
MySQL and PHP

Abstract

This manual describes the PHP extensions and interfaces that can be used with MySQL.

For legal information, see the Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists, where you can discuss
your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other languages,
and downloadable versions in variety of formats, including HTML and PDF formats, see the MySQL Documentation
Library.

Document generated on: 2016-08-02 (revision: 48430)

http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc
http://dev.mysql.com/doc

iii

Table of Contents
Preface and Legal Notices ... xiii
1 Introduction to the MySQL PHP API .. 1
2 Overview of the MySQL PHP drivers ... 3

2.1 Introduction .. 3
2.2 Terminology overview ... 3
2.3 Choosing an API .. 4
2.4 Choosing a library .. 6
2.5 Concepts .. 7

2.5.1 Buffered and Unbuffered queries .. 7
2.5.2 Character sets ... 9

3 MySQL Improved Extension ... 11
3.1 Overview .. 14
3.2 Quick start guide .. 18

3.2.1 Dual procedural and object-oriented interface .. 18
3.2.2 Connections ... 20
3.2.3 Executing statements ... 22
3.2.4 Prepared Statements ... 26
3.2.5 Stored Procedures ... 33
3.2.6 Multiple Statements ... 38
3.2.7 API support for transactions ... 39
3.2.8 Metadata ... 40

3.3 Installing/Configuring ... 42
3.3.1 Requirements .. 42
3.3.2 Installation ... 42
3.3.3 Runtime Configuration .. 44
3.3.4 Resource Types .. 46

3.4 The mysqli Extension and Persistent Connections .. 46
3.5 Predefined Constants ... 47
3.6 Notes ... 50
3.7 The MySQLi Extension Function Summary .. 51
3.8 Examples ... 57

3.8.1 MySQLi extension basic examples ... 57
3.9 The mysqli class .. 59

3.9.1 mysqli::$affected_rows, mysqli_affected_rows ... 62
3.9.2 mysqli::autocommit, mysqli_autocommit ... 65
3.9.3 mysqli::begin_transaction, mysqli_begin_transaction 66
3.9.4 mysqli::change_user, mysqli_change_user ... 68
3.9.5 mysqli::character_set_name, mysqli_character_set_name 71
3.9.6 mysqli::$client_info, mysqli_get_client_info ... 72
3.9.7 mysqli::$client_version, mysqli_get_client_version 73
3.9.8 mysqli::close, mysqli_close ... 74
3.9.9 mysqli::commit, mysqli_commit ... 75
3.9.10 mysqli::$connect_errno, mysqli_connect_errno 77
3.9.11 mysqli::$connect_error, mysqli_connect_error 78
3.9.12 mysqli::__construct, mysqli_connect ... 80
3.9.13 mysqli::debug, mysqli_debug ... 83
3.9.14 mysqli::dump_debug_info, mysqli_dump_debug_info 84
3.9.15 mysqli::$errno, mysqli_errno ... 85
3.9.16 mysqli::$error_list, mysqli_error_list ... 87
3.9.17 mysqli::$error, mysqli_error ... 88
3.9.18 mysqli::$field_count, mysqli_field_count ... 90

MySQL and PHP

iv

3.9.19 mysqli::get_charset, mysqli_get_charset ... 92
3.9.20 mysqli::get_client_info, mysqli_get_client_info 93
3.9.21 mysqli_get_client_stats ... 94
3.9.22 mysqli_get_client_version, mysqli::$client_version 97
3.9.23 mysqli::get_connection_stats, mysqli_get_connection_stats 97
3.9.24 mysqli::$host_info, mysqli_get_host_info .. 100
3.9.25 mysqli::$protocol_version, mysqli_get_proto_info 102
3.9.26 mysqli::$server_info, mysqli_get_server_info 103
3.9.27 mysqli::$server_version, mysqli_get_server_version 105
3.9.28 mysqli::get_warnings, mysqli_get_warnings .. 106
3.9.29 mysqli::$info, mysqli_info ... 107
3.9.30 mysqli::init, mysqli_init ... 108
3.9.31 mysqli::$insert_id, mysqli_insert_id .. 109
3.9.32 mysqli::kill, mysqli_kill ... 111
3.9.33 mysqli::more_results, mysqli_more_results .. 113
3.9.34 mysqli::multi_query, mysqli_multi_query .. 114
3.9.35 mysqli::next_result, mysqli_next_result .. 116
3.9.36 mysqli::options, mysqli_options ... 117
3.9.37 mysqli::ping, mysqli_ping ... 118
3.9.38 mysqli::poll, mysqli_poll ... 120
3.9.39 mysqli::prepare, mysqli_prepare ... 122
3.9.40 mysqli::query, mysqli_query ... 124
3.9.41 mysqli::real_connect, mysqli_real_connect .. 127
3.9.42 mysqli::real_escape_string, mysqli_real_escape_string 131
3.9.43 mysqli::real_query, mysqli_real_query .. 134
3.9.44 mysqli::reap_async_query, mysqli_reap_async_query 134
3.9.45 mysqli::refresh, mysqli_refresh ... 135
3.9.46 mysqli::release_savepoint, mysqli_release_savepoint 136
3.9.47 mysqli::rollback, mysqli_rollback ... 136
3.9.48 mysqli::rpl_query_type, mysqli_rpl_query_type 139
3.9.49 mysqli::savepoint, mysqli_savepoint .. 140
3.9.50 mysqli::select_db, mysqli_select_db .. 140
3.9.51 mysqli::send_query, mysqli_send_query .. 142
3.9.52 mysqli::set_charset, mysqli_set_charset .. 143
3.9.53 mysqli::set_local_infile_default,
mysqli_set_local_infile_default .. 145
3.9.54 mysqli::set_local_infile_handler,
mysqli_set_local_infile_handler .. 145
3.9.55 mysqli::$sqlstate, mysqli_sqlstate ... 148
3.9.56 mysqli::ssl_set, mysqli_ssl_set ... 150
3.9.57 mysqli::stat, mysqli_stat ... 151
3.9.58 mysqli::stmt_init, mysqli_stmt_init .. 152
3.9.59 mysqli::store_result, mysqli_store_result .. 153
3.9.60 mysqli::$thread_id, mysqli_thread_id .. 154
3.9.61 mysqli::thread_safe, mysqli_thread_safe .. 156
3.9.62 mysqli::use_result, mysqli_use_result .. 156
3.9.63 mysqli::$warning_count, mysqli_warning_count 159

3.10 The mysqli_stmt class ... 161
3.10.1 mysqli_stmt::$affected_rows, mysqli_stmt_affected_rows 162
3.10.2 mysqli_stmt::attr_get, mysqli_stmt_attr_get .. 164
3.10.3 mysqli_stmt::attr_set, mysqli_stmt_attr_set .. 165
3.10.4 mysqli_stmt::bind_param, mysqli_stmt_bind_param 166
3.10.5 mysqli_stmt::bind_result, mysqli_stmt_bind_result 169
3.10.6 mysqli_stmt::close, mysqli_stmt_close .. 171

MySQL and PHP

v

3.10.7 mysqli_stmt::__construct ... 172
3.10.8 mysqli_stmt::data_seek, mysqli_stmt_data_seek 172
3.10.9 mysqli_stmt::$errno, mysqli_stmt_errno .. 175
3.10.10 mysqli_stmt::$error_list, mysqli_stmt_error_list 177
3.10.11 mysqli_stmt::$error, mysqli_stmt_error .. 179
3.10.12 mysqli_stmt::execute, mysqli_stmt_execute .. 181
3.10.13 mysqli_stmt::fetch, mysqli_stmt_fetch .. 184
3.10.14 mysqli_stmt::$field_count, mysqli_stmt_field_count 186
3.10.15 mysqli_stmt::free_result, mysqli_stmt_free_result 186
3.10.16 mysqli_stmt::get_result, mysqli_stmt_get_result 187
3.10.17 mysqli_stmt::get_warnings, mysqli_stmt_get_warnings 189
3.10.18 mysqli_stmt::$insert_id, mysqli_stmt_insert_id 190
3.10.19 mysqli_stmt::more_results, mysqli_stmt_more_results 190
3.10.20 mysqli_stmt::next_result, mysqli_stmt_next_result 191
3.10.21 mysqli_stmt::$num_rows, mysqli_stmt_num_rows 192
3.10.22 mysqli_stmt::$param_count, mysqli_stmt_param_count 194
3.10.23 mysqli_stmt::prepare, mysqli_stmt_prepare .. 195
3.10.24 mysqli_stmt::reset, mysqli_stmt_reset .. 198
3.10.25 mysqli_stmt::result_metadata, mysqli_stmt_result_metadata 199
3.10.26 mysqli_stmt::send_long_data, mysqli_stmt_send_long_data 201
3.10.27 mysqli_stmt::$sqlstate, mysqli_stmt_sqlstate 202
3.10.28 mysqli_stmt::store_result, mysqli_stmt_store_result 204

3.11 The mysqli_result class ... 207
3.11.1 mysqli_result::$current_field, mysqli_field_tell 208
3.11.2 mysqli_result::data_seek, mysqli_data_seek .. 210
3.11.3 mysqli_result::fetch_all, mysqli_fetch_all .. 212
3.11.4 mysqli_result::fetch_array, mysqli_fetch_array 213
3.11.5 mysqli_result::fetch_assoc, mysqli_fetch_assoc 215
3.11.6 mysqli_result::fetch_field_direct, mysqli_fetch_field_direct 218
3.11.7 mysqli_result::fetch_field, mysqli_fetch_field 221
3.11.8 mysqli_result::fetch_fields, mysqli_fetch_fields 223
3.11.9 mysqli_result::fetch_object, mysqli_fetch_object 226
3.11.10 mysqli_result::fetch_row, mysqli_fetch_row .. 229
3.11.11 mysqli_result::$field_count, mysqli_num_fields 231
3.11.12 mysqli_result::field_seek, mysqli_field_seek 232
3.11.13 mysqli_result::free, mysqli_free_result .. 234
3.11.14 mysqli_result::$lengths, mysqli_fetch_lengths 235
3.11.15 mysqli_result::$num_rows, mysqli_num_rows .. 237

3.12 The mysqli_driver class ... 239
3.12.1 mysqli_driver::embedded_server_end, mysqli_embedded_server_end .. 240
3.12.2 mysqli_driver::embedded_server_start,
mysqli_embedded_server_start .. 240
3.12.3 mysqli_driver::$report_mode, mysqli_report .. 241

3.13 The mysqli_warning class ... 243
3.13.1 mysqli_warning::__construct .. 244
3.13.2 mysqli_warning::next ... 244

3.14 The mysqli_sql_exception class ... 244
3.15 Aliases and deprecated Mysqli Functions ... 245

3.15.1 mysqli_bind_param ... 245
3.15.2 mysqli_bind_result ... 245
3.15.3 mysqli_client_encoding ... 246
3.15.4 mysqli_connect ... 246
3.15.5 mysqli::disable_reads_from_master,
mysqli_disable_reads_from_master .. 247

MySQL and PHP

vi

3.15.6 mysqli_disable_rpl_parse ... 247
3.15.7 mysqli_enable_reads_from_master .. 248
3.15.8 mysqli_enable_rpl_parse ... 248
3.15.9 mysqli_escape_string ... 248
3.15.10 mysqli_execute .. 249
3.15.11 mysqli_fetch .. 249
3.15.12 mysqli_get_cache_stats .. 249
3.15.13 mysqli_get_links_stats .. 250
3.15.14 mysqli_get_metadata .. 250
3.15.15 mysqli_master_query .. 251
3.15.16 mysqli_param_count .. 251
3.15.17 mysqli_report .. 252
3.15.18 mysqli_rpl_parse_enabled .. 252
3.15.19 mysqli_rpl_probe .. 252
3.15.20 mysqli_send_long_data .. 252
3.15.21 mysqli::set_opt, mysqli_set_opt .. 253
3.15.22 mysqli_slave_query .. 253

3.16 Changelog .. 253
4 MySQL Functions (PDO_MYSQL) .. 255

4.1 PDO_MYSQL DSN ... 258
5 Original MySQL API .. 261

5.1 Installing/Configuring ... 262
5.1.1 Requirements .. 262
5.1.2 Installation ... 262
5.1.3 Runtime Configuration .. 264
5.1.4 Resource Types ... 265

5.2 Changelog .. 265
5.3 Predefined Constants .. 266
5.4 Examples ... 267

5.4.1 MySQL extension overview example ... 267
5.5 MySQL Functions ... 267

5.5.1 mysql_affected_rows ... 268
5.5.2 mysql_client_encoding ... 270
5.5.3 mysql_close ... 271
5.5.4 mysql_connect ... 272
5.5.5 mysql_create_db ... 275
5.5.6 mysql_data_seek ... 277
5.5.7 mysql_db_name ... 278
5.5.8 mysql_db_query ... 279
5.5.9 mysql_drop_db ... 281
5.5.10 mysql_errno ... 283
5.5.11 mysql_error ... 284
5.5.12 mysql_escape_string ... 285
5.5.13 mysql_fetch_array ... 286
5.5.14 mysql_fetch_assoc ... 289
5.5.15 mysql_fetch_field ... 291
5.5.16 mysql_fetch_lengths ... 293
5.5.17 mysql_fetch_object ... 294
5.5.18 mysql_fetch_row ... 296
5.5.19 mysql_field_flags ... 297
5.5.20 mysql_field_len ... 298
5.5.21 mysql_field_name ... 300
5.5.22 mysql_field_seek ... 301
5.5.23 mysql_field_table ... 302

MySQL and PHP

vii

5.5.24 mysql_field_type ... 303
5.5.25 mysql_free_result ... 305
5.5.26 mysql_get_client_info ... 306
5.5.27 mysql_get_host_info ... 307
5.5.28 mysql_get_proto_info ... 308
5.5.29 mysql_get_server_info ... 309
5.5.30 mysql_info ... 310
5.5.31 mysql_insert_id ... 311
5.5.32 mysql_list_dbs ... 313
5.5.33 mysql_list_fields ... 314
5.5.34 mysql_list_processes ... 316
5.5.35 mysql_list_tables ... 317
5.5.36 mysql_num_fields ... 319
5.5.37 mysql_num_rows ... 320
5.5.38 mysql_pconnect ... 321
5.5.39 mysql_ping ... 323
5.5.40 mysql_query ... 324
5.5.41 mysql_real_escape_string ... 326
5.5.42 mysql_result ... 329
5.5.43 mysql_select_db ... 330
5.5.44 mysql_set_charset ... 332
5.5.45 mysql_stat ... 333
5.5.46 mysql_tablename ... 334
5.5.47 mysql_thread_id ... 336
5.5.48 mysql_unbuffered_query ... 337

6 MySQL Native Driver ... 339
6.1 Overview .. 339
6.2 Installation .. 340
6.3 Runtime Configuration ... 341
6.4 Incompatibilities .. 346
6.5 Persistent Connections ... 346
6.6 Statistics ... 346
6.7 Notes ... 360
6.8 Memory management ... 361
6.9 MySQL Native Driver Plugin API ... 362

6.9.1 A comparison of mysqlnd plugins with MySQL Proxy ... 364
6.9.2 Obtaining the mysqlnd plugin API ... 364
6.9.3 MySQL Native Driver Plugin Architecture .. 365
6.9.4 The mysqlnd plugin API ... 370
6.9.5 Getting started building a mysqlnd plugin .. 372

7 Mysqlnd replication and load balancing plugin .. 377
7.1 Key Features .. 378
7.2 Limitations .. 380
7.3 On the name .. 380
7.4 Quickstart and Examples .. 380

7.4.1 Setup .. 380
7.4.2 Running statements ... 383
7.4.3 Connection state .. 384
7.4.4 SQL Hints .. 386
7.4.5 Local transactions .. 388
7.4.6 XA/Distributed Transactions .. 391
7.4.7 Service level and consistency ... 394
7.4.8 Global transaction IDs .. 398
7.4.9 Cache integration ... 404

MySQL and PHP

viii

7.4.10 Failover .. 407
7.4.11 Partitioning and Sharding ... 408
7.4.12 MySQL Fabric .. 410

7.5 Concepts .. 411
7.5.1 Architecture ... 411
7.5.2 Connection pooling and switching ... 412
7.5.3 Local transaction handling .. 414
7.5.4 Error handling .. 415
7.5.5 Transient errors ... 418
7.5.6 Failover ... 420
7.5.7 Load balancing .. 421
7.5.8 Read-write splitting ... 422
7.5.9 Filter .. 422
7.5.10 Service level and consistency ... 424
7.5.11 Global transaction IDs .. 426
7.5.12 Cache integration ... 428
7.5.13 Supported clusters ... 430
7.5.14 XA/Distributed transactions ... 434

7.6 Installing/Configuring ... 436
7.6.1 Requirements .. 436
7.6.2 Installation ... 437
7.6.3 Runtime Configuration .. 437
7.6.4 Plugin configuration file (>=1.1.x) .. 438

7.7 Predefined Constants .. 496
7.8 Mysqlnd_ms Functions .. 498

7.8.1 mysqlnd_ms_dump_servers ... 498
7.8.2 mysqlnd_ms_fabric_select_global ... 500
7.8.3 mysqlnd_ms_fabric_select_shard ... 501
7.8.4 mysqlnd_ms_get_last_gtid ... 501
7.8.5 mysqlnd_ms_get_last_used_connection ... 503
7.8.6 mysqlnd_ms_get_stats ... 504
7.8.7 mysqlnd_ms_match_wild ... 510
7.8.8 mysqlnd_ms_query_is_select ... 511
7.8.9 mysqlnd_ms_set_qos ... 513
7.8.10 mysqlnd_ms_set_user_pick_server .. 515
7.8.11 mysqlnd_ms_xa_begin ... 518
7.8.12 mysqlnd_ms_xa_commit ... 519
7.8.13 mysqlnd_ms_xa_gc ... 520
7.8.14 mysqlnd_ms_xa_rollback ... 521

7.9 Change History ... 522
7.9.1 PECL/mysqlnd_ms 1.6 series ... 522
7.9.2 PECL/mysqlnd_ms 1.5 series ... 524
7.9.3 PECL/mysqlnd_ms 1.4 series ... 526
7.9.4 PECL/mysqlnd_ms 1.3 series ... 527
7.9.5 PECL/mysqlnd_ms 1.2 series ... 527
7.9.6 PECL/mysqlnd_ms 1.1 series ... 529
7.9.7 PECL/mysqlnd_ms 1.0 series ... 530

8 Mysqlnd query result cache plugin ... 531
8.1 Key Features .. 532
8.2 Limitations .. 532
8.3 On the name .. 532
8.4 Quickstart and Examples .. 532

8.4.1 Architecture and Concepts ... 533
8.4.2 Setup .. 534

MySQL and PHP

ix

8.4.3 Caching queries ... 534
8.4.4 Setting the TTL .. 539
8.4.5 Pattern based caching ... 541
8.4.6 Slam defense .. 543
8.4.7 Finding cache candidates ... 543
8.4.8 Measuring cache efficiency ... 546
8.4.9 Beyond TTL: user-defined storage .. 552

8.5 Installing/Configuring ... 556
8.5.1 Requirements .. 556
8.5.2 Installation ... 556
8.5.3 Runtime Configuration .. 556

8.6 Predefined Constants .. 558
8.7 mysqlnd_qc Functions ... 560

8.7.1 mysqlnd_qc_clear_cache ... 560
8.7.2 mysqlnd_qc_get_available_handlers ... 561
8.7.3 mysqlnd_qc_get_cache_info ... 562
8.7.4 mysqlnd_qc_get_core_stats ... 568
8.7.5 mysqlnd_qc_get_normalized_query_trace_log ... 573
8.7.6 mysqlnd_qc_get_query_trace_log ... 576
8.7.7 mysqlnd_qc_set_cache_condition ... 580
8.7.8 mysqlnd_qc_set_is_select ... 581
8.7.9 mysqlnd_qc_set_storage_handler ... 583
8.7.10 mysqlnd_qc_set_user_handlers .. 584

8.8 Change History ... 585
8.8.1 PECL/mysqlnd_qc 1.2 series .. 585
8.8.2 PECL/mysqlnd_qc 1.1 series .. 585
8.8.3 PECL/mysqlnd_qc 1.0 series .. 586

9 Mysqlnd user handler plugin .. 589
9.1 Security considerations ... 591
9.2 Documentation note .. 591
9.3 On the name .. 591
9.4 Quickstart and Examples .. 591

9.4.1 Setup .. 592
9.4.2 How it works .. 592
9.4.3 Installing a proxy .. 593
9.4.4 Basic query monitoring ... 595

9.5 Installing/Configuring ... 596
9.5.1 Requirements .. 597
9.5.2 Installation ... 597
9.5.3 Runtime Configuration .. 597
9.5.4 Resource Types ... 597

9.6 Predefined Constants .. 597
9.7 The MysqlndUhConnection class ... 603

9.7.1 MysqlndUhConnection::changeUser ... 606
9.7.2 MysqlndUhConnection::charsetName ... 607
9.7.3 MysqlndUhConnection::close ... 608
9.7.4 MysqlndUhConnection::connect ... 610
9.7.5 MysqlndUhConnection::__construct ... 611
9.7.6 MysqlndUhConnection::endPSession ... 612
9.7.7 MysqlndUhConnection::escapeString ... 613
9.7.8 MysqlndUhConnection::getAffectedRows ... 614
9.7.9 MysqlndUhConnection::getErrorNumber ... 615
9.7.10 MysqlndUhConnection::getErrorString .. 616
9.7.11 MysqlndUhConnection::getFieldCount .. 617

MySQL and PHP

x

9.7.12 MysqlndUhConnection::getHostInformation .. 618
9.7.13 MysqlndUhConnection::getLastInsertId .. 619
9.7.14 MysqlndUhConnection::getLastMessage .. 621
9.7.15 MysqlndUhConnection::getProtocolInformation 622
9.7.16 MysqlndUhConnection::getServerInformation .. 623
9.7.17 MysqlndUhConnection::getServerStatistics .. 624
9.7.18 MysqlndUhConnection::getServerVersion .. 625
9.7.19 MysqlndUhConnection::getSqlstate .. 626
9.7.20 MysqlndUhConnection::getStatistics .. 627
9.7.21 MysqlndUhConnection::getThreadId .. 635
9.7.22 MysqlndUhConnection::getWarningCount .. 636
9.7.23 MysqlndUhConnection::init ... 637
9.7.24 MysqlndUhConnection::killConnection .. 638
9.7.25 MysqlndUhConnection::listFields .. 639
9.7.26 MysqlndUhConnection::listMethod .. 640
9.7.27 MysqlndUhConnection::moreResults .. 642
9.7.28 MysqlndUhConnection::nextResult .. 643
9.7.29 MysqlndUhConnection::ping ... 645
9.7.30 MysqlndUhConnection::query ... 646
9.7.31 MysqlndUhConnection::queryReadResultsetHeader 647
9.7.32 MysqlndUhConnection::reapQuery .. 648
9.7.33 MysqlndUhConnection::refreshServer .. 650
9.7.34 MysqlndUhConnection::restartPSession .. 651
9.7.35 MysqlndUhConnection::selectDb .. 652
9.7.36 MysqlndUhConnection::sendClose .. 653
9.7.37 MysqlndUhConnection::sendQuery .. 654
9.7.38 MysqlndUhConnection::serverDumpDebugInformation 655
9.7.39 MysqlndUhConnection::setAutocommit .. 656
9.7.40 MysqlndUhConnection::setCharset .. 657
9.7.41 MysqlndUhConnection::setClientOption .. 658
9.7.42 MysqlndUhConnection::setServerOption .. 660
9.7.43 MysqlndUhConnection::shutdownServer .. 661
9.7.44 MysqlndUhConnection::simpleCommand .. 662
9.7.45 MysqlndUhConnection::simpleCommandHandleResponse 664
9.7.46 MysqlndUhConnection::sslSet .. 666
9.7.47 MysqlndUhConnection::stmtInit .. 668
9.7.48 MysqlndUhConnection::storeResult .. 669
9.7.49 MysqlndUhConnection::txCommit .. 670
9.7.50 MysqlndUhConnection::txRollback .. 671
9.7.51 MysqlndUhConnection::useResult .. 672

9.8 The MysqlndUhPreparedStatement class ... 673
9.8.1 MysqlndUhPreparedStatement::__construct ... 674
9.8.2 MysqlndUhPreparedStatement::execute ... 674
9.8.3 MysqlndUhPreparedStatement::prepare ... 675

9.9 Mysqlnd_uh Functions .. 676
9.9.1 mysqlnd_uh_convert_to_mysqlnd ... 676
9.9.2 mysqlnd_uh_set_connection_proxy ... 678
9.9.3 mysqlnd_uh_set_statement_proxy ... 679

9.10 Change History ... 680
9.10.1 PECL/mysqlnd_uh 1.0 series .. 680

10 Mysqlnd connection multiplexing plugin .. 681
10.1 Key Features .. 681
10.2 Limitations .. 682
10.3 About the name mysqlnd_mux .. 682

MySQL and PHP

xi

10.4 Concepts .. 682
10.4.1 Architecture .. 682
10.4.2 Connection pool ... 683
10.4.3 Sharing connections ... 683

10.5 Installing/Configuring ... 683
10.5.1 Requirements ... 683
10.5.2 Installation ... 684
10.5.3 Runtime Configuration .. 684

10.6 Predefined Constants .. 684
10.7 Change History ... 685

10.7.1 PECL/mysqlnd_mux 1.0 series ... 685
11 Mysqlnd Memcache plugin ... 687

11.1 Key Features .. 688
11.2 Limitations .. 688
11.3 On the name .. 688
11.4 Quickstart and Examples ... 688

11.4.1 Setup ... 689
11.4.2 Usage .. 690

11.5 Installing/Configuring ... 691
11.5.1 Requirements ... 691
11.5.2 Installation ... 691
11.5.3 Runtime Configuration .. 691

11.6 Predefined Constants .. 692
11.7 Mysqlnd_memcache Functions .. 692

11.7.1 mysqlnd_memcache_get_config .. 692
11.7.2 mysqlnd_memcache_set ... 695

11.8 Change History ... 697
11.8.1 PECL/mysqlnd_memcache 1.0 series ... 697

12 Common Problems with MySQL and PHP .. 699

xii

xiii

Preface and Legal Notices
This manual describes the PHP extensions and interfaces that can be used with MySQL.

Legal Notices
Copyright © 1997, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at

Legal Notices

xiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1

Chapter 1 Introduction to the MySQL PHP API
PHP is a server-side, HTML-embedded scripting language that may be used to create dynamic Web
pages. It is available for most operating systems and Web servers, and can access most common
databases, including MySQL. PHP may be run as a separate program or compiled as a module for use
with a Web server.

PHP provides three different MySQL API extensions:

• Chapter 3, MySQL Improved Extension: Stands for “MySQL, Improved”; this extension is available
as of PHP 5.0.0. It is intended for use with MySQL 4.1.1 and later. This extension fully supports the
authentication protocol used in MySQL 5.0, as well as the Prepared Statements and Multiple Statements
APIs. In addition, this extension provides an advanced, object-oriented programming interface.

• Chapter 4, MySQL Functions (PDO_MYSQL): Not its own API, but instead it's a MySQL driver for the
PHP database abstraction layer PDO (PHP Data Objects). The PDO MySQL driver sits in the layer
below PDO itself, and provides MySQL-specific functionality. This extension is available as of PHP 5.1.0.

• Chapter 5, Original MySQL API: Available for PHP versions 4 and 5, this extension is intended for use
with MySQL versions prior to MySQL 4.1. This extension does not support the improved authentication
protocol used in MySQL 4.1, nor does it support prepared statements or multiple statements. To use
this extension with MySQL 4.1, you will likely configure the MySQL server to set the old_passwords
system variable to 1 (see Client does not support authentication protocol).

Warning

This extension was removed from PHP 5.5.0. All users must migrate to either
mysqli or PDO_MySQL. For further information, see Section 2.3, “Choosing an
API”.

Note

This documentation, and other publications, sometimes uses the term Connector/
PHP. This term refers to the full set of MySQL related functionality in PHP, which
includes the three APIs that are described in the preceding discussion, along with
the mysqlnd core library and all of its plugins.

The PHP distribution and documentation are available from the PHP Web site.

Portions of this section are Copyright (c) 1997-2015 the PHP Documentation Group This material may
be distributed only subject to the terms and conditions set forth in the Creative Commons Attribution 3.0
License or later. A copy of the Creative Commons Attribution 3.0 license is distributed with this manual.
The latest version is presently available at http://creativecommons.org/licenses/by/3.0/.

http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_old_passwords
http://dev.mysql.com/doc/refman/5.6/en/old-client.html
http://www.php.net/
http://creativecommons.org/licenses/by/3.0/

2

3

Chapter 2 Overview of the MySQL PHP drivers

Table of Contents
2.1 Introduction .. 3
2.2 Terminology overview ... 3
2.3 Choosing an API .. 4
2.4 Choosing a library .. 6
2.5 Concepts .. 7

2.5.1 Buffered and Unbuffered queries .. 7
2.5.2 Character sets ... 9

Copyright 1997-2014 the PHP Documentation Group.

2.1 Introduction

Depending on the version of PHP, there are either two or three PHP APIs for accessing the MySQL database. PHP
5 users can choose between the deprecated mysql extension, mysqli, or PDO_MySQL. PHP 7 removes the mysql
extension, leaving only the latter two options.

This guide explains the terminology used to describe each API, information about choosing which API to use, and
also information to help choose which MySQL library to use with the API.

2.2 Terminology overview

Copyright 1997-2014 the PHP Documentation Group.

This section provides an introduction to the options available to you when developing a PHP application
that needs to interact with a MySQL database.

What is an API?

An Application Programming Interface, or API, defines the classes, methods, functions and variables that
your application will need to call in order to carry out its desired task. In the case of PHP applications that
need to communicate with databases the necessary APIs are usually exposed via PHP extensions.

APIs can be procedural or object-oriented. With a procedural API you call functions to carry out tasks, with
the object-oriented API you instantiate classes and then call methods on the resulting objects. Of the two
the latter is usually the preferred interface, as it is more modern and leads to better organized code.

When writing PHP applications that need to connect to the MySQL server there are several API options
available. This document discusses what is available and how to select the best solution for your
application.

What is a Connector?

In the MySQL documentation, the term connector refers to a piece of software that allows your application
to connect to the MySQL database server. MySQL provides connectors for a variety of languages,
including PHP.

If your PHP application needs to communicate with a database server you will need to write PHP code to
perform such activities as connecting to the database server, querying the database and other database-
related functions. Software is required to provide the API that your PHP application will use, and also

Choosing an API

4

handle the communication between your application and the database server, possibly using other
intermediate libraries where necessary. This software is known generically as a connector, as it allows your
application to connect to a database server.

What is a Driver?

A driver is a piece of software designed to communicate with a specific type of database server. The driver
may also call a library, such as the MySQL Client Library or the MySQL Native Driver. These libraries
implement the low-level protocol used to communicate with the MySQL database server.

By way of an example, the PHP Data Objects (PDO) database abstraction layer may use one of several
database-specific drivers. One of the drivers it has available is the PDO MYSQL driver, which allows it to
interface with the MySQL server.

Sometimes people use the terms connector and driver interchangeably, this can be confusing. In the
MySQL-related documentation the term “driver” is reserved for software that provides the database-specific
part of a connector package.

What is an Extension?

In the PHP documentation you will come across another term - extension. The PHP code consists of a
core, with optional extensions to the core functionality. PHP's MySQL-related extensions, such as the
mysqli extension, and the mysql extension, are implemented using the PHP extension framework.

An extension typically exposes an API to the PHP programmer, to allow its facilities to be used
programmatically. However, some extensions which use the PHP extension framework do not expose an
API to the PHP programmer.

The PDO MySQL driver extension, for example, does not expose an API to the PHP programmer, but
provides an interface to the PDO layer above it.

The terms API and extension should not be taken to mean the same thing, as an extension may not
necessarily expose an API to the programmer.

2.3 Choosing an API
Copyright 1997-2014 the PHP Documentation Group.

PHP offers three different APIs to connect to MySQL. Below we show the APIs provided by the mysql,
mysqli, and PDO extensions. Each code snippet creates a connection to a MySQL server running on
"example.com" using the username "user" and the password "password". And a query is run to greet the
user.

Example 2.1 Comparing the three MySQL APIs

<?php
// mysqli
$mysqli = new mysqli("example.com", "user", "password", "database");
$result = $mysqli->query("SELECT 'Hello, dear MySQL user!' AS _message FROM DUAL");
$row = $result->fetch_assoc();
echo htmlentities($row['_message']);

// PDO
$pdo = new PDO('mysql:host=example.com;dbname=database', 'user', 'password');
$statement = $pdo->query("SELECT 'Hello, dear MySQL user!' AS _message FROM DUAL");
$row = $statement->fetch(PDO::FETCH_ASSOC);
echo htmlentities($row['_message']);

Choosing an API

5

// mysql
$c = mysql_connect("example.com", "user", "password");
mysql_select_db("database");
$result = mysql_query("SELECT 'Hello, dear MySQL user!' AS _message FROM DUAL");
$row = mysql_fetch_assoc($result);
echo htmlentities($row['_message']);
?>

Recommended API

It is recommended to use either the mysqli or PDO_MySQL extensions. It is not recommended to use the
old mysql extension for new development, as it was deprecated in PHP 5.5.0 and was removed in PHP 7.
A detailed feature comparison matrix is provided below. The overall performance of all three extensions is
considered to be about the same. Although the performance of the extension contributes only a fraction of
the total run time of a PHP web request. Often, the impact is as low as 0.1%.

Feature comparison

 ext/mysqli PDO_MySQL ext/mysql

PHP version introduced 5.0 5.1 2.0

Included with PHP 5.x Yes Yes Yes

Included with PHP 7.x Yes Yes No

Development status Active Active Maintenance only in 5.x;
removed in 7.x

Lifecycle Active Active Deprecated in 5.x;
removed in 7.x

Recommended for new
projects

Yes Yes No

OOP Interface Yes Yes No

Procedural Interface Yes No Yes

API supports non-
blocking, asynchronous
queries with mysqlnd

Yes No No

Persistent Connections Yes Yes Yes

API supports Charsets Yes Yes Yes

API supports server-side
Prepared Statements

Yes Yes No

API supports client-side
Prepared Statements

No Yes No

API supports Stored
Procedures

Yes Yes No

API supports Multiple
Statements

Yes Most No

API supports
Transactions

Yes Yes No

Transactions can be
controlled with SQL

Yes Yes Yes

Choosing a library

6

 ext/mysqli PDO_MySQL ext/mysql

Supports all MySQL 5.1+
functionality

Yes Most No

2.4 Choosing a library
Copyright 1997-2014 the PHP Documentation Group.

The mysqli, PDO_MySQL and mysql PHP extensions are lightweight wrappers on top of a C client library.
The extensions can either use the mysqlnd library or the libmysqlclient library. Choosing a library is a
compile time decision.

The mysqlnd library is part of the PHP distribution since 5.3.0. It offers features like lazy connections and
query caching, features that are not available with libmysqlclient, so using the built-in mysqlnd library is
highly recommended. See the mysqlnd documentation for additional details, and a listing of features and
functionality that it offers.

Example 2.2 Configure commands for using mysqlnd or libmysqlclient

// Recommended, compiles with mysqlnd
$./configure --with-mysqli=mysqlnd --with-pdo-mysql=mysqlnd --with-mysql=mysqlnd

// Alternatively recommended, compiles with mysqlnd as of PHP 5.4
$./configure --with-mysqli --with-pdo-mysql --with-mysql

// Not recommended, compiles with libmysqlclient
$./configure --with-mysqli=/path/to/mysql_config --with-pdo-mysql=/path/to/mysql_config --with-mysql=/path/to/mysql_config

Library feature comparison

It is recommended to use the mysqlnd library instead of the MySQL Client Server library (libmysqlclient).
Both libraries are supported and constantly being improved.

 MySQL native driver (mysqlnd) MySQL client server library
(libmysqlclient)

Part of the PHP distribution Yes No

PHP version introduced 5.3.0 N/A

License PHP License 3.01 Dual-License

Development status Active Active

Lifecycle No end announced No end announced

PHP 5.4 and above; compile
default (for all MySQL extensions)

Yes No

PHP 5.3; compile default (for all
MySQL extensions)

No Yes

Compression protocol support Yes (5.3.1+) Yes

SSL support Yes (5.3.3+) Yes

Named pipe support Yes (5.3.4+) Yes

Non-blocking, asynchronous
queries

Yes No

Concepts

7

 MySQL native driver (mysqlnd) MySQL client server library
(libmysqlclient)

Performance statistics Yes No

LOAD LOCAL INFILE respects
the open_basedir directive

Yes No

Uses PHP's native memory
management system (e.g., follows
PHP memory limits)

Yes No

Return numeric column as double
(COM_QUERY)

Yes No

Return numeric column as string
(COM_QUERY)

Yes Yes

Plugin API Yes Limited

Read/Write splitting for MySQL
Replication

Yes, with plugin No

Load Balancing Yes, with plugin No

Fail over Yes, with plugin No

Lazy connections Yes, with plugin No

Query caching Yes, with plugin No

Transparent query manipulations
(E.g., auto-EXPLAIN or
monitoring)

Yes, with plugin No

2.5 Concepts
Copyright 1997-2014 the PHP Documentation Group.

These concepts are specific to the MySQL drivers for PHP.

2.5.1 Buffered and Unbuffered queries

Copyright 1997-2014 the PHP Documentation Group.

Queries are using the buffered mode by default. This means that query results are immediately transferred
from the MySQL Server to PHP and then are kept in the memory of the PHP process. This allows
additional operations like counting the number of rows, and moving (seeking) the current result pointer. It
also allows issuing further queries on the same connection while working on the result set. The downside
of the buffered mode is that larger result sets might require quite a lot memory. The memory will be
kept occupied till all references to the result set are unset or the result set was explicitly freed, which will
automatically happen during request end the latest. The terminology "store result" is also used for buffered
mode, as the whole result set is stored at once.

Note

When using libmysqlclient as library PHP's memory limit won't count the memory
used for result sets unless the data is fetched into PHP variables. With mysqlnd the
memory accounted for will include the full result set.

Unbuffered MySQL queries execute the query and then return a resource while the data is still waiting on
the MySQL server for being fetched. This uses less memory on the PHP-side, but can increase the load

http://www.php.net/ini.open-basedir

Buffered and Unbuffered queries

8

on the server. Unless the full result set was fetched from the server no further queries can be sent over the
same connection. Unbuffered queries can also be referred to as "use result".

Following these characteristics buffered queries should be used in cases where you expect only a limited
result set or need to know the amount of returned rows before reading all rows. Unbuffered mode should
be used when you expect larger results.

Because buffered queries are the default, the examples below will demonstrate how to execute unbuffered
queries with each API.

Example 2.3 Unbuffered query example: mysqli

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");
$uresult = $mysqli->query("SELECT Name FROM City", MYSQLI_USE_RESULT);

if ($uresult) {
 while ($row = $uresult->fetch_assoc()) {
 echo $row['Name'] . PHP_EOL;
 }
}
$uresult->close();
?>

Example 2.4 Unbuffered query example: pdo_mysql

<?php
$pdo = new PDO("mysql:host=localhost;dbname=world", 'my_user', 'my_pass');
$pdo->setAttribute(PDO::MYSQL_ATTR_USE_BUFFERED_QUERY, false);

$uresult = $pdo->query("SELECT Name FROM City");
if ($uresult) {
 while ($row = $uresult->fetch(PDO::FETCH_ASSOC)) {
 echo $row['Name'] . PHP_EOL;
 }
}
?>

Example 2.5 Unbuffered query example: mysql

<?php
$conn = mysql_connect("localhost", "my_user", "my_pass");
$db = mysql_select_db("world");

$uresult = mysql_unbuffered_query("SELECT Name FROM City");
if ($uresult) {
 while ($row = mysql_fetch_assoc($uresult)) {
 echo $row['Name'] . PHP_EOL;
 }
}
?>

Character sets

9

2.5.2 Character sets

Copyright 1997-2014 the PHP Documentation Group.

Ideally a proper character set will be set at the server level, and doing this is described within the Character
Set Configuration section of the MySQL Server manual. Alternatively, each MySQL API offers a method to
set the character set at runtime.

The character set and character escaping

The character set should be understood and defined, as it has an affect on every
action, and includes security implications. For example, the escaping mechanism
(e.g., mysqli_real_escape_string for mysqli, mysql_real_escape_string
for mysql, and PDO::quote for PDO_MySQL) will adhere to this setting. It is
important to realize that these functions will not use the character set that is defined
with a query, so for example the following will not have an effect on them:

Example 2.6 Problems with setting the character set with SQL

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

// Will NOT affect $mysqli->real_escape_string();
$mysqli->query("SET NAMES utf8");

// Will NOT affect $mysqli->real_escape_string();
$mysqli->query("SET CHARACTER SET utf8");

// But, this will affect $mysqli->real_escape_string();
$mysqli->set_charset('utf8');

// But, this will NOT affect it (utf-8 vs utf8) -- don't use dashes here
$mysqli->set_charset('utf-8');

?>

Below are examples that demonstrate how to properly alter the character set at runtime using each API.

Possible UTF-8 confusion

Because character set names in MySQL do not contain dashes, the string "utf8" is
valid in MySQL to set the character set to UTF-8. The string "utf-8" is not valid, as
using "utf-8" will fail to change the character set.

Example 2.7 Setting the character set example: mysqli

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

printf("Initial character set: %s\n", $mysqli->character_set_name());

if (!$mysqli->set_charset('utf8')) {
 printf("Error loading character set utf8: %s\n", $mysqli->error);
 exit;
}

http://dev.mysql.com/doc/mysql/en/charset-configuration.html
http://dev.mysql.com/doc/mysql/en/charset-configuration.html
http://www.php.net/PDO::quote

Character sets

10

echo "New character set information:\n";
print_r($mysqli->get_charset());

?>

Example 2.8 Setting the character set example: pdo_mysql

Note: This only works as of PHP 5.3.6.

<?php
$pdo = new PDO("mysql:host=localhost;dbname=world;charset=utf8", 'my_user', 'my_pass');
?>

Example 2.9 Setting the character set example: mysql

<?php
$conn = mysql_connect("localhost", "my_user", "my_pass");
$db = mysql_select_db("world");

echo 'Initial character set: ' . mysql_client_encoding($conn) . "\n";

if (!mysql_set_charset('utf8', $conn)) {
 echo "Error: Unable to set the character set.\n";
 exit;
}

echo 'Your current character set is: ' . mysql_client_encoding($conn);
?>

11

Chapter 3 MySQL Improved Extension

Table of Contents
3.1 Overview .. 14
3.2 Quick start guide .. 18

3.2.1 Dual procedural and object-oriented interface .. 18
3.2.2 Connections ... 20
3.2.3 Executing statements ... 22
3.2.4 Prepared Statements ... 26
3.2.5 Stored Procedures ... 33
3.2.6 Multiple Statements ... 38
3.2.7 API support for transactions ... 39
3.2.8 Metadata ... 40

3.3 Installing/Configuring ... 42
3.3.1 Requirements .. 42
3.3.2 Installation ... 42
3.3.3 Runtime Configuration .. 44
3.3.4 Resource Types .. 46

3.4 The mysqli Extension and Persistent Connections .. 46
3.5 Predefined Constants ... 47
3.6 Notes ... 50
3.7 The MySQLi Extension Function Summary .. 51
3.8 Examples ... 57

3.8.1 MySQLi extension basic examples ... 57
3.9 The mysqli class .. 59

3.9.1 mysqli::$affected_rows, mysqli_affected_rows ... 62
3.9.2 mysqli::autocommit, mysqli_autocommit ... 65
3.9.3 mysqli::begin_transaction, mysqli_begin_transaction 66
3.9.4 mysqli::change_user, mysqli_change_user ... 68
3.9.5 mysqli::character_set_name, mysqli_character_set_name 71
3.9.6 mysqli::$client_info, mysqli_get_client_info ... 72
3.9.7 mysqli::$client_version, mysqli_get_client_version 73
3.9.8 mysqli::close, mysqli_close ... 74
3.9.9 mysqli::commit, mysqli_commit ... 75
3.9.10 mysqli::$connect_errno, mysqli_connect_errno ... 77
3.9.11 mysqli::$connect_error, mysqli_connect_error ... 78
3.9.12 mysqli::__construct, mysqli_connect ... 80
3.9.13 mysqli::debug, mysqli_debug ... 83
3.9.14 mysqli::dump_debug_info, mysqli_dump_debug_info ... 84
3.9.15 mysqli::$errno, mysqli_errno ... 85
3.9.16 mysqli::$error_list, mysqli_error_list ... 87
3.9.17 mysqli::$error, mysqli_error ... 88
3.9.18 mysqli::$field_count, mysqli_field_count ... 90
3.9.19 mysqli::get_charset, mysqli_get_charset ... 92
3.9.20 mysqli::get_client_info, mysqli_get_client_info ... 93
3.9.21 mysqli_get_client_stats ... 94
3.9.22 mysqli_get_client_version, mysqli::$client_version 97
3.9.23 mysqli::get_connection_stats, mysqli_get_connection_stats 97
3.9.24 mysqli::$host_info, mysqli_get_host_info .. 100
3.9.25 mysqli::$protocol_version, mysqli_get_proto_info 102
3.9.26 mysqli::$server_info, mysqli_get_server_info .. 103

12

3.9.27 mysqli::$server_version, mysqli_get_server_version 105
3.9.28 mysqli::get_warnings, mysqli_get_warnings .. 106
3.9.29 mysqli::$info, mysqli_info ... 107
3.9.30 mysqli::init, mysqli_init ... 108
3.9.31 mysqli::$insert_id, mysqli_insert_id ... 109
3.9.32 mysqli::kill, mysqli_kill ... 111
3.9.33 mysqli::more_results, mysqli_more_results .. 113
3.9.34 mysqli::multi_query, mysqli_multi_query .. 114
3.9.35 mysqli::next_result, mysqli_next_result .. 116
3.9.36 mysqli::options, mysqli_options ... 117
3.9.37 mysqli::ping, mysqli_ping ... 118
3.9.38 mysqli::poll, mysqli_poll ... 120
3.9.39 mysqli::prepare, mysqli_prepare ... 122
3.9.40 mysqli::query, mysqli_query ... 124
3.9.41 mysqli::real_connect, mysqli_real_connect .. 127
3.9.42 mysqli::real_escape_string, mysqli_real_escape_string 131
3.9.43 mysqli::real_query, mysqli_real_query .. 134
3.9.44 mysqli::reap_async_query, mysqli_reap_async_query 134
3.9.45 mysqli::refresh, mysqli_refresh ... 135
3.9.46 mysqli::release_savepoint, mysqli_release_savepoint 136
3.9.47 mysqli::rollback, mysqli_rollback ... 136
3.9.48 mysqli::rpl_query_type, mysqli_rpl_query_type .. 139
3.9.49 mysqli::savepoint, mysqli_savepoint ... 140
3.9.50 mysqli::select_db, mysqli_select_db ... 140
3.9.51 mysqli::send_query, mysqli_send_query .. 142
3.9.52 mysqli::set_charset, mysqli_set_charset .. 143
3.9.53 mysqli::set_local_infile_default, mysqli_set_local_infile_default 145
3.9.54 mysqli::set_local_infile_handler, mysqli_set_local_infile_handler 145
3.9.55 mysqli::$sqlstate, mysqli_sqlstate ... 148
3.9.56 mysqli::ssl_set, mysqli_ssl_set ... 150
3.9.57 mysqli::stat, mysqli_stat ... 151
3.9.58 mysqli::stmt_init, mysqli_stmt_init ... 152
3.9.59 mysqli::store_result, mysqli_store_result .. 153
3.9.60 mysqli::$thread_id, mysqli_thread_id ... 154
3.9.61 mysqli::thread_safe, mysqli_thread_safe .. 156
3.9.62 mysqli::use_result, mysqli_use_result .. 156
3.9.63 mysqli::$warning_count, mysqli_warning_count .. 159

3.10 The mysqli_stmt class ... 161
3.10.1 mysqli_stmt::$affected_rows, mysqli_stmt_affected_rows 162
3.10.2 mysqli_stmt::attr_get, mysqli_stmt_attr_get .. 164
3.10.3 mysqli_stmt::attr_set, mysqli_stmt_attr_set .. 165
3.10.4 mysqli_stmt::bind_param, mysqli_stmt_bind_param .. 166
3.10.5 mysqli_stmt::bind_result, mysqli_stmt_bind_result 169
3.10.6 mysqli_stmt::close, mysqli_stmt_close .. 171
3.10.7 mysqli_stmt::__construct ... 172
3.10.8 mysqli_stmt::data_seek, mysqli_stmt_data_seek .. 172
3.10.9 mysqli_stmt::$errno, mysqli_stmt_errno .. 175
3.10.10 mysqli_stmt::$error_list, mysqli_stmt_error_list 177
3.10.11 mysqli_stmt::$error, mysqli_stmt_error .. 179
3.10.12 mysqli_stmt::execute, mysqli_stmt_execute .. 181
3.10.13 mysqli_stmt::fetch, mysqli_stmt_fetch .. 184
3.10.14 mysqli_stmt::$field_count, mysqli_stmt_field_count 186
3.10.15 mysqli_stmt::free_result, mysqli_stmt_free_result 186
3.10.16 mysqli_stmt::get_result, mysqli_stmt_get_result 187

13

3.10.17 mysqli_stmt::get_warnings, mysqli_stmt_get_warnings 189
3.10.18 mysqli_stmt::$insert_id, mysqli_stmt_insert_id .. 190
3.10.19 mysqli_stmt::more_results, mysqli_stmt_more_results 190
3.10.20 mysqli_stmt::next_result, mysqli_stmt_next_result 191
3.10.21 mysqli_stmt::$num_rows, mysqli_stmt_num_rows .. 192
3.10.22 mysqli_stmt::$param_count, mysqli_stmt_param_count 194
3.10.23 mysqli_stmt::prepare, mysqli_stmt_prepare .. 195
3.10.24 mysqli_stmt::reset, mysqli_stmt_reset .. 198
3.10.25 mysqli_stmt::result_metadata, mysqli_stmt_result_metadata 199
3.10.26 mysqli_stmt::send_long_data, mysqli_stmt_send_long_data 201
3.10.27 mysqli_stmt::$sqlstate, mysqli_stmt_sqlstate .. 202
3.10.28 mysqli_stmt::store_result, mysqli_stmt_store_result 204

3.11 The mysqli_result class ... 207
3.11.1 mysqli_result::$current_field, mysqli_field_tell 208
3.11.2 mysqli_result::data_seek, mysqli_data_seek .. 210
3.11.3 mysqli_result::fetch_all, mysqli_fetch_all .. 212
3.11.4 mysqli_result::fetch_array, mysqli_fetch_array .. 213
3.11.5 mysqli_result::fetch_assoc, mysqli_fetch_assoc .. 215
3.11.6 mysqli_result::fetch_field_direct, mysqli_fetch_field_direct 218
3.11.7 mysqli_result::fetch_field, mysqli_fetch_field .. 221
3.11.8 mysqli_result::fetch_fields, mysqli_fetch_fields 223
3.11.9 mysqli_result::fetch_object, mysqli_fetch_object 226
3.11.10 mysqli_result::fetch_row, mysqli_fetch_row .. 229
3.11.11 mysqli_result::$field_count, mysqli_num_fields .. 231
3.11.12 mysqli_result::field_seek, mysqli_field_seek .. 232
3.11.13 mysqli_result::free, mysqli_free_result .. 234
3.11.14 mysqli_result::$lengths, mysqli_fetch_lengths .. 235
3.11.15 mysqli_result::$num_rows, mysqli_num_rows .. 237

3.12 The mysqli_driver class ... 239
3.12.1 mysqli_driver::embedded_server_end, mysqli_embedded_server_end 240
3.12.2 mysqli_driver::embedded_server_start, mysqli_embedded_server_start .. 240
3.12.3 mysqli_driver::$report_mode, mysqli_report .. 241

3.13 The mysqli_warning class ... 243
3.13.1 mysqli_warning::__construct ... 244
3.13.2 mysqli_warning::next ... 244

3.14 The mysqli_sql_exception class ... 244
3.15 Aliases and deprecated Mysqli Functions ... 245

3.15.1 mysqli_bind_param ... 245
3.15.2 mysqli_bind_result ... 245
3.15.3 mysqli_client_encoding ... 246
3.15.4 mysqli_connect ... 246
3.15.5 mysqli::disable_reads_from_master,
mysqli_disable_reads_from_master .. 247
3.15.6 mysqli_disable_rpl_parse ... 247
3.15.7 mysqli_enable_reads_from_master .. 248
3.15.8 mysqli_enable_rpl_parse ... 248
3.15.9 mysqli_escape_string ... 248
3.15.10 mysqli_execute .. 249
3.15.11 mysqli_fetch .. 249
3.15.12 mysqli_get_cache_stats .. 249
3.15.13 mysqli_get_links_stats .. 250
3.15.14 mysqli_get_metadata .. 250
3.15.15 mysqli_master_query .. 251
3.15.16 mysqli_param_count .. 251

Overview

14

3.15.17 mysqli_report .. 252
3.15.18 mysqli_rpl_parse_enabled .. 252
3.15.19 mysqli_rpl_probe .. 252
3.15.20 mysqli_send_long_data .. 252
3.15.21 mysqli::set_opt, mysqli_set_opt .. 253
3.15.22 mysqli_slave_query .. 253

3.16 Changelog .. 253

Copyright 1997-2014 the PHP Documentation Group.

The mysqli extension allows you to access the functionality provided by MySQL 4.1 and above. More
information about the MySQL Database server can be found at http://www.mysql.com/

An overview of software available for using MySQL from PHP can be found at Section 3.1, “Overview”

Documentation for MySQL can be found at http://dev.mysql.com/doc/.

Parts of this documentation included from MySQL manual with permissions of Oracle Corporation.

Examples use either the world or sakila database, which are freely available.

3.1 Overview

Copyright 1997-2014 the PHP Documentation Group.

This section provides an introduction to the options available to you when developing a PHP application
that needs to interact with a MySQL database.

What is an API?

An Application Programming Interface, or API, defines the classes, methods, functions and variables that
your application will need to call in order to carry out its desired task. In the case of PHP applications that
need to communicate with databases the necessary APIs are usually exposed via PHP extensions.

APIs can be procedural or object-oriented. With a procedural API you call functions to carry out tasks, with
the object-oriented API you instantiate classes and then call methods on the resulting objects. Of the two
the latter is usually the preferred interface, as it is more modern and leads to better organized code.

When writing PHP applications that need to connect to the MySQL server there are several API options
available. This document discusses what is available and how to select the best solution for your
application.

What is a Connector?

In the MySQL documentation, the term connector refers to a piece of software that allows your application
to connect to the MySQL database server. MySQL provides connectors for a variety of languages,
including PHP.

If your PHP application needs to communicate with a database server you will need to write PHP code to
perform such activities as connecting to the database server, querying the database and other database-
related functions. Software is required to provide the API that your PHP application will use, and also
handle the communication between your application and the database server, possibly using other
intermediate libraries where necessary. This software is known generically as a connector, as it allows your
application to connect to a database server.

What is a Driver?

http://www.mysql.com/
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/world-setup/en/index.html
http://dev.mysql.com/doc/sakila/en/index.html

Overview

15

A driver is a piece of software designed to communicate with a specific type of database server. The driver
may also call a library, such as the MySQL Client Library or the MySQL Native Driver. These libraries
implement the low-level protocol used to communicate with the MySQL database server.

By way of an example, the PHP Data Objects (PDO) database abstraction layer may use one of several
database-specific drivers. One of the drivers it has available is the PDO MYSQL driver, which allows it to
interface with the MySQL server.

Sometimes people use the terms connector and driver interchangeably, this can be confusing. In the
MySQL-related documentation the term “driver” is reserved for software that provides the database-specific
part of a connector package.

What is an Extension?

In the PHP documentation you will come across another term - extension. The PHP code consists of a
core, with optional extensions to the core functionality. PHP's MySQL-related extensions, such as the
mysqli extension, and the mysql extension, are implemented using the PHP extension framework.

An extension typically exposes an API to the PHP programmer, to allow its facilities to be used
programmatically. However, some extensions which use the PHP extension framework do not expose an
API to the PHP programmer.

The PDO MySQL driver extension, for example, does not expose an API to the PHP programmer, but
provides an interface to the PDO layer above it.

The terms API and extension should not be taken to mean the same thing, as an extension may not
necessarily expose an API to the programmer.

What are the main PHP API offerings for using MySQL?

There are three main API options when considering connecting to a MySQL database server:

• PHP's MySQL Extension

• PHP's mysqli Extension

• PHP Data Objects (PDO)

Each has its own advantages and disadvantages. The following discussion aims to give a brief introduction
to the key aspects of each API.

What is PHP's MySQL Extension?

This is the original extension designed to allow you to develop PHP applications that interact with a MySQL
database. The mysql extension provides a procedural interface and is intended for use only with MySQL
versions older than 4.1.3. This extension can be used with versions of MySQL 4.1.3 or newer, but not all of
the latest MySQL server features will be available.

Note

If you are using MySQL versions 4.1.3 or later it is strongly recommended that you
use the mysqli extension instead.

The mysql extension source code is located in the PHP extension directory ext/mysql.

For further information on the mysql extension, see Chapter 5, Original MySQL API.

Overview

16

What is PHP's mysqli Extension?

The mysqli extension, or as it is sometimes known, the MySQL improved extension, was developed
to take advantage of new features found in MySQL systems versions 4.1.3 and newer. The mysqli
extension is included with PHP versions 5 and later.

The mysqli extension has a number of benefits, the key enhancements over the mysql extension being:

• Object-oriented interface

• Support for Prepared Statements

• Support for Multiple Statements

• Support for Transactions

• Enhanced debugging capabilities

• Embedded server support

Note

If you are using MySQL versions 4.1.3 or later it is strongly recommended that you
use this extension.

As well as the object-oriented interface the extension also provides a procedural interface.

The mysqli extension is built using the PHP extension framework, its source code is located in the
directory ext/mysqli.

For further information on the mysqli extension, see Chapter 3, MySQL Improved Extension.

What is PDO?

PHP Data Objects, or PDO, is a database abstraction layer specifically for PHP applications. PDO provides
a consistent API for your PHP application regardless of the type of database server your application will
connect to. In theory, if you are using the PDO API, you could switch the database server you used, from
say Firebird to MySQL, and only need to make minor changes to your PHP code.

Other examples of database abstraction layers include JDBC for Java applications and DBI for Perl.

While PDO has its advantages, such as a clean, simple, portable API, its main disadvantage is that it
doesn't allow you to use all of the advanced features that are available in the latest versions of MySQL
server. For example, PDO does not allow you to use MySQL's support for Multiple Statements.

PDO is implemented using the PHP extension framework, its source code is located in the directory ext/
pdo.

For further information on PDO, see the http://www.php.net/book.pdo.

What is the PDO MYSQL driver?

The PDO MYSQL driver is not an API as such, at least from the PHP programmer's perspective. In fact
the PDO MYSQL driver sits in the layer below PDO itself and provides MySQL-specific functionality. The
programmer still calls the PDO API, but PDO uses the PDO MYSQL driver to carry out communication with
the MySQL server.

http://www.php.net/book.pdo

Overview

17

The PDO MYSQL driver is one of several available PDO drivers. Other PDO drivers available include
those for the Firebird and PostgreSQL database servers.

The PDO MYSQL driver is implemented using the PHP extension framework. Its source code is located in
the directory ext/pdo_mysql. It does not expose an API to the PHP programmer.

For further information on the PDO MYSQL driver, see Chapter 4, MySQL Functions (PDO_MYSQL).

What is PHP's MySQL Native Driver?

In order to communicate with the MySQL database server the mysql extension, mysqli and the PDO
MYSQL driver each use a low-level library that implements the required protocol. In the past, the only
available library was the MySQL Client Library, otherwise known as libmysqlclient.

However, the interface presented by libmysqlclient was not optimized for communication with PHP
applications, as libmysqlclient was originally designed with C applications in mind. For this reason
the MySQL Native Driver, mysqlnd, was developed as an alternative to libmysqlclient for PHP
applications.

The mysql extension, the mysqli extension and the PDO MySQL driver can each be individually
configured to use either libmysqlclient or mysqlnd. As mysqlnd is designed specifically to be utilised
in the PHP system it has numerous memory and speed enhancements over libmysqlclient. You are
strongly encouraged to take advantage of these improvements.

Note

The MySQL Native Driver can only be used with MySQL server versions 4.1.3 and
later.

The MySQL Native Driver is implemented using the PHP extension framework. The source code is located
in ext/mysqlnd. It does not expose an API to the PHP programmer.

Comparison of Features

The following table compares the functionality of the three main methods of connecting to MySQL from
PHP:

Table 3.1 Comparison of MySQL API options for PHP

 PHP's mysqli Extension PDO (Using PDO
MySQL Driver and
MySQL Native Driver)

PHP's MySQL
Extension

PHP version introduced 5.0 5.0 Prior to 3.0

Included with PHP 5.x yes yes Yes

MySQL development
status

Active development Active development as of
PHP 5.3

Maintenance only

Recommended by
MySQL for new projects

Yes - preferred option Yes No

API supports Charsets Yes Yes No

API supports server-side
Prepared Statements

Yes Yes No

API supports client-side
Prepared Statements

No Yes No

Quick start guide

18

 PHP's mysqli Extension PDO (Using PDO
MySQL Driver and
MySQL Native Driver)

PHP's MySQL
Extension

API supports Stored
Procedures

Yes Yes No

API supports Multiple
Statements

Yes Most No

Supports all MySQL 4.1+
functionality

Yes Most No

3.2 Quick start guide

Copyright 1997-2014 the PHP Documentation Group.

This quick start guide will help with choosing and gaining familiarity with the PHP MySQL API.

This quick start gives an overview on the mysqli extension. Code examples are provided for all major
aspects of the API. Database concepts are explained to the degree needed for presenting concepts
specific to MySQL.

Required: A familiarity with the PHP programming language, the SQL language, and basic knowledge of
the MySQL server.

3.2.1 Dual procedural and object-oriented interface

Copyright 1997-2014 the PHP Documentation Group.

The mysqli extension features a dual interface. It supports the procedural and object-oriented programming
paradigm.

Users migrating from the old mysql extension may prefer the procedural interface. The procedural interface
is similar to that of the old mysql extension. In many cases, the function names differ only by prefix. Some
mysqli functions take a connection handle as their first argument, whereas matching functions in the old
mysql interface take it as an optional last argument.

Example 3.1 Easy migration from the old mysql extension

<?php
$mysqli = mysqli_connect("example.com", "user", "password", "database");
$res = mysqli_query($mysqli, "SELECT 'Please, do not use ' AS _msg FROM DUAL");
$row = mysqli_fetch_assoc($res);
echo $row['_msg'];

$mysql = mysql_connect("example.com", "user", "password");
mysql_select_db("test");
$res = mysql_query("SELECT 'the mysql extension for new developments.' AS _msg FROM DUAL", $mysql);
$row = mysql_fetch_assoc($res);
echo $row['_msg'];
?>

The above example will output:

Dual procedural and object-oriented interface

19

Please, do not use the mysql extension for new developments.

The object-oriented interface

In addition to the classical procedural interface, users can choose to use the object-oriented interface.
The documentation is organized using the object-oriented interface. The object-oriented interface shows
functions grouped by their purpose, making it easier to get started. The reference section gives examples
for both syntax variants.

There are no significant performance differences between the two interfaces. Users can base their choice
on personal preference.

Example 3.2 Object-oriented and procedural interface

<?php
$mysqli = mysqli_connect("example.com", "user", "password", "database");
if (mysqli_connect_errno($mysqli)) {
 echo "Failed to connect to MySQL: " . mysqli_connect_error();
}

$res = mysqli_query($mysqli, "SELECT 'A world full of ' AS _msg FROM DUAL");
$row = mysqli_fetch_assoc($res);
echo $row['_msg'];

$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: " . $mysqli->connect_error;
}

$res = $mysqli->query("SELECT 'choices to please everybody.' AS _msg FROM DUAL");
$row = $res->fetch_assoc();
echo $row['_msg'];
?>

The above example will output:

A world full of choices to please everybody.

The object oriented interface is used for the quickstart because the reference section is organized that
way.

Mixing styles

It is possible to switch between styles at any time. Mixing both styles is not recommended for code clarity
and coding style reasons.

Example 3.3 Bad coding style

<?php

Connections

20

$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: " . $mysqli->connect_error;
}

$res = mysqli_query($mysqli, "SELECT 'Possible but bad style.' AS _msg FROM DUAL");
if (!$res) {
 echo "Failed to run query: (" . $mysqli->errno . ") " . $mysqli->error;
}

if ($row = $res->fetch_assoc()) {
 echo $row['_msg'];
}
?>

The above example will output:

Possible but bad style.

See also

mysqli::__construct
mysqli::query
mysqli_result::fetch_assoc
$mysqli::connect_errno
$mysqli::connect_error
$mysqli::errno
$mysqli::error
The MySQLi Extension Function Summary

3.2.2 Connections

Copyright 1997-2014 the PHP Documentation Group.

The MySQL server supports the use of different transport layers for connections. Connections use TCP/IP,
Unix domain sockets or Windows named pipes.

The hostname localhost has a special meaning. It is bound to the use of Unix domain sockets. It is not
possible to open a TCP/IP connection using the hostname localhost you must use 127.0.0.1 instead.

Example 3.4 Special meaning of localhost

<?php
$mysqli = new mysqli("localhost", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}
echo $mysqli->host_info . "\n";

$mysqli = new mysqli("127.0.0.1", "user", "password", "database", 3306);
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

Connections

21

echo $mysqli->host_info . "\n";
?>

The above example will output:

Localhost via UNIX socket
127.0.0.1 via TCP/IP

Connection parameter defaults

Depending on the connection function used, assorted parameters can be omitted. If a parameter is not
provided, then the extension attempts to use the default values that are set in the PHP configuration file.

Example 3.5 Setting defaults

mysqli.default_host=192.168.2.27
mysqli.default_user=root
mysqli.default_pw=""
mysqli.default_port=3306
mysqli.default_socket=/tmp/mysql.sock

The resulting parameter values are then passed to the client library that is used by the extension. If the
client library detects empty or unset parameters, then it may default to the library built-in values.

Built-in connection library defaults

If the host value is unset or empty, then the client library will default to a Unix socket connection on
localhost. If socket is unset or empty, and a Unix socket connection is requested, then a connection to
the default socket on /tmp/mysql.sock is attempted.

On Windows systems, the host name . is interpreted by the client library as an attempt to open a Windows
named pipe based connection. In this case the socket parameter is interpreted as the pipe name. If not
given or empty, then the socket (pipe name) defaults to \\.\pipe\MySQL.

If neither a Unix domain socket based not a Windows named pipe based connection is to be established
and the port parameter value is unset, the library will default to port 3306.

The mysqlnd library and the MySQL Client Library (libmysqlclient) implement the same logic for
determining defaults.

Connection options

Connection options are available to, for example, set init commands which are executed upon connect,
or for requesting use of a certain charset. Connection options must be set before a network connection is
established.

For setting a connection option, the connect operation has to be performed in three steps: creating a
connection handle with mysqli_init, setting the requested options using mysqli_options, and
establishing the network connection with mysqli_real_connect.

Executing statements

22

Connection pooling

The mysqli extension supports persistent database connections, which are a special kind of pooled
connections. By default, every database connection opened by a script is either explicitly closed by the
user during runtime or released automatically at the end of the script. A persistent connection is not.
Instead it is put into a pool for later reuse, if a connection to the same server using the same username,
password, socket, port and default database is opened. Reuse saves connection overhead.

Every PHP process is using its own mysqli connection pool. Depending on the web server deployment
model, a PHP process may serve one or multiple requests. Therefore, a pooled connection may be used
by one or more scripts subsequently.

Persistent connection

If a unused persistent connection for a given combination of host, username, password, socket, port and
default database can not be found in the connection pool, then mysqli opens a new connection. The use
of persistent connections can be enabled and disabled using the PHP directive mysqli.allow_persistent.
The total number of connections opened by a script can be limited with mysqli.max_links. The maximum
number of persistent connections per PHP process can be restricted with mysqli.max_persistent. Please
note, that the web server may spawn many PHP processes.

A common complain about persistent connections is that their state is not reset before reuse. For example,
open and unfinished transactions are not automatically rolled back. But also, authorization changes which
happened in the time between putting the connection into the pool and reusing it are not reflected. This
may be seen as an unwanted side-effect. On the contrary, the name persistent may be understood as
a promise that the state is persisted.

The mysqli extension supports both interpretations of a persistent connection: state persisted, and state
reset before reuse. The default is reset. Before a persistent connection is reused, the mysqli extension
implicitly calls mysqli_change_user to reset the state. The persistent connection appears to the user as
if it was just opened. No artifacts from previous usages are visible.

The mysqli_change_user function is an expensive operation. For best performance, users may want to
recompile the extension with the compile flag MYSQLI_NO_CHANGE_USER_ON_PCONNECT being set.

It is left to the user to choose between safe behavior and best performance. Both are valid optimization
goals. For ease of use, the safe behavior has been made the default at the expense of maximum
performance.

See also

mysqli::__construct
mysqli::init
mysqli::options
mysqli::real_connect
mysqli::change_user
$mysqli::host_info
MySQLi Configuration Options
Persistent Database Connections

3.2.3 Executing statements

Copyright 1997-2014 the PHP Documentation Group.

Statements can be executed with the mysqli_query, mysqli_real_query and
mysqli_multi_query functions. The mysqli_query function is the most common, and combines the

http://www.php.net/manual/en/features.persistent-connections

Executing statements

23

executing statement with a buffered fetch of its result set, if any, in one call. Calling mysqli_query is
identical to calling mysqli_real_query followed by mysqli_store_result.

Example 3.6 Connecting to MySQL

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
 !$mysqli->query("CREATE TABLE test(id INT)") ||
 !$mysqli->query("INSERT INTO test(id) VALUES (1)")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
?>

Buffered result sets

After statement execution results can be retrieved at once to be buffered by the client or by read row by
row. Client-side result set buffering allows the server to free resources associated with the statement
results as early as possible. Generally speaking, clients are slow consuming result sets. Therefore, it is
recommended to use buffered result sets. mysqli_query combines statement execution and result set
buffering.

PHP applications can navigate freely through buffered results. Navigation is fast because the result sets
are held in client memory. Please, keep in mind that it is often easier to scale by client than it is to scale the
server.

Example 3.7 Navigation through buffered results

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
 !$mysqli->query("CREATE TABLE test(id INT)") ||
 !$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

$res = $mysqli->query("SELECT id FROM test ORDER BY id ASC");

echo "Reverse order...\n";
for ($row_no = $res->num_rows - 1; $row_no >= 0; $row_no--) {
 $res->data_seek($row_no);
 $row = $res->fetch_assoc();
 echo " id = " . $row['id'] . "\n";
}

echo "Result set order...\n";
$res->data_seek(0);
while ($row = $res->fetch_assoc()) {
 echo " id = " . $row['id'] . "\n";
}

Executing statements

24

?>

The above example will output:

Reverse order...
 id = 3
 id = 2
 id = 1
Result set order...
 id = 1
 id = 2
 id = 3

Unbuffered result sets

If client memory is a short resource and freeing server resources as early as possible to keep server load
low is not needed, unbuffered results can be used. Scrolling through unbuffered results is not possible
before all rows have been read.

Example 3.8 Navigation through unbuffered results

<?php
$mysqli->real_query("SELECT id FROM test ORDER BY id ASC");
$res = $mysqli->use_result();

echo "Result set order...\n";
while ($row = $res->fetch_assoc()) {
 echo " id = " . $row['id'] . "\n";
}
?>

Result set values data types

The mysqli_query, mysqli_real_query and mysqli_multi_query functions are used to execute
non-prepared statements. At the level of the MySQL Client Server Protocol, the command COM_QUERY
and the text protocol are used for statement execution. With the text protocol, the MySQL server converts
all data of a result sets into strings before sending. This conversion is done regardless of the SQL result
set column data type. The mysql client libraries receive all column values as strings. No further client-side
casting is done to convert columns back to their native types. Instead, all values are provided as PHP
strings.

Example 3.9 Text protocol returns strings by default

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||

Executing statements

25

 !$mysqli->query("CREATE TABLE test(id INT, label CHAR(1))") ||
 !$mysqli->query("INSERT INTO test(id, label) VALUES (1, 'a')")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

$res = $mysqli->query("SELECT id, label FROM test WHERE id = 1");
$row = $res->fetch_assoc();

printf("id = %s (%s)\n", $row['id'], gettype($row['id']));
printf("label = %s (%s)\n", $row['label'], gettype($row['label']));
?>

The above example will output:

id = 1 (string)
label = a (string)

It is possible to convert integer and float columns back to PHP numbers by setting the
MYSQLI_OPT_INT_AND_FLOAT_NATIVE connection option, if using the mysqlnd library. If set, the
mysqlnd library will check the result set meta data column types and convert numeric SQL columns to
PHP numbers, if the PHP data type value range allows for it. This way, for example, SQL INT columns are
returned as integers.

Example 3.10 Native data types with mysqlnd and connection option

<?php
$mysqli = mysqli_init();
$mysqli->options(MYSQLI_OPT_INT_AND_FLOAT_NATIVE, 1);
$mysqli->real_connect("example.com", "user", "password", "database");

if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
 !$mysqli->query("CREATE TABLE test(id INT, label CHAR(1))") ||
 !$mysqli->query("INSERT INTO test(id, label) VALUES (1, 'a')")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

$res = $mysqli->query("SELECT id, label FROM test WHERE id = 1");
$row = $res->fetch_assoc();

printf("id = %s (%s)\n", $row['id'], gettype($row['id']));
printf("label = %s (%s)\n", $row['label'], gettype($row['label']));
?>

The above example will output:

id = 1 (integer)
label = a (string)

Prepared Statements

26

See also

mysqli::__construct
mysqli::init
mysqli::options
mysqli::real_connect
mysqli::query
mysqli::multi_query
mysqli::use_result
mysqli::store_result
mysqli_result::free

3.2.4 Prepared Statements

Copyright 1997-2014 the PHP Documentation Group.

The MySQL database supports prepared statements. A prepared statement or a parameterized statement
is used to execute the same statement repeatedly with high efficiency.

Basic workflow

The prepared statement execution consists of two stages: prepare and execute. At the prepare stage
a statement template is sent to the database server. The server performs a syntax check and initializes
server internal resources for later use.

The MySQL server supports using anonymous, positional placeholder with ?.

Example 3.11 First stage: prepare

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

/* Non-prepared statement */
if (!$mysqli->query("DROP TABLE IF EXISTS test") || !$mysqli->query("CREATE TABLE test(id INT)")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

/* Prepared statement, stage 1: prepare */
if (!($stmt = $mysqli->prepare("INSERT INTO test(id) VALUES (?)"))) {
 echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
?>

Prepare is followed by execute. During execute the client binds parameter values and sends them to the
server. The server creates a statement from the statement template and the bound values to execute it
using the previously created internal resources.

Example 3.12 Second stage: bind and execute

<?php
/* Prepared statement, stage 2: bind and execute */

Prepared Statements

27

$id = 1;
if (!$stmt->bind_param("i", $id)) {
 echo "Binding parameters failed: (" . $stmt->errno . ") " . $stmt->error;
}

if (!$stmt->execute()) {
 echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
}
?>

Repeated execution

A prepared statement can be executed repeatedly. Upon every execution the current value of the bound
variable is evaluated and sent to the server. The statement is not parsed again. The statement template is
not transferred to the server again.

Example 3.13 INSERT prepared once, executed multiple times

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

/* Non-prepared statement */
if (!$mysqli->query("DROP TABLE IF EXISTS test") || !$mysqli->query("CREATE TABLE test(id INT)")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

/* Prepared statement, stage 1: prepare */
if (!($stmt = $mysqli->prepare("INSERT INTO test(id) VALUES (?)"))) {
 echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

/* Prepared statement, stage 2: bind and execute */
$id = 1;
if (!$stmt->bind_param("i", $id)) {
 echo "Binding parameters failed: (" . $stmt->errno . ") " . $stmt->error;
}

if (!$stmt->execute()) {
 echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
}

/* Prepared statement: repeated execution, only data transferred from client to server */
for ($id = 2; $id < 5; $id++) {
 if (!$stmt->execute()) {
 echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
 }
}

/* explicit close recommended */
$stmt->close();

/* Non-prepared statement */
$res = $mysqli->query("SELECT id FROM test");
var_dump($res->fetch_all());
?>

The above example will output:

Prepared Statements

28

array(4) {
 [0]=>
 array(1) {
 [0]=>
 string(1) "1"
 }
 [1]=>
 array(1) {
 [0]=>
 string(1) "2"
 }
 [2]=>
 array(1) {
 [0]=>
 string(1) "3"
 }
 [3]=>
 array(1) {
 [0]=>
 string(1) "4"
 }
}

Every prepared statement occupies server resources. Statements should be closed explicitly immediately
after use. If not done explicitly, the statement will be closed when the statement handle is freed by PHP.

Using a prepared statement is not always the most efficient way of executing a statement. A prepared
statement executed only once causes more client-server round-trips than a non-prepared statement. This
is why the SELECT is not run as a prepared statement above.

Also, consider the use of the MySQL multi-INSERT SQL syntax for INSERTs. For the example, multi-
INSERT requires less round-trips between the server and client than the prepared statement shown above.

Example 3.14 Less round trips using multi-INSERT SQL

<?php
if (!$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3), (4)")) {
 echo "Multi-INSERT failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
?>

Result set values data types

The MySQL Client Server Protocol defines a different data transfer protocol for prepared statements and
non-prepared statements. Prepared statements are using the so called binary protocol. The MySQL server
sends result set data "as is" in binary format. Results are not serialized into strings before sending. The
client libraries do not receive strings only. Instead, they will receive binary data and try to convert the
values into appropriate PHP data types. For example, results from an SQL INT column will be provided as
PHP integer variables.

Example 3.15 Native datatypes

Prepared Statements

29

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
 !$mysqli->query("CREATE TABLE test(id INT, label CHAR(1))") ||
 !$mysqli->query("INSERT INTO test(id, label) VALUES (1, 'a')")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

$stmt = $mysqli->prepare("SELECT id, label FROM test WHERE id = 1");
$stmt->execute();
$res = $stmt->get_result();
$row = $res->fetch_assoc();

printf("id = %s (%s)\n", $row['id'], gettype($row['id']));
printf("label = %s (%s)\n", $row['label'], gettype($row['label']));
?>

The above example will output:

id = 1 (integer)
label = a (string)

This behavior differs from non-prepared statements. By default, non-prepared statements return all results
as strings. This default can be changed using a connection option. If the connection option is used, there
are no differences.

Fetching results using bound variables

Results from prepared statements can either be retrieved by binding output variables, or by requesting a
mysqli_result object.

Output variables must be bound after statement execution. One variable must be bound for every column
of the statements result set.

Example 3.16 Output variable binding

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
 !$mysqli->query("CREATE TABLE test(id INT, label CHAR(1))") ||
 !$mysqli->query("INSERT INTO test(id, label) VALUES (1, 'a')")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!($stmt = $mysqli->prepare("SELECT id, label FROM test"))) {
 echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

Prepared Statements

30

if (!$stmt->execute()) {
 echo "Execute failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

$out_id = NULL;
$out_label = NULL;
if (!$stmt->bind_result($out_id, $out_label)) {
 echo "Binding output parameters failed: (" . $stmt->errno . ") " . $stmt->error;
}

while ($stmt->fetch()) {
 printf("id = %s (%s), label = %s (%s)\n", $out_id, gettype($out_id), $out_label, gettype($out_label));
}
?>

The above example will output:

id = 1 (integer), label = a (string)

Prepared statements return unbuffered result sets by default. The results of the statement are not implicitly
fetched and transferred from the server to the client for client-side buffering. The result set takes server
resources until all results have been fetched by the client. Thus it is recommended to consume results
timely. If a client fails to fetch all results or the client closes the statement before having fetched all data,
the data has to be fetched implicitly by mysqli.

It is also possible to buffer the results of a prepared statement using mysqli_stmt_store_result.

Fetching results using mysqli_result interface

Instead of using bound results, results can also be retrieved through the mysqli_result interface.
mysqli_stmt_get_result returns a buffered result set.

Example 3.17 Using mysqli_result to fetch results

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
 !$mysqli->query("CREATE TABLE test(id INT, label CHAR(1))") ||
 !$mysqli->query("INSERT INTO test(id, label) VALUES (1, 'a')")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!($stmt = $mysqli->prepare("SELECT id, label FROM test ORDER BY id ASC"))) {
 echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!$stmt->execute()) {
 echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
}

if (!($res = $stmt->get_result())) {
 echo "Getting result set failed: (" . $stmt->errno . ") " . $stmt->error;

Prepared Statements

31

}

var_dump($res->fetch_all());
?>

The above example will output:

array(1) {
 [0]=>
 array(2) {
 [0]=>
 int(1)
 [1]=>
 string(1) "a"
 }
}

Using the mysqli_result interface offers the additional benefit of flexible client-side result set
navigation.

Example 3.18 Buffered result set for flexible read out

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
 !$mysqli->query("CREATE TABLE test(id INT, label CHAR(1))") ||
 !$mysqli->query("INSERT INTO test(id, label) VALUES (1, 'a'), (2, 'b'), (3, 'c')")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!($stmt = $mysqli->prepare("SELECT id, label FROM test"))) {
 echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!$stmt->execute()) {
 echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
}

if (!($res = $stmt->get_result())) {
 echo "Getting result set failed: (" . $stmt->errno . ") " . $stmt->error;
}

for ($row_no = ($res->num_rows - 1); $row_no >= 0; $row_no--) {
 $res->data_seek($row_no);
 var_dump($res->fetch_assoc());
}
$res->close();
?>

The above example will output:

Prepared Statements

32

array(2) {
 ["id"]=>
 int(3)
 ["label"]=>
 string(1) "c"
}
array(2) {
 ["id"]=>
 int(2)
 ["label"]=>
 string(1) "b"
}
array(2) {
 ["id"]=>
 int(1)
 ["label"]=>
 string(1) "a"
}

Escaping and SQL injection

Bound variables are sent to the server separately from the query and thus cannot interfere with it. The
server uses these values directly at the point of execution, after the statement template is parsed. Bound
parameters do not need to be escaped as they are never substituted into the query string directly. A hint
must be provided to the server for the type of bound variable, to create an appropriate conversion. See the
mysqli_stmt_bind_param function for more information.

Such a separation sometimes considered as the only security feature to prevent SQL injection, but the
same degree of security can be achieved with non-prepared statements, if all the values are formatted
correctly. It should be noted that correct formatting is not the same as escaping and involves more logic
than simple escaping. Thus, prepared statements are simply a more convenient and less error-prone
approach to this element of database security.

Client-side prepared statement emulation

The API does not include emulation for client-side prepared statement emulation.

Quick prepared - non-prepared statement comparison

The table below compares server-side prepared and non-prepared statements.

Table 3.2 Comparison of prepared and non-prepared statements

 Prepared Statement Non-prepared statement

Client-server round trips,
SELECT, single execution

2 1

Statement string transferred from
client to server

1 1

Client-server round trips,
SELECT, repeated (n) execution

1 + n n

Statement string transferred from
client to server

1 template, n times bound
parameter, if any

n times together with parameter, if
any

Input parameter binding API Yes, automatic input escaping No, manual input escaping

Stored Procedures

33

 Prepared Statement Non-prepared statement

Output variable binding API Yes No

Supports use of mysqli_result API Yes, use
mysqli_stmt_get_result

Yes

Buffered result sets Yes, use
mysqli_stmt_get_result
or binding with
mysqli_stmt_store_result

Yes, default of mysqli_query

Unbuffered result sets Yes, use output binding API Yes, use mysqli_real_query
with mysqli_use_result

MySQL Client Server protocol
data transfer flavor

Binary protocol Text protocol

Result set values SQL data types Preserved when fetching Converted to string or preserved
when fetching

Supports all SQL statements Recent MySQL versions support
most but not all

Yes

See also

mysqli::__construct
mysqli::query
mysqli::prepare
mysqli_stmt::prepare
mysqli_stmt::execute
mysqli_stmt::bind_param
mysqli_stmt::bind_result

3.2.5 Stored Procedures

Copyright 1997-2014 the PHP Documentation Group.

The MySQL database supports stored procedures. A stored procedure is a subroutine stored in the
database catalog. Applications can call and execute the stored procedure. The CALL SQL statement is
used to execute a stored procedure.

Parameter

Stored procedures can have IN, INOUT and OUT parameters, depending on the MySQL version. The
mysqli interface has no special notion for the different kinds of parameters.

IN parameter

Input parameters are provided with the CALL statement. Please, make sure values are escaped correctly.

Example 3.19 Calling a stored procedure

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

Stored Procedures

34

if (!$mysqli->query("DROP TABLE IF EXISTS test") || !$mysqli->query("CREATE TABLE test(id INT)")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!$mysqli->query("DROP PROCEDURE IF EXISTS p") ||
 !$mysqli->query("CREATE PROCEDURE p(IN id_val INT) BEGIN INSERT INTO test(id) VALUES(id_val); END;")) {
 echo "Stored procedure creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!$mysqli->query("CALL p(1)")) {
 echo "CALL failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!($res = $mysqli->query("SELECT id FROM test"))) {
 echo "SELECT failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

var_dump($res->fetch_assoc());
?>

The above example will output:

array(1) {
 ["id"]=>
 string(1) "1"
}

INOUT/OUT parameter

The values of INOUT/OUT parameters are accessed using session variables.

Example 3.20 Using session variables

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP PROCEDURE IF EXISTS p") ||
 !$mysqli->query('CREATE PROCEDURE p(OUT msg VARCHAR(50)) BEGIN SELECT "Hi!" INTO msg; END;')) {
 echo "Stored procedure creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!$mysqli->query("SET @msg = ''") || !$mysqli->query("CALL p(@msg)")) {
 echo "CALL failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!($res = $mysqli->query("SELECT @msg as _p_out"))) {
 echo "Fetch failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

$row = $res->fetch_assoc();
echo $row['_p_out'];
?>

Stored Procedures

35

The above example will output:

Hi!

Application and framework developers may be able to provide a more convenient API using a mix of
session variables and databased catalog inspection. However, please note the possible performance
impact of a custom solution based on catalog inspection.

Handling result sets

Stored procedures can return result sets. Result sets returned from a stored procedure cannot be fetched
correctly using mysqli_query. The mysqli_query function combines statement execution and fetching
the first result set into a buffered result set, if any. However, there are additional stored procedure result
sets hidden from the user which cause mysqli_query to fail returning the user expected result sets.

Result sets returned from a stored procedure are fetched using mysqli_real_query or
mysqli_multi_query. Both functions allow fetching any number of result sets returned by a statement,
such as CALL. Failing to fetch all result sets returned by a stored procedure causes an error.

Example 3.21 Fetching results from stored procedures

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
 !$mysqli->query("CREATE TABLE test(id INT)") ||
 !$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!$mysqli->query("DROP PROCEDURE IF EXISTS p") ||
 !$mysqli->query('CREATE PROCEDURE p() READS SQL DATA BEGIN SELECT id FROM test; SELECT id + 1 FROM test; END;')) {
 echo "Stored procedure creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!$mysqli->multi_query("CALL p()")) {
 echo "CALL failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

do {
 if ($res = $mysqli->store_result()) {
 printf("---\n");
 var_dump($res->fetch_all());
 $res->free();
 } else {
 if ($mysqli->errno) {
 echo "Store failed: (" . $mysqli->errno . ") " . $mysqli->error;
 }
 }
} while ($mysqli->more_results() && $mysqli->next_result());
?>

Stored Procedures

36

The above example will output:

array(3) {
 [0]=>
 array(1) {
 [0]=>
 string(1) "1"
 }
 [1]=>
 array(1) {
 [0]=>
 string(1) "2"
 }
 [2]=>
 array(1) {
 [0]=>
 string(1) "3"
 }
}

array(3) {
 [0]=>
 array(1) {
 [0]=>
 string(1) "2"
 }
 [1]=>
 array(1) {
 [0]=>
 string(1) "3"
 }
 [2]=>
 array(1) {
 [0]=>
 string(1) "4"
 }
}

Use of prepared statements

No special handling is required when using the prepared statement interface for fetching results from
the same stored procedure as above. The prepared statement and non-prepared statement interfaces
are similar. Please note, that not every MYSQL server version may support preparing the CALL SQL
statement.

Example 3.22 Stored Procedures and Prepared Statements

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
 !$mysqli->query("CREATE TABLE test(id INT)") ||
 !$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)")) {

Stored Procedures

37

 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!$mysqli->query("DROP PROCEDURE IF EXISTS p") ||
 !$mysqli->query('CREATE PROCEDURE p() READS SQL DATA BEGIN SELECT id FROM test; SELECT id + 1 FROM test; END;')) {
 echo "Stored procedure creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!($stmt = $mysqli->prepare("CALL p()"))) {
 echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!$stmt->execute()) {
 echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
}

do {
 if ($res = $stmt->get_result()) {
 printf("---\n");
 var_dump(mysqli_fetch_all($res));
 mysqli_free_result($res);
 } else {
 if ($stmt->errno) {
 echo "Store failed: (" . $stmt->errno . ") " . $stmt->error;
 }
 }
} while ($stmt->more_results() && $stmt->next_result());
?>

Of course, use of the bind API for fetching is supported as well.

Example 3.23 Stored Procedures and Prepared Statements using bind API

<?php
if (!($stmt = $mysqli->prepare("CALL p()"))) {
 echo "Prepare failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

if (!$stmt->execute()) {
 echo "Execute failed: (" . $stmt->errno . ") " . $stmt->error;
}

do {

 $id_out = NULL;
 if (!$stmt->bind_result($id_out)) {
 echo "Bind failed: (" . $stmt->errno . ") " . $stmt->error;
 }

 while ($stmt->fetch()) {
 echo "id = $id_out\n";
 }
} while ($stmt->more_results() && $stmt->next_result());
?>

See also

mysqli::query
mysqli::multi_query
mysqli_result::next-result

http://www.php.net/mysqli_result::next-result

Multiple Statements

38

mysqli_result::more-results

3.2.6 Multiple Statements

Copyright 1997-2014 the PHP Documentation Group.

MySQL optionally allows having multiple statements in one statement string. Sending multiple statements
at once reduces client-server round trips but requires special handling.

Multiple statements or multi queries must be executed with mysqli_multi_query. The individual
statements of the statement string are separated by semicolon. Then, all result sets returned by the
executed statements must be fetched.

The MySQL server allows having statements that do return result sets and statements that do not return
result sets in one multiple statement.

Example 3.24 Multiple Statements

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

if (!$mysqli->query("DROP TABLE IF EXISTS test") || !$mysqli->query("CREATE TABLE test(id INT)")) {
 echo "Table creation failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

$sql = "SELECT COUNT(*) AS _num FROM test; ";
$sql.= "INSERT INTO test(id) VALUES (1); ";
$sql.= "SELECT COUNT(*) AS _num FROM test; ";

if (!$mysqli->multi_query($sql)) {
 echo "Multi query failed: (" . $mysqli->errno . ") " . $mysqli->error;
}

do {
 if ($res = $mysqli->store_result()) {
 var_dump($res->fetch_all(MYSQLI_ASSOC));
 $res->free();
 }
} while ($mysqli->more_results() && $mysqli->next_result());
?>

The above example will output:

array(1) {
 [0]=>
 array(1) {
 ["_num"]=>
 string(1) "0"
 }
}
array(1) {
 [0]=>
 array(1) {
 ["_num"]=>

http://www.php.net/mysqli_result::more-results

API support for transactions

39

 string(1) "1"
 }
}

Security considerations

The API functions mysqli_query and mysqli_real_query do not set a connection flag necessary
for activating multi queries in the server. An extra API call is used for multiple statements to reduce the
likeliness of accidental SQL injection attacks. An attacker may try to add statements such as ; DROP
DATABASE mysql or ; SELECT SLEEP(999). If the attacker succeeds in adding SQL to the statement
string but mysqli_multi_query is not used, the server will not execute the second, injected and
malicious SQL statement.

Example 3.25 SQL Injection

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
$res = $mysqli->query("SELECT 1; DROP TABLE mysql.user");
if (!$res) {
 echo "Error executing query: (" . $mysqli->errno . ") " . $mysqli->error;
}
?>

The above example will output:

Error executing query: (1064) You have an error in your SQL syntax;
check the manual that corresponds to your MySQL server version for the right syntax
to use near 'DROP TABLE mysql.user' at line 1

Prepared statements

Use of the multiple statement with prepared statements is not supported.

See also

mysqli::query
mysqli::multi_query
mysqli_result::next-result
mysqli_result::more-results

3.2.7 API support for transactions

Copyright 1997-2014 the PHP Documentation Group.

The MySQL server supports transactions depending on the storage engine used. Since MySQL 5.5, the
default storage engine is InnoDB. InnoDB has full ACID transaction support.

Transactions can either be controlled using SQL or API calls. It is recommended to use API calls for
enabling and disabling the auto commit mode and for committing and rolling back transactions.

http://www.php.net/mysqli_result::next-result
http://www.php.net/mysqli_result::more-results

Metadata

40

Example 3.26 Setting auto commit mode with SQL and through the API

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

/* Recommended: using API to control transactional settings */
$mysqli->autocommit(false);

/* Won't be monitored and recognized by the replication and the load balancing plugin */
if (!$mysqli->query('SET AUTOCOMMIT = 0')) {
 echo "Query failed: (" . $mysqli->errno . ") " . $mysqli->error;
}
?>

Optional feature packages, such as the replication and load balancing plugin, can easily monitor API calls.
The replication plugin offers transaction aware load balancing, if transactions are controlled with API calls.
Transaction aware load balancing is not available if SQL statements are used for setting auto commit
mode, committing or rolling back a transaction.

Example 3.27 Commit and rollback

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
$mysqli->autocommit(false);

$mysqli->query("INSERT INTO test(id) VALUES (1)");
$mysqli->rollback();

$mysqli->query("INSERT INTO test(id) VALUES (2)");
$mysqli->commit();
?>

Please note, that the MySQL server cannot roll back all statements. Some statements cause an implicit
commit.

See also

mysqli::autocommit
mysqli_result::commit
mysqli_result::rollback

3.2.8 Metadata

Copyright 1997-2014 the PHP Documentation Group.

A MySQL result set contains metadata. The metadata describes the columns found in the result set. All
metadata sent by MySQL is accessible through the mysqli interface. The extension performs no or
negligible changes to the information it receives. Differences between MySQL server versions are not
aligned.

Meta data is access through the mysqli_result interface.

http://www.php.net/mysqli_result::commit
http://www.php.net/mysqli_result::rollback

Metadata

41

Example 3.28 Accessing result set meta data

<?php
$mysqli = new mysqli("example.com", "user", "password", "database");
if ($mysqli->connect_errno) {
 echo "Failed to connect to MySQL: (" . $mysqli->connect_errno . ") " . $mysqli->connect_error;
}

$res = $mysqli->query("SELECT 1 AS _one, 'Hello' AS _two FROM DUAL");
var_dump($res->fetch_fields());
?>

The above example will output:

array(2) {
 [0]=>
 object(stdClass)#3 (13) {
 ["name"]=>
 string(4) "_one"
 ["orgname"]=>
 string(0) ""
 ["table"]=>
 string(0) ""
 ["orgtable"]=>
 string(0) ""
 ["def"]=>
 string(0) ""
 ["db"]=>
 string(0) ""
 ["catalog"]=>
 string(3) "def"
 ["max_length"]=>
 int(1)
 ["length"]=>
 int(1)
 ["charsetnr"]=>
 int(63)
 ["flags"]=>
 int(32897)
 ["type"]=>
 int(8)
 ["decimals"]=>
 int(0)
 }
 [1]=>
 object(stdClass)#4 (13) {
 ["name"]=>
 string(4) "_two"
 ["orgname"]=>
 string(0) ""
 ["table"]=>
 string(0) ""
 ["orgtable"]=>
 string(0) ""
 ["def"]=>
 string(0) ""
 ["db"]=>
 string(0) ""
 ["catalog"]=>
 string(3) "def"
 ["max_length"]=>

Installing/Configuring

42

 int(5)
 ["length"]=>
 int(5)
 ["charsetnr"]=>
 int(8)
 ["flags"]=>
 int(1)
 ["type"]=>
 int(253)
 ["decimals"]=>
 int(31)
 }
}

Prepared statements

Meta data of result sets created using prepared statements are accessed the same way. A suitable
mysqli_result handle is returned by mysqli_stmt_result_metadata.

Example 3.29 Prepared statements metadata

<?php
$stmt = $mysqli->prepare("SELECT 1 AS _one, 'Hello' AS _two FROM DUAL");
$stmt->execute();
$res = $stmt->result_metadata();
var_dump($res->fetch_fields());
?>

See also

mysqli::query
mysqli_result::fetch_fields

3.3 Installing/Configuring

Copyright 1997-2014 the PHP Documentation Group.

3.3.1 Requirements

Copyright 1997-2014 the PHP Documentation Group.

In order to have these functions available, you must compile PHP with support for the mysqli extension.

Note

The mysqli extension is designed to work with MySQL version 4.1.13 or newer,
or 5.0.7 or newer. For previous versions, please see the MySQL extension
documentation.

3.3.2 Installation

Copyright 1997-2014 the PHP Documentation Group.

Installation

43

The mysqli extension was introduced with PHP version 5.0.0. The MySQL Native Driver was included in
PHP version 5.3.0.

3.3.2.1 Installation on Linux

Copyright 1997-2014 the PHP Documentation Group.

The common Unix distributions include binary versions of PHP that can be installed. Although these binary
versions are typically built with support for the MySQL extensions, the extension libraries themselves
may need to be installed using an additional package. Check the package manager that comes with your
chosen distribution for availability.

For example, on Ubuntu the php5-mysql package installs the ext/mysql, ext/mysqli, and pdo_mysql PHP
extensions. On CentOS, the php-mysql package also installs these three PHP extensions.

Alternatively, you can compile this extension yourself. Building PHP from source allows you to specify the
MySQL extensions you want to use, as well as your choice of client library for each extension.

The MySQL Native Driver is the recommended client library option, as it results in improved performance
and gives access to features not available when using the MySQL Client Library. Refer to What is PHP's
MySQL Native Driver? for a brief overview of the advantages of MySQL Native Driver.

The /path/to/mysql_config represents the location of the mysql_config program that comes with
MySQL Server.

Table 3.3 mysqli compile time support matrix

PHP Version Default Configure
Options: mysqlnd

Configure
Options:
libmysqlclient

Changelog

5.4.x and above mysqlnd --with-mysqli --with-mysqli=/
path/to/
mysql_config

mysqlnd is the
default

5.3.x libmysqlclient --with-
mysqli=mysqlnd

--with-mysqli=/
path/to/
mysql_config

mysqlnd is
supported

5.0.x, 5.1.x, 5.2.x libmysqlclient Not Available --with-mysqli=/
path/to/
mysql_config

mysqlnd is not
supported

Note that it is possible to freely mix MySQL extensions and client libraries. For example, it is possible
to enable the MySQL extension to use the MySQL Client Library (libmysqlclient), while configuring the
mysqli extension to use the MySQL Native Driver. However, all permutations of extension and client
library are possible.

3.3.2.2 Installation on Windows Systems

Copyright 1997-2014 the PHP Documentation Group.

On Windows, PHP is most commonly installed using the binary installer.

PHP 5.3.0 and newer

Copyright 1997-2014 the PHP Documentation Group.

Runtime Configuration

44

On Windows, for PHP versions 5.3 and newer, the mysqli extension is enabled and uses the MySQL
Native Driver by default. This means you don't need to worry about configuring access to libmysql.dll.

PHP 5.0, 5.1, 5.2

Copyright 1997-2014 the PHP Documentation Group.

On these old unsupported PHP versions (PHP 5.2 reached EOL on '6 Jan 2011'), additional configuration
procedures are required to enable mysqli and specify the client library you want it to use.

The mysqli extension is not enabled by default, so the php_mysqli.dll DLL must be enabled inside
of php.ini. In order to do this you need to find the php.ini file (typically located in c:\php), and make
sure you remove the comment (semi-colon) from the start of the line extension=php_mysqli.dll, in
the section marked [PHP_MYSQLI].

Also, if you want to use the MySQL Client Library with mysqli, you need to make sure PHP can access
the client library file. The MySQL Client Library is included as a file named libmysql.dll in the Windows
PHP distribution. This file needs to be available in the Windows system's PATH environment variable, so
that it can be successfully loaded. See the FAQ titled "How do I add my PHP directory to the PATH on
Windows" for information on how to do this. Copying libmysql.dll to the Windows system directory
(typically c:\Windows\system) also works, as the system directory is by default in the system's PATH.
However, this practice is strongly discouraged.

As with enabling any PHP extension (such as php_mysqli.dll), the PHP directive extension_dir should
be set to the directory where the PHP extensions are located. See also the Manual Windows Installation
Instructions. An example extension_dir value for PHP 5 is c:\php\ext.

Note

If when starting the web server an error similar to the following occurs: "Unable
to load dynamic library './php_mysqli.dll'", this is because
php_mysqli.dll and/or libmysql.dll cannot be found by the system.

3.3.3 Runtime Configuration

Copyright 1997-2014 the PHP Documentation Group.

The behaviour of these functions is affected by settings in php.ini.

Table 3.4 MySQLi Configuration Options

Name Default Changeable Changelog

mysqli.allow_local_infile "1" PHP_INI_SYSTEM Available since PHP
5.2.4.

mysqli.allow_persistent "1" PHP_INI_SYSTEM Available since PHP
5.3.0.

mysqli.max_persistent "-1" PHP_INI_SYSTEM Available since PHP
5.3.0.

mysqli.max_links "-1" PHP_INI_SYSTEM Available since PHP
5.0.0.

mysqli.default_port "3306" PHP_INI_ALL Available since PHP
5.0.0.

http://www.php.net/manual/en/faq.installation.php#faq.installation.addtopath
http://www.php.net/manual/en/faq.installation.php#faq.installation.addtopath
http://www.php.net/manual/en/ini.core.php#ini.extension-dir
http://www.php.net/manual/en/install.windows.manual
http://www.php.net/manual/en/install.windows.manual

Runtime Configuration

45

Name Default Changeable Changelog

mysqli.default_socket NULL PHP_INI_ALL Available since PHP
5.0.0.

mysqli.default_host NULL PHP_INI_ALL Available since PHP
5.0.0.

mysqli.default_user NULL PHP_INI_ALL Available since PHP
5.0.0.

mysqli.default_pw NULL PHP_INI_ALL Available since PHP
5.0.0.

mysqli.reconnect "0" PHP_INI_SYSTEM Available since PHP
4.3.5.

mysqli.rollback_on_cached_plinkTRUE PHP_INI_SYSTEM Available since PHP
5.6.0.

mysqli.cache_size "2000" PHP_INI_SYSTEM Available since PHP
5.3.0.

For further details and definitions of the preceding PHP_INI_* constants, see the chapter on configuration
changes.

Here's a short explanation of the configuration directives.

mysqli.allow_local_infile
integer

Allow accessing, from PHP's perspective, local files with LOAD DATA
statements

mysqli.allow_persistent
integer

Enable the ability to create persistent connections using
mysqli_connect.

mysqli.max_persistent
integer

Maximum of persistent connections that can be made. Set to 0 for
unlimited.

mysqli.max_links integer The maximum number of MySQL connections per process.

mysqli.default_port
integer

The default TCP port number to use when connecting to the database
server if no other port is specified. If no default is specified, the
port will be obtained from the MYSQL_TCP_PORT environment
variable, the mysql-tcp entry in /etc/services or the compile-
time MYSQL_PORT constant, in that order. Win32 will only use the
MYSQL_PORT constant.

mysqli.default_socket
string

The default socket name to use when connecting to a local database
server if no other socket name is specified.

mysqli.default_host string The default server host to use when connecting to the database server
if no other host is specified. Doesn't apply in safe mode.

mysqli.default_user string The default user name to use when connecting to the database server if
no other name is specified. Doesn't apply in safe mode.

mysqli.default_pw string The default password to use when connecting to the database server if
no other password is specified. Doesn't apply in safe mode.

mysqli.reconnect integer Automatically reconnect if the connection was lost.

mysqli.rollback_on_cached_plink
bool

Used for rollbacking connections put back into the persistent connection
pool.

http://www.php.net/manual/en/configuration.changes
http://www.php.net/manual/en/configuration.changes
http://www.php.net/manual/en/ini.core.php#ini.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.safe-mode

Resource Types

46

mysqli.cache_size integer Available only with mysqlnd.

Users cannot set MYSQL_OPT_READ_TIMEOUT through an API call or runtime configuration setting. Note
that if it were possible there would be differences between how libmysqlclient and streams would
interpret the value of MYSQL_OPT_READ_TIMEOUT.

3.3.4 Resource Types

Copyright 1997-2014 the PHP Documentation Group.

This extension has no resource types defined.

3.4 The mysqli Extension and Persistent Connections

Copyright 1997-2014 the PHP Documentation Group.

Persistent connection support was introduced in PHP 5.3 for the mysqli extension. Support was already
present in PDO MYSQL and ext/mysql. The idea behind persistent connections is that a connection
between a client process and a database can be reused by a client process, rather than being created
and destroyed multiple times. This reduces the overhead of creating fresh connections every time one is
required, as unused connections are cached and ready to be reused.

Unlike the mysql extension, mysqli does not provide a separate function for opening persistent
connections. To open a persistent connection you must prepend p: to the hostname when connecting.

The problem with persistent connections is that they can be left in unpredictable states by clients. For
example, a table lock might be activated before a client terminates unexpectedly. A new client process
reusing this persistent connection will get the connection “as is”. Any cleanup would need to be done by
the new client process before it could make good use of the persistent connection, increasing the burden
on the programmer.

The persistent connection of the mysqli extension however provides built-in cleanup handling code. The
cleanup carried out by mysqli includes:

• Rollback active transactions

• Close and drop temporary tables

• Unlock tables

• Reset session variables

• Close prepared statements (always happens with PHP)

• Close handler

• Release locks acquired with GET_LOCK

This ensures that persistent connections are in a clean state on return from the connection pool, before the
client process uses them.

The mysqli extension does this cleanup by automatically calling the C-API function
mysql_change_user().

The automatic cleanup feature has advantages and disadvantages though. The advantage is that the
programmer no longer needs to worry about adding cleanup code, as it is called automatically. However,

http://www.php.net/GET_LOCK

Predefined Constants

47

the disadvantage is that the code could potentially be a little slower, as the code to perform the cleanup
needs to run each time a connection is returned from the connection pool.

It is possible to switch off the automatic cleanup code, by compiling PHP with
MYSQLI_NO_CHANGE_USER_ON_PCONNECT defined.

Note

The mysqli extension supports persistent connections when using either MySQL
Native Driver or MySQL Client Library.

3.5 Predefined Constants
Copyright 1997-2014 the PHP Documentation Group.

The constants below are defined by this extension, and will only be available when the extension has either
been compiled into PHP or dynamically loaded at runtime.

MYSQLI_READ_DEFAULT_GROUP Read options from the named group from my.cnf or the file specified
with MYSQLI_READ_DEFAULT_FILE

MYSQLI_READ_DEFAULT_FILE Read options from the named option file instead of from my.cnf

MYSQLI_OPT_CONNECT_TIMEOUTConnect timeout in seconds

MYSQLI_OPT_LOCAL_INFILE Enables command LOAD LOCAL INFILE

MYSQLI_INIT_COMMAND Command to execute when connecting to MySQL server. Will
automatically be re-executed when reconnecting.

MYSQLI_CLIENT_SSL Use SSL (encrypted protocol). This option should not be set by
application programs; it is set internally in the MySQL client library

MYSQLI_CLIENT_COMPRESS Use compression protocol

MYSQLI_CLIENT_INTERACTIVE Allow interactive_timeout seconds (instead of wait_timeout
seconds) of inactivity before closing the connection. The client's
session wait_timeout variable will be set to the value of the session
interactive_timeout variable.

MYSQLI_CLIENT_IGNORE_SPACEAllow spaces after function names. Makes all functions names reserved
words.

MYSQLI_CLIENT_NO_SCHEMA Don't allow the db_name.tbl_name.col_name syntax.

MYSQLI_CLIENT_MULTI_QUERIESAllows multiple semicolon-delimited queries in a single mysqli_query
call.

MYSQLI_STORE_RESULT For using buffered resultsets

MYSQLI_USE_RESULT For using unbuffered resultsets

MYSQLI_ASSOC Columns are returned into the array having the fieldname as the array
index.

MYSQLI_NUM Columns are returned into the array having an enumerated index.

MYSQLI_BOTH Columns are returned into the array having both a numerical index and
the fieldname as the associative index.

Predefined Constants

48

MYSQLI_NOT_NULL_FLAG Indicates that a field is defined as NOT NULL

MYSQLI_PRI_KEY_FLAG Field is part of a primary index

MYSQLI_UNIQUE_KEY_FLAG Field is part of a unique index.

MYSQLI_MULTIPLE_KEY_FLAG Field is part of an index.

MYSQLI_BLOB_FLAG Field is defined as BLOB

MYSQLI_UNSIGNED_FLAG Field is defined as UNSIGNED

MYSQLI_ZEROFILL_FLAG Field is defined as ZEROFILL

MYSQLI_AUTO_INCREMENT_FLAGField is defined as AUTO_INCREMENT

MYSQLI_TIMESTAMP_FLAG Field is defined as TIMESTAMP

MYSQLI_SET_FLAG Field is defined as SET

MYSQLI_NUM_FLAG Field is defined as NUMERIC

MYSQLI_PART_KEY_FLAG Field is part of an multi-index

MYSQLI_GROUP_FLAG Field is part of GROUP BY

MYSQLI_TYPE_DECIMAL Field is defined as DECIMAL

MYSQLI_TYPE_NEWDECIMAL Precision math DECIMAL or NUMERIC field (MySQL 5.0.3 and up)

MYSQLI_TYPE_BIT Field is defined as BIT (MySQL 5.0.3 and up)

MYSQLI_TYPE_TINY Field is defined as TINYINT

MYSQLI_TYPE_SHORT Field is defined as SMALLINT

MYSQLI_TYPE_LONG Field is defined as INT

MYSQLI_TYPE_FLOAT Field is defined as FLOAT

MYSQLI_TYPE_DOUBLE Field is defined as DOUBLE

MYSQLI_TYPE_NULL Field is defined as DEFAULT NULL

MYSQLI_TYPE_TIMESTAMP Field is defined as TIMESTAMP

MYSQLI_TYPE_LONGLONG Field is defined as BIGINT

MYSQLI_TYPE_INT24 Field is defined as MEDIUMINT

MYSQLI_TYPE_DATE Field is defined as DATE

MYSQLI_TYPE_TIME Field is defined as TIME

MYSQLI_TYPE_DATETIME Field is defined as DATETIME

MYSQLI_TYPE_YEAR Field is defined as YEAR

MYSQLI_TYPE_NEWDATE Field is defined as DATE

Predefined Constants

49

MYSQLI_TYPE_INTERVAL Field is defined as INTERVAL

MYSQLI_TYPE_ENUM Field is defined as ENUM

MYSQLI_TYPE_SET Field is defined as SET

MYSQLI_TYPE_TINY_BLOB Field is defined as TINYBLOB

MYSQLI_TYPE_MEDIUM_BLOB Field is defined as MEDIUMBLOB

MYSQLI_TYPE_LONG_BLOB Field is defined as LONGBLOB

MYSQLI_TYPE_BLOB Field is defined as BLOB

MYSQLI_TYPE_VAR_STRING Field is defined as VARCHAR

MYSQLI_TYPE_STRING Field is defined as CHAR or BINARY

MYSQLI_TYPE_CHAR Field is defined as TINYINT. For CHAR, see MYSQLI_TYPE_STRING

MYSQLI_TYPE_GEOMETRY Field is defined as GEOMETRY

MYSQLI_NEED_DATA More data available for bind variable

MYSQLI_NO_DATA No more data available for bind variable

MYSQLI_DATA_TRUNCATED Data truncation occurred. Available since PHP 5.1.0 and MySQL 5.0.5.

MYSQLI_ENUM_FLAG Field is defined as ENUM. Available since PHP 5.3.0.

MYSQLI_BINARY_FLAG Field is defined as BINARY. Available since PHP 5.3.0.

MYSQLI_CURSOR_TYPE_FOR_UPDATE

MYSQLI_CURSOR_TYPE_NO_CURSOR

MYSQLI_CURSOR_TYPE_READ_ONLY

MYSQLI_CURSOR_TYPE_SCROLLABLE

MYSQLI_STMT_ATTR_CURSOR_TYPE

MYSQLI_STMT_ATTR_PREFETCH_ROWS

MYSQLI_STMT_ATTR_UPDATE_MAX_LENGTH

MYSQLI_SET_CHARSET_NAME

MYSQLI_REPORT_INDEX Report if no index or bad index was used in a query.

MYSQLI_REPORT_ERROR Report errors from mysqli function calls.

MYSQLI_REPORT_STRICT Throw a mysqli_sql_exception for errors instead of warnings.

MYSQLI_REPORT_ALL Set all options on (report all).

MYSQLI_REPORT_OFF Turns reporting off.

MYSQLI_DEBUG_TRACE_ENABLEDIs set to 1 if mysqli_debug functionality is enabled.

Notes

50

MYSQLI_SERVER_QUERY_NO_GOOD_INDEX_USED

MYSQLI_SERVER_QUERY_NO_INDEX_USED

MYSQLI_REFRESH_GRANT Refreshes the grant tables.

MYSQLI_REFRESH_LOG Flushes the logs, like executing the FLUSH LOGS SQL statement.

MYSQLI_REFRESH_TABLES Flushes the table cache, like executing the FLUSH TABLES SQL
statement.

MYSQLI_REFRESH_HOSTS Flushes the host cache, like executing the FLUSH HOSTS SQL
statement.

MYSQLI_REFRESH_STATUS Reset the status variables, like executing the FLUSH STATUS SQL
statement.

MYSQLI_REFRESH_THREADS Flushes the thread cache.

MYSQLI_REFRESH_SLAVE On a slave replication server: resets the master server information, and
restarts the slave. Like executing the RESET SLAVE SQL statement.

MYSQLI_REFRESH_MASTER On a master replication server: removes the binary log files listed in the
binary log index, and truncates the index file. Like executing the RESET
MASTER SQL statement.

MYSQLI_TRANS_COR_AND_CHAINAppends "AND CHAIN" to mysqli_commit or mysqli_rollback.

MYSQLI_TRANS_COR_AND_NO_CHAINAppends "AND NO CHAIN" to mysqli_commit or
mysqli_rollback.

MYSQLI_TRANS_COR_RELEASE Appends "RELEASE" to mysqli_commit or mysqli_rollback.

MYSQLI_TRANS_COR_NO_RELEASEAppends "NO RELEASE" to mysqli_commit or mysqli_rollback.

MYSQLI_TRANS_START_READ_ONLYStart the transaction as "START TRANSACTION READ ONLY" with
mysqli_begin_transaction.

MYSQLI_TRANS_START_READ_WRITEStart the transaction as "START TRANSACTION READ WRITE" with
mysqli_begin_transaction.

MYSQLI_TRANS_START_CONSISTENT_SNAPSHOTStart the transaction as "START TRANSACTION WITH CONSISTENT
SNAPSHOT" with mysqli_begin_transaction.

3.6 Notes

Copyright 1997-2014 the PHP Documentation Group.

Some implementation notes:

1. Support was added for MYSQL_TYPE_GEOMETRY to the MySQLi extension in PHP 5.3.

2. Note there are different internal implementations within libmysqlclient and mysqlnd for handling
columns of type MYSQL_TYPE_GEOMETRY. Generally speaking, mysqlnd will allocate significantly less
memory. For example, if there is a POINT column in a result set, libmysqlclient may pre-allocate
up to 4GB of RAM although less than 50 bytes are needed for holding a POINT column in memory.
Memory allocation is much lower, less than 50 bytes, if using mysqlnd.

The MySQLi Extension Function Summary

51

3.7 The MySQLi Extension Function Summary

Copyright 1997-2014 the PHP Documentation Group.

Table 3.5 Summary of mysqli methods

mysqli Class

OOP Interface Procedural Interface Alias (Do not use) Description

Properties

$mysqli::affected_rows mysqli_affected_rowsN/A Gets the number
of affected rows in
a previous MySQL
operation

$mysqli::client_info mysqli_get_client_infoN/A Returns the MySQL client
version as a string

$mysqli::client_version mysqli_get_client_versionN/A Returns MySQL client
version info as an integer

$mysqli::connect_errno mysqli_connect_errnoN/A Returns the error code
from last connect call

$mysqli::connect_error mysqli_connect_errorN/A Returns a string
description of the last
connect error

$mysqli::errno mysqli_errno N/A Returns the error code
for the most recent
function call

$mysqli::error mysqli_error N/A Returns a string
description of the last
error

$mysqli::field_count mysqli_field_count N/A Returns the number of
columns for the most
recent query

$mysqli::host_info mysqli_get_host_infoN/A Returns a string
representing the type of
connection used

$mysqli::protocol_version mysqli_get_proto_infoN/A Returns the version of
the MySQL protocol used

$mysqli::server_info mysqli_get_server_infoN/A Returns the version of
the MySQL server

$mysqli::server_version mysqli_get_server_versionN/A Returns the version of
the MySQL server as an
integer

$mysqli::info mysqli_info N/A Retrieves information
about the most recently
executed query

$mysqli::insert_id mysqli_insert_id N/A Returns the auto
generated id used in the
last query

The MySQLi Extension Function Summary

52

mysqli Class

OOP Interface Procedural Interface Alias (Do not use) Description

$mysqli::sqlstate mysqli_sqlstate N/A Returns the SQLSTATE
error from previous
MySQL operation

$mysqli::warning_count mysqli_warning_countN/A Returns the number of
warnings from the last
query for the given link

Methods

mysqli::autocommit mysqli_autocommit N/A Turns on or off auto-
committing database
modifications

mysqli::change_user mysqli_change_user N/A Changes the user of
the specified database
connection

mysqli::character_set_name,
mysqli::client_encoding

mysqli_character_set_namemysqli_client_encodingReturns the default
character set for the
database connection

mysqli::close mysqli_close N/A Closes a previously
opened database
connection

mysqli::commit mysqli_commit N/A Commits the current
transaction

mysqli::__construct mysqli_connect N/A Open a new connection
to the MySQL server
[Note: static (i.e. class)
method]

mysqli::debug mysqli_debug N/A Performs debugging
operations

mysqli::dump_debug_infomysqli_dump_debug_infoN/A Dump debugging
information into the log

mysqli::get_charset mysqli_get_charset N/A Returns a character set
object

mysqli::get_connection_statsmysqli_get_connection_statsN/A Returns client connection
statistics. Available only
with mysqlnd.

mysqli::get_client_infomysqli_get_client_infoN/A Returns the MySQL client
version as a string

mysqli::get_client_statsmysqli_get_client_statsN/A Returns client per-
process statistics.
Available only with
mysqlnd.

mysqli::get_cache_statsmysqli_get_cache_statsN/A Returns client Zval cache
statistics. Available only
with mysqlnd.

mysqli::get_server_infomysqli_get_server_infoN/A Returns a string
representing the version

The MySQLi Extension Function Summary

53

mysqli Class

OOP Interface Procedural Interface Alias (Do not use) Description
of the MySQL server that
the MySQLi extension is
connected to

mysqli::get_warningsmysqli_get_warnings N/A NOT DOCUMENTED

mysqli::init mysqli_init N/A Initializes MySQLi
and returns a
resource for use with
mysqli_real_connect.
[Not called on an object,
as it returns a $mysqli
object.]

mysqli::kill mysqli_kill N/A Asks the server to kill a
MySQL thread

mysqli::more_resultsmysqli_more_results N/A Check if there are any
more query results from a
multi query

mysqli::multi_query mysqli_multi_query N/A Performs a query on the
database

mysqli::next_result mysqli_next_result N/A Prepare next result from
multi_query

mysqli::options mysqli_options mysqli_set_opt Set options

mysqli::ping mysqli_ping N/A Pings a server
connection, or tries
to reconnect if the
connection has gone
down

mysqli::prepare mysqli_prepare N/A Prepare an SQL
statement for execution

mysqli::query mysqli_query N/A Performs a query on the
database

mysqli::real_connectmysqli_real_connect N/A Opens a connection to a
mysql server

mysqli::real_escape_string,
mysqli::escape_string

mysqli_real_escape_stringmysqli_escape_stringEscapes special
characters in a string for
use in an SQL statement,
taking into account the
current charset of the
connection

mysqli::real_query mysqli_real_query N/A Execute an SQL query

mysqli::refresh mysqli_refresh N/A Flushes tables or caches,
or resets the replication
server information

mysqli::rollback mysqli_rollback N/A Rolls back current
transaction

The MySQLi Extension Function Summary

54

mysqli Class

OOP Interface Procedural Interface Alias (Do not use) Description

mysqli::select_db mysqli_select_db N/A Selects the default
database for database
queries

mysqli::set_charset mysqli_set_charset N/A Sets the default client
character set

mysqli::set_local_infile_defaultmysqli_set_local_infile_defaultN/A Unsets user defined
handler for load local
infile command

mysqli::set_local_infile_handlermysqli_set_local_infile_handlerN/A Set callback function for
LOAD DATA LOCAL
INFILE command

mysqli::ssl_set mysqli_ssl_set N/A Used for establishing
secure connections using
SSL

mysqli::stat mysqli_stat N/A Gets the current system
status

mysqli::stmt_init mysqli_stmt_init N/A Initializes a statement
and returns an
object for use with
mysqli_stmt_prepare

mysqli::store_resultmysqli_store_result N/A Transfers a result set
from the last query

mysqli::thread_id mysqli_thread_id N/A Returns the thread ID for
the current connection

mysqli::thread_safe mysqli_thread_safe N/A Returns whether thread
safety is given or not

mysqli::use_result mysqli_use_result N/A Initiate a result set
retrieval

Table 3.6 Summary of mysqli_stmt methods

MySQL_STMT

OOP Interface Procedural Interface Alias (Do not use) Description

Properties

$mysqli_stmt::affected_rowsmysqli_stmt_affected_rowsN/A Returns the total number
of rows changed,
deleted, or inserted
by the last executed
statement

$mysqli_stmt::errno mysqli_stmt_errno N/A Returns the error code
for the most recent
statement call

$mysqli_stmt::error mysqli_stmt_error N/A Returns a string
description for last
statement error

The MySQLi Extension Function Summary

55

MySQL_STMT

OOP Interface Procedural Interface Alias (Do not use) Description

$mysqli_stmt::field_count mysqli_stmt_field_countN/A Returns the number
of field in the given
statement - not
documented

$mysqli_stmt::insert_id mysqli_stmt_insert_idN/A Get the ID generated
from the previous
INSERT operation

$mysqli_stmt::num_rows mysqli_stmt_num_rowsN/A Return the number of
rows in statements result
set

$mysqli_stmt::param_countmysqli_stmt_param_countmysqli_param_count Returns the number of
parameter for the given
statement

$mysqli_stmt::sqlstate mysqli_stmt_sqlstateN/A Returns SQLSTATE error
from previous statement
operation

Methods

mysqli_stmt::attr_getmysqli_stmt_attr_getN/A Used to get the current
value of a statement
attribute

mysqli_stmt::attr_setmysqli_stmt_attr_setN/A Used to modify the
behavior of a prepared
statement

mysqli_stmt::bind_parammysqli_stmt_bind_parammysqli_bind_param Binds variables to a
prepared statement as
parameters

mysqli_stmt::bind_resultmysqli_stmt_bind_resultmysqli_bind_result Binds variables to a
prepared statement for
result storage

mysqli_stmt::close mysqli_stmt_close N/A Closes a prepared
statement

mysqli_stmt::data_seekmysqli_stmt_data_seekN/A Seeks to an arbitrary row
in statement result set

mysqli_stmt::executemysqli_stmt_execute mysqli_execute Executes a prepared
Query

mysqli_stmt::fetch mysqli_stmt_fetch mysqli_fetch Fetch results from a
prepared statement into
the bound variables

mysqli_stmt::free_resultmysqli_stmt_free_resultN/A Frees stored result
memory for the given
statement handle

mysqli_stmt::get_resultmysqli_stmt_get_resultN/A Gets a result set from
a prepared statement.
Available only with
mysqlnd.

The MySQLi Extension Function Summary

56

MySQL_STMT

OOP Interface Procedural Interface Alias (Do not use) Description

mysqli_stmt::get_warningsmysqli_stmt_get_warningsN/A NOT DOCUMENTED

$mysqli_stmt::more_resultsmysqli_stmt_more_resultsN/A Checks if there are more
query results from a
multiple query

$mysqli_stmt::next_resultmysqli_stmt_next_resultN/A Reads the next result
from a multiple query

mysqli_stmt::num_rowsmysqli_stmt_num_rowsN/A See also property
$mysqli_stmt::num_rows

mysqli_stmt::preparemysqli_stmt_prepare N/A Prepare an SQL
statement for execution

mysqli_stmt::reset mysqli_stmt_reset N/A Resets a prepared
statement

mysqli_stmt::result_metadatamysqli_stmt_result_metadatamysqli_get_metadata Returns result set
metadata from a
prepared statement

mysqli_stmt::send_long_datamysqli_stmt_send_long_datamysqli_send_long_dataSend data in blocks

mysqli_stmt::store_resultmysqli_stmt_store_resultN/A Transfers a result
set from a prepared
statement

Table 3.7 Summary of mysqli_result methods

mysqli_result

OOP Interface Procedural Interface Alias (Do not use) Description

Properties

$mysqli_result::current_fieldmysqli_field_tell N/A Get current field offset of
a result pointer

$mysqli_result::field_countmysqli_num_fields N/A Get the number of fields
in a result

$mysqli_result::lengths mysqli_fetch_lengthsN/A Returns the lengths
of the columns of the
current row in the result
set

$mysqli_result::num_rows mysqli_num_rows N/A Gets the number of rows
in a result

Methods

mysqli_result::data_seekmysqli_data_seek N/A Adjusts the result pointer
to an arbitrary row in the
result

mysqli_result::fetch_allmysqli_fetch_all N/A Fetches all result rows
and returns the result
set as an associative
array, a numeric array, or
both. Available only with
mysqlnd.

http://www.php.net/$mysqli_stmt::more_results
http://www.php.net/$mysqli_stmt::next_result

Examples

57

mysqli_result

OOP Interface Procedural Interface Alias (Do not use) Description

mysqli_result::fetch_arraymysqli_fetch_array N/A Fetch a result row as an
associative, a numeric
array, or both

mysqli_result::fetch_assocmysqli_fetch_assoc N/A Fetch a result row as an
associative array

mysqli_result::fetch_field_directmysqli_fetch_field_directN/A Fetch meta-data for a
single field

mysqli_result::fetch_fieldmysqli_fetch_field N/A Returns the next field in
the result set

mysqli_result::fetch_fieldsmysqli_fetch_fields N/A Returns an array of
objects representing the
fields in a result set

mysqli_result::fetch_objectmysqli_fetch_object N/A Returns the current row
of a result set as an
object

mysqli_result::fetch_rowmysqli_fetch_row N/A Get a result row as an
enumerated array

mysqli_result::field_seekmysqli_field_seek N/A Set result pointer to a
specified field offset

mysqli_result::free,
mysqli_result::close,
mysqli_result::free_result

mysqli_free_result N/A Frees the memory
associated with a result

Table 3.8 Summary of mysqli_driver methods

MySQL_Driver

OOP Interface Procedural Interface Alias (Do not use) Description

Properties

N/A

Methods

mysqli_driver::embedded_server_endmysqli_embedded_server_endN/A NOT DOCUMENTED

mysqli_driver::embedded_server_startmysqli_embedded_server_startN/A NOT DOCUMENTED

Note

Alias functions are provided for backward compatibility purposes only. Do not use
them in new projects.

3.8 Examples

Copyright 1997-2014 the PHP Documentation Group.

3.8.1 MySQLi extension basic examples

Copyright 1997-2014 the PHP Documentation Group.

MySQLi extension basic examples

58

This example shows how to connect, execute a query, use basic error handling, print resulting rows, and
disconnect from a MySQL database.

This example uses the freely available Sakila database that can be downloaded from dev.mysql.com, as
described here. To get this example to work, (a) install sakila and (b) modify the connection variables (host,
your_user, your_pass).

Example 3.30 MySQLi extension overview example

<?php
// Let's pass in a $_GET variable to our example, in this case
// it's aid for actor_id in our Sakila database. Let's make it
// default to 1, and cast it to an integer as to avoid SQL injection
// and/or related security problems. Handling all of this goes beyond
// the scope of this simple example. Example:
// http://example.org/script.php?aid=42
if (isset($_GET['aid']) && is_numeric($_GET['aid'])) {
 $aid = (int) $_GET['aid'];
} else {
 $aid = 1;
}

// Connecting to and selecting a MySQL database named sakila
// Hostname: 127.0.0.1, username: your_user, password: your_pass, db: sakila
$mysqli = new mysqli('127.0.0.1', 'your_user', 'your_pass', 'sakila');

// Oh no! A connect_errno exists so the connection attempt failed!
if ($mysqli->connect_errno) {
 // The connection failed. What do you want to do?
 // You could contact yourself (email?), log the error, show a nice page, etc.
 // You do not want to reveal sensitive information

 // Let's try this:
 echo "Sorry, this website is experiencing problems.";

 // Something you should not do on a public site, but this example will show you
 // anyways, is print out MySQL error related information -- you might log this
 echo "Error: Failed to make a MySQL connection, here is why: \n";
 echo "Errno: " . $mysqli->connect_errno . "\n";
 echo "Error: " . $mysqli->connect_error . "\n";

 // You might want to show them something nice, but we will simply exit
 exit;
}

// Perform an SQL query
$sql = "SELECT actor_id, first_name, last_name FROM actor WHERE actor_id = $aid";
if (!$result = $mysqli->query($sql)) {
 // Oh no! The query failed.
 echo "Sorry, the website is experiencing problems.";

 // Again, do not do this on a public site, but we'll show you how
 // to get the error information
 echo "Error: Our query failed to execute and here is why: \n";
 echo "Query: " . $sql . "\n";
 echo "Errno: " . $mysqli->errno . "\n";
 echo "Error: " . $mysqli->error . "\n";
 exit;
}

// Phew, we made it. We know our MySQL connection and query
// succeeded, but do we have a result?
if ($result->num_rows === 0) {

http://dev.mysql.com/doc/sakila/en/index.html
http://dev.mysql.com/doc/sakila/en/index.html

The mysqli class

59

 // Oh, no rows! Sometimes that's expected and okay, sometimes
 // it is not. You decide. In this case, maybe actor_id was too
 // large?
 echo "We could not find a match for ID $aid, sorry about that. Please try again.";
 exit;
}

// Now, we know only one result will exist in this example so let's
// fetch it into an associated array where the array's keys are the
// table's column names
$actor = $result->fetch_assoc();
echo "Sometimes I see " . $actor['first_name'] . " " . $actor['last_name'] . " on TV.";

// Now, let's fetch five random actors and output their names to a list.
// We'll add less error handling here as you can do that on your own now
$sql = "SELECT actor_id, first_name, last_name FROM actor ORDER BY rand() LIMIT 5";
if (!$result = $mysqli->query($sql)) {
 echo "Sorry, the website is experiencing problems.";
 exit;
}

// Print our 5 random actors in a list, and link to each actor
echo "\n";
while ($actor = $result->fetch_assoc()) {
 echo "\n";
 echo $actor['first_name'] . ' ' . $actor['last_name'];
 echo "\n";
}
echo "\n";

// The script will automatically free the result and close the MySQL
// connection when it exits, but let's just do it anyways
$result->free();
$mysqli->close();
?>

3.9 The mysqli class

Copyright 1997-2014 the PHP Documentation Group.

