
ptg999

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Julie C. Meloni

SamsTeachYourself

HTML, CSS
and JavaScript

All
inOne

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Sams Teach Yourself HTML, CSS, and JavaScript All in One

Copyright © 2012 by Pearson Education, Inc.
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or other-
wise, without written permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although every precaution has
been taken in the preparation of this book, the publisher and author assume no responsi-
bility for errors or omissions. Nor is any liability assumed for damages resulting from the
use of the information contained herein.

ISBN-13: 978-0-672-33332-3
ISBN-10: 0-672-33332-5

Library of Congress Cataloging-in-Publication data is on file.

First Printing November 2011

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this
book or programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearson.com

Acquisitions Editor

Mark Taber

Development Editor

Songlin Qiu

Managing Editor

Sandra Schroeder

Project Editor

Seth Kerney

Copy Editor

Mike Henry

Indexer

Ken Johnson

Proofreader

Jovana San Nicolas-

Shirley

Technical Editor

Phil Ballard

Publishing Coordinator

Cindy Teeters

Book Designer

Gary Adair

Compositor

Trina Wurst

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Contents at a Glance

PART I: Getting Started on the Web
CHAPTER 1: Publishing Web Content
CHAPTER 2: Understanding HTML and XHTML

Connections
CHAPTER 3: Understanding Cascading Style

Sheets
CHAPTER 4: Understanding JavaScript

PART II: Building Blocks of Practical
Web Design

CHAPTER 5: Working with Fonts, Text Blocks, and
Lists

CHAPTER 6: Using Tables to Display Information
CHAPTER 7: Using External and Internal Links
CHAPTER 8: Working with Colors, Images, and

Multimedia

PART III: Advanced Web Page Design
with CSS

CHAPTER 9: Working with Margins, Padding,
Alignment, and Floating

CHAPTER 10: Understanding the CSS Box Model
and Positioning

CHAPTER 11: Using CSS to Do More with Lists,
Text, and Navigation

CHAPTER 12: Creating Fixed or Liquid Layouts

PART IV: Getting Started with Dynamic
Web Sites

CHAPTER 13: Understanding Dynamic Websites
CHAPTER 14: Getting Started with JavaScript

Programming
CHAPTER 15: Working with the Document Object

Model (DOM)
CHAPTER 16: Using JavaScript Variables, Strings,

and Arrays
CHAPTER 17: Using JavaScript Functions and

Objects
CHAPTER 18: Controlling Flow with Conditions

and Loops
CHAPTER 19: Responding to Events
CHAPTER 20: Using Windows and Frames

PART V: Advanced JavaScript
Programming

CHAPTER 21: Using Unobtrusive JavaScript
CHAPTER 22: Using Third-Party Libraries
CHAPTER 23: Greasemonkey: Enhancing the Web

with JavaScript
CHAPTER 24: AJAX: Remote Scripting

PART VI: Advanced Website
Functionality and Management

CHAPTER 25: Creating Print-Friendly Web Pages
CHAPTER 26: Working with Web-Based Forms
CHAPTER 27: Organizing and Managing a

Website
CHAPTER 28: Helping People Find Your Web
Pages
Index

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Table of Contents
CHAPTER 1: Publishing Web Content 1
A Brief History of HTML and the World
Wide Web . 1
Creating Web Content . 2
Understanding Web Content Delivery 3
Selecting a Web Hosting Provider . 6
Testing with Multiple Web Browsers. 8
Creating a Sample File . 9
Using FTP to Transfer Files . 10
Distributing Content Without a Web Server 18
Tips for Testing Web Content . 19

CHAPTER 2: Understanding HTML and
XHTML Connections 25

Getting Prepared . 25
Getting Started with a Simple Web Page 26
HTML Tags Every XHTML Web Page Must Have . . 29
Organizing a Page with Paragraphs and Line
Breaks . 31
Organizing Your Content with Headings 34
Validating Your Web Content . 36
The Scoop on HTML, XML, XHTML, and HTML5 . . 38

CHAPTER 3: Understanding Cascading Style
Sheets 45

How CSS Works . 46
A Basic Style Sheet . 47
A CSS Style Primer . 52
Using Style Classes . 57
Using Style IDs. 59
Internal Style Sheets and Inline Styles 59

CHAPTER 4: Understanding JavaScript 65
Learning Web Scripting Basics . 65
How JavaScript Fits into a Web Page 67
Exploring JavaScript’s Capabilities 70
Displaying Time with JavaScript. 71
Beginning the Script . 71
Adding JavaScript Statements . 72
Creating Output . 73
Adding the Script to a Web Page . 73
Testing the Script . 74

CHAPTER 5: Working with Fonts, Text Blocks,
and Lists 81

Boldface, Italics, and Special Text Formatting 82
Tweaking the Font . 85
Working with Special Characters . 89
Aligning Text on a Page . 92
The Three Types of HTML Lists . 95
Placing Lists Within Lists . 97

CHAPTER 6: Using Tables to Display
Information 107

Creating a Simple Table . 107
Controlling Table Sizes. 110
Alignment and Spanning Within Tables 113
Page Layout with Tables . 116

CHAPTER 7: Using External and Internal
Links 123

Using Web Addresses . 123
Linking Within a Page Using Anchors 126
Linking Between Your Own Web Content 129
Linking to External Web Content 131
Linking to an Email Address . 132
Opening a Link in a New Browser Window 134
Using CSS to Style Hyperlinks . 134

CHAPTER 8: Working with Colors,
Images, and Multimedia 141

Best Practices for Choosing Colors 141
Understanding Web Colors . 143
Using Hexadecimal Values for Colors 145
Using CSS to Set Background, Text, and
Border Colors . 146
Choosing Graphics Software . 148
The Least You Need to Know About Graphics . . 149
Preparing Photographic Images . 150
Creating Banners and Buttons . 155
Reducing the Number of Colors in an Image. . . . 157
Working with Transparent Images 158
Creating Tiled Backgrounds . 159
Creating Animated Web Graphics 160
Placing Images on a Web Page . 161
Describing Images with Text . 163
Specifying Image Height and Width 165
Aligning Images . 165

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Turning Images into Links . 169
Using Background Images . 171
Using Imagemaps . 173
Integrating Multimedia into Your Website 178

CHAPTER 9: Working with Margins, Padding,
Alignment, and Floating 191

Using Margins . 192
Padding Elements . 199
Keeping Everything Aligned. 203
Understanding the Float Property 204

CHAPTER 10: Understanding the CSS Box
Model and Positioning 209

The CSS Box Model . 209
The Whole Scoop on Positioning 213
Controlling the Way Things Stack Up 217
Managing the Flow of Text . 220

CHAPTER 11: Using CSS to Do More with
Lists, Text, and Navigation 225

HTML List Refresher . 226
How the CSS Box Model Affects Lists 226
Placing List Item Indicators . 229
Creating Image Maps with List Items and
CSS . 231
How Navigation Lists Differ from Regular
Lists . 235
Creating Vertical Navigation with CSS 236
Creating Horizontal Navigation with CSS 245

CHAPTER 12: Creating Fixed or Liquid
Layouts 253

Understanding Fixed Layouts . 254
Understanding Liquid Layouts . 255
Creating a Fixed/Liquid Hybrid Layout 258

CHAPTER 13: Understanding Dynamic
Websites 273

Understanding the Different Types of Scripting273
Including JavaScript in HTML . 274
Displaying Random Content . 276
Understanding the Document Object Model . . 280
Changing Images Based on User Interaction . . 281

CHAPTER 14: Getting Started with JavaScript
Programming 287

Basic Concepts . 287
JavaScript Syntax Rules . 291
Using Comments . 293
Best Practices for JavaScript . 293

CHAPTER 15: Working with the Document
Object Model (DOM) 299

Understanding the Document Object
Model (DOM) . 299
Using window Objects . 300
Working with the document Object. 300
Accessing Browser History . 303
Working with the location Object 305
More About the DOM Structure . 306
Working with DOM Nodes . 309
Creating Positionable Elements (Layers) 311
Hiding and Showing Objects . 316
Modifying Text Within a Page . 317
Adding Text to a Page . 319

CHAPTER 16: Using JavaScript Variables,
Strings, and Arrays 325

Using Variables . 325
Understanding Expressions and Operators 328
Data Types in JavaScript . 330
Converting Between Data Types 331
Using String Objects . 332
Working with Substrings. 335
Using Numeric Arrays . 337
Using String Arrays . 338
Sorting a Numeric Array . 340

CHAPTER 17: Using JavaScript Functions
and Objects 347

Using Functions . 347
Introducing Objects . 352
Using Objects to Simplify Scripting 354
Extending Built-in Objects . 356
Using the Math Object . 360
Working with Math Functions . 361
Using the with Keyword . 363
Working with Dates . 364

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

CHAPTER 18: Controlling Flow with
Conditions and Loops 369

The if Statement. 369
Using Shorthand Conditional Expressions. 372
Testing Multiple Conditions with if and else . . 373
Using Multiple Conditions with switch 375
Using for Loops . 377
Using while Loops . 379
Using do...while Loops . 380
Working with Loops . 380
Looping Through Object Properties 382

CHAPTER 19: Responding to Events 389
Understanding Event Handlers . 389
Using Mouse Events . 394
Using Keyboard Events . 397
Using the onLoad and onUnload Events 399
Using onclick to Change <div> Appearance. . . . 400

CHAPTER 20: Using Windows and Frames 409
Controlling Windows with Objects 409
Moving and Resizing Windows . 413
Using Timeouts . 414
Displaying Dialog Boxes . 417
Working with Frames . 418
Building a Frameset . 420
Linking Between Frames and Windows 423
Using Inline Frames . 426

CHAPTER 21: Using Unobtrusive
JavaScript 433

Scripting Best Practices . 433
Reading Browser Information . 440
Cross-Browser Scripting . 443
Supporting Non-JavaScript Browsers 445

CHAPTER 22: Using Third-Party Libraries 453
Using Third-Party Libraries . 453
Other Libraries . 456

CHAPTER 23: Greasemonkey: Enhancing
the Web with JavaScript 463

Introducing Greasemonkey . 463
Working with User Scripts . 466
Creating Your Own User Scripts. 468

CHAPTER 24: AJAX: Remote Scripting 479
Introducing AJAX . 479
Using XMLHttpRequest . 483
Creating a Simple AJAX Library . 485
Creating an AJAX Quiz Using the Library 487
Debugging AJAX Applications . 491

CHAPTER 25: Creating Print-Friendly
Web Pages 499

What Makes a Page Print-Friendly? 500
Applying a Media-Specific Style Sheet 503
Designing a Style Sheet for Print Pages 505
Viewing a Web Page in Print Preview 508

CHAPTER 26: Working with Web-Based
Forms 513

How HTML Forms Work . 513
Creating a Form . 514
Accepting Text Input . 519
Naming Each Piece of Form Data 519
Exploring Form Input Controls . 521
Submitting Form Data . 527
Accessing Form Elements with JavaScript 528
Displaying Data from a Form . 528
Sending Form Results by Email . 530

CHAPTER 27: Organizing and Managing
a Website 537

When One Page Is Enough . 538
Organizing a Simple Site . 540
Organizing a Larger Site . 543
Writing Maintainable Code . 546
Thinking About Version Control . 548

CHAPTER 28: Helping People Find Your
Web Pages 553

Publicizing Your Website. 553
Listing Your Pages with the Major
Search Sites . 555
Providing Hints for Search Engines 556
Additional Tips for Search Engine
Optimization. 562

INDEX 567

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

About the Author
Julie C. Meloni is the Lead Technologist and Architect in the Online Library Environment at the
University of Virginia. Before coming to the library, she worked for more than 15 years in web appli-
cation development for various corporations large and small in Silicon Valley. She has written sev-
eral books and articles on Web-based programming languages and database topics, including the
bestselling Sams Teach Yourself PHP, MySQL, and Apache All in One.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value your opin-
ion and want to know what we’re doing right, what we could do better, what areas you’d like to see
us publish in, and any other words of wisdom you’re willing to pass our way.

You can email or write directly to let us know what you did or didn’t like about this book—as well
as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail we receive, we might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name and
email address. We will carefully review your comments and share them with the author and editors
who worked on the book.

Email: feedback@samspublishing

Mail: Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Before learning the intricacies of HTML (Hypertext Markup Language),
CSS (Cascading Style Sheets), and JavaScript, it is important that you gain
a solid understanding of the technologies that help transform these plain-
text files to the rich multimedia displays you see on your computer or
handheld device when browsing the World Wide Web. For example, a file
containing markup and client-side code HTML and CSS is useless without
a web browser to view it, and no one besides yourself will see your content
unless a web server is involved. Web servers make your content available
to others who, in turn, use their web browsers to navigate to an address
and wait for the server to send information to them. You will be intimately
involved in this publishing process because you must create files and then
put them on a server to make them available in the first place, and you
must ensure that your content will appear to the end user as you intended.

A Brief History of HTML and the
World Wide Web
Once upon a time, back when there weren’t any footprints on the moon,
some farsighted folks decided to see whether they could connect several
major computer networks together. I’ll spare you the names and stories
(there are plenty of both), but the eventual result was the “mother of all
networks,” which we call the Internet.

Until 1990, accessing information through the Internet was a rather techni-
cal affair. It was so hard, in fact, that even Ph.D.-holding physicists were
often frustrated when trying to swap data. One such physicist, the now-
famous (and knighted) Sir Tim Berners-Lee, cooked up a way to easily
cross-reference text on the Internet through hypertext links.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. A very brief history of the
World Wide Web

. What is meant by the term
web page, and why that
term doesn’t always reflect
all the content involved

. How content gets from your
personal computer to some-
one else’s web browser

. How to select a web host-
ing provider

. How different web
browsers and device types
can affect your content

. How to transfer files to
your web server using FTP

. Where files should be
placed on a web server

. How to distribute web con-
tent without a web server

. How to use other publish-
ing methods such as blogs

. Tips for testing the appear-
ance and functionality of
web content.

CHAPTER 1
Publishing Web Content

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

2 CHAPTER 1 Publishing Web Content

This wasn’t a new idea, but his simple HTML managed to thrive while
more ambitious hypertext projects floundered. Hypertext originally meant
text stored in electronic form with cross-reference links between pages. It is
now a broader term that refers to just about any object (text, images, files,
and so on) that can be linked to other objects. Hypertext Markup Language is
a language for describing how text, graphics, and files containing other
information are organized and linked together.

By 1993, only 100 or so computers throughout the world were equipped to
serve up HTML pages. Those interlinked pages were dubbed the World
Wide Web (WWW), and several web browser programs had been written to
allow people to view web pages. Because of the growing popularity of the
Web, a few programmers soon wrote web browsers that could view graph-
ical images along with text. From that point forward, the continued devel-
opment of web browser software and the standardization of the HTML—
and XHTML—languages has lead us to the world we live in today, one in
which more than 110 million web servers answer requests for more than 25
billion text and multimedia files.

These few paragraphs really are a brief history of what has been a remark-
able period. Today’s college freshmen have never known a time in which
the Web didn’t exist, and the idea of always-on information and ubiquitous
computing will shape all aspects of our lives moving forward. Instead of
seeing web content creation and management as a set of skills possessed
only by a few technically oriented folks (okay, call them geeks if you will),
by the end of this book, you will see that these are skills that anyone can
master, regardless of inherent geekiness.

Creating Web Content
You might have noticed the use of the term web content rather than web
pages—that was intentional. Although we talk of “visiting a web page,”
what we really mean is something like “looking at all the text and the
images at one address on our computer.” The text that we read, and the
images that we see, are rendered by our web browsers, which are given
certain instructions found in individual files.

Those files contain text that is marked up, or surrounded by, HTML codes
that tell the browser how to display the text—as a heading, as a paragraph,
in a red font, and so on. Some HTML markup tells the browser to display

NOTE

For more information about the
history of the World Wide Web,
see the Wikipedia article on
this topic: http://en.wikipedia.
org/wiki/History_of_the_Web.

www.it-ebooks.info

http://en.wikipedia.org/wiki/History_of_the_Web
http://en.wikipedia.org/wiki/History_of_the_Web
http://www.it-ebooks.info/

ptg999

Understanding Web Content Delivery 3

an image or video file rather than plain text, which brings me back to the
point: Different types of content are sent to your web browser, so simply
saying web page doesn’t begin to cover it. Here we use the term web content
instead, to cover the full range of text, image, audio, video, and other
media found online.

In later chapters, you will learn the basics of linking to or creating the vari-
ous types of multimedia web content found in websites. All you need to
remember at this point is that you are in control of the content a user sees
when visiting your website. Beginning with the file that contains text to
display or codes that tell the server to send a graphic along to the user’s
web browser, you have to plan, design, and implement all the pieces that
will eventually make up your web presence. As you will learn throughout
this book, it is not a difficult process as long as you understand all the little
steps along the way.

In its most fundamental form, web content begins with a simple text file
containing HTML or XHTML markup. XHTML is another flavor of HTML;
the “X” stands for eXtensible, and you will learn more about it as you con-
tinue through the chapters. The most important thing to know from the
outset is that all the examples in this book are HTML 4 and XHTML com-
patible, meaning that they will be rendered similarly both now and in the
future by any newer generations of web browsers. That is one of the bene-
fits of writing standards-compliant code: You do not have to worry about
going back to your code sometime in the future and changing it because it
doesn’t work. Your code will likely always work for as long as web
browsers adhere to standards (hopefully a long time).

Understanding Web Content
Delivery
Several processes occur, in many different locations, to eventually produce
web content that you can see. These processes occur very quickly—on the
order of milliseconds—and occur behind the scenes. In other words,
although we might think all we are doing is opening a web browser, typ-
ing in a web address, and instantaneously seeing the content we requested,
technology in the background is working hard on our behalf. Figure 1.1
shows the basic interaction between a browser and a server.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

4 CHAPTER 1 Publishing Web Content

However, there are several steps in the process—and potentially several
trips between the browser and server—before you see the entire content of
the site you requested.

Suppose you want to do a Google search, so you dutifully type
http://www.google.com in the address bar or select the Google bookmark
from your bookmarks list. Almost immediately, your browser will show
you something like what’s shown in Figure 1.2.

FIGURE 1.1
A browser request and a server
response.

FIGURE 1.2
Visiting www.google.com.

Figure 1.2 shows a website that contains text plus one image (the Google
logo). A simple version of the processes that occurred to retrieve that text
and image from a web server and display it on your screen is as follows:

1. Your web browser sends a request for the index.html file located at
the http://www.google.com/ address. The index.html file does not
have to be part of the address that you type in the address bar; you’ll
learn more about the index.html file further along in this chapter.

www.it-ebooks.info

http://www.google.com
www.google.com
http://www.google.com/
http://www.it-ebooks.info/

ptg999

Understanding Web Content Delivery 5

2. After receiving the request for a specific file, the web server process
looks in its directory contents for the specific file, opens it, and sends
the content of that file back to your web browser.

3. The web browser receives the content of the index.html file, which is
text marked up with HTML codes, and renders the content based on
these HTML codes. While rendering the content, the browser hap-
pens upon the HTML code for the Google logo, which you can see in
Figure 1.2. The HTML code looks like this:

<img src=”/logos/logo.gif” width=”384” height=”121” border=”0”
alt=”Google”/>

The tag provides attributes that tell the browser the file source loca-
tion (src), width (width), height (height), border type (border), and
alternative text (alt) necessary to display the logo. You will learn
more about attributes throughout later chapters.

4. The browser looks at the src attribute in the tag to find the
source location. In this case, the image logo.gif can be found in the
logos directory at the same web address (www.google.com) from
which the browser retrieved the HTML file.

5. The browser requests the file at the
http://www.google.com/logos/logo.gif web address.

6. The web server interprets that request, finds the file, and sends the
contents of that file to the web browser that requested it.

7. The web browser displays the image on your monitor.

As you can see in the description of the web content delivery process, web
browsers do more than simply act as picture frames through which you
can view content. Browsers assemble the web content components and
arrange those parts according to the HTML commands in the file.

You can also view web content locally, or on your own hard drive, without
the need for a web server. The process of content retrieval and display is
the same as the process listed in the previous steps in that a browser looks
for and interprets the codes and content of an HTML file, but the trip is
shorter; the browser looks for files on your own computer’s hard drive
rather than on a remote machine. A web server is needed to interpret any
server-based programming language embedded in the files, but that is out-
side the scope of this book. In fact, you could work through all the chap-
ters in this book without having a web server to call your own, but then
nobody but you could view your masterpieces.

www.it-ebooks.info

www.google.com
http://www.google.com/logos/logo.gif
http://www.it-ebooks.info/

ptg999

6 CHAPTER 1 Publishing Web Content

Selecting a Web Hosting Provider
Despite just telling you that you can work through all the chapters in this
book without having a web server, having a web server is the recommend-
ed method for continuing on. Don’t worry—obtaining a hosting provider
is usually a quick, painless, and relatively inexpensive process. In fact, you
can get your own domain name and a year of web hosting for just slightly
more than the cost of the book you are reading now.

If you type web hosting provider in your search engine of choice, you will
get millions of hits and an endless list of sponsored search results (also
known as ads). There are not this many web hosting providers in the
world, although it might seem like there are. Even if you are looking at a
managed list of hosting providers, it can be overwhelming—especially if
all you are looking for is a place to host a simple website for yourself or
your company or organization.

You’ll want to narrow your search when looking for a provider and choose
one that best meets your needs. Some selection criteria for a web hosting
provider include the following”

. Reliability/server “uptime”—If you have an online presence, you
want to make sure people can actually get there consistently.

. Customer service—Look for multiple methods for contacting cus-
tomer service (phone, email, and chat) as well as online documenta-
tion for common issues.

. Server space—Does the hosting package include enough server
space to hold all the multimedia files (images, audio, and video) you
plan to include in your website (if any)?

. Bandwidth—Does the hosting package include enough bandwidth
so that all the people visiting your site and downloading files can do
so without you having to pay extra?

. Domain name purchase and management—Does the package
include a custom domain name, or must you purchase and maintain
your domain name separately from your hosting account?

. Price—Do not overpay for hosting. You will see a wide range of prices
offered and should immediately wonder “what’s the difference?”
Often the difference has little to do with the quality of the service and
everything to do with company overhead and what the company
thinks they can get away with charging people. A good rule of thumb
is that if you are paying more than $75 per year for a basic hosting
package and domain name, you are probably paying too much.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Selecting a Web Hosting Provider 7

Here are three reliable web hosting providers whose basic packages con-
tain plenty of server space and bandwidth (as well as domain names and
extra benefits) at a relatively low cost. If you don’t go with any of these
web hosting providers, you can at least use their basic package descrip-
tions as a guideline as you shop around.

. A Small Orange (http://www.asmallorange.com)—The “Tiny” and
“Small” hosting packages are perfect starting places for the new web
content publisher.

. DailyRazor (http://www.dailyrazor.com)—Even its Rookie hosting
package is full featured and reliable.

. LunarPages (http://www.lunarpages.com)—The Basic hosting pack-
age is suitable for many personal and small business websites.

One feature of a good hosting provider is that it provides a “control panel”
for you to manage aspects of your account. Figure 1.3 shows the control
panel for my own hosting account at Daily Razor. Many web hosting
providers offer this particular control panel software, or some control
panel that is similar in design—clearly labeled icons leading to tasks you
can perform to configure and manage your account.

NOTE
I have used all these providers
(and then some) over the years
and have no problem recom-
mending any of them; predomi-
nantly, I use DailyRazor as a
web hosting provider, especially
for advanced development envi-
ronments.

