A Low-Cost Drip Irrigation System for Small Farms

by
Victor B. Ella, Ph.D
Professor
Land and Water Resources Division
Institute of Agricultural Engineering
CEAT, UPLB

Drip Irrigation

• irrigation method involving delivery of water through a pipe distribution network consisting of a main pipe, submain, manifold and lateral pipes under low pressure and emission through small outlets of drippers or emitters into the soil surrounding the crop to be irrigated
• a.k.a. trickle irrigation or microirrigation

Typical (Conventional) Drip Irrigation System

Advantages of Drip Irrigation

• Adaptable to any crop, soil and topography
• Can be used under limited water supply conditions
• High water use efficiency
• Low operating costs
• Easier field operations
• Minimizes incidence of leaf diseases caused by direct water contact
• Facilitates liquid fertilizer application thru fertigation

Major Disadvantages of Drip Irrigation

• High cost (esp the conventional systems)
• Susceptibility to clogging

Types of Drip Irrigation

(~ on emitter types)

• Orifice type
• Pressure compensating
• Long path
• Tortuous path
• Vortex
• Flushing
The IDE “Easy Drip” Kit
• Developed by the International Development Enterprises (IDE)
• Makes use of microtubes for emitters
• Relatively inexpensive (<$500/ha or PhP 22,500/ha compared to $1,200 to $3,000/ha or PhP 54,000 to 135,000/ha for conventional drip systems, Smith (2008))
• Operates at relatively low pressure
• Adaptable to small areas (comes in packages for 20 sq. m., 100 sq. m., 200 sq. m. and 500 sq. m. areas)
Some Specs of the IDE Easy Drip Kit

- Main and submain pipe diameter: 16 mm OD
- Wall thickness of main and submain: 1 mm
- Lateral (lay-flat tubing) thickness: 0.2 mm
- Emitter length: 25 cm
- Emitter diameter: 1.2 mm ID

Source: Keller (2002)
The IDE Easy Drip Kit

Applicability of Easy Drip Kit in Sloping Areas

Typical view of cultivated upland watershed (Lantapan, Bukidnon)

Issues on Drip Applicability in Upland Watersheds

- Maximization of crop yield depends on irrigation water distribution uniformity
- Uniformity of water distribution is affected by operating head and slope
- The choice of operating head is compounded by topographic condition
Basic Question:

What operating head to employ to maximize water distribution uniformity under sloping conditions?

Laboratory Drip Experiments

OBJECTIVE

To determine the effect of hydraulic head and slope on the water distribution uniformity of the IDE ‘Easy Drip Kit’ and consequently develop mathematical relationships to characterize the effect of slope and head on water distribution uniformity.

METHODOLOGY

- 100 sq. m IDE Easy drip kit (10 m x 10 m)
- Submain Slopes: 0%, 10%, 20%, 30%, 40% and 50% ($S_i = 0%$)
- Operating Head: 1.0 m, 2.0 m and 3.0 m
- Sampled from 11 emitters per lateral for a total of 110 samples
- Direct volumetric measurement for emitter discharge
- 3 trials per setting
- At least 54 laboratory experiments

Experimental Set-up for Testing the IDE Drip Irrigation System

College of Engineering & Agro-industrial Technology, University of the Philippines Los Baños
Experimental Set-up for Testing the IDE Drip Irrigation System

College of Engineering & Agro-industrial Technology, University of the Philippines Los Baños

Sampling and Data Collection

Evaluation of Water Distribution Uniformity

Christiansen’s Coefficient of Uniformity

\[
CU = 100 \left(1 - \frac{\sum (q_i - M)}{\sum q_i} \right)
\]

where:
- \(CU\) = coefficient of uniformity (%)
- \(q_i\) = emitter discharge
- \(M\) = average of discharge values

Evaluation of Water Distribution Uniformity

Merriam and Keller’s Emission Uniformity

\[EU = \left(\frac{q_{LQ}}{q_{\text{mean}}}\right)100\]

where:
- \(EU\) = emission uniformity (%)
- \(q_{LQ}\) = average of the lowest quarter of the observed discharge values
- \(q_{\text{mean}}\) = average of observed discharge values

RESULTS

Typical emitter discharge variation along the lateral of the IDE drip kit at 0% slope
UC and EU at various Heads at 0% slope