Represents a connection between PHP and a MySQL database.

mysqli {
mysqli

 Properties

 int
 mysqli->affected_rows ;

 string
 mysqli->client_info ;

 int
 mysqli->client_version ;

 int
 mysqli->connect_errno ;

 string
 mysqli->connect_error ;

The mysqli class

60

 int
 mysqli->errno ;

 array
 mysqli->error_list ;

 string
 mysqli->error ;

 int
 mysqli->field_count ;

 int
 mysqli->client_version ;

 string
 mysqli->host_info ;

 string
 mysqli->protocol_version ;

 string
 mysqli->server_info ;

 int
 mysqli->server_version ;

 string
 mysqli->info ;

 mixed
 mysqli->insert_id ;

 string
 mysqli->sqlstate ;

 int
 mysqli->thread_id ;

 int
 mysqli->warning_count ;

Methods

 mysqli::__construct(
 string host
 = =ini_get("mysqli.default_host"),
 string username
 = =ini_get("mysqli.default_user"),
 string passwd
 = =ini_get("mysqli.default_pw"),
 string dbname
 = ="",
 int port
 = =ini_get("mysqli.default_port"),
 string socket
 = =ini_get("mysqli.default_socket"));

 bool mysqli::autocommit(
 bool mode);

 bool mysqli::change_user(
 string user,
 string password,
 string database);

The mysqli class

61

 string mysqli::character_set_name();

 bool mysqli::close();

 bool mysqli::commit(
 int flags,
 string name);

 bool mysqli::debug(
 string message);

 bool mysqli::dump_debug_info();

 object mysqli::get_charset();

 string mysqli::get_client_info();

 bool mysqli::get_connection_stats();

 mysqli_warning mysqli::get_warnings();

 mysqli mysqli::init();

 bool mysqli::kill(
 int processid);

 bool mysqli::more_results();

 bool mysqli::multi_query(
 string query);

 bool mysqli::next_result();

 bool mysqli::options(
 int option,
 mixed value);

 bool mysqli::ping();

 public static int mysqli::poll(
 array read,
 array error,
 array reject,
 int sec,
 int usec);

 mysqli_stmt mysqli::prepare(
 string query);

 mixed mysqli::query(
 string query,
 int resultmode
 = =MYSQLI_STORE_RESULT);

 bool mysqli::real_connect(
 string host,
 string username,
 string passwd,
 string dbname,
 int port,
 string socket,
 int flags);

 string mysqli::escape_string(

mysqli::$affected_rows, mysqli_affected_rows

62

 string escapestr);

 bool mysqli::real_query(
 string query);

 public mysqli_result mysqli::reap_async_query();

 public bool mysqli::refresh(
 int options);

 bool mysqli::rollback(
 int flags,
 string name);

 int mysqli::rpl_query_type(
 string query);

 bool mysqli::select_db(
 string dbname);

 bool mysqli::send_query(
 string query);

 bool mysqli::set_charset(
 string charset);

 bool mysqli::set_local_infile_handler(
 mysqli link,
 callable read_func);

 bool mysqli::ssl_set(
 string key,
 string cert,
 string ca,
 string capath,
 string cipher);

 string mysqli::stat();

 mysqli_stmt mysqli::stmt_init();

 mysqli_result mysqli::store_result(
 int option);

 mysqli_result mysqli::use_result();

}

3.9.1 mysqli::$affected_rows, mysqli_affected_rows

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::$affected_rows

mysqli_affected_rows

Gets the number of affected rows in a previous MySQL operation

Description

Object oriented style

 int

mysqli::$affected_rows, mysqli_affected_rows

63

 mysqli->affected_rows ;

Procedural style

 int mysqli_affected_rows(
 mysqli link);

Returns the number of rows affected by the last INSERT, UPDATE, REPLACE or DELETE query.

For SELECT statements mysqli_affected_rows works like mysqli_num_rows.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no
records were updated for an UPDATE statement, no rows matched the WHERE clause in the query or that
no query has yet been executed. -1 indicates that the query returned an error.

Note

If the number of affected rows is greater than the maximum integer value(
PHP_INT_MAX), the number of affected rows will be returned as a string.

Examples

Example 3.31 $mysqli->affected_rows example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* Insert rows */
$mysqli->query("CREATE TABLE Language SELECT * from CountryLanguage");
printf("Affected rows (INSERT): %d\n", $mysqli->affected_rows);

$mysqli->query("ALTER TABLE Language ADD Status int default 0");

/* update rows */
$mysqli->query("UPDATE Language SET Status=1 WHERE Percentage > 50");
printf("Affected rows (UPDATE): %d\n", $mysqli->affected_rows);

/* delete rows */
$mysqli->query("DELETE FROM Language WHERE Percentage < 50");
printf("Affected rows (DELETE): %d\n", $mysqli->affected_rows);

/* select all rows */
$result = $mysqli->query("SELECT CountryCode FROM Language");
printf("Affected rows (SELECT): %d\n", $mysqli->affected_rows);

mysqli::$affected_rows, mysqli_affected_rows

64

$result->close();

/* Delete table Language */
$mysqli->query("DROP TABLE Language");

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

if (!$link) {
 printf("Can't connect to localhost. Error: %s\n", mysqli_connect_error());
 exit();
}

/* Insert rows */
mysqli_query($link, "CREATE TABLE Language SELECT * from CountryLanguage");
printf("Affected rows (INSERT): %d\n", mysqli_affected_rows($link));

mysqli_query($link, "ALTER TABLE Language ADD Status int default 0");

/* update rows */
mysqli_query($link, "UPDATE Language SET Status=1 WHERE Percentage > 50");
printf("Affected rows (UPDATE): %d\n", mysqli_affected_rows($link));

/* delete rows */
mysqli_query($link, "DELETE FROM Language WHERE Percentage < 50");
printf("Affected rows (DELETE): %d\n", mysqli_affected_rows($link));

/* select all rows */
$result = mysqli_query($link, "SELECT CountryCode FROM Language");
printf("Affected rows (SELECT): %d\n", mysqli_affected_rows($link));

mysqli_free_result($result);

/* Delete table Language */
mysqli_query($link, "DROP TABLE Language");

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Affected rows (INSERT): 984
Affected rows (UPDATE): 168
Affected rows (DELETE): 815
Affected rows (SELECT): 169

See Also

mysqli_num_rows

mysqli::autocommit, mysqli_autocommit

65

mysqli_info

3.9.2 mysqli::autocommit, mysqli_autocommit

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::autocommit

mysqli_autocommit

Turns on or off auto-committing database modifications

Description

Object oriented style

 bool mysqli::autocommit(
 bool mode);

Procedural style

 bool mysqli_autocommit(
 mysqli link,
 bool mode);

Turns on or off auto-commit mode on queries for the database connection.

To determine the current state of autocommit use the SQL command SELECT @@autocommit.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

mode Whether to turn on auto-commit or not.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function doesn't work with non transactional table types (like MyISAM or
ISAM).

Examples

Example 3.32 mysqli::autocommit example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

mysqli::begin_transaction, mysqli_begin_transaction

66

if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* turn autocommit on */
$mysqli->autocommit(TRUE);

if ($result = $mysqli->query("SELECT @@autocommit")) {
 $row = $result->fetch_row();
 printf("Autocommit is %s\n", $row[0]);
 $result->free();
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

if (!$link) {
 printf("Can't connect to localhost. Error: %s\n", mysqli_connect_error());
 exit();
}

/* turn autocommit on */
mysqli_autocommit($link, TRUE);

if ($result = mysqli_query($link, "SELECT @@autocommit")) {
 $row = mysqli_fetch_row($result);
 printf("Autocommit is %s\n", $row[0]);
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Autocommit is 1

See Also

mysqli_begin_transaction
mysqli_commit
mysqli_rollback

3.9.3 mysqli::begin_transaction, mysqli_begin_transaction

Copyright 1997-2014 the PHP Documentation Group.

mysqli::begin_transaction, mysqli_begin_transaction

67

• mysqli::begin_transaction

mysqli_begin_transaction

Starts a transaction

Description

Object oriented style (method):

 public bool mysqli::begin_transaction(
 int flags,
 string name);

Procedural style:

 bool mysqli_begin_transaction(
 mysqli link,
 int flags,
 string name);

Begins a transaction. Requires MySQL 5.6 and above, and the InnoDB engine (it is enabled by default).
For additional details about how MySQL transactions work, see http://dev.mysql.com/doc/mysql/en/
commit.html.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

flags Valid flags are:

• MYSQLI_TRANS_START_READ_ONLY: Start the transaction as
"START TRANSACTION READ ONLY".

• MYSQLI_TRANS_START_READ_WRITE: Start the transaction as
"START TRANSACTION READ WRITE".

• MYSQLI_TRANS_START_WITH_CONSISTENT_SNAPSHOT: Start
the transaction as "START TRANSACTION WITH CONSISTENT
SNAPSHOT".

name Savepoint name for the transaction.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.33 $mysqli->begin_transaction example

Object oriented style

<?php
$mysqli = new mysqli("127.0.0.1", "my_user", "my_password", "sakila");

http://dev.mysql.com/doc/mysql/en/commit.html
http://dev.mysql.com/doc/mysql/en/commit.html
http://www.php.net/$mysqli->begin_transaction

mysqli::change_user, mysqli_change_user

68

if ($mysqli->connect_errno) {
 printf("Connect failed: %s\n", $mysqli->connect_error);
 exit();
}

$mysqli->begin_transaction(MYSQLI_TRANS_START_READ_ONLY);

$mysqli->query("SELECT first_name, last_name FROM actor");
$mysqli->commit();

$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("127.0.0.1", "my_user", "my_password", "sakila");

if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_begin_transaction($link, MYSQLI_TRANS_START_READ_ONLY);

mysqli_query($link, "SELECT first_name, last_name FROM actor LIMIT 1");
mysqli_commit($link);

mysqli_close($link);
?>

See Also

mysqli_autocommit
mysqli_commit
mysqli_rollback

3.9.4 mysqli::change_user, mysqli_change_user

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::change_user

mysqli_change_user

Changes the user of the specified database connection

Description

Object oriented style

 bool mysqli::change_user(
 string user,
 string password,
 string database);

mysqli::change_user, mysqli_change_user

69

Procedural style

 bool mysqli_change_user(
 mysqli link,
 string user,
 string password,
 string database);

Changes the user of the specified database connection and sets the current database.

In order to successfully change users a valid username and password parameters must be provided and
that user must have sufficient permissions to access the desired database. If for any reason authorization
fails, the current user authentication will remain.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

user The MySQL user name.

password The MySQL password.

database The database to change to.

If desired, the NULL value may be passed resulting in only changing the
user and not selecting a database. To select a database in this case
use the mysqli_select_db function.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

Using this command will always cause the current database connection to behave
as if was a completely new database connection, regardless of if the operation was
completed successfully. This reset includes performing a rollback on any active
transactions, closing all temporary tables, and unlocking all locked tables.

Examples

Example 3.34 mysqli::change_user example

Object oriented style

<?php

/* connect database test */
$mysqli = new mysqli("localhost", "my_user", "my_password", "test");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());

mysqli::change_user, mysqli_change_user

70

 exit();
}

/* Set Variable a */
$mysqli->query("SET @a:=1");

/* reset all and select a new database */
$mysqli->change_user("my_user", "my_password", "world");

if ($result = $mysqli->query("SELECT DATABASE()")) {
 $row = $result->fetch_row();
 printf("Default database: %s\n", $row[0]);
 $result->close();
}

if ($result = $mysqli->query("SELECT @a")) {
 $row = $result->fetch_row();
 if ($row[0] === NULL) {
 printf("Value of variable a is NULL\n");
 }
 $result->close();
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
/* connect database test */
$link = mysqli_connect("localhost", "my_user", "my_password", "test");

/* check connection */
if (!$link) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* Set Variable a */
mysqli_query($link, "SET @a:=1");

/* reset all and select a new database */
mysqli_change_user($link, "my_user", "my_password", "world");

if ($result = mysqli_query($link, "SELECT DATABASE()")) {
 $row = mysqli_fetch_row($result);
 printf("Default database: %s\n", $row[0]);
 mysqli_free_result($result);
}

if ($result = mysqli_query($link, "SELECT @a")) {
 $row = mysqli_fetch_row($result);
 if ($row[0] === NULL) {
 printf("Value of variable a is NULL\n");
 }
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

mysqli::character_set_name, mysqli_character_set_name

71

The above examples will output:

Default database: world
Value of variable a is NULL

See Also

mysqli_connect
mysqli_select_db

3.9.5 mysqli::character_set_name, mysqli_character_set_name

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::character_set_name

mysqli_character_set_name

Returns the default character set for the database connection

Description

Object oriented style

 string mysqli::character_set_name();

Procedural style

 string mysqli_character_set_name(
 mysqli link);

Returns the current character set for the database connection.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

The default character set for the current connection

Examples

Example 3.35 mysqli::character_set_name example

Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

mysqli::$client_info, mysqli_get_client_info

72

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* Print current character set */
$charset = $mysqli->character_set_name();
printf ("Current character set is %s\n", $charset);

$mysqli->close();
?>

Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (!$link) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* Print current character set */
$charset = mysqli_character_set_name($link);
printf ("Current character set is %s\n",$charset);

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Current character set is latin1_swedish_ci

See Also

mysqli_set_charset
mysqli_client_encoding
mysqli_real_escape_string

3.9.6 mysqli::$client_info, mysqli_get_client_info

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::$client_info

mysqli_get_client_info

Get MySQL client info

mysqli::$client_version, mysqli_get_client_version

73

Description

Object oriented style

 string
 mysqli->client_info ;

Procedural style

 string mysqli_get_client_info(
 mysqli link);

Returns a string that represents the MySQL client library version.

Return Values

A string that represents the MySQL client library version

Examples

Example 3.36 mysqli_get_client_info

<?php

/* We don't need a connection to determine
 the version of mysql client library */

printf("Client library version: %s\n", mysqli_get_client_info());
?>

See Also

mysqli_get_client_version
mysqli_get_server_info
mysqli_get_server_version

3.9.7 mysqli::$client_version, mysqli_get_client_version

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::$client_version

mysqli_get_client_version

Returns the MySQL client version as a string

Description

Object oriented style

 int
 mysqli->client_version ;

Procedural style

 int mysqli_get_client_version(

mysqli::close, mysqli_close

74

 mysqli link);

Returns client version number as an integer.

Return Values

A number that represents the MySQL client library version in format: main_version*10000 +
minor_version *100 + sub_version. For example, 4.1.0 is returned as 40100.

This is useful to quickly determine the version of the client library to know if some capability exists.

Examples

Example 3.37 mysqli_get_client_version

<?php

/* We don't need a connection to determine
 the version of mysql client library */

printf("Client library version: %d\n", mysqli_get_client_version());
?>

See Also

mysqli_get_client_info
mysqli_get_server_info
mysqli_get_server_version

3.9.8 mysqli::close, mysqli_close

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::close

mysqli_close

Closes a previously opened database connection

Description

Object oriented style

 bool mysqli::close();

Procedural style

 bool mysqli_close(
 mysqli link);

Closes a previously opened database connection.

Open non-persistent MySQL connections and result sets are automatically destroyed when a PHP script
finishes its execution. So, while explicitly closing open connections and freeing result sets is optional,

mysqli::commit, mysqli_commit

75

doing so is recommended. This will immediately return resources to PHP and MySQL, which can improve
performance. For related information, see freeing resources

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns TRUE on success or FALSE on failure.

Examples

See mysqli_connect.

Notes

Note

mysqli_close will not close persistent connections. For additional details, see the
manual page on persistent connections.

See Also

mysqli::__construct
mysqli_init
mysqli_real_connect
mysqli_free_result

3.9.9 mysqli::commit, mysqli_commit

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::commit

mysqli_commit

Commits the current transaction

Description

Object oriented style

 bool mysqli::commit(
 int flags,
 string name);

Procedural style

 bool mysqli_commit(
 mysqli link,
 int flags,
 string name);

Commits the current transaction for the database connection.

Parameters

http://www.php.net/manual/en/language.types.resource.php#language.types.resource.self-destruct
http://www.php.net/manual/en/features.persistent-connections

mysqli::commit, mysqli_commit

76

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

flags A bitmask of MYSQLI_TRANS_COR_* constants.

name If provided then COMMIT/*name*/ is executed.

Return Values

Returns TRUE on success or FALSE on failure.

Changelog

Version Description

5.5.0 Added flags and name parameters.

Examples

Example 3.38 mysqli::commit example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$mysqli->query("CREATE TABLE Language LIKE CountryLanguage");

/* set autocommit to off */
$mysqli->autocommit(FALSE);

/* Insert some values */
$mysqli->query("INSERT INTO Language VALUES ('DEU', 'Bavarian', 'F', 11.2)");
$mysqli->query("INSERT INTO Language VALUES ('DEU', 'Swabian', 'F', 9.4)");

/* commit transaction */
if (!$mysqli->commit()) {
 print("Transaction commit failed\n");
 exit();
}

/* drop table */
$mysqli->query("DROP TABLE Language");

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "test");

mysqli::$connect_errno, mysqli_connect_errno

77

/* check connection */
if (!$link) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* set autocommit to off */
mysqli_autocommit($link, FALSE);

mysqli_query($link, "CREATE TABLE Language LIKE CountryLanguage");

/* Insert some values */
mysqli_query($link, "INSERT INTO Language VALUES ('DEU', 'Bavarian', 'F', 11.2)");
mysqli_query($link, "INSERT INTO Language VALUES ('DEU', 'Swabian', 'F', 9.4)");

/* commit transaction */
if (!mysqli_commit($link)) {
 print("Transaction commit failed\n");
 exit();
}

/* close connection */
mysqli_close($link);
?>

See Also

mysqli_autocommit
mysqli_begin_transaction
mysqli_rollback
mysqli_savepoint

3.9.10 mysqli::$connect_errno, mysqli_connect_errno

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::$connect_errno

mysqli_connect_errno

Returns the error code from last connect call

Description

Object oriented style

 int
 mysqli->connect_errno ;

Procedural style

 int mysqli_connect_errno();

Returns the last error code number from the last call to mysqli_connect.

Note

Client error message numbers are listed in the MySQL errmsg.h header file,
server error message numbers are listed in mysqld_error.h. In the MySQL

mysqli::$connect_error, mysqli_connect_error

78

source distribution you can find a complete list of error messages and error
numbers in the file Docs/mysqld_error.txt.

Return Values

An error code value for the last call to mysqli_connect, if it failed. zero means no error occurred.

Examples

Example 3.39 $mysqli->connect_errno example

Object oriented style

<?php
$mysqli = @new mysqli('localhost', 'fake_user', 'my_password', 'my_db');

if ($mysqli->connect_errno) {
 die('Connect Error: ' . $mysqli->connect_errno);
}
?>

Procedural style

<?php
$link = @mysqli_connect('localhost', 'fake_user', 'my_password', 'my_db');

if (!$link) {
 die('Connect Error: ' . mysqli_connect_errno());
}
?>

The above examples will output:

Connect Error: 1045

See Also

mysqli_connect
mysqli_connect_error
mysqli_errno
mysqli_error
mysqli_sqlstate

3.9.11 mysqli::$connect_error, mysqli_connect_error

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::$connect_error

mysqli::$connect_error, mysqli_connect_error

79

mysqli_connect_error

Returns a string description of the last connect error

Description

Object oriented style

 string
 mysqli->connect_error ;

Procedural style

 string mysqli_connect_error();

Returns the last error message string from the last call to mysqli_connect.

Return Values

A string that describes the error. NULL is returned if no error occurred.

Examples

Example 3.40 $mysqli->connect_error example

Object oriented style

<?php
$mysqli = @new mysqli('localhost', 'fake_user', 'my_password', 'my_db');

// Works as of PHP 5.2.9 and 5.3.0.
if ($mysqli->connect_error) {
 die('Connect Error: ' . $mysqli->connect_error);
}
?>

Procedural style

<?php
$link = @mysqli_connect('localhost', 'fake_user', 'my_password', 'my_db');

if (!$link) {
 die('Connect Error: ' . mysqli_connect_error());
}
?>

The above examples will output:

Connect Error: Access denied for user 'fake_user'@'localhost' (using password: YES)

mysqli::__construct, mysqli_connect

80

Notes

Warning

The mysqli->connect_error property only works properly as of PHP versions 5.2.9
and 5.3.0. Use the mysqli_connect_error function if compatibility with earlier
PHP versions is required.

See Also

mysqli_connect
mysqli_connect_errno
mysqli_errno
mysqli_error
mysqli_sqlstate

3.9.12 mysqli::__construct, mysqli_connect

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::__construct

mysqli_connect

Open a new connection to the MySQL server

Description

Object oriented style

 mysqli::__construct(
 string host
 = =ini_get("mysqli.default_host"),
 string username
 = =ini_get("mysqli.default_user"),
 string passwd
 = =ini_get("mysqli.default_pw"),
 string dbname
 = ="",
 int port
 = =ini_get("mysqli.default_port"),
 string socket
 = =ini_get("mysqli.default_socket"));

Procedural style

 mysqli mysqli_connect(
 string host
 = =ini_get("mysqli.default_host"),
 string username
 = =ini_get("mysqli.default_user"),
 string passwd
 = =ini_get("mysqli.default_pw"),
 string dbname
 = ="",
 int port
 = =ini_get("mysqli.default_port"),
 string socket

mysqli::__construct, mysqli_connect

81

 = =ini_get("mysqli.default_socket"));

Opens a connection to the MySQL Server running on.

Parameters

host Can be either a host name or an IP address. Passing the NULL value or
the string "localhost" to this parameter, the local host is assumed. When
possible, pipes will be used instead of the TCP/IP protocol.

Prepending host by p: opens a persistent connection.
mysqli_change_user is automatically called on connections opened
from the connection pool.

username The MySQL user name.

passwd If not provided or NULL, the MySQL server will attempt to authenticate
the user against those user records which have no password only. This
allows one username to be used with different permissions (depending
on if a password as provided or not).

dbname If provided will specify the default database to be used when performing
queries.

port Specifies the port number to attempt to connect to the MySQL server.

socket Specifies the socket or named pipe that should be used.

Note

Specifying the socket parameter will not
explicitly determine the type of connection to
be used when connecting to the MySQL server.
How the connection is made to the MySQL
database is determined by the host parameter.

Return Values

Returns an object which represents the connection to a MySQL Server.

Changelog

Version Description

5.3.0 Added the ability of persistent connections.

Examples

Example 3.41 mysqli::__construct example

Object oriented style

<?php
$mysqli = new mysqli('localhost', 'my_user', 'my_password', 'my_db');

/*

mysqli::__construct, mysqli_connect

82

 * This is the "official" OO way to do it,
 * BUT $connect_error was broken until PHP 5.2.9 and 5.3.0.
 */
if ($mysqli->connect_error) {
 die('Connect Error (' . $mysqli->connect_errno . ') '
 . $mysqli->connect_error);
}

/*
 * Use this instead of $connect_error if you need to ensure
 * compatibility with PHP versions prior to 5.2.9 and 5.3.0.
 */
if (mysqli_connect_error()) {
 die('Connect Error (' . mysqli_connect_errno() . ') '
 . mysqli_connect_error());
}

echo 'Success... ' . $mysqli->host_info . "\n";

$mysqli->close();
?>

Object oriented style when extending mysqli class

<?php

class foo_mysqli extends mysqli {
 public function __construct($host, $user, $pass, $db) {
 parent::__construct($host, $user, $pass, $db);

 if (mysqli_connect_error()) {
 die('Connect Error (' . mysqli_connect_errno() . ') '
 . mysqli_connect_error());
 }
 }
}

$db = new foo_mysqli('localhost', 'my_user', 'my_password', 'my_db');

echo 'Success... ' . $db->host_info . "\n";

$db->close();
?>

Procedural style

<?php
$link = mysqli_connect('localhost', 'my_user', 'my_password', 'my_db');

if (!$link) {
 die('Connect Error (' . mysqli_connect_errno() . ') '
 . mysqli_connect_error());
}

echo 'Success... ' . mysqli_get_host_info($link) . "\n";

mysqli_close($link);
?>

mysqli::debug, mysqli_debug

83

The above examples will output:

Success... MySQL host info: localhost via TCP/IP

Notes

Note

MySQLnd always assumes the server default charset. This charset is sent during
connection hand-shake/authentication, which mysqlnd will use.

Libmysqlclient uses the default charset set in the my.cnf or by an explicit
call to mysqli_options prior to calling mysqli_real_connect, but after
mysqli_init.

Note

OO syntax only: If a connection fails an object is still returned. To check if the
connection failed then use either the mysqli_connect_error function or the
mysqli->connect_error property as in the preceding examples.

Note

If it is necessary to set options, such as the connection timeout,
mysqli_real_connect must be used instead.

Note

Calling the constructor with no parameters is the same as calling mysqli_init.

Note

Error "Can't create TCP/IP socket (10106)" usually means that the variables_order
configure directive doesn't contain character E. On Windows, if the environment is
not copied the SYSTEMROOT environment variable won't be available and PHP will
have problems loading Winsock.

See Also

mysqli_real_connect
mysqli_options
mysqli_connect_errno
mysqli_connect_error
mysqli_close

3.9.13 mysqli::debug, mysqli_debug

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::debug

mysqli_debug

http://www.php.net/manual/en/ini.core.php#ini.variables-orde

mysqli::dump_debug_info, mysqli_dump_debug_info

84

Performs debugging operations

Description

Object oriented style

 bool mysqli::debug(
 string message);

Procedural style

 bool mysqli_debug(
 string message);

Performs debugging operations using the Fred Fish debugging library.

Parameters

message A string representing the debugging operation to perform

Return Values

Returns TRUE.

Notes

Note

To use the mysqli_debug function you must compile the MySQL client library to
support debugging.

Examples

Example 3.42 Generating a Trace File

<?php

/* Create a trace file in '/tmp/client.trace' on the local (client) machine: */
mysqli_debug("d:t:o,/tmp/client.trace");

?>

See Also

mysqli_dump_debug_info
mysqli_report

3.9.14 mysqli::dump_debug_info, mysqli_dump_debug_info

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::dump_debug_info

mysqli_dump_debug_info

mysqli::$errno, mysqli_errno

85

Dump debugging information into the log

Description

Object oriented style

 bool mysqli::dump_debug_info();

Procedural style

 bool mysqli_dump_debug_info(
 mysqli link);

This function is designed to be executed by an user with the SUPER privilege and is used to dump
debugging information into the log for the MySQL Server relating to the connection.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns TRUE on success or FALSE on failure.

See Also

mysqli_debug

3.9.15 mysqli::$errno, mysqli_errno

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::$errno

mysqli_errno

Returns the error code for the most recent function call

Description

Object oriented style

 int
 mysqli->errno ;

Procedural style

 int mysqli_errno(
 mysqli link);

Returns the last error code for the most recent MySQLi function call that can succeed or fail.

Client error message numbers are listed in the MySQL errmsg.h header file, server error message
numbers are listed in mysqld_error.h. In the MySQL source distribution you can find a complete list of
error messages and error numbers in the file Docs/mysqld_error.txt.

Parameters

mysqli::$errno, mysqli_errno

86

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

An error code value for the last call, if it failed. zero means no error occurred.

Examples

Example 3.43 $mysqli->errno example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if ($mysqli->connect_errno) {
 printf("Connect failed: %s\n", $mysqli->connect_error);
 exit();
}

if (!$mysqli->query("SET a=1")) {
 printf("Errorcode: %d\n", $mysqli->errno);
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

if (!mysqli_query($link, "SET a=1")) {
 printf("Errorcode: %d\n", mysqli_errno($link));
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Errorcode: 1193

mysqli::$error_list, mysqli_error_list

87

See Also

mysqli_connect_errno
mysqli_connect_error
mysqli_error
mysqli_sqlstate

3.9.16 mysqli::$error_list, mysqli_error_list

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::$error_list

mysqli_error_list

Returns a list of errors from the last command executed

Description

Object oriented style

 array
 mysqli->error_list ;

Procedural style

 array mysqli_error_list(
 mysqli link);

Returns a array of errors for the most recent MySQLi function call that can succeed or fail.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

A list of errors, each as an associative array containing the errno, error, and sqlstate.

Examples

Example 3.44 $mysqli->error_list example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "nobody", "");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

if (!$mysqli->query("SET a=1")) {
 print_r($mysqli->error_list);
}

mysqli::$error, mysqli_error

88

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

if (!mysqli_query($link, "SET a=1")) {
 print_r(mysqli_error_list($link));
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Array
(
 [0] => Array
 (
 [errno] => 1193
 [sqlstate] => HY000
 [error] => Unknown system variable 'a'
)

)

See Also

mysqli_connect_errno
mysqli_connect_error
mysqli_error
mysqli_sqlstate

3.9.17 mysqli::$error, mysqli_error

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::$error

mysqli_error

Returns a string description of the last error

mysqli::$error, mysqli_error

89

Description

Object oriented style

 string
 mysqli->error ;

Procedural style

 string mysqli_error(
 mysqli link);

Returns the last error message for the most recent MySQLi function call that can succeed or fail.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

A string that describes the error. An empty string if no error occurred.

Examples

Example 3.45 $mysqli->error example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if ($mysqli->connect_errno) {
 printf("Connect failed: %s\n", $mysqli->connect_error);
 exit();
}

if (!$mysqli->query("SET a=1")) {
 printf("Errormessage: %s\n", $mysqli->error);
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli::$field_count, mysqli_field_count

90

if (!mysqli_query($link, "SET a=1")) {
 printf("Errormessage: %s\n", mysqli_error($link));
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Errormessage: Unknown system variable 'a'

See Also

mysqli_connect_errno
mysqli_connect_error
mysqli_errno
mysqli_sqlstate

3.9.18 mysqli::$field_count, mysqli_field_count

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::$field_count

mysqli_field_count

Returns the number of columns for the most recent query

Description

Object oriented style

 int
 mysqli->field_count ;

Procedural style

 int mysqli_field_count(
 mysqli link);

Returns the number of columns for the most recent query on the connection represented by the link
parameter. This function can be useful when using the mysqli_store_result function to determine if
the query should have produced a non-empty result set or not without knowing the nature of the query.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

An integer representing the number of fields in a result set.

mysqli::$field_count, mysqli_field_count

91

Examples

Example 3.46 $mysqli->field_count example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "test");

$mysqli->query("DROP TABLE IF EXISTS friends");
$mysqli->query("CREATE TABLE friends (id int, name varchar(20))");

$mysqli->query("INSERT INTO friends VALUES (1,'Hartmut'), (2, 'Ulf')");

$mysqli->real_query("SELECT * FROM friends");

if ($mysqli->field_count) {
 /* this was a select/show or describe query */
 $result = $mysqli->store_result();

 /* process resultset */
 $row = $result->fetch_row();

 /* free resultset */
 $result->close();
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "test");

mysqli_query($link, "DROP TABLE IF EXISTS friends");
mysqli_query($link, "CREATE TABLE friends (id int, name varchar(20))");

mysqli_query($link, "INSERT INTO friends VALUES (1,'Hartmut'), (2, 'Ulf')");

mysqli_real_query($link, "SELECT * FROM friends");

if (mysqli_field_count($link)) {
 /* this was a select/show or describe query */
 $result = mysqli_store_result($link);

 /* process resultset */
 $row = mysqli_fetch_row($result);

 /* free resultset */
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

mysqli::get_charset, mysqli_get_charset

92

3.9.19 mysqli::get_charset, mysqli_get_charset

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::get_charset

mysqli_get_charset

Returns a character set object

Description

Object oriented style

 object mysqli::get_charset();

Procedural style

 object mysqli_get_charset(
 mysqli link);

Returns a character set object providing several properties of the current active character set.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

The function returns a character set object with the following properties:

charset Character set name

collation Collation name

dir Directory the charset description was fetched from (?) or "" for built-in
character sets

min_length Minimum character length in bytes

max_length Maximum character length in bytes

number Internal character set number

state Character set status (?)

Examples

Example 3.47 mysqli::get_charset example

Object oriented style

<?php
 $db = mysqli_init();
 $db->real_connect("localhost","root","","test");
 var_dump($db->get_charset());

mysqli::get_client_info, mysqli_get_client_info

93

?>

Procedural style

<?php
 $db = mysqli_init();
 mysqli_real_connect($db, "localhost","root","","test");
 var_dump(mysqli_get_charset($db));
?>

The above examples will output:

object(stdClass)#2 (7) {
 ["charset"]=>
 string(6) "latin1"
 ["collation"]=>
 string(17) "latin1_swedish_ci"
 ["dir"]=>
 string(0) ""
 ["min_length"]=>
 int(1)
 ["max_length"]=>
 int(1)
 ["number"]=>
 int(8)
 ["state"]=>
 int(801)
}

See Also

mysqli_character_set_name
mysqli_set_charset

3.9.20 mysqli::get_client_info, mysqli_get_client_info

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::get_client_info

mysqli_get_client_info

Get MySQL client info

Description

Object oriented style

 string mysqli::get_client_info();

Procedural style

 string mysqli_get_client_info(

mysqli_get_client_stats

94

 mysqli link);

Returns a string that represents the MySQL client library version.

Return Values

A string that represents the MySQL client library version

Examples

Example 3.48 mysqli_get_client_info

<?php

/* We don't need a connection to determine
 the version of mysql client library */

printf("Client library version: %s\n", mysqli_get_client_info());
?>

See Also

mysqli_get_client_version
mysqli_get_server_info
mysqli_get_server_version

3.9.21 mysqli_get_client_stats

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_get_client_stats

Returns client per-process statistics

Description

 array mysqli_get_client_stats();

Returns client per-process statistics. Available only with mysqlnd.

Parameters

Return Values

Returns an array with client stats if success, FALSE otherwise.

Examples

Example 3.49 A mysqli_get_client_stats example

<?php
$link = mysqli_connect();
print_r(mysqli_get_client_stats());
?>

mysqli_get_client_stats

95

The above example will output something similar to:

Array
(
 [bytes_sent] => 43
 [bytes_received] => 80
 [packets_sent] => 1
 [packets_received] => 2
 [protocol_overhead_in] => 8
 [protocol_overhead_out] => 4
 [bytes_received_ok_packet] => 11
 [bytes_received_eof_packet] => 0
 [bytes_received_rset_header_packet] => 0
 [bytes_received_rset_field_meta_packet] => 0
 [bytes_received_rset_row_packet] => 0
 [bytes_received_prepare_response_packet] => 0
 [bytes_received_change_user_packet] => 0
 [packets_sent_command] => 0
 [packets_received_ok] => 1
 [packets_received_eof] => 0
 [packets_received_rset_header] => 0
 [packets_received_rset_field_meta] => 0
 [packets_received_rset_row] => 0
 [packets_received_prepare_response] => 0
 [packets_received_change_user] => 0
 [result_set_queries] => 0
 [non_result_set_queries] => 0
 [no_index_used] => 0
 [bad_index_used] => 0
 [slow_queries] => 0
 [buffered_sets] => 0
 [unbuffered_sets] => 0
 [ps_buffered_sets] => 0
 [ps_unbuffered_sets] => 0
 [flushed_normal_sets] => 0
 [flushed_ps_sets] => 0
 [ps_prepared_never_executed] => 0
 [ps_prepared_once_executed] => 0
 [rows_fetched_from_server_normal] => 0
 [rows_fetched_from_server_ps] => 0
 [rows_buffered_from_client_normal] => 0
 [rows_buffered_from_client_ps] => 0
 [rows_fetched_from_client_normal_buffered] => 0
 [rows_fetched_from_client_normal_unbuffered] => 0
 [rows_fetched_from_client_ps_buffered] => 0
 [rows_fetched_from_client_ps_unbuffered] => 0
 [rows_fetched_from_client_ps_cursor] => 0
 [rows_skipped_normal] => 0
 [rows_skipped_ps] => 0
 [copy_on_write_saved] => 0
 [copy_on_write_performed] => 0
 [command_buffer_too_small] => 0
 [connect_success] => 1
 [connect_failure] => 0
 [connection_reused] => 0
 [reconnect] => 0
 [pconnect_success] => 0
 [active_connections] => 1
 [active_persistent_connections] => 0
 [explicit_close] => 0
 [implicit_close] => 0
 [disconnect_close] => 0
 [in_middle_of_command_close] => 0

mysqli_get_client_stats

96

 [explicit_free_result] => 0
 [implicit_free_result] => 0
 [explicit_stmt_close] => 0
 [implicit_stmt_close] => 0
 [mem_emalloc_count] => 0
 [mem_emalloc_ammount] => 0
 [mem_ecalloc_count] => 0
 [mem_ecalloc_ammount] => 0
 [mem_erealloc_count] => 0
 [mem_erealloc_ammount] => 0
 [mem_efree_count] => 0
 [mem_malloc_count] => 0
 [mem_malloc_ammount] => 0
 [mem_calloc_count] => 0
 [mem_calloc_ammount] => 0
 [mem_realloc_count] => 0
 [mem_realloc_ammount] => 0
 [mem_free_count] => 0
 [proto_text_fetched_null] => 0
 [proto_text_fetched_bit] => 0
 [proto_text_fetched_tinyint] => 0
 [proto_text_fetched_short] => 0
 [proto_text_fetched_int24] => 0
 [proto_text_fetched_int] => 0
 [proto_text_fetched_bigint] => 0
 [proto_text_fetched_decimal] => 0
 [proto_text_fetched_float] => 0
 [proto_text_fetched_double] => 0
 [proto_text_fetched_date] => 0
 [proto_text_fetched_year] => 0
 [proto_text_fetched_time] => 0
 [proto_text_fetched_datetime] => 0
 [proto_text_fetched_timestamp] => 0
 [proto_text_fetched_string] => 0
 [proto_text_fetched_blob] => 0
 [proto_text_fetched_enum] => 0
 [proto_text_fetched_set] => 0
 [proto_text_fetched_geometry] => 0
 [proto_text_fetched_other] => 0
 [proto_binary_fetched_null] => 0
 [proto_binary_fetched_bit] => 0
 [proto_binary_fetched_tinyint] => 0
 [proto_binary_fetched_short] => 0
 [proto_binary_fetched_int24] => 0
 [proto_binary_fetched_int] => 0
 [proto_binary_fetched_bigint] => 0
 [proto_binary_fetched_decimal] => 0
 [proto_binary_fetched_float] => 0
 [proto_binary_fetched_double] => 0
 [proto_binary_fetched_date] => 0
 [proto_binary_fetched_year] => 0
 [proto_binary_fetched_time] => 0
 [proto_binary_fetched_datetime] => 0
 [proto_binary_fetched_timestamp] => 0
 [proto_binary_fetched_string] => 0
 [proto_binary_fetched_blob] => 0
 [proto_binary_fetched_enum] => 0
 [proto_binary_fetched_set] => 0
 [proto_binary_fetched_geometry] => 0
 [proto_binary_fetched_other] => 0
)

See Also

Stats description

mysqli_get_client_version, mysqli::$client_version

97

3.9.22 mysqli_get_client_version, mysqli::$client_version

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_get_client_version

mysqli::$client_version

Returns the MySQL client version as an integer

Description

Object oriented style

 int
 mysqli->client_version ;

Procedural style

 int mysqli_get_client_version(
 mysqli link);

Returns client version number as an integer.

Return Values

A number that represents the MySQL client library version in format: main_version*10000 +
minor_version *100 + sub_version. For example, 4.1.0 is returned as 40100.

This is useful to quickly determine the version of the client library to know if some capability exits.

Examples

Example 3.50 mysqli_get_client_version

<?php

/* We don't need a connection to determine
 the version of mysql client library */

printf("Client library version: %d\n", mysqli_get_client_version());
?>

See Also

mysqli_get_client_info
mysqli_get_server_info
mysqli_get_server_version

3.9.23 mysqli::get_connection_stats, mysqli_get_connection_stats

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::get_connection_stats

mysqli_get_connection_stats

Returns statistics about the client connection

mysqli::get_connection_stats, mysqli_get_connection_stats

98

Description

Object oriented style

 bool mysqli::get_connection_stats();

Procedural style

 array mysqli_get_connection_stats(
 mysqli link);

Returns statistics about the client connection. Available only with mysqlnd.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns an array with connection stats if success, FALSE otherwise.

Examples

Example 3.51 A mysqli_get_connection_stats example

<?php
$link = mysqli_connect();
print_r(mysqli_get_connection_stats($link));
?>

The above example will output something similar to:

Array
(
 [bytes_sent] => 43
 [bytes_received] => 80
 [packets_sent] => 1
 [packets_received] => 2
 [protocol_overhead_in] => 8
 [protocol_overhead_out] => 4
 [bytes_received_ok_packet] => 11
 [bytes_received_eof_packet] => 0
 [bytes_received_rset_header_packet] => 0
 [bytes_received_rset_field_meta_packet] => 0
 [bytes_received_rset_row_packet] => 0
 [bytes_received_prepare_response_packet] => 0
 [bytes_received_change_user_packet] => 0
 [packets_sent_command] => 0
 [packets_received_ok] => 1
 [packets_received_eof] => 0
 [packets_received_rset_header] => 0
 [packets_received_rset_field_meta] => 0
 [packets_received_rset_row] => 0
 [packets_received_prepare_response] => 0
 [packets_received_change_user] => 0
 [result_set_queries] => 0
 [non_result_set_queries] => 0
 [no_index_used] => 0
 [bad_index_used] => 0

mysqli::get_connection_stats, mysqli_get_connection_stats

99

 [slow_queries] => 0
 [buffered_sets] => 0
 [unbuffered_sets] => 0
 [ps_buffered_sets] => 0
 [ps_unbuffered_sets] => 0
 [flushed_normal_sets] => 0
 [flushed_ps_sets] => 0
 [ps_prepared_never_executed] => 0
 [ps_prepared_once_executed] => 0
 [rows_fetched_from_server_normal] => 0
 [rows_fetched_from_server_ps] => 0
 [rows_buffered_from_client_normal] => 0
 [rows_buffered_from_client_ps] => 0
 [rows_fetched_from_client_normal_buffered] => 0
 [rows_fetched_from_client_normal_unbuffered] => 0
 [rows_fetched_from_client_ps_buffered] => 0
 [rows_fetched_from_client_ps_unbuffered] => 0
 [rows_fetched_from_client_ps_cursor] => 0
 [rows_skipped_normal] => 0
 [rows_skipped_ps] => 0
 [copy_on_write_saved] => 0
 [copy_on_write_performed] => 0
 [command_buffer_too_small] => 0
 [connect_success] => 1
 [connect_failure] => 0
 [connection_reused] => 0
 [reconnect] => 0
 [pconnect_success] => 0
 [active_connections] => 1
 [active_persistent_connections] => 0
 [explicit_close] => 0
 [implicit_close] => 0
 [disconnect_close] => 0
 [in_middle_of_command_close] => 0
 [explicit_free_result] => 0
 [implicit_free_result] => 0
 [explicit_stmt_close] => 0
 [implicit_stmt_close] => 0
 [mem_emalloc_count] => 0
 [mem_emalloc_ammount] => 0
 [mem_ecalloc_count] => 0
 [mem_ecalloc_ammount] => 0
 [mem_erealloc_count] => 0
 [mem_erealloc_ammount] => 0
 [mem_efree_count] => 0
 [mem_malloc_count] => 0
 [mem_malloc_ammount] => 0
 [mem_calloc_count] => 0
 [mem_calloc_ammount] => 0
 [mem_realloc_count] => 0
 [mem_realloc_ammount] => 0
 [mem_free_count] => 0
 [proto_text_fetched_null] => 0
 [proto_text_fetched_bit] => 0
 [proto_text_fetched_tinyint] => 0
 [proto_text_fetched_short] => 0
 [proto_text_fetched_int24] => 0
 [proto_text_fetched_int] => 0
 [proto_text_fetched_bigint] => 0
 [proto_text_fetched_decimal] => 0
 [proto_text_fetched_float] => 0
 [proto_text_fetched_double] => 0
 [proto_text_fetched_date] => 0
 [proto_text_fetched_year] => 0
 [proto_text_fetched_time] => 0
 [proto_text_fetched_datetime] => 0
 [proto_text_fetched_timestamp] => 0

mysqli::$host_info, mysqli_get_host_info

100

 [proto_text_fetched_string] => 0
 [proto_text_fetched_blob] => 0
 [proto_text_fetched_enum] => 0
 [proto_text_fetched_set] => 0
 [proto_text_fetched_geometry] => 0
 [proto_text_fetched_other] => 0
 [proto_binary_fetched_null] => 0
 [proto_binary_fetched_bit] => 0
 [proto_binary_fetched_tinyint] => 0
 [proto_binary_fetched_short] => 0
 [proto_binary_fetched_int24] => 0
 [proto_binary_fetched_int] => 0
 [proto_binary_fetched_bigint] => 0
 [proto_binary_fetched_decimal] => 0
 [proto_binary_fetched_float] => 0
 [proto_binary_fetched_double] => 0
 [proto_binary_fetched_date] => 0
 [proto_binary_fetched_year] => 0
 [proto_binary_fetched_time] => 0
 [proto_binary_fetched_datetime] => 0
 [proto_binary_fetched_timestamp] => 0
 [proto_binary_fetched_string] => 0
 [proto_binary_fetched_blob] => 0
 [proto_binary_fetched_enum] => 0
 [proto_binary_fetched_set] => 0
 [proto_binary_fetched_geometry] => 0
 [proto_binary_fetched_other] => 0
)

See Also

Stats description

3.9.24 mysqli::$host_info, mysqli_get_host_info

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::$host_info

mysqli_get_host_info

Returns a string representing the type of connection used

Description

Object oriented style

 string
 mysqli->host_info ;

Procedural style

 string mysqli_get_host_info(
 mysqli link);

Returns a string describing the connection represented by the link parameter (including the server host
name).

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

mysqli::$host_info, mysqli_get_host_info

101

Return Values

A character string representing the server hostname and the connection type.

Examples

Example 3.52 $mysqli->host_info example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* print host information */
printf("Host info: %s\n", $mysqli->host_info);

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* print host information */
printf("Host info: %s\n", mysqli_get_host_info($link));

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Host info: Localhost via UNIX socket

See Also

mysqli_get_proto_info

mysqli::$protocol_version, mysqli_get_proto_info

102

3.9.25 mysqli::$protocol_version, mysqli_get_proto_info

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::$protocol_version

mysqli_get_proto_info

Returns the version of the MySQL protocol used

Description

Object oriented style

 string
 mysqli->protocol_version ;

Procedural style

 int mysqli_get_proto_info(
 mysqli link);

Returns an integer representing the MySQL protocol version used by the connection represented by the
link parameter.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns an integer representing the protocol version.

Examples

Example 3.53 $mysqli->protocol_version example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* print protocol version */
printf("Protocol version: %d\n", $mysqli->protocol_version);

/* close connection */
$mysqli->close();
?>

Procedural style

mysqli::$server_info, mysqli_get_server_info

103

<?php
$link = mysqli_connect("localhost", "my_user", "my_password");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* print protocol version */
printf("Protocol version: %d\n", mysqli_get_proto_info($link));

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Protocol version: 10

See Also

mysqli_get_host_info

3.9.26 mysqli::$server_info, mysqli_get_server_info

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::$server_info

mysqli_get_server_info

Returns the version of the MySQL server

Description

Object oriented style

 string
 mysqli->server_info ;

Procedural style

 string mysqli_get_server_info(
 mysqli link);

Returns a string representing the version of the MySQL server that the MySQLi extension is connected to.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

mysqli::$server_info, mysqli_get_server_info

104

A character string representing the server version.

Examples

Example 3.54 $mysqli->server_info example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* print server version */
printf("Server version: %s\n", $mysqli->server_info);

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* print server version */
printf("Server version: %s\n", mysqli_get_server_info($link));

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Server version: 4.1.2-alpha-debug

See Also

mysqli_get_client_info
mysqli_get_client_version
mysqli_get_server_version

mysqli::$server_version, mysqli_get_server_version

105

3.9.27 mysqli::$server_version, mysqli_get_server_version

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::$server_version

mysqli_get_server_version

Returns the version of the MySQL server as an integer

Description

Object oriented style

 int
 mysqli->server_version ;

Procedural style

 int mysqli_get_server_version(
 mysqli link);

The mysqli_get_server_version function returns the version of the server connected to (represented
by the link parameter) as an integer.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

An integer representing the server version.

The form of this version number is main_version * 10000 + minor_version * 100 +
sub_version (i.e. version 4.1.0 is 40100).

Examples

Example 3.55 $mysqli->server_version example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* print server version */
printf("Server version: %d\n", $mysqli->server_version);

/* close connection */
$mysqli->close();
?>

mysqli::get_warnings, mysqli_get_warnings

106

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* print server version */
printf("Server version: %d\n", mysqli_get_server_version($link));

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Server version: 40102

See Also

mysqli_get_client_info
mysqli_get_client_version
mysqli_get_server_info

3.9.28 mysqli::get_warnings, mysqli_get_warnings

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::get_warnings

mysqli_get_warnings

Get result of SHOW WARNINGS

Description

Object oriented style

 mysqli_warning mysqli::get_warnings();

Procedural style

 mysqli_warning mysqli_get_warnings(
 mysqli link);

Warning

This function is currently not documented; only its argument list is available.

mysqli::$info, mysqli_info

107

3.9.29 mysqli::$info, mysqli_info

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::$info

mysqli_info

Retrieves information about the most recently executed query

Description

Object oriented style

 string
 mysqli->info ;

Procedural style

 string mysqli_info(
 mysqli link);

The mysqli_info function returns a string providing information about the last query executed. The
nature of this string is provided below:

Table 3.9 Possible mysqli_info return values

Query type Example result string

INSERT INTO...SELECT... Records: 100 Duplicates: 0 Warnings: 0

INSERT INTO...VALUES (...),(...),(...) Records: 3 Duplicates: 0 Warnings: 0

LOAD DATA INFILE ... Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

ALTER TABLE ... Records: 3 Duplicates: 0 Warnings: 0

UPDATE ... Rows matched: 40 Changed: 40 Warnings: 0

Note

Queries which do not fall into one of the preceding formats are not supported. In
these situations, mysqli_info will return an empty string.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

A character string representing additional information about the most recently executed query.

Examples

Example 3.56 $mysqli->info example

Object oriented style

<?php

mysqli::init, mysqli_init

108

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$mysqli->query("CREATE TEMPORARY TABLE t1 LIKE City");

/* INSERT INTO .. SELECT */
$mysqli->query("INSERT INTO t1 SELECT * FROM City ORDER BY ID LIMIT 150");
printf("%s\n", $mysqli->info);

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_query($link, "CREATE TEMPORARY TABLE t1 LIKE City");

/* INSERT INTO .. SELECT */
mysqli_query($link, "INSERT INTO t1 SELECT * FROM City ORDER BY ID LIMIT 150");
printf("%s\n", mysqli_info($link));

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Records: 150 Duplicates: 0 Warnings: 0

See Also

mysqli_affected_rows
mysqli_warning_count
mysqli_num_rows

3.9.30 mysqli::init, mysqli_init

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::init

mysqli::$insert_id, mysqli_insert_id

109

mysqli_init

Initializes MySQLi and returns a resource for use with mysqli_real_connect()

Description

Object oriented style

 mysqli mysqli::init();

Procedural style

 mysqli mysqli_init();

Allocates or initializes a MYSQL object suitable for mysqli_options and mysqli_real_connect.

Note

Any subsequent calls to any mysqli function (except mysqli_options) will fail
until mysqli_real_connect was called.

Return Values

Returns an object.

Examples

See mysqli_real_connect.

See Also

mysqli_options
mysqli_close
mysqli_real_connect
mysqli_connect

3.9.31 mysqli::$insert_id, mysqli_insert_id

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::$insert_id

mysqli_insert_id

Returns the auto generated id used in the last query

Description

Object oriented style

 mixed
 mysqli->insert_id ;

Procedural style

 mixed mysqli_insert_id(
 mysqli link);

mysqli::$insert_id, mysqli_insert_id

110

The mysqli_insert_id function returns the ID generated by a query on a table with a column having the
AUTO_INCREMENT attribute. If the last query wasn't an INSERT or UPDATE statement or if the modified
table does not have a column with the AUTO_INCREMENT attribute, this function will return zero.

Note

Performing an INSERT or UPDATE statement using the LAST_INSERT_ID()
function will also modify the value returned by the mysqli_insert_id function.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

The value of the AUTO_INCREMENT field that was updated by the previous query. Returns zero if there was
no previous query on the connection or if the query did not update an AUTO_INCREMENT value.

Note

If the number is greater than maximal int value, mysqli_insert_id will return a
string.

Examples

Example 3.57 $mysqli->insert_id example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$mysqli->query("CREATE TABLE myCity LIKE City");

$query = "INSERT INTO myCity VALUES (NULL, 'Stuttgart', 'DEU', 'Stuttgart', 617000)";
$mysqli->query($query);

printf ("New Record has id %d.\n", $mysqli->insert_id);

/* drop table */
$mysqli->query("DROP TABLE myCity");

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

mysqli::kill, mysqli_kill

111

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_query($link, "CREATE TABLE myCity LIKE City");

$query = "INSERT INTO myCity VALUES (NULL, 'Stuttgart', 'DEU', 'Stuttgart', 617000)";
mysqli_query($link, $query);

printf ("New Record has id %d.\n", mysqli_insert_id($link));

/* drop table */
mysqli_query($link, "DROP TABLE myCity");

/* close connection */
mysqli_close($link);
?>

The above examples will output:

New Record has id 1.

3.9.32 mysqli::kill, mysqli_kill

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::kill

mysqli_kill

Asks the server to kill a MySQL thread

Description

Object oriented style

 bool mysqli::kill(
 int processid);

Procedural style

 bool mysqli_kill(
 mysqli link,
 int processid);

This function is used to ask the server to kill a MySQL thread specified by the processid parameter. This
value must be retrieved by calling the mysqli_thread_id function.

To stop a running query you should use the SQL command KILL QUERY processid.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

mysqli::kill, mysqli_kill

112

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.58 mysqli::kill example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* determine our thread id */
$thread_id = $mysqli->thread_id;

/* Kill connection */
$mysqli->kill($thread_id);

/* This should produce an error */
if (!$mysqli->query("CREATE TABLE myCity LIKE City")) {
 printf("Error: %s\n", $mysqli->error);
 exit;
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* determine our thread id */
$thread_id = mysqli_thread_id($link);

/* Kill connection */
mysqli_kill($link, $thread_id);

/* This should produce an error */
if (!mysqli_query($link, "CREATE TABLE myCity LIKE City")) {
 printf("Error: %s\n", mysqli_error($link));
 exit;
}

/* close connection */
mysqli_close($link);

mysqli::more_results, mysqli_more_results

113

?>

The above examples will output:

Error: MySQL server has gone away

See Also

mysqli_thread_id

3.9.33 mysqli::more_results, mysqli_more_results

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::more_results

mysqli_more_results

Check if there are any more query results from a multi query

Description

Object oriented style

 bool mysqli::more_results();

Procedural style

 bool mysqli_more_results(
 mysqli link);

Indicates if one or more result sets are available from a previous call to mysqli_multi_query.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns TRUE if one or more result sets are available from a previous call to mysqli_multi_query,
otherwise FALSE.

Examples

See mysqli_multi_query.

See Also

mysqli_multi_query
mysqli_next_result
mysqli_store_result
mysqli_use_result

mysqli::multi_query, mysqli_multi_query

114

3.9.34 mysqli::multi_query, mysqli_multi_query

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::multi_query

mysqli_multi_query

Performs a query on the database

Description

Object oriented style

 bool mysqli::multi_query(
 string query);

Procedural style

 bool mysqli_multi_query(
 mysqli link,
 string query);

Executes one or multiple queries which are concatenated by a semicolon.

To retrieve the resultset from the first query you can use mysqli_use_result or
mysqli_store_result. All subsequent query results can be processed using mysqli_more_results
and mysqli_next_result.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

query The query, as a string.

Data inside the query should be properly escaped.

Return Values

Returns FALSE if the first statement failed. To retrieve subsequent errors from other statements you have
to call mysqli_next_result first.

Examples

Example 3.59 mysqli::multi_query example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT CURRENT_USER();";
$query .= "SELECT Name FROM City ORDER BY ID LIMIT 20, 5";

mysqli::multi_query, mysqli_multi_query

115

/* execute multi query */
if ($mysqli->multi_query($query)) {
 do {
 /* store first result set */
 if ($result = $mysqli->store_result()) {
 while ($row = $result->fetch_row()) {
 printf("%s\n", $row[0]);
 }
 $result->free();
 }
 /* print divider */
 if ($mysqli->more_results()) {
 printf("-----------------\n");
 }
 } while ($mysqli->next_result());
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT CURRENT_USER();";
$query .= "SELECT Name FROM City ORDER BY ID LIMIT 20, 5";

/* execute multi query */
if (mysqli_multi_query($link, $query)) {
 do {
 /* store first result set */
 if ($result = mysqli_store_result($link)) {
 while ($row = mysqli_fetch_row($result)) {
 printf("%s\n", $row[0]);
 }
 mysqli_free_result($result);
 }
 /* print divider */
 if (mysqli_more_results($link)) {
 printf("-----------------\n");
 }
 } while (mysqli_next_result($link));
}

/* close connection */
mysqli_close($link);
?>

The above examples will output something similar to:

mysqli::next_result, mysqli_next_result

116

my_user@localhost

Amersfoort
Maastricht
Dordrecht
Leiden
Haarlemmermeer

See Also

mysqli_query
mysqli_use_result
mysqli_store_result
mysqli_next_result
mysqli_more_results

3.9.35 mysqli::next_result, mysqli_next_result

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::next_result

mysqli_next_result

Prepare next result from multi_query

Description

Object oriented style

 bool mysqli::next_result();

Procedural style

 bool mysqli_next_result(
 mysqli link);

Prepares next result set from a previous call to mysqli_multi_query which can be retrieved by
mysqli_store_result or mysqli_use_result.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns TRUE on success or FALSE on failure.

Examples

See mysqli_multi_query.

See Also

mysqli_multi_query
mysqli_more_results
mysqli_store_result
mysqli_use_result

mysqli::options, mysqli_options

117

3.9.36 mysqli::options, mysqli_options

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::options

mysqli_options

Set options

Description

Object oriented style

 bool mysqli::options(
 int option,
 mixed value);

Procedural style

 bool mysqli_options(
 mysqli link,
 int option,
 mixed value);

Used to set extra connect options and affect behavior for a connection.

This function may be called multiple times to set several options.

mysqli_options should be called after mysqli_init and before mysqli_real_connect.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

option The option that you want to set. It can be one of the following values:

Table 3.10 Valid options

Name Description

MYSQLI_OPT_CONNECT_TIMEOUT connection timeout in seconds
(supported on Windows with TCP/
IP since PHP 5.3.1)

MYSQLI_OPT_LOCAL_INFILE enable/disable use of LOAD
LOCAL INFILE

MYSQLI_INIT_COMMAND command to execute after when
connecting to MySQL server

MYSQLI_READ_DEFAULT_FILE Read options from named option
file instead of my.cnf

MYSQLI_READ_DEFAULT_GROUP Read options from the
named group from my.cnf
or the file specified with
MYSQL_READ_DEFAULT_FILE.

MYSQLI_SERVER_PUBLIC_KEY RSA public key file used with the
SHA-256 based authentication.

mysqli::ping, mysqli_ping

118

Name Description

MYSQLI_OPT_NET_CMD_BUFFER_SIZEThe size of the internal command/
network buffer. Only valid for
mysqlnd.

MYSQLI_OPT_NET_READ_BUFFER_SIZEMaximum read chunk size in
bytes when reading the body of
a MySQL command packet. Only
valid for mysqlnd.

MYSQLI_OPT_INT_AND_FLOAT_NATIVEConvert integer and float columns
back to PHP numbers. Only valid
for mysqlnd.

MYSQLI_OPT_SSL_VERIFY_SERVER_CERT

value The value for the option.

Return Values

Returns TRUE on success or FALSE on failure.

Changelog

Version Description

5.5.0 The MYSQLI_SERVER_PUBLIC_KEY and
MYSQLI_SERVER_PUBLIC_KEY options were
added.

5.3.0 The MYSQLI_OPT_INT_AND_FLOAT_NATIVE,
MYSQLI_OPT_NET_CMD_BUFFER_SIZE,
MYSQLI_OPT_NET_READ_BUFFER_SIZE, and
MYSQLI_OPT_SSL_VERIFY_SERVER_CERT
options were added.

Examples

See mysqli_real_connect.

Notes

Note

MySQLnd always assumes the server default charset. This charset is sent during
connection hand-shake/authentication, which mysqlnd will use.

Libmysqlclient uses the default charset set in the my.cnf or by an explicit
call to mysqli_options prior to calling mysqli_real_connect, but after
mysqli_init.

See Also

mysqli_init
mysqli_real_connect

3.9.37 mysqli::ping, mysqli_ping

Copyright 1997-2014 the PHP Documentation Group.

mysqli::ping, mysqli_ping

119

• mysqli::ping

mysqli_ping

Pings a server connection, or tries to reconnect if the connection has gone down

Description

Object oriented style

 bool mysqli::ping();

Procedural style

 bool mysqli_ping(
 mysqli link);

Checks whether the connection to the server is working. If it has gone down, and global option
mysqli.reconnect is enabled an automatic reconnection is attempted.

This function can be used by clients that remain idle for a long while, to check whether the server has
closed the connection and reconnect if necessary.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.60 mysqli::ping example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if ($mysqli->connect_errno) {
 printf("Connect failed: %s\n", $mysqli->connect_error);
 exit();
}

/* check if server is alive */
if ($mysqli->ping()) {
 printf ("Our connection is ok!\n");
} else {
 printf ("Error: %s\n", $mysqli->error);
}

/* close connection */
$mysqli->close();
?>

Procedural style

mysqli::poll, mysqli_poll

120

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* check if server is alive */
if (mysqli_ping($link)) {
 printf ("Our connection is ok!\n");
} else {
 printf ("Error: %s\n", mysqli_error($link));
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Our connection is ok!

3.9.38 mysqli::poll, mysqli_poll

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::poll

mysqli_poll

Poll connections

Description

Object oriented style

 public static int mysqli::poll(
 array read,
 array error,
 array reject,
 int sec,
 int usec);

Procedural style

 int mysqli_poll(
 array read,
 array error,
 array reject,
 int sec,
 int usec);

Poll connections. Available only with mysqlnd. The method can be used as static.

http://www.php.net/language.oop5.static

mysqli::poll, mysqli_poll

121

Parameters

read List of connections to check for outstanding results that can be read.

error List of connections on which an error occured, for example, query failure
or lost connection.

reject List of connections rejected because no asynchronous query has been
run on for which the function could poll results.

sec Number of seconds to wait, must be non-negative.

usec Number of microseconds to wait, must be non-negative.

Return Values

Returns number of ready connections upon success, FALSE otherwise.

Examples

Example 3.61 A mysqli_poll example

<?php
$link1 = mysqli_connect();
$link1->query("SELECT 'test'", MYSQLI_ASYNC);
$all_links = array($link1);
$processed = 0;
do {
 $links = $errors = $reject = array();
 foreach ($all_links as $link) {
 $links[] = $errors[] = $reject[] = $link;
 }
 if (!mysqli_poll($links, $errors, $reject, 1)) {
 continue;
 }
 foreach ($links as $link) {
 if ($result = $link->reap_async_query()) {
 print_r($result->fetch_row());
 if (is_object($result))
 mysqli_free_result($result);
 } else die(sprintf("MySQLi Error: %s", mysqli_error($link)));
 $processed++;
 }
} while ($processed < count($all_links));
?>

The above example will output:

Array
(
 [0] => test
)

See Also

mysqli_query

mysqli::prepare, mysqli_prepare

122

mysqli_reap_async_query

3.9.39 mysqli::prepare, mysqli_prepare

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::prepare

mysqli_prepare

Prepare an SQL statement for execution

Description

Object oriented style

 mysqli_stmt mysqli::prepare(
 string query);

Procedural style

 mysqli_stmt mysqli_prepare(
 mysqli link,
 string query);

Prepares the SQL query, and returns a statement handle to be used for further operations on the
statement. The query must consist of a single SQL statement.

The parameter markers must be bound to application variables using mysqli_stmt_bind_param and/or
mysqli_stmt_bind_result before executing the statement or fetching rows.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

query The query, as a string.

Note

You should not add a terminating semicolon or
\g to the statement.

This parameter can include one or more parameter markers in the
SQL statement by embedding question mark (?) characters at the
appropriate positions.

Note

The markers are legal only in certain places in
SQL statements. For example, they are allowed
in the VALUES() list of an INSERT statement
(to specify column values for a row), or in a
comparison with a column in a WHERE clause to
specify a comparison value.

However, they are not allowed for identifiers
(such as table or column names), in the select

mysqli::prepare, mysqli_prepare

123

list that names the columns to be returned by a
SELECT statement, or to specify both operands
of a binary operator such as the = equal sign.
The latter restriction is necessary because it
would be impossible to determine the parameter
type. It's not allowed to compare marker with
NULL by ? IS NULL too. In general, parameters
are legal only in Data Manipulation Language
(DML) statements, and not in Data Definition
Language (DDL) statements.

Return Values

mysqli_prepare returns a statement object or FALSE if an error occurred.

Examples

Example 3.62 mysqli::prepare example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$city = "Amersfoort";

/* create a prepared statement */
if ($stmt = $mysqli->prepare("SELECT District FROM City WHERE Name=?")) {

 /* bind parameters for markers */
 $stmt->bind_param("s", $city);

 /* execute query */
 $stmt->execute();

 /* bind result variables */
 $stmt->bind_result($district);

 /* fetch value */
 $stmt->fetch();

 printf("%s is in district %s\n", $city, $district);

 /* close statement */
 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Procedural style

mysqli::query, mysqli_query

124

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$city = "Amersfoort";

/* create a prepared statement */
if ($stmt = mysqli_prepare($link, "SELECT District FROM City WHERE Name=?")) {

 /* bind parameters for markers */
 mysqli_stmt_bind_param($stmt, "s", $city);

 /* execute query */
 mysqli_stmt_execute($stmt);

 /* bind result variables */
 mysqli_stmt_bind_result($stmt, $district);

 /* fetch value */
 mysqli_stmt_fetch($stmt);

 printf("%s is in district %s\n", $city, $district);

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Amersfoort is in district Utrecht

See Also

mysqli_stmt_execute
mysqli_stmt_fetch
mysqli_stmt_bind_param
mysqli_stmt_bind_result
mysqli_stmt_close

3.9.40 mysqli::query, mysqli_query

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::query

mysqli_query

Performs a query on the database

mysqli::query, mysqli_query

125

Description

Object oriented style

 mixed mysqli::query(
 string query,
 int resultmode
 = =MYSQLI_STORE_RESULT);

Procedural style

 mixed mysqli_query(
 mysqli link,
 string query,
 int resultmode
 = =MYSQLI_STORE_RESULT);

Performs a query against the database.

For non-DML queries (not INSERT, UPDATE or DELETE), this function is similar to calling
mysqli_real_query followed by either mysqli_use_result or mysqli_store_result.

Note

In the case where you pass a statement to mysqli_query that is longer than
max_allowed_packet of the server, the returned error codes are different
depending on whether you are using MySQL Native Driver (mysqlnd) or MySQL
Client Library (libmysqlclient). The behavior is as follows:

• mysqlnd on Linux returns an error code of 1153. The error message means “got
a packet bigger than max_allowed_packet bytes”.

• mysqlnd on Windows returns an error code 2006. This error message means
“server has gone away”.

• libmysqlclient on all platforms returns an error code 2006. This error
message means “server has gone away”.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

query The query string.

Data inside the query should be properly escaped.

resultmode Either the constant MYSQLI_USE_RESULT or MYSQLI_STORE_RESULT
depending on the desired behavior. By default,
MYSQLI_STORE_RESULT is used.

If you use MYSQLI_USE_RESULT all subsequent calls will return error
Commands out of sync unless you call mysqli_free_result

With MYSQLI_ASYNC (available with mysqlnd), it is possible to perform
query asynchronously. mysqli_poll is then used to get results from
such queries.

Return Values

mysqli::query, mysqli_query

126

Returns FALSE on failure. For successful SELECT, SHOW, DESCRIBE or EXPLAIN queries
mysqli_query will return a mysqli_result object. For other successful queries mysqli_query will
return TRUE.

Changelog

Version Description

5.3.0 Added the ability of async queries.

Examples

Example 3.63 mysqli::query example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if ($mysqli->connect_errno) {
 printf("Connect failed: %s\n", $mysqli->connect_error);
 exit();
}

/* Create table doesn't return a resultset */
if ($mysqli->query("CREATE TEMPORARY TABLE myCity LIKE City") === TRUE) {
 printf("Table myCity successfully created.\n");
}

/* Select queries return a resultset */
if ($result = $mysqli->query("SELECT Name FROM City LIMIT 10")) {
 printf("Select returned %d rows.\n", $result->num_rows);

 /* free result set */
 $result->close();
}

/* If we have to retrieve large amount of data we use MYSQLI_USE_RESULT */
if ($result = $mysqli->query("SELECT * FROM City", MYSQLI_USE_RESULT)) {

 /* Note, that we can't execute any functions which interact with the
 server until result set was closed. All calls will return an
 'out of sync' error */
 if (!$mysqli->query("SET @a:='this will not work'")) {
 printf("Error: %s\n", $mysqli->error);
 }
 $result->close();
}

$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */

mysqli::real_connect, mysqli_real_connect

127

if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* Create table doesn't return a resultset */
if (mysqli_query($link, "CREATE TEMPORARY TABLE myCity LIKE City") === TRUE) {
 printf("Table myCity successfully created.\n");
}

/* Select queries return a resultset */
if ($result = mysqli_query($link, "SELECT Name FROM City LIMIT 10")) {
 printf("Select returned %d rows.\n", mysqli_num_rows($result));

 /* free result set */
 mysqli_free_result($result);
}

/* If we have to retrieve large amount of data we use MYSQLI_USE_RESULT */
if ($result = mysqli_query($link, "SELECT * FROM City", MYSQLI_USE_RESULT)) {

 /* Note, that we can't execute any functions which interact with the
 server until result set was closed. All calls will return an
 'out of sync' error */
 if (!mysqli_query($link, "SET @a:='this will not work'")) {
 printf("Error: %s\n", mysqli_error($link));
 }
 mysqli_free_result($result);
}

mysqli_close($link);
?>

The above examples will output:

Table myCity successfully created.
Select returned 10 rows.
Error: Commands out of sync; You can't run this command now

See Also

mysqli_real_query
mysqli_multi_query
mysqli_free_result

3.9.41 mysqli::real_connect, mysqli_real_connect

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::real_connect

mysqli_real_connect

Opens a connection to a mysql server

Description

Object oriented style

mysqli::real_connect, mysqli_real_connect

128

 bool mysqli::real_connect(
 string host,
 string username,
 string passwd,
 string dbname,
 int port,
 string socket,
 int flags);

Procedural style

 bool mysqli_real_connect(
 mysqli link,
 string host,
 string username,
 string passwd,
 string dbname,
 int port,
 string socket,
 int flags);

Establish a connection to a MySQL database engine.

This function differs from mysqli_connect:

• mysqli_real_connect needs a valid object which has to be created by function mysqli_init.

• With the mysqli_options function you can set various options for connection.

• There is a flags parameter.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

host Can be either a host name or an IP address. Passing the NULL value or
the string "localhost" to this parameter, the local host is assumed. When
possible, pipes will be used instead of the TCP/IP protocol.

username The MySQL user name.

passwd If provided or NULL, the MySQL server will attempt to authenticate the
user against those user records which have no password only. This
allows one username to be used with different permissions (depending
on if a password as provided or not).

dbname If provided will specify the default database to be used when performing
queries.

port Specifies the port number to attempt to connect to the MySQL server.

socket Specifies the socket or named pipe that should be used.

Note

Specifying the socket parameter will not
explicitly determine the type of connection to
be used when connecting to the MySQL server.
How the connection is made to the MySQL
database is determined by the host parameter.

mysqli::real_connect, mysqli_real_connect

129

flags With the parameter flags you can set different connection options:

Table 3.11 Supported flags

Name Description

MYSQLI_CLIENT_COMPRESS Use compression protocol

MYSQLI_CLIENT_FOUND_ROWS return number of matched rows,
not the number of affected rows

MYSQLI_CLIENT_IGNORE_SPACE Allow spaces after function names.
Makes all function names reserved
words.

MYSQLI_CLIENT_INTERACTIVE Allow interactive_timeout
seconds (instead of
wait_timeout seconds) of
inactivity before closing the
connection

MYSQLI_CLIENT_SSL Use SSL (encryption)

MYSQLI_CLIENT_SSL_DONT_VERIFY_SERVER_CERTLike MYSQLI_CLIENT_SSL, but
disables validation of the provided
SSL certificate. This is only for
installations using MySQL Native
Driver and MySQL 5.6 or later.

Note

For security reasons the MULTI_STATEMENT
flag is not supported in PHP. If you want
to execute multiple queries use the
mysqli_multi_query function.

Changelog

Version Description

5.6.16 Added the
MYSQLI_CLIENT_SSL_DONT_VERIFY_SERVER_CERT
flag for MySQL Native Driver

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.64 mysqli::real_connect example

Object oriented style

<?php

$mysqli = mysqli_init();
if (!$mysqli) {
 die('mysqli_init failed');

mysqli::real_connect, mysqli_real_connect

130

}

if (!$mysqli->options(MYSQLI_INIT_COMMAND, 'SET AUTOCOMMIT = 0')) {
 die('Setting MYSQLI_INIT_COMMAND failed');
}

if (!$mysqli->options(MYSQLI_OPT_CONNECT_TIMEOUT, 5)) {
 die('Setting MYSQLI_OPT_CONNECT_TIMEOUT failed');
}

if (!$mysqli->real_connect('localhost', 'my_user', 'my_password', 'my_db')) {
 die('Connect Error (' . mysqli_connect_errno() . ') '
 . mysqli_connect_error());
}

echo 'Success... ' . $mysqli->host_info . "\n";

$mysqli->close();
?>

Object oriented style when extending mysqli class

<?php

class foo_mysqli extends mysqli {
 public function __construct($host, $user, $pass, $db) {
 parent::init();

 if (!parent::options(MYSQLI_INIT_COMMAND, 'SET AUTOCOMMIT = 0')) {
 die('Setting MYSQLI_INIT_COMMAND failed');
 }

 if (!parent::options(MYSQLI_OPT_CONNECT_TIMEOUT, 5)) {
 die('Setting MYSQLI_OPT_CONNECT_TIMEOUT failed');
 }

 if (!parent::real_connect($host, $user, $pass, $db)) {
 die('Connect Error (' . mysqli_connect_errno() . ') '
 . mysqli_connect_error());
 }
 }
}

$db = new foo_mysqli('localhost', 'my_user', 'my_password', 'my_db');

echo 'Success... ' . $db->host_info . "\n";

$db->close();
?>

Procedural style

<?php

$link = mysqli_init();
if (!$link) {
 die('mysqli_init failed');
}

mysqli::real_escape_string, mysqli_real_escape_string

131

if (!mysqli_options($link, MYSQLI_INIT_COMMAND, 'SET AUTOCOMMIT = 0')) {
 die('Setting MYSQLI_INIT_COMMAND failed');
}

if (!mysqli_options($link, MYSQLI_OPT_CONNECT_TIMEOUT, 5)) {
 die('Setting MYSQLI_OPT_CONNECT_TIMEOUT failed');
}

if (!mysqli_real_connect($link, 'localhost', 'my_user', 'my_password', 'my_db')) {
 die('Connect Error (' . mysqli_connect_errno() . ') '
 . mysqli_connect_error());
}

echo 'Success... ' . mysqli_get_host_info($link) . "\n";

mysqli_close($link);
?>

The above examples will output:

Success... MySQL host info: localhost via TCP/IP

Notes

Note

MySQLnd always assumes the server default charset. This charset is sent during
connection hand-shake/authentication, which mysqlnd will use.

Libmysqlclient uses the default charset set in the my.cnf or by an explicit
call to mysqli_options prior to calling mysqli_real_connect, but after
mysqli_init.

See Also

mysqli_connect
mysqli_init
mysqli_options
mysqli_ssl_set
mysqli_close

3.9.42 mysqli::real_escape_string, mysqli_real_escape_string

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::real_escape_string

mysqli_real_escape_string

Escapes special characters in a string for use in an SQL statement, taking into account the current
charset of the connection

Description

Object oriented style

mysqli::real_escape_string, mysqli_real_escape_string

132

 string mysqli::escape_string(
 string escapestr);

 string mysqli::real_escape_string(
 string escapestr);

Procedural style

 string mysqli_real_escape_string(
 mysqli link,
 string escapestr);

This function is used to create a legal SQL string that you can use in an SQL statement. The given string is
encoded to an escaped SQL string, taking into account the current character set of the connection.

Security: the default character set

The character set must be set either at the server level, or with the API function
mysqli_set_charset for it to affect mysqli_real_escape_string. See the
concepts section on character sets for more information.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

escapestr The string to be escaped.

Characters encoded are NUL (ASCII 0), \n, \r, \, ', ",
and Control-Z.

Return Values

Returns an escaped string.

Examples

Example 3.65 mysqli::real_escape_string example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$mysqli->query("CREATE TEMPORARY TABLE myCity LIKE City");

$city = "'s Hertogenbosch";

/* this query will fail, cause we didn't escape $city */
if (!$mysqli->query("INSERT into myCity (Name) VALUES ('$city')")) {
 printf("Error: %s\n", $mysqli->sqlstate);
}

$city = $mysqli->real_escape_string($city);

mysqli::real_escape_string, mysqli_real_escape_string

133

/* this query with escaped $city will work */
if ($mysqli->query("INSERT into myCity (Name) VALUES ('$city')")) {
 printf("%d Row inserted.\n", $mysqli->affected_rows);
}

$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_query($link, "CREATE TEMPORARY TABLE myCity LIKE City");

$city = "'s Hertogenbosch";

/* this query will fail, cause we didn't escape $city */
if (!mysqli_query($link, "INSERT into myCity (Name) VALUES ('$city')")) {
 printf("Error: %s\n", mysqli_sqlstate($link));
}

$city = mysqli_real_escape_string($link, $city);

/* this query with escaped $city will work */
if (mysqli_query($link, "INSERT into myCity (Name) VALUES ('$city')")) {
 printf("%d Row inserted.\n", mysqli_affected_rows($link));
}

mysqli_close($link);
?>

The above examples will output:

Error: 42000
1 Row inserted.

Notes

Note

For those accustomed to using mysql_real_escape_string, note
that the arguments of mysqli_real_escape_string differ from what
mysql_real_escape_string expects. The link identifier comes first in
mysqli_real_escape_string, whereas the string to be escaped comes first in
mysql_real_escape_string.

See Also

mysqli::real_query, mysqli_real_query

134

mysqli_set_charset
mysqli_character_set_name

3.9.43 mysqli::real_query, mysqli_real_query

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::real_query

mysqli_real_query

Execute an SQL query

Description

Object oriented style

 bool mysqli::real_query(
 string query);

Procedural style

 bool mysqli_real_query(
 mysqli link,
 string query);

Executes a single query against the database whose result can then be retrieved or stored using the
mysqli_store_result or mysqli_use_result functions.

In order to determine if a given query should return a result set or not, see mysqli_field_count.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

query The query, as a string.

Data inside the query should be properly escaped.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

mysqli_query
mysqli_store_result
mysqli_use_result

3.9.44 mysqli::reap_async_query, mysqli_reap_async_query

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::reap_async_query

mysqli_reap_async_query

Get result from async query

mysqli::refresh, mysqli_refresh

135

Description

Object oriented style

 public mysqli_result mysqli::reap_async_query();

Procedural style

 mysqli_result mysqli_reap_async_query(
 mysqli link);

Get result from async query. Available only with mysqlnd.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns mysqli_result in success, FALSE otherwise.

See Also

mysqli_poll

3.9.45 mysqli::refresh, mysqli_refresh

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::refresh

mysqli_refresh

Refreshes

Description

Object oriented style

 public bool mysqli::refresh(
 int options);

Procedural style

 int mysqli_refresh(
 resource link,
 int options);

Flushes tables or caches, or resets the replication server information.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

options The options to refresh, using the MYSQLI_REFRESH_* constants as
documented within the MySQLi constants documentation.

See also the official MySQL Refresh documentation.

http://dev.mysql.com/doc/mysql/en/mysql-refresh.html

mysqli::release_savepoint, mysqli_release_savepoint

136

Return Values

TRUE if the refresh was a success, otherwise FALSE

See Also

mysqli_poll

3.9.46 mysqli::release_savepoint, mysqli_release_savepoint

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::release_savepoint

mysqli_release_savepoint

Removes the named savepoint from the set of savepoints of the current transaction

Description

Object oriented style (method):

 public bool mysqli::release_savepoint(
 string name);

Procedural style:

 bool mysqli_release_savepoint(
 mysqli link,
 string name);

Warning

This function is currently not documented; only its argument list is available.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

name

Return Values

Returns TRUE on success or FALSE on failure.

See Also

mysqli_rollback

3.9.47 mysqli::rollback, mysqli_rollback

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::rollback

mysqli_rollback

mysqli::rollback, mysqli_rollback

137

Rolls back current transaction

Description

Object oriented style

 bool mysqli::rollback(
 int flags,
 string name);

Procedural style

 bool mysqli_rollback(
 mysqli link,
 int flags,
 string name);

Rollbacks the current transaction for the database.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

flags A bitmask of MYSQLI_TRANS_COR_* constants.

name If provided then ROLLBACK/*name*/ is executed.

Return Values

Returns TRUE on success or FALSE on failure.

Changelog

Version Description

5.5.0 Added flags and name parameters.

Examples

Example 3.66 mysqli::rollback example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* disable autocommit */
$mysqli->autocommit(FALSE);

$mysqli->query("CREATE TABLE myCity LIKE City");
$mysqli->query("ALTER TABLE myCity Type=InnoDB");
$mysqli->query("INSERT INTO myCity SELECT * FROM City LIMIT 50");

mysqli::rollback, mysqli_rollback

138

/* commit insert */
$mysqli->commit();

/* delete all rows */
$mysqli->query("DELETE FROM myCity");

if ($result = $mysqli->query("SELECT COUNT(*) FROM myCity")) {
 $row = $result->fetch_row();
 printf("%d rows in table myCity.\n", $row[0]);
 /* Free result */
 $result->close();
}

/* Rollback */
$mysqli->rollback();

if ($result = $mysqli->query("SELECT COUNT(*) FROM myCity")) {
 $row = $result->fetch_row();
 printf("%d rows in table myCity (after rollback).\n", $row[0]);
 /* Free result */
 $result->close();
}

/* Drop table myCity */
$mysqli->query("DROP TABLE myCity");

$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* disable autocommit */
mysqli_autocommit($link, FALSE);

mysqli_query($link, "CREATE TABLE myCity LIKE City");
mysqli_query($link, "ALTER TABLE myCity Type=InnoDB");
mysqli_query($link, "INSERT INTO myCity SELECT * FROM City LIMIT 50");

/* commit insert */
mysqli_commit($link);

/* delete all rows */
mysqli_query($link, "DELETE FROM myCity");

if ($result = mysqli_query($link, "SELECT COUNT(*) FROM myCity")) {
 $row = mysqli_fetch_row($result);
 printf("%d rows in table myCity.\n", $row[0]);
 /* Free result */
 mysqli_free_result($result);
}

/* Rollback */
mysqli_rollback($link);

mysqli::rpl_query_type, mysqli_rpl_query_type

139

if ($result = mysqli_query($link, "SELECT COUNT(*) FROM myCity")) {
 $row = mysqli_fetch_row($result);
 printf("%d rows in table myCity (after rollback).\n", $row[0]);
 /* Free result */
 mysqli_free_result($result);
}

/* Drop table myCity */
mysqli_query($link, "DROP TABLE myCity");

mysqli_close($link);
?>

The above examples will output:

0 rows in table myCity.
50 rows in table myCity (after rollback).

See Also

mysqli_begin_transaction
mysqli_commit
mysqli_autocommit
mysqli_release_savepoint

3.9.48 mysqli::rpl_query_type, mysqli_rpl_query_type

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::rpl_query_type

mysqli_rpl_query_type

Returns RPL query type

Description

Object oriented style

 int mysqli::rpl_query_type(
 string query);

Procedural style

 int mysqli_rpl_query_type(
 mysqli link,
 string query);

Returns MYSQLI_RPL_MASTER, MYSQLI_RPL_SLAVE or MYSQLI_RPL_ADMIN depending on a query
type. INSERT, UPDATE and similar are master queries, SELECT is slave, and FLUSH, REPAIR and similar
are admin.

Warning

This function is currently not documented; only its argument list is available.

mysqli::savepoint, mysqli_savepoint

140

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.9.49 mysqli::savepoint, mysqli_savepoint

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::savepoint

mysqli_savepoint

Set a named transaction savepoint

Description

Object oriented style (method):

 public bool mysqli::savepoint(
 string name);

Procedural style:

 bool mysqli_savepoint(
 mysqli link,
 string name);

Warning

This function is currently not documented; only its argument list is available.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

name

Return Values

Returns TRUE on success or FALSE on failure.

See Also

mysqli_commit

3.9.50 mysqli::select_db, mysqli_select_db

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::select_db

mysqli_select_db

Selects the default database for database queries

Description

Object oriented style

mysqli::select_db, mysqli_select_db

141

 bool mysqli::select_db(
 string dbname);

Procedural style

 bool mysqli_select_db(
 mysqli link,
 string dbname);

Selects the default database to be used when performing queries against the database connection.

Note

This function should only be used to change the default database for the
connection. You can select the default database with 4th parameter in
mysqli_connect.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

dbname The database name.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.67 mysqli::select_db example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "test");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* return name of current default database */
if ($result = $mysqli->query("SELECT DATABASE()")) {
 $row = $result->fetch_row();
 printf("Default database is %s.\n", $row[0]);
 $result->close();
}

/* change db to world db */
$mysqli->select_db("world");

/* return name of current default database */
if ($result = $mysqli->query("SELECT DATABASE()")) {
 $row = $result->fetch_row();
 printf("Default database is %s.\n", $row[0]);
 $result->close();
}

$mysqli->close();

mysqli::send_query, mysqli_send_query

142

?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "test");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* return name of current default database */
if ($result = mysqli_query($link, "SELECT DATABASE()")) {
 $row = mysqli_fetch_row($result);
 printf("Default database is %s.\n", $row[0]);
 mysqli_free_result($result);
}

/* change db to world db */
mysqli_select_db($link, "world");

/* return name of current default database */
if ($result = mysqli_query($link, "SELECT DATABASE()")) {
 $row = mysqli_fetch_row($result);
 printf("Default database is %s.\n", $row[0]);
 mysqli_free_result($result);
}

mysqli_close($link);
?>

The above examples will output:

Default database is test.
Default database is world.

See Also

mysqli_connect
mysqli_real_connect

3.9.51 mysqli::send_query, mysqli_send_query

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::send_query

mysqli_send_query

Send the query and return

Description

mysqli::set_charset, mysqli_set_charset

143

Object oriented style

 bool mysqli::send_query(
 string query);

Procedural style

 bool mysqli_send_query(
 mysqli link,
 string query);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.9.52 mysqli::set_charset, mysqli_set_charset

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::set_charset

mysqli_set_charset

Sets the default client character set

Description

Object oriented style

 bool mysqli::set_charset(
 string charset);

Procedural style

 bool mysqli_set_charset(
 mysqli link,
 string charset);

Sets the default character set to be used when sending data from and to the database server.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

charset The charset to be set as default.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

To use this function on a Windows platform you need MySQL client library version
4.1.11 or above (for MySQL 5.0 you need 5.0.6 or above).

mysqli::set_charset, mysqli_set_charset

144

Note

This is the preferred way to change the charset. Using mysqli_query to set it
(such as SET NAMES utf8) is not recommended. See the MySQL character set
concepts section for more information.

Examples

Example 3.68 mysqli::set_charset example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "test");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

printf("Initial character set: %s\n", $mysqli->character_set_name());

/* change character set to utf8 */
if (!$mysqli->set_charset("utf8")) {
 printf("Error loading character set utf8: %s\n", $mysqli->error);
 exit();
} else {
 printf("Current character set: %s\n", $mysqli->character_set_name());
}

$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect('localhost', 'my_user', 'my_password', 'test');

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

printf("Initial character set: %s\n", mysqli_character_set_name($link));

/* change character set to utf8 */
if (!mysqli_set_charset($link, "utf8")) {
 printf("Error loading character set utf8: %s\n", mysqli_error($link));
 exit();
} else {
 printf("Current character set: %s\n", mysqli_character_set_name($link));
}

mysqli_close($link);
?>

mysqli::set_local_infile_default, mysqli_set_local_infile_default

145

The above examples will output something similar to:

Initial character set: latin1
Current character set: utf8

See Also

mysqli_character_set_name
mysqli_real_escape_string
MySQL character set concepts
List of character sets that MySQL supports

3.9.53 mysqli::set_local_infile_default,
mysqli_set_local_infile_default

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::set_local_infile_default

mysqli_set_local_infile_default

Unsets user defined handler for load local infile command

Description

 void mysqli_set_local_infile_default(
 mysqli link);

Deactivates a LOAD DATA INFILE LOCAL handler previously set with
mysqli_set_local_infile_handler.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

No value is returned.

Examples

See mysqli_set_local_infile_handler examples

See Also

mysqli_set_local_infile_handler

3.9.54 mysqli::set_local_infile_handler,
mysqli_set_local_infile_handler

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::set_local_infile_handler

http://dev.mysql.com/doc/mysql/en/charset-charsets.html

mysqli::set_local_infile_handler, mysqli_set_local_infile_handler

146

mysqli_set_local_infile_handler

Set callback function for LOAD DATA LOCAL INFILE command

Description

Object oriented style

 bool mysqli::set_local_infile_handler(
 mysqli link,
 callable read_func);

Procedural style

 bool mysqli_set_local_infile_handler(
 mysqli link,
 callable read_func);

Set callback function for LOAD DATA LOCAL INFILE command

The callbacks task is to read input from the file specified in the LOAD DATA LOCAL INFILE and to
reformat it into the format understood by LOAD DATA INFILE.

The returned data needs to match the format specified in the LOAD DATA

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

read_func A callback function or object method taking the following parameters:

stream A PHP stream associated with the
SQL commands INFILE

&buffer A string buffer to store the rewritten
input into

buflen The maximum number of characters
to be stored in the buffer

&errormsg If an error occurs you can store an
error message in here

The callback function should return the number of characters stored in the buffer or a negative value if
an error occurred.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.69 mysqli::set_local_infile_handler example

Object oriented style

mysqli::set_local_infile_handler, mysqli_set_local_infile_handler

147

<?php
 $db = mysqli_init();
 $db->real_connect("localhost","root","","test");

 function callme($stream, &$buffer, $buflen, &$errmsg)
 {
 $buffer = fgets($stream);

 echo $buffer;

 // convert to upper case and replace "," delimiter with [TAB]
 $buffer = strtoupper(str_replace(",", "\t", $buffer));

 return strlen($buffer);
 }

 echo "Input:\n";

 $db->set_local_infile_handler("callme");
 $db->query("LOAD DATA LOCAL INFILE 'input.txt' INTO TABLE t1");
 $db->set_local_infile_default();

 $res = $db->query("SELECT * FROM t1");

 echo "\nResult:\n";
 while ($row = $res->fetch_assoc()) {
 echo join(",", $row)."\n";
 }
?>

Procedural style

<?php
 $db = mysqli_init();
 mysqli_real_connect($db, "localhost","root","","test");

 function callme($stream, &$buffer, $buflen, &$errmsg)
 {
 $buffer = fgets($stream);

 echo $buffer;

 // convert to upper case and replace "," delimiter with [TAB]
 $buffer = strtoupper(str_replace(",", "\t", $buffer));

 return strlen($buffer);
 }

 echo "Input:\n";

 mysqli_set_local_infile_handler($db, "callme");
 mysqli_query($db, "LOAD DATA LOCAL INFILE 'input.txt' INTO TABLE t1");
 mysqli_set_local_infile_default($db);

 $res = mysqli_query($db, "SELECT * FROM t1");

 echo "\nResult:\n";
 while ($row = mysqli_fetch_assoc($res)) {
 echo join(",", $row)."\n";

mysqli::$sqlstate, mysqli_sqlstate

148

 }
?>

The above examples will output:

Input:
23,foo
42,bar

Output:
23,FOO
42,BAR

See Also

mysqli_set_local_infile_default

3.9.55 mysqli::$sqlstate, mysqli_sqlstate

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::$sqlstate

mysqli_sqlstate

Returns the SQLSTATE error from previous MySQL operation

Description

Object oriented style

 string
 mysqli->sqlstate ;

Procedural style

 string mysqli_sqlstate(
 mysqli link);

Returns a string containing the SQLSTATE error code for the last error. The error code consists of five
characters. '00000' means no error. The values are specified by ANSI SQL and ODBC. For a list of
possible values, see http://dev.mysql.com/doc/mysql/en/error-handling.html.

Note

Note that not all MySQL errors are yet mapped to SQLSTATE's. The value HY000
(general error) is used for unmapped errors.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

http://dev.mysql.com/doc/mysql/en/error-handling.html

mysqli::$sqlstate, mysqli_sqlstate

149

Returns a string containing the SQLSTATE error code for the last error. The error code consists of five
characters. '00000' means no error.

Examples

Example 3.70 $mysqli->sqlstate example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* Table City already exists, so we should get an error */
if (!$mysqli->query("CREATE TABLE City (ID INT, Name VARCHAR(30))")) {
 printf("Error - SQLSTATE %s.\n", $mysqli->sqlstate);
}

$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* Table City already exists, so we should get an error */
if (!mysqli_query($link, "CREATE TABLE City (ID INT, Name VARCHAR(30))")) {
 printf("Error - SQLSTATE %s.\n", mysqli_sqlstate($link));
}

mysqli_close($link);
?>

The above examples will output:

Error - SQLSTATE 42S01.

See Also

mysqli_errno
mysqli_error

mysqli::ssl_set, mysqli_ssl_set

150

3.9.56 mysqli::ssl_set, mysqli_ssl_set

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::ssl_set

mysqli_ssl_set

Used for establishing secure connections using SSL

Description

Object oriented style

 bool mysqli::ssl_set(
 string key,
 string cert,
 string ca,
 string capath,
 string cipher);

Procedural style

 bool mysqli_ssl_set(
 mysqli link,
 string key,
 string cert,
 string ca,
 string capath,
 string cipher);

Used for establishing secure connections using SSL. It must be called before mysqli_real_connect.
This function does nothing unless OpenSSL support is enabled.

Note that MySQL Native Driver does not support SSL before PHP 5.3.3, so calling this function when
using MySQL Native Driver will result in an error. MySQL Native Driver is enabled by default on Microsoft
Windows from PHP version 5.3 onwards.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

key The path name to the key file.

cert The path name to the certificate file.

ca The path name to the certificate authority file.

capath The pathname to a directory that contains trusted SSL CA certificates in
PEM format.

cipher A list of allowable ciphers to use for SSL encryption.

Any unused SSL parameters may be given as NULL

Return Values

This function always returns TRUE value. If SSL setup is incorrect mysqli_real_connect will return an
error when you attempt to connect.

mysqli::stat, mysqli_stat

151

See Also

mysqli_options
mysqli_real_connect

3.9.57 mysqli::stat, mysqli_stat

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::stat

mysqli_stat

Gets the current system status

Description

Object oriented style

 string mysqli::stat();

Procedural style

 string mysqli_stat(
 mysqli link);

mysqli_stat returns a string containing information similar to that provided by the 'mysqladmin status'
command. This includes uptime in seconds and the number of running threads, questions, reloads, and
open tables.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

A string describing the server status. FALSE if an error occurred.

Examples

Example 3.71 mysqli::stat example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

printf ("System status: %s\n", $mysqli->stat());

$mysqli->close();
?>

mysqli::stmt_init, mysqli_stmt_init

152

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

printf("System status: %s\n", mysqli_stat($link));

mysqli_close($link);
?>

The above examples will output:

System status: Uptime: 272 Threads: 1 Questions: 5340 Slow queries: 0
Opens: 13 Flush tables: 1 Open tables: 0 Queries per second avg: 19.632
Memory in use: 8496K Max memory used: 8560K

See Also

mysqli_get_server_info

3.9.58 mysqli::stmt_init, mysqli_stmt_init

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::stmt_init

mysqli_stmt_init

Initializes a statement and returns an object for use with mysqli_stmt_prepare

Description

Object oriented style

 mysqli_stmt mysqli::stmt_init();

Procedural style

 mysqli_stmt mysqli_stmt_init(
 mysqli link);

Allocates and initializes a statement object suitable for mysqli_stmt_prepare.

Note

Any subsequent calls to any mysqli_stmt function will fail until
mysqli_stmt_prepare was called.

mysqli::store_result, mysqli_store_result

153

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns an object.

See Also

mysqli_stmt_prepare

3.9.59 mysqli::store_result, mysqli_store_result

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::store_result

mysqli_store_result

Transfers a result set from the last query

Description

Object oriented style

 mysqli_result mysqli::store_result(
 int option);

Procedural style

 mysqli_result mysqli_store_result(
 mysqli link,
 int option);

Transfers the result set from the last query on the database connection represented by the link
parameter to be used with the mysqli_data_seek function.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

option The option that you want to set. It can be one of the following values:

Table 3.12 Valid options

Name Description

MYSQLI_STORE_RESULT_COPY_DATACopy results from the internal
mysqlnd buffer into the PHP
variables fetched. By default,
mysqlnd will use a reference logic
to avoid copying and duplicating
results held in memory. For certain
result sets, for example, result
sets with many small rows, the
copy approach can reduce the

mysqli::$thread_id, mysqli_thread_id

154

Name Description
overall memory usage because
PHP variables holding results may
be released earlier (available with
mysqlnd only, since PHP 5.6.0)

Return Values

Returns a buffered result object or FALSE if an error occurred.

Note

mysqli_store_result returns FALSE in case the query didn't return a result set
(if the query was, for example an INSERT statement). This function also returns
FALSE if the reading of the result set failed. You can check if you have got an error
by checking if mysqli_error doesn't return an empty string, if mysqli_errno
returns a non zero value, or if mysqli_field_count returns a non zero value.
Also possible reason for this function returning FALSE after successful call to
mysqli_query can be too large result set (memory for it cannot be allocated).
If mysqli_field_count returns a non-zero value, the statement should have
produced a non-empty result set.

Notes

Note

Although it is always good practice to free the memory used by the result of a query
using the mysqli_free_result function, when transferring large result sets
using the mysqli_store_result this becomes particularly important.

Examples

See mysqli_multi_query.

See Also

mysqli_real_query
mysqli_use_result

3.9.60 mysqli::$thread_id, mysqli_thread_id

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::$thread_id

mysqli_thread_id

Returns the thread ID for the current connection

Description

Object oriented style

 int
 mysqli->thread_id ;

Procedural style

mysqli::$thread_id, mysqli_thread_id

155

 int mysqli_thread_id(
 mysqli link);

The mysqli_thread_id function returns the thread ID for the current connection which can then be killed
using the mysqli_kill function. If the connection is lost and you reconnect with mysqli_ping, the
thread ID will be other. Therefore you should get the thread ID only when you need it.

Note

The thread ID is assigned on a connection-by-connection basis. Hence, if the
connection is broken and then re-established a new thread ID will be assigned.

To kill a running query you can use the SQL command KILL QUERY processid.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Returns the Thread ID for the current connection.

Examples

Example 3.72 $mysqli->thread_id example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* determine our thread id */
$thread_id = $mysqli->thread_id;

/* Kill connection */
$mysqli->kill($thread_id);

/* This should produce an error */
if (!$mysqli->query("CREATE TABLE myCity LIKE City")) {
 printf("Error: %s\n", $mysqli->error);
 exit;
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php

mysqli::thread_safe, mysqli_thread_safe

156

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* determine our thread id */
$thread_id = mysqli_thread_id($link);

/* Kill connection */
mysqli_kill($link, $thread_id);

/* This should produce an error */
if (!mysqli_query($link, "CREATE TABLE myCity LIKE City")) {
 printf("Error: %s\n", mysqli_error($link));
 exit;
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Error: MySQL server has gone away

See Also

mysqli_kill

3.9.61 mysqli::thread_safe, mysqli_thread_safe

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::thread_safe

mysqli_thread_safe

Returns whether thread safety is given or not

Description

Procedural style

 bool mysqli_thread_safe();

Tells whether the client library is compiled as thread-safe.

Return Values

TRUE if the client library is thread-safe, otherwise FALSE.

3.9.62 mysqli::use_result, mysqli_use_result

Copyright 1997-2014 the PHP Documentation Group.

mysqli::use_result, mysqli_use_result

157

• mysqli::use_result

mysqli_use_result

Initiate a result set retrieval

Description

Object oriented style

 mysqli_result mysqli::use_result();

Procedural style

 mysqli_result mysqli_use_result(
 mysqli link);

Used to initiate the retrieval of a result set from the last query executed using the mysqli_real_query
function on the database connection.

Either this or the mysqli_store_result function must be called before the results of a query can be
retrieved, and one or the other must be called to prevent the next query on that database connection from
failing.

Note

The mysqli_use_result function does not transfer the entire result set from
the database and hence cannot be used functions such as mysqli_data_seek
to move to a particular row within the set. To use this functionality, the result
set must be stored using mysqli_store_result. One should not use
mysqli_use_result if a lot of processing on the client side is performed, since
this will tie up the server and prevent other threads from updating any tables from
which the data is being fetched.

Return Values

Returns an unbuffered result object or FALSE if an error occurred.

Examples

Example 3.73 mysqli::use_result example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT CURRENT_USER();";
$query .= "SELECT Name FROM City ORDER BY ID LIMIT 20, 5";

/* execute multi query */
if ($mysqli->multi_query($query)) {
 do {

mysqli::use_result, mysqli_use_result

158

 /* store first result set */
 if ($result = $mysqli->use_result()) {
 while ($row = $result->fetch_row()) {
 printf("%s\n", $row[0]);
 }
 $result->close();
 }
 /* print divider */
 if ($mysqli->more_results()) {
 printf("-----------------\n");
 }
 } while ($mysqli->next_result());
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT CURRENT_USER();";
$query .= "SELECT Name FROM City ORDER BY ID LIMIT 20, 5";

/* execute multi query */
if (mysqli_multi_query($link, $query)) {
 do {
 /* store first result set */
 if ($result = mysqli_use_result($link)) {
 while ($row = mysqli_fetch_row($result)) {
 printf("%s\n", $row[0]);
 }
 mysqli_free_result($result);
 }
 /* print divider */
 if (mysqli_more_results($link)) {
 printf("-----------------\n");
 }
 } while (mysqli_next_result($link));
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

my_user@localhost

Amersfoort
Maastricht

mysqli::$warning_count, mysqli_warning_count

159

Dordrecht
Leiden
Haarlemmermeer

See Also

mysqli_real_query
mysqli_store_result

3.9.63 mysqli::$warning_count, mysqli_warning_count

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::$warning_count

mysqli_warning_count

Returns the number of warnings from the last query for the given link

Description

Object oriented style

 int
 mysqli->warning_count ;

Procedural style

 int mysqli_warning_count(
 mysqli link);

Returns the number of warnings from the last query in the connection.

Note

For retrieving warning messages you can use the SQL command SHOW WARNINGS
[limit row_count].

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

Return Values

Number of warnings or zero if there are no warnings.

Examples

Example 3.74 $mysqli->warning_count example

Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */

mysqli::$warning_count, mysqli_warning_count

160

if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$mysqli->query("CREATE TABLE myCity LIKE City");

/* a remarkable city in Wales */
$query = "INSERT INTO myCity (CountryCode, Name) VALUES('GBR',
 'Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch')";

$mysqli->query($query);

if ($mysqli->warning_count) {
 if ($result = $mysqli->query("SHOW WARNINGS")) {
 $row = $result->fetch_row();
 printf("%s (%d): %s\n", $row[0], $row[1], $row[2]);
 $result->close();
 }
}

/* close connection */
$mysqli->close();
?>

Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_query($link, "CREATE TABLE myCity LIKE City");

/* a remarkable long city name in Wales */
$query = "INSERT INTO myCity (CountryCode, Name) VALUES('GBR',
 'Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch')";

mysqli_query($link, $query);

if (mysqli_warning_count($link)) {
 if ($result = mysqli_query($link, "SHOW WARNINGS")) {
 $row = mysqli_fetch_row($result);
 printf("%s (%d): %s\n", $row[0], $row[1], $row[2]);
 mysqli_free_result($result);
 }
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Warning (1264): Data truncated for column 'Name' at row 1

The mysqli_stmt class

161

See Also

mysqli_errno
mysqli_error
mysqli_sqlstate

3.10 The mysqli_stmt class
Copyright 1997-2014 the PHP Documentation Group.

Represents a prepared statement.

mysqli_stmt {
mysqli_stmt

 Properties

 int
 mysqli_stmt->affected_rows ;

 int
 mysqli_stmt->errno ;

 array
 mysqli_stmt->error_list ;

 string
 mysqli_stmt->error ;

 int
 mysqli_stmt->field_count ;

 int
 mysqli_stmt->insert_id ;

 int
 mysqli_stmt->num_rows ;

 int
 mysqli_stmt->param_count ;

 string
 mysqli_stmt->sqlstate ;

Methods

 mysqli_stmt::__construct(
 mysqli link,
 string query);

 int mysqli_stmt::attr_get(
 int attr);

 bool mysqli_stmt::attr_set(
 int attr,
 int mode);

 bool mysqli_stmt::bind_param(
 string types,
 mixed var1,

mysqli_stmt::$affected_rows, mysqli_stmt_affected_rows

162

 mixed ...);

 bool mysqli_stmt::bind_result(
 mixed var1,
 mixed ...);

 bool mysqli_stmt::close();

 void mysqli_stmt::data_seek(
 int offset);

 bool mysqli_stmt::execute();

 bool mysqli_stmt::fetch();

 void mysqli_stmt::free_result();

 mysqli_result mysqli_stmt::get_result();

 object mysqli_stmt::get_warnings(
 mysqli_stmt stmt);

 mixed mysqli_stmt::prepare(
 string query);

 bool mysqli_stmt::reset();

 mysqli_result mysqli_stmt::result_metadata();

 bool mysqli_stmt::send_long_data(
 int param_nr,
 string data);

 bool mysqli_stmt::store_result();

}

3.10.1 mysqli_stmt::$affected_rows, mysqli_stmt_affected_rows

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::$affected_rows

mysqli_stmt_affected_rows

Returns the total number of rows changed, deleted, or inserted by the last executed statement

Description

Object oriented style

 int
 mysqli_stmt->affected_rows ;

Procedural style

 int mysqli_stmt_affected_rows(
 mysqli_stmt stmt);

Returns the number of rows affected by INSERT, UPDATE, or DELETE query.

This function only works with queries which update a table. In order to get the number of rows from a
SELECT query, use mysqli_stmt_num_rows instead.

mysqli_stmt::$affected_rows, mysqli_stmt_affected_rows

163

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no
records where updated for an UPDATE/DELETE statement, no rows matched the WHERE clause in the
query or that no query has yet been executed. -1 indicates that the query has returned an error. NULL
indicates an invalid argument was supplied to the function.

Note

If the number of affected rows is greater than maximal PHP int value, the number of
affected rows will be returned as a string value.

Examples

Example 3.75 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* create temp table */
$mysqli->query("CREATE TEMPORARY TABLE myCountry LIKE Country");

$query = "INSERT INTO myCountry SELECT * FROM Country WHERE Code LIKE ?";

/* prepare statement */
if ($stmt = $mysqli->prepare($query)) {

 /* Bind variable for placeholder */
 $code = 'A%';
 $stmt->bind_param("s", $code);

 /* execute statement */
 $stmt->execute();

 printf("rows inserted: %d\n", $stmt->affected_rows);

 /* close statement */
 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.76 Procedural style

<?php

mysqli_stmt::attr_get, mysqli_stmt_attr_get

164

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* create temp table */
mysqli_query($link, "CREATE TEMPORARY TABLE myCountry LIKE Country");

$query = "INSERT INTO myCountry SELECT * FROM Country WHERE Code LIKE ?";

/* prepare statement */
if ($stmt = mysqli_prepare($link, $query)) {

 /* Bind variable for placeholder */
 $code = 'A%';
 mysqli_stmt_bind_param($stmt, "s", $code);

 /* execute statement */
 mysqli_stmt_execute($stmt);

 printf("rows inserted: %d\n", mysqli_stmt_affected_rows($stmt));

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

rows inserted: 17

See Also

mysqli_stmt_num_rows
mysqli_prepare

3.10.2 mysqli_stmt::attr_get, mysqli_stmt_attr_get

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::attr_get

mysqli_stmt_attr_get

Used to get the current value of a statement attribute

Description

Object oriented style

 int mysqli_stmt::attr_get(
 int attr);

mysqli_stmt::attr_set, mysqli_stmt_attr_set

165

Procedural style

 int mysqli_stmt_attr_get(
 mysqli_stmt stmt,
 int attr);

Gets the current value of a statement attribute.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

attr The attribute that you want to get.

Return Values

Returns FALSE if the attribute is not found, otherwise returns the value of the attribute.

3.10.3 mysqli_stmt::attr_set, mysqli_stmt_attr_set

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::attr_set

mysqli_stmt_attr_set

Used to modify the behavior of a prepared statement

Description

Object oriented style

 bool mysqli_stmt::attr_set(
 int attr,
 int mode);

Procedural style

 bool mysqli_stmt_attr_set(
 mysqli_stmt stmt,
 int attr,
 int mode);

Used to modify the behavior of a prepared statement. This function may be called multiple times to set
several attributes.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

attr The attribute that you want to set. It can have one of the following
values:

Table 3.13 Attribute values

Character Description

MYSQLI_STMT_ATTR_UPDATE_MAX_LENGTHSetting to TRUE causes
mysqli_stmt_store_result

mysqli_stmt::bind_param, mysqli_stmt_bind_param

166

Character Description
to update the metadata
MYSQL_FIELD->max_length
value.

MYSQLI_STMT_ATTR_CURSOR_TYPEType of cursor to open
for statement when
mysqli_stmt_execute
is invoked. mode can be
MYSQLI_CURSOR_TYPE_NO_CURSOR
(the default) or
MYSQLI_CURSOR_TYPE_READ_ONLY.

MYSQLI_STMT_ATTR_PREFETCH_ROWSNumber of rows to fetch from
server at a time when using a
cursor. mode can be in the range
from 1 to the maximum value of
unsigned long. The default is 1.

If you use the MYSQLI_STMT_ATTR_CURSOR_TYPE option with
MYSQLI_CURSOR_TYPE_READ_ONLY, a cursor is opened for the
statement when you invoke mysqli_stmt_execute. If there is
already an open cursor from a previous mysqli_stmt_execute call,
it closes the cursor before opening a new one. mysqli_stmt_reset
also closes any open cursor before preparing the statement for re-
execution. mysqli_stmt_free_result closes any open cursor.

If you open a cursor for a prepared statement,
mysqli_stmt_store_result is unnecessary.

mode The value to assign to the attribute.

See Also

Connector/MySQL mysql_stmt_attr_set()

3.10.4 mysqli_stmt::bind_param, mysqli_stmt_bind_param

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::bind_param

mysqli_stmt_bind_param

Binds variables to a prepared statement as parameters

Description

Object oriented style

 bool mysqli_stmt::bind_param(
 string types,
 mixed var1,
 mixed ...);

Procedural style

 bool mysqli_stmt_bind_param(

http://dev.mysql.com/doc/en/mysql-stmt-attr-set.html

mysqli_stmt::bind_param, mysqli_stmt_bind_param

167

 mysqli_stmt stmt,
 string types,
 mixed var1,
 mixed ...);

Bind variables for the parameter markers in the SQL statement that was passed to mysqli_prepare.

Note

If data size of a variable exceeds max. allowed packet size (max_allowed_packet),
you have to specify b in types and use mysqli_stmt_send_long_data to send
the data in packets.

Note

Care must be taken when using mysqli_stmt_bind_param in conjunction with
call_user_func_array. Note that mysqli_stmt_bind_param requires
parameters to be passed by reference, whereas call_user_func_array can
accept as a parameter a list of variables that can represent references or values.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

types A string that contains one or more characters which specify the types for
the corresponding bind variables:

Table 3.14 Type specification chars

Character Description

i corresponding variable has type
integer

d corresponding variable has type
double

s corresponding variable has type
string

b corresponding variable is a blob
and will be sent in packets

var1 The number of variables and length of string types must match the
parameters in the statement.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.77 Object oriented style

<?php
$mysqli = new mysqli('localhost', 'my_user', 'my_password', 'world');

/* check connection */
if (mysqli_connect_errno()) {

http://www.php.net/call_user_func_array
http://www.php.net/call_user_func_array

mysqli_stmt::bind_param, mysqli_stmt_bind_param

168

 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$stmt = $mysqli->prepare("INSERT INTO CountryLanguage VALUES (?, ?, ?, ?)");
$stmt->bind_param('sssd', $code, $language, $official, $percent);

$code = 'DEU';
$language = 'Bavarian';
$official = "F";
$percent = 11.2;

/* execute prepared statement */
$stmt->execute();

printf("%d Row inserted.\n", $stmt->affected_rows);

/* close statement and connection */
$stmt->close();

/* Clean up table CountryLanguage */
$mysqli->query("DELETE FROM CountryLanguage WHERE Language='Bavarian'");
printf("%d Row deleted.\n", $mysqli->affected_rows);

/* close connection */
$mysqli->close();
?>

Example 3.78 Procedural style

<?php
$link = mysqli_connect('localhost', 'my_user', 'my_password', 'world');

/* check connection */
if (!$link) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$stmt = mysqli_prepare($link, "INSERT INTO CountryLanguage VALUES (?, ?, ?, ?)");
mysqli_stmt_bind_param($stmt, 'sssd', $code, $language, $official, $percent);

$code = 'DEU';
$language = 'Bavarian';
$official = "F";
$percent = 11.2;

/* execute prepared statement */
mysqli_stmt_execute($stmt);

printf("%d Row inserted.\n", mysqli_stmt_affected_rows($stmt));

/* close statement and connection */
mysqli_stmt_close($stmt);

/* Clean up table CountryLanguage */
mysqli_query($link, "DELETE FROM CountryLanguage WHERE Language='Bavarian'");
printf("%d Row deleted.\n", mysqli_affected_rows($link));

/* close connection */
mysqli_close($link);
?>

mysqli_stmt::bind_result, mysqli_stmt_bind_result

169

The above examples will output:

1 Row inserted.
1 Row deleted.

See Also

mysqli_stmt_bind_result
mysqli_stmt_execute
mysqli_stmt_fetch
mysqli_prepare
mysqli_stmt_send_long_data
mysqli_stmt_errno
mysqli_stmt_error

3.10.5 mysqli_stmt::bind_result, mysqli_stmt_bind_result

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::bind_result

mysqli_stmt_bind_result

Binds variables to a prepared statement for result storage

Description

Object oriented style

 bool mysqli_stmt::bind_result(
 mixed var1,
 mixed ...);

Procedural style

 bool mysqli_stmt_bind_result(
 mysqli_stmt stmt,
 mixed var1,
 mixed ...);

Binds columns in the result set to variables.

When mysqli_stmt_fetch is called to fetch data, the MySQL client/server protocol places the data for
the bound columns into the specified variables var1,

Note

Note that all columns must be bound after mysqli_stmt_execute and prior to
calling mysqli_stmt_fetch. Depending on column types bound variables can
silently change to the corresponding PHP type.

A column can be bound or rebound at any time, even after a result set
has been partially retrieved. The new binding takes effect the next time
mysqli_stmt_fetch is called.

mysqli_stmt::bind_result, mysqli_stmt_bind_result

170

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

var1 The variable to be bound.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.79 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* prepare statement */
if ($stmt = $mysqli->prepare("SELECT Code, Name FROM Country ORDER BY Name LIMIT 5")) {
 $stmt->execute();

 /* bind variables to prepared statement */
 $stmt->bind_result($col1, $col2);

 /* fetch values */
 while ($stmt->fetch()) {
 printf("%s %s\n", $col1, $col2);
 }

 /* close statement */
 $stmt->close();
}
/* close connection */
$mysqli->close();

?>

Example 3.80 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (!$link) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* prepare statement */
if ($stmt = mysqli_prepare($link, "SELECT Code, Name FROM Country ORDER BY Name LIMIT 5")) {
 mysqli_stmt_execute($stmt);

 /* bind variables to prepared statement */

mysqli_stmt::close, mysqli_stmt_close

171

 mysqli_stmt_bind_result($stmt, $col1, $col2);

 /* fetch values */
 while (mysqli_stmt_fetch($stmt)) {
 printf("%s %s\n", $col1, $col2);
 }

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

AFG Afghanistan
ALB Albania
DZA Algeria
ASM American Samoa
AND Andorra

See Also

mysqli_stmt_get_result
mysqli_stmt_bind_param
mysqli_stmt_execute
mysqli_stmt_fetch
mysqli_prepare
mysqli_stmt_prepare
mysqli_stmt_init
mysqli_stmt_errno
mysqli_stmt_error

3.10.6 mysqli_stmt::close, mysqli_stmt_close

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::close

mysqli_stmt_close

Closes a prepared statement

Description

Object oriented style

 bool mysqli_stmt::close();

Procedural style

 bool mysqli_stmt_close(
 mysqli_stmt stmt);

mysqli_stmt::__construct

172

Closes a prepared statement. mysqli_stmt_close also deallocates the statement handle. If the
current statement has pending or unread results, this function cancels them so that the next query can be
executed.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

mysqli_prepare

3.10.7 mysqli_stmt::__construct

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::__construct

Constructs a new mysqli_stmt object

Description

 mysqli_stmt::__construct(
 mysqli link,
 string query);

This method constructs a new mysqli_stmt object.

Note

In general, you should use either mysqli_prepare or mysqli_stmt_init to
create a mysqli_stmt object, rather than directly instantiating the object with new
mysqli_stmt. This method (and the ability to directly instantiate mysqli_stmt
objects) may be deprecated and removed in the future.

Parameters

link Procedural style only: A link identifier returned by mysqli_connect or
mysqli_init

query The query, as a string. If this parameter is omitted, then the constructor
behaves identically to mysqli_stmt_init, if provided, then it behaves
as per mysqli_prepare.

See Also

mysqli_prepare
mysqli_stmt_init

3.10.8 mysqli_stmt::data_seek, mysqli_stmt_data_seek

Copyright 1997-2014 the PHP Documentation Group.

mysqli_stmt::data_seek, mysqli_stmt_data_seek

173

• mysqli_stmt::data_seek

mysqli_stmt_data_seek

Seeks to an arbitrary row in statement result set

Description

Object oriented style

 void mysqli_stmt::data_seek(
 int offset);

Procedural style

 void mysqli_stmt_data_seek(
 mysqli_stmt stmt,
 int offset);

Seeks to an arbitrary result pointer in the statement result set.

mysqli_stmt_store_result must be called prior to mysqli_stmt_data_seek.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

offset Must be between zero and the total number of rows minus one (0..
mysqli_stmt_num_rows - 1).

Return Values

No value is returned.

Examples

Example 3.81 Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name";
if ($stmt = $mysqli->prepare($query)) {

 /* execute query */
 $stmt->execute();

 /* bind result variables */
 $stmt->bind_result($name, $code);

 /* store result */
 $stmt->store_result();

mysqli_stmt::data_seek, mysqli_stmt_data_seek

174

 /* seek to row no. 400 */
 $stmt->data_seek(399);

 /* fetch values */
 $stmt->fetch();

 printf ("City: %s Countrycode: %s\n", $name, $code);

 /* close statement */
 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.82 Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name";
if ($stmt = mysqli_prepare($link, $query)) {

 /* execute query */
 mysqli_stmt_execute($stmt);

 /* bind result variables */
 mysqli_stmt_bind_result($stmt, $name, $code);

 /* store result */
 mysqli_stmt_store_result($stmt);

 /* seek to row no. 400 */
 mysqli_stmt_data_seek($stmt, 399);

 /* fetch values */
 mysqli_stmt_fetch($stmt);

 printf ("City: %s Countrycode: %s\n", $name, $code);

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

mysqli_stmt::$errno, mysqli_stmt_errno

175

City: Benin City Countrycode: NGA

See Also

mysqli_prepare

3.10.9 mysqli_stmt::$errno, mysqli_stmt_errno

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::$errno

mysqli_stmt_errno

Returns the error code for the most recent statement call

Description

Object oriented style

 int
 mysqli_stmt->errno ;

Procedural style

 int mysqli_stmt_errno(
 mysqli_stmt stmt);

Returns the error code for the most recently invoked statement function that can succeed or fail.

Client error message numbers are listed in the MySQL errmsg.h header file, server error message
numbers are listed in mysqld_error.h. In the MySQL source distribution you can find a complete list of
error messages and error numbers in the file Docs/mysqld_error.txt.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

An error code value. Zero means no error occurred.

Examples

Example 3.83 Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_stmt::$errno, mysqli_stmt_errno

176

$mysqli->query("CREATE TABLE myCountry LIKE Country");
$mysqli->query("INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = $mysqli->prepare($query)) {

 /* drop table */
 $mysqli->query("DROP TABLE myCountry");

 /* execute query */
 $stmt->execute();

 printf("Error: %d.\n", $stmt->errno);

 /* close statement */
 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.84 Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_query($link, "CREATE TABLE myCountry LIKE Country");
mysqli_query($link, "INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = mysqli_prepare($link, $query)) {

 /* drop table */
 mysqli_query($link, "DROP TABLE myCountry");

 /* execute query */
 mysqli_stmt_execute($stmt);

 printf("Error: %d.\n", mysqli_stmt_errno($stmt));

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

mysqli_stmt::$error_list, mysqli_stmt_error_list

177

Error: 1146.

See Also

mysqli_stmt_error
mysqli_stmt_sqlstate

3.10.10 mysqli_stmt::$error_list, mysqli_stmt_error_list

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::$error_list

mysqli_stmt_error_list

Returns a list of errors from the last statement executed

Description

Object oriented style

 array
 mysqli_stmt->error_list ;

Procedural style

 array mysqli_stmt_error_list(
 mysqli_stmt stmt);

Returns an array of errors for the most recently invoked statement function that can succeed or fail.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

A list of errors, each as an associative array containing the errno, error, and sqlstate.

Examples

Example 3.85 Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$mysqli->query("CREATE TABLE myCountry LIKE Country");
$mysqli->query("INSERT INTO myCountry SELECT * FROM Country");

mysqli_stmt::$error_list, mysqli_stmt_error_list

178

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = $mysqli->prepare($query)) {

 /* drop table */
 $mysqli->query("DROP TABLE myCountry");

 /* execute query */
 $stmt->execute();

 echo "Error:\n";
 print_r($stmt->error_list);

 /* close statement */
 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.86 Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_query($link, "CREATE TABLE myCountry LIKE Country");
mysqli_query($link, "INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = mysqli_prepare($link, $query)) {

 /* drop table */
 mysqli_query($link, "DROP TABLE myCountry");

 /* execute query */
 mysqli_stmt_execute($stmt);

 echo "Error:\n";
 print_r(mysql_stmt_error_list($stmt));

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

mysqli_stmt::$error, mysqli_stmt_error

179

Array
(
 [0] => Array
 (
 [errno] => 1146
 [sqlstate] => 42S02
 [error] => Table 'world.myCountry' doesn't exist
)

)

See Also

mysqli_stmt_error
mysqli_stmt_errno
mysqli_stmt_sqlstate

3.10.11 mysqli_stmt::$error, mysqli_stmt_error

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::$error

mysqli_stmt_error

Returns a string description for last statement error

Description

Object oriented style

 string
 mysqli_stmt->error ;

Procedural style

 string mysqli_stmt_error(
 mysqli_stmt stmt);

Returns a string containing the error message for the most recently invoked statement function that can
succeed or fail.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

A string that describes the error. An empty string if no error occurred.

Examples

Example 3.87 Object oriented style

mysqli_stmt::$error, mysqli_stmt_error

180

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$mysqli->query("CREATE TABLE myCountry LIKE Country");
$mysqli->query("INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = $mysqli->prepare($query)) {

 /* drop table */
 $mysqli->query("DROP TABLE myCountry");

 /* execute query */
 $stmt->execute();

 printf("Error: %s.\n", $stmt->error);

 /* close statement */
 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.88 Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_query($link, "CREATE TABLE myCountry LIKE Country");
mysqli_query($link, "INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = mysqli_prepare($link, $query)) {

 /* drop table */
 mysqli_query($link, "DROP TABLE myCountry");

 /* execute query */
 mysqli_stmt_execute($stmt);

 printf("Error: %s.\n", mysqli_stmt_error($stmt));

 /* close statement */
 mysqli_stmt_close($stmt);
}

mysqli_stmt::execute, mysqli_stmt_execute

181

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Error: Table 'world.myCountry' doesn't exist.

See Also

mysqli_stmt_errno
mysqli_stmt_sqlstate

3.10.12 mysqli_stmt::execute, mysqli_stmt_execute

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::execute

mysqli_stmt_execute

Executes a prepared Query

Description

Object oriented style

 bool mysqli_stmt::execute();

Procedural style

 bool mysqli_stmt_execute(
 mysqli_stmt stmt);

Executes a query that has been previously prepared using the mysqli_prepare function. When
executed any parameter markers which exist will automatically be replaced with the appropriate data.

If the statement is UPDATE, DELETE, or INSERT, the total number of affected rows can be determined
by using the mysqli_stmt_affected_rows function. Likewise, if the query yields a result set the
mysqli_stmt_fetch function is used.

Note

When using mysqli_stmt_execute, the mysqli_stmt_fetch function must be
used to fetch the data prior to performing any additional queries.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

mysqli_stmt::execute, mysqli_stmt_execute

182

Returns TRUE on success or FALSE on failure.

Examples

Example 3.89 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$mysqli->query("CREATE TABLE myCity LIKE City");

/* Prepare an insert statement */
$query = "INSERT INTO myCity (Name, CountryCode, District) VALUES (?,?,?)";
$stmt = $mysqli->prepare($query);

$stmt->bind_param("sss", $val1, $val2, $val3);

$val1 = 'Stuttgart';
$val2 = 'DEU';
$val3 = 'Baden-Wuerttemberg';

/* Execute the statement */
$stmt->execute();

$val1 = 'Bordeaux';
$val2 = 'FRA';
$val3 = 'Aquitaine';

/* Execute the statement */
$stmt->execute();

/* close statement */
$stmt->close();

/* retrieve all rows from myCity */
$query = "SELECT Name, CountryCode, District FROM myCity";
if ($result = $mysqli->query($query)) {
 while ($row = $result->fetch_row()) {
 printf("%s (%s,%s)\n", $row[0], $row[1], $row[2]);
 }
 /* free result set */
 $result->close();
}

/* remove table */
$mysqli->query("DROP TABLE myCity");

/* close connection */
$mysqli->close();
?>

Example 3.90 Procedural style

<?php

mysqli_stmt::execute, mysqli_stmt_execute

183

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_query($link, "CREATE TABLE myCity LIKE City");

/* Prepare an insert statement */
$query = "INSERT INTO myCity (Name, CountryCode, District) VALUES (?,?,?)";
$stmt = mysqli_prepare($link, $query);

mysqli_stmt_bind_param($stmt, "sss", $val1, $val2, $val3);

$val1 = 'Stuttgart';
$val2 = 'DEU';
$val3 = 'Baden-Wuerttemberg';

/* Execute the statement */
mysqli_stmt_execute($stmt);

$val1 = 'Bordeaux';
$val2 = 'FRA';
$val3 = 'Aquitaine';

/* Execute the statement */
mysqli_stmt_execute($stmt);

/* close statement */
mysqli_stmt_close($stmt);

/* retrieve all rows from myCity */
$query = "SELECT Name, CountryCode, District FROM myCity";
if ($result = mysqli_query($link, $query)) {
 while ($row = mysqli_fetch_row($result)) {
 printf("%s (%s,%s)\n", $row[0], $row[1], $row[2]);
 }
 /* free result set */
 mysqli_free_result($result);
}

/* remove table */
mysqli_query($link, "DROP TABLE myCity");

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Stuttgart (DEU,Baden-Wuerttemberg)
Bordeaux (FRA,Aquitaine)

See Also

mysqli_prepare
mysqli_stmt_bind_param
mysqli_stmt_get_result

mysqli_stmt::fetch, mysqli_stmt_fetch

184

3.10.13 mysqli_stmt::fetch, mysqli_stmt_fetch

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::fetch

mysqli_stmt_fetch

Fetch results from a prepared statement into the bound variables

Description

Object oriented style

 bool mysqli_stmt::fetch();

Procedural style

 bool mysqli_stmt_fetch(
 mysqli_stmt stmt);

Fetch the result from a prepared statement into the variables bound by mysqli_stmt_bind_result.

Note

Note that all columns must be bound by the application before calling
mysqli_stmt_fetch.

Note

Data are transferred unbuffered without calling mysqli_stmt_store_result
which can decrease performance (but reduces memory cost).

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

Table 3.15 Return Values

Value Description

TRUE Success. Data has been fetched

FALSE Error occurred

NULL No more rows/data exists or data truncation
occurred

Examples

Example 3.91 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

mysqli_stmt::fetch, mysqli_stmt_fetch

185

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 150,5";

if ($stmt = $mysqli->prepare($query)) {

 /* execute statement */
 $stmt->execute();

 /* bind result variables */
 $stmt->bind_result($name, $code);

 /* fetch values */
 while ($stmt->fetch()) {
 printf ("%s (%s)\n", $name, $code);
 }

 /* close statement */
 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.92 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 150,5";

if ($stmt = mysqli_prepare($link, $query)) {

 /* execute statement */
 mysqli_stmt_execute($stmt);

 /* bind result variables */
 mysqli_stmt_bind_result($stmt, $name, $code);

 /* fetch values */
 while (mysqli_stmt_fetch($stmt)) {
 printf ("%s (%s)\n", $name, $code);
 }

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

mysqli_stmt::$field_count, mysqli_stmt_field_count

186

The above examples will output:

Rockford (USA)
Tallahassee (USA)
Salinas (USA)
Santa Clarita (USA)
Springfield (USA)

See Also

mysqli_prepare
mysqli_stmt_errno
mysqli_stmt_error
mysqli_stmt_bind_result

3.10.14 mysqli_stmt::$field_count, mysqli_stmt_field_count

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::$field_count

mysqli_stmt_field_count

Returns the number of field in the given statement

Description

Object oriented style

 int
 mysqli_stmt->field_count ;

Procedural style

 int mysqli_stmt_field_count(
 mysqli_stmt stmt);

Warning

This function is currently not documented; only its argument list is available.

3.10.15 mysqli_stmt::free_result, mysqli_stmt_free_result

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::free_result

mysqli_stmt_free_result

Frees stored result memory for the given statement handle

Description

Object oriented style

mysqli_stmt::get_result, mysqli_stmt_get_result

187

 void mysqli_stmt::free_result();

Procedural style

 void mysqli_stmt_free_result(
 mysqli_stmt stmt);

Frees the result memory associated with the statement, which was allocated by
mysqli_stmt_store_result.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

No value is returned.

See Also

mysqli_stmt_store_result

3.10.16 mysqli_stmt::get_result, mysqli_stmt_get_result

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::get_result

mysqli_stmt_get_result

Gets a result set from a prepared statement

Description

Object oriented style

 mysqli_result mysqli_stmt::get_result();

Procedural style

 mysqli_result mysqli_stmt_get_result(
 mysqli_stmt stmt);

Call to return a result set from a prepared statement query.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

Returns a resultset for successful SELECT queries, or FALSE for other DML queries or on failure. The
mysqli_errno function can be used to distinguish between the two types of failure.

MySQL Native Driver Only

Available only with mysqlnd.

mysqli_stmt::get_result, mysqli_stmt_get_result

188

Examples

Example 3.93 Object oriented style

<?php

$mysqli = new mysqli("127.0.0.1", "user", "password", "world");

if($mysqli->connect_error)
{
 die("$mysqli->connect_errno: $mysqli->connect_error");
}

$query = "SELECT Name, Population, Continent FROM Country WHERE Continent=? ORDER BY Name LIMIT 1";

$stmt = $mysqli->stmt_init();
if(!$stmt->prepare($query))
{
 print "Failed to prepare statement\n";
}
else
{
 $stmt->bind_param("s", $continent);

 $continent_array = array('Europe','Africa','Asia','North America');

 foreach($continent_array as $continent)
 {
 $stmt->execute();
 $result = $stmt->get_result();
 while ($row = $result->fetch_array(MYSQLI_NUM))
 {
 foreach ($row as $r)
 {
 print "$r ";
 }
 print "\n";
 }
 }
}

$stmt->close();
$mysqli->close();
?>

Example 3.94 Procedural style

<?php

$link = mysqli_connect("127.0.0.1", "user", "password", "world");

if (!$link)
{
 $error = mysqli_connect_error();
 $errno = mysqli_connect_errno();
 print "$errno: $error\n";
 exit();
}

$query = "SELECT Name, Population, Continent FROM Country WHERE Continent=? ORDER BY Name LIMIT 1";

mysqli_stmt::get_warnings, mysqli_stmt_get_warnings

189

$stmt = mysqli_stmt_init($link);
if(!mysqli_stmt_prepare($stmt, $query))
{
 print "Failed to prepare statement\n";
}
else
{
 mysqli_stmt_bind_param($stmt, "s", $continent);

 $continent_array = array('Europe','Africa','Asia','North America');

 foreach($continent_array as $continent)
 {
 mysqli_stmt_execute($stmt);
 $result = mysqli_stmt_get_result($stmt);
 while ($row = mysqli_fetch_array($result, MYSQLI_NUM))
 {
 foreach ($row as $r)
 {
 print "$r ";
 }
 print "\n";
 }
 }
}
mysqli_stmt_close($stmt);
mysqli_close($link);
?>

The above examples will output:

Albania 3401200 Europe
Algeria 31471000 Africa
Afghanistan 22720000 Asia
Anguilla 8000 North America

See Also

mysqli_prepare
mysqli_stmt_result_metadata
mysqli_stmt_fetch
mysqli_fetch_array
mysqli_stmt_store_result
mysqli_errno

3.10.17 mysqli_stmt::get_warnings, mysqli_stmt_get_warnings

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::get_warnings

mysqli_stmt_get_warnings

Get result of SHOW WARNINGS

Description

mysqli_stmt::$insert_id, mysqli_stmt_insert_id

190

Object oriented style

 object mysqli_stmt::get_warnings(
 mysqli_stmt stmt);

Procedural style

 object mysqli_stmt_get_warnings(
 mysqli_stmt stmt);

Warning

This function is currently not documented; only its argument list is available.