FIGURE 1.3
A sample control panel.

www.it-ebooks.info

http://www.asmallorange.com
http://www.dailyrazor.com
http://www.lunarpages.com
http://www.it-ebooks.info/

ptg999

8 CHAPTER 1 Publishing Web Content

You might never need to use your control panel, but having it available to
you simplifies the installation of databases and other software, the viewing
of web statistics, and the addition of email addresses (among many other
features). If you can follow instructions, you can manage your own web
server—no special training required.

Testing with Multiple Web Browsers
Having just discussed the process of web content delivery and the acquisi-
tion of a web server, it might seem a little strange to step back and talk
about testing your websites with multiple web browsers. However, before
you go off and learn all about creating websites with HTML and CSS, do so
with this very important statement in mind: Every visitor to your website
will potentially use hardware and software configurations that are different
than your own. Their device types (desktop, laptop, netbook, smartphone,
or iPhone), their screen resolutions, their browser types, their browser win-
dow sizes, and their speed of connections will be different—remember that
you cannot control any aspect of what your visitors use when they view
your site. So, just as you’re setting up your web hosting environment and
getting ready to work, think about downloading several different web
browsers so that you have a local test suite of tools available to you. Let me
explain why this is important.

Although all web browsers process and handle information in the same
general way, there are some specific differences among them that result in
things not always looking the same in different browsers. Even users of the
same version of the same web browser can alter how a page appears by
choosing different display options or changing the size of their viewing
windows. All the major web browsers allow users to override the back-
ground and fonts specified by the web page author with those of their own
choosing. Screen resolution, window size, and optional toolbars can also
change how much of a page someone sees when it first appears on their
screens. You can ensure only that you write standards-compliant HTML
and CSS.

Do not, under any circumstances, spend hours on end designing some-
thing that looks perfect on your own computer—unless you are willing to
be disappointed when you look at it on your friend’s computer, on your
tablet, or on your iPhone.

You should always test your websites with as many of these web browsers
as possible:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating a Sample File 9

. Apple Safari (http://www.apple.com/safari/) for Mac and Windows

. Google Chrome (http://www.google.com/chrome) for Windows

. Mozilla Firefox (http://www.mozilla.com/firefox/) for Mac,
Windows, and Linux

. Microsoft Internet Explorer (http://www.microsoft.com/ie) for
Windows

. Opera (http://www.opera.com/) for Mac, Windows, and
Linux/UNIX

Now that you have a development environment set up, or at least some
idea of the type you’d like to set up in the future, let’s move on to creating a
test file.

Creating a Sample File
Before we begin, take a look at Listing 1.1. This listing represents a simple
piece of web content—a few lines of HTML that print “Hello World!
Welcome to My Web Server.” in large, bold letters on two lines centered
within the browser window.

LISTING 1.1 Our Sample HTML File
<html>
<head>
<title>Hello World!</title>
</head>
<body>
<h1 style=”text-align: center”>Hello World!
Welcome to My Web
➥Server.</h1>
</body>
</html>

To make use of this content, open a text editor of your choice, such as Notepad
(on Windows) or TextEdit (on a Mac). Do not use WordPad, Microsoft Word,
or other full-featured word-processing software because those programs create
different sorts of files than the plain-text files we use for web content.

Type the content that you see in Listing 1.1, and then save the file using
sample.html as the filename. The .html extension tells the web server that
your file is, indeed, full of HTML. When the file contents are sent to the web
browser that requests it, the browser will also know that it is HTML and
will render it appropriately.

NOTE

You will learn a bit about text
editors in Chapter 2,
“Understanding HTML and
XHTML Connections.” Right
now, I just want you to have a
sample file that you can put on
a web server!

www.it-ebooks.info

http://www.apple.com/safari/
http://www.google.com/chrome
http://www.mozilla.com/firefox/
http://www.microsoft.com/ie
http://www.opera.com/
http://www.it-ebooks.info/

ptg999

10 CHAPTER 1 Publishing Web Content

Now that you have a sample HTML file to use—and hopefully somewhere
to put it, such as a web hosting account—let’s get to publishing your web
content.

Using FTP to Transfer Files
As you’ve learned so far, you have to put your web content on a web serv-
er to make it accessible to others. This process typically occurs by using
File Transfer Protocol (FTP). To use FTP, you need an FTP client—a program
used to transfer files from your computer to a web server.

FTP clients require three pieces of information to connect to your web serv-
er; this information will have been sent to you by your hosting provider
after you set up your account:

. The hostname, or address, to which you will connect

. Your account username

. Your account password

After you have this information, you are ready to use an FTP client to
transfer content to your web server.

Selecting an FTP Client
Regardless of the FTP client you use, FTP clients generally use the same
type of interface. Figure 1.4 shows an example of FireFTP, which is an FTP
client used with the Firefox web browser. The directory listing of the local
machine (your computer) appears on the left of your screen and the direc-
tory listing of the remote machine (the web server) appears on the right.
Typically, you will see right-arrow and left-arrow buttons—as shown in
Figure 1.4. The right arrow sends selected files from your computer to your
web server; the left arrow sends files from the web server to your comput-
er. Many FTP clients also enable you to simply select files, and then drag
and drop those files to the target machines.

There are many FTP clients freely available to you, but you can also trans-
fer files via the web-based File Manager tool that is likely part of your web
server’s control panel. However, that method of file transfer typically
introduces more steps into the process and isn’t nearly as streamlined (or
simple) as installing an FTP client on your own machine.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using FTP to Transfer Files 11

Here are some popular free FTP clients:

. Classic FTP (http://www.nchsoftware.com/classic/) for Mac and
Windows

. Cyberduck (http://cyberduck.ch/) for Mac

. Fetch (http://fetchsoftworks.com/) for Mac

. FileZilla (http://filezilla-project.org/) for all platforms

. FireFTP (http://fireftp.mozdev.org/) Firefox extension for all plat-
forms

When you have selected an FTP client and installed it on your computer, you
are ready to upload and download files from your web server. In the next
section, you’ll see how this process works using the sample file in Listing 1.1.

Using an FTP Client
The following steps show how to use Classic FTP to connect to your web
server and transfer a file. However, all FTP clients use similar, if not exact,
interfaces. If you understand the following steps, you should be able to use
any FTP client.

Remember, you first need the hostname, the account username, and the
account password.

1. Start the Classic FTP program and click the Connect button. You will
be prompted to fill out information for the site to which you want to
connect, as shown in Figure 1.5.

FIGURE 1.4
The FireFTP interface.

www.it-ebooks.info

http://www.nchsoftware.com/classic/
http://cyberduck.ch/
http://fetchsoftworks.com/
http://filezilla-project.org/
http://fireftp.mozdev.org/
http://www.it-ebooks.info/

ptg999

12 CHAPTER 1 Publishing Web Content

2. Fill in each of the items shown in Figure 1.5 as follows:

. The site Label is the name you’ll use to refer to your own site.
Nobody else will see this name, so enter whatever you want.

. The FTP Server is the FTP address of the web server to which
you need to send your web pages. This address will have been
given to you by your hosting provider. It will probably be
yourdomain.com, but check the information you received when
you signed up for service.

. The User Name field and the Password field should also be
completed using information given to you by your hosting
provider.

. Don’t change the values for Initial Remote Directory on First
Connection and Initial Local Directory on First Connection
until you are used to using the client and have established a
workflow.

3. When you’re finished with the settings, click OK to save the settings
and establish a connection with the web server.

You will see a dialog box indicating that Classic FTP is attempting to
connect to the web server. Upon successful connection, you will see
an interface similar to Figure 1.6, showing the contents of the local
directory on the left and the contents of your web server on the right.

FIGURE 1.5
Connecting to a new site in
Classic FTP.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using FTP to Transfer Files 13

4. You are now almost ready to transfer files to your web server. All that
remains is to change directories to what is called the document root of
your web server. The document root of your web server is the directo-
ry that is designated as the top-level directory for your web content—
the starting point of the directory structure, which you will learn
more about later in this chapter. Often, this directory will be named
public_html (as shown in Figure 1.6), www (also shown in Figure 1.6,
as www has been created as an alias for public_html), or htdocs. This
is not a directory that you will have to create because your hosting
provider will have created it for you.

Double-click the document root directory name to open it. The dis-
play shown on the right of the FTP client interface should change to
show the contents of this directory. (It will probably be empty at this
point, unless your web hosting provider has put placeholder files in
that directory on your behalf.)

5. The goal is to transfer the sample.html file you created earlier from
your computer to the web server. Find the file in the directory listing
on the left of the FTP client interface (navigate around if you have to)
and click it once to highlight the filename.

FIGURE 1.6
A successful connection to a
remote web server via Classic FTP.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

14 CHAPTER 1 Publishing Web Content

6. Click the right-arrow button in the middle of the client interface to
send the file to the web server. After the file transfer is completed,
the right side of the client interface should refresh to show you that
the file has made it to its destination.

7. Click the Disconnect button to close the connection, and then exit out
of the Classic FTP program.

These steps are conceptually similar to the steps you will take anytime you
want to send files to your web server via FTP. You can also use your FTP
client to create subdirectories on the remote web server. To create a subdi-
rectory using Classic FTP, click the Remote menu, and then click New
Folder. Different FTP clients will have different interface options to achieve
the same goal.

Understanding Where to Place Files
on the Web Server
An important aspect of maintaining web content is determining how you
will organize that content—not only for the user to find, but also for you to
maintain on your server. Putting files in directories will help you to man-
age those files.

Naming and organizing directories on your web server, and developing
rules for file maintenance, is completely up to you. However, maintaining
a well-organized server simply makes your management of its content
more efficient in the long run.

Basic File Management
As you browse the Web, you might have noticed that URLs change as you
navigate through websites. For instance, if you’re looking at a company’s
website and you click on graphical navigation leading to the company’s
products or services, the URL will probably change from

http://www.companyname.com/

to

http://www.companyname.com/products/

or

http://www.companyname.com/services/

www.it-ebooks.info

http://www.companyname.com/
http://www.companyname.com/products/
http://www.companyname.com/services/
http://www.it-ebooks.info/

ptg999

Understanding Where to Place Files on the Web Server 15

In the previous section, I used the term document root without really
explaining what that is all about. The document root of a web server is
essentially the trailing slash in the full URL. For instance, if your domain is
yourdomain.com and your URL is http://www.yourdomain.com/, the docu-
ment root is the directory represented by the trailing slash (/). The docu-
ment root is the starting point of the directory structure you create on your
web server; it is the place where the web server begins looking for files
requested by the web browser.

If you put the sample.html file in your document root as previously direct-
ed, you will be able to access it via a web browser at the following URL:

http://www.yourdomain.com/sample.html

If you were to enter this URL into your web browser, you would see the
rendered sample.html file, as shown in Figure 1.7.

FIGURE 1.7
The sample.html file accessed via
a web browser.

However, if you created a new directory within the document root and put
the sample.html file in that directory, the file would be accessed at this URL:

http://www.yourdomain.com/newdirectory/sample.html

If you put the sample.html file in the directory you originally saw upon
connecting to your server—that is, you did not change directories and
place the file in the document root—the sample.html file would not be
accessible from your web server at any URL. The file will still be on the
machine that you know as your web server, but because the file is not in
the document root—where the server software knows to start looking for
files—it will never be accessible to anyone via a web browser.

www.it-ebooks.info

http://www.yourdomain.com/newdirectory/sample.html
http://www.yourdomain.com/sample.html
http://www.yourdomain.com/
http://www.it-ebooks.info/

ptg999

16 CHAPTER 1 Publishing Web Content

The bottom line? Always navigate to the document root of your web server
before you start transferring files.

This is especially true with graphics and other multimedia files. A common
directory on web servers is called images, where, as you can imagine, all
the image assets are placed for retrieval. Other popular directories include
css for stylesheet files (if you are using more than one) and js for external
JavaScript files. Or, if you know you will have an area on your website
where visitors can download many different types of files, you might sim-
ply call that directory downloads.

Whether it’s a ZIP file containing your art portfolio or an Excel spreadsheet
with sales numbers, it’s often useful to publish files on the Internet that
aren’t simply web pages. To make a file available on the Web that isn’t an
HTML file, just upload the file to your website as if it were an HTML file,
following the instructions provided earlier in this chapter for uploading.
After the file is uploaded to the web server, you can create a link to it (as
you’ll learn in later chapters). In other words, your web server can serve
much more than HTML.

Here’s a sample of the HTML code that you will learn more about later in
this book. The following code would be used for a file named artfolio.zip,
located in the downloads directory of your website, and link text that
reads “Download my art portfolio!”:

Download my art portfolio!

Using an Index Page
When you think of an index, you probably think of the section in the back
of a book that tells you where to look for various keywords and topics. The
index file in a web server directory can serve that purpose—if you design
it that way. In fact, that’s where the name originates.

The index.html file (or just index file, as it’s usually referred to) is the name
you give to the page you want people to see as the default file when they
navigate to a specific directory in your website. If you’ve created that page
with usability in mind, your users will be able to get to all content in that
section from the index page.

For example, Figure 1.8 shows the drop-down navigation and left-side
navigation both contain links to three pages: Solutions Overview (the sec-
tion index page itself), Connection Management, and Cost Management.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Understanding Where to Place Files on the Web Server 17

The content of the page itself—called index.html and located within the
solutions directory—also has links to those two additional pages in the
solutions section. When users arrive at the index page of the “solutions”
section in this particular website (at least at the time of the snapshot), they
can reach any other page in that section (and in three different ways!).

Another function of the index page is that when users visit a directory on
your site that has an index page, but they do not specify that page, they will
still land on the main page for that section of your site—or for the site itself.

For instance, in the previous example, a user could have typed either of the
following URLs and landed on the main page of the solutions section of
that website:

http://www.ipass.com/solutions/

http://www.ipass.com/solutions/index.html

Had there been no index.html page in the solutions directory, the results
would depend on the configuration of the web server. If the server is con-
figured to disallow directory browsing, the user would have seen a
“Directory Listing Denied” message when attempting to access the URL
without a specified page name. However, if the server is configured to
allow directory browsing, the user would have seen a list of the files in
that directory.

FIGURE 1.8
Showing a good section index
page.

www.it-ebooks.info

http://www.ipass.com/solutions/
http://www.ipass.com/solutions/index.html
http://www.it-ebooks.info/

ptg999

18 CHAPTER 1 Publishing Web Content

These server configuration options will have already been determined for
you by your hosting provider. If your hosting provider enables you to
modify server settings via a control panel, you can change these settings so
that your server responds to requests based on your own requirements.

Not only is the index file used in subdirectories, it’s used in the top-level
directory (or document root) of your website as well. The first page of your
website—or home page or main page, or however you like to refer to the web
content you want users to see when they first visit your domain—should
be named index.html and placed in the document root of your web server.
This will ensure that when users type http://www.yourdomain.com/ into
their web browsers, the server will respond with content you intended
them to see (rather than “Directory Listing Denied” or some other unin-
tended consequence).

Distributing Content Without a Web
Server
Publishing HTML and multimedia files online is obviously the primary
reason to learn HTML and create web content. However, there are also sit-
uations in which other forms of publishing simply aren’t viable. For exam-
ple, you might want to distribute CD-ROMs, DVD-ROMs, or USB drives at
a trade show with marketing materials designed as web content—that is,
hyperlinked text viewable through a web browser, but without a web serv-
er involved. You might also want to include HTML-based instructional
manuals on removable media for students at a training seminar. These are
just two examples of how HTML pages can be used in publishing scenar-
ios that don’t involve the Internet.

This process is also called creating local sites; even though there’s no web
server involved, these bundles of hypertext content are still called sites. The
local term comes into play because your files are accessed locally and not
remotely (via a web server).

Publishing Content Locally
Let’s assume you need to create a local site that you want to distribute on a
USB drive. Even the cheapest USB drives hold so much data these days—
and basic hypertext files are quite small—that you can distribute an entire
site and a fully functioning web browser all on one little drive.

NOTE

Distributing a web browser isn’t
required when creating and dis-
tributing a local site, although
it’s a nice touch. You can rea-
sonably assume that users
have their own web browsers
and will open the index.html file
in a directory to start browsing
the hyperlinked content.
However, if you would like to
distribute a web browser on the
USB drive, go to http://www.
portableapps.com/ and look for
Portable Firefox.

www.it-ebooks.info

http://www.portableapps.com/
http://www.portableapps.com/
http://www.yourdomain.com/
http://www.it-ebooks.info/

ptg999

Tips for Testing Web Content 19

Simply think of the directory structure of your USB drive just as you would
the directory structure of your web server. The top-level of the USB drive
directory structure can be your document root. Or if you are distributing a
web browser along with the content, you might have two directories—for
example, one named browser and one named content. In that case, the
content directory would be your document root. Within the document
root, you could have additional subfolders in which you place content and
other multimedia assets.

It’s as important to maintain good organization with a local site as it is
with a remote website so that you avoid broken links in your HTML files.
You will learn more about the specifics of linking together files in a later
chapter.

Publishing Content on a Blog
You might have a blog hosted by a third-party, such as Blogger or
WordPress (among others), and thus have already published content with-
out having a dedicated web server or even knowing any HTML. These
services offer visual editors in addition to source editors, meaning that you can
type your words and add visual formatting such as bold, italics, or font col-
ors without knowing the HTML for these actions. But still, the content
becomes actual HTML when you click the Publish button in these editors.

However, with the knowledge you will acquire throughout this book, your
blogging will be enhanced because you will able to use the source editor
for your blog post content and blog templates, thus affording you more
control over the look and feel of that content. These actions occur different-
ly from the process you learned for creating an HTML file and uploading it
via FTP to your own dedicated web server, but I would be remiss if I did
not note that blogging is, in fact, a form of web publishing.

Tips for Testing Web Content
Whenever you transfer files to your web server or place them on remov-
able media for local browsing, you should immediately test every page
thoroughly. The following checklist will help ensure that your web content
behaves the way you expected. Note that some of the terms might be unfa-
miliar to you at this point, but come back to this checklist as you progress
through this book and create larger projects:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

20 CHAPTER 1 Publishing Web Content

. Before you transfer your files, test them locally on your machine to
ensure that the links work and the content reflects the visual design
you intended. After you transfer the pages to a web server or remov-
able device, test them all again.

. Perform these tests with as many browsers that you can—Chrome,
Firefox, Internet Explorer, Opera, and Safari is a good list—and on
both Mac and Windows platforms. If possible, check at low resolu-
tion (800×600) and high resolution (1600×1200).

. Turn off auto image loading in your web browser before you start
testing so that you can see what each page looks like without the
graphics. Check your alt tag messages, and then turn image loading
back on to load the graphics and review the page carefully again.

. Use your browser’s font size settings to look at each page in various
font sizes to ensure that your layout doesn’t fall to pieces if users
override your font specifications with their own.

. Wait for each page to completely finish loading, and then scroll all
the way down to make sure that all images appear where they
should.

. Time how long it takes each page to load. Does it take more than a
few seconds to load? If so, is the information on that page valuable
enough to keep users from going elsewhere before the page finishes
loading? Granted, broadband connections are common, but that
doesn’t mean you should load up your pages with 1MB images.

If your pages pass all those tests, you can rest easy; your site is ready for
public viewing.

Summary
This chapter introduced you to the concept of using HTML to mark-up text
files to produce web content. You also learned that there is more to web
content than just the “page”—web content also includes image, audio, and
video files. All of this content lives on a web server—a remote machine
often far away from your own computer. On your computer or other
device, you use a web browser to request, retrieve, and eventually display
web content on your screen.

You learned the criteria you should consider when determining if a web
hosting provider fits your needs. After you have a web hosting provider,

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Summary 21

you can begin to transfer files to your web server using an FTP client. You
also learned a little bit about web server directory structures and file man-
agement, as well as the very important purpose of the index.html file in a
given web server directory. You discovered that you can distribute web
content on removable media, and how to go about structuring the files and
directories to achieve the goal of viewing content without using a remote
web server. Finally, you learned the importance of testing your work in
multiple browsers after you’ve placed it on a web server. Writing valid,
standards-compliant HTML and CSS will help ensure your site looks rea-
sonably similar for all visitors, but you still shouldn’t design without
receiving input from potential users outside your development team—it is
even more important to get input from others when you are a design team
of one!

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

22 CHAPTER 1 Publishing Web Content

Q&A
Q. I’ve looked at the HTML source of some web pages on the Internet

and it looks frighteningly difficult to learn. Do I have to think like a
computer programmer to learn this stuff?

A. Although complex HTML pages can indeed look daunting, learning HTML
is much easier than learning actual software programming languages
(such as C++ or Java). HTML is a markup language rather than a pro-
gramming language; you mark-up text so that the text can be rendered
a certain way by the browser. That’s a completely different set of
thought processes than developing a computer program. You really
don’t need any experience or skill as a computer programmer to be a
successful web content author.

One of the reasons the HTML behind many commercial websites looks
complicated is because it was likely created by a visual web design
tool—a “what you see is what you get” or “WYSIWYG” editor that will
use whatever markup its software developer told it to use in certain cir-
cumstances—as opposed to being hand-coded, in which you are com-
pletely in control of the resulting markup. In this book, you are taught
fundamental coding from the ground up, which typically results in clean,
easy-to-read source code. Visual web design tools have a knack for
making code difficult to read and for producing code that is convoluted
and non-standards compliant.

Q. All the tests you recommend would take longer than creating my
pages! Can’t I get away with less testing?

A. If your pages aren’t intended to make money or provide an important
service, it’s probably not a big deal if they look funny to some users or
produce errors once in a while. In that case, just test each page with a
couple of different browsers and call it a day. However, if you need to
project a professional image, there is no substitute for rigorous testing.

Q. Seriously, who cares how I organize my web content?

A. Believe it or not, the organization of your web content does matter to
search engines and potential visitors to your site—you’ll learn more
about this in Chapter 28, “Helping People Find Your Web Pages.” But
overall, having an organized web server directory structure will help you
keep track of content that you are likely to update frequently. For
instance, if you have a dedicated directory for images or multimedia,
you will know exactly where to look for a file you want to update—no
need to hunt through directories containing other content.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Workshop 23

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. How many files would you need to store on a web server to produce a

single web page with some text and two images on it?

2. What are some of the features to look for in a web hosting provider?

3. What three pieces of information do you need to connect to your web
server via FTP?

4. What is the purpose of the index.html file?

5. Does your website have to include a directory structure?

Answers
1. You would need three: one for the web page itself, which includes the

text and the HTML markup, and one for each of the two images.

2. Look for reliability, customer service, web space and bandwidth, domain
name service, site management extras, and price.

3. The hostname, your account username, and your account password.

4. The index.html file is typically the default file for a directory within a
web server. It allows users to access http://www.yourdomain.com/
somedirectory/ without using a trailing file name and still end up in the
appropriate place.

5. No. Using a directory structure for file organization is completely up to
you, although it is highly recommended to use one because it simplifies
content maintenance.

www.it-ebooks.info

http://www.yourdomain.com/somedirectory/
http://www.yourdomain.com/somedirectory/
http://www.it-ebooks.info/

ptg999

24 CHAPTER 1 Publishing Web Content

Exercises
. Get your web hosting in order—are you going to go through the chap-

ters in this book by viewing files locally on your own computer, or are
you going to use a web hosting provider? Note that most web hosting
providers will have you up and running the same day you purchase your
hosting plan.