<table>
<thead>
<tr>
<th>Head (m)</th>
<th>Coefficient of Uniformity, UC (%)</th>
<th>Emission Uniformity, EU (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>66.99 62.51 64.82 Mean 62.10 38.99</td>
<td>43.38 44.99</td>
</tr>
<tr>
<td>1.5</td>
<td>70.66 68.68 70.70 Mean 69.81 50.79 50.33 50.01 50.38</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>72.62 66.81 70.15 Mean 66.80 56.13 46.89 46.91 53.95</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>82.34 82.87 82.07 Mean 84.60 48.81 38.00 46.47 43.78</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>72.46 70.47 70.06 Mean 71.00 55.11 53.61 51.80 53.51</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>72.20 87.86 71.97 Mean 70.38 52.34 46.92 51.36 59.04</td>
<td></td>
</tr>
</tbody>
</table>

Effect of Head on UC at Various Slopes

![Graph of Effect of Head on UC at Various Slopes]

Effect of Head on EU at Various Slopes

![Graph of Effect of Head on EU at Various Slopes]

Effect of Slope on UC at Various Heads

![Graph of Effect of Slope on UC at Various Heads]

Effect of Slope on EU at Various Heads

![Graph of Effect of Slope on EU at Various Heads]

Linear Regression Models for UC as a Function of Head at Various Slopes

<table>
<thead>
<tr>
<th>Slope (%)</th>
<th>Linear Regression Model</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(Y = 1.50X + 65.02)</td>
<td>0.233</td>
</tr>
<tr>
<td>10</td>
<td>(Y = 19.90X + 15.06)</td>
<td>0.975</td>
</tr>
<tr>
<td>20</td>
<td>(Y = 8.67X + 24.09)</td>
<td>0.995</td>
</tr>
<tr>
<td>30</td>
<td>(Y = 8.32X + 20.26)</td>
<td>0.927</td>
</tr>
<tr>
<td>40</td>
<td>(Y = 4.14X + 12.98)</td>
<td>0.722</td>
</tr>
<tr>
<td>50</td>
<td>(Y = 1.35X + 8.37)</td>
<td>0.997</td>
</tr>
</tbody>
</table>

* \(y \) = Coefficient of uniformity, UC (%)

* \(X \) = Head (m)
Summary of Findings from Lab Experiments

- Water distribution uniformity of the 100 sq m IDE Easy drip kit proved to be influenced by operating head and submain slope
- UC and EU increase with increasing head for all slopes
- A head of 3.0 m may be considered as optimum from both hydraulic and practical standpoints for all slopes
- UC and EU decrease with increasing slope for all heads
- UC and EU decrease tremendously for slopes > 30%

Findings (cont’d.)

- For 0% slope, a head differential of 0.5 m does not cause significant change in UC or EU
- UC is linearly related to either head or slope
- Linear regression models proved to be adequate to characterize the relationship between UC and head and between UC and slope

Field Experiments
Initial Findings from Field Experiments

<table>
<thead>
<tr>
<th>Crop</th>
<th>With Drip</th>
<th>Without drip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabbage</td>
<td>4.5 kg/sq m</td>
<td>2.4 kg/sq m</td>
</tr>
<tr>
<td>Chinese cabbage</td>
<td>6.0 kg/sq m</td>
<td>3.3 kg/sq m</td>
</tr>
</tbody>
</table>

Higher crop yield under drip irrigated crops than rainfed crops (with all other production inputs the same for both treatments)

Relatively larger size of produce under drip irrigated over rainfed

Higher plant height under drip than under rainfed
Social Considerations
(Farmer trainability issues)
CONCLUDING REMARKS

瑁 The IDE low-cost drip kit is highly adaptable to small-scale vegetable and high value crop production systems in Philippine upland watersheds

瑁 The IDE low-cost drip kit has a great potential for adoption in Philippine upland watersheds and other areas for sustainable vegetable production based on technical and social considerations

瑁 The low-cost drip irrigation system can potentially maximize crop yield and farmer's income and alleviate poverty

Acknowledgement

瑁 This project is part of SANREM-CRSP funded by USAID through Virginia Tech, North Carolina A&T State University and University of the Philippines Los Baños Foundation, Inc.

Contact Information

Dr. Victor B. Ella
Professor
Land and Water Resources Division
Institute of Agricultural Engineering
College of Engineering and Agro-industrial Technology
University of the Philippines Los Baños
College, Laguna, PHILIPPINES
E-mail: vbella@up.edu.ph or vbella100@yahoo.com
Tel/fax: (049)-536-2387