3.10.18 mysqli_stmt::$insert_id, mysqli_stmt_insert_id

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::$insert_id

mysqli_stmt_insert_id

Get the ID generated from the previous INSERT operation

Description

Object oriented style

 int
 mysqli_stmt->insert_id ;

Procedural style

 mixed mysqli_stmt_insert_id(
 mysqli_stmt stmt);

Warning

This function is currently not documented; only its argument list is available.

3.10.19 mysqli_stmt::more_results, mysqli_stmt_more_results

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::more_results

mysqli_stmt_more_results

Check if there are more query results from a multiple query

Description

Object oriented style (method):

 public bool mysqli_stmt::more_results();

Procedural style:

 bool mysqli_stmt_more_results(
 mysql_stmt stmt);

mysqli_stmt::next_result, mysqli_stmt_next_result

191

Checks if there are more query results from a multiple query.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

Returns TRUE if more results exist, otherwise FALSE.

MySQL Native Driver Only

Available only with mysqlnd.

See Also

mysqli_stmt::next_result
mysqli::multi_query

3.10.20 mysqli_stmt::next_result, mysqli_stmt_next_result

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::next_result

mysqli_stmt_next_result

Reads the next result from a multiple query

Description

Object oriented style (method):

 public bool mysqli_stmt::next_result();

Procedural style:

 bool mysqli_stmt_next_result(
 mysql_stmt stmt);

Reads the next result from a multiple query.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

Returns TRUE on success or FALSE on failure.

Errors/Exceptions

Emits an E_STRICT level error if a result set does not exist, and suggests using
mysqli_stmt::more_results in these cases, before calling mysqli_stmt::next_result.

MySQL Native Driver Only

mysqli_stmt::$num_rows, mysqli_stmt_num_rows

192

Available only with mysqlnd.

See Also

mysqli_stmt::more_results
mysqli::multi_query

3.10.21 mysqli_stmt::$num_rows, mysqli_stmt_num_rows

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::$num_rows

mysqli_stmt_num_rows

Return the number of rows in statements result set

Description

Object oriented style

 int
 mysqli_stmt->num_rows ;

Procedural style

 int mysqli_stmt_num_rows(
 mysqli_stmt stmt);

Returns the number of rows in the result set. The use of mysqli_stmt_num_rows depends on whether
or not you used mysqli_stmt_store_result to buffer the entire result set in the statement handle.

If you use mysqli_stmt_store_result, mysqli_stmt_num_rows may be called immediately.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

An integer representing the number of rows in result set.

Examples

Example 3.95 Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIMIT 20";

mysqli_stmt::$num_rows, mysqli_stmt_num_rows

193

if ($stmt = $mysqli->prepare($query)) {

 /* execute query */
 $stmt->execute();

 /* store result */
 $stmt->store_result();

 printf("Number of rows: %d.\n", $stmt->num_rows);

 /* close statement */
 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.96 Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIMIT 20";
if ($stmt = mysqli_prepare($link, $query)) {

 /* execute query */
 mysqli_stmt_execute($stmt);

 /* store result */
 mysqli_stmt_store_result($stmt);

 printf("Number of rows: %d.\n", mysqli_stmt_num_rows($stmt));

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Number of rows: 20.

See Also

mysqli_stmt_affected_rows

mysqli_stmt::$param_count, mysqli_stmt_param_count

194

mysqli_prepare
mysqli_stmt_store_result

3.10.22 mysqli_stmt::$param_count, mysqli_stmt_param_count

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::$param_count

mysqli_stmt_param_count

Returns the number of parameter for the given statement

Description

Object oriented style

 int
 mysqli_stmt->param_count ;

Procedural style

 int mysqli_stmt_param_count(
 mysqli_stmt stmt);

Returns the number of parameter markers present in the prepared statement.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

Returns an integer representing the number of parameters.

Examples

Example 3.97 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

if ($stmt = $mysqli->prepare("SELECT Name FROM Country WHERE Name=? OR Code=?")) {

 $marker = $stmt->param_count;
 printf("Statement has %d markers.\n", $marker);

 /* close statement */
 $stmt->close();
}

/* close connection */

mysqli_stmt::prepare, mysqli_stmt_prepare

195

$mysqli->close();
?>

Example 3.98 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

if ($stmt = mysqli_prepare($link, "SELECT Name FROM Country WHERE Name=? OR Code=?")) {

 $marker = mysqli_stmt_param_count($stmt);
 printf("Statement has %d markers.\n", $marker);

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Statement has 2 markers.

See Also

mysqli_prepare

3.10.23 mysqli_stmt::prepare, mysqli_stmt_prepare

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::prepare

mysqli_stmt_prepare

Prepare an SQL statement for execution

Description

Object oriented style

 mixed mysqli_stmt::prepare(
 string query);

Procedural style

mysqli_stmt::prepare, mysqli_stmt_prepare

196

 bool mysqli_stmt_prepare(
 mysqli_stmt stmt,
 string query);

Prepares the SQL query pointed to by the null-terminated string query.

The parameter markers must be bound to application variables using mysqli_stmt_bind_param and/or
mysqli_stmt_bind_result before executing the statement or fetching rows.

Note

In the case where you pass a statement to mysqli_stmt_prepare that is longer
than max_allowed_packet of the server, the returned error codes are different
depending on whether you are using MySQL Native Driver (mysqlnd) or MySQL
Client Library (libmysqlclient). The behavior is as follows:

• mysqlnd on Linux returns an error code of 1153. The error message means “got
a packet bigger than max_allowed_packet bytes”.

• mysqlnd on Windows returns an error code 2006. This error message means
“server has gone away”.

• libmysqlclient on all platforms returns an error code 2006. This error
message means “server has gone away”.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

query The query, as a string. It must consist of a single SQL statement.

You can include one or more parameter markers in the SQL statement
by embedding question mark (?) characters at the appropriate positions.

Note

You should not add a terminating semicolon or
\g to the statement.

Note

The markers are legal only in certain places in
SQL statements. For example, they are allowed
in the VALUES() list of an INSERT statement
(to specify column values for a row), or in a
comparison with a column in a WHERE clause to
specify a comparison value.

However, they are not allowed for identifiers
(such as table or column names), in the select
list that names the columns to be returned by a
SELECT statement), or to specify both operands
of a binary operator such as the = equal sign.
The latter restriction is necessary because it
would be impossible to determine the parameter
type. In general, parameters are legal only in

mysqli_stmt::prepare, mysqli_stmt_prepare

197

Data Manipulation Language (DML) statements,
and not in Data Definition Language (DDL)
statements.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.99 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$city = "Amersfoort";

/* create a prepared statement */
$stmt = $mysqli->stmt_init();
if ($stmt->prepare("SELECT District FROM City WHERE Name=?")) {

 /* bind parameters for markers */
 $stmt->bind_param("s", $city);

 /* execute query */
 $stmt->execute();

 /* bind result variables */
 $stmt->bind_result($district);

 /* fetch value */
 $stmt->fetch();

 printf("%s is in district %s\n", $city, $district);

 /* close statement */
 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.100 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_stmt::reset, mysqli_stmt_reset

198

$city = "Amersfoort";

/* create a prepared statement */
$stmt = mysqli_stmt_init($link);
if (mysqli_stmt_prepare($stmt, 'SELECT District FROM City WHERE Name=?')) {

 /* bind parameters for markers */
 mysqli_stmt_bind_param($stmt, "s", $city);

 /* execute query */
 mysqli_stmt_execute($stmt);

 /* bind result variables */
 mysqli_stmt_bind_result($stmt, $district);

 /* fetch value */
 mysqli_stmt_fetch($stmt);

 printf("%s is in district %s\n", $city, $district);

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Amersfoort is in district Utrecht

See Also

mysqli_stmt_init
mysqli_stmt_execute
mysqli_stmt_fetch
mysqli_stmt_bind_param
mysqli_stmt_bind_result
mysqli_stmt_get_result
mysqli_stmt_close

3.10.24 mysqli_stmt::reset, mysqli_stmt_reset

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::reset

mysqli_stmt_reset

Resets a prepared statement

Description

Object oriented style

mysqli_stmt::result_metadata, mysqli_stmt_result_metadata

199

 bool mysqli_stmt::reset();

Procedural style

 bool mysqli_stmt_reset(
 mysqli_stmt stmt);

Resets a prepared statement on client and server to state after prepare.

It resets the statement on the server, data sent using mysqli_stmt_send_long_data, unbuffered result
sets and current errors. It does not clear bindings or stored result sets. Stored result sets will be cleared
when executing the prepared statement (or closing it).

To prepare a statement with another query use function mysqli_stmt_prepare.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

mysqli_prepare

3.10.25 mysqli_stmt::result_metadata, mysqli_stmt_result_metadata

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::result_metadata

mysqli_stmt_result_metadata

Returns result set metadata from a prepared statement

Description

Object oriented style

 mysqli_result mysqli_stmt::result_metadata();

Procedural style

 mysqli_result mysqli_stmt_result_metadata(
 mysqli_stmt stmt);

If a statement passed to mysqli_prepare is one that produces a result set,
mysqli_stmt_result_metadata returns the result object that can be used to process the meta
information such as total number of fields and individual field information.

Note

This result set pointer can be passed as an argument to any of the field-based
functions that process result set metadata, such as:

• mysqli_num_fields

mysqli_stmt::result_metadata, mysqli_stmt_result_metadata

200

• mysqli_fetch_field

• mysqli_fetch_field_direct

• mysqli_fetch_fields

• mysqli_field_count

• mysqli_field_seek

• mysqli_field_tell

• mysqli_free_result

The result set structure should be freed when you are done with it, which you can do by passing it to
mysqli_free_result

Note

The result set returned by mysqli_stmt_result_metadata contains only
metadata. It does not contain any row results. The rows are obtained by using the
statement handle with mysqli_stmt_fetch.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

Returns a result object or FALSE if an error occurred.

Examples

Example 3.101 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "test");

$mysqli->query("DROP TABLE IF EXISTS friends");
$mysqli->query("CREATE TABLE friends (id int, name varchar(20))");

$mysqli->query("INSERT INTO friends VALUES (1,'Hartmut'), (2, 'Ulf')");

$stmt = $mysqli->prepare("SELECT id, name FROM friends");
$stmt->execute();

/* get resultset for metadata */
$result = $stmt->result_metadata();

/* retrieve field information from metadata result set */
$field = $result->fetch_field();

printf("Fieldname: %s\n", $field->name);

/* close resultset */
$result->close();

/* close connection */

mysqli_stmt::send_long_data, mysqli_stmt_send_long_data

201

$mysqli->close();
?>

Example 3.102 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "test");

mysqli_query($link, "DROP TABLE IF EXISTS friends");
mysqli_query($link, "CREATE TABLE friends (id int, name varchar(20))");

mysqli_query($link, "INSERT INTO friends VALUES (1,'Hartmut'), (2, 'Ulf')");

$stmt = mysqli_prepare($link, "SELECT id, name FROM friends");
mysqli_stmt_execute($stmt);

/* get resultset for metadata */
$result = mysqli_stmt_result_metadata($stmt);

/* retrieve field information from metadata result set */
$field = mysqli_fetch_field($result);

printf("Fieldname: %s\n", $field->name);

/* close resultset */
mysqli_free_result($result);

/* close connection */
mysqli_close($link);
?>

See Also

mysqli_prepare
mysqli_free_result

3.10.26 mysqli_stmt::send_long_data, mysqli_stmt_send_long_data

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::send_long_data

mysqli_stmt_send_long_data

Send data in blocks

Description

Object oriented style

 bool mysqli_stmt::send_long_data(
 int param_nr,
 string data);

Procedural style

 bool mysqli_stmt_send_long_data(

mysqli_stmt::$sqlstate, mysqli_stmt_sqlstate

202

 mysqli_stmt stmt,
 int param_nr,
 string data);

Allows to send parameter data to the server in pieces (or chunks), e.g. if the size of a blob exceeds the
size of max_allowed_packet. This function can be called multiple times to send the parts of a character
or binary data value for a column, which must be one of the TEXT or BLOB datatypes.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

param_nr Indicates which parameter to associate the data with. Parameters are
numbered beginning with 0.

data A string containing data to be sent.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.103 Object oriented style

<?php
$stmt = $mysqli->prepare("INSERT INTO messages (message) VALUES (?)");
$null = NULL;
$stmt->bind_param("b", $null);
$fp = fopen("messages.txt", "r");
while (!feof($fp)) {
 $stmt->send_long_data(0, fread($fp, 8192));
}
fclose($fp);
$stmt->execute();
?>

See Also

mysqli_prepare
mysqli_stmt_bind_param

3.10.27 mysqli_stmt::$sqlstate, mysqli_stmt_sqlstate

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_stmt::$sqlstate

mysqli_stmt_sqlstate

Returns SQLSTATE error from previous statement operation

Description

Object oriented style

mysqli_stmt::$sqlstate, mysqli_stmt_sqlstate

203

 string
 mysqli_stmt->sqlstate ;

Procedural style

 string mysqli_stmt_sqlstate(
 mysqli_stmt stmt);

Returns a string containing the SQLSTATE error code for the most recently invoked prepared statement
function that can succeed or fail. The error code consists of five characters. '00000' means no error. The
values are specified by ANSI SQL and ODBC. For a list of possible values, see http://dev.mysql.com/doc/
mysql/en/error-handling.html.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

Returns a string containing the SQLSTATE error code for the last error. The error code consists of five
characters. '00000' means no error.

Notes

Note

Note that not all MySQL errors are yet mapped to SQLSTATE's. The value HY000
(general error) is used for unmapped errors.

Examples

Example 3.104 Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$mysqli->query("CREATE TABLE myCountry LIKE Country");
$mysqli->query("INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = $mysqli->prepare($query)) {

 /* drop table */
 $mysqli->query("DROP TABLE myCountry");

 /* execute query */
 $stmt->execute();

 printf("Error: %s.\n", $stmt->sqlstate);

 /* close statement */

http://dev.mysql.com/doc/mysql/en/error-handling.html
http://dev.mysql.com/doc/mysql/en/error-handling.html

mysqli_stmt::store_result, mysqli_stmt_store_result

204

 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.105 Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_query($link, "CREATE TABLE myCountry LIKE Country");
mysqli_query($link, "INSERT INTO myCountry SELECT * FROM Country");

$query = "SELECT Name, Code FROM myCountry ORDER BY Name";
if ($stmt = mysqli_prepare($link, $query)) {

 /* drop table */
 mysqli_query($link, "DROP TABLE myCountry");

 /* execute query */
 mysqli_stmt_execute($stmt);

 printf("Error: %s.\n", mysqli_stmt_sqlstate($stmt));

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Error: 42S02.

See Also

mysqli_stmt_errno
mysqli_stmt_error

3.10.28 mysqli_stmt::store_result, mysqli_stmt_store_result

Copyright 1997-2014 the PHP Documentation Group.

mysqli_stmt::store_result, mysqli_stmt_store_result

205

• mysqli_stmt::store_result

mysqli_stmt_store_result

Transfers a result set from a prepared statement

Description

Object oriented style

 bool mysqli_stmt::store_result();

Procedural style

 bool mysqli_stmt_store_result(
 mysqli_stmt stmt);

You must call mysqli_stmt_store_result for every query that successfully produces a result set
(SELECT, SHOW, DESCRIBE, EXPLAIN), if and only if you want to buffer the complete result set by the
client, so that the subsequent mysqli_stmt_fetch call returns buffered data.

Note

It is unnecessary to call mysqli_stmt_store_result for other queries,
but if you do, it will not harm or cause any notable performance loss in all
cases. You can detect whether the query produced a result set by checking if
mysqli_stmt_result_metadata returns NULL.

Parameters

stmt Procedural style only: A statement identifier returned by
mysqli_stmt_init.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.106 Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIMIT 20";
if ($stmt = $mysqli->prepare($query)) {

 /* execute query */
 $stmt->execute();

 /* store result */
 $stmt->store_result();

mysqli_stmt::store_result, mysqli_stmt_store_result

206

 printf("Number of rows: %d.\n", $stmt->num_rows);

 /* free result */
 $stmt->free_result();

 /* close statement */
 $stmt->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.107 Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name LIMIT 20";
if ($stmt = mysqli_prepare($link, $query)) {

 /* execute query */
 mysqli_stmt_execute($stmt);

 /* store result */
 mysqli_stmt_store_result($stmt);

 printf("Number of rows: %d.\n", mysqli_stmt_num_rows($stmt));

 /* free result */
 mysqli_stmt_free_result($stmt);

 /* close statement */
 mysqli_stmt_close($stmt);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Number of rows: 20.

See Also

mysqli_prepare
mysqli_stmt_result_metadata

The mysqli_result class

207

mysqli_stmt_fetch

3.11 The mysqli_result class

Copyright 1997-2014 the PHP Documentation Group.

Represents the result set obtained from a query against the database.

Changelog

Table 3.16 Changelog

Version Description

5.4.0 Iterator support was added, as mysqli_result
now implements Traversable.

mysqli_result {
mysqli_result

 Traversable

 Properties

 int
 mysqli_result->current_field ;

 int
 mysqli_result->field_count ;

 array
 mysqli_result->lengths ;

 int
 mysqli_result->num_rows ;

Methods

 bool mysqli_result::data_seek(
 int offset);

 mixed mysqli_result::fetch_all(
 int resulttype
 = =MYSQLI_NUM);

 mixed mysqli_result::fetch_array(
 int resulttype
 = =MYSQLI_BOTH);

 array mysqli_result::fetch_assoc();

 object mysqli_result::fetch_field_direct(
 int fieldnr);

 object mysqli_result::fetch_field();

 array mysqli_result::fetch_fields();

 object mysqli_result::fetch_object(
 string class_name
 = ="stdClass",

mysqli_result::$current_field, mysqli_field_tell

208

 array params);

 mixed mysqli_result::fetch_row();

 bool mysqli_result::field_seek(
 int fieldnr);

 void mysqli_result::free();

}

3.11.1 mysqli_result::$current_field, mysqli_field_tell

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_result::$current_field

mysqli_field_tell

Get current field offset of a result pointer

Description

Object oriented style

 int
 mysqli_result->current_field ;

Procedural style

 int mysqli_field_tell(
 mysqli_result result);

Returns the position of the field cursor used for the last mysqli_fetch_field call. This value can be
used as an argument to mysqli_field_seek.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

Returns current offset of field cursor.

Examples

Example 3.108 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

mysqli_result::$current_field, mysqli_field_tell

209

if ($result = $mysqli->query($query)) {

 /* Get field information for all columns */
 while ($finfo = $result->fetch_field()) {

 /* get fieldpointer offset */
 $currentfield = $result->current_field;

 printf("Column %d:\n", $currentfield);
 printf("Name: %s\n", $finfo->name);
 printf("Table: %s\n", $finfo->table);
 printf("max. Len: %d\n", $finfo->max_length);
 printf("Flags: %d\n", $finfo->flags);
 printf("Type: %d\n\n", $finfo->type);
 }
 $result->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.109 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = mysqli_query($link, $query)) {

 /* Get field information for all fields */
 while ($finfo = mysqli_fetch_field($result)) {

 /* get fieldpointer offset */
 $currentfield = mysqli_field_tell($result);

 printf("Column %d:\n", $currentfield);
 printf("Name: %s\n", $finfo->name);
 printf("Table: %s\n", $finfo->table);
 printf("max. Len: %d\n", $finfo->max_length);
 printf("Flags: %d\n", $finfo->flags);
 printf("Type: %d\n\n", $finfo->type);
 }
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

mysqli_result::data_seek, mysqli_data_seek

210

Column 1:
Name: Name
Table: Country
max. Len: 11
Flags: 1
Type: 254

Column 2:
Name: SurfaceArea
Table: Country
max. Len: 10
Flags: 32769
Type: 4

See Also

mysqli_fetch_field
mysqli_field_seek

3.11.2 mysqli_result::data_seek, mysqli_data_seek

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_result::data_seek

mysqli_data_seek

Adjusts the result pointer to an arbitrary row in the result

Description

Object oriented style

 bool mysqli_result::data_seek(
 int offset);

Procedural style

 bool mysqli_data_seek(
 mysqli_result result,
 int offset);

The mysqli_data_seek function seeks to an arbitrary result pointer specified by the offset in the result
set.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

offset The field offset. Must be between zero and the total number of rows
minus one (0..mysqli_num_rows - 1).

Return Values

Returns TRUE on success or FALSE on failure.

Notes

mysqli_result::data_seek, mysqli_data_seek

211

Note

This function can only be used with buffered results attained from the use of the
mysqli_store_result or mysqli_query functions.

Examples

Example 3.110 Object oriented style

<?php
/* Open a connection */
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name";
if ($result = $mysqli->query($query)) {

 /* seek to row no. 400 */
 $result->data_seek(399);

 /* fetch row */
 $row = $result->fetch_row();

 printf ("City: %s Countrycode: %s\n", $row[0], $row[1]);

 /* free result set*/
 $result->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.111 Procedural style

<?php
/* Open a connection */
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (!$link) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER BY Name";

if ($result = mysqli_query($link, $query)) {

 /* seek to row no. 400 */
 mysqli_data_seek($result, 399);

 /* fetch row */
 $row = mysqli_fetch_row($result);

mysqli_result::fetch_all, mysqli_fetch_all

212

 printf ("City: %s Countrycode: %s\n", $row[0], $row[1]);

 /* free result set*/
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

City: Benin City Countrycode: NGA

See Also

mysqli_store_result
mysqli_fetch_row
mysqli_fetch_array
mysqli_fetch_assoc
mysqli_fetch_object
mysqli_query
mysqli_num_rows

3.11.3 mysqli_result::fetch_all, mysqli_fetch_all

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_result::fetch_all

mysqli_fetch_all

Fetches all result rows as an associative array, a numeric array, or both

Description

Object oriented style

 mixed mysqli_result::fetch_all(
 int resulttype
 = =MYSQLI_NUM);

Procedural style

 mixed mysqli_fetch_all(
 mysqli_result result,
 int resulttype
 = =MYSQLI_NUM);

mysqli_fetch_all fetches all result rows and returns the result set as an associative array, a numeric
array, or both.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

mysqli_result::fetch_array, mysqli_fetch_array

213

resulttype This optional parameter is a constant indicating what type of array
should be produced from the current row data. The possible values for
this parameter are the constants MYSQLI_ASSOC, MYSQLI_NUM, or
MYSQLI_BOTH.

Return Values

Returns an array of associative or numeric arrays holding result rows.

MySQL Native Driver Only

Available only with mysqlnd.

As mysqli_fetch_all returns all the rows as an array in a single step, it may consume more memory
than some similar functions such as mysqli_fetch_array, which only returns one row at a time from
the result set. Further, if you need to iterate over the result set, you will need a looping construct that
will further impact performance. For these reasons mysqli_fetch_all should only be used in those
situations where the fetched result set will be sent to another layer for processing.

See Also

mysqli_fetch_array
mysqli_query

3.11.4 mysqli_result::fetch_array, mysqli_fetch_array

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_result::fetch_array

mysqli_fetch_array

Fetch a result row as an associative, a numeric array, or both

Description

Object oriented style

 mixed mysqli_result::fetch_array(
 int resulttype
 = =MYSQLI_BOTH);

Procedural style

 mixed mysqli_fetch_array(
 mysqli_result result,
 int resulttype
 = =MYSQLI_BOTH);

Returns an array that corresponds to the fetched row or NULL if there are no more rows for the resultset
represented by the result parameter.

mysqli_fetch_array is an extended version of the mysqli_fetch_row function. In addition to storing
the data in the numeric indices of the result array, the mysqli_fetch_array function can also store the
data in associative indices, using the field names of the result set as keys.

Note

Field names returned by this function are case-sensitive.

mysqli_result::fetch_array, mysqli_fetch_array

214

Note

This function sets NULL fields to the PHP NULL value.

If two or more columns of the result have the same field names, the last column will take precedence
and overwrite the earlier data. In order to access multiple columns with the same name, the numerically
indexed version of the row must be used.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

resulttype This optional parameter is a constant indicating what type of array
should be produced from the current row data. The possible values for
this parameter are the constants MYSQLI_ASSOC, MYSQLI_NUM, or
MYSQLI_BOTH.

By using the MYSQLI_ASSOC constant this function will behave
identically to the mysqli_fetch_assoc, while MYSQLI_NUM will
behave identically to the mysqli_fetch_row function. The final option
MYSQLI_BOTH will create a single array with the attributes of both.

Return Values

Returns an array of strings that corresponds to the fetched row or NULL if there are no more rows in
resultset.

Examples

Example 3.112 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if ($mysqli->connect_errno) {
 printf("Connect failed: %s\n", $mysqli->connect_error);
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER by ID LIMIT 3";
$result = $mysqli->query($query);

/* numeric array */
$row = $result->fetch_array(MYSQLI_NUM);
printf ("%s (%s)\n", $row[0], $row[1]);

/* associative array */
$row = $result->fetch_array(MYSQLI_ASSOC);
printf ("%s (%s)\n", $row["Name"], $row["CountryCode"]);

/* associative and numeric array */
$row = $result->fetch_array(MYSQLI_BOTH);
printf ("%s (%s)\n", $row[0], $row["CountryCode"]);

/* free result set */
$result->free();

mysqli_result::fetch_assoc, mysqli_fetch_assoc

215

/* close connection */
$mysqli->close();
?>

Example 3.113 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER by ID LIMIT 3";
$result = mysqli_query($link, $query);

/* numeric array */
$row = mysqli_fetch_array($result, MYSQLI_NUM);
printf ("%s (%s)\n", $row[0], $row[1]);

/* associative array */
$row = mysqli_fetch_array($result, MYSQLI_ASSOC);
printf ("%s (%s)\n", $row["Name"], $row["CountryCode"]);

/* associative and numeric array */
$row = mysqli_fetch_array($result, MYSQLI_BOTH);
printf ("%s (%s)\n", $row[0], $row["CountryCode"]);

/* free result set */
mysqli_free_result($result);

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Kabul (AFG)
Qandahar (AFG)
Herat (AFG)

See Also

mysqli_fetch_assoc
mysqli_fetch_row
mysqli_fetch_object
mysqli_query
mysqli_data_seek

3.11.5 mysqli_result::fetch_assoc, mysqli_fetch_assoc

Copyright 1997-2014 the PHP Documentation Group.

mysqli_result::fetch_assoc, mysqli_fetch_assoc

216

• mysqli_result::fetch_assoc

mysqli_fetch_assoc

Fetch a result row as an associative array

Description

Object oriented style

 array mysqli_result::fetch_assoc();

Procedural style

 array mysqli_fetch_assoc(
 mysqli_result result);

Returns an associative array that corresponds to the fetched row or NULL if there are no more rows.

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

Returns an associative array of strings representing the fetched row in the result set, where each key in the
array represents the name of one of the result set's columns or NULL if there are no more rows in resultset.

If two or more columns of the result have the same field names, the last column will take precedence. To
access the other column(s) of the same name, you either need to access the result with numeric indices by
using mysqli_fetch_row or add alias names.

Examples

Example 3.114 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if ($mysqli->connect_errno) {
 printf("Connect failed: %s\n", $mysqli->connect_error);
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = $mysqli->query($query)) {

 /* fetch associative array */
 while ($row = $result->fetch_assoc()) {

mysqli_result::fetch_assoc, mysqli_fetch_assoc

217

 printf ("%s (%s)\n", $row["Name"], $row["CountryCode"]);
 }

 /* free result set */
 $result->free();
}

/* close connection */
$mysqli->close();
?>

Example 3.115 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = mysqli_query($link, $query)) {

 /* fetch associative array */
 while ($row = mysqli_fetch_assoc($result)) {
 printf ("%s (%s)\n", $row["Name"], $row["CountryCode"]);
 }

 /* free result set */
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Pueblo (USA)
Arvada (USA)
Cape Coral (USA)
Green Bay (USA)
Santa Clara (USA)

Example 3.116 A mysqli_result example comparing iterator usage

<?php
$c = mysqli_connect('127.0.0.1','user', 'pass');

// Using iterators (support was added with PHP 5.4)
foreach ($c->query('SELECT user,host FROM mysql.user') as $row) {

mysqli_result::fetch_field_direct, mysqli_fetch_field_direct

218

 printf("'%s'@'%s'\n", $row['user'], $row['host']);
}

echo "\n==================\n";

// Not using iterators
$result = $c->query('SELECT user,host FROM mysql.user');
while ($row = $result->fetch_assoc()) {
 printf("'%s'@'%s'\n", $row['user'], $row['host']);
}

?>

The above example will output something similar to:

'root'@'192.168.1.1'
'root'@'127.0.0.1'
'dude'@'localhost'
'lebowski'@'localhost'

==================

'root'@'192.168.1.1'
'root'@'127.0.0.1'
'dude'@'localhost'
'lebowski'@'localhost'

See Also

mysqli_fetch_array
mysqli_fetch_row
mysqli_fetch_object
mysqli_query
mysqli_data_seek

3.11.6 mysqli_result::fetch_field_direct,
mysqli_fetch_field_direct

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_result::fetch_field_direct

mysqli_fetch_field_direct

Fetch meta-data for a single field

Description

Object oriented style

 object mysqli_result::fetch_field_direct(
 int fieldnr);

Procedural style

 object mysqli_fetch_field_direct(

mysqli_result::fetch_field_direct, mysqli_fetch_field_direct

219

 mysqli_result result,
 int fieldnr);

Returns an object which contains field definition information from the specified result set.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

fieldnr The field number. This value must be in the range from 0 to number of
fields - 1.

Return Values

Returns an object which contains field definition information or FALSE if no field information for specified
fieldnr is available.

Table 3.17 Object attributes

Attribute Description

name The name of the column

orgname Original column name if an alias was specified

table The name of the table this field belongs to (if not
calculated)

orgtable Original table name if an alias was specified

def The default value for this field, represented as a
string

max_length The maximum width of the field for the result set.

length The width of the field, as specified in the table
definition.

charsetnr The character set number for the field.

flags An integer representing the bit-flags for the field.

type The data type used for this field

decimals The number of decimals used (for numeric fields)

Examples

Example 3.117 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Name LIMIT 5";

if ($result = $mysqli->query($query)) {

mysqli_result::fetch_field_direct, mysqli_fetch_field_direct

220

 /* Get field information for column 'SurfaceArea' */
 $finfo = $result->fetch_field_direct(1);

 printf("Name: %s\n", $finfo->name);
 printf("Table: %s\n", $finfo->table);
 printf("max. Len: %d\n", $finfo->max_length);
 printf("Flags: %d\n", $finfo->flags);
 printf("Type: %d\n", $finfo->type);

 $result->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.118 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Name LIMIT 5";

if ($result = mysqli_query($link, $query)) {

 /* Get field information for column 'SurfaceArea' */
 $finfo = mysqli_fetch_field_direct($result, 1);

 printf("Name: %s\n", $finfo->name);
 printf("Table: %s\n", $finfo->table);
 printf("max. Len: %d\n", $finfo->max_length);
 printf("Flags: %d\n", $finfo->flags);
 printf("Type: %d\n", $finfo->type);

 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Name: SurfaceArea
Table: Country
max. Len: 10
Flags: 32769
Type: 4

See Also

mysqli_result::fetch_field, mysqli_fetch_field

221

mysqli_num_fields
mysqli_fetch_field
mysqli_fetch_fields

3.11.7 mysqli_result::fetch_field, mysqli_fetch_field

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_result::fetch_field

mysqli_fetch_field

Returns the next field in the result set

Description

Object oriented style

 object mysqli_result::fetch_field();

Procedural style

 object mysqli_fetch_field(
 mysqli_result result);

Returns the definition of one column of a result set as an object. Call this function repeatedly to retrieve
information about all columns in the result set.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

Returns an object which contains field definition information or FALSE if no field information is available.

Table 3.18 Object properties

Property Description

name The name of the column

orgname Original column name if an alias was specified

table The name of the table this field belongs to (if not
calculated)

orgtable Original table name if an alias was specified

def Reserved for default value, currently always ""

db Database (since PHP 5.3.6)

catalog The catalog name, always "def" (since PHP 5.3.6)

max_length The maximum width of the field for the result set.

length The width of the field, as specified in the table
definition.

charsetnr The character set number for the field.

flags An integer representing the bit-flags for the field.

mysqli_result::fetch_field, mysqli_fetch_field

222

Property Description

type The data type used for this field

decimals The number of decimals used (for integer fields)

Examples

Example 3.119 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = $mysqli->query($query)) {

 /* Get field information for all columns */
 while ($finfo = $result->fetch_field()) {

 printf("Name: %s\n", $finfo->name);
 printf("Table: %s\n", $finfo->table);
 printf("max. Len: %d\n", $finfo->max_length);
 printf("Flags: %d\n", $finfo->flags);
 printf("Type: %d\n\n", $finfo->type);
 }
 $result->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.120 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = mysqli_query($link, $query)) {

 /* Get field information for all fields */
 while ($finfo = mysqli_fetch_field($result)) {

 printf("Name: %s\n", $finfo->name);
 printf("Table: %s\n", $finfo->table);
 printf("max. Len: %d\n", $finfo->max_length);

mysqli_result::fetch_fields, mysqli_fetch_fields

223

 printf("Flags: %d\n", $finfo->flags);
 printf("Type: %d\n\n", $finfo->type);
 }
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Name: Name
Table: Country
max. Len: 11
Flags: 1
Type: 254

Name: SurfaceArea
Table: Country
max. Len: 10
Flags: 32769
Type: 4

See Also

mysqli_num_fields
mysqli_fetch_field_direct
mysqli_fetch_fields
mysqli_field_seek

3.11.8 mysqli_result::fetch_fields, mysqli_fetch_fields

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_result::fetch_fields

mysqli_fetch_fields

Returns an array of objects representing the fields in a result set

Description

Object oriented style

 array mysqli_result::fetch_fields();

Procedural style

 array mysqli_fetch_fields(
 mysqli_result result);

This function serves an identical purpose to the mysqli_fetch_field function with the single difference
that, instead of returning one object at a time for each field, the columns are returned as an array of
objects.

mysqli_result::fetch_fields, mysqli_fetch_fields

224

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

Returns an array of objects which contains field definition information or FALSE if no field information is
available.

Table 3.19 Object properties

Property Description

name The name of the column

orgname Original column name if an alias was specified

table The name of the table this field belongs to (if not
calculated)

orgtable Original table name if an alias was specified

max_length The maximum width of the field for the result set.

length The width of the field, in bytes, as specified in the
table definition. Note that this number (bytes) might
differ from your table definition value (characters),
depending on the character set you use. For
example, the character set utf8 has 3 bytes per
character, so varchar(10) will return a length of 30
for utf8 (10*3), but return 10 for latin1 (10*1).

charsetnr The character set number (id) for the field.

flags An integer representing the bit-flags for the field.

type The data type used for this field

decimals The number of decimals used (for integer fields)

Examples

Example 3.121 Object oriented style

<?php
$mysqli = new mysqli("127.0.0.1", "root", "foofoo", "sakila");

/* check connection */
if ($mysqli->connect_errno) {
 printf("Connect failed: %s\n", $mysqli->connect_error);
 exit();
}

foreach (array('latin1', 'utf8') as $charset) {

 // Set character set, to show its impact on some values (e.g., length in bytes)
 $mysqli->set_charset($charset);

 $query = "SELECT actor_id, last_name from actor ORDER BY actor_id";

 echo "======================\n";
 echo "Character Set: $charset\n";

mysqli_result::fetch_fields, mysqli_fetch_fields

225

 echo "======================\n";

 if ($result = $mysqli->query($query)) {

 /* Get field information for all columns */
 $finfo = $result->fetch_fields();

 foreach ($finfo as $val) {
 printf("Name: %s\n", $val->name);
 printf("Table: %s\n", $val->table);
 printf("Max. Len: %d\n", $val->max_length);
 printf("Length: %d\n", $val->length);
 printf("charsetnr: %d\n", $val->charsetnr);
 printf("Flags: %d\n", $val->flags);
 printf("Type: %d\n\n", $val->type);
 }
 $result->free();
 }
}
$mysqli->close();
?>

Example 3.122 Procedural style

<?php
$link = mysqli_connect("127.0.0.1", "my_user", "my_password", "sakila");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

foreach (array('latin1', 'utf8') as $charset) {

 // Set character set, to show its impact on some values (e.g., length in bytes)
 mysqli_set_charset($link, $charset);

 $query = "SELECT actor_id, last_name from actor ORDER BY actor_id";

 echo "======================\n";
 echo "Character Set: $charset\n";
 echo "======================\n";

 if ($result = mysqli_query($link, $query)) {

 /* Get field information for all columns */
 $finfo = mysqli_fetch_fields($result);

 foreach ($finfo as $val) {
 printf("Name: %s\n", $val->name);
 printf("Table: %s\n", $val->table);
 printf("Max. Len: %d\n", $val->max_length);
 printf("Length: %d\n", $val->length);
 printf("charsetnr: %d\n", $val->charsetnr);
 printf("Flags: %d\n", $val->flags);
 printf("Type: %d\n\n", $val->type);
 }
 mysqli_free_result($result);
 }
}

mysqli_close($link);

mysqli_result::fetch_object, mysqli_fetch_object

226

?>

The above examples will output:

======================
Character Set: latin1
======================
Name: actor_id
Table: actor
Max. Len: 3
Length: 5
charsetnr: 63
Flags: 49699
Type: 2

Name: last_name
Table: actor
Max. Len: 12
Length: 45
charsetnr: 8
Flags: 20489
Type: 253

======================
Character Set: utf8
======================
Name: actor_id
Table: actor
Max. Len: 3
Length: 5
charsetnr: 63
Flags: 49699
Type: 2

Name: last_name
Table: actor
Max. Len: 12
Length: 135
charsetnr: 33
Flags: 20489

See Also

mysqli_num_fields
mysqli_fetch_field_direct
mysqli_fetch_field

3.11.9 mysqli_result::fetch_object, mysqli_fetch_object

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_result::fetch_object

mysqli_fetch_object

Returns the current row of a result set as an object

Description

mysqli_result::fetch_object, mysqli_fetch_object

227

Object oriented style

 object mysqli_result::fetch_object(
 string class_name
 = ="stdClass",
 array params);

Procedural style

 object mysqli_fetch_object(
 mysqli_result result,
 string class_name
 = ="stdClass",
 array params);

The mysqli_fetch_object will return the current row result set as an object where the attributes of the
object represent the names of the fields found within the result set.

Note that mysqli_fetch_object sets the properties of the object before calling the object constructor.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

class_name The name of the class to instantiate, set the properties of and return. If
not specified, a stdClass object is returned.

params An optional array of parameters to pass to the constructor for
class_name objects.

Return Values

Returns an object with string properties that corresponds to the fetched row or NULL if there are no more
rows in resultset.

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

Examples

Example 3.123 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

mysqli_result::fetch_object, mysqli_fetch_object

228

if ($result = $mysqli->query($query)) {

 /* fetch object array */
 while ($obj = $result->fetch_object()) {
 printf ("%s (%s)\n", $obj->Name, $obj->CountryCode);
 }

 /* free result set */
 $result->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.124 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = mysqli_query($link, $query)) {

 /* fetch associative array */
 while ($obj = mysqli_fetch_object($result)) {
 printf ("%s (%s)\n", $obj->Name, $obj->CountryCode);
 }

 /* free result set */
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Pueblo (USA)
Arvada (USA)
Cape Coral (USA)
Green Bay (USA)
Santa Clara (USA)

See Also

mysqli_fetch_array
mysqli_fetch_assoc
mysqli_fetch_row

mysqli_result::fetch_row, mysqli_fetch_row

229

mysqli_query
mysqli_data_seek

3.11.10 mysqli_result::fetch_row, mysqli_fetch_row

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_result::fetch_row

mysqli_fetch_row

Get a result row as an enumerated array

Description

Object oriented style

 mixed mysqli_result::fetch_row();

Procedural style

 mixed mysqli_fetch_row(
 mysqli_result result);

Fetches one row of data from the result set and returns it as an enumerated array, where each column is
stored in an array offset starting from 0 (zero). Each subsequent call to this function will return the next row
within the result set, or NULL if there are no more rows.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

mysqli_fetch_row returns an array of strings that corresponds to the fetched row or NULL if there are
no more rows in result set.

Note

This function sets NULL fields to the PHP NULL value.

Examples

Example 3.125 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = $mysqli->query($query)) {

mysqli_result::fetch_row, mysqli_fetch_row

230

 /* fetch object array */
 while ($row = $result->fetch_row()) {
 printf ("%s (%s)\n", $row[0], $row[1]);
 }

 /* free result set */
 $result->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.126 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, CountryCode FROM City ORDER by ID DESC LIMIT 50,5";

if ($result = mysqli_query($link, $query)) {

 /* fetch associative array */
 while ($row = mysqli_fetch_row($result)) {
 printf ("%s (%s)\n", $row[0], $row[1]);
 }

 /* free result set */
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Pueblo (USA)
Arvada (USA)
Cape Coral (USA)
Green Bay (USA)
Santa Clara (USA)

See Also

mysqli_fetch_array
mysqli_fetch_assoc
mysqli_fetch_object
mysqli_query

mysqli_result::$field_count, mysqli_num_fields

231

mysqli_data_seek

3.11.11 mysqli_result::$field_count, mysqli_num_fields

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_result::$field_count

mysqli_num_fields

Get the number of fields in a result

Description

Object oriented style

 int
 mysqli_result->field_count ;

Procedural style

 int mysqli_num_fields(
 mysqli_result result);

Returns the number of fields from specified result set.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

The number of fields from a result set.

Examples

Example 3.127 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

if ($result = $mysqli->query("SELECT * FROM City ORDER BY ID LIMIT 1")) {

 /* determine number of fields in result set */
 $field_cnt = $result->field_count;

 printf("Result set has %d fields.\n", $field_cnt);

 /* close result set */
 $result->close();
}

mysqli_result::field_seek, mysqli_field_seek

232

/* close connection */
$mysqli->close();
?>

Example 3.128 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

if ($result = mysqli_query($link, "SELECT * FROM City ORDER BY ID LIMIT 1")) {

 /* determine number of fields in result set */
 $field_cnt = mysqli_num_fields($result);

 printf("Result set has %d fields.\n", $field_cnt);

 /* close result set */
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Result set has 5 fields.

See Also

mysqli_fetch_field

3.11.12 mysqli_result::field_seek, mysqli_field_seek

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_result::field_seek

mysqli_field_seek

Set result pointer to a specified field offset

Description

Object oriented style

 bool mysqli_result::field_seek(

mysqli_result::field_seek, mysqli_field_seek

233

 int fieldnr);

Procedural style

 bool mysqli_field_seek(
 mysqli_result result,
 int fieldnr);

Sets the field cursor to the given offset. The next call to mysqli_fetch_field will retrieve the field
definition of the column associated with that offset.

Note

To seek to the beginning of a row, pass an offset value of zero.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

fieldnr The field number. This value must be in the range from 0 to number of
fields - 1.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 3.129 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = $mysqli->query($query)) {

 /* Get field information for 2nd column */
 $result->field_seek(1);
 $finfo = $result->fetch_field();

 printf("Name: %s\n", $finfo->name);
 printf("Table: %s\n", $finfo->table);
 printf("max. Len: %d\n", $finfo->max_length);
 printf("Flags: %d\n", $finfo->flags);
 printf("Type: %d\n\n", $finfo->type);

 $result->close();
}

/* close connection */
$mysqli->close();
?>

mysqli_result::free, mysqli_free_result

234

Example 3.130 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT Name, SurfaceArea from Country ORDER BY Code LIMIT 5";

if ($result = mysqli_query($link, $query)) {

 /* Get field information for 2nd column */
 mysqli_field_seek($result, 1);
 $finfo = mysqli_fetch_field($result);

 printf("Name: %s\n", $finfo->name);
 printf("Table: %s\n", $finfo->table);
 printf("max. Len: %d\n", $finfo->max_length);
 printf("Flags: %d\n", $finfo->flags);
 printf("Type: %d\n\n", $finfo->type);

 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Name: SurfaceArea
Table: Country
max. Len: 10
Flags: 32769
Type: 4

See Also

mysqli_fetch_field

3.11.13 mysqli_result::free, mysqli_free_result

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_result::free

mysqli_free_result

Frees the memory associated with a result

mysqli_result::$lengths, mysqli_fetch_lengths

235

Description

Object oriented style

 void mysqli_result::free();

 void mysqli_result::close();

 void mysqli_result::free_result();

Procedural style

 void mysqli_free_result(
 mysqli_result result);

Frees the memory associated with the result.

Note

You should always free your result with mysqli_free_result, when your result
object is not needed anymore.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

No value is returned.

See Also

mysqli_query
mysqli_stmt_store_result
mysqli_store_result
mysqli_use_result

3.11.14 mysqli_result::$lengths, mysqli_fetch_lengths

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_result::$lengths

mysqli_fetch_lengths

Returns the lengths of the columns of the current row in the result set

Description

Object oriented style

 array
 mysqli_result->lengths ;

Procedural style

 array mysqli_fetch_lengths(
 mysqli_result result);

mysqli_result::$lengths, mysqli_fetch_lengths

236

The mysqli_fetch_lengths function returns an array containing the lengths of every column of the
current row within the result set.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

An array of integers representing the size of each column (not including any terminating null characters).
FALSE if an error occurred.

mysqli_fetch_lengths is valid only for the current row of the result set. It returns FALSE if you call it
before calling mysqli_fetch_row/array/object or after retrieving all rows in the result.

Examples

Example 3.131 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

$query = "SELECT * from Country ORDER BY Code LIMIT 1";

if ($result = $mysqli->query($query)) {

 $row = $result->fetch_row();

 /* display column lengths */
 foreach ($result->lengths as $i => $val) {
 printf("Field %2d has Length %2d\n", $i+1, $val);
 }
 $result->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.132 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

mysqli_result::$num_rows, mysqli_num_rows

237

$query = "SELECT * from Country ORDER BY Code LIMIT 1";

if ($result = mysqli_query($link, $query)) {

 $row = mysqli_fetch_row($result);

 /* display column lengths */
 foreach (mysqli_fetch_lengths($result) as $i => $val) {
 printf("Field %2d has Length %2d\n", $i+1, $val);
 }
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Field 1 has Length 3
Field 2 has Length 5
Field 3 has Length 13
Field 4 has Length 9
Field 5 has Length 6
Field 6 has Length 1
Field 7 has Length 6
Field 8 has Length 4
Field 9 has Length 6
Field 10 has Length 6
Field 11 has Length 5
Field 12 has Length 44
Field 13 has Length 7
Field 14 has Length 3
Field 15 has Length 2

3.11.15 mysqli_result::$num_rows, mysqli_num_rows

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_result::$num_rows

mysqli_num_rows

Gets the number of rows in a result

Description

Object oriented style

 int
 mysqli_result->num_rows ;

Procedural style

 int mysqli_num_rows(
 mysqli_result result);

Returns the number of rows in the result set.

mysqli_result::$num_rows, mysqli_num_rows

238

The behaviour of mysqli_num_rows depends on whether buffered or unbuffered result sets are being
used. For unbuffered result sets, mysqli_num_rows will not return the correct number of rows until all the
rows in the result have been retrieved.

Parameters

result Procedural style only: A result set identifier returned by mysqli_query,
mysqli_store_result or mysqli_use_result.

Return Values

Returns number of rows in the result set.

Note

If the number of rows is greater than PHP_INT_MAX, the number will be returned as
a string.

Examples

Example 3.133 Object oriented style

<?php
$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

if ($result = $mysqli->query("SELECT Code, Name FROM Country ORDER BY Name")) {

 /* determine number of rows result set */
 $row_cnt = $result->num_rows;

 printf("Result set has %d rows.\n", $row_cnt);

 /* close result set */
 $result->close();
}

/* close connection */
$mysqli->close();
?>

Example 3.134 Procedural style

<?php
$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

The mysqli_driver class

239

if ($result = mysqli_query($link, "SELECT Code, Name FROM Country ORDER BY Name")) {

 /* determine number of rows result set */
 $row_cnt = mysqli_num_rows($result);

 printf("Result set has %d rows.\n", $row_cnt);

 /* close result set */
 mysqli_free_result($result);
}

/* close connection */
mysqli_close($link);
?>

The above examples will output:

Result set has 239 rows.

See Also

mysqli_affected_rows
mysqli_store_result
mysqli_use_result
mysqli_query

3.12 The mysqli_driver class

Copyright 1997-2014 the PHP Documentation Group.

MySQLi Driver.

mysqli_driver {
mysqli_driver

 Properties

 public readonly string
 client_info ;

 public readonly string
 client_version ;

 public readonly string
 driver_version ;

 public readonly string
 embedded ;

 public bool
 reconnect ;

 public int
 report_mode ;

Methods

mysqli_driver::embedded_server_end, mysqli_embedded_server_end

240

 void mysqli_driver::embedded_server_end();

 bool mysqli_driver::embedded_server_start(
 bool start,
 array arguments,
 array groups);

}

client_info The Client API header version

client_version The Client version

driver_version The MySQLi Driver version

embedded Whether MySQLi Embedded support is enabled

reconnect Allow or prevent reconnect (see the mysqli.reconnect INI directive)

report_mode Set to MYSQLI_REPORT_OFF, MYSQLI_REPORT_ALL or any
combination of MYSQLI_REPORT_STRICT (throw Exceptions for errors),
MYSQLI_REPORT_ERROR (report errors) and MYSQLI_REPORT_INDEX
(errors regarding indexes). See also mysqli_report.

3.12.1 mysqli_driver::embedded_server_end,
mysqli_embedded_server_end

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_driver::embedded_server_end

mysqli_embedded_server_end

Stop embedded server

Description

Object oriented style

 void mysqli_driver::embedded_server_end();

Procedural style

 void mysqli_embedded_server_end();

Warning

This function is currently not documented; only its argument list is available.

3.12.2 mysqli_driver::embedded_server_start,
mysqli_embedded_server_start

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_driver::embedded_server_start

mysqli_embedded_server_start

mysqli_driver::$report_mode, mysqli_report

241

Initialize and start embedded server

Description

Object oriented style

 bool mysqli_driver::embedded_server_start(
 bool start,
 array arguments,
 array groups);

Procedural style

 bool mysqli_embedded_server_start(
 bool start,
 array arguments,
 array groups);

Warning

This function is currently not documented; only its argument list is available.

3.12.3 mysqli_driver::$report_mode, mysqli_report

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_driver::$report_mode

mysqli_report

Enables or disables internal report functions

Description

Object oriented style

 int
 mysqli_driver->report_mode ;

Procedural style

 bool mysqli_report(
 int flags);

A function helpful in improving queries during code development and testing. Depending on the flags, it
reports errors from mysqli function calls or queries that don't use an index (or use a bad index).

Parameters

flags Table 3.20 Supported flags

Name Description

MYSQLI_REPORT_OFF Turns reporting off

MYSQLI_REPORT_ERROR Report errors from mysqli function
calls

MYSQLI_REPORT_STRICT Throw mysqli_sql_exception
for errors instead of warnings

mysqli_driver::$report_mode, mysqli_report

242

Name Description

MYSQLI_REPORT_INDEX Report if no index or bad index
was used in a query

MYSQLI_REPORT_ALL Set all options (report all)

Return Values

Returns TRUE on success or FALSE on failure.

Changelog

Version Description

5.3.4 Changing the reporting mode is now be per-request,
rather than per-process.

5.2.15 Changing the reporting mode is now be per-request,
rather than per-process.

Examples

Example 3.135 Object oriented style

<?php

$mysqli = new mysqli("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* activate reporting */
$driver = new mysqli_driver();
$driver->report_mode = MYSQLI_REPORT_ALL;

try {

 /* this query should report an error */
 $result = $mysqli->query("SELECT Name FROM Nonexistingtable WHERE population > 50000");

 /* this query should report a bad index */
 $result = $mysqli->query("SELECT Name FROM City WHERE population > 50000");

 $result->close();

 $mysqli->close();

} catch (mysqli_sql_exception $e) {

 echo $e->__toString();
}
?>

Example 3.136 Procedural style

The mysqli_warning class

243

<?php
/* activate reporting */
mysqli_report(MYSQLI_REPORT_ALL);

$link = mysqli_connect("localhost", "my_user", "my_password", "world");

/* check connection */
if (mysqli_connect_errno()) {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
}

/* this query should report an error */
$result = mysqli_query("SELECT Name FROM Nonexistingtable WHERE population > 50000");

/* this query should report a bad index */
$result = mysqli_query("SELECT Name FROM City WHERE population > 50000");

mysqli_free_result($result);

mysqli_close($link);
?>

See Also

mysqli_debug
mysqli_dump_debug_info
mysqli_sql_exception
set_exception_handler
error_reporting

3.13 The mysqli_warning class
Copyright 1997-2014 the PHP Documentation Group.

Represents a MySQL warning.

mysqli_warning {
mysqli_warning

 Properties

 public
 message ;

 public
 sqlstate ;

 public
 errno ;

Methods

 public mysqli_warning::__construct();

 public void mysqli_warning::next();

}

message Message string

http://www.php.net/set_exception_handler
http://www.php.net/error_reporting

mysqli_warning::__construct

244

sqlstate SQL state

errno Error number

3.13.1 mysqli_warning::__construct

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_warning::__construct

The __construct purpose

Description

 public mysqli_warning::__construct();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

3.13.2 mysqli_warning::next

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_warning::next

The next purpose

Description

 public void mysqli_warning::next();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

3.14 The mysqli_sql_exception class
Copyright 1997-2014 the PHP Documentation Group.

The mysqli exception handling class.

Aliases and deprecated Mysqli Functions

245

mysqli_sql_exception {
mysqli_sql_exceptionextends RuntimeException

 Properties

 protected string
 sqlstate ;

Inherited properties

 protected string
 message ;

 protected int
 code ;

 protected string
 file ;

 protected int
 line ;

}

sqlstate The sql state with the error.

3.15 Aliases and deprecated Mysqli Functions
Copyright 1997-2014 the PHP Documentation Group.

3.15.1 mysqli_bind_param

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_bind_param

Alias for mysqli_stmt_bind_param

Description

This function is an alias of mysqli_stmt_bind_param.

Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also

mysqli_stmt_bind_param

3.15.2 mysqli_bind_result

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_bind_result

Alias for mysqli_stmt_bind_result

Description

mysqli_client_encoding

246

This function is an alias of mysqli_stmt_bind_result.

Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also

mysqli_stmt_bind_result

3.15.3 mysqli_client_encoding

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_client_encoding

Alias of mysqli_character_set_name

Description

This function is an alias of mysqli_character_set_name.

Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also

mysqli_real_escape_string

3.15.4 mysqli_connect

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_connect

Alias of mysqli::__construct

Description

This function is an alias of: mysqli::__construct

Although the mysqli::__construct documentation also includes procedural examples that use the
mysqli_connect function, here is a short example:

Examples

Example 3.137 mysqli_connect example

<?php
$link = mysqli_connect("127.0.0.1", "my_user", "my_password", "my_db");

if (!$link) {
 echo "Error: Unable to connect to MySQL." . PHP_EOL;
 echo "Debugging errno: " . mysqli_connect_errno() . PHP_EOL;

mysqli::disable_reads_from_master, mysqli_disable_reads_from_master

247

 echo "Debugging error: " . mysqli_connect_error() . PHP_EOL;
 exit;
}

echo "Success: A proper connection to MySQL was made! The my_db database is great." . PHP_EOL;
echo "Host information: " . mysqli_get_host_info($link) . PHP_EOL;

mysqli_close($link);
?>

The above examples will output:

Success: A proper connection to MySQL was made! The my_db database is great.
Host information: localhost via TCP/IP

3.15.5 mysqli::disable_reads_from_master,
mysqli_disable_reads_from_master

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::disable_reads_from_master

mysqli_disable_reads_from_master

Disable reads from master

Description

Object oriented style

 void mysqli::disable_reads_from_master();

Procedural style

 bool mysqli_disable_reads_from_master(
 mysqli link);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.15.6 mysqli_disable_rpl_parse

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_disable_rpl_parse

Disable RPL parse

Description

mysqli_enable_reads_from_master

248

 bool mysqli_disable_rpl_parse(
 mysqli link);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.15.7 mysqli_enable_reads_from_master

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_enable_reads_from_master

Enable reads from master

Description

 bool mysqli_enable_reads_from_master(
 mysqli link);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.15.8 mysqli_enable_rpl_parse

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_enable_rpl_parse

Enable RPL parse

Description

 bool mysqli_enable_rpl_parse(
 mysqli link);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.15.9 mysqli_escape_string

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_escape_string

mysqli_execute

249

Alias of mysqli_real_escape_string

Description

This function is an alias of: mysqli_real_escape_string.

3.15.10 mysqli_execute

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_execute

Alias for mysqli_stmt_execute

Description

This function is an alias of mysqli_stmt_execute.

Notes

Note

mysqli_execute is deprecated and will be removed.

See Also

mysqli_stmt_execute

3.15.11 mysqli_fetch

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_fetch

Alias for mysqli_stmt_fetch

Description

This function is an alias of mysqli_stmt_fetch.

Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also

mysqli_stmt_fetch

3.15.12 mysqli_get_cache_stats

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_get_cache_stats

Returns client Zval cache statistics

mysqli_get_links_stats

250

Warning

This function has been REMOVED as of PHP 5.4.0.

Description

 array mysqli_get_cache_stats();

Returns an empty array. Available only with mysqlnd.

Parameters

Return Values

Returns an empty array on success, FALSE otherwise.

Changelog

Version Description

5.4.0 The mysqli_get_cache_stats was removed.

5.3.0 The mysqli_get_cache_stats was added as
stub.

3.15.13 mysqli_get_links_stats

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_get_links_stats

Return information about open and cached links

Description

 array mysqli_get_links_stats();

mysqli_get_links_stats returns information about open and cached MySQL links.

Parameters

This function has no parameters.

Return Values

mysqli_get_links_stats returns an associative array with three elements, keyed as follows:

total An integer indicating the total number of open links in any state.

active_plinks An integer representing the number of active persistent connections.

cached_plinks An integer representing the number of inactive persistent connections.

3.15.14 mysqli_get_metadata

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_get_metadata

mysqli_master_query

251

Alias for mysqli_stmt_result_metadata

Description

This function is an alias of mysqli_stmt_result_metadata.

Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also

mysqli_stmt_result_metadata

3.15.15 mysqli_master_query

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_master_query

Enforce execution of a query on the master in a master/slave setup

Description

 bool mysqli_master_query(
 mysqli link,
 string query);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.15.16 mysqli_param_count

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_param_count

Alias for mysqli_stmt_param_count

Description

This function is an alias of mysqli_stmt_param_count.

Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also

mysqli_stmt_param_count

mysqli_report

252

3.15.17 mysqli_report

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_report

Alias of mysqli_driver->report_mode

Description

This function is an alias of: mysqli_driver->report_mode

3.15.18 mysqli_rpl_parse_enabled

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_rpl_parse_enabled

Check if RPL parse is enabled

Description

 int mysqli_rpl_parse_enabled(
 mysqli link);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.15.19 mysqli_rpl_probe

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_rpl_probe

RPL probe

Description

 bool mysqli_rpl_probe(
 mysqli link);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.15.20 mysqli_send_long_data

Copyright 1997-2014 the PHP Documentation Group.

mysqli::set_opt, mysqli_set_opt

253

• mysqli_send_long_data

Alias for mysqli_stmt_send_long_data

Description

This function is an alias of mysqli_stmt_send_long_data.

Warning

This function has been DEPRECATED as of PHP 5.3.0 and REMOVED as of PHP
5.4.0.

See Also

mysqli_stmt_send_long_data

3.15.21 mysqli::set_opt, mysqli_set_opt

Copyright 1997-2014 the PHP Documentation Group.

• mysqli::set_opt

mysqli_set_opt

Alias of mysqli_options

Description

This function is an alias of mysqli_options.

3.15.22 mysqli_slave_query

Copyright 1997-2014 the PHP Documentation Group.

• mysqli_slave_query

Force execution of a query on a slave in a master/slave setup

Description

 bool mysqli_slave_query(
 mysqli link,
 string query);

Warning

This function is currently not documented; only its argument list is available.

Warning

This function has been DEPRECATED and REMOVED as of PHP 5.3.0.

3.16 Changelog

Copyright 1997-2014 the PHP Documentation Group.

The following changes have been made to classes/functions/methods of this extension.

254

255

Chapter 4 MySQL Functions (PDO_MYSQL)

Table of Contents
4.1 PDO_MYSQL DSN ... 258

Copyright 1997-2014 the PHP Documentation Group.

PDO_MYSQL is a driver that implements the PHP Data Objects (PDO) interface to enable access from
PHP to MySQL 3.x, 4.x and 5.x databases.

PDO_MYSQL will take advantage of native prepared statement support present in MySQL 4.1 and higher.
If you're using an older version of the mysql client libraries, PDO will emulate them for you.

Warning

Beware: Some MySQL table types (storage engines) do not support transactions.
When writing transactional database code using a table type that does not support
transactions, MySQL will pretend that a transaction was initiated successfully. In
addition, any DDL queries issued will implicitly commit any pending transactions.

The common Unix distributions include binary versions of PHP that can be installed. Although these binary
versions are typically built with support for the MySQL extensions, the extension libraries themselves
may need to be installed using an additional package. Check the package manager than comes with your
chosen distribution for availability.

For example, on Ubuntu the php5-mysql package installs the ext/mysql, ext/mysqli, and PDO_MYSQL
PHP extensions. On CentOS, the php-mysql package also installs these three PHP extensions.

Alternatively, you can compile this extension yourself. Building PHP from source allows you to specify the
MySQL extensions you want to use, as well as your choice of client library for each extension.

When compiling, use --with-pdo-mysql[=DIR] to install the PDO MySQL extension, where the
optional [=DIR] is the MySQL base library. As of PHP 5.4, mysqlnd is the default library. For details about
choosing a library, see Choosing a MySQL library.

Optionally, the --with-mysql-sock[=DIR] sets to location to the MySQL unix socket pointer for all
MySQL extensions, including PDO_MYSQL. If unspecified, the default locations are searched.

Optionally, the --with-zlib-dir[=DIR] is used to set the path to the libz install prefix.

$./configure --with-pdo-mysql --with-mysql-sock=/var/mysql/mysql.sock

SSL support is enabled using the appropriate PDO_MySQL constants, which is equivalent to calling the
MySQL C API function mysql_ssl_set(). Also, SSL cannot be enabled with PDO::setAttribute because
the connection already exists. See also the MySQL documentation about connecting to MySQL with SSL.

http://www.php.net/manual/en/intro.pdo
http://dev.mysql.com/doc/mysql/en/mysql-ssl-set.html
http://dev.mysql.com/doc/mysql/en/configuring-for-ssl.html

256

Table 4.1 Changelog

Version Description

5.4.0 mysqlnd became the default MySQL library when
compiling PDO_MYSQL. Previously, libmysqlclient
was the default MySQL library.

5.4.0 MySQL client libraries 4.1 and below are no longer
supported.

5.3.9 Added SSL support with mysqlnd and OpenSSL.

5.3.7 Added SSL support with libmysqlclient and
OpenSSL.

The constants below are defined by this driver, and will only be available when the extension has
been either compiled into PHP or dynamically loaded at runtime. In addition, these driver-specific
constants should only be used if you are using this driver. Using driver-specific attributes with
another driver may result in unexpected behaviour. PDO::getAttribute may be used to obtain the
PDO_ATTR_DRIVER_NAME attribute to check the driver, if your code can run against multiple drivers.

PDO::MYSQL_ATTR_USE_BUFFERED_QUERY
(integer)

If this attribute is set to TRUE on a PDOStatement, the MySQL driver
will use the buffered versions of the MySQL API. If you're writing
portable code, you should use PDOStatement::fetchAll instead.

Example 4.1 Forcing queries to be buffered in mysql

<?php
if ($db->getAttribute(PDO::ATTR_DRIVER_NAME) == 'mysql') {
 $stmt = $db->prepare('select * from foo',
 array(PDO::MYSQL_ATTR_USE_BUFFERED_QUERY => true));
} else {
 die("my application only works with mysql; I should use \$stmt->fetchAll() instead");
}
?>

PDO::MYSQL_ATTR_LOCAL_INFILE
(integer)

Enable LOAD LOCAL INFILE.

Note, this constant can only be used in the driver_options array
when constructing a new database handle.

PDO::MYSQL_ATTR_INIT_COMMAND
(integer)

Command to execute when connecting to the MySQL server. Will
automatically be re-executed when reconnecting.

Note, this constant can only be used in the driver_options array
when constructing a new database handle.

PDO::MYSQL_ATTR_READ_DEFAULT_FILE
(integer)

Read options from the named option file instead of from my.cnf. This
option is not available if mysqlnd is used, because mysqlnd does not
read the mysql configuration files.

PDO::MYSQL_ATTR_READ_DEFAULT_GROUP
(integer)

Read options from the named group from my.cnf or the file specified
with MYSQL_READ_DEFAULT_FILE. This option is not available
if mysqlnd is used, because mysqlnd does not read the mysql
configuration files.

http://www.php.net/PDO::getAttribute
http://www.php.net/PDOStatement::fetchAll

257

PDO::MYSQL_ATTR_MAX_BUFFER_SIZE
(integer)

Maximum buffer size. Defaults to 1 MiB. This constant is not supported
when compiled against mysqlnd.

PDO::MYSQL_ATTR_DIRECT_QUERY
(integer)

Perform direct queries, don't use prepared statements.

PDO::MYSQL_ATTR_FOUND_ROWS
(integer)

Return the number of found (matched) rows, not the number of changed
rows.

PDO::MYSQL_ATTR_IGNORE_SPACE
(integer)

Permit spaces after function names. Makes all functions names
reserved words.

PDO::MYSQL_ATTR_COMPRESS
(integer)

Enable network communication compression. This is also supported
when compiled against mysqlnd as of PHP 5.3.11.

PDO::MYSQL_ATTR_SSL_CA
(integer)

The file path to the SSL certificate authority.

This exists as of PHP 5.3.7.

PDO::MYSQL_ATTR_SSL_CAPATH
(integer)

The file path to the directory that contains the trusted SSL CA
certificates, which are stored in PEM format.

This exists as of PHP 5.3.7.

PDO::MYSQL_ATTR_SSL_CERT
(integer)

The file path to the SSL certificate.

This exists as of PHP 5.3.7.

PDO::MYSQL_ATTR_SSL_CIPHER
(integer)

A list of one or more permissible ciphers to use for SSL encryption, in
a format understood by OpenSSL. For example: DHE-RSA-AES256-
SHA:AES128-SHA

This exists as of PHP 5.3.7.

PDO::MYSQL_ATTR_SSL_KEY
(integer)

The file path to the SSL key.

This exists as of PHP 5.3.7.

PDO::MYSQL_ATTR_MULTI_STATEMENTS
(integer)

Disables multi query execution in both PDO::prepare and
PDO::query when set to FALSE.

Note, this constant can only be used in the driver_options array
when constructing a new database handle.

This exists as of PHP 5.5.21 and PHP 5.6.5.

The behaviour of these functions is affected by settings in php.ini.

Table 4.2 PDO_MYSQL Configuration Options

Name Default Changeable

pdo_mysql.default_socket "/tmp/mysql.sock" PHP_INI_SYSTEM

pdo_mysql.debug NULL PHP_INI_SYSTEM

For further details and definitions of the PHP_INI_* modes, see the http://www.php.net/manual/en/
configuration.changes.modes.

http://www.php.net/PDO::prepare
http://www.php.net/PDO::query
http://www.php.net/manual/en/configuration.changes.modes
http://www.php.net/manual/en/configuration.changes.modes

PDO_MYSQL DSN

258

Here's a short explanation of the configuration directives.

pdo_mysql.default_socket
string

Sets a Unix domain socket. This value can either be set at compile time
if a domain socket is found at configure. This ini setting is Unix only.

pdo_mysql.debug boolean Enables debugging for PDO_MYSQL. This setting is only available
when PDO_MYSQL is compiled against mysqlnd and in PDO debug
mode.

4.1 PDO_MYSQL DSN

Copyright 1997-2014 the PHP Documentation Group.

• PDO_MYSQL DSN

Connecting to MySQL databases

Description

The PDO_MYSQL Data Source Name (DSN) is composed of the following elements:

DSN prefix The DSN prefix is mysql:.

host The hostname on which the database server resides.

port The port number where the database server is listening.

dbname The name of the database.

unix_socket The MySQL Unix socket (shouldn't be used with host or port).

charset The character set. See the character set concepts documentation for
more information.

Prior to PHP 5.3.6, this element was silently ignored.
The same behaviour can be partly replicated with the
PDO::MYSQL_ATTR_INIT_COMMAND driver option, as the following
example shows.

Warning

The method in the below example can only be
used with character sets that share the same
lower 7 bit representation as ASCII, such as
ISO-8859-1 and UTF-8. Users using character
sets that have different representations (such as
UTF-16 or Big5) must use the charset option
provided in PHP 5.3.6 and later versions.

Example 4.2 Setting the connection character set to UTF-8 prior to
PHP 5.3.6

<?php
$dsn = 'mysql:host=localhost;dbname=testdb';
$username = 'username';
$password = 'password';

PDO_MYSQL DSN

259

$options = array(
 PDO::MYSQL_ATTR_INIT_COMMAND => 'SET NAMES utf8',
);

$dbh = new PDO($dsn, $username, $password, $options);
?>

Changelog

Version Description

5.3.6 Prior to version 5.3.6, charset was ignored.

Examples

Example 4.3 PDO_MYSQL DSN examples

The following example shows a PDO_MYSQL DSN for connecting to MySQL databases:

mysql:host=localhost;dbname=testdb

More complete examples:

mysql:host=localhost;port=3307;dbname=testdb
mysql:unix_socket=/tmp/mysql.sock;dbname=testdb

Notes

Unix only:

When the host name is set to "localhost", then the connection to the server
is made thru a domain socket. If PDO_MYSQL is compiled against libmysqlclient
then the location of the socket file is at libmysqlclient's compiled in location. If
PDO_MYSQL is compiled against mysqlnd a default socket can be set thru the
pdo_mysql.default_socket setting.

260

261

Chapter 5 Original MySQL API

Table of Contents
5.1 Installing/Configuring ... 262

5.1.1 Requirements .. 262
5.1.2 Installation ... 262
5.1.3 Runtime Configuration .. 264
5.1.4 Resource Types ... 265

5.2 Changelog .. 265
5.3 Predefined Constants .. 266
5.4 Examples ... 267

5.4.1 MySQL extension overview example ... 267
5.5 MySQL Functions ... 267

5.5.1 mysql_affected_rows ... 268
5.5.2 mysql_client_encoding ... 270
5.5.3 mysql_close ... 271
5.5.4 mysql_connect ... 272
5.5.5 mysql_create_db ... 275
5.5.6 mysql_data_seek ... 277
5.5.7 mysql_db_name ... 278
5.5.8 mysql_db_query ... 279
5.5.9 mysql_drop_db ... 281
5.5.10 mysql_errno ... 283
5.5.11 mysql_error ... 284
5.5.12 mysql_escape_string ... 285
5.5.13 mysql_fetch_array ... 286
5.5.14 mysql_fetch_assoc ... 289
5.5.15 mysql_fetch_field ... 291
5.5.16 mysql_fetch_lengths ... 293
5.5.17 mysql_fetch_object ... 294
5.5.18 mysql_fetch_row ... 296
5.5.19 mysql_field_flags ... 297
5.5.20 mysql_field_len ... 298
5.5.21 mysql_field_name ... 300
5.5.22 mysql_field_seek ... 301
5.5.23 mysql_field_table ... 302
5.5.24 mysql_field_type ... 303
5.5.25 mysql_free_result ... 305
5.5.26 mysql_get_client_info ... 306
5.5.27 mysql_get_host_info ... 307
5.5.28 mysql_get_proto_info ... 308
5.5.29 mysql_get_server_info ... 309
5.5.30 mysql_info ... 310
5.5.31 mysql_insert_id ... 311
5.5.32 mysql_list_dbs ... 313
5.5.33 mysql_list_fields ... 314
5.5.34 mysql_list_processes ... 316
5.5.35 mysql_list_tables ... 317
5.5.36 mysql_num_fields ... 319
5.5.37 mysql_num_rows ... 320

Installing/Configuring

262

5.5.38 mysql_pconnect ... 321
5.5.39 mysql_ping ... 323
5.5.40 mysql_query ... 324
5.5.41 mysql_real_escape_string ... 326
5.5.42 mysql_result ... 329
5.5.43 mysql_select_db ... 330
5.5.44 mysql_set_charset ... 332
5.5.45 mysql_stat ... 333
5.5.46 mysql_tablename ... 334
5.5.47 mysql_thread_id ... 336
5.5.48 mysql_unbuffered_query ... 337

Copyright 1997-2014 the PHP Documentation Group.

This extension is deprecated as of PHP 5.5.0, and has been removed as of PHP 7.0.0. Instead, either the
mysqli or PDO_MySQL extension should be used. See also the MySQL API Overview for further help while
choosing a MySQL API.

These functions allow you to access MySQL database servers. More information about MySQL can be
found at http://www.mysql.com/.

Documentation for MySQL can be found at http://dev.mysql.com/doc/.

5.1 Installing/Configuring

Copyright 1997-2014 the PHP Documentation Group.

5.1.1 Requirements

Copyright 1997-2014 the PHP Documentation Group.

In order to have these functions available, you must compile PHP with MySQL support.

5.1.2 Installation

Copyright 1997-2014 the PHP Documentation Group.

For compiling, simply use the --with-mysql[=DIR] configuration option where the optional [DIR]
points to the MySQL installation directory.

Although this MySQL extension is compatible with MySQL 4.1.0 and greater, it doesn't support the extra
functionality that these versions provide. For that, use the MySQLi extension.

If you would like to install the mysql extension along with the mysqli extension you have to use the same
client library to avoid any conflicts.

5.1.2.1 Installation on Linux Systems

Copyright 1997-2014 the PHP Documentation Group.

Note: [DIR] is the path to the MySQL client library files (headers and libraries), which can be downloaded
from MySQL.

http://www.mysql.com/
http://dev.mysql.com/doc/
http://www.mysql.com/

Installation

263

Table 5.1 ext/mysql compile time support matrix

PHP Version Default Configure
Options: mysqlnd

Configure
Options:
libmysqlclient

Changelog

4.x.x libmysqlclient Not Available --without-mysql
to disable

MySQL enabled
by default, MySQL
client libraries are
bundled

5.0.x, 5.1.x, 5.2.x libmysqlclient Not Available --with-
mysql=[DIR]

MySQL is no longer
enabled by default,
and the MySQL
client libraries are
no longer bundled

5.3.x libmysqlclient --with-
mysql=mysqlnd

--with-
mysql=[DIR]

mysqlnd is now
available

5.4.x mysqlnd --with-mysql --with-
mysql=[DIR]

mysqlnd is now the
default

5.1.2.2 Installation on Windows Systems

Copyright 1997-2014 the PHP Documentation Group.

PHP 4

Copyright 1997-2014 the PHP Documentation Group.

The PHP MySQL extension is compiled into PHP.

PHP 5.0.x, 5.1.x, 5.2.x

Copyright 1997-2014 the PHP Documentation Group.

MySQL is no longer enabled by default, so the php_mysql.dll DLL must be enabled inside of php.ini.
Also, PHP needs access to the MySQL client library. A file named libmysql.dll is included in the
Windows PHP distribution and in order for PHP to talk to MySQL this file needs to be available to the
Windows systems PATH. See the FAQ titled "How do I add my PHP directory to the PATH on Windows"
for information on how to do this. Although copying libmysql.dll to the Windows system directory also
works (because the system directory is by default in the system's PATH), it's not recommended.

As with enabling any PHP extension (such as php_mysql.dll), the PHP directive extension_dir should
be set to the directory where the PHP extensions are located. See also the Manual Windows Installation
Instructions. An example extension_dir value for PHP 5 is c:\php\ext

Note

If when starting the web server an error similar to the following occurs: "Unable
to load dynamic library './php_mysql.dll'", this is because
php_mysql.dll and/or libmysql.dll cannot be found by the system.

PHP 5.3.0+

Copyright 1997-2014 the PHP Documentation Group.

The MySQL Native Driver is enabled by default. Include php_mysql.dll, but libmysql.dll is no
longer required or used.

http://www.php.net/manual/en/faq.databases.php#faq.databases.mysql.php5
http://www.php.net/manual/en/faq.installation.php#faq.installation.addtopath
http://www.php.net/manual/en/ini.core.php#ini.extension-dir
http://www.php.net/manual/en/install.windows.manual
http://www.php.net/manual/en/install.windows.manual

Runtime Configuration

264

5.1.2.3 MySQL Installation Notes

Copyright 1997-2014 the PHP Documentation Group.

Warning

Crashes and startup problems of PHP may be encountered when loading this
extension in conjunction with the recode extension. See the recode extension for
more information.

Note

If you need charsets other than latin (default), you have to install external (not
bundled) libmysqlclient with compiled charset support.

5.1.3 Runtime Configuration

Copyright 1997-2014 the PHP Documentation Group.

The behaviour of these functions is affected by settings in php.ini.

Table 5.2 MySQL Configuration Options

Name Default Changeable Changelog

mysql.allow_local_infile "1" PHP_INI_SYSTEM

mysql.allow_persistent "1" PHP_INI_SYSTEM

mysql.max_persistent "-1" PHP_INI_SYSTEM

mysql.max_links "-1" PHP_INI_SYSTEM

mysql.trace_mode "0" PHP_INI_ALL Available since PHP
4.3.0.

mysql.default_port NULL PHP_INI_ALL

mysql.default_socket NULL PHP_INI_ALL Available since PHP
4.0.1.

mysql.default_host NULL PHP_INI_ALL

mysql.default_user NULL PHP_INI_ALL

mysql.default_password NULL PHP_INI_ALL

mysql.connect_timeout "60" PHP_INI_ALL PHP_INI_SYSTEM in
PHP <= 4.3.2. Available
since PHP 4.3.0.

For further details and definitions of the PHP_INI_* modes, see the http://www.php.net/manual/en/
configuration.changes.modes.

Here's a short explanation of the configuration directives.

mysql.allow_local_infile
integer

Allow accessing, from PHP's perspective, local files with LOAD DATA
statements

mysql.allow_persistent
boolean

Whether to allow persistent connections to MySQL.

mysql.max_persistent
integer

The maximum number of persistent MySQL connections per process.

http://www.php.net/manual/en/ref.recode
http://www.php.net/manual/en/configuration.changes.modes
http://www.php.net/manual/en/configuration.changes.modes
http://www.php.net/manual/en/features.persistent-connections

Resource Types

265

mysql.max_links integer The maximum number of MySQL connections per process, including
persistent connections.

mysql.trace_mode boolean Trace mode. When mysql.trace_mode is enabled, warnings for table/
index scans, non free result sets, and SQL-Errors will be displayed.
(Introduced in PHP 4.3.0)

mysql.default_port string The default TCP port number to use when connecting to the database
server if no other port is specified. If no default is specified, the
port will be obtained from the MYSQL_TCP_PORT environment
variable, the mysql-tcp entry in /etc/services or the compile-
time MYSQL_PORT constant, in that order. Win32 will only use the
MYSQL_PORT constant.

mysql.default_socket
string

The default socket name to use when connecting to a local database
server if no other socket name is specified.

mysql.default_host string The default server host to use when connecting to the database server
if no other host is specified. Doesn't apply in SQL safe mode.

mysql.default_user string The default user name to use when connecting to the database server if
no other name is specified. Doesn't apply in SQL safe mode.

mysql.default_password
string

The default password to use when connecting to the database server if
no other password is specified. Doesn't apply in SQL safe mode.

mysql.connect_timeout
integer

Connect timeout in seconds. On Linux this timeout is also used for
waiting for the first answer from the server.

5.1.4 Resource Types

Copyright 1997-2014 the PHP Documentation Group.

There are two resource types used in the MySQL module. The first one is the link identifier for a database
connection, the second a resource which holds the result of a query.

5.2 Changelog
Copyright 1997-2014 the PHP Documentation Group.

The following changes have been made to classes/functions/methods of this extension.

General Changelog for the ext/mysql extension

This changelog references the ext/mysql extension.

Global ext/mysql changes

The following is a list of changes to the entire ext/mysql extension.

Version Description

7.0.0 This extension was removed from PHP. For details,
see Section 2.3, “Choosing an API”.

5.5.0 This extension has been deprecated. Connecting
to a MySQL database via mysql_connect,

http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode

Changes to existing functions

266

Version Description
mysql_pconnect or an implicit connection via
any other mysql_* function will generate an
E_DEPRECATED error.

5.5.0 All of the old deprecated functions and aliases now
emit E_DEPRECATED errors. These functions are:

mysql(), mysql_fieldname(), mysql_fieldtable(),
mysql_fieldlen(), mysql_fieldtype(),
mysql_fieldflags(), mysql_selectdb(),
mysql_createdb(), mysql_dropdb(),
mysql_freeresult(), mysql_numfields(),
mysql_numrows(), mysql_listdbs(),
mysql_listtables(), mysql_listfields(),
mysql_db_name(), mysql_dbname(),
mysql_tablename(), and mysql_table_name().

Changes to existing functions

The following list is a compilation of changelog entries from the ext/mysql functions.

5.3 Predefined Constants

Copyright 1997-2014 the PHP Documentation Group.

The constants below are defined by this extension, and will only be available when the extension has either
been compiled into PHP or dynamically loaded at runtime.

Since PHP 4.3.0 it is possible to specify additional client flags for the mysql_connect and
mysql_pconnect functions. The following constants are defined:

Table 5.3 MySQL client constants

Constant Description

MYSQL_CLIENT_COMPRESS Use compression protocol

MYSQL_CLIENT_IGNORE_SPACE Allow space after function names

MYSQL_CLIENT_INTERACTIVE Allow interactive_timeout seconds (instead of
wait_timeout) of inactivity before closing the
connection.

MYSQL_CLIENT_SSL Use SSL encryption. This flag is only available with
version 4.x of the MySQL client library or newer.
Version 3.23.x is bundled both with PHP 4 and
Windows binaries of PHP 5.

The function mysql_fetch_array uses a constant for the different types of result arrays. The following
constants are defined:

Table 5.4 MySQL fetch constants

Constant Description

MYSQL_ASSOC Columns are returned into the array having the
fieldname as the array index.

Examples

267

Constant Description

MYSQL_BOTH Columns are returned into the array having both
a numerical index and the fieldname as the array
index.

MYSQL_NUM Columns are returned into the array having a
numerical index to the fields. This index starts with
0, the first field in the result.

5.4 Examples

Copyright 1997-2014 the PHP Documentation Group.

5.4.1 MySQL extension overview example

Copyright 1997-2014 the PHP Documentation Group.

This simple example shows how to connect, execute a query, print resulting rows and disconnect from a
MySQL database.

Example 5.1 MySQL extension overview example

<?php
// Connecting, selecting database
$link = mysql_connect('mysql_host', 'mysql_user', 'mysql_password')
 or die('Could not connect: ' . mysql_error());
echo 'Connected successfully';
mysql_select_db('my_database') or die('Could not select database');

// Performing SQL query
$query = 'SELECT * FROM my_table';
$result = mysql_query($query) or die('Query failed: ' . mysql_error());

// Printing results in HTML
echo "<table>\n";
while ($line = mysql_fetch_array($result, MYSQL_ASSOC)) {
 echo "\t<tr>\n";
 foreach ($line as $col_value) {
 echo "\t\t<td>$col_value</td>\n";
 }
 echo "\t</tr>\n";
}
echo "</table>\n";

// Free resultset
mysql_free_result($result);

// Closing connection
mysql_close($link);
?>

5.5 MySQL Functions

Copyright 1997-2014 the PHP Documentation Group.

mysql_affected_rows

268

Note

Most MySQL functions accept link_identifier as the last optional parameter.
If it is not provided, last opened connection is used. If it doesn't exist, connection is
tried to establish with default parameters defined in php.ini. If it is not successful,
functions return FALSE.

5.5.1 mysql_affected_rows

Copyright 1997-2014 the PHP Documentation Group.

• mysql_affected_rows

Get number of affected rows in previous MySQL operation

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_affected_rows
PDOStatement::rowCount

Description

 int mysql_affected_rows(
 resource link_identifier
 = =NULL);

Get the number of affected rows by the last INSERT, UPDATE, REPLACE or DELETE query associated
with link_identifier.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns the number of affected rows on success, and -1 if the last query failed.

If the last query was a DELETE query with no WHERE clause, all of the records will have been deleted
from the table but this function will return zero with MySQL versions prior to 4.1.2.

When using UPDATE, MySQL will not update columns where the new value is the same as the old value.
This creates the possibility that mysql_affected_rows may not actually equal the number of rows
matched, only the number of rows that were literally affected by the query.

The REPLACE statement first deletes the record with the same primary key and then inserts the new
record. This function returns the number of deleted records plus the number of inserted records.

In the case of "INSERT ... ON DUPLICATE KEY UPDATE" queries, the return value will be 1 if an insert
was performed, or 2 for an update of an existing row.

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::rowCount

mysql_affected_rows

269

Examples

Example 5.2 mysql_affected_rows example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
mysql_select_db('mydb');

/* this should return the correct numbers of deleted records */
mysql_query('DELETE FROM mytable WHERE id < 10');
printf("Records deleted: %d\n", mysql_affected_rows());

/* with a where clause that is never true, it should return 0 */
mysql_query('DELETE FROM mytable WHERE 0');
printf("Records deleted: %d\n", mysql_affected_rows());
?>

The above example will output something similar to:

Records deleted: 10
Records deleted: 0

Example 5.3 mysql_affected_rows example using transactions

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
mysql_select_db('mydb');

/* Update records */
mysql_query("UPDATE mytable SET used=1 WHERE id < 10");
printf ("Updated records: %d\n", mysql_affected_rows());
mysql_query("COMMIT");
?>

The above example will output something similar to:

Updated Records: 10

Notes

Transactions

If you are using transactions, you need to call mysql_affected_rows after your
INSERT, UPDATE, or DELETE query, not after the COMMIT.

mysql_client_encoding

270

SELECT Statements

To retrieve the number of rows returned by a SELECT, it is possible to use
mysql_num_rows.

Cascaded Foreign Keys

mysql_affected_rows does not count rows affected implicitly through the use of
ON DELETE CASCADE and/or ON UPDATE CASCADE in foreign key constraints.

See Also

mysql_num_rows
mysql_info

5.5.2 mysql_client_encoding

Copyright 1997-2014 the PHP Documentation Group.

• mysql_client_encoding

Returns the name of the character set

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_character_set_name

Description

 string mysql_client_encoding(
 resource link_identifier
 = =NULL);

Retrieves the character_set variable from MySQL.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns the default character set name for the current connection.

Examples

Example 5.4 mysql_client_encoding example

<?php

http://www.php.net/faq.databases.mysql.deprecated

mysql_close

271

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$charset = mysql_client_encoding($link);

echo "The current character set is: $charset\n";
?>

The above example will output something similar to:

The current character set is: latin1

See Also

mysql_set_charset
mysql_real_escape_string

5.5.3 mysql_close

Copyright 1997-2014 the PHP Documentation Group.

• mysql_close

Close MySQL connection

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_close
PDO: Assign the value of NULL to the PDO object

Description

 bool mysql_close(
 resource link_identifier
 = =NULL);

mysql_close closes the non-persistent connection to the MySQL server that's associated with the
specified link identifier. If link_identifier isn't specified, the last opened link is used.

Open non-persistent MySQL connections and result sets are automatically destroyed when a PHP script
finishes its execution. So, while explicitly closing open connections and freeing result sets is optional,
doing so is recommended. This will immediately return resources to PHP and MySQL, which can improve
performance. For related information, see freeing resources

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last link
opened by mysql_connect is assumed. If no connection is found or
established, an E_WARNING level error is generated.

Return Values

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/manual/en/language.types.resource.php#language.types.resource.self-destruct

mysql_connect

272

Returns TRUE on success or FALSE on failure.

Examples

Example 5.5 mysql_close example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);
?>

The above example will output:

Connected successfully

Notes

Note

mysql_close will not close persistent links created by mysql_pconnect. For
additional details, see the manual page on persistent connections.

See Also

mysql_connect
mysql_free_result

5.5.4 mysql_connect

Copyright 1997-2014 the PHP Documentation Group.

• mysql_connect

Open a connection to a MySQL Server

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_connect
PDO::__construct

Description

 resource mysql_connect(
 string server
 = =ini_get("mysql.default_host"),

http://www.php.net/manual/en/features.persistent-connections
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::__construct

mysql_connect

273

 string username
 = =ini_get("mysql.default_user"),
 string password
 = =ini_get("mysql.default_password"),
 bool new_link
 = =false,
 int client_flags
 = =0);

Opens or reuses a connection to a MySQL server.

Parameters

server The MySQL server. It can also include a port number. e.g.
"hostname:port" or a path to a local socket e.g. ":/path/to/socket" for the
localhost.

If the PHP directive mysql.default_host is undefined (default), then the
default value is 'localhost:3306'. In SQL safe mode, this parameter is
ignored and value 'localhost:3306' is always used.

username The username. Default value is defined by mysql.default_user. In SQL
safe mode, this parameter is ignored and the name of the user that
owns the server process is used.

password The password. Default value is defined by mysql.default_password. In
SQL safe mode, this parameter is ignored and empty password is used.

new_link If a second call is made to mysql_connect with the same arguments,
no new link will be established, but instead, the link identifier of the
already opened link will be returned. The new_link parameter modifies
this behavior and makes mysql_connect always open a new link,
even if mysql_connect was called before with the same parameters.
In SQL safe mode, this parameter is ignored.

client_flags The client_flags parameter can be a combination of
the following constants: 128 (enable LOAD DATA LOCAL
handling), MYSQL_CLIENT_SSL, MYSQL_CLIENT_COMPRESS,
MYSQL_CLIENT_IGNORE_SPACE or MYSQL_CLIENT_INTERACTIVE.
Read the section about Table 5.3, “MySQL client constants” for further
information. In SQL safe mode, this parameter is ignored.

Return Values

Returns a MySQL link identifier on success or FALSE on failure.

Changelog

Version Description

5.5.0 This function will generate an E_DEPRECATED error.

Examples

Example 5.6 mysql_connect example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode
http://www.php.net/manual/en/ini.core.php#ini.sql.safe-mode

mysql_connect

274

if (!$link) {
 die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);
?>

Example 5.7 mysql_connect example using hostname:port syntax

<?php
// we connect to example.com and port 3307
$link = mysql_connect('example.com:3307', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);

// we connect to localhost at port 3307
$link = mysql_connect('127.0.0.1:3307', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);
?>

Example 5.8 mysql_connect example using ":/path/to/socket" syntax

<?php
// we connect to localhost and socket e.g. /tmp/mysql.sock

// variant 1: omit localhost
$link = mysql_connect(':/tmp/mysql', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);

// variant 2: with localhost
$link = mysql_connect('localhost:/tmp/mysql.sock', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
echo 'Connected successfully';
mysql_close($link);
?>

Notes

Note

Whenever you specify "localhost" or "localhost:port" as server, the MySQL client
library will override this and try to connect to a local socket (named pipe on

mysql_create_db

275

Windows). If you want to use TCP/IP, use "127.0.0.1" instead of "localhost". If the
MySQL client library tries to connect to the wrong local socket, you should set the
correct path as mysql.default_host string in your PHP configuration and
leave the server field blank.

Note

The link to the server will be closed as soon as the execution of the script ends,
unless it's closed earlier by explicitly calling mysql_close.

Note

You can suppress the error message on failure by prepending a @ to the function
name.

Note

Error "Can't create TCP/IP socket (10106)" usually means that the variables_order
configure directive doesn't contain character E. On Windows, if the environment is
not copied the SYSTEMROOT environment variable won't be available and PHP will
have problems loading Winsock.

See Also

mysql_pconnect
mysql_close

5.5.5 mysql_create_db

Copyright 1997-2014 the PHP Documentation Group.

• mysql_create_db

Create a MySQL database

Warning

This function was deprecated in PHP 4.3.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed
MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

mysqli_query
PDO::query

Description

 bool mysql_create_db(
 string database_name,
 resource link_identifier
 = =NULL);

mysql_create_db attempts to create a new database on the server associated with the specified link
identifier.

Parameters

http://www.php.net/manual/en/language.operators.errorcontrol
http://www.php.net/manual/en/ini.core.php#ini.variables-orde
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::query

mysql_create_db

276

database_name The name of the database being created.

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 5.9 mysql_create_db alternative example

The function mysql_create_db is deprecated. It is preferable to use mysql_query to issue an sql
CREATE DATABASE statement instead.

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}

$sql = 'CREATE DATABASE my_db';
if (mysql_query($sql, $link)) {
 echo "Database my_db created successfully\n";
} else {
 echo 'Error creating database: ' . mysql_error() . "\n";
}
?>

The above example will output something similar to:

Database my_db created successfully

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_createdb

Note

This function will not be available if the MySQL extension was built against a
MySQL 4.x client library.

See Also

mysql_query
mysql_select_db

mysql_data_seek

277

5.5.6 mysql_data_seek

Copyright 1997-2014 the PHP Documentation Group.

• mysql_data_seek

Move internal result pointer

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_data_seek
PDO::FETCH_ORI_ABS

Description

 bool mysql_data_seek(
 resource result,
 int row_number);

mysql_data_seek moves the internal row pointer of the MySQL result associated with the specified
result identifier to point to the specified row number. The next call to a MySQL fetch function, such as
mysql_fetch_assoc, would return that row.

row_number starts at 0. The row_number should be a value in the range from 0 to mysql_num_rows -
1. However if the result set is empty (mysql_num_rows == 0), a seek to 0 will fail with a E_WARNING and
mysql_data_seek will return FALSE.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

row_number The desired row number of the new result pointer.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 5.10 mysql_data_seek example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
$db_selected = mysql_select_db('sample_db');
if (!$db_selected) {
 die('Could not select database: ' . mysql_error());
}
$query = 'SELECT last_name, first_name FROM friends';
$result = mysql_query($query);

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/manual/en/errorfunc.constants.php#errorfunc.constants.errorlevels.e-warning

mysql_db_name

278

if (!$result) {
 die('Query failed: ' . mysql_error());
}
/* fetch rows in reverse order */
for ($i = mysql_num_rows($result) - 1; $i >= 0; $i--) {
 if (!mysql_data_seek($result, $i)) {
 echo "Cannot seek to row $i: " . mysql_error() . "\n";
 continue;
 }

 if (!($row = mysql_fetch_assoc($result))) {
 continue;
 }

 echo $row['last_name'] . ' ' . $row['first_name'] . "
\n";
}

mysql_free_result($result);
?>

Notes

Note

The function mysql_data_seek can be used in conjunction only with
mysql_query, not with mysql_unbuffered_query.

See Also

mysql_query
mysql_num_rows
mysql_fetch_row
mysql_fetch_assoc
mysql_fetch_array
mysql_fetch_object

5.5.7 mysql_db_name

Copyright 1997-2014 the PHP Documentation Group.

• mysql_db_name

Retrieves database name from the call to mysql_list_dbs

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

Query: SELECT DATABASE()

Description

 string mysql_db_name(
 resource result,
 int row,
 mixed field

http://www.php.net/faq.databases.mysql.deprecated

mysql_db_query

279

 = =NULL);

Retrieve the database name from a call to mysql_list_dbs.

Parameters

result The result pointer from a call to mysql_list_dbs.

row The index into the result set.

field The field name.

Return Values

Returns the database name on success, and FALSE on failure. If FALSE is returned, use mysql_error to
determine the nature of the error.

Changelog

Version Description

5.5.0 The mysql_list_dbs function is deprecated, and
emits an E_DEPRECATED level error.

Examples

Example 5.11 mysql_db_name example

<?php
error_reporting(E_ALL);

$link = mysql_connect('dbhost', 'username', 'password');
$db_list = mysql_list_dbs($link);

$i = 0;
$cnt = mysql_num_rows($db_list);
while ($i < $cnt) {
 echo mysql_db_name($db_list, $i) . "\n";
 $i++;
}
?>

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_dbname

See Also

mysql_list_dbs
mysql_tablename

5.5.8 mysql_db_query

Copyright 1997-2014 the PHP Documentation Group.

mysql_db_query

280

• mysql_db_query

Selects a database and executes a query on it

Warning

This function was deprecated in PHP 5.3.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed
MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

mysqli_select_db then the query
PDO::__construct

Description

 resource mysql_db_query(
 string database,
 string query,
 resource link_identifier
 = =NULL);

mysql_db_query selects a database, and executes a query on it.

Parameters

database The name of the database that will be selected.

query The MySQL query.

Data inside the query should be properly escaped.

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns a positive MySQL result resource to the query result, or FALSE on error. The function also returns
TRUE/FALSE for INSERT/UPDATE/DELETE queries to indicate success/failure.

Changelog

Version Description

5.3.0 This function now throws an E_DEPRECATED
notice.

Examples

Example 5.12 mysql_db_query alternative example

<?php

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::__construct

mysql_drop_db

281

if (!$link = mysql_connect('mysql_host', 'mysql_user', 'mysql_password')) {
 echo 'Could not connect to mysql';
 exit;
}

if (!mysql_select_db('mysql_dbname', $link)) {
 echo 'Could not select database';
 exit;
}

$sql = 'SELECT foo FROM bar WHERE id = 42';
$result = mysql_query($sql, $link);

if (!$result) {
 echo "DB Error, could not query the database\n";
 echo 'MySQL Error: ' . mysql_error();
 exit;
}

while ($row = mysql_fetch_assoc($result)) {
 echo $row['foo'];
}

mysql_free_result($result);

?>

Notes

Note

Be aware that this function does NOT switch back to the database you were
connected before. In other words, you can't use this function to temporarily run a
sql query on another database, you would have to manually switch back. Users are
strongly encouraged to use the database.table syntax in their sql queries or
mysql_select_db instead of this function.

See Also

mysql_query
mysql_select_db

5.5.9 mysql_drop_db

Copyright 1997-2014 the PHP Documentation Group.

• mysql_drop_db

Drop (delete) a MySQL database

Warning

This function was deprecated in PHP 4.3.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed
MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

Execute a DROP DATABASE query

http://www.php.net/faq.databases.mysql.deprecated

mysql_drop_db

282

Description

 bool mysql_drop_db(
 string database_name,
 resource link_identifier
 = =NULL);

mysql_drop_db attempts to drop (remove) an entire database from the server associated with the
specified link identifier. This function is deprecated, it is preferable to use mysql_query to issue an sql
DROP DATABASE statement instead.

Parameters

database_name The name of the database that will be deleted.

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 5.13 mysql_drop_db alternative example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}

$sql = 'DROP DATABASE my_db';
if (mysql_query($sql, $link)) {
 echo "Database my_db was successfully dropped\n";
} else {
 echo 'Error dropping database: ' . mysql_error() . "\n";
}
?>

Notes

Warning

This function will not be available if the MySQL extension was built against a
MySQL 4.x client library.

Note

For backward compatibility, the following deprecated alias may be used:
mysql_dropdb

See Also

mysql_query

mysql_errno

283

5.5.10 mysql_errno

Copyright 1997-2014 the PHP Documentation Group.

• mysql_errno

Returns the numerical value of the error message from previous MySQL operation

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_errno
PDO::errorCode

Description

 int mysql_errno(
 resource link_identifier
 = =NULL);

Returns the error number from the last MySQL function.

Errors coming back from the MySQL database backend no longer issue warnings. Instead, use
mysql_errno to retrieve the error code. Note that this function only returns the error code from the most
recently executed MySQL function (not including mysql_error and mysql_errno), so if you want to use
it, make sure you check the value before calling another MySQL function.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns the error number from the last MySQL function, or 0 (zero) if no error occurred.

Examples

Example 5.14 mysql_errno example

<?php
$link = mysql_connect("localhost", "mysql_user", "mysql_password");

if (!mysql_select_db("nonexistentdb", $link)) {
 echo mysql_errno($link) . ": " . mysql_error($link). "\n";
}

mysql_select_db("kossu", $link);
if (!mysql_query("SELECT * FROM nonexistenttable", $link)) {
 echo mysql_errno($link) . ": " . mysql_error($link) . "\n";
}

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::errorCode

mysql_error

284

?>

The above example will output something similar to:

1049: Unknown database 'nonexistentdb'
1146: Table 'kossu.nonexistenttable' doesn't exist

See Also

mysql_error
MySQL error codes

5.5.11 mysql_error

Copyright 1997-2014 the PHP Documentation Group.

• mysql_error

Returns the text of the error message from previous MySQL operation

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_error
PDO::errorInfo

Description

 string mysql_error(
 resource link_identifier
 = =NULL);

Returns the error text from the last MySQL function. Errors coming back from the MySQL database
backend no longer issue warnings. Instead, use mysql_error to retrieve the error text. Note that
this function only returns the error text from the most recently executed MySQL function (not including
mysql_error and mysql_errno), so if you want to use it, make sure you check the value before calling
another MySQL function.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns the error text from the last MySQL function, or '' (empty string) if no error occurred.

http://dev.mysql.com/doc/mysql/en/error-handling.html
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::errorInfo

mysql_escape_string

285

Examples

Example 5.15 mysql_error example

<?php
$link = mysql_connect("localhost", "mysql_user", "mysql_password");

mysql_select_db("nonexistentdb", $link);
echo mysql_errno($link) . ": " . mysql_error($link). "\n";

mysql_select_db("kossu", $link);
mysql_query("SELECT * FROM nonexistenttable", $link);
echo mysql_errno($link) . ": " . mysql_error($link) . "\n";
?>

The above example will output something similar to:

1049: Unknown database 'nonexistentdb'
1146: Table 'kossu.nonexistenttable' doesn't exist

See Also

mysql_errno
MySQL error codes

5.5.12 mysql_escape_string

Copyright 1997-2014 the PHP Documentation Group.

• mysql_escape_string

Escapes a string for use in a mysql_query

Warning

This function was deprecated in PHP 4.3.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed
MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

mysqli_escape_string
PDO::quote

Description

 string mysql_escape_string(
 string unescaped_string);

This function will escape the unescaped_string, so that it is safe to place it in a mysql_query. This
function is deprecated.

This function is identical to mysql_real_escape_string except that mysql_real_escape_string
takes a connection handler and escapes the string according to the current character set.

http://dev.mysql.com/doc/mysql/en/error-handling.html
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::quote

mysql_fetch_array

286

mysql_escape_string does not take a connection argument and does not respect the current charset
setting.

Parameters

unescaped_string The string that is to be escaped.

Return Values

Returns the escaped string.

Changelog

Version Description

5.3.0 This function now throws an E_DEPRECATED
notice.

4.3.0 This function became deprecated,
do not use this function. Instead, use
mysql_real_escape_string.

Examples

Example 5.16 mysql_escape_string example

<?php
$item = "Zak's Laptop";
$escaped_item = mysql_escape_string($item);
printf("Escaped string: %s\n", $escaped_item);
?>

The above example will output:

Escaped string: Zak\'s Laptop

Notes

Note

mysql_escape_string does not escape % and _.

See Also

mysql_real_escape_string
addslashes
The magic_quotes_gpc directive.

5.5.13 mysql_fetch_array

Copyright 1997-2014 the PHP Documentation Group.

• mysql_fetch_array

http://www.php.net/addslashes
http://www.php.net/manual/en/ini.core.php#ini.magic-quotes-gpc

mysql_fetch_array

287

Fetch a result row as an associative array, a numeric array, or both

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_array
PDOStatement::fetch

Description

 array mysql_fetch_array(
 resource result,
 int result_type
 = =MYSQL_BOTH);

Returns an array that corresponds to the fetched row and moves the internal data pointer ahead.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

result_type The type of array that is to be fetched. It's a constant and can take the
following values: MYSQL_ASSOC, MYSQL_NUM, and MYSQL_BOTH.

Return Values

Returns an array of strings that corresponds to the fetched row, or FALSE if there are no more rows.
The type of returned array depends on how result_type is defined. By using MYSQL_BOTH (default),
you'll get an array with both associative and number indices. Using MYSQL_ASSOC, you only get
associative indices (as mysql_fetch_assoc works), using MYSQL_NUM, you only get number indices (as
mysql_fetch_row works).

If two or more columns of the result have the same field names, the last column will take precedence. To
access the other column(s) of the same name, you must use the numeric index of the column or make an
alias for the column. For aliased columns, you cannot access the contents with the original column name.

Examples

Example 5.17 Query with aliased duplicate field names

SELECT table1.field AS foo, table2.field AS bar FROM table1, table2

Example 5.18 mysql_fetch_array with MYSQL_NUM

<?php
mysql_connect("localhost", "mysql_user", "mysql_password") or
 die("Could not connect: " . mysql_error());
mysql_select_db("mydb");

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::fetch

mysql_fetch_array

288

$result = mysql_query("SELECT id, name FROM mytable");

while ($row = mysql_fetch_array($result, MYSQL_NUM)) {
 printf("ID: %s Name: %s", $row[0], $row[1]);
}

mysql_free_result($result);
?>

Example 5.19 mysql_fetch_array with MYSQL_ASSOC

<?php
mysql_connect("localhost", "mysql_user", "mysql_password") or
 die("Could not connect: " . mysql_error());
mysql_select_db("mydb");

$result = mysql_query("SELECT id, name FROM mytable");

while ($row = mysql_fetch_array($result, MYSQL_ASSOC)) {
 printf("ID: %s Name: %s", $row["id"], $row["name"]);
}

mysql_free_result($result);
?>

Example 5.20 mysql_fetch_array with MYSQL_BOTH

<?php
mysql_connect("localhost", "mysql_user", "mysql_password") or
 die("Could not connect: " . mysql_error());
mysql_select_db("mydb");

$result = mysql_query("SELECT id, name FROM mytable");

while ($row = mysql_fetch_array($result, MYSQL_BOTH)) {
 printf ("ID: %s Name: %s", $row[0], $row["name"]);
}

mysql_free_result($result);
?>

Notes

Performance

An important thing to note is that using mysql_fetch_array is not significantly
slower than using mysql_fetch_row, while it provides a significant added value.

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

mysql_fetch_assoc

289

See Also

mysql_fetch_row
mysql_fetch_assoc
mysql_data_seek
mysql_query

5.5.14 mysql_fetch_assoc

Copyright 1997-2014 the PHP Documentation Group.

• mysql_fetch_assoc

Fetch a result row as an associative array

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_assoc
PDOStatement::fetch(PDO::FETCH_ASSOC)

Description

 array mysql_fetch_assoc(
 resource result);

Returns an associative array that corresponds to the fetched row and moves the internal data pointer
ahead. mysql_fetch_assoc is equivalent to calling mysql_fetch_array with MYSQL_ASSOC for the
optional second parameter. It only returns an associative array.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

Return Values

Returns an associative array of strings that corresponds to the fetched row, or FALSE if there are no more
rows.

If two or more columns of the result have the same field names, the last column will take precedence. To
access the other column(s) of the same name, you either need to access the result with numeric indices by
using mysql_fetch_row or add alias names. See the example at the mysql_fetch_array description
about aliases.

Examples

Example 5.21 An expanded mysql_fetch_assoc example

<?php

$conn = mysql_connect("localhost", "mysql_user", "mysql_password");

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::fetch(PDO::FETCH_ASSOC)

mysql_fetch_assoc

290

if (!$conn) {
 echo "Unable to connect to DB: " . mysql_error();
 exit;
}

if (!mysql_select_db("mydbname")) {
 echo "Unable to select mydbname: " . mysql_error();
 exit;
}

$sql = "SELECT id as userid, fullname, userstatus
 FROM sometable
 WHERE userstatus = 1";

$result = mysql_query($sql);

if (!$result) {
 echo "Could not successfully run query ($sql) from DB: " . mysql_error();
 exit;
}

if (mysql_num_rows($result) == 0) {
 echo "No rows found, nothing to print so am exiting";
 exit;
}

// While a row of data exists, put that row in $row as an associative array
// Note: If you're expecting just one row, no need to use a loop
// Note: If you put extract($row); inside the following loop, you'll
// then create $userid, $fullname, and $userstatus
while ($row = mysql_fetch_assoc($result)) {
 echo $row["userid"];
 echo $row["fullname"];
 echo $row["userstatus"];
}

mysql_free_result($result);

?>

Notes

Performance

An important thing to note is that using mysql_fetch_assoc is not significantly
slower than using mysql_fetch_row, while it provides a significant added value.

Note

Field names returned by this function are case-sensitive.

Note

This function sets NULL fields to the PHP NULL value.

See Also

mysql_fetch_row
mysql_fetch_array
mysql_data_seek
mysql_query

mysql_fetch_field

291

mysql_error

5.5.15 mysql_fetch_field

Copyright 1997-2014 the PHP Documentation Group.

• mysql_fetch_field

Get column information from a result and return as an object

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_field
PDOStatement::getColumnMeta

Description

 object mysql_fetch_field(
 resource result,
 int field_offset
 = =0);

Returns an object containing field information. This function can be used to obtain information about fields
in the provided query result.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

field_offset The numerical field offset. If the field offset is not specified, the next
field that was not yet retrieved by this function is retrieved. The
field_offset starts at 0.

Return Values

Returns an object containing field information. The properties of the object are:

• name - column name

• table - name of the table the column belongs to, which is the alias name if one is defined

• max_length - maximum length of the column

• not_null - 1 if the column cannot be NULL

• primary_key - 1 if the column is a primary key

• unique_key - 1 if the column is a unique key

• multiple_key - 1 if the column is a non-unique key

• numeric - 1 if the column is numeric

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::getColumnMeta

mysql_fetch_field

292

• blob - 1 if the column is a BLOB

• type - the type of the column

• unsigned - 1 if the column is unsigned

• zerofill - 1 if the column is zero-filled

Examples

Example 5.22 mysql_fetch_field example

<?php
$conn = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$conn) {
 die('Could not connect: ' . mysql_error());
}
mysql_select_db('database');
$result = mysql_query('select * from table');
if (!$result) {
 die('Query failed: ' . mysql_error());
}
/* get column metadata */
$i = 0;
while ($i < mysql_num_fields($result)) {
 echo "Information for column $i:
\n";
 $meta = mysql_fetch_field($result, $i);
 if (!$meta) {
 echo "No information available
\n";
 }
 echo "<pre>
blob: $meta->blob
max_length: $meta->max_length
multiple_key: $meta->multiple_key
name: $meta->name
not_null: $meta->not_null
numeric: $meta->numeric
primary_key: $meta->primary_key
table: $meta->table
type: $meta->type
unique_key: $meta->unique_key
unsigned: $meta->unsigned
zerofill: $meta->zerofill
</pre>";
 $i++;
}
mysql_free_result($result);
?>

Notes

Note

Field names returned by this function are case-sensitive.

Note

If field or tablenames are aliased in the SQL query the aliased name will
be returned. The original name can be retrieved for instance by using
mysqli_result::fetch_field.

mysql_fetch_lengths

293

See Also

mysql_field_seek

5.5.16 mysql_fetch_lengths

Copyright 1997-2014 the PHP Documentation Group.

• mysql_fetch_lengths

Get the length of each output in a result

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_lengths
PDOStatement::getColumnMeta

Description

 array mysql_fetch_lengths(
 resource result);

Returns an array that corresponds to the lengths of each field in the last row fetched by MySQL.

mysql_fetch_lengths stores the lengths of each result column in the last row returned by
mysql_fetch_row, mysql_fetch_assoc, mysql_fetch_array, and mysql_fetch_object in an
array, starting at offset 0.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

Return Values

An array of lengths on success or FALSE on failure.

Examples

Example 5.23 A mysql_fetch_lengths example

<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {
 echo 'Could not run query: ' . mysql_error();
 exit;
}
$row = mysql_fetch_assoc($result);
$lengths = mysql_fetch_lengths($result);

print_r($row);
print_r($lengths);
?>

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::getColumnMeta

mysql_fetch_object

294

The above example will output something similar to:

Array
(
 [id] => 42
 [email] => user@example.com
)
Array
(
 [0] => 2
 [1] => 16
)

See Also

mysql_field_len
mysql_fetch_row
strlen

5.5.17 mysql_fetch_object

Copyright 1997-2014 the PHP Documentation Group.

• mysql_fetch_object

Fetch a result row as an object

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_object
PDOStatement::fetch(PDO::FETCH_OBJ)

Description

 object mysql_fetch_object(
 resource result,
 string class_name,
 array params);

Returns an object with properties that correspond to the fetched row and moves the internal data pointer
ahead.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

class_name The name of the class to instantiate, set the properties of and return. If
not specified, a stdClass object is returned.

http://www.php.net/strlen
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::fetch(PDO::FETCH_OBJ)

mysql_fetch_object

295

params An optional array of parameters to pass to the constructor for
class_name objects.

Return Values

Returns an object with string properties that correspond to the fetched row, or FALSE if there are no more
rows.

Examples

Example 5.24 mysql_fetch_object example

<?php
mysql_connect("hostname", "user", "password");
mysql_select_db("mydb");
$result = mysql_query("select * from mytable");
while ($row = mysql_fetch_object($result)) {
 echo $row->user_id;
 echo $row->fullname;
}
mysql_free_result($result);
?>

Example 5.25 mysql_fetch_object example

<?php
class foo {
 public $name;
}

mysql_connect("hostname", "user", "password");
mysql_select_db("mydb");

$result = mysql_query("select name from mytable limit 1");
$obj = mysql_fetch_object($result, 'foo');
var_dump($obj);
?>

Notes

Performance

Speed-wise, the function is identical to mysql_fetch_array, and almost as quick
as mysql_fetch_row (the difference is insignificant).

Note

mysql_fetch_object is similar to mysql_fetch_array, with one difference -
an object is returned, instead of an array. Indirectly, that means that you can only
access the data by the field names, and not by their offsets (numbers are illegal
property names).

Note

Field names returned by this function are case-sensitive.

mysql_fetch_row

296

Note

This function sets NULL fields to the PHP NULL value.

See Also

mysql_fetch_array
mysql_fetch_assoc
mysql_fetch_row
mysql_data_seek
mysql_query

5.5.18 mysql_fetch_row

Copyright 1997-2014 the PHP Documentation Group.

• mysql_fetch_row

Get a result row as an enumerated array

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_row
PDOStatement::fetch(PDO::FETCH_NUM)

Description

 array mysql_fetch_row(
 resource result);

Returns a numerical array that corresponds to the fetched row and moves the internal data pointer ahead.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

Return Values

Returns an numerical array of strings that corresponds to the fetched row, or FALSE if there are no more
rows.

mysql_fetch_row fetches one row of data from the result associated with the specified result identifier.
The row is returned as an array. Each result column is stored in an array offset, starting at offset 0.

Examples

Example 5.26 Fetching one row with mysql_fetch_row

<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {
 echo 'Could not run query: ' . mysql_error();

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::fetch(PDO::FETCH_NUM)

mysql_field_flags

297

 exit;
}
$row = mysql_fetch_row($result);

echo $row[0]; // 42
echo $row[1]; // the email value
?>

Notes

Note

This function sets NULL fields to the PHP NULL value.

See Also

mysql_fetch_array
mysql_fetch_assoc
mysql_fetch_object
mysql_data_seek
mysql_fetch_lengths
mysql_result

5.5.19 mysql_field_flags

Copyright 1997-2014 the PHP Documentation Group.

• mysql_field_flags

Get the flags associated with the specified field in a result

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_field_direct [flags]
PDOStatement::getColumnMeta [flags]

Description

 string mysql_field_flags(
 resource result,
 int field_offset);

mysql_field_flags returns the field flags of the specified field. The flags are reported as a single word
per flag separated by a single space, so that you can split the returned value using explode.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

field_offset The numerical field offset. The field_offset starts at 0. If
field_offset does not exist, an error of level E_WARNING is also
issued.

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::getColumnMeta
http://www.php.net/explode

mysql_field_len

298

Return Values

Returns a string of flags associated with the result or FALSE on failure.

The following flags are reported, if your version of MySQL is current enough to support them:
"not_null", "primary_key", "unique_key", "multiple_key", "blob", "unsigned",
"zerofill", "binary", "enum", "auto_increment" and "timestamp".

Examples

Example 5.27 A mysql_field_flags example

<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {
 echo 'Could not run query: ' . mysql_error();
 exit;
}
$flags = mysql_field_flags($result, 0);

echo $flags;
print_r(explode(' ', $flags));
?>

The above example will output something similar to:

not_null primary_key auto_increment
Array
(
 [0] => not_null
 [1] => primary_key
 [2] => auto_increment
)

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_fieldflags

See Also

mysql_field_type
mysql_field_len

5.5.20 mysql_field_len

Copyright 1997-2014 the PHP Documentation Group.

• mysql_field_len

Returns the length of the specified field

mysql_field_len

299

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_field_direct [length]
PDOStatement::getColumnMeta [len]

Description

 int mysql_field_len(
 resource result,
 int field_offset);

mysql_field_len returns the length of the specified field.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

field_offset The numerical field offset. The field_offset starts at 0. If
field_offset does not exist, an error of level E_WARNING is also
issued.

Return Values

The length of the specified field index on success or FALSE on failure.

Examples

Example 5.28 mysql_field_len example

<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {
 echo 'Could not run query: ' . mysql_error();
 exit;
}

// Will get the length of the id field as specified in the database
// schema.
$length = mysql_field_len($result, 0);
echo $length;
?>

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_fieldlen

See Also

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::getColumnMeta

mysql_field_name

300

mysql_fetch_lengths
strlen

5.5.21 mysql_field_name

Copyright 1997-2014 the PHP Documentation Group.

• mysql_field_name

Get the name of the specified field in a result

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_field_direct [name] or [orgname]
PDOStatement::getColumnMeta [name]

Description

 string mysql_field_name(
 resource result,
 int field_offset);

mysql_field_name returns the name of the specified field index.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

field_offset The numerical field offset. The field_offset starts at 0. If
field_offset does not exist, an error of level E_WARNING is also
issued.

Return Values

The name of the specified field index on success or FALSE on failure.

Examples

Example 5.29 mysql_field_name example

<?php
/* The users table consists of three fields:
 * user_id
 * username
 * password.
 */
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect to MySQL server: ' . mysql_error());
}
$dbname = 'mydb';
$db_selected = mysql_select_db($dbname, $link);

http://www.php.net/strlen
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::getColumnMeta

mysql_field_seek

301

if (!$db_selected) {
 die("Could not set $dbname: " . mysql_error());
}
$res = mysql_query('select * from users', $link);

echo mysql_field_name($res, 0) . "\n";
echo mysql_field_name($res, 2);
?>

The above example will output:

user_id
password

Notes

Note

Field names returned by this function are case-sensitive.

Note

For backward compatibility, the following deprecated alias may be used:
mysql_fieldname

See Also

mysql_field_type
mysql_field_len

5.5.22 mysql_field_seek

Copyright 1997-2014 the PHP Documentation Group.

• mysql_field_seek

Set result pointer to a specified field offset

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_field_seek
PDOStatement::fetch using the cursor_orientation and offset
parameters

Description

 bool mysql_field_seek(
 resource result,
 int field_offset);

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::fetch

mysql_field_table

302

Seeks to the specified field offset. If the next call to mysql_fetch_field doesn't include a field offset,
the field offset specified in mysql_field_seek will be returned.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

field_offset The numerical field offset. The field_offset starts at 0. If
field_offset does not exist, an error of level E_WARNING is also
issued.

Return Values

Returns TRUE on success or FALSE on failure.

See Also

mysql_fetch_field

5.5.23 mysql_field_table

Copyright 1997-2014 the PHP Documentation Group.

• mysql_field_table

Get name of the table the specified field is in

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_field_direct [table] or [orgtable]
PDOStatement::getColumnMeta [table]

Description

 string mysql_field_table(
 resource result,
 int field_offset);

Returns the name of the table that the specified field is in.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

field_offset The numerical field offset. The field_offset starts at 0. If
field_offset does not exist, an error of level E_WARNING is also
issued.

Return Values

The name of the table on success.

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::getColumnMeta

mysql_field_type

303

Examples

Example 5.30 A mysql_field_table example

<?php

$query = "SELECT account.*, country.* FROM account, country WHERE country.name = 'Portugal' AND account.country_id = country.id";

// get the result from the DB
$result = mysql_query($query);

// Lists the table name and then the field name
for ($i = 0; $i < mysql_num_fields($result); ++$i) {
 $table = mysql_field_table($result, $i);
 $field = mysql_field_name($result, $i);

 echo "$table: $field\n";
}

?>

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_fieldtable

See Also

mysql_list_tables

5.5.24 mysql_field_type

Copyright 1997-2014 the PHP Documentation Group.

• mysql_field_type

Get the type of the specified field in a result

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_fetch_field_direct [type]
PDOStatement::getColumnMeta [driver:decl_type] or [pdo_type]

Description

 string mysql_field_type(
 resource result,
 int field_offset);

mysql_field_type is similar to the mysql_field_name function. The arguments are identical, but the
field type is returned instead.

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::getColumnMeta

mysql_field_type

304

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

field_offset The numerical field offset. The field_offset starts at 0. If
field_offset does not exist, an error of level E_WARNING is also
issued.

Return Values

The returned field type will be one of "int", "real", "string", "blob", and others as detailed in the
MySQL documentation.

Examples

Example 5.31 mysql_field_type example

<?php
mysql_connect("localhost", "mysql_username", "mysql_password");
mysql_select_db("mysql");
$result = mysql_query("SELECT * FROM func");
$fields = mysql_num_fields($result);
$rows = mysql_num_rows($result);
$table = mysql_field_table($result, 0);
echo "Your '" . $table . "' table has " . $fields . " fields and " . $rows . " record(s)\n";
echo "The table has the following fields:\n";
for ($i=0; $i < $fields; $i++) {
 $type = mysql_field_type($result, $i);
 $name = mysql_field_name($result, $i);
 $len = mysql_field_len($result, $i);
 $flags = mysql_field_flags($result, $i);
 echo $type . " " . $name . " " . $len . " " . $flags . "\n";
}
mysql_free_result($result);
mysql_close();
?>

The above example will output something similar to:

Your 'func' table has 4 fields and 1 record(s)
The table has the following fields:
string name 64 not_null primary_key binary
int ret 1 not_null
string dl 128 not_null
string type 9 not_null enum

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_fieldtype

See Also

http://dev.mysql.com/doc/

mysql_free_result

305

mysql_field_name
mysql_field_len

5.5.25 mysql_free_result

Copyright 1997-2014 the PHP Documentation Group.

• mysql_free_result

Free result memory

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_free_result
Assign the value of NULL to the PDO object, or PDOStatement::closeCursor

Description

 bool mysql_free_result(
 resource result);

mysql_free_result will free all memory associated with the result identifier result.

mysql_free_result only needs to be called if you are concerned about how much memory is being
used for queries that return large result sets. All associated result memory is automatically freed at the end
of the script's execution.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

Return Values

Returns TRUE on success or FALSE on failure.

If a non-resource is used for the result, an error of level E_WARNING will be emitted. It's worth noting
that mysql_query only returns a resource for SELECT, SHOW, EXPLAIN, and DESCRIBE queries.

Examples

Example 5.32 A mysql_free_result example

<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {
 echo 'Could not run query: ' . mysql_error();
 exit;
}
/* Use the result, assuming we're done with it afterwards */
$row = mysql_fetch_assoc($result);

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::closeCursor

mysql_get_client_info

306

/* Now we free up the result and continue on with our script */
mysql_free_result($result);

echo $row['id'];
echo $row['email'];
?>

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_freeresult

See Also

mysql_query
is_resource

5.5.26 mysql_get_client_info

Copyright 1997-2014 the PHP Documentation Group.

• mysql_get_client_info

Get MySQL client info

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_get_client_info
PDO::getAttribute(PDO::ATTR_CLIENT_VERSION)

Description

 string mysql_get_client_info();

mysql_get_client_info returns a string that represents the client library version.

Return Values

The MySQL client version.

Examples

Example 5.33 mysql_get_client_info example

<?php
printf("MySQL client info: %s\n", mysql_get_client_info());
?>

http://www.php.net/is_resource
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::getAttribute(PDO::ATTR_CLIENT_VERSION)

mysql_get_host_info

307

The above example will output something similar to:

MySQL client info: 3.23.39

See Also

mysql_get_host_info
mysql_get_proto_info
mysql_get_server_info

5.5.27 mysql_get_host_info

Copyright 1997-2014 the PHP Documentation Group.

• mysql_get_host_info

Get MySQL host info

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_get_host_info
PDO::getAttribute(PDO::ATTR_CONNECTION_STATUS)

Description

 string mysql_get_host_info(
 resource link_identifier
 = =NULL);

Describes the type of connection in use for the connection, including the server host name.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns a string describing the type of MySQL connection in use for the connection or FALSE on failure.

Examples

Example 5.34 mysql_get_host_info example

<?php

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::getAttribute(PDO::ATTR_CONNECTION_STATUS)

mysql_get_proto_info

308

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
printf("MySQL host info: %s\n", mysql_get_host_info());
?>

The above example will output something similar to:

MySQL host info: Localhost via UNIX socket

See Also

mysql_get_client_info
mysql_get_proto_info
mysql_get_server_info

5.5.28 mysql_get_proto_info

Copyright 1997-2014 the PHP Documentation Group.

• mysql_get_proto_info

Get MySQL protocol info

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_get_proto_info

Description

 int mysql_get_proto_info(
 resource link_identifier
 = =NULL);

Retrieves the MySQL protocol.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns the MySQL protocol on success or FALSE on failure.

http://www.php.net/faq.databases.mysql.deprecated

mysql_get_server_info

309

Examples

Example 5.35 mysql_get_proto_info example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
printf("MySQL protocol version: %s\n", mysql_get_proto_info());
?>

The above example will output something similar to:

MySQL protocol version: 10

See Also

mysql_get_client_info
mysql_get_host_info
mysql_get_server_info

5.5.29 mysql_get_server_info

Copyright 1997-2014 the PHP Documentation Group.

• mysql_get_server_info

Get MySQL server info

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_get_server_info
PDO::getAttribute(PDO::ATTR_SERVER_VERSION)

Description

 string mysql_get_server_info(
 resource link_identifier
 = =NULL);

Retrieves the MySQL server version.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::getAttribute(PDO::ATTR_SERVER_VERSION)

mysql_info

310

it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns the MySQL server version on success or FALSE on failure.

Examples

Example 5.36 mysql_get_server_info example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
printf("MySQL server version: %s\n", mysql_get_server_info());
?>

The above example will output something similar to:

MySQL server version: 4.0.1-alpha

See Also

mysql_get_client_info
mysql_get_host_info
mysql_get_proto_info
phpversion

5.5.30 mysql_info

Copyright 1997-2014 the PHP Documentation Group.

• mysql_info

Get information about the most recent query

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_info

Description

 string mysql_info(
 resource link_identifier

http://www.php.net/phpversion
http://www.php.net/faq.databases.mysql.deprecated

mysql_insert_id

311

 = =NULL);

Returns detailed information about the last query.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns information about the statement on success, or FALSE on failure. See the example below for
which statements provide information, and what the returned value may look like. Statements that are not
listed will return FALSE.

Examples

Example 5.37 Relevant MySQL Statements

Statements that return string values. The numbers are only for illustrating purpose; their values will
correspond to the query.

INSERT INTO ... SELECT ...
String format: Records: 23 Duplicates: 0 Warnings: 0
INSERT INTO ... VALUES (...),(...),(...)...
String format: Records: 37 Duplicates: 0 Warnings: 0
LOAD DATA INFILE ...
String format: Records: 42 Deleted: 0 Skipped: 0 Warnings: 0
ALTER TABLE
String format: Records: 60 Duplicates: 0 Warnings: 0
UPDATE
String format: Rows matched: 65 Changed: 65 Warnings: 0

Notes

Note

mysql_info returns a non-FALSE value for the INSERT ... VALUES statement
only if multiple value lists are specified in the statement.

See Also

mysql_affected_rows
mysql_insert_id
mysql_stat

5.5.31 mysql_insert_id

Copyright 1997-2014 the PHP Documentation Group.

• mysql_insert_id

Get the ID generated in the last query

mysql_insert_id

312

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_insert_id
PDO::lastInsertId

Description

 int mysql_insert_id(
 resource link_identifier
 = =NULL);

Retrieves the ID generated for an AUTO_INCREMENT column by the previous query (usually INSERT).

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

The ID generated for an AUTO_INCREMENT column by the previous query on success, 0 if the
previous query does not generate an AUTO_INCREMENT value, or FALSE if no MySQL connection was
established.

Examples

Example 5.38 mysql_insert_id example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
mysql_select_db('mydb');

mysql_query("INSERT INTO mytable (product) values ('kossu')");
printf("Last inserted record has id %d\n", mysql_insert_id());
?>

Notes

Caution

mysql_insert_id will convert the return type of the native MySQL C API
function mysql_insert_id() to a type of long (named int in PHP). If your
AUTO_INCREMENT column has a column type of BIGINT (64 bits) the conversion
may result in an incorrect value. Instead, use the internal MySQL SQL function

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::lastInsertId

mysql_list_dbs

313

LAST_INSERT_ID() in an SQL query. For more information about PHP's maximum
integer values, please see the integer documentation.

Note

Because mysql_insert_id acts on the last performed query, be sure to call
mysql_insert_id immediately after the query that generates the value.

Note

The value of the MySQL SQL function LAST_INSERT_ID() always contains the
most recently generated AUTO_INCREMENT value, and is not reset between
queries.

See Also

mysql_query
mysql_info

5.5.32 mysql_list_dbs

Copyright 1997-2014 the PHP Documentation Group.

• mysql_list_dbs

List databases available on a MySQL server

Warning

This function was deprecated in PHP 5.4.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed
MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

SQL Query: SHOW DATABASES

Description

 resource mysql_list_dbs(
 resource link_identifier
 = =NULL);

Returns a result pointer containing the databases available from the current mysql daemon.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns a result pointer resource on success, or FALSE on failure. Use the mysql_tablename function to
traverse this result pointer, or any function for result tables, such as mysql_fetch_array.

Examples

http://www.php.net/manual/en/language.types.integer
http://www.php.net/faq.databases.mysql.deprecated

mysql_list_fields

314

Example 5.39 mysql_list_dbs example

<?php
// Usage without mysql_list_dbs()
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$res = mysql_query("SHOW DATABASES");

while ($row = mysql_fetch_assoc($res)) {
 echo $row['Database'] . "\n";
}

// Deprecated as of PHP 5.4.0
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$db_list = mysql_list_dbs($link);

while ($row = mysql_fetch_object($db_list)) {
 echo $row->Database . "\n";
}
?>

The above example will output something similar to:

database1
database2
database3

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_listdbs

See Also

mysql_db_name
mysql_select_db

5.5.33 mysql_list_fields

Copyright 1997-2014 the PHP Documentation Group.

• mysql_list_fields

List MySQL table fields

Warning

This function was deprecated in PHP 5.4.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed
MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

http://www.php.net/faq.databases.mysql.deprecated

mysql_list_fields

315

SQL Query: SHOW COLUMNS FROM sometable

Description

 resource mysql_list_fields(
 string database_name,
 string table_name,
 resource link_identifier
 = =NULL);

Retrieves information about the given table name.

This function is deprecated. It is preferable to use mysql_query to issue an SQL SHOW COLUMNS FROM
table [LIKE 'name'] statement instead.

Parameters

database_name The name of the database that's being queried.

table_name The name of the table that's being queried.

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

A result pointer resource on success, or FALSE on failure.

The returned result can be used with mysql_field_flags, mysql_field_len, mysql_field_name
and mysql_field_type.

Examples

Example 5.40 Alternate to deprecated mysql_list_fields

<?php
$result = mysql_query("SHOW COLUMNS FROM sometable");
if (!$result) {
 echo 'Could not run query: ' . mysql_error();
 exit;
}
if (mysql_num_rows($result) > 0) {
 while ($row = mysql_fetch_assoc($result)) {
 print_r($row);
 }
}
?>

The above example will output something similar to:

Array
(

mysql_list_processes

316

 [Field] => id
 [Type] => int(7)
 [Null] =>
 [Key] => PRI
 [Default] =>
 [Extra] => auto_increment
)
Array
(
 [Field] => email
 [Type] => varchar(100)
 [Null] =>
 [Key] =>
 [Default] =>
 [Extra] =>
)

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_listfields

See Also

mysql_field_flags
mysql_info

5.5.34 mysql_list_processes

Copyright 1997-2014 the PHP Documentation Group.

• mysql_list_processes

List MySQL processes

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_thread_id

Description

 resource mysql_list_processes(
 resource link_identifier
 = =NULL);

Retrieves the current MySQL server threads.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no

http://www.php.net/faq.databases.mysql.deprecated

mysql_list_tables

317

arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

A result pointer resource on success or FALSE on failure.