. If you are using an external hosting provider, and then using your FTP
client, create a subdirectory within the document root of your website.
Paste the contents of the sample.html file into another file named
index.html, change the text between the <title> and </title> tags to
something new, and change the text between the <h1> and </h1> tags
to something new. Save the file and upload it to the new subdirectory.
Use your web browser to navigate to the new directory on your web
server and see that the content in the index.html file appears. Then,
using your FTP client, delete the index.html file from the remote subdi-
rectory. Return to that URL with your web browser, reload the page, and
see how the server responds without the index.html file in place.

. Using the same set of files created in the previous exercise, place
these files on a removable media device—a CD-ROM or a USB drive, for
example. Use your browser to navigate this local version of your sample
website, and think about the instructions you would have to distribute
with this removable media so that others could use it.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

The first chapter gave you a basic idea of the process behind creating web
content and viewing it online (or locally, if you do not yet have a web host-
ing provider). In this chapter, we’ll get down to the business of explaining
the various elements that must appear in an HTML file so that it is dis-
played appropriately in your web browser.

By the end of the chapter, you’ll learn how HTML differs from XHTML and
why there are two different languages designed to do the same thing—
create web content. In general, this chapter provides a quick summary of
HTML and XHTML basics and gives some practical tips to make the most
of your time as a web page author and publisher. It’s not all theory, howev-
er; you do get to see a real web page and the HTML code behind it.

Getting Prepared
Here’s a review of what you need to do before you’re ready to use the rest
of this book:

1. Get a computer. I used a computer running Ubuntu (Linux) to test
the sample web content and capture the figures in this book, but you
can use any Windows, Macintosh, or Linux/UNIX machine to create
and view your web content.

2. Get a connection to the Internet. Whether you have a dial-up, wire-
less, or broadband connection doesn’t matter for the creation and
viewing of your web content, but the faster the connection, the better
for the overall experience. The Internet service provider (ISP), school,
or business that provides your Internet connection can help you with
the details of setting it up properly. Additionally, many public spaces
such as coffee shops, bookstores, and libraries offer free wireless
Internet service that you can use if you have a laptop computer with
Wi-Fi network support.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How to create a simple
web page in HTML

. How to include all the
HTML Tags that every web
page must have

. How to organize a page
with paragraphs and line
breaks

. How to organize your con-
tent with headings

. How to validate your web
content

. How to differentiate
between HTML, XML,
XHTML, and HTML5

CHAPTER 2
Understanding HTML and XHTML

Connections

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

26 CHAPTER 2 Understanding HTML and XHTML Connections

3. Get web browser software. This is the software your computer needs
to retrieve and display web content. As you learned in the first chap-
ter, the most popular browser software (in alphabetical order) is
Apple Safari, Google Chrome, Microsoft Internet Explorer, Mozilla
Firefox, and Opera. It’s a good idea to install several of these
browsers so that you can experiment and make sure that your con-
tent looks consistent across them all; you can’t make assumptions
about the browsers other people are using.

4. Explore! Use a web browser to look around the Internet for websites
that are similar in content or appearance to those you’d like to create.
Note what frustrates you about some pages, what attracts you and
keeps you reading others, and what makes you come back to some
pages over and over again. If there is a particular topic that interests
you, consider searching for it using a popular search engine such as
Google (http://www.google.com/) or Bing (http://www.bing.com/).

Getting Started with a Simple Web
Page
In the first chapter, you learned that a web page is just a text file that is
marked up by (or surrounded by) HTML codes that tell the browser how
to display the text. To create these text files, use a text editor such as
Notepad (on Windows) or TextEdit (on a Mac)—do not use WordPad,
Microsoft Word, or other full-featured word-processing software because
those create different sorts of files than the plain-text files we use for web
content.

Before you begin working, you should start with some text that you want
to put on a web page:

1. Find (or write) a few paragraphs of text about yourself, your family,
your company, your softball team, or some other subject in which
you’re interested.

2. Save this text as plain, standard ASCII text. Notepad and most sim-
ple text editors always save files as plain text, but if you’re using
another program, you might need to choose this file type as an
option (after selecting File, Save As).

As you go through this chapter, you will add HTML markup (called tags)
to the text file, thus making it into web content.

NOTE

Not sure how to find an ISP?
The best way is to comparison-
shop online (using a friend’s
computer or a public computer
that’s already connected to the
Internet). You’ll find a compre-
hensive list of national and
regional ISPs at http://www.
thelist.com/.

CAUTION

Although all web browsers
process and handle information
in the same general way, there
are some specific differences
among them that result in
things not always looking the
same in different browsers. Be
sure to check your web pages
in multiple browsers to make
sure that they look reasonably
consistent.

NOTE

As discussed in the first chap-
ter, if you plan to put your web
content on the Internet (as
opposed to publishing it on CD-
ROM or a local intranet), you’ll
need to transfer it to a comput-
er that is connected to the
Internet 24 hours a day. The
same company or school that
provides you with Internet
access might also provide web
space; if not, you might need to
pay a hosting provider for the
service.

www.it-ebooks.info

http://www.google.com/
http://www.bing.com/
http://www.thelist.com/
http://www.thelist.com/
http://www.it-ebooks.info/

ptg999

Getting Started with a Simple Web Page 27

When you save files containing HTML tags, always give them a name end-
ing in .html. This is important: If you forget to type the .html at the end of
the filename when you save the file, most text editors will give it some
other extension (such as .txt). If that happens, you might not be able to find
the file when you try to look at it with a web browser; if you find it, it cer-
tainly won’t display properly. In other words, web browsers expect a web
page file to have a file extension of .html.

When visiting websites, you might also encounter pages with a file exten-
sion of .htm, which is also an acceptable file extension to use. You might
find other file extensions used on the Web, such as .jsp (Java Server Pages),
.asp (Microsoft Active Server Pages), or .php (PHP: Hypertext
Preprocessor), but these file types use server-side technologies that are
beyond the scope of HTML and the chapters throughout this book.
However, these files also contain HTML in addition to the programming
language; although the programming code in those files is compiled on the
server side and all you would see on the client side is the HTML output, if
you were to look at the source files, you would likely see some intricate
weaving of programming and markup codes.

Listing 2.1 shows an example of text you can type and save to create a sim-
ple HTML page. If you opened this file with Firefox, you would see the
page shown in Figure 2.1. Every web page you create must include the
<html></html>, <head></head>, <title></title>, and <body></body> tag
pairs.

LISTING 2.1 The <html>, <head>, <title>, and <body> Tags
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>The First Web Page</title>

</head>

<body>
<p>
In the beginning, Tim created the HyperText Markup Language. The Internet
was without form and void, and text was upon the face of the monitor and
the Hands of Tim were moving over the face of the keyboard. And Tim said,
Let there be links; and there were links. And Tim saw that the links were
good; and Tim separated the links from the text. Tim called the links

CAUTION
To reiterate, because it is very
important both to the outcome
and the learning process itself:
Do not create your first HTML
file with Microsoft Word or any
other HTML-compatible word
processor; most of these pro-
grams attempt to rewrite your
HTML for you in strange ways,
potentially leaving you totally
confused. Additionally, I recom-
mend that you do not use a
graphical, what-you-see-is-what-
you-get (WYSIWYG) editor, such
as Microsoft FrontPage or Adobe
Dreamweaver. You’ll likely find it
easier and more educational to
start out with a simple text edi-
tor while you’re just learning
HTML. You can move to visual
tools (such as FrontPage and
Dreamweaver) after you have a
better understanding of what’s
going on under the hood.

NOTE
If you’re using TextEdit on a
Macintosh computer, the steps
for creating an HTML file are a
little different than for using
Notepad on a Windows comput-
er. Both are popular text editors,
but with the latter, you must
first click on the Format menu,
select Make Plain Text, and then
change the preferences under
the Saving header by uncheck-
ing the box for Append ‘.txt’
Extension to Plain Text Files.
Also, the default preferences
are set to show .html docu-
ments as they would appear in
a browser, which won’t allow you
to edit them. To fix this, check
Ignore Rich Text Commands in
HTML Files under the Rich Text
Processing header.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

28 CHAPTER 2 Understanding HTML and XHTML Connections

Anchors, and the text He called Other Stuff. And the whole thing together
was the first Web Page.

</p>
</body>

</html>

LISTING 2.1 Continued

FIGURE 2.1
When you save the text in Listing
2.1 as an HTML file and view it
with a web browser, only the actual
title and body text are displayed.

In Listing 2.1, as in every HTML page, the words starting with < and end-
ing with > are actually coded commands. These coded commands are
called HTML tags because they “tag” pieces of text and tell the web brows-
er what kind of text it is. This allows the web browser to display the text
appropriately.

The first few lines of code in the web page serve as standard boilerplate
code that you will include in all of your pages. This code actually identifies
the page as a valid XHTML 1.1 document, which means that, technically,
the web page is an XHTML page. All the pages developed throughout the
book are XHTML 1.1 pages. Because XHTML is a more structured version
of HTML, it’s still okay to generally refer to all the pages in the book as
HTML pages. By targeting XHTML 1.1 with your code, you are developing
web pages that adhere to the very latest web standards. This is a good
thing!

NOTE

Technically speaking, HTML5
will be the next web standard
but it’s not quite at the point of
full adoption. Current estimates
put the full adoption of HTML
sometime in 2011. However, as
you learn about important fea-
tures of HTML and XHTML in
this book, I will include notes
about how HTML5 features
might differ.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

HTML Tags Every XHTML Web Page Must Have 29

If you have obtained a web hosting account, you could use FTP at this
point to transfer the firstpage.html file to the web server. In fact, from this
chapter forward, the instructions will assume you have a hosting provider
and are comfortable sending files back and forth via FTP; if that is not the
case, please review the first chapter before moving on. Or, if you are con-
sciously choosing to work with files locally (without a web host), be pre-
pared to adjust the instructions to suit your particular needs (such as
ignoring the commands “transfer the files” and “type in the URL”).

HTML Tags Every XHTML Web Page
Must Have
The time has come for the secret language of HTML tags to be revealed to
you. When you understand this language, you will have creative powers
far beyond those of other humans. Don’t tell the other humans, but it’s
really pretty easy.

Creating and Viewing
a Basic Web Page

Before you learn the meaning of the HTML tags used in Listing 2.1, you might
want to see exactly how I went about creating and viewing the document
itself. Follow these steps:

1. Type all the text in Listing 2.1, including the HTML tags, in Windows
Notepad (or use Macintosh TextEdit or another text editor of your
choice).

2. Select File, Save As. Be sure to select plain text (or ASCII text) as the
file type.

3. Name the file firstpage.html.

4. Choose the folder on your hard drive where you would like to keep your
web pages—and remember which folder you choose! Click the Save or
OK button to save the file.

5. Now start your favorite web browser. (Leave Notepad running, too, so
you can easily switch between viewing and editing your page.)

In Internet Explorer, select File, Open and click Browse. If you’re using Firefox,
select File, Open File. Navigate to the appropriate folder and select the
firstpage.html file. Some browsers and operating systems will also enable you
to drag and drop the firstpage.html file onto the browser window to view it.

Voilà! You should see the page shown in Figure 2.1.

TRY IT YOURSELF ▼

NOTE
You don’t need to be connected to
the Internet to view a web page
stored on your own computer. By
default, your web browser tries to
connect to the Internet every time
you start it, which makes sense
most of the time. However, this can
be a hassle if you’re developing
pages locally on your hard drive
(offline) and you keep getting errors
about a page not being found. If
you have a full-time web connection
via a LAN, cable modem, or DSL,
this is a moot point because the
browser will never complain about
being offline. Otherwise, the appro-
priate disciplinary action will
depend on your breed of browser;
check the options under your
browser’s Tools menu.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

30 CHAPTER 2 Understanding HTML and XHTML Connections

Before you get into the HTML tags, let’s first address the messy-looking
code at the top of Listing 2.1. The first line indicates that the HTML docu-
ment is, in fact, an XML document:

<?xml version=”1.0” encoding=”UTF-8”?>

The version of XML is set to 1.0, which is fairly standard, as is the type of
character encoding (UTF-8).

The second and third lines of code in Listing 2.1 are even more complicat-
ed looking:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

Again, the specifics of this code aren’t terribly important as long as you
remember to include the code at the start of your pages. This code identi-
fies the document as being XHTML 1.1, which then allows web browsers
to make sure the code meets all the requirements of XHTML 1.1.

Most HTML tags have two parts: an opening tag, which indicates where a
piece of text begins, and a closing tag, which indicates where the piece of
text ends. Closing tags start with a / (forward slash) just after the < sym-
bol.

Another type of tag is the empty tag, which is unique in that it doesn’t
include a pair of matching opening and closing tags. Instead, an empty tag
consists of a single tag that starts with a < and ends with a / just before the
> symbol.

Following is a quick summary of these three tags just to make sure you
understand the role each plays:

. An opening tag is an HTML tag that indicates the start of an HTML
command; the text affected by the command appears after the open-
ing tag. Opening tags always begin with < and end with >, as in
<html>.

. A closing tag is an HTML tag that indicates the end of an HTML com-
mand; the text affected by the command appears before the closing
tag. Closing tags always begin with </ and end with >, as in </html>.

. An empty tag is an HTML tag that issues an HTML command with-
out enclosing any text in the page. Empty tags always begin with <
and end with />, as in
 and .

NOTE

It isn’t terribly important that you
understand concepts such as
character encoding at this point.
What is important is that you
include the appropriate boiler-
plate code in your pages so that
they adhere to the latest web
standards. As of this writing,
XHTML 1.1 is a web standard.
HTML5 is not yet a web stan-
dard, but if you were creating an
HTML5 document, these lines at
the beginning of your HTML file
would not be necessary.

NOTE

The XML/XHTML boilerplate
code isn’t strictly required for
you to create web pages. You
can delete the opening lines of
code in the example so that the
page starts with the <html>
tag and it will still open fine in
a web browser. The extra code
is included to ensure your
pages are up to date with the
current web standards.
Additionally, the extra code
enables you to validate your
web pages for accuracy, which
you’ll learn how to do a bit later
in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Organizing a Page with Paragraphs and Line Breaks 31

For example, the <body> tag in Listing 2.1 tells the web browser where the
actual body text of the page begins, and </body> indicates where it ends.
Everything between the <body> and </body> tags will appear in the main
display area of the web browser window, as shown in Figure 2.1.

The very top of the browser window (refer to Figure 2.1) shows title text,
which is any text that is located between <title> and </title>. The title
text is also used to identify the page on the browser’s Bookmarks or
Favorites menu, depending on which browser you use. It’s important to
provide titles for your pages so that visitors to the page can properly book-
mark them for future reference.

You will use the <body> and <title> tag pairs in every HTML page you
create because every web page needs a title and body text. You will also
use the <html> and <head> tag pairs, which are the other two tags shown
in Listing 2.1. Putting <html> at the very beginning of a document simply
indicates that the document is a web page. The </html> at the end indi-
cates that the web page is over.

Within a page, there is a head section and a body section. Each section is
identified by <head> and <body> tags. The idea is that information in the
head of the page somehow describes the page but isn’t actually displayed
by a web browser. Information placed in the body, however, is displayed
by a web browser. The <head> tag always appears near the beginning of
the HTML code for a page, just after the opening <html> tag.

The <title> tag pair used to identify the title of a page appears within the
head of the page, which means it is placed after the opening <head> tag
and before the closing </head> tag. In upcoming chapters, you’ll learn
about some other advanced header information that can go between
<head> and </head>, such as style sheet rules that are used to format the
page, as well as the JavaScript you’ll learn to write and embed.

The <p> tag used in Listing 2.1 encloses a paragraph of text. You should
enclose your chunks of text in the appropriate container tags whenever
possible.

Organizing a Page with Paragraphs
and Line Breaks
When a web browser displays HTML pages, it pays no attention to line
endings or the number of spaces between words. For example, the top ver-
sion of the poem shown in Figure 2.2 appears with a single space between

NOTE

You no doubt noticed in Listing
2.1 that there is some extra
code associated with the
<html> tag. This code consists
of two attributes (xmlns and
xml:lang), which are used to
specify additional information
related to the tag. These two
attributes are standard require-
ments of all XHTML web pages;
the former defines the XML
namespace, whereas the latter
defines the language of the
content. Throughout this book,
a standard namespace is
defined, and the English lan-
guage is used. If you are writing
in a different language, replace
the “en” (for English) with the
language identifier relevant to
you.

TIP

You might find it convenient to
create and save a bare-bones
page (also known as a skeleton
page, or template) with just the
opening and closing <html>,
<head>, <title>, and <body>
tags, similar to the document
used in Listing 2.1. You can
then open that document as a
starting point whenever you
want to make a new web page
and save yourself the trouble of
typing all those obligatory tags
every time.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

32 CHAPTER 2 Understanding HTML and XHTML Connections

all words, even though that’s not how it’s entered in Listing 2.2. This is
because extra whitespace in HTML code is automatically reduced to a sin-
gle space. Additionally, when the text reaches the edge of the browser win-
dow, it automatically wraps to the next line, no matter where the line
breaks were in the original HTML file.

FIGURE 2.2
When the HTML in Listing 2.2 is
viewed as a web page, line and
paragraph breaks only appear
where there are
 and <p>
tags.

LISTING 2.2 HTML Containing Paragraph and Line Breaks
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>The Advertising Agency Song</title>

</head>

<body>
<p>
When your client’s hopping mad,
put his picture in the ad.

If he still should prove refractory,
add a picture of his factory.

</p>

<hr />

<p>
When your client’s hopping mad,

put his picture in the ad.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Organizing a Page with Paragraphs and Line Breaks 33

</p>
<p>
If he still should prove refractory,

add a picture of his factory.

</p>
</body>

</html>

You must use HTML tags if you want to control where line and paragraph
breaks actually appear. When text is enclosed within the <p></p> container
tags, a line break will be assumed after the closing tag. In later chapters,
you will learn to control the height of the line break using CSS. The

tag forces a line break within a paragraph. Unlike the other tags you’ve
seen so far,
 doesn’t require a closing </br> tag—this is one of those
empty tags discussed earlier. Although HTML 4 does not require the / in
empty tags, XHTML does and future standards will, so it’s important for
you to stick to the latest standards and create web pages that are coded
properly. Always code empty tags so that they end with />.

The poem in Listing 2.2 and Figure 2.2 shows the
 and <p> tags
being used to separate the lines and verses of an advertising agency song.
You might have also noticed the <hr /> tag in the listing, which causes a
horizontal rule line to appear on the page (see Figure 2.2). Inserting a hori-
zontal rule with the <hr /> tag also causes a line break, even if you don’t
include a
 tag along with it. Like
, the <hr /> horizontal rule
tag is an empty tag and therefore never gets a closing </hr> tag.

LISTING 2.2 Continued

CAUTION

You might come across a lot of
web content that includes

instead of
. Or you
might see other content that
does not include the closing
</p> tag. Just remember there
is a lot of antiquated web con-
tent floating around the
Internet, and just because you
see it in use doesn’t mean it’s
correct. Save yourself a lot of
future work and frustration by
adhering to the standards you
learn in this book. Developing
clean HTML coding habits is a
very important part of becoming
a successful web designer.

Formatting Text in
HTML

Take a passage of text and try your hand at formatting it as proper HTML.

1. Add <html><head><title>My Title</title></head><body> to the
beginning of the text (using your own title for your page instead of My
Title). Also include the boilerplate code at the top of the page that
takes care of meeting the requirements of XHTML.

2. Add </body></html> to the very end of the text.

3. Add a <p> tag at the beginning of each paragraph and a </p> tag at the
end of each paragraph.

4. Use
 tags anywhere you want single-spaced line breaks.

5. Use <hr /> to draw horizontal rules separating major sections of text,
or wherever you’d like to see a line across the page.

TRY IT YOURSELF ▼

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

34 CHAPTER 2 Understanding HTML and XHTML Connections

Organizing Your Content with
Headings
When you browse through web pages on the Internet, you’ll notice that
many of them have a heading at the top that appears larger and bolder
than the rest of the text. Listing 2.3 is sample code and text for a simple
web page containing an example of a heading as compared to normal
paragraph text. Any text between <h1> and </h1> tags will appear as a
large heading. Additionally, <h2> and <h3> make progressively smaller
headings, and so on as far down as <h6>.

LISTING 2.3 Heading Tags
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>My Widgets</title>

</head>

<body>
<h1>My Widgets</h1>
<p>My widgets are the best in the land. Continue reading to
learn more about my widgets.</p>

<h2>Widget Features</h2>
<p>If I had any features to discuss, you can bet I’d do
it here.</p>

<h3>Pricing</h3>
<p>Here, I would talk about my widget pricing.</p>

TRY IT YOURSELF▼

Formatting Text in
HTML
continued

CAUTION

If you are using a word proces-
sor to create the web page, be
sure to save the HTML file in
plain-text or ASCII format.

6. Save the file as mypage.html (using your own filename instead of
mypage).

7. Open the file in a web browser to see your web content. (Send the file
via FTP to your web hosting account, if you have one.)

8. If something doesn’t look right, go back to the text editor to make cor-
rections and save the file again (and send it to your web hosting
account, if applicable). You then need to click Reload/Refresh in the
browser to see the changes you made.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Organizing Your Content with Headings 35

<h3>Comparisons</h3>
<p>Here, I would talk about how my widgets compare to my
competitor’s widgets.</p>

</body>
</html>

As you can see in Figure 2.3, the HTML that creates headings couldn’t be
simpler. In this example, the phrase “My Widgets” is prominently dis-
played using the <h1> tag. To create the biggest (level 1) heading, just put
an <h1> tag at the beginning and a </h1> tag at the end of the text you
want to use as a heading. For a slightly smaller (level 2) heading—for
information that is of lesser importance than the title— use the <h2> and
</h2> tags around your text. For content that should appear even less
prominently than a level 2 heading, use the <h3> and </h3> tags around
your text.

However, bear in mind that your headings should follow a content hierar-
chy; use only one level 1 heading, have one (or more) level 2 headings after
the level 1 heading, use level 3 headings directly after level 2 headings,
and so on. Do not fall into the trap of assigning headings to content just to
make that content display a certain way. Instead, ensure that you are cate-
gorizing your content appropriately (as a main heading, a secondary head-
ing, and so on), while using display styles to make that text render a par-
ticular way in a web browser.

LISTING 2.3 Continued NOTE

By now you’ve probably caught
on to the fact that HTML code
is often indented by its author
to reveal the relationship
between different parts of the
HTML document. This indenta-
tion is entirely voluntary—you
could just as easily run all the
tags together with no spaces or
line breaks and they would still
look fine when viewed in a
browser. The indentations are
for you so that you can quickly
look at a page full of code and
understand how it fits together.
Indenting your code is a very
good web design habit and ulti-
mately makes your pages easi-
er to maintain.

FIGURE 2.3
The use of three levels of head-
ings shows the hierarchy of con-
tent on this sample product page.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

36 CHAPTER 2 Understanding HTML and XHTML Connections

Theoretically, you can also use <h4>, <h5>, and <h6> tags to make progres-
sively less important headings, but these aren’t used very often. Web
browsers seldom show a noticeable difference between these headings and
the <h3> headings anyway, and content usually isn’t displayed in such a
manner as to need six levels of headings to show the content hierarchy.

It’s important to remember the difference between a title and a heading.
These two words are often interchangeable in day-to-day English, but
when you’re talking HTML, <title> gives the entire page an identifying
name that isn’t displayed on the page itself; it’s displayed only on the
browser window’s title bar. The heading tags, on the other hand, cause
some text on the page to be displayed with visual emphasis. There can be
only one <title> per page and it must appear within the <head> and
</head> tags, whereas you can have as many <h1>, <h2>, and <h3> head-
ings as you want, in any order that suits your fancy. However, as I men-
tioned before, you should use the heading tags to keep tight control over
content hierarchy; do not use headings as a way to achieve a particular
look because that’s what CSS is for.

