low Pressure 

10 100% 1300 * 7.5 119.51 Super Low Pressure 

   
 

   SACH Foot 
    

  
      

Test Run 8: Midstance           

              

Test 
Number 

Percent Total 
Loading Force Applied 

Pressure 
Paper 

Expected Load 
Area (cm

2
) 

Max 
Pressure 

Pressure Paper 
Gradient 

1 10% 130 * 110 0.81 Micro Pressure 

2 20% 260   110 1.63 Micro Pressure 

3 30% 390   110 2.44 Micro Pressure 

4 40% 520   110 3.26 Micro Pressure 

5 50% 650 * 110 4.07 Micro Pressure 

6 60% 780   115 4.68 Micro Pressure 

7 70% 910   115 5.46 Micro Pressure 

8 80% 1040   115 6.24 Micro Pressure 

9 90% 1170   115 7.01 Micro Pressure 

10 100% 1300 * 115 7.79 Micro Pressure 
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SACH Foot 
    

  
      

Test Run 9: Heel-strike           

              

Test 
Number 

Percent Total 
Loading Force Applied 

Pressure 
Paper 

Expected Load 
Area (cm

2
) 

Max 
Pressure 

Pressure Paper 
Gradient 

1 10% 130 * 5 17.93 Micro Pressure 

2 20% 260 

 
5 35.85 Ultra Low 

3 30% 390 

 
5.5 48.89 Ultra Low 

4 40% 520 

 
5 71.71 Ultra Low 

5 50% 650 * 6 74.69 Ultra Low 

6 60% 780 

 
6 89.63 Low Pressure 

7 70% 910 

 
7 89.63 Low Pressure 

8 80% 1040 

 
7 102.44 Low Pressure 

9 90% 1170 

 
8 100.84 Low Pressure 

10 100% 1300 * 8 112.04 Low Pressure 
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Appendix F 
Extension Data 

SACH Extension 

Test 
Stance Initial Extension (mm) Final Extension (mm) 

Load 
(N) Compression (mm) 

Midstance -27.7 -39.54 1170 11.84 

Toe-off 33.2 -7.64 910 40.84 

Toe-off 0 -42.4 910 42.4 

Heel-strike 0 -22.564 1300 22.564 

Heel-strike 33 10.36 1300 22.64 

     SR Extension 

Test 
Stance Initial Extension (mm) Final Extension (mm) 

Load 
(N) Compression (mm) 

Toe-off 0 -34.818 520 34.818 

Toe-off 0 -32.9 520 32.9 

Heel-strike 0 -11.228 910 11.228 

Heel-strike 0 -10.35 911 10.35 
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Appendix G 
FEA Results 

SR Foot 

Heel-strike 

 

Figure 79: SR - Heel-strike- Normal Strain 
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Figure 80: SR - Heel-strike - Maximum Principal Stresses 

 

Figure 81: SR - Heel-strike - Minimum Principal Stresses 
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Figure 82: SR – Heel-strike - von Mises Stress 

 

Midstance 

 

Figure 83: SR - Midstance - Normal Elastic Strain 



97 

 

 

 

Figure 84: SR - Midstance - Maximum Principal Stress 

 

 

Figure 85: SR - Midstance - Minimum Principal Stress 
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Figure 86: SR - Midstance - von Mises Stress 

 

Toe-off 

 

Figure 87: SR - Toe-off - Normal Strain 
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Figure 88: SR - Toe-off - Maximum Principal Stresses 

 

 

Figure 89: SR - Toe-off - Minimum Principal Stress 
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Figure 90: SR – Toe-off – von Mises Stress 

 

ICRC SACH Foot 

Heel-strike 

 
Figure 91: SACH - Heel-strike - Normal Elastic Strain 
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Figure 92: SACH - Heel-strike - Maximum Principal Stress 

 

Figure 93: SACH - Heel-strike - Minimum Principal Stress 
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Figure 94: SACH - Heel-strike - von Mises Stress 

 

Toe-off 

 

Figure 95: SACH - Toe-off - Normal Elastic Strain 
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Figure 96: SACH - Toe-off - Maximum Principal Stress 

 

Figure 97: SACH - Toe-off - Minimum Principal Stress 
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Figure 98: SACH - Toe-off - von Mises Stress 

 