Examples

Example 5.41 mysql_list_processes example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');

$result = mysql_list_processes($link);
while ($row = mysql_fetch_assoc($result)){
 printf("%s %s %s %s %s\n", $row["Id"], $row["Host"], $row["db"],
 $row["Command"], $row["Time"]);
}
mysql_free_result($result);
?>

The above example will output something similar to:

1 localhost test Processlist 0
4 localhost mysql sleep 5

See Also

mysql_thread_id
mysql_stat

5.5.35 mysql_list_tables

Copyright 1997-2014 the PHP Documentation Group.

• mysql_list_tables

List tables in a MySQL database

Warning

This function was deprecated in PHP 4.3.0, and it and the entire original MySQL
extension was removed in PHP 7.0.0. Instead, use either the actively developed
MySQLi or PDO_MySQL extensions. See also the MySQL: choosing an API guide
and its related FAQ entry for additional information. Alternatives to this function
include:

SQL Query: SHOW TABLES FROM dbname

Description

 resource mysql_list_tables(

http://www.php.net/faq.databases.mysql.deprecated

mysql_list_tables

318

 string database,
 resource link_identifier
 = =NULL);

Retrieves a list of table names from a MySQL database.

This function is deprecated. It is preferable to use mysql_query to issue an SQL SHOW TABLES [FROM
db_name] [LIKE 'pattern'] statement instead.

Parameters

database The name of the database

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

A result pointer resource on success or FALSE on failure.

Use the mysql_tablename function to traverse this result pointer, or any function for result tables, such
as mysql_fetch_array.

Changelog

Version Description

4.3.7 This function became deprecated.

Examples

Example 5.42 mysql_list_tables alternative example

<?php
$dbname = 'mysql_dbname';

if (!mysql_connect('mysql_host', 'mysql_user', 'mysql_password')) {
 echo 'Could not connect to mysql';
 exit;
}

$sql = "SHOW TABLES FROM $dbname";
$result = mysql_query($sql);

if (!$result) {
 echo "DB Error, could not list tables\n";
 echo 'MySQL Error: ' . mysql_error();
 exit;
}

while ($row = mysql_fetch_row($result)) {
 echo "Table: {$row[0]}\n";
}

mysql_free_result($result);
?>

mysql_num_fields

319

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_listtables

See Also

mysql_list_dbs
mysql_tablename

5.5.36 mysql_num_fields

Copyright 1997-2014 the PHP Documentation Group.

• mysql_num_fields

Get number of fields in result

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_num_fields
PDOStatement::columnCount

Description

 int mysql_num_fields(
 resource result);

Retrieves the number of fields from a query.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

Return Values

Returns the number of fields in the result set resource on success or FALSE on failure.

Examples

Example 5.43 A mysql_num_fields example

<?php
$result = mysql_query("SELECT id,email FROM people WHERE id = '42'");
if (!$result) {
 echo 'Could not run query: ' . mysql_error();
 exit;
}

/* returns 2 because id,email === two fields */
echo mysql_num_fields($result);

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::columnCount

mysql_num_rows

320

?>

Notes

Note

For backward compatibility, the following deprecated alias may be used:
mysql_numfields

See Also

mysql_select_db
mysql_query
mysql_fetch_field
mysql_num_rows

5.5.37 mysql_num_rows

Copyright 1997-2014 the PHP Documentation Group.

• mysql_num_rows

Get number of rows in result

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_num_rows
mysqli_stmt_num_rows
PDOStatement::rowCount

Description

 int mysql_num_rows(
 resource result);

Retrieves the number of rows from a result set. This command is only valid for statements like SELECT or
SHOW that return an actual result set. To retrieve the number of rows affected by a INSERT, UPDATE,
REPLACE or DELETE query, use mysql_affected_rows.

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

Return Values

The number of rows in a result set on success or FALSE on failure.

Examples

Example 5.44 mysql_num_rows example

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::rowCount

mysql_pconnect

321

<?php

$link = mysql_connect("localhost", "mysql_user", "mysql_password");
mysql_select_db("database", $link);

$result = mysql_query("SELECT * FROM table1", $link);
$num_rows = mysql_num_rows($result);

echo "$num_rows Rows\n";

?>

Notes

Note

If you use mysql_unbuffered_query, mysql_num_rows will not return the
correct value until all the rows in the result set have been retrieved.

Note

For backward compatibility, the following deprecated alias may be used:
mysql_numrows

See Also

mysql_affected_rows
mysql_connect
mysql_data_seek
mysql_select_db
mysql_query

5.5.38 mysql_pconnect

Copyright 1997-2014 the PHP Documentation Group.

• mysql_pconnect

Open a persistent connection to a MySQL server

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_connect with p: host prefix
PDO::__construct with PDO::ATTR_PERSISTENT as a driver option

Description

 resource mysql_pconnect(
 string server
 = =ini_get("mysql.default_host"),
 string username
 = =ini_get("mysql.default_user"),
 string password

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::__construct

mysql_pconnect

322

 = =ini_get("mysql.default_password"),
 int client_flags
 = =0);

Establishes a persistent connection to a MySQL server.

mysql_pconnect acts very much like mysql_connect with two major differences.

First, when connecting, the function would first try to find a (persistent) link that's already open with the
same host, username and password. If one is found, an identifier for it will be returned instead of opening a
new connection.

Second, the connection to the SQL server will not be closed when the execution of the script ends.
Instead, the link will remain open for future use (mysql_close will not close links established by
mysql_pconnect).

This type of link is therefore called 'persistent'.

Parameters

server The MySQL server. It can also include a port number. e.g.
"hostname:port" or a path to a local socket e.g. ":/path/to/socket" for the
localhost.

If the PHP directive mysql.default_host is undefined (default), then the
default value is 'localhost:3306'

username The username. Default value is the name of the user that owns the
server process.

password The password. Default value is an empty password.

client_flags The client_flags parameter can be a combination of
the following constants: 128 (enable LOAD DATA LOCAL
handling), MYSQL_CLIENT_SSL, MYSQL_CLIENT_COMPRESS,
MYSQL_CLIENT_IGNORE_SPACE or MYSQL_CLIENT_INTERACTIVE.

Return Values

Returns a MySQL persistent link identifier on success, or FALSE on failure.

Changelog

Version Description

5.5.0 This function will generate an E_DEPRECATED error.

Notes

Note

Note, that these kind of links only work if you are using a module version of PHP.
See the Persistent Database Connections section for more information.

Warning

Using persistent connections can require a bit of tuning of your Apache and MySQL
configurations to ensure that you do not exceed the number of connections allowed
by MySQL.

http://www.php.net/manual/en/features.persistent-connections

mysql_ping

323

Note

You can suppress the error message on failure by prepending a @ to the function
name.

See Also

mysql_connect
Persistent Database Connections

5.5.39 mysql_ping

Copyright 1997-2014 the PHP Documentation Group.

• mysql_ping

Ping a server connection or reconnect if there is no connection

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_ping

Description

 bool mysql_ping(
 resource link_identifier
 = =NULL);

Checks whether or not the connection to the server is working. If it has gone down, an automatic
reconnection is attempted. This function can be used by scripts that remain idle for a long while, to check
whether or not the server has closed the connection and reconnect if necessary.

Note

Automatic reconnection is disabled by default in versions of MySQL >= 5.0.3.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns TRUE if the connection to the server MySQL server is working, otherwise FALSE.

Examples

Example 5.45 A mysql_ping example

http://www.php.net/manual/en/language.operators.errorcontrol
http://www.php.net/manual/en/features.persistent-connections
http://www.php.net/faq.databases.mysql.deprecated

mysql_query

324

<?php
set_time_limit(0);

$conn = mysql_connect('localhost', 'mysqluser', 'mypass');
$db = mysql_select_db('mydb');

/* Assuming this query will take a long time */
$result = mysql_query($sql);
if (!$result) {
 echo 'Query #1 failed, exiting.';
 exit;
}

/* Make sure the connection is still alive, if not, try to reconnect */
if (!mysql_ping($conn)) {
 echo 'Lost connection, exiting after query #1';
 exit;
}
mysql_free_result($result);

/* So the connection is still alive, let's run another query */
$result2 = mysql_query($sql2);
?>

See Also

mysql_thread_id
mysql_list_processes

5.5.40 mysql_query

Copyright 1997-2014 the PHP Documentation Group.

• mysql_query

Send a MySQL query

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_query
PDO::query

Description

 mixed mysql_query(
 string query,
 resource link_identifier
 = =NULL);

mysql_query sends a unique query (multiple queries are not supported) to the currently active database
on the server that's associated with the specified link_identifier.

Parameters

query An SQL query

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::query

mysql_query

325

The query string should not end with a semicolon. Data inside the query
should be properly escaped.

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

For SELECT, SHOW, DESCRIBE, EXPLAIN and other statements returning resultset, mysql_query
returns a resource on success, or FALSE on error.

For other type of SQL statements, INSERT, UPDATE, DELETE, DROP, etc, mysql_query returns TRUE
on success or FALSE on error.

The returned result resource should be passed to mysql_fetch_array, and other functions for dealing
with result tables, to access the returned data.

Use mysql_num_rows to find out how many rows were returned for a SELECT statement or
mysql_affected_rows to find out how many rows were affected by a DELETE, INSERT, REPLACE, or
UPDATE statement.

mysql_query will also fail and return FALSE if the user does not have permission to access the table(s)
referenced by the query.

Examples

Example 5.46 Invalid Query

The following query is syntactically invalid, so mysql_query fails and returns FALSE.

<?php
$result = mysql_query('SELECT * WHERE 1=1');
if (!$result) {
 die('Invalid query: ' . mysql_error());
}

?>

Example 5.47 Valid Query

The following query is valid, so mysql_query returns a resource.

<?php
// This could be supplied by a user, for example
$firstname = 'fred';
$lastname = 'fox';

// Formulate Query
// This is the best way to perform an SQL query
// For more examples, see mysql_real_escape_string()
$query = sprintf("SELECT firstname, lastname, address, age FROM friends
 WHERE firstname='%s' AND lastname='%s'",

mysql_real_escape_string

326

 mysql_real_escape_string($firstname),
 mysql_real_escape_string($lastname));

// Perform Query
$result = mysql_query($query);

// Check result
// This shows the actual query sent to MySQL, and the error. Useful for debugging.
if (!$result) {
 $message = 'Invalid query: ' . mysql_error() . "\n";
 $message .= 'Whole query: ' . $query;
 die($message);
}

// Use result
// Attempting to print $result won't allow access to information in the resource
// One of the mysql result functions must be used
// See also mysql_result(), mysql_fetch_array(), mysql_fetch_row(), etc.
while ($row = mysql_fetch_assoc($result)) {
 echo $row['firstname'];
 echo $row['lastname'];
 echo $row['address'];
 echo $row['age'];
}

// Free the resources associated with the result set
// This is done automatically at the end of the script
mysql_free_result($result);
?>

See Also

mysql_connect
mysql_error
mysql_real_escape_string
mysql_result
mysql_fetch_assoc
mysql_unbuffered_query

5.5.41 mysql_real_escape_string

Copyright 1997-2014 the PHP Documentation Group.

• mysql_real_escape_string

Escapes special characters in a string for use in an SQL statement

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_real_escape_string
PDO::quote

Description

 string mysql_real_escape_string(

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::quote

mysql_real_escape_string

327

 string unescaped_string,
 resource link_identifier
 = =NULL);

Escapes special characters in the unescaped_string, taking into account the current character set of
the connection so that it is safe to place it in a mysql_query. If binary data is to be inserted, this function
must be used.

mysql_real_escape_string calls MySQL's library function mysql_real_escape_string, which prepends
backslashes to the following characters: \x00, \n, \r, \, ', " and \x1a.

This function must always (with few exceptions) be used to make data safe before sending a query to
MySQL.

Security: the default character set

The character set must be set either at the server level, or with the API function
mysql_set_charset for it to affect mysql_real_escape_string. See the
concepts section on character sets for more information.

Parameters

unescaped_string The string that is to be escaped.

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns the escaped string, or FALSE on error.

Errors/Exceptions

Executing this function without a MySQL connection present will also emit E_WARNING level PHP errors.
Only execute this function with a valid MySQL connection present.

Examples

Example 5.48 Simple mysql_real_escape_string example

<?php
// Connect
$link = mysql_connect('mysql_host', 'mysql_user', 'mysql_password')
 OR die(mysql_error());

// Query
$query = sprintf("SELECT * FROM users WHERE user='%s' AND password='%s'",
 mysql_real_escape_string($user),
 mysql_real_escape_string($password));
?>

Example 5.49 mysql_real_escape_string requires a connection example

This example demonstrates what happens if a MySQL connection is not present when calling this function.

mysql_real_escape_string

328

<?php
// We have not connected to MySQL

$lastname = "O'Reilly";
$_lastname = mysql_real_escape_string($lastname);

$query = "SELECT * FROM actors WHERE last_name = '$_lastname'";

var_dump($_lastname);
var_dump($query);
?>

The above example will output something similar to:

Warning: mysql_real_escape_string(): No such file or directory in /this/test/script.php on line 5
Warning: mysql_real_escape_string(): A link to the server could not be established in /this/test/script.php on line 5

bool(false)
string(41) "SELECT * FROM actors WHERE last_name = ''"

Example 5.50 An example SQL Injection Attack

<?php
// We didn't check $_POST['password'], it could be anything the user wanted! For example:
$_POST['username'] = 'aidan';
$_POST['password'] = "' OR ''='";

// Query database to check if there are any matching users
$query = "SELECT * FROM users WHERE user='{$_POST['username']}' AND password='{$_POST['password']}'";
mysql_query($query);

// This means the query sent to MySQL would be:
echo $query;
?>

The query sent to MySQL:

SELECT * FROM users WHERE user='aidan' AND password='' OR ''=''

This would allow anyone to log in without a valid password.

Notes

Note

A MySQL connection is required before using mysql_real_escape_string
otherwise an error of level E_WARNING is generated, and FALSE is returned. If
link_identifier isn't defined, the last MySQL connection is used.

mysql_result

329

Note

If magic_quotes_gpc is enabled, first apply stripslashes to the data. Using this
function on data which has already been escaped will escape the data twice.

Note

If this function is not used to escape data, the query is vulnerable to SQL Injection
Attacks.

Note

mysql_real_escape_string does not escape % and _. These are wildcards in
MySQL if combined with LIKE, GRANT, or REVOKE.

See Also

mysql_set_charset
mysql_client_encoding
addslashes
stripslashes
The magic_quotes_gpc directive
The magic_quotes_runtime directive

5.5.42 mysql_result

Copyright 1997-2014 the PHP Documentation Group.

• mysql_result

Get result data

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_data_seek in conjunction with mysqli_field_seek and
mysqli_fetch_field
PDOStatement::fetchColumn

Description

 string mysql_result(
 resource result,
 int row,
 mixed field
 = =0);

Retrieves the contents of one cell from a MySQL result set.

When working on large result sets, you should consider using one of the functions that fetch an entire row
(specified below). As these functions return the contents of multiple cells in one function call, they're MUCH
quicker than mysql_result. Also, note that specifying a numeric offset for the field argument is much
quicker than specifying a fieldname or tablename.fieldname argument.

http://www.php.net/manual/en/ini.core.php#ini.magic-quotes-gpc
http://www.php.net/stripslashes
http://www.php.net/manual/en/security.database.sql-injection
http://www.php.net/manual/en/security.database.sql-injection
http://www.php.net/addslashes
http://www.php.net/stripslashes
http://www.php.net/manual/en/ini.core.php#ini.magic-quotes-gpc
http://www.php.net/manual/en/ini.core.php#ini.magic-quotes-runtime
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDOStatement::fetchColumn

mysql_select_db

330

Parameters

result The result resource that is being evaluated. This result comes from a
call to mysql_query.

row The row number from the result that's being retrieved. Row numbers
start at 0.

field The name or offset of the field being retrieved.

It can be the field's offset, the field's name, or the field's table dot field
name (tablename.fieldname). If the column name has been aliased
('select foo as bar from...'), use the alias instead of the column name. If
undefined, the first field is retrieved.

Return Values

The contents of one cell from a MySQL result set on success, or FALSE on failure.

Examples

Example 5.51 mysql_result example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Could not connect: ' . mysql_error());
}
if (!mysql_select_db('database_name')) {
 die('Could not select database: ' . mysql_error());
}
$result = mysql_query('SELECT name FROM work.employee');
if (!$result) {
 die('Could not query:' . mysql_error());
}
echo mysql_result($result, 2); // outputs third employee's name

mysql_close($link);
?>

Notes

Note

Calls to mysql_result should not be mixed with calls to other functions that deal
with the result set.

See Also

mysql_fetch_row
mysql_fetch_array
mysql_fetch_assoc
mysql_fetch_object

5.5.43 mysql_select_db

Copyright 1997-2014 the PHP Documentation Group.

mysql_select_db

331

• mysql_select_db

Select a MySQL database

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_select_db
PDO::__construct (part of dsn)

Description

 bool mysql_select_db(
 string database_name,
 resource link_identifier
 = =NULL);

Sets the current active database on the server that's associated with the specified link identifier. Every
subsequent call to mysql_query will be made on the active database.

Parameters

database_name The name of the database that is to be selected.

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 5.52 mysql_select_db example

<?php

$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
if (!$link) {
 die('Not connected : ' . mysql_error());
}

// make foo the current db
$db_selected = mysql_select_db('foo', $link);
if (!$db_selected) {
 die ('Can\'t use foo : ' . mysql_error());
}
?>

Notes

http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::__construct

mysql_set_charset

332

Note

For backward compatibility, the following deprecated alias may be used:
mysql_selectdb

See Also

mysql_connect
mysql_pconnect
mysql_query

5.5.44 mysql_set_charset

Copyright 1997-2014 the PHP Documentation Group.

• mysql_set_charset

Sets the client character set

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_set_charset
PDO: Add charset to the connection string, such as charset=utf8

Description

 bool mysql_set_charset(
 string charset,
 resource link_identifier
 = =NULL);

Sets the default character set for the current connection.

Parameters

charset A valid character set name.

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns TRUE on success or FALSE on failure.

Notes

Note

This function requires MySQL 5.0.7 or later.

http://www.php.net/faq.databases.mysql.deprecated

mysql_stat

333

Note

This is the preferred way to change the charset. Using mysql_query to set it
(such as SET NAMES utf8) is not recommended. See the MySQL character set
concepts section for more information.

See Also

Setting character sets in MySQL
List of character sets that MySQL supports
mysql_client_encoding

5.5.45 mysql_stat

Copyright 1997-2014 the PHP Documentation Group.

• mysql_stat

Get current system status

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_stat
PDO::getAttribute(PDO::ATTR_SERVER_INFO)

Description

 string mysql_stat(
 resource link_identifier
 = =NULL);

mysql_stat returns the current server status.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

Returns a string with the status for uptime, threads, queries, open tables, flush tables and queries per
second. For a complete list of other status variables, you have to use the SHOW STATUS SQL command. If
link_identifier is invalid, NULL is returned.

Examples

Example 5.53 mysql_stat example

http://dev.mysql.com/doc/mysql/en/charset-charsets.html
http://www.php.net/faq.databases.mysql.deprecated
http://www.php.net/PDO::getAttribute(PDO::ATTR_SERVER_INFO)

mysql_tablename

334

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$status = explode(' ', mysql_stat($link));
print_r($status);
?>

The above example will output something similar to:

Array
(
 [0] => Uptime: 5380
 [1] => Threads: 2
 [2] => Questions: 1321299
 [3] => Slow queries: 0
 [4] => Opens: 26
 [5] => Flush tables: 1
 [6] => Open tables: 17
 [7] => Queries per second avg: 245.595
)

Example 5.54 Alternative mysql_stat example

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$result = mysql_query('SHOW STATUS', $link);
while ($row = mysql_fetch_assoc($result)) {
 echo $row['Variable_name'] . ' = ' . $row['Value'] . "\n";
}
?>

The above example will output something similar to:

back_log = 50
basedir = /usr/local/
bdb_cache_size = 8388600
bdb_log_buffer_size = 32768
bdb_home = /var/db/mysql/
bdb_max_lock = 10000
bdb_logdir =
bdb_shared_data = OFF
bdb_tmpdir = /var/tmp/
...

See Also

mysql_get_server_info
mysql_list_processes

5.5.46 mysql_tablename

Copyright 1997-2014 the PHP Documentation Group.

mysql_tablename

335

• mysql_tablename

Get table name of field

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

SQL Query: SHOW TABLES

Description

 string mysql_tablename(
 resource result,
 int i);

Retrieves the table name from a result.

This function is deprecated. It is preferable to use mysql_query to issue an SQL SHOW TABLES [FROM
db_name] [LIKE 'pattern'] statement instead.

Parameters

result A result pointer resource that's returned from mysql_list_tables.

i The integer index (row/table number)

Return Values

The name of the table on success or FALSE on failure.

Use the mysql_tablename function to traverse this result pointer, or any function for result tables, such
as mysql_fetch_array.

Changelog

Version Description

5.5.0 The mysql_tablename function is deprecated,
and emits an E_DEPRECATED level error.

Examples

Example 5.55 mysql_tablename example

<?php
mysql_connect("localhost", "mysql_user", "mysql_password");
$result = mysql_list_tables("mydb");
$num_rows = mysql_num_rows($result);
for ($i = 0; $i < $num_rows; $i++) {
 echo "Table: ", mysql_tablename($result, $i), "\n";
}

mysql_free_result($result);
?>

http://www.php.net/faq.databases.mysql.deprecated

mysql_thread_id

336

Notes

Note

The mysql_num_rows function may be used to determine the number of tables in
the result pointer.

See Also

mysql_list_tables
mysql_field_table
mysql_db_name

5.5.47 mysql_thread_id

Copyright 1997-2014 the PHP Documentation Group.

• mysql_thread_id

Return the current thread ID

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

mysqli_thread_id

Description

 int mysql_thread_id(
 resource link_identifier
 = =NULL);

Retrieves the current thread ID. If the connection is lost, and a reconnect with mysql_ping is executed,
the thread ID will change. This means only retrieve the thread ID when needed.

Parameters

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

The thread ID on success or FALSE on failure.

Examples

Example 5.56 mysql_thread_id example

http://www.php.net/faq.databases.mysql.deprecated

mysql_unbuffered_query

337

<?php
$link = mysql_connect('localhost', 'mysql_user', 'mysql_password');
$thread_id = mysql_thread_id($link);
if ($thread_id){
 printf("current thread id is %d\n", $thread_id);
}
?>

The above example will output something similar to:

current thread id is 73

See Also

mysql_ping
mysql_list_processes

5.5.48 mysql_unbuffered_query

Copyright 1997-2014 the PHP Documentation Group.

• mysql_unbuffered_query

Send an SQL query to MySQL without fetching and buffering the result rows.

Warning

This extension was deprecated in PHP 5.5.0, and it was removed in PHP 7.0.0.
Instead, the MySQLi or PDO_MySQL extension should be used. See also MySQL:
choosing an API guide and related FAQ for more information. Alternatives to this
function include:

See: Buffered and Unbuffered queries

Description

 resource mysql_unbuffered_query(
 string query,
 resource link_identifier
 = =NULL);

mysql_unbuffered_query sends the SQL query query to MySQL without automatically fetching and
buffering the result rows as mysql_query does. This saves a considerable amount of memory with SQL
queries that produce large result sets, and you can start working on the result set immediately after the
first row has been retrieved as you don't have to wait until the complete SQL query has been performed.
To use mysql_unbuffered_query while multiple database connections are open, you must specify the
optional parameter link_identifier to identify which connection you want to use.

Parameters

query The SQL query to execute.

Data inside the query should be properly escaped.

http://www.php.net/faq.databases.mysql.deprecated

mysql_unbuffered_query

338

link_identifier The MySQL connection. If the link identifier is not specified, the last
link opened by mysql_connect is assumed. If no such link is found,
it will try to create one as if mysql_connect had been called with no
arguments. If no connection is found or established, an E_WARNING
level error is generated.

Return Values

For SELECT, SHOW, DESCRIBE or EXPLAIN statements, mysql_unbuffered_query returns a
resource on success, or FALSE on error.

For other type of SQL statements, UPDATE, DELETE, DROP, etc, mysql_unbuffered_query returns
TRUE on success or FALSE on error.

Notes

Note

The benefits of mysql_unbuffered_query come at a cost: you cannot use
mysql_num_rows and mysql_data_seek on a result set returned from
mysql_unbuffered_query, until all rows are fetched. You also have to fetch all
result rows from an unbuffered SQL query before you can send a new SQL query to
MySQL, using the same link_identifier.

See Also

mysql_query

339

Chapter 6 MySQL Native Driver

Table of Contents
6.1 Overview .. 339
6.2 Installation .. 340
6.3 Runtime Configuration ... 341
6.4 Incompatibilities .. 346
6.5 Persistent Connections ... 346
6.6 Statistics ... 346
6.7 Notes ... 360
6.8 Memory management ... 361
6.9 MySQL Native Driver Plugin API ... 362

6.9.1 A comparison of mysqlnd plugins with MySQL Proxy ... 364
6.9.2 Obtaining the mysqlnd plugin API ... 364
6.9.3 MySQL Native Driver Plugin Architecture .. 365
6.9.4 The mysqlnd plugin API ... 370
6.9.5 Getting started building a mysqlnd plugin .. 372

Copyright 1997-2014 the PHP Documentation Group.

MySQL Native Driver is a replacement for the MySQL Client Library (libmysqlclient). MySQL Native Driver
is part of the official PHP sources as of PHP 5.3.0.

The MySQL database extensions MySQL extension, mysqli and PDO MYSQL all communicate with the
MySQL server. In the past, this was done by the extension using the services provided by the MySQL
Client Library. The extensions were compiled against the MySQL Client Library in order to use its client-
server protocol.

With MySQL Native Driver there is now an alternative, as the MySQL database extensions can be
compiled to use MySQL Native Driver instead of the MySQL Client Library.

MySQL Native Driver is written in C as a PHP extension.

6.1 Overview

Copyright 1997-2014 the PHP Documentation Group.

What it is not

Although MySQL Native Driver is written as a PHP extension, it is important to note that it does not provide
a new API to the PHP programmer. The programmer APIs for MySQL database connectivity are provided
by the MySQL extension, mysqli and PDO MYSQL. These extensions can now use the services of
MySQL Native Driver to communicate with the MySQL Server. Therefore, you should not think of MySQL
Native Driver as an API.

Why use it?

Using the MySQL Native Driver offers a number of advantages over using the MySQL Client Library.

The older MySQL Client Library was written by MySQL AB (now Oracle Corporation) and so was released
under the MySQL license. This ultimately led to MySQL support being disabled by default in PHP.

Installation

340

However, the MySQL Native Driver has been developed as part of the PHP project, and is therefore
released under the PHP license. This removes licensing issues that have been problematic in the past.

Also, in the past, you needed to build the MySQL database extensions against a copy of the MySQL Client
Library. This typically meant you needed to have MySQL installed on a machine where you were building
the PHP source code. Also, when your PHP application was running, the MySQL database extensions
would call down to the MySQL Client library file at run time, so the file needed to be installed on your
system. With MySQL Native Driver that is no longer the case as it is included as part of the standard
distribution. So you do not need MySQL installed in order to build PHP or run PHP database applications.

Because MySQL Native Driver is written as a PHP extension, it is tightly coupled to the workings of PHP.
This leads to gains in efficiency, especially when it comes to memory usage, as the driver uses the PHP
memory management system. It also supports the PHP memory limit. Using MySQL Native Driver leads
to comparable or better performance than using MySQL Client Library, it always ensures the most efficient
use of memory. One example of the memory efficiency is the fact that when using the MySQL Client
Library, each row is stored in memory twice, whereas with the MySQL Native Driver each row is only
stored once in memory.

Reporting memory usage

Because MySQL Native Driver uses the PHP memory management system, its
memory usage can be tracked with memory_get_usage. This is not possible with
libmysqlclient because it uses the C function malloc() instead.

Special features

MySQL Native Driver also provides some special features not available when the MySQL database
extensions use MySQL Client Library. These special features are listed below:

• Improved persistent connections

• The special function mysqli_fetch_all

• Performance statistics calls: mysqli_get_cache_stats, mysqli_get_client_stats,
mysqli_get_connection_stats

The performance statistics facility can prove to be very useful in identifying performance bottlenecks.

MySQL Native Driver also allows for persistent connections when used with the mysqli extension.

SSL Support

MySQL Native Driver has supported SSL since PHP version 5.3.3

Compressed Protocol Support

As of PHP 5.3.2 MySQL Native Driver supports the compressed client server protocol. MySQL Native
Driver did not support this in 5.3.0 and 5.3.1. Extensions such as ext/mysql, ext/mysqli, that are
configured to use MySQL Native Driver, can also take advantage of this feature. Note that PDO_MYSQL
does NOT support compression when used together with mysqlnd.

Named Pipes Support

Named pipes support for Windows was added in PHP version 5.4.0.

6.2 Installation
Copyright 1997-2014 the PHP Documentation Group.

http://www.php.net/memory_get_usage

Runtime Configuration

341

Changelog

Table 6.1 Changelog

Version Description

5.3.0 The MySQL Native Driver was added, with support
for all MySQL extensions (i.e., mysql, mysqli
and PDO_MYSQL). Passing in mysqlnd to the
appropriate configure switch enables this support.

5.4.0 The MySQL Native Driver is now the default for
all MySQL extensions (i.e., mysql, mysqli and
PDO_MYSQL). Passing in mysqlnd to configure is
now optional.

5.5.0 SHA-256 Authentication Plugin support was added

Installation on Unix

The MySQL database extensions must be configured to use the MySQL Client Library. In order to use the
MySQL Native Driver, PHP needs to be built specifying that the MySQL database extensions are compiled
with MySQL Native Driver support. This is done through configuration options prior to building the PHP
source code.

For example, to build the MySQL extension, mysqli and PDO MYSQL using the MySQL Native Driver,
the following command would be given:

 ./configure --with-mysql=mysqlnd \
--with-mysqli=mysqlnd \
--with-pdo-mysql=mysqlnd \
[other options]

Installation on Windows

In the official PHP Windows distributions from 5.3 onwards, MySQL Native Driver is enabled by default,
so no additional configuration is required to use it. All MySQL database extensions will use MySQL Native
Driver in this case.

SHA-256 Authentication Plugin support

The MySQL Native Driver requires the OpenSSL functionality of PHP to be loaded and enabled to connect
to MySQL through accounts that use the MySQL SHA-256 Authentication Plugin. For example, PHP could
be configured using:

./configure --with-mysql=mysqlnd \
--with-mysqli=mysqlnd \
--with-pdo-mysql=mysqlnd \
--with-openssl
[other options]

6.3 Runtime Configuration

Copyright 1997-2014 the PHP Documentation Group.

Runtime Configuration

342

The behaviour of these functions is affected by settings in php.ini.

Table 6.2 MySQL Native Driver Configuration Options

Name Default Changeable Changelog

mysqlnd.collect_statistics "1" PHP_INI_SYSTEM Available since PHP
5.3.0.

mysqlnd.collect_memory_statistics"0" PHP_INI_SYSTEM Available since PHP
5.3.0.

mysqlnd.debug "" PHP_INI_SYSTEM Available since PHP
5.3.0.

mysqlnd.log_mask 0 PHP_INI_ALL Available since PHP
5.3.0

mysqlnd.mempool_default_size16000 PHP_INI_ALL Available since PHP
5.3.3

mysqlnd.net_read_timeout"31536000" PHP_INI_SYSTEM Available since PHP
5.3.0.

mysqlnd.net_cmd_buffer_size5.3.0 - "2048", 5.3.1 -
"4096"

PHP_INI_SYSTEM Available since PHP
5.3.0.

mysqlnd.net_read_buffer_size"32768" PHP_INI_SYSTEM Available since PHP
5.3.0.

mysqlnd.sha256_server_public_key"" PHP_INI_PERDIR Available since PHP
5.5.0.

mysqlnd.fetch_data_copy 0 PHP_INI_ALL Available since PHP
5.6.0.

For further details and definitions of the PHP_INI_* modes, see the http://www.php.net/manual/en/
configuration.changes.modes.

Here's a short explanation of the configuration directives.

mysqlnd.collect_statistics
boolean

Enables the collection of various client statistics which
can be accessed through mysqli_get_client_stats,
mysqli_get_connection_stats, mysqli_get_cache_stats and
are shown in mysqlnd section of the output of the phpinfo function as
well.

This configuration setting enables all MySQL Native Driver statistics
except those relating to memory management.

mysqlnd.collect_memory_statistics
boolean

Enable the collection of various memory statistics which
can be accessed through mysqli_get_client_stats,
mysqli_get_connection_stats, mysqli_get_cache_stats and
are shown in mysqlnd section of the output of the phpinfo function as
well.

This configuration setting enables the memory management statistics
within the overall set of MySQL Native Driver statistics.

mysqlnd.debug string Records communication from all extensions using mysqlnd to the
specified log file.

http://www.php.net/manual/en/configuration.changes.modes
http://www.php.net/manual/en/configuration.changes.modes
http://www.php.net/phpinfo
http://www.php.net/phpinfo

Runtime Configuration

343

The format of the directive is mysqlnd.debug
= "option1[,parameter_option1]
[:option2[,parameter_option2]]".

The options for the format string are as follows:

• A[,file] - Appends trace output to specified file. Also ensures that data
is written after each write. This is done by closing and reopening the
trace file (this is slow). It helps ensure a complete log file should the
application crash.

• a[,file] - Appends trace output to the specified file.

• d - Enables output from DBUG_<N> macros for the current state. May
be followed by a list of keywords which selects output only for the
DBUG macros with that keyword. An empty list of keywords implies
output for all macros.

• f[,functions] - Limits debugger actions to the specified list of functions.
An empty list of functions implies that all functions are selected.

• F - Marks each debugger output line with the name of the source file
containing the macro causing the output.

• i - Marks each debugger output line with the PID of the current
process.

• L - Marks each debugger output line with the name of the source file
line number of the macro causing the output.

• n - Marks each debugger output line with the current function nesting
depth

• o[,file] - Similar to a[,file] but overwrites old file, and does not append.

• O[,file] - Similar to A[,file] but overwrites old file, and does not append.

• t[,N] - Enables function control flow tracing. The maximum nesting
depth is specified by N, and defaults to 200.

• x - This option activates profiling.

• m - Trace memory allocation and deallocation related calls.

Example:

d:t:x:O,/tmp/mysqlnd.trace

Note

This feature is only available with a debug build
of PHP. Works on Microsoft Windows if using

Runtime Configuration

344

a debug build of PHP and PHP was built using
Microsoft Visual C version 9 and above.

mysqlnd.log_mask integer Defines which queries will be logged. The default 0, which disables
logging. Define using an integer, and not with PHP constants. For
example, a value of 48 (16 + 32) will log slow queries which either use
'no good index' (SERVER_QUERY_NO_GOOD_INDEX_USED = 16) or
no index at all (SERVER_QUERY_NO_INDEX_USED = 32). A value of
2043 (1 + 2 + 8 + ... + 1024) will log all slow query types.

The types are as follows: SERVER_STATUS_IN_TRANS=1,
SERVER_STATUS_AUTOCOMMIT=2,
SERVER_MORE_RESULTS_EXISTS=8,
SERVER_QUERY_NO_GOOD_INDEX_USED=16,
SERVER_QUERY_NO_INDEX_USED=32,
SERVER_STATUS_CURSOR_EXISTS=64,
SERVER_STATUS_LAST_ROW_SENT=128,
SERVER_STATUS_DB_DROPPED=256,
SERVER_STATUS_NO_BACKSLASH_ESCAPES=512, and
SERVER_QUERY_WAS_SLOW=1024.

mysqlnd.mempool_default_size
integer

Default size of the mysqlnd memory pool, which is used by result sets.

mysqlnd.net_read_timeout
integer

mysqlnd and the MySQL Client Library, libmysqlclient use
different networking APIs. mysqlnd uses PHP streams, whereas
libmysqlclient uses its own wrapper around the operating
level network calls. PHP, by default, sets a read timeout of 60s for
streams. This is set via php.ini, default_socket_timeout.
This default applies to all streams that set no other timeout
value. mysqlnd does not set any other value and therefore
connections of long running queries can be disconnected after
default_socket_timeout seconds resulting in an error message
“2006 - MySQL Server has gone away”. The MySQL Client Library
sets a default timeout of 365 * 24 * 3600 seconds (1 year) and waits
for other timeouts to occur, such as TCP/IP timeouts. mysqlnd
now uses the same very long timeout. The value is configurable
through a new php.ini setting: mysqlnd.net_read_timeout.
mysqlnd.net_read_timeout gets used by any extension (ext/
mysql, ext/mysqli, PDO_MySQL) that uses mysqlnd. mysqlnd tells
PHP Streams to use mysqlnd.net_read_timeout. Please note that
there may be subtle differences between MYSQL_OPT_READ_TIMEOUT
from the MySQL Client Library and PHP Streams, for example
MYSQL_OPT_READ_TIMEOUT is documented to work only for TCP/IP
connections and, prior to MySQL 5.1.2, only for Windows. PHP streams
may not have this limitation. Please check the streams documentation, if
in doubt.

mysqlnd.net_cmd_buffer_size
long

mysqlnd allocates an internal command/network buffer of
mysqlnd.net_cmd_buffer_size (in php.ini) bytes for every
connection. If a MySQL Client Server protocol command, for
example, COM_QUERY (“normal” query), does not fit into the buffer,
mysqlnd will grow the buffer to the size required for sending the

Runtime Configuration

345

command. Whenever the buffer gets extended for one connection,
command_buffer_too_small will be incremented by one.

If mysqlnd has to grow the buffer beyond its initial size of
mysqlnd.net_cmd_buffer_size bytes for almost every connection,
you should consider increasing the default size to avoid re-allocations.

The default buffer size is 2048 bytes in PHP 5.3.0. In later versions the
default is 4096 bytes.

It is recommended that the buffer size be set to no less than 4096 bytes
because mysqlnd also uses it when reading certain communication
packet from MySQL. In PHP 5.3.0, mysqlnd will not grow the
buffer if MySQL sends a packet that is larger than the current size
of the buffer. As a consequence, mysqlnd is unable to decode the
packet and the client application will get an error. There are only two
situations when the packet can be larger than the 2048 bytes default of
mysqlnd.net_cmd_buffer_size in PHP 5.3.0: the packet transports
a very long error message, or the packet holds column meta data from
COM_LIST_FIELD (mysql_list_fields() and the meta data come
from a string column with a very long default value (>1900 bytes).

As of PHP 5.3.2 mysqlnd does not allow setting buffers smaller than
4096 bytes.

The value can also be set using mysqli_options(link,
MYSQLI_OPT_NET_CMD_BUFFER_SIZE, size).

mysqlnd.net_read_buffer_size
long

Maximum read chunk size in bytes when reading the body of a MySQL
command packet. The MySQL client server protocol encapsulates all
its commands in packets. The packets consist of a small header and
a body with the actual payload. The size of the body is encoded in the
header. mysqlnd reads the body in chunks of MIN(header.size,
mysqlnd.net_read_buffer_size) bytes. If a packet body is larger
than mysqlnd.net_read_buffer_size bytes, mysqlnd has to call
read() multiple times.

The value can also be set using mysqli_options(link,
MYSQLI_OPT_NET_READ_BUFFER_SIZE, size).

mysqlnd.sha256_server_public_key
string

SHA-256 Authentication Plugin related. File with the MySQL server
public RSA key.

Clients can either omit setting a public RSA key, specify the key
through this PHP configuration setting or set the key at runtime using
mysqli_options. If not public RSA key file is given by the client,
then the key will be exchanged as part of the standard SHA-256
Authentication Plugin authentication procedure.

mysqlnd.fetch_data_copy
long

Enforce copying result sets from the internal result set buffers into PHP
variables instead of using the default reference and copy-on-write logic.
Please, see the memory management implementation notes for further
details.

Copying result sets instead of having PHP variables reference them
allows releasing the memory occupied for the PHP variables earlier.

Incompatibilities

346

Depending on the user API code, the actual database quries and
the size of their result sets this may reduce the memory footprint of
mysqlnd.

Do not set if using PDO_MySQL. PDO_MySQL has not yet been
updated to support the new fetch mode.

6.4 Incompatibilities
Copyright 1997-2014 the PHP Documentation Group.

MySQL Native Driver is in most cases compatible with MySQL Client Library (libmysql). This section
documents incompatibilities between these libraries.

• Values of bit data type are returned as binary strings (e.g. "\0" or "\x1F") with libmysql and as
decimal strings (e.g. "0" or "31") with mysqlnd. If you want the code to be compatible with both libraries
then always return bit fields as numbers from MySQL with a query like this: SELECT bit + 0 FROM
table.

6.5 Persistent Connections
Copyright 1997-2014 the PHP Documentation Group.

Using Persistent Connections

If mysqli is used with mysqlnd, when a persistent connection is created it generates a
COM_CHANGE_USER (mysql_change_user()) call on the server. This ensures that re-authentication of
the connection takes place.

As there is some overhead associated with the COM_CHANGE_USER call, it is possible to switch this off at
compile time. Reusing a persistent connection will then generate a COM_PING (mysql_ping) call to simply
test the connection is reusable.

Generation of COM_CHANGE_USER can be switched off with the compile flag
MYSQLI_NO_CHANGE_USER_ON_PCONNECT. For example:

shell# CFLAGS="-DMYSQLI_NO_CHANGE_USER_ON_PCONNECT" ./configure --with-mysql=/usr/local/mysql/ --with-mysqli=/usr/local/mysql/bin/mysql_config --with-pdo-mysql=/usr/local/mysql/bin/mysql_config --enable-debug && make clean && make -j6

Or alternatively:

shell# export CFLAGS="-DMYSQLI_NO_CHANGE_USER_ON_PCONNECT"
shell# configure --whatever-option
shell# make clean
shell# make

Note that only mysqli on mysqlnd uses COM_CHANGE_USER. Other extension-driver combinations use
COM_PING on initial use of a persistent connection.

6.6 Statistics
Copyright 1997-2014 the PHP Documentation Group.

Using Statistical Data

Statistics

347

MySQL Native Driver contains support for gathering statistics on the communication between the client and
the server. The statistics gathered are of two main types:

• Client statistics

• Connection statistics

If you are using the mysqli extension, these statistics can be obtained through two API calls:

• mysqli_get_client_stats

• mysqli_get_connection_stats

Note

Statistics are aggregated among all extensions that use MySQL Native Driver.
For example, when compiling both ext/mysql and ext/mysqli against MySQL
Native Driver, both function calls of ext/mysql and ext/mysqli will change the
statistics. There is no way to find out how much a certain API call of any extension
that has been compiled against MySQL Native Driver has impacted a certain
statistic. You can configure the PDO MySQL Driver, ext/mysql and ext/mysqli
to optionally use the MySQL Native Driver. When doing so, all three extensions will
change the statistics.

Accessing Client Statistics

To access client statistics, you need to call mysqli_get_client_stats. The function call does not
require any parameters.

The function returns an associative array that contains the name of the statistic as the key and the
statistical data as the value.

Client statistics can also be accessed by calling the phpinfo function.

Accessing Connection Statistics

To access connection statistics call mysqli_get_connection_stats. This takes the database
connection handle as the parameter.

The function returns an associative array that contains the name of the statistic as the key and the
statistical data as the value.

Buffered and Unbuffered Result Sets

Result sets can be buffered or unbuffered. Using default settings, ext/mysql and ext/mysqli work
with buffered result sets for normal (non prepared statement) queries. Buffered result sets are cached on
the client. After the query execution all results are fetched from the MySQL Server and stored in a cache
on the client. The big advantage of buffered result sets is that they allow the server to free all resources
allocated to a result set, once the results have been fetched by the client.

Unbuffered result sets on the other hand are kept much longer on the server. If you want to reduce
memory consumption on the client, but increase load on the server, use unbuffered results. If you
experience a high server load and the figures for unbuffered result sets are high, you should consider
moving the load to the clients. Clients typically scale better than servers. “Load” does not only refer to
memory buffers - the server also needs to keep other resources open, for example file handles and
threads, before a result set can be freed.

Prepared Statements use unbuffered result sets by default. However, you can use
mysqli_stmt_store_result to enable buffered result sets.

http://www.php.net/phpinfo

Statistics

348

Statistics returned by MySQL Native Driver

The following tables show a list of statistics returned by the mysqli_get_client_stats and
mysqli_get_connection_stats functions.

Table 6.3 Returned mysqlnd statistics: Network

Statistic Scope Description Notes

bytes_sentConnectionNumber of bytes sent from PHP to the
MySQL server

Can be used to check the efficiency of
the compression protocol

bytes_receivedConnectionNumber of bytes received from MySQL
server

Can be used to check the efficiency of
the compression protocol

packets_sentConnectionNumber of MySQL Client Server protocol
packets sent

Used for debugging Client Server
protocol implementation

packets_receivedConnectionNumber of MySQL Client Server protocol
packets received

Used for debugging Client Server
protocol implementation

protocol_overhead_inConnectionMySQL Client Server protocol
overhead in bytes for incoming
traffic. Currently only the Packet
Header (4 bytes) is considered as
overhead. protocol_overhead_in =
packets_received * 4

Used for debugging Client Server
protocol implementation

protocol_overhead_outConnectionMySQL Client Server protocol
overhead in bytes for outgoing traffic.
Currently only the Packet Header (4
bytes) is considered as overhead.
protocol_overhead_out = packets_sent *
4

Used for debugging Client Server
protocol implementation

bytes_received_ok_packetConnectionTotal size of bytes of MySQL Client
Server protocol OK packets received. OK
packets can contain a status message.
The length of the status message can
vary and thus the size of an OK packet is
not fixed.

Used for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

packets_received_okConnectionNumber of MySQL Client Server protocol
OK packets received.

Used for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

bytes_received_eof_packetConnectionTotal size in bytes of MySQL Client
Server protocol EOF packets received.
EOF can vary in size depending on the
server version. Also, EOF can transport
an error message.

Used for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

packets_received_eofConnectionNumber of MySQL Client Server protocol
EOF packets. Like with other packet
statistics the number of packets will be
increased even if PHP does not receive
the expected packet but, for example, an
error message.

Used for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

bytes_received_rset_header_packetConnectionTotal size in bytes of MySQL Client
Server protocol result set header packets.

Used for debugging CS protocol
implementation. Note that the total size

Statistics

349

Statistic Scope Description Notes
The size of the packets varies depending
on the payload (LOAD LOCAL INFILE,
INSERT, UPDATE, SELECT, error
message).

in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

packets_received_rset_headerConnectionNumber of MySQL Client Server protocol
result set header packets.

Used for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

bytes_received_rset_field_meta_packetConnectionTotal size in bytes of MySQL Client
Server protocol result set meta data
(field information) packets. Of course
the size varies with the fields in the
result set. The packet may also transport
an error or an EOF packet in case of
COM_LIST_FIELDS.

Only useful for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

packets_received_rset_field_metaConnectionNumber of MySQL Client Server protocol
result set meta data (field information)
packets.

Only useful for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

bytes_received_rset_row_packetConnectionTotal size in bytes of MySQL Client
Server protocol result set row data
packets. The packet may also transport
an error or an EOF packet. You can
reverse engineer the number of error
and EOF packets by subtracting
rows_fetched_from_server_normal
and rows_fetched_from_server_ps
from
bytes_received_rset_row_packet.

Only useful for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

packets_received_rset_rowConnectionNumber of MySQL Client Server protocol
result set row data packets and their total
size in bytes.

Only useful for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

bytes_received_prepare_response_packetConnectionTotal size in bytes of MySQL Client
Server protocol OK for Prepared
Statement Initialization packets (prepared
statement init packets). The packet
may also transport an error. The packet
size depends on the MySQL version:
9 bytes with MySQL 4.1 and 12 bytes
from MySQL 5.0 on. There is no safe
way to know how many errors happened.
You may be able to guess that an error
has occurred if, for example, you always
connect to MySQL 5.0 or newer and,
bytes_received_prepare_response_packet
!=
packets_received_prepare_response
* 12. See also

Only useful for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

Statistics

350

Statistic Scope Description Notes
ps_prepared_never_executed,
ps_prepared_once_executed.

packets_received_prepare_responseConnectionNumber of MySQL Client Server
protocol OK for Prepared Statement
Initialization packets (prepared statement
init packets).

Only useful for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

bytes_received_change_user_packetConnectionTotal size in bytes of MySQL Client
Server protocol COM_CHANGE_USER
packets. The packet may also transport
an error or EOF.

Only useful for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

packets_received_change_userConnectionNumber of MySQL Client Server protocol
COM_CHANGE_USER packets

Only useful for debugging CS protocol
implementation. Note that the total size
in bytes includes the size of the header
packet (4 bytes, see protocol overhead).

packets_sent_commandConnectionNumber of MySQL Client Server protocol
commands sent from PHP to MySQL.
There is no way to know which specific
commands and how many of them have
been sent. At its best you can use it to
check if PHP has sent any commands
to MySQL to know if you can consider
to disable MySQL support in your PHP
binary. There is also no way to reverse
engineer the number of errors that may
have occurred while sending data to
MySQL. The only error that is recorded is
command_buffer_too_small (see below).

Only useful for debugging CS protocol
implementation.

bytes_received_real_data_normalConnectionNumber of bytes of payload fetched by
the PHP client from mysqlnd using the
text protocol.

This is the size of the actual data
contained in result sets that do not
originate from prepared statements and
which have been fetched by the PHP
client. Note that although a full result set
may have been pulled from MySQL by
mysqlnd, this statistic only counts actual
data pulled from mysqlnd by the PHP
client. An example of a code sequence
that will increase the value is as follows:

$mysqli = new mysqli();
$res = $mysqli->query("SELECT 'abc'");
$res->fetch_assoc();
$res->close();

Every fetch operation will increase the
value.

The statistic will not be increased if the
result set is only buffered on the client,

Statistics

351

Statistic Scope Description Notes
but not fetched, such as in the following
example:

$mysqli = new mysqli();
$res = $mysqli->query("SELECT 'abc'");
$res->close();

This statistic is available as of PHP
version 5.3.4.

bytes_received_real_data_psConnectionNumber of bytes of the payload fetched
by the PHP client from mysqlnd using
the prepared statement protocol.

This is the size of the actual data
contained in result sets that originate
from prepared statements and which
has been fetched by the PHP client.
The value will not be increased if the
result set is not subsequently read by
the PHP client. Note that although a
full result set may have been pulled
from MySQL by mysqlnd, this statistic
only counts actual data pulled from
mysqlnd by the PHP client. See also
bytes_received_real_data_normal.
This statistic is available as of PHP
version 5.3.4.

Result Set

Table 6.4 Returned mysqlnd statistics: Result Set

Statistic Scope Description Notes

result_set_queriesConnectionNumber of queries that have generated
a result set. Examples of queries that
generate a result set: SELECT, SHOW. The
statistic will not be incremented if there
is an error reading the result set header
packet from the line.

You may use it as an indirect measure for
the number of queries PHP has sent to
MySQL, for example, to identify a client
that causes a high database load.

non_result_set_queriesConnectionNumber of queries that did not generate
a result set. Examples of queries that
do not generate a result set: INSERT,
UPDATE, LOAD DATA, SHOW. The statistic
will not be incremented if there is an error
reading the result set header packet from
the line.

You may use it as an indirect measure for
the number of queries PHP has sent to
MySQL, for example, to identify a client
that causes a high database load.

no_index_usedConnectionNumber of queries that have generated
a result set but did not use an index (see
also mysqld start option –log-queries-
not-using-indexes). If you want these
queries to be reported you can use
mysqli_report(MYSQLI_REPORT_INDEX)
to make ext/mysqli throw an
exception. If you prefer a warning

Statistics

352

Statistic Scope Description Notes
instead of an exception use
mysqli_report(MYSQLI_REPORT_INDEX
^ MYSQLI_REPORT_STRICT).

bad_index_usedConnectionNumber of queries that have generated
a result set and did not use a good index
(see also mysqld start option –log-slow-
queries).

If you want these queries
to be reported you can use
mysqli_report(MYSQLI_REPORT_INDEX)
to make ext/mysqli throw an
exception. If you prefer a warning
instead of an exception use
mysqli_report(MYSQLI_REPORT_INDEX
^ MYSQLI_REPORT_STRICT)

slow_queriesConnectionSQL statements that took more
than long_query_time seconds
to execute and required at least
min_examined_row_limit rows to be
examined.

Not reported through mysqli_report

buffered_setsConnectionNumber of buffered result sets returned
by “normal” queries. “Normal” means
“not prepared statement” in the following
notes.

Examples of API calls that will
buffer result sets on the client:
mysql_query, mysqli_query,
mysqli_store_result,
mysqli_stmt_get_result. Buffering
result sets on the client ensures that
server resources are freed as soon as
possible and it makes result set scrolling
easier. The downside is the additional
memory consumption on the client for
buffering data. Note that mysqlnd (unlike
the MySQL Client Library) respects the
PHP memory limit because it uses PHP
internal memory management functions
to allocate memory. This is also the
reason why memory_get_usage reports
a higher memory consumption when
using mysqlnd instead of the MySQL
Client Library. memory_get_usage does
not measure the memory consumption of
the MySQL Client Library at all because
the MySQL Client Library does not use
PHP internal memory management
functions monitored by the function!

unbuffered_setsConnectionNumber of unbuffered result sets
returned by normal (non prepared
statement) queries.

Examples of API calls that will not
buffer result sets on the client:
mysqli_use_result

ps_buffered_setsConnectionNumber of buffered result sets returned
by prepared statements. By default
prepared statements are unbuffered.

Examples of API calls that will not
buffer result sets on the client:
mysqli_stmt_store_result

ps_unbuffered_setsConnectionNumber of unbuffered result sets
returned by prepared statements.

By default prepared statements are
unbuffered.

http://www.php.net/memory_get_usage
http://www.php.net/memory_get_usage

Statistics

353

Statistic Scope Description Notes

flushed_normal_setsConnectionNumber of result sets from normal (non
prepared statement) queries with unread
data which have been flushed silently
for you. Flushing happens only with
unbuffered result sets.

Unbuffered result sets must be fetched
completely before a new query can be
run on the connection otherwise MySQL
will throw an error. If the application does
not fetch all rows from an unbuffered
result set, mysqlnd does implicitly
fetch the result set to clear the line.
See also rows_skipped_normal,
rows_skipped_ps. Some possible
causes for an implicit flush:

• Faulty client application

• Client stopped reading after it found
what it was looking for but has made
MySQL calculate more records than
needed

• Client application has stopped
unexpectedly

flushed_ps_setsConnectionNumber of result sets from prepared
statements with unread data which have
been flushed silently for you. Flushing
happens only with unbuffered result sets.

Unbuffered result sets must be fetched
completely before a new query can be
run on the connection otherwise MySQL
will throw an error. If the application does
not fetch all rows from an unbuffered
result set, mysqlnd does implicitly
fetch the result set to clear the line.
See also rows_skipped_normal,
rows_skipped_ps. Some possible
causes for an implicit flush:

• Faulty client application

• Client stopped reading after it found
what it was looking for but has made
MySQL calculate more records than
needed

• Client application has stopped
unexpectedly

ps_prepared_never_executedConnectionNumber of statements prepared but
never executed.

Prepared statements occupy server
resources. You should not prepare a
statement if you do not plan to execute it.

ps_prepared_once_executedConnectionNumber of prepared statements executed
only one.

One of the ideas behind prepared
statements is that the same query gets
executed over and over again (with
different parameters) and some parsing
and other preparation work can be
saved, if statement execution is split
up in separate prepare and execute
stages. The idea is to prepare once
and “cache” results, for example, the

Statistics

354

Statistic Scope Description Notes
parse tree to be reused during multiple
statement executions. If you execute
a prepared statement only once the
two stage processing can be inefficient
compared to “normal” queries because
all the caching means extra work and it
takes (limited) server resources to hold
the cached information. Consequently,
prepared statements that are executed
only once may cause performance hurts.

rows_fetched_from_server_normal,
rows_fetched_from_server_ps

ConnectionTotal number of result set rows
successfully fetched from MySQL
regardless if the client application has
consumed them or not. Some of the
rows may not have been fetched by the
client application but have been flushed
implicitly.

See also
packets_received_rset_row

rows_buffered_from_client_normal,
rows_buffered_from_client_ps

ConnectionTotal number of successfully buffered
rows originating from a "normal" query
or a prepared statement. This is the
number of rows that have been fetched
from MySQL and buffered on client. Note
that there are two distinct statistics on
rows that have been buffered (MySQL
to mysqlnd internal buffer) and buffered
rows that have been fetched by the
client application (mysqlnd internal buffer
to client application). If the number of
buffered rows is higher than the number
of fetched buffered rows it can mean
that the client application runs queries
that cause larger result sets than needed
resulting in rows not read by the client.

Examples of queries that will
buffer results: mysqli_query,
mysqli_store_result

rows_fetched_from_client_normal_buffered,
rows_fetched_from_client_ps_buffered

ConnectionTotal number of rows fetched by the
client from a buffered result set created
by a normal query or a prepared
statement.

rows_fetched_from_client_normal_unbuffered,
rows_fetched_from_client_ps_unbuffered

ConnectionTotal number of rows fetched by the
client from a unbuffered result set created
by a "normal" query or a prepared
statement.

rows_fetched_from_client_ps_cursorConnectionTotal number of rows fetch by the client
from a cursor created by a prepared
statement.

rows_skipped_normal,
rows_skipped_ps

ConnectionReserved for future use (currently not
supported)

copy_on_write_saved,
copy_on_write_performed

Process With mysqlnd, variables returned by the
extensions point into mysqlnd internal
network result buffers. If you do not

Statistics

355

Statistic Scope Description Notes
change the variables, fetched data will
be kept only once in memory. If you
change the variables, mysqlnd has to
perform a copy-on-write to protect the
internal network result buffers from being
changed. With the MySQL Client Library
you always hold fetched data twice in
memory. Once in the internal MySQL
Client Library buffers and once in the
variables returned by the extensions.
In theory mysqlnd can save up to 40%
memory. However, note that the memory
saving cannot be measured using
memory_get_usage.

explicit_free_result,
implicit_free_result

Connection,
Process
(only
during
prepared
statement
cleanup)

Total number of freed result sets. The free is always considered
explicit but for result sets created
by an init command, for example,
mysqli_options(MYSQLI_INIT_COMMAND , ...)

proto_text_fetched_null,
proto_text_fetched_bit,
proto_text_fetched_tinyint
proto_text_fetched_short,
proto_text_fetched_int24,
proto_text_fetched_int
proto_text_fetched_bigint,
proto_text_fetched_decimal,
proto_text_fetched_float
proto_text_fetched_double,
proto_text_fetched_date,
proto_text_fetched_year
proto_text_fetched_time,
proto_text_fetched_datetime,
proto_text_fetched_timestamp
proto_text_fetched_string,
proto_text_fetched_blob,
proto_text_fetched_enum
proto_text_fetched_set,
proto_text_fetched_geometry,
proto_text_fetched_other

ConnectionTotal number of columns of a certain type
fetched from a normal query (MySQL text
protocol).

Mapping from C API / MySQL meta data
type to statistics name:

• MYSQL_TYPE_NULL -
proto_text_fetched_null

• MYSQL_TYPE_BIT -
proto_text_fetched_bit

• MYSQL_TYPE_TINY -
proto_text_fetched_tinyint

• MYSQL_TYPE_SHORT -
proto_text_fetched_short

• MYSQL_TYPE_INT24 -
proto_text_fetched_int24

• MYSQL_TYPE_LONG -
proto_text_fetched_int

• MYSQL_TYPE_LONGLONG -
proto_text_fetched_bigint

• MYSQL_TYPE_DECIMAL,
MYSQL_TYPE_NEWDECIMAL -
proto_text_fetched_decimal

• MYSQL_TYPE_FLOAT -
proto_text_fetched_float

http://www.php.net/memory_get_usage

Statistics

356

Statistic Scope Description Notes
• MYSQL_TYPE_DOUBLE -

proto_text_fetched_double

• MYSQL_TYPE_DATE,
MYSQL_TYPE_NEWDATE -
proto_text_fetched_date

• MYSQL_TYPE_YEAR -
proto_text_fetched_year

• MYSQL_TYPE_TIME -
proto_text_fetched_time

• MYSQL_TYPE_DATETIME -
proto_text_fetched_datetime

• MYSQL_TYPE_TIMESTAMP -
proto_text_fetched_timestamp

• MYSQL_TYPE_STRING,
MYSQL_TYPE_VARSTRING,
MYSQL_TYPE_VARCHAR -
proto_text_fetched_string

• MYSQL_TYPE_TINY_BLOB,
MYSQL_TYPE_MEDIUM_BLOB,
MYSQL_TYPE_LONG_BLOB,
MYSQL_TYPE_BLOB -
proto_text_fetched_blob

• MYSQL_TYPE_ENUM -
proto_text_fetched_enum

• MYSQL_TYPE_SET -
proto_text_fetched_set

• MYSQL_TYPE_GEOMETRY -
proto_text_fetched_geometry

• Any MYSQL_TYPE_* not listed
before (there should be none) -
proto_text_fetched_other

Note that the MYSQL_*-type constants
may not be associated with the very
same SQL column types in every version
of MySQL.

proto_binary_fetched_null,
proto_binary_fetched_bit,
proto_binary_fetched_tinyint
proto_binary_fetched_short,
proto_binary_fetched_int24,
proto_binary_fetched_int,
proto_binary_fetched_bigint,

ConnectionTotal number of columns of a certain
type fetched from a prepared statement
(MySQL binary protocol).

For type mapping see proto_text_*
described in the preceding text.

Statistics

357

Statistic Scope Description Notes
proto_binary_fetched_decimal,
proto_binary_fetched_float,
proto_binary_fetched_double,
proto_binary_fetched_date,
proto_binary_fetched_year,
proto_binary_fetched_time,
proto_binary_fetched_datetime,
proto_binary_fetched_timestamp,
proto_binary_fetched_string,
proto_binary_fetched_blob,
proto_binary_fetched_enum,
proto_binary_fetched_set,
proto_binary_fetched_geometry,
proto_binary_fetched_other

Table 6.5 Returned mysqlnd statistics: Connection

Statistic Scope Description Notes

connect_success,
connect_failure

ConnectionTotal number of successful / failed
connection attempt.

Reused connections and all other kinds
of connections are included.

reconnectProcess Total number of (real_)connect attempts
made on an already opened connection
handle.

The code sequence $link =
new mysqli(...); $link-
>real_connect(...) will
cause a reconnect. But $link =
new mysqli(...); $link-
>connect(...) will not because
$link->connect(...) will explicitly
close the existing connection before a
new connection is established.

pconnect_successConnectionTotal number of successful persistent
connection attempts.

Note that connect_success
holds the sum of successful
persistent and non-persistent
connection attempts. The number of
successful non-persistent connection
attempts is connect_success -
pconnect_success.

active_connectionsConnectionTotal number of active persistent and
non-persistent connections.

active_persistent_connectionsConnectionTotal number of active persistent
connections.

The total number of active non-persistent
connections is active_connections -
active_persistent_connections.

explicit_closeConnectionTotal number of explicitly closed
connections (ext/mysqli only).

Examples of code snippets that cause an
explicit close :

$link = new mysqli(...); $link->close(...)
$link = new mysqli(...); $link->connect(...)

implicit_closeConnectionTotal number of implicitly closed
connections (ext/mysqli only).

Examples of code snippets that cause an
implicit close :

Statistics

358

Statistic Scope Description Notes
• $link = new mysqli(...);
$link->real_connect(...)

• unset($link)

• Persistent connection: pooled
connection has been created with
real_connect and there may be
unknown options set - close implicitly
to avoid returning a connection with
unknown options

• Persistent connection: ping/
change_user fails and ext/mysqli
closes the connection

• end of script execution: close
connections that have not been closed
by the user

disconnect_closeConnectionConnection failures indicated by the C
API call mysql_real_connect during
an attempt to establish a connection.

It is called disconnect_close because
the connection handle passed to the C
API call will be closed.

in_middle_of_command_closeProcess A connection has been closed in
the middle of a command execution
(outstanding result sets not fetched, after
sending a query and before retrieving
an answer, while fetching data, while
transferring data with LOAD DATA).

Unless you use asynchronous queries
this should only happen if your script
stops unexpectedly and PHP shuts down
the connections for you.

init_command_executed_countConnectionTotal number of init command
executions, for example,
mysqli_options(MYSQLI_INIT_COMMAND , ...).

The number of successful executions is
init_command_executed_count -
init_command_failed_count.

init_command_failed_countConnectionTotal number of failed init commands.

Table 6.6 Returned mysqlnd statistics: COM_* Command

Statistic Scope Description Notes

com_quit,
com_init_db,
com_query,
com_field_list,
com_create_db,
com_drop_db,
com_refresh,
com_shutdown,
com_statistics,
com_process_info,
com_connect,
com_process_kill,
com_debug,
com_ping,
com_time,
com_delayed_insert,

ConnectionTotal number of attempts to send a
certain COM_* command from PHP to
MySQL.

The statistics are incremented after
checking the line and immediately before
sending the corresponding MySQL client
server protocol packet. If mysqlnd fails
to send the packet over the wire the
statistics will not be decremented. In case
of a failure mysqlnd emits a PHP warning
“Error while sending %s packet. PID=
%d.”

Usage examples:

• Check if PHP sends certain commands
to MySQL, for example, check if a
client sends COM_PROCESS_KILL

http://www.php.net/mysql_real_connect

Statistics

359

Statistic Scope Description Notes
com_change_user,
com_binlog_dump,
com_table_dump,
com_connect_out,
com_register_slave,
com_stmt_prepare,
com_stmt_execute,
com_stmt_send_long_data,
com_stmt_close,
com_stmt_reset,
com_stmt_set_option,
com_stmt_fetch,
com_daemon

• Calculate the average number of
prepared statement executions
by comparing COM_EXECUTE with
COM_PREPARE

• Check if PHP has run any non-
prepared SQL statements by checking
if COM_QUERY is zero

• Identify PHP scripts that run an
excessive number of SQL statements
by checking COM_QUERY and
COM_EXECUTE

Miscellaneous

Table 6.7 Returned mysqlnd statistics: Miscellaneous

Statistic Scope Description Notes

explicit_stmt_close,
implicit_stmt_close

Process Total number of close prepared
statements.

A close is always considered explicit but
for a failed prepare.

mem_emalloc_count,
mem_emalloc_ammount,
mem_ecalloc_count,
mem_ecalloc_ammount,
mem_erealloc_count,
mem_erealloc_ammount,
mem_efree_count,
mem_malloc_count,
mem_malloc_ammount,
mem_calloc_count,
mem_calloc_ammount,
mem_realloc_count,
mem_realloc_ammount,
mem_free_count

Process Memory management calls. Development only.

command_buffer_too_smallConnectionNumber of network command buffer
extensions while sending commands
from PHP to MySQL.

mysqlnd allocates an internal
command/network buffer of
mysqlnd.net_cmd_buffer_size
(php.ini) bytes for every connection.
If a MySQL Client Server protocol
command, for example, COM_QUERY
(normal query), does not fit into the
buffer, mysqlnd will grow the buffer
to what is needed for sending the
command. Whenever the buffer
gets extended for one connection
command_buffer_too_small will be
incremented by one.

If mysqlnd has to grow the
buffer beyond its initial size of
mysqlnd.net_cmd_buffer_size

Notes

360

Statistic Scope Description Notes
(php.ini) bytes for almost every
connection, you should consider to
increase the default size to avoid re-
allocations.

The default buffer size is 2048 bytes
in PHP 5.3.0. In future versions
the default will be 4kB or larger.
The default can changed either
through the php.ini setting
mysqlnd.net_cmd_buffer_size
or using
mysqli_options(MYSQLI_OPT_NET_CMD_BUFFER_SIZE,
int size).

It is recommended to set the buffer size
to no less than 4096 bytes because
mysqlnd also uses it when reading
certain communication packet from
MySQL. In PHP 5.3.0, mysqlnd will not
grow the buffer if MySQL sends a packet
that is larger than the current size of the
buffer. As a consequence mysqlnd is
unable to decode the packet and the
client application will get an error. There
are only two situations when the packet
can be larger than the 2048 bytes default
of mysqlnd.net_cmd_buffer_size
in PHP 5.3.0: the packet transports
a very long error message or
the packet holds column meta
data from COM_LIST_FIELD
(mysql_list_fields) and the meta
data comes from a string column with a
very long default value (>1900 bytes).
No bug report on this exists - it should
happen rarely.

As of PHP 5.3.2 mysqlnd does not allow
setting buffers smaller than 4096 bytes.

connection_reused

6.7 Notes

Copyright 1997-2014 the PHP Documentation Group.

This section provides a collection of miscellaneous notes on MySQL Native Driver usage.

• Using mysqlnd means using PHP streams for underlying connectivity. For mysqlnd, the PHP streams
documentation (http://www.php.net/manual/en/book.stream) should be consulted on such details as
timeout settings, not the documentation for the MySQL Client Library.

http://www.php.net/manual/en/book.stream

Memory management

361

6.8 Memory management

Copyright 1997-2014 the PHP Documentation Group.

Introduction

The MySQL Native Driver manages memory different than the MySQL Client Library. The libraries differ in
the way memory is allocated and released, how memory is allocated in chunks while reading results from
MySQL, which debug and development options exist, and how results read from MySQL are linked to PHP
user variables.

The following notes are intended as an introduction and summary to users interested at understanding the
MySQL Native Driver at the C code level.

Memory management functions used

All memory allocation and deallocation is done using the PHP memory management functions. Therefore,
the memory consumption of mysqlnd can be tracked using PHP API calls, such as memory_get_usage.
Because memory is allocated and released using the PHP memory management, the changes may not
immediately become visible at the operating system level. The PHP memory management acts as a proxy
which may delay releasing memory towards the system. Due to this, comparing the memory usage of
the MySQL Native Driver and the MySQL Client Library is difficult. The MySQL Client Library is using the
operating system memory management calls directly, hence the effects can be observed immediately at
the operating system level.

Any memory limit enforced by PHP also affects the MySQL Native Driver. This may cause out of memory
errors when fetching large result sets that exceed the size of the remaining memory made available by
PHP. Because the MySQL Client Library is not using PHP memory management functions, it does not
comply to any PHP memory limit set. If using the MySQL Client Library, depending on the deployment
model, the memory footprint of the PHP process may grow beyond the PHP memory limit. But also PHP
scripts may be able to process larger result sets as parts of the memory allocated to hold the result sets
are beyond the control of the PHP engine.

PHP memory management functions are invoked by the MySQL Native Driver through a lightweight
wrapper. Among others, the wrapper makes debugging easier.

Handling of result sets

The various MySQL Server and the various client APIs differentiate between buffered and unbuffered
result sets. Unbuffered result sets are transferred row-by-row from MySQL to the client as the client
iterates over the results. Buffered results are fetched in their entirety by the client library before passing
them on to the client.

The MySQL Native Driver is using PHP Streams for the network communication with the MySQL Server.
Results sent by MySQL are fetched from the PHP Streams network buffers into the result buffer of
mysqlnd. The result buffer is made of zvals. In a second step the results are made available to the PHP
script. This final transfer from the result buffer into PHP variables impacts the memory consumption and is
mostly noticible when using buffered result sets.

By default the MySQL Native Driver tries to avoid holding buffered results twice in memory. Results are
kept only once in the internal result buffers and their zvals. When results are fetched into PHP variables
by the PHP script, the variables will reference the internal result buffers. Database query results are not
copied and kept in memory only once. Should the user modify the contents of a variable holding the
database results a copy-on-write must be performed to avoid changing the referenced internal result buffer.
The contents of the buffer must not be modified because the user may decide to read the result set a

http://www.php.net/memory_get_usage

MySQL Native Driver Plugin API

362

second time. The copy-on-write mechanism is implemented using an additional reference management
list and the use of standard zval reference counters. Copy-on-write must also be done if the user reads a
result set into PHP variables and frees a result set before the variables are unset.

Generally speaking, this pattern works well for scripts that read a result set once and do not modify
variables holding results. Its major drawback is the memory overhead caused by the additional reference
management which comes primarily from the fact that user variables holding results cannot be entirely
released until the mysqlnd reference management stops referencing them. The MySQL Native driver
removes the reference to the user variables when the result set is freed or a copy-on-write is performed.
An observer will see the total memory consumption grow until the result set is released. Use the statistics
to check whether a script does release result sets explicitly or the driver is does implicit releases and thus
memory is used for a time longer than necessary. Statistics also help to see how many copy-on-write
operations happened.

A PHP script reading many small rows of a buffered result set using a code snippet equal or equivalent
to while ($row = $res->fetch_assoc()) { ... } may optimize memory consumption by
requesting copies instead of references. Albeit requesting copies means keeping results twice in memory,
it allows PHP to free the copy contained in $row as the result set is being iterated and prior to releasing
the result set itself. On a loaded server optimizing peak memory usage may help improving the overall
system performace although for an individual script the copy approach may be slower due to additional
allocations and memory copy operations.

The copy mode can be enforced by setting mysqlnd.fetch_data_copy=1.

Monitoring and debugging

There are multiple ways of tracking the memory usage of the MySQL Native Driver. If the goal is to get
a quick high level overview or to verify the memory efficiency of PHP scripts, then check the statistics
collected by the library. The statistics allow you, for example, to catch SQL statements which generate
more results than are processed by a PHP script.

The debug trace log can be configured to record memory management calls. This helps to see when
memory is allocated or free'd. However, the size of the requested memory chunks may not be listed.

Some, recent versions of the MySQL Native Driver feature the emulation of random out of memory
situations. This feature is meant to be used by the C developers of the library or mysqlnd plugin authors
only. Please, search the source code for corresponding PHP configuration settings and further details. The
feature is considered private and may be modified at any time without prior notice.

6.9 MySQL Native Driver Plugin API

Copyright 1997-2014 the PHP Documentation Group.

The MySQL Native Driver Plugin API is a feature of MySQL Native Driver, or mysqlnd. Mysqlnd plugins
operate in the layer between PHP applications and the MySQL server. This is comparable to MySQL
Proxy. MySQL Proxy operates on a layer between any MySQL client application, for example, a PHP
application and, the MySQL server. Mysqlnd plugins can undertake typical MySQL Proxy tasks such as
load balancing, monitoring and performance optimizations. Due to the different architecture and location,
mysqlnd plugins do not have some of MySQL Proxy's disadvantages. For example, with plugins, there is
no single point of failure, no dedicated proxy server to deploy, and no new programming language to learn
(Lua).

A mysqlnd plugin can be thought of as an extension to mysqlnd. Plugins can intercept the majority of
mysqlnd functions. The mysqlnd functions are called by the PHP MySQL extensions such as ext/

MySQL Native Driver Plugin API

363

mysql, ext/mysqli, and PDO_MYSQL. As a result, it is possible for a mysqlnd plugin to intercept all calls
made to these extensions from the client application.

Internal mysqlnd function calls can also be intercepted, or replaced. There are no restrictions on
manipulating mysqlnd internal function tables. It is possible to set things up so that when certain mysqlnd
functions are called by the extensions that use mysqlnd, the call is directed to the appropriate function
in the mysqlnd plugin. The ability to manipulate mysqlnd internal function tables in this way allows
maximum flexibility for plugins.

Mysqlnd plugins are in fact PHP Extensions, written in C, that use the mysqlnd plugin API (which is built
into MySQL Native Driver, mysqlnd). Plugins can be made 100% transparent to PHP applications. No
application changes are needed because plugins operate on a different layer. The mysqlnd plugin can be
thought of as operating in a layer below mysqlnd.

The following list represents some possible applications of mysqlnd plugins.

• Load Balancing

• Read/Write Splitting. An example of this is the PECL/mysqlnd_ms (Master Slave) extension. This
extension splits read/write queries for a replication setup.

• Failover

• Round-Robin, least loaded

• Monitoring

• Query Logging

• Query Analysis

• Query Auditing. An example of this is the PECL/mysqlnd_sip (SQL Injection Protection) extension.
This extension inspects queries and executes only those that are allowed according to a ruleset.

• Performance

• Caching. An example of this is the PECL/mysqlnd_qc (Query Cache) extension.

• Throttling

• Sharding. An example of this is the PECL/mysqlnd_mc (Multi Connect) extension. This extension will
attempt to split a SELECT statement into n-parts, using SELECT ... LIMIT part_1, SELECT LIMIT
part_n. It sends the queries to distinct MySQL servers and merges the result at the client.

MySQL Native Driver Plugins Available

There are a number of mysqlnd plugins already available. These include:

• PECL/mysqlnd_mc - Multi Connect plugin.

• PECL/mysqlnd_ms - Master Slave plugin.

• PECL/mysqlnd_qc - Query Cache plugin.

• PECL/mysqlnd_pscache - Prepared Statement Handle Cache plugin.

• PECL/mysqlnd_sip - SQL Injection Protection plugin.

• PECL/mysqlnd_uh - User Handler plugin.

A comparison of mysqlnd plugins with MySQL Proxy

364

6.9.1 A comparison of mysqlnd plugins with MySQL Proxy

Copyright 1997-2014 the PHP Documentation Group.

Mysqlnd plugins and MySQL Proxy are different technologies using different approaches. Both are
valid tools for solving a variety of common tasks such as load balancing, monitoring, and performance
enhancements. An important difference is that MySQL Proxy works with all MySQL clients, whereas
mysqlnd plugins are specific to PHP applications.

As a PHP Extension, a mysqlnd plugin gets installed on the PHP application server, along with the rest
of PHP. MySQL Proxy can either be run on the PHP application server or can be installed on a dedicated
machine to handle multiple PHP application servers.

Deploying MySQL Proxy on the application server has two advantages:

1. No single point of failure

2. Easy to scale out (horizontal scale out, scale by client)

MySQL Proxy (and mysqlnd plugins) can solve problems easily which otherwise would have required
changes to existing applications.

However, MySQL Proxy does have some disadvantages:

• MySQL Proxy is a new component and technology to master and deploy.

• MySQL Proxy requires knowledge of the Lua scripting language.

MySQL Proxy can be customized with C and Lua programming. Lua is the preferred scripting language of
MySQL Proxy. For most PHP experts Lua is a new language to learn. A mysqlnd plugin can be written in
C. It is also possible to write plugins in PHP using PECL/mysqlnd_uh.

MySQL Proxy runs as a daemon - a background process. MySQL Proxy can recall earlier decisions, as all
state can be retained. However, a mysqlnd plugin is bound to the request-based lifecycle of PHP. MySQL
Proxy can also share one-time computed results among multiple application servers. A mysqlnd plugin
would need to store data in a persistent medium to be able to do this. Another daemon would need to be
used for this purpose, such as Memcache. This gives MySQL Proxy an advantage in this case.

MySQL Proxy works on top of the wire protocol. With MySQL Proxy you have to parse and reverse
engineer the MySQL Client Server Protocol. Actions are limited to those that can be achieved by
manipulating the communication protocol. If the wire protocol changes (which happens very rarely) MySQL
Proxy scripts would need to be changed as well.

Mysqlnd plugins work on top of the C API, which mirrors the libmysqlclient client and Connector/C
APIs. This C API is basically a wrapper around the MySQL Client Server protocol, or wire protocol, as it is
sometimes called. You can intercept all C API calls. PHP makes use of the C API, therefore you can hook
all PHP calls, without the need to program at the level of the wire protocol.

Mysqlnd implements the wire protocol. Plugins can therefore parse, reverse engineer, manipulate and
even replace the communication protocol. However, this is usually not required.

As plugins allow you to create implementations that use two levels (C API and wire protocol), they have
greater flexibility than MySQL Proxy. If a mysqlnd plugin is implemented using the C API, any subsequent
changes to the wire protocol do not require changes to the plugin itself.

6.9.2 Obtaining the mysqlnd plugin API

Copyright 1997-2014 the PHP Documentation Group.

http://pecl.php.net/package/mysqlnd_uh

MySQL Native Driver Plugin Architecture

365

The mysqlnd plugin API is simply part of the MySQL Native Driver PHP extension, ext/mysqlnd.
Development started on the mysqlnd plugin API in December 2009. It is developed as part of the
PHP source repository, and as such is available to the public either via Git, or through source snapshot
downloads.

The following table shows PHP versions and the corresponding mysqlnd version contained within.

Table 6.8 The bundled mysqlnd version per PHP release

PHP Version MySQL Native Driver version

5.3.0 5.0.5

5.3.1 5.0.5

5.3.2 5.0.7

5.3.3 5.0.7

5.3.4 5.0.7

Plugin developers can determine the mysqlnd version through accessing MYSQLND_VERSION, which is a
string of the format “mysqlnd 5.0.7-dev - 091210 - $Revision: 300535”, or through MYSQLND_VERSION_ID,
which is an integer such as 50007. Developers can calculate the version number as follows:

Table 6.9 MYSQLND_VERSION_ID calculation table

Version (part) Example

Major*10000 5*10000 = 50000

Minor*100 0*100 = 0

Patch 7 = 7

MYSQLND_VERSION_ID 50007

During development, developers should refer to the mysqlnd version number for compatibility and version
tests, as several iterations of mysqlnd could occur during the lifetime of a PHP development branch with a
single PHP version number.

6.9.3 MySQL Native Driver Plugin Architecture

Copyright 1997-2014 the PHP Documentation Group.

This section provides an overview of the mysqlnd plugin architecture.

MySQL Native Driver Overview

Before developing mysqlnd plugins, it is useful to know a little of how mysqlnd itself is organized.
Mysqlnd consists of the following modules:

Table 6.10 The mysqlnd organization chart, per module

Modules Statistics mysqlnd_statistics.c

Connection mysqlnd.c

Resultset mysqlnd_result.c

Resultset Metadata mysqlnd_result_meta.c

Statement mysqlnd_ps.c

MySQL Native Driver Plugin Architecture

366

Network mysqlnd_net.c

Wire protocol mysqlnd_wireprotocol.c

C Object Oriented Paradigm

At the code level, mysqlnd uses a C pattern for implementing object orientation.

In C you use a struct to represent an object. Members of the struct represent object properties. Struct
members pointing to functions represent methods.

Unlike with other languages such as C++ or Java, there are no fixed rules on inheritance in the C object
oriented paradigm. However, there are some conventions that need to be followed that will be discussed
later.

The PHP Life Cycle

When considering the PHP life cycle there are two basic cycles:

• PHP engine startup and shutdown cycle

• Request cycle

When the PHP engine starts up it will call the module initialization (MINIT) function of each registered
extension. This allows each module to setup variables and allocate resources that will exist for the
lifetime of the PHP engine process. When the PHP engine shuts down it will call the module shutdown
(MSHUTDOWN) function of each extension.

During the lifetime of the PHP engine it will receive a number of requests. Each request constitutes another
life cycle. On each request the PHP engine will call the request initialization function of each extension.
The extension can perform any variable setup and resource allocation required for request processing. As
the request cycle ends the engine calls the request shutdown (RSHUTDOWN) function of each extension
so the extension can perform any cleanup required.

How a plugin works

A mysqlnd plugin works by intercepting calls made to mysqlnd by extensions that use mysqlnd. This
is achieved by obtaining the mysqlnd function table, backing it up, and replacing it by a custom function
table, which calls the functions of the plugin as required.

The following code shows how the mysqlnd function table is replaced:

/* a place to store original function table */
struct st_mysqlnd_conn_methods org_methods;

void minit_register_hooks(TSRMLS_D) {
 /* active function table */
 struct st_mysqlnd_conn_methods * current_methods
 = mysqlnd_conn_get_methods();

 /* backup original function table */
 memcpy(&org_methods, current_methods,
 sizeof(struct st_mysqlnd_conn_methods);

 /* install new methods */
 current_methods->query = MYSQLND_METHOD(my_conn_class, query);
}

MySQL Native Driver Plugin Architecture

367

Connection function table manipulations must be done during Module Initialization (MINIT). The function
table is a global shared resource. In an multi-threaded environment, with a TSRM build, the manipulation of
a global shared resource during the request processing will almost certainly result in conflicts.

Note

Do not use any fixed-size logic when manipulating the mysqlnd function table: new
methods may be added at the end of the function table. The function table may
change at any time in the future.

Calling parent methods

If the original function table entries are backed up, it is still possible to call the original function table entries
- the parent methods.

In some cases, such as for Connection::stmt_init(), it is vital to call the parent method prior to any
other activity in the derived method.

MYSQLND_METHOD(my_conn_class, query)(MYSQLND *conn,
 const char *query, unsigned int query_len TSRMLS_DC) {

 php_printf("my_conn_class::query(query = %s)\n", query);

 query = "SELECT 'query rewritten' FROM DUAL";
 query_len = strlen(query);

 return org_methods.query(conn, query, query_len); /* return with call to parent */
}

Extending properties

A mysqlnd object is represented by a C struct. It is not possible to add a member to a C struct at run time.
Users of mysqlnd objects cannot simply add properties to the objects.

Arbitrary data (properties) can be added to a mysqlnd objects using an appropriate function of the
mysqlnd_plugin_get_plugin_<object>_data() family. When allocating an object mysqlnd
reserves space at the end of the object to hold a void * pointer to arbitrary data. mysqlnd reserves
space for one void * pointer per plugin.

The following table shows how to calculate the position of the pointer for a specific plugin:

Table 6.11 Pointer calculations for mysqlnd

Memory address Contents

0 Beginning of the mysqlnd object C struct

n End of the mysqlnd object C struct

n + (m x sizeof(void*)) void* to object data of the m-th plugin

If you plan to subclass any of the mysqlnd object constructors, which is allowed, you must keep this in
mind!

The following code shows extending properties:

/* any data we want to associate */

MySQL Native Driver Plugin Architecture

368

typedef struct my_conn_properties {
 unsigned long query_counter;
} MY_CONN_PROPERTIES;

/* plugin id */
unsigned int my_plugin_id;

void minit_register_hooks(TSRMLS_D) {
 /* obtain unique plugin ID */
 my_plugin_id = mysqlnd_plugin_register();
 /* snip - see Extending Connection: methods */
}

static MY_CONN_PROPERTIES** get_conn_properties(const MYSQLND *conn TSRMLS_DC) {
 MY_CONN_PROPERTIES** props;
 props = (MY_CONN_PROPERTIES**)mysqlnd_plugin_get_plugin_connection_data(
 conn, my_plugin_id);
 if (!props || !(*props)) {
 *props = mnd_pecalloc(1, sizeof(MY_CONN_PROPERTIES), conn->persistent);
 (*props)->query_counter = 0;
 }
 return props;
}

The plugin developer is responsible for the management of plugin data memory.

Use of the mysqlnd memory allocator is recommended for plugin data. These functions are named using
the convention: mnd_*loc(). The mysqlnd allocator has some useful features, such as the ability to use
a debug allocator in a non-debug build.

Table 6.12 When and how to subclass

 When to subclass? Each instance has its
own private function
table?

How to subclass?

Connection (MYSQLND) MINIT No mysqlnd_conn_get_methods()

Resultset
(MYSQLND_RES)

MINIT or later Yes mysqlnd_result_get_methods()
or object method function
table manipulation

Resultset Meta
(MYSQLND_RES_METADATA)

MINIT No mysqlnd_result_metadata_get_methods()

Statement
(MYSQLND_STMT)

MINIT No mysqlnd_stmt_get_methods()

Network
(MYSQLND_NET)

MINIT or later Yes mysqlnd_net_get_methods()
or object method function
table manipulation

Wire protocol
(MYSQLND_PROTOCOL)

MINIT or later Yes mysqlnd_protocol_get_methods()
or object method function
table manipulation

You must not manipulate function tables at any time later than MINIT if it is not allowed according to the
above table.

Some classes contain a pointer to the method function table. All instances of such a class will share the
same function table. To avoid chaos, in particular in threaded environments, such function tables must only
be manipulated during MINIT.

MySQL Native Driver Plugin Architecture

369

Other classes use copies of a globally shared function table. The class function table copy is created
together with the object. Each object uses its own function table. This gives you two options: you can
manipulate the default function table of an object at MINIT, and you can additionally refine methods of an
object without impacting other instances of the same class.

The advantage of the shared function table approach is performance. There is no need to copy a function
table for each and every object.

Table 6.13 Constructor status

 Allocation, construction,
reset

Can be modified? Caller

Connection (MYSQLND) mysqlnd_init() No mysqlnd_connect()

Resultset(MYSQLND_RES)Allocation:

• Connection::result_init()

Reset and re-initialized
during:

• Result::use_result()

• Result::store_result

Yes, but call parent! • Connection::list_fields()

• Statement::get_result()

• Statement::prepare()
(Metadata only)

• Statement::resultMetaData()

Resultset Meta
(MYSQLND_RES_METADATA)

Connection::result_meta_init()Yes, but call parent! Result::read_result_metadata()

Statement
(MYSQLND_STMT)

Connection::stmt_init() Yes, but call parent! Connection::stmt_init()

Network
(MYSQLND_NET)

mysqlnd_net_init() No Connection::init()

Wire protocol
(MYSQLND_PROTOCOL)

mysqlnd_protocol_init() No Connection::init()

It is strongly recommended that you do not entirely replace a constructor. The constructors perform
memory allocations. The memory allocations are vital for the mysqlnd plugin API and the object logic of
mysqlnd. If you do not care about warnings and insist on hooking the constructors, you should at least call
the parent constructor before doing anything in your constructor.

Regardless of all warnings, it can be useful to subclass constructors. Constructors are the perfect place for
modifying the function tables of objects with non-shared object tables, such as Resultset, Network, Wire
Protocol.

Table 6.14 Destruction status

 Derived method must call parent? Destructor

Connection yes, after method execution free_contents(), end_psession()

Resultset yes, after method execution free_result()

Resultset Meta yes, after method execution free()

Statement yes, after method execution dtor(), free_stmt_content()

Network yes, after method execution free()

Wire protocol yes, after method execution free()

The mysqlnd plugin API

370

The destructors are the appropriate place to free properties,
mysqlnd_plugin_get_plugin_<object>_data().

The listed destructors may not be equivalent to the actual mysqlnd method freeing the object itself.
However, they are the best possible place for you to hook in and free your plugin data. As with constructors
you may replace the methods entirely but this is not recommended. If multiple methods are listed in the
above table you will need to hook all of the listed methods and free your plugin data in whichever method is
called first by mysqlnd.

The recommended method for plugins is to simply hook the methods, free your memory and call the parent
implementation immediately following this.

Caution

Due to a bug in PHP versions 5.3.0 to 5.3.3, plugins do not associate plugin data
with a persistent connection. This is because ext/mysql and ext/mysqli do not
trigger all the necessary mysqlnd end_psession() method calls and the plugin
may therefore leak memory. This has been fixed in PHP 5.3.4.

6.9.4 The mysqlnd plugin API

Copyright 1997-2014 the PHP Documentation Group.

The following is a list of functions provided in the mysqlnd plugin API:

• mysqlnd_plugin_register()

• mysqlnd_plugin_count()

• mysqlnd_plugin_get_plugin_connection_data()

• mysqlnd_plugin_get_plugin_result_data()

• mysqlnd_plugin_get_plugin_stmt_data()

• mysqlnd_plugin_get_plugin_net_data()

• mysqlnd_plugin_get_plugin_protocol_data()

• mysqlnd_conn_get_methods()

• mysqlnd_result_get_methods()

• mysqlnd_result_meta_get_methods()

• mysqlnd_stmt_get_methods()

• mysqlnd_net_get_methods()

• mysqlnd_protocol_get_methods()

There is no formal definition of what a plugin is and how a plugin mechanism works.

Components often found in plugins mechanisms are:

• A plugin manager

• A plugin API

The mysqlnd plugin API

371

• Application services (or modules)

• Application service APIs (or module APIs)

The mysqlnd plugin concept employs these features, and additionally enjoys an open architecture.

No Restrictions

A plugin has full access to the inner workings of mysqlnd. There are no security limits or restrictions.
Everything can be overwritten to implement friendly or hostile algorithms. It is recommended you only
deploy plugins from a trusted source.

As discussed previously, plugins can use pointers freely. These pointers are not restricted in any way, and
can point into another plugin's data. Simple offset arithmetic can be used to read another plugin's data.

It is recommended that you write cooperative plugins, and that you always call the parent method. The
plugins should always cooperate with mysqlnd itself.

Table 6.15 Issues: an example of chaining and cooperation

Extension mysqlnd.query() pointer call stack if calling parent

ext/mysqlnd mysqlnd.query() mysqlnd.query

ext/mysqlnd_cache mysqlnd_cache.query() 1. mysqlnd_cache.query()

2. mysqlnd.query

ext/mysqlnd_monitor mysqlnd_monitor.query() 1. mysqlnd_monitor.query()

2. mysqlnd_cache.query()

3. mysqlnd.query

In this scenario, a cache (ext/mysqlnd_cache) and a monitor (ext/mysqlnd_monitor) plugin are
loaded. Both subclass Connection::query(). Plugin registration happens at MINIT using the logic
shown previously. PHP calls extensions in alphabetical order by default. Plugins are not aware of each
other and do not set extension dependencies.

By default the plugins call the parent implementation of the query method in their derived version of the
method.

PHP Extension Recap

This is a recap of what happens when using an example plugin, ext/mysqlnd_plugin, which exposes
the mysqlnd C plugin API to PHP:

• Any PHP MySQL application tries to establish a connection to 192.168.2.29

• The PHP application will either use ext/mysql, ext/mysqli or PDO_MYSQL. All three PHP MySQL
extensions use mysqlnd to establish the connection to 192.168.2.29.

• Mysqlnd calls its connect method, which has been subclassed by ext/mysqlnd_plugin.

• ext/mysqlnd_plugin calls the userspace hook proxy::connect() registered by the user.

• The userspace hook changes the connection host IP from 192.168.2.29 to 127.0.0.1 and returns the
connection established by parent::connect().

• ext/mysqlnd_plugin performs the equivalent of parent::connect(127.0.0.1) by calling the
original mysqlnd method for establishing a connection.

Getting started building a mysqlnd plugin

372

• ext/mysqlnd establishes a connection and returns to ext/mysqlnd_plugin. ext/
mysqlnd_plugin returns as well.

• Whatever PHP MySQL extension had been used by the application, it receives a connection to
127.0.0.1. The PHP MySQL extension itself returns to the PHP application. The circle is closed.

6.9.5 Getting started building a mysqlnd plugin

Copyright 1997-2014 the PHP Documentation Group.

It is important to remember that a mysqlnd plugin is itself a PHP extension.

The following code shows the basic structure of the MINIT function that will be used in the typical mysqlnd
plugin:

/* my_php_mysqlnd_plugin.c */

 static PHP_MINIT_FUNCTION(mysqlnd_plugin) {
 /* globals, ini entries, resources, classes */

 /* register mysqlnd plugin */
 mysqlnd_plugin_id = mysqlnd_plugin_register();

 conn_m = mysqlnd_get_conn_methods();
 memcpy(org_conn_m, conn_m,
 sizeof(struct st_mysqlnd_conn_methods));

 conn_m->query = MYSQLND_METHOD(mysqlnd_plugin_conn, query);
 conn_m->connect = MYSQLND_METHOD(mysqlnd_plugin_conn, connect);
}

/* my_mysqlnd_plugin.c */

 enum_func_status MYSQLND_METHOD(mysqlnd_plugin_conn, query)(/* ... */) {
 /* ... */
}
enum_func_status MYSQLND_METHOD(mysqlnd_plugin_conn, connect)(/* ... */) {
 /* ... */
}

Task analysis: from C to userspace

 class proxy extends mysqlnd_plugin_connection {
 public function connect($host, ...) { .. }
}
mysqlnd_plugin_set_conn_proxy(new proxy());

Process:

1. PHP: user registers plugin callback

2. PHP: user calls any PHP MySQL API to connect to MySQL

3. C: ext/*mysql* calls mysqlnd method

Getting started building a mysqlnd plugin

373

4. C: mysqlnd ends up in ext/mysqlnd_plugin

5. C: ext/mysqlnd_plugin

a. Calls userspace callback

b. Or original mysqlnd method, if userspace callback not set

You need to carry out the following:

1. Write a class "mysqlnd_plugin_connection" in C

2. Accept and register proxy object through "mysqlnd_plugin_set_conn_proxy()"

3. Call userspace proxy methods from C (optimization - zend_interfaces.h)

Userspace object methods can either be called using call_user_function() or you can operate at a
level closer to the Zend Engine and use zend_call_method().

Optimization: calling methods from C using zend_call_method

The following code snippet shows the prototype for the zend_call_method function, taken from
zend_interfaces.h.

 ZEND_API zval* zend_call_method(
 zval **object_pp, zend_class_entry *obj_ce,
 zend_function **fn_proxy, char *function_name,
 int function_name_len, zval **retval_ptr_ptr,
 int param_count, zval* arg1, zval* arg2 TSRMLS_DC
);

Zend API supports only two arguments. You may need more, for example:

 enum_func_status (*func_mysqlnd_conn__connect)(
 MYSQLND *conn, const char *host,
 const char * user, const char * passwd,
 unsigned int passwd_len, const char * db,
 unsigned int db_len, unsigned int port,
 const char * socket, unsigned int mysql_flags TSRMLS_DC
);

To get around this problem you will need to make a copy of zend_call_method() and add a facility for
additional parameters. You can do this by creating a set of MY_ZEND_CALL_METHOD_WRAPPER macros.

Calling PHP userspace

This code snippet shows the optimized method for calling a userspace function from C:

/* my_mysqlnd_plugin.c */

MYSQLND_METHOD(my_conn_class,connect)(
 MYSQLND *conn, const char *host /* ... */ TSRMLS_DC) {
 enum_func_status ret = FAIL;
 zval * global_user_conn_proxy = fetch_userspace_proxy();

Getting started building a mysqlnd plugin

374

 if (global_user_conn_proxy) {
 /* call userspace proxy */
 ret = MY_ZEND_CALL_METHOD_WRAPPER(global_user_conn_proxy, host, /*...*/);
 } else {
 /* or original mysqlnd method = do nothing, be transparent */
 ret = org_methods.connect(conn, host, user, passwd,
 passwd_len, db, db_len, port,
 socket, mysql_flags TSRMLS_CC);
 }
 return ret;
}

Calling userspace: simple arguments

/* my_mysqlnd_plugin.c */

 MYSQLND_METHOD(my_conn_class,connect)(
 /* ... */, const char *host, /* ...*/) {
 /* ... */
 if (global_user_conn_proxy) {
 /* ... */
 zval* zv_host;
 MAKE_STD_ZVAL(zv_host);
 ZVAL_STRING(zv_host, host, 1);
 MY_ZEND_CALL_METHOD_WRAPPER(global_user_conn_proxy, zv_retval, zv_host /*, ...*/);
 zval_ptr_dtor(&zv_host);
 /* ... */
 }
 /* ... */
}

Calling userspace: structs as arguments

/* my_mysqlnd_plugin.c */

MYSQLND_METHOD(my_conn_class, connect)(
 MYSQLND *conn, /* ...*/) {
 /* ... */
 if (global_user_conn_proxy) {
 /* ... */
 zval* zv_conn;
 ZEND_REGISTER_RESOURCE(zv_conn, (void *)conn, le_mysqlnd_plugin_conn);
 MY_ZEND_CALL_METHOD_WRAPPER(global_user_conn_proxy, zv_retval, zv_conn, zv_host /*, ...*/);
 zval_ptr_dtor(&zv_conn);
 /* ... */
 }
 /* ... */
}

The first argument of many mysqlnd methods is a C "object". For example, the first argument of the
connect() method is a pointer to MYSQLND. The struct MYSQLND represents a mysqlnd connection
object.

The mysqlnd connection object pointer can be compared to a standard I/O file handle. Like a standard I/O
file handle a mysqlnd connection object shall be linked to the userspace using the PHP resource variable
type.

From C to userspace and back

Getting started building a mysqlnd plugin

375

 class proxy extends mysqlnd_plugin_connection {
 public function connect($conn, $host, ...) {
 /* "pre" hook */
 printf("Connecting to host = '%s'\n", $host);
 debug_print_backtrace();
 return parent::connect($conn);
 }

 public function query($conn, $query) {
 /* "post" hook */
 $ret = parent::query($conn, $query);
 printf("Query = '%s'\n", $query);
 return $ret;
 }
}
mysqlnd_plugin_set_conn_proxy(new proxy());

PHP users must be able to call the parent implementation of an overwritten method.

As a result of subclassing it is possible to refine only selected methods and you can choose to have "pre"
or "post" hooks.

Buildin class: mysqlnd_plugin_connection::connect()

/* my_mysqlnd_plugin_classes.c */

 PHP_METHOD("mysqlnd_plugin_connection", connect) {
 /* ... simplified! ... */
 zval* mysqlnd_rsrc;
 MYSQLND* conn;
 char* host; int host_len;
 if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rs",
 &mysqlnd_rsrc, &host, &host_len) == FAILURE) {
 RETURN_NULL();
 }
 ZEND_FETCH_RESOURCE(conn, MYSQLND* conn, &mysqlnd_rsrc, -1,
 "Mysqlnd Connection", le_mysqlnd_plugin_conn);
 if (PASS == org_methods.connect(conn, host, /* simplified! */ TSRMLS_CC))
 RETVAL_TRUE;
 else
 RETVAL_FALSE;
}

376

377

Chapter 7 Mysqlnd replication and load balancing plugin

Table of Contents
7.1 Key Features .. 378
7.2 Limitations .. 380
7.3 On the name .. 380
7.4 Quickstart and Examples .. 380

7.4.1 Setup .. 380
7.4.2 Running statements ... 383
7.4.3 Connection state .. 384
7.4.4 SQL Hints .. 386
7.4.5 Local transactions .. 388
7.4.6 XA/Distributed Transactions .. 391
7.4.7 Service level and consistency ... 394
7.4.8 Global transaction IDs .. 398
7.4.9 Cache integration ... 404
7.4.10 Failover ... 407
7.4.11 Partitioning and Sharding ... 408
7.4.12 MySQL Fabric .. 410

7.5 Concepts .. 411
7.5.1 Architecture ... 411
7.5.2 Connection pooling and switching ... 412
7.5.3 Local transaction handling .. 414
7.5.4 Error handling .. 415
7.5.5 Transient errors ... 418
7.5.6 Failover ... 420
7.5.7 Load balancing .. 421
7.5.8 Read-write splitting ... 422
7.5.9 Filter .. 422
7.5.10 Service level and consistency ... 424
7.5.11 Global transaction IDs .. 426
7.5.12 Cache integration ... 428
7.5.13 Supported clusters ... 430
7.5.14 XA/Distributed transactions ... 434

7.6 Installing/Configuring ... 436
7.6.1 Requirements .. 436
7.6.2 Installation ... 437
7.6.3 Runtime Configuration .. 437
7.6.4 Plugin configuration file (>=1.1.x) .. 438

7.7 Predefined Constants .. 496
7.8 Mysqlnd_ms Functions .. 498

7.8.1 mysqlnd_ms_dump_servers ... 498
7.8.2 mysqlnd_ms_fabric_select_global ... 500
7.8.3 mysqlnd_ms_fabric_select_shard ... 501
7.8.4 mysqlnd_ms_get_last_gtid ... 501
7.8.5 mysqlnd_ms_get_last_used_connection ... 503
7.8.6 mysqlnd_ms_get_stats ... 504
7.8.7 mysqlnd_ms_match_wild ... 510
7.8.8 mysqlnd_ms_query_is_select ... 511
7.8.9 mysqlnd_ms_set_qos ... 513
7.8.10 mysqlnd_ms_set_user_pick_server .. 515

Key Features

378

7.8.11 mysqlnd_ms_xa_begin ... 518
7.8.12 mysqlnd_ms_xa_commit ... 519
7.8.13 mysqlnd_ms_xa_gc ... 520
7.8.14 mysqlnd_ms_xa_rollback ... 521

7.9 Change History ... 522
7.9.1 PECL/mysqlnd_ms 1.6 series ... 522
7.9.2 PECL/mysqlnd_ms 1.5 series ... 524
7.9.3 PECL/mysqlnd_ms 1.4 series ... 526
7.9.4 PECL/mysqlnd_ms 1.3 series ... 527
7.9.5 PECL/mysqlnd_ms 1.2 series ... 527
7.9.6 PECL/mysqlnd_ms 1.1 series ... 529
7.9.7 PECL/mysqlnd_ms 1.0 series ... 530

Copyright 1997-2014 the PHP Documentation Group.

The mysqlnd replication and load balancing plugin (mysqlnd_ms) adds easy to use MySQL replication
support to all PHP MySQL extensions that use mysqlnd.

As of version PHP 5.3.3 the MySQL native driver for PHP (mysqlnd) features an internal plugin C API. C
plugins, such as the replication and load balancing plugin, can extend the functionality of mysqlnd.

The MySQL native driver for PHP is a C library that ships together with PHP as of PHP 5.3.0. It serves as a
drop-in replacement for the MySQL Client Library (libmysqlclient). Using mysqlnd has several advantages:
no extra downloads are required because it's bundled with PHP, it's under the PHP license, there is lower
memory consumption in certain cases, and it contains new functionality such as asynchronous queries.

Mysqlnd plugins like mysqlnd_ms operate, for the most part, transparently from a user perspective. The
replication and load balancing plugin supports all PHP applications, and all MySQL PHP extensions. It
does not change existing APIs. Therefore, it can easily be used with existing PHP applications.

7.1 Key Features
Copyright 1997-2014 the PHP Documentation Group.

The key features of PECL/mysqlnd_ms are as follows.

• Transparent and therefore easy to use.

• Supports all of the PHP MySQL extensions.

• SSL support.

• A consistent API.

• Little to no application changes required, dependent on the required usage scenario.

• Lazy connections: connections to master and slave servers are not opened before a SQL statement is
executed.

• Optional: automatic use of master after the first write in a web request, to lower the possible impact of
replication lag.

• Can be used with any MySQL clustering solution.

• MySQL Replication: Read-write splitting is done by the plugin. Primary focus of the plugin.

• MySQL Cluster: Read-write splitting can be disabled. Configuration of multiple masters possible

Key Features

379

• Third-party solutions: the plugin is optimized for MySQL Replication but can be used with any other
kind of MySQL clustering solution.

• Featured read-write split strategies

• Automatic detection of SELECT.

• Supports SQL hints to overrule automatism.

• User-defined.

• Can be disabled for, for example, when using synchronous clusters such as MySQL Cluster.

• Featured load balancing strategies

• Round Robin: choose a different slave in round-robin fashion for every slave request.

• Random: choose a random slave for every slave request.

• Random once (sticky): choose a random slave once to run all slave requests for the duration of a web
request.

• User-defined. The application can register callbacks with mysqlnd_ms.

• PHP 5.4.0 or newer: transaction aware when using API calls only to control transactions.

• Weighted load balancing: servers can be assigned different priorities, for example, to direct more
requests to a powerful machine than to another less powerful machine. Or, to prefer nearby machines
to reduce latency.

• Global transaction ID

• Client-side emulation. Makes manual master server failover and slave promotion easier with
asynchronous clusters, such as MySQL Replication.

• Support for built-in global transaction identifier feature of MySQL 5.6.5 or newer.

• Supports using transaction ids to identify up-to-date asynchronous slaves for reading when session
consistency is required. Please, note the restrictions mentioned in the manual.

• Throttling: optionally, the plugin can wait for a slave to become "synchronous" before continuing.

• Service and consistency levels

• Applications can request eventual, session and strong consistency service levels for connections.
Appropriate cluster nodes will be searched automatically.

• Eventual consistent MySQL Replication slave accesses can be replaced with fast local cache
accesses transparently to reduce server load.

• Partitioning and sharding

• Servers of a replication cluster can be organized into groups. SQL hints can be used to manually
direct queries to a specific group. Grouping can be used to partition (shard) the data, or to cure the
issue of hotspots with updates.

• MySQL Replication filters are supported through the table filter.

Limitations

380

• MySQL Fabric

• Experimental support for MySQL Fabric is included.

7.2 Limitations

Copyright 1997-2014 the PHP Documentation Group.

The built-in read-write-split mechanism is very basic. Every query which starts with SELECT is considered
a read request to be sent to a MySQL slave server. All other queries (such as SHOW statements) are
considered as write requests that are sent to the MySQL master server. The build-in behavior can be
overruled using SQL hints, or a user-defined callback function.

The read-write splitter is not aware of multi-statements. Multi-statements are considered as one statement.
The decision of where to run the statement will be based on the beginning of the statement string. For
example, if using mysqli_multi_query to execute the multi-statement SELECT id FROM test ;
INSERT INTO test(id) VALUES (1), the statement will be redirected to a slave server because
it begins with SELECT. The INSERT statement, which is also part of the multi-statement, will not be
redirected to a master server.

Note

Applications must be aware of the consequences of connection switches that
are performed for load balancing purposes. Please check the documentation on
connection pooling and switching, transaction handling, failover load balancing and
read-write splitting.

7.3 On the name

Copyright 1997-2014 the PHP Documentation Group.

The shortcut mysqlnd_ms stands for mysqlnd master slave plugin. The name was chosen for a
quick-and-dirty proof-of-concept. In the beginning the developers did not expect to continue using the code
base.

7.4 Quickstart and Examples

Copyright 1997-2014 the PHP Documentation Group.

The mysqlnd replication load balancing plugin is easy to use. This quickstart will demo typical use-cases,
and provide practical advice on getting started.

It is strongly recommended to read the reference sections in addition to the quickstart. The quickstart tries
to avoid discussing theoretical concepts and limitations. Instead, it will link to the reference sections. It is
safe to begin with the quickstart. However, before using the plugin in mission critical environments we urge
you to read additionally the background information from the reference sections.

The focus is on using PECL mysqlnd_ms for work with an asynchronous MySQL cluster, namely MySQL
replication. Generally speaking an asynchronous cluster is more difficult to use than a synchronous one.
Thus, users of, for example, MySQL Cluster will find more information than needed.

7.4.1 Setup

Copyright 1997-2014 the PHP Documentation Group.

Setup

381

The plugin is implemented as a PHP extension. See also the installation instructions to install the PECL/
mysqlnd_ms extension.

Compile or configure the PHP MySQL extension (API) (mysqli, PDO_MYSQL, mysql) that you plan to
use with support for the mysqlnd library. PECL/mysqlnd_ms is a plugin for the mysqlnd library. To use the
plugin with any of the PHP MySQL extensions, the extension has to use the mysqlnd library.

Then, load the extension into PHP and activate the plugin in the PHP configuration file using the PHP
configuration directive named mysqlnd_ms.enable.

Example 7.1 Enabling the plugin (php.ini)

mysqlnd_ms.enable=1
mysqlnd_ms.config_file=/path/to/mysqlnd_ms_plugin.ini

The plugin uses its own configuration file. Use the PHP configuration directive mysqlnd_ms.config_file
to set the full file path to the plugin-specific configuration file. This file must be readable by PHP (e.g.,
the web server user). Please note, the configuration directive mysqlnd_ms.config_file superseeds
mysqlnd_ms.ini_file since 1.4.0. It is a common pitfall to use the old, no longer available configuration
directive.

Create a plugin-specific configuration file. Save the file to the path set by the PHP configuration directive
mysqlnd_ms.config_file.

The plugins configuration file is JSON based. It is divided into one or more sections. Each section has a
name, for example, myapp. Every section makes its own set of configuration settings.

A section must, at a minimum, list the MySQL replication master server, and set a list of slaves. The plugin
supports using only one master server per section. Multi-master MySQL replication setups are not yet fully
supported. Use the configuration setting master to set the hostname, and the port or socket of the MySQL
master server. MySQL slave servers are configured using the slave keyword.

Example 7.2 Minimal plugin-specific configuration file (mysqlnd_ms_plugin.ini)

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost"
 }
 },
 "slave": [

]
 }
}

Configuring a MySQL slave server list is required, although it may contain an empty list. It is recommended
to always configure at least one slave server.

Server lists can use anonymous or non-anonymous syntax. Non-anonymous lists include alias names
for the servers, such as master_0 for the master in the above example. The quickstart uses the more
verbose non-anonymous syntax.

http://pecl.php.net/package/mysqlnd_ms
http://pecl.php.net/package/mysqlnd_ms

Setup

382

Example 7.3 Recommended minimal plugin-specific config (mysqlnd_ms_plugin.ini)

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost",
 "socket": "\/tmp\/mysql.sock"
 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.2.27",
 "port": "3306"
 }
 }
 }
}

If there are at least two servers in total, the plugin can start to load balance and switch connections.
Switching connections is not always transparent and can cause issues in certain cases. The reference
sections about connection pooling and switching, transaction handling, fail over load balancing and read-
write splitting all provide more details. And potential pitfalls are described later in this guide.

It is the responsibility of the application to handle potential issues caused by connection switches, by
configuring a master with at least one slave server, which allows switching to work therefore related
problems can be found.

The MySQL master and MySQL slave servers, which you configure, do not need to be part of MySQL
replication setup. For testing purpose you can use single MySQL server and make it known to the plugin
as a master and slave server as shown below. This could help you to detect many potential issues with
connection switches. However, such a setup will not be prone to the issues caused by replication lag.

Example 7.4 Using one server as a master and as a slave (testing only!)

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost",
 "socket": "\/tmp\/mysql.sock"
 }
 },
 "slave": {
 "slave_0": {
 "host": "127.0.0.1",
 "port": "3306"
 }
 }
 }
}

The plugin attempts to notify you of invalid configurations. Since 1.5.0 it will throw a warning during
PHP startup if the configuration file cannot be read, is empty or parsing the JSON failed. Depending
on your PHP settings those errors may appear in some log files only. Further validation is done when

Running statements

383

a connection is to be established and the configuration file is searched for valid sections. Setting
mysqlnd_ms.force_config_usage may help debugging a faulty setup. Please, see also configuration file
debugging notes.

7.4.2 Running statements

Copyright 1997-2014 the PHP Documentation Group.

The plugin can be used with any PHP MySQL extension (mysqli, mysql, and PDO_MYSQL) that is
compiled to use the mysqlnd library. PECL/mysqlnd_ms plugs into the mysqlnd library. It does not change
the API or behavior of those extensions.

Whenever a connection to MySQL is being opened, the plugin compares the host parameter value of the
connect call, with the section names from the plugin specific configuration file. If, for example, the plugin
specific configuration file has a section myapp then the section should be referenced by opening a MySQL
connection to the host myapp

Example 7.5 Plugin specific configuration file (mysqlnd_ms_plugin.ini)

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost",
 "socket": "\/tmp\/mysql.sock"
 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.2.27",
 "port": "3306"
 }
 }
 }
}

Example 7.6 Opening a load balanced connection

<?php
/* Load balanced following "myapp" section rules from the plugins config file */
$mysqli = new mysqli("myapp", "username", "password", "database");
$pdo = new PDO('mysql:host=myapp;dbname=database', 'username', 'password');
$mysql = mysql_connect("myapp", "username", "password");
?>

The connection examples above will be load balanced. The plugin will send read-only statements to
the MySQL slave server with the IP 192.168.2.27 and will listen on port 3306 for the MySQL client
connection. All other statements will be directed to the MySQL master server running on the host
localhost. If on Unix like operating systems, the master on localhost will be accepting MySQL client
connections on the Unix domain socket /tmp/mysql.sock, while TCP/IP is the default port on Windows.
The plugin will use the user name username and the password password to connect to any of the
MySQL servers listed in the section myapp of the plugins configuration file. Upon connect, the plugin will
select database as the current schemata.

Connection state

384

The username, password and schema name are taken from the connect API calls and used for all servers.
In other words: you must use the same username and password for every MySQL server listed in a plugin
configuration file section. The is not a general limitation. As of PECL/mysqlnd_ms 1.1.0, it is possible to
set the username and password for any server in the plugins configuration file, to be used instead of the
credentials passed to the API call.

The plugin does not change the API for running statements. Read-write splitting works out of the box. The
following example assumes that there is no significant replication lag between the master and the slave.

Example 7.7 Executing statements

<?php
/* Load balanced following "myapp" section rules from the plugins config file */
$mysqli = new mysqli("myapp", "username", "password", "database");
if (mysqli_connect_errno()) {
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
}

/* Statements will be run on the master */
if (!$mysqli->query("DROP TABLE IF EXISTS test")) {
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}
if (!$mysqli->query("CREATE TABLE test(id INT)")) {
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}
if (!$mysqli->query("INSERT INTO test(id) VALUES (1)")) {
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}

/* read-only: statement will be run on a slave */
if (!($res = $mysqli->query("SELECT id FROM test"))) {
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
} else {
 $row = $res->fetch_assoc();
 $res->close();
 printf("Slave returns id = '%s'\n", $row['id']);
}
$mysqli->close();
?>

The above example will output something similar to:

Slave returns id = '1'

7.4.3 Connection state

Copyright 1997-2014 the PHP Documentation Group.

The plugin changes the semantics of a PHP MySQL connection handle. A new connection handle
represents a connection pool, instead of a single MySQL client-server network connection. The connection
pool consists of a master connection, and optionally any number of slave connections.

Every connection from the connection pool has its own state. For example, SQL user variables, temporary
tables and transactions are part of the state. For a complete list of items that belong to the state of a

Connection state

385

connection, see the connection pooling and switching concepts documentation. If the plugin decides to
switch connections for load balancing, the application could be given a connection which has a different
state. Applications must be made aware of this.

Example 7.8 Plugin config with one slave and one master

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost",
 "socket": "\/tmp\/mysql.sock"
 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.2.27",
 "port": "3306"
 }
 }
 }
}

Example 7.9 Pitfall: connection state and SQL user variables

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli) {
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
}

/* Connection 1, connection bound SQL user variable, no SELECT thus run on master */
if (!$mysqli->query("SET @myrole='master'")) {
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}

/* Connection 2, run on slave because SELECT */
if (!($res = $mysqli->query("SELECT @myrole AS _role"))) {
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
} else {
 $row = $res->fetch_assoc();
 $res->close();
 printf("@myrole = '%s'\n", $row['_role']);
}
$mysqli->close();
?>

The above example will output:

@myrole = ''

The example opens a load balanced connection and executes two statements. The first statement SET
@myrole='master' does not begin with the string SELECT. Therefore the plugin does not recognize it

SQL Hints

386

as a read-only query which shall be run on a slave. The plugin runs the statement on the connection to the
master. The statement sets a SQL user variable which is bound to the master connection. The state of the
master connection has been changed.

The next statement is SELECT @myrole AS _role. The plugin does recognize it as a read-only query
and sends it to the slave. The statement is run on a connection to the slave. This second connection does
not have any SQL user variables bound to it. It has a different state than the first connection to the master.
The requested SQL user variable is not set. The example script prints @myrole = ''.

It is the responsibility of the application developer to take care of the connection state. The plugin does
not monitor all connection state changing activities. Monitoring all possible cases would be a very CPU
intensive task, if it could be done at all.

The pitfalls can easily be worked around using SQL hints.

7.4.4 SQL Hints

Copyright 1997-2014 the PHP Documentation Group.

SQL hints can force a query to choose a specific server from the connection pool. It gives the plugin a hint
to use a designated server, which can solve issues caused by connection switches and connection state.

SQL hints are standard compliant SQL comments. Because SQL comments are supposed to be ignored
by SQL processing systems, they do not interfere with other programs such as the MySQL Server, the
MySQL Proxy, or a firewall.

Three SQL hints are supported by the plugin: The MYSQLND_MS_MASTER_SWITCH hint makes the
plugin run a statement on the master, MYSQLND_MS_SLAVE_SWITCH enforces the use of the slave,
and MYSQLND_MS_LAST_USED_SWITCH will run a statement on the same server that was used for the
previous statement.

The plugin scans the beginning of a statement for the existence of an SQL hint. SQL hints are only
recognized if they appear at the beginning of the statement.

Example 7.10 Plugin config with one slave and one master

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost",
 "socket": "\/tmp\/mysql.sock"
 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.2.27",
 "port": "3306"
 }
 }
 }
}

Example 7.11 SQL hints to prevent connection switches

SQL Hints

387

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (mysqli_connect_errno()) {
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
}

/* Connection 1, connection bound SQL user variable, no SELECT thus run on master */
if (!$mysqli->query("SET @myrole='master'")) {
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}

/* Connection 1, run on master because of SQL hint */
if (!($res = $mysqli->query(sprintf("/*%s*/SELECT @myrole AS _role", MYSQLND_MS_LAST_USED_SWITCH)))) {
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
} else {
 $row = $res->fetch_assoc();
 $res->close();
 printf("@myrole = '%s'\n", $row['_role']);
}
$mysqli->close();
?>

The above example will output:

@myrole = 'master'

In the above example, using MYSQLND_MS_LAST_USED_SWITCH prevents session switching from the
master to a slave when running the SELECT statement.

SQL hints can also be used to run SELECT statements on the MySQL master server. This may be desired
if the MySQL slave servers are typically behind the master, but you need current data from the cluster.

In version 1.2.0 the concept of a service level has been introduced to address cases when current data is
required. Using a service level requires less attention and removes the need of using SQL hints for this use
case. Please, find more information below in the service level and consistency section.

Example 7.12 Fighting replication lag

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli) {
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
}

/* Force use of master, master has always fresh and current data */
if (!$mysqli->query(sprintf("/*%s*/SELECT critical_data FROM important_table", MYSQLND_MS_MASTER_SWITCH))) {
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}
?>

A use case may include the creation of tables on a slave. If an SQL hint is not given, then the plugin will
send CREATE and INSERT statements to the master. Use the SQL hint MYSQLND_MS_SLAVE_SWITCH if
you want to run any such statement on a slave, for example, to build temporary reporting tables.

Local transactions

388

Example 7.13 Table creation on a slave

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli) {
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
}

/* Force use of slave */
if (!$mysqli->query(sprintf("/*%s*/CREATE TABLE slave_reporting(id INT)", MYSQLND_MS_SLAVE_SWITCH))) {
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}
/* Continue using this particular slave connection */
if (!$mysqli->query(sprintf("/*%s*/INSERT INTO slave_reporting(id) VALUES (1), (2), (3)", MYSQLND_MS_LAST_USED_SWITCH))) {
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}
/* Don't use MYSQLND_MS_SLAVE_SWITCH which would allow switching to another slave! */
if ($res = $mysqli->query(sprintf("/*%s*/SELECT COUNT(*) AS _num FROM slave_reporting", MYSQLND_MS_LAST_USED_SWITCH))) {
 $row = $res->fetch_assoc();
 $res->close();
 printf("There are %d rows in the table 'slave_reporting'", $row['_num']);
} else {
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}
$mysqli->close();
?>

The SQL hint MYSQLND_MS_LAST_USED forbids switching a connection, and forces use of the previously
used connection.

7.4.5 Local transactions

Copyright 1997-2014 the PHP Documentation Group.

The current version of the plugin is not transaction safe by default, because it is not aware of running
transactions in all cases. SQL transactions are units of work to be run on a single server. The plugin does
not always know when the unit of work starts and when it ends. Therefore, the plugin may decide to switch
connections in the middle of a transaction.

No kind of MySQL load balancer can detect transaction boundaries without any kind of hint from the
application.

You can either use SQL hints to work around this limitation. Alternatively, you can activate transaction API
call monitoring. In the latter case you must use API calls only to control transactions, see below.

Example 7.14 Plugin config with one slave and one master

[myapp]
{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost",
 "socket": "\/tmp\/mysql.sock"
 }
 },

Local transactions

389

 "slave": {
 "slave_0": {
 "host": "192.168.2.27",
 "port": "3306"
 }
 }
 }
}

Example 7.15 Using SQL hints for transactions

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli) {
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
}

/* Not a SELECT, will use master */
if (!$mysqli->query("START TRANSACTION")) {
 /* Please use better error handling in your code */
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

/* Prevent connection switch! */
if (!$mysqli->query(sprintf("/*%s*/INSERT INTO test(id) VALUES (1)", MYSQLND_MS_LAST_USED_SWITCH))) {
 /* Please do proper ROLLBACK in your code, don't just die */
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
if ($res = $mysqli->query(sprintf("/*%s*/SELECT COUNT(*) AS _num FROM test", MYSQLND_MS_LAST_USED_SWITCH))) {
 $row = $res->fetch_assoc();
 $res->close();
 if ($row['_num'] > 1000) {
 if (!$mysqli->query(sprintf("/*%s*/INSERT INTO events(task) VALUES ('cleanup')", MYSQLND_MS_LAST_USED_SWITCH))) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
 }
 }
} else {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
if (!$mysqli->query(sprintf("/*%s*/UPDATE log SET last_update = NOW()", MYSQLND_MS_LAST_USED_SWITCH))) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
if (!$mysqli->query(sprintf("/*%s*/COMMIT", MYSQLND_MS_LAST_USED_SWITCH))) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

$mysqli->close();
?>

Starting with PHP 5.4.0, the mysqlnd library allows the plugin to monitor the status of the autocommit
mode, if the mode is set by API calls instead of using SQL statements such as SET AUTOCOMMIT=0. This
makes it possible for the plugin to become transaction aware. In this case, you do not need to use SQL
hints.

If using PHP 5.4.0 or newer, API calls that enable autocommit mode, and when setting the plugin
configuration option trx_stickiness=master, the plugin can automatically disable load balancing and
connection switches for SQL transactions. In this configuration, the plugin stops load balancing if
autocommit is disabled and directs all statements to the master. This prevents connection switches in

Local transactions

390

the middle of a transaction. Once autocommit is re-enabled, the plugin starts to load balance statements
again.

API based transaction boundary detection has been improved with PHP 5.5.0 and PECL/mysqlnd_ms
1.5.0 to cover not only calls to mysqli_autocommit but also mysqli_begin, mysqli_commit and
mysqli_rollback.

Example 7.16 Transaction aware load balancing: trx_stickiness setting

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost",
 "socket": "\/tmp\/mysql.sock"
 }
 },
 "slave": {
 "slave_0": {
 "host": "127.0.0.1",
 "port": "3306"
 }
 },
 "trx_stickiness": "master"
 }
}

Example 7.17 Transaction aware

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli) {
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
}

/* Disable autocommit, plugin will run all statements on the master */
$mysqli->autocommit(false);

if (!$mysqli->query("INSERT INTO test(id) VALUES (1)")) {
 /* Please do proper ROLLBACK in your code, don't just die */
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
if ($res = $mysqli->query("SELECT COUNT(*) AS _num FROM test")) {
 $row = $res->fetch_assoc();
 $res->close();
 if ($row['_num'] > 1000) {
 if (!$mysqli->query("INSERT INTO events(task) VALUES ('cleanup')")) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
 }
 }
} else {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
if (!$mysqli->query("UPDATE log SET last_update = NOW()")) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
if (!$mysqli->commit()) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

http://www.php.net/mysqli_begin

XA/Distributed Transactions

391

/* Plugin assumes that the transaction has ended and starts load balancing again */
$mysqli->autocommit(true);
$mysqli->close();
?>

Version requirement

The plugin configuration option trx_stickiness=master requires PHP 5.4.0 or newer.

Please note the restrictions outlined in the transaction handling concepts section.

7.4.6 XA/Distributed Transactions

Copyright 1997-2014 the PHP Documentation Group.

Version requirement

XA related functions have been introduced in PECL mysqlnd_ms version 1.6.0-
alpha.

Early adaptors wanted

The feature is currently under development. There may be issues and/or feature
limitations. Do not use in production environments, although early lab tests indicate
reasonable quality.

Please, contact the development team if you are interested in this feature. We are
looking for real life feedback to complement the feature.

XA transactions are a standardized method for executing transactions across multiple resources. Those
resources can be databases or other transactional systems. The MySQL server supports XA SQL
statements which allows users to carry out a distributed SQL transaction that spawns multiple database
servers or any kind as long as they support the SQL statements too. In such a scenario it is in the
responsibility of the user to coordinate the participating servers.

PECL/mysqlnd_ms can act as a transaction coordinator for a global (distributed, XA) transaction
carried out on MySQL servers only. As a transaction coordinator, the plugin tracks all servers involved
in a global transaction and transparently issues appropriate SQL statements on the participants. The
global transactions are controlled with mysqlnd_ms_xa_begin, mysqlnd_ms_xa_commit and
mysqlnd_ms_xa_rollback. SQL details are mostly hidden from the application as is the need to track
and coordinate participants.

Example 7.18 General pattern for XA transactions

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli) {
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
}

/* start a global transaction */
$gtrid_id = "12345";
if (!mysqlnd_ms_xa_begin($mysqli, $gtrid_id)) {

XA/Distributed Transactions

392

 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

/* run queries as usual: XA BEGIN will be injected upon running a query */
if (!$mysqli->query("INSERT INTO orders(order_id, item) VALUES (1, 'christmas tree, 1.8m')")) {
 /* Either INSERT failed or the injected XA BEGIN failed */
 if ('XA' == substr($mysqli->sqlstate, 0, 2)) {
 printf("Global transaction/XA related failure, [%d] %s\n", $mysqli->errno, $mysqli->error);
 } else {
 printf("INSERT failed, [%d] %s\n", $mysqli->errno, $mysqli->error);
 }
 /* rollback global transaction */
 mysqlnd_ms_xa_rollback($mysqli, $xid);
 die("Stopping.");
}

/* continue carrying out queries on other servers, e.g. other shards */

/* commit the global transaction */
if (!mysqlnd_ms_xa_commit($mysqli, $xa_id)) {
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}
?>

Unlike with local transactions, which are carried out on a single server, XA transactions have an identifier
(xid) associated with them. The XA transaction identifier is composed of a global transaction identifier
(gtrid), a branch qualifier (bqual) a format identifier (formatID). Only the global transaction identifier can and
must be given when calling any of the plugins XA functions.

Once a global transaction has been started, the plugin begins tracking servers until the global transaction
ends. When a server is picked for query execution, the plugin injects the SQL statement XA BEGIN
prior to executing the actual SQL statement on the server. XA BEGIN makes the server participate in
the global transaction. If the injected SQL statement fails, the plugin will report the issue in reply to the
query execution function that was used. In the above example, $mysqli->query("INSERT INTO
orders(order_id, item) VALUES (1, 'christmas tree, 1.8m')") would indicate such an
error. You may want to check the errors SQL state code to determine whether the actual query (here:
INSERT) has failed or the error is related to the global transaction. It is up to you to ignore the failure to
start the global transaction on a server and continue execution without having the server participate in the
global transaction.

Example 7.19 Local and global transactions are mutually exclusive

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli) {
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
}

/* start a local transaction */
if (!$mysqli->begin_transaction()) {
 die(sprintf("[%d/%s] %s\n", $mysqli->errno, $mysqli->sqlstate, $mysqli->error));
}

/* cannot start global transaction now - must end local transaction first */
$gtrid_id = "12345";
if (!mysqlnd_ms_xa_begin($mysqli, $gtrid_id)) {
 die(sprintf("[%d/%s] %s\n", $mysqli->errno, $mysqli->sqlstate, $mysqli->error));
}
?>

XA/Distributed Transactions

393

The above example will output:

Warning: mysqlnd_ms_xa_begin(): (mysqlnd_ms) Some work is done outside global transaction. You must end the active local transaction first in ... on line ...
[1400/XAE09] (mysqlnd_ms) Some work is done outside global transaction. You must end the active local transaction first

A global transaction cannot be started when a local transaction is active. The plugin tries to detect
this situation as early as possible, that is when mysqlnd_ms_xa_begin is called. If using API calls
only to control transactions, the plugin will know that a local transaction is open and return an error for
mysqlnd_ms_xa_begin. However, note the plugins limitations on detecting transaction boundaries.. In
the worst case, if using direct SQL for local transactions (BEGIN, COMMIT, ...), it may happen that an error
is delayed until some SQL is executed on a server.

To end a global transaction invoke mysqlnd_ms_xa_commit or mysqlnd_ms_xa_rollback. When
a global transaction is ended all participants must be informed of the end. Therefore, PECL/mysqlnd_ms
transparently issues appropriate XA related SQL statements on some or all of them. Any failure during this
phase will cause an implicit rollback. The XA related API is intentionally kept simple here. A more complex
API that gave more control would bare few, if any, advantages over a user implementation that issues all
lower level XA SQL statements itself.

XA transactions use the two-phase commit protocol. The two-phase commit protocol is a blocking protocol.
There are cases when no progress can be made, not even when using timeouts. Transaction coordinators
should survive their own failure, be able to detect blockades and break ties. PECL/mysqlnd_ms takes
the role of a transaction coordinator and can be configured to survive its own crash to avoid issues with
blocked MySQL servers. Therefore, the plugin can and should be configured to use a persistent and crash-
safe state to allow garbage collection of unfinished, aborted global transactions. A global transaction can
be aborted in an open state if either the plugin fails (crashes) or a connection from the plugin to a global
transaction participant fails.

Example 7.20 Transaction coordinator state store

{
 "myapp": {
 "xa": {
 "state_store": {
 "participant_localhost_ip": "192.168.2.12",
 "mysql": {
 "host": "192.168.2.13",
 "user": "root",
 "password": "",
 "db": "test",
 "port": "3312",
 "socket": null
 }
 }
 },
 "master": {
 "master_0": {
 "host": "localhost",
 "socket": "\/tmp\/mysql.sock"
 }
 },
 "slave": {

Service level and consistency

394

 "slave_0": {
 "host": "192.168.2.14",
 "port": "3306"
 }
 }
 }
}

Currently, PECL/mysqlnd_ms supports only using MySQL database tables as a state store. The
SQL definitions of the tables are given in the plugin configuration section. Please, make sure to use
a transactional and crash-safe storage engine for the tables, such as InnoDB. InnoDB is the default
table engine in recent versions of the MySQL server. Make also sure the database server itself is highly
available.