You’ll learn to take complete control over the appearance of text on your
web pages in Parts II and III of this book. Short of taking exacting control
of the size, family, and color of fonts, headings provide the easiest and
most popular way to draw extra attention to important text.

Validating Your Web Content
In the first chapter, I discussed ways to test your pages; one very important
way to test your pages is to validate them. Think of it this way: It’s one
thing to design and draw a beautiful set of house plans, but it’s quite
another for an architect to stamp it as a safe structure suitable for construc-
tion. Validating your web pages is a similar process; in this case, however,
the architect is an application—not a person.

In brief, validation is the process of testing your pages with a special appli-
cation that searches for errors and makes sure your pages follow the strict
XHTML standard. Validation is simple. In fact, the standards body respon-
sible for developing web standards—the World Wide Web Consortium
(W3C)—offers an online validation tool you can use. To validate a page,
follow this URL: http://validator.w3.org/. The W3C Markup Validation
Service is shown in Figure 2.4.

NOTE

On many web pages nowadays,
graphical images of ornately
rendered letters and logos are
often used in place of the ordi-
nary text headings discussed in
this chapter. However, using
text headings is one of many
search engine optimization
(SEO) tips that you will learn
about in Chapter 28, “Helping
People Find Your Web Pages.”
Search engines look at heading
tags to see how you organize
your content; they give higher
preference to content that you
have indicated is more impor-
tant (for example, a level 1
heading) versus content that
you indicate is of lesser impor-
tance (lower-level headings).

CAUTION

Don’t forget that anything
placed in the head of a web
page is not intended to be
viewed on the page, whereas
everything in the body of the
page is intended for viewing.

www.it-ebooks.info

http://validator.w3.org/
http://www.it-ebooks.info/

ptg999

Validating Your Web Content 37

FIGURE 2.4
The W3C Markup Validation Service enables you to validate an HTML (XHTML) docu-
ment to ensure it has been coded accurately.

If you’ve already published a page online, you can use the Validate by URI
tab. Use the Validate by File Upload tab to validate files stored on your
local computer file system. The Validate by Direct Input tab enables you to
paste the contents of a file from your text editor. If all goes well, your page
will get a passing report (see Figure 2.5).

If the W3C Markup Validation Service encounters an error in your web
page, it will provide specific details (including the line numbers of the
offending code). This is a great way to hunt down problems and rid your
pages of buggy code. Validation not only informs you whether your pages
are constructed properly, it also assists you in finding and fixing problems
before you post pages for the world to see.

Peeking at Other
Designers’ Pages
Given the visual and sometimes
audio pizzazz present in many
popular web pages, you proba-
bly realize that the simple
pages described in this chapter
are only the tip of the HTML ice-
berg. Now that you know the
basics, you might surprise your-
self with how much of the rest
you can pick up just by looking
at other people’s pages on the
Internet. You can see the HTML
for any page by right-clicking
and selecting View Source in
any web browser.

Don’t worry if you aren’t yet
able to decipher what some
HTML tags do or exactly how to
use them yourself. You’ll find
out about all those things in
the next few chapters. However,
sneaking a preview now will
show you the tags that you do
know in action and give you a
taste of what you’ll soon be
able to do with your web pages.

TIP

Some web development tools
include built-in validation features
you can use in lieu of the W3C
Markup Validation Service. Some
examples include browser exten-
sions such as Firebug (http://
getfirebug.com/) and HTML
Validator (http://users.skynet.
be/mgueury/mozilla/), but many
other programs offer similar
functionality; check your user
documentation.

www.it-ebooks.info

http://getfirebug.com/
http://getfirebug.com/
http://users.skynet.be/mgueury/mozilla/
http://users.skynet.be/mgueury/mozilla/
http://www.it-ebooks.info/

ptg999

38 CHAPTER 2 Understanding HTML and XHTML Connections

The Scoop on HTML, XML, XHTML,
and HTML5
In its early days, HTML was great because it allowed scientists to share
information over the Internet in an efficient and relatively structured man-
ner. It wasn’t until later that graphical web browsers were created and
HTML started being used to code more than scientific papers. HTML
quickly went from a tidy little markup language for researchers to an
online publishing language. After it was established that HTML could be
jazzed up for graphical browsing, the creators of web browsers went crazy
by adding lots of nifty features to the language. Although these new fea-
tures were neat at first, they compromised the original design of HTML
and introduced inconsistencies when it came to how browsers displayed
web pages; new features worked on only one browser or another, and you
were out of luck if you happened to be running the wrong browser. HTML
started to resemble a bad remodeling job of a house—a job done by too
many contractors and without proper planning. As it turns out, some of
the browser-specific features created during this time have now been
adopted as standards whereas others have been dropped completely.

As with most revolutions, the birth of the Web was very chaotic, and the
modifications to HTML reflected that chaos. Over the years, a significant

FIGURE 2.5
If a page passes the W3C Markup
Validation Service, you know it is
ready for prime time.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

The Scoop on HTML, XML, XHTML, and HTML5 39

effort has been made to reel in the inconsistencies of HTML and restore
some order to the language. The problem with disorder in HTML is that it
results in web browsers having to guess at how a page is to be displayed,
which is not a good thing. Ideally, a web page designer should be able to
define exactly how a page is to look and have it look the same regardless
of what kind of browser or operating system someone is using. Better still,
a designer should be able to define exactly what a page means and have
that page look consistent across different browsers and platforms. This
utopia is still off in the future somewhere, but a markup language called
XML (Extensible Markup Language) began to play a significant role in
leading us toward it.

XML is a general language used to create specific languages, such as
HTML. It might sound a little strange, but it really just means that XML
provides a basic structure and set of rules to which any markup language
must adhere. Using XML, you can create a unique markup language to
describe just about any kind of information, including web pages.
Knowing that XML is a language for creating other markup languages, you
could create your own version of HTML using XML. You could even create
a markup language called BCCML (Bottle Cap Collection Markup
Language), for example, which you could use to create and manage your
extensive collection of rare bottle caps. The point is that XML lays the
ground rules for organizing information in a consistent manner, and that
information can be anything from web pages to bottle caps.

You might be thinking that bottle caps don’t have anything to do with the
Web, so why mention them? The reason is that XML is not entirely about
web pages. XML is actually broader than the Web in that it can be used to
represent any kind of information on any kind of computer. If you can
visualize all the information whizzing around the globe among computers,
mobile phones, handheld computers, televisions, and radios, you can start
to understand why XML has much broader applications than just cleaning
up web pages. However, one of the first applications of XML is to restore
some order to the Web, which is why XML is relevant to learning HTML.

If XML describes data better than HTML, does it mean that XML is set to
upstage HTML as the markup language of choice for the Web? No. XML is
not a replacement for HTML; it’s not even a competitor of HTML. XML’s
impact on HTML has to do with cleaning up HTML. HTML is a relatively
unstructured language that benefits from the rules of XML. The natural merg-
er of the two technologies resulted in HTML’s adherence to the rules and
structure of XML. To accomplish this merger, a new version of HTML was

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

40 CHAPTER 2 Understanding HTML and XHTML Connections

formulated that follows the stricter rules of XML. The new XML-compliant
version of HTML is known as XHTML. Fortunately for you, you’ll actually be
learning XHTML throughout this book because it is really just a cleaner ver-
sion of HTML.

You might have heard about HTML5, which is touted as the next web stan-
dard. It will be, but not quite yet. When it does become a web standard, it
will not render XHTML useless—HTML5 is not a replacement for XHTML,
but instead is a major revision of HTML 4. In other words, XHTML and
HTML5 can coexist on the Web, and web browsers that currently support
XHTML will also (one day) support HTML5 as well.

The goal of this book is to guide you through the basics of web publishing,
using XHTML and CSS as the core languages of those pages. However,
whenever possible, I will note elements of the languages that are not pres-
ent in HTML5, should you want to design your content for even further
sustainability. If you gain a solid understanding of web publishing and the
ways in which CSS works with the overall markup language of the page
(be it XHTML or HTML5), you will be in a good position if you decide you
want to move from XHTML to HTML5.

Summary
This chapter introduced the basics of what web pages are and how they
work, including the history and differences between HTML and XHTML.
You learned that coded HTML commands are included in a text file, and
that typing HTML text yourself is better than using a graphical editor to
create HTML commands for you—especially when you’re learning HTML.

You were introduced to the most basic and important HTML tags. By
adding these coded commands to any plain-text document, you can quick-
ly transform it into a bona fide web page. You learned that the first step in
creating a web page is to put a few obligatory HTML tags at the beginning
and end, including a title for the page. You then mark where paragraphs
and lines end and add horizontal rules and headings if you want them.
Table 2.1 summarizes all the tags introduced in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Summary 41

TABLE 2.1 HTML Tags Covered in Chapter 2

Tag Function

<html>...</html> Encloses the entire HTML document.

<head>...</head> Encloses the head of the HTML document. Used with-
in the <html> tag pair.

<title>...</title> Indicates the title of the document. Used within the
<head> tag pair.

<body>...</body> Encloses the body of the HTML document. Used with-
in the <html> tag pair.

<p>...</p> A paragraph; skips a line between paragraphs.

 A line break.

<hr /> A horizontal rule line.

<h1>...</h1> A first-level heading.

<h2>...</h2> A second-level heading.

<h3>...</h3> A third-level heading.

<h4>...</h4> A fourth-level heading (seldom used).

<h5>...</h5> A fifth-level heading (seldom used).

<h6>...</h6> A sixth-level heading (seldom used).

Finally, you learned about XML and XHTML, how they relate to HTML,
and what HTML5 means in relation to what it is you’re learning here.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

42 CHAPTER 2 Understanding HTML and XHTML Connections

Q&A
Q. I’ve created a web page, but when I open the file in my web browser, I

see all the text including the HTML tags. Sometimes I even see weird
gobbledygook characters at the top of the page! What did I do wrong?

A. You didn’t save the file as plain text. Try saving the file again, being
careful to save it as Text Only or ASCII Text. If you can’t quite figure out
how to get your word processor to do that, don’t stress. Just type your
HTML files in Notepad or TextEdit instead and everything should work
just fine. (Also, always make sure that the filename of your web page
ends in .html or .htm.)

Q. I’ve seen web pages on the Internet that don’t have <html> tags at the
beginning. You said pages always have to start with <html>. What’s
the deal?

A. Many web browsers will forgive you if you forget to include the <html>
tag and will display the page correctly anyway. However, it’s a very good
idea to include it because some software does need it to identify the
page as valid HTML. Besides, you want your pages to be bona fide
XHTML pages so that they conform to the latest web standards.

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. What four tags are required in every HTML page?

2. What HTML tags and text would you use to produce the following web
content:

. A small heading with the words We are Proud to Present

. A horizontal rule across the page

. A large heading with the one word Orbit

. A medium-sized heading with the words The Geometric Juggler

. Another horizontal rule

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Workshop 43

3. What code would you use to create a complete HTML web page with
the title Foo Bar, a heading at the top that reads Happy Hour at the
Foo Bar, followed by the words Come on down! in regular type?

Answers
1. <html>, <head>, <title>, and <body> (along with their closing tags,

</html>, </head>, </title>, and </body>).

2. Your code would look like this:

<h3>We are Proud to Present</h3>
<hr />
<h1>Orbit</h1>
<h2>The Geometric Juggler</h2>
<hr />

3. Your code would look like this:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Foo Bar</title>

</head>

<body>
<h1>Happy Hour at the Foo Bar</h1>
<p>Come on Down!</p>

</body>
</html>

Exercises
. Even if your main goal in reading this book is to create web content for

your business, you might want to make a personal web page just for
practice. Type a few paragraphs to introduce yourself to the world and
use the HTML tags you’ve learned in this chapter to make them into a
web page.

. Throughout the book, you’ll be following along with the code examples
and making pages of your own. Take a moment now to set up a basic
document template containing the XML declaration, doctype declara-
tion, and tags for the core HTML document structure. That way, you can
be ready to copy and paste that information whenever you need it.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

In the previous chapter, you learned the basics of HTML and XHTML,
including how to set up a skeletal HTML template for all your web con-
tent. In this chapter, you will learn how to fine-tune the display of your
web content using Cascading Style Sheets (CSS).

The concept behind style sheets is simple: You create a style sheet docu-
ment that specifies the fonts, colors, spacing, and other characteristics that
establish a unique look for a website. You then link every page that should
have that look to the style sheet, instead of specifying all those styles
repeatedly in each separate document. Therefore, when you decide to
change your official corporate typeface or color scheme, you can modify all
your web pages at once just by changing one or two entries in your style
sheet rather than changing them in all of your static web files. So, a style
sheet is a grouping of formatting instructions that controls the appearance
of several HTML pages at once.

Style sheets enable you to set a great number of formatting characteristics,
including exacting typeface controls, letter and line spacing, and margins
and page borders, just to name a few. Style sheets also enable sizes and
other measurements to be specified in familiar units, such as inches, mil-
limeters, points, and picas. You can also use style sheets to precisely posi-
tion graphics and text anywhere on a web page, either at specific coordi-
nates or relative to other items on the page.

In short, style sheets bring a sophisticated level of display to the Web. And
they do so—you’ll pardon the expression—with style.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How to create a basic style
sheet

. How to use style classes

. How to use style IDs

. How to construct internal
style sheets and inline
styles

CHAPTER 3
Understanding Cascading Style

Sheets

NOTE

If you have three or more web
pages that share (or should
share) similar formatting and
fonts, you might want to create
a style sheet for them as you
read this chapter. Even if you
choose not to create a com-
plete style sheet, you’ll find it
helpful to apply styles to individ-
ual HTML elements directly
within a web page.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

46 CHAPTER 3 Understanding Cascading Style Sheets

How CSS Works
The technology behind style sheets is called CSS, which stands for
Cascading Style Sheets. CSS is a language that defines style constructs such
as fonts, colors, and positioning, which are used to describe how informa-
tion on a web page is formatted and displayed. CSS styles can be stored
directly in an HTML web page or in a separate style sheet file. Either way,
style sheets contain style rules that apply styles to elements of a given
type. When used externally, style sheet rules are placed in an external style
sheet document with the file extension .css.

A style rule is a formatting instruction that can be applied to an element on
a web page, such as a paragraph of text or a link. Style rules consist of one
or more style properties and their associated values. An internal style sheet is
placed directly within a web page, whereas an external style sheet exists in a
separate document and is simply linked to a web page via a special tag—
more on this tag in a moment.

The cascading part of the name CSS refers to the manner in which style
sheet rules are applied to elements in an HTML document. More specifical-
ly, styles in a CSS style sheet form a hierarchy in which more specific styles
override more general styles. It is the responsibility of CSS to determine
the precedence of style rules according to this hierarchy, which establishes
a cascading effect. If that sounds a bit confusing, just think of the cascading
mechanism in CSS as being similar to genetic inheritance, in which general
traits are passed from parents to a child, but more specific traits are entire-
ly unique to the child. Base style rules are applied throughout a style sheet
but can be overridden by more specific style rules.

A quick example should clear things up. Take a look at the following code
to see whether you can tell what’s going on with the color of the text:

<div style=”color:green”>
This text is green.
<p style=”color:blue”>This text is blue.</p>
<p>This text is still green.</p>

</div>

In the previous example, the color green is applied to the <div> tag via the
color style property. Therefore, the text in the <div> tag is colored green.
Because both <p> tags are children of the <div> tag, the green text style

NOTE

You might notice that I use the
term element a fair amount in
this chapter (and I will for the
rest of the book, for that mat-
ter). An element is simply a
piece of information (content) in
a web page, such as an image,
a paragraph, or a link. Tags are
used to code elements, and
you can think of an element as
a tag complete with descriptive
information (attributes, text,
images, and so on) within the
tag.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

A Basic Style Sheet 47

cascades down to them. However, the first <p> tag overrides the color style
and changes it to blue. The end result is that the first line (not surrounded
by a paragraph tag) is green, the first official paragraph is blue, and the
second official paragraph retains the cascaded green color.

If you made it through that description on your own, congratulations. If
you understood it after I explained it in the text, congratulations to you as
well. Understanding CSS isn’t like understanding rocket science, although
many people will try to convince you that it is (so that they can charge
high consultation fees, most likely!).

Like many web technologies, CSS has evolved over the years. The original
version of CSS, known as Cascading Style Sheets Level 1 (CSS1) was created
in 1996. The later CSS 2 standard was created in 1998, and CSS 2 is still in
use today. All modern web browsers support CSS 2, and you can safely use
CSS 2 style sheets without too much concern. So when I talk about CSS
throughout the book, I’m referring to CSS 2.

You’ll find a complete reference guide to CSS at http://www.w3.org/
Style/CSS/. The rest of this chapter explains how to put CSS to good use.

A Basic Style Sheet
Despite their intimidating power, style sheets can be simple to create.
Consider the web pages shown in Figure 3.1 and Figure 3.2. These pages
share several visual properties that could be put into a common style sheet:

. They use a large, bold Verdana font for the headings and a normal
size and weight Verdana font for the body text.

. They use an image named logo.gif floating within the content and on
the right side of the page.

. All text is black except for subheadings, which are purple.

. They have margins on the left side and at the top.

. There is vertical space between lines of text.

. The footnotes are centered and in small print.

www.it-ebooks.info

http://www.w3.org/Style/CSS/
http://www.w3.org/Style/CSS/
http://www.it-ebooks.info/

ptg999

48 CHAPTER 3 Understanding Cascading Style Sheets

Listing 3.1 shows the code for the style sheet specifying these properties.

FIGURE 3.1
This page uses a style sheet to
fine-tune the appearance and
spacing of the text and images.

FIGURE 3.2
This page uses the same style
sheet as the one shown in Figure
3.1, thus maintaining a consistent
look and feel.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

A Basic Style Sheet 49

LISTING 3.1 A Single External Style Sheet
body {
font-size: 10pt;
font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
color: black;
line-height: 14pt;
padding-left: 5pt;
padding-right: 5pt;
padding-top: 5pt;

}

h1 {
font: 14pt Verdana, Geneva, Arial, Helvetica, sans-serif;
font-weight: bold;
line-height: 20pt;

}

p.subheader {
font-weight: bold;
color: #593d87;

}

img {
padding: 3pt;
float: right;

}

a {
text-decoration: none;

}

a:link, a:visited {
color: #8094d6;

}

a:hover, a:active {
color: #FF9933;

}

div.footer {
font-size: 9pt;
font-style: italic;
line-height: 12pt;
text-align: center;
padding-top: 30pt;

}

This might initially appear to be a lot of code, but if you look closely, you’ll
see that there isn’t a lot of information on each line of code. It’s fairly stan-
dard to place individual style rules on their own line to help make style

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

50 CHAPTER 3 Understanding Cascading Style Sheets

sheets more readable, but that is a personal preference; you could put all
the rules on one line as long as you kept using the semicolon to separate
each rule (more on that in a bit). Speaking of code readability, perhaps the
first thing you noticed about this style sheet code is that it doesn’t look
anything like normal HTML code. CSS uses a language all its own to speci-
fy style sheets.

Of course, the listing includes some familiar HTML tags. As you might
guess, body, h1, p, img, a, and div in the style sheet refer to the correspon-
ding tags in the HTML documents to which the style sheet will be applied.
The curly braces after each tag name contain the specifications for how all
content within that tag should appear.

In this case, the style sheet says that all body text should be rendered at a
size of 10 points, in the Verdana font (if possible), with the color black, and
14 points between lines. If the user does not have the Verdana font
installed, the list of fonts in the style sheet represents the order in which
the browser should search for fonts to use: Geneva, then Arial, and then
Helvetica. If the user has none of those fonts, the browser will use whatev-
er default sans serif font is available. Additionally, the page should have
left, right, and top margins of 5 points each.

Any text within an <h1> tag should be rendered in boldface Verdana at a
size of 14 points. Moving on, any paragraph that uses only the <p> tag will
inherit all the styles indicated by the body element. However, if the <p> tag
uses a special class named subheader, the text will appear bold and in the
color #593d87 (a purple color).

The pt after each measurement in Listing 3.1 means points (there are 72
points in an inch). If you prefer, you can specify any style sheet measure-
ment in inches (in), centimeters (cm), pixels (px), or widths-of-a-letter-m,
which are called ems (em).

You might have noticed that each style rule in the listing ends with a semi-
colon (;). Semicolons are used to separate style rules from each other. It is
therefore customary to end each style rule with a semicolon, so you can
easily add another style rule after it.

To link this style sheet to HTML documents, include a <link /> tag in the
<head> section of each document. Listing 3.2 shows the HTML code for the
page shown in Figure 3.1. It contains the following <link /> tag:

<link rel=”stylesheet” type=”text/css” href=”styles.css” />

NOTE

You can specify font sizes as
large as you like with style
sheets, although some display
devices and printers will not
correctly handle fonts larger
than 200 points.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

A Basic Style Sheet 51

This assumes that the style sheet is stored under the name styles.css in
the same folder as the HTML document. As long as the web browser sup-
ports style sheets—and all modern browsers do support style sheets—the
properties specified in the style sheet will apply to the content in the page
without the need for any special HTML formatting code. This confirms the
ultimate goal of XHTML, which is to provide a separation between the
content in a web page and the specific formatting required to display that
content.

LISTING 3.2 HTML Code for the Page Shown in Figure 3.1
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>About BAWSI</title>
<link rel=”stylesheet” type=”text/css” href=”styles.css” />

</head>
<body>

<h1>About BAWSI</h1>
<p>The Bay Area Women’s
Sports Initiative (BAWSI) is a public benefit, nonprofit
corporation with a mission to create programs and partnerships
through which women athletes bring health, hope and wholeness to
our community. Founded in 2005 by Olympic and World Cup soccer
stars Brandi Chastain and Julie Foudy and Marlene Bjornsrud,
former general manager of the San Jose CyberRays women’s
professional soccer team, BAWSI provides a meaningful path for
women athletes to become a more visible and valued part of the
Bay Area sports culture.</p>
<p class=”subheader”>BAWSI’s History</p>
<p>The concept of BAWSI was inspired by one of the most
spectacular achievements in women’s sports history and born out
of one its biggest disappointments... </p>
<p>[continue reading]</p>
<div class=”footer”>Copyright © 2005-2009 BAWSI
(www.bawsi.org). All rights reserved. Used with permission.</div>

</body>
</html>

The code in Listing 3.2 is interesting because it contains no formatting of
any kind. In other words, there is nothing in the HTML code that dictates
how the text and images are to be displayed—no colors, no fonts, nothing.
Yet the page is carefully formatted and rendered to the screen, thanks to
the link to the external style sheet, styles.css. The real benefit to this

TIP

In most web browsers, you can
view the style rules in a style
sheet by opening the .css file
and choosing Notepad or anoth-
er text editor as the helper
application to view the file. (To
determine the name of the .css
file, look at the HTML source of
any web page that links to it.)
To edit your own style sheets,
just use a text editor.

NOTE

Although CSS is widely support-
ed in all modern web browsers,
it hasn’t always enjoyed such
wide support. Additionally, not
every browser’s support of CSS
is flawless. To find out about
how major browsers compare to
each other in terms of CSS sup-
port, take a look at this website:
http://www.quirksmode.org/css/
contents.html.

www.it-ebooks.info

http://www.quirksmode.org/css/contents.html
http://www.quirksmode.org/css/contents.html
http://www.it-ebooks.info/

ptg999

52 CHAPTER 3 Understanding Cascading Style Sheets

approach is that you can easily create a site with multiple pages that main-
tains a consistent look and feel. And you have the benefit of isolating the
visual style of the page to a single document (the style sheet) so that one
change impacts all pages.