If a state store has been configured, the plugin can perform a garbage collection. During garbage collection
it may be necessary to connect to a participant of a failed global transaction. Thus, the state store holds a
list of participants and, among others, their host names. If the garbage collection is run on another host but
the one that has written a participant entry with the host name localhost, then localhost resolves to
different machines. There are two solutions to the problem. Either you do not configure any servers with
the host name localhost but configure an IP address (and port) or, you hint the garbage collection. In
the above example, localhost is used for master_0, hence it may not resolve to the correct host during
garbage collection. However, participant_localhost_ip is also set to hint the garbage collection that
localhost stands for the IP 192.168.2.12.

7.4.7 Service level and consistency

Copyright 1997-2014 the PHP Documentation Group.

Version requirement

Service levels have been introduced in PECL mysqlnd_ms version 1.2.0-alpha.
mysqlnd_ms_set_qos is available with PHP 5.4.0 or newer.

Different types of MySQL cluster solutions offer different service and data consistency levels to their users.
An asynchronous MySQL replication cluster offers eventual consistency by default. A read executed on
an asynchronous slave may return current, stale or no data at all, depending on whether the slave has
replayed all changesets from the master or not.

Applications using an MySQL replication cluster need to be designed to work correctly with eventual
consistent data. In some cases, however, stale data is not acceptable. In those cases only certain slaves
or even only master accesses are allowed to achieve the required quality of service from the cluster.

As of PECL mysqlnd_ms 1.2.0 the plugin is capable of selecting MySQL replication nodes automatically
that deliver session consistency or strong consistency. Session consistency means that one client can read
its writes. Other clients may or may not see the clients' write. Strong consistency means that all clients will
see all writes from the client.

Example 7.21 Session consistency: read your writes

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost",

Service level and consistency

395

 "socket": "\/tmp\/mysql.sock"
 }
 },
 "slave": {
 "slave_0": {
 "host": "127.0.0.1",
 "port": "3306"
 }
 }
 }
}

Example 7.22 Requesting session consistency

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli) {
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
}

/* read-write splitting: master used */
if (!$mysqli->query("INSERT INTO orders(order_id, item) VALUES (1, 'christmas tree, 1.8m')")) {
 /* Please use better error handling in your code */
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

/* Request session consistency: read your writes */
if (!mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_SESSION)) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

/* Plugin picks a node which has the changes, here: master */
if (!$res = $mysqli->query("SELECT item FROM orders WHERE order_id = 1")) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

var_dump($res->fetch_assoc());

/* Back to eventual consistency: stale data allowed */
if (!mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL)) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

/* Plugin picks any slave, stale data is allowed */
if (!$res = $mysqli->query("SELECT item, price FROM specials")) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
?>

Service levels can be set in the plugins configuration file and at runtime using mysqlnd_ms_set_qos. In
the example the function is used to enforce session consistency (read your writes) for all future statements
until further notice. The SELECT statement on the orders table is run on the master to ensure the
previous write can be seen by the client. Read-write splitting logic has been adapted to fulfill the service
level.

After the application has read its changes from the orders table it returns to the default service level,
which is eventual consistency. Eventual consistency puts no restrictions on choosing a node for statement
execution. Thus, the SELECT statement on the specials table is executed on a slave.

Service level and consistency

396

The new functionality supersedes the use of SQL hints and the master_on_write configuration option.
In many cases mysqlnd_ms_set_qos is easier to use, more powerful improves portability.

Example 7.23 Maximum age/slave lag

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost",
 "socket": "\/tmp\/mysql.sock"
 }
 },
 "slave": {
 "slave_0": {
 "host": "127.0.0.1",
 "port": "3306"
 }
 },
 "failover" : "master"
 }
}

Example 7.24 Limiting slave lag

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli) {
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
}

/* Read from slaves lagging no more than four seconds */
$ret = mysqlnd_ms_set_qos(
 $mysqli,
 MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL,
 MYSQLND_MS_QOS_OPTION_AGE,
 4
);

if (!$ret) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

/* Plugin picks any slave, which may or may not have the changes */
if (!$res = $mysqli->query("SELECT item, price FROM daytrade")) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

/* Back to default: use of all slaves and masters permitted */
if (!mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL)) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
?>

The eventual consistency service level can be used with an optional parameter to set a maximum slave
lag for choosing slaves. If set, the plugin checks SHOW SLAVE STATUS for all configured slaves. In
case of the example, only slaves for which Slave_IO_Running=Yes, Slave_SQL_Running=Yes and

Service level and consistency

397

Seconds_Behind_Master <= 4 is true are considered for executing the statement SELECT item,
price FROM daytrade.

Checking SHOW SLAVE STATUS is done transparently from an applications perspective. Errors, if any,
are reported as warnings. No error will be set on the connection handle. Even if all SHOW SLAVE STATUS
SQL statements executed by the plugin fail, the execution of the users statement is not stopped, given that
master fail over is enabled. Thus, no application changes are required.

Expensive and slow operation

Checking SHOW SLAVE STATUS for all slaves adds overhead to the application.
It is an expensive and slow background operation. Try to minimize the use of it.
Unfortunately, a MySQL replication cluster does not give clients the possibility to
request a list of candidates from a central instance. Thus, a more efficient way of
checking the slaves lag is not available.

Please, note the limitations and properties of SHOW SLAVE STATUS as explained in
the MySQL reference manual.

To prevent mysqlnd_ms from emitting a warning if no slaves can be found that lag no more than the
defined number of seconds behind the master, it is necessary to enable master fail over in the plugins
configuration file. If no slaves can be found and fail over is turned on, the plugin picks a master for
executing the statement.

If no slave can be found and fail over is turned off, the plugin emits a warning, it does not execute the
statement and it sets an error on the connection.

Example 7.25 Fail over not set

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost",
 "socket": "\/tmp\/mysql.sock"
 }
 },
 "slave": {
 "slave_0": {
 "host": "127.0.0.1",
 "port": "3306"
 }
 }
 }
}

Example 7.26 No slave within time limit

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli) {
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
}

/* Read from slaves lagging no more than four seconds */

Global transaction IDs

398

$ret = mysqlnd_ms_set_qos(
 $mysqli,
 MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL,
 MYSQLND_MS_QOS_OPTION_AGE,
 4
);

if (!$ret) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

/* Plugin picks any slave, which may or may not have the changes */
if (!$res = $mysqli->query("SELECT item, price FROM daytrade")) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

/* Back to default: use of all slaves and masters permitted */
if (!mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL)) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
?>

The above example will output:

PHP Warning: mysqli::query(): (mysqlnd_ms) Couldn't find the appropriate slave connection. 0 slaves to choose from. Something is wrong in %s on line %d
PHP Warning: mysqli::query(): (mysqlnd_ms) No connection selected by the last filter in %s on line %d
[2000] (mysqlnd_ms) No connection selected by the last filter

7.4.8 Global transaction IDs

Copyright 1997-2014 the PHP Documentation Group.

Version requirement

A client-side global transaction ID injection has been introduced in mysqlnd_ms
version 1.2.0-alpha. The feature is not required for synchronous clusters, such
as MySQL Cluster. Use it with asynchronous clusters such as classical MySQL
replication.

As of MySQL 5.6.5-m8 release candidate the MySQL server features built-in global
transaction identifiers. The MySQL built-in global transaction ID feature is supported
by PECL/mysqlnd_ms 1.3.0-alpha or later. However, the final feature set found
in MySQL 5.6 production releases to date is not sufficient to support the ideas
discussed below in all cases. Please, see also the concepts section.

PECL/mysqlnd_ms can either use its own global transaction ID emulation or the global transaction ID
feature built-in to MySQL 5.6.5-m8 or later. From a developer perspective the client-side and server-side
approach offer the same features with regards to service levels provided by PECL/mysqlnd_ms. Their
differences are discussed in the concepts section.

The quickstart first demonstrates the use of the client-side global transaction ID emulation built-in to
PECL/mysqlnd_ms before its show how to use the server-side counterpart. The order ensures that the
underlying idea is discussed first.

Idea and client-side emulation

Global transaction IDs

399

In its most basic form a global transaction ID (GTID) is a counter in a table on the master. The counter is
incremented whenever a transaction is committed on the master. Slaves replicate the table. The counter
serves two purposes. In case of a master failure, it helps the database administrator to identify the most
recent slave for promoting it to the new master. The most recent slave is the one with the highest counter
value. Applications can use the global transaction ID to search for slaves which have replicated a certain
write (identified by a global transaction ID) already.

PECL/mysqlnd_ms can inject SQL for every committed transaction to increment a GTID counter. The so
created GTID is accessible by the application to identify an applications write operation. This enables the
plugin to deliver session consistency (read your writes) service level by not only querying masters but also
slaves which have replicated the change already. Read load is taken away from the master.

Client-side global transaction ID emulation has some limitations. Please, read the concepts section
carefully to fully understand the principles and ideas behind it, before using in production environments.
The background knowledge is not required to continue with the quickstart.

First, create a counter table on your master server and insert a record into it. The plugin does not assist
creating the table. Database administrators must make sure it exists. Depending on the error reporting
mode, the plugin will silently ignore the lack of the table or bail out.

Example 7.27 Create counter table on master

CREATE TABLE `trx` (
 `trx_id` int(11) DEFAULT NULL,
 `last_update` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
) ENGINE=InnoDB DEFAULT CHARSET=latin1
INSERT INTO `trx`(`trx_id`) VALUES (1);

In the plugins configuration file set the SQL to update the global transaction ID table using on_commit
from the global_transaction_id_injection section. Make sure the table name used for the
UPDATE statement is fully qualified. In the example, test.trx is used to refer to table trx in the schema
(database) test. Use the table that was created in the previous step. It is important to set the fully
qualified table name because the connection on which the injection is done may use a different default
database. Make sure the user that opens the connection is allowed to execute the UPDATE.

Enable reporting of errors that may occur when mysqlnd_ms does global transaction ID injection.

Example 7.28 Plugin config: SQL for client-side GTID injection

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost",
 "socket": "\/tmp\/mysql.sock"
 }
 },
 "slave": {
 "slave_0": {
 "host": "127.0.0.1",
 "port": "3306"
 }
 },
 "global_transaction_id_injection":{
 "on_commit":"UPDATE test.trx SET trx_id = trx_id + 1",
 "report_error":true

Global transaction IDs

400

 }
 }
}

Example 7.29 Transparent global transaction ID injection

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli) {
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
}

/* auto commit mode, transaction on master, GTID must be incremented */
if (!$mysqli->query("DROP TABLE IF EXISTS test")) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

/* auto commit mode, transaction on master, GTID must be incremented */
if (!$mysqli->query("CREATE TABLE test(id INT)")) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

/* auto commit mode, transaction on master, GTID must be incremented */
if (!$mysqli->query("INSERT INTO test(id) VALUES (1)")) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

/* auto commit mode, read on slave, no increment */
if (!($res = $mysqli->query("SELECT id FROM test"))) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

var_dump($res->fetch_assoc());
?>

The above example will output:

array(1) {
 ["id"]=>
 string(1) "1"
}

The example runs three statements in auto commit mode on the master, causing three transactions on
the master. For every such statement, the plugin will inject the configured UPDATE transparently before
executing the users SQL statement. When the script ends the global transaction ID counter on the master
has been incremented by three.

The fourth SQL statement executed in the example, a SELECT, does not trigger an increment. Only
transactions (writes) executed on a master shall increment the GTID counter.

SQL for global transaction ID: efficient solution wanted!

The SQL used for the client-side global transaction ID emulation is inefficient.
It is optimized for clearity not for performance. Do not use it for production

Global transaction IDs

401

environments. Please, help finding an efficient solution for inclusion in the manual.
We appreciate your input.

Example 7.30 Plugin config: SQL for fetching GTID

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost",
 "socket": "\/tmp\/mysql.sock"
 }
 },
 "slave": {
 "slave_0": {
 "host": "127.0.0.1",
 "port": "3306"
 }
 },
 "global_transaction_id_injection":{
 "on_commit":"UPDATE test.trx SET trx_id = trx_id + 1",
 "fetch_last_gtid" : "SELECT MAX(trx_id) FROM test.trx",
 "report_error":true
 }
 }
}

Example 7.31 Obtaining GTID after injection

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli) {
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
}

/* auto commit mode, transaction on master, GTID must be incremented */
if (!$mysqli->query("DROP TABLE IF EXISTS test")) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

printf("GTID after transaction %s\n", mysqlnd_ms_get_last_gtid($mysqli));

/* auto commit mode, transaction on master, GTID must be incremented */
if (!$mysqli->query("CREATE TABLE test(id INT)")) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

printf("GTID after transaction %s\n", mysqlnd_ms_get_last_gtid($mysqli));
?>

The above example will output:

GTID after transaction 7
GTID after transaction 8

Global transaction IDs

402

Applications can ask PECL mysqlnd_ms for a global transaction ID which belongs to the last write
operation performed by the application. The function mysqlnd_ms_get_last_gtid returns
the GTID obtained when executing the SQL statement from the fetch_last_gtid entry of the
global_transaction_id_injection section from the plugins configuration file. The function may be
called after the GTID has been incremented.

Applications are adviced not to run the SQL statement themselves as this bares the risk of accidently
causing an implicit GTID increment. Also, if the function is used, it is easy to migrate an application
from one SQL statement for fetching a transaction ID to another, for example, if any MySQL server ever
features built-in global transaction ID support.

The quickstart shows a SQL statement which will return a GTID equal or greater to that created for the
previous statement. It is exactly the GTID created for the previous statement if no other clients have
incremented the GTID in the time span between the statement execution and the SELECT to fetch the
GTID. Otherwise, it is greater.

Example 7.32 Plugin config: Checking for a certain GTID

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost",
 "socket": "\/tmp\/mysql.sock"
 }
 },
 "slave": {
 "slave_0": {
 "host": "127.0.0.1",
 "port": "3306"
 }
 },
 "global_transaction_id_injection":{
 "on_commit":"UPDATE test.trx SET trx_id = trx_id + 1",
 "fetch_last_gtid" : "SELECT MAX(trx_id) FROM test.trx",
 "check_for_gtid" : "SELECT trx_id FROM test.trx WHERE trx_id >= #GTID",
 "report_error":true
 }
 }
}

Example 7.33 Session consistency service level and GTID combined

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli) {
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
}

/* auto commit mode, transaction on master, GTID must be incremented */
if (!$mysqli->query("DROP TABLE IF EXISTS test")
 || !$mysqli->query("CREATE TABLE test(id INT)")
 || !$mysqli->query("INSERT INTO test(id) VALUES (1)")
) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));

Global transaction IDs

403

}

/* GTID as an identifier for the last write */
$gtid = mysqlnd_ms_get_last_gtid($mysqli);

/* Session consistency (read your writes): try to read from slaves not only master */
if (false == mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_SESSION, MYSQLND_MS_QOS_OPTION_GTID, $gtid)) {
 die(sprintf("[006] [%d] %s\n", $mysqli->errno, $mysqli->error));
}

/* Either run on master or a slave which has replicated the INSERT */
if (!($res = $mysqli->query("SELECT id FROM test"))) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

var_dump($res->fetch_assoc());
?>

A GTID returned from mysqlnd_ms_get_last_gtid can be used as an option for the session
consistency service level. Session consistency delivers read your writes. Session consistency can
be requested by calling mysqlnd_ms_set_qos. In the example, the plugin will execute the SELECT
statement either on the master or on a slave which has replicated the previous INSERT already.

PECL mysqlnd_ms will transparently check every configured slave if it has replicated the INSERT by
checking the slaves GTID table. The check is done running the SQL set with the check_for_gtid option
from the global_transaction_id_injection section of the plugins configuration file. Please note,
that this is a slow and expensive procedure. Applications should try to use it sparsely and only if read load
on the master becomes to high otherwise.

Use of the server-side global transaction ID feature

Insufficient server support in MySQL 5.6

The plugin has been developed against a pre-production version of MySQL 5.6. It
turns out that all released production versions of MySQL 5.6 do not provide clients
with enough information to enforce session consistency based on GTIDs. Please,
read the concepts section for details.

Starting with MySQL 5.6.5-m8 the MySQL Replication system features server-side global transaction IDs.
Transaction identifiers are automatically generated and maintained by the server. Users do not need to
take care of maintaining them. There is no need to setup any tables in advance, or for setting on_commit.
A client-side emulation is no longer needed.

Clients can continue to use global transaction identifier to achieve session consistency when reading from
MySQL Replication slaves in some cases but not all! The algorithm works as described above. Different
SQL statements must be configured for fetch_last_gtid and check_for_gtid. The statements are
given below. Please note, MySQL 5.6.5-m8 is a development version. Details of the server implementation
may change in the future and require adoption of the SQL statements shown.

Using the following configuration any of the above described functionality can be used together with the
server-side global transaction ID feature. mysqlnd_ms_get_last_gtid and mysqlnd_ms_set_qos
continue to work as described above. The only difference is that the server does not use a simple
sequence number but a string containing of a server identifier and a sequence number. Thus, users cannot
easily derive an order from GTIDs returned by mysqlnd_ms_get_last_gtid.

Example 7.34 Plugin config: using MySQL 5.6.5-m8 built-in GTID feature

Cache integration

404

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost",
 "socket": "\/tmp\/mysql.sock"
 }
 },
 "slave": {
 "slave_0": {
 "host": "127.0.0.1",
 "port": "3306"
 }
 },
 "global_transaction_id_injection":{
 "fetch_last_gtid" : "SELECT @@GLOBAL.GTID_DONE AS trx_id FROM DUAL",
 "check_for_gtid" : "SELECT GTID_SUBSET('#GTID', @@GLOBAL.GTID_DONE) AS trx_id FROM DUAL",
 "report_error":true
 }
 }
}

7.4.9 Cache integration

Copyright 1997-2014 the PHP Documentation Group.

Version requirement, dependencies and status

Please, find more about version requirements, extension load order dependencies
and the current status in the concepts section!

Databases clusters can deliver different levels of consistency. As of PECL/mysqlnd_ms 1.2.0 it is possible
to advice the plugin to consider only cluster nodes that can deliver the consistency level requested. For
example, if using asynchronous MySQL Replication with its cluster-wide eventual consistency, it is possible
to request session consistency (read your writes) at any time using mysqlnd_ms_set_quos. Please, see
also the service level and consistency introduction.

Example 7.35 Recap: quality of service to request read your writes

/* Request session consistency: read your writes */
if (!mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_SESSION))
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));

Assuming PECL/mysqlnd has been explicitly told to deliver no consistency level higher than eventual
consistency, it is possible to replace a database node read access with a client-side cache using time-to-
live (TTL) as its invalidation strategy. Both the database node and the cache may or may not serve current
data as this is what eventual consistency defines.

Replacing a database node read access with a local cache access can improve overall performance and
lower the database load. If the cache entry is every reused by other clients than the one creating the cache
entry, a database access is saved and thus database load is lowered. Furthermore, system performance
can become better if computation and delivery of a database query is slower than a local cache access.

Example 7.36 Plugin config: no special entries for caching

http://www.php.net/mysqlnd_ms_set_quos

Cache integration

405

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost",
 "socket": "\/tmp\/mysql.sock"
 }
 },
 "slave": {
 "slave_0": {
 "host": "127.0.0.1",
 "port": "3306"
 }
 },
 }
}

Example 7.37 Caching a slave request

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli) {
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
}

if (!$mysqli->query("DROP TABLE IF EXISTS test")
 || !$mysqli->query("CREATE TABLE test(id INT)")
 || !$mysqli->query("INSERT INTO test(id) VALUES (1)")
) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

/* Explicitly allow eventual consistency and caching (TTL <= 60 seconds) */
if (false == mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL, MYSQLND_MS_QOS_OPTION_CACHE, 60)) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

/* To make this example work, we must wait for a slave to catch up. Brute force style. */
$attempts = 0;
do {
 /* check if slave has the table */
 if ($res = $mysqli->query("SELECT id FROM test")) {
 break;
 } else if ($mysqli->errno) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
 }
 /* wait for slave to catch up */
 usleep(200000);
} while ($attempts++ < 10);

/* Query has been run on a slave, result is in the cache */
assert($res);
var_dump($res->fetch_assoc());

/* Served from cache */
$res = $mysqli->query("SELECT id FROM test");
?>

The example shows how to use the cache feature. First, you have to set the quality of service to eventual
consistency and explicitly allow for caching. This is done by calling mysqlnd_ms_set_qos. Then,

Cache integration

406

the result set of every read-only statement is cached for upto that many seconds as allowed with
mysqlnd_ms_set_qos.

The actual TTL is lower or equal to the value set with mysqlnd_ms_set_qos. The value passed to the
function sets the maximum age (seconds) of the data delivered. To calculate the actual TTL value the
replication lag on a slave is checked and subtracted from the given value. If, for example, the maximum
age is set to 60 seconds and the slave reports a lag of 10 seconds the resulting TTL is 50 seconds. The
TTL is calculated individually for every cached query.

Example 7.38 Read your writes and caching combined

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli) {
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
}

if (!$mysqli->query("DROP TABLE IF EXISTS test")
 || !$mysqli->query("CREATE TABLE test(id INT)")
 || !$mysqli->query("INSERT INTO test(id) VALUES (1)")
) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

/* Explicitly allow eventual consistency and caching (TTL <= 60 seconds) */
if (false == mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL, MYSQLND_MS_QOS_OPTION_CACHE, 60)) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

/* To make this example work, we must wait for a slave to catch up. Brute force style. */
$attempts = 0;
do {
 /* check if slave has the table */
 if ($res = $mysqli->query("SELECT id FROM test")) {
 break;
 } else if ($mysqli->errno) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
 }
 /* wait for slave to catch up */
 usleep(200000);
} while ($attempts++ < 10);

assert($res);

/* Query has been run on a slave, result is in the cache */
var_dump($res->fetch_assoc());

/* Served from cache */
if (!($res = $mysqli->query("SELECT id FROM test"))) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
var_dump($res->fetch_assoc());

/* Update on master */
if (!$mysqli->query("UPDATE test SET id = 2")) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

/* Read your writes */
if (false == mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_SESSION)) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

Failover

407

/* Fetch latest data */
if (!($res = $mysqli->query("SELECT id FROM test"))) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
var_dump($res->fetch_assoc());
?>

The quality of service can be changed at any time to avoid further cache usage. If needed, you can switch
to read your writes (session consistency). In that case, the cache will not be used and fresh data is read.

7.4.10 Failover

Copyright 1997-2014 the PHP Documentation Group.

By default, the plugin does not attempt to fail over if connecting to a host fails. This prevents pitfalls related
to connection state. It is recommended to manually handle connection errors in a way similar to a failed
transaction. You should catch the error, rebuild the connection state and rerun your query as shown below.

If connection state is no issue to you, you can alternatively enable automatic and silent failover. Depending
on the configuration, the automatic and silent failover will either attempt to fail over to the master before
issuing and error or, try to connect to other slaves, given the query allowes for it, before attempting to
connect to a master. Because automatic failover is not fool-proof, it is not discussed in the quickstart.
Instead, details are given in the concepts section below.

Example 7.39 Manual failover, automatic optional

 {
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost",
 "socket": "\/tmp\/mysql.sock"
 }
 },
 "slave": {
 "slave_0": {
 "host": "simulate_slave_failure",
 "port": "0"
 },
 "slave_1": {
 "host": "127.0.0.1",
 "port": 3311
 }
 },
 "filters": { "roundrobin": [] }
 }
 }

Example 7.40 Manual failover

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli) {
 /* Of course, your error handling is nicer... */

Partitioning and Sharding

408

 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
}

$sql = "SELECT 1 FROM DUAL";

/* error handling as it should be done regardless of the plugin */
if (!($res = $link->query($sql))) {
 /* plugin specific: check for connection error */
 switch ($link->errno) {
 case 2002:
 case 2003:
 case 2005:
 printf("Connection error - trying next slave!\n");
 /* load balancer will pick next slave */
 $res = $link->query($sql);
 break;
 default:
 /* no connection error, failover is unlikely to help */
 die(sprintf("SQL error: [%d] %s", $link->errno, $link->error));
 break;
 }
}
if ($res) {
 var_dump($res->fetch_assoc());
}
?>

7.4.11 Partitioning and Sharding

Copyright 1997-2014 the PHP Documentation Group.

Database clustering is done for various reasons. Clusters can improve availability, fault tolerance, and
increase performance by applying a divide and conquer approach as work is distributed over many
machines. Clustering is sometimes combined with partitioning and sharding to further break up a large
complex task into smaller, more manageable units.

The mysqlnd_ms plugin aims to support a wide variety of MySQL database clusters. Some flavors of
MySQL database clusters have built-in methods for partitioning and sharding, which could be transparent
to use. The plugin supports the two most common approaches: MySQL Replication table filtering, and
Sharding (application based partitioning).

MySQL Replication supports partitioning as filters that allow you to create slaves that replicate all or
specific databases of the master, or tables. It is then in the responsibility of the application to choose a
slave according to the filter rules. You can either use the mysqlnd_ms node_groups filter to manually
support this, or use the experimental table filter.

Manual partitioning or sharding is supported through the node grouping filter, and SQL hints as of 1.5.0.
The node_groups filter lets you assign a symbolic name to a group of master and slave servers. In the
example, the master master_0 and slave_0 form a group with the name Partition_A. It is entirely up
to you to decide what makes up a group. For example, you may use node groups for sharding, and use the
group names to address shards like Shard_A_Range_0_100.

Example 7.41 Cluster node groups

 {
 "myapp": {
 "master": {
 "master_0": {

Partitioning and Sharding

409

 "host": "localhost",
 "socket": "\/tmp\/mysql.sock"
 }
 },
 "slave": {
 "slave_0": {
 "host": "simulate_slave_failure",
 "port": "0"
 },
 "slave_1": {
 "host": "127.0.0.1",
 "port": 3311
 }
 },
 "filters": {
 "node_groups": {
 "Partition_A" : {
 "master": ["master_0"],
 "slave": ["slave_0"]
 }
 },
 "roundrobin": []
 }
 }
}

Example 7.42 Manual partitioning using SQL hints

<?php
function select($mysqli, $msg, $hint = '')
{
 /* Note: weak test, two connections to two servers may have the same thread id */
 $sql = sprintf("SELECT CONNECTION_ID() AS _thread, '%s' AS _hint FROM DUAL", $msg);
 if ($hint) {
 $sql = $hint . $sql;
 }
 if (!($res = $mysqli->query($sql))) {
 printf("[%d] %s", $mysqli->errno, $mysqli->error);
 return false;
 }
 $row = $res->fetch_assoc();
 printf("%d - %s - %s\n", $row['_thread'], $row['_hint'], $sql);
 return true;
}

$mysqli = new mysqli("myapp", "user", "password", "database");
if (!$mysqli) {
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
}

/* All slaves allowed */
select($mysqli, "slave_0");
select($mysqli, "slave_1");

/* only servers of node group "Partition_A" allowed */
select($mysqli, "slave_1", "/*Partition_A*/");
select($mysqli, "slave_1", "/*Partition_A*/");
?>

MySQL Fabric

410

6804 - slave_0 - SELECT CONNECTION_ID() AS _thread, 'slave1' AS _hint FROM DUAL
2442 - slave_1 - SELECT CONNECTION_ID() AS _thread, 'slave2' AS _hint FROM DUAL
6804 - slave_0 - /*Partition_A*/SELECT CONNECTION_ID() AS _thread, 'slave1' AS _hint FROM DUAL
6804 - slave_0 - /*Partition_A*/SELECT CONNECTION_ID() AS _thread, 'slave1' AS _hint FROM DUAL

By default, the plugin will use all configured master and slave servers for query execution. But if a query
begins with a SQL hint like /*node_group*/, the plugin will only consider the servers listed in the
node_group for query execution. Thus, SELECT queries prefixed with /*Partition_A*/ will only be
executed on slave_0.

7.4.12 MySQL Fabric

Copyright 1997-2014 the PHP Documentation Group.

Version requirement and status

Work on supporting MySQL Fabric started in version 1.6. Please, consider the
support to be of pre-alpha quality. The manual may not list all features or feature
limitations. This is work in progress.

Sharding is the only use case supported by the plugin to date.

MySQL Fabric concepts

Please, check the MySQL reference manual for more information about MySQL
Fabric and how to set it up. The PHP manual assumes that you are familiar with the
basic concepts and ideas of MySQL Fabric.

MySQL Fabric is a system for managing farms of MySQL servers to achive High Availability and optionally
support sharding. Technically, it is a middleware to manage and monitor MySQL servers.

Clients query MySQL Fabric to obtain lists of MySQL servers, their state and their roles. For example,
clients can request a list of slaves for a MySQL Replication group and whether they are ready to handle
SQL requests. Another example is a cluster of sharded MySQL servers where the client seeks to know
which shard to query for a given table and shard key. If configured to use Fabric, the plugin uses XML RCP
over HTTP to obtain the list at runtime from a MySQL Fabric host. The XML remote procedure call itself is
done in the background and transparent from a developers point of view.

Instead of listing MySQL servers directly in the plugins configuration file it contains a list of one or more
MySQL Fabric hosts

Example 7.43 Plugin config: Fabric hosts instead of MySQL servers

{
 "myapp": {
 "fabric": {
 "hosts": [
 {
 "host" : "127.0.0.1",
 "port" : 8080
 }
]
 }
 }
}

Concepts

411

Users utilize the new functions mysqlnd_ms_fabric_select_shard and
mysqlnd_ms_fabric_select_global to switch to the set of servers responsible for a given shard key.
Then, the plugin picks an appropriate server for running queries on. When doing so, the plugin takes care
of additional load balancing rules set.

The below example assumes that MySQL Fabric has been setup to shard the table test.fabrictest
using the id column of the table as a shard key.

Example 7.44 Manual partitioning using SQL hints

<?php
$mysqli = new mysqli("myapp", "user", "password", "database");
if (!$mysqli) {
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));
}

/* Create a global table - a table available on all shards */
mysqlnd_ms_fabric_select_global($mysqli, "test.fabrictest");
if (!$mysqli->query("CREATE TABLE test.fabrictest(id INT NOT NULL PRIMARY KEY)")) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

/* Switch connection to appropriate shard and insert record */
mysqlnd_ms_fabric_select_shard($mysqli, "test.fabrictest", 10);
if (!($res = $mysqli->query("INSERT INTO fabrictest(id) VALUES (10)"))) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}

/* Try to read newly inserted record */
mysqlnd_ms_fabric_select_shard($mysqli, "test.fabrictest", 10);
if (!($res = $mysqli->query("SELECT id FROM test WHERE id = 10"))) {
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
}
?>

The example creates the sharded table, inserts a record and reads the record thereafter. All SQL data
definition language (DDL) operations on a sharded table must be applied to the so called global server
group. Prior to creating or altering a sharded table, mysqlnd_ms_fabric_select_global is called to
switch the given connection to the corresponding servers of the global group. Data manipulation (DML)
SQL statements must be sent to the shards directly. The mysqlnd_ms_fabric_select_shard
switches a connection to shards handling a certain shard key.

7.5 Concepts

Copyright 1997-2014 the PHP Documentation Group.

This explains the architecture and related concepts for this plugin, and describes the impact that MySQL
replication and this plugin have on developmental tasks while using a database cluster. Reading and
understanding these concepts is required, in order to use this plugin with success.

7.5.1 Architecture

Copyright 1997-2014 the PHP Documentation Group.

Connection pooling and switching

412

The mysqlnd replication and load balancing plugin is implemented as a PHP extension. It is written in C
and operates under the hood of PHP. During the startup of the PHP interpreter, in the module init phase of
the PHP engine, it gets registered as a mysqlnd plugin to replace selected mysqlnd C methods.

At PHP runtime, it inspects queries sent from mysqlnd (PHP) to the MySQL server. If a query is recognized
as read-only, it will be sent to one of the configured slave servers. Statements are considered read-only if
they either start with SELECT, the SQL hint /*ms=slave*/ or a slave had been chosen for running the
previous query, and the query started with the SQL hint /*ms=last_used*/. In all other cases, the query
will be sent to the MySQL replication master server.

For better portability, applications should use the MYSQLND_MS_MASTER_SWITCH,
MYSQLND_MS_SLAVE_SWITCH, and MYSQLND_MS_LAST_USED_SWITCH predefined mysqlnd_ms
constants, instead of their literal values, such as /*ms=slave*/.

The plugin handles the opening and closing of database connections to both master and slave servers.
From an application point of view, there continues to be only one connection handle. However, internally,
this one public connection handle represents a pool of network connections that are managed by the
plugin. The plugin proxies queries to the master server, and to the slaves using multiple connections.

Database connections have a state consisting of, for example, transaction status, transaction settings,
character set settings, and temporary tables. The plugin will try to maintain the same state among all
internal connections, whenever this can be done in an automatic and transparent way. In cases where it is
not easily possible to maintain state among all connections, such as when using BEGIN TRANSACTION,
the plugin leaves it to the user to handle.

7.5.2 Connection pooling and switching

Copyright 1997-2014 the PHP Documentation Group.

The replication and load balancing plugin changes the semantics of a PHP MySQL connection handle.
The existing API of the PHP MySQL extensions (mysqli, mysql, and PDO_MYSQL) are not changed in
a way that functions are added or removed. But their behavior changes when using the plugin. Existing
applications do not need to be adapted to a new API, but they may need to be modified because of the
behavior changes.

The plugin breaks the one-by-one relationship between a mysqli, mysql, and PDO_MYSQL connection
handle and a MySQL network connection. And a mysqli, mysql, and PDO_MYSQL connection handle
represents a local pool of connections to the configured MySQL replication master and MySQL replication
slave servers. The plugin redirects queries to the master and slave servers. At some point in time one and
the same PHP connection handle may point to the MySQL master server. Later on, it may point to one of
the slave servers or still the master. Manipulating and replacing the network connection referenced by a
PHP MySQL connection handle is not a transparent operation.

Every MySQL connection has a state. The state of the connections in the connection pool of the plugin
can differ. Whenever the plugin switches from one wire connection to another, the current state of the user
connection may change. The applications must be aware of this.

The following list shows what the connection state consists of. The list may not be complete.

• Transaction status

• Temporary tables

• Table locks

• Session system variables and session user variables

Connection pooling and switching

413

• The current database set using USE and other state chaining SQL commands

• Prepared statements

• HANDLER variables

• Locks acquired with GET_LOCK()

Connection switches happen right before queries are executed. The plugin does not switch the current
connection until the next statement is executed.

Replication issues

See also the MySQL reference manual chapter about replication features and
related issues. Some restrictions may not be related to the PHP plugin, but are
properties of the MySQL replication system.

Broadcasted messages

The plugins philosophy is to align the state of connections in the pool only if the state is under full control
of the plugin, or if it is necessary for security reasons. Just a few actions that change the state of the
connection fall into this category.

The following is a list of connection client library calls that change state, and are broadcasted to all open
connections in the connection pool.

If any of the listed calls below are to be executed, the plugin loops over all open master and slave
connections. The loop continues until all servers have been contacted, and the loop does not break if a
server indicates a failure. If possible, the failure will propagate to the called user API function, which may
be detected depending on which underlying library function was triggered.

Library
call

Notes Version

change_user()Called by the mysqli_change_user user API call. Also triggered upon
reuse of a persistent mysqli connection.

Since 1.0.0.

select_dbCalled by the following user API calls: mysql_select_db,
mysql_list_tables, mysql_db_query, mysql_list_fields,
mysqli_select_db. Note, that SQL USE is not monitored.

Since 1.0.0.

set_charset()Called by the following user API calls: mysql_set_charset.
mysqli_set_charset. Note, that SQL SET NAMES is not monitored.

Since 1.0.0.

set_server_option()Called by the following user API calls: mysqli_multi_query,
mysqli_real_query, mysqli_query, mysql_query.

Since 1.0.0.

set_client_option()Called by the following user API calls: mysqli_options,
mysqli_ssl_set, mysqli_connect, mysql_connect,
mysql_pconnect.

Since 1.0.0.

set_autocommit()Called by the following user API calls: mysqli_autocommit,
PDO::setAttribute(PDO::ATTR_AUTOCOMMIT).

Since 1.0.0. PHP
>= 5.4.0.

ssl_set()Called by the following user API calls: mysqli_ssl_set. Since 1.1.0.

Broadcasting and lazy connections

The plugin does not proxy or “remember” all settings to apply them on connections opened in the future.
This is important to remember, if using lazy connections. Lazy connections are connections which are not
opened before the client sends the first connection. Use of lazy connections is the default plugin action.

http://dev.mysql.com/doc/mysql/en/replication.html

Local transaction handling

414

The following connection library calls each changed state, and their execution is recorded for later use
when lazy connections are opened. This helps ensure that the connection state of all connections in the
connection pool are comparable.

Library
call

Notes Version

change_user()User, password and database recorded for future use. Since 1.1.0.

select_dbDatabase recorded for future use. Since 1.1.0.

set_charset()Calls set_client_option(MYSQL_SET_CHARSET_NAME, charset)
on lazy connection to ensure charset will be used upon opening the
lazy connection.

Since 1.1.0.

set_autocommit()Adds SET AUTOCOMMIT=0|1 to the list of init commands of a lazy
connection using set_client_option(MYSQL_INIT_COMMAND,
"SET AUTOCOMMIT=...%quot;).

Since 1.1.0. PHP
>= 5.4.0.

Connection state

The connection state is not only changed by API calls. Thus, even if PECL
mysqlnd_ms monitors all API calls, the application must still be aware. Ultimately, it
is the applications responsibility to maintain the connection state, if needed.

Charsets and string escaping

Due to the use of lazy connections, which are a default, it can happen that an application tries to
escape a string for use within SQL statements before a connection has been established. In this case
string escaping is not possible. The string escape function does not know what charset to use before a
connection has been established.

To overcome the problem a new configuration setting server_charset has been introduced in version
1.4.0.

Attention has to be paid on escaping strings with a certain charset but using the result on a connection
that uses a different charset. Please note, that PECL/mysqlnd_ms manipulates connections and one
application level connection represents a pool of multiple connections that all may have different default
charsets. It is recommended to configure the servers involved to use the same default charsets. The
configuration setting server_charset does help with this situation as well. If using server_charset,
the plugin will set the given charset on all newly opened connections.

7.5.3 Local transaction handling

Copyright 1997-2014 the PHP Documentation Group.

Transaction handling is fundamentally changed. An SQL transaction is a unit of work that is run on one
database server. The unit of work consists of one or more SQL statements.

By default the plugin is not aware of SQL transactions. The plugin may switch connections for load
balancing at any point in time. Connection switches may happen in the middle of a transaction. This is
against the nature of an SQL transaction. By default, the plugin is not transaction safe.

Any kind of MySQL load balancer must be hinted about the begin and end of a transaction. Hinting can
either be done implicitly by monitoring API calls or using SQL hints. Both options are supported by the
plugin, depending on your PHP version. API monitoring requires PHP 5.4.0 or newer. The plugin, like any
other MySQL load balancer, cannot detect transaction boundaries based on the MySQL Client Server

Error handling

415

Protocol. Thus, entirely transparent transaction aware load balancing is not possible. The least intrusive
option is API monitoring, which requires little to no application changes, depending on your application.

Please, find examples of using SQL hints or the API monitoring in the examples section. The details behind
the API monitoring, which makes the plugin transaction aware, are described below.

Beginning with PHP 5.4.0, the mysqlnd library allows this plugin to subclass the library C API call
set_autocommit(), to detect the status of autocommit mode.

The PHP MySQL extensions either issue a query (such as SET AUTOCOMMIT=0|1), or use the mysqlnd
library call set_autocommit() to control the autocommit setting. If an extension makes use of
set_autocommit(), the plugin can be made transaction aware. Transaction awareness cannot be
achieved if using SQL to set the autocommit mode. The library function set_autocommit() is called by
the mysqli_autocommit and PDO::setAttribute(PDO::ATTR_AUTOCOMMIT) user API calls.

The plugin configuration option trx_stickiness=master can be used to make the plugin transactional aware.
In this mode, the plugin stops load balancing if autocommit becomes disabled, and directs all statements to
the master until autocommit gets enabled.

An application that does not want to set SQL hints for transactions but wants to use the transparent
API monitoring to avoid application changes must make sure that the autocommit settings is changed
exclusively through the listed API calls.

API based transaction boundary detection has been improved with PHP 5.5.0 and PECL/mysqlnd_ms
1.5.0 to cover not only calls to mysqli_autocommit but also mysqli_begin, mysqli_commit and
mysqli_rollback.

7.5.4 Error handling

Copyright 1997-2014 the PHP Documentation Group.

Applications using PECL/mysqlnd_ms should implement proper error handling for all user API calls. And
because the plugin changes the semantics of a connection handle, API calls may return unexpected errors.
If using the plugin on a connection handle that no longer represents an individual network connection, but a
connection pool, an error code and error message will be set on the connection handle whenever an error
occurs on any of the network connections behind.

If using lazy connections, which is the default, connections are not opened until they are needed for query
execution. Therefore, an API call for a statement execution may return a connection error. In the example
below, an error is provoked when trying to run a statement on a slave. Opening a slave connection fails
because the plugin configuration file lists an invalid host name for the slave.

Example 7.45 Provoking a connection error

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost",
 "socket": "\/tmp\/mysql.sock"
 }
 },
 "slave": {
 "slave_0": {
 "host": "invalid_host_name",
 }
 },

http://www.php.net/mysqli_begin

Error handling

416

 "lazy_connections": 1
 }
}

The explicit activation of lazy connections is for demonstration purpose only.

Example 7.46 Connection error on query execution

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (mysqli_connect_errno())
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));

/* Connection 1, connection bound SQL user variable, no SELECT thus run on master */
if (!$mysqli->query("SET @myrole='master'")) {
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}

/* Connection 2, run on slave because SELECT, provoke connection error */
if (!($res = $mysqli->query("SELECT @myrole AS _role"))) {
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
} else {
 $row = $res->fetch_assoc();
 $res->close();
 printf("@myrole = '%s'\n", $row['_role']);
}
$mysqli->close();
?>

The above example will output something similar to:

PHP Warning: mysqli::query(): php_network_getaddresses: getaddrinfo failed: Name or service not known in %s on line %d
PHP Warning: mysqli::query(): [2002] php_network_getaddresses: getaddrinfo failed: Name or service not known (trying to connect via tcp://invalid_host_name:3306) in %s on line %d
[2002] php_network_getaddresses: getaddrinfo failed: Name or service not known

Applications are expected to handle possible connection errors by implementing proper error handling.

Depending on the use case, applications may want to handle connection errors differently from other
errors. Typical connection errors are 2002 (CR_CONNECTION_ERROR) - Can't connect to local
MySQL server through socket '%s' (%d), 2003 (CR_CONN_HOST_ERROR) - Can't connect
to MySQL server on '%s' (%d) and 2005 (CR_UNKNOWN_HOST) - Unknown MySQL server
host '%s' (%d). For example, the application may test for the error codes and manually perform a fail
over. The plugins philosophy is not to offer automatic fail over, beyond master fail over, because fail over is
not a transparent operation.

Example 7.47 Provoking a connection error

{
 "myapp": {
 "master": {
 "master_0": {

Error handling

417

 "host": "localhost"
 }
 },
 "slave": {
 "slave_0": {
 "host": "invalid_host_name"
 },
 "slave_1": {
 "host": "192.168.78.136"
 }
 },
 "lazy_connections": 1,
 "filters": {
 "roundrobin": [

]
 }
 }
}

Explicitly activating lazy connections is done for demonstration purposes, as is round robin load balancing
as opposed to the default random once type.

Example 7.48 Most basic failover

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (mysqli_connect_errno())
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));

/* Connection 1, connection bound SQL user variable, no SELECT thus run on master */
if (!$mysqli->query("SET @myrole='master'")) {
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}

/* Connection 2, first slave */
$res = $mysqli->query("SELECT VERSION() AS _version");
/* Hackish manual fail over */
if (2002 == $mysqli->errno || 2003 == $mysqli->errno || 2004 == $mysqli->errno) {
 /* Connection 3, first slave connection failed, trying next slave */
 $res = $mysqli->query("SELECT VERSION() AS _version");
}

if (!$res) {
 printf("ERROR, [%d] '%s'\n", $mysqli->errno, $mysqli->error);
} else {
 /* Error messages are taken from connection 3, thus no error */
 printf("SUCCESS, [%d] '%s'\n", $mysqli->errno, $mysqli->error);
 $row = $res->fetch_assoc();
 $res->close();
 printf("version = %s\n", $row['_version']);
}
$mysqli->close();
?>

The above example will output something similar to:

Transient errors

418

[1045] Access denied for user 'username'@'localhost' (using password: YES)
PHP Warning: mysqli::query(): php_network_getaddresses: getaddrinfo failed: Name or service not known in %s on line %d
PHP Warning: mysqli::query(): [2002] php_network_getaddresses: getaddrinfo failed: Name or service not known (trying to connect via tcp://invalid_host_name:3306) in %s on line %d
SUCCESS, [0] ''
version = 5.6.2-m5-log

In some cases, it may not be easily possible to retrieve all errors that occur on all network connections
through a connection handle. For example, let's assume a connection handle represents a pool of three
open connections. One connection to a master and two connections to the slaves. The application changes
the current database using the user API call mysqli_select_db, which then calls the mysqlnd library
function to change the schemata. mysqlnd_ms monitors the function, and tries to change the current
database on all connections to harmonize their state. Now, assume the master succeeds in changing the
database, and both slaves fail. Upon the initial error from the first slave, the plugin will set an appropriate
error on the connection handle. The same is done when the second slave fails to change the database.
The error message from the first slave is lost.

Such cases can be debugged by either checking for errors of the type E_WARNING (see above) or, if no
other option, investigation of the mysqlnd_ms debug and trace log.

7.5.5 Transient errors

Copyright 1997-2014 the PHP Documentation Group.

Some distributed database clusters make use of transient errors. A transient error is a temporary error that
is likely to disappear soon. By definition it is safe for a client to ignore a transient error and retry the failed
operation on the same database server. The retry is free of side effects. Clients are not forced to abort their
work or to fail over to another database server immediately. They may enter a retry loop before to wait for
the error to disappear before giving up on the database server. Transient errors can be seen, for example,
when using MySQL Cluster. But they are not bound to any specific clustering solution per se.

PECL/mysqlnd_ms can perform an automatic retry loop in case of a transient error. This increases
distribution transparency and thus makes it easier to migrate an application running on a single database
server to run on a cluster of database servers without having to change the source of the application.

The automatic retry loop will repeat the requested operation up to a user configurable number of times and
pause between the attempts for a configurable amount of time. If the error disappears during the loop, the
application will never see it. If not, the error is forwarded to the application for handling.

In the example below a duplicate key error is provoked to make the plugin retry the failing query two
times before the error is passed to the application. Between the two attempts the plugin sleeps for 100
milliseconds.

Example 7.49 Provoking a transient error

mysqlnd_ms.enable=1
mysqlnd_ms.collect_statistics=1

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost"

Transient errors

419

 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.78.136",
 "port": "3306"
 }
 },
 "transient_error": {
 "mysql_error_codes": [
 1062
],
 "max_retries": 2,
 "usleep_retry": 100
 }
 }
}

Example 7.50 Transient error retry loop

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
if (mysqli_connect_errno())
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));

if (!$mysqli->query("DROP TABLE IF EXISTS test") ||
 !$mysqli->query("CREATE TABLE test(id INT PRIMARY KEY)") ||
 !$mysqli->query("INSERT INTO test(id) VALUES (1))")) {
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}

/* Retry loop is completely transparent. Checking statistics is
 the only way to know about implicit retries */
$stats = mysqlnd_ms_get_stats();
printf("Transient error retries before error: %d\n", $stats['transient_error_retries']);

/* Provoking duplicate key error to see statistics change */
if (!$mysqli->query("INSERT INTO test(id) VALUES (1))")) {
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
}

$stats = mysqlnd_ms_get_stats();
printf("Transient error retries after error: %d\n", $stats['transient_error_retries']);

$mysqli->close();
?>

The above example will output something similar to:

Transient error retries before error: 0
[1062] Duplicate entry '1' for key 'PRIMARY'
Transient error retries before error: 2

Because the execution of the retry loop is transparent from a users point of view, the example checks the
statistics provided by the plugin to learn about it.

Failover

420

As the example shows, the plugin can be instructed to consider any error transient regardless of the
database servers error semantics. The only error that a stock MySQL server considers temporary has the
error code 1297. When configuring other error codes but 1297 make sure your configuration reflects the
semantics of your clusters error codes.

The following mysqlnd C API calls are monitored by the plugin to check for transient errors: query(),
change_user(), select_db(), set_charset(), set_server_option() prepare(), execute(),
set_autocommit(), tx_begin(), tx_commit(), tx_rollback(), tx_commit_or_rollback().
The corresponding user API calls have similar names.

The maximum time the plugin may sleep during the retry loop depends on the function in question. The a
retry loop for query(), prepare() or execute() will sleep for up to max_retries * usleep_retry
milliseconds.

However, functions that control connection state are dispatched to all connections. The retry loop
settings are applied to every connection on which the command is to be run. Thus, such a function
may interrupt program execution for longer than a function that is run on one server only. For
example, set_autocommit() is dispatched to connections and may sleep up to (max_retries
* usleep_retry) * number_of_open_connections) milliseconds. Please, keep this in mind
when setting long sleep times and large retry numbers. Using the default settings of max_retries=1,
usleep_retry=100 and lazy_connections=1 it is unlikely that you will ever see a delay of more than
1 second.

7.5.6 Failover

Copyright 1997-2014 the PHP Documentation Group.

By default, connection failover handling is left to the user. The application is responsible for checking
return values of the database functions it calls and reacting to possible errors. If, for example, the plugin
recognizes a query as a read-only query to be sent to the slave servers, and the slave server selected by
the plugin is not available, the plugin will raise an error after not executing the statement.

Default: manual failover

It is up to the application to handle the error and, if required, re-issue the query to trigger the selection of
another slave server for statement execution. The plugin will make no attempts to failover automatically,
because the plugin cannot ensure that an automatic failover will not change the state of the connection.
For example, the application may have issued a query which depends on SQL user variables which are
bound to a specific connection. Such a query might return incorrect results if the plugin would switch the
connection implicitly as part of automatic failover. To ensure correct results, the application must take care
of the failover, and rebuild the required connection state. Therefore, by default, no automatic failover is
performed by the plugin.

A user that does not change the connection state after opening a connection may activate automatic
failover. Please note, that automatic failover logic is limited to connection attempts. Automatic failover is
not used for already established connections. There is no way to instruct the plugin to attempt failover on a
connection that has been connected to MySQL already in the past.

Automatic failover

The failover policy is configured in the plugins configuration file, by using the failover configuration
directive.

Automatic and silent failover can be enabled through the failover configuration directive. Automatic failover
can either be configured to try exactly one master after a slave failure or, alternatively, loop over slaves

Load balancing

421

and masters before returning an error to the user. The number of connection attempts can be limited
and failed hosts can be excluded from future load balancing attempts. Limiting the number of retries and
remembering failed hosts are considered experimental features, albeit being reasonable stable. Syntax
and semantics may change in future versions.

Please note, since version 1.5.0 automatic failover is disabled for the duration of a transaction if transaction
stickiness is enabled and transaction boundaries have been detected. The plugin will not switch
connections for the duration of a transaction. It will also not perform automatic and silent failover. Instead
an error will be thrown. It is then left to the user to handle the failure of the transaction. Please check, the
trx_stickiness documentation how to do this.

A basic manual failover example is provided within the error handling section.

Standby servers

Using weighted load balancing, introduced in PECL/mysqlnd 1.4.0, it is possible to configure standby
servers that are sparsely used during normal operations. A standby server that is primarily used as a
worst-case standby failover target can be assigned a very low weight/priority in relation to all other servers.
As long as all servers are up and running the majority of the workload is assigned to the servers which
have hight weight values. Few requests will be directed to the standby system which has a very low weight
value.

Upon failure of the servers with a high priority, you can still failover to the standby, which has been given a
low load balancing priority by assigning a low weight to it. Failover can be some manually or automatically.
If done automatically, you may want to combine it with the remember_failed option.

At this point, it is not possible to instruct the load balancer to direct no requests at all to a standby. This
may not be much of a limitation given that the highest weight you can assign to a server is 65535. Given
two slaves, of which one shall act as a standby and has been assigned a weight of 1, the standby will have
to handle far less than one percent of the overall workload.

Failover and primary copy

Please note, if using a primary copy cluster, such as MySQL Replication, it is difficult to do connection
failover in case of a master failure. At any time there is only one master in the cluster for a given dataset.
The master is a single point of failure. If the master fails, clients have no target to fail over write requests.
In case of a master outage the database administrator must take care of the situation and update the client
configurations, if need be.

7.5.7 Load balancing

Copyright 1997-2014 the PHP Documentation Group.

Four load balancing strategies are supported to distribute statements over the configured MySQL slave
servers:

random Chooses a random server whenever a statement is executed.

random once (default) Chooses a random server after the first statement is executed, and uses
the decision for the rest of the PHP request.

It is the default, and the lowest impact on the connection state.

round robin Iterates over the list of configured servers.

user-defined via callback Is used to implement any other strategy.

Read-write splitting

422

The load balancing policy is configured in the plugins configuration file using the random, roundrobin, and
user filters.

Servers can be prioritized assigning a weight. A server that has been given a weight of two will get twice
as many requests as a server that has been given the default weight of one. Prioritization can be handy in
heterogenous environments. For example, you may want to assign more requests to a powerful machine
than to a less powerful. Or, you may have configured servers that are close or far from the client, thus
expose different latencies.

7.5.8 Read-write splitting

Copyright 1997-2014 the PHP Documentation Group.

The plugin executes read-only statements on the configured MySQL slaves, and all other queries on
the MySQL master. Statements are considered read-only if they either start with SELECT, the SQL
hint /*ms=slave*/, or if a slave had been chosen for running the previous query and the query
starts with the SQL hint /*ms=last_used*/. In all other cases, the query will be sent to the MySQL
replication master server. It is recommended to use the constants MYSQLND_MS_SLAVE_SWITCH,
MYSQLND_MS_MASTER_SWITCH and MYSQLND_MS_LAST_USED_SWITCH instead of /*ms=slave*/. See
also the list of mysqlnd_ms constants.

SQL hints are a special kind of standard compliant SQL comments. The plugin does check every
statement for certain SQL hints. The SQL hints are described within the mysqlnd_ms constants
documentation, constants that are exported by the extension. Other systems involved with the statement
processing, such as the MySQL server, SQL firewalls, and SQL proxies, are unaffected by the SQL hints,
because those systems are designed to ignore SQL comments.

The built-in read-write splitter can be replaced by a user-defined filter, see also the user filter
documentation.

A user-defined read-write splitter can request the built-in logic to send a statement to a specific location, by
invoking mysqlnd_ms_is_select.

Note

The built-in read-write splitter is not aware of multi-statements. Multi-statements
are seen as one statement. The splitter will check the beginning of the statement
to decide where to run the statement. If, for example, a multi-statement begins with
SELECT 1 FROM DUAL; INSERT INTO test(id) VALUES (1); ... the
plugin will run it on a slave although the statement is not read-only.

7.5.9 Filter

Copyright 1997-2014 the PHP Documentation Group.

Version requirement

Filters exist as of mysqlnd_ms version 1.1.0-beta.

filters. PHP applications that implement a MySQL replication cluster must first identify a group of servers in
the cluster which could execute a statement before the statement is executed by one of the candidates. In
other words: a defined list of servers must be filtered until only one server is available.

The process of filtering may include using one or more filters, and filters can be chained. And they are
executed in the order they are defined in the plugins configuration file.

http://www.php.net/mysqlnd_ms_is_select

Filter

423

Explanation: comparing filter chaining to pipes

The concept of chained filters can be compared to using pipes to connect command
line utilities on an operating system command shell. For example, an input stream is
passed to a processor, filtered, and then transferred to be output. Then, the output
is passed as input to the next command, which is connected to the previous using
the pipe operator.

Available filters:

• Load balancing filters: random and roundrobin.

• Selection filter: user, user_multi, quality_of_service.

The random filter implements the 'random' and 'random once' load balancing policies. The 'round robin'
load balancing can be configured through the roundrobin filter. Setting a 'user defined callback' for
server selection is possible with the user filter. The quality_of_service filter finds cluster nodes
capable of delivering a certain service, for example, read-your-writes or, not lagging more seconds behind
the master than allowed.

Filters can accept parameters to change their behavior. The random filter accepts an optional sticky
parameter. If set to true, the filter changes load balancing from random to random once. Random picks a
random server every time a statement is to be executed. Random once picks a random server when the
first statement is to be executed and uses the same server for the rest of the PHP request.

One of the biggest strength of the filter concept is the possibility to chain filters. This strength does not
become immediately visible because the random, roundrobin and user filters are supposed to output
no more than one server. If a filter reduces the list of candidates for running a statement to only one server,
it makes little sense to use that one server as input for another filter for further reduction of the list of
candidates.

An example filter sequence that will fail:

• Statement to be executed: SELECT 1 FROM DUAL. Passed to all filters.

• All configured nodes are passed as input to the first filter. Master nodes: master_0. Slave
nodes:slave_0, slave_1

• Filter: random, argument sticky=1. Picks a random slave once to be used for the rest of the PHP
request. Output: slave_0.

• Output of slave_0 and the statement to be executed is passed as input to the next filter. Here:
roundrobin, server list passed to filter is: slave_0.

• Filter: roundrobin. Server list consists of one server only, round robin will always return the same
server.

If trying to use such a filter sequence, the plugin may emit a warning like (mysqlnd_ms) Error while
creating filter '%s' . Non-multi filter '%s' already created. Stopping in %s on
line %d. Furthermore, an appropriate error on the connection handle may be set.

A second type of filter exists: multi filter. A multi filter emits zero, one or multiple servers after processing.
The quality_of_service filter is an example. If the service quality requested sets an upper limit for
the slave lag and more than one slave is lagging behind less than the allowed number of seconds, the
filter returns more than one cluster node. A multi filter must be followed by other to further reduce the list of
candidates for statement execution until a candidate is found.

Service level and consistency

424

A filter sequence with the quality_of_service multi filter followed by a load balancing filter.

• Statement to be executed: SELECT sum(price) FROM orders WHERE order_id = 1. Passed to
all filters.

• All configured nodes are passed as input to the first filter. Master nodes: master_0. Slave nodes:
slave_0, slave_1, slave_2, slave_3

• Filter: quality_of_service, rule set: session_consistency (read-your-writes) Output: master_0

• Output of master_0 and the statement to be executed is passed as input to the next filter, which is
roundrobin.

• Filter: roundrobin. Server list consists of one server. Round robin selects master_0.

A filter sequence must not end with a multi filter. If trying to use a filter sequence which ends with a
multi filter the plugin may emit a warning like (mysqlnd_ms) Error in configuration. Last
filter is multi filter. Needs to be non-multi one. Stopping in %s on line %d.
Furthermore, an appropriate error on the connection handle may be set.

Speculation towards the future: MySQL replication filtering

In future versions, there may be additional multi filters. For example, there may
be a table filter to support MySQL replication filtering. This would allow you
to define rules for which database or table is to be replicated to which node of
a replication cluster. Assume your replication cluster consists of four slaves
(slave_0, slave_1, slave_2, slave_3) two of which replicate a database
named sales (slave_0, slave_1). If the application queries the database
slaves, the hypothetical table filter reduces the list of possible servers to
slave_0 and slave_1. Because the output and list of candidates consists of
more than one server, it is necessary and possible to add additional filters to the
candidate list, for example, using a load balancing filter to identify a server for
statement execution.

7.5.10 Service level and consistency

Copyright 1997-2014 the PHP Documentation Group.

Version requirement

Service levels have been introduced in mysqlnd_ms version 1.2.0-alpha.
mysqlnd_ms_set_qos requires PHP 5.4.0 or newer.

The plugin can be used with different kinds of MySQL database clusters. Different clusters can deliver
different levels of service to applications. The service levels can be grouped by the data consistency levels
that can be achieved. The plugin knows about:

• eventual consistency

• session consistency

• strong consistency

Depending how a cluster is used it may be possible to achieve higher service levels than the default one.
For example, a read from an asynchronous MySQL replication slave is eventual consistent. Thus, one may
say the default consistency level of a MySQL replication cluster is eventual consistency. However, if the
master only is used by a client for reading and writing during a session, session consistency (read your

Service level and consistency

425

writes) is given. PECL mysqlnd 1.2.0 abstracts the details of choosing an appropriate node for any of the
above service levels from the user.

Service levels can be set through the qualify-of-service filter in the plugins configuration file and at runtime
using the function mysqlnd_ms_set_qos.

The plugin defines the different service levels as follows.

Eventual consistency is the default service provided by an asynchronous cluster, such as classical
MySQL replication. A read operation executed on an arbitrary node may or may not return stale data. The
applications view of the data is eventual consistent.

Session consistency is given if a client can always read its own writes. An asynchronous MySQL
replication cluster can deliver session consistency if clients always use the master after the first write or
never query a slave which has not yet replicated the clients write operation.

The plugins understanding of strong consistency is that all clients always see the committed writes of all
other clients. This is the default when using MySQL Cluster or any other cluster offering synchronous data
distribution.

Service level parameters

Eventual consistency and session consistency service level accept parameters.

Eventual consistency is the service provided by classical MySQL replication. By default, all nodes qualify
for read requests. An optional age parameter can be given to filter out nodes which lag more than a certain
number of seconds behind the master. The plugin is using SHOW SLAVE STATUS to measure the lag.
Please, see the MySQL reference manual to learn about accuracy and reliability of the SHOW SLAVE
STATUS command.

Session consistency (read your writes) accepts an optional GTID parameter to consider reading not
only from the master but also from slaves which already have replicated a certain write described by its
transaction identifier. This way, when using asynchronous MySQL replication, read requests may be load
balanced over slaves while still ensuring session consistency.

The latter requires the use of client-side global transaction id injection.

Advantages of the new approach

The new approach supersedes the use of SQL hints and the configuration option master_on_write
in some respects. If an application running on top of an asynchronous MySQL replication cluster cannot
accept stale data for certain reads, it is easier to tell the plugin to choose appropriate nodes than prefixing
all read statements in question with the SQL hint to enforce the use of the master. Furthermore, the plugin
may be able to use selected slaves for reading.

The master_on_write configuration option makes the plugin use the master after the first write (session
consistency, read your writes). In some cases, session consistency may not be needed for the rest of the
session but only for some, few read operations. Thus, master_on_write may result in more read load
on the master than necessary. In those cases it is better to request a higher than default service level only
for those reads that actually need it. Once the reads are done, the application can return to default service
level. Switching between service levels is only possible using mysqlnd_ms_set_qos.

Performance considerations

A MySQL replication cluster cannot tell clients which slaves are capable of delivering which level of
service. Thus, in some cases, clients need to query the slaves to check their status. PECL mysqlnd_ms
transparently runs the necessary SQL in the background. However, this is an expensive and slow

Global transaction IDs

426

operation. SQL statements are run if eventual consistency is combined with an age (slave lag) limit and if
session consistency is combined with a global transaction ID.

If eventual consistency is combined with an maximum age (slave lag), the plugin selects candidates
for statement execution and load balancing for each statement as follows. If the statement is a write
all masters are considered as candidates. Slaves are not checked and not considered as candidates.
If the statement is a read, the plugin transparently executes SHOW SLAVE STATUS on every slaves
connection. It will loop over all connections, send the statement and then start checking for results.
Usually, this is slightly faster than a loop over all connections in which for every connection a query is send
and the plugin waits for its results. A slave is considered a candidate if SHOW SLAVE STATUS reports
Slave_IO_Running=Yes, Slave_SQL_Running=Yes and Seconds_Behind_Master is less or equal
than the allowed maximum age. In case of an SQL error, the plugin emits a warning but does not set an
error on the connection. The error is not set to make it possible to use the plugin as a drop-in.

If session consistency is combined with a global transaction ID, the plugin executes the SQL statement
set with the fetch_last_gtid entry of the global_transaction_id_injection section from the
plugins configuration file. Further details are identical to those described above.

In version 1.2.0 no additional optimizations are done for executing background queries. Future versions
may contain optimizations, depending on user demand.

If no parameters and options are set, no SQL is needed. In that case, the plugin consider all nodes of the
type shown below.

• eventual consistency, no further options set: all masters, all slaves

• session consistency, no further options set: all masters

• strong consistency (no options allowed): all masters

Throttling

The quality of service filter can be combined with Global transaction IDs to throttle clients. Throttling does
reduce the write load on the master by slowing down clients. If session consistency is requested and global
transactions identifier are used to check the status of a slave, the check can be done in two ways. By
default a slave is checked and skipped immediately if it does not match the criteria for session consistency.
Alternatively, the plugin can wait for a slave to catch up to the master until session consistency is possible.
To enable the throttling, you have to set wait_for_gtid_timeout configuration option.

7.5.11 Global transaction IDs

Copyright 1997-2014 the PHP Documentation Group.

Version requirement

Client side global transaction ID injection exists as of mysqlnd_ms version 1.2.0-
alpha. Transaction boundaries are detected by monitoring API calls. This is possible
as of PHP 5.4.0. Please, see also Transaction handling.

As of MySQL 5.6.5-m8 the MySQL server features built-in global transaction
identifiers. The MySQL built-in global transaction ID feature is supported by PECL/
mysqlnd_ms 1.3.0-alpha or later. Neither are client-side transaction boundary
monitoring nor any setup activities required if using the server feature.

Please note, all MySQL 5.6 production versions do not provide clients with enough
information to use GTIDs for enforcing session consistency. In the worst case, the
plugin will choose the master only.

Global transaction IDs

427

Idea and client-side emulation

PECL/mysqlnd_ms can do client-side transparent global transaction ID injection. In its most basic form, a
global transaction identifier is a counter which is incremented for every transaction executed on the master.
The counter is held in a table on the master. Slaves replicate the counter table.

In case of a master failure a database administrator can easily identify the most recent slave for promoting
it as a new master. The most recent slave has the highest transaction identifier.

Application developers can ask the plugin for the global transaction identifier (GTID) for their last
successful write operation. The plugin will return an identifier that refers to an transaction no older than that
of the clients last write operation. Then, the GTID can be passed as a parameter to the quality of service
(QoS) filter as an option for session consistency. Session consistency ensures read your writes. The filter
ensures that all reads are either directed to a master or a slave which has replicated the write referenced
by the GTID.

When injection is done

The plugin transparently maintains the GTID table on the master. In autocommit mode the plugin injects
an UPDATE statement before executing the users statement for every master use. In manual transaction
mode, the injection is done before the application calls commit() to close a transaction. The configuration
option report_error of the GTID section in the plugins configuration file is used to control whether a
failed injection shall abort the current operation or be ignored silently (default).

Please note, the PHP version requirements for transaction boundary monitoring and their limits.

Limitations

Client-side global transaction ID injection has shortcomings. The potential issues are not specific to PECL/
mysqlnd_ms but are rather of general nature.

• Global transaction ID tables must be deployed on all masters and replicas.

• The GTID can have holes. Only PHP clients using the plugin will maintain the table. Other clients will not.

• Client-side transaction boundary detection is based on API calls only.

• Client-side transaction boundary detection does not take implicit commit into account. Some MySQL
SQL statements cause an implicit commit and cannot be rolled back.

Using server-side global transaction identifier

Starting with PECL/mysqlnd_ms 1.3.0-alpha the MySQL 5.6.5-m8 or newer built-in global transaction
identifier feature is supported. Use of the server feature lifts all of the above listed limitations. Please, see
the MySQL Reference Manual for limitations and preconditions for using server built-in global transaction
identifiers.

Whether to use the client-side emulation or the server built-in functionality is a question not directly related
to the plugin, thus it is not discussed in depth. There are no plans to remove the client-side emulation and
you can continue to use it, if the server-side solution is no option. This may be the case in heterogenous
environments with old MySQL server or, if any of the server-side solution limitations is not acceptable.

From an applications perspective there is hardly a difference in using one or the other approach. The
following properties differ.

• Client-side emulation, as shown in the manual, is using an easy to compare sequence number for global
transactions. Multi-master is not handled to keep the manual examples easy.

Cache integration

428

Server-side built-in feature is using a combination of a server identifier and a sequence number as a
global transaction identifier. Comparison cannot use numeric algebra. Instead a SQL function must be
used. Please, see the MySQL Reference Manual for details.

Server-side built-in feature of MySQL 5.6 cannot be used to ensure session consistency under all
circumstances. Do not use it for the quality-of-service feature. Here is a simple example why it will
not give reliable results. There are more edge cases that cannot be covered with limited functionality
exported by the server. Currently, clients can ask a MySQL replication master for a list of all executed
global transaction IDs only. If a slave is configured not to replicate all transactions, for example, because
replication filters are set, then the slave will never show the same set of executed global transaction
IDs. Albeit the slave may have replicated a clients writes and it may be a candidate for a consistent
read, it will never be considered by the plugin. Upon write the plugin learns from the master that the
servers complete transaction history consists of GTID=1..3. There is no way for the plugin to ask for the
GTID of the write transaction itself, say GTID=3. Assume that a slave does not replicate the transactions
GTID=1..2 but only GTID=3 because of a replication feature. Then, the slaves transaction history is
GTID=3. However, the plugin tries to find a node which has a transaction history of GITD=1...3. Albeit
the slave has replicated the clients write and session consistency may be achieved when reading from
the slave, it will not be considered by the plugin. This is not a fault of the plugin implementation but a
feature gap on the server side. Please note, this is a trivial case to illustrate the issue there are other
issues. In sum you are asked not to attempt using MySQL 5.6 built-in GTIDs for enforcing session
consistency. Sooner or later the load balancing will stop working properly and the plugin will direct all
session consistency requests to the master.

• Plugin global transaction ID statistics are only available with client-side emulation because they monitor
the emulation.

Global transaction identifiers in distributed systems

Global transaction identifiers can serve multiple purposes in the context of
distributed systems, such as a database cluster. Global transaction identifiers
can be used for, for example, system wide identification of transactions, global
ordering of transactions, heartbeat mechanism and for checking the replication
status of replicas. PECL/mysqlnd_ms, a clientside driver based software, does
focus on using GTIDs for tasks that can be handled at the client, such as checking
the replication status of replicas for asynchronous replication setups.

7.5.12 Cache integration

Copyright 1997-2014 the PHP Documentation Group.

Version requirement

The feature requires use of PECL/mysqlnd_ms 1.3.0-beta or later, and PECL/
mysqlnd_qc 1.1.0-alpha or newer. PECL/mysqlnd_ms must be compiled to
support the feature. PHP 5.4.0 or newer is required.

Setup: extension load order

PECL/mysqlnd_ms must be loaded before PECL/mysqlnd_qc, when using
shared extensions.

Feature stability

The cache integration is of beta quality.

Cache integration

429

Suitable MySQL clusters

The feature is targeted for use with MySQL Replication (primary copy). Currently,
no other kinds of MySQL clusters are supported. Users of such cluster must control
PECL/mysqlnd_qc manually if they are interested in client-side query caching.

Support for MySQL replication clusters (asynchronous primary copy) is the main focus of PECL/
mysqlnd_ms. The slaves of a MySQL replication cluster may or may not reflect the latest updates from
the master. Slaves are asynchronous and can lag behind the master. A read from a slave is eventual
consistent from a cluster-wide perspective.

The same level of consistency is offered by a local cache using time-to-live (TTL) invalidation strategy.
Current data or stale data may be served. Eventually, data searched for in the cache is not available and
the source of the cache needs to be accessed.

Given that both a MySQL Replication slave (asynchronous secondary) and a local TTL-driven cache
deliver the same level of service it is possible to transparently replace a remote database access with a
local cache access to gain better possibility.

As of PECL/mysqlnd_ms 1.3.0-beta the plugin is capable of transparently controlling PECL/mysqlnd_ms
1.1.0-alpha or newer to cache a read-only query if explicitly allowed by setting an appropriate quality of
service through mysqlnd_ms_set_qos. P lease, see the quickstart for a code example. Both plugins
must be installed, PECL/mysqlnd_ms must be compiled to support the cache feature and PHP 5.4.0 or
newer has to be used.

Applications have full control of cache usage and can request fresh data at any time, if need be. The
cache usage can be enabled and disabled time during the execution of a script. The cache will be used
if mysqlnd_ms_set_qos sets the quality of service to eventual consistency and enables cache usage.
Cache usage is disabled by requesting higher consistency levels, for example, session consistency (read
your writes). Once the quality of service has been relaxed to eventual consistency the cache can be used
again.

If caching is enabled for a read-only statement, PECL/mysqlnd_ms may inject SQL hints to control
caching by PECL/mysqlnd_qc. It may modify the SQL statement it got from the application. Subsequent
SQL processors are supposed to ignore the SQL hints. A SQL hint is a SQL comment. Comments must
not be ignored, for example, by the database server.

The TTL of a cache entry is computed on a per statement basis. Applications set an maximum age for the
data they want to retrieve using mysqlnd_ms_set_qos. The age sets an approximate upper limit of how
many seconds the data returned may lag behind the master.

The following logic is used to compute the actual TTL if caching is enabled. The logic takes the estimated
slave lag into account for choosing a TTL. If, for example, there are two slaves lagging 5 and 10 seconds
behind and the maximum age allowed is 60 seconds, the TTL is set to 50 seconds. Please note, the age
setting is no more than an estimated guess.

• Check whether the statement is read-only. If not, don't cache.

• If caching is enabled, check the slave lag of all configured slaves. Establish slave connections if none
exist so far and lazy connections are used.

• Send SHOW SLAVE STATUS to all slaves. Do not wait for the first slave to reply before sending to the
second slave. Clients often wait long for replies, thus we send out all requests in a burst before fetching
in a second stage.

• Loop over all slaves. For every slave wait for its reply. Do not start checking another slave
before the currently waited for slave has replied. Check for Slave_IO_Running=Yes and

Supported clusters

430

Slave_SQL_Running=Yes. If both conditions hold true, fetch the value of Seconds_Behind_Master.
In case of any errors or if conditions fail, set an error on the slave connection. Skip any such slave
connection for the rest of connection filtering.

• Search for the maximum value of Seconds_Behind_Master from all slaves that passed the previous
conditions. Subtract the value from the maximum age provided by the user with mysqlnd_ms_set_qos.
Use the result as a TTL.

• The filtering may sort out all slaves. If so, the maximum age is used as TTL, because the maximum lag
found equals zero. It is perfectly valid to sort out all slaves. In the following it is up to subsequent filter to
decide what to do. The built-in load balancing filter will pick the master.

• Inject the appropriate SQL hints to enable caching by PECL/mysqlnd_qc.

• Proceed with the connection filtering, e.g. apply load balancing rules to pick a slave.

• PECL/mysqlnd_qc is loaded after PECL/mysqlnd_ms by PHP. Thus, it will see all query modifications
of PECL/mysqlnd_ms and cache the query if instructed to do so.

The algorithm may seem expensive. SHOW SLAVE STATUS is a very fast operation. Given a sufficient
number of requests and cache hits per second the cost of checking the slaves lag can easily outweigh the
costs of the cache decision.

Suggestions on a better algorithm are always welcome.

7.5.13 Supported clusters

Copyright 1997-2014 the PHP Documentation Group.

Any application using any kind of MySQL cluster is faced with the same tasks:

• Identify nodes capable of executing a given statement with the required service level

• Load balance requests within the list of candidates

• Automatic fail over within candidates, if needed

The plugin is optimized for fulfilling these tasks in the context of a classical asynchronous MySQL
replication cluster consisting of a single master and many slaves (primary copy). When using classical,
asynchronous MySQL replication all of the above listed tasks need to be mastered at the client side.

Other types of MySQL cluster may have lower requirements on the application side. For example, if all
nodes in the cluster can answer read and write requests, no read-write splitting needs to be done (multi-
master, update-all). If all nodes in the cluster are synchronous, they automatically provide the highest
possible quality of service which makes choosing a node easier. In this case, the plugin may serve the
application after some reconfiguration to disable certain features, such as built-in read-write splitting.

Documentation focus

The documentation focusses describing the use of the plugin with classical
asynchronous MySQL replication clusters (primary copy). Support for this kind
of cluster has been the original development goal. Use of other clusters is briefly
described below. Please note, that this is still work in progress.

Primary copy (MySQL Replication)

This is the primary use case of the plugin. Follow the hints given in the descriptions of each feature.

Supported clusters

431

• Configure one master and one or more slaves. Server configuration details are given in the setup
section.

• Use random load balancing policy together with the sticky flag.

• If you do not plan to use the service level API calls, add the master on write flag.

• Please, make yourself aware of the properties of automatic failover before adding a failover directive.

• Consider the use of trx_stickiness to execute transactions on the primary only. Please, read carefully
how it works before you rely on it.

Example 7.51 Enabling the plugin (php.ini)

mysqlnd_ms.enable=1
mysqlnd_ms.config_file=/path/to/mysqlnd_ms_plugin.ini

Example 7.52 Basic plugin configuration (mysqlnd_ms_plugin.ini) for MySQL Replication

{
 "myapp": {
 "master": {
 "master_1": {
 "host": "localhost",
 "socket": "\/tmp\/mysql57.sock"
 }
 },
 "slave": {
 "slave_0": {
 "host": "127.0.0.1",
 "port": 3308
 },
 "slave_1": {
 "host": "192.168.2.28",
 "port": 3306
 }
 },
 "filters": {
 "random": {
 "sticky": "1"
 }
 }
 }
}

Primary copy with multi primaries (MMM - MySQL Multi Master)

MySQL Replication allows you to create cluster topologies with multiple masters (primaries). Write-write
conflicts are not handled by the replication system. This is no update anywhere setup. Thus, data must be
partitioned manually and clients must redirected in accordance to the partitioning rules. The recommended
setup is equal to the sharding setup below.

Manual sharding, possibly combined with primary copy and multiple primaries

Use SQL hints and the node group filter for clusters that use data partitioning but leave query redirection to
the client. The example configuration shows a multi master setup with two shards.

Supported clusters

432

Example 7.53 Multiple primaries - multi master (php.ini)

mysqlnd_ms.enable=1
mysqlnd_ms.config_file=/path/to/mysqlnd_ms_plugin.ini
mysqlnd_ms.multi_master=1

Example 7.54 Primary copy with multiple primaries and paritioning

{
 "myapp": {
 "master": {
 "master_1": {
 "host": "localhost",
 "socket": "\/tmp\/mysql57.sock"
 }
 "master_2": {
 "host": "192.168.2.27",
 "socket": "3306"
 }
 },
 "slave": {
 "slave_1": {
 "host": "127.0.0.1",
 "port": 3308
 },
 "slave_2": {
 "host": "192.168.2.28",
 "port": 3306
 }
 },
 "filters": {
 "node_groups": {
 "Partition_A" : {
 "master": ["master_1"],
 "slave": ["slave_1"]
 },
 "Partition_B" : {
 "master": ["master_2"],
 "slave": ["slave_2"]
 }
 },
 "roundrobin": []
 }
 }
}

The plugin can also be used with a loose collection of unrelated shards. For such a cluster, configure
masters only and disable read write splitting. The nodes of such a cluster are called masters in the plugin
configuration as they accept both reads and writes for their partition.

Using synchronous update everywhere clusters such as MySQL Cluster

MySQL Cluster is a synchronous cluster solution. All cluster nodes accept read and write requests. In the
context of the plugin, all nodes shall be considered as masters.

Use the load balancing and fail over features only.

Supported clusters

433

• Disable the plugins built-in read-write splitting.

• Configure masters only.

• Consider random once load balancing strategy, which is the plugins default. If random once is used, only
masters are configured and no SQL hints are used to force using a certain node, no connection switches
will happen for the duration of a web request. Thus, no special handling is required for transactions. The
plugin will pick one master at the beginning of the PHP script and use it until the script terminates.

• Do not set the quality of service. All nodes have all the data. This automatically gives you the highest
possible service quality (strong consistency).

• Do not enable client-side global transaction injection. It is neither required to help with server-side fail
over nor to assist the quality of service filter choosing an appropriate node.

Disabling built-in read-write splitting.

• Set mysqlnd_ms.disable_rw_split=1

• Do not use SQL hints to enforce the use of slaves

Configure masters only.

• Set mysqlnd_ms.multi_master=1.

• Do not configure any slaves.

• Set failover=loop_before_master in the plugins configuration file to avoid warnings about the
empty slave list and to make the failover logic loop over all configured masters before emitting an error.

Please, note the warnings about automatic failover given in the previous sections.

Example 7.55 Multiple primaries - multi master (php.ini)

mysqlnd_ms.enable=1
mysqlnd_ms.config_file=/path/to/mysqlnd_ms_plugin.ini
mysqlnd_ms.multi_master=1
mysqlnd_ms.disable_rw_split=1

Example 7.56 Synchronous update anywhere cluster

 "myapp": {
 "master": {
 "master_1": {
 "host": "localhost",
 "socket": "\/tmp\/mysql57.sock"
 },
 "master_2": {
 "host": "192.168.2.28",
 "port": 3306
 }
 },
 "slave": {
 },

XA/Distributed transactions

434

 "filters": {
 "roundrobin": {
 }
 },
 "failover": {
 "strategy": "loop_before_master",
 "remember_failed": true
 }
 }
}

If running an update everywhere cluster that has no built-in partitioning to avoid hot spots and high collision
rates, consider using the node groups filter to keep updates on a frequently accessed table on one of the
nodes. This may help to reduce collision rates and thus improve performance.

7.5.14 XA/Distributed transactions

Copyright 1997-2014 the PHP Documentation Group.

Version requirement

XA related functions have been introduced in PECL/mysqlnd_ms version 1.6.0-
alpha.

Early adaptors wanted

The feature is currently under development. There may be issues and/or feature
limitations. Do not use in production environments, although early lab tests indicate
reasonable quality.

Please, contact the development team if you are interested in this feature. We are
looking for real life feedback to complement the feature.

Below is a list of some feature restrictions.

• The feature is not yet compatible with the MySQL Fabric support . This limitation
is soon to be lifted.

XA transaction identifier are currently restricted to numbers. This limitation will be
lifted upon request, it is a simplification used during the initial implementation.

MySQL server restrictions

The XA support by the MySQL server has some restrictions. Most noteably, the
servers binary log may lack changes made by XA transactions in case of certain
errors. Please, see the MySQL manual for details.

XA/Distributed transactions can spawn multiple MySQL servers. Thus, they may seem like a perfect tool
for sharded MySQL clusters, for example, clusters managed with MySQL Fabric. PECL/mysqlnd_ms
hides most of the SQL commands to control XA transactions and performs automatic administrative tasks
in cases of errors, to provide the user with a comprehensive API. Users should setup the plugin carefully
and be well aware of server restrictions prior to using the feature.

Example 7.57 General pattern for XA transactions

XA/Distributed transactions

435

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");

/* BEGIN */
mysqlnd_ms_xa_begin($mysqli, 1 /* xa id */);

/* run queries on various servers */
$mysqli->query("UPDATE some_table SET col_a = 1");
...

/* COMMIT */
mysqlnd_ms_xa_commit($link, 1);
?>

XA transactions use the two-phase commit protocol. The two-phase commit protocol is a blocking protocol.
During the first phase participating servers begin a transaction and the client carries out its work. This
phase is followed by a second voting phase. During voting, the servers first make a firm promise that they
are ready to commit the work even in case of their possible unexpected failure. Should a server crash in
this phase, it will still recall the aborted transaction after recover and wait for the client to decide on whether
it shall be committed or rolled back.

Should a client that has initiated a global transaction crash after all the participating servers gave their
promise to be ready to commit, then the servers must wait for a decision. The servers are not allowed to
unilaterally decide on the transaction.

A client crash or disconnect from a participant, a server crash or server error during the fist phase of the
protocol is uncritical. In most cases, the server will forget about the XA transaction and its work is rolled
back. Additionally, the plugin tries to reach out to as many participants as it can to instruct the server
to roll back the work immediately. It is not possible to disable this implicit rollback carried out by PECL/
mysqlnd_ms in case of errors during the first phase of the protocol. This design decision has been made
to keep the implementation simple.

An error during the second phase of the commit protocol can develop into a more severe situation. The
servers will not forget about prepared but unfinished transactions in all cases. The plugin will not attempt
to solve these cases immediately but waits for optional background garbage collection to ensure progress
of the commit protocol. It is assumed that a solution will take significant time as it may include waiting for a
participating server to recover from a crash. This time span may be longer than a developer and end user
expects when trying to commit a global transaction with mysqlnd_ms_xa_commit. Thus, the function
returns with the unfinished global transaction still requiring attention. Please, be warned that at this point, it
is not yet clear whether the global transaction will be committed or rolled back later on.

Errors during the second phase can be ignored, handled by yourself or solved by the build-int garbage
collection logic. Ignoring them is not recommended as you may experience unfinished global transactions
on your servers that block resources virtually indefinitely. Handling the errors requires knowing the
participants, checking their state and issuing appropriate SQL commands on them. There are no user API
calls to expose this very information. You will have to configure a state store and make the plugin record its
actions in it to receive the desired facts.

Please, see the quickstart and related plugin configuration file settings for an example how to configure a
state. In addition to configuring a state store, you have to setup some SQL tables. The table definitions are
given in the description of the plugin configuration settings.

Setting up and configuring a state store is also a precondition for using the built-in garbage collection
for XA transactions that fail during the second commit phase. Recording information about ongoing XA
transactions is an unavoidable extra task. The extra task consists of updating the state store after each

Installing/Configuring

436

and every operation that changes the state of the global transaction itself (started, committed, rolled back,
errors and aborts), the addition of participants (host, optionally user and password required to connect) and
any changes to a participants state. Please note, depending on configuration and your security policies,
these recordings may be considered sensitive. It is therefore recommended to restrict access to the state
store. Unless the state store itself becomes overloaded, writing the state information may contribute
noteworthy to the runtime but should overall be only a minor factor.

It is possible that the effort it takes to implement your own routines for handling XA transactions that failed
during the second commit phase exceeds the benefits of using the XA feature of PECL/mysqlnd_ms in
the first place. Thus, the manual focussed on using the built-on garbage collection only.

Garbage collection can be triggered manually or automatically in the background. You may want to call
mysqlnd_ms_xa_gc immediately after a commit failure to attempt to solve any failed but still open global
transactions as soon as possible. You may also decide to disable the automatic background garbage
collection, implement your own rule set for invoking the built-in garbage collection and trigger it when
desired.

By default the plugin will start the garbage collection with a certain probability in the extensions internal
RSHUTDOWN method. The request shutdown is called after your script finished. Whether the garbage
collection will be triggered is determined by computing a random value between 1...1000 and comparing
it with the configuration setting probability (default: 5). If the setting is greater or equal to the random
value, the garbage collection will be triggered.

Once started, the garbage collection acts upon up to max_transactions_per_run (default: 100) global
transactions recorded. Records include successfully finished but also unfinished XA transactions. Records
for successful transactions are removed and unfinished transactions are attempted to be solved. There
are no statistics that help you finding the right balance between keeping garbage collection runs short by
limiting the number of transactions considered per run and preventing the garbage collection to fall behind,
resulting in many records.

For each failed XA transaction the garbage collection makes max_retries (default: 5) attempts to finish
it. After that PECL/mysqlnd_ms gives up. There are two possible reasons for this. Either a participating
server crashed and has not become accessible again within max_retries invocations of the garbage
collection, or there is a situation that the built-in garbage collection cannot cope with. Likely, the latter
would be considered a bug. However, you can manually force more garbage collection runs calling
mysqlnd_ms_xa_gc with the appropriate parameter set. Should even those function runs fail to solve the
situation, then the problem must be solved by an operator.

The function mysqlnd_ms_get_stats provides some statistics on how many XA transactions have been
started, committed, failed or rolled back.

7.6 Installing/Configuring

Copyright 1997-2014 the PHP Documentation Group.

7.6.1 Requirements

Copyright 1997-2014 the PHP Documentation Group.

PHP 5.3.6 or newer. Some advanced functionality requires PHP 5.4.0 or newer.

The mysqlnd_ms replication and load balancing plugin supports all PHP applications and all available
PHP MySQL extensions (mysqli, mysql, PDO_MYSQL). The PHP MySQL extension must be configured to
use mysqlnd in order to be able to use the mysqlnd_ms plugin for mysqlnd.

Installation

437

7.6.2 Installation

Copyright 1997-2014 the PHP Documentation Group.

This PECL extension is not bundled with PHP.

Information for installing this PECL extension may be found in the manual chapter titled Installation of
PECL extensions. Additional information such as new releases, downloads, source files, maintainer
information, and a CHANGELOG, can be located here: http://pecl.php.net/package/mysqlnd_ms

A DLL for this PECL extension is currently unavailable. See also the building on Windows section.

7.6.3 Runtime Configuration

Copyright 1997-2014 the PHP Documentation Group.

The behaviour of these functions is affected by settings in php.ini.

Table 7.1 Mysqlnd_ms Configure Options

Name Default Changeable Changelog

mysqlnd_ms.enable 0 PHP_INI_SYSTEM

mysqlnd_ms.force_config_usage0 PHP_INI_SYSTEM

mysqlnd_ms.ini_file "" PHP_INI_SYSTEM

mysqlnd_ms.config_file "" PHP_INI_SYSTEM

mysqlnd_ms.collect_statistics0 PHP_INI_SYSTEM

mysqlnd_ms.multi_master 0 PHP_INI_SYSTEM

mysqlnd_ms.disable_rw_split0 PHP_INI_SYSTEM

Here's a short explanation of the configuration directives.

mysqlnd_ms.enable integer Enables or disables the plugin. If disabled, the extension will not plug
into mysqlnd to proxy internal mysqlnd C API calls.

mysqlnd_ms.force_config_usage
integer

If enabled, the plugin checks if the host (server) parameters value of
any MySQL connection attempt, matches a section name from the
plugin configuration file. If not, the connection attempt is blocked.

This setting is not only useful to restrict PHP to certain servers but also
to debug configuration file problems. The configuration file validity is
checked at two different stages. The first check is performed when
PHP begins to handle a web request. At this point the plugin reads and
decodes the configuration file. Errors thrown at this early stage in an
extensions life cycle may not be shown properly to the user. Thus, the
plugin buffers the errors, if any, and additionally displays them when
establishing a connection to MySQL. By default a buffered startup error
will emit an error of type E_WARNING. If force_config_usage is set,
the error type used is E_RECOVERABLE_ERROR.

Please, see also configuration file debugging notes.

mysqlnd_ms.ini_file string Plugin specific configuration file. This setting has been renamed to
mysqlnd_ms.config_file in version 1.4.0.

http://pecl.php.net/
http://www.php.net/install.pecl
http://www.php.net/install.pecl
http://pecl.php.net/package/mysqlnd_ms
http://www.php.net/install.windows.legacy.building

Plugin configuration file (>=1.1.x)

438

mysqlnd_ms.config_file
string

Plugin specific configuration file. This setting superseeds
mysqlnd_ms.ini_file since 1.4.0.

mysqlnd_ms.collect_statistics
integer

Enables or disables the collection of statistics. The collection of
statistics is disabled by default for performance reasons. Statistics are
returned by the function mysqlnd_ms_get_stats.

mysqlnd_ms.multi_master
integer

Enables or disables support of MySQL multi master replication setups.
Please, see also supported clusters.

mysqlnd_ms.disable_rw_split
integer

Enables or disables built-in read write splitting.

Controls whether load balancing and lazy connection functionality can
be used independently of read write splitting. If read write splitting is
disabled, only servers from the master list will be used for statement
execution. All configured slave servers will be ignored.

The SQL hint MYSQLND_MS_USE_SLAVE will not be recognized. If
found, the statement will be redirected to a master.

Disabling read write splitting impacts the return value of
mysqlnd_ms_query_is_select. The function will no longer propose
query execution on slave servers.

Multiple master servers

Setting mysqlnd_ms.multi_master=1 allows
the plugin to use multiple master servers, instead
of only the first master server of the master list.

Please, see also supported clusters.

7.6.4 Plugin configuration file (>=1.1.x)

Copyright 1997-2014 the PHP Documentation Group.

The following documentation applies to PECL/mysqlnd_ms >= 1.1.0-beta. It is not valid for prior versions.
For documentation covering earlier versions, see the configuration documentation for mysqlnd_ms 1.0.x
and below.

7.6.4.1 Introduction

Copyright 1997-2014 the PHP Documentation Group.

Changelog: Feature was added in PECL/mysqlnd_ms 1.1.0-beta

The below description applies to PECL/mysqlnd_ms >= 1.1.0-beta. It is not valid for
prior versions.

The plugin uses its own configuration file. The configuration file holds information about the MySQL
replication master server, the MySQL replication slave servers, the server pick (load balancing) policy, the
failover strategy, and the use of lazy connections.

The plugin loads its configuration file at the beginning of a web request. It is then cached in memory and
used for the duration of the web request. This way, there is no need to restart PHP after deploying the
configuration file. Configuration file changes will become active almost instantly.

Plugin configuration file (>=1.1.x)

439

The PHP configuration directive mysqlnd_ms.config_file is used to set the plugins configuration file.
Please note, that the PHP configuration directive may not be evaluated for every web request. Therefore,
changing the plugins configuration file name or location may require a PHP restart. However, no restart is
required to read changes if an already existing plugin configuration file is updated.

Using and parsing JSON is efficient, and using JSON makes it easier to express hierarchical data
structures than the standard php.ini format.

Example 7.58 Converting a PHP array (hash) into JSON format

Or alternatively, a developer may be more familiar with the PHP array syntax, and prefer it. This example
demonstrates how a developer might convert a PHP array to JSON.

<?php
$config = array(
 "myapp" => array(
 "master" => array(
 "master_0" => array(
 "host" => "localhost",
 "socket" => "/tmp/mysql.sock",
),
),
 "slave" => array(),
),
);

file_put_contents("mysqlnd_ms.ini", json_encode($config, JSON_PRETTY_PRINT));
printf("mysqlnd_ms.ini file created...\n");
printf("Dumping file contents...\n");
printf("%s\n", str_repeat("-", 80));
echo file_get_contents("mysqlnd_ms.ini");
printf("\n%s\n", str_repeat("-", 80));
?>

The above example will output:

mysqlnd_ms.ini file created...
Dumping file contents...
--
{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost",
 "socket": "\/tmp\/mysql.sock"
 }
 },
 "slave": [

]
 }
}
--

A plugin configuration file consists of one or more sections. Sections are represented by the top-level
object properties of the object encoded in the JSON file. Sections could also be called configuration
names.

Plugin configuration file (>=1.1.x)

440

Applications reference sections by their name. Applications use section names as the host (server)
parameter to the various connect methods of the mysqli, mysql and PDO_MYSQL extensions. Upon
connect, the mysqlnd plugin compares the hostname with all of the section names from the plugin
configuration file. If the hostname and section name match, then the plugin will load the settings for that
section.

Example 7.59 Using section names example

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost"
 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.2.27"
 },
 "slave_1": {
 "host": "192.168.2.27",
 "port": 3306
 }
 }
 },
 "localhost": {
 "master": [
 {
 "host": "localhost",
 "socket": "\/path\/to\/mysql.sock"
 }
],
 "slave": [
 {
 "host": "192.168.3.24",
 "port": "3305"
 },
 {
 "host": "192.168.3.65",
 "port": "3309"
 }
]
 }
}

<?php
/* All of the following connections will be load balanced */
$mysqli = new mysqli("myapp", "username", "password", "database");
$pdo = new PDO('mysql:host=myapp;dbname=database', 'username', 'password');
$mysql = mysql_connect("myapp", "username", "password");

$mysqli = new mysqli("localhost", "username", "password", "database");
?>

Section names are strings. It is valid to use a section name such as 192.168.2.1, 127.0.0.1 or
localhost. If, for example, an application connects to localhost and a plugin configuration section
localhost exists, the semantics of the connect operation are changed. The application will no longer only

Plugin configuration file (>=1.1.x)

441

use the MySQL server running on the host localhost, but the plugin will start to load balance MySQL
queries following the rules from the localhost configuration section. This way you can load balance
queries from an application without changing the applications source code. Please keep in mind, that such
a configuration may not contribute to overall readability of your applications source code. Using section
names that can be mixed up with host names should be seen as a last resort.

Each configuration section contains, at a minimum, a list of master servers and a list of slave servers.
The master list is configured with the keyword master, while the slave list is configured with the slave
keyword. Failing to provide a slave list will result in a fatal E_ERROR level error, although a slave list
may be empty. It is possible to allow no slaves. However, this is only recommended with synchronous
clusters, please see also supported clusters. The main part of the documentation focusses on the use of
asynchronous MySQL replication clusters.

The master and slave server lists can be optionally indexed by symbolic names for the servers they
describe. Alternatively, an array of descriptions for slave and master servers may be used.

Example 7.60 List of anonymous slaves

"slave": [
 {
 "host": "192.168.3.24",
 "port": "3305"
 },
 {
 "host": "192.168.3.65",
 "port": "3309"
 }
]

An anonymous server list is encoded by the JSON array type. Optionally, symbolic names may be used
for indexing the slave or master servers of a server list, and done so using the JSON object type.

Example 7.61 Master list using symbolic names

"master": {
 "master_0": {
 "host": "localhost"
 }
}

It is recommended to index the server lists with symbolic server names. The alias names will be shown in
error messages.

The order of servers is preserved and taken into account by mysqlnd_ms. If, for example, you configure
round robin load balancing strategy, the first SELECT statement will be executed on the slave that appears
first in the slave server list.

A configured server can be described with the host, port, socket, db, user, password and
connect_flags. It is mandatory to set the database server host using the host keyword. All other
settings are optional.

Example 7.62 Keywords to configure a server

Plugin configuration file (>=1.1.x)

442

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "db_server_host",
 "port": "db_server_port",
 "socket": "db_server_socket",
 "db": "database_resp_schema",
 "user": "user",
 "password": "password",
 "connect_flags": 0
 }
 },
 "slave": {
 "slave_0": {
 "host": "db_server_host",
 "port": "db_server_port",
 "socket": "db_server_socket"
 }
 }
 }
}

If a setting is omitted, the plugin will use the value provided by the user API call used to open a connection.
Please, see the using section names example above.

The configuration file format has been changed in version 1.1.0-beta to allow for chained filters. Filters are
responsible for filtering the configured list of servers to identify a server for execution of a given statement.
Filters are configured with the filter keyword. Filters are executed by mysqlnd_ms in the order of their
appearance. Defining filters is optional. A configuration section in the plugins configuration file does not
need to have a filters entry.

Filters replace the pick[] setting from prior versions. The new random and roundrobin provide the
same functionality.

Example 7.63 New roundrobin filter, old functionality

 {
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost"
 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.78.136",
 "port": "3306"
 },
 "slave_1": {
 "host": "192.168.78.137",
 "port": "3306"
 }
 },
 "filters": {
 "roundrobin": [

]
 }
 }

Plugin configuration file (>=1.1.x)

443

}

The function mysqlnd_ms_set_user_pick_server has been removed. Setting a callback
is now done with the user filter. Some filters accept parameters. The user filter requires and
accepts a mandatory callback parameter to set the callback previously set through the function
mysqlnd_ms_set_user_pick_server.

Example 7.64 The user filter replaces mysqlnd_ms_set_user_pick_server

"filters": {
 "user": {
 "callback": "pick_server"
 }
}

The validity of the configuration file is checked both when reading the configuration file and later when
establishing a connection. The configuration file is read during PHP request startup. At this early stage
a PHP extension may not display error messages properly. In the worst case, no error is shown and a
connection attempt fails without an adequate error message. This problem has been cured in version 1.5.0.

Example 7.65 Common error message in case of configuration file issues (upto version 1.5.0)

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
?>

The above example will output:

Warning: mysqli::mysqli(): (mysqlnd_ms) (mysqlnd_ms) Failed to parse config file [s1.json]. Please, verify the JSON in Command line code

Warning: mysqli::mysqli(): (HY000/2002): php_network_getaddresses: getaddrinfo failed: Name or service not known in Command line code on line 1

Warning: mysqli::query(): Couldn't fetch mysqli in Command line code on line 1

Fatal error: Call to a member function fetch_assoc() on a non-object in Command line code on line 1

Since version 1.5.0 startup errors are additionally buffered and emitted when a connection attempt is
made. Use the configuration directive mysqlnd_ms.force_config_usage to set the error type used to
display buffered errors. By default an error of type E_WARNING will be emitted.

Example 7.66 Improved configuration file validation since 1.5.0

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
?>

Plugin configuration file (>=1.1.x)

444

The above example will output:

Warning: mysqli::mysqli(): (mysqlnd_ms) (mysqlnd_ms) Failed to parse config file [s1.json]. Please, verify the JSON in Command line code on line 1

It can be useful to set mysqlnd_ms.force_config_usage = 1 when debugging potential configuration
file errors. This will not only turn the type of buffered startup errors into E_RECOVERABLE_ERROR but also
help detecting misspelled section names.

Example 7.67 Possibly more precise error due to mysqlnd_ms.force_config_usage=1

mysqlnd_ms.force_config_usage=1

<?php
$mysqli = new mysqli("invalid_section", "username", "password", "database");
?>

The above example will output:

Warning: mysqli::mysqli(): (mysqlnd_ms) Exclusive usage of configuration enforced but did not find the correct INI file section (invalid_section) in Command line code on line 1 line 1

7.6.4.2 Configuration Directives

Copyright 1997-2014 the PHP Documentation Group.

Here is a short explanation of the configuration directives that can be used.

master array or object List of MySQL replication master servers. The list of either of the JSON
type array to declare an anonymous list of servers or of the JSON
type object. Please, see above for examples.

Setting at least one master server is mandatory. The plugin will
issue an error of type E_ERROR if the user has failed to provide a
master server list for a configuration section. The fatal error may read
(mysqlnd_ms) Section [master] doesn't exist for host
[name_of_a_config_section] in %s on line %d.

A server is described with the host, port, socket, db, user,
password and connect_flags. It is mandatory to provide at a value
for host. If any of the other values is not given, it will be taken from the
user API connect call, please, see also: using section names example.

Table of server configuration keywords.

Plugin configuration file (>=1.1.x)

445

KeywordDescription Version

host Database server host. This is a mandatory
setting. Failing to provide, will cause an error of
type E_RECOVERABLE_ERROR when the plugin
tries to connect to the server. The error message
may read (mysqlnd_ms) Cannot find
[host] in [%s] section in config in
%s on line %d.

Since 1.1.0.

port Database server TCP/IP port. Since 1.1.0.

socketDatabase server Unix domain socket. Since 1.1.0.

db Database (schemata). Since 1.1.0.

user MySQL database user. Since 1.1.0.

passwordMySQL database user password. Since 1.1.0.

connect_flagsConnection flags. Since 1.1.0.

The plugin supports using only one master server. An experimental
setting exists to enable multi-master support. The details are not
documented. The setting is meant for development only.

slave array or object List of one or more MySQL replication slave servers. The syntax is
identical to setting master servers, please, see master above for
details.

The plugin supports using one or more slave servers.

Setting a list of slave servers is mandatory. The plugin will report an
error of the type E_ERROR if slave is not given for a configuration
section. The fatal error message may read (mysqlnd_ms) Section
[slave] doesn't exist for host [%s] in %s on line %d.
Note, that it is valid to use an empty slave server list. The error has
been introduced to prevent accidently setting no slaves by forgetting
about the slave setting. A master-only setup is still possible using an
empty slave server list.

If an empty slave list is configured and an attempt is made to execute a
statement on a slave the plugin may emit a warning like mysqlnd_ms)
Couldn't find the appropriate slave connection.
0 slaves to choose from. upon statement execution. It is
possible that another warning follows such as (mysqlnd_ms) No
connection selected by the last filter.

global_transaction_id_injection
array or object

Global transaction identifier configuration related to both the use of
the server built-in global transaction ID feature and the client-side
emulation.

KeywordDescription Version

fetch_last_gtidSQL statement for accessing the latest global
transaction identifier. The SQL statement
is run if the plugin needs to know the most
recent global transaction identifier. This can
be the case, for example, when checking

Since 1.2.0.

Plugin configuration file (>=1.1.x)

446

KeywordDescription Version
MySQL Replication slave status. Also used with
mysqlnd_ms_get_last_gtid.

check_for_gtidSQL statement for checking if a replica has
replicated all transactions up to and including
ones searched for. The SQL statement is run
when searching for replicas which can offer
a higher level of consistency than eventual
consistency. The statement must contain a
placeholder #GTID which is to be replaced with
the global transaction identifier searched for
by the plugin. Please, check the quickstart for
examples.

Since 1.2.0.

report_errorsWhether to emit an error of type warning if
an issue occurs while executing any of the
configured SQL statements.

Since 1.2.0.

on_commitClient-side global transaction ID emulation
only. SQL statement to run when a transaction
finished to update the global transaction identifier
sequence number on the master. Please, see the
quickstart for examples.

Since 1.2.0.

wait_for_gtid_timeoutInstructs the plugin to wait up to
wait_for_gtid_timeout seconds for a
slave to catch up when searching for slaves
that can deliver session consistency. The
setting limits the time spend for polling the slave
status. If polling the status takes very long,
the total clock time spend waiting may exceed
wait_for_gtid_timeout. The plugin calls
sleep(1) to sleep one second between each
two polls.

The setting can be used both with the plugins
client-side emulation and the server-side global
transaction identifier feature of MySQL 5.6.

Waiting for a slave to replicate a certain GTID
needed for session consistency also means
throttling the client. By throttling the client the
write load on the master is reduced indirectly.
A primary copy based replication system, such
as MySQL Replication, is given more time to
reach a consistent state. This can be desired, for
example, to increase the number of data copies
for high availability considerations or to prevent
the master from being overloaded.

Since 1.4.0.

fabric object MySQL Fabric related settings. If the plugin is used together with
MySQL Fabric, then the plugins configuration file no longer contains
lists of MySQL servers. Instead, the plugin will ask MySQL Fabric which
list of servers to use to perform a certain task.

Plugin configuration file (>=1.1.x)

447

A minimum plugin configuration for use with MySQL Fabric contains
a list of one or more MySQL Fabric hosts that the plugin can query.
If more than one MySQL Fabric host is configured, the plugin will use
a roundrobin strategy to choose among them. Other strategies are
currently not available.

Example 7.68 Minimum pluging configuration for use with MySQL
Fabric

{
 "myapp": {
 "fabric": {
 "hosts": [
 {
 "host" : "127.0.0.1",
 "port" : 8080
 }
]
 }
 }
}

Each MySQL Fabric host is described using a JSON object with the
following members.

KeywordDescription Version

host Host name of the MySQL Fabric host. Since 1.6.0.

port The TCP/IP port on which the MySQL Fabric
host listens for remote procedure calls sent by
clients such as the plugin.

Since 1.6.0.

The plugin is using PHP streams to communicate with MySQL Fabric
through XML RPC over HTTP. By default no timeouts are set for the
network communication. Thus, the plugin defaults to PHP stream
default timeouts. Those defaults are out of control of the plugin itself.

An optional timeout value can be set to overrule the PHP streams
default timeout setting. Setting the timeout in the plugins configuration
file has the same effect as setting a timeout for a PHP user space HTTP
connection established through PHP streams.

The plugins Fabric timeout value unit is seconds. The allowed value
range is from 0 to 65535. The setting exists since version 1.6.

Example 7.69 Optional timeout for communication with Fabric

{
 "myapp": {
 "fabric": {
 "hosts": [
 {
 "host" : "127.0.0.1",

Plugin configuration file (>=1.1.x)

448

 "port" : 8080
 }
],
 "timeout": 2
 }
 }
}

Transaction stickiness and MySQL Fabric logic can collide.
The stickiness option disables switching between servers
for the duration of a transaction. When using Fabric and
sharding the user may (erroneously) start a local transaction
on one share and then attempt to switch to a different shard
using either mysqlnd_ms_fabric_select_shard or
mysqlnd_ms_fabric_select_global. In this case, the plugin will
not reject the request to switch servers in the middle of a transaction but
allow the user to switch to another server regardless of the transaction
stickiness setting used. It is clearly a user error to write such code.

If transaction stickiness is enabled and you would like to get an error
of type warning when calling mysqlnd_ms_fabric_select_shard
or mysqlnd_ms_fabric_select_global, set the boolean flag
trx_warn_server_list_changes.

Example 7.70 Warnings about the violation of transaction
boundaries

{
 "myapp": {
 "fabric": {
 "hosts": [
 {
 "host" : "127.0.0.1",
 "port" : 8080
 }
],
 "trx_warn_serverlist_changes": 1
 },
 "trx_stickiness": "on"
 }
}

<?php
$link = new mysqli("myapp", "root", "", "test");
/*
 For the demo the call may fail.
 Failed or not we get into the state
 needed for the example.
*/
@mysqlnd_ms_fabric_select_global($link, 1);
$link->begin_transaction();
@$link->query("DROP TABLE IF EXISTS test");
/*
 Switching servers/shards is a mistake due to open
 local transaction!

Plugin configuration file (>=1.1.x)

449

*/
mysqlnd_ms_select_global($link, 1);
?>

The above example will output:

PHP Warning: mysqlnd_ms_fabric_select_global(): (mysqlnd_ms) Fabric server exchange in the middle of a transaction in %s on line %d

Please, consider the feature experimental. Changes to syntax and
semantics may happen.

filters object List of filters. A filter is responsible to filter the list of available servers
for executing a given statement. Filters can be chained. The random
and roundrobin filter replace the pick[] directive used in prior
version to select a load balancing policy. The user filter replaces the
mysqlnd_ms_set_user_pick_server function.

Filters may accept parameters to refine their actions.

If no load balancing policy is set, the plugin will default to
random_once. The random_once policy picks a random slave server
when running the first read-only statement. The slave server will be
used for all read-only statements until the PHP script execution ends.
No load balancing policy is set and thus, defaulting takes place, if
neither the random nor the roundrobin are part of a configuration
section.

If a filter chain is configured so that a filter which output no more than
once server is used as input for a filter which should be given more
than one server as input, the plugin may emit a warning upon opening
a connection. The warning may read: (mysqlnd_ms) Error while
creating filter '%s' . Non-multi filter '%s' already
created. Stopping in %s on line %d. Furthermore, an error of
the error code 2000, the sql state HY000 and an error message similar
to the warning may be set on the connection handle.

Example 7.71 Invalid filter sequence

 {
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost"
 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.78.136",
 "port": "3306"
 }
 },
 "filters": [
 "roundrobin",

Plugin configuration file (>=1.1.x)

450

 "random"
]
 }
}

<?php
$link = new mysqli("myapp", "root", "", "test");
printf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error());
$link->query("SELECT 1 FROM DUAL");
?>

The above example will output:

PHP Warning: mysqli::mysqli(): (HY000/2000): (mysqlnd_ms) Error while creating filter 'random' . Non-multi filter 'roundrobin' already created. Stopping in filter_warning.php on line 1
[2000] (mysqlnd_ms) Error while creating filter 'random' . Non-multi filter 'roundrobin' already created. Stopping
PHP Warning: mysqli::query(): Couldn't fetch mysqli in filter_warning.php on line 3

Filter: random object The random filter features the random and random once load balancing
policies, set through the pick[] directive in older versions.

The random policy will pick a random server whenever a read-only
statement is to be executed. The random once strategy picks a random
slave server once and continues using the slave for the rest of the
PHP web request. Random once is a default, if load balancing is not
configured through a filter.

If the random filter is not given any arguments, it stands for random
load balancing policy.

Example 7.72 Random load balancing with random filter

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost"
 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.78.136",
 "port": "3306"
 },
 "slave_1": {
 "host": "192.168.78.137",
 "port": "3306"
 }
 },
 "filters": [
 "random"
]
 }

Plugin configuration file (>=1.1.x)

451

}

Optionally, the sticky argument can be passed to the filter. If the
parameter sticky is set to the string 1, the filter follows the random
once load balancing strategy.

Example 7.73 Random once load balancing with random filter

{
 "filters": {
 "random": {
 "sticky": "1"
 }
 }
}

Both the random and roundrobin filters support setting a priority,
a weight for a server, since PECL/mysqlnd_ms 1.4.0. If the weight
argument is passed to the filter, it must assign a weight for all servers.
Servers must be given an alias name in the slave respectively master
server lists. The alias must be used to reference servers for assigning a
priority with weight.

Example 7.74 Referencing error

[E_RECOVERABLE_ERROR] mysqli_real_connect(): (mysqlnd_ms) Unknown server 'slave3' in 'random' filter configuration. Stopping in %s on line %d

Using a wrong alias name with weight may result in an error similar to
the shown above.

If weight is omitted, the default weight of all servers is one.

Example 7.75 Assigning a weight for load balancing

{
 "myapp": {
 "master": {
 "master1":{
 "host":"localhost",
 "socket":"\/var\/run\/mysql\/mysql.sock"
 }
 },
 "slave": {
 "slave1": {
 "host":"192.168.2.28",
 "port":3306
 },
 "slave2": {
 "host":"192.168.2.29",
 "port":3306

Plugin configuration file (>=1.1.x)

452

 },
 "slave3": {
 "host":"192.0.43.10",
 "port":3306
 },
 },
 "filters": {
 "random": {
 "weights": {
 "slave1":8,
 "slave2":4,
 "slave3":1,
 "master1":1
 }
 }
 }
 }
}

At the average a server assigned a weight of two will be selected twice
as often as a server assigned a weight of one. Different weights can
be assigned to reflect differently sized machines, to prefer co-located
slaves which have a low network latency or, to configure a standby
failover server. In the latter case, you may want to assign the standby
server a very low weight in relation to the other servers. For example,
given the configuration above slave3 will get only some eight percent
of the requests in the average. As long as slave1 and slave2 are
running, it will be used sparsely, similar to a standby failover server.
Upon failure of slave1 and slave2, the usage of slave3 increases.
Please, check the notes on failover before using weight this way.

Valid weight values range from 1 to 65535.

Unknown arguments are ignored by the filter. No warning or error is
given.

The filter expects one or more servers as input. Outputs one server. A
filter sequence such as random, roundrobin may cause a warning
and an error message to be set on the connection handle when
executing a statement.

List of filter arguments.

KeywordDescription Version

stickyEnables or disabled random once load balancing
policy. See above.

Since 1.2.0.

weightAssigns a load balancing weight/priority to a
server. Please, see above for a description.

Since 1.4.0.

Filter: roundrobin object If using the roundrobin filter, the plugin iterates over the list of
configured slave servers to pick a server for statement execution. If the
plugin reaches the end of the list, it wraps around to the beginning of the
list and picks the first configured slave server.

Plugin configuration file (>=1.1.x)

453

Example 7.76 roundrobin filter

 {
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost"
 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.78.136",
 "port": "3306"
 }
 },
 "filters": [
 "roundrobin"
]
 }
}

Expects one or more servers as input. Outputs one server. A filter
sequence such as roundrobin, random may cause a warning and
an error message to be set on the connection handle when executing a
statement.

List of filter arguments.

KeywordDescription Version

weightAssigns a load balancing weight/priority to a
server. Please, find a description above.

Since 1.4.0.

Filter: user object The user replaces mysqlnd_ms_set_user_pick_server function,
which was removed in 1.1.0-beta. The filter sets a callback for user-
defined read/write splitting and server selection.

The plugins built-in read/write query split mechanism decisions
can be overwritten in two ways. The easiest way is to prepend a
query string with the SQL hints MYSQLND_MS_MASTER_SWITCH,
MYSQLND_MS_SLAVE_SWITCH or MYSQLND_MS_LAST_USED_SWITCH.
Using SQL hints one can control, for example, whether a query shall
be send to the MySQL replication master server or one of the slave
servers. By help of SQL hints it is not possible to pick a certain slave
server for query execution.

Full control on server selection can be gained using a callback function.
Use of a callback is recommended to expert users only because the
callback has to cover all cases otherwise handled by the plugin.

The plugin will invoke the callback function for selecting a server from
the lists of configured master and slave servers. The callback function
inspects the query to run and picks a server for query execution by
returning the hosts URI, as found in the master and slave list.

Plugin configuration file (>=1.1.x)

454

If the lazy connections are enabled and the callback chooses a slave
server for which no connection has been established so far and
establishing the connection to the slave fails, the plugin will return an
error upon the next action on the failed connection, for example, when
running a query. It is the responsibility of the application developer to
handle the error. For example, the application can re-run the query to
trigger a new server selection and callback invocation. If so, the callback
must make sure to select a different slave, or check slave availability,
before returning to the plugin to prevent an endless loop.

Example 7.77 Setting a callback

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost"
 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.78.136",
 "port": "3306"
 }
 },
 "filters": {
 "user": {
 "callback": "pick_server"
 }
 }
 }
}

The callback is supposed to return a host to run the query on. The
host URI is to be taken from the master and slave connection lists
passed to the callback function. If callback returns a value neither found
in the master nor in the slave connection lists the plugin will emit an
error of the type E_RECOVERABLE_ERROR The error may read like
(mysqlnd_ms) User filter callback has returned an
unknown server. The server 'server that is not in
master or slave list' can neither be found in the
master list nor in the slave list. If the application catches
the error to ignore it, follow up errors may be set on the connection
handle, for example, (mysqlnd_ms) No connection selected
by the last filter with the error code 2000 and the sqlstate
HY000. Furthermore a warning may be emitted.

Referencing a non-existing function as a callback will result in any
error of the type E_RECOVERABLE_ERROR whenever the plugin
tries to callback function. The error message may reads like:
(mysqlnd_ms) Specified callback (pick_server) is not
a valid callback. If the application catches the error to ignore it,
follow up errors may be set on the connection handle, for example,
(mysqlnd_ms) Specified callback (pick_server) is not

Plugin configuration file (>=1.1.x)

455

a valid callback with the error code 2000 and the sqlstate HY000.
Furthermore a warning may be emitted.

The following parameters are passed from the plugin to the callback.

ParameterDescription Version

connected_hostURI of the currently connected database server. Since 1.1.0.

queryQuery string of the statement for which a server
needs to be picked.

Since 1.1.0.

mastersList of master servers to choose from. Note, that
the list of master servers may not be identical to
the list of configured master servers if the filter
is not the first in the filter chain. Previously run
filters may have reduced the master list already.

Since 1.1.0.

slavesList of slave servers to choose from. Note, that
the list of master servers may not be identical to
the list of configured master servers if the filter
is not the first in the filter chain. Previously run
filters may have reduced the master list already.

Since 1.1.0.

last_used_connectionURI of the server of the connection used to
execute the previous statement on.

Since 1.1.0.

in_transactionBoolean flag indicating whether the statement is
part of an open transaction. If autocommit mode
is turned off, this will be set to TRUE. Otherwise it
is set to FALSE.

Transaction detection is based on monitoring
the mysqlnd library call set_autocommit.
Monitoring is not possible before PHP 5.4.0.
Please, see connection pooling and switching
concepts discussion for further details.

Since 1.1.0.

Example 7.78 Using a callback

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost"
 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.2.27",
 "port": "3306"
 },
 "slave_1": {
 "host": "192.168.78.136",
 "port": "3306"
 }
 },
 "filters": {
 "user": {
 "callback": "pick_server"

Plugin configuration file (>=1.1.x)

456

 }
 }
 }
}

<?php
function pick_server($connected, $query, $masters, $slaves, $last_used_connection, $in_transaction)
{
 static $slave_idx = 0;
 static $num_slaves = NULL;
 if (is_null($num_slaves))
 $num_slaves = count($slaves);

 /* default: fallback to the plugins build-in logic */
 $ret = NULL;

 printf("User has connected to '%s'...\n", $connected);
 printf("... deciding where to run '%s'\n", $query);

 $where = mysqlnd_ms_query_is_select($query);
 switch ($where)
 {
 case MYSQLND_MS_QUERY_USE_MASTER:
 printf("... using master\n");
 $ret = $masters[0];
 break;
 case MYSQLND_MS_QUERY_USE_SLAVE:
 /* SELECT or SQL hint for using slave */
 if (stristr($query, "FROM table_on_slave_a_only"))
 {
 /* a table which is only on the first configured slave */
 printf("... access to table available only on slave A detected\n");
 $ret = $slaves[0];
 }
 else
 {
 /* round robin */
 printf("... some read-only query for a slave\n");
 $ret = $slaves[$slave_idx++ % $num_slaves];
 }
 break;
 case MYSQLND_MS_QUERY_LAST_USED:
 printf("... using last used server\n");
 $ret = $last_used_connection;
 break;
 }

 printf("... ret = '%s'\n", $ret);
 return $ret;
}

$mysqli = new mysqli("myapp", "root", "", "test");

if (!($res = $mysqli->query("SELECT 1 FROM DUAL")))
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
else
 $res->close();

if (!($res = $mysqli->query("SELECT 2 FROM DUAL")))
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
else
 $res->close();

Plugin configuration file (>=1.1.x)

457

if (!($res = $mysqli->query("SELECT * FROM table_on_slave_a_only")))
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
else
 $res->close();

$mysqli->close();
?>

The above example will output:

User has connected to 'myapp'...
... deciding where to run 'SELECT 1 FROM DUAL'
... some read-only query for a slave
... ret = 'tcp://192.168.2.27:3306'
User has connected to 'myapp'...
... deciding where to run 'SELECT 2 FROM DUAL'
... some read-only query for a slave
... ret = 'tcp://192.168.78.136:3306'
User has connected to 'myapp'...
... deciding where to run 'SELECT * FROM table_on_slave_a_only'
... access to table available only on slave A detected
... ret = 'tcp://192.168.2.27:3306'

Filter: user_multi object The user_multi differs from the user only in one aspect. Otherwise,
their syntax is identical. The user filter must pick and return exactly one
node for statement execution. A filter chain usually ends with a filter that
emits only one node. The filter chain shall reduce the list of candidates
for statement execution down to one. This, only one node left, is the
case after the user filter has been run.

The user_multi filter is a multi filter. It returns a list of slave and a list
of master servers. This list needs further filtering to identify exactly one
node for statement execution. A multi filter is typically placed at the top
of the filter chain. The quality_of_service filter is another example
of a multi filter.

The return value of the callback set for user_multi must be an array
with two elements. The first element holds a list of selected master
servers. The second element contains a list of selected slave servers.
The lists shall contain the keys of the slave and master servers as found
in the slave and master lists passed to the callback. The below example
returns random master and slave lists extracted from the functions
input.

Example 7.79 Returning random masters and slaves

<?php
function pick_server($connected, $query, $masters, $slaves, $last_used_connection, $in_transaction)
{
 $picked_masters = array()
 foreach ($masters as $key => $value) {
 if (mt_rand(0, 2) > 1)
 $picked_masters[] = $key;

Plugin configuration file (>=1.1.x)

458

 }
 $picked_slaves = array()
 foreach ($slaves as $key => $value) {
 if (mt_rand(0, 2) > 1)
 $picked_slaves[] = $key;
 }
 return array($picked_masters, $picked_slaves);
}
?>

The plugin will issue an error of type E_RECOVERABLE if the callback
fails to return a server list. The error may read (mysqlnd_ms) User
multi filter callback has not returned a list of
servers to use. The callback must return an array in
%s on line %d. In case the server list is not empty but has invalid
servers key/ids in it, an error of type E_RECOVERABLE will the thrown
with an error message like (mysqlnd_ms) User multi filter
callback has returned an invalid list of servers to
use. Server id is negative in %s on line %d, or similar.

Whether an error is emitted in case of an empty slave or master list
depends on the configuration. If an empty master list is returned for a
write operation, it is likely that the plugin will emit a warning that may
read (mysqlnd_ms) Couldn't find the appropriate master
connection. 0 masters to choose from. Something is
wrong in %s on line %d. Typically a follow up error of type
E_ERROR will happen. In case of a read operation and an empty
slave list the behavior depends on the fail over configuration. If fail
over to master is enabled, no error should appear. If fail over to
master is deactivated the plugin will emit a warning that may read
(mysqlnd_ms) Couldn't find the appropriate slave
connection. 0 slaves to choose from. Something is
wrong in %s on line %d.

Filter: node_groups object The node_groups filter lets you group cluster nodes and query
selected groups, for example, to support data partitioning. Data
partitioning can be required for manual sharding, primary copy based
clusters running multiple masters, or to avoid hot spots in update
everywhere clusters that have no built-in partitioning. The filter is a multi
filter which returns zero, one or multiple of its input servers. Thus, it
must be followed by other filters to reduce the number of candidates
down to one for statement execution.

KeywordDescription Version

user
defined
node
group
name

One or more node groups must be defined. A
node group can have an arbitrary user defined
name. The name is used in combination with a
SQL hint to restrict query execution to the nodes
listed for the node group. To run a query on
any of the servers of a node group, the query
must begin with the SQL hint /*user defined
node group name*/. Please note, no white
space is allowed around user defined node
group name. Because user defined node

Since 1.5.0.

Plugin configuration file (>=1.1.x)

459

KeywordDescription Version
group name is used as-is as part of a SQL hint,
you should choose the name that is compliant
with the SQL language.

Each node group entry must contain a list of
master servers. Additional slave servers are
allowed. Failing to provide a list of master for
a node group name_of_group may cause
an error of type E_RECOVERABLE_ERROR like
(mysqlnd_ms) No masters configured
in node group 'name_of_group' for
'node_groups' filter.

The list of master and slave servers must
reference corresponding entries in the global
master respectively slave server list. Referencing
an unknown server in either of the both server
lists may cause an E_RECOVERABLE_ERROR
error like (mysqlnd_ms) Unknown master
'server_alias_name' (section
'name_of_group') in 'node_groups'
filter configuration.

Example 7.80 Manual partitioning

 {
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost",
 "socket": "\/tmp\/mysql.sock"
 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.2.28",
 "port": 3306
 },
 "slave_1": {
 "host": "127.0.0.1",
 "port": 3311
 }
 },
 "filters": {
 "node_groups": {
 "Partition_A" : {
 "master": ["master_0"],
 "slave": ["slave_0"]
 }
 },
 "roundrobin": []
 }
 }
}

Plugin configuration file (>=1.1.x)

460

KeywordDescription Version
Please note, if a filter chain generates an empty
slave list and the PHP configuration directive
mysqlnd_ms.multi_master=0 is used, the
plugin may emit a warning.

Filter: quality_of_service
object

The quality_of_service identifies cluster nodes capable of
delivering a certain quality of service. It is a multi filter which returns
zero, one or multiple of its input servers. Thus, it must be followed
by other filters to reduce the number of candidates down to one for
statement execution.

The quality_of_service filter has been introduced in 1.2.0-
alpha. In the 1.2 series the filters focus is on the consistency aspect
of service quality. Different types of clusters offer different default
data consistencies. For example, an asynchronous MySQL replication
slave offers eventual consistency. The slave may not be able to deliver
requested data because it has not replicated the write, it may serve
stale database because its lagging behind or it may serve current
information. Often, this is acceptable. In some cases higher consistency
levels are needed for the application to work correct. In those cases,
the quality_of_service can filter out cluster nodes which cannot
deliver the necessary quality of service.

The quality_of_service filter can be replaced or created at
runtime. A successful call to mysqlnd_ms_set_qos removes
all existing qos filter entries from the filter list and installs a new
one at the very beginning. All settings that can be made through
mysqlnd_ms_set_qos can also be in the plugins configuration file.
However, use of the function is by far the most common use case.
Instead of setting session consistency and strong consistency service
levels in the plugins configuration file it is recommended to define only
masters and no slaves. Both service levels will force the use of masters
only. Using an empty slave list shortens the configuration file, thus
improving readability. The only service level for which there is a case of
defining in the plugins configuration file is the combination of eventual
consistency and maximum slave lag.

KeywordDescription Version

eventual_consistencyRequest eventual consistency. Allows the use of
all master and slave servers. Data returned may
or may not be current.

Eventual consistency accepts an optional age
parameter. If age is given the plugin considers
only slaves for reading for which MySQL
replication reports a slave lag less or equal
to age. The replication lag is measure using
SHOW SLAVE STATUS. If the plugin fails to fetch
the replication lag, the slave tested is skipped.
Implementation details and tips are given in the
quality of service concepts section.

Since 1.2.0.

Plugin configuration file (>=1.1.x)

461

KeywordDescription Version
Please note, if a filter chain generates an empty
slave list and the PHP configuration directive
mysqlnd_ms.multi_master=0 is used, the
plugin may emit a warning.

Example 7.81 Global limit on slave lag

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost"
 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.2.27",
 "port": "3306"
 },
 "slave_1": {
 "host": "192.168.78.136",
 "port": "3306"
 }
 },
 "filters": {
 "quality_of_service": {
 "eventual_consistency": {
 "age":123
 }
 }
 }
 }
}

session_consistencyRequest session consistency (read your
writes). Allows use of all masters and all slaves
which are in sync with the master. If no further
parameters are given slaves are filtered out as
there is no reliable way to test if a slave has
caught up to the master or is lagging behind.
Please note, if a filter chain generates an empty
slave list and the PHP configuration directive
mysqlnd_ms.multi_master=0 is used, the
plugin may emit a warning.

Session consistency temporarily requested
using mysqlnd_ms_set_qos is a valuable
alternative to using master_on_write.
master_on_write is likely to send more
statements to the master than needed. The
application may be able to continue operation at
a lower consistency level after it has done some
critical reads.

Since 1.1.0.

Plugin configuration file (>=1.1.x)

462

KeywordDescription Version

strong_consistencyRequest strong consistency. Only masters will be
used.

Since 1.2.0.

failover Up to and including
1.3.x: string. Since 1.4.0: object.

Failover policy. Supported policies: disabled (default), master,
loop_before_master (Since 1.4.0).

If no failover policy is set, the plugin will not do any automatic failover
(failover=disabled). Whenever the plugin fails to connect a
server it will emit a warning and set the connections error code and
message. Thereafter it is up to the application to handle the error and,
for example, resent the last statement to trigger the selection of another
server.

Please note, the automatic failover logic is applied when opening
connections only. Once a connection has been opened no automatic
attempts are made to reopen it in case of an error. If, for example, the
server a connection is connected to is shut down and the user attempts
to run a statement on the connection, no automatic failover will be tried.
Instead, an error will be reported.

If using failover=master the plugin will implicitly failover to a master,
if available. Please check the concepts documentation to learn about
potential pitfalls and risks of using failover=master.

Example 7.82 Optional master failover when failing to connect to
slave (PECL/mysqlnd_ms < 1.4.0)

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost"
 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.78.136",
 "port": "3306"
 }
 },
 "failover": "master"
 }
}

Since PECL/mysqlnd_ms 1.4.0 the failover configuration keyword refers
to an object.

Example 7.83 New syntax since 1.4.0

{
 "myapp": {
 "master": {
 "master_0": {

Plugin configuration file (>=1.1.x)

463

 "host": "localhost"
 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.78.136",
 "port": "3306"
 }
 },
 "failover": {"strategy": "master" }
 }
}

KeywordDescription Version

strategyFailover policy. Possible values: disabled
(default), master, loop_before_master

A value of disabled disables automatic failover.

Setting master instructs the plugin to try to
connect to a master in case of a slave connection
error. If the master connection attempt fails, the
plugin exists the failover loop and returns an
error to the user.

If using loop_before_master and a slave
request is made, the plugin tries to connect to
other slaves before failing over to a master. If
multiple master are given and multi master is
enabled, the plugin also loops over the list of
masters and attempts to connect before returning
an error to the user.

Since 1.4.0.

remember_failedRemember failures for the duration of a web
request. Default: false.

If set to true the plugin will remember failed
hosts and skip the hosts in all future load
balancing made for the duration of the current
web request.

Since 1.4.0.
The feature
is only
available
together
with the
random and
roundrobin
load
balancing
filter. Use of
the setting is
recommended.

max_retriesMaximum number of connection attempts before
skipping host. Default: 0 (no limit).

The setting is used to prevent hosts from being
dropped of the host list upon the first failure. If
set to n > 0, the plugin will keep the node in the
node list even after a failed connection attempt.
The node will not be removed immediately from
the slave respectively master lists after the first

Since 1.4.0.
The feature
is only
available
together
with the
random and
roundrobin
load

Plugin configuration file (>=1.1.x)

464

KeywordDescription Version
connection failure but instead be tried to connect
to up to n times in future load balancing rounds
before being removed.

balancing
filter.

Setting failover to any other value but disabled, master or
loop_before_master will not emit any warning or error.

lazy_connections bool Controls the use of lazy connections. Lazy connections are connections
which are not opened before the client sends the first connection. Lazy
connections are a default.

It is strongly recommended to use lazy connections. Lazy connections
help to keep the number of open connections low. If you disable lazy
connections and, for example, configure one MySQL replication master
server and two MySQL replication slaves, the plugin will open three
connections upon the first call to a connect function although the
application might use the master connection only.

Lazy connections bare a risk if you make heavy use of actions which
change the state of a connection. The plugin does not dispatch all state
changing actions to all connections from the connection pool. The few
dispatched actions are applied to already opened connections only.
Lazy connections opened in the future are not affected. Only some
settings are "remembered" and applied when lazy connections are
opened.

Example 7.84 Disabling lazy connection

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost"
 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.78.136",
 "port": "3306"
 }
 },
 "lazy_connections": 0
 }
}

Please, see also server_charset to overcome potential problems
with string escaping and servers using different default charsets.

server_charset string The setting has been introduced in 1.4.0. It is recommended to set it if
using lazy connections.

The server_charset setting serves two purposes. It acts as
a fallback charset to be used for string escaping done before a
connection has been established and it helps to avoid escaping pitfalls

Plugin configuration file (>=1.1.x)

465

in heterogeneous environments which servers using different default
charsets.

String escaping takes a connections charset into account. String
escaping is not possible before a connection has been opened and the
connections charset is known. The use of lazy connections delays the
actual opening of connections until a statement is send.

An application using lazy connections may attempt to escape a string
before sending a statement. In fact, this should be a common case
as the statement string may contain the string that is to be escaped.
However, due to the lazy connection feature no connection has been
opened yet and escaping fails. The plugin may report an error of
the type E_WARNING and a message like (mysqlnd_ms) string
escaping doesn't work without established connection.
Possible solution is to add server_charset to your
configuration to inform you of the pitfall.

Setting server_charset makes the plugin use the given charset for
string escaping done on lazy connection handles before establishing a
network connection to MySQL. Furthermore, the plugin will enforce the
use of the charset when the connection is established.

Enforcing the use of the configured charset used for escaping is done to
prevent tapping into the pitfall of using a different charset for escaping
than used later for the connection. This has the additional benefit of
removing the need to align the charset configuration of all servers used.
No matter what the default charset on any of the servers is, the plugin
will set the configured one as a default.

The plugin does not stop the user from changing the charset at any
time using the set_charset call or corresponding SQL statements.
Please, note that the use of SQL is not recommended as it cannot be
monitored by the plugin. The user can, for example, change the charset
on a lazy connection handle after escaping a string and before the
actual connection is opened. The charset set by the user will be used
for any subsequent escaping before the connection is established.
The connection will be established using the configured charset, no
matter what the server charset is or what the user has set before.
Once a connection has been opened, set_charset is of no meaning
anymore.

Example 7.85 String escaping on a lazy connection handle

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost"
 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.78.136",
 "port": "3306"
 }

http://www.php.net/set_charset

Plugin configuration file (>=1.1.x)

466

 },
 "lazy_connections": 1,
 "server_charset" : "utf8"
 }
}

<?php
$mysqli = new mysqli("myapp", "username", "password", "database");
$mysqli->real_escape("this will be escaped using the server_charset setting - utf8");
$mysqli->set_charset("latin1");
$mysqli->real_escape("this will be escaped using latin1");
/* server_charset implicitly set - utf8 connection */
$mysqli->query("SELECT 'This connection will be set to server_charset upon establishing' AS _msg FROM DUAL");
/* latin1 used from now on */
$mysqli->set_charset("latin1");
?>

master_on_write bool If set, the plugin will use the master server only after the first statement
has been executed on the master. Applications can still send
statements to the slaves using SQL hints to overrule the automatic
decision.

The setting may help with replication lag. If an application runs an
INSERT the plugin will, by default, use the master to execute all
following statements, including SELECT statements. This helps to avoid
problems with reads from slaves which have not replicated the INSERT
yet.

Example 7.86 Master on write for consistent reads

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost"
 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.78.136",
 "port": "3306"
 }
 },
 "master_on_write": 1
 }
}

Please, note the quality_of_service filter introduced in version
1.2.0-alpha. It gives finer control, for example, for achieving read-your-
writes and, it offers additional functionality introducing service levels.

All transaction stickiness settings, including trx_stickiness=on, are
overruled by master_on_write=1.

Plugin configuration file (>=1.1.x)

467

trx_stickiness string Transaction stickiness policy. Supported policies: disabled (default),
master.

The setting requires 5.4.0 or newer. If used with PHP older than 5.4.0,
the plugin will emit a warning like (mysqlnd_ms) trx_stickiness
strategy is not supported before PHP 5.3.99.

If no transaction stickiness policy is set or, if setting
trx_stickiness=disabled, the plugin is not transaction aware.
Thus, the plugin may load balance connections and switch connections
in the middle of a transaction. The plugin is not transaction safe. SQL
hints must be used avoid connection switches during a transaction.

As of PHP 5.4.0 the mysqlnd library allows the plugin to monitor the
autocommit mode set by calls to the libraries set_autocommit()
function. If setting set_stickiness=master and autocommit gets
disabled by a PHP MySQL extension invoking the mysqlnd library
internal function call set_autocommit(), the plugin is made aware
of the begin of a transaction. Then, the plugin stops load balancing
and directs all statements to the master server until autocommit is
enabled. Thus, no SQL hints are required.

An example of a PHP MySQL API function calling the mysqlnd library
internal function call set_autocommit() is mysqli_autocommit.

Although setting trx_stickiness=master, the plugin cannot
be made aware of autocommit mode changes caused by SQL
statements such as SET AUTOCOMMIT=0 or BEGIN.

As of PHP 5.5.0, the mysqlnd library features additional C API calls
to control transactions. The level of control matches the one offered
by SQL statements. The mysqli API has been modified to use these
calls. Since version 1.5.0, PECL/mysqlnd_ms can monitor not only
mysqli_autocommit, but also mysqli_begin, mysqli_commit
and mysqli_rollback to detect transaction boundaries and stop load
balancing for the duration of a transaction.

Example 7.87 Using master to execute transactions

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost"
 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.78.136",
 "port": "3306"
 }
 },
 "trx_stickiness": "master"
 }
}

http://www.php.net/mysqli_begin

Plugin configuration file (>=1.1.x)

468

Since version 1.5.0 automatic and silent failover is disabled for the
duration of a transaction. If the boundaries of a transaction have
been properly detected, transaction stickiness is enabled and a
server fails, the plugin will not attempt to fail over to the next server,
if any, regardless of the failover policy configured. The user must
handle the error manually. Depending on the configuration, the plugin
may emit an error of type E_WARNING reading like (mysqlnd_ms)
Automatic failover is not permitted in the middle
of a transaction. This error may then be overwritten by follow
up errors such as (mysqlnd_ms) No connection selected by
the last filter. Those errors will be generated by the failing query
function.

Example 7.88 No automatic failover, error handling pitfall

<?php
/* assumption: automatic failover configured */
$mysqli = new mysqli("myapp", "username", "password", "database");

/* sets plugin internal state in_trx = 1 */
$mysqli->autocommit(false);

/* assumption: server fails */
if (!($res = $mysqli->query("SELECT 'Assume this query fails' AS _msg FROM DUAL"))) {
 /* handle failure of transaction, plugin internal state is still in_trx = 1 */
 printf("[%d] %s", $mysqli->errno, $mysqli->error);
 /*
 If using autocommit() based transaction detection it is a
 MUST to call autocommit(true). Otherwise the plugin assumes
 the current transaction continues and connection
 changes remain forbidden.
 */
 $mysqli->autocommit(true);
 /* Likewise, you'll want to start a new transaction */
 $mysqli->autocommit(false);
}
/* latin1 used from now on */
$mysqli->set_charset("latin1");
?>

If a server fails in the middle of a transaction the plugin continues to
refuse to switch connections until the current transaction has been
finished. Recall that the plugin monitors API calls to detect transaction
boundaries. Thus, you have to, for example, enable auto commit
mode to end the current transaction before the plugin continues load
balancing and switches the server. Likewise, you will want to start a new
transaction immediately thereafter and disable auto commit mode again.

Not handling failed queries and not ending a failed transaction using API
calls may cause all following commands emit errors such as Commands
out of sync; you can't run this command now. Thus, it is
important to handle all errors.

transient_error object The setting has been introduced in 1.6.0.

Plugin configuration file (>=1.1.x)

469

A database cluster node may reply a transient error to a client. The
client can then repeat the operation on the same node, fail over to a
different node or abort the operation. Per definition is it safe for a client
to retry the same operation on the same node before giving up.

PECL/mysqlnd_ms can perform the retry loop on behalf of the
application. By configuring transient_error the plugin can be
instructed to repeat operations failing with a certain error code for a
certain maximum number of times with a pause between the retries. If
the transient error disappears during loop execution, it is hidden from
the application. Otherwise, the error is forwarded to the application by
the end of the loop.

Example 7.89 Retry loop for transient errors

{
 "myapp": {
 "master": {
 "master_0": {
 "host": "localhost"
 }
 },
 "slave": {
 "slave_0": {
 "host": "192.168.78.136",
 "port": "3306"
 }
 },
 "transient_error": {
 "mysql_error_codes": [
 1297
],
 "max_retries": 2,
 "usleep_retry": 100
 }
 }
}

KeywordDescription Version

mysql_error_codesList of transient error codes. You may add any
MySQL error code to the list. It is possible to
consider any error as transient not only 1297
(HY000 (ER_GET_TEMPORARY_ERRMSG),
Message: Got temporary error %d '%s'
from %s). Before adding other codes but 1297
to the list, make sure your cluster supports a
new attempt without impacting the state of your
application.

Since 1.6.0.

max_retriesHow often to retry an operation which fails with a
transient error before forwarding the failure to the
user.

Default: 1

Since 1.6.0.

Plugin configuration file (>=1.1.x)

470

KeywordDescription Version

usleep_retryMilliseconds to sleep between transient error
retries. The value is passed to the C function
usleep, hence the name.

Default: 100

Since 1.6.0.

xa object The setting has been introduced in 1.6.0.

Experimental

The feature is currently under development.
There may be issues and/or feature limitations.
Do not use in production environments.

state_store record_participant_credentials Whether
to
store
the
username
and
password
of
a
global
transaction
participant
in
the
participants
table.
If
disabled,
the
garbage
collection
will
use
the
default
username
and
password
when
connecting
to
the
participants.
Unless
you
are
using
a
different

http://www.php.net/usleep

Plugin configuration file (>=1.1.x)

471

username
and
password
for
each
of
your
MySQL
servers,
you
can
use
the
default
and
avoid
storing
the
sensible
information
in
state
store.

Please
note,
username
and
password
are
stored
in
clear
text
when
using
the
MySQL
state
store,
which
is
the
only
one
available.
It
is
in
your
responsibility
to
protect
this

Plugin configuration file (>=1.1.x)

472

sensible
information.

Default:
false

participant_localhost_ip During
XA
garbage
collection
the
plugin
may
find
a
participant
server
for
which
the
host
localhost
has
been
recorded.
If
the
garbage
collection
takes
place
on
another
host
but
the
host
that
has
written
the
participant
record
to
the
state
store,
the
host
name
localhost
now
resolves
to

Plugin configuration file (>=1.1.x)

473

a
different
host.
Therefore,
when
recording
a
participant
servers
host
name
in
the
state
store,
a
value
of
localhost
must
be
replaced
with
the
actual
IP
address
of
localhost.

Setting
participant_localhost_ip
should
be
considered
only
if
using
localhost
cannot
be
avoided.
From
a
garbage
collection
point
of
view
only,
it
is
preferrable
not

Plugin configuration file (>=1.1.x)

474

to
configure
any
socket
connection
but
to
provide
an
IP
address
and
port
for
a
node.

mysql The
MySQL
state
store
is
the
only
state
store
available.

global_trx_table Name
of
the
MySQL
table
used
to
store
the
state
of
an
ongoing
or
aborted
global
transaction.
Use
the
below
SQL
statement
to
create
the
table.

Plugin configuration file (>=1.1.x)

475

Make
sure
to
edit
the
table
name
to
match
your
configuration.

Default:
mysqlnd_ms_xa_trx

Example 7.90 SQL
definition
for
the
MySQL
state
store
transaction
table

CREATE TABLE mysqlnd_ms_xa_trx (
 store_trx_id int(11) NOT NULL AUTO_INCREMENT,
 gtrid int(11) NOT NULL,
 format_id int(10) unsigned NOT NULL DEFAULT '1',
 state enum('XA_NON_EXISTING','XA_ACTIVE','XA_IDLE','XA_PREPARED','XA_COMMIT','XA_ROLLBACK') NOT NULL DEFAULT 'XA_NON_EXISTING',
 intend enum('XA_NON_EXISTING','XA_ACTIVE','XA_IDLE','XA_PREPARED','XA_COMMIT','XA_ROLLBACK') DEFAULT 'XA_NON_EXISTING',
 finished enum('NO','SUCCESS','FAILURE') NOT NULL DEFAULT 'NO',
 modified timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 started datetime DEFAULT NULL,
 timeout datetime DEFAULT NULL,
 PRIMARY KEY (store_trx_id),
 KEY idx_xa_id (gtrid,format_id,finished),
 KEY idx_state (state)
) ENGINE=InnoDB

participant_table Name
of
the
MySQL
table
used
to
store
participants
of
an
ongoing
or
aborted
global
transaction.

Plugin configuration file (>=1.1.x)

476

Use
the
below
SQL
statement
to
create
the
table.
Make
sure
to
edit
the
table
name
to
match
your
configuration.

Storing
credentials
can
be
enabled
and
disabled
using
record_participant_credentials

Default:
mysqlnd_ms_xa_participants

Example 7.91 SQL
definition
for
the
MySQL
state
store
transaction
table

CREATE TABLE mysqlnd_ms_xa_participants (
 fk_store_trx_id int(11) NOT NULL,
 bqual varbinary(64) NOT NULL DEFAULT '',
 participant_id int(10) unsigned NOT NULL AUTO_INCREMENT,
 server_uuid varchar(127) DEFAULT NULL,
 scheme varchar(1024) NOT NULL,
 host varchar(127) DEFAULT NULL,
 port smallint(5) unsigned DEFAULT NULL,
 socket varchar(127) DEFAULT NULL,
 user varchar(127) DEFAULT NULL,
 password varchar(127) DEFAULT NULL,
 state enum('XA_NON_EXISTING','XA_ACTIVE','XA_IDLE','XA_PREPARED','XA_COMMIT','XA_ROLLBACK')
 NOT NULL DEFAULT 'XA_NON_EXISTING',

Plugin configuration file (>=1.1.x)

477

 health enum('OK','GC_DONE','CLIENT ERROR','SERVER ERROR') NOT NULL DEFAULT 'OK',
 connection_id int(10) unsigned DEFAULT NULL,
 client_errno smallint(5) unsigned DEFAULT NULL,
 client_error varchar(1024) DEFAULT NULL,
 modified timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (participant_id),
 KEY idx_xa_bqual (bqual),
 KEY idx_store_trx (fk_store_trx_id),
 CONSTRAINT mysqlnd_ms_xa_participants_ibfk_1 FOREIGN KEY (fk_store_trx_id)
 REFERENCES mysqlnd_ms_xa_trx (store_trx_id) ON DELETE CASCADE ON UPDATE CASCADE
) ENGINE=InnoDB

garbage_collection_table Name
of
the
MySQL
table
used
to
track
and
synchronize
garbage
collection
runs.
Use
the
below
SQL
statement
to
create
the
table.
Make
sure
to
edit
the
table
name
to
match
your
configuration.

Default:
mysqlnd_ms_xa_gc

Example 7.92 SQL
definition
for
the
MySQL
state

Plugin configuration file (>=1.1.x)

478

store
garbage
collection
table

CREATE TABLE mysqlnd_ms_xa_gc (
 gc_id int(10) unsigned NOT NULL AUTO_INCREMENT,
 gtrid int(11) NOT NULL,
 format_id int(10) unsigned NOT NULL DEFAULT '1',
 fk_store_trx_id int(11) DEFAULT NULL,
 modified timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 attempts smallint(5) unsigned NOT NULL DEFAULT '0',
 PRIMARY KEY (gc_id),
 KEY idx_store_trx (gtrid,format_id,fk_store_trx_id)
) ENGINE=InnoDB

host Host
name
of
the
MySQL
server.

user Name
of
the
user
used
to
connect
to
the
MySQL
server.

password Password
for
the
MySQL
server
user.

db Database
that
holds
the
garbage
collection
tables.
Please
note,
you
have
to
create
the

Plugin configuration file (>=1.1.x)

479

garbage
collection
tables
prior
to
using
the
plugin.
The
tables
will
not
be
created
implicitly
during
runtime
but
garbage
collection
will
fail
if
the
tables
to
not
exist.

port Port
of
the
MySQL
server.

socket Unix
domain
socket
of
the
MySQL
server.
Please
note,
if
you
have
multiple
PHP
servers
each
of
them
will

Plugin configuration file (>=1.1.x)

480

try
to
carry
out
garbage
collection
and
need
to
be
able
to
connect
to
the
state
store.
In
this
case,
you
may
prefer
configuring
an
IP
address
and
a
port
for
the
MySQL
state
store
server
to
ensure
all
PHP
servers
can
reach
it.

rollback_on_close Whether to automatically rollback
an open global transaction when
a connection is closed. If enabled,
it mimics the default behaviour of
local transactions. Should a client
disconnect, the server rolls back any
open and unfinished transactions.

Default: true

Plugin configuration file (>=1.1.x)

481

garbage_collection max_retries Maximum
number
of
garbage
collection
runs
before
giving
up.
Allowed
values
are
from
0
to
100.
A
setting
of
0
means
no
limit,
unless
the
state
store
enforces
a
limit.
Should
the
state
store
enforce
a
limit,
it
can
be
supposed
to
be
significantly
higher
than
100.
Available
since
1.6.0.

Please
note,

Plugin configuration file (>=1.1.x)

482

it
is
important
to
end
failed
XA
transactions
within
reasonable
time
to
make
participating
servers
free
resources
bound
to
the
transaction.
The
built-
in
garbage
collection
is
not
expected
to
fail
for
a
long
period
as
long
as
crashed
servers
become
available
again
quickly.
Still,
a
situation
may
arise
where
a
human
is
required

Plugin configuration file (>=1.1.x)

483

to
act
because
the
built-
in
garbage
collection
stopped
or
failed.
In
this
case,
you
may
first
want
to
check
if
the
transaction
still
cannot
be
fixed
by
forcing
mysqlnd_ms_xa_gc
to
ignore
the
setting,
prior
to
handling
it
manually.

Default:
5

probability Garbage
collection
probability.
Allowed
values
are
from
0
to
1000.
A

Plugin configuration file (>=1.1.x)

484

setting
of
0
disables
automatic
background
garbage
collection.
Despite
a
setting
of
0
it
is
still
possible
to
trigger
garbage
collection
by
calling
mysqlnd_ms_gc.
Available
since
1.6.0.

The
automatic
garbage
collection
of
stalled
XA
transaction
is
only
available
if
a
state
store
have
been
configured.
The
state
store
is
responsible
to
keep
track

http://www.php.net/mysqlnd_ms_gc

Plugin configuration file (>=1.1.x)

485

of
XA
transactions.
Based
on
its
recordings
it
can
find
blocked
XA
transactions
where
the
client
has
crashed,
connect
to
the
participants
and
rollback
the
unfinished
transactions.

The
garbage
collection
is
triggered
as
part
of
PHP's
request
shutdown
procedure
at
the
end
of
a
web
request.
That
is
after
your
PHP
script
has

Plugin configuration file (>=1.1.x)

486

finished
working.
Do
decide
whether
to
run
the
garbage
collection
a
random
value
between
0
and
1000
is
computed.
If
the
probability
value
is
higher
or
equal
to
the
random
value,
the
state
stores
garbage
collection
routines
are
invoked.

Default:
5

max_transactions_per_run Maximum
number
of
unfinished
XA
transactions
considered
by
the
garbage
collection

Plugin configuration file (>=1.1.x)

487

during
one
run.
Allowed
values
are
from
1
to
32768.
Available
since
1.6.0.

Cleaning
up
an
unfinished
XA
transaction
takes
considerable
amounts
of
time
and
resources.
The
garbage
collection
routine
may
have
to
connect
to
several
participants
of
a
failed
global
transaction
to
issue
the
SQL
commands
for
rolling
back
the
unfinished
tranaction.

Plugin configuration file (>=1.1.x)

488

Default:
100

7.6.4.3 Plugin configuration file (<= 1.0.x)

Copyright 1997-2014 the PHP Documentation Group.

Note

The below description applies to PECL/mysqlnd_ms < 1.1.0-beta. It is not valid for
later versions.

The plugin is using its own configuration file. The configuration file holds information on the MySQL
replication master server, the MySQL replication slave servers, the server pick (load balancing) policy, the
failover strategy and the use of lazy connections.

The PHP configuration directive mysqlnd_ms.ini_file is used to set the plugins configuration file.

The configuration file mimics standard the php.ini format. It consists of one or more sections. Every
section defines its own unit of settings. There is no global section for setting defaults.

Applications reference sections by their name. Applications use section names as the host (server)
parameter to the various connect methods of the mysqli, mysql and PDO_MYSQL extensions. Upon
connect the mysqlnd plugin compares the hostname with all section names from the plugin configuration
file. If hostname and section name match, the plugin will load the sections settings.

Example 7.93 Using section names example

[myapp]
master[] = localhost
slave[] = 192.168.2.27
slave[] = 192.168.2.28:3306
[localhost]
master[] = localhost:/tmp/mysql/mysql.sock
slave[] = 192.168.3.24:3305
slave[] = 192.168.3.65:3309

<?php
/* All of the following connections will be load balanced */
$mysqli = new mysqli("myapp", "username", "password", "database");
$pdo = new PDO('mysql:host=myapp;dbname=database', 'username', 'password');
$mysql = mysql_connect("myapp", "username", "password");

$mysqli = new mysqli("localhost", "username", "password", "database");
?>

Section names are strings. It is valid to use a section name such as 192.168.2.1, 127.0.0.1 or
localhost. If, for example, an application connects to localhost and a plugin configuration section
[localhost] exists, the semantics of the connect operation are changed. The application will no longer
only use the MySQL server running on the host localhost but the plugin will start to load balance

Plugin configuration file (>=1.1.x)

489

MySQL queries following the rules from the [localhost] configuration section. This way you can load
balance queries from an application without changing the applications source code.

The master[], slave[] and pick[] configuration directives use a list-like syntax. Configuration
directives supporting list-like syntax may appear multiple times in a configuration section. The plugin
maintains the order in which entries appear when interpreting them. For example, the below example
shows two slave[] configuration directives in the configuration section [myapp]. If doing round-robin
load balancing for read-only queries, the plugin will send the first read-only query to the MySQL server
mysql_slave_1 because it is the first in the list. The second read-only query will be send to the MySQL
server mysql_slave_2 because it is the second in the list. Configuration directives supporting list-like
syntax result are ordered from top to bottom in accordance to their appearance within a configuration
section.

Example 7.94 List-like syntax

[myapp]
master[] = mysql_master_server
slave[] = mysql_slave_1
slave[] = mysql_slave_2

Here is a short explanation of the configuration directives that can be used.

master[] string URI of a MySQL replication master server. The URI follows the syntax
hostname[:port|unix_domain_socket].

The plugin supports using only one master server.

Setting a master server is mandatory. The plugin will report a warning
upon connect if the user has failed to provide a master server for a
configuration section. The warning may read (mysqlnd_ms) Cannot
find master section in config. Furthermore the plugin may
set an error code for the connection handle such as HY000/2000
(CR_UNKNOWN_ERROR). The corresponding error message depends on
your language settings.

slave[] string URI of one or more MySQL replication slave servers. The URI follows
the syntax hostname[:port|unix_domain_socket].

The plugin supports using one or more slave servers.

Setting a slave server is mandatory. The plugin will report a warning
upon connect if the user has failed to provide at least one slave server
for a configuration section. The warning may read (mysqlnd_ms)
Cannot find slaves section in config. Furthermore the
plugin may set an error code for the connection handle such as
HY000/2000 (CR_UNKNOWN_ERROR). The corresponding error
message depends on your language settings.

pick[] string Load balancing (server picking) policy. Supported policies: random,
random_once (default), roundrobin, user.

If no load balancing policy is set, the plugin will default to
random_once. The random_once policy picks a random slave server

Plugin configuration file (>=1.1.x)

490

when running the first read-only statement. The slave server will be
used for all read-only statements until the PHP script execution ends.

The random policy will pick a random server whenever a read-only
statement is to be executed.

If using roundrobin the plugin iterates over the list of configured slave
servers to pick a server for statement execution. If the plugin reaches
the end of the list, it wraps around to the beginning of the list and picks
the first configured slave server.

Setting more than one load balancing policy for a configuration
section makes only sense in conjunction with user and
mysqlnd_ms_set_user_pick_server. If the user defined callback
fails to pick a server, the plugin falls back to the second configured load
balancing policy.

failover string Failover policy. Supported policies: disabled (default), master.

If no failover policy is set, the plugin will not do any automatic failover
(failover=disabled). Whenever the plugin fails to connect a
server it will emit a warning and set the connections error code and
message. Thereafter it is up to the application to handle the error and,
for example, resent the last statement to trigger the selection of another
server.

If using failover=master the plugin will implicitly failover to a slave,
if available. Please check the concepts documentation to learn about
potential pitfalls and risks of using failover=master.

lazy_connections bool Controls the use of lazy connections. Lazy connections are connections
which are not opened before the client sends the first connection.

It is strongly recommended to use lazy connections. Lazy connections
help to keep the number of open connections low. If you disable lazy
connections and, for example, configure one MySQL replication master
server and two MySQL replication slaves, the plugin will open three
connections upon the first call to a connect function although the
application might use the master connection only.

Lazy connections bare a risk if you make heavy use of actions which
change the state of a connection. The plugin does not dispatch all state
changing actions to all connections from the connection pool. The few
dispatched actions are applied to already opened connections only.
Lazy connections opened in the future are not affected. If, for example,
the connection character set is changed using a PHP MySQL API
call, the plugin will change the character set of all currently opened
connection. It will not remember the character set change to apply
it on lazy connections opened in the future. As a result the internal
connection pool would hold connections using different character
sets. This is not desired. Remember that character sets are taken into
account for escaping.

master_on_write bool If set, the plugin will use the master server only after the first statement
has been executed on the master. Applications can still send

Plugin configuration file (>=1.1.x)

491

statements to the slaves using SQL hints to overrule the automatic
decision.

The setting may help with replication lag. If an application runs an
INSERT the plugin will, by default, use the master to execute all
following statements, including SELECT statements. This helps to avoid
problems with reads from slaves which have not replicated the INSERT
yet.

trx_stickiness string Transaction stickiness policy. Supported policies: disabled (default),
master.

Experimental feature.

The setting requires 5.4.0 or newer. If used with PHP older than 5.4.0,
the plugin will emit a warning like (mysqlnd_ms) trx_stickiness
strategy is not supported before PHP 5.3.99.

If no transaction stickiness policy is set or, if setting
trx_stickiness=disabled, the plugin is not transaction aware.
Thus, the plugin may load balance connections and switch connections
in the middle of a transaction. The plugin is not transaction safe. SQL
hints must be used avoid connection switches during a transaction.

As of PHP 5.4.0 the mysqlnd library allows the plugin to monitor the
autocommit mode set by calls to the libraries trx_autocommit()
function. If setting trx_stickiness=master and autocommit gets
disabled by a PHP MySQL extension invoking the mysqlnd library
internal function call trx_autocommit(), the plugin is made aware
of the begin of a transaction. Then, the plugin stops load balancing
and directs all statements to the master server until autocommit is
enabled. Thus, no SQL hints are required.

An example of a PHP MySQL API function calling the mysqlnd library
internal function call trx_autocommit() is mysqli_autocommit.

Although setting trx_stickiness=master, the plugin cannot
be made aware of autocommit mode changes caused by SQL
statements such as SET AUTOCOMMIT=0.

7.6.4.4 Testing

Copyright 1997-2014 the PHP Documentation Group.

Note

The section applies to mysqlnd_ms 1.1.0 or newer, not the 1.0 series.

The PECL/mysqlnd_ms test suite is in the tests/ directory of the source distribution. The test suite
consists of standard phpt tests, which are described on the PHP Quality Assurance Teams website.

Running the tests requires setting up one to four MySQL servers. Some tests don't connect to MySQL at
all. Others require one server for testing. Some require two distinct servers. In some cases two servers are
used to emulate a replication setup. In other cases a master and a slave of an existing MySQL replication
setup are required for testing. The tests will try to detect how many servers and what kind of servers are
given. If the required servers are not found, the test will be skipped automatically.

Plugin configuration file (>=1.1.x)

492

Before running the tests, edit tests/config.inc to configure the MySQL servers to be used for testing.

The most basic configuration is as follows.

 putenv("MYSQL_TEST_HOST=localhost");
 putenv("MYSQL_TEST_PORT=3306");
 putenv("MYSQL_TEST_USER=root");
 putenv("MYSQL_TEST_PASSWD=");
 putenv("MYSQL_TEST_DB=test");
 putenv("MYSQL_TEST_ENGINE=MyISAM");
 putenv("MYSQL_TEST_SOCKET=");

 putenv("MYSQL_TEST_SKIP_CONNECT_FAILURE=1");
 putenv("MYSQL_TEST_CONNECT_FLAGS=0");
 putenv("MYSQL_TEST_EXPERIMENTAL=0");

 /* replication cluster emulation */
 putenv("MYSQL_TEST_EMULATED_MASTER_HOST=". getenv("MYSQL_TEST_HOST"));
 putenv("MYSQL_TEST_EMULATED_SLAVE_HOST=". getenv("MYSQL_TEST_HOST"));

 /* real replication cluster */
 putenv("MYSQL_TEST_MASTER_HOST=". getenv("MYSQL_TEST_EMULATED_MASTER_HOST"));
 putenv("MYSQL_TEST_SLAVE_HOST=". getenv("MYSQL_TEST_EMULATED_SLAVE_HOST"));

MYSQL_TEST_HOST, MYSQL_TEST_PORT and MYSQL_TEST_SOCKET define the hostname, TCP/IP port
and Unix domain socket of the default database server. MYSQL_TEST_USER and MYSQL_TEST_PASSWD
contain the user and password needed to connect to the database/schema configured with
MYSQL_TEST_DB. All configured servers must have the same database user configured to give access to
the test database.

Using host, host:port or host:/path/to/socket syntax one can set an alternate host, host and port
or host and socket for any of the servers.

putenv("MYSQL_TEST_SLAVE_HOST=192.168.78.136:3307"));
putenv("MYSQL_TEST_MASTER_HOST=myserver_hostname:/path/to/socket"));

7.6.4.5 Debugging and Tracing

Copyright 1997-2014 the PHP Documentation Group.

The mysqlnd debug log can be used to debug and trace the actitivities of PECL/mysqlnd_ms. As a
mysqlnd PECL/mysqlnd_ms adds trace information to the mysqlnd library debug file. Please, see the
mysqlnd.debug PHP configuration directive documentation for a detailed description on how to configure
the debug log.

Configuration setting example to activate the debug log:

mysqlnd.debug=d:t:x:O,/tmp/mysqlnd.trace

Plugin configuration file (>=1.1.x)

493

Note

This feature is only available with a debug build of PHP. Works on Microsoft
Windows if using a debug build of PHP and PHP was built using Microsoft Visual C
version 9 and above.

The debug log shows mysqlnd library and PECL/mysqlnd_ms plugin function calls, similar to a trace
log. Mysqlnd library calls are usually prefixed with mysqlnd_. PECL/mysqlnd internal calls begin with
mysqlnd_ms.

Example excerpt from the debug log (connect):

[...]
>mysqlnd_connect
| info : host=myapp user=root db=test port=3306 flags=131072
| >mysqlnd_ms::connect
| | >mysqlnd_ms_config_json_section_exists
| | | info : section=[myapp] len=[5]
| | | >mysqlnd_ms_config_json_sub_section_exists
| | | | info : section=[myapp] len=[5]
| | | | info : ret=1
| | | <mysqlnd_ms_config_json_sub_section_exists
| | | info : ret=1
| | <mysqlnd_ms_config_json_section_exists
[...]

The debug log is not only useful for plugin developers but also to find the cause of user errors. For
example, if your application does not do proper error handling and fails to record error messages, checking
the debug and trace log may help finding the cause. Use of the debug log to debug application issues
should be considered only if no other option is available. Writing the debug log to disk is a slow operation
and may have negative impact on the application performance.

Example excerpt from the debug log (connection failure):

[...]
| | | | | | | info : adding error [Access denied for user 'root'@'localhost' (using password: YES)] to the list
| | | | | | | info : PACKET_FREE(0)
| | | | | | | info : PACKET_FREE(0x7f3ef6323f50)
| | | | | | | info : PACKET_FREE(0x7f3ef6324080)
| | | | | | <mysqlnd_auth_handshake
| | | | | | info : switch_to_auth_protocol=n/a
| | | | | | info : conn->error_info.error_no = 1045
| | | | | <mysqlnd_connect_run_authentication
| | | | | info : PACKET_FREE(0x7f3ef63236d8)
| | | | | >mysqlnd_conn::free_contents
| | | | | | >mysqlnd_net::free_contents
| | | | | | <mysqlnd_net::free_contents
| | | | | | info : Freeing memory of members
| | | | | | info : scheme=unix:///tmp/mysql.sock
| | | | | | >mysqlnd_error_list_pdtor
| | | | | | <mysqlnd_error_list_pdtor
| | | | | <mysqlnd_conn::free_contents
| | | | <mysqlnd_conn::connect
[...]

Plugin configuration file (>=1.1.x)

494

The trace log can also be used to verify correct behaviour of PECL/mysqlnd_ms itself, for example, to
check which server has been selected for query execution and why.

Example excerpt from the debug log (plugin decision):

[...]
>mysqlnd_ms::query
| info : query=DROP TABLE IF EXISTS test
| >_mysqlnd_plugin_get_plugin_connection_data
| | info : plugin_id=5
| <_mysqlnd_plugin_get_plugin_connection_data
| >mysqlnd_ms_pick_server_ex
| | info : conn_data=0x7fb6a7d3e5a0 *conn_data=0x7fb6a7d410d0
| | >mysqlnd_ms_select_servers_all
| | <mysqlnd_ms_select_servers_all
| | >mysqlnd_ms_choose_connection_rr
| | | >mysqlnd_ms_query_is_select
[...]
| | | <mysqlnd_ms_query_is_select
[...]
| | | info : Init the master context
| | | info : list(0x7fb6a7d3f598) has 1
| | | info : Using master connection
| | | >mysqlnd_ms_advanced_connect
| | | | >mysqlnd_conn::connect
| | | | | info : host=localhost user=root db=test port=3306 flags=131072 persistent=0 state=0

In this case the statement DROP TABLE IF EXISTS test has been executed. Note that the statement
string is shown in the log file. You may want to take measures to restrict access to the log for security
considerations.

The statement has been load balanced using round robin policy, as you can easily guess from the
functions name >mysqlnd_ms_choose_connection_rr. It has been sent to a master server running on
host=localhost user=root db=test port=3306 flags=131072 persistent=0 state=0.

7.6.4.6 Monitoring

Copyright 1997-2014 the PHP Documentation Group.

Plugin activity can be monitored using the mysqlnd trace log, mysqlnd statistics, mysqlnd_ms plugin
statistics and external PHP debugging tools. Use of the trace log should be limited to debugging. It is
recommended to use the plugins statistics for monitoring.

Writing a trace log is a slow operation. If using an external PHP debugging tool, please refer to the vendors
manual about its performance impact and the type of information collected. In many cases, external
debugging tools will provide call stacks. Often, a call stack or a trace log is more difficult to interpret than
the statistics provided by the plugin.

Plugin statistics tell how often which kind of cluster node has been used (slave or master), why the node
was used, if lazy connections have been used and if global transaction ID injection has been performed.
The monitoring information provided enables user to verify plugin decisions and to plan their cluster
resources based on usage pattern. The function mysqlnd_ms_get_stats is used to access the
statistics. Please, see the functions description for a list of available statistics.

Statistics are collected on a per PHP process basis. Their scope is a PHP process. Depending on the PHP
deployment model a process may serve one or multiple web requests. If using CGI model, a PHP process
serves one web request. If using FastCGI or pre-fork web server models, a PHP process usually serves

Plugin configuration file (>=1.1.x)

495

multiple web requests. The same is the case with a threaded web server. Please, note that threads running
in parallel can update the statistics in parallel. Thus, if using a threaded PHP deployment model, statistics
can be changed by more than one script at a time. A script cannot rely on the fact that it sees only its own
changes to statistics.

Example 7.95 Verify plugin activity in a non-threaded deployment model

mysqlnd_ms.enable=1
mysqlnd_ms.collect_statistics=1

<?php
/* Load balanced following "myapp" section rules from the plugins config file (not shown) */
$mysqli = new mysqli("myapp", "username", "password", "database");
if (mysqli_connect_errno())
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));

$stats_before = mysqlnd_ms_get_stats();
if ($res = $mysqli->query("SELECT 'Read request' FROM DUAL")) {
 var_dump($res->fetch_all());
}
$stats_after = mysqlnd_ms_get_stats();
if ($stats_after['use_slave'] <= $stats_before['use_slave']) {
 echo "According to the statistics the read request has not been run on a slave!";
}
?>

Statistics are aggregated for all plugin activities and all connections handled by the plugin. It is not possible
to tell how much a certain connection handle has contributed to the overall statistics.

Utilizing PHPs register_shutdown_function function or the auto_append_file PHP configuration
directive it is easily possible to dump statistics into, for example, a log file when a script finishes. Instead
of using a log file it is also possible to send the statistics to an external monitoring tool for recording and
display.

Example 7.96 Recording statistics during shutdown

mysqlnd_ms.enable=1
mysqlnd_ms.collect_statistics=1
error_log=/tmp/php_errors.log

<?php
function check_stats() {
 $msg = str_repeat("-", 80) . "\n";
 $msg .= var_export(mysqlnd_ms_get_stats(), true) . "\n";
 $msg .= str_repeat("-", 80) . "\n";
 error_log($msg);
}
register_shutdown_function("check_stats");
?>

http://www.php.net/register_shutdown_function

Predefined Constants

496

7.7 Predefined Constants
Copyright 1997-2014 the PHP Documentation Group.

The constants below are defined by this extension, and will only be available when the extension has either
been compiled into PHP or dynamically loaded at runtime.

SQL hint related

Example 7.97 Example demonstrating the usage of mysqlnd_ms constants

The mysqlnd replication and load balancing plugin (mysqlnd_ms) performs read/write splitting. This directs
write queries to a MySQL master server, and read-only queries to the MySQL slave servers. The plugin
has a built-in read/write split logic. All queries which start with SELECT are considered read-only queries,
which are then sent to a MySQL slave server that is listed in the plugin configuration file. All other queries
are directed to the MySQL master server that is also specified in the plugin configuration file.

User supplied SQL hints can be used to overrule automatic read/write splitting, to gain full control on the
process. SQL hints are standards compliant SQL comments. The plugin will scan the beginning of a query
string for an SQL comment for certain commands, which then control query redirection. Other systems
involved in the query processing are unaffected by the SQL hints because other systems will ignore the
SQL comments.

The plugin supports three SQL hints to direct queries to either the MySQL slave servers, the MySQL
master server, or the last used MySQL server. SQL hints must be placed at the beginning of a query to be
recognized by the plugin.

For better portability, it is recommended to use the string constants MYSQLND_MS_MASTER_SWITCH,
MYSQLND_MS_SLAVE_SWITCH and MYSQLND_MS_LAST_USED_SWITCH instead of their literal values.

<?php
/* Use constants for maximum portability */
$master_query = "/*" . MYSQLND_MS_MASTER_SWITCH . "*/SELECT id FROM test";

/* Valid but less portable: using literal instead of constant */
$slave_query = "/*ms=slave*/SHOW TABLES";

printf("master_query = '%s'\n", $master_query);
printf("slave_query = '%s'\n", $slave_query);
?>

The above examples will output:

master_query = /*ms=master*/SELECT id FROM test
slave_query = /*ms=slave*/SHOW TABLES

MYSQLND_MS_MASTER_SWITCH
(string)

SQL hint used to send a query to the MySQL replication master server.

MYSQLND_MS_SLAVE_SWITCH
(string)

SQL hint used to send a query to one of the MySQL replication slave
servers.

Predefined Constants

497

MYSQLND_MS_LAST_USED_SWITCH
(string)

SQL hint used to send a query to the last used MySQL server. The
last used MySQL server can either be a master or a slave server in a
MySQL replication setup.

mysqlnd_ms_query_is_select related

MYSQLND_MS_QUERY_USE_MASTER
(integer)

If mysqlnd_ms_is_select returns
MYSQLND_MS_QUERY_USE_MASTER for a given query, the built-in read/
write split mechanism recommends sending the query to a MySQL
replication master server.

MYSQLND_MS_QUERY_USE_SLAVE
(integer)

If mysqlnd_ms_is_select returns
MYSQLND_MS_QUERY_USE_SLAVE for a given query, the built-in read/
write split mechanism recommends sending the query to a MySQL
replication slave server.

MYSQLND_MS_QUERY_USE_LAST_USED
(integer)

If mysqlnd_ms_is_select returns
MYSQLND_MS_QUERY_USE_LAST_USED for a given query, the built-in
read/write split mechanism recommends sending the query to the last
used server.

mysqlnd_ms_set_qos, quality of service filter and service level related

MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL
(integer)

Use to request the service level eventual consistency from the
mysqlnd_ms_set_qos. Eventual consistency is the default quality of
service when reading from an asynchronous MySQL replication slave.
Data returned in this service level may or may not be stale, depending
on whether the selected slaves happen to have replicated the latest
changes from the MySQL replication master or not.

MYSQLND_MS_QOS_CONSISTENCY_SESSION
(integer)

Use to request the service level session consistency from the
mysqlnd_ms_set_qos. Session consistency is defined as read your
writes. The client is guaranteed to see his latest changes.

MYSQLND_MS_QOS_CONSISTENCY_STRONG
(integer)

Use to request the service level strong consistency from the
mysqlnd_ms_set_qos. Strong consistency is used to ensure all
clients see each others changes.

MYSQLND_MS_QOS_OPTION_GTID
(integer)

Used as a service level option with mysqlnd_ms_set_qos to
parameterize session consistency.

MYSQLND_MS_QOS_OPTION_AGE
(integer)

Used as a service level option with mysqlnd_ms_set_qos to
parameterize eventual consistency.

Other

The plugins version number can be obtained using MYSQLND_MS_VERSION or
MYSQLND_MS_VERSION_ID. MYSQLND_MS_VERSION is the string representation of the numerical version
number MYSQLND_MS_VERSION_ID, which is an integer such as 10000. Developers can calculate the
version number as follows.

Version (part) Example

Major*10000 1*10000 = 10000

Minor*100 0*100 = 0

Patch 0 = 0

MYSQLND_MS_VERSION_ID 10000

http://www.php.net/mysqlnd_ms_is_select
http://www.php.net/mysqlnd_ms_is_select
http://www.php.net/mysqlnd_ms_is_select

Mysqlnd_ms Functions

498

MYSQLND_MS_VERSION (string) Plugin version string, for example, “1.0.0-prototype”.

MYSQLND_MS_VERSION_ID
(integer)

Plugin version number, for example, 10000.

7.8 Mysqlnd_ms Functions

Copyright 1997-2014 the PHP Documentation Group.

7.8.1 mysqlnd_ms_dump_servers

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_ms_dump_servers

Returns a list of currently configured servers

Description

 array mysqlnd_ms_dump_servers(
 mixed connection);

Returns a list of currently configured servers.

Parameters

connection A MySQL connection handle obtained from any of the connect functions
of the mysqli, mysql or PDO_MYSQL extensions.

Return Values

FALSE on error. Otherwise, returns an array with two entries masters and slaves each of which contains
an array listing all corresponding servers.

The function can be used to check and debug the list of servers currently used by the plugin. It is mostly
useful when the list of servers changes at runtime, for example, when using MySQL Fabric.

masters and slaves server entries

Key Description Version

name_from_configServer entry name from config, if appliciable. NULL if no configuration
name is available.

Since 1.6.0.

hostnameHost name of the server. Since 1.6.0.

user Database user used to authenticate against the server. Since 1.6.0.

port TCP/IP port of the server. Since 1.6.0.

socket Unix domain socket of the server. Since 1.6.0.

Notes

Note

mysqlnd_ms_dump_servers requires PECL mysqlnd_ms >> 1.6.0.

Examples

mysqlnd_ms_dump_servers

499

Example 7.98 mysqlnd_ms_dump_servers example

{
 "myapp": {
 "master": {
 "master1": {
 "host":"master1_host",
 "port":"master1_port",
 "socket":"master1_socket",
 "db":"master1_db",
 "user":"master1_user",
 "password":"master1_pw"
 }
 },
 "slave": {
 "slave_0": {
 "host":"slave0_host",
 "port":"slave0_port",
 "socket":"slave0_socket",
 "db":"slave0_db",
 "user":"slave0_user",
 "password":"slave0_pw"
 },
 "slave_1": {
 "host":"slave1_host"
 }
 }
 }
}

<?php
$link = mysqli_connect("myapp", "global_user", "global_pass", "global_db", 1234, "global_socket");
var_dump(mysqlnd_ms_dump_servers($link);
?>

The above example will output:

array(2) {
 ["masters"]=>
 array(1) {
 [0]=>
 array(5) {
 ["name_from_config"]=>
 string(7) "master1"
 ["hostname"]=>
 string(12) "master1_host"
 ["user"]=>
 string(12) "master1_user"
 ["port"]=>
 int(3306)
 ["socket"]=>
 string(14) "master1_socket"
 }
 }
 ["slaves"]=>
 array(2) {
 [0]=>

mysqlnd_ms_fabric_select_global

500

 array(5) {
 ["name_from_config"]=>
 string(7) "slave_0"
 ["hostname"]=>
 string(11) "slave0_host"
 ["user"]=>
 string(11) "slave0_user"
 ["port"]=>
 int(3306)
 ["socket"]=>
 string(13) "slave0_socket"
 }
 [1]=>
 array(5) {
 ["name_from_config"]=>
 string(7) "slave_1"
 ["hostname"]=>
 string(11) "slave1_host"
 ["user"]=>
 string(12) "gloabal_user"
 ["port"]=>
 int(1234)
 ["socket"]=>
 string(13) "global_socket"
 }
 }
}

7.8.2 mysqlnd_ms_fabric_select_global

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_ms_fabric_select_global

Switch to global sharding server for a given table

Description

 array mysqlnd_ms_fabric_select_global(
 mixed connection,
 mixed table_name);

Warning

This function is currently not documented; only its argument list is available.

MySQL Fabric related.

Switch the connection to the nodes handling global sharding queries for the given table name.

Parameters

connection A MySQL connection handle obtained from any of the connect functions
of the mysqli, mysql or PDO_MYSQL extensions.

table_name The table name to ask Fabric about.

Return Values

FALSE on error. Otherwise, TRUE

Notes

mysqlnd_ms_fabric_select_shard

501

Note

mysqlnd_ms_fabric_select_global requires PECL mysqlnd_ms >> 1.6.0.

7.8.3 mysqlnd_ms_fabric_select_shard

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_ms_fabric_select_shard

Switch to shard

Description

 array mysqlnd_ms_fabric_select_shard(
 mixed connection,
 mixed table_name,
 mixed shard_key);

Warning

This function is currently not documented; only its argument list is available.

MySQL Fabric related.

Switch the connection to the shards responsible for the given table name and shard key.

Parameters

connection A MySQL connection handle obtained from any of the connect functions
of the mysqli, mysql or PDO_MYSQL extensions.

table_name The table name to ask Fabric about.

shard_key The shard key to ask Fabric about.

Return Values

FALSE on error. Otherwise, TRUE

Notes

Note

mysqlnd_ms_fabric_select_shard requires PECL mysqlnd_ms >> 1.6.0.

7.8.4 mysqlnd_ms_get_last_gtid

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_ms_get_last_gtid

Returns the latest global transaction ID

Description

 string mysqlnd_ms_get_last_gtid(
 mixed connection);

Returns a global transaction identifier which belongs to a write operation no older than the last write
performed by the client. It is not guaranteed that the global transaction identifier is identical to that one
created for the last write transaction performed by the client.

mysqlnd_ms_get_last_gtid

502

Parameters

connection A PECL/mysqlnd_ms connection handle to a MySQL server of the
type PDO_MYSQL, mysqli> or ext/mysql. The connection handle is
obtained when opening a connection with a host name that matches
a mysqlnd_ms configuration file entry using any of the above three
MySQL driver extensions.

Return Values

Returns a global transaction ID (GTID) on success. Otherwise, returns FALSE.

The function mysqlnd_ms_get_last_gtid returns the GTID obtained when executing the SQL
statement from the fetch_last_gtid entry of the global_transaction_id_injection section
from the plugins configuration file.

The function may be called after the GTID has been incremented.

Notes

Note

mysqlnd_ms_get_last_gtid requires PHP >= 5.4.0 and PECL mysqlnd_ms >=
1.2.0. Internally, it is using a mysqlnd library C functionality not available with PHP
5.3.

Please note, all MySQL 5.6 production versions do not provide clients with enough
information to use GTIDs for enforcing session consistency. In the worst case, the
plugin will choose the master only.

Examples

Example 7.99 mysqlnd_ms_get_last_gtid example

<?php
/* Open mysqlnd_ms connection using mysqli, PDO_MySQL or mysql extension */
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli)
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));

/* auto commit mode, transaction on master, GTID must be incremented */
if (!$mysqli->query("DROP TABLE IF EXISTS test"))
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));

printf("GTID after transaction %s\n", mysqlnd_ms_get_last_gtid($mysqli));

/* auto commit mode, transaction on master, GTID must be incremented */
if (!$mysqli->query("CREATE TABLE test(id INT)"))
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));

printf("GTID after transaction %s\n", mysqlnd_ms_get_last_gtid($mysqli));
?>

See Also

Global Transaction IDs

mysqlnd_ms_get_last_used_connection

503

7.8.5 mysqlnd_ms_get_last_used_connection

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_ms_get_last_used_connection

Returns an array which describes the last used connection

Description

 array mysqlnd_ms_get_last_used_connection(
 mixed connection);

Returns an array which describes the last used connection from the plugins connection pool currently
pointed to by the user connection handle. If using the plugin, a user connection handle represents a pool
of database connections. It is not possible to tell from the user connection handles properties to which
database server from the pool the user connection handle points.

The function can be used to debug or monitor PECL mysqlnd_ms.

Parameters

connection A MySQL connection handle obtained from any of the connect functions
of the mysqli, mysql or PDO_MYSQL extensions.

Return Values

FALSE on error. Otherwise, an array which describes the connection used to execute the last statement
on.

Array which describes the connection.

Property Description Version

scheme Connection scheme. Either tcp://host:port or unix://
host:socket. If you want to distinguish connections from each
other use a combination of scheme and thread_id as a unique key.
Neither scheme nor thread_id alone are sufficient to distinguish
two connections from each other. Two servers may assign the same
thread_id to two different connections. Thus, connections in the pool
may have the same thread_id. Also, do not rely on uniqueness of
scheme in a pool. Your QA engineers may use the same MySQL server
instance for two distinct logical roles and add it multiple times to the pool.
This hack is used, for example, in the test suite.

Since 1.1.0.

host Database server host used with the connection. The host is only set with
TCP/IP connections. It is empty with Unix domain or Windows named
pipe connections,

Since 1.1.0.

host_infoA character string representing the server hostname and the connection
type.

Since 1.1.2.

port Database server port used with the connection. Since 1.1.0.

socket_or_pipeUnix domain socket or Windows named pipe used with the connection.
The value is empty for TCP/IP connections.

Since 1.1.2.

thread_idConnection thread id. Since 1.1.0.

last_messageInfo message obtained from the MySQL C API function mysql_info().
Please, see mysqli_info for a description.

Since 1.1.0.

errno Error code. Since 1.1.0.

mysqlnd_ms_get_stats

504

Property Description Version

error Error message. Since 1.1.0.

sqlstateError SQLstate code. Since 1.1.0.

Notes

Note

mysqlnd_ms_get_last_used_connection requires PHP >= 5.4.0 and PECL
mysqlnd_ms >> 1.1.0. Internally, it is using a mysqlnd library C call not available
with PHP 5.3.

Examples

The example assumes that myapp refers to a plugin configuration file section and represents a connection
pool.

Example 7.100 mysqlnd_ms_get_last_used_connection example

<?php
$link = new mysqli("myapp", "user", "password", "database");
$res = $link->query("SELECT 1 FROM DUAL");
var_dump(mysqlnd_ms_get_last_used_connection($link));
?>

The above example will output:

array(10) {
 ["scheme"]=>
 string(22) "unix:///tmp/mysql.sock"
 ["host_info"]=>
 string(25) "Localhost via UNIX socket"
 ["host"]=>
 string(0) ""
 ["port"]=>
 int(3306)
 ["socket_or_pipe"]=>
 string(15) "/tmp/mysql.sock"
 ["thread_id"]=>
 int(46253)
 ["last_message"]=>
 string(0) ""
 ["errno"]=>
 int(0)
 ["error"]=>
 string(0) ""
 ["sqlstate"]=>
 string(5) "00000"
}

7.8.6 mysqlnd_ms_get_stats

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_ms_get_stats

mysqlnd_ms_get_stats

505

Returns query distribution and connection statistics

Description

 array mysqlnd_ms_get_stats();

Returns an array of statistics collected by the replication and load balancing plugin.

The PHP configuration setting mysqlnd_ms.collect_statistics controls the collection of statistics.
The collection of statistics is disabled by default for performance reasons.

The scope of the statistics is the PHP process. Depending on your deployment model a PHP process may
handle one or multiple requests.

Statistics are aggregated for all connections and all storage handler. It is not possible to tell how much
queries originating from mysqli, PDO_MySQL or mysql API calls have contributed to the aggregated data
values.

Parameters

This function has no parameters.

Return Values

Returns NULL if the PHP configuration directive mysqlnd_ms.enable has disabled the plugin. Otherwise,
returns array of statistics.

Array of statistics

Statistic Description Version

use_slaveThe semantics of this statistic has changed between 1.0.1 - 1.1.0.

The meaning for version 1.0.1 is as follows. Number of statements
considered as read-only by the built-in query analyzer. Neither statements
which begin with a SQL hint to force use of slave nor statements directed
to a slave by an user-defined callback are included. The total number of
statements sent to the slaves is use_slave + use_slave_sql_hint +
use_slave_callback.

PECL/mysqlnd_ms 1.1.0 introduces a new concept of chained filters.
The statistics is now set by the internal load balancing filter. With version
1.1.0 the load balancing filter is always the last in the filter chain, if used.
In future versions a load balancing filter may be followed by other filters
causing another change in the meaning of the statistic. If, in the future, a
load balancing filter is followed by another filter it is no longer guaranteed
that the statement, which increments use_slave, will be executed on the
slaves.

The meaning for version 1.1.0 is as follows. Number of statements
sent to the slaves. Statements directed to a slave by the user filter
(an user-defined callback) are not included. The latter are counted by
use_slave_callback.

Since 1.0.0.

use_masterThe semantics of this statistic has changed between 1.0.1 - 1.1.0.

The meaning for version 1.0.1 is as follows. Number of statements
not considered as read-only by the built-in query analyzer. Neither
statements which begin with a SQL hint to force use of master nor

Since 1.0.0.

mysqlnd_ms_get_stats

506

Statistic Description Version
statements directed to a master by an user-defined callback are included.
The total number of statements sent to the master is use_master +
use_master_sql_hint + use_master_callback.

PECL/mysqlnd_ms 1.1.0 introduces a new concept of chained filters.
The statictics is now set by the internal load balancing filter. With version
1.1.0 the load balancing filter is always the last in the filter chain, if used.
In future versions a load balancing filter may be followed by other filters
causing another change in the meaning of the statistic. If, in the future, a
load balancing filter is followed by another filter it is no longer guaranteed
that the statement, which increments use_master, will be executed on
the slaves.

The meaning for version 1.1.0 is as follows. Number of statements
sent to the masters. Statements directed to a master by the user filter
(an user-defined callback) are not included. The latter are counted by
use_master_callback.

use_slave_guessNumber of statements the built-in query analyzer recommends sending
to a slave because they contain no SQL hint to force use of a certain
server. The recommendation may be overruled in the following. It is
not guaranteed whether the statement will be executed on a slave or
not. This is how often the internal is_select function has guessed
that a slave shall be used. Please, see also the user space function
mysqlnd_ms_query_is_select.

Since 1.1.0.

use_master_guessNumber of statements the built-in query analyzer recommends sending
to a master because they contain no SQL hint to force use of a certain
server. The recommendation may be overruled in the following. It is
not guaranteed whether the statement will be executed on a slave or
not. This is how often the internal is_select function has guessed
that a master shall be used. Please, see also the user space function
mysqlnd_ms_query_is_select.

Since 1.1.0.

use_slave_sql_hintNumber of statements sent to a slave because statement begins with the
SQL hint to force use of slave.

Since 1.0.0.

use_master_sql_hintNumber of statements sent to a master because statement begins with
the SQL hint to force use of master.

Since 1.0.0.

use_last_used_sql_hintNumber of statements sent to server which has run the previous
statement, because statement begins with the SQL hint to force use of
previously used server.

Since 1.0.0.

use_slave_callbackNumber of statements sent to a slave because an user-defined callback
has chosen a slave server for statement execution.

Since 1.0.0.

use_master_callbackNumber of statements sent to a master because an user-defined callback
has chosen a master server for statement execution.

Since 1.0.0.

non_lazy_connections_slave_successNumber of successfully opened slave connections from configurations
not using lazy connections. The total number of successfully opened
slave connections is non_lazy_connections_slave_success +
lazy_connections_slave_success

Since 1.0.0.

non_lazy_connections_slave_failureNumber of failed slave connection attempts from configurations
not using lazy connections. The total number of failed slave

Since 1.0.0.

mysqlnd_ms_get_stats

507

Statistic Description Version
connection attempts is non_lazy_connections_slave_failure +
lazy_connections_slave_failure

non_lazy_connections_master_successNumber of successfully opened master connections from configurations
not using lazy connections. The total number of successfully opened
master connections is non_lazy_connections_master_success +
lazy_connections_master_success

Since 1.0.0.

non_lazy_connections_master_failureNumber of failed master connection attempts from configurations
not using lazy connections. The total number of failed master
connection attempts is non_lazy_connections_master_failure +
lazy_connections_master_failure

Since 1.0.0.

lazy_connections_slave_successNumber of successfully opened slave connections from configurations
using lazy connections.

Since 1.0.0.

lazy_connections_slave_failureNumber of failed slave connection attempts from configurations using
lazy connections.

Since 1.0.0.

lazy_connections_master_successNumber of successfully opened master connections from configurations
using lazy connections.

Since 1.0.0.

lazy_connections_master_failureNumber of failed master connection attempts from configurations using
lazy connections.

Since 1.0.0.

trx_autocommit_onNumber of autocommit mode activations via API calls. This figure may
be used to monitor activity related to the plugin configuration setting
trx_stickiness. If, for example, you want to know if a certain API call
invokes the mysqlnd library function trx_autocommit(), which is a
requirement for trx_stickiness, you may call the user API function in
question and check if the statistic has changed. The statistic is modified
only by the plugins internal subclassed trx_autocommit() method.

Since 1.0.0.

trx_autocommit_offNumber of autocommit mode deactivations via API calls. Since 1.0.0.

trx_master_forcedNumber of statements redirected to the master while
trx_stickiness=master and autocommit mode is disabled.

Since 1.0.0.

gtid_autocommit_injections_successNumber of successful SQL injections in autocommit mode as part of the
plugins client-side global transaction id emulation.

Since 1.2.0.

gtid_autocommit_injections_failureNumber of failed SQL injections in autocommit mode as part of the
plugins client-side global transaction id emulation.

Since 1.2.0.

gtid_commit_injections_successNumber of successful SQL injections in commit mode as part of the
plugins client-side global transaction id emulation.

Since 1.2.0.

gtid_commit_injections_failureNumber of failed SQL injections in commit mode as part of the plugins
client-side global transaction id emulation.

Since 1.2.0.

gtid_implicit_commit_injections_successNumber of successful SQL injections when implicit commit is detected
as part of the plugins client-side global transaction id emulation. Implicit
commit happens, for example, when autocommit has been turned off,
a query is executed and autocommit is enabled again. In that case, the
statement will be committed by the server and SQL to maintain is injected
before the autocommit is re-enabled. Another sequence causing an
implicit commit is begin(), query(), begin(). The second call to
begin() will implicitly commit the transaction started by the first call to
begin(). begin() refers to internal library calls not actual PHP user
API calls.

Since 1.2.0.

mysqlnd_ms_get_stats

508

Statistic Description Version

gtid_implicit_commit_injections_failureNumber of failed SQL injections when implicit commit is detected as part
of the plugins client-side global transaction id emulation. Implicit commit
happens, for example, when autocommit has been turned off, a query is
executed and autocommit is enabled again. In that case, the statement
will be committed by the server and SQL to maintain is injected before the
autocommit is re-enabled.

Since 1.2.0.

transient_error_retriesHow often an operation has been retried when a transient error was
detected. See also, transient_error plugin configuration file setting.

Since 1.6.0.

fabric_sharding_lookup_servers_successNumber of successful sharding.lookup_servers remote procedure
calls to MySQL Fabric. A call is considered successful if the plugin
could reach MySQL Fabric and got any reply. The reply itself may or
may not be understood by the plugin. Success refers to the network
transport only. If the reply was not understood or indicates a valid error
condition, fabric_sharding_lookup_servers_xml_failure gets
incremented.

Since 1.6.0.

fabric_sharding_lookup_servers_failureNumber of failed sharding.lookup_servers remote procedure calls
to MySQL Fabric. A remote procedure call is considered failed if there
was a network error in connecting to, writing to or reading from MySQL
Fabric.

Since 1.6.0.

fabric_sharding_lookup_servers_time_totalTime spent connecting to,writing to and reading from MySQL Fabrich
during the sharding.lookup_servers remote procedure call. The
value is aggregated for all calls. Time is measured in microseconds.

Since 1.6.0.

fabric_sharding_lookup_servers_bytes_totalTotal number of bytes received from MySQL Fabric in reply to
sharding.lookup_servers calls.

Since 1.6.0.

fabric_sharding_lookup_servers_xml_failureHow often a reply from MySQL Fabric to sharding.lookup_servers
calls was not understood. Please note, the current experimental
implementation does not distinguish between valid errors returned and
malformed replies.

Since 1.6.0.

xa_beginHow many XA/distributed transactions have been started using
mysqlnd_ms_xa_begin.

Since 1.6.0.

xa_commit_successHow many XA/distributed transactions have been successfully committed
using mysqlnd_ms_xa_commit.

Since 1.6.0.

xa_commit_failureHow many XA/distributed transactions failed to commit during
mysqlnd_ms_xa_commit.

Since 1.6.0.

xa_rollback_successHow many XA/distributed transactions have been successfully rolled back
using mysqlnd_ms_xa_rollback. The figure does not include implict
rollbacks performed as a result of mysqlnd_ms_xa_commit failure.

Since 1.6.0.

xa_rollback_failureHow many XA/distributed transactions could not be rolled back. This
includes failures of mysqlnd_ms_xa_rollback but also failured during
rollback when closing a connection, if rollback_on_close is set.
Please, see also xa_rollback_on_close below.

Since 1.6.0.

xa_participantsTotal number of participants in any XA transaction started with
mysqlnd_ms_xa_begin.

Since 1.6.0.

xa_rollback_on_closeHow many XA transactions have been rolled back implicitly when a
connection was close and rollback_on_close is set. Depending on
your coding policies, this may hint a flaw in your code as you may prefer
to explicitly clean up resources.

Since 1.6.0.

mysqlnd_ms_get_stats

509

Statistic Description Version

pool_masters_totalNumber of master servers (connections) in the internal connection pool. Since 1.6.0.

pool_slaves_totalNumber of slave servers (connections) in the internal connection pool. Since 1.6.0.

pool_masters_activeNumber of master servers (connections) from the internal connection pool
which are currently used for picking a connection.

Since 1.6.0.

pool_slaves_activeNumber of slave servers (connections) from the internal connection pool
which are currently used for picking a connection.

Since 1.6.0.

pool_updatesHow often the active connection list has been replaced and a new set of
master and slave servers had been installed.

Since 1.6.0.

pool_master_reactivatedHow often a master connection has been reused after being flushed from
the active list.

Since 1.6.0.

pool_slave_reactivatedHow often a slave connection has been reused after being flushed from
the active list.

Since 1.6.0.

Examples

Example 7.101 mysqlnd_ms_get_stats example

<?php
printf("mysqlnd_ms.enable = %d\n", ini_get("mysqlnd_ms.enable"));
printf("mysqlnd_ms.collect_statistics = %d\n", ini_get("mysqlnd_ms.collect_statistics"));
var_dump(mysqlnd_ms_get_stats());
?>

The above example will output:

mysqlnd_ms.enable = 1
mysqlnd_ms.collect_statistics = 1
array(26) {
 ["use_slave"]=>
 string(1) "0"
 ["use_master"]=>
 string(1) "0"
 ["use_slave_guess"]=>
 string(1) "0"
 ["use_master_guess"]=>
 string(1) "0"
 ["use_slave_sql_hint"]=>
 string(1) "0"
 ["use_master_sql_hint"]=>
 string(1) "0"
 ["use_last_used_sql_hint"]=>
 string(1) "0"
 ["use_slave_callback"]=>
 string(1) "0"
 ["use_master_callback"]=>
 string(1) "0"
 ["non_lazy_connections_slave_success"]=>
 string(1) "0"
 ["non_lazy_connections_slave_failure"]=>
 string(1) "0"
 ["non_lazy_connections_master_success"]=>
 string(1) "0"
 ["non_lazy_connections_master_failure"]=>

mysqlnd_ms_match_wild

510

 string(1) "0"
 ["lazy_connections_slave_success"]=>
 string(1) "0"
 ["lazy_connections_slave_failure"]=>
 string(1) "0"
 ["lazy_connections_master_success"]=>
 string(1) "0"
 ["lazy_connections_master_failure"]=>
 string(1) "0"
 ["trx_autocommit_on"]=>
 string(1) "0"
 ["trx_autocommit_off"]=>
 string(1) "0"
 ["trx_master_forced"]=>
 string(1) "0"
 ["gtid_autocommit_injections_success"]=>
 string(1) "0"
 ["gtid_autocommit_injections_failure"]=>
 string(1) "0"
 ["gtid_commit_injections_success"]=>
 string(1) "0"
 ["gtid_commit_injections_failure"]=>
 string(1) "0"
 ["gtid_implicit_commit_injections_success"]=>
 string(1) "0"
 ["gtid_implicit_commit_injections_failure"]=>
 string(1) "0"
 ["transient_error_retries"]=>
 string(1) "0"
}

See Also

Runtime configuration
mysqlnd_ms.collect_statistics
mysqlnd_ms.enable
Monitoring

7.8.7 mysqlnd_ms_match_wild

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_ms_match_wild

Finds whether a table name matches a wildcard pattern or not

Description

 bool mysqlnd_ms_match_wild(
 string table_name,
 string wildcard);

Finds whether a table name matches a wildcard pattern or not.

This function is not of much practical relevance with PECL mysqlnd_ms 1.1.0 because the plugin does not
support MySQL replication table filtering yet.

Parameters

table_name The table name to check if it is matched by the wildcard.

mysqlnd_ms_query_is_select

511

wildcard The wildcard pattern to check against the table name. The wildcard
pattern supports the same placeholders as MySQL replication filters do.

MySQL replication filters can be configured by using the MySQL
Server configuration options --replicate-wild-do-table and
--replicate-wild-do-db. Please, consult the MySQL Reference
Manual to learn more about this MySQL Server feature.

The supported placeholders are:

• % - zero or more literals

• _ - one literal

Placeholders can be escaped using \.

Return Values

Returns TRUE table_name is matched by wildcard. Otherwise, returns FALSE

Examples

Example 7.102 mysqlnd_ms_match_wild example

<?php
var_dump(mysqlnd_ms_match_wild("schema_name.table_name", "schema%"));
var_dump(mysqlnd_ms_match_wild("abc", "_"));
var_dump(mysqlnd_ms_match_wild("table1", "table_"));
var_dump(mysqlnd_ms_match_wild("asia_customers", "%customers"));
var_dump(mysqlnd_ms_match_wild("funny%table","funny\%table"));
var_dump(mysqlnd_ms_match_wild("funnytable", "funny%table"));
?>

The above example will output:

bool(true)
bool(false)
bool(true)
bool(true)
bool(true)
bool(true)

7.8.8 mysqlnd_ms_query_is_select

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_ms_query_is_select

Find whether to send the query to the master, the slave or the last used MySQL server

Description

 int mysqlnd_ms_query_is_select(
 string query);

mysqlnd_ms_query_is_select

512

Finds whether to send the query to the master, the slave or the last used MySQL server.

The plugins built-in read/write split mechanism will be used to analyze the query string to make a
recommendation where to send the query. The built-in read/write split mechanism is very basic and simple.
The plugin will recommend sending all queries to the MySQL replication master server but those which
begin with SELECT, or begin with a SQL hint which enforces sending the query to a slave server. Due
to the basic but fast algorithm the plugin may propose to run some read-only statements such as SHOW
TABLES on the replication master.

Parameters

query Query string to test.

Return Values

A return value of MYSQLND_MS_QUERY_USE_MASTER indicates that the query should be send to the
MySQL replication master server. The function returns a value of MYSQLND_MS_QUERY_USE_SLAVE
if the query can be run on a slave because it is considered read-only. A value of
MYSQLND_MS_QUERY_USE_LAST_USED is returned to recommend running the query on the last used
server. This can either be a MySQL replication master server or a MySQL replication slave server.

If read write splitting has been disabled by setting mysqlnd_ms.disable_rw_split, the function will
always return MYSQLND_MS_QUERY_USE_MASTER or MYSQLND_MS_QUERY_USE_LAST_USED.

Examples

Example 7.103 mysqlnd_ms_query_is_select example

<?php
function is_select($query)
{
 switch (mysqlnd_ms_query_is_select($query))
 {
 case MYSQLND_MS_QUERY_USE_MASTER:
 printf("'%s' should be run on the master.\n", $query);
 break;
 case MYSQLND_MS_QUERY_USE_SLAVE:
 printf("'%s' should be run on a slave.\n", $query);
 break;
 case MYSQLND_MS_QUERY_USE_LAST_USED:
 printf("'%s' should be run on the server that has run the previous query\n", $query);
 break;
 default:
 printf("No suggestion where to run the '%s', fallback to master recommended\n", $query);
 break;
 }
}

is_select("INSERT INTO test(id) VALUES (1)");
is_select("SELECT 1 FROM DUAL");
is_select("/*" . MYSQLND_MS_LAST_USED_SWITCH . "*/SELECT 2 FROM DUAL");
?>

The above example will output:

INSERT INTO test(id) VALUES (1) should be run on the master.

mysqlnd_ms_set_qos

513

SELECT 1 FROM DUAL should be run on a slave.
/*ms=last_used*/SELECT 2 FROM DUAL should be run on the server that has run the previous query

See Also

Predefined Constants
user filter

Runtime configuration
mysqlnd_ms.disable_rw_split
mysqlnd_ms.enable

7.8.9 mysqlnd_ms_set_qos

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_ms_set_qos

Sets the quality of service needed from the cluster

Description

 bool mysqlnd_ms_set_qos(
 mixed connection,
 int service_level,
 int service_level_option,
 mixed option_value);

Sets the quality of service needed from the cluster. A database cluster delivers a certain quality of service
to the user depending on its architecture. A major aspect of the quality of service is the consistency level
the cluster can offer. An asynchronous MySQL replication cluster defaults to eventual consistency for slave
reads: a slave may serve stale data, current data, or it may have not the requested data at all, because it
is not synchronous to the master. In a MySQL replication cluster, only master accesses can give strong
consistency, which promises that all clients see each others changes.

PECL/mysqlnd_ms hides the complexity of choosing appropriate nodes to achieve a certain level of
service from the cluster. The "Quality of Service" filter implements the necessary logic. The filter can either
be configured in the plugins configuration file, or at runtime using mysqlnd_ms_set_qos.

Similar results can be achieved with PECL mysqlnd_ms < 1.2.0, if using SQL hints to force the use of a
certain type of node or using the master_on_write plugin configuration option. The first requires more
code and causes more work on the application side. The latter is less refined than using the quality of
service filter. Settings made through the function call can be reversed, as shown in the example below. The
example temporarily switches to a higher service level (session consistency, read your writes) and returns
back to the clusters default after it has performed all operations that require the better service. This way,
read load on the master can be minimized compared to using master_on_write, which would continue
using the master after the first write.

Since 1.5.0 calls will fail when done in the middle of a transaction if transaction stickiness is enabled and
transaction boundaries have been detected. properly.

Parameters

connection A PECL/mysqlnd_ms connection handle to a MySQL server of the type
PDO_MYSQL, mysqli or ext/mysql for which a service level is to be set.
The connection handle is obtained when opening a connection with a

mysqlnd_ms_set_qos

514

host name that matches a mysqlnd_ms configuration file entry using
any of the above three MySQL driver extensions.

service_level The requested service level:
MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL,
MYSQLND_MS_QOS_CONSISTENCY_SESSION or
MYSQLND_MS_QOS_CONSISTENCY_STRONG.

service_level_option An option to parameterize the requested service level. The
option can either be MYSQLND_MS_QOS_OPTION_GTID or
MYSQLND_MS_QOS_OPTION_AGE.

The option MYSQLND_MS_QOS_OPTION_GTID can be used to refine
the service level MYSQLND_MS_QOS_CONSISTENCY_SESSION. It must
be combined with a fourth function parameter, the option_value.
The option_value shall be a global transaction ID obtained from
mysqlnd_ms_get_last_gtid. If set, the plugin considers both
master servers and asynchronous slaves for session consistency (read
your writes). Otherwise, only masters are used to achieve session
consistency. A slave is considered up-to-date and checked if it has
already replicated the global transaction ID from option_value.
Please note, searching appropriate slaves is an expensive and slow
operation. Use the feature sparsely, if the master cannot handle the
read load alone.

The MYSQLND_MS_QOS_OPTION_AGE option can be combined with
the MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL service level, to
filter out asynchronous slaves that lag more seconds behind the master
than option_value. If set, the plugin will only consider slaves for
reading if SHOW SLAVE STATUS reports Slave_IO_Running=Yes,
Slave_SQL_Running=Yes and Seconds_Behind_Master <=
option_value. Please note, searching appropriate slaves is an
expensive and slow operation. Use the feature sparsely in version 1.2.0.
Future versions may improve the algorithm used to identify candidates.
Please, see the MySQL reference manual about the precision, accuracy
and limitations of the MySQL administrative command SHOW SLAVE
STATUS.

option_value Parameter value for the service level option. See also the
service_level_option parameter.

Return Values

Returns TRUE if the connections service level has been switched to the requested. Otherwise, returns
FALSE

Notes

Note

mysqlnd_ms_set_qos requires PHP >= 5.4.0 and PECL mysqlnd_ms >= 1.2.0.
Internally, it is using a mysqlnd library C functionality not available with PHP 5.3.

Please note, all MySQL 5.6 production versions do not provide clients with enough
information to use GTIDs for enforcing session consistency. In the worst case, the
plugin will choose the master only.

mysqlnd_ms_set_user_pick_server

515

Examples

Example 7.104 mysqlnd_ms_set_qos example

<?php
/* Open mysqlnd_ms connection using mysqli, PDO_MySQL or mysql extension */
$mysqli = new mysqli("myapp", "username", "password", "database");
if (!$mysqli)
 /* Of course, your error handling is nicer... */
 die(sprintf("[%d] %s\n", mysqli_connect_errno(), mysqli_connect_error()));

/* Session consistency: read your writes */
$ret = mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_SESSION);
if (!$ret)
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));

/* Will use master and return fresh data, client can see his last write */
if (!$res = $mysqli->query("SELECT item, price FROM orders WHERE order_id = 1"))
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));

/* Back to default: use of all slaves and masters permitted, stale data can happen */
if (!mysqlnd_ms_set_qos($mysqli, MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL))
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));
?>

See Also

mysqlnd_ms_get_last_gtid
Service level and consistency concept
Filter concept

7.8.10 mysqlnd_ms_set_user_pick_server

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_ms_set_user_pick_server

Sets a callback for user-defined read/write splitting

Description

 bool mysqlnd_ms_set_user_pick_server(
 string function);

Sets a callback for user-defined read/write splitting. The plugin will call the callback only if pick[]=user is
the default rule for server picking in the relevant section of the plugins configuration file.

The plugins built-in read/write query split mechanism decisions can be overwritten in two ways.
The easiest way is to prepend the query string with the SQL hints MYSQLND_MS_MASTER_SWITCH,
MYSQLND_MS_SLAVE_SWITCH or MYSQLND_MS_LAST_USED_SWITCH. Using SQL hints one can control,
for example, whether a query shall be send to the MySQL replication master server or one of the slave
servers. By help of SQL hints it is not possible to pick a certain slave server for query execution.

Full control on server selection can be gained using a callback function. Use of a callback is recommended
to expert users only because the callback has to cover all cases otherwise handled by the plugin.

The plugin will invoke the callback function for selecting a server from the lists of configured master and
slave servers. The callback function inspects the query to run and picks a server for query execution by
returning the hosts URI, as found in the master and slave list.

mysqlnd_ms_set_user_pick_server

516

If the lazy connections are enabled and the callback chooses a slave server for which no connection has
been established so far and establishing the connection to the slave fails, the plugin will return an error
upon the next action on the failed connection, for example, when running a query. It is the responsibility of
the application developer to handle the error. For example, the application can re-run the query to trigger a
new server selection and callback invocation. If so, the callback must make sure to select a different slave,
or check slave availability, before returning to the plugin to prevent an endless loop.

Parameters

function The function to be called. Class methods may also be invoked statically
using this function by passing array($classname, $methodname)
to this parameter. Additionally class methods of an object instance may
be called by passing array($objectinstance, $methodname) to
this parameter.

Return Values

Host to run the query on. The host URI is to be taken from the master and slave connection lists passed
to the callback function. If callback returns a value neither found in the master nor in the slave connection
lists the plugin will fallback to the second pick method configured via the pick[] setting in the plugin
configuration file. If not second pick method is given, the plugin falls back to the build-in default pick
method for server selection.

Notes

Note

mysqlnd_ms_set_user_pick_server is available with PECL mysqlnd_ms <
1.1.0. It has been replaced by the user filter. Please, check the Change History for
upgrade notes.

Examples

Example 7.105 mysqlnd_ms_set_user_pick_server example

[myapp]
master[] = localhost
slave[] = 192.168.2.27:3306
slave[] = 192.168.78.136:3306
pick[] = user

<?php

function pick_server($connected, $query, $master, $slaves, $last_used)
{
 static $slave_idx = 0;
 static $num_slaves = NULL;
 if (is_null($num_slaves))
 $num_slaves = count($slaves);

 /* default: fallback to the plugins build-in logic */
 $ret = NULL;

 printf("User has connected to '%s'...\n", $connected);
 printf("... deciding where to run '%s'\n", $query);

mysqlnd_ms_set_user_pick_server

517

 $where = mysqlnd_ms_query_is_select($query);
 switch ($where)
 {
 case MYSQLND_MS_QUERY_USE_MASTER:
 printf("... using master\n");
 $ret = $master[0];
 break;
 case MYSQLND_MS_QUERY_USE_SLAVE:
 /* SELECT or SQL hint for using slave */
 if (stristr($query, "FROM table_on_slave_a_only"))
 {
 /* a table which is only on the first configured slave */
 printf("... access to table available only on slave A detected\n");
 $ret = $slaves[0];
 }
 else
 {
 /* round robin */
 printf("... some read-only query for a slave\n");
 $ret = $slaves[$slave_idx++ % $num_slaves];
 }
 break;
 case MYSQLND_MS_QUERY_LAST_USED:
 printf("... using last used server\n");
 $ret = $last_used;
 break;
 }

 printf("... ret = '%s'\n", $ret);
 return $ret;
}

mysqlnd_ms_set_user_pick_server("pick_server");

$mysqli = new mysqli("myapp", "root", "root", "test");

if (!($res = $mysqli->query("SELECT 1 FROM DUAL")))
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
else
 $res->close();

if (!($res = $mysqli->query("SELECT 2 FROM DUAL")))
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
else
 $res->close();

if (!($res = $mysqli->query("SELECT * FROM table_on_slave_a_only")))
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
else
 $res->close();

$mysqli->close();
?>

The above example will output:

User has connected to 'myapp'...
... deciding where to run 'SELECT 1 FROM DUAL'
... some read-only query for a slave
... ret = 'tcp://192.168.2.27:3306'
User has connected to 'myapp'...

mysqlnd_ms_xa_begin

518

... deciding where to run 'SELECT 2 FROM DUAL'

... some read-only query for a slave

... ret = 'tcp://192.168.78.136:3306'
User has connected to 'myapp'...
... deciding where to run 'SELECT * FROM table_on_slave_a_only'
... access to table available only on slave A detected
... ret = 'tcp://192.168.2.27:3306'

See Also

mysqlnd_ms_query_is_select
Filter concept
user filter

7.8.11 mysqlnd_ms_xa_begin

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_ms_xa_begin

Starts a distributed/XA transaction among MySQL servers

Description

 int mysqlnd_ms_xa_begin(
 mixed connection,
 string gtrid,
 int timeout);

Starts a XA transaction among MySQL servers. PECL/mysqlnd_ms acts as a transaction coordinator the
distributed transaction.

Once a global transaction has been started, the plugin injects appropriate XA BEGIN SQL statements
on all MySQL servers used in the following. The global transaction is either ended by calling
mysqlnd_ms_xa_commit, mysqlnd_ms_xa_rollback or by an implicit rollback in case of an error.

During a global transaction, the plugin tracks all server switches, for example, when switching from one
MySQL shard to another MySQL shard. Immediately before a query is run on a server that has not been
participating in the global transaction yet, XA BEGIN is executed on the server. From a users perspective
the injection happens during a call to a query execution function such as mysqli_query. Should the
injection fail an error is reported to the caller of the query execution function. The failing server does
not become a participant in the global transaction. The user may retry executing a query on the server
and hereby retry injecting XA BEGIN, abort the global transaction because not all required servers can
participate, or ignore and continue the global without the failed server.

Reasons to fail executing XA BEGIN include but are not limited to a server being unreachable or the server
having an open, concurrent XA transaction using the same xid.

Please note, global and local transactions are mutually exclusive. You cannot start a XA transaction when
you have a local transaction open. The local transaction must be ended first. The plugin tries to detect this
conflict as early as possible. It monitors API calls for controlling local transactions to learn about the current
state. However, if using SQL statements for local transactions such as BEGIN, the plugin may not know the
current state and the conflict is not detected before XA BEGIN is injected and executed.

The use of other XA resources but MySQL servers is not supported by the function. To carry out a global
transaction among, for example, a MySQL server and another vendors database system, you should issue
the systems SQL commands yourself.

mysqlnd_ms_xa_commit

519

Experimental

The feature is currently under development. There may be issues and/or feature
limitations. Do not use in production environments.

Parameters

connection A MySQL connection handle obtained from any of the connect functions
of the mysqli, mysql or PDO_MYSQL extensions.

gtrid Global transaction identifier (gtrid). The gtrid is a binary string up to 64
bytes long. Please note, depending on your character set settings, 64
characters may require more than 64 bytes to store.

In accordance with the MySQL SQL syntax, XA transactions use
identifiers made of three parts. An xid consists of a global transaction
identifier (gtrid), a branch qualifier (bqual) and a format identifier
(formatID). Only the global transaction identifier can and needs to be
set.

The branch qualifier and format identifier are set automatically. The
details should be considered implementation dependent, which may
change without prior notice. In version 1.6 the branch qualifier is
consecutive number which is incremented whenever a participant joins
the global transaction.

timeout Timeout in seconds. The default value is 60 seconds.

The timeout is a hint to the garbage collection. If a transaction is
recorded to take longer than expected, the garbage collection begins
checking the transactions status.

Setting a low value may make the garbage collection check the
progress too often. Please note, checking the status of a global
transaction may involve connecting to all recorded participants and
possibly issuing queries on the servers.

Return Values

Returns TRUE if there is no open local or global transaction and a new global transaction can be started.
Otherwise, returns FALSE

See Also

Quickstart XA/Distributed transactions
Runtime configuration
mysqlnd_ms_get_stats

7.8.12 mysqlnd_ms_xa_commit

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_ms_xa_commit

Commits a distributed/XA transaction among MySQL servers

Description

mysqlnd_ms_xa_gc

520

 int mysqlnd_ms_xa_commit(
 mixed connection,
 string gtrid);

Commits a global transaction among MySQL servers started by mysqlnd_ms_xa_begin.

If any of the global transaction participants fails to commit an implicit rollback is performed. It may happen
that not all cases can be handled during the rollback. For example, no attempts will be made to reconnect
to a participant after the connection to the participant has been lost. Solving cases that cannot easily be
rolled back is left to the garbage collection.

Experimental

The feature is currently under development. There may be issues and/or feature
limitations. Do not use in production environments.

Parameters

connection A MySQL connection handle obtained from any of the connect functions
of the mysqli, mysql or PDO_MYSQL extensions.

gtrid Global transaction identifier (gtrid).

Return Values

Returns TRUE if the global transaction has been committed. Otherwise, returns FALSE

See Also

Quickstart XA/Distributed transactions
Runtime configuration
mysqlnd_ms_get_stats

7.8.13 mysqlnd_ms_xa_gc

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_ms_xa_gc

Garbage collects unfinished XA transactions after severe errors

Description

 int mysqlnd_ms_xa_gc(
 mixed connection,
 string gtrid,
 boolean ignore_max_retries);

Garbage collects unfinished XA transactions.

The XA protocol is a blocking protocol. There exist cases when servers participating in a global transaction
cannot make progress when the transaction coordinator crashes or disconnects. In such a case, the
MySQL servers keep waiting for instructions to finish the XA transaction in question. Because transactions
occupy resources, transactions should always be terminated properly.

Garbage collection requires configuring a state store to track global transactions. Should a PHP client
crash in the middle of a transaction and a new PHP client be started, then the built-in garbage collection

mysqlnd_ms_xa_rollback

521

can learn about the aborted global transaction and terminate it. If you do not configure a state store, the
garbage collection cannot perform any cleanup tasks.

The state store should be crash-safe and be highly available to survive its own crash. Currently, only
MySQL is supported as a state store.

Garbage collection can also be performed automatically in the background. See the plugin configuration
directive garbage_collection for details.

Experimental

The feature is currently under development. There may be issues and/or feature
limitations. Do not use in production environments.

Parameters

connection A MySQL connection handle obtained from any of the connect functions
of the mysqli, mysql or PDO_MYSQL extensions.

gtrid Global transaction identifier (gtrid). If given, the garbage collection
considers the transaction only. Otherwise, the state store is scanned for
any unfinished transaction.

ignore_max_retries Whether to ignore the plugin configuration max_retries setting. If
garbage collection continuously fails and the max_retries limit is
reached prior to finishing the failed global transaction, you can attempt
further runs prior to investigating the cause and solving the issue
manually by issuing appropriate SQL statements on the participants.
Setting the parameter has the same effect as temporarily setting
max_retries = 0.

Return Values

Returns TRUE if garbage collection was successful. Otherwise, returns FALSE

See Also

Quickstart XA/Distributed transactions
Runtime configuration
State store configuration
mysqlnd_ms_get_stats

7.8.14 mysqlnd_ms_xa_rollback

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_ms_xa_rollback

Rolls back a distributed/XA transaction among MySQL servers

Description

 int mysqlnd_ms_xa_rollback(
 mixed connection,
 string gtrid);

Rolls back a global transaction among MySQL servers started by mysqlnd_ms_xa_begin.

Change History

522

If any of the global transaction participants fails to rollback the situation is left to be solved by the garbage
collection.

Experimental

The feature is currently under development. There may be issues and/or feature
limitations. Do not use in production environments.

Parameters

connection A MySQL connection handle obtained from any of the connect functions
of the mysqli, mysql or PDO_MYSQL extensions.

gtrid Global transaction identifier (gtrid).

Return Values

Returns TRUE if the global transaction has been rolled back. Otherwise, returns FALSE

See Also

Quickstart XA/Distributed transactions
Runtime configuration
mysqlnd_ms_get_stats

7.9 Change History

Copyright 1997-2014 the PHP Documentation Group.

This change history is a high level summary of selected changes that may impact applications and/or break
backwards compatibility.

See also the CHANGES file in the source distribution for a complete list of changes.

7.9.1 PECL/mysqlnd_ms 1.6 series

Copyright 1997-2014 the PHP Documentation Group.

1.6.0-alpha

• Release date: TBD

• Motto/theme: Maintenance and initial MySQL Fabric support

Note

This is the current development series. All features are at an early stage. Changes
may happen at any time without prior notice. Please, do not use this version in
production environments.

The documentation may not reflect all changes yet.

Bug fixes

• Won't fix: #66616 R/W split fails: QOS with mysqlnd_get_last_gtid with built-in MySQL GTID

PECL/mysqlnd_ms 1.6 series

523

This is not a bug in the plugins implementation but a server side feature limitation not considered and
documented before. MySQL 5.6 built-in GTIDs cannot be used to ensure session consistency when
reading from slaves in all cases. In the worst case the plugin will not consider using the slaves and
fallback to using the master. There will be no wrong results but no benefit from doing GTID checks
either.

• Fixed #66064 - Random once load balancer ignoring weights

Due to a config parsing bug random load balancing has ignored node weights if, and only if, the sticky
flag was set (random once).

• Fixed #65496 - Wrong check for slave delay

The quality of service filter has erroneously ignored slaves that lag for zero (0) seconds if a any
maximum lag had been set. Although a slave was not lagging behind, it was excluded from the load
balancing list if a maximum age was set by the QoS filter. This was due to using the wrong comparison
operator in the source of the filter.

• Fixed #65408 - Compile failure with -Werror=format-security

Feature changes

• Introduced an internal connection pool. When using Fabric and switching from shard group A to shard
group B, we are replacing the entire list of masters and slaves. This troubles the connections state
alignment logic and some filters. Some filters cache information on the master and slave lists. The new
internal connection pool abstraction allows us to inform the filters of changes, hence they can update
their caches.

Later on, the pool can also be used to reduce connection overhead. Assume you are switching from
a shard group to another and back again. Whenever the switch is done, the pool's active server (and
connection) lists are replaced. However, no longer used connections are not necessarily closed
immediately but can be kept in the pool for later reuse.

Please note, the connection pool is internalat this point. There are some new statistics to monitor it.
However, you cannot yet configure pool size of behaviour.

• Added a basic distributed transaction abstraction. XA transactions can are supported ever since
using standard SQL calls. This is inconvenient as XA participants must be managed manually. PECL/
mysqlnd_ms introduces API calls to control XA transaction among MySQL servers. When using
the new functions, PECL/mysqlnd_ms acts as a transaction coordinator. After starting a distributed
transaction, the plugin tracks all servers involved until the transaction is ended and issues appropriate
SQL statements on the XA participants.

This is useful, for example, when using Fabric and sharding. When using Fabric the actual shard
servers involved in a business transaction may not be known in advance. Thus, manually controlling a
transaction that spawns multiple shards becomes difficult. Please, be warned about current limitations.

• Introduced automatic retry loop for transient errors and corresponding statistic to count the number
of implicit retries. Some distributed database clusters use transient errors to hint a client to retry its
operation in a bit. Most often, the client is then supposed to halt execution (sleep) for a short moment
before retrying the desired operation. Immediately failing over to another node is not necessary in
response to the error. Instead, a retry loop can be performed. Common situation when using MySQL
Cluster.

• Introduced automatic retry loop for transient errors and corresponding statistic to count the number
of implicit retries. Some distributed database clusters use transient errors to hint a client to retry its

PECL/mysqlnd_ms 1.5 series

524

operation in a bit. Most often, the client is then supposed to halt execution (sleep) for a short moment
before retrying the desired operation. Immediately failing over to another node is not necessary in
response to the error. Instead, a retry loop can be performed. Common situation when using MySQL
Cluster.

• Introduced most basic support for the MySQL Fabric High Availability and sharding framework.

Please, consider this pre-alpha quality. Both the server side framework and the client side code is
supposed to work flawless considering the MySQL Fabric quickstart examples only. However, testing
has not been performed to the level of prior plugin alpha releases. Either sides are moving targets, API
changes may happen at any time without prior warning.

As this is work in progress, the manual may not yet reflect allow feature limitations and known bugs.

• New statistics to monitor the Fabric XML RPC call sharding.lookup_servers:
fabric_sharding_lookup_servers_success,
fabric_sharding_lookup_servers_failure,
fabric_sharding_lookup_servers_time_total,
fabric_sharding_lookup_servers_bytes_total,
fabric_sharding_lookup_servers_xml_failure.

• New functions related to MySQL Fabric: mysqlnd_ms_fabric_select_shard,
mysqlnd_ms_fabric_select_global, mysqlnd_ms_dump_servers.

7.9.2 PECL/mysqlnd_ms 1.5 series

Copyright 1997-2014 the PHP Documentation Group.

1.5.1-stable

• Release date: 06/2013

• Motto/theme: Sharding support, improved transaction support

Note

This is the current stable series. Use this version in production environments.

The documentation is complete.

1.5.0-alpha

• Release date: 03/2013

• Motto/theme: Sharding support, improved transaction support

Bug fixes

• Fixed #60605 PHP segmentation fault when mysqlnd_ms is enabled.

• Setting transaction stickiness disables all load balancing, including automatic failover, for the duration
of a transaction. So far connection switches could have happened in the middle of a transaction in
multi-master configurations and during automatic failover although transaction monitoring had detected
transaction boundaries properly.

• BC break and bug fix. SQL hints enforcing the use of a specific kind of server
(MYSQLND_MS_MASTER_SWITCH, MYSQLND_MS_SLAVE_SWITCH, MYSQLND_MS_LAST_USED_SWITCH)
are ignored for the duration of a transaction of transaction stickiness is enabled and transaction
boundaries have been detected properly.

PECL/mysqlnd_ms 1.5 series

525

This is a change in behaviour. However, it is also a bug fix and a step to align behaviour. If, in previous
versions, transaction stickiness, one of the above listed SQL hints and the quality of service filtering was
combined it could happened that the SQL hints got ignored. In some case the SQL hints did work, in
other cases they did not. The new behaviour is more consistent. SQL hints will always be ignore for the
duration of a transaction, if transaction stickiness is enabled.

Please note, transaction boundary detection continues to be based on API call monitoring. SQL
commands controlling transactions are not monitored.

• BC break and bug fix. Calls to mysqlnd_ms_set_qos will fail when done in the middle of a transaction
if transaction stickiness is enabled. Connection switches are not allowed for the duration of a transaction.
Changing the quality of service likely results on a different set of servers qualifying for query execution,
possibly making it necessary to switch connections. Thus, the call is not allowed in during an active
transaction. The quality of server can, however, be changed in between transactions.

Feature changes

• Introduced the node_group filter. The filter lets you organize servers (master and slaves) into groups.
Queries can be directed to a certain group of servers by prefixing the query statement with a SQL hint/
comment that contains the groups configured name. Grouping can be used for partitioning and sharding,
and also to optimize for local caching. In the case of sharding, a group name can be thought of like a
shard key. All queries for a given shard key will be executed on the configured shard. Note: both the
client and server must support sharding for sharding to function with mysqlnd_ms.

• Extended configuration file validation during PHP startup (RINIT). An E_WARNING level error will be
thrown if the configuration file can not be read (permissions), is empty, or the file (JSON) could not be
parsed. Warnings may appear in log files, which depending on how PHP is configured.

Distributions that aim to provide a pre-configured setup, including a configuration file stub, are asked to
put {} into the configuration file to prevent this warning about an invalid configuration file.

Further configuration file validation is done when parsing sections upon opening a connection. Please,
note that there may still be situations when an invalid plugin configuration file does not lead to proper
error messages but a failure to connect.

• As of PHP 5.5.0, improved support for transaction boundaries detection was added for mysqli. The
mysqli extension has been modified to use the new C API calls of the mysqlnd library to begin,
commit, and rollback a transaction or savepoint. If trx_stickiness is used to enable transaction aware
load balancing, the mysqli_begin, mysqli_commit and mysqli_rollback functions will now
be monitered by the plugin, to go along with the mysqli_autocommit function that was already
supported. All SQL features to control transactions are also available through the improved mysqli
transaction control related functions. This means that it is not required to issue SQL statements
instead of using API calls. Applications using the appropriate API calls can be load balanced by PECL/
mysqlnd_ms in a completely transaction-aware way.

Please note, PDO_MySQL has not been updated yet to utilize the new mysqlnd API calls. Thus,
transaction boundary detection with PDO_MySQL continues to be limited to the monitoring by passing in
PDO::ATTR_AUTOCOMMIT to PDO::setAttribute.

• Introduced trx_stickiness=on. This trx_stickiness option differs from trx_stickiness=master
as it tries to execute a read-only transaction on a slave, if quality of service (consistency level) allows the
use of a slave. Read-only transactions were introduced in MySQL 5.6, and they offer performance gains.

• Query cache support is considered beta if used with the mysqli API. It should work fine with primary
copy based clusters. For all other APIs, this feature continues to be called experimental.

http://www.php.net/mysqli_begin
http://www.php.net/PDO::setAttribute

PECL/mysqlnd_ms 1.4 series

526

• The code examples in the mysqlnd_ms source were updated.

7.9.3 PECL/mysqlnd_ms 1.4 series

Copyright 1997-2014 the PHP Documentation Group.

1.4.2-stable

• Release date: 08/2012

• Motto/theme: Tweaking based on user feedback

1.4.1-beta

• Release date: 08/2012

• Motto/theme: Tweaking based on user feedback

Bug fixes

• Fixed build with PHP 5.5

1.4.0-alpha

• Release date: 07/2012

• Motto/theme: Tweaking based on user feedback

Feature changes

• BC break: Renamed plugin configuration setting ini_file to config_file. In early versions the
plugin configuration file used ini style. Back then the configuration setting was named accordingly.
It has now been renamed to reflect the newer file format and to distinguish it from PHP's own ini file
(configuration directives file).

• Introduced new default charset setting server_charset to allow proper escaping before a connection
is opened. This is most useful when using lazy connections, which are a default.

• Introduced wait_for_gtid_timeout setting to throttle slave reads that need session consistency.
If global transaction identifier are used and the service level is set to session consistency, the plugin
tries to find up-to-date slaves. The slave status check is done by a SQL statement. If nothing else
is set, the slave status is checked only one can the search for more up-to-date slaves continues
immediately thereafter. Setting wait_for_gtid_timeout instructs the plugin to poll a slaves status
for wait_for_gtid_timeout seconds if the first execution of the SQL statement has shown that
the slave is not up-to-date yet. The poll will be done once per second. This way, the plugin will wait for
slaves to catch up and throttle the client.

• New failover strategy loop_before_master. By default the plugin does no failover. It is possible to
enable automatic failover if a connection attempt fails. Upto version 1.3 only master strategy existed to
failover to a master if a slave connection fails. loop_before_master is similar but tries all other slaves
before attempting to connect to the master if a slave connection fails.

The number of attempts can be limited using the max_retries option. Failed hosts can be
remembered and skipped in load balancing for the rest of the web request. max_retries and
remember_failed are considered experimental although decent stability is given. Syntax and
semantics may change in the future without prior notice.

PECL/mysqlnd_ms 1.3 series

527

7.9.4 PECL/mysqlnd_ms 1.3 series

Copyright 1997-2014 the PHP Documentation Group.

1.3.2-stable

• Release date: 04/2012

• Motto/theme: see 1.3.0-alpha

Bug fixes

• Fixed problem with multi-master where although in a transaction the queries to the master weren't sticky
and were spread all over the masters (RR). Still not sticky for Random. Random_once is not affected.

1.3.1-beta

• Release date: 04/2012

• Motto/theme: see 1.3.0-alpha

Bug fixes

• Fixed problem with building together with QC.

1.3.0-alpha

• Release date: 04/2012

• Motto/theme: Query caching through quality-of-service concept

The 1.3 series aims to improve the performance of applications and the overall load of an asynchronous
MySQL cluster, for example, a MySQL cluster using MySQL Replication. This is done by transparently
replacing a slave access with a local cache access, if the application allows it by setting an appropriate
quality of service flag. When using MySQL replication a slave can serve stale data. An application using
MySQL replication must continue to work correctly with stale data. Given that the application is know to
work correctly with stale data, the slave access can transparently be replace with a local cache access.

PECL/mysqlnd_qc serves as a cache backend. PECL/mysqlnd_qc supports use of various storage
locations, among others main memory, APC and MEMCACHE.

Feature changes

• Added cache option to quality-of-service (QoS) filter.

• New configure option enable-mysqlnd-ms-cache-support

• New constant MYSQLND_MS_HAVE_CACHE_SUPPORT.

• New constant MYSQLND_MS_QOS_OPTION_CACHE to be used with mysqlnd_ms_set_qos.

• Support for built-in global transaction identifier feature of MySQL 5.6.5-m8 or newer.

7.9.5 PECL/mysqlnd_ms 1.2 series

Copyright 1997-2014 the PHP Documentation Group.

1.2.1-beta

PECL/mysqlnd_ms 1.2 series

528

• Release date: 01/2012

• Motto/theme: see 1.2.0-alpha

Minor test changes.

1.2.0-alpha

• Release date: 11/2011

• Motto/theme: Global Transaction ID injection and quality-of-service concept

In version 1.2 the focus continues to be on supporting MySQL database clusters with asynchronous
replication. The plugin tries to make using the cluster introducing a quality-of-service filter which
applications can use to define what service quality they need from the cluster. Service levels provided are
eventual consistency with optional maximum age/slave slag, session consistency and strong consistency.

Additionally the plugin can do client-side global transaction id injection to make manual master failover
easier.

Feature changes

• Introduced quality-of-service (QoS) filter. Service levels provided by QoS filter:

• eventual consistency, optional option slave lag

• session consistency, optional option GTID

• strong consistency

• Added the mysqlnd_ms_set_qos function to set the required connection quality at runtime. The new
constants related to mysqlnd_ms_set_qos are:

• MYSQLND_MS_QOS_CONSISTENCY_STRONG

• MYSQLND_MS_QOS_CONSISTENCY_SESSION

• MYSQLND_MS_QOS_CONSISTENCY_EVENTUAL

• MYSQLND_MS_QOS_OPTION_GTID

• MYSQLND_MS_QOS_OPTION_AGE

• Added client-side global transaction id injection (GTID).

• New statistics related to GTID:

• gtid_autocommit_injections_success

• gtid_autocommit_injections_failure

• gtid_commit_injections_success

• gtid_commit_injections_failure

• gtid_implicit_commit_injections_success

• gtid_implicit_commit_injections_failure

PECL/mysqlnd_ms 1.1 series

529

• Added mysqlnd_ms_get_last_gtid to fetch the last global transaction id.

• Enabled support for multi master without slaves.

7.9.6 PECL/mysqlnd_ms 1.1 series

Copyright 1997-2014 the PHP Documentation Group.

1.1.0

• Release date: 09/2011

• Motto/theme: Cover replication basics with production quality

The 1.1 and 1.0 series expose a similar feature set. Internally, the 1.1 series has been refactored to plan
for future feature additions. A new configuration file format has been introduced, and limitations have been
lifted. And the code quality and quality assurance has been improved.

Feature changes

• Added the (chainable) filter concept:

• BC break: mysqlnd_ms_set_user_pick_server has been removed. Thehttp://svn.php.net/
viewvc/pecl/mysqlnd_ms/trunk/ user filter has been introduced to replace it. The filter offers similar
functionality, but see below for an explanation of the differences.

• New powerful JSON based configuration syntax.

• Lazy connections improved: security relevant, and state changing commands are covered.

• Support for (native) prepared statements.

• New statistics: use_master_guess, use_slave_guess.

• BC break: Semantics of statistics changed for use_slave, use_master. Future changes are likely.
Please see, mysqlnd_ms_get_stats.

• List of broadcasted messages extended by ssl_set.

• Library calls now monitored to remember settings for lazy connections: change_user, select_db,
set_charset, set_autocommit.

• Introduced mysqlnd_ms.disable_rw_split. The configuration setting allows using the load
balancing and lazy connection functionality independently of read write splitting.

Bug fixes

• Fixed PECL #22724 - Server switching (mysqlnd_ms_query_is_select() case sensitive)

• Fixed PECL #22784 - Using mysql_connect and mysql_select_db did not work

• Fixed PECL #59982 - Unusable extension with --enable-mysqlnd-ms-table-filter. Use of the option is
NOT supported. You must not used it. Added note to m4.

• Fixed Bug #60119 - host="localhost" lost in mysqlnd_ms_get_last_used_connection()

The mysqlnd_ms_set_user_pick_server function was removed, and replaced in favor of a new
user filter. You can no longer set a callback function using mysqlnd_ms_set_user_pick_server at

PECL/mysqlnd_ms 1.0 series

530

runtime, but instead have to configure it in the plugins configuration file. The user filter will pass the same
arguments to the callback as before. Therefore, you can continue to use the same procedural function
as a callback.callback It is no longer possible to use static class methods, or class methods of an object
instance, as a callback. Doing so will cause the function executing a statement handled by the plugin
to emit an E_RECOVERABLE_ERROR level error, which might look like: "(mysqlnd_ms) Specified
callback (picker) is not a valid callback." Note: this may halt your application.

7.9.7 PECL/mysqlnd_ms 1.0 series

Copyright 1997-2014 the PHP Documentation Group.

1.0.1-alpha

• Release date: 04/2011

• Motto/theme: bug fix release

1.0.0-alpha

• Release date: 04/2011

• Motto/theme: Cover replication basics to test user feedback

The first release of practical use. It features basic automatic read-write splitting, SQL hints to overrule
automatic redirection, load balancing of slave requests, lazy connections, and optional, automatic use of
the master after the first write.

The public feature set is close to that of the 1.1 release.

1.0.0-pre-alpha

• Release date: 09/2010

• Motto/theme: Proof of concept

Initial check-in. Essentially a demo of the mysqlnd plugin API.

531

Chapter 8 Mysqlnd query result cache plugin

Table of Contents
8.1 Key Features .. 532
8.2 Limitations .. 532
8.3 On the name .. 532
8.4 Quickstart and Examples .. 532

8.4.1 Architecture and Concepts ... 533
8.4.2 Setup .. 534
8.4.3 Caching queries ... 534
8.4.4 Setting the TTL .. 539
8.4.5 Pattern based caching ... 541
8.4.6 Slam defense .. 543
8.4.7 Finding cache candidates ... 543
8.4.8 Measuring cache efficiency .. 546
8.4.9 Beyond TTL: user-defined storage .. 552

8.5 Installing/Configuring ... 556
8.5.1 Requirements .. 556
8.5.2 Installation ... 556
8.5.3 Runtime Configuration .. 556

8.6 Predefined Constants .. 558
8.7 mysqlnd_qc Functions ... 560

8.7.1 mysqlnd_qc_clear_cache ... 560
8.7.2 mysqlnd_qc_get_available_handlers ... 561
8.7.3 mysqlnd_qc_get_cache_info ... 562
8.7.4 mysqlnd_qc_get_core_stats ... 568
8.7.5 mysqlnd_qc_get_normalized_query_trace_log ... 573
8.7.6 mysqlnd_qc_get_query_trace_log ... 576
8.7.7 mysqlnd_qc_set_cache_condition ... 580
8.7.8 mysqlnd_qc_set_is_select ... 581
8.7.9 mysqlnd_qc_set_storage_handler ... 583
8.7.10 mysqlnd_qc_set_user_handlers ... 584

8.8 Change History ... 585
8.8.1 PECL/mysqlnd_qc 1.2 series .. 585
8.8.2 PECL/mysqlnd_qc 1.1 series .. 585
8.8.3 PECL/mysqlnd_qc 1.0 series .. 586

Copyright 1997-2014 the PHP Documentation Group.

The mysqlnd query result cache plugin adds easy to use client-side query caching to all PHP MySQL
extensions using mysqlnd.

As of version PHP 5.3.3 the MySQL native driver for PHP (mysqlnd) features an internal plugin C API. C
plugins, such as the query cache plugin, can extend the functionality of mysqlnd.

Mysqlnd plugins such as the query cache plugin operate transparent from a user perspective. The cache
plugin supports all PHP applications and all PHP MySQL extensions (mysqli, mysql, PDO_MYSQL). It
does not change existing APIs.

No significant application changes are required to cache a query. The cache has two operation modes.
It will either cache all queries (not recommended) or only those queries marked with a certain SQL hint
(recommended).

Key Features

532

8.1 Key Features
Copyright 1997-2014 the PHP Documentation Group.

• Transparent and therefore easy to use

• supports all PHP MySQL extensions

• no API changes

• very little application changes required

• Flexible invalidation strategy

• Time-to-Live (TTL)

• user-defined

• Storage with different scope and life-span

• Default (Hash, process memory)

• APC

• MEMCACHE

• sqlite

• user-defined

• Built-in slam defense to prevent cache stampeding.

8.2 Limitations
Copyright 1997-2014 the PHP Documentation Group.

The current 1.0.1 release of PECL mysqlnd_qc does not support PHP 5.4. Version 1.1.0-alpha lifts this
limitation.

Prepared statements and unbuffered queries are fully supported. Thus, the plugin is capable of caching all
statements issued with mysqli or PDO_MySQL, which are the only two PHP MySQL APIs to offer prepared
statement support.

8.3 On the name
Copyright 1997-2014 the PHP Documentation Group.

The shortcut mysqlnd_qc stands for mysqlnd query cache plugin. The name was chosen for a
quick-and-dirty proof-of-concept. In the beginning the developers did not expect to continue using the code
base. Sometimes PECL/mysqlnd_qc has also been called client-side query result set cache.

8.4 Quickstart and Examples
Copyright 1997-2014 the PHP Documentation Group.

The mysqlnd query cache plugin is easy to use. This quickstart will demo typical use-cases, and provide
practical advice on getting started.

http://www.php.net/ref.apc

Architecture and Concepts

533

It is strongly recommended to read the reference sections in addition to the quickstart. It is safe to begin
with the quickstart. However, before using the plugin in mission critical environments we urge you to read
additionally the background information from the reference sections.

Most of the examples use the mysqli extension because it is the most feature complete PHP MySQL
extension. However, the plugin can be used with any PHP MySQL extension that is using the mysqlnd
library.

8.4.1 Architecture and Concepts

Copyright 1997-2014 the PHP Documentation Group.

The query cache plugin is implemented as a PHP extension. It is written in C and operates under the
hood of PHP. During the startup of the PHP interpreter, it gets registered as a mysqlnd plugin to replace
selected mysqlnd C methods. Hereby, it can change the behaviour of any PHP MySQL extension (mysqli,
PDO_MYSQL, mysql) compiled to use the mysqlnd library without changing the extensions API. This
makes the plugin compatible with each and every PHP MySQL application. Because existing APIs are not
changed, it is almost transparent to use. Please, see the mysqlnd plugin API description for a discussion of
the advantages of the plugin architecture and a comparison with proxy based solutions.

Transparent to use

At PHP run time PECL/mysqlnd_qc can proxy queries send from PHP (mysqlnd) to the MySQL server. It
then inspects the statement string to find whether it shall cache its results. If so, result set is cached using
a storage handler and further executions of the statement are served from the cache for a user-defined
period. The Time to Live (TTL) of the cache entry can either be set globally or on a per statement basis.

A statement is either cached if the plugin is instructed to cache all statements globally using a or, if the
query string starts with the SQL hint (/*qc=on*/). The plugin is capable of caching any query issued by
calling appropriate API calls of any of the existing PHP MySQL extensions.

Flexible storage: various storage handler

Various storage handler are supported to offer different scopes for cache entries. Different scopes allow for
different degrees in sharing cache entries among clients.

• default (built-in): process memory, scope: process, one or more web requests depending on PHP
deployment model used

• APC: shared memory, scope: single server, multiple web requests

• SQLite: memory or file, scope: single server, multiple web requests

• MEMCACHE: main memory, scope: single or multiple server, multiple web requests

• user (built-in): user-defined - any, scope: user-defined - any

Support for the APC, SQLite and MEMCACHE storage handler has to be enabled at compile time. The
default and user handler are built-in. It is possible to switch between compiled-in storage handlers on
a per query basis at run time. However, it is recommended to pick one storage handler and use it for all
cache entries.

Built-in slam defense to avoid overloading

To avoid overload situations the cache plugin has a built-in slam defense mechanism. If a popular cache
entries expires many clients using the cache entries will try to refresh the cache entry. For the duration of
the refresh many clients may access the database server concurrently. In the worst case, the database
server becomes overloaded and it takes more and more time to refresh the cache entry, which in turn lets
more and more clients try to refresh the cache entry. To prevent this from happening the plugin has a slam

Setup

534

defense mechanism. If slam defense is enabled and the plugin detects an expired cache entry it extends
the life time of the cache entry before it refreshes the cache entry. This way other concurrent accesses to
the expired cache entry are still served from the cache for a certain time. The other concurrent accesses
to not trigger a concurrent refresh. Ideally, the cache entry gets refreshed by the client which extended
the cache entries lifespan before other clients try to refresh the cache and potentially cause an overload
situation.

Unique approach to caching

PECL/mysqlnd_qc has a unique approach to caching result sets that is superior to application based cache
solutions. Application based solutions first fetch a result set into PHP variables. Then, the PHP variables
are serialized for storage in a persistent cache, and then unserialized when fetching. The mysqlnd query
cache stores the raw wire protocol data sent from MySQL to PHP in its cache and replays it, if still valid,
on a cache hit. This way, it saves an extra serialization step for a cache put that all application based
solutions have to do. It can store the raw wire protocol data in the cache without having to serialize into a
PHP variable first and deserializing the PHP variable for storing in the cache again.

8.4.2 Setup

Copyright 1997-2014 the PHP Documentation Group.

The plugin is implemented as a PHP extension. See also the installation instructions to install the PECL/
mysqlnd_qc extension.

Compile or configure the PHP MySQL extension (mysqli, PDO_MYSQL, mysql) that you plan to use with
support for the mysqlnd library. PECL/mysqlnd_qc is a plugin for the mysqlnd library. To use the plugin
with any of the existing PHP MySQL extensions (APIs), the extension has to use the mysqlnd library.

Then, load the extension into PHP and activate the plugin in the PHP configuration file using the PHP
configuration directive named mysqlnd_qc.enable_qc.

Example 8.1 Enabling the plugin (php.ini)

mysqlnd_qc.enable_qc=1

8.4.3 Caching queries

Copyright 1997-2014 the PHP Documentation Group.

There are four ways to trigger caching of a query.

• Use of SQL hints on a per query basis

• User supplied callbacks to decide on a per query basis, for example, using mysqlnd_qc_is_select

• mysqlnd_set_cache_condition for rule based automatic per query decisions

• mysqlnd_qc.cache_by_default = 1 to cache all queries blindly

Use of SQL hints and mysqlnd_qc.cache_by_default = 1 are explained below. Please, refer
to the function reference on mysqlnd_qc_is_select for a description of using a callback and,
mysqlnd_qc_set_cache_condition on how to set rules for automatic caching.

A SQL hint is a SQL standards compliant comment. As a SQL comment it is ignored by the database. A
statement is considered eligible for caching if it either begins with the SQL hint enabling caching or it is a
SELECT statement.

http://pecl.php.net/package/mysqlnd_qc
http://pecl.php.net/package/mysqlnd_qc
http://www.php.net/mysqlnd_qc_is_select
http://www.php.net/mysqlnd_set_cache_condition
http://www.php.net/mysqlnd_qc_is_select

Caching queries

535

An individual query which shall be cached must begin with the SQL hint /*qc=on*/. It is recommended to
use the PHP constant MYSQLND_QC_ENABLE_SWITCH instead of using the string value.

• not eligible for caching and not cached: INSERT INTO test(id) VALUES (1)

• not eligible for caching and not cached: SHOW ENGINES

• eligible for caching but uncached: SELECT id FROM test

• eligible for caching and cached: /*qc=on*/SELECT id FROM test

The examples SELECT statement string is prefixed with the MYSQLND_QC_ENABLE_SWITCH SQL hint to
enable caching of the statement. The SQL hint must be given at the very beginning of the statement string
to enable caching.

Example 8.2 Using the MYSQLND_QC_ENABLE_SWITCH SQL hint

mysqlnd_qc.enable_qc=1

<?php
/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2)");

/* Will be cached because of the SQL hint */
$start = microtime(true);
$res = $mysqli->query("/*" . MYSQLND_QC_ENABLE_SWITCH . "*/" . "SELECT id FROM test WHERE id = 1");

var_dump($res->fetch_assoc());
$res->free();

printf("Total time uncached query: %.6fs\n", microtime(true) - $start);

/* Cache hit */
$start = microtime(true);
$res = $mysqli->query("/*" . MYSQLND_QC_ENABLE_SWITCH . "*/" . "SELECT id FROM test WHERE id = 1");

var_dump($res->fetch_assoc());
$res->free();

printf("Total time cached query: %.6fs\n", microtime(true) - $start);
?>

The above examples will output something similar to:

array(1) {
 ["id"]=>
 string(1) "1"
}
Total time uncached query: 0.000740s
array(1) {
 ["id"]=>
 string(1) "1"
}

Caching queries

536

Total time cached query: 0.000098s

If nothing else is configured, as it is the case in the quickstart example, the plugin will use the built-in
default storage handler. The default storage handler uses process memory to hold a cache entry.
Depending on the PHP deployment model, a PHP process may serve one or more web requests. Please,
consult the web server manual for details. Details make no difference for the examples given in the
quickstart.

The query cache plugin will cache all queries regardless if the query string begins with the SQL hint which
enables caching or not, if the PHP configuration directive mysqlnd_qc.cache_by_default is set to
1. The setting mysqlnd_qc.cache_by_default is evaluated by the core of the query cache plugins.
Neither the built-in nor user-defined storage handler can overrule the setting.

The SQL hint /*qc=off*/ can be used to disable caching of individual queries if
mysqlnd_qc.cache_by_default = 1 It is recommended to use the PHP constant
MYSQLND_QC_DISABLE_SWITCH instead of using the string value.

Example 8.3 Using the MYSQLND_QC_DISABLE_SWITCH SQL hint

mysqlnd_qc.enable_qc=1
mysqlnd_qc.cache_by_default=1

<?php
/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2)");

/* Will be cached although no SQL hint is present because of mysqlnd_qc.cache_by_default = 1*/
$res = $mysqli->query("SELECT id FROM test WHERE id = 1");
var_dump($res->fetch_assoc());
$res->free();

$mysqli->query("DELETE FROM test WHERE id = 1");

/* Cache hit - no automatic invalidation and still valid! */
$res = $mysqli->query("SELECT id FROM test WHERE id = 1");
var_dump($res->fetch_assoc());
$res->free();

/* Cache miss - query must not be cached because of the SQL hint */
$res = $mysqli->query("/*" . MYSQLND_QC_DISABLE_SWITCH . "*/SELECT id FROM test WHERE id = 1");
var_dump($res->fetch_assoc());
$res->free();
?>

The above examples will output:

array(1) {
 ["id"]=>
 string(1) "1"
}

Caching queries

537

array(1) {
 ["id"]=>
 string(1) "1"
}
NULL

PECL/mysqlnd_qc forbids caching of statements for which at least one column from the statements result
set shows no table name in its meta data by default. This is usually the case for columns originating from
SQL functions such as NOW() or LAST_INSERT_ID(). The policy aims to prevent pitfalls if caching by
default is used.

Example 8.4 Example showing which type of statements are not cached

mysqlnd_qc.enable_qc=1
mysqlnd_qc.cache_by_default=1

<?php
/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1)");

for ($i = 0; $i < 3; $i++) {

 $start = microtime(true);

 /* Note: statement will not be cached because of NOW() use */
 $res = $mysqli->query("SELECT id, NOW() AS _time FROM test");
 $row = $res->fetch_assoc();

 /* dump results */
 var_dump($row);

 printf("Total time: %.6fs\n", microtime(true) - $start);

 /* pause one second */
 sleep(1);
}
?>

The above examples will output something similar to:

array(2) {
 ["id"]=>
 string(1) "1"
 ["_time"]=>
 string(19) "2012-01-11 15:43:10"
}
Total time: 0.000540s
array(2) {
 ["id"]=>
 string(1) "1"
 ["_time"]=>

Caching queries

538

 string(19) "2012-01-11 15:43:11"
}
Total time: 0.000555s
array(2) {
 ["id"]=>
 string(1) "1"
 ["_time"]=>
 string(19) "2012-01-11 15:43:12"
}
Total time: 0.000549s

It is possible to enable caching for all statements including those which has columns in their
result set for which MySQL reports no table, such as the statement from the example. Set
mysqlnd_qc.cache_no_table = 1 to enable caching of such statements. Please, note the difference
in the measured times for the above and below examples.

Example 8.5 Enabling caching for all statements using the mysqlnd_qc.cache_no_table ini
setting

mysqlnd_qc.enable_qc=1
mysqlnd_qc.cache_by_default=1
mysqlnd_qc.cache_no_table=1

<?php
/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1)");

for ($i = 0; $i < 3; $i++) {

 $start = microtime(true);

 /* Note: statement will not be cached because of NOW() use */
 $res = $mysqli->query("SELECT id, NOW() AS _time FROM test");
 $row = $res->fetch_assoc();

 /* dump results */
 var_dump($row);

 printf("Total time: %.6fs\n", microtime(true) - $start);

 /* pause one second */
 sleep(1);
}
?>

The above examples will output something similar to:

array(2) {
 ["id"]=>
 string(1) "1"
 ["_time"]=>

Setting the TTL

539

 string(19) "2012-01-11 15:47:45"
}
Total time: 0.000546s
array(2) {
 ["id"]=>
 string(1) "1"
 ["_time"]=>
 string(19) "2012-01-11 15:47:45"
}
Total time: 0.000187s
array(2) {
 ["id"]=>
 string(1) "1"
 ["_time"]=>
 string(19) "2012-01-11 15:47:45"
}
Total time: 0.000167s

Note

Although mysqlnd_qc.cache_no_table = 1 has been created for use with
mysqlnd_qc.cache_by_default = 1 it is bound it. The plugin will evaluate
the mysqlnd_qc.cache_no_table whenever a query is to be cached, no matter
whether caching has been enabled using a SQL hint or any other measure.

8.4.4 Setting the TTL

Copyright 1997-2014 the PHP Documentation Group.

The default invalidation strategy of the query cache plugin is Time to Live (TTL). The built-in storage
handlers will use the default TTL defined by the PHP configuration value mysqlnd_qc.ttl unless the
query string contains a hint for setting a different TTL. The TTL is specified in seconds. By default cache
entries expire after 30 seconds

The example sets mysqlnd_qc.ttl=3 to cache statements for three seconds by default. Every second
it updates a database table record to hold the current time and executes a SELECT statement to fetch the
record from the database. The SELECT statement is cached for three seconds because it is prefixed with
the SQL hint enabling caching. The output verifies that the query results are taken from the cache for the
duration of three seconds before they are refreshed.

Example 8.6 Setting the TTL with the mysqlnd_qc.ttl ini setting

mysqlnd_qc.enable_qc=1
mysqlnd_qc.ttl=3

<?php
/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id VARCHAR(255))");

for ($i = 0; $i < 7; $i++) {

 /* update DB row */
 if (!$mysqli->query("DELETE FROM test") ||

Setting the TTL

540

 !$mysqli->query("INSERT INTO test(id) VALUES (NOW())"))
 /* Of course, a real-life script should do better error handling */
 die(sprintf("[%d] %s\n", $mysqli->errno, $mysqli->error));

 /* select latest row but cache results */
 $query = "/*" . MYSQLND_QC_ENABLE_SWITCH . "*/";
 $query .= "SELECT id AS _time FROM test";
 if (!($res = $mysqli->query($query)) ||
 !($row = $res->fetch_assoc()))
 {
 printf("[%d] %s\n", $mysqli->errno, $mysqli->error);
 }
 $res->free();
 printf("Wall time %s - DB row time %s\n", date("H:i:s"), $row['_time']);

 /* pause one second */
 sleep(1);
}
?>

The above examples will output something similar to:

Wall time 14:55:59 - DB row time 2012-01-11 14:55:59
Wall time 14:56:00 - DB row time 2012-01-11 14:55:59
Wall time 14:56:01 - DB row time 2012-01-11 14:55:59
Wall time 14:56:02 - DB row time 2012-01-11 14:56:02
Wall time 14:56:03 - DB row time 2012-01-11 14:56:02
Wall time 14:56:04 - DB row time 2012-01-11 14:56:02
Wall time 14:56:05 - DB row time 2012-01-11 14:56:05

As can be seen from the example, any TTL based cache can serve stale data. Cache entries are not
automatically invalidated, if underlying data changes. Applications using the default TTL invalidation
strategy must be able to work correctly with stale data.

A user-defined cache storage handler can implement any invalidation strategy to work around this
limitation.

The default TTL can be overruled using the SQL hint /*qc_tt=seconds*/. The SQL hint must be
appear immediately after the SQL hint which enables caching. It is recommended to use the PHP constant
MYSQLND_QC_TTL_SWITCH instead of using the string value.

Example 8.7 Setting TTL with SQL hints

<?php
$start = microtime(true);

/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2)");

printf("Default TTL\t: %d seconds\n", ini_get("mysqlnd_qc.ttl"));

/* Will be cached for 2 seconds */
$sql = sprintf("/*%s*//*%s%d*/SELECT id FROM test WHERE id = 1", MYSQLND_QC_ENABLE_SWITCH, MYSQLND_QC_TTL_SWITCH, 2);
$res = $mysqli->query($sql);

Pattern based caching

541

var_dump($res->fetch_assoc());
$res->free();

$mysqli->query("DELETE FROM test WHERE id = 1");
sleep(1);

/* Cache hit - no automatic invalidation and still valid! */
$res = $mysqli->query($sql);
var_dump($res->fetch_assoc());
$res->free();

sleep(2);

/* Cache miss - cache entry has expired */
$res = $mysqli->query($sql);
var_dump($res->fetch_assoc());
$res->free();

printf("Script runtime\t: %d seconds\n", microtime(true) - $start);
?>

The above examples will output something similar to:

Default TTL : 30 seconds
array(1) {
 ["id"]=>
 string(1) "1"
}
array(1) {
 ["id"]=>
 string(1) "1"
}
NULL
Script runtime : 3 seconds

8.4.5 Pattern based caching

Copyright 1997-2014 the PHP Documentation Group.

An application has three options for telling PECL/mysqlnd_qc whether a particular statement shall be used.
The most basic approach is to cache all statements by setting mysqlnd_qc.cache_by_default = 1.
This approach is often of little practical value. But it enables users to make a quick estimation about the
maximum performance gains from caching. An application designed to use a cache may be able to prefix
selected statements with the appropriate SQL hints. However, altering an applications source code may
not always be possible or desired, for example, to avoid problems with software updates. Therefore, PECL/
mysqlnd_qc allows setting a callback which decides if a query is to be cached.

The callback is installed with the mysqlnd_qc_set_is_select function. The callback is given the
statement string of every statement inspected by the plugin. Then, the callback can decide whether to
cache the function. The callback is supposed to return FALSE if the statement shall not be cached. A return
value of TRUE makes the plugin try to add the statement into the cache. The cache entry will be given the
default TTL (mysqlnd_qc.ttl). If the callback returns a numerical value it is used as the TTL instead of
the global default.

Example 8.8 Setting a callback with mysqlnd_qc_set_is_select

Pattern based caching

542

mysqlnd_qc.enable_qc=1
mysqlnd_qc.collect_statistics=1

<?php
/* callback which decides if query is cached */
function is_select($query) {
 static $patterns = array(
 /* true - use default from mysqlnd_qc.ttl */
 "@SELECT\s+.*\s+FROM\s+test@ismU" => true,
 /* 3 - use TTL = 3 seconds */
 "@SELECT\s+.*\s+FROM\s+news@ismU" => 3
);

 /* check if query does match pattern */
 foreach ($patterns as $pattern => $ttl) {
 if (preg_match($pattern, $query)) {
 printf("is_select(%45s): cache\n", $query);
 return $ttl;
 }
 }
 printf("is_select(%45s): do not cache\n", $query);
 return false;
}
/* install callback */
mysqlnd_qc_set_is_select("is_select");

/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)");

/* cache put */
$mysqli->query("SELECT id FROM test WHERE id = 1");
/* cache hit */
$mysqli->query("SELECT id FROM test WHERE id = 1");
/* cache put */
$mysqli->query("SELECT * FROM test");

$stats = mysqlnd_qc_get_core_stats();
printf("Cache put: %d\n", $stats['cache_put']);
printf("Cache hit: %d\n", $stats['cache_hit']);
?>

The above examples will output something similar to:

is_select(DROP TABLE IF EXISTS test): do not cache
is_select(CREATE TABLE test(id INT)): do not cache
is_select(INSERT INTO test(id) VALUES (1), (2), (3)): do not cache
is_select(SELECT id FROM test WHERE id = 1): cache
is_select(SELECT id FROM test WHERE id = 1): cache
is_select(SELECT * FROM test): cache
Cache put: 2
Cache hit: 1

The examples callback tests if a statement string matches a pattern. If this is the case, it either returns
TRUE to cache the statement using the global default TTL or an alternative TTL.

Slam defense

543

To minimize application changes the callback can put into and registered in an auto prepend file.

8.4.6 Slam defense

Copyright 1997-2014 the PHP Documentation Group.

A badly designed cache can do more harm than good. In the worst case a cache can increase database
server load instead of minimizing it. An overload situation can occur if a highly shared cache entry expires
(cache stampeding).

Cache entries are shared and reused to a different degree depending on the storage used. The default
storage handler stores cache entries in process memory. Thus, a cache entry can be reused for the life-
span of a process. Other PHP processes cannot access it. If Memcache is used, a cache entry can be
shared among multiple PHP processes and even among multiple machines, depending on the set up being
used.

If a highly shared cache entry stored, for example, in Memcache expires, many clients gets a cache miss.
Many client requests can no longer be served from the cache but try to run the underlying query on the
database server. Until the cache entry is refreshed, more and more clients contact the database server. In
the worst case, a total lost of service is the result.

The overload can be avoided using a storage handler which limits the reuse of cache entries to few
clients. Then, at the average, its likely that only a limited number of clients will try to refresh a cache entry
concurrently.

Additionally, the built-in slam defense mechanism can and should be used. If slam defense is activated
an expired cache entry is given an extended life time. The first client getting a cache miss for the expired
cache entry tries to refresh the cache entry within the extended life time. All other clients requesting
the cache entry are temporarily served from the cache although the original TTL of the cache entry has
expired. The other clients will not experience a cache miss before the extended life time is over.

Example 8.9 Enabling the slam defense mechanism

mysqlnd_qc.slam_defense=1
mysqlnd_qc.slam_defense_ttl=1

The slam defense mechanism is enabled with the PHP configuration directive
mysqlnd_qc.slam_defense. The extended life time of a cache entry is set with
mysqlnd_qc.slam_defense_ttl.

The function mysqlnd_qc_get_core_stats returns an array of statistics. The statistics
slam_stale_refresh and slam_stale_hit are incremented if slam defense takes place.

It is not possible to give a one-fits-all recommendation on the slam defense configuration. Users are
advised to monitor and test their setup and derive settings accordingly.

8.4.7 Finding cache candidates

Copyright 1997-2014 the PHP Documentation Group.

A statement should be considered for caching if it is executed often and has a long run time. Cache
candidates are found by creating a list of statements sorted by the product of the number of executions

Finding cache candidates

544

multiplied by the statements run time. The function mysqlnd_qc_get_query_trace_log returns a
query log which help with the task.

Collecting a query trace is a slow operation. Thus, it is disabled by default. The PHP configuration directive
mysqlnd_qc.collect_query_trace is used to enable it. The functions trace contains one entry for
every query issued before the function is called.

Example 8.10 Collecting a query trace

mysqlnd_qc.enable_qc=1
mysqlnd_qc.collect_query_trace=1

<?php
/* connect to MySQL */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");

/* dummy queries to fill the query trace */
for ($i = 0; $i < 2; $i++) {
 $res = $mysqli->query("SELECT 1 AS _one FROM DUAL");
 $res->free();
}

/* dump trace */
var_dump(mysqlnd_qc_get_query_trace_log());
?>

The above examples will output:

array(2) {
 [0]=>
 array(8) {
 ["query"]=>
 string(26) "SELECT 1 AS _one FROM DUAL"
 ["origin"]=>
 string(102) "#0 qc.php(7): mysqli->query('SELECT 1 AS _on...')
#1 {main}"
 ["run_time"]=>
 int(0)
 ["store_time"]=>
 int(25)
 ["eligible_for_caching"]=>
 bool(false)
 ["no_table"]=>
 bool(false)
 ["was_added"]=>
 bool(false)
 ["was_already_in_cache"]=>
 bool(false)
 }
 [1]=>
 array(8) {
 ["query"]=>
 string(26) "SELECT 1 AS _one FROM DUAL"
 ["origin"]=>
 string(102) "#0 qc.php(7): mysqli->query('SELECT 1 AS _on...')
#1 {main}"

Finding cache candidates

545

 ["run_time"]=>
 int(0)
 ["store_time"]=>
 int(8)
 ["eligible_for_caching"]=>
 bool(false)
 ["no_table"]=>
 bool(false)
 ["was_added"]=>
 bool(false)
 ["was_already_in_cache"]=>
 bool(false)
 }
}

Assorted information is given in the trace. Among them timings and the origin of the query call. The origin
property holds a code backtrace to identify the source of the query. The depth of the backtrace can be
limited with the PHP configuration directive mysqlnd_qc.query_trace_bt_depth. The default depth is
3.