TRY IT YOURSELF▼

Create a Style Sheet
of Your Own

Starting from scratch, create a new text document called mystyles.css and
add some style rules for the following basic HTML tags: <body>, <p>, <h1>,
and <h2>. After your style sheet has been created, make a new HTML file that
contains these basic tags. Play around with different style rules and see for
yourself how simple it is to change entire blocks of text in paragraphs with
one simple change in a style sheet file.

A CSS Style Primer
You now have a basic knowledge of CSS style sheets and how they are
based on style rules that describe the appearance of information in web
pages. The next few sections of this chapter provide a quick overview of
some of the most important style properties and allow you to get started
using CSS in your own style sheets.

CSS includes various style properties that are used to control fonts, colors,
alignment, and margins, to name just a few. The style properties in CSS can
be generally grouped into two major categories:

. Layout properties—Consist of properties that affect the positioning
of elements on a web page, such as margins, padding, alignment,
and so on

. Formatting properties—Consist of properties that affect the visual
display of elements within a website, such as the font type, size,
color, and so on

Layout Properties
CSS layout properties are used to determine how content is placed on a
web page. One of the most important layout properties is the display
property, which describes how an element is displayed with respect to
other elements. There are four possible values for the display property:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

A CSS Style Primer 53

. block—The element is displayed on a new line, as in a new paragraph.

. list-item—The element is displayed on a new line with a list-item
mark (bullet) next to it.

. inline—The element is displayed inline with the current paragraph.

. none—The element is not displayed; it is hidden.

It’s easier to understand the display property if you visualize each ele-
ment on a web page occupying a rectangular area when displayed—the
display property controls the manner in which this rectangular area is dis-
played. For example, the block value results in the element being placed
on a new line by itself, whereas the inline value places the element next
to the content just before it. The display property is one of the few style
properties that can be applied in most style rules. Following is an example
of how to set the display property:

display:block;

You control the size of the rectangular area for an element with the width and
height properties. Like many size-related CSS properties, width and height
property values can be specified in several different units of measurement:

. in—Inches

. cm—Centimeters

. mm—Millimeters

. px—Pixels

. pt—Points

You can mix and match units however you choose within a style sheet, but
it’s generally a good idea to be consistent across a set of similar style prop-
erties. For example, you might want to stick with points for font properties
or pixels for dimensions. Following is an example of setting the width of
an element using pixel units:

width: 200px;

Formatting Properties
CSS formatting properties are used to control the appearance of content on
a web page, as opposed to controlling the physical positioning of the con-
tent. One of the most popular formatting properties is the border property,

NOTE

The display property relies on
a concept known as relative
positioning, which means that
elements are positioned rela-
tive to the location of other ele-
ments on a page. CSS also
supports absolute positioning,
which enables you to place an
element at an exact location on
a page independent of other
elements. You’ll learn more
about both of these types of
positioning in Part III,
“Advanced Web Page Design
with CSS.”

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

54 CHAPTER 3 Understanding Cascading Style Sheets

which is used to establish a visible boundary around an element with a
box or partial box. The following border properties provide a means of
describing the borders of an element:

. border-width—The width of the border edge

. border-color—The color of the border edge

. border-style—The style of the border edge

. border-left—The left side of the border

. border-right—The right side of the border

. border-top—The top of the border

. border-bottom—The bottom of the border

. border—All the border sides

The border-width property is used to establish the width of the border
edge. It is often expressed in pixels, as the following code demonstrates:

border-width:5px;

Not surprisingly, the border-color and border-style properties are used
to set the border color and style. Following is an example of how these two
properties are set:

border-color:blue;
border-style:dotted;

The border-style property can be set to any of the following values:

. solid—A single-line border

. double—A double-line border

. dashed—A dashed border

. dotted—A dotted border

. groove—A border with a groove appearance

. ridge—A border with a ridge appearance

. inset—A border with an inset appearance

. outset—A border with an outset appearance

. none—No border

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

A CSS Style Primer 55

The default value of the border-style property is none, which is why ele-
ments don’t have a border unless you set the border property to a different
style. The most common border styles are the solid and double styles.

The border-left, border-right, border-top, and border-bottom proper-
ties enable you to set the border for each side of an element individually. If
you want a border to appear the same on all four sides, you can use the
single border property by itself, which expects the following styles sepa-
rated by a space: border-width, border-style, and border-color.
Following is an example of using the border property to set a border that
consists of two (double) red lines that are a total of 10 pixels in width:

border:10px double red;

Whereas the color of an element’s border is set with the border-color
property, the color of the inner region of an element is set using the color
and background-color properties. The color property sets the color of text
in an element (foreground) and the background-color property sets the
color of the background behind the text. Following is an example of setting
both color properties to predefined colors:

color:black;
background-color:orange;

You can also assign custom colors to these properties by specifying the col-
ors in hexadecimal (covered in more detail in Chapter 8, “Working with
Colors, Images, and Multimedia”) or as RGB (Red, Green, Blue) decimal
values, just as you do in HTML:

background-color:#999999;
color:rgb(0,0,255);

You can also control the alignment and indentation of web page content
without too much trouble. This is accomplished with the text-align and
text-indent properties, as the following code demonstrates:

text-align:center;
text-indent:12px;

After you have an element properly aligned and indented, you might be
interested in setting its font. The following font properties are used to set
the various parameters associated with fonts:

. font-family—The family of the font

. font-size—The size of the font

NOTE

The exception to the default
border-style of none is when
an image is placed within an
<a> tag so that it serves as a
linked image. In that case, a
solid border is automatically set
by default. That’s why you often
see linked images with the
style border-style:none,
which turns off the automatic
border.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

56 CHAPTER 3 Understanding Cascading Style Sheets

. font-style—The style of the font (normal or italic)

. font-weight—The weight of the font (light, medium, bold, and so on)

The font-family property specifies a prioritized list of font family names.
A prioritized list is used instead of a single value to provide alternatives in
case a font isn’t available on a given system. The font-size property spec-
ifies the size of the font using a unit of measurement, usually points.
Finally, the font-style property sets the style of the font and the font-
weight property sets the weight of the font. Following is an example of set-
ting these font properties:

font-family: Arial, sans-serif;
font-size: 36pt;
font-style: italic;
font-weight: medium;

Now that you know a whole lot more about style properties and how they
work, refer back at Listing 3.1 and see whether it makes a bit more sense.
Here’s a recap of the style properties used in that style sheet, which you
can use as a guide for understanding how it works:

. font—Lets you set many font properties at once. You can specify a
list of font names separated by commas; if the first is not available,
the next is tried, and so on. You can also include the words bold
and/or italic and a font size. Each of these font properties can be
specified separately with font-family, font-size, font-weight, and
font-style if you prefer.

. line-height—Also known in the publishing world as leading. This
sets the height of each line of text, usually in points.

. color—Sets the text color using the standard color names or hexa-
decimal color codes (see Chapter 8 for more details).

. text-decoration—Useful for turning link underlining off—simply
set it to none. The values of underline, italic, and line-through
are also supported. The application of styles to links is covered in
more detail in Chapter 7, “Using External and Internal Links.”

. text-align—Aligns text to the left, right, or center, along with
justifying the text with a value of justify.

. padding—Adds padding to the left, right, top, and bottom of an ele-
ment; this padding can be in measurement units or a percentage of the
page width. Use padding-left and padding-right if you want to add
padding to the left and right of the element independently. Use

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using Style Classes 57

padding-top or padding-bottom to add padding to the top or bottom of
the element, as appropriate. You’ll learn more about these style proper-
ties in Chapters 9, “Working with Margins, Padding, Alignment, and
Floating,” and 10, “Understanding the CSS Box Model and Positioning.”

Using Style Classes
This is a “teach yourself” book, so you don’t have to go to a single class to
learn how to give your pages great style, although you do need to learn
what a style class is. Whenever you want some of the text on your pages to
look different from the other text, you can create what amounts to a custom-
built HTML tag. Each type of specially formatted text you define is called a
style class. A style class is a custom set of formatting specifications that can be
applied to any element in a web page.

Before showing you a style class, I need to take a quick step back and clarify
some CSS terminology. First off, a CSS style property is a specific style that
can be assigned a value, such as color or font-size. You associate a style
property and its respective value with elements on a web page by using a
selector. A selector is used to identify tags on a page to which you apply
styles. Following is an example of a selector, a property, and a value all
included in a basic style rule:

h1 { font: 36pt Courier; }

In this code, h1 is the selector, font is the style property, and 36pt Courier
is the value. The selector is important because it means that the font setting
will be applied to all h1 elements in the web page. But maybe you want to
differentiate between some of the h1 elements—what then? The answer lies
in style classes.

Suppose you want two different kinds of <h1> headings for use in your doc-
uments. You would create a style class for each one by putting the following
CSS code in a style sheet:

h1.silly { font: 36pt Comic Sans; }
h1.serious { font: 36pt Arial; }

Notice that these selectors include a period (.) after h1, followed by a
descriptive class name. To choose between the two style classes, use the
class attribute, like this:

<h1 class=”silly”>Marvin’s Munchies Inc. </h1>
<p>Text about Marvin’s Munchies goes here. </p>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

58 CHAPTER 3 Understanding Cascading Style Sheets

Or you could use this:

<h1 class=”serious”>MMI Investor Information</h1>
<p>Text for business investors goes here.</p>

When referencing a style class in HTML code, simply specify the class
name in the class attribute of an element. In the previous example, the
words Marvin’s Munchies Inc. would appear in a 36-point Comic Sans
font, assuming that you included a <link /> to the style sheet at the top of
the web page and assuming that the user has the Comic Sans font
installed. The words MMI Investor Information would appear in the 36-
point Arial font instead. You can see another example of classes in action in
Listing 3.2; look for the subheader <p> class and the footer <div> class.

What if you want to create a style class that could be applied to any ele-
ment, rather than just headings or some other particular tag? You can asso-
ciate a style class with the <div> tag, as in Listing 3.2, which is used to
enclose any text in a block that is somewhat similar to a paragraph of text;
the <div> tag is another useful container element.

You can essentially create your own custom HTML tag by using the div
selector followed by a period (.) followed by any style class name you
make up and any style specifications you choose. That tag can control any
number of font, spacing, and margin settings all at once. Wherever you
want to apply your custom tag in a page, use a <div> tag with the class
attribute followed by the class name you created.

For example, the style sheet in Listing 3.1 includes the following style class
specification:

div.footer {
font-size: 9pt;
font-style: italic;
line-height: 12pt;
text-align: center;
padding-top: 30pt;

}

This style class is applied in Listing 3.2 with the following tag:

<div class=”footer”>

Everything between that tag and the closing </div> tag in Listing 3.2
appears in 9-point, centered, italic text with 12-point vertical line spacing
and 30 points of padding at the top of the element.

What makes style classes so valuable is how they isolate style code from
web pages, effectively allowing you to focus your HTML code on the actual

TIP
You might have noticed a change
in the coding style when multiple
properties are included in a style
rule. For style rules with a single
style, you’ll commonly see the
property placed on the same line
as the rule, like this:
div.footer { font-size: 9pt; }

However, when a style rule con-
tains multiple style properties, it’s
much easier to read and under-
stand the code if you list the
properties one-per-line, like this:
div.footer {
font-size:9pt;
font-style: italic;
line-height:12pt;
text-align: center;
padding-top: 30pt;

}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Internal Style Sheets and Inline Styles 59

content in a page, not how it is going to appear on the screen. Then you can
focus on how the content is rendered to the screen by fine-tuning the style
sheet. You might be surprised by how a relatively small amount of code in a
style sheet can have significant effects across an entire website. This makes
your pages much easier to maintain and manipulate.

Using Style IDs
When you create custom style classes, you can use those classes as many
times as you would like—they are not unique. However, there will be
some instances when you want to have precise control over unique ele-
ments for layout or formatting purposes (or both). In such instances, look
to IDs instead of classes.

A style ID is a custom set of formatting specifications that can be applied
only to one element in a web page. You can use IDs across a set of pages
but only once per time within each page.

For example, suppose you have a title within the body of all your pages.
Each page has only one title, but all the pages themselves include one
instance of that title. Following is an example of a selector with an ID indi-
cated, plus a property and a value:

p#title {font: 24pt Verdana, Geneva, Arial, sans-serif}

Notice that this selector includes a hash mark, or pound sign (#), after p,
followed by a descriptive ID name. When referencing a style ID in HTML
code, simply specify the ID name in the id attribute of an element, like so:

<p id=”title”>Some Title Goes Here</p>

Everything between the opening and closing <p> tags will appear in 24-
point Verdana text—but only once on any given page. You will often see
style IDs used to define specific parts of a page for layout purposes, such
as a header area, footer area, main body area, and so on. These types of
areas in a page will appear only once per page, so using an ID rather than
a class is the appropriate choice.

Internal Style Sheets and Inline Styles
In some situations, you might want to specify styles that will be used in
only one web page, in which case you can enclose a style sheet between
<style> and </style> tags and include it directly in an HTML document.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

60 CHAPTER 3 Understanding Cascading Style Sheets

Style sheets used in this manner must appear in the <head> of an HTML
document. No <link /> tag is needed, and you cannot refer to that style
sheet from any other page (unless you copy it into the beginning of that
document, too). This kind of style sheet is known as an internal style sheet,
as you learned earlier in the chapter.

Listing 3.3 shows an example of how you might specify an internal style
sheet.

LISTING 3.3 A Web Page with an Internal Style Sheet
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Some Page</title>

<style type=”text/css”>
div.footer {
font-size: 9pt;
line-height: 12pt;
text-align: center;

}
</style>

</head>
<body>
...
<div class=”footer”>
Copyright 2009 Acme Products, Inc.
</div>
</body>

</html>

In the listing code, the div.footer style class is specified in an internal
style sheet that appears in the head of the page. The style class is now
available for use within the body of this page. And, in fact, it is used in the
body of the page to style the copyright notice.

Internal style sheets are handy if you want to create a style rule that is
used multiple times within a single page. However, in some instances you
might need to apply a unique style to one particular element. This calls for
an inline style rule, which allows you to specify a style for only a small
part of a page, such as an individual element. For example, you can create
and apply a style rule within a <p>, <div>, or tag via the style
attribute. This type of style is known as an inline style because it is speci-
fied right there in the middle of the HTML code.

NOTE

 and are
dummy tags that do nothing in
and of themselves except speci-
fy a range of content to apply
any style attributes that you
add. The only difference
between <div> and is
that <div> is a block element
and therefore forces a line
break, whereas doesn’t.
Therefore, you should use
 to modify the style of
any portion of text that is to
appear in the middle of a sen-
tence or paragraph without any
line break.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Internal Style Sheets and Inline Styles 61

Here’s how a sample style attribute might look:

<p style=”color:green”>
This text is green, but this text is
red.
Back to green again, but...

</p>
<p>
...now the green is over, and we’re back to the default color
for this page.

</p>

This code makes use of the tag to show how to apply the color
style property in an inline style rule. In fact, both the <p> tag and the
 tag in this example use the color property as an inline style.
What’s important to understand is that the color:red style property over-
rides the color:green style property for the text appearing between the
 and tags. Then in the second paragraph, neither of the
color styles applies because it is a completely new paragraph that adheres
to the default color of the entire page.

Validate Your Style
Sheets
Just as it is important to vali-
date your HTML or XHTML
markup, it is important to vali-
date your style sheet. A specific
validation tool for CSS can be
found at http://jigsaw.w3.org/
css-validator/. Just like the
validation tool discussed in
Chapter 2, “Understanding
HTML and XHTML Connections,”
you can point the tool to a web
address, upload a file, or paste
content into the form field pro-
vided. The ultimate goal is a
result such as that shown in
Figure 3.3: valid!

FIGURE 3.3
The W3C CSS Validator shows
there are no errors in the style
sheet contents of Listing 3.1.

www.it-ebooks.info

http://jigsaw.w3.org/css-validator/
http://jigsaw.w3.org/css-validator/
http://www.it-ebooks.info/

ptg999

62 CHAPTER 3 Understanding Cascading Style Sheets

Summary
In this chapter, you learned that a style sheet can control the appearance of
many HTML pages at once. It can also give you extremely precise control
over the typography, spacing, and positioning of HTML elements. You also
discovered that by adding a style attribute to almost any HTML tag, you
can control the style of any part of an HTML page without referring to a
separate style sheet document.

You learned about three main approaches to including style sheets in your
website: a separate style sheet file with the extension .css that is linked to
in the <head> of your documents, a collection of style rules placed in the
head of the document within the <style> tag, and as rules placed directly
in an HTML tag via the style attribute.

Table 3.1 summarizes the tags discussed in this chapter. Refer to the CSS 2
style sheet standards at http://www.w3c.org for details on what options
can be included after the <style> tag or the style attribute.

TABLE 3.1 HTML Tags and Attributes Covered in Chapter 3

Tag/Attributes Function

<style>...</style> Allows an internal style sheet to be included within a
document. Used between <head> and </head>.

Attribute

type=”contenttype” The Internet content type. (Always “text/css” for a
CSS style sheet.)

<link /> Links to an external style sheet (or other document
type). Used in the <head> section of the document.

Attribute

href=”url” The address of the style sheet.

type=”contenttype” The Internet content type. (Always “text/css” for a
CSS style sheet.)

rel=”stylesheet” The link type. (Always “stylesheet” for style
sheets.)

… Does nothing but provide a place to put style or
other attributes. (Similar to <div>...</div> but
does not cause a line break.)

Attribute

style=”style” Includes inline style specifications. (Can be used in
, <div>, <body>, and most other HTML tags.)

www.it-ebooks.info

http://www.w3c.org
http://www.it-ebooks.info/

ptg999

Workshop 63

Q&A
Q. Say I link a style sheet to my page that says all text should be blue,

but there’s a tag in the page some-
where. Will that text display as blue or will it display as red?

A. Red. Local inline styles always take precedence over external style
sheets. Any style specifications you put between <style> and
</style> tags at the top of a page will also take precedence over
external style sheets (but not over inline styles later in the same page).
This is the cascading effect of style sheets that I mentioned earlier in
the chapter. You can think of cascading style effects as starting with an
external style sheet, which is overridden by an internal style sheet,
which is overridden by inline styles.

Q. Can I link more than one style sheet to a single page?

A. Sure. For example, you might have a sheet for formatting (text, fonts,
colors, and so on) and another one for layout (margins, padding, align-
ment, and so on)—just include a <link /> for both. Technically speak-
ing, the CSS standard requires web browsers to give the user the
option to choose between style sheets when multiple sheets are pre-
sented via multiple <link /> tags. However, in practice, all major web
browsers simply include every style sheet. The preferred technique for
linking in multiple style sheets involves using the special @import com-
mand. Following is an example of importing multiple style sheets with
@import:
@import url(styles1.css);
@import url(styles2.css);

Similar to the <link /> tag, the @import command must be placed in
the head of a web page. You learn more about this handy little com-
mand in Chapter 25, “Creating Print-Friendly Web Pages,” when you
learn how to create a style sheet specifically for printing web pages.

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

64 CHAPTER 3 Understanding Cascading Style Sheets

Quiz
1. What code would you use to create a style sheet to specify 30-point

blue Arial headings and all other text in double-spaced, 10-point blue
Times Roman (or the default browser font)?

2. If you saved the style sheet you made for Question 1 as corporate.css,
how would you apply it to a web page named intro.html?

3. How many different ways are there to ensure style rules can be applied
to your content?

Answers
1. Your style sheet would include the following:

h1 { font: 30pt blue Arial; }
body { font: 10pt blue; }

2. Put the following tag between the <head> and </head> tags of the
intro.html document:

<link rel=”stylesheet” type=”text/css” href=”corporate.css” />

3. Three: externally, internally, and inline.

Exercises
. Using the style sheet you created earlier in this chapter, add some style

classes to your style sheet. To see the fruits of your labor, apply those
classes to the HTML page you created as well. Use classes with your
<h1> and <p> tags to get the feel for things.

. Develop a standard style sheet for your website and link it into all your
pages. (Use internal style sheets and/or inline styles for pages that
need to deviate from it.) If you work for a corporation, chances are it
has already developed font and style specifications for printed materi-
als. Get a copy of those specifications and follow them for company
web pages, too.

. Be sure to explore the official style sheet specs at http://www.w3.org/
Style/CSS/ and try some of the more esoteric style properties not cov-
ered in this chapter.

www.it-ebooks.info

http://www.w3.org/Style/CSS/
http://www.w3.org/Style/CSS/
http://www.it-ebooks.info/

ptg999

The World Wide Web (WWW) began as a text-only medium—the first
browsers didn’t even support images within web pages. The Web has
come a long way since those early days, as today’s websites include a
wealth of visual and interactive features in addition to useful content:
graphics, sounds, animation, and video. Web scripting languages, such as
JavaScript, are one of the easiest ways to spice up a web page and to inter-
act with users in new ways.

The first part of this chapter introduces the concept of Web scripting and the
JavaScript language. As the chapter moves ahead, you’ll learn how to
include JavaScript commands directly in your HTML documents and how
your scripts will be executed when the page is viewed in a browser. You will
work with a simple script, edit it, and test it in your browser, all the while
learning the basic tasks involved in creating and using JavaScript scripts.

Learning Web Scripting Basics
In the world of science fiction movies (and many other movies that have
no excuse), computers are often seen obeying commands in English.
Although this might indeed happen in the near future, computers current-
ly find it easier to understand languages such as BASIC, C, and Java.

You already know how to use one type of computer language: HTML. You
use HTML tags to describe how you want your document formatted, and
the browser obeys your commands and shows the formatted document to
the user. But because HTML is a simple text markup language, it can’t
respond to the user, make decisions, or automate repetitive tasks.
Interactive tasks such as these require a more sophisticated language: a
programming language, or a scripting language.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. What web scripting is and
what it’s good for

. How scripting and program-
ming are different (and
similar)

. What JavaScript is and
where it came from

. How to include JavaScript
commands in a web page

. What JavaScript can do for
your web pages

. Beginning and ending
scripts

. Formatting JavaScript
statements

. How a script can display a
result

. Including a script within a
web document

. Testing a script in your
browser

. Modifying a script

. Dealing with errors in
scripts

. Moving scripts into sepa-
rate files

CHAPTER 4
Understanding JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

66 CHAPTER 4 Understanding JavaScript

Although many programming languages are complex, scripting languages
are generally simple. They have a simple syntax, can perform tasks with a
minimum of commands, and are easy to learn. Web scripting languages
enable you to combine scripting with HTML to create interactive web pages.

Scripts and Programs
A movie or a play follows a script—a list of actions (or lines) for the actors
to perform. A web script provides the same type of instructions for the web
browser. A script in JavaScript can range from a single line to a full-scale
application. (In either case, JavaScript scripts usually run within a browser.)

Some programming languages must be compiled, or translated, into
machine code before they can be executed. JavaScript, on the other hand, is
an interpreted language: The browser executes each line of script as it comes
to it.

There is one main advantage to interpreted languages: Writing or changing
a script is very simple. Changing a JavaScript script is as easy as changing
a typical HTML document, and the change is enacted as soon as you
reload the document in the browser.

Introducing JavaScript
JavaScript was developed by Netscape Communications Corporation, the
maker of the Netscape web browser. JavaScript was the first web scripting
language to be supported by browsers, and it is still by far the most popular.

JavaScript is almost as easy to learn as HTML, and it can be included
directly in HTML documents. Here are a few of the things you can do with
JavaScript:

. Display messages to the user as part of a web page, in the browser’s
status line, or in alert boxes

. Validate the contents of a form and make calculations (for example,
an order form can automatically display a running total as you enter
item quantities)

. Animate images or create images that change when you move the
mouse over them

. Create ad banners that interact with the user, rather than simply dis-
playing a graphic

NOTE

Is JavaScript a scripting lan-
guage or a programming lan-
guage? It depends on who you
ask. We’ll refer to scripting
throughout this book, but feel
free to include JavaScript pro-
gramming on your résumé after
you’ve finished this book.

NOTE

Interpreted languages have
their disadvantages—they can’t
execute quickly, so they’re not
ideally suited for complicated
work, such as graphics. Also,
they require the interpreter (in
JavaScript’s case, usually a
browser) to work.

NOTE

A bit of history: JavaScript was
originally called LiveScript and
was first introduced in
Netscape Navigator 2.0 in
1995. It was soon renamed
JavaScript to indicate a market-
ing relationship with Sun’s Java
language—although there is no
other relationship, structurally
or otherwise, between Java and
JavaScript.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

How JavaScript Fits into a Web Page 67

. Detect the browser in use or its features and perform advanced func-
tions only on browsers that support them

. Detect installed plug-ins and notify the user if a plug-in is required

. Modify all or part of a web page without requiring the user to reload it

. Display or interact with data retrieved from a remote server

You can do all this and more with JavaScript, including creating entire
applications. We’ll explore the uses of JavaScript throughout this book.

How JavaScript Fits into a Web Page
Using the <script> tag, you can add a short script (in this case, just one
line) to a web document, as shown in Listing 4.1. The <script> tag tells
the browser to start treating the text as a script, and the closing </script>
tag tells the browser to return to HTML mode. In most cases, you can’t use
JavaScript statements in an HTML document except within <script> tags.
The exception is event handlers, described later in this chapter.

LISTING 4.1 A Simple HTML Document with a Simple Script
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>The American Eggplant Society</title>

</head>

<body>
<h1>The American Eggplant Society</h1>
<p>Welcome to our site. Unfortunately, it is still

under construction.</p>
<p>We last worked on it on this date:
<script type=”text/javascript”>
<!-- Hide the script from old browsers
document.write(document.lastModified);
// Stop hiding the script -->
</script>
</p>

</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

68 CHAPTER 4 Understanding JavaScript

JavaScript’s document.write statement, which you’ll learn more about
later, sends output as part of the web document. In this case, it displays the
modification date of the document, as shown in Figure 4.1.

FIGURE 4.1
Using document.write to display
a last-modified date.

In this example, we placed the script within the body of the HTML docu-
ment. There are actually four different places where you might use scripts:

. In the body of the page—In this case, the script’s output is displayed
as part of the HTML document when the browser loads the page.

. In the header of the page between the <head> tags—Scripts in the
header can’t create output within the HTML document, but can be
referred to by other scripts. The header is often used for functions—
groups of JavaScript statements that can be used as a single unit. You
will learn more about functions in Chapter 14, “Getting Started with
JavaScript Programming.”

. Within an HTML tag, such as <body> or <form>—This is called an
event handler and enables the script to work with HTML elements.
When using JavaScript in event handlers, you don’t need to use the
<script> tag. You’ll learn more about event handlers in Chapter 14.

. In a separate file entirely—JavaScript supports the use of files with
the .js extension containing scripts; these can be included by specify-
ing a file in the <script> tag.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

How JavaScript Fits into a Web Page 69

Using Separate JavaScript Files
When you create more complicated scripts, you’ll quickly find your HTML
documents become large and confusing. To avoid this, you can use one or
more external JavaScript files. These are files with the .js extension that
contain JavaScript statements.

External scripts are supported by all modern browsers. To use an external
script, you specify its filename in the <script> tag:

<script type=”text/javascript” src=”filename.js”></script>

Because you’ll be placing the JavaScript statements in a separate file, you
don’t need anything between the opening and closing <script> tags—in
fact, anything between them will be ignored by the browser.

You can create the .js file using a text editor. It should contain one or more
JavaScript commands and only JavaScript—don’t include <script> tags,
other HTML tags, or HTML comments. Save the .js file in the same directo-
ry as the HTML documents that refer to it.

Understanding JavaScript Events
Many of the useful things you can do with JavaScript involve interacting
with the user and that means responding to events—for example, a link or
a button being clicked. You can define event handlers within HTML tags to
tell the browser how to respond to an event. For example, Listing 4.2
defines a button that displays a message when clicked.

LISTING 4.2 A Simple Event Handler
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Event Test</title>

</head>

<body>
<h1>Event Test</h1>
<button type=”button”

onclick=”alert(‘You clicked the button.’)”>
Click Me!</button>

</body>
</html>

TIP

External JavaScript files have a
distinct advantage: You can link
to the same .js file from two or
more HTML documents.
Because the browser stores
this file in its cache, this can
reduce the time it takes for
your web pages to display.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

70 CHAPTER 4 Understanding JavaScript

In various places throughout this book, you’ll learn more about JavaScript’s
event model and how to create simple and complex event handlers.

Exploring JavaScript’s Capabilities
If you’ve spent any time browsing the Web, you’ve undoubtedly seen lots
of examples of JavaScript in action. Here are some brief descriptions of
typical applications for JavaScript, all of which you’ll explore further, later
in this book.

Improving Navigation
Some of the most common uses of JavaScript are in navigation systems for
websites. You can use JavaScript to create a navigation tool—for example, a
drop-down menu to select the next page to read or a submenu that pops
up when you hover over a navigation link.

When it’s done right, this kind of JavaScript interactivity can make a site
easier to use, while remaining usable for browsers that don’t support
JavaScript.

Validating Forms
Form validation is another common use of JavaScript. A simple script can
read values the user types into a form and can make sure they’re in the
right format, such as with ZIP Codes or phone numbers. This allows users
to notice common errors and fix them without waiting for a response from
the web server. You’ll learn how to work with form data in Chapter 26,
“Working with Web-Based Forms.”

Special Effects
One of the earliest and most annoying uses of JavaScript was to create
attention-getting special effects—for example, scrolling a message in the
browser’s status line or flashing the background color of a page.

These techniques have fortunately fallen out of style, but thanks to the
W3C DOM and the latest browsers, some more impressive effects are pos-
sible with JavaScript—for example, creating objects that can be dragged
and dropped on a page or creating fading transitions between images in a
slideshow.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Beginning the Script 71

Remote Scripting (AJAX)
For a long time, the biggest limitation of JavaScript was that there was no
way for it to communicate with a web server. For example, you could use
it to verify that a phone number had the right number of digits, but not to
look up the user’s location in a database based on the number.

Now that some of JavaScript’s advanced features are supported by most
browsers, this is no longer the case. Your scripts can get data from a server
without loading a page or send data back to be saved. These features are
collectively known as AJAX (Asynchronous JavaScript And XML), or
remote scripting. You’ll learn how to develop AJAX scripts in Chapter 24,
“AJAX: Remote Scripting.”

You’ve seen AJAX in action if you’ve used Google’s Gmail mail application
or recent versions of Yahoo! Mail or Microsoft Hotmail. All of these use
remote scripting to present you with a responsive user interface that works
with a server in the background.

Displaying Time with JavaScript
One common and easy use for JavaScript is to display dates and times.
Because JavaScript runs on the browser, the times it displays will be in the
user’s current time zone. However, you can also use JavaScript to calculate
“universal” (UTC) time.

As a basic introduction to JavaScript, you will now create a simple script
that displays the current time and the UTC time within a web page, start-
ing with the next section.

Beginning the Script
Your script, like most JavaScript programs, begins with the HTML
<script> tag. As you learned earlier in this chapter, you use the <script>
and </script> tags to enclose a script within the HTML document.

To begin creating the script, open your favorite text editor and type the
beginning and ending <script> tags as shown.

<script type=”text/javascript”></script>

NOTE
UTC stands for Universal Time
Coordinated, and is the atomic
time standard based on the old
GMT (Greenwich Mean Time)
standard. This is the time at
the Prime Meridian, which runs
through Greenwich, London,
England.

CAUTION

Remember to include only valid
JavaScript statements between
the starting and ending
<script> tags. If the browser
finds anything but valid
JavaScript statements within the
<script> tags, it will display a
JavaScript error message.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

72 CHAPTER 4 Understanding JavaScript

Adding JavaScript Statements
Your script now needs to determine the local and UTC times, and then dis-
play them to the browser. Fortunately, all the hard parts, such as convert-
ing between date formats, are built in to the JavaScript interpreter.

Storing Data in Variables
To begin the script, you will use a variable to store the current date. You
will learn more about variables in Chapter 16, “Using JavaScript Variables,
Strings, and Arrays.” A variable is a container that can hold a value—a
number, some text, or in this case, a date.

To start writing the script, add the following line after the first <script>
tag. Be sure to use the same combination of capital and lowercase letters in
your version because JavaScript commands and variable names are case
sensitive.

now = new Date();

This statement creates a variable called now and stores the current date and
time in it. This statement and the others you will use in this script use
JavaScript’s built-in Date object, which enables you to conveniently handle
dates and times. You’ll learn more about working with dates in Chapter 17,
“Using JavaScript Functions and Objects.”

Calculating the Results
Internally, JavaScript stores dates as the number of milliseconds since
January 1, 1970. Fortunately, JavaScript includes a number of functions to
convert dates and times in various ways, so you don’t have to figure out
how to convert milliseconds to day, date, and time.

To continue your script, add the following two statements before the final
</script> tag:

localtime = now.toString();
utctime = now.toGMTString();

These statements create two new variables: localtime, containing the cur-
rent time and date in a nice readable format, and utctime, containing the
UTC equivalent.

NOTE

Notice the semicolon at the end
of the previous statement. This
tells the browser that it has
reached the end of a state-
ment. Semicolons are optional,
but using them helps you avoid
some common errors. We’ll use
them throughout this book for
clarity.

NOTE

The localtime and utctime
variables store a piece of text,
such as January 1, 2001
12:00 PM. In programming parl-
ance, a piece of text is called a
string.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Adding the Script to a Web Page 73

Creating Output
You now have two variables—localtime and utctime—which contain the
results we want from our script. Of course, these variables don’t do us
much good unless we can see them. JavaScript includes a number of ways
to display information, and one of the simplest is the document.write
statement.

The document.write statement displays a text string, a number, or any-
thing else you throw at it. Because your JavaScript program will be used
within a web page, the output will be displayed as part of the page. To dis-
play the result, add these statements before the final </script> tag:

document.write(“Local time: “ + localtime + “
”);
document.write(“UTC time: “ + utctime);

These statements tell the browser to add some text to the web page con-
taining your script. The output will include some brief strings introducing
the results and the contents of the localtime and utctime variables.

Notice the HTML tags, such as , within the quotation marks—
because JavaScript’s output appears within a web page, it needs to be for-
matted using HTML. The
 tag in the first line ensures that the two
times will be displayed on separate lines.

Adding the Script to a Web Page
You should now have a complete script that calculates a result and dis-
plays it. Your listing should match Listing 4.3.

LISTING 4.3 The Complete Date and Time Script
<script type=”text/javascript”>
now = new Date();
localtime = now.toString();
utctime = now.toGMTString();
document.write(“Local time: “ + localtime + “
”);
document.write(“UTC time: “ + utctime);
</script>

To use your script, you’ll need to add it to an HTML document. If you use
the general template you’ve seen in the chapters so far, you should end up
with something like Listing 4.4.

NOTE

Notice the plus signs (+) used
between the text and variables
in Listing 4.3. In this case, it
tells the browser to combine
the values into one string of
text. If you use the plus sign
between two numbers, they are
added together.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

74 CHAPTER 4 Understanding JavaScript

LISTING 4.4 The Date and Time Script in an HTML Document
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Displaying Times and Dates</title>

</head>

<body>
<h1>Current Date and Time</h1>
<script type=”text/javascript”>
now = new Date();
localtime = now.toString();
utctime = now.toGMTString();
document.write(“Local time: “

+ localtime + “
”);
document.write(“UTC time: “ + utctime);
</script>

</body>
</html>

Now that you have a complete HTML document, save it with the .htm or
.html extension.

Testing the Script
To test your script, you simply need to load the HTML document you cre-
ated in a web browser. If you typed the script correctly, your browser
should display the result of the script, as shown in Figure 4.2. (Of course,
your result won’t be the same as mine, but it should be the same as the set-
ting of your computer’s clock.)

A note about Internet Explorer 6.0 and above: Depending on your security
settings, the script might not execute, and a yellow highlighted bar on the
top of the browser might display a security warning. In this case, click the
yellow bar and select Allow Blocked Content to allow your script to run.
(This happens because the default security settings allow JavaScript in
online documents, but not in local files.)

Modifying the Script
Although the current script does indeed display the current date and time,
its display isn’t nearly as attractive as the clock on your wall or desk. To
remedy that, you can use some additional JavaScript features and a bit of
HTML to display a large clock.

NOTE

Notepad and other Windows
text editors might try to be help-
ful and add the .txt extension to
your script. Be sure your saved
file has the correct extension.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Testing the Script 75

To display a large clock, we need the hours, minutes, and seconds in separate
variables. Once again, JavaScript has built-in functions to do most of the
work:

hours = now.getHours();
mins = now.getMinutes();
secs = now.getSeconds();

These statements load the hours, mins, and secs variables with the compo-
nents of the time using JavaScript’s built-in date functions.

After the hours, minutes, and seconds are in separate variables, you can
create document.write statements to display them:

document.write(“<h1>”);
document.write(hours + “:” + mins + “:” + secs);
document.write(“</h1>”);

The first statement displays an HTML <h1> header tag to display the clock
in a large typeface. The second statement displays the hours, mins, and secs
variables, separated by colons, and the third adds the closing </h1> tag.

You can add the preceding statements to the original date and time script
to add the large clock display. Listing 4.5 shows the complete modified
version of the script.

FIGURE 4.2
Firefox displays the results of the
Date and Time script.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

76 CHAPTER 4 Understanding JavaScript

LISTING 4.5 The Date and Time Script with Large Clock Display
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Displaying Times and Dates</title>

</head>

<body>
<h1>Current Date and Time</h1>
<script type=”text/javascript”>
now = new Date();
localtime = now.toString();
utctime = now.toGMTString();
document.write(“Local time: “

+ localtime + “
”);
document.write(“UTC time: “ + utctime);
hours = now.getHours();
mins = now.getMinutes();
secs = now.getSeconds();
document.write(“<h1>”);
document.write(hours + “:” + mins + “:” + secs);
document.write(“</h1>”);
</script>

</body>
</html>

Now that you have modified the script, save the HTML file and open the
modified file in your browser. If you left the browser running, you can
simply use the Reload button to load the new version of the script. Try it
and verify that the same time is displayed in both the upper portion of the
window and the new large clock. Figure 4.3 shows the results.

Dealing with JavaScript Errors
As you develop more complex JavaScript applications, you’re going to run
into errors from time to time. JavaScript errors are usually caused by
mistyped JavaScript statements.

To see an example of a JavaScript error message, modify the statement you
added in the previous section. We’ll use a common error: omitting one of
the parentheses. Change the last document.write statement in Listing 4.5
to read:

document.write(“</h1>”;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Testing the Script 77

Save your HTML document again and load the document into the browser.
Depending on the browser version you’re using, one of two things will
happen: Either an error message will be displayed, or the script will simply
fail to execute.

If an error message is displayed, you’re halfway to fixing the problem by
adding the missing parenthesis. If no error was displayed, you should con-
figure your browser to display error messages so that you can diagnose
future problems:

. In Firefox, you can also select Tools, JavaScript Console from the
menu. The console is shown in Figure 4.4, displaying the error mes-
sage you created in this example.

. In Chrome, select Tools, JavaScript Console from the Customizations
(Options) menu. A console will display in the bottom of the browser
window.

. In Internet Explorer, select Tools, Internet Options. On the Advanced
page, uncheck the Disable Script Debugging box and check the
Display a Notification About Every Script Error box. (If this is dis-
abled, a yellow icon in the status bar will still notify you of errors.)

The error we get in this case is missing) after argument list (Firefox) or
Expected ‘)’ (Internet Explorer), which turns out to be exactly the problem.
Be warned, however, that error messages aren’t always this enlightening.

FIGURE 4.3
Firefox displays the modified Date
and Time script.

NOTE

The time formatting produced
by this script isn’t perfect;
hours after noon are in 24-hour
time, and there are no leading
zeroes, so 12:04 is displayed
as 12:4. See Chapter 17 for
solutions to these issues.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

78 CHAPTER 4 Understanding JavaScript

FIGURE 4.4
Firefox’s JavaScript Console
displays an error message.

Although Internet Explorer displays error dialog boxes for each error,
Firefox’s JavaScript Console displays a single list of errors and enables you
to test commands. For this reason, you might find it useful to install
Firefox for debugging and testing JavaScript, even if Internet Explorer is
your primary browser.

Summary
During this chapter, you’ve learned what web scripting is and what
JavaScript is. You’ve also learned how to insert a script into an HTML doc-
ument or refer to an external JavaScript file, what sorts of things JavaScript
can do, and how JavaScript differs from other web languages. You also
wrote a simple JavaScript program and tested it using a web browser. You
discovered how to modify and test scripts and what happens when a
JavaScript program runs into an error.

In the process of writing this script, you have used some of JavaScript’s
basic features: variables, the document.write statement, and functions for
working with dates and times.

Now that you’ve learned a bit of JavaScript syntax, you’re ready to contin-
ue on to learn all manner and sorts of things about web development
before settling in to write interactive websites using client-side scripting.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Workshop 79

Q&A
Q. Do I need to test my JavaScript on more than one browser?

A. In an ideal world, any script you write that follows the standards for
JavaScript will work in all browsers, and 93% of the time (give or take)
that’s true in the real world. But browsers do have their quirks, and you
should test your scripts on Internet Explorer and Firefox at a minimum.

Q. If I plan to learn PHP or some other server-side programming lan-
guage anyway, will I have any use for JavaScript?

A. Certainly. JavaScript is the ideal language for many parts of a web-
based application, such as form validation. Although PHP and other
server-side languages have their uses, they can’t interact directly with
the user on the client-side.

Q. When I try to run my script, the browser displays the actual script in
the browser window instead of executing it. What did I do wrong?

A. This is most likely caused by one of three errors. First, you might be
missing the beginning or ending <script> tags. Check them, and verify
that the first reads <script type=”text/javascript”>. Second, your
file might have been saved with a .txt extension, causing the browser to
treat it as a text file. Rename it to .htm or .html to fix the problem.
Third, make sure your browser supports JavaScript and that it is not
disabled in the Preferences dialog.

Q. Why are the and
 tags allowed in the statements to
print the time? I thought HTML tags weren’t allowed within the
<script> tags.

A. Because this particular tag is inside quotation marks, it’s considered a
valid part of the script. The script’s output, including any HTML tags, is
interpreted and displayed by the browser. You can use other HTML tags
within quotation marks to add formatting, such as the <h1> tags we
added for the large clock display.

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

80 CHAPTER 4 Understanding JavaScript

Quiz
1. When a user views a page containing a JavaScript program, which

machine actually executes the script?

a. The user’s machine running a web browser

b. The web server

c. A central machine deep within Netscape’s corporate offices

2. What software do you use to create and edit JavaScript programs?

a. A browser

b. A text editor

c. A pencil and a piece of paper

3. What are variables used for in JavaScript programs?

a. Storing numbers, dates, or other values

b. Varying randomly

c. Causing high school algebra flashbacks

4. What should appear at the very end of a JavaScript script embedded in
an HTML file?

a. The <script type=”text/javascript”> tag

b. The </script> tag

c. The END statement

Answers
1. a. JavaScript programs execute on the web browser. (There is actually a

server-side version of JavaScript, but that’s another story.)

2. b. Any text editor can be used to create scripts. You can also use a
word processor if you’re careful to save the document as a text file with
the .html or .htm extension.

3. a. Variables are used to store numbers, dates, or other values.

4. b. Your script should end with the </script> tag.

Exercises
. Add a millisecond field to the large clock. You can use the

getMilliseconds function, which works just like getSeconds but returns
milliseconds.

. Modify the script to display the time, including milliseconds, twice.
Notice whether any time passes between the two time displays when
you load the page.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

In the early days of the Web, text was displayed in only one font and in
one size. However, a combination of HTML and CSS now makes it possi-
ble to control the appearance of text (font type, size, or color) and how it is
aligned and displayed on a web page. In this chapter, you’ll learn how to
change the visual display of the font—its font family, size, and weight—
and how to incorporate boldface, italics, superscripts, subscripts, and
strikethrough text into your pages. You will also learn how to change type-
faces and font sizes. Then, after becoming conversant in these textual
aspects, you’ll learn the basics of text alignment and some advanced text
tips and tricks, such as the use of lists. Because lists are so common, HTML
provides tags that automatically indent text and add numbers, bullets, or
other symbols in front of each listed item. You’ll learn how to format dif-
ferent types of lists, which are part of the many ways to display content in
your website.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How to use boldface, italics,
and special text formatting

. How to tweak the font

. How to use special
characters

. How to align text on a
page

. How to use the three types
of HTML lists

. How to place lists within
lists

CHAPTER 5
Working with Fonts, Text Blocks,

and Lists

NOTE

When viewing other designers’
web content, you might notice
methods of marking up text that
are different than those taught
in this book. The old way of for-
matting text includes the use of
the tag pair to indicate
when a word should be bolded,
the <i></i> tag pair to indicate
when a word should be in italics,
and the use of a
tag pair to specify font family,
size, and other attributes.
However, there is no reason to
learn it because it is being
phased out of HTML, and CSS is
considerably more powerful.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

82 CHAPTER 5 Working with Fonts, Text Blocks, and Lists

Boldface, Italics, and Special Text
Formatting
Way back in the age of the typewriter, we were content with a plain-text
display and with using an occasional underline to show emphasis. Today,
boldface and italic text have become de rigueur in all paper communica-
tion. Naturally, you can add bold and italic text to your web content as well.
There are several tags and style rules that make text formatting possible.

The old school approach to adding bold and italic formatting to text
involves the and <i></i> tag pairs. For boldface text, put the
tag at the beginning of the text and at the end. Similarly, you can
make any text italic by enclosing it between <i> and </i> tags. Although
this approach still works fine in browsers and is supported by XHTML, it
isn’t as flexible or powerful as the CSS style rules for text formatting.

TRY IT YOURSELF▼

Preparing Sample
Text

You can make the most of learning how to style text throughout this chapter if
you have some sample text that you can use to display different fonts and
colors and that can also be indented, centered, or otherwise manipulated. It
doesn’t really matter what type of text you use because there are so many
different stylistic possibilities to try that they would never appear all on the
same web page anyway (unless you wanted to drive your visitors batty). Take
this opportunity just to get a feel for how text-level changes can affect the
appearance of your content.

. If the text you’ll be using is from a word processing or database pro-
gram, be sure to save it to a new file in plain-text or ASCII format. You
can then add the appropriate HTML tags and style attributes to format
it as you go through this chapter.

. Any text will do, but try to find (or type) some text you want to put onto
a web page. The text from a company brochure or from your résumé
might be a good choice.

. Any type of outline, bullet points from a presentation, numbered steps,
glossary, or list of textual information from a database will serve as
good material to work with.