Example 8.11 Setting the backtrace depth with the mysqlnd_qc.query_trace_bt_depth ini
setting

mysqlnd_qc.enable_qc=1
mysqlnd_qc.collect_query_trace=1

<?php
/* connect to MySQL */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)");

/* dummy queries to fill the query trace */
for ($i = 0; $i < 3; $i++) {
 $res = $mysqli->query("SELECT id FROM test WHERE id = " . $mysqli->real_escape_string($i));
 $res->free();
}

$trace = mysqlnd_qc_get_query_trace_log();
$summary = array();
foreach ($trace as $entry) {
 if (!isset($summary[$entry['query']])) {
 $summary[$entry['query']] = array(
 "executions" => 1,
 "time" => $entry['run_time'] + $entry['store_time'],
);
 } else {
 $summary[$entry['query']]['executions']++;
 $summary[$entry['query']]['time'] += $entry['run_time'] + $entry['store_time'];
 }
}

foreach ($summary as $query => $details) {
 printf("%45s: %5dms (%dx)\n",
 $query, $details['time'], $details['executions']);
}
?>

Measuring cache efficiency

546

The above examples will output something similar to:

 DROP TABLE IF EXISTS test: 0ms (1x)
 CREATE TABLE test(id INT): 0ms (1x)
 INSERT INTO test(id) VALUES (1), (2), (3): 0ms (1x)
 SELECT id FROM test WHERE id = 0: 25ms (1x)
 SELECT id FROM test WHERE id = 1: 10ms (1x)
 SELECT id FROM test WHERE id = 2: 9ms (1x)

8.4.8 Measuring cache efficiency

Copyright 1997-2014 the PHP Documentation Group.

PECL/mysqlnd_qc offers three ways to measure the cache efficiency. The function
mysqlnd_qc_get_normalized_query_trace_log returns statistics aggregated by the normalized
query string, mysqlnd_qc_get_cache_info gives storage handler specific information which includes
a list of all cached items, depending on the storage handler. Additionally, the core of PECL/mysqlnd_qc
collects high-level summary statistics aggregated per PHP process. The high-level statistics are returned
by mysqlnd_qc_get_core_stats.

The functions mysqlnd_qc_get_normalized_query_trace_log and
mysqlnd_qc_get_core_stats will not collect data unless data collection has been enabled through
their corresponding PHP configuration directives. Data collection is disabled by default for performance
considerations. It is configurable with the mysqlnd_qc.time_statistics option, which determines if timing
information should be collected. Collection of time statistics is enabled by default but only performed if data
collection as such has been enabled. Recording time statistics causes extra system calls. In most cases,
the benefit of the monitoring outweighs any potential performance penalty of the additional system calls.

Example 8.12 Collecting statistics data with the mysqlnd_qc.time_statistics ini setting

mysqlnd_qc.enable_qc=1
mysqlnd_qc.collect_statistics=1

<?php
/* connect to MySQL */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)");

/* dummy queries */
for ($i = 1; $i <= 4; $i++) {
 $query = sprintf("/*%s*/SELECT id FROM test WHERE id = %d", MYSQLND_QC_ENABLE_SWITCH, $i % 2);
 $res = $mysqli->query($query);

 $res->free();
}

var_dump(mysqlnd_qc_get_core_stats());
?>

Measuring cache efficiency

547

The above examples will output something similar to:

array(26) {
 ["cache_hit"]=>
 string(1) "2"
 ["cache_miss"]=>
 string(1) "2"
 ["cache_put"]=>
 string(1) "2"
 ["query_should_cache"]=>
 string(1) "4"
 ["query_should_not_cache"]=>
 string(1) "3"
 ["query_not_cached"]=>
 string(1) "3"
 ["query_could_cache"]=>
 string(1) "4"
 ["query_found_in_cache"]=>
 string(1) "2"
 ["query_uncached_other"]=>
 string(1) "0"
 ["query_uncached_no_table"]=>
 string(1) "0"
 ["query_uncached_no_result"]=>
 string(1) "0"
 ["query_uncached_use_result"]=>
 string(1) "0"
 ["query_aggr_run_time_cache_hit"]=>
 string(2) "28"
 ["query_aggr_run_time_cache_put"]=>
 string(3) "900"
 ["query_aggr_run_time_total"]=>
 string(3) "928"
 ["query_aggr_store_time_cache_hit"]=>
 string(2) "14"
 ["query_aggr_store_time_cache_put"]=>
 string(2) "40"
 ["query_aggr_store_time_total"]=>
 string(2) "54"
 ["receive_bytes_recorded"]=>
 string(3) "136"
 ["receive_bytes_replayed"]=>
 string(3) "136"
 ["send_bytes_recorded"]=>
 string(2) "84"
 ["send_bytes_replayed"]=>
 string(2) "84"
 ["slam_stale_refresh"]=>
 string(1) "0"
 ["slam_stale_hit"]=>
 string(1) "0"
 ["request_counter"]=>
 int(1)
 ["process_hash"]=>
 int(1929695233)
}

For a quick overview, call mysqlnd_qc_get_core_stats. It delivers cache usage, cache timing and
traffic related statistics. Values are aggregated on a per process basis for all queries issued by any PHP
MySQL API call.

Measuring cache efficiency

548

Some storage handler, such as the default handler, can report cache entries, statistics related to the
entries and meta data for the underlying query through the mysqlnd_qc_get_cache_info function.
Please note, that the information returned depends on the storage handler. Values are aggregated on a
per process basis.

Example 8.13 Example mysqlnd_qc_get_cache_info usage

mysqlnd_qc.enable_qc=1

<?php
/* connect to MySQL */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)");

/* dummy queries to fill the query trace */
for ($i = 1; $i <= 4; $i++) {
 $query = sprintf("/*%s*/SELECT id FROM test WHERE id = %d", MYSQLND_QC_ENABLE_SWITCH, $i % 2);
 $res = $mysqli->query($query);

 $res->free();
}

var_dump(mysqlnd_qc_get_cache_info());
?>

The above examples will output something similar to:

array(4) {
 ["num_entries"]=>
 int(2)
 ["handler"]=>
 string(7) "default"
 ["handler_version"]=>
 string(5) "1.0.0"
 ["data"]=>
 array(2) {
 ["Localhost via UNIX socket
3306
root
test|/*qc=on*/SELECT id FROM test WHERE id = 1"]=>
 array(2) {
 ["statistics"]=>
 array(11) {
 ["rows"]=>
 int(1)
 ["stored_size"]=>
 int(71)
 ["cache_hits"]=>
 int(1)
 ["run_time"]=>
 int(391)
 ["store_time"]=>
 int(27)
 ["min_run_time"]=>

Measuring cache efficiency

549

 int(16)
 ["max_run_time"]=>
 int(16)
 ["min_store_time"]=>
 int(8)
 ["max_store_time"]=>
 int(8)
 ["avg_run_time"]=>
 int(8)
 ["avg_store_time"]=>
 int(4)
 }
 ["metadata"]=>
 array(1) {
 [0]=>
 array(8) {
 ["name"]=>
 string(2) "id"
 ["orig_name"]=>
 string(2) "id"
 ["table"]=>
 string(4) "test"
 ["orig_table"]=>
 string(4) "test"
 ["db"]=>
 string(4) "test"
 ["max_length"]=>
 int(1)
 ["length"]=>
 int(11)
 ["type"]=>
 int(3)
 }
 }
 }
 ["Localhost via UNIX socket
3306
root
test|/*qc=on*/SELECT id FROM test WHERE id = 0"]=>
 array(2) {
 ["statistics"]=>
 array(11) {
 ["rows"]=>
 int(0)
 ["stored_size"]=>
 int(65)
 ["cache_hits"]=>
 int(1)
 ["run_time"]=>
 int(299)
 ["store_time"]=>
 int(13)
 ["min_run_time"]=>
 int(11)
 ["max_run_time"]=>
 int(11)
 ["min_store_time"]=>
 int(6)
 ["max_store_time"]=>
 int(6)
 ["avg_run_time"]=>
 int(5)
 ["avg_store_time"]=>
 int(3)
 }
 ["metadata"]=>
 array(1) {

Measuring cache efficiency

550

 [0]=>
 array(8) {
 ["name"]=>
 string(2) "id"
 ["orig_name"]=>
 string(2) "id"
 ["table"]=>
 string(4) "test"
 ["orig_table"]=>
 string(4) "test"
 ["db"]=>
 string(4) "test"
 ["max_length"]=>
 int(0)
 ["length"]=>
 int(11)
 ["type"]=>
 int(3)
 }
 }
 }
 }
}

It is possible to further break down the granularity of statistics to the level of the normalized statement
string. The normalized statement string is the statements string with all parameters replaced with question
marks. For example, the two statements SELECT id FROM test WHERE id = 0 and SELECT id
FROM test WHERE id = 1 are normalized into SELECT id FROM test WHERE id = ?. Their both
statistics are aggregated into one entry for SELECT id FROM test WHERE id = ?.

Example 8.14 Example mysqlnd_qc_get_normalized_query_trace_log usage

mysqlnd_qc.enable_qc=1
mysqlnd_qc.collect_normalized_query_trace=1

<?php
/* connect to MySQL */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)");

/* dummy queries to fill the query trace */
for ($i = 1; $i <= 4; $i++) {
 $query = sprintf("/*%s*/SELECT id FROM test WHERE id = %d", MYSQLND_QC_ENABLE_SWITCH, $i % 2);
 $res = $mysqli->query($query);

 $res->free();
}

var_dump(mysqlnd_qc_get_normalized_query_trace_log());
?>

The above examples will output something similar to:

Measuring cache efficiency

551

array(4) {
 [0]=>
 array(9) {
 ["query"]=>
 string(25) "DROP TABLE IF EXISTS test"
 ["occurences"]=>
 int(0)
 ["eligible_for_caching"]=>
 bool(false)
 ["avg_run_time"]=>
 int(0)
 ["min_run_time"]=>
 int(0)
 ["max_run_time"]=>
 int(0)
 ["avg_store_time"]=>
 int(0)
 ["min_store_time"]=>
 int(0)
 ["max_store_time"]=>
 int(0)
 }
 [1]=>
 array(9) {
 ["query"]=>
 string(27) "CREATE TABLE test (id INT)"
 ["occurences"]=>
 int(0)
 ["eligible_for_caching"]=>
 bool(false)
 ["avg_run_time"]=>
 int(0)
 ["min_run_time"]=>
 int(0)
 ["max_run_time"]=>
 int(0)
 ["avg_store_time"]=>
 int(0)
 ["min_store_time"]=>
 int(0)
 ["max_store_time"]=>
 int(0)
 }
 [2]=>
 array(9) {
 ["query"]=>
 string(46) "INSERT INTO test (id) VALUES (?), (?), (?)"
 ["occurences"]=>
 int(0)
 ["eligible_for_caching"]=>
 bool(false)
 ["avg_run_time"]=>
 int(0)
 ["min_run_time"]=>
 int(0)
 ["max_run_time"]=>
 int(0)
 ["avg_store_time"]=>
 int(0)
 ["min_store_time"]=>
 int(0)
 ["max_store_time"]=>
 int(0)
 }
 [3]=>
 array(9) {

Beyond TTL: user-defined storage

552

 ["query"]=>
 string(31) "SELECT id FROM test WHERE id =?"
 ["occurences"]=>
 int(4)
 ["eligible_for_caching"]=>
 bool(true)
 ["avg_run_time"]=>
 int(179)
 ["min_run_time"]=>
 int(11)
 ["max_run_time"]=>
 int(393)
 ["avg_store_time"]=>
 int(12)
 ["min_store_time"]=>
 int(7)
 ["max_store_time"]=>
 int(25)
 }
}

The source distribution of PECL/mysqlnd_qc contains a directory web/ in which web based monitoring
scripts can be found which give an example how to write a cache monitor. Please, follow the instructions
given in the source.

Since PECL/mysqlnd_qc 1.1.0 it is possible to write statistics into a log file. Please, see
mysqlnd_qc.collect_statistics_log_file.

8.4.9 Beyond TTL: user-defined storage

Copyright 1997-2014 the PHP Documentation Group.

The query cache plugin supports the use of user-defined storage handler. User-defined storage handler
can use arbitrarily complex invalidation algorithms and support arbitrary storage media.

All user-defined storage handlers have to provide a certain interface. The functions of the user-defined
storage handler will be called by the core of the cache plugin. The necessary interface consists of seven
public functions. Both procedural and object oriented user-defined storage handler must implement the
same set of functions.

Example 8.15 Using a user-defined storage handler

<?php
/* Enable default caching of all statements */
ini_set("mysqlnd_qc.cache_by_default", 1);

/* Procedural user defined storage handler functions */

$__cache = array();

function get_hash($host_info, $port, $user, $db, $query) {
 global $__cache;
 printf("\t%s(%d)\n", __FUNCTION__, func_num_args());

 return md5(sprintf("%s%s%s%s%s", $host_info, $port, $user, $db, $query));
}

function find_query_in_cache($key) {
 global $__cache;
 printf("\t%s(%d)\n", __FUNCTION__, func_num_args());

Beyond TTL: user-defined storage

553

 if (isset($__cache[$key])) {
 $tmp = $__cache[$key];
 if ($tmp["valid_until"] < time()) {
 unset($__cache[$key]);
 $ret = NULL;
 } else {
 $ret = $__cache[$key]["data"];
 }
 } else {
 $ret = NULL;
 }

 return $ret;
}

function return_to_cache($key) {
 /*
 Called on cache hit after cached data has been processed,
 may be used for reference counting
 */
 printf("\t%s(%d)\n", __FUNCTION__, func_num_args());
}

function add_query_to_cache_if_not_exists($key, $data, $ttl, $run_time, $store_time, $row_count) {
 global $__cache;
 printf("\t%s(%d)\n", __FUNCTION__, func_num_args());

 $__cache[$key] = array(
 "data" => $data,
 "row_count" => $row_count,
 "valid_until" => time() + $ttl,
 "hits" => 0,
 "run_time" => $run_time,
 "store_time" => $store_time,
 "cached_run_times" => array(),
 "cached_store_times" => array(),
);

 return TRUE;
}

function query_is_select($query) {
 printf("\t%s('%s'): ", __FUNCTION__, $query);

 $ret = FALSE;
 if (stristr($query, "SELECT") !== FALSE) {
 /* cache for 5 seconds */
 $ret = 5;
 }

 printf("%s\n", (FALSE === $ret) ? "FALSE" : $ret);
 return $ret;
}

function update_query_run_time_stats($key, $run_time, $store_time) {
 global $__cache;
 printf("\t%s(%d)\n", __FUNCTION__, func_num_args());

 if (isset($__cache[$key])) {
 $__cache[$key]['hits']++;
 $__cache[$key]["cached_run_times"][] = $run_time;
 $__cache[$key]["cached_store_times"][] = $store_time;
 }
}

function get_stats($key = NULL) {

Beyond TTL: user-defined storage

554

 global $__cache;
 printf("\t%s(%d)\n", __FUNCTION__, func_num_args());

 if ($key && isset($__cache[$key])) {
 $stats = $__cache[$key];
 } else {
 $stats = array();
 foreach ($__cache as $key => $details) {
 $stats[$key] = array(
 'hits' => $details['hits'],
 'bytes' => strlen($details['data']),
 'uncached_run_time' => $details['run_time'],
 'cached_run_time' => (count($details['cached_run_times']))
 ? array_sum($details['cached_run_times']) / count($details['cached_run_times'])
 : 0,
);
 }
 }

 return $stats;
}

function clear_cache() {
 global $__cache;
 printf("\t%s(%d)\n", __FUNCTION__, func_num_args());

 $__cache = array();
 return TRUE;
}

/* Install procedural user-defined storage handler */
if (!mysqlnd_qc_set_user_handlers("get_hash", "find_query_in_cache",
 "return_to_cache", "add_query_to_cache_if_not_exists",
 "query_is_select", "update_query_run_time_stats", "get_stats", "clear_cache")) {

 printf("Failed to install user-defined storage handler\n");
}

/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2)");

printf("\nCache put/cache miss\n");

$res = $mysqli->query("SELECT id FROM test WHERE id = 1");
var_dump($res->fetch_assoc());
$res->free();

/* Delete record to verify we get our data from the cache */
$mysqli->query("DELETE FROM test WHERE id = 1");

printf("\nCache hit\n");

$res = $mysqli->query("SELECT id FROM test WHERE id = 1");
var_dump($res->fetch_assoc());
$res->free();

printf("\nDisplay cache statistics\n");
var_dump(mysqlnd_qc_get_cache_info());

printf("\nFlushing cache, cache put/cache miss");
var_dump(mysqlnd_qc_clear_cache());

$res = $mysqli->query("SELECT id FROM test WHERE id = 1");

Beyond TTL: user-defined storage

555

var_dump($res->fetch_assoc());
$res->free();
?>

The above examples will output something similar to:

 query_is_select('DROP TABLE IF EXISTS test'): FALSE
 query_is_select('CREATE TABLE test(id INT)'): FALSE
 query_is_select('INSERT INTO test(id) VALUES (1), (2)'): FALSE

Cache put/cache miss
 query_is_select('SELECT id FROM test WHERE id = 1'): 5
 get_hash(5)
 find_query_in_cache(1)
 add_query_to_cache_if_not_exists(6)
array(1) {
 ["id"]=>
 string(1) "1"
}
 query_is_select('DELETE FROM test WHERE id = 1'): FALSE

Cache hit
 query_is_select('SELECT id FROM test WHERE id = 1'): 5
 get_hash(5)
 find_query_in_cache(1)
 return_to_cache(1)
 update_query_run_time_stats(3)
array(1) {
 ["id"]=>
 string(1) "1"
}

Display cache statistics
 get_stats(0)
array(4) {
 ["num_entries"]=>
 int(1)
 ["handler"]=>
 string(4) "user"
 ["handler_version"]=>
 string(5) "1.0.0"
 ["data"]=>
 array(1) {
 ["18683c177dc89bb352b29965d112fdaa"]=>
 array(4) {
 ["hits"]=>
 int(1)
 ["bytes"]=>
 int(71)
 ["uncached_run_time"]=>
 int(398)
 ["cached_run_time"]=>
 int(4)
 }
 }
}

Flushing cache, cache put/cache miss clear_cache(0)
bool(true)
 query_is_select('SELECT id FROM test WHERE id = 1'): 5
 get_hash(5)
 find_query_in_cache(1)
 add_query_to_cache_if_not_exists(6)

Installing/Configuring

556

NULL

8.5 Installing/Configuring

Copyright 1997-2014 the PHP Documentation Group.

8.5.1 Requirements

Copyright 1997-2014 the PHP Documentation Group.

PHP 5.3.3 or a newer version of PHP.

PECL/mysqlnd_qc is a mysqlnd plugin. It plugs into the mysqlnd library. To use you this plugin with a PHP
MySQL extension, the extension (mysqli, mysql, or PDO_MYSQL) must enable the mysqlnd library.

For using the APC storage handler with PECL/mysqlnd_qc 1.0 APC 3.1.3p1-beta or newer. PECL/
mysqlnd_qc 1.2 has been tested with APC 3.1.13-beta. The APC storage handler cannot be used with
a shared build. You cannot use the PHP configuration directive extension to load the APC and PECL/
mysqlnd_qc extensions if PECL/mysqlnd_qc will use APC as a storage handler. For using the APC storage
handler, you have to statically compile PHP with APC and PECL/mysqlnd_qc support into PHP.

For using MEMCACHE storage handler: Use libmemcache 0.38 or newer. PECL/mysqlnd_qc 1.2 has
been tested with libmemcache 1.4.0.

For using sqlite storage handler: Use the sqlite3 extension that bundled with PHP.

8.5.2 Installation

Copyright 1997-2014 the PHP Documentation Group.

This PECL extension is not bundled with PHP.

Information for installing this PECL extension may be found in the manual chapter titled Installation of
PECL extensions. Additional information such as new releases, downloads, source files, maintainer
information, and a CHANGELOG, can be located here: http://pecl.php.net/package/mysqlnd_qc

A DLL for this PECL extension is currently unavailable. See also the building on Windows section.

8.5.3 Runtime Configuration

Copyright 1997-2014 the PHP Documentation Group.

The behaviour of these functions is affected by settings in php.ini.

Table 8.1 mysqlnd_qc Configure Options

Name Default Changeable Changelog

mysqlnd_qc.enable_qc 1 PHP_INI_SYSTEM

mysqlnd_qc.ttl 30 PHP_INI_ALL

mysqlnd_qc.cache_by_default0 PHP_INI_ALL

mysqlnd_qc.cache_no_table0 PHP_INI_ALL

http://www.php.net/ref.apc
http://www.php.net/book.sqlite3
http://pecl.php.net/
http://www.php.net/install.pecl
http://www.php.net/install.pecl
http://pecl.php.net/package/mysqlnd_qc
http://www.php.net/install.windows.legacy.building

Runtime Configuration

557

Name Default Changeable Changelog

mysqlnd_qc.use_request_time0 PHP_INI_ALL

mysqlnd_qc.time_statistics1 PHP_INI_ALL

mysqlnd_qc.collect_statistics0 PHP_INI_ALL

mysqlnd_qc.collect_statistics_log_file/tmp/mysqlnd_qc.stats PHP_INI_SYSTEM

mysqlnd_qc.collect_query_trace0 PHP_INI_SYSTEM

mysqlnd_qc.query_trace_bt_depth3 PHP_INI_SYSTEM

mysqlnd_qc.collect_normalized_query_trace0 PHP_INI_SYSTEM

mysqlnd_qc.ignore_sql_comments1 PHP_INI_ALL

mysqlnd_qc.slam_defense0 PHP_INI_SYSTEM

mysqlnd_qc.slam_defense_ttl30 PHP_INI_SYSTEM

mysqlnd_qc.std_data_copy0 PHP_INI_SYSTEM

mysqlnd_qc.apc_prefix qc_ PHP_INI_ALL

mysqlnd_qc.memc_server 127.0.0.1 PHP_INI_ALL

mysqlnd_qc.memc_port 11211 PHP_INI_ALL

mysqlnd_qc.sqlite_data_file:memory: PHP_INI_ALL

Here's a short explanation of the configuration directives.

mysqlnd_qc.enable_qc
integer

Enables or disables the plugin. If disabled the extension will not plug
into mysqlnd to proxy internal mysqlnd C API calls.

mysqlnd_qc.ttl integer Default Time-to-Live (TTL) for cache entries in seconds.

mysqlnd_qc.cache_by_default
integer

Cache all queries regardless if they begin with the SQL hint that enables
caching of a query or not. Storage handler cannot overrule the setting. It
is evaluated by the core of the plugin.

mysqlnd_qc.cache_no_table
integer

Whether to cache queries with no table name in any of columns meta
data of their result set, for example, SELECT SLEEP(1), SELECT
NOW(), SELECT SUBSTRING().

mysqlnd_qc.use_request_time
integer

Use PHP global request time to avoid gettimeofday() system
calls? If using APC storage handler it should be set to the value of
apc.use_request_time , if not warnings will be generated.

mysqlnd_qc.time_statistics
integer

Collect run time and store time statistics using gettimeofday()
system call? Data will be collected only if you also set
mysqlnd_qc.collect_statistics = 1,

mysqlnd_qc.collect_statistics
integer

Collect statistics for mysqlnd_qc_get_core_stats? Does not
influence storage handler statistics! Handler statistics can be an integral
part of the handler internal storage format. Therefore, collection of some
handler statistics cannot be disabled.

mysqlnd_qc.collect_statistics-
log-file integer

If mysqlnd_qc.collect_statistics and
mysqlnd_qc.collect_statistics_log_file are set, the plugin
will dump statistics into the specified log file at every 10th web request
during PHP request shutdown. The log file needs to be writable by the
web server user.

http://www.php.net/ref.apc
http://www.php.net/apc.configuration

Predefined Constants

558

Since 1.1.0.

mysqlnd_qc.collect_query_trace
integer

Collect query back traces?

mysqlnd_qc.query_trace_bt_depth
integer

Maximum depth/level of a query code backtrace.

mysqlnd_qc.ignore_sql_comments
integer

Whether to remove SQL comments from a query string before hashing
it to generate a cache key. Disable if you do not want two statemts
such as SELECT /*my_source_ip=123*/ id FROM test and
SELECT /*my_source_ip=456*/ id FROM test to refer to the
same cache entry.

Since 1.1.0.

mysqlnd_qc.slam_defense
integer

Activates handler based slam defense (cache stampeding protection) if
available. Supported by Default and APC storage handler

mysqlnd_qc.slam_defense_ttl
integer

TTL for stale cache entries which are served while another client
updates the entries. Supported by APC storage handler.

mysqlnd_qc.collect_normalized_query_trace
integer

Collect aggregated normalized query traces? The setting has
no effect by default. You compile the extension using the define
NORM_QUERY_TRACE_LOG to make use of the setting.

mysqlnd_qc.std_data_copy
integer

Default storage handler: copy cached wire data? EXPERIMENTAL –
use default setting!

mysqlnd_qc.apc_prefix
string

The APC storage handler stores data in the APC user cache. The
setting sets a prefix to be used for cache entries.

mysqlnd_qc.memc_server
string

MEMCACHE storage handler: memcache server host.

mysqlnd_qc.memc_port
integer

MEMCACHE storage handler: memcached server port.

mysqlnd_qc.sqlite_data_file
string

sqlite storage handler: data file. Any setting but :memory: may be of
little practical value.

8.6 Predefined Constants
Copyright 1997-2014 the PHP Documentation Group.

The constants below are defined by this extension, and will only be available when the extension has either
been compiled into PHP or dynamically loaded at runtime.

SQL hint related

Example 8.16 Using SQL hint constants

The query cache is controlled by SQL hints. SQL hints are used to enable and disable caching. SQL hints
can be used to set the TTL of a query.

The SQL hints recognized by the query cache can be manually changed at compile time. This makes
it possible to use mysqlnd_qc in environments in which the default SQL hints are already taken and

http://www.php.net/ref.apc
http://www.php.net/ref.apc
http://www.php.net/ref.apc

Predefined Constants

559

interpreted by other systems. Therefore it is recommended to use the SQL hint string constants instead of
manually adding the default SQL hints to the query string.

<?php
/* Use constants for maximum portability */
$query = "/*" . MYSQLND_QC_ENABLE_SWITCH . "*/SELECT id FROM test";

/* Valid but less portable: default TTL */
$query = "/*qc=on*/SELECT id FROM test";

/* Valid but less portable: per statement TTL */
$query = "/*qc=on*//*qc_ttl=5*/SELECT id FROM test";

printf("MYSQLND_QC_ENABLE_SWITCH: %s\n", MYSQLND_QC_ENABLE_SWITCH);
printf("MYSQLND_QC_DISABLE_SWITCH: %s\n", MYSQLND_QC_DISABLE_SWITCH);
printf("MYSQLND_QC_TTL_SWITCH: %s\n", MYSQLND_QC_TTL_SWITCH);
?>

The above examples will output:

MYSQLND_QC_ENABLE_SWITCH: qc=on
MYSQLND_QC_DISABLE_SWITCH: qc=off
MYSQLND_QC_TTL_SWITCH: qc_ttl=

MYSQLND_QC_ENABLE_SWITCH
(string)

SQL hint used to enable caching of a query.

MYSQLND_QC_DISABLE_SWITCH
(string)

SQL hint used to disable caching of a query if
mysqlnd_qc.cache_by_default = 1.

MYSQLND_QC_TTL_SWITCH
(string)

SQL hint used to set the TTL of a result set.

MYSQLND_QC_SERVER_ID_SWITCH
(string)

This SQL hint should not be used in general.

It is needed by PECL/mysqlnd_ms to group cache entries for one
statement but originating from different physical connections. If the hint
is used connection settings such as user, hostname and charset are
not considered for generating a cache key of a query. Instead the given
value and the query string are used as input to the hashing function that
generates the key.

PECL/mysqlnd_ms may, if instructed, cache results from MySQL
Replication slaves. Because it can hold many connections to the slave
the cache key shall not be formed from the user, hostname or other
settings that may vary for the various slave connections. Instead, PECL/
mysqlnd_ms provides an identifier which refers to the group of slave
connections that shall be enabled to share cache entries no matter
which physical slave connection was to generate the cache entry.

Use of this feature outside of PECL/mysqlnd_ms is not recommended.

mysqlnd_qc_set_cache_condition related

mysqlnd_qc Functions

560

Example 8.17 Example mysqlnd_qc_set_cache_condition usage

The function mysqlnd_qc_set_cache_condition allows setting conditions for automatic caching of
statements which don't begin with the SQL hints necessary to manually enable caching.

<?php
/* Cache all accesses to tables with the name "new%" in schema/database "db_example" for 1 second */
if (!mysqlnd_qc_set_cache_condition(MYSQLND_QC_CONDITION_META_SCHEMA_PATTERN, "db_example.new%", 1)) {
 die("Failed to set cache condition!");
}

$mysqli = new mysqli("host", "user", "password", "db_example", "port");
/* cached although no SQL hint given */
$mysqli->query("SELECT id, title FROM news");

$pdo_mysql = new PDO("mysql:host=host;dbname=db_example;port=port", "user", "password");
/* not cached: no SQL hint, no pattern match */
$pdo_mysql->query("SELECT id, title FROM latest_news");
/* cached: TTL 1 second, pattern match */
$pdo_mysql->query("SELECT id, title FROM news");
?>

MYSQLND_QC_CONDITION_META_SCHEMA_PATTERN
(int)

Used as a parameter of mysqlnd_qc_set_cache_condition to set
conditions for schema based automatic caching.

Other

The plugin version number can be obtained using either MYSQLND_QC_VERSION, which is the string
representation of the numerical version number, or MYSQLND_QC_VERSION_ID, which is an integer such
as 10000. Developers can calculate the version number as follows.

Version (part) Example

Major*10000 1*10000 = 10000

Minor*100 0*100 = 0

Patch 0 = 0

MYSQLND_QC_VERSION_ID 10000

MYSQLND_QC_VERSION (string) Plugin version string, for example, “1.0.0-prototype”.

MYSQLND_QC_VERSION_ID
(int)

Plugin version number, for example, 10000.

8.7 mysqlnd_qc Functions
Copyright 1997-2014 the PHP Documentation Group.

8.7.1 mysqlnd_qc_clear_cache

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_qc_clear_cache

Flush all cache contents

Description

mysqlnd_qc_get_available_handlers

561

 bool mysqlnd_qc_clear_cache();

Flush all cache contents.

Flushing the cache is a storage handler responsibility. All built-in storage handler but the memcache
storage handler support flushing the cache. The memcache storage handler cannot flush its cache
contents.

User-defined storage handler may or may not support the operation.

Parameters

This function has no parameters.

Return Values

Returns TRUE on success or FALSE on failure.

A return value of FALSE indicates that flushing all cache contents has failed or the operation is not
supported by the active storage handler. Applications must not expect that calling the function will always
flush the cache.

8.7.2 mysqlnd_qc_get_available_handlers

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_qc_get_available_handlers

Returns a list of available storage handler

Description

 array mysqlnd_qc_get_available_handlers();

Which storage are available depends on the compile time configuration of the query cache plugin. The
default storage handler is always available. All other storage handler must be enabled explicitly when
building the extension.

Parameters

This function has no parameters.

Return Values

Returns an array of available built-in storage handler. For each storage handler the version number and
version string is given.

Examples

Example 8.18 mysqlnd_qc_get_available_handlers example

<?php
var_dump(mysqlnd_qc_get_available_handlers());
?>

The above examples will output:

mysqlnd_qc_get_cache_info

562

array(5) {
 ["default"]=>
 array(2) {
 ["version"]=>
 string(5) "1.0.0"
 ["version_number"]=>
 int(100000)
 }
 ["user"]=>
 array(2) {
 ["version"]=>
 string(5) "1.0.0"
 ["version_number"]=>
 int(100000)
 }
 ["APC"]=>
 array(2) {
 ["version"]=>
 string(5) "1.0.0"
 ["version_number"]=>
 int(100000)
 }
 ["MEMCACHE"]=>
 array(2) {
 ["version"]=>
 string(5) "1.0.0"
 ["version_number"]=>
 int(100000)
 }
 ["sqlite"]=>
 array(2) {
 ["version"]=>
 string(5) "1.0.0"
 ["version_number"]=>
 int(100000)
 }
}

See Also

Installation
mysqlnd_qc_set_storage_handler

8.7.3 mysqlnd_qc_get_cache_info

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_qc_get_cache_info

Returns information on the current handler, the number of cache entries and cache entries, if available

Description

 array mysqlnd_qc_get_cache_info();

Parameters

This function has no parameters.

Return Values

mysqlnd_qc_get_cache_info

563

Returns information on the current handler, the number of cache entries and cache entries, if available.
If and what data will be returned for the cache entries is subject to the active storage handler. Storage
handler are free to return any data. Storage handler are recommended to return at least the data provided
by the default handler, if technically possible.

The scope of the information is the PHP process. Depending on the PHP deployment model a process
may serve one or more web requests.

Values are aggregated for all cache activities on a per storage handler basis. It is not possible to tell
how much queries originating from mysqli, PDO_MySQL or mysql.API calls have contributed to the
aggregated data values. Use mysqlnd_qc_get_core_stats to get timing data aggregated for all
storage handlers.

Array of cache information

handler string The active storage handler.

All storage handler. Since 1.0.0.

handler_version string The version of the active storage handler.

All storage handler. Since 1.0.0.

num_entries int The number of cache entries. The value depends on the storage
handler in use.

The default, APC and SQLite storage handler provide the actual number
of cache entries.

The MEMCACHE storage handler always returns 0. MEMCACHE does
not support counting the number of cache entries.

If a user defined handler is used, the number of entries of the data
property is reported.

Since 1.0.0.

data array The version of the active storage handler.

Additional storage handler dependent data on the cache entries.
Storage handler are requested to provide similar and comparable
information. A user defined storage handler is free to return any data.

Since 1.0.0.

The following information is provided by the default storage handler for
the data property.

The data property holds a hash. The hash is indexed by the internal
cache entry identifier of the storage handler. The cache entry identifier
is human-readable and contains the query string leading to the cache
entry. Please, see also the example below. The following data is given
for every cache entry.

statistics array Statistics of the cache entry.

Since 1.0.0.

mysqlnd_qc_get_cache_info

564

PropertyDescription Version

rowsNumber of rows of the
cached result set.

Since
1.0.0.

stored_sizeThe size of the cached
result set in bytes.
This is the size of the
payload. The value is
not suited for calculating
the total memory
consumption of all cache
entries including the
administrative overhead
of the cache entries.

Since
1.0.0.

cache_hitsHow often the cached
entry has been returned.

Since
1.0.0.

run_timeRun time of the
statement to which the
cache entry belongs.
This is the run time of
the uncached statement.
It is the time between
sending the statement
to MySQL receiving
a reply from MySQL.
Run time saved by
using the query cache
plugin can be calculated
like this: cache_hits
* ((run_time -
avg_run_time) +
(store_time -
avg_store_time)).

Since
1.0.0.

store_timeStore time of the
statements result set to
which the cache entry
belongs. This is the
time it took to fetch and
store the results of the
uncached statement.

Since
1.0.0.

min_run_timeMinimum run time of the
cached statement. How
long it took to find the
statement in the cache.

Since
1.0.0.

min_store_timeMinimum store time of
the cached statement.
The time taken for
fetching the cached
result set from the
storage medium and
decoding

Since
1.0.0.

mysqlnd_qc_get_cache_info

565

PropertyDescription Version

avg_run_timeAverage run time of the
cached statement.

Since
1.0.0.

avg_store_timeAverage store time of
the cached statement.

Since
1.0.0.

max_run_timeAverage run time of the
cached statement.

Since
1.0.0.

max_store_timeAverage store time of
the cached statement.

Since
1.0.0.

valid_untilTimestamp when the
cache entry expires.

Since
1.1.0.

metadata array Metadata of the cache entry. This is
the metadata provided by MySQL
together with the result set of the
statement in question. Different
versions of the MySQL server may
return different metadata. Unlike with
some of the PHP MySQL extensions
no attempt is made to hide MySQL
server version dependencies and
version details from the caller.
Please, refer to the MySQL C API
documentation that belongs to the
MySQL server in use for further
details.

The metadata list contains one entry
for every column.

Since 1.0.0.

PropertyDescription Version

nameThe field name.
Depending on the
MySQL version this may
be the fields alias name.

Since
1.0.0.

org_nameThe field name. Since
1.0.0.

tableThe table name. If an
alias name was used for
the table, this usually
holds the alias name.

Since
1.0.0.

org_tableThe table name. Since
1.0.0.

db The database/schema
name.

Since
1.0.0.

max_lengthThe maximum width of
the field. Details may

Since
1.0.0.

mysqlnd_qc_get_cache_info

566

PropertyDescription Version
vary by MySQL server
version.

lengthThe width of the field.
Details may vary by
MySQL server version.

Since
1.0.0.

typeThe data type of the
field. Details may vary
by the MySQL server
in use. This is the
MySQL C API type
constants value. It is
recommended to use
type constants provided
by the mysqli extension
to test for its meaning.
You should not test for
certain type values by
comparing with certain
numbers.

Since
1.0.0.

The APC storage handler returns the same information for the data
property but no metadata. The metadata of a cache entry is set to
NULL.

The MEMCACHE storage handler does not fill the data property.
Statistics are not available on a per cache entry basis with the
MEMCACHE storage handler.

A user defined storage handler is free to provide any data.

Examples

Example 8.19 mysqlnd_qc_get_cache_info example

The example shows the output from the built-in default storage handler. Other storage handler may report
different data.

<?php
/* Populate the cache, e.g. using mysqli */
$mysqli = new mysqli("host", "user", "password", "schema");
$mysqli->query("/*" . MYSQLND_QC_ENABLE_SWITCH . "*/SELECT id FROM test");

/* Display cache information */
var_dump(mysqlnd_qc_get_cache_info());
?>

The above examples will output:

array(4) {

mysqlnd_qc_get_cache_info

567

 ["num_entries"]=>
 int(1)
 ["handler"]=>
 string(7) "default"
 ["handler_version"]=>
 string(5) "1.0.0"
 ["data"]=>
 array(1) {
 ["Localhost via UNIX socket 3306 user schema|/*qc=on*/SELECT id FROM test"]=>
 array(2) {
 ["statistics"]=>
 array(11) {
 ["rows"]=>
 int(6)
 ["stored_size"]=>
 int(101)
 ["cache_hits"]=>
 int(0)
 ["run_time"]=>
 int(471)
 ["store_time"]=>
 int(27)
 ["min_run_time"]=>
 int(0)
 ["max_run_time"]=>
 int(0)
 ["min_store_time"]=>
 int(0)
 ["max_store_time"]=>
 int(0)
 ["avg_run_time"]=>
 int(0)
 ["avg_store_time"]=>
 int(0)
 }
 ["metadata"]=>
 array(1) {
 [0]=>
 array(8) {
 ["name"]=>
 string(2) "id"
 ["orig_name"]=>
 string(2) "id"
 ["table"]=>
 string(4) "test"
 ["orig_table"]=>
 string(4) "test"
 ["db"]=>
 string(4) "schema"
 ["max_length"]=>
 int(1)
 ["length"]=>
 int(11)
 ["type"]=>
 int(3)
 }
 }
 }
 }
}

See Also

mysqlnd_qc_get_core_stats

mysqlnd_qc_get_core_stats

568

8.7.4 mysqlnd_qc_get_core_stats

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_qc_get_core_stats

Statistics collected by the core of the query cache

Description

 array mysqlnd_qc_get_core_stats();

Returns an array of statistics collected by the core of the cache plugin. The same data fields will be
reported for any storage handler because the data is collected by the core.

The PHP configuration setting mysqlnd_qc.collect_statistics controls the collection of statistics.
The collection of statistics is disabled by default for performance reasons. Disabling the collection of
statistics will also disable the collection of time related statistics.

The PHP configuration setting mysqlnd_qc.collect_time_statistics controls the collection of time
related statistics.

The scope of the core statistics is the PHP process. Depending on your deployment model a PHP process
may handle one or multiple requests.

Statistics are aggregated for all cache entries and all storage handler. It is not possible to tell how much
queries originating from mysqli, PDO_MySQL or mysql API calls have contributed to the aggregated data
values.

Parameters

This function has no parameters.

Return Values

Array of core statistics

Statistic Description Version

cache_hit Statement is considered
cacheable and cached data
has been reused. Statement
is considered cacheable and a
cache miss happened but the
statement got cached by someone
else while we process it and thus
we can fetch the result from the
refreshed cache.

Since 1.0.0.

cache_miss Statement is considered
cacheable...

• ... and has been added to the
cache

• ... but the PHP configuration
directive setting of
mysqlnd_qc.cache_no_table
= 1 has prevented caching.

Since 1.0.0.

mysqlnd_qc_get_core_stats

569

Statistic Description Version
• ... but an unbuffered result set is

requested.

• ... but a buffered result set was
empty.

cache_put Statement is considered
cacheable and has been added
to the cache. Take care when
calculating derived statistics.
Storage handler with a storage
life time beyond process scope
may report cache_put =
0 together with cache_hit
> 0, if another process has
filled the cache. You may want
to use num_entries from
mysqlnd_qc_get_cache_info
if the handler supports it (
default, APC).

Since 1.0.0.

query_should_cache Statement is considered
cacheable based on query string
analysis. The statement may or
may not be added to the cache.
See also cache_put.

Since 1.0.0.

query_should_not_cache Statement is considered not
cacheable based on query string
analysis.

Since 1.0.0.

query_not_cached Statement is considered not
cacheable or it is considered
cachable but the storage handler
has not returned a hash key for it.

Since 1.0.0.

query_could_cache Statement is considered
cacheable...

• ... and statement has been run
without errors

• ... and meta data shows at least
one column in the result set

The statement may or may not
be in the cache already. It may or
may not be added to the cache
later on.

Since 1.0.0.

query_found_in_cache Statement is considered
cacheable and we have found
it in the cache but we have not
replayed the cached data yet
and we have not send the result
set to the client yet. This is not
considered a cache hit because

Since 1.0.0.

mysqlnd_qc_get_core_stats

570

Statistic Description Version
the client might not fetch the result
or the cached data may be faulty.

query_uncached_other Statement is considered
cacheable and it may or may not
be in the cache already but either
replaying cached data has failed,
no result set is available or some
other error has happened.

query_uncached_no_table Statement has not been cached
because the result set has at
least one column which has no
table name in its meta data.
An example of such a query is
SELECT SLEEP(1). To cache
those statements you have to
change default value of the
PHP configuration directive
mysqlnd_qc.cache_no_table
and set
mysqlnd_qc.cache_no_table
= 1. Often, it is not desired to
cache such statements.

Since 1.0.0.

query_uncached_use_result Statement would have been
cached if a buffered result set had
been used. The situation is also
considered as a cache miss and
cache_miss will be incremented
as well.

Since 1.0.0.

query_aggr_run_time_cache_hitAggregated run time (ms) of all
cached queries. Cached queries
are those which have incremented
cache_hit.

Since 1.0.0.

query_aggr_run_time_cache_putAggregated run time (ms) of
all uncached queries that have
been put into the cache. See also
cache_put.

Since 1.0.0.

query_aggr_run_time_total Aggregated run time (ms) of all
uncached and cached queries
that have been inspected and
executed by the query cache.

Since 1.0.0.

query_aggr_store_time_cache_hitAggregated store time (ms) of all
cached queries. Cached queries
are those which have incremented
cache_hit.

Since 1.0.0.

query_aggr_store_time_cache_putAggregated store time (ms) of
all uncached queries that have
been put into the cache. See also
cache_put.

Since 1.0.0.

mysqlnd_qc_get_core_stats

571

Statistic Description Version

query_aggr_store_time_totalAggregated store time (ms) of all
uncached and cached queries
that have been inspected and
executed by the query cache.

Since 1.0.0.

receive_bytes_recorded Recorded incoming network traffic
(bytes) send from MySQL to
PHP. The traffic may or may not
have been added to the cache.
The traffic is the total for all
queries regardless if cached or
not.

Since 1.0.0.

receive_bytes_replayed Network traffic replayed during
cache. This is the total amount of
incoming traffic saved because
of the usage of the query cache
plugin.

Since 1.0.0.

send_bytes_recorded Recorded outgoing network traffic
(bytes) send from MySQL to
PHP. The traffic may or may not
have been added to the cache.
The traffic is the total for all
queries regardless if cached or
not.

Since 1.0.0.

send_bytes_replayed Network traffic replayed during
cache. This is the total amount of
outgoing traffic saved because
of the usage of the query cache
plugin.

Since 1.0.0.

slam_stale_refresh Number of cache misses which
triggered serving stale data until
the client causing the cache miss
has refreshed the cache entry.

Since 1.0.0.

slam_stale_hit Number of cache hits while a stale
cache entry gets refreshed.

Since 1.0.0.

Examples

Example 8.20 mysqlnd_qc_get_core_stats example

<?php
/* Enable collection of statistics - default: disabled */
ini_set("mysqlnd_qc.collect_statistics", 1);

/* Enable collection of all timing related statistics -
default: enabled but overruled by mysqlnd_qc.collect_statistics = 0 */
ini_set("mysqlnd_qc.collect_time_statistics", 1);

/* Populate the cache, e.g. using mysqli */
$mysqli = new mysqli('host', 'user', 'password', 'schema');

/* Cache miss and cache put */
$mysqli->query("/*qc=on*/SELECT id FROM test");

mysqlnd_qc_get_core_stats

572

/* Cache hit */
$mysqli->query("/*qc=on*/SELECT id FROM test");

/* Display core statistics */
var_dump(mysqlnd_qc_get_core_stats());
?>

The above examples will output:

array(26) {
 ["cache_hit"]=>
 string(1) "1"
 ["cache_miss"]=>
 string(1) "1"
 ["cache_put"]=>
 string(1) "1"
 ["query_should_cache"]=>
 string(1) "2"
 ["query_should_not_cache"]=>
 string(1) "0"
 ["query_not_cached"]=>
 string(1) "0"
 ["query_could_cache"]=>
 string(1) "2"
 ["query_found_in_cache"]=>
 string(1) "1"
 ["query_uncached_other"]=>
 string(1) "0"
 ["query_uncached_no_table"]=>
 string(1) "0"
 ["query_uncached_no_result"]=>
 string(1) "0"
 ["query_uncached_use_result"]=>
 string(1) "0"
 ["query_aggr_run_time_cache_hit"]=>
 string(1) "4"
 ["query_aggr_run_time_cache_put"]=>
 string(3) "395"
 ["query_aggr_run_time_total"]=>
 string(3) "399"
 ["query_aggr_store_time_cache_hit"]=>
 string(1) "2"
 ["query_aggr_store_time_cache_put"]=>
 string(1) "8"
 ["query_aggr_store_time_total"]=>
 string(2) "10"
 ["receive_bytes_recorded"]=>
 string(2) "65"
 ["receive_bytes_replayed"]=>
 string(2) "65"
 ["send_bytes_recorded"]=>
 string(2) "29"
 ["send_bytes_replayed"]=>
 string(2) "29"
 ["slam_stale_refresh"]=>
 string(1) "0"
 ["slam_stale_hit"]=>
 string(1) "0"
 ["request_counter"]=>
 int(1)
 ["process_hash"]=>
 int(3547549858)
}

mysqlnd_qc_get_normalized_query_trace_log

573

See Also

Runtime configuration
mysqlnd_qc.collect_statistics
mysqlnd_qc.time_statistics
mysqlnd_qc_get_cache_info

8.7.5 mysqlnd_qc_get_normalized_query_trace_log

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_qc_get_normalized_query_trace_log

Returns a normalized query trace log for each query inspected by the query cache

Description

 array mysqlnd_qc_get_normalized_query_trace_log();

Returns a normalized query trace log for each query inspected by the query cache. The collection of the
trace log is disabled by default. To collect the trace log you have to set the PHP configuration directive
mysqlnd_qc.collect_normalized_query_trace to 1

Entries in the trace log are grouped by the normalized query statement. The normalized query statement
is the query statement with all statement parameter values being replaced with a question mark. For
example, the two statements SELECT id FROM test WHERE id = 1 and SELECT id FROM test
WHERE id = 2 are normalized as SELECT id FROM test WHERE id = ?. Whenever a statement is
inspected by the query cache which matches the normalized statement pattern, its statistics are grouped
by the normalized statement string.

Parameters

This function has no parameters.

Return Values

An array of query log. Every list entry contains the normalized query stringand further detail information.

Key Description

query Normalized statement string.

occurencesHow many statements have matched the normalized statement string in addition to the one
which has created the log entry. The value is zero if a statement has been normalized, its
normalized representation has been added to the log but no further queries inspected by
PECL/mysqlnd_qc have the same normalized statement string.

eligible_for_cachingWhether the statement could be cached. An statement eligible for caching has not necessarily
been cached. It not possible to tell for sure if or how many cached statement have contributed
to the aggregated normalized statement log entry. However, comparing the minimum and
average run time one can make an educated guess.

avg_run_timeThe average run time of all queries contributing to the query log entry. The run time is the time
between sending the query statement to MySQL and receiving an answer from MySQL.

avg_store_timeThe average store time of all queries contributing to the query log entry. The store time is the
time needed to fetch a statements result set from the server to the client and, storing it on the
client.

mysqlnd_qc_get_normalized_query_trace_log

574

Key Description

min_run_timeThe minimum run time of all queries contributing to the query log entry.

min_store_timeThe minimum store time of all queries contributing to the query log entry.

max_run_timeThe maximum run time of all queries contributing to the query log entry.

max_store_timeThe maximum store time of all queries contributing to the query log entry.

Examples

Example 8.21 mysqlnd_qc_get_normalized_query_trace_log example

mysqlnd_qc.collect_normalized_query_trace=1

<?php
/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2)");

/* not cached */
$res = $mysqli->query("SELECT id FROM test WHERE id = 1");
var_dump($res->fetch_assoc());
$res->free();

/* cache put */
$res = $mysqli->query("/*" . MYSQLND_QC_ENABLE_SWITCH . "*/" . "SELECT id FROM test WHERE id = 2");
var_dump($res->fetch_assoc());
$res->free();

/* cache hit */
$res = $mysqli->query("/*" . MYSQLND_QC_ENABLE_SWITCH . "*/" . "SELECT id FROM test WHERE id = 2");
var_dump($res->fetch_assoc());
$res->free();

var_dump(mysqlnd_qc_get_normalized_query_trace_log());
?>

The above examples will output:

array(1) {
 ["id"]=>
 string(1) "1"
}
array(1) {
 ["id"]=>
 string(1) "2"
}
array(1) {
 ["id"]=>
 string(1) "2"
}
array(4) {
 [0]=>
 array(9) {

mysqlnd_qc_get_normalized_query_trace_log

575

 ["query"]=>
 string(25) "DROP TABLE IF EXISTS test"
 ["occurences"]=>
 int(0)
 ["eligible_for_caching"]=>
 bool(false)
 ["avg_run_time"]=>
 int(0)
 ["min_run_time"]=>
 int(0)
 ["max_run_time"]=>
 int(0)
 ["avg_store_time"]=>
 int(0)
 ["min_store_time"]=>
 int(0)
 ["max_store_time"]=>
 int(0)
 }
 [1]=>
 array(9) {
 ["query"]=>
 string(27) "CREATE TABLE test (id INT)"
 ["occurences"]=>
 int(0)
 ["eligible_for_caching"]=>
 bool(false)
 ["avg_run_time"]=>
 int(0)
 ["min_run_time"]=>
 int(0)
 ["max_run_time"]=>
 int(0)
 ["avg_store_time"]=>
 int(0)
 ["min_store_time"]=>
 int(0)
 ["max_store_time"]=>
 int(0)
 }
 [2]=>
 array(9) {
 ["query"]=>
 string(40) "INSERT INTO test (id) VALUES (?), (?)"
 ["occurences"]=>
 int(0)
 ["eligible_for_caching"]=>
 bool(false)
 ["avg_run_time"]=>
 int(0)
 ["min_run_time"]=>
 int(0)
 ["max_run_time"]=>
 int(0)
 ["avg_store_time"]=>
 int(0)
 ["min_store_time"]=>
 int(0)
 ["max_store_time"]=>
 int(0)
 }
 [3]=>
 array(9) {
 ["query"]=>
 string(31) "SELECT id FROM test WHERE id =?"
 ["occurences"]=>
 int(2)

mysqlnd_qc_get_query_trace_log

576

 ["eligible_for_caching"]=>
 bool(true)
 ["avg_run_time"]=>
 int(159)
 ["min_run_time"]=>
 int(12)
 ["max_run_time"]=>
 int(307)
 ["avg_store_time"]=>
 int(10)
 ["min_store_time"]=>
 int(8)
 ["max_store_time"]=>
 int(13)
 }
}

See Also

Runtime configuration
mysqlnd_qc.collect_normalized_query_trace
mysqlnd_qc.time_statistics
mysqlnd_qc_get_query_trace_log

8.7.6 mysqlnd_qc_get_query_trace_log

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_qc_get_query_trace_log

Returns a backtrace for each query inspected by the query cache

Description

 array mysqlnd_qc_get_query_trace_log();

Returns a backtrace for each query inspected by the query cache. The collection of the backtrace
is disabled by default. To collect the backtrace you have to set the PHP configuration directive
mysqlnd_qc.collect_query_trace to 1

The maximum depth of the backtrace is limited to the depth set with the PHP configuration directive
mysqlnd_qc.query_trace_bt_depth.

Parameters

This function has no parameters.

Return Values

An array of query backtrace. Every list entry contains the query string, a backtrace and further detail
information.

Key Description

query Query string.

origin Code backtrace.

run_timeQuery run time in milliseconds. The collection of all times and the necessary
gettimeofday system calls can be disabled by setting the PHP configuration directive
mysqlnd_qc.time_statistics to 0

mysqlnd_qc_get_query_trace_log

577

Key Description

store_timeQuery result set store time in milliseconds. The collection of all times and the necessary
gettimeofday system calls can be disabled by setting the PHP configuration directive
mysqlnd_qc.time_statistics to 0

eligible_for_cachingTRUE if query is cacheable otherwise FALSE.

no_tableTRUE if the query has generated a result set and at least one column from the result set has no
table name set in its metadata. This is usually the case with queries which one probably do not
want to cache such as SELECT SLEEP(1). By default any such query will not be added to the
cache. See also PHP configuration directive mysqlnd_qc.cache_no_table.

was_addedTRUE if the query result has been put into the cache, otherwise FALSE.

was_already_in_cacheTRUE if the query result would have been added to the cache if it was not already in the cache
(cache hit). Otherwise FALSE.

Examples

Example 8.22 mysqlnd_qc_get_query_trace_log example

mysqlnd_qc.collect_query_trace=1

<?php
/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema", "port", "socket");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2)");

/* not cached */
$res = $mysqli->query("SELECT id FROM test WHERE id = 1");
var_dump($res->fetch_assoc());
$res->free();

/* cache put */
$res = $mysqli->query("/*" . MYSQLND_QC_ENABLE_SWITCH . "*/" . "SELECT id FROM test WHERE id = 2");
var_dump($res->fetch_assoc());
$res->free();

/* cache hit */
$res = $mysqli->query("/*" . MYSQLND_QC_ENABLE_SWITCH . "*/" . "SELECT id FROM test WHERE id = 2");
var_dump($res->fetch_assoc());
$res->free();

var_dump(mysqlnd_qc_get_query_trace_log());
?>

The above examples will output:

array(1) {
 ["id"]=>
 string(1) "1"
}
array(1) {
 ["id"]=>

mysqlnd_qc_get_query_trace_log

578

 string(1) "2"
}
array(1) {
 ["id"]=>
 string(1) "2"
}
array(6) {
 [0]=>
 array(8) {
 ["query"]=>
 string(25) "DROP TABLE IF EXISTS test"
 ["origin"]=>
 string(102) "#0 qc.php(4): mysqli->query('DROP TABLE IF E...')
#1 {main}"
 ["run_time"]=>
 int(0)
 ["store_time"]=>
 int(0)
 ["eligible_for_caching"]=>
 bool(false)
 ["no_table"]=>
 bool(false)
 ["was_added"]=>
 bool(false)
 ["was_already_in_cache"]=>
 bool(false)
 }
 [1]=>
 array(8) {
 ["query"]=>
 string(25) "CREATE TABLE test(id INT)"
 ["origin"]=>
 string(102) "#0 qc.php(5): mysqli->query('CREATE TABLE te...')
#1 {main}"
 ["run_time"]=>
 int(0)
 ["store_time"]=>
 int(0)
 ["eligible_for_caching"]=>
 bool(false)
 ["no_table"]=>
 bool(false)
 ["was_added"]=>
 bool(false)
 ["was_already_in_cache"]=>
 bool(false)
 }
 [2]=>
 array(8) {
 ["query"]=>
 string(36) "INSERT INTO test(id) VALUES (1), (2)"
 ["origin"]=>
 string(102) "#0 qc.php(6): mysqli->query('INSERT INTO tes...')
#1 {main}"
 ["run_time"]=>
 int(0)
 ["store_time"]=>
 int(0)
 ["eligible_for_caching"]=>
 bool(false)
 ["no_table"]=>
 bool(false)
 ["was_added"]=>
 bool(false)
 ["was_already_in_cache"]=>
 bool(false)
 }

mysqlnd_qc_get_query_trace_log

579

 [3]=>
 array(8) {
 ["query"]=>
 string(32) "SELECT id FROM test WHERE id = 1"
 ["origin"]=>
 string(102) "#0 qc.php(9): mysqli->query('SELECT id FROM ...')
#1 {main}"
 ["run_time"]=>
 int(0)
 ["store_time"]=>
 int(25)
 ["eligible_for_caching"]=>
 bool(false)
 ["no_table"]=>
 bool(false)
 ["was_added"]=>
 bool(false)
 ["was_already_in_cache"]=>
 bool(false)
 }
 [4]=>
 array(8) {
 ["query"]=>
 string(41) "/*qc=on*/SELECT id FROM test WHERE id = 2"
 ["origin"]=>
 string(103) "#0 qc.php(14): mysqli->query('/*qc=on*/SELECT...')
#1 {main}"
 ["run_time"]=>
 int(311)
 ["store_time"]=>
 int(13)
 ["eligible_for_caching"]=>
 bool(true)
 ["no_table"]=>
 bool(false)
 ["was_added"]=>
 bool(true)
 ["was_already_in_cache"]=>
 bool(false)
 }
 [5]=>
 array(8) {
 ["query"]=>
 string(41) "/*qc=on*/SELECT id FROM test WHERE id = 2"
 ["origin"]=>
 string(103) "#0 qc.php(19): mysqli->query('/*qc=on*/SELECT...')
#1 {main}"
 ["run_time"]=>
 int(13)
 ["store_time"]=>
 int(8)
 ["eligible_for_caching"]=>
 bool(true)
 ["no_table"]=>
 bool(false)
 ["was_added"]=>
 bool(false)
 ["was_already_in_cache"]=>
 bool(true)
 }
}

See Also

Runtime configuration

mysqlnd_qc_set_cache_condition

580

mysqlnd_qc.collect_query_trace
mysqlnd_qc.query_trace_bt_depth
mysqlnd_qc.time_statistics
mysqlnd_qc.cache_no_table
mysqlnd_qc_get_normalized_query_trace_log

8.7.7 mysqlnd_qc_set_cache_condition

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_qc_set_cache_condition

Set conditions for automatic caching

Description

 bool mysqlnd_qc_set_cache_condition(
 int condition_type,
 mixed condition,
 mixed condition_option);

Sets a condition for automatic caching of statements which do not contain the necessary SQL hints to
enable caching of them.

Parameters

condition_type Type of the condition. The only allowed value is
MYSQLND_QC_CONDITION_META_SCHEMA_PATTERN.

condition Parameter for the condition set with condition_type. Parameter type
and structure depend on condition_type

If condition_type equals
MYSQLND_QC_CONDITION_META_SCHEMA_PATTERN condition
must be a string. The string sets a pattern. Statements are cached
if table and database meta data entry of their result sets match the
pattern. The pattern is checked for a match with the db and org_table
meta data entries provided by the underlying MySQL client server
library. Please, check the MySQL Reference manual for details about
the two entries. The db and org_table values are concatenated with a
dot (.) before matched against condition. Pattern matching supports
the wildcards % and _. The wildcard % will match one or many arbitrary
characters. _ will match one arbitrary character. The escape symbol is
backslash.

condition_option Option for condition. Type and structure depend on
condition_type.

If condition_type equals
MYSQLND_QC_CONDITION_META_SCHEMA_PATTERN
condition_options is the TTL to be used.

Examples

Example 8.23 mysqlnd_qc_set_cache_condition example

mysqlnd_qc_set_is_select

581

<?php
/* Cache all accesses to tables with the name "new%" in schema/database "db_example" for 1 second */
if (!mysqlnd_qc_set_cache_condition(MYSQLND_QC_CONDITION_META_SCHEMA_PATTERN, "db_example.new%", 1)) {
 die("Failed to set cache condition!");
}

$mysqli = new mysqli("host", "user", "password", "db_example", "port");
/* cached although no SQL hint given */
$mysqli->query("SELECT id, title FROM news");

$pdo_mysql = new PDO("mysql:host=host;dbname=db_example;port=port", "user", "password");
/* not cached: no SQL hint, no pattern match */
$pdo_mysql->query("SELECT id, title FROM latest_news");
/* cached: TTL 1 second, pattern match */
$pdo_mysql->query("SELECT id, title FROM news");
?>

Return Values

Returns TRUE on success or FALSE on FAILURE.

See Also

Quickstart: pattern based caching

8.7.8 mysqlnd_qc_set_is_select

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_qc_set_is_select

Installs a callback which decides whether a statement is cached

Description

 mixed mysqlnd_qc_set_is_select(
 string callback);

Installs a callback which decides whether a statement is cached.

There are several ways of hinting PELC/mysqlnd_qc to cache a query. By default, PECL/mysqlnd_qc
attempts to cache a if caching of all statements is enabled or the query string begins with a certain
SQL hint. The plugin internally calls a function named is_select() to find out. This internal function
can be replaced with a user-defined callback. Then, the user-defined callback is responsible to decide
whether the plugin attempts to cache a statement. Because the internal function is replaced with
the callback, the callback gains full control. The callback is free to ignore the configuration setting
mysqlnd_qc.cache_by_default and SQL hints.

The callback is invoked for every statement inspected by the plugin. It is given the statements string as a
parameter. The callback returns FALSE if the statement shall not be cached. It returns TRUE to make the
plugin attempt to cache the statements result set, if any. A so-created cache entry is given the default TTL
set with the PHP configuration directive mysqlnd_qc.ttl. If a different TTL shall be used, the callback
returns a numeric value to be used as the TTL.

The internal is_select function is part of the internal cache storage handler interface. Thus, a user-
defined storage handler offers the same capabilities.

Parameters

mysqlnd_qc_set_is_select

582

This function has no parameters.

Return Values

Returns TRUE on success or FALSE on failure.

Examples

Example 8.24 mysqlnd_qc_set_is_select example

<?php
/* callback which decides if query is cached */
function is_select($query) {
 static $patterns = array(
 /* true - use default from mysqlnd_qc.ttl */
 "@SELECT\s+.*\s+FROM\s+test@ismU" => true,
 /* 3 - use TTL = 3 seconds */
 "@SELECT\s+.*\s+FROM\s+news@ismU" => 3
);
 /* check if query does match pattern */
 foreach ($patterns as $pattern => $ttl) {
 if (preg_match($pattern, $query)) {
 printf("is_select(%45s): cache\n", $query);
 return $ttl;
 }
 }
 printf("is_select(%45s): do not cache\n", $query);
 return false;
}
mysqlnd_qc_set_is_select("is_select");

/* Connect, create and populate test table */
$mysqli = new mysqli("host", "user", "password", "schema");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1), (2), (3)");

/* cache put */
$mysqli->query("SELECT id FROM test WHERE id = 1");
/* cache hit */
$mysqli->query("SELECT id FROM test WHERE id = 1");
/* cache put */
$mysqli->query("SELECT * FROM test");
?>

The above examples will output:

is_select(DROP TABLE IF EXISTS test): do not cache
is_select(CREATE TABLE test(id INT)): do not cache
is_select(INSERT INTO test(id) VALUES (1), (2), (3)): do not cache
is_select(SELECT id FROM test WHERE id = 1): cache
is_select(SELECT id FROM test WHERE id = 1): cache
is_select(SELECT * FROM test): cache

See Also

Runtime configuration

mysqlnd_qc_set_storage_handler

583

mysqlnd_qc.ttl
mysqlnd_qc.cache_by_default
mysqlnd_qc_set_user_handlers

8.7.9 mysqlnd_qc_set_storage_handler

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_qc_set_storage_handler

Change current storage handler

Description

 bool mysqlnd_qc_set_storage_handler(
 string handler);

Sets the storage handler used by the query cache. A list of available storage handler can be obtained
from mysqlnd_qc_get_available_handlers. Which storage are available depends on the compile
time configuration of the query cache plugin. The default storage handler is always available. All other
storage handler must be enabled explicitly when building the extension.

Parameters

handler Handler can be of type string representing the name of a built-in storage
handler or an object of type mysqlnd_qc_handler_default. The
names of the built-in storage handler are default, APC, MEMCACHE,
sqlite.

Return Values

Returns TRUE on success or FALSE on failure.

If changing the storage handler fails a catchable fatal error will be thrown. The query cache cannot operate
if the previous storage handler has been shutdown but no new storage handler has been installed.

Examples

Example 8.25 mysqlnd_qc_set_storage_handler example

The example shows the output from the built-in default storage handler. Other storage handler may report
different data.

<?php
var_dump(mysqlnd_qc_set_storage_handler("memcache"));

if (true === mysqlnd_qc_set_storage_handler("default"))
 printf("Default storage handler activated");

/* Catchable fatal error */
var_dump(mysqlnd_qc_set_storage_handler("unknown"));
?>

The above examples will output:

mysqlnd_qc_set_user_handlers

584

bool(true)
Default storage handler activated
Catchable fatal error: mysqlnd_qc_set_storage_handler(): Unknown handler 'unknown' in (file) on line (line)

See Also

Installation
mysqlnd_qc_get_available_handlers

8.7.10 mysqlnd_qc_set_user_handlers

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_qc_set_user_handlers

Sets the callback functions for a user-defined procedural storage handler

Description

 bool mysqlnd_qc_set_user_handlers(
 string get_hash,
 string find_query_in_cache,
 string return_to_cache,
 string add_query_to_cache_if_not_exists,
 string query_is_select,
 string update_query_run_time_stats,
 string get_stats,
 string clear_cache);

Sets the callback functions for a user-defined procedural storage handler.

Parameters

get_hash Name of the user function implementing the storage handler get_hash
functionality.

find_query_in_cache Name of the user function implementing the storage handler
find_in_cache functionality.

return_to_cache Name of the user function implementing the storage handler
return_to_cache functionality.

add_query_to_cache_if_not_existsName of the user function implementing the storage handler
add_query_to_cache_if_not_exists functionality.

query_is_select Name of the user function implementing the storage handler
query_is_select functionality.

update_query_run_time_statsName of the user function implementing the storage handler
update_query_run_time_stats functionality.

get_stats Name of the user function implementing the storage handler
get_stats functionality.

clear_cache Name of the user function implementing the storage handler
clear_cache functionality.

Change History

585

Return Values

Returns TRUE on success or FALSE on FAILURE.

See Also

Procedural user-defined storage handler example

8.8 Change History

Copyright 1997-2014 the PHP Documentation Group.

This change history is a high level summary of selected changes that may impact applications and/or break
backwards compatibility.

See also the CHANGES file in the source distribution for a complete list of changes.

8.8.1 PECL/mysqlnd_qc 1.2 series

Copyright 1997-2014 the PHP Documentation Group.

1.2.0 - alpha

• Release date: 03/2013

• Motto/theme: PHP 5.5 compatibility

Feature changes

• Update build for PHP 5.5 (Credits: Remi Collet)

• APC storage handler update

• Fix build for APC 3.1.13-beta and trunk

• Introduced MYSQLND_QC_VERSION and MYSQLND_QC_VERSION_ID.

8.8.2 PECL/mysqlnd_qc 1.1 series

Copyright 1997-2014 the PHP Documentation Group.

1.1.0 - stable

• Release date: 04/2012

• Motto/theme: PHP 5.4 compatibility, schema pattern based caching and mysqlnd_ms support

1.1.0 - beta

• Release date: 04/2012

• Motto/theme: PHP 5.4 compatibility, schema pattern based caching and mysqlnd_ms support

1.1.0 - alpha

• Release date: 04/2012

PECL/mysqlnd_qc 1.0 series

586

• Motto/theme: PHP 5.4 compatibility, schema pattern based caching and mysqlnd_ms support

Feature changes

• APC storage handler update

• Fix build for APC 3.1.9+

• Note: Use of the APC storage handler is currently not recommended due to stability issues of APC
itself.

• New PHP configuration directives

• mysqlnd_qc.collect_statistics_log_file. Aggregated cache statistics log file written after
every 10th request served by the PHP process.

• mysqlnd_qc.ignore_sql_comments. Control whether SQL comments are ignored for cache key
hash generation.

• New constants and SQL hints

• MYSQLND_QC_SERVER_ID_SWITCH allows grouping of cache entries from different physical
connections. This is needed by PECL/mysqlnd_ms.

• MYSQLND_QC_CONDITION_META_SCHEMA_PATTERN to be used with
mysqlnd_qc_set_cache_condition.

• New function mysqlnd_qc_set_cache_condition for built-in schema pattern based caching. Likely
to support a wider range of conditions in the future.

• Report valid_until timestamp for cache entries of the default handler through
mysqlnd_qc_get_cache_info.

• Include charset number for cache entry hashing. This should prevent serving result sets which have the
wrong charset.

API change: get_hash_key expects new "charsetnr" (int) parameter after "port".

• API change: changing is_select() signature from bool is_select() to mixed is_select(). Mixed can be
either boolean or array(long ttl, string server_id). This is needed by PECL/mysqlnd_ms.

Other

• Support acting as a cache backend for PECL/mysqlnd_ms 1.3.0-beta or later to transparently replace
MySQL Replication slave reads with cache accesses, if the user explicitly allows.

Bug fixes

• Fixed Bug #59959 (config.m4, wrong library - 64bit memcached handler builds) (Credits: Remi Collet)

8.8.3 PECL/mysqlnd_qc 1.0 series

Copyright 1997-2014 the PHP Documentation Group.

1.0.1-stable

• Release date: 12/2010

PECL/mysqlnd_qc 1.0 series

587

• Motto/theme: Prepared statement support

Added support for Prepared statements and unbuffered queries.

1.0.0-beta

• Release date: 07/2010

• Motto/theme: TTL-based cache with various storage options (Memcache, APC, SQLite, user-defined)

Initial public release of the transparent TTL-based query result cache. Flexible storage of cached results.
Various storage media supported.

588

589

Chapter 9 Mysqlnd user handler plugin

Table of Contents
9.1 Security considerations ... 591
9.2 Documentation note .. 591
9.3 On the name .. 591
9.4 Quickstart and Examples .. 591

9.4.1 Setup .. 592
9.4.2 How it works .. 592
9.4.3 Installing a proxy .. 593
9.4.4 Basic query monitoring ... 595

9.5 Installing/Configuring ... 596
9.5.1 Requirements .. 597
9.5.2 Installation ... 597
9.5.3 Runtime Configuration .. 597
9.5.4 Resource Types ... 597

9.6 Predefined Constants .. 597
9.7 The MysqlndUhConnection class ... 603

9.7.1 MysqlndUhConnection::changeUser ... 606
9.7.2 MysqlndUhConnection::charsetName ... 607
9.7.3 MysqlndUhConnection::close ... 608
9.7.4 MysqlndUhConnection::connect ... 610
9.7.5 MysqlndUhConnection::__construct ... 611
9.7.6 MysqlndUhConnection::endPSession ... 612
9.7.7 MysqlndUhConnection::escapeString ... 613
9.7.8 MysqlndUhConnection::getAffectedRows ... 614
9.7.9 MysqlndUhConnection::getErrorNumber ... 615
9.7.10 MysqlndUhConnection::getErrorString .. 616
9.7.11 MysqlndUhConnection::getFieldCount .. 617
9.7.12 MysqlndUhConnection::getHostInformation .. 618
9.7.13 MysqlndUhConnection::getLastInsertId .. 619
9.7.14 MysqlndUhConnection::getLastMessage .. 621
9.7.15 MysqlndUhConnection::getProtocolInformation .. 622
9.7.16 MysqlndUhConnection::getServerInformation .. 623
9.7.17 MysqlndUhConnection::getServerStatistics .. 624
9.7.18 MysqlndUhConnection::getServerVersion .. 625
9.7.19 MysqlndUhConnection::getSqlstate .. 626
9.7.20 MysqlndUhConnection::getStatistics .. 627
9.7.21 MysqlndUhConnection::getThreadId .. 635
9.7.22 MysqlndUhConnection::getWarningCount .. 636
9.7.23 MysqlndUhConnection::init ... 637
9.7.24 MysqlndUhConnection::killConnection .. 638
9.7.25 MysqlndUhConnection::listFields .. 639
9.7.26 MysqlndUhConnection::listMethod .. 640
9.7.27 MysqlndUhConnection::moreResults .. 642
9.7.28 MysqlndUhConnection::nextResult .. 643
9.7.29 MysqlndUhConnection::ping ... 645
9.7.30 MysqlndUhConnection::query ... 646
9.7.31 MysqlndUhConnection::queryReadResultsetHeader .. 647
9.7.32 MysqlndUhConnection::reapQuery .. 648

590

9.7.33 MysqlndUhConnection::refreshServer .. 650
9.7.34 MysqlndUhConnection::restartPSession .. 651
9.7.35 MysqlndUhConnection::selectDb .. 652
9.7.36 MysqlndUhConnection::sendClose .. 653
9.7.37 MysqlndUhConnection::sendQuery .. 654
9.7.38 MysqlndUhConnection::serverDumpDebugInformation 655
9.7.39 MysqlndUhConnection::setAutocommit .. 656
9.7.40 MysqlndUhConnection::setCharset .. 657
9.7.41 MysqlndUhConnection::setClientOption .. 658
9.7.42 MysqlndUhConnection::setServerOption .. 660
9.7.43 MysqlndUhConnection::shutdownServer .. 661
9.7.44 MysqlndUhConnection::simpleCommand .. 662
9.7.45 MysqlndUhConnection::simpleCommandHandleResponse 664
9.7.46 MysqlndUhConnection::sslSet ... 666
9.7.47 MysqlndUhConnection::stmtInit .. 668
9.7.48 MysqlndUhConnection::storeResult .. 669
9.7.49 MysqlndUhConnection::txCommit .. 670
9.7.50 MysqlndUhConnection::txRollback .. 671
9.7.51 MysqlndUhConnection::useResult .. 672

9.8 The MysqlndUhPreparedStatement class ... 673
9.8.1 MysqlndUhPreparedStatement::__construct ... 674
9.8.2 MysqlndUhPreparedStatement::execute ... 674
9.8.3 MysqlndUhPreparedStatement::prepare ... 675

9.9 Mysqlnd_uh Functions .. 676
9.9.1 mysqlnd_uh_convert_to_mysqlnd ... 676
9.9.2 mysqlnd_uh_set_connection_proxy ... 678
9.9.3 mysqlnd_uh_set_statement_proxy ... 679

9.10 Change History ... 680
9.10.1 PECL/mysqlnd_uh 1.0 series .. 680

Copyright 1997-2014 the PHP Documentation Group.

The mysqlnd user handler plugin (mysqlnd_uh) allows users to set hooks for most internal calls of the
MySQL native driver for PHP (mysqlnd). Mysqlnd and its plugins, including PECL/mysqlnd_uh, operate on
a layer beneath the PHP MySQL extensions. A mysqlnd plugin can be considered as a proxy between the
PHP MySQL extensions and the MySQL server as part of the PHP executable on the client-side. Because
the plugins operates on their own layer below the PHP MySQL extensions, they can monitor and change
application actions without requiring application changes. If the PHP MySQL extensions (mysqli, mysql,
PDO_MYSQL) are compiled to use mysqlnd this can be used for:

• Monitoring

• Queries executed by any of the PHP MySQL extensions

• Prepared statements executing by any of the PHP MySQL extensions

• Auditing

• Detection of database usage

• SQL injection protection using black and white lists

• Assorted

• Load Balancing connections

Security considerations

591

The MySQL native driver for PHP (mysqlnd) features an internal plugin C API. C plugins, such as the
mysqlnd user handler plugin, can extend the functionality of mysqlnd. PECL/mysqlnd_uh makes parts of
the internal plugin C API available to the PHP user for plugin development with PHP.

Status

The mysqlnd user handler plugin is in alpha status. Take appropriate care before
using it in production environments.

9.1 Security considerations
Copyright 1997-2014 the PHP Documentation Group.

PECL/mysqlnd_uh gives users access to MySQL user names, MySQL password used by any of the PHP
MySQL extensions to connect to MySQL. It allows monitoring of all queries and prepared statements
exposing the statement string to the user. Therefore, the extension should be installed with care. The
PHP_INI_SYSTEM configuration setting mysqlnd_uh.enable can be used to prevent users from hooking
mysqlnd calls.

Code obfuscators and similar technologies are not suitable to prevent monitoring of mysqlnd library
activities if PECL/mysqlnd_uh is made available and the user can install a proxy, for example, using
auto_prepend_file.

9.2 Documentation note
Copyright 1997-2014 the PHP Documentation Group.

Many of the mysqlnd_uh functions are briefly described because the mysqli extension is a thin abstraction
layer on top of the MySQL C API that the mysqlnd library provides. Therefore, the corresponding mysqli
documentation (along with the MySQL reference manual) can be consulted to receive more information
about a particular function.

9.3 On the name
Copyright 1997-2014 the PHP Documentation Group.

The shortcut mysqlnd_uh stands for mysqlnd user handler, and has been the name since early
development.

9.4 Quickstart and Examples
Copyright 1997-2014 the PHP Documentation Group.

The mysqlnd user handler plugin can be understood as a client-side proxy for all PHP MySQL extensions
(mysqli, mysql, PDO_MYSQL), if they are compiled to use the mysqlnd library. The extensions use the
mysqlnd library internally, at the C level, to communicate with the MySQL server. PECL/mysqlnd_uh
allows it to hook many mysqlnd calls. Therefore, most activities of the PHP MySQL extensions can be
monitored.

Because monitoring happens at the level of the library, at a layer below the application, it is possible to
monitor applications without changing them.

On the C level, the mysqlnd library is structured in modules or classes. The extension hooks almost
all methods of the mysqlnd internal connection class and exposes them through the user space
class MysqlndUhConnection. Some few methods of the mysqlnd internal statement class are made
available to the PHP user with the class MysqlndUhPreparedStatement. By subclassing the classes

http://www.php.net/ini.auto-prepend-file

Setup

592

MysqlndUhConnection and MysqlndUhPreparedStatement users get access to mysqlnd internal
function calls.

Note

The internal mysqlnd function calls are not designed to be exposed to the PHP
user. Manipulating their activities may cause PHP to crash or leak memory.
Often, this is not considered a bug. Please, keep in mind that you are accessing
C library functions through PHP which are expected to take certain actions,
which you may not be able to emulate in user space. Therefore, it is strongly
recommended to always call the parent method implementation when subclassing
MysqlndUhConnection or MysqlndUhPreparedStatement. To prevent the
worst case, the extension performs some sanity checks. Please, see also the
Mysqlnd_uh Configure Options.

9.4.1 Setup

Copyright 1997-2014 the PHP Documentation Group.

The plugin is implemented as a PHP extension. See the installation instructions to install the PECL/
mysqlnd_uh extension. Then, load the extension into PHP and activate the plugin in the PHP configuration
file using the PHP configuration directive named mysqlnd_uh.enable. The below example shows the
default settings of the extension.

Example 9.1 Enabling the plugin (php.ini)

mysqlnd_uh.enable=1
mysqlnd_uh.report_wrong_types=1

9.4.2 How it works

Copyright 1997-2014 the PHP Documentation Group.

This describes the background and inner workings of the mysqlnd_uh extension.

Two classes are provided by the extension: MysqlndUhConnection and
MysqlndUhPreparedStatement. MysqlndUhConnection lets you access almost all methods of the
mysqlnd internal connection class. The latter exposes some selected methods of the mysqlnd internal
statement class. For example, MysqlndUhConnection::connect maps to the mysqlnd library C
function mysqlnd_conn__connect.

As a mysqlnd plugin, the PECL/mysqlnd_uh extension replaces mysqlnd library C functions with its
own functions. Whenever a PHP MySQL extension compiled to use mysqlnd calls a mysqlnd function,
the functions installed by the plugin are executed instead of the original mysqlnd ones. For example,
mysqli_connect invokes mysqlnd_conn__connect, so the connect function installed by PECL/
mysqlnd_uh will be called. The functions installed by PECL/mysqlnd_uh are the methods of the built-in
classes.

The built-in PHP classes and their methods do nothing but call their mysqlnd C library counterparts, to
behave exactly like the original mysqlnd function they replace. The code below illustrates in pseudo-code
what the extension does.

Example 9.2 Pseudo-code: what a built-in class does

http://pecl.php.net/package/mysqlnd_ms
http://pecl.php.net/package/mysqlnd_ms

Installing a proxy

593

class MysqlndUhConnection {
 public function connect(($conn, $host, $user, $passwd, $db, $port, $socket, $mysql_flags) {
 MYSQLND* c_mysqlnd_connection = convert_from_php_to_c($conn);
 ...
 return call_c_function(mysqlnd_conn__connect(c_mysqlnd_connection, ...));
 }
}

The build-in classes behave like a transparent proxy. It is possible for you to replace the proxy with your
own. This is done by subclassing MysqlndUhConnection or MysqlndUhPreparedStatement to
extend the functionality of the proxy, followed by registering a new proxy object. Proxy objects are installed
by mysqlnd_uh_set_connection_proxy and mysqlnd_uh_set_statement_proxy.

Example 9.3 Installing a proxy

<?php
class proxy extends MysqlndUhConnection {
 public function connect($res, $host, $user, $passwd, $db, $port, $socket, $mysql_flags) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::connect($res, $host, $user, $passwd, $db, $port, $socket, $mysql_flags);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
?>

The above example will output:

proxy::connect(array (
 0 => NULL,
 1 => 'localhost',
 2 => 'root',
 3 => '',
 4 => 'test',
 5 => 3306,
 6 => NULL,
 7 => 131072,
))
proxy::connect returns true

9.4.3 Installing a proxy

Copyright 1997-2014 the PHP Documentation Group.

The extension provides two built-in classes: MysqlndUhConnection and
MysqlndUhPreparedStatement. The classes are used for hooking mysqlnd library calls. Their
methods correspond to mysqlnd internal functions. By default they act like a transparent proxy and do
nothing but call their mysqlnd counterparts. By subclassing the classes you can install your own proxy to
monitor mysqlnd.

Installing a proxy

594

See also the How it works guide to learn about the inner workings of this extension.

Connection proxies are objects of the type MysqlndUhConnection. Connection proxy objects
are installed by mysqlnd_uh_set_connection_proxy. If you install the built-in class
MysqlndUhConnection as a proxy, nothing happens. It behaves like a transparent proxy.

Example 9.4 Proxy registration, mysqlnd_uh.enable=1

<?php
mysqlnd_uh_set_connection_proxy(new MysqlndUhConnection());
$mysqli = new mysqli("localhost", "root", "", "test");
?>

The PHP_INI_SYSTEM configuration setting mysqlnd_uh.enable controls whether a proxy may be set.
If disabled, the extension will throw errors of type E_WARNING

Example 9.5 Proxy installation disabled

mysqlnd_uh.enable=0

<?php
mysqlnd_uh_set_connection_proxy(new MysqlndUhConnection());
$mysqli = new mysqli("localhost", "root", "", "test");
?>

The above example will output:

PHP Warning: MysqlndUhConnection::__construct(): (Mysqlnd User Handler) The plugin has been disabled by setting the configuration parameter mysqlnd_uh.enabled = false. You must not use any of the base classes in %s on line %d
PHP Warning: mysqlnd_uh_set_connection_proxy(): (Mysqlnd User Handler) The plugin has been disabled by setting the configuration parameter mysqlnd_uh.enable = false. The proxy has not been installed in %s on line %d

To monitor mysqlnd, you have to write your own proxy object subclassing MysqlndUhConnection.
Please, see the function reference for a the list of methods that can be subclassed. Alternatively, you can
use reflection to inspect the built-in MysqlndUhConnection.

Create a new class proxy. Derive it from the built-in class MysqlndUhConnection. Replace the
MysqlndUhConnection::connect. method. Print out the host parameter value passed to the method.
Make sure that you call the parent implementation of the connect method. Failing to do so may give
unexpected and undesired results, including memory leaks and crashes.

Register your proxy and open three connections using the PHP MySQL extensions mysqli, mysql,
PDO_MYSQL. If the extensions have been compiled to use the mysqlnd library, the proxy::connect
method will be called three times, once for each connection opened.

Example 9.6 Connection proxy

Basic query monitoring

595

<?php
class proxy extends MysqlndUhConnection {
 public function connect($res, $host, $user, $passwd, $db, $port, $socket, $mysql_flags) {
 printf("Connection opened to '%s'\n", $host);
 /* Always call the parent implementation! */
 return parent::connect($res, $host, $user, $passwd, $db, $port, $socket, $mysql_flags);
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
$mysql = mysql_connect("localhost", "root", "");
$pdo = new PDO("mysql:host=localhost;dbname=test", "root", "");
?>

The above example will output:

Connection opened to 'localhost'
Connection opened to 'localhost'
Connection opened to 'localhost'

The use of prepared statement proxies follows the same pattern: create a proxy object of the type
MysqlndUhPreparedStatement and install the proxy using mysqlnd_uh_set_statement_proxy.

Example 9.7 Prepared statement proxy

<?php
class stmt_proxy extends MysqlndUhPreparedStatement {
 public function prepare($res, $query) {
 printf("%s(%s)\n", __METHOD__, $query);
 return parent::prepare($res, $query);
 }
}
mysqlnd_uh_set_statement_proxy(new stmt_proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
$stmt = $mysqli->prepare("SELECT 'mysqlnd hacking made easy' AS _msg FROM DUAL");
?>

The above example will output:

stmt_proxy::prepare(SELECT 'mysqlnd hacking made easy' AS _msg FROM DUAL)

9.4.4 Basic query monitoring

Copyright 1997-2014 the PHP Documentation Group.

Basic monitoring of a query statement is easy with PECL/mysqlnd_uh. Combined with
debug_print_backtrace it can become a powerful tool, for example, to find the origin of certain
statement. This may be desired when searching for slow queries but also after database refactoring to

http://www.php.net/debug_print_backtrace

Installing/Configuring

596

find code still accessing deprecated databases or tables. The latter may be a complicated matter to do
otherwise, especially if the application uses auto-generated queries.

Example 9.8 Basic Monitoring

<?php
class conn_proxy extends MysqlndUhConnection {
 public function query($res, $query) {
 debug_print_backtrace();
 return parent::query($res, $query);
 }
}
class stmt_proxy extends MysqlndUhPreparedStatement {
 public function prepare($res, $query) {
 debug_print_backtrace();
 return parent::prepare($res, $query);
 }
}
mysqlnd_uh_set_connection_proxy(new conn_proxy());
mysqlnd_uh_set_statement_proxy(new stmt_proxy());

printf("Proxies installed...\n");
$pdo = new PDO("mysql:host=localhost;dbname=test", "root", "");
var_dump($pdo->query("SELECT 1 AS _one FROM DUAL")->fetchAll(PDO::FETCH_ASSOC));

$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->prepare("SELECT 1 AS _two FROM DUAL");
?>

The above example will output:

#0 conn_proxy->query(Resource id #19, SELECT 1 AS _one FROM DUAL)
#1 PDO->query(SELECT 1 AS _one FROM DUAL) called at [example.php:19]
array(1) {
 [0]=>
 array(1) {
 ["_one"]=>
 string(1) "1"
 }
}
#0 stmt_proxy->prepare(Resource id #753, SELECT 1 AS _two FROM DUAL)
#1 mysqli->prepare(SELECT 1 AS _two FROM DUAL) called at [example.php:22]

For basic query monitoring you should install a connection and a prepared statement proxy. The
connection proxy should subclass MysqlndUhConnection::query. All database queries not using
native prepared statements will call this method. In the example the query function is invoked by a PDO
call. By default, PDO_MySQL is using prepared statement emulation.

All native prepared statements are prepared with the prepare method of mysqlnd exported through
MysqlndUhPreparedStatement::prepare. Subclass MysqlndUhPreparedStatement and
overwrite prepare for native prepared statement monitoring.

9.5 Installing/Configuring

Copyright 1997-2014 the PHP Documentation Group.

Requirements

597

9.5.1 Requirements

Copyright 1997-2014 the PHP Documentation Group.

PHP 5.3.3 or later. It is recommended to use PHP 5.4.0 or later to get access to the latest mysqlnd
features.

The mysqlnd_uh user handler plugin supports all PHP applications and all available PHP MySQL
extensions (mysqli, mysql, PDO_MYSQL). The PHP MySQL extension must be configured to use mysqlnd
in order to be able to use the mysqlnd_uh plugin for mysqlnd.

The alpha versions makes use of some mysqli features. You must enable mysqli to compile the plugin.
This requirement may be removed in the future. Note, that this requirement does not restrict you to use the
plugin only with mysqli. You can use the plugin to monitor mysql, mysqli and PDO_MYSQL.

9.5.2 Installation

Copyright 1997-2014 the PHP Documentation Group.

Information for installing this PECL extension may be found in the manual chapter titled Installation of
PECL extensions. Additional information such as new releases, downloads, source files, maintainer
information, and a CHANGELOG, can be located here: http://pecl.php.net/package/mysqlnd-uh

PECL/mysqlnd_uh is currently not available on Windows. The source code of the extension makes use of
C99 constructs not allowed with PHP Windows builds.

9.5.3 Runtime Configuration

Copyright 1997-2014 the PHP Documentation Group.

The behaviour of these functions is affected by settings in php.ini.

Table 9.1 Mysqlnd_uh Configure Options

Name Default Changeable Changelog

mysqlnd_uh.enable 1 PHP_INI_SYSTEM

mysqlnd_uh.report_wrong_types1 PHP_INI_ALL

Here's a short explanation of the configuration directives.

mysqlnd_uh.enable integer Enables or disables the plugin. If set to disabled, the extension will not
allow users to plug into mysqlnd to hook mysqlnd calls.

mysqlnd_uh.report_wrong_types
integer

Whether to report wrong return value types of user hooks as
E_WARNING level errors. This is recommended for detecting errors.

9.5.4 Resource Types

Copyright 1997-2014 the PHP Documentation Group.

This extension has no resource types defined.

9.6 Predefined Constants
Copyright 1997-2014 the PHP Documentation Group.

http://www.php.net/install.pecl
http://www.php.net/install.pecl
http://pecl.php.net/package/mysqlnd-uh

Predefined Constants

598

The constants below are defined by this extension, and will only be available when the extension has either
been compiled into PHP or dynamically loaded at runtime.

Most of the constants refer to details of the MySQL Client Server Protocol. Please, refer to the MySQL
reference manual to learn about their meaning. To avoid content duplication, only short descriptions are
given.

MysqlndUhConnection::simpleCommand related

The following constants can be used to detect what command is to be send through
MysqlndUhConnection::simpleCommand.

MYSQLND_UH_MYSQLND_COM_SLEEP
(integer)

MySQL Client Server protocol command: COM_SLEEP.

MYSQLND_UH_MYSQLND_COM_QUIT
(integer)

MySQL Client Server protocol command: COM_QUIT.

MYSQLND_UH_MYSQLND_COM_INIT_DB
(integer)

MySQL Client Server protocol command: COM_INIT_DB.

MYSQLND_UH_MYSQLND_COM_QUERY
(integer)

MySQL Client Server protocol command: COM_QUERY.

MYSQLND_UH_MYSQLND_COM_FIELD_LIST
(integer)

MySQL Client Server protocol command: COM_FIELD_LIST.

MYSQLND_UH_MYSQLND_COM_CREATE_DB
(integer)

MySQL Client Server protocol command: COM_CREATE_DB.

MYSQLND_UH_MYSQLND_COM_DROP_DB
(integer)

MySQL Client Server protocol command: COM_DROP_DB.

MYSQLND_UH_MYSQLND_COM_REFRESH
(integer)

MySQL Client Server protocol command: COM_REFRESH.

MYSQLND_UH_MYSQLND_COM_SHUTDOWN
(integer)

MySQL Client Server protocol command: COM_SHUTDOWN.

MYSQLND_UH_MYSQLND_COM_STATISTICS
(integer)

MySQL Client Server protocol command: COM_STATISTICS.

MYSQLND_UH_MYSQLND_COM_PROCESS_INFO
(integer)

MySQL Client Server protocol command: COM_PROCESS_INFO.

MYSQLND_UH_MYSQLND_COM_CONNECT
(integer)

MySQL Client Server protocol command: COM_CONNECT.

MYSQLND_UH_MYSQLND_COM_PROCESS_KILL
(integer)

MySQL Client Server protocol command: COM_PROCESS_KILL.

MYSQLND_UH_MYSQLND_COM_DEBUG
(integer)

MySQL Client Server protocol command: COM_DEBUG.

MYSQLND_UH_MYSQLND_COM_PING
(integer)

MySQL Client Server protocol command: COM_PING.

MYSQLND_UH_MYSQLND_COM_TIME
(integer)

MySQL Client Server protocol command: COM_TIME.

Predefined Constants

599

MYSQLND_UH_MYSQLND_COM_DELAYED_INSERT
(integer)

MySQL Client Server protocol command: COM_DELAYED_INSERT.

MYSQLND_UH_MYSQLND_COM_CHANGE_USER
(integer)

MySQL Client Server protocol command: COM_CHANGE_USER.

MYSQLND_UH_MYSQLND_COM_BINLOG_DUMP
(integer)

MySQL Client Server protocol command: COM_BINLOG_DUMP.

MYSQLND_UH_MYSQLND_COM_TABLE_DUMP
(integer)

MySQL Client Server protocol command: COM_TABLE_DUMP.

MYSQLND_UH_MYSQLND_COM_CONNECT_OUT
(integer)

MySQL Client Server protocol command: COM_CONNECT_OUT.

MYSQLND_UH_MYSQLND_COM_REGISTER_SLAVED
(integer)

MySQL Client Server protocol command: COM_REGISTER_SLAVED.

MYSQLND_UH_MYSQLND_COM_STMT_PREPARE
(integer)

MySQL Client Server protocol command: COM_STMT_PREPARE.

MYSQLND_UH_MYSQLND_COM_STMT_EXECUTE
(integer)

MySQL Client Server protocol command: COM_STMT_EXECUTE.

MYSQLND_UH_MYSQLND_COM_STMT_SEND_LONG_DATA
(integer)

MySQL Client Server protocol command:
COM_STMT_SEND_LONG_DATA.

MYSQLND_UH_MYSQLND_COM_STMT_CLOSE
(integer)

MySQL Client Server protocol command: COM_STMT_CLOSE.

MYSQLND_UH_MYSQLND_COM_STMT_RESET
(integer)

MySQL Client Server protocol command: COM_STMT_RESET.

MYSQLND_UH_MYSQLND_COM_SET_OPTION
(integer)

MySQL Client Server protocol command: COM_SET_OPTION.

MYSQLND_UH_MYSQLND_COM_STMT_FETCH
(integer)

MySQL Client Server protocol command: COM_STMT_FETCH.

MYSQLND_UH_MYSQLND_COM_DAEMON
(integer)

MySQL Client Server protocol command: COM_DAEMON.

MYSQLND_UH_MYSQLND_COM_END
(integer)

MySQL Client Server protocol command: COM_END.

The following constants can be used to analyze the ok_packet argument of
MysqlndUhConnection::simpleCommand.

MYSQLND_UH_MYSQLND_PROT_GREET_PACKET
(integer)

MySQL Client Server protocol packet: greeting.

MYSQLND_UH_MYSQLND_PROT_AUTH_PACKET
(integer)

MySQL Client Server protocol packet: authentication.

MYSQLND_UH_MYSQLND_PROT_OK_PACKET
(integer)

MySQL Client Server protocol packet: OK.

MYSQLND_UH_MYSQLND_PROT_EOF_PACKET
(integer)

MySQL Client Server protocol packet: EOF.

Predefined Constants

600

MYSQLND_UH_MYSQLND_PROT_CMD_PACKET
(integer)

MySQL Client Server protocol packet: command.

MYSQLND_UH_MYSQLND_PROT_RSET_HEADER_PACKET
(integer)

MySQL Client Server protocol packet: result set header.

MYSQLND_UH_MYSQLND_PROT_RSET_FLD_PACKET
(integer)

MySQL Client Server protocol packet: resultset field.

MYSQLND_UH_MYSQLND_PROT_ROW_PACKET
(integer)

MySQL Client Server protocol packet: row.

MYSQLND_UH_MYSQLND_PROT_STATS_PACKET
(integer)

MySQL Client Server protocol packet: stats.

MYSQLND_UH_MYSQLND_PREPARE_RESP_PACKET
(integer)

MySQL Client Server protocol packet: prepare response.

MYSQLND_UH_MYSQLND_CHG_USER_RESP_PACKET
(integer)

MySQL Client Server protocol packet: change user response.

MYSQLND_UH_MYSQLND_PROT_LAST
(integer)

No practical meaning. Last entry marker of internal C data structure list.

MysqlndUhConnection::close related

The following constants can be used to detect why a connection has been closed through
MysqlndUhConnection::close().

MYSQLND_UH_MYSQLND_CLOSE_EXPLICIT
(integer)

User has called mysqlnd to close the connection.

MYSQLND_UH_MYSQLND_CLOSE_IMPLICIT
(integer)

Implicitly closed, for example, during garbage connection.

MYSQLND_UH_MYSQLND_CLOSE_DISCONNECTED
(integer)

Connection error.

MYSQLND_UH_MYSQLND_CLOSE_LAST
(integer)

No practical meaning. Last entry marker of internal C data structure list.

MysqlndUhConnection::setServerOption() related

The following constants can be used to detect which option is set through
MysqlndUhConnection::setServerOption().

MYSQLND_UH_SERVER_OPTION_MULTI_STATEMENTS_ON
(integer)

Option: enables multi statement support.

MYSQLND_UH_SERVER_OPTION_MULTI_STATEMENTS_OFF
(integer)

Option: disables multi statement support.

MysqlndUhConnection::setClientOption related

The following constants can be used to detect which option is set through
MysqlndUhConnection::setClientOption.

MYSQLND_UH_MYSQLND_OPTION_OPT_CONNECT_TIMEOUT
(integer)

Option: connection timeout.

Predefined Constants

601

MYSQLND_UH_MYSQLND_OPTION_OPT_COMPRESS
(integer)

Option: whether the MySQL compressed protocol is to be used.

MYSQLND_UH_MYSQLND_OPTION_OPT_NAMED_PIPE
(integer)

Option: named pipe to use for connection (Windows).

MYSQLND_UH_MYSQLND_OPTION_INIT_COMMAND
(integer)

Option: init command to execute upon connect.

MYSQLND_UH_MYSQLND_READ_DEFAULT_FILE
(integer)

Option: MySQL server default file to read upon connect.

MYSQLND_UH_MYSQLND_READ_DEFAULT_GROUP
(integer)

Option: MySQL server default file group to read upon connect.

MYSQLND_UH_MYSQLND_SET_CHARSET_DIR
(integer)

Option: charset description files directory.

MYSQLND_UH_MYSQLND_SET_CHARSET_NAME
(integer)

Option: charset name.

MYSQLND_UH_MYSQLND_OPT_LOCAL_INFILE
(integer)

Option: Whether to allow LOAD DATA LOCAL INFILE use.

MYSQLND_UH_MYSQLND_OPT_PROTOCOL
(integer)

Option: supported protocol version.

MYSQLND_UH_MYSQLND_SHARED_MEMORY_BASE_NAME
(integer)

Option: shared memory base name for shared memory connections.

MYSQLND_UH_MYSQLND_OPT_READ_TIMEOUT
(integer)

Option: connection read timeout.

MYSQLND_UH_MYSQLND_OPT_WRITE_TIMEOUT
(integer)

Option: connection write timeout.

MYSQLND_UH_MYSQLND_OPT_USE_RESULT
(integer)

Option: unbuffered result sets.

MYSQLND_UH_MYSQLND_OPT_USE_REMOTE_CONNECTION
(integer)

Embedded server related.

MYSQLND_UH_MYSQLND_OPT_USE_EMBEDDED_CONNECTION
(integer)

Embedded server related.

MYSQLND_UH_MYSQLND_OPT_GUESS_CONNECTION
(integer)

TODO

MYSQLND_UH_MYSQLND_SET_CLIENT_IP
(integer)

TODO

MYSQLND_UH_MYSQLND_SECURE_AUTH
(integer)

TODO

MYSQLND_UH_MYSQLND_REPORT_DATA_TRUNCATION
(integer)

Option: Whether to report data truncation.

MYSQLND_UH_MYSQLND_OPT_RECONNECT
(integer)

Option: Whether to reconnect automatically.

Predefined Constants

602

MYSQLND_UH_MYSQLND_OPT_SSL_VERIFY_SERVER_CERT
(integer)

Option: TODO

MYSQLND_UH_MYSQLND_OPT_NET_CMD_BUFFER_SIZE
(integer)

Option: mysqlnd network buffer size for commands.

MYSQLND_UH_MYSQLND_OPT_NET_READ_BUFFER_SIZE
(integer)

Option: mysqlnd network buffer size for reading from the server.

MYSQLND_UH_MYSQLND_OPT_SSL_KEY
(integer)

Option: SSL key.

MYSQLND_UH_MYSQLND_OPT_SSL_CERT
(integer)

Option: SSL certificate.

MYSQLND_UH_MYSQLND_OPT_SSL_CA
(integer)

Option: SSL CA.

MYSQLND_UH_MYSQLND_OPT_SSL_CAPATH
(integer)

Option: Path to SSL CA.

MYSQLND_UH_MYSQLND_OPT_SSL_CIPHER
(integer)

Option: SSL cipher.

MYSQLND_UH_MYSQLND_OPT_SSL_PASSPHRASE
(integer)

Option: SSL passphrase.

MYSQLND_UH_SERVER_OPTION_PLUGIN_DIR
(integer)

Option: server plugin directory.

MYSQLND_UH_SERVER_OPTION_DEFAULT_AUTH
(integer)

Option: default authentication method.

MYSQLND_UH_SERVER_OPTION_SET_CLIENT_IP
(integer)

TODO

MYSQLND_UH_MYSQLND_OPT_MAX_ALLOWED_PACKET
(integer)

Option: maximum allowed packet size. Available as of PHP 5.4.0.

MYSQLND_UH_MYSQLND_OPT_AUTH_PROTOCOL
(integer)

Option: TODO. Available as of PHP 5.4.0.

MYSQLND_UH_MYSQLND_OPT_INT_AND_FLOAT_NATIVE
(integer)

Option: make mysqlnd return integer and float columns as long even
when using the MySQL Client Server text protocol. Only available with a
custom build of mysqlnd.

Other

The plugins version number can be obtained using MYSQLND_UH_VERSION or
MYSQLND_UH_VERSION_ID. MYSQLND_UH_VERSION is the string representation of the numerical version
number MYSQLND_UH_VERSION_ID, which is an integer such as 10000. Developers can calculate the
version number as follows.

Version (part) Example

Major*10000 1*10000 = 10000

Minor*100 0*100 = 0

Patch 0 = 0

The MysqlndUhConnection class

603

Version (part) Example

MYSQLND_UH_VERSION_ID 10000

MYSQLND_UH_VERSION (string) Plugin version string, for example, “1.0.0-alpha”.

MYSQLND_UH_VERSION_ID
(integer)

Plugin version number, for example, 10000.

9.7 The MysqlndUhConnection class
Copyright 1997-2014 the PHP Documentation Group.

MysqlndUhConnection {
MysqlndUhConnection

 Methods

 public bool MysqlndUhConnection::changeUser(
 mysqlnd_connection connection,
 string user,
 string password,
 string database,
 bool silent,
 int passwd_len);

 public string MysqlndUhConnection::charsetName(
 mysqlnd_connection connection);

 public bool MysqlndUhConnection::close(
 mysqlnd_connection connection,
 int close_type);

 public bool MysqlndUhConnection::connect(
 mysqlnd_connection connection,
 string host,
 string use",
 string password,
 string database,
 int port,
 string socket,
 int mysql_flags);

 public MysqlndUhConnection::__construct();

 public bool MysqlndUhConnection::endPSession(
 mysqlnd_connection connection);

 public string MysqlndUhConnection::escapeString(
 mysqlnd_connection connection,
 string escape_string);

 public int MysqlndUhConnection::getAffectedRows(
 mysqlnd_connection connection);

 public int MysqlndUhConnection::getErrorNumber(
 mysqlnd_connection connection);

 public string MysqlndUhConnection::getErrorString(
 mysqlnd_connection connection);

 public int MysqlndUhConnection::getFieldCount(
 mysqlnd_connection connection);

The MysqlndUhConnection class

604

 public string MysqlndUhConnection::getHostInformation(
 mysqlnd_connection connection);

 public int MysqlndUhConnection::getLastInsertId(
 mysqlnd_connection connection);

 public void MysqlndUhConnection::getLastMessage(
 mysqlnd_connection connection);

 public string MysqlndUhConnection::getProtocolInformation(
 mysqlnd_connection connection);

 public string MysqlndUhConnection::getServerInformation(
 mysqlnd_connection connection);

 public string MysqlndUhConnection::getServerStatistics(
 mysqlnd_connection connection);

 public int MysqlndUhConnection::getServerVersion(
 mysqlnd_connection connection);

 public string MysqlndUhConnection::getSqlstate(
 mysqlnd_connection connection);

 public array MysqlndUhConnection::getStatistics(
 mysqlnd_connection connection);

 public int MysqlndUhConnection::getThreadId(
 mysqlnd_connection connection);

 public int MysqlndUhConnection::getWarningCount(
 mysqlnd_connection connection);

 public bool MysqlndUhConnection::init(
 mysqlnd_connection connection);

 public bool MysqlndUhConnection::killConnection(
 mysqlnd_connection connection,
 int pid);

 public array MysqlndUhConnection::listFields(
 mysqlnd_connection connection,
 string table,
 string achtung_wild);

 public void MysqlndUhConnection::listMethod(
 mysqlnd_connection connection,
 string query,
 string achtung_wild,
 string par1);

 public bool MysqlndUhConnection::moreResults(
 mysqlnd_connection connection);

 public bool MysqlndUhConnection::nextResult(
 mysqlnd_connection connection);

 public bool MysqlndUhConnection::ping(
 mysqlnd_connection connection);

 public bool MysqlndUhConnection::query(
 mysqlnd_connection connection,
 string query);

 public bool MysqlndUhConnection::queryReadResultsetHeader(
 mysqlnd_connection connection,
 mysqlnd_statement mysqlnd_stmt);

The MysqlndUhConnection class

605

 public bool MysqlndUhConnection::reapQuery(
 mysqlnd_connection connection);

 public bool MysqlndUhConnection::refreshServer(
 mysqlnd_connection connection,
 int options);

 public bool MysqlndUhConnection::restartPSession(
 mysqlnd_connection connection);

 public bool MysqlndUhConnection::selectDb(
 mysqlnd_connection connection,
 string database);

 public bool MysqlndUhConnection::sendClose(
 mysqlnd_connection connection);

 public bool MysqlndUhConnection::sendQuery(
 mysqlnd_connection connection,
 string query);

 public bool MysqlndUhConnection::serverDumpDebugInformation(
 mysqlnd_connection connection);

 public bool MysqlndUhConnection::setAutocommit(
 mysqlnd_connection connection,
 int mode);

 public bool MysqlndUhConnection::setCharset(
 mysqlnd_connection connection,
 string charset);

 public bool MysqlndUhConnection::setClientOption(
 mysqlnd_connection connection,
 int option,
 int value);

 public void MysqlndUhConnection::setServerOption(
 mysqlnd_connection connection,
 int option);

 public void MysqlndUhConnection::shutdownServer(
 string MYSQLND_UH_RES_MYSQLND_NAME,
 string "level");

 public bool MysqlndUhConnection::simpleCommand(
 mysqlnd_connection connection,
 int command,
 string arg,
 int ok_packet,
 bool silent,
 bool ignore_upsert_status);

 public bool MysqlndUhConnection::simpleCommandHandleResponse(
 mysqlnd_connection connection,
 int ok_packet,
 bool silent,
 int command,
 bool ignore_upsert_status);

 public bool MysqlndUhConnection::sslSet(
 mysqlnd_connection connection,
 string key,
 string cert,
 string ca,
 string capath,
 string cipher);

MysqlndUhConnection::changeUser

606

 public resource MysqlndUhConnection::stmtInit(
 mysqlnd_connection connection);

 public resource MysqlndUhConnection::storeResult(
 mysqlnd_connection connection);

 public bool MysqlndUhConnection::txCommit(
 mysqlnd_connection connection);

 public bool MysqlndUhConnection::txRollback(
 mysqlnd_connection connection);

 public resource MysqlndUhConnection::useResult(
 mysqlnd_connection connection);

}

9.7.1 MysqlndUhConnection::changeUser

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::changeUser

Changes the user of the specified mysqlnd database connection

Description

 public bool MysqlndUhConnection::changeUser(
 mysqlnd_connection connection,
 string user,
 string password,
 string database,
 bool silent,
 int passwd_len);

Changes the user of the specified mysqlnd database connection

Parameters

connection Mysqlnd connection handle. Do not modify!

user The MySQL user name.

password The MySQL password.

database The MySQL database to change to.

silent Controls if mysqlnd is allowed to emit errors or not.

passwd_len Length of the MySQL password.

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.9 MysqlndUhConnection::changeUser example

<?php
class proxy extends MysqlndUhConnection {
 /* Hook mysqlnd's connection::change_user call */

MysqlndUhConnection::charsetName

607

 public function changeUser($res, $user, $passwd, $db, $silent, $passwd_len) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::changeUser($res, $user, $passwd, $db, $silent, $passwd_len);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
/* Install proxy/hooks to be used with all future mysqlnd connection */
mysqlnd_uh_set_connection_proxy(new proxy());

/* Create mysqli connection which is using the mysqlnd library */
$mysqli = new mysqli("localhost", "root", "", "test");

/* Example of a user API call which triggers the hooked mysqlnd call */
var_dump($mysqli->change_user("root", "bar", "test"));
?>

The above example will output:

proxy::changeUser(array (
 0 => NULL,
 1 => 'root',
 2 => 'bar',
 3 => 'test',
 4 => false,
 5 => 3,
))
proxy::changeUser returns false
bool(false)

See Also

mysqlnd_uh_set_connection_proxy
mysqli_change_user

9.7.2 MysqlndUhConnection::charsetName

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::charsetName

Returns the default character set for the database connection

Description

 public string MysqlndUhConnection::charsetName(
 mysqlnd_connection connection);

Returns the default character set for the database connection.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

The default character set.

MysqlndUhConnection::close

608

Examples

Example 9.10 MysqlndUhConnection::charsetName example

<?php
class proxy extends MysqlndUhConnection {
 public function charsetName($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::charsetName($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
var_dump(mysqli_character_set_name($mysqli));
?>

The above example will output:

proxy::charsetName(array (
 0 => NULL,
))
proxy::charsetName returns 'latin1'
string(6) "latin1"

See Also

mysqlnd_uh_set_connection_proxy
mysqli_character_set_name

9.7.3 MysqlndUhConnection::close

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::close

Closes a previously opened database connection

Description

 public bool MysqlndUhConnection::close(
 mysqlnd_connection connection,
 int close_type);

Closes a previously opened database connection.

Note

Failing to call the parent implementation may cause memory leaks or crash PHP.
This is not considered a bug. Please, keep in mind that the mysqlnd library
functions have never been designed to be exposed to the user space.

Parameters

MysqlndUhConnection::close

609

connection The connection to be closed. Do not modify!

close_type Why the connection is to be closed. The value of close_type
is one of MYSQLND_UH_MYSQLND_CLOSE_EXPLICIT,
MYSQLND_UH_MYSQLND_CLOSE_IMPLICIT,
MYSQLND_UH_MYSQLND_CLOSE_DISCONNECTED or
MYSQLND_UH_MYSQLND_CLOSE_LAST. The latter should never be
seen, unless the default behaviour of the mysqlnd library has been
changed by a plugin.

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.11 MysqlndUhConnection::close example

<?php
function close_type_to_string($close_type) {
 $mapping = array(
 MYSQLND_UH_MYSQLND_CLOSE_DISCONNECTED => "MYSQLND_UH_MYSQLND_CLOSE_DISCONNECTED",
 MYSQLND_UH_MYSQLND_CLOSE_EXPLICIT => "MYSQLND_UH_MYSQLND_CLOSE_EXPLICIT",
 MYSQLND_UH_MYSQLND_CLOSE_IMPLICIT => "MYSQLND_UH_MYSQLND_CLOSE_IMPLICIT",
 MYSQLND_UH_MYSQLND_CLOSE_LAST => "MYSQLND_UH_MYSQLND_CLOSE_IMPLICIT"
);
 return (isset($mapping[$close_type])) ? $mapping[$close_type] : 'unknown';
}

class proxy extends MysqlndUhConnection {
 public function close($res, $close_type) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 printf("close_type = %s\n", close_type_to_string($close_type));
 /* WARNING: you must call the parent */
 $ret = parent::close($res, $close_type);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->close();
?>

The above example will output:

proxy::close(array (
 0 => NULL,
 1 => 0,
))
close_type = MYSQLND_UH_MYSQLND_CLOSE_EXPLICIT
proxy::close returns true

See Also

MysqlndUhConnection::connect

610

mysqlnd_uh_set_connection_proxy
mysqli_close
mysql_close

9.7.4 MysqlndUhConnection::connect

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::connect

Open a new connection to the MySQL server

Description

 public bool MysqlndUhConnection::connect(
 mysqlnd_connection connection,
 string host,
 string use",
 string password,
 string database,
 int port,
 string socket,
 int mysql_flags);

Open a new connection to the MySQL server.

Parameters

connection Mysqlnd connection handle. Do not modify!

host Can be either a host name or an IP address. Passing the NULL value or
the string "localhost" to this parameter, the local host is assumed. When
possible, pipes will be used instead of the TCP/IP protocol.

user The MySQL user name.

password If not provided or NULL, the MySQL server will attempt to authenticate
the user against those user records which have no password only. This
allows one username to be used with different permissions (depending
on if a password as provided or not).

database If provided will specify the default database to be used when performing
queries.

port Specifies the port number to attempt to connect to the MySQL server.

socket Specifies the socket or named pipe that should be used. If NULL,
mysqlnd will default to /tmp/mysql.sock.

mysql_flags Connection options.

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.12 MysqlndUhConnection::connect example

MysqlndUhConnection::__construct

611

<?php
class proxy extends MysqlndUhConnection {
 public function connect($res, $host, $user, $passwd, $db, $port, $socket, $mysql_flags) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::connect($res, $host, $user, $passwd, $db, $port, $socket, $mysql_flags);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
?>

The above example will output:

proxy::connect(array (
 0 => NULL,
 1 => 'localhost',
 2 => 'root',
 3 => '',
 4 => 'test',
 5 => 3306,
 6 => NULL,
 7 => 131072,
))
proxy::connect returns true

See Also

mysqlnd_uh_set_connection_proxy
mysqli_connect
mysql_connect

9.7.5 MysqlndUhConnection::__construct

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::__construct

The __construct purpose

Description

 public MysqlndUhConnection::__construct();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

MysqlndUhConnection::endPSession

612

9.7.6 MysqlndUhConnection::endPSession

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::endPSession

End a persistent connection

Description

 public bool MysqlndUhConnection::endPSession(
 mysqlnd_connection connection);

End a persistent connection

Warning

This function is currently not documented; only its argument list is available.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.13 MysqlndUhConnection::endPSession example

<?php
class proxy extends MysqlndUhConnection {
 public function endPSession($conn) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::endPSession($conn);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("p:localhost", "root", "", "test");
$mysqli->close();
?>

The above example will output:

proxy::endPSession(array (
 0 => NULL,
))
proxy::endPSession returns true

See Also

mysqlnd_uh_set_connection_proxy

MysqlndUhConnection::escapeString

613

9.7.7 MysqlndUhConnection::escapeString

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::escapeString

Escapes special characters in a string for use in an SQL statement, taking into account the current
charset of the connection

Description

 public string MysqlndUhConnection::escapeString(
 mysqlnd_connection connection,
 string escape_string);

Escapes special characters in a string for use in an SQL statement, taking into account the current charset
of the connection.

Parameters

MYSQLND_UH_RES_MYSQLND_NAMEMysqlnd connection handle. Do not modify!

escape_string The string to be escaped.

Return Values

The escaped string.

Examples

Example 9.14 MysqlndUhConnection::escapeString example

<?php
class proxy extends MysqlndUhConnection {
 public function escapeString($res, $string) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::escapeString($res, $string);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->set_charset("latin1");
$mysqli->real_escape_string("test0'test");
?>

The above example will output:

proxy::escapeString(array (
 0 => NULL,
 1 => 'test0\'test',
))
proxy::escapeString returns 'test0\\\'test'

MysqlndUhConnection::getAffectedRows

614

See Also

mysqlnd_uh_set_connection_proxy
mysqli_real_escape_string
mysql_real_escape_string

9.7.8 MysqlndUhConnection::getAffectedRows

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::getAffectedRows

Gets the number of affected rows in a previous MySQL operation

Description

 public int MysqlndUhConnection::getAffectedRows(
 mysqlnd_connection connection);

Gets the number of affected rows in a previous MySQL operation.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Number of affected rows.

Examples

Example 9.15 MysqlndUhConnection::getAffectedRows example

<?php
class proxy extends MysqlndUhConnection {
 public function getAffectedRows($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::getAffectedRows($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT)");
$mysqli->query("INSERT INTO test(id) VALUES (1)");
var_dump($mysqli->affected_rows);
?>

The above example will output:

proxy::getAffectedRows(array (
 0 => NULL,
))
proxy::getAffectedRows returns 1

MysqlndUhConnection::getErrorNumber

615

int(1)

See Also

mysqlnd_uh_set_connection_proxy
mysqli_affected_rows
mysql_affected_rows

9.7.9 MysqlndUhConnection::getErrorNumber

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::getErrorNumber

Returns the error code for the most recent function call

Description

 public int MysqlndUhConnection::getErrorNumber(
 mysqlnd_connection connection);

Returns the error code for the most recent function call.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Error code for the most recent function call.

Examples

MysqlndUhConnection::getErrorNumber is not only executed after the invocation of a user space
API call which maps directly to it but also called internally.

Example 9.16 MysqlndUhConnection::getErrorNumber example

<?php
class proxy extends MysqlndUhConnection {
 public function getErrorNumber($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::getErrorNumber($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

printf("connect...\n");
$mysqli = new mysqli("localhost", "root", "", "test");
printf("query...\n");
$mysqli->query("PLEASE_LET_THIS_BE_INVALID_SQL");
printf("errno...\n");
var_dump($mysqli->errno);
printf("close...\n");
$mysqli->close();
?>

MysqlndUhConnection::getErrorString

616

The above example will output:

connect...
proxy::getErrorNumber(array (
 0 => NULL,
))
proxy::getErrorNumber returns 0
query...
errno...
proxy::getErrorNumber(array (
 0 => NULL,
))
proxy::getErrorNumber returns 1064
int(1064)
close...

See Also

mysqlnd_uh_set_connection_proxy
MysqlndUhConnection::getErrorString
mysqli_errno
mysql_errno

9.7.10 MysqlndUhConnection::getErrorString

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::getErrorString

Returns a string description of the last error

Description

 public string MysqlndUhConnection::getErrorString(
 mysqlnd_connection connection);

Returns a string description of the last error.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Error string for the most recent function call.

Examples

MysqlndUhConnection::getErrorString is not only executed after the invocation of a user space
API call which maps directly to it but also called internally.

Example 9.17 MysqlndUhConnection::getErrorString example

<?php
class proxy extends MysqlndUhConnection {

MysqlndUhConnection::getFieldCount

617

 public function getErrorString($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::getErrorString($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

printf("connect...\n");
$mysqli = new mysqli("localhost", "root", "", "test");
printf("query...\n");
$mysqli->query("WILL_I_EVER_LEARN_SQL?");
printf("errno...\n");
var_dump($mysqli->error);
printf("close...\n");
$mysqli->close();
?>

The above example will output:

connect...
proxy::getErrorString(array (
 0 => NULL,
))
proxy::getErrorString returns ''
query...
errno...
proxy::getErrorString(array (
 0 => NULL,
))
proxy::getErrorString returns 'You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near \'WILL_I_EVER_LEARN_SQL?\' at line 1'
string(168) "You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'WILL_I_EVER_LEARN_SQL?' at line 1"
close...

See Also

mysqlnd_uh_set_connection_proxy
MysqlndUhConnection::getErrorNumber
mysqli_error
mysql_error

9.7.11 MysqlndUhConnection::getFieldCount

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::getFieldCount

Returns the number of columns for the most recent query

Description

 public int MysqlndUhConnection::getFieldCount(
 mysqlnd_connection connection);

Returns the number of columns for the most recent query.

Parameters

MysqlndUhConnection::getHostInformation

618

connection Mysqlnd connection handle. Do not modify!

Return Values

Number of columns.

Examples

MysqlndUhConnection::getFieldCount is not only executed after the invocation of a user space API
call which maps directly to it but also called internally.

Example 9.18 MysqlndUhConnection::getFieldCount example

<?php
class proxy extends MysqlndUhConnection {
 public function getFieldCount($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::getFieldCount($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->query("WILL_I_EVER_LEARN_SQL?");
var_dump($mysqli->field_count);
$mysqli->query("SELECT 1, 2, 3 FROM DUAL");
var_dump($mysqli->field_count);
?>

The above example will output:

proxy::getFieldCount(array (
 0 => NULL,
))
proxy::getFieldCount returns 0
int(0)
proxy::getFieldCount(array (
 0 => NULL,
))
proxy::getFieldCount returns 3
proxy::getFieldCount(array (
 0 => NULL,
))
proxy::getFieldCount returns 3
int(3)

See Also

mysqlnd_uh_set_connection_proxy
mysqli_field_count

9.7.12 MysqlndUhConnection::getHostInformation

Copyright 1997-2014 the PHP Documentation Group.

MysqlndUhConnection::getLastInsertId

619

• MysqlndUhConnection::getHostInformation

Returns a string representing the type of connection used

Description

 public string MysqlndUhConnection::getHostInformation(
 mysqlnd_connection connection);

Returns a string representing the type of connection used.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Connection description.

Examples

Example 9.19 MysqlndUhConnection::getHostInformation example

<?php
class proxy extends MysqlndUhConnection {
 public function getHostInformation($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::getHostInformation($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
var_dump($mysqli->host_info);
?>

The above example will output:

proxy::getHostInformation(array (
 0 => NULL,
))
proxy::getHostInformation returns 'Localhost via UNIX socket'
string(25) "Localhost via UNIX socket"

See Also

mysqlnd_uh_set_connection_proxy
mysqli_get_host_info
mysql_get_host_info

9.7.13 MysqlndUhConnection::getLastInsertId

Copyright 1997-2014 the PHP Documentation Group.

MysqlndUhConnection::getLastInsertId

620

• MysqlndUhConnection::getLastInsertId

Returns the auto generated id used in the last query.

Description

 public int MysqlndUhConnection::getLastInsertId(
 mysqlnd_connection connection);

Returns the auto generated id used in the last query.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Last insert id.

Examples

Example 9.20 MysqlndUhConnection::getLastInsertId example

<?php
class proxy extends MysqlndUhConnection {
 public function getLastInsertId($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::getLastInsertId($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->query("DROP TABLE IF EXISTS test");
$mysqli->query("CREATE TABLE test(id INT AUTO_INCREMENT PRIMARY KEY, col VARCHAR(255))");
$mysqli->query("INSERT INTO test(col) VALUES ('a')");
var_dump($mysqli->insert_id);
?>

The above example will output:

proxy::getLastInsertId(array (
 0 => NULL,
))
proxy::getLastInsertId returns 1
int(1)

See Also

mysqlnd_uh_set_connection_proxy
mysqli_insert_id
mysql_insert_id

MysqlndUhConnection::getLastMessage

621

9.7.14 MysqlndUhConnection::getLastMessage

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::getLastMessage

Retrieves information about the most recently executed query

Description

 public void MysqlndUhConnection::getLastMessage(
 mysqlnd_connection connection);

Retrieves information about the most recently executed query.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Last message. Trying to return a string longer than 511 bytes will cause an error of the type E_WARNING
and result in the string being truncated.

Examples

Example 9.21 MysqlndUhConnection::getLastMessage example

<?php
class proxy extends MysqlndUhConnection {
 public function getLastMessage($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::getLastMessage($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
var_dump($mysqli->info);
$mysqli->query("DROP TABLE IF EXISTS test");
var_dump($mysqli->info);
?>

The above example will output:

proxy::getLastMessage(array (
 0 => NULL,
))
proxy::getLastMessage returns ''
string(0) ""
proxy::getLastMessage(array (
 0 => NULL,
))
proxy::getLastMessage returns ''
string(0) ""

MysqlndUhConnection::getProtocolInformation

622

See Also

mysqlnd_uh_set_connection_proxy
mysqli_info
mysql_info

9.7.15 MysqlndUhConnection::getProtocolInformation

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::getProtocolInformation

Returns the version of the MySQL protocol used

Description

 public string MysqlndUhConnection::getProtocolInformation(
 mysqlnd_connection connection);

Returns the version of the MySQL protocol used.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

The protocol version.

Examples

Example 9.22 MysqlndUhConnection::getProtocolInformation example

<?php
class proxy extends MysqlndUhConnection {
 public function getProtocolInformation($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::getProtocolInformation($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
var_dump($mysqli->protocol_version);
?>

The above example will output:

proxy::getProtocolInformation(array (
 0 => NULL,
))
proxy::getProtocolInformation returns 10
int(10)

MysqlndUhConnection::getServerInformation

623

See Also

mysqlnd_uh_set_connection_proxy
mysqli_get_proto_info
mysql_get_proto_info

9.7.16 MysqlndUhConnection::getServerInformation

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::getServerInformation

Returns the version of the MySQL server

Description

 public string MysqlndUhConnection::getServerInformation(
 mysqlnd_connection connection);

Returns the version of the MySQL server.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

The server version.

Examples

Example 9.23 MysqlndUhConnection::getServerInformation example

<?php
class proxy extends MysqlndUhConnection {
 public function getServerInformation($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::getServerInformation($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
var_dump($mysqli->server_info);
?>

The above example will output:

proxy::getServerInformation(array (
 0 => NULL,
))
proxy::getServerInformation returns '5.1.45-debug-log'
string(16) "5.1.45-debug-log"

MysqlndUhConnection::getServerStatistics

624

See Also

mysqlnd_uh_set_connection_proxy
mysqli_get_server_info
mysql_get_server_info

9.7.17 MysqlndUhConnection::getServerStatistics

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::getServerStatistics

Gets the current system status

Description

 public string MysqlndUhConnection::getServerStatistics(
 mysqlnd_connection connection);

Gets the current system status.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

The system status message.

Examples

Example 9.24 MysqlndUhConnection::getServerStatistics example

<?php
class proxy extends MysqlndUhConnection {
 public function getServerStatistics($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::getServerStatistics($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
var_dump(mysqli_stat($mysqli));
?>

The above example will output:

proxy::getServerStatistics(array (
 0 => NULL,
))
proxy::getServerStatistics returns 'Uptime: 2059995 Threads: 1 Questions: 126157 Slow queries: 0 Opens: 6377 Flush tables: 1 Open tables: 18 Queries per second avg: 0.61'
string(140) "Uptime: 2059995 Threads: 1 Questions: 126157 Slow queries: 0 Opens: 6377 Flush tables: 1 Open tables: 18 Queries per second avg: 0.61"

MysqlndUhConnection::getServerVersion

625

See Also

mysqlnd_uh_set_connection_proxy
mysqli_stat
mysql_stat

9.7.18 MysqlndUhConnection::getServerVersion

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::getServerVersion

Returns the version of the MySQL server as an integer

Description

 public int MysqlndUhConnection::getServerVersion(
 mysqlnd_connection connection);

Returns the version of the MySQL server as an integer.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

The MySQL version.

Examples

Example 9.25 MysqlndUhConnection::getServerVersion example

<?php
class proxy extends MysqlndUhConnection {
 public function getServerVersion($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::getServerVersion($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
var_dump($mysqli->server_version);
?>

The above example will output:

proxy::getServerVersion(array (
 0 => NULL,
))
proxy::getServerVersion returns 50145
int(50145)

MysqlndUhConnection::getSqlstate

626

See Also

mysqlnd_uh_set_connection_proxy
mysqli_get_server_version
mysql_get_server_version

9.7.19 MysqlndUhConnection::getSqlstate

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::getSqlstate

Returns the SQLSTATE error from previous MySQL operation

Description

 public string MysqlndUhConnection::getSqlstate(
 mysqlnd_connection connection);

Returns the SQLSTATE error from previous MySQL operation.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

The SQLSTATE code.

Examples

Example 9.26 MysqlndUhConnection::getSqlstate example

<?php
class proxy extends MysqlndUhConnection {
 public function getSqlstate($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::getSqlstate($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
var_dump($mysqli->sqlstate);
$mysqli->query("AN_INVALID_REQUEST_TO_PROVOKE_AN_ERROR");
var_dump($mysqli->sqlstate);
?>

The above example will output:

proxy::getSqlstate(array (
 0 => NULL,
))

http://www.php.net/mysql_get_server_version

MysqlndUhConnection::getStatistics

627

proxy::getSqlstate returns '00000'
string(5) "00000"
proxy::getSqlstate(array (
 0 => NULL,
))
proxy::getSqlstate returns '42000'
string(5) "42000"

See Also

mysqlnd_uh_set_connection_proxy
mysqli_sql_state

9.7.20 MysqlndUhConnection::getStatistics

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::getStatistics

Returns statistics about the client connection.

Description

 public array MysqlndUhConnection::getStatistics(
 mysqlnd_connection connection);

Returns statistics about the client connection.

Warning

This function is currently not documented; only its argument list is available.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Connection statistics collected by mysqlnd.