. Before you use the code introduced in this chapter to format the body
text, add the set of skeleton HTML tags you’ve used in previous chap-
ters (the <html>, <head>, <title>, and <body> tags).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Boldface, Italics, and Special Text Formatting 83

Although you’ll learn much more about CSS style rules in Part III,
“Advanced Web Page Design with CSS,” it’s worth a little foreshadowing
just so that you understand the text formatting options. The font-weight
style rule enables you to set the weight, or boldness, of a font using a style
rule. Standard settings for font-weight include normal, bold, bolder, and
lighter (with normal being the default). Italic text is controlled via the
font-style rule, which can be set to normal, italic, or oblique. Style
rules can be specified together if you want to apply more than one, as the
following example demonstrates:

<p style=”font-weight:bold; font-style:italic”>This paragraph is bold and
italic!</p>

In this example, both style rules are specified in the style attribute of the
<p> tag. The key to using multiple style rules is that they must be separat-
ed by a semicolon (;).

You aren’t limited to using font styles in paragraphs, however. The follow-
ing code shows how to italicize text in a bulleted list:

<li style=”font-style:italic”>Important Stuff
<li style=”font-style:italic”>Critical Information
<li style=”font-style:italic”>Highly Sensitive Material
Nothing All That Useful

You can also use the font-weight style rule within headings, but a heavier
font usually doesn’t have an effect on headings because they are already
bold by default.

Although using CSS enables you to apply richer formatting, there are a
few other HTML tags that are good for adding special formatting to text
when you don’t necessarily need to be as specific as CSS allows you to be.
Following are some of these tags. Listing 5.1 and Figure 5.1 demonstrate
each tag in action.

. <small></small>—Small text

. <big></big>—Big text; not present in HTML5 because text size is
better controlled by CSS

. —Superscript text

. —Subscript text

. or <i></i>—Emphasized (italic) text

. or —Strong (boldface) text

NOTE
An alternative to style rules
when it comes to bold and italic
text involves the
 and tag
pairs. The tag does
the same thing as the tag
in most browsers, whereas the
 tag acts just like the tag
<i> by formatting text as italics.

The and tags
are considered by some to be
an improvement over and
<i> because they imply only
that the text should receive
special emphasis, rather than
dictating exactly how that effect
should be achieved. In other
words, a browser doesn’t nec-
essarily have to interpret
 as meaning bold or
 as meaning italic. This
makes and
more fitting in XHTML because
they add meaning to text, along
with affecting how the text
should be displayed. All four
tags remain part of HTML5,
although their use becomes
slightly more nuanced.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

84 CHAPTER 5 Working with Fonts, Text Blocks, and Lists

. <tt></tt>—Monospaced text (typewriter font) not present in
HTML5 because font appearance is better controlled by CSS

. <pre></pre>—Monospaced text, preserving spaces and line breaks

CAUTION

There used to be a <u> tag for
creating underlined text, but
there are a couple of reasons
not to use it now. First off,
users expect underlined text to
be a link, so they might get con-
fused if you underline text that
isn’t a link. Second, the <u> tag
is deprecated, which means that
it has been phased out of the
HTML/XHTML language, as has
the <strike> tag. Both tags are
still supported in web browsers
and likely will be for quite a
while, but using CSS is the pre-
ferred approach to creating
underlined and strikethrough
text. In HTML5, deleted text can
be surrounded by the <strike>
<strike> tag pair, which will
render as text with a
strikethrough.

FIGURE 5.1
Here’s what the character formatting from Listing 5.1 looks like.

LISTING 5.1 Special Formatting Tags
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>The Miracle Product</title>

</head>

<body>
<p>
New ^{Super}Strength H₂O
plus will knock out any stain, <big>big</big> or
<small>small</small>.
 Look for new
^{Super}Strength H₂O <i>plus</i>
in a stream near you.

</p>
<p>
<tt>NUTRITION INFORMATION</tt> (void where prohibited)

</p>
<pre>

Calories Grams USRDA
/Serving of Fat Moisture

Regular 3 4 100%
Unleaded 3 2 100%

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Tweaking the Font 85

Organic 2 3 99%
Sugar Free 0 1 110%

</pre>
</body>

</html>

The <tt> tag usually changes the typeface to Courier New, a monospaced
font. (Monospaced means that all the letters and spaces are the same width.)
However, web browsers let users change the monospaced <tt> font to the
typeface of their choice (look on the Options menu of your browser). The
monospaced font might not even be monospaced for some users, although
the vast majority of users stick with the standard fonts that their browsers
show by default.

The <pre> tag causes text to appear in the monospaced font, but it also
does something else unique and useful. As you learned in Chapter 2,
“Understanding HTML and XHTML Connections,” multiple spaces and
line breaks are normally ignored in HTML files, but <pre> causes exact
spacing and line breaks to be preserved. For example, without <pre>, the
text at the end of Figure 5.1 would look like the following:

calories grams usrda /serving of fat moisture regular
3 4 100% unleaded 3 2 100% organic 2 3 99% sugar free 0 1 110%

Even if you added
 tags at the end of every line, the columns
wouldn’t line up properly. However, when you put <pre> at the beginning
and </pre> at the end, the columns line up properly because the exact
spaces are kept—no
 tags are needed. The <pre> tag gives you a
quick and easy way to preserve the alignment of any monospaced text files
you might want to transfer to a web page with minimum effort.

CSS provides you with more robust methods for lining up text (and doing
anything with text, actually), and you’ll learn more about them throughout
Part III.

Tweaking the Font
The <big>, <small>, and <tt> tags give you some rudimentary control
over the size and appearance of the text on your pages. However, there
might be times when you’d just like a bit more control over the size and
appearance of your text. Before I get into the appropriate way to tinker
with the font in XHTML code, let’s briefly look at how things were done

LISTING 5.1 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

86 CHAPTER 5 Working with Fonts, Text Blocks, and Lists

prior to CSS because you might still find examples of this method when
you look at the source code for other websites. Remember, just because
these older methods are in use doesn’t mean you should follow suit.

Before style sheets entered the picture, the now phased-out tag was
used to control the fonts in web page text. For example, the following
HTML will change the size and color of some text on a page:

this text will be big and purple.

As you can see, the size and color attributes of the tag made it pos-
sible to alter the font of the text without too much effort. Although this
approach worked fine, it was replaced with a far superior approach to font
formatting, thanks to CSS style rules. Following are a few of the main style
rules used to control fonts:

. font-family—Sets the family (typeface) of the font

. font-size—Sets the size of the font

. color—Sets the color of the font

The font-family style rule enables you to set the typeface used to display
text. You can and usually should specify more than one value for this style
(separated by commas) so that if the first font isn’t available on a user’s
system, the browser can try an alternative. You’ve already seen this in pre-
vious chapters.

Providing alternative font families is important because each user poten-
tially has a different set of fonts installed, at least beyond a core set of com-
mon basic fonts (Arial, Times New Roman, and so forth). By providing a
list of alternative fonts, you have a better chance of your pages gracefully
falling back on a known font when your ideal font isn’t found. Following
is an example of the font-family style used to set the typeface for a para-
graph of text:

<p style=”font-family:arial, sans-serif, ‘times roman’”>

There are several interesting things about this example. First, arial is speci-
fied as the primary font. Capitalization does not affect the font family, so
arial is no different from Arial or ARIAL. Another interesting thing about
this code is how single quotes are used around the Times Roman font name
because it has a space in it. However, because ’times roman’ appears after
the generic specification of sans-serif, it is unlikely that ‘times roman’
would be used. Because sans-serif is in the second position, it says to the
browser “if Arial is not on this machine, use the default sans-serif font.”

NOTE

You’ll learn more about control-
ling the color of the text on your
pages in Chapter 8, “Working
with Colors, Images, and
Multimedia.” That chapter also
shows you how to create your
own custom colors and how to
control the color of text links.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Tweaking the Font 87

The font-size and color style rules are also commonly used to control
the size and color of fonts. The font-size style can be set to a predefined
size (such as small, medium, or large) or you can set it to a specific point
size (such as 12pt or 14pt). The color style can be set to a predefined color
(such as white, black, blue, red, or green), or you can set it to a specific
hexadecimal color (such as #FFB499). Following is the previous paragraph
example with the font size and color specified:

<p style=”font-family:arial, sans-serif, ‘times roman’; font-size:14pt;
color:green”>

The sample web content in Listing 5.2 and shown in Figure 5.2 uses some
font style rules to create the beginning of a basic online résumé

LISTING 5.2 Using Font Style Rules to Create a Basic Résumé
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Résumé for Jane Doe</title>

<style type=”text/css”>
body {
font-family: Verdana, sans-serif;
font-size: 12px;

}

h1 {
font-family:Georgia, serif;
font-size:28px;
text-align:center;

}

p.contactinfo {
font-size:14px;
text-align:center;

}

p.categorylabel {
font-size:12px;
font-weight:bold;
text-transform:uppercase;

}

div.indented {
margin-left: 25px;

}
</style>

NOTE

You’ll learn about hexadecimal
colors in Chapter 8. For now,
just understand that the color
style rule enables you to speci-
fy exact colors beyond just
using green, blue, orange, and
so forth.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

88 CHAPTER 5 Working with Fonts, Text Blocks, and Lists

</head>
<body>

<h1>Jane Doe</h1>
<p class=”contactinfo”>1234 Main Street, Sometown,
CA 93829

tel: 555-555-1212, e-mail: jane@doe.com</p>

<p class=”categorylabel”>Summary of Qualifications</p>

Highly skilled and dedicated professional offering a
solid background in whatever it is you need.
Provide comprehensive direction for whatever it is
that will get me a job.
Computer proficient in a wide range of industry-related
computer programs and equipment. Any industry.

<p class=”categorylabel”>Professional Experience</p>
<div class=”indented”>

<p>Operations Manager,
Super Awesome Company, Some City, CA [Sept 2002 –
present]</p>

Direct all departmental operations
Coordinate work with internal and external
resources
Generally in charge of everything

<p>Project Manager,
Less Awesome Company, Some City, CA [May 2000 - Sept
2002]</p>

Direct all departmental operations
Coordinate work with internal and external
resources
Generally in charge of everything

</div>

<p class=”categorylabel”>Education</p>

MBA, MyState University, May 2002
B.A, Business Administration, MyState University,
May 2000

<p class=”categorylabel”>References</p>

Available upon request.

</body>
</html>

LISTING 5.2 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Working with Special Characters 89

Using CSS, which organizes sets of styles into classes—as you learned in
Chapter 3, “Understanding Cascading Style Sheets”—you can see how text
formatting is applied to different areas of this content. If you look closely
at the definition of the div.indented class, you will see the use of the
margin-left style. This style, which you will learn more about in Part III,
applies a certain amount of space (25 pixels, in this example) to the left of
the element. That space accounts for the indentation shown in Figure 5.2.

FIGURE 5.2
Here’s what the code used in
Listing 5.2 looks like.

Working with Special Characters
Most fonts now include special characters for European languages, such as
the accented é in Café. There are also a few mathematical symbols and spe-
cial punctuation marks, such as the circular bullet •.

You can insert these special characters at any point in an HTML document
using the appropriate codes, as shown in Table 5.1. You’ll find an even
more extensive list of codes for multiple character sets at http://www.
webstandards.org/learn/reference/named_entities.html.

For example, the word café could be written using either of the following
methods:

café
café

www.it-ebooks.info

http://www.webstandards.org/learn/reference/named_entities.html
http://www.webstandards.org/learn/reference/named_entities.html
http://www.it-ebooks.info/

ptg999

90 CHAPTER 5 Working with Fonts, Text Blocks, and Lists

TABLE 5.1 Commonly Used English Language Special Characters

Character Numeric Code Code Name Description

“ " " Quotation mark

& & & Ampersand

< < < Less than

> > > Greater than

¢ ¢ ¢ Cent sign

£ £ £ Pound sterling

| ¦ ¦ or &brkbar; Broken vertical bar

§ § § Section sign

© © © Copyright

® ® ® Registered trademark

° ° ° Degree sign

+ – ± ± Plus or minus
2 ² ² Superscript two
3 ³ ³ Superscript three

· · · Middle dot
1 ¹ ¹ Superscript one
1⁄4 ¼ ¼ Fraction one-fourth
1⁄2 ½ ½ Fraction one-half
3⁄4 ¾ ¾ Fraction three-fourths

Æ Æ Æ Capital AE ligature

æ æ æ Small ae ligature

É É É Accented capital E

é é é Accented small e

× × × Multiplication sign

÷ ÷ ÷ Division sign

Although you can specify character entities by number, each symbol also
has a mnemonic name that is often easier to remember.

HTML/XHTML uses a special code known as a character entity to represent
special characters such as © and ®. Character entities are always specified
starting with & and ending with ;. Table 5.1 lists the most commonly used
character entities, although HTML supports many more.

TIP
Looking for the copyright © and
registered trademark ®sym-
bols? Those codes are ©
and ®, respectively.

To create an unregistered trade-
mark ™ symbol, use ™.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Working with Special Characters 91

Table 5.1 includes codes for the angle brackets, quotation, and ampersand.
You must use those codes if you want these symbols to appear on your
pages; otherwise, the web browser interprets them as HTML commands.

In Listing 5.3 and Figure 5.3, several of the symbols from Table 5.1 are
shown in use.

LISTING 5.3 Special Character Codes
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Punctuation Lines</title>

</head>

<body>
<p>
Q: What should you do when a British banker picks a fight
with you?

A: £ some ¢¢ into him.
<hr />
Q: What do you call it when a judge takes part of a law
off the books?

A: § violence.
<hr />
Q: What did the football coach get from the locker room
vending machine in the middle of the game?

A: A ¼ back at ½ time.
<hr />
Q: How hot did it get when the police detective interrogated
the mathematician?

A: x³°
<hr />
Q: What does a punctilious plagiarist do?

A: ©
<hr />

</p>
</body>

</html>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

92 CHAPTER 5 Working with Fonts, Text Blocks, and Lists

Aligning Text on a Page
Now that you’ve seen how to change the appearance of your content at the
text level, it’s time to take it a step further and modify the blocks of text that
appear on the page. It’s easy to take for granted the fact that most paragraphs
are automatically aligned to the left when you’re reading information on the
Web. However, there certainly are situations in which you might choose to
align content to the right or even the center of a page. HTML gives you the
option to align a single HTML block-level element, such as text contained
within a <p></p> or <div></div> tag pair. Before we get into the details of
aligning block elements, however, let’s briefly note how attributes work.

Using Attributes
Attributes are used to provide additional information related to an HTML
tag. Attributes are special code words used inside an HTML tag to control
exactly what the tag does. They are very important in even the simplest bit
of web content, so it’s important that you are comfortable using them.

Attributes invoke the use of styles, classes, or IDs that are applied to par-
ticular tags. If you define a particular class or ID in a style sheet—as you
learned in Chapter 3, “Understanding Cascading Style Sheets” then you
can invoke that class or ID using class=”someclass” or id=”someid” with-
in the tag itself. When the browser renders the content for display, it will
look to the style sheet to determine exactly how the content will appear

FIGURE 5.3
This is how the HTML page in
Listing 5.3 looks in most web
browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Aligning Text on a Page 93

according to the associated style definitions. Similarly, you can use the
style attribute to include style information for a particular element with-
out connecting the element to an actual style sheet. For example, when you
begin a paragraph with the <p> tag, you can specify whether the text in
that particular paragraph should be aligned to the left margin, the right
margin, or to the center of the page by setting the style attribute. If you
want to associate that particular paragraph with an existing class or ID,
you set the class or id attribute.

In the following example, each paragraph could be left-aligned:

<p style=”text-align: left;”>Text goes here.</p>
<p class=”leftAlignStyle”>Text goes here.</p>
<p id=”firstLeftAlign”>Text goes here.</p>

In the first paragraph, the style appears directly in the style attribute. In
the second paragraph, the paragraph will be left-aligned if the style sheet
entry for the leftAlignStyle class includes the text-align statement.
Similarly, the third paragraph will be left-aligned if the style sheet entry for
the firstLeftAlign class includes the text-align statement.

In the previous example, you might have noticed the use of lowercase for
tags, attributes, and styles. The exacting XHTML standard requires tags
and attributes to be lowercase; the XHTML standard also requires quota-
tion marks around attribute values.

For example, the following code will be rendered by most popular web
browsers:

<P STYLE=TEXT-ALIGN:CENTER>

However, this code does not conform to XHTML standards because the tag
is uppercase, the style attribute and its value (text-align:center) is
uppercase, and the value isn’t in quotation marks. If you want to stay com-
patible with the latest standards and software, you should always use the
following instead:

<p style=”text-align:center”>

Aligning Block-Level Elements
To align a block-level element such as <p> to the right margin without
creating a separate class or ID in a style sheet, simply place style=
”text-align:right” inside the <p> tag at the beginning of the paragraph.
Similarly, to center the element, use <p style=”text-align:center”>. To
align a paragraph to the left, use <p style=”text-align:left”>.

NOTE

Every attribute and style rule in
HTML has a default value that is
assumed when you don’t set the
attribute yourself. In the case of
the text-align style rule of the
<p> tag, the default value is
left, so using the bare-bones
<p> tag has the same
effect as using
<p style=”text-align:left”>.
Learning the default values for
common style rules is an impor-
tant part of becoming a good
web page developer.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

94 CHAPTER 5 Working with Fonts, Text Blocks, and Lists

The text-align part of the style attribute is referred to as a style rule,
which means that it is setting a particular style aspect of an HTML ele-
ment. There are many style rules you can use to carefully control the for-
matting of web content.

The text-align style rule is not reserved for just the <p> tag. In fact, you can
use the text-align style rule with any block-level element, which includes
<h1>, <h2>, the other heading tags, and the <div> tag, among others. The
<div> tag is especially handy because it can encompass other block-level ele-
ments and thus enable you to control the alignment of large portions of your
web content all at once. The div in the <div> tag is for division.

Listing 5.4 demonstrates the style attribute and text-align style rule
with both the <p> and the <div> tags. The results are shown in Figure 5.4.
You’ll learn many more advanced uses of the <div> tag in Part III.

LISTING 5.4 The text-align Style Rule Used with the style Attribute
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Bohemia</title>

</head>

<body>
<div style=”text-align:center”>
<h1>Bohemia</h1>
<h2>by Dorothy Parker</h2>

</div>
<p style=”text-align:left”>
Authors and actors and artists and such

Never know nothing, and never know much.

Sculptors and singers and those of their kidney

Tell their affairs from Seattle to Sydney.

</p>
<p style=”text-align:center”>
Playwrights and poets and such horses’ necks

Start off from anywhere, end up at sex.

Diarists, critics, and similar roe

Never say nothing, and never say no.

</p>
<p style=”text-align:right”>
People Who Do Things exceed my endurance;

God, for a man that solicits insurance!

</p>
</body>

</html>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

The Three Types of HTML Lists 95

The use of <div style=”text-align:center”> ensures that the content
area, including the two headings, are centered. However, the text align-
ment of the individual paragraphs within the <div> override the setting
and ensure that the text of the first paragraph is left-aligned, the second
paragraph is centered, and the third paragraph is right-aligned.

The Three Types of HTML Lists
For clarity, it’s often useful to present information on a web page as a list
of items. There are three basic types of HTML lists. All three are shown in
Figure 5.5, and Listing 5.5 reveals the HTML used to construct them.

. Ordered list—An indented list that has numbers or letters before
each list item. The ordered list begins with the tag and ends
with a closing tag. List items are enclosed in the
tag pair, and line breaks appear automatically at each opening
tag. The entire list is indented.

. Unordered list—An indented list that has a bullet or other symbol
before each list item. The unordered list begins with the tag and
closes with . Like the ordered list, its list items are enclosed in
the tag pair. A line break and symbol appear at each open-
ing tag, and the entire list is indented.

FIGURE 5.4
The results of using the text align-
ment in Listing 5.4.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

96 CHAPTER 5 Working with Fonts, Text Blocks, and Lists

. Definition list—A list of terms and their meanings. This type of list,
which has no special number, letter, or symbol before each item, begins
with <dl> and ends with </dl>. The <dt></dt> tag pair encloses each
term and the <dd></dd> tag pair encloses each definition. Line breaks
and indentations appear automatically.

LISTING 5.5 Unordered Lists, Ordered Lists, and Definition Lists
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>How to Be Proper</title>

</head>

<body>
<h1>How to Be Proper</h1>
<h2>Basic Etiquette for a Gentlemen Greeting a Lady Aquaintance</h2>

Wait for her acknowledging bow before tipping your hat.
Use the hand farthest from her to raise the hat.
Walk with her if she expresses a wish to converse; Never
make a lady stand talking in the street.
When walking, the lady must always have the wall.

<h2>Recourse for a Lady Toward Unpleasant Men Who Persist in Bowing</h2>

A simple stare of iciness should suffice in most instances.
A cold bow discourages familiarity without offering insult.
As a last resort: “Sir, I have not the honour of your
aquaintance.”

<h2>Proper Address of Royalty</h2>
<dl>
<dt>Your Majesty</dt>
<dd>To the king or queen.</dd>
<dt>Your Royal Highness</dt>
<dd>To the monarch’s spouse, children, and siblings.</dd>
<dt>Your Highness</dt>
<dd>To nephews, nieces, and cousins of the sovereign.</dd>

</dl>
</body>

</html>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Placing Lists Within Lists 97

Placing Lists Within Lists
Although definition lists are officially supposed to be used for defining
terms, many web page authors use them anywhere they’d like to see some
indentation. In practice, you can indent any text simply by putting <dl><dd>
at the beginning of it and </dd></dl> at the end and skipping over the
<dt></dt> tag pair. However, a better approach to indenting text is to use
the <blockquote></blockquote> tag pair, which indents content without the
presumption of a definition and allows for much more clear styling. With
one set of attributes, you can set the width, height, background color, border
type and color of your element area, and other visual effects.

Because of the level of control over the display of your items that you have
when using CSS, there is no need to use nested lists to achieve the visual
appearance of indentation. Reserve your use of nested lists for when the
content warrants it. In other words, use nested lists to show a hierarchy of
information, such as in Listing 5.6.

Ordered and unordered lists can be nested inside one another, down to as
many levels as you want. In Listing 5.6, a complex indented outline is con-
structed from several unordered lists. You’ll notice in Figure 5.6 that Firefox
automatically uses a different type of bullet for each of the first three levels of
indentation, making the list very easy to read. This is common in modern
browsers.

FIGURE 5.5
The three basic types of HTML
lists.

NOTE

Remember that different web
browsers can display web con-
tent quite differently. The HTML
standard doesn’t specify exactly
how web browsers should for-
mat lists, so users with older
web browsers might not see
exactly the same indentation
you see. You can use CSS to
gain precise control over list
items, which you will learn
about later in this chapter.

NOTE

Nesting refers to a tag that
appears entirely within another
tag. Nested tags are also
referred to as child tags of the
(parent) tag that contains them.
It is a common (but not
required) coding practice to
indent nested tags so that you
can easily see their relationship
to the parent tag.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

98 CHAPTER 5 Working with Fonts, Text Blocks, and Lists

LISTING 5.6 Using Lists to Build Outlines
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Vertebrates</title>

</head>

<body>
<h1>Vertebrates</h1>

Fish

Barramundi
Kissing Gourami
Mummichog

Amphibians

Anura

Goliath Frog
Poison Dart Frog
Purple Frog

Caudata

Hellbender
Mudpuppy

Reptiles

Nile Crocodile
King Cobra
Common Snapping Turtle

</body>

</html>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Placing Lists Within Lists 99

You can even change the bullet for any single point within an unordered
list by using the list-style-type style rule in the tag. For example,
the following codes displays a hollow circle in front of the words extra
and super and a solid square in front of the word special:

<ul style=”list-style-type:circle”>
extra
super
<li style=”list-style-type:square”>special

The list-style-type style rule also works with ordered lists, but instead
of choosing a type of bullet, you choose the type of numbers or letters to
place in front of each item. Listing 5.7 shows how to use Roman numerals
(list-style-type:upper-roman), capital letters (list-style-type:upper-
alpha), lowercase letters (list-style-type:lower-alpha), and ordinary
numbers in a multilevel list. Figure 5.7 shows the resulting outline, which
is nicely formatted.