Examples

Example 9.27 MysqlndUhConnection::getStatistics example

<?php
class proxy extends MysqlndUhConnection {
 public function getStatistics($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::getStatistics($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
var_dump($mysqli->get_connection_stats());
?>

http://www.php.net/mysqli_sql_state

MysqlndUhConnection::getStatistics

628

The above example will output:

proxy::getStatistics(array (
 0 => NULL,
))
proxy::getStatistics returns array (
 'bytes_sent' => '73',
 'bytes_received' => '77',
 'packets_sent' => '2',
 'packets_received' => '2',
 'protocol_overhead_in' => '8',
 'protocol_overhead_out' => '8',
 'bytes_received_ok_packet' => '0',
 'bytes_received_eof_packet' => '0',
 'bytes_received_rset_header_packet' => '0',
 'bytes_received_rset_field_meta_packet' => '0',
 'bytes_received_rset_row_packet' => '0',
 'bytes_received_prepare_response_packet' => '0',
 'bytes_received_change_user_packet' => '0',
 'packets_sent_command' => '0',
 'packets_received_ok' => '0',
 'packets_received_eof' => '0',
 'packets_received_rset_header' => '0',
 'packets_received_rset_field_meta' => '0',
 'packets_received_rset_row' => '0',
 'packets_received_prepare_response' => '0',
 'packets_received_change_user' => '0',
 'result_set_queries' => '0',
 'non_result_set_queries' => '0',
 'no_index_used' => '0',
 'bad_index_used' => '0',
 'slow_queries' => '0',
 'buffered_sets' => '0',
 'unbuffered_sets' => '0',
 'ps_buffered_sets' => '0',
 'ps_unbuffered_sets' => '0',
 'flushed_normal_sets' => '0',
 'flushed_ps_sets' => '0',
 'ps_prepared_never_executed' => '0',
 'ps_prepared_once_executed' => '0',
 'rows_fetched_from_server_normal' => '0',
 'rows_fetched_from_server_ps' => '0',
 'rows_buffered_from_client_normal' => '0',
 'rows_buffered_from_client_ps' => '0',
 'rows_fetched_from_client_normal_buffered' => '0',
 'rows_fetched_from_client_normal_unbuffered' => '0',
 'rows_fetched_from_client_ps_buffered' => '0',
 'rows_fetched_from_client_ps_unbuffered' => '0',
 'rows_fetched_from_client_ps_cursor' => '0',
 'rows_affected_normal' => '0',
 'rows_affected_ps' => '0',
 'rows_skipped_normal' => '0',
 'rows_skipped_ps' => '0',
 'copy_on_write_saved' => '0',
 'copy_on_write_performed' => '0',
 'command_buffer_too_small' => '0',
 'connect_success' => '1',
 'connect_failure' => '0',
 'connection_reused' => '0',
 'reconnect' => '0',
 'pconnect_success' => '0',
 'active_connections' => '1',
 'active_persistent_connections' => '0',

MysqlndUhConnection::getStatistics

629

 'explicit_close' => '0',
 'implicit_close' => '0',
 'disconnect_close' => '0',
 'in_middle_of_command_close' => '0',
 'explicit_free_result' => '0',
 'implicit_free_result' => '0',
 'explicit_stmt_close' => '0',
 'implicit_stmt_close' => '0',
 'mem_emalloc_count' => '0',
 'mem_emalloc_amount' => '0',
 'mem_ecalloc_count' => '0',
 'mem_ecalloc_amount' => '0',
 'mem_erealloc_count' => '0',
 'mem_erealloc_amount' => '0',
 'mem_efree_count' => '0',
 'mem_efree_amount' => '0',
 'mem_malloc_count' => '0',
 'mem_malloc_amount' => '0',
 'mem_calloc_count' => '0',
 'mem_calloc_amount' => '0',
 'mem_realloc_count' => '0',
 'mem_realloc_amount' => '0',
 'mem_free_count' => '0',
 'mem_free_amount' => '0',
 'mem_estrndup_count' => '0',
 'mem_strndup_count' => '0',
 'mem_estndup_count' => '0',
 'mem_strdup_count' => '0',
 'proto_text_fetched_null' => '0',
 'proto_text_fetched_bit' => '0',
 'proto_text_fetched_tinyint' => '0',
 'proto_text_fetched_short' => '0',
 'proto_text_fetched_int24' => '0',
 'proto_text_fetched_int' => '0',
 'proto_text_fetched_bigint' => '0',
 'proto_text_fetched_decimal' => '0',
 'proto_text_fetched_float' => '0',
 'proto_text_fetched_double' => '0',
 'proto_text_fetched_date' => '0',
 'proto_text_fetched_year' => '0',
 'proto_text_fetched_time' => '0',
 'proto_text_fetched_datetime' => '0',
 'proto_text_fetched_timestamp' => '0',
 'proto_text_fetched_string' => '0',
 'proto_text_fetched_blob' => '0',
 'proto_text_fetched_enum' => '0',
 'proto_text_fetched_set' => '0',
 'proto_text_fetched_geometry' => '0',
 'proto_text_fetched_other' => '0',
 'proto_binary_fetched_null' => '0',
 'proto_binary_fetched_bit' => '0',
 'proto_binary_fetched_tinyint' => '0',
 'proto_binary_fetched_short' => '0',
 'proto_binary_fetched_int24' => '0',
 'proto_binary_fetched_int' => '0',
 'proto_binary_fetched_bigint' => '0',
 'proto_binary_fetched_decimal' => '0',
 'proto_binary_fetched_float' => '0',
 'proto_binary_fetched_double' => '0',
 'proto_binary_fetched_date' => '0',
 'proto_binary_fetched_year' => '0',
 'proto_binary_fetched_time' => '0',
 'proto_binary_fetched_datetime' => '0',
 'proto_binary_fetched_timestamp' => '0',
 'proto_binary_fetched_string' => '0',
 'proto_binary_fetched_blob' => '0',
 'proto_binary_fetched_enum' => '0',

MysqlndUhConnection::getStatistics

630

 'proto_binary_fetched_set' => '0',
 'proto_binary_fetched_geometry' => '0',
 'proto_binary_fetched_other' => '0',
 'init_command_executed_count' => '0',
 'init_command_failed_count' => '0',
 'com_quit' => '0',
 'com_init_db' => '0',
 'com_query' => '0',
 'com_field_list' => '0',
 'com_create_db' => '0',
 'com_drop_db' => '0',
 'com_refresh' => '0',
 'com_shutdown' => '0',
 'com_statistics' => '0',
 'com_process_info' => '0',
 'com_connect' => '0',
 'com_process_kill' => '0',
 'com_debug' => '0',
 'com_ping' => '0',
 'com_time' => '0',
 'com_delayed_insert' => '0',
 'com_change_user' => '0',
 'com_binlog_dump' => '0',
 'com_table_dump' => '0',
 'com_connect_out' => '0',
 'com_register_slave' => '0',
 'com_stmt_prepare' => '0',
 'com_stmt_execute' => '0',
 'com_stmt_send_long_data' => '0',
 'com_stmt_close' => '0',
 'com_stmt_reset' => '0',
 'com_stmt_set_option' => '0',
 'com_stmt_fetch' => '0',
 'com_deamon' => '0',
 'bytes_received_real_data_normal' => '0',
 'bytes_received_real_data_ps' => '0',
)
array(160) {
 ["bytes_sent"]=>
 string(2) "73"
 ["bytes_received"]=>
 string(2) "77"
 ["packets_sent"]=>
 string(1) "2"
 ["packets_received"]=>
 string(1) "2"
 ["protocol_overhead_in"]=>
 string(1) "8"
 ["protocol_overhead_out"]=>
 string(1) "8"
 ["bytes_received_ok_packet"]=>
 string(1) "0"
 ["bytes_received_eof_packet"]=>
 string(1) "0"
 ["bytes_received_rset_header_packet"]=>
 string(1) "0"
 ["bytes_received_rset_field_meta_packet"]=>
 string(1) "0"
 ["bytes_received_rset_row_packet"]=>
 string(1) "0"
 ["bytes_received_prepare_response_packet"]=>
 string(1) "0"
 ["bytes_received_change_user_packet"]=>
 string(1) "0"
 ["packets_sent_command"]=>
 string(1) "0"
 ["packets_received_ok"]=>

MysqlndUhConnection::getStatistics

631

 string(1) "0"
 ["packets_received_eof"]=>
 string(1) "0"
 ["packets_received_rset_header"]=>
 string(1) "0"
 ["packets_received_rset_field_meta"]=>
 string(1) "0"
 ["packets_received_rset_row"]=>
 string(1) "0"
 ["packets_received_prepare_response"]=>
 string(1) "0"
 ["packets_received_change_user"]=>
 string(1) "0"
 ["result_set_queries"]=>
 string(1) "0"
 ["non_result_set_queries"]=>
 string(1) "0"
 ["no_index_used"]=>
 string(1) "0"
 ["bad_index_used"]=>
 string(1) "0"
 ["slow_queries"]=>
 string(1) "0"
 ["buffered_sets"]=>
 string(1) "0"
 ["unbuffered_sets"]=>
 string(1) "0"
 ["ps_buffered_sets"]=>
 string(1) "0"
 ["ps_unbuffered_sets"]=>
 string(1) "0"
 ["flushed_normal_sets"]=>
 string(1) "0"
 ["flushed_ps_sets"]=>
 string(1) "0"
 ["ps_prepared_never_executed"]=>
 string(1) "0"
 ["ps_prepared_once_executed"]=>
 string(1) "0"
 ["rows_fetched_from_server_normal"]=>
 string(1) "0"
 ["rows_fetched_from_server_ps"]=>
 string(1) "0"
 ["rows_buffered_from_client_normal"]=>
 string(1) "0"
 ["rows_buffered_from_client_ps"]=>
 string(1) "0"
 ["rows_fetched_from_client_normal_buffered"]=>
 string(1) "0"
 ["rows_fetched_from_client_normal_unbuffered"]=>
 string(1) "0"
 ["rows_fetched_from_client_ps_buffered"]=>
 string(1) "0"
 ["rows_fetched_from_client_ps_unbuffered"]=>
 string(1) "0"
 ["rows_fetched_from_client_ps_cursor"]=>
 string(1) "0"
 ["rows_affected_normal"]=>
 string(1) "0"
 ["rows_affected_ps"]=>
 string(1) "0"
 ["rows_skipped_normal"]=>
 string(1) "0"
 ["rows_skipped_ps"]=>
 string(1) "0"
 ["copy_on_write_saved"]=>
 string(1) "0"

MysqlndUhConnection::getStatistics

632

 ["copy_on_write_performed"]=>
 string(1) "0"
 ["command_buffer_too_small"]=>
 string(1) "0"
 ["connect_success"]=>
 string(1) "1"
 ["connect_failure"]=>
 string(1) "0"
 ["connection_reused"]=>
 string(1) "0"
 ["reconnect"]=>
 string(1) "0"
 ["pconnect_success"]=>
 string(1) "0"
 ["active_connections"]=>
 string(1) "1"
 ["active_persistent_connections"]=>
 string(1) "0"
 ["explicit_close"]=>
 string(1) "0"
 ["implicit_close"]=>
 string(1) "0"
 ["disconnect_close"]=>
 string(1) "0"
 ["in_middle_of_command_close"]=>
 string(1) "0"
 ["explicit_free_result"]=>
 string(1) "0"
 ["implicit_free_result"]=>
 string(1) "0"
 ["explicit_stmt_close"]=>
 string(1) "0"
 ["implicit_stmt_close"]=>
 string(1) "0"
 ["mem_emalloc_count"]=>
 string(1) "0"
 ["mem_emalloc_amount"]=>
 string(1) "0"
 ["mem_ecalloc_count"]=>
 string(1) "0"
 ["mem_ecalloc_amount"]=>
 string(1) "0"
 ["mem_erealloc_count"]=>
 string(1) "0"
 ["mem_erealloc_amount"]=>
 string(1) "0"
 ["mem_efree_count"]=>
 string(1) "0"
 ["mem_efree_amount"]=>
 string(1) "0"
 ["mem_malloc_count"]=>
 string(1) "0"
 ["mem_malloc_amount"]=>
 string(1) "0"
 ["mem_calloc_count"]=>
 string(1) "0"
 ["mem_calloc_amount"]=>
 string(1) "0"
 ["mem_realloc_count"]=>
 string(1) "0"
 ["mem_realloc_amount"]=>
 string(1) "0"
 ["mem_free_count"]=>
 string(1) "0"
 ["mem_free_amount"]=>
 string(1) "0"
 ["mem_estrndup_count"]=>

MysqlndUhConnection::getStatistics

633

 string(1) "0"
 ["mem_strndup_count"]=>
 string(1) "0"
 ["mem_estndup_count"]=>
 string(1) "0"
 ["mem_strdup_count"]=>
 string(1) "0"
 ["proto_text_fetched_null"]=>
 string(1) "0"
 ["proto_text_fetched_bit"]=>
 string(1) "0"
 ["proto_text_fetched_tinyint"]=>
 string(1) "0"
 ["proto_text_fetched_short"]=>
 string(1) "0"
 ["proto_text_fetched_int24"]=>
 string(1) "0"
 ["proto_text_fetched_int"]=>
 string(1) "0"
 ["proto_text_fetched_bigint"]=>
 string(1) "0"
 ["proto_text_fetched_decimal"]=>
 string(1) "0"
 ["proto_text_fetched_float"]=>
 string(1) "0"
 ["proto_text_fetched_double"]=>
 string(1) "0"
 ["proto_text_fetched_date"]=>
 string(1) "0"
 ["proto_text_fetched_year"]=>
 string(1) "0"
 ["proto_text_fetched_time"]=>
 string(1) "0"
 ["proto_text_fetched_datetime"]=>
 string(1) "0"
 ["proto_text_fetched_timestamp"]=>
 string(1) "0"
 ["proto_text_fetched_string"]=>
 string(1) "0"
 ["proto_text_fetched_blob"]=>
 string(1) "0"
 ["proto_text_fetched_enum"]=>
 string(1) "0"
 ["proto_text_fetched_set"]=>
 string(1) "0"
 ["proto_text_fetched_geometry"]=>
 string(1) "0"
 ["proto_text_fetched_other"]=>
 string(1) "0"
 ["proto_binary_fetched_null"]=>
 string(1) "0"
 ["proto_binary_fetched_bit"]=>
 string(1) "0"
 ["proto_binary_fetched_tinyint"]=>
 string(1) "0"
 ["proto_binary_fetched_short"]=>
 string(1) "0"
 ["proto_binary_fetched_int24"]=>
 string(1) "0"
 ["proto_binary_fetched_int"]=>
 string(1) "0"
 ["proto_binary_fetched_bigint"]=>
 string(1) "0"
 ["proto_binary_fetched_decimal"]=>
 string(1) "0"
 ["proto_binary_fetched_float"]=>
 string(1) "0"

MysqlndUhConnection::getStatistics

634

 ["proto_binary_fetched_double"]=>
 string(1) "0"
 ["proto_binary_fetched_date"]=>
 string(1) "0"
 ["proto_binary_fetched_year"]=>
 string(1) "0"
 ["proto_binary_fetched_time"]=>
 string(1) "0"
 ["proto_binary_fetched_datetime"]=>
 string(1) "0"
 ["proto_binary_fetched_timestamp"]=>
 string(1) "0"
 ["proto_binary_fetched_string"]=>
 string(1) "0"
 ["proto_binary_fetched_blob"]=>
 string(1) "0"
 ["proto_binary_fetched_enum"]=>
 string(1) "0"
 ["proto_binary_fetched_set"]=>
 string(1) "0"
 ["proto_binary_fetched_geometry"]=>
 string(1) "0"
 ["proto_binary_fetched_other"]=>
 string(1) "0"
 ["init_command_executed_count"]=>
 string(1) "0"
 ["init_command_failed_count"]=>
 string(1) "0"
 ["com_quit"]=>
 string(1) "0"
 ["com_init_db"]=>
 string(1) "0"
 ["com_query"]=>
 string(1) "0"
 ["com_field_list"]=>
 string(1) "0"
 ["com_create_db"]=>
 string(1) "0"
 ["com_drop_db"]=>
 string(1) "0"
 ["com_refresh"]=>
 string(1) "0"
 ["com_shutdown"]=>
 string(1) "0"
 ["com_statistics"]=>
 string(1) "0"
 ["com_process_info"]=>
 string(1) "0"
 ["com_connect"]=>
 string(1) "0"
 ["com_process_kill"]=>
 string(1) "0"
 ["com_debug"]=>
 string(1) "0"
 ["com_ping"]=>
 string(1) "0"
 ["com_time"]=>
 string(1) "0"
 ["com_delayed_insert"]=>
 string(1) "0"
 ["com_change_user"]=>
 string(1) "0"
 ["com_binlog_dump"]=>
 string(1) "0"
 ["com_table_dump"]=>
 string(1) "0"
 ["com_connect_out"]=>

MysqlndUhConnection::getThreadId

635

 string(1) "0"
 ["com_register_slave"]=>
 string(1) "0"
 ["com_stmt_prepare"]=>
 string(1) "0"
 ["com_stmt_execute"]=>
 string(1) "0"
 ["com_stmt_send_long_data"]=>
 string(1) "0"
 ["com_stmt_close"]=>
 string(1) "0"
 ["com_stmt_reset"]=>
 string(1) "0"
 ["com_stmt_set_option"]=>
 string(1) "0"
 ["com_stmt_fetch"]=>
 string(1) "0"
 ["com_deamon"]=>
 string(1) "0"
 ["bytes_received_real_data_normal"]=>
 string(1) "0"
 ["bytes_received_real_data_ps"]=>
 string(1) "0"
}

See Also

mysqlnd_uh_set_connection_proxy
mysqli_get_connection_stats

9.7.21 MysqlndUhConnection::getThreadId

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::getThreadId

Returns the thread ID for the current connection

Description

 public int MysqlndUhConnection::getThreadId(
 mysqlnd_connection connection);

Returns the thread ID for the current connection.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Connection thread id.

Examples

Example 9.28 MysqlndUhConnection::getThreadId example

<?php
class proxy extends MysqlndUhConnection {

MysqlndUhConnection::getWarningCount

636

 public function getThreadId($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::getThreadId($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
var_dump($mysqli->thread_id);
?>

The above example will output:

proxy::getThreadId(array (
 0 => NULL,
))
proxy::getThreadId returns 27646
int(27646)

See Also

mysqlnd_uh_set_connection_proxy
mysqli_thread_id
mysql_thread_id

9.7.22 MysqlndUhConnection::getWarningCount

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::getWarningCount

Returns the number of warnings from the last query for the given link

Description

 public int MysqlndUhConnection::getWarningCount(
 mysqlnd_connection connection);

Returns the number of warnings from the last query for the given link.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Number of warnings.

Examples

Example 9.29 MysqlndUhConnection::getWarningCount example

MysqlndUhConnection::init

637

<?php
class proxy extends MysqlndUhConnection {
 public function getWarningCount($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::getWarningCount($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
var_dump($mysqli->warning_count);
?>

The above example will output:

proxy::getWarningCount(array (
 0 => NULL,
))
proxy::getWarningCount returns 0
int(0)

See Also

mysqlnd_uh_set_connection_proxy
mysqli_warning_count

9.7.23 MysqlndUhConnection::init

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::init

Initialize mysqlnd connection

Description

 public bool MysqlndUhConnection::init(
 mysqlnd_connection connection);

Initialize mysqlnd connection. This is an mysqlnd internal call to initialize the connection object.

Note

Failing to call the parent implementation may cause memory leaks or crash PHP.
This is not considered a bug. Please, keep in mind that the mysqlnd library
functions have never been designed to be exposed to the user space.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Returns TRUE on success. Otherwise, returns FALSE

MysqlndUhConnection::killConnection

638

Examples

Example 9.30 MysqlndUhConnection::init example

<?php
class proxy extends MysqlndUhConnection {
 public function init($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::init($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
?>

The above example will output:

proxy::init(array (
 0 => NULL,
))
proxy::init returns true

See Also

mysqlnd_uh_set_connection_proxy

9.7.24 MysqlndUhConnection::killConnection

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::killConnection

Asks the server to kill a MySQL thread

Description

 public bool MysqlndUhConnection::killConnection(
 mysqlnd_connection connection,
 int pid);

Asks the server to kill a MySQL thread.

Parameters

connection Mysqlnd connection handle. Do not modify!

pid Thread Id of the connection to be killed.

Return Values

Returns TRUE on success. Otherwise, returns FALSE

MysqlndUhConnection::listFields

639

Examples

Example 9.31 MysqlndUhConnection::kill example

<?php
class proxy extends MysqlndUhConnection {
 public function killConnection($res, $pid) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::killConnection($res, $pid);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->kill($mysqli->thread_id);
?>

The above example will output:

proxy::killConnection(array (
 0 => NULL,
 1 => 27650,
))
proxy::killConnection returns true

See Also

mysqlnd_uh_set_connection_proxy
mysqli_kill

9.7.25 MysqlndUhConnection::listFields

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::listFields

List MySQL table fields

Description

 public array MysqlndUhConnection::listFields(
 mysqlnd_connection connection,
 string table,
 string achtung_wild);

List MySQL table fields.

Warning

This function is currently not documented; only its argument list is available.

Parameters

http://www.php.net/MysqlndUhConnection::kill

MysqlndUhConnection::listMethod

640

connection Mysqlnd connection handle. Do not modify!

table The name of the table that's being queried.

pattern Name pattern.

Return Values

Examples

Example 9.32 MysqlndUhConnection::listFields example

<?php
class proxy extends MysqlndUhConnection {
 public function listFields($res, $table, $pattern) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::listFields($res, $table, $pattern);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysql = mysql_connect("localhost", "root", "");
mysql_select_db("test", $mysql);
mysql_query("DROP TABLE IF EXISTS test_a", $mysql);
mysql_query("CREATE TABLE test_a(id INT, col1 VARCHAR(255))", $mysql);
$res = mysql_list_fields("test", "test_a", $mysql);
printf("num_rows = %d\n", mysql_num_rows($res));
while ($row = mysql_fetch_assoc($res))
 var_dump($row);
?>

The above example will output:

proxy::listFields(array (
 0 => NULL,
 1 => 'test_a',
 2 => '',
))
proxy::listFields returns NULL
num_rows = 0

See Also

mysqlnd_uh_set_connection_proxy
mysql_list_fields

9.7.26 MysqlndUhConnection::listMethod

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::listMethod

Wrapper for assorted list commands

MysqlndUhConnection::listMethod

641

Description

 public void MysqlndUhConnection::listMethod(
 mysqlnd_connection connection,
 string query,
 string achtung_wild,
 string par1);

Wrapper for assorted list commands.

Warning

This function is currently not documented; only its argument list is available.

Parameters

connection Mysqlnd connection handle. Do not modify!

query SHOW command to be executed.

achtung_wild

par1

Return Values

Return Values

TODO

Examples

Example 9.33 MysqlndUhConnection::listMethod example

<?php
class proxy extends MysqlndUhConnection {
 public function listMethod($res, $query, $pattern, $par1) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::listMethod($res, $query, $pattern, $par1);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysql = mysql_connect("localhost", "root", "");
$res = mysql_list_dbs($mysql);
printf("num_rows = %d\n", mysql_num_rows($res));
while ($row = mysql_fetch_assoc($res))
 var_dump($row);
?>

The above example will output:

proxy::listMethod(array (
 0 => NULL,

MysqlndUhConnection::moreResults

642

 1 => 'SHOW DATABASES',
 2 => '',
 3 => '',
))
proxy::listMethod returns NULL
num_rows = 6
array(1) {
 ["Database"]=>
 string(18) "information_schema"
}
array(1) {
 ["Database"]=>
 string(5) "mysql"
}
array(1) {
 ["Database"]=>
 string(8) "oxid_new"
}
array(1) {
 ["Database"]=>
 string(7) "phptest"
}
array(1) {
 ["Database"]=>
 string(7) "pushphp"
}
array(1) {
 ["Database"]=>
 string(4) "test"
}

See Also

mysqlnd_uh_set_connection_proxy
mysql_list_dbs

9.7.27 MysqlndUhConnection::moreResults

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::moreResults

Check if there are any more query results from a multi query

Description

 public bool MysqlndUhConnection::moreResults(
 mysqlnd_connection connection);

Check if there are any more query results from a multi query.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

MysqlndUhConnection::nextResult

643

Example 9.34 MysqlndUhConnection::moreResults example

<?php
class proxy extends MysqlndUhConnection {
 public function moreResults($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::moreResults($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->multi_query("SELECT 1 AS _one; SELECT 2 AS _two");
do {
 $res = $mysqli->store_result();
 var_dump($res->fetch_assoc());
 printf("%s\n", str_repeat("-", 40));
} while ($mysqli->more_results() && $mysqli->next_result());
?>

The above example will output:

array(1) {
 ["_one"]=>
 string(1) "1"
}
--
proxy::moreResults(array (
 0 => NULL,
))
proxy::moreResults returns true
proxy::moreResults(array (
 0 => NULL,
))
proxy::moreResults returns true
array(1) {
 ["_two"]=>
 string(1) "2"
}
--
proxy::moreResults(array (
 0 => NULL,
))
proxy::moreResults returns false

See Also

mysqlnd_uh_set_connection_proxy
mysqli_more_results

9.7.28 MysqlndUhConnection::nextResult

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::nextResult

MysqlndUhConnection::nextResult

644

Prepare next result from multi_query

Description

 public bool MysqlndUhConnection::nextResult(
 mysqlnd_connection connection);

Prepare next result from multi_query.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.35 MysqlndUhConnection::nextResult example

<?php
class proxy extends MysqlndUhConnection {
 public function nextResult($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::nextResult($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->multi_query("SELECT 1 AS _one; SELECT 2 AS _two");
do {
 $res = $mysqli->store_result();
 var_dump($res->fetch_assoc());
 printf("%s\n", str_repeat("-", 40));
} while ($mysqli->more_results() && $mysqli->next_result());
?>

The above example will output:

array(1) {
 ["_one"]=>
 string(1) "1"
}
--
proxy::nextResult(array (
 0 => NULL,
))
proxy::nextResult returns true
array(1) {
 ["_two"]=>
 string(1) "2"
}
--

MysqlndUhConnection::ping

645

See Also

mysqlnd_uh_set_connection_proxy
mysqli_next_result

9.7.29 MysqlndUhConnection::ping

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::ping

Pings a server connection, or tries to reconnect if the connection has gone down

Description

 public bool MysqlndUhConnection::ping(
 mysqlnd_connection connection);

Pings a server connection, or tries to reconnect if the connection has gone down.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.36 MysqlndUhConnection::ping example

<?php
class proxy extends MysqlndUhConnection {
 public function ping($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::ping($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->ping();
?>

The above example will output:

proxy::ping(array (
 0 => NULL,
))
proxy::ping returns true

MysqlndUhConnection::query

646

See Also

mysqlnd_uh_set_connection_proxy
mysqli_ping
mysql_ping

9.7.30 MysqlndUhConnection::query

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::query

Performs a query on the database

Description

 public bool MysqlndUhConnection::query(
 mysqlnd_connection connection,
 string query);

Performs a query on the database (COM_QUERY).

Parameters

connection Mysqlnd connection handle. Do not modify!

query The query string.

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.37 MysqlndUhConnection::query example

<?php
class proxy extends MysqlndUhConnection {
 public function query($res, $query) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $query = "SELECT 'How about query rewriting?'";
 $ret = parent::query($res, $query);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
$res = $mysqli->query("SELECT 'Welcome mysqlnd_uh!' FROM DUAL");
var_dump($res->fetch_assoc());
?>

The above example will output:

proxy::query(array (

MysqlndUhConnection::queryReadResultsetHeader

647

 0 => NULL,
 1 => 'SELECT \'Welcome mysqlnd_uh!\' FROM DUAL',
))
proxy::query returns true
array(1) {
 ["How about query rewriting?"]=>
 string(26) "How about query rewriting?"
}

See Also

mysqlnd_uh_set_connection_proxy
mysqli_query
mysql_query

9.7.31 MysqlndUhConnection::queryReadResultsetHeader

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::queryReadResultsetHeader

Read a result set header

Description

 public bool MysqlndUhConnection::queryReadResultsetHeader(
 mysqlnd_connection connection,
 mysqlnd_statement mysqlnd_stmt);

Read a result set header.

Parameters

connection Mysqlnd connection handle. Do not modify!

mysqlnd_stmt Mysqlnd statement handle. Do not modify! Set to NULL, if function is not
used in the context of a prepared statement.

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.38 MysqlndUhConnection::queryReadResultsetHeader example

<?php
class proxy extends MysqlndUhConnection {
 public function queryReadResultsetHeader($res, $stmt) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::queryReadResultsetHeader($res, $stmt);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");

MysqlndUhConnection::reapQuery

648

$res = $mysqli->query("SELECT 'Welcome mysqlnd_uh!' FROM DUAL");
var_dump($res->fetch_assoc());
?>

The above example will output:

proxy::queryReadResultsetHeader(array (
 0 => NULL,
 1 => NULL,
))
proxy::queryReadResultsetHeader returns true
array(1) {
 ["Welcome mysqlnd_uh!"]=>
 string(19) "Welcome mysqlnd_uh!"
}

See Also

mysqlnd_uh_set_connection_proxy

9.7.32 MysqlndUhConnection::reapQuery

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::reapQuery

Get result from async query

Description

 public bool MysqlndUhConnection::reapQuery(
 mysqlnd_connection connection);

Get result from async query.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.39 MysqlndUhConnection::reapQuery example

<?php
class proxy extends MysqlndUhConnection {
 public function reapQuery($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::reapQuery($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }

MysqlndUhConnection::reapQuery

649

}
mysqlnd_uh_set_connection_proxy(new proxy());

$conn1 = new mysqli("localhost", "root", "", "test");
$conn2 = new mysqli("localhost", "root", "", "test");

$conn1->query("SELECT 1 as 'one', SLEEP(1) AS _sleep FROM DUAL", MYSQLI_ASYNC | MYSQLI_USE_RESULT);
$conn2->query("SELECT 1.1 as 'one dot one' FROM DUAL", MYSQLI_ASYNC | MYSQLI_USE_RESULT);

$links = array(
 $conn1->thread_id => array('link' => $conn1, 'processed' => false),
 $conn2->thread_id => array('link' => $conn2, 'processed' => false)
);

$saved_errors = array();
do {
 $poll_links = $poll_errors = $poll_reject = array();
 foreach ($links as $thread_id => $link) {
 if (!$link['processed']) {
 $poll_links[] = $link['link'];
 $poll_errors[] = $link['link'];
 $poll_reject[] = $link['link'];
 }
 }
 if (0 == count($poll_links))
 break;

 if (0 == ($num_ready = mysqli_poll($poll_links, $poll_errors, $poll_reject, 0, 200000)))
 continue;

 if (!empty($poll_errors)) {
 die(var_dump($poll_errors));
 }

 foreach ($poll_links as $link) {
 $thread_id = mysqli_thread_id($link);
 $links[$thread_id]['processed'] = true;

 if (is_object($res = mysqli_reap_async_query($link))) {
 // result set object
 while ($row = mysqli_fetch_assoc($res)) {
 // eat up all results
 var_dump($row);
 }
 mysqli_free_result($res);
 } else {
 // either there is no result (no SELECT) or there is an error
 if (mysqli_errno($link) > 0) {
 $saved_errors[$thread_id] = mysqli_errno($link);
 printf("'%s' caused %d\n", $links[$thread_id]['query'], mysqli_errno($link));
 }
 }
 }
} while (true);
?>

The above example will output:

proxy::reapQuery(array (
 0 => NULL,
))
proxy::reapQuery returns true
array(1) {

MysqlndUhConnection::refreshServer

650

 ["one dot one"]=>
 string(3) "1.1"
}
proxy::reapQuery(array (
 0 => NULL,
))
proxy::reapQuery returns true
array(2) {
 ["one"]=>
 string(1) "1"
 ["_sleep"]=>
 string(1) "0"
}

See Also

mysqlnd_uh_set_connection_proxy
mysqli_real_async_query

9.7.33 MysqlndUhConnection::refreshServer

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::refreshServer

Flush or reset tables and caches

Description

 public bool MysqlndUhConnection::refreshServer(
 mysqlnd_connection connection,
 int options);

Flush or reset tables and caches.

Warning

This function is currently not documented; only its argument list is available.

Parameters

connection Mysqlnd connection handle. Do not modify!

options What to refresh.

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.40 MysqlndUhConnection::refreshServer example

<?php
class proxy extends MysqlndUhConnection {
 public function refreshServer($res, $option) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::refreshServer($res, $option);

http://www.php.net/mysqli_real_async_query

MysqlndUhConnection::restartPSession

651

 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
mysqli_refresh($mysqli, 1);
?>

The above example will output:

proxy::refreshServer(array (
 0 => NULL,
 1 => 1,
))
proxy::refreshServer returns false

See Also

mysqlnd_uh_set_connection_proxy

9.7.34 MysqlndUhConnection::restartPSession

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::restartPSession

Restart a persistent mysqlnd connection

Description

 public bool MysqlndUhConnection::restartPSession(
 mysqlnd_connection connection);

Restart a persistent mysqlnd connection.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.41 MysqlndUhConnection::restartPSession example

<?php
class proxy extends MysqlndUhConnection {
 public function ping($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::ping($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;

MysqlndUhConnection::selectDb

652

 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->ping();
?>

The above example will output:

proxy::restartPSession(array (
 0 => NULL,
))
proxy::restartPSession returns true

See Also

mysqlnd_uh_set_connection_proxy

9.7.35 MysqlndUhConnection::selectDb

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::selectDb

Selects the default database for database queries

Description

 public bool MysqlndUhConnection::selectDb(
 mysqlnd_connection connection,
 string database);

Selects the default database for database queries.

Parameters

connection Mysqlnd connection handle. Do not modify!

database The database name.

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.42 MysqlndUhConnection::selectDb example

<?php
class proxy extends MysqlndUhConnection {
 public function selectDb($res, $database) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::selectDb($res, $database);

MysqlndUhConnection::sendClose

653

 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->select_db("mysql");
?>

The above example will output:

proxy::selectDb(array (
 0 => NULL,
 1 => 'mysql',
))
proxy::selectDb returns true

See Also

mysqlnd_uh_set_connection_proxy
mysqli_select_db
mysql_select_db

9.7.36 MysqlndUhConnection::sendClose

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::sendClose

Sends a close command to MySQL

Description

 public bool MysqlndUhConnection::sendClose(
 mysqlnd_connection connection);

Sends a close command to MySQL.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.43 MysqlndUhConnection::sendClose example

<?php
class proxy extends MysqlndUhConnection {
 public function sendClose($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));

MysqlndUhConnection::sendQuery

654

 $ret = parent::sendClose($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->close();
?>

The above example will output:

proxy::sendClose(array (
 0 => NULL,
))
proxy::sendClose returns true
proxy::sendClose(array (
 0 => NULL,
))
proxy::sendClose returns true

See Also

mysqlnd_uh_set_connection_proxy

9.7.37 MysqlndUhConnection::sendQuery

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::sendQuery

Sends a query to MySQL

Description

 public bool MysqlndUhConnection::sendQuery(
 mysqlnd_connection connection,
 string query);

Sends a query to MySQL.

Parameters

connection Mysqlnd connection handle. Do not modify!

query The query string.

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.44 MysqlndUhConnection::sendQuery example

MysqlndUhConnection::serverDumpDebugInformation

655

<?php
class proxy extends MysqlndUhConnection {
 public function sendQuery($res, $query) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::sendQuery($res, $query);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->query("SELECT 1");
?>

The above example will output:

proxy::sendQuery(array (
 0 => NULL,
 1 => 'SELECT 1',
))
proxy::sendQuery returns true

See Also

mysqlnd_uh_set_connection_proxy

9.7.38 MysqlndUhConnection::serverDumpDebugInformation

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::serverDumpDebugInformation

Dump debugging information into the log for the MySQL server

Description

 public bool MysqlndUhConnection::serverDumpDebugInformation(
 mysqlnd_connection connection);

Dump debugging information into the log for the MySQL server.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.45 MysqlndUhConnection::serverDumpDebugInformation example

<?php

MysqlndUhConnection::setAutocommit

656

class proxy extends MysqlndUhConnection {
 public function serverDumpDebugInformation($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::serverDumpDebugInformation($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->dump_debug_info();
?>

The above example will output:

proxy::serverDumpDebugInformation(array (
 0 => NULL,
))
proxy::serverDumpDebugInformation returns true

See Also

mysqlnd_uh_set_connection_proxy
mysqli_dump_debug_info

9.7.39 MysqlndUhConnection::setAutocommit

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::setAutocommit

Turns on or off auto-committing database modifications

Description

 public bool MysqlndUhConnection::setAutocommit(
 mysqlnd_connection connection,
 int mode);

Turns on or off auto-committing database modifications

Parameters

connection Mysqlnd connection handle. Do not modify!

mode Whether to turn on auto-commit or not.

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.46 MysqlndUhConnection::setAutocommit example

MysqlndUhConnection::setCharset

657

<?php
class proxy extends MysqlndUhConnection {
 public function setAutocommit($res, $mode) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::setAutocommit($res, $mode);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->autocommit(false);
$mysqli->autocommit(true);
?>

The above example will output:

proxy::setAutocommit(array (
 0 => NULL,
 1 => 0,
))
proxy::setAutocommit returns true
proxy::setAutocommit(array (
 0 => NULL,
 1 => 1,
))
proxy::setAutocommit returns true

See Also

mysqlnd_uh_set_connection_proxy
mysqli_autocommit

9.7.40 MysqlndUhConnection::setCharset

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::setCharset

Sets the default client character set

Description

 public bool MysqlndUhConnection::setCharset(
 mysqlnd_connection connection,
 string charset);

Sets the default client character set.

Parameters

connection Mysqlnd connection handle. Do not modify!

charset The charset to be set as default.

Return Values

MysqlndUhConnection::setClientOption

658

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.47 MysqlndUhConnection::setCharset example

<?php
class proxy extends MysqlndUhConnection {
 public function setCharset($res, $charset) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::setCharset($res, $charset);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->set_charset("latin1");
?>

The above example will output:

proxy::setCharset(array (
 0 => NULL,
 1 => 'latin1',
))
proxy::setCharset returns true

See Also

mysqlnd_uh_set_connection_proxy
mysqli_set_charset

9.7.41 MysqlndUhConnection::setClientOption

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::setClientOption

Sets a client option

Description

 public bool MysqlndUhConnection::setClientOption(
 mysqlnd_connection connection,
 int option,
 int value);

Sets a client option.

Parameters

connection Mysqlnd connection handle. Do not modify!

option The option to be set.

MysqlndUhConnection::setClientOption

659

value Optional option value, if required.

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.48 MysqlndUhConnection::setClientOption example

<?php
function client_option_to_string($option) {
 static $mapping = array(
 MYSQLND_UH_MYSQLND_OPTION_OPT_CONNECT_TIMEOUT => "MYSQLND_UH_MYSQLND_OPTION_OPT_CONNECT_TIMEOUT",
 MYSQLND_UH_MYSQLND_OPTION_OPT_COMPRESS => "MYSQLND_UH_MYSQLND_OPTION_OPT_COMPRESS",
 MYSQLND_UH_MYSQLND_OPTION_OPT_NAMED_PIPE => "MYSQLND_UH_MYSQLND_OPTION_OPT_NAMED_PIPE",
 MYSQLND_UH_MYSQLND_OPTION_INIT_COMMAND => "MYSQLND_UH_MYSQLND_OPTION_INIT_COMMAND",
 MYSQLND_UH_MYSQLND_READ_DEFAULT_FILE => "MYSQLND_UH_MYSQLND_READ_DEFAULT_FILE",
 MYSQLND_UH_MYSQLND_READ_DEFAULT_GROUP => "MYSQLND_UH_MYSQLND_READ_DEFAULT_GROUP",
 MYSQLND_UH_MYSQLND_SET_CHARSET_DIR => "MYSQLND_UH_MYSQLND_SET_CHARSET_DIR",
 MYSQLND_UH_MYSQLND_SET_CHARSET_NAME => "MYSQLND_UH_MYSQLND_SET_CHARSET_NAME",
 MYSQLND_UH_MYSQLND_OPT_LOCAL_INFILE => "MYSQLND_UH_MYSQLND_OPT_LOCAL_INFILE",
 MYSQLND_UH_MYSQLND_OPT_PROTOCOL => "MYSQLND_UH_MYSQLND_OPT_PROTOCOL",
 MYSQLND_UH_MYSQLND_SHARED_MEMORY_BASE_NAME => "MYSQLND_UH_MYSQLND_SHARED_MEMORY_BASE_NAME",
 MYSQLND_UH_MYSQLND_OPT_READ_TIMEOUT => "MYSQLND_UH_MYSQLND_OPT_READ_TIMEOUT",
 MYSQLND_UH_MYSQLND_OPT_WRITE_TIMEOUT => "MYSQLND_UH_MYSQLND_OPT_WRITE_TIMEOUT",
 MYSQLND_UH_MYSQLND_OPT_USE_RESULT => "MYSQLND_UH_MYSQLND_OPT_USE_RESULT",
 MYSQLND_UH_MYSQLND_OPT_USE_REMOTE_CONNECTION => "MYSQLND_UH_MYSQLND_OPT_USE_REMOTE_CONNECTION",
 MYSQLND_UH_MYSQLND_OPT_USE_EMBEDDED_CONNECTION => "MYSQLND_UH_MYSQLND_OPT_USE_EMBEDDED_CONNECTION",
 MYSQLND_UH_MYSQLND_OPT_GUESS_CONNECTION => "MYSQLND_UH_MYSQLND_OPT_GUESS_CONNECTION",
 MYSQLND_UH_MYSQLND_SET_CLIENT_IP => "MYSQLND_UH_MYSQLND_SET_CLIENT_IP",
 MYSQLND_UH_MYSQLND_SECURE_AUTH => "MYSQLND_UH_MYSQLND_SECURE_AUTH",
 MYSQLND_UH_MYSQLND_REPORT_DATA_TRUNCATION => "MYSQLND_UH_MYSQLND_REPORT_DATA_TRUNCATION",
 MYSQLND_UH_MYSQLND_OPT_RECONNECT => "MYSQLND_UH_MYSQLND_OPT_RECONNECT",
 MYSQLND_UH_MYSQLND_OPT_SSL_VERIFY_SERVER_CERT => "MYSQLND_UH_MYSQLND_OPT_SSL_VERIFY_SERVER_CERT",
 MYSQLND_UH_MYSQLND_OPT_NET_CMD_BUFFER_SIZE => "MYSQLND_UH_MYSQLND_OPT_NET_CMD_BUFFER_SIZE",
 MYSQLND_UH_MYSQLND_OPT_NET_READ_BUFFER_SIZE => "MYSQLND_UH_MYSQLND_OPT_NET_READ_BUFFER_SIZE",
 MYSQLND_UH_MYSQLND_OPT_SSL_KEY => "MYSQLND_UH_MYSQLND_OPT_SSL_KEY",
 MYSQLND_UH_MYSQLND_OPT_SSL_CERT => "MYSQLND_UH_MYSQLND_OPT_SSL_CERT",
 MYSQLND_UH_MYSQLND_OPT_SSL_CA => "MYSQLND_UH_MYSQLND_OPT_SSL_CA",
 MYSQLND_UH_MYSQLND_OPT_SSL_CAPATH => "MYSQLND_UH_MYSQLND_OPT_SSL_CAPATH",
 MYSQLND_UH_MYSQLND_OPT_SSL_CIPHER => "MYSQLND_UH_MYSQLND_OPT_SSL_CIPHER",
 MYSQLND_UH_MYSQLND_OPT_SSL_PASSPHRASE => "MYSQLND_UH_MYSQLND_OPT_SSL_PASSPHRASE",
 MYSQLND_UH_SERVER_OPTION_PLUGIN_DIR => "MYSQLND_UH_SERVER_OPTION_PLUGIN_DIR",
 MYSQLND_UH_SERVER_OPTION_DEFAULT_AUTH => "MYSQLND_UH_SERVER_OPTION_DEFAULT_AUTH",
 MYSQLND_UH_SERVER_OPTION_SET_CLIENT_IP => "MYSQLND_UH_SERVER_OPTION_SET_CLIENT_IP"
);
 if (version_compare(PHP_VERSION, '5.3.99-dev', '>')) {
 $mapping[MYSQLND_UH_MYSQLND_OPT_MAX_ALLOWED_PACKET] = "MYSQLND_UH_MYSQLND_OPT_MAX_ALLOWED_PACKET";
 $mapping[MYSQLND_UH_MYSQLND_OPT_AUTH_PROTOCOL] = "MYSQLND_UH_MYSQLND_OPT_AUTH_PROTOCOL";
 }
 if (defined("MYSQLND_UH_MYSQLND_OPT_INT_AND_FLOAT_NATIVE")) {
 /* special mysqlnd build */
 $mapping["MYSQLND_UH_MYSQLND_OPT_INT_AND_FLOAT_NATIVE"] = "MYSQLND_UH_MYSQLND_OPT_INT_AND_FLOAT_NATIVE";
 }
 return (isset($mapping[$option])) ? $mapping[$option] : 'unknown';
}

class proxy extends MysqlndUhConnection {
 public function setClientOption($res, $option, $value) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 printf("Option '%s' set to %s\n", client_option_to_string($option), var_export($value, true));
 $ret = parent::setClientOption($res, $option, $value);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));

MysqlndUhConnection::setServerOption

660

 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
?>

The above example will output:

proxy::setClientOption(array (
 0 => NULL,
 1 => 210,
 2 => 3221225472,
))
Option 'MYSQLND_UH_MYSQLND_OPT_MAX_ALLOWED_PACKET' set to 3221225472
proxy::setClientOption returns true
proxy::setClientOption(array (
 0 => NULL,
 1 => 211,
 2 => 'mysql_native_password',
))
Option 'MYSQLND_UH_MYSQLND_OPT_AUTH_PROTOCOL' set to 'mysql_native_password'
proxy::setClientOption returns true
proxy::setClientOption(array (
 0 => NULL,
 1 => 8,
 2 => 1,
))
Option 'MYSQLND_UH_MYSQLND_OPT_LOCAL_INFILE' set to 1
proxy::setClientOption returns true

See Also

mysqlnd_uh_set_connection_proxy
mysqli_real_connect
mysqli_options

9.7.42 MysqlndUhConnection::setServerOption

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::setServerOption

Sets a server option

Description

 public void MysqlndUhConnection::setServerOption(
 mysqlnd_connection connection,
 int option);

Sets a server option.

Parameters

connection Mysqlnd connection handle. Do not modify!

option The option to be set.

MysqlndUhConnection::shutdownServer

661

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.49 MysqlndUhConnection::setServerOption example

<?php
function server_option_to_string($option) {
 $ret = 'unknown';
 switch ($option) {
 case MYSQLND_UH_SERVER_OPTION_MULTI_STATEMENTS_ON:
 $ret = 'MYSQLND_UH_SERVER_OPTION_MULTI_STATEMENTS_ON';
 break;
 case MYSQLND_UH_SERVER_OPTION_MULTI_STATEMENTS_OFF:
 $ret = 'MYSQLND_UH_SERVER_OPTION_MULTI_STATEMENTS_ON';
 break;
 }
 return $ret;
}

class proxy extends MysqlndUhConnection {
 public function setServerOption($res, $option) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 printf("Option '%s' set\n", server_option_to_string($option));
 $ret = parent::setServerOption($res, $option);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->multi_query("SELECT 1; SELECT 2");
?>

The above example will output:

proxy::setServerOption(array (
 0 => NULL,
 1 => 0,
))
Option 'MYSQLND_UH_SERVER_OPTION_MULTI_STATEMENTS_ON' set
proxy::setServerOption returns true

See Also

mysqlnd_uh_set_connection_proxy
mysqli_real_connect
mysqli_options
mysqli_multi_query

9.7.43 MysqlndUhConnection::shutdownServer

Copyright 1997-2014 the PHP Documentation Group.

MysqlndUhConnection::simpleCommand

662

• MysqlndUhConnection::shutdownServer

The shutdownServer purpose

Description

 public void MysqlndUhConnection::shutdownServer(
 string MYSQLND_UH_RES_MYSQLND_NAME,
 string "level");

Warning

This function is currently not documented; only its argument list is available.

Parameters

MYSQLND_UH_RES_MYSQLND_NAME

"level"

Return Values

9.7.44 MysqlndUhConnection::simpleCommand

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::simpleCommand

Sends a basic COM_* command

Description

 public bool MysqlndUhConnection::simpleCommand(
 mysqlnd_connection connection,
 int command,
 string arg,
 int ok_packet,
 bool silent,
 bool ignore_upsert_status);

Sends a basic COM_* command to MySQL.

Parameters

connection Mysqlnd connection handle. Do not modify!

command The COM command to be send.

arg Optional COM command arguments.

ok_packet The OK packet type.

silent Whether mysqlnd may emit errors.

ignore_upsert_status Whether to ignore UPDATE/INSERT status.

Return Values

Returns TRUE on success. Otherwise, returns FALSE

MysqlndUhConnection::simpleCommand

663

Examples

Example 9.50 MysqlndUhConnection::simpleCommand example

<?php
function server_cmd_2_string($command) {
 $mapping = array(
 MYSQLND_UH_MYSQLND_COM_SLEEP => "MYSQLND_UH_MYSQLND_COM_SLEEP",
 MYSQLND_UH_MYSQLND_COM_QUIT => "MYSQLND_UH_MYSQLND_COM_QUIT",
 MYSQLND_UH_MYSQLND_COM_INIT_DB => "MYSQLND_UH_MYSQLND_COM_INIT_DB",
 MYSQLND_UH_MYSQLND_COM_QUERY => "MYSQLND_UH_MYSQLND_COM_QUERY",
 MYSQLND_UH_MYSQLND_COM_FIELD_LIST => "MYSQLND_UH_MYSQLND_COM_FIELD_LIST",
 MYSQLND_UH_MYSQLND_COM_CREATE_DB => "MYSQLND_UH_MYSQLND_COM_CREATE_DB",
 MYSQLND_UH_MYSQLND_COM_DROP_DB => "MYSQLND_UH_MYSQLND_COM_DROP_DB",
 MYSQLND_UH_MYSQLND_COM_REFRESH => "MYSQLND_UH_MYSQLND_COM_REFRESH",
 MYSQLND_UH_MYSQLND_COM_SHUTDOWN => "MYSQLND_UH_MYSQLND_COM_SHUTDOWN",
 MYSQLND_UH_MYSQLND_COM_STATISTICS => "MYSQLND_UH_MYSQLND_COM_STATISTICS",
 MYSQLND_UH_MYSQLND_COM_PROCESS_INFO => "MYSQLND_UH_MYSQLND_COM_PROCESS_INFO",
 MYSQLND_UH_MYSQLND_COM_CONNECT => "MYSQLND_UH_MYSQLND_COM_CONNECT",
 MYSQLND_UH_MYSQLND_COM_PROCESS_KILL => "MYSQLND_UH_MYSQLND_COM_PROCESS_KILL",
 MYSQLND_UH_MYSQLND_COM_DEBUG => "MYSQLND_UH_MYSQLND_COM_DEBUG",
 MYSQLND_UH_MYSQLND_COM_PING => "MYSQLND_UH_MYSQLND_COM_PING",
 MYSQLND_UH_MYSQLND_COM_TIME => "MYSQLND_UH_MYSQLND_COM_TIME",
 MYSQLND_UH_MYSQLND_COM_DELAYED_INSERT => "MYSQLND_UH_MYSQLND_COM_DELAYED_INSERT",
 MYSQLND_UH_MYSQLND_COM_CHANGE_USER => "MYSQLND_UH_MYSQLND_COM_CHANGE_USER",
 MYSQLND_UH_MYSQLND_COM_BINLOG_DUMP => "MYSQLND_UH_MYSQLND_COM_BINLOG_DUMP",
 MYSQLND_UH_MYSQLND_COM_TABLE_DUMP => "MYSQLND_UH_MYSQLND_COM_TABLE_DUMP",
 MYSQLND_UH_MYSQLND_COM_CONNECT_OUT => "MYSQLND_UH_MYSQLND_COM_CONNECT_OUT",
 MYSQLND_UH_MYSQLND_COM_REGISTER_SLAVED => "MYSQLND_UH_MYSQLND_COM_REGISTER_SLAVED",
 MYSQLND_UH_MYSQLND_COM_STMT_PREPARE => "MYSQLND_UH_MYSQLND_COM_STMT_PREPARE",
 MYSQLND_UH_MYSQLND_COM_STMT_EXECUTE => "MYSQLND_UH_MYSQLND_COM_STMT_EXECUTE",
 MYSQLND_UH_MYSQLND_COM_STMT_SEND_LONG_DATA => "MYSQLND_UH_MYSQLND_COM_STMT_SEND_LONG_DATA",
 MYSQLND_UH_MYSQLND_COM_STMT_CLOSE => "MYSQLND_UH_MYSQLND_COM_STMT_CLOSE",
 MYSQLND_UH_MYSQLND_COM_STMT_RESET => "MYSQLND_UH_MYSQLND_COM_STMT_RESET",
 MYSQLND_UH_MYSQLND_COM_SET_OPTION => "MYSQLND_UH_MYSQLND_COM_SET_OPTION",
 MYSQLND_UH_MYSQLND_COM_STMT_FETCH => "MYSQLND_UH_MYSQLND_COM_STMT_FETCH",
 MYSQLND_UH_MYSQLND_COM_DAEMON => "MYSQLND_UH_MYSQLND_COM_DAEMON",
 MYSQLND_UH_MYSQLND_COM_END => "MYSQLND_UH_MYSQLND_COM_END",
);
 return (isset($mapping[$command])) ? $mapping[$command] : 'unknown';
}

function ok_packet_2_string($ok_packet) {
 $mapping = array(
 MYSQLND_UH_MYSQLND_PROT_GREET_PACKET => "MYSQLND_UH_MYSQLND_PROT_GREET_PACKET",
 MYSQLND_UH_MYSQLND_PROT_AUTH_PACKET => "MYSQLND_UH_MYSQLND_PROT_AUTH_PACKET",
 MYSQLND_UH_MYSQLND_PROT_OK_PACKET => "MYSQLND_UH_MYSQLND_PROT_OK_PACKET",
 MYSQLND_UH_MYSQLND_PROT_EOF_PACKET => "MYSQLND_UH_MYSQLND_PROT_EOF_PACKET",
 MYSQLND_UH_MYSQLND_PROT_CMD_PACKET => "MYSQLND_UH_MYSQLND_PROT_CMD_PACKET",
 MYSQLND_UH_MYSQLND_PROT_RSET_HEADER_PACKET => "MYSQLND_UH_MYSQLND_PROT_RSET_HEADER_PACKET",
 MYSQLND_UH_MYSQLND_PROT_RSET_FLD_PACKET => "MYSQLND_UH_MYSQLND_PROT_RSET_FLD_PACKET",
 MYSQLND_UH_MYSQLND_PROT_ROW_PACKET => "MYSQLND_UH_MYSQLND_PROT_ROW_PACKET",
 MYSQLND_UH_MYSQLND_PROT_STATS_PACKET => "MYSQLND_UH_MYSQLND_PROT_STATS_PACKET",
 MYSQLND_UH_MYSQLND_PREPARE_RESP_PACKET => "MYSQLND_UH_MYSQLND_PREPARE_RESP_PACKET",
 MYSQLND_UH_MYSQLND_CHG_USER_RESP_PACKET => "MYSQLND_UH_MYSQLND_CHG_USER_RESP_PACKET",
 MYSQLND_UH_MYSQLND_PROT_LAST => "MYSQLND_UH_MYSQLND_PROT_LAST",
);
 return (isset($mapping[$ok_packet])) ? $mapping[$ok_packet] : 'unknown';
}

class proxy extends MysqlndUhConnection {
 public function simpleCommand($conn, $command, $arg, $ok_packet, $silent, $ignore_upsert_status) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 printf("Command '%s'\n", server_cmd_2_string($command));
 printf("OK packet '%s'\n", ok_packet_2_string($ok_packet));

MysqlndUhConnection::simpleCommandHandleResponse

664

 $ret = parent::simpleCommand($conn, $command, $arg, $ok_packet, $silent, $ignore_upsert_status);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->query("SELECT 1");
?>

The above example will output:

proxy::simpleCommand(array (
 0 => NULL,
 1 => 3,
 2 => 'SELECT 1',
 3 => 13,
 4 => false,
 5 => false,
))
Command 'MYSQLND_UH_MYSQLND_COM_QUERY'
OK packet 'MYSQLND_UH_MYSQLND_PROT_LAST'
proxy::simpleCommand returns true
:)proxy::simpleCommand(array (
 0 => NULL,
 1 => 1,
 2 => '',
 3 => 13,
 4 => true,
 5 => true,
))
Command 'MYSQLND_UH_MYSQLND_COM_QUIT'
OK packet 'MYSQLND_UH_MYSQLND_PROT_LAST'
proxy::simpleCommand returns true

See Also

mysqlnd_uh_set_connection_proxy

9.7.45 MysqlndUhConnection::simpleCommandHandleResponse

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::simpleCommandHandleResponse

Process a response for a basic COM_* command send to the client

Description

 public bool MysqlndUhConnection::simpleCommandHandleResponse(
 mysqlnd_connection connection,
 int ok_packet,
 bool silent,
 int command,
 bool ignore_upsert_status);

Process a response for a basic COM_* command send to the client.

Parameters

MysqlndUhConnection::simpleCommandHandleResponse

665

connection Mysqlnd connection handle. Do not modify!

ok_packet The OK packet type.

silent Whether mysqlnd may emit errors.

command The COM command to process results from.

ignore_upsert_status Whether to ignore UPDATE/INSERT status.

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.51 MysqlndUhConnection::simpleCommandHandleResponse example

<?php
function server_cmd_2_string($command) {
 $mapping = array(
 MYSQLND_UH_MYSQLND_COM_SLEEP => "MYSQLND_UH_MYSQLND_COM_SLEEP",
 MYSQLND_UH_MYSQLND_COM_QUIT => "MYSQLND_UH_MYSQLND_COM_QUIT",
 MYSQLND_UH_MYSQLND_COM_INIT_DB => "MYSQLND_UH_MYSQLND_COM_INIT_DB",
 MYSQLND_UH_MYSQLND_COM_QUERY => "MYSQLND_UH_MYSQLND_COM_QUERY",
 MYSQLND_UH_MYSQLND_COM_FIELD_LIST => "MYSQLND_UH_MYSQLND_COM_FIELD_LIST",
 MYSQLND_UH_MYSQLND_COM_CREATE_DB => "MYSQLND_UH_MYSQLND_COM_CREATE_DB",
 MYSQLND_UH_MYSQLND_COM_DROP_DB => "MYSQLND_UH_MYSQLND_COM_DROP_DB",
 MYSQLND_UH_MYSQLND_COM_REFRESH => "MYSQLND_UH_MYSQLND_COM_REFRESH",
 MYSQLND_UH_MYSQLND_COM_SHUTDOWN => "MYSQLND_UH_MYSQLND_COM_SHUTDOWN",
 MYSQLND_UH_MYSQLND_COM_STATISTICS => "MYSQLND_UH_MYSQLND_COM_STATISTICS",
 MYSQLND_UH_MYSQLND_COM_PROCESS_INFO => "MYSQLND_UH_MYSQLND_COM_PROCESS_INFO",
 MYSQLND_UH_MYSQLND_COM_CONNECT => "MYSQLND_UH_MYSQLND_COM_CONNECT",
 MYSQLND_UH_MYSQLND_COM_PROCESS_KILL => "MYSQLND_UH_MYSQLND_COM_PROCESS_KILL",
 MYSQLND_UH_MYSQLND_COM_DEBUG => "MYSQLND_UH_MYSQLND_COM_DEBUG",
 MYSQLND_UH_MYSQLND_COM_PING => "MYSQLND_UH_MYSQLND_COM_PING",
 MYSQLND_UH_MYSQLND_COM_TIME => "MYSQLND_UH_MYSQLND_COM_TIME",
 MYSQLND_UH_MYSQLND_COM_DELAYED_INSERT => "MYSQLND_UH_MYSQLND_COM_DELAYED_INSERT",
 MYSQLND_UH_MYSQLND_COM_CHANGE_USER => "MYSQLND_UH_MYSQLND_COM_CHANGE_USER",
 MYSQLND_UH_MYSQLND_COM_BINLOG_DUMP => "MYSQLND_UH_MYSQLND_COM_BINLOG_DUMP",
 MYSQLND_UH_MYSQLND_COM_TABLE_DUMP => "MYSQLND_UH_MYSQLND_COM_TABLE_DUMP",
 MYSQLND_UH_MYSQLND_COM_CONNECT_OUT => "MYSQLND_UH_MYSQLND_COM_CONNECT_OUT",
 MYSQLND_UH_MYSQLND_COM_REGISTER_SLAVED => "MYSQLND_UH_MYSQLND_COM_REGISTER_SLAVED",
 MYSQLND_UH_MYSQLND_COM_STMT_PREPARE => "MYSQLND_UH_MYSQLND_COM_STMT_PREPARE",
 MYSQLND_UH_MYSQLND_COM_STMT_EXECUTE => "MYSQLND_UH_MYSQLND_COM_STMT_EXECUTE",
 MYSQLND_UH_MYSQLND_COM_STMT_SEND_LONG_DATA => "MYSQLND_UH_MYSQLND_COM_STMT_SEND_LONG_DATA",
 MYSQLND_UH_MYSQLND_COM_STMT_CLOSE => "MYSQLND_UH_MYSQLND_COM_STMT_CLOSE",
 MYSQLND_UH_MYSQLND_COM_STMT_RESET => "MYSQLND_UH_MYSQLND_COM_STMT_RESET",
 MYSQLND_UH_MYSQLND_COM_SET_OPTION => "MYSQLND_UH_MYSQLND_COM_SET_OPTION",
 MYSQLND_UH_MYSQLND_COM_STMT_FETCH => "MYSQLND_UH_MYSQLND_COM_STMT_FETCH",
 MYSQLND_UH_MYSQLND_COM_DAEMON => "MYSQLND_UH_MYSQLND_COM_DAEMON",
 MYSQLND_UH_MYSQLND_COM_END => "MYSQLND_UH_MYSQLND_COM_END",
);
 return (isset($mapping[$command])) ? $mapping[$command] : 'unknown';
}

function ok_packet_2_string($ok_packet) {
 $mapping = array(
 MYSQLND_UH_MYSQLND_PROT_GREET_PACKET => "MYSQLND_UH_MYSQLND_PROT_GREET_PACKET",
 MYSQLND_UH_MYSQLND_PROT_AUTH_PACKET => "MYSQLND_UH_MYSQLND_PROT_AUTH_PACKET",
 MYSQLND_UH_MYSQLND_PROT_OK_PACKET => "MYSQLND_UH_MYSQLND_PROT_OK_PACKET",
 MYSQLND_UH_MYSQLND_PROT_EOF_PACKET => "MYSQLND_UH_MYSQLND_PROT_EOF_PACKET",
 MYSQLND_UH_MYSQLND_PROT_CMD_PACKET => "MYSQLND_UH_MYSQLND_PROT_CMD_PACKET",

MysqlndUhConnection::sslSet

666

 MYSQLND_UH_MYSQLND_PROT_RSET_HEADER_PACKET => "MYSQLND_UH_MYSQLND_PROT_RSET_HEADER_PACKET",
 MYSQLND_UH_MYSQLND_PROT_RSET_FLD_PACKET => "MYSQLND_UH_MYSQLND_PROT_RSET_FLD_PACKET",
 MYSQLND_UH_MYSQLND_PROT_ROW_PACKET => "MYSQLND_UH_MYSQLND_PROT_ROW_PACKET",
 MYSQLND_UH_MYSQLND_PROT_STATS_PACKET => "MYSQLND_UH_MYSQLND_PROT_STATS_PACKET",
 MYSQLND_UH_MYSQLND_PREPARE_RESP_PACKET => "MYSQLND_UH_MYSQLND_PREPARE_RESP_PACKET",
 MYSQLND_UH_MYSQLND_CHG_USER_RESP_PACKET => "MYSQLND_UH_MYSQLND_CHG_USER_RESP_PACKET",
 MYSQLND_UH_MYSQLND_PROT_LAST => "MYSQLND_UH_MYSQLND_PROT_LAST",
);
 return (isset($mapping[$ok_packet])) ? $mapping[$ok_packet] : 'unknown';
}

class proxy extends MysqlndUhConnection {
 public function simpleCommandHandleResponse($conn, $ok_packet, $silent, $command, $ignore_upsert_status) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 printf("Command '%s'\n", server_cmd_2_string($command));
 printf("OK packet '%s'\n", ok_packet_2_string($ok_packet));
 $ret = parent::simpleCommandHandleResponse($conn, $ok_packet, $silent, $command, $ignore_upsert_status);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysql = mysql_connect("localhost", "root", "");
mysql_query("SELECT 1 FROM DUAL", $mysql);
?>

The above example will output:

proxy::simpleCommandHandleResponse(array (
 0 => NULL,
 1 => 5,
 2 => false,
 3 => 27,
 4 => true,
))
Command 'MYSQLND_UH_MYSQLND_COM_SET_OPTION'
OK packet 'MYSQLND_UH_MYSQLND_PROT_EOF_PACKET'
proxy::simpleCommandHandleResponse returns true

See Also

mysqlnd_uh_set_connection_proxy

9.7.46 MysqlndUhConnection::sslSet

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::sslSet

Used for establishing secure connections using SSL

Description

 public bool MysqlndUhConnection::sslSet(
 mysqlnd_connection connection,
 string key,
 string cert,
 string ca,

MysqlndUhConnection::sslSet

667

 string capath,
 string cipher);

Used for establishing secure connections using SSL.

Parameters

connection Mysqlnd connection handle. Do not modify!

key The path name to the key file.

cert The path name to the certificate file.

ca The path name to the certificate authority file.

capath The pathname to a directory that contains trusted SSL CA certificates in
PEM format.

cipher A list of allowable ciphers to use for SSL encryption.

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.52 MysqlndUhConnection::sslSet example

<?php
class proxy extends MysqlndUhConnection {
 public function sslSet($conn, $key, $cert, $ca, $capath, $cipher) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::sslSet($conn, $key, $cert, $ca, $capath, $cipher);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->ssl_set("key", "cert", "ca", "capath", "cipher");
?>

The above example will output:

proxy::sslSet(array (
 0 => NULL,
 1 => 'key',
 2 => 'cert',
 3 => 'ca',
 4 => 'capath',
 5 => 'cipher',
))
proxy::sslSet returns true

See Also

MysqlndUhConnection::stmtInit

668

mysqlnd_uh_set_connection_proxy
mysqli_ssl_set

9.7.47 MysqlndUhConnection::stmtInit

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::stmtInit

Initializes a statement and returns a resource for use with mysqli_statement::prepare

Description

 public resource MysqlndUhConnection::stmtInit(
 mysqlnd_connection connection);

Initializes a statement and returns a resource for use with mysqli_statement::prepare.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Resource of type Mysqlnd Prepared Statement (internal only - you must not
modify it!). The documentation may also refer to such resources using the alias name
mysqlnd_prepared_statement.

Examples

Example 9.53 MysqlndUhConnection::stmtInit example

<?php
class proxy extends MysqlndUhConnection {
 public function stmtInit($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 var_dump($res);
 $ret = parent::stmtInit($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 var_dump($ret);
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());
$mysqli = new mysqli("localhost", "root", "", "test");
$stmt = $mysqli->prepare("SELECT 1 AS _one FROM DUAL");
$stmt->execute();
$one = NULL;
$stmt->bind_result($one);
$stmt->fetch();
var_dump($one);
?>

The above example will output:

proxy::stmtInit(array (
 0 => NULL,

MysqlndUhConnection::storeResult

669

))
resource(19) of type (Mysqlnd Connection)
proxy::stmtInit returns NULL
resource(246) of type (Mysqlnd Prepared Statement (internal only - you must not modify it!))
int(1)

See Also

mysqlnd_uh_set_connection_proxy
mysqli_stmt_init

9.7.48 MysqlndUhConnection::storeResult

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::storeResult

Transfers a result set from the last query

Description

 public resource MysqlndUhConnection::storeResult(
 mysqlnd_connection connection);

Transfers a result set from the last query.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Resource of type Mysqlnd Resultset (internal only - you must not modify it!). The
documentation may also refer to such resources using the alias name mysqlnd_resultset.

Examples

Example 9.54 MysqlndUhConnection::storeResult example

<?php
class proxy extends MysqlndUhConnection {
 public function storeResult($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::storeResult($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 var_dump($ret);
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
$res = $mysqli->query("SELECT 'Also called buffered result' AS _msg FROM DUAL");
var_dump($res->fetch_assoc());

$mysqli->real_query("SELECT 'Good morning!' AS _msg FROM DUAL");
$res = $mysqli->store_result();
var_dump($res->fetch_assoc());
?>

MysqlndUhConnection::txCommit

670

The above example will output:

proxy::storeResult(array (
 0 => NULL,
))
proxy::storeResult returns NULL
resource(475) of type (Mysqlnd Resultset (internal only - you must not modify it!))
array(1) {
 ["_msg"]=>
 string(27) "Also called buffered result"
}
proxy::storeResult(array (
 0 => NULL,
))
proxy::storeResult returns NULL
resource(730) of type (Mysqlnd Resultset (internal only - you must not modify it!))
array(1) {
 ["_msg"]=>
 string(13) "Good morning!"
}

See Also

mysqlnd_uh_set_connection_proxy
mysqli_store_result
mysqli_real_query

9.7.49 MysqlndUhConnection::txCommit

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::txCommit

Commits the current transaction

Description

 public bool MysqlndUhConnection::txCommit(
 mysqlnd_connection connection);

Commits the current transaction.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.55 MysqlndUhConnection::txCommit example

MysqlndUhConnection::txRollback

671

<?php
class proxy extends MysqlndUhConnection {
 public function txCommit($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::txCommit($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->commit();
?>

The above example will output:

proxy::txCommit(array (
 0 => NULL,
))
proxy::txCommit returns true

See Also

mysqlnd_uh_set_connection_proxy
mysqli_commit

9.7.50 MysqlndUhConnection::txRollback

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::txRollback

Rolls back current transaction

Description

 public bool MysqlndUhConnection::txRollback(
 mysqlnd_connection connection);

Rolls back current transaction.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.56 MysqlndUhConnection::txRollback example

MysqlndUhConnection::useResult

672

<?php
class proxy extends MysqlndUhConnection {
 public function txRollback($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::txRollback($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->rollback();
?>

The above example will output:

proxy::txRollback(array (
 0 => NULL,
))
proxy::txRollback returns true

See Also

mysqlnd_uh_set_connection_proxy
mysqli_commit

9.7.51 MysqlndUhConnection::useResult

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhConnection::useResult

Initiate a result set retrieval

Description

 public resource MysqlndUhConnection::useResult(
 mysqlnd_connection connection);

Initiate a result set retrieval.

Parameters

connection Mysqlnd connection handle. Do not modify!

Return Values

Resource of type Mysqlnd Resultset (internal only - you must not modify it!). The
documentation may also refer to such resources using the alias name mysqlnd_resultset.

Examples

Example 9.57 MysqlndUhConnection::useResult example

The MysqlndUhPreparedStatement class

673

<?php
class proxy extends MysqlndUhConnection {
 public function useResult($res) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::useResult($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 var_dump($ret);
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->real_query("SELECT 'Good morning!' AS _msg FROM DUAL");
$res = $mysqli->use_result();
var_dump($res->fetch_assoc());
?>

The above example will output:

proxy::useResult(array (
 0 => NULL,
))
proxy::useResult returns NULL
resource(425) of type (Mysqlnd Resultset (internal only - you must not modify it!))
array(1) {
 ["_msg"]=>
 string(13) "Good morning!"
}

See Also

mysqlnd_uh_set_connection_proxy
mysqli_use_result
mysqli_real_query

9.8 The MysqlndUhPreparedStatement class
Copyright 1997-2014 the PHP Documentation Group.

MysqlndUhPreparedStatement {
MysqlndUhPreparedStatement

 Methods

 public MysqlndUhPreparedStatement::__construct();

 public bool MysqlndUhPreparedStatement::execute(
 mysqlnd_prepared_statement statement);

 public bool MysqlndUhPreparedStatement::prepare(
 mysqlnd_prepared_statement statement,
 string query);

}

MysqlndUhPreparedStatement::__construct

674

9.8.1 MysqlndUhPreparedStatement::__construct

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhPreparedStatement::__construct

The __construct purpose

Description

 public MysqlndUhPreparedStatement::__construct();

Warning

This function is currently not documented; only its argument list is available.

Parameters

This function has no parameters.

Return Values

9.8.2 MysqlndUhPreparedStatement::execute

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhPreparedStatement::execute

Executes a prepared Query

Description

 public bool MysqlndUhPreparedStatement::execute(
 mysqlnd_prepared_statement statement);

Executes a prepared Query.

Parameters

statement Mysqlnd prepared statement handle. Do not modify! Resource of type
Mysqlnd Prepared Statement (internal only - you must
not modify it!).

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.58 MysqlndUhPreparedStatement::execute example

<?php
class stmt_proxy extends MysqlndUhPreparedStatement {
 public function execute($res) {
 printf("%s(", __METHOD__);
 var_dump($res);

MysqlndUhPreparedStatement::prepare

675

 printf(")\n");
 $ret = parent::execute($res);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 var_dump($ret);
 return $ret;
 }
}
mysqlnd_uh_set_statement_proxy(new stmt_proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
$stmt = $mysqli->prepare("SELECT 'Labskaus' AS _msg FROM DUAL");
$stmt->execute();
$msg = NULL;
$stmt->bind_result($msg);
$stmt->fetch();
var_dump($msg);
?>

The above example will output:

stmt_proxy::execute(resource(256) of type (Mysqlnd Prepared Statement (internal only - you must not modify it!))
)
stmt_proxy::execute returns true
bool(true)
string(8) "Labskaus"

See Also

mysqlnd_uh_set_statement_proxy
mysqli_stmt_execute

9.8.3 MysqlndUhPreparedStatement::prepare

Copyright 1997-2014 the PHP Documentation Group.

• MysqlndUhPreparedStatement::prepare

Prepare an SQL statement for execution

Description

 public bool MysqlndUhPreparedStatement::prepare(
 mysqlnd_prepared_statement statement,
 string query);

Prepare an SQL statement for execution.

Parameters

statement Mysqlnd prepared statement handle. Do not modify! Resource of type
Mysqlnd Prepared Statement (internal only - you must
not modify it!).

query The query to be prepared.

Return Values

Mysqlnd_uh Functions

676

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.59 MysqlndUhPreparedStatement::prepare example

<?php
class stmt_proxy extends MysqlndUhPreparedStatement {
 public function prepare($res, $query) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $query = "SELECT 'No more you-know-what-I-mean for lunch, please' AS _msg FROM DUAL";
 $ret = parent::prepare($res, $query);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 var_dump($ret);
 return $ret;
 }
}
mysqlnd_uh_set_statement_proxy(new stmt_proxy());

$mysqli = new mysqli("localhost", "root", "", "test");
$stmt = $mysqli->prepare("SELECT 'Labskaus' AS _msg FROM DUAL");
$stmt->execute();
$msg = NULL;
$stmt->bind_result($msg);
$stmt->fetch();
var_dump($msg);
?>

The above example will output:

stmt_proxy::prepare(array (
 0 => NULL,
 1 => 'SELECT \'Labskaus\' AS _msg FROM DUAL',
))
stmt_proxy::prepare returns true
bool(true)
string(46) "No more you-know-what-I-mean for lunch, please"

See Also

mysqlnd_uh_set_statement_proxy
mysqli_stmt_prepare
mysqli_prepare

9.9 Mysqlnd_uh Functions
Copyright 1997-2014 the PHP Documentation Group.

9.9.1 mysqlnd_uh_convert_to_mysqlnd

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_uh_convert_to_mysqlnd

Converts a MySQL connection handle into a mysqlnd connection handle

mysqlnd_uh_convert_to_mysqlnd

677

Description

 resource mysqlnd_uh_convert_to_mysqlnd(
 mysqli mysql_connection);

Converts a MySQL connection handle into a mysqlnd connection handle. After conversion you can execute
mysqlnd library calls on the connection handle. This can be used to access mysqlnd functionality not made
available through user space API calls.

The function can be disabled with mysqlnd_uh.enable. If mysqlnd_uh.enable is set to
FALSE the function will not install the proxy and always return TRUE. Additionally, an error
of the type E_WARNING may be emitted. The error message may read like PHP Warning:
mysqlnd_uh_convert_to_mysqlnd(): (Mysqlnd User Handler) The plugin has been
disabled by setting the configuration parameter mysqlnd_uh.enable = false. You
are not allowed to call this function [...].

Parameters

MySQL connection handle A MySQL connection handle of type mysql, mysqli or PDO_MySQL.

Return Values

A mysqlnd connection handle.

Changelog

Version Description

5.4.0 The mysql_connection parameter can now be of
type mysql, PDO_MySQL, or mysqli. Before, only
the mysqli type was allowed.

Examples

Example 9.60 mysqlnd_uh_convert_to_mysqlnd example

<?php
/* PDO user API gives no access to connection thread id */
$mysql_connection = new PDO("mysql:host=localhost;dbname=test", "root", "");

/* Convert PDO MySQL handle to mysqlnd handle */
$mysqlnd = mysqlnd_uh_convert_to_mysqlnd($mysql_connection);

/* Create Proxy to call mysqlnd connection class methods */
$obj = new MySQLndUHConnection();
/* Call mysqlnd_conn::get_thread_id */
var_dump($obj->getThreadId($mysqlnd));

/* Use SQL to fetch connection thread id */
var_dump($mysql_connection->query("SELECT CONNECTION_ID()")->fetchAll());
?>

The above example will output:

int(27054)
array(1) {

mysqlnd_uh_set_connection_proxy

678

 [0]=>
 array(2) {
 ["CONNECTION_ID()"]=>
 string(5) "27054"
 [0]=>
 string(5) "27054"
 }
}

See Also

mysqlnd_uh.enable

9.9.2 mysqlnd_uh_set_connection_proxy

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_uh_set_connection_proxy

Installs a proxy for mysqlnd connections

Description

 bool mysqlnd_uh_set_connection_proxy(
 MysqlndUhConnection connection_proxy,
 mysqli mysqli_connection);

Installs a proxy object to hook mysqlnd's connection objects methods. Once installed, the proxy will be
used for all MySQL connections opened with mysqli, mysql or PDO_MYSQL, assuming that the listed
extensions are compiled to use the mysqlnd library.

The function can be disabled with mysqlnd_uh.enable. If mysqlnd_uh.enable is set to
FALSE the function will not install the proxy and always return TRUE. Additionally, an error
of the type E_WARNING may be emitted. The error message may read like PHP Warning:
mysqlnd_uh_set_connection_proxy(): (Mysqlnd User Handler) The plugin has been
disabled by setting the configuration parameter mysqlnd_uh.enable = false. The
proxy has not been installed [...].

Parameters

connection_proxy A proxy object of type MysqlndUhConnection.

mysqli_connection Object of type mysqli. If given, the proxy will be set for this particular
connection only.

Return Values

Returns TRUE on success. Otherwise, returns FALSE

Examples

Example 9.61 mysqlnd_uh_set_connection_proxy example

<?php
$mysqli = new mysqli("localhost", "root", "", "test");
$mysqli->query("SELECT 'No proxy installed, yet'");

mysqlnd_uh_set_statement_proxy

679

class proxy extends MysqlndUhConnection {
 public function query($res, $query) {
 printf("%s(%s)\n", __METHOD__, var_export(func_get_args(), true));
 $ret = parent::query($res, $query);
 printf("%s returns %s\n", __METHOD__, var_export($ret, true));
 return $ret;
 }
}
mysqlnd_uh_set_connection_proxy(new proxy());

$mysqli->query("SELECT 'mysqlnd rocks!'");

$mysql = mysql_connect("localhost", "root", "", "test");
mysql_query("SELECT 'Ahoy Andrey!'", $mysql);

$pdo = new PDO("mysql:host=localhost;dbname=test", "root", "");
$pdo->query("SELECT 'Moin Johannes!'");
?>

The above example will output:

proxy::query(array (
 0 => NULL,
 1 => 'SELECT \'mysqlnd rocks!\'',
))
proxy::query returns true
proxy::query(array (
 0 => NULL,
 1 => 'SELECT \'Ahoy Andrey!\'',
))
proxy::query returns true
proxy::query(array (
 0 => NULL,
 1 => 'SELECT \'Moin Johannes!\'',
))
proxy::query returns true

See Also

mysqlnd_uh_set_statement_proxy
mysqlnd_uh.enable

9.9.3 mysqlnd_uh_set_statement_proxy

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_uh_set_statement_proxy

Installs a proxy for mysqlnd statements

Description

 bool mysqlnd_uh_set_statement_proxy(
 MysqlndUhStatement statement_proxy);

Installs a proxy for mysqlnd statements. The proxy object will be used for all mysqlnd prepared statement
objects, regardless which PHP MySQL extension (mysqli, mysql, PDO_MYSQL) has created them as long
as the extension is compiled to use the mysqlnd library.

Change History

680

The function can be disabled with mysqlnd_uh.enable. If mysqlnd_uh.enable is set to
FALSE the function will not install the proxy and always return TRUE. Additionally, an error
of the type E_WARNING may be emitted. The error message may read like PHP Warning:
mysqlnd_uh_set_statement_proxy(): (Mysqlnd User Handler) The plugin has been
disabled by setting the configuration parameter mysqlnd_uh.enable = false. The
proxy has not been installed [...].

Parameters

statement_proxy The mysqlnd statement proxy object of type MysqlndUhStatement

Return Values

Returns TRUE on success. Otherwise, returns FALSE

See Also

mysqlnd_uh_set_connection_proxy
mysqlnd_uh.enable

9.10 Change History

Copyright 1997-2014 the PHP Documentation Group.

The Change History lists major changes users need to be aware if upgrading from one version to
another. It is a high level summary of selected changes that may impact applications or might even break
backwards compatibility. See also the CHANGES file contained in the source for additional changelog
information. The commit history is also available.

9.10.1 PECL/mysqlnd_uh 1.0 series

Copyright 1997-2014 the PHP Documentation Group.

1.0.1-alpha

• Release date: TBD

• Motto/theme: bug fix release

Feature changes

• Support of PHP 5.4.0 or later.

• BC break: MysqlndUhConnection::changeUser requires additional passwd_len parameter.

• BC break: MYSQLND_UH_VERSION_STR renamed to MYSQLND_UH_VERSION. MYSQLND_UH_VERSION
renamed to MYSQLND_UH_VERSION_ID.

• BC break: mysqlnd_uh.enabled configuration setting renamed to mysqlnd_uh.enable.

1.0.0-alpha

• Release date: 08/2010

• Motto/theme: Initial release

681

Chapter 10 Mysqlnd connection multiplexing plugin

Table of Contents
10.1 Key Features .. 681
10.2 Limitations .. 682
10.3 About the name mysqlnd_mux .. 682
10.4 Concepts .. 682

10.4.1 Architecture .. 682
10.4.2 Connection pool ... 683
10.4.3 Sharing connections ... 683

10.5 Installing/Configuring ... 683
10.5.1 Requirements ... 683
10.5.2 Installation ... 684
10.5.3 Runtime Configuration .. 684

10.6 Predefined Constants .. 684
10.7 Change History ... 685

10.7.1 PECL/mysqlnd_mux 1.0 series ... 685

Copyright 1997-2014 the PHP Documentation Group.

The mysqlnd multiplexing plugin (mysqlnd_mux) multiplexes MySQL connections established by all PHP
MySQL extensions that use the MySQL native driver (mysqlnd) for PHP.

The MySQL native driver for PHP features an internal C API for plugins, such as the connection
multiplexing plugin, which can extend the functionality of mysqlnd. See the mysqlnd for additional details
about its benefits over the MySQL Client Library libmysqlclient.

Mysqlnd plugins like mysqlnd_mux operate, for the most part, transparently from a user perspective. The
connection multiplexing plugin supports all PHP applications, and all MySQL PHP extensions. It does not
change existing APIs. Therefore, it can easily be used with existing PHP applications.

Note

This is a proof-of-concept. All features are at an early stage. Not all kinds of queries
are handled by the plugin yet. Thus, it cannot be used in a drop-in fashion at the
moment.

Please, do not use this version in production environments.

10.1 Key Features
Copyright 1997-2014 the PHP Documentation Group.

The key features of mysqlnd_mux are as follows:

• Transparent and therefore easy to use:

• Supports all of the PHP MySQL extensions.

• Little to no application changes are required, dependent on the required usage scenario.

• Reduces server load and connection establishment latency:

• Opens less connections to the MySQL server.

Limitations

682

• Less connections to MySQL mean less work for the MySQL server. In a client-server environment
scaling the server is often more difficult than scaling the client. Multiplexing helps with horizontal scale-
out (scale-by-client).

• Pooling saves connection time.

• Multiplexed connection: multiple user handles share the same network connection. Once opened, a
network connection is cached and shared among multiple user handles. There is a 1:n relationship
between internal network connection and user connection handles.

• Persistent connection: a network connection is kept open at the end of the web request, if the
PHP deployment model allows. Thus, subsequently web requests can reuse a previously opened
connection. Like other resources, network connections are bound to the scope of a process. Thus,
they can be reused for all web requests served by a process.

10.2 Limitations

Copyright 1997-2014 the PHP Documentation Group.

The proof-of-concept does not support unbuffered queries, prepared statements, and asynchronous
queries.

The connection pool is using a combination of the transport method and hostname as keys. As a
consequence, two connections to the same host using the same transport method (TCP/IP, Unix socket,
Windows named pipe) will be linked to the same pooled connection even if username and password differ.
Be aware of the possible security implications.

The proof-of-concept is transaction agnostic. It does not know about SQL transactions.

Note

Applications must be aware of the consequences of connection sharing
connections.

10.3 About the name mysqlnd_mux

Copyright 1997-2014 the PHP Documentation Group.

The shortcut mysqlnd_mux stands for mysqlnd connection multiplexing plugin.

10.4 Concepts

Copyright 1997-2014 the PHP Documentation Group.

This explains the architecture and related concepts for this plugin. Reading and understanding these
concepts is required to successfully use this plugin.

10.4.1 Architecture

Copyright 1997-2014 the PHP Documentation Group.

The mysqlnd connection multiplexing plugin is implemented as a PHP extension. It is written in C and
operates under the hood of PHP. During the startup of the PHP interpreter, in the module initialization
phase of the PHP engine, it gets registered as a mysqlnd plugin to replace specific mysqlnd C methods.

Connection pool

683

The mysqlnd library uses PHP streams to communicate with the MySQL server. PHP streams are
accessed by the mysqlnd library through its net module. The mysqlnd connection multiplexing plugin
proxies methods of the mysqlnd library net module to control opening and closing of network streams.

Upon opening a user connection to MySQL using the appropriate connection functions of either mysqli,
PDO_MYSQL or ext/mysql, the plugin will search its connection pool for an open network connection. If
the pool contains a network connection to the host specified by the connect function using the transport
method requested (TCP/IP, Unix domain socket, Windows named pipe), the pooled connection is linked to
the user handle. Otherwise, a new network connection is opened, put into the poolm and associated with
the user connection handle. This way, multiple user handles can be linked to the same network connection.

10.4.2 Connection pool

Copyright 1997-2014 the PHP Documentation Group.

The plugins connection pool is created when PHP initializes its modules (MINIT) and free'd when PHP
shuts down the modules (MSHUTDOWN). This is the same as for persistent MySQL connections.

Depending on the deployment model, the pool is used for the duration of one or multiple web requests.
Network connections are bound to the lifespan of an operating system level process. If the PHP process
serves multiple web requests as it is the case for Fast-CGI or threaded web server deployments, then
the pooled connections can be reused over multiple connections. Because multiplexing means sharing
connections, it can even happen with a threaded deployment that two threads or two distinct web requests
are linked to one pooled network connections.

A pooled connection is explicitly closed once the last reference to it is released. An implicit close happens
when PHP shuts down its modules.

10.4.3 Sharing connections

Copyright 1997-2014 the PHP Documentation Group.

The PHP mysqlnd connection multiplexing plugin changes the relationship between a users connection
handle and the underlying MySQL connection. Without the plugin, every MySQL connection belongs to
exactly one user connection at a time. The multiplexing plugin changes. A MySQL connection is shared
among multiple user handles. There no one-to-one relation if using the plugin.

Sharing pooled connections has an impact on the connection state. State changing operations from
multiple user handles pointing to one MySQL connection are not isolated from each other. If, for example,
a session variable is set through one user connection handle, the session variable becomes visible to all
other user handles that reference the same underlying MySQL connection.

This is similar in concept to connection state related phenomens described for the PHP mysqlnd replication
and load balancing plugin. Please, check the PECL/mysqlnd_ms documentation for more details on the
state of a connection.

The proof-of-concept takes no measures to isolate multiplexed connections from each other.

10.5 Installing/Configuring

Copyright 1997-2014 the PHP Documentation Group.

10.5.1 Requirements

Copyright 1997-2014 the PHP Documentation Group.

Installation

684

PHP 5.5.0 or newer. Some advanced functionality requires PHP 5.5.0 or newer.

The mysqlnd_mux replication and load balancing plugin supports all PHP applications and all available
PHP MySQL extensions (mysqli, mysql, PDO_MYSQL). The PHP MySQL extension must be configured to
use mysqlnd in order to be able to use the mysqlnd_mux plugin for mysqlnd.

10.5.2 Installation

Copyright 1997-2014 the PHP Documentation Group.

Information for installing this PECL extension may be found in the manual chapter titled Installation of
PECL extensions. Additional information such as new releases, downloads, source files, maintainer
information, and a CHANGELOG, can be located here: http://pecl.php.net/package/mysqlnd_mux

10.5.3 Runtime Configuration

Copyright 1997-2014 the PHP Documentation Group.

The behaviour of these functions is affected by settings in php.ini.

Table 10.1 Mysqlnd_mux Configure Options

Name Default Changeable Changelog

mysqlnd_mux.enable 0 PHP_INI_SYSTEM

Here's a short explanation of the configuration directives.

mysqlnd_mux.enable integer Enables or disables the plugin. If disabled, the extension will not plug
into mysqlnd to proxy internal mysqlnd C API calls.

10.6 Predefined Constants
Copyright 1997-2014 the PHP Documentation Group.

The constants below are defined by this extension, and will only be available when the extension has either
been compiled into PHP or dynamically loaded at runtime.

Other

The plugins version number can be obtained using MYSQLND_MUX_VERSION or
MYSQLND_MUX_VERSION_ID. MYSQLND_MUX_VERSION is the string representation of the numerical
version number MYSQLND_MUX_VERSION_ID, which is an integer such as 10000. Developers can
calculate the version number as follows.

Version (part) Example

Major*10000 1*10000 = 10000

Minor*100 0*100 = 0

Patch 0 = 0

MYSQLND_MUX_VERSION_ID 10000

MYSQLND_MUX_VERSION
(string)

Plugin version string, for example, “1.0.0-prototype”.

MYSQLND_MUX_VERSION_ID
(integer)

Plugin version number, for example, 10000.

http://www.php.net/install.pecl
http://www.php.net/install.pecl
http://pecl.php.net/package/mysqlnd_mux

Change History

685

10.7 Change History

Copyright 1997-2014 the PHP Documentation Group.

This change history is a high level summary of selected changes that may impact applications and/or break
backwards compatibility.

See also the CHANGES file in the source distribution for a complete list of changes.

10.7.1 PECL/mysqlnd_mux 1.0 series

Copyright 1997-2014 the PHP Documentation Group.

1.0.0-pre-alpha

• Release date: no package released, initial check-in 09/2012

• Motto/theme: Proof of concept

Initial check-in. Essentially a demo of the mysqlnd plugin API.

Note

This is the current development series. All features are at an early stage. Changes
may happen at any time without prior notice. Please, do not use this version in
production environments.

The documentation may not reflect all changes yet.

686

687

Chapter 11 Mysqlnd Memcache plugin

Table of Contents
11.1 Key Features .. 688
11.2 Limitations .. 688
11.3 On the name .. 688
11.4 Quickstart and Examples .. 688

11.4.1 Setup ... 689
11.4.2 Usage .. 690

11.5 Installing/Configuring ... 691
11.5.1 Requirements ... 691
11.5.2 Installation ... 691
11.5.3 Runtime Configuration .. 691

11.6 Predefined Constants .. 692
11.7 Mysqlnd_memcache Functions .. 692

11.7.1 mysqlnd_memcache_get_config ... 692
11.7.2 mysqlnd_memcache_set ... 695

11.8 Change History ... 697
11.8.1 PECL/mysqlnd_memcache 1.0 series ... 697

Copyright 1997-2014 the PHP Documentation Group.

The mysqlnd memcache plugin (mysqlnd_memcache) is an PHP extension for transparently translating
SQL into requests for the MySQL InnoDB Memcached Daemon Plugin (server plugin). It includes
experimental support for the MySQL Cluster Memcached Daemon. The server plugin provides access to
data stored inside MySQL InnoDB (respectively MySQL Cluster NDB) tables using the Memcache protocol.
This PHP extension, which supports all PHP MySQL extensions that use mysqlnd, will identify tables
exported in this way and will translate specific SELECT queries into Memcache requests.

Figure 11.1 mysqlnd_memcache data flow

Note

This plugin depends on the MySQL InnoDB Memcached Daemon Plugin. It is not
provided to be used with a stand-alone Memcached. For a generic query cache
using Memcached look at the mysqlnd query cache plugin. For direct Memcache
access look at the memcache and memcached extensions.

http://www.php.net/book.memcache
http://www.php.net/book.memcached

Key Features

688

The MySQL native driver for PHP is a C library that ships together with PHP as of PHP 5.3.0. It serves as a
drop-in replacement for the MySQL Client Library (libmysqlclient). Using mysqlnd has several advantages:
no extra downloads are required because it's bundled with PHP, it's under the PHP license, there is lower
memory consumption in certain cases, and it contains new functionality such as asynchronous queries.

The mysqlnd_mmemcache operates, for the most part, transparently from a user perspective. The
mysqlnd memcache plugin supports all PHP applications, and all MySQL PHP extensions. It does not
change existing APIs. Therefore, it can easily be used with existing PHP applications.

The MySQL Memcache plugins add key-value style access method for data stored in InnoDB resp. NDB
(MySQL Cluster) SQL tables through the Memcache protocol. This type of key-value access if often faster
than using SQL.

11.1 Key Features

Copyright 1997-2014 the PHP Documentation Group.

The key features of PECL/mysqlnd_memcache are as follows.

• Possible performance benefits

• Client-side: light-weight protocol.

• Server-side: no SQL parsing, direct access to the storage.

• Please, run your own benchmarks! Actual performance results are highly dependent on setup and
hardware used.

11.2 Limitations

Copyright 1997-2014 the PHP Documentation Group.

The initial version is not binary safe. Due to the way the MySQL Memcache plugins works there are
restrictions related to separators.

Prepared statements and asynchronous queries are not supported. Result set meta data support is limited.

The mapping information for tables accessible via Memcache is not cached in the plugin between requests
but fetched from the MySQL server each time a MySQL connection is associated with a Memcache
connection. See mysqlnd_memcache_set for details.

11.3 On the name

Copyright 1997-2014 the PHP Documentation Group.

The shortcut mysqlnd_memcache stands for mysqlnd memcache plugin. Memcache refers to support
of the MySQL Memcache plugins for InnoDB and NDB (MySQL Cluster). The plugin is not related to the
Memcached cache server.

11.4 Quickstart and Examples

Copyright 1997-2014 the PHP Documentation Group.

The mysqlnd memcache plugin is easy to use. This quickstart will demo typical use-cases, and provide
practical advice on getting started.

Setup

689

It is strongly recommended to read the reference sections in addition to the quickstart. The quickstart tries
to avoid discussing theoretical concepts and limitations. Instead, it will link to the reference sections. It is
safe to begin with the quickstart. However, before using the plugin in mission critical environments we urge
you to read additionally the background information from the reference sections.

11.4.1 Setup

Copyright 1997-2014 the PHP Documentation Group.

The plugin is implemented as a PHP extension. See also the installation instructions to install this
extension.

Compile or configure the PHP MySQL extension (API) (mysqli, PDO_MYSQL, mysql). That extension must
use the mysqlnd library as because mysqlnd_memcache is a plugin for the mysqlnd library. For additional
information, refer to the mysqlnd_memcache installation instructions.

Then, load this extension into PHP and activate the plugin in the PHP configuration file using the PHP
configuration directive named mysqlnd_memcache.enable.

Example 11.1 Enabling the plugin (php.ini)

; On Windows the filename is php_mysqnd_memcache.dll
; Load the extension
extension=mysqlnd_memcache.so
; Enable it
mysqlnd_memcache.enable=1

Follow the instructions given in the MySQL Reference Manual on installing the Memcache plugins for the
MySQL server. Activate the plugins and configure Memcache access for SQL tables.

The examples in this quickguide assume that the following table exists, and that Memcache is configured
with access to it.

Example 11.2 SQL table used for the Quickstart

CREATE TABLE test(
 id CHAR(16),
 f1 VARCHAR(255),
 f2 VARCHAR(255),
 f3 VARCHAR(255),
 flags INT NOT NULL,
 cas_column INT,
 expire_time_column INT,
 PRIMARY KEY(id)
) ENGINE=InnoDB;

INSERT INTO test (id, f1, f2, f3) VALUES (1, 'Hello', 'World', '!');
INSERT INTO test (id, f1, f2, f3) VALUES (2, 'Lady', 'and', 'the tramp');

INSERT INTO innodb_memcache.containers(
 name, db_schema, db_table, key_columns, value_columns,
 flags, cas_column, expire_time_column, unique_idx_name_on_key)
VALUES (
 'plugin_test', 'test', 'test', 'id', 'f1,f2,f3',
 'flags', 'cas_column', 'expire_time_column', 'PRIMARY KEY');

http://www.php.net/memcached.installation
http://dev.mysql.com/doc/en/ha-memcached.html

Usage

690

11.4.2 Usage

Copyright 1997-2014 the PHP Documentation Group.

After associating a MySQL connection with a Memcache connection using mysqnd_memcache_set
the plugin attempts to transparently replace SQL SELECT statements by a memcache access. For that
purpose the plugin monitors all SQL statements executed and tries to match the statement string against
MYSQLND_MEMCACHE_DEFAULT_REGEXP. In case of a match, the mysqlnd memcache plugin checks
whether the SELECT is accessing only columns of a mapped table and the WHERE clause is limited to a
single key lookup.

In case of the example SQL table, the plugin will use the Memcache interface of the MySQL server to fetch
results for a SQL query like SELECT f1, f2, f3 WHERE id = n.

Example 11.3 Basic example.

<?php
$mysqli = new mysqli("host", "user", "passwd", "database");
$memc = new Memcached();
$memc->addServer("host", 11211);
mysqlnd_memcache_set($mysqli, $memc);

/*
 This is a query which queries table test using id as key in the WHERE part
 and is accessing fields f1, f2 and f3. Therefore, mysqlnd_memcache
 will intercept it and route it via memcache.
*/
$result = $mysqli->query("SELECT f1, f2, f3 FROM test WHERE id = 1");
while ($row = $result->fetch_row()) {
 print_r($row);
}

/*
 This is a query which queries table test but using f1 in the WHERE clause.
 Therefore, mysqlnd_memcache can't intercept it. This will be executed
 using the MySQL protocol
*/
$mysqli->query("SELECT id FROM test WHERE f1 = 'Lady'");
while ($row = $result->fetch_row()) {
 print_r($row);
}
?>

The above example will output:

array(
 [f1] => Hello
 [f2] => World
 [f3] => !
)
array(
 [id] => 2
)

http://www.php.net/mysqnd_memcache_set

Installing/Configuring

691

11.5 Installing/Configuring

Copyright 1997-2014 the PHP Documentation Group.

11.5.1 Requirements

Copyright 1997-2014 the PHP Documentation Group.

PHP: this extension requires PHP 5.4+, version PHP 5.4.4 or never. The required PHP extensions are
PCRE (enabled by default), and the memcached extension version 2.0.x.

The mysqlnd_memcache Memcache plugin supports all PHP applications and all available PHP MySQL
extensions (mysqli, mysql, PDO_MYSQL). The PHP MySQL extension must be configured with mysqlnd
support.

For accessing InnoDB tables, this PHP extension requires MySQL Server 5.6.6 or newer with the
InnoDB Memcache Daemon Plugin enabled.

For accessing MySQL Cluster NDB tables, this PHP extension requires MySQL Cluster 7.2 or newer
with the NDB Memcache API nodes enabled.

11.5.2 Installation

Copyright 1997-2014 the PHP Documentation Group.

This PECL extension is not bundled with PHP.

Information for installing this PECL extension may be found in the manual chapter titled Installation of
PECL extensions. Additional information such as new releases, downloads, source files, maintainer
information, and a CHANGELOG, can be located here: http://pecl.php.net/package/mysqlnd_memcache

A DLL for this PECL extension is currently unavailable. See also the building on Windows section.

11.5.3 Runtime Configuration

Copyright 1997-2014 the PHP Documentation Group.

The behaviour of these functions is affected by settings in php.ini.

Table 11.1 Mysqlnd_memcache Configure Options

Name Default Changeable Changelog

mysqlnd_memcache.enable1 PHP_INI_SYSTEM Available since 1.0.0

Here's a short explanation of the configuration directives.

mysqlnd_memcache.enable
integer

Enables or disables the plugin. If disabled, the extension will not plug
into mysqlnd to proxy internal mysqlnd C API calls.

Note

This option is mainly used by developers to build
this extension statically into PHP. General users
are encouraged to build this extension as a

http://www.php.net/ref.pcre
http://www.php.net/book.memcached
http://pecl.php.net/
http://www.php.net/install.pecl
http://www.php.net/install.pecl
http://pecl.php.net/package/mysqlnd_memcache
http://www.php.net/install.windows.legacy.building

Predefined Constants

692

shared object, and to unload it completely when
it is not needed.

11.6 Predefined Constants

Copyright 1997-2014 the PHP Documentation Group.

The constants below are defined by this extension, and will only be available when the extension has either
been compiled into PHP or dynamically loaded at runtime.

MySQL Memcache Plugin related

MYSQLND_MEMCACHE_DEFAULT_REGEXP
(string)

Default regular expression (PCRE style) used for matching SELECT
statements that will be mapped into a MySQL Memcache Plugin access
point, if possible.

It is also possible to use mysqlnd_memcache_set, but the default
approach is using this regular expression for pattern matching.

Assorted

The version number of this plugin can be obtained by using MYSQLND_MEMCACHE_VERSION or
MYSQLND_MEMCACHE_VERSION_ID. MYSQLND_MEMCACHE_VERSION is the string representation of
the numerical version number MYSQLND_MEMCACHE_VERSION_ID, which is an integer such as 10000.
Developers can calculate the version number as follows.

Version (part) Example

Major*10000 1*10000 = 10000

Minor*100 0*100 = 0

Patch 0 = 0

MYSQLND_MEMCACHE_VERSION_ID 10000

MYSQLND_MEMCACHE_VERSION
(string)

Plugin version string, for example, “1.0.0-alpha”.

MYSQLND_MEMCACHE_VERSION_ID
(integer)

Plugin version number, for example, 10000.

11.7 Mysqlnd_memcache Functions

Copyright 1997-2014 the PHP Documentation Group.

11.7.1 mysqlnd_memcache_get_config

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_memcache_get_config

Returns information about the plugin configuration

Description

 array mysqlnd_memcache_get_config(
 mixed connection);

mysqlnd_memcache_get_config

693

This function returns an array of all mysqlnd_memcache related configuration information that
is attached to the MySQL connection. This includes MySQL, the Memcache object provided via
mysqlnd_memcache_set, and the table mapping configuration that was automatically collected from the
MySQL Server.

Parameters

connection A handle to a MySQL Server using one of the MySQL API extensions
for PHP, which are PDO_MYSQL, mysqli or ext/mysql.

Return Values

An array of mysqlnd_memcache configuration information on success, otherwise FALSE.

The returned array has these elements:

Table 11.2 mysqlnd_memcache_get_config array structure

Array Key Description

memcached Instance of Memcached associated to this MySQL
connection by mysqlnd_memcache_set. You
can use this to change settings of the memcache
connection, or directly by querying the server on this
connection.

pattern The PCRE regular expression used to match the
SQL query sent to the server. Queries matching
this pattern will be further analyzed to decide
whether the query can be intercepted and sent
via the memcache interface or whether the query
is sent using the general MySQL protocol to the
server. The pattern is either the default pattern
(MYSQLND_MEMCACHE_DEFAULT_REGEXP) or it is
set via mysqlnd_memcache_set.

mappings An associative array with a list of all configured
containers as they were discovered by this plugin.
The key for these elements is the name of the
container in the MySQL configuration. The value is
described below. The contents of this field is created
by querying the MySQL Server during association
to MySQL and a memcache connection using
mysqlnd_memcache_set.

mapping_query An SQL query used during
mysqlnd_memcache_set to identify the available
containers and mappings. The result of that query is
provided in the mappings element.

Table 11.3 Mapping entry structure

Array Key Description

prefix A prefix used while accessing data via memcache.
With the MySQL InnoDB Memcache Deamon
plugin, this usually begins with @@ and ends with a
configurable separator. This prefix is placed in front
of the key value while using the memcache protocol.

mysqlnd_memcache_get_config

694

Array Key Description

schema_name Name of the schema (database) which contains the
table being accessed.

table_name Name of the table which contains the data
accessible via memcache protocol.

id_field_name Name of the database field (column) with the
id used as key when accessing the table via
memcache. Often this is the database field having a
primary key.

separator The separator used to split the different field values.
This is needed as memcache only provides access
to a single value while MySQL can map multiple
columns to this value.

Note

The separator, which can
be set in the MySQL Server
configuration, should not be
part of any value retrieved
via memcache because
proper mapping can't be
guaranteed.

fields An array with the name of all fields available for this
mapping.

Examples

Example 11.4 mysqlnd_memcache_get_config example

<?php
$mysqli = new mysqli("host", "user", "passwd", "database");
$memc = new Memcached();
$memc->addServer("host", 11211);
mysqlnd_memcache_set($mysqli, $memc);

var_dump(mysqlnd_memcache_get_config($mysqli));
?>

The above example will output:

array(4) {
 ["memcached"]=>
 object(Memcached)#2 (0) {
 }
 ["pattern"]=>
 string(125) "/^\s*SELECT\s*(.+?)\s*FROM\s*`?([a-z0-9_]+)`?\s*WHERE\s*`?([a-z0-9_]+)`?\s*=\s*(?(?=["'])["']([^"']*)["']|([0-9e\.]*))\s*$/is"
 ["mappings"]=>
 array(1) {
 ["mymem_test"]=>
 array(6) {
 ["prefix"]=>

mysqlnd_memcache_set

695

 string(13) "@@mymem_test."
 ["schema_name"]=>
 string(4) "test"
 ["table_name"]=>
 string(10) "mymem_test"
 ["id_field_name"]=>
 string(2) "id"
 ["separator"]=>
 string(1) "|"
 ["fields"]=>
 array(3) {
 [0]=>
 string(2) "f1"
 [1]=>
 string(2) "f2"
 [2]=>
 string(2) "f3"
 }
 }
 }
 ["mapping_query"]=>
 string(209) " SELECT c.name,
 CONCAT('@@', c.name, (SELECT value FROM innodb_memcache.config_options WHERE name = 'table_map_delimiter')) AS key_prefix,
 c.db_schema,
 c.db_table,
 c.key_columns,
 c.value_columns,
 (SELECT value FROM innodb_memcache.config_options WHERE name = 'separator') AS sep
 FROM innodb_memcache.containers c"
}

See Also

mysqlnd_memcache_set

11.7.2 mysqlnd_memcache_set

Copyright 1997-2014 the PHP Documentation Group.

• mysqlnd_memcache_set

Associate a MySQL connection with a Memcache connection

Description

 bool mysqlnd_memcache_set(
 mixed mysql_connection,
 Memcached memcache_connection,
 string pattern,
 callback callback);

Associate mysql_connection with memcache_connection using pattern as a PCRE regular
expression, and callback as a notification callback or to unset the association of mysql_connection.

While associating a MySQL connection with a Memcache connection, this function will query the MySQL
Server for its configuration. It will automatically detect whether the server is configured to use the InnoDB
Memcache Daemon Plugin or MySQL Cluster NDB Memcache support. It will also query the server
to automatically identify exported tables and other configuration options. The results of this automatic
configuration can be retrieved using mysqlnd_memcache_get_config.

Parameters

mysqlnd_memcache_set

696

mysql_connection A handle to a MySQL Server using one of the MySQL API extensions
for PHP, which are PDO_MYSQL, mysqli or ext/mysql.

memcache_connection A Memcached instance with a connection to the MySQL Memcache
Daemon plugin. If this parameter is omitted, then mysql_connection
will be unassociated from any memcache connection. And if a previous
association exists, then it will be replaced.

pattern A regular expression in Perl Compatible Regular Expression syntax
used to identify potential Memcache-queries. The query should have
three sub patterns. The first subpattern contains the requested field list,
the second the name of the ID column from the query and the third the
requested value. If this parameter is omitted or os set to NULL, then a
default pattern will be used.

callback A callback which will be used whenever a query is being sent to
MySQL. The callback will receive a single boolean parameter telling if a
query was sent via Memcache.

Return Values

TRUE if the association or disassociation is successful, otherwise FALSE if there is an error.

Examples

Example 11.5 mysqlnd_memcache_set example with var_dump as a simple debugging callback.

<?php
$mysqli = new mysqli("host", "user", "passwd", "database");
$memc = new Memcached();
$memc->addServer("host", 11211);
mysqlnd_memcache_set($mysqli, $memc, NULL, 'var_dump');

/* This query will be intercepted and executed via Memcache protocol */
echo "Sending query for id via Memcache: ";
$mysqli->query("SELECT f1, f2, f3 FROM test WHERE id = 1");

/* f1 is not configured as valid key field, this won't be sent via Memcache */
echo "Sending query for f1 via Memcache: ";
$mysqli->query("SELECT id FROM test WHERE f1 = 1");

mysqlnd_memcache_set($mysqli);

/* Now the regular MySQL protocol will be used */
echo "var_dump won't be invoked: ";
$mysqli->query("SELECT f1, f2, f3 WHERE id = 1");

?>

The above example will output:

Sending query for id via Memcache: bool(true)
Sending query for f1 via Memcache: bool(false)
var_dump won't be invoked:

http://www.php.net/book.memcached
http://www.php.net/book.pcre
http://www.php.net/var_dump

Change History

697

See Also

mysqlnd_memcache_get_config

11.8 Change History

Copyright 1997-2014 the PHP Documentation Group.

This change history is a high level summary of selected changes that may impact applications and/or break
backwards compatibility.

See also the CHANGES file in the source distribution for a complete list of changes.

11.8.1 PECL/mysqlnd_memcache 1.0 series

Copyright 1997-2014 the PHP Documentation Group.

1.0.0-alpha

• Release date: TBD

• Motto/theme: Basic mapping of SQL SELECT to a MySQL Memcache plugin access.

The initial release does map basic SQL SELECT statements to a MySQL Memcache plugin access.
This bares potential performance benefits as the direct key-value access to MySQL storage using the
Memcache protocol is usually faster than using SQL access.

698

699

Chapter 12 Common Problems with MySQL and PHP
• Error: Maximum Execution Time Exceeded: This is a PHP limit; go into the php.ini file and set

the maximum execution time up from 30 seconds to something higher, as needed. It is also not a bad
idea to double the RAM allowed per script to 16MB instead of 8MB.

• Fatal error: Call to unsupported or undefined function mysql_connect()
in ...: This means that your PHP version isn't compiled with MySQL support. You can either compile
a dynamic MySQL module and load it into PHP or recompile PHP with built-in MySQL support. This
process is described in detail in the PHP manual.

• Error: Undefined reference to 'uncompress': This means that the client library is compiled
with support for a compressed client/server protocol. The fix is to add -lz last when linking with -
lmysqlclient.

• Error: Client does not support authentication protocol: This is most often
encountered when trying to use the older mysql extension with MySQL 4.1.1 and later. Possible
solutions are: downgrade to MySQL 4.0; switch to PHP 5 and the newer mysqli extension; or configure
the MySQL server with the old_passwords system variable set to 1. (See Client does not support
authentication protocol, for more information.)

http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_old_passwords
http://dev.mysql.com/doc/refman/5.6/en/old-client.html
http://dev.mysql.com/doc/refman/5.6/en/old-client.html

700

	MySQL and PHP
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Introduction to the MySQL PHP API
	Chapter 2 Overview of the MySQL PHP drivers
	2.1 Introduction
	2.2 Terminology overview
	2.3 Choosing an API
	2.4 Choosing a library
	2.5 Concepts
	2.5.1 Buffered and Unbuffered queries
	2.5.2 Character sets

	Chapter 3 MySQL Improved Extension
	3.1 Overview
	3.2 Quick start guide
	3.2.1 Dual procedural and object-oriented interface
	3.2.2 Connections
	3.2.3 Executing statements
	3.2.4 Prepared Statements
	3.2.5 Stored Procedures
	3.2.6 Multiple Statements
	3.2.7 API support for transactions
	3.2.8 Metadata

	3.3 Installing/Configuring
	3.3.1 Requirements
	3.3.2 Installation
	3.3.2.1 Installation on Linux
	3.3.2.2 Installation on Windows Systems
	PHP 5.3.0 and newer
	PHP 5.0, 5.1, 5.2

	3.3.3 Runtime Configuration
	3.3.4 Resource Types

	3.4 The mysqli Extension and Persistent Connections
	3.5 Predefined Constants
	3.6 Notes
	3.7 The MySQLi Extension Function Summary
	3.8 Examples
	3.8.1 MySQLi extension basic examples

	3.9 The mysqli class
	3.9.1 mysqli::$affected_rows, mysqli_affected_rows
	3.9.2 mysqli::autocommit, mysqli_autocommit
	3.9.3 mysqli::begin_transaction, mysqli_begin_transaction
	3.9.4 mysqli::change_user, mysqli_change_user
	3.9.5 mysqli::character_set_name, mysqli_character_set_name
	3.9.6 mysqli::$client_info, mysqli_get_client_info
	3.9.7 mysqli::$client_version, mysqli_get_client_version
	3.9.8 mysqli::close, mysqli_close
	3.9.9 mysqli::commit, mysqli_commit
	3.9.10 mysqli::$connect_errno, mysqli_connect_errno
	3.9.11 mysqli::$connect_error, mysqli_connect_error
	3.9.12 mysqli::__construct, mysqli_connect
	3.9.13 mysqli::debug, mysqli_debug
	3.9.14 mysqli::dump_debug_info, mysqli_dump_debug_info
	3.9.15 mysqli::$errno, mysqli_errno
	3.9.16 mysqli::$error_list, mysqli_error_list
	3.9.17 mysqli::$error, mysqli_error
	3.9.18 mysqli::$field_count, mysqli_field_count
	3.9.19 mysqli::get_charset, mysqli_get_charset
	3.9.20 mysqli::get_client_info, mysqli_get_client_info
	3.9.21 mysqli_get_client_stats
	3.9.22 mysqli_get_client_version, mysqli::$client_version
	3.9.23 mysqli::get_connection_stats, mysqli_get_connection_stats
	3.9.24 mysqli::$host_info, mysqli_get_host_info
	3.9.25 mysqli::$protocol_version, mysqli_get_proto_info
	3.9.26 mysqli::$server_info, mysqli_get_server_info
	3.9.27 mysqli::$server_version, mysqli_get_server_version
	3.9.28 mysqli::get_warnings, mysqli_get_warnings
	3.9.29 mysqli::$info, mysqli_info
	3.9.30 mysqli::init, mysqli_init
	3.9.31 mysqli::$insert_id, mysqli_insert_id
	3.9.32 mysqli::kill, mysqli_kill
	3.9.33 mysqli::more_results, mysqli_more_results
	3.9.34 mysqli::multi_query, mysqli_multi_query
	3.9.35 mysqli::next_result, mysqli_next_result
	3.9.36 mysqli::options, mysqli_options
	3.9.37 mysqli::ping, mysqli_ping
	3.9.38 mysqli::poll, mysqli_poll
	3.9.39 mysqli::prepare, mysqli_prepare
	3.9.40 mysqli::query, mysqli_query
	3.9.41 mysqli::real_connect, mysqli_real_connect
	3.9.42 mysqli::real_escape_string, mysqli_real_escape_string
	3.9.43 mysqli::real_query, mysqli_real_query
	3.9.44 mysqli::reap_async_query, mysqli_reap_async_query
	3.9.45 mysqli::refresh, mysqli_refresh
	3.9.46 mysqli::release_savepoint, mysqli_release_savepoint
	3.9.47 mysqli::rollback, mysqli_rollback
	3.9.48 mysqli::rpl_query_type, mysqli_rpl_query_type
	3.9.49 mysqli::savepoint, mysqli_savepoint
	3.9.50 mysqli::select_db, mysqli_select_db
	3.9.51 mysqli::send_query, mysqli_send_query
	3.9.52 mysqli::set_charset, mysqli_set_charset
	3.9.53 mysqli::set_local_infile_default, mysqli_set_local_infile_default
	3.9.54 mysqli::set_local_infile_handler, mysqli_set_local_infile_handler
	3.9.55 mysqli::$sqlstate, mysqli_sqlstate
	3.9.56 mysqli::ssl_set, mysqli_ssl_set
	3.9.57 mysqli::stat, mysqli_stat
	3.9.58 mysqli::stmt_init, mysqli_stmt_init
	3.9.59 mysqli::store_result, mysqli_store_result
	3.9.60 mysqli::$thread_id, mysqli_thread_id
	3.9.61 mysqli::thread_safe, mysqli_thread_safe
	3.9.62 mysqli::use_result, mysqli_use_result
	3.9.63 mysqli::$warning_count, mysqli_warning_count

	3.10 The mysqli_stmt class
	3.10.1 mysqli_stmt::$affected_rows, mysqli_stmt_affected_rows
	3.10.2 mysqli_stmt::attr_get, mysqli_stmt_attr_get
	3.10.3 mysqli_stmt::attr_set, mysqli_stmt_attr_set
	3.10.4 mysqli_stmt::bind_param, mysqli_stmt_bind_param
	3.10.5 mysqli_stmt::bind_result, mysqli_stmt_bind_result
	3.10.6 mysqli_stmt::close, mysqli_stmt_close
	3.10.7 mysqli_stmt::__construct
	3.10.8 mysqli_stmt::data_seek, mysqli_stmt_data_seek
	3.10.9 mysqli_stmt::$errno, mysqli_stmt_errno
	3.10.10 mysqli_stmt::$error_list, mysqli_stmt_error_list
	3.10.11 mysqli_stmt::$error, mysqli_stmt_error
	3.10.12 mysqli_stmt::execute, mysqli_stmt_execute
	3.10.13 mysqli_stmt::fetch, mysqli_stmt_fetch
	3.10.14 mysqli_stmt::$field_count, mysqli_stmt_field_count
	3.10.15 mysqli_stmt::free_result, mysqli_stmt_free_result
	3.10.16 mysqli_stmt::get_result, mysqli_stmt_get_result
	3.10.17 mysqli_stmt::get_warnings, mysqli_stmt_get_warnings
	3.10.18 mysqli_stmt::$insert_id, mysqli_stmt_insert_id
	3.10.19 mysqli_stmt::more_results, mysqli_stmt_more_results
	3.10.20 mysqli_stmt::next_result, mysqli_stmt_next_result
	3.10.21 mysqli_stmt::$num_rows, mysqli_stmt_num_rows
	3.10.22 mysqli_stmt::$param_count, mysqli_stmt_param_count
	3.10.23 mysqli_stmt::prepare, mysqli_stmt_prepare
	3.10.24 mysqli_stmt::reset, mysqli_stmt_reset
	3.10.25 mysqli_stmt::result_metadata, mysqli_stmt_result_metadata
	3.10.26 mysqli_stmt::send_long_data, mysqli_stmt_send_long_data
	3.10.27 mysqli_stmt::$sqlstate, mysqli_stmt_sqlstate
	3.10.28 mysqli_stmt::store_result, mysqli_stmt_store_result

	3.11 The mysqli_result class
	3.11.1 mysqli_result::$current_field, mysqli_field_tell
	3.11.2 mysqli_result::data_seek, mysqli_data_seek
	3.11.3 mysqli_result::fetch_all, mysqli_fetch_all
	3.11.4 mysqli_result::fetch_array, mysqli_fetch_array
	3.11.5 mysqli_result::fetch_assoc, mysqli_fetch_assoc
	3.11.6 mysqli_result::fetch_field_direct, mysqli_fetch_field_direct
	3.11.7 mysqli_result::fetch_field, mysqli_fetch_field
	3.11.8 mysqli_result::fetch_fields, mysqli_fetch_fields
	3.11.9 mysqli_result::fetch_object, mysqli_fetch_object
	3.11.10 mysqli_result::fetch_row, mysqli_fetch_row
	3.11.11 mysqli_result::$field_count, mysqli_num_fields
	3.11.12 mysqli_result::field_seek, mysqli_field_seek
	3.11.13 mysqli_result::free, mysqli_free_result
	3.11.14 mysqli_result::$lengths, mysqli_fetch_lengths
	3.11.15 mysqli_result::$num_rows, mysqli_num_rows

	3.12 The mysqli_driver class
	3.12.1 mysqli_driver::embedded_server_end, mysqli_embedded_server_end
	3.12.2 mysqli_driver::embedded_server_start, mysqli_embedded_server_start
	3.12.3 mysqli_driver::$report_mode, mysqli_report

	3.13 The mysqli_warning class
	3.13.1 mysqli_warning::__construct
	3.13.2 mysqli_warning::next

	3.14 The mysqli_sql_exception class
	3.15 Aliases and deprecated Mysqli Functions
	3.15.1 mysqli_bind_param
	3.15.2 mysqli_bind_result
	3.15.3 mysqli_client_encoding
	3.15.4 mysqli_connect
	3.15.5 mysqli::disable_reads_from_master, mysqli_disable_reads_from_master
	3.15.6 mysqli_disable_rpl_parse
	3.15.7 mysqli_enable_reads_from_master
	3.15.8 mysqli_enable_rpl_parse
	3.15.9 mysqli_escape_string
	3.15.10 mysqli_execute
	3.15.11 mysqli_fetch
	3.15.12 mysqli_get_cache_stats
	3.15.13 mysqli_get_links_stats
	3.15.14 mysqli_get_metadata
	3.15.15 mysqli_master_query
	3.15.16 mysqli_param_count
	3.15.17 mysqli_report
	3.15.18 mysqli_rpl_parse_enabled
	3.15.19 mysqli_rpl_probe
	3.15.20 mysqli_send_long_data
	3.15.21 mysqli::set_opt, mysqli_set_opt
	3.15.22 mysqli_slave_query

	3.16 Changelog

	Chapter 4 MySQL Functions (PDO_MYSQL)
	4.1 PDO_MYSQL DSN

	Chapter 5 Original MySQL API
	5.1 Installing/Configuring
	5.1.1 Requirements
	5.1.2 Installation
	5.1.2.1 Installation on Linux Systems
	5.1.2.2 Installation on Windows Systems
	PHP 4
	PHP 5.0.x, 5.1.x, 5.2.x
	PHP 5.3.0+

	5.1.2.3 MySQL Installation Notes

	5.1.3 Runtime Configuration
	5.1.4 Resource Types

	5.2 Changelog
	5.3 Predefined Constants
	5.4 Examples
	5.4.1 MySQL extension overview example

	5.5 MySQL Functions
	5.5.1 mysql_affected_rows
	5.5.2 mysql_client_encoding
	5.5.3 mysql_close
	5.5.4 mysql_connect
	5.5.5 mysql_create_db
	5.5.6 mysql_data_seek
	5.5.7 mysql_db_name
	5.5.8 mysql_db_query
	5.5.9 mysql_drop_db
	5.5.10 mysql_errno
	5.5.11 mysql_error
	5.5.12 mysql_escape_string
	5.5.13 mysql_fetch_array
	5.5.14 mysql_fetch_assoc
	5.5.15 mysql_fetch_field
	5.5.16 mysql_fetch_lengths
	5.5.17 mysql_fetch_object
	5.5.18 mysql_fetch_row
	5.5.19 mysql_field_flags
	5.5.20 mysql_field_len
	5.5.21 mysql_field_name
	5.5.22 mysql_field_seek
	5.5.23 mysql_field_table
	5.5.24 mysql_field_type
	5.5.25 mysql_free_result
	5.5.26 mysql_get_client_info
	5.5.27 mysql_get_host_info
	5.5.28 mysql_get_proto_info
	5.5.29 mysql_get_server_info
	5.5.30 mysql_info
	5.5.31 mysql_insert_id
	5.5.32 mysql_list_dbs
	5.5.33 mysql_list_fields
	5.5.34 mysql_list_processes
	5.5.35 mysql_list_tables
	5.5.36 mysql_num_fields
	5.5.37 mysql_num_rows
	5.5.38 mysql_pconnect
	5.5.39 mysql_ping
	5.5.40 mysql_query
	5.5.41 mysql_real_escape_string
	5.5.42 mysql_result
	5.5.43 mysql_select_db
	5.5.44 mysql_set_charset
	5.5.45 mysql_stat
	5.5.46 mysql_tablename
	5.5.47 mysql_thread_id
	5.5.48 mysql_unbuffered_query

	Chapter 6 MySQL Native Driver
	6.1 Overview
	6.2 Installation
	6.3 Runtime Configuration
	6.4 Incompatibilities
	6.5 Persistent Connections
	6.6 Statistics
	6.7 Notes
	6.8 Memory management
	6.9 MySQL Native Driver Plugin API
	6.9.1 A comparison of mysqlnd plugins with MySQL Proxy
	6.9.2 Obtaining the mysqlnd plugin API
	6.9.3 MySQL Native Driver Plugin Architecture
	6.9.4 The mysqlnd plugin API
	6.9.5 Getting started building a mysqlnd plugin

	Chapter 7 Mysqlnd replication and load balancing plugin
	7.1 Key Features
	7.2 Limitations
	7.3 On the name
	7.4 Quickstart and Examples
	7.4.1 Setup
	7.4.2 Running statements
	7.4.3 Connection state
	7.4.4 SQL Hints
	7.4.5 Local transactions
	7.4.6 XA/Distributed Transactions
	7.4.7 Service level and consistency
	7.4.8 Global transaction IDs
	7.4.9 Cache integration
	7.4.10 Failover
	7.4.11 Partitioning and Sharding
	7.4.12 MySQL Fabric

	7.5 Concepts
	7.5.1 Architecture
	7.5.2 Connection pooling and switching
	7.5.3 Local transaction handling
	7.5.4 Error handling
	7.5.5 Transient errors
	7.5.6 Failover
	7.5.7 Load balancing
	7.5.8 Read-write splitting
	7.5.9 Filter
	7.5.10 Service level and consistency
	7.5.11 Global transaction IDs
	7.5.12 Cache integration
	7.5.13 Supported clusters
	7.5.14 XA/Distributed transactions

	7.6 Installing/Configuring
	7.6.1 Requirements
	7.6.2 Installation
	7.6.3 Runtime Configuration
	7.6.4 Plugin configuration file (>=1.1.x)
	7.6.4.1 Introduction
	7.6.4.2 Configuration Directives
	7.6.4.3 Plugin configuration file (<= 1.0.x)
	7.6.4.4 Testing
	7.6.4.5 Debugging and Tracing
	7.6.4.6 Monitoring

	7.7 Predefined Constants
	7.8 Mysqlnd_ms Functions
	7.8.1 mysqlnd_ms_dump_servers
	7.8.2 mysqlnd_ms_fabric_select_global
	7.8.3 mysqlnd_ms_fabric_select_shard
	7.8.4 mysqlnd_ms_get_last_gtid
	7.8.5 mysqlnd_ms_get_last_used_connection
	7.8.6 mysqlnd_ms_get_stats
	7.8.7 mysqlnd_ms_match_wild
	7.8.8 mysqlnd_ms_query_is_select
	7.8.9 mysqlnd_ms_set_qos
	7.8.10 mysqlnd_ms_set_user_pick_server
	7.8.11 mysqlnd_ms_xa_begin
	7.8.12 mysqlnd_ms_xa_commit
	7.8.13 mysqlnd_ms_xa_gc
	7.8.14 mysqlnd_ms_xa_rollback

	7.9 Change History
	7.9.1 PECL/mysqlnd_ms 1.6 series
	7.9.2 PECL/mysqlnd_ms 1.5 series
	7.9.3 PECL/mysqlnd_ms 1.4 series
	7.9.4 PECL/mysqlnd_ms 1.3 series
	7.9.5 PECL/mysqlnd_ms 1.2 series
	7.9.6 PECL/mysqlnd_ms 1.1 series
	7.9.7 PECL/mysqlnd_ms 1.0 series

	Chapter 8 Mysqlnd query result cache plugin
	8.1 Key Features
	8.2 Limitations
	8.3 On the name
	8.4 Quickstart and Examples
	8.4.1 Architecture and Concepts
	8.4.2 Setup
	8.4.3 Caching queries
	8.4.4 Setting the TTL
	8.4.5 Pattern based caching
	8.4.6 Slam defense
	8.4.7 Finding cache candidates
	8.4.8 Measuring cache efficiency
	8.4.9 Beyond TTL: user-defined storage

	8.5 Installing/Configuring
	8.5.1 Requirements
	8.5.2 Installation
	8.5.3 Runtime Configuration

	8.6 Predefined Constants
	8.7 mysqlnd_qc Functions
	8.7.1 mysqlnd_qc_clear_cache
	8.7.2 mysqlnd_qc_get_available_handlers
	8.7.3 mysqlnd_qc_get_cache_info
	8.7.4 mysqlnd_qc_get_core_stats
	8.7.5 mysqlnd_qc_get_normalized_query_trace_log
	8.7.6 mysqlnd_qc_get_query_trace_log
	8.7.7 mysqlnd_qc_set_cache_condition
	8.7.8 mysqlnd_qc_set_is_select
	8.7.9 mysqlnd_qc_set_storage_handler
	8.7.10 mysqlnd_qc_set_user_handlers

	8.8 Change History
	8.8.1 PECL/mysqlnd_qc 1.2 series
	8.8.2 PECL/mysqlnd_qc 1.1 series
	8.8.3 PECL/mysqlnd_qc 1.0 series

	Chapter 9 Mysqlnd user handler plugin
	9.1 Security considerations
	9.2 Documentation note
	9.3 On the name
	9.4 Quickstart and Examples
	9.4.1 Setup
	9.4.2 How it works
	9.4.3 Installing a proxy
	9.4.4 Basic query monitoring

	9.5 Installing/Configuring
	9.5.1 Requirements
	9.5.2 Installation
	9.5.3 Runtime Configuration
	9.5.4 Resource Types

	9.6 Predefined Constants
	9.7 The MysqlndUhConnection class
	9.7.1 MysqlndUhConnection::changeUser
	9.7.2 MysqlndUhConnection::charsetName
	9.7.3 MysqlndUhConnection::close
	9.7.4 MysqlndUhConnection::connect
	9.7.5 MysqlndUhConnection::__construct
	9.7.6 MysqlndUhConnection::endPSession
	9.7.7 MysqlndUhConnection::escapeString
	9.7.8 MysqlndUhConnection::getAffectedRows
	9.7.9 MysqlndUhConnection::getErrorNumber
	9.7.10 MysqlndUhConnection::getErrorString
	9.7.11 MysqlndUhConnection::getFieldCount
	9.7.12 MysqlndUhConnection::getHostInformation
	9.7.13 MysqlndUhConnection::getLastInsertId
	9.7.14 MysqlndUhConnection::getLastMessage
	9.7.15 MysqlndUhConnection::getProtocolInformation
	9.7.16 MysqlndUhConnection::getServerInformation
	9.7.17 MysqlndUhConnection::getServerStatistics
	9.7.18 MysqlndUhConnection::getServerVersion
	9.7.19 MysqlndUhConnection::getSqlstate
	9.7.20 MysqlndUhConnection::getStatistics
	9.7.21 MysqlndUhConnection::getThreadId
	9.7.22 MysqlndUhConnection::getWarningCount
	9.7.23 MysqlndUhConnection::init
	9.7.24 MysqlndUhConnection::killConnection
	9.7.25 MysqlndUhConnection::listFields
	9.7.26 MysqlndUhConnection::listMethod
	9.7.27 MysqlndUhConnection::moreResults
	9.7.28 MysqlndUhConnection::nextResult
	9.7.29 MysqlndUhConnection::ping
	9.7.30 MysqlndUhConnection::query
	9.7.31 MysqlndUhConnection::queryReadResultsetHeader
	9.7.32 MysqlndUhConnection::reapQuery
	9.7.33 MysqlndUhConnection::refreshServer
	9.7.34 MysqlndUhConnection::restartPSession
	9.7.35 MysqlndUhConnection::selectDb
	9.7.36 MysqlndUhConnection::sendClose
	9.7.37 MysqlndUhConnection::sendQuery
	9.7.38 MysqlndUhConnection::serverDumpDebugInformation
	9.7.39 MysqlndUhConnection::setAutocommit
	9.7.40 MysqlndUhConnection::setCharset
	9.7.41 MysqlndUhConnection::setClientOption
	9.7.42 MysqlndUhConnection::setServerOption
	9.7.43 MysqlndUhConnection::shutdownServer
	9.7.44 MysqlndUhConnection::simpleCommand
	9.7.45 MysqlndUhConnection::simpleCommandHandleResponse
	9.7.46 MysqlndUhConnection::sslSet
	9.7.47 MysqlndUhConnection::stmtInit
	9.7.48 MysqlndUhConnection::storeResult
	9.7.49 MysqlndUhConnection::txCommit
	9.7.50 MysqlndUhConnection::txRollback
	9.7.51 MysqlndUhConnection::useResult

	9.8 The MysqlndUhPreparedStatement class
	9.8.1 MysqlndUhPreparedStatement::__construct
	9.8.2 MysqlndUhPreparedStatement::execute
	9.8.3 MysqlndUhPreparedStatement::prepare

	9.9 Mysqlnd_uh Functions
	9.9.1 mysqlnd_uh_convert_to_mysqlnd
	9.9.2 mysqlnd_uh_set_connection_proxy
	9.9.3 mysqlnd_uh_set_statement_proxy

	9.10 Change History
	9.10.1 PECL/mysqlnd_uh 1.0 series

	Chapter 10 Mysqlnd connection multiplexing plugin
	10.1 Key Features
	10.2 Limitations
	10.3 About the name mysqlnd_mux
	10.4 Concepts
	10.4.1 Architecture
	10.4.2 Connection pool
	10.4.3 Sharing connections

	10.5 Installing/Configuring
	10.5.1 Requirements
	10.5.2 Installation
	10.5.3 Runtime Configuration

	10.6 Predefined Constants
	10.7 Change History
	10.7.1 PECL/mysqlnd_mux 1.0 series

	Chapter 11 Mysqlnd Memcache plugin
	11.1 Key Features
	11.2 Limitations
	11.3 On the name
	11.4 Quickstart and Examples
	11.4.1 Setup
	11.4.2 Usage

	11.5 Installing/Configuring
	11.5.1 Requirements
	11.5.2 Installation
	11.5.3 Runtime Configuration

	11.6 Predefined Constants
	11.7 Mysqlnd_memcache Functions
	11.7.1 mysqlnd_memcache_get_config
	11.7.2 mysqlnd_memcache_set

	11.8 Change History
	11.8.1 PECL/mysqlnd_memcache 1.0 series

	Chapter 12 Common Problems with MySQL and PHP