FIGURE 5.6
In Firefox, multilevel unordered
lists are neatly indented and bul-
leted for improved readability.

As shown in Figure 5.6, a web browser will normally use a solid disc for the
first-level bullet, a hollow circle for the second-level bullet, and a solid square
for all deeper levels. However, you can explicitly choose which type of bullet
to use for any level by using <ul style=”list-style-type:disc”>,
<ul style=”list-style-type:circle”>, or
<ul style=”list-style-type:square”> instead of .

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

100 CHAPTER 5 Working with Fonts, Text Blocks, and Lists

Although Listing 5.7 uses the list-style-type style rule only with the
 tag, you can also use it for specific tags within a list (although
it’s hard to imagine a situation in which you would want to do this). You
can also explicitly specify ordinary numbering with list-style-
type:decimal, and you can make lowercase Roman numerals with
list-style-type:lower-roman.

LISTING 5.7 Using the list-style-type Style Rule with the style
Attribute in Multitiered Lists
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Advice from the Golf Guru</title>

</head>

<body>
<h1>How to Win at Golf</h1>
<ol style=”list-style-type:upper-roman”>

Training

Mental prep
<ol style=”list-style-type:upper-alpha”>
Watch golf on TV religiously
Get that computer game with Tiger whatsisname
Rent “personal victory” subliminal tapes

Equipment
<ol style=”list-style-type:upper-alpha”>
Make sure your putter has a pro autograph on it
Pick up a bargain bag of tees-n-balls at Costco

Diet
<ol style=”list-style-type:upper-alpha”>
Avoid junk food
<ol style=”list-style-type:lower-alpha”>
No hotdogs

Drink wine and mixed drinks only, no beer

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Placing Lists Within Lists 101

Pre-game

Dress
<ol style=”list-style-type:upper-alpha”>
Put on shorts, even if it’s freezing
Buy a new hat if you lost last time

Location and Scheduling
<ol style=”list-style-type:upper-alpha”>
Select a course where your spouse or boss

won’t find you
To save on fees, play where your buddy works

Opponent
<ol style=”list-style-type:upper-alpha”>
Look for: overconfidence, inexperience
Buy opponent as many pre-game drinks as possible

On the Course

Tee off first, then develop severe hayfever
Drive cart over opponent’s ball to degrade

aerodynamics
Say “fore” just before ball makes contact

with opponent
Always replace divots when putting
Water cooler holes are a good time to correct

any errors in ball
placement

</body>

</html>

LISTING 5.7 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

102 CHAPTER 5 Working with Fonts, Text Blocks, and Lists

Summary
In this chapter, you learned how to make text appear as boldface or italic
and how to code superscripts, subscripts, special symbols, and accented let-
ters. You saw how to make the text line up properly in preformatted pas-
sages of monospaced text and how to control the size, color, and typeface of
any section of text on a web page. You also learned that attributes are used
to specify options and special behavior of many HTML tags and how to use
the style attribute with CSS style rules to align text. You also discovered
how to create and combine three basic types of HTML lists: ordered lists,
unordered lists, and definition lists. Lists can be placed within other lists to
create outlines and other complex arrangements of text.

Table 5.2 summarizes the tags and attributes discussed in this chapter.
Don’t feel like you have to memorize all these tags, by the way!

TABLE 5.2 HTML Tags and Attributes Covered in Chapter 5

Tag/Attribute Function

... Emphasis (usually italic).

... Stronger emphasis (usually bold).

... Boldface text.

FIGURE 5.7
A well-formatted outline can
make almost any plan look more
plausible.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Summary 103

<i>...</i> Italic text.

<tt>...</tt> Typewriter (monospaced) font.

<pre>...</pre> Preformatted text (exact line endings and spacing will
be preserved—usually rendered in a monospaced font).

<big>...</big> Text is slightly larger than normal.

<small>...</small> Text is slightly smaller than normal.

_{...} Subscript.

^{...} Superscript.

<div>...</div> A region of text to be formatted.

<dl>...</dl> A definition list.

<dt>...</dt> A definition term, as part of a definition list.

<dd>...</dd> The corresponding definition to a definition term, as
part of a definition list.

... An ordered (numbered) list.

... An unordered (bulleted) list.

... A list item for use with or .

Attributes

style=”font- The typeface (family) of the font, which is the
family:typeface” name of a font, such as Arial. (Can also be used with

<p>, <h1>, <h2>, <h3>, and so on.)

style=”font- The size of the font, which can be set to small,
size:size” medium, or large, as well as x-small, x-large, and

so on. Can also be set to a specific point size (such
as 12 pt).

style=”color:color” Changes the color of the text.

style=”text- Align text to center, left, or right. (Can also be
➥align:alignment” used with <p>, <h1>, <h2>, <h3>, and so on.)

style=”list- The type of numerals used to label the list. Possible
➥style-type: values are decimal, lower-roman, upper-roman,
➥numtype” lower-alpha, upper-alpha, and none.

style=”list-style- The bullet dingbat used to mark list items. Possible
➥type:bullettype” values are disc, circle, square, and none.

style=”list-style- The type of bullet or number used to label this item.
➥type:type” Possible values are disc, circle, square, decimal,

lower-roman, upper-roman, lower-alpha, upper-
alpha, and none.

TABLE 5.2 Continued

Tag/Attribute Function

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

104 CHAPTER 5 Working with Fonts, Text Blocks, and Lists

Q&A
Q. How do I find out the exact name for a font I have on my computer?

A. On a Windows or Macintosh computer, open the Control Panel and click
the Fonts folder—the fonts on your system are listed. (Vista users
might have to switch to “Classic View” in your Control Panel.) When
specifying fonts in the font-family style rule, use the exact spelling of
font names. Font names are not case-sensitive, however.

Q. How do I put Kanji, Arabic, Chinese, and other non-European charac-
ters on my pages?

A. First of all, users who need to read these characters on your pages
must have the appropriate language fonts installed. They must also have
selected that language character set and its associated font for their
web browsers. You can use the Character Map program in Windows (or a
similar program in other operating systems) to get the numerical codes
for each character in any language font. To find Character Map, click
Start, All Programs, Accessories, and then System Tools. If the character
you want has a code of 214, use Ö to place it on a web page. If
you cannot find the Character Map program, use your operating system’s
built-in Help function to find the specific location.

The best way to include a short message in an Asian language (such
as We Speak Tamil-Call Us!) is to include it as a graphics image. That
way every user will see it, even if they use English as their primary lan-
guage for web browsing. But even to use a language font in a graphic,
you will likely have to download a specific language pack for your oper-
ating system. Again, check your system’s Help function for specific
instructions.

Q. I’ve seen web pages that use three-dimensional little balls or other
special graphics for bullets. How do they do that?

A. That trick is a little bit beyond what this chapter covers. You’ll learn how
to do it yourself in Chapter 8.

Q. How do I “full justify” text so that both the left and right margins are
flush?

A. You can use text-align:justify in your style declaration.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

105

Workshop
The workshop contains quiz questions and activities to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. How would you create a paragraph in which the first three words are

bold, using styles rather than the or tags?

2. How would you represent the chemical formula for water?

3. How do you display “© 2010, Webwonks Inc.” on a web page?

4. How would you center everything on an entire page?

5. What would you use to create a definition list to show that the word
glunch means “a look of disdain, anger, or displeasure” and that the
word glumpy means “sullen, morose, or sulky”?

Answers
1. You would use the following:

<p>First three words are
bold.</p>

2. You would use H₂O.

3. You would use either of the following:

© 2010, Webwonks Inc.
© 2010, Webwonks Inc.

4. If you thought about putting a <div style=”text-align:center”>
immediately after the <body> tag at the top of the page, and </div>
just before the </body> tag at the end of the page, then you’re correct.
However, the text-align style is also supported directly in the <body>
tag, which means you can forego the <div> tag and place the
style=”text-align:center” style directly in the <body> tag. Presto, the
entire page is centered!

5. You would use the following:

<dl>
<dt>glunch</dt><dd>a look of disdain, anger, or displeasure</dd>
<dt>glumpy</dt><dd>sullen, morose, or sulky</dd>
</dl>

Workshop

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

106 CHAPTER 5 Working with Fonts, Text Blocks, and Lists

Exercises
. Apply the font-level style attributes you learned about in this chapter to

various block-level elements such as <p>, <div>, , and items.
Try nesting your elements to get a feel for how styles do or do not cas-
cade through the content hierarchy.

. Use the text alignment style attributes to place blocks of text in various
places on your web page. Try nesting your paragraphs and divisions
(<p> and <div>) to get a feel for how styles do or do not cascade
through the content hierarchy.

. Try producing an ordered list outlining the information you’d like to put
on your web pages. This will give you practice formatting HTML lists and
also give you a head start on thinking about the issues covered in later
chapters of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

In this chapter, you learn how to build HTML tables you can use to control
the spacing, layout, and appearance of tabular data in your web content.
Although you can achieve similar results using CSS, there are definitely
times when a table is the best way to present information, and you’ll find
that tables are useful for arranging information into rows and columns. I
will also explain how designers have used tables for page layout in the
past and how that isn’t always the best idea. Before we begin, just remem-
ber a table is simply an orderly arrangement of content into vertical
columns and horizontal rows.

Creating a Simple Table
A table consists of rows of information with individual cells inside. To
make tables, you have to start with a <table> tag. Of course, you end your
tables with the </table> tag. If you want the table to have a border, use a
border attribute to specify the width of the border in pixels. A border size
of 0 or none (or leaving the border attribute out entirely) will make the
border invisible, which is handy if you find yourself using a table as a
page layout tool (not recommended).

With the <table> tag in place, the next thing you need is the <tr> tag. The
<tr> tag creates a table row, which contains one or more cells of informa-
tion before the closing </tr>. To create these individual cells, use the <td>
tag (<td> stands for table data). Place the table information between the
<td> and </td> tags. A cell is a rectangular region that can contain any text,
images, and HTML tags. Each row in a table consists of at least one cell.
Multiple cells within a row form columns in a table.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How to create simple
tables

. How to control the size of
tables

. How to align content and
span rows and columns
within tables

CHAPTER 6
Using Tables to Display

Information

TIP
As you read this chapter, think
about how arranging text into
tables could benefit your web
content. The following are some
specific ideas to keep in mind:

. The most obvious applica-
tion of tables is to organize
tabular information, such as
a multicolumn list of names
and numbers.

. Whenever you need multiple
columns of text or images,
tables are the answer.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

108 CHAPTER 6 Using Tables to Display Information

There is one more basic tag involved in building tables. The <th> tag
works exactly like a <td> tag except <th> indicates that the cell is part of
the heading of the table. Most web browsers render the text in <th> cells as
centered and boldface.

You can create as many cells as you want, but each row in a table should
have the same number of columns as the other rows. The HTML code
shown in Listing 6.1 creates a simple table using only the four table tags
I’ve mentioned thus far. Figure 6.1 shows the resulting page as viewed in a
web browser.

LISTING 6.1 Creating Tables with the <table>, <tr>, <td>, and <th>
Tags
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Baseball Standings</title>

</head>

<body>
<h1>Baseball Standings</h1>
<table>
<tr>
<th>Team</th>
<th>W</th>

<th>L</th>
<th>GB</th>

</tr>
<tr>
<td>Los Angeles Dodgers</td>
<td>62</td>
<td>38</td>
<td>—</td>

</tr>
<tr>
<td>San Francisco Giants</td>
<td>54</td>
<td>46</td>
<td>8.0</td>

</tr>
<tr>
<td>Colorado Rockies</td>
<td>54</td>
<td>46</td>
<td>8.0</td>

</tr>

TIP

Some style properties enable
you to take much more control
over table borders. For example,
you can set the border width
(border-width), style (border-
style), and color (border-
color). These properties work
fine, but you have to apply them
to each table element, which
can be cumbersome even if you
use classes for your table row
or table cell elements.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating a Simple Table 109

<tr>
<td>Arizona Diamondbacks</td>
<td>43</td>
<td>58</td>
<td>19.5</td>

</tr>
<tr>

<td>San Diego Padres</td>
<td>39</td>
<td>62</td>
<td>23.5</td>

</tr>
</table>

</body>
</html>

LISTING 6.1 Continued TIP
HTML ignores extra spaces
between words and tags.
However, you might find your
HTML tables easier to read
(and less prone to time-wasting
errors) if you use spaces to
indent <tr> and <td> tags, as I
did in Listing 6.1.

FIGURE 6.1
The HTML code in Listing 6.1 cre-
ates a table with six rows and four
columns.

The table in the example contains baseball standings, which are perfect for
arranging in rows and columns—if not a little plain. You’ll learn to jazz
things up a bit during this chapter. The headings in the table show the
Team, Wins (W), Losses (L), and Games Behind (GB) in the standings.

Although we did not apply any styles to the HTML in Listing 6.1, you can
use any text style in a table cell. However, styles or HTML tags used in one
cell don’t carry over to other cells, and tags from outside the table don’t
apply within the table. For example, consider the following table:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

110 CHAPTER 6 Using Tables to Display Information

<p style=”font-weight:bold”>
<table>
<tr>
<td style=”font-style:italic”>hello</td>
<td>there</td>

</tr>
</table>

</p>

In this example, the <p> tag is used around a table to demonstrate how
tables are immune to outside tags. The word there would be neither bold-
face nor italic because neither the font-weight:bold style outside the table
nor the font-style:italic style from the previous cell affects it. In this
example, the word hello is in italics, however.

To boldface the words hello and there, change the table code to this:

<table style=”font-weight:bold”>
<tr>
<td style=”font-style:italic”>hello</td>
<td>there</td>

</tr>
</table

In this example, both words are in bold and the word hello is italicized as
well. Of course, you don’t have to apply styles at the table level. The font-
weight:bold style could just as easily be applied to each cell individually;
you could repeat style=”font-weight:bold” in each cell or create a class in
your style sheet and use class=”classname” in each cell—it’s your choice.

Controlling Table Sizes
When a table width is not specified, the size of a table and its individual
cells automatically expand to fit the data you place into it. However, you
can choose to control the exact size of the entire table by using width
and/or height styles in the <table> tag. You can also control the size of
each cell by putting width and height styles in the individual <td> tags.
The width and height styles can be specified as either pixels or percent-
ages. For example, the following code creates a table 500 pixels wide and
400 pixels high:

<table style=”width:500px; height:400px”>

To make the first cell of the table 20% of the total table width and the sec-
ond cell 80% of the table width, type the following:

NOTE

There are actually width and
height HTML attributes that
were deprecated in the move to
XHTML, and you might still see
them when you look at another
designer’s code. These attrib-
utes still work in web browsers,
but you should use the width
and height style properties
instead because they represent
the appropriate use of XHTML.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Controlling Table Sizes 111

<table style=”width:100%”>
<tr>
<td style=”width:20%”>skinny cell</td>
<td style=”width:80%”>fat cell</td>

</tr>
</table>

Notice that the table is sized to 100%, which ensures the table fills the
entire width of the browser window. When you use percentages instead of
fixed pixel sizes, the table will resize automatically to fit any size browser
window while maintaining the aesthetic balance you’re after. In this case,
the two cells within the table are automatically resized to 20% and 80% of
the total table width, respectively.

In Listing 6.2, the simple table from Listing 6.1 is expanded to show specif-
ic control over table cell widths.

LISTING 6.2 Specifying Table Cell Widths
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Baseball Standings</title>

</head>

<body>
<h1>Baseball Standings</h1>
<table>
<tr>
<th style=”width:35px;”></th>
<th style=”width:175px;”>Team</th>
<th style=”width:25px;”>W</th>
<th style=”width:25px;”>L</th>
<th style=”width:25px;”>GB</th>

</tr>
<tr>
<td><img src=”losangeles.gif” alt=”Los Angeles

Dodgers” /></td>
<td>Los Angeles Dodgers</td>
<td>62</td>
<td>38</td>
<td>—</td>

</tr>
<tr>
<td><img src=”sanfrancisco.gif” alt=”San Francisco

Giants” /></td>
<td>San Francisco Giants</td>
<td>54</td>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

112 CHAPTER 6 Using Tables to Display Information

<td>46</td>
<td>8.0</td>

</tr>
<tr>
<td><img src=”colorado.gif” alt=”Colorado

Rockies” /></td>
<td>Colorado Rockies</td>
<td>54</td>
<td>46</td>
<td>8.0</td>

</tr>
<tr>
<td><img src=”arizona.gif” alt=”Arizona

Diamondbacks” /></td>
<td>Arizona Diamondbacks</td>
<td>43</td>
<td>58</td>
<td>19.5</td>

</tr>
<tr>
<td></td>
<td>San Diego Padres</td>
<td>39</td>
<td>62</td>
<td>23.5</td>

</tr>
</table>

</body>
</html>

You can see the consistent column widths in Figure 6.2.

LISTING 6.2 Continued

FIGURE 6.2
The HTML code in Listing 6.2 cre-
ates a table with six rows and five
columns, with specific widths used
for each column.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Alignment and Spanning Within Tables 113

There are two differences between the code from Listing 6.1 and the code
used in Listing 6.2. First, an additional column has been added in Listing
6.2; this column does not have a heading, but the <th></th> tag pair is still
present in the first table row. In rows two through six, this additional col-
umn contains an image (the tag). The second difference in Listing
6.2 is the addition of a specific width style for each <th> element in the
first row. The first column is defined as 35px wide, the second 175px wide,
and the third, fourth, and fifth columns are each 25px wide.

Also note that these widths are not repeated in the <td> elements in subse-
quent rows. Technically you must define only the widths in the first row;
the remaining rows will follow suit because they are all part of the same
table. However, if you used another formatting style (such as a style to
change font size or color), that style must be repeated for each element that
should have those display properties.

Alignment and Spanning Within
Tables
By default, anything you place inside a table cell is aligned to the left and
vertically centered. Figures 6.1 and 6.2 show this default alignment.
However, you can align the contents of table cells both horizontally and
vertically with the text-align and vertical-align style properties.

You can apply these alignment attributes to any <tr>, <td>, or <th> tag.
Alignment attributes assigned to a <tr> tag apply to all cells in that row.
Depending on the size of your table, you can save yourself a considerable
amount of time and effort by applying these attributes at the <tr> level
and not in each <td> or <th> tag.

The HTML code in Listing 6.3 uses a combination of text alignment styles
to apply a default alignment to a row, but it is overridden in a few individ-
ual cells. Figure 6.3 shows the result of the code in Listing 6.3.

Following are some of the more commonly used vertical-align style
property values: top, middle, bottom, text-top, text-bottom, and
baseline (for text). These property values give you plenty of flexibility
in aligning table data vertically.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

114 CHAPTER 6 Using Tables to Display Information

LISTING 6.3 Alignment, Cell Spacing, Borders, and Background Colors
in Tables
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Things to Fear</title>

</head>

<body>
<h1>Things to Fear</h1>
<table border=”2” cellpadding=”4” cellspacing=”2”
width=”100%”>
<tr style=”background-color:red;color:white”>
<th colspan=”2”>Description</th>
<th>Size</th>
<th>Weight</th>
<th>Speed</th>

</tr>
<tr style=”vertical-align:top”>
<td></td>
<td style=”font-size: 14px;font-weight:bold;
vertical-align:middle;text-align:center”>.38 Special</td>
<td>Five-inch barrel.</td>
<td>Twenty ounces.</td>
<td>Six rounds in four seconds.</td>

</tr>
<tr style=”vertical-align:top”>
<td></td>
<td style=”font-size: 14px;font-weight:bold;
vertical-align:middle;text-align:center”>Rhinoceros</td>
<td>Twelve feet, horn to tail.</td>
<td>Up to two tons.</td>
<td>Thirty-five miles per hour in bursts.</td>

</tr>
<tr style=”vertical-align:top”>
<td></td>
<td style=”font-size: 14px;font-weight:bold;
vertical-align:middle;text-align:center”>Broad Axe</td>
<td>Thirty-inch blade.</td>
<td>Twelve pounds.</td>
<td>Sixty miles per hour on impact.</td>

</tr>
</table>

</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Alignment and Spanning Within Tables 115

At the top of Figure 6.3, a single cell (Description) spans two columns. This
is accomplished with the colspan attribute in the <th> tag for that cell. As
you might guess, you can also use the rowspan attribute to create a cell that
spans more than one row.

Spanning is the process of forcing a cell to stretch across more than one row
or column of a table. The colspan attribute causes a cell to span across
multiple columns; rowspan has the same effect on rows.

Additionally, text styles are used in the second cell within the Description
column to create bold text that is both vertically aligned to the middle and
horizontally aligned to the center of the cell.

There are a few tricks in Listing 6.3 that I haven’t explained yet. You can give
an entire table—and each individual row or cell in a table—its own back-
ground, distinct from any background you might use on the web page itself.
You can do this by placing the background-color or background-image style
in the <table>, <tr>, <td>, or <th> tag exactly as you would in the <body>
tag (see Chapter 8, “Working with Colors, Images, and Multimedia”). To
give an entire table a yellow background, for example, you would use
<table style=”background-color:yellow”> or the equivalent <table
style=”background-color:#FFFF00”>. In Listing 6.3, only the top row has a
background color; it uses <tr style=”background-color:red;color:
white”> to apply a red background across the cells in that row. Additionally,
the color style ensures that the text in that row is white.

FIGURE 6.3
The code in Listing 6.3 shows the
use of the colspan attribute and
alignment styles.

TIP

Keeping the structure of rows
and columns organized in your
mind can be the most difficult
part of creating tables with
cells that span multiple
columns or rows. The tiniest
error can often throw the whole
thing into disarray. You’ll save
yourself time and frustration by
sketching your tables on paper
before you start writing the
HTML to implement them.

NOTE

You will often see alternating
row colors in a table. For
instance, one row might have a
grey background and the next
row might have a white back-
ground. Alternating row colors
helps users read the content of
your table more clearly, espe-
cially if the table is quite large.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

116 CHAPTER 6 Using Tables to Display Information

Similar to the background-color style property is the background-image
property (not shown in this example), which is used to set an image for a
table background. If you wanted to set the image leaves.gif as the back-
ground for a table, you would use <table style=”background-
image:url(leaves.gif)”>. Notice that the image file is placed within
parentheses and preceded by the word url, which indicates that you are
describing where the image file is located.

Tweaking tables goes beyond just using style properties. As shown in
Listing 6.3, you can control the space around the borders of a table with
the cellpadding and cellspacing attributes. The cellspacing attribute
sets the amount of space (in pixels) between table borders and between
table cells themselves. The cellpadding attribute sets the amount of space
around the edges of information in the cells, also in pixels. Setting the
cellpadding value to 0 causes all the information in the table to align as
closely as possible to the table borders, possibly even touching the borders.
The cellpadding and cellspacing attributes give you good overall con-
trol of the table’s appearance.

Page Layout with Tables
At the beginning of this chapter, I indicated that designers have used tables
for page layout and to display tabular information. You will still find many
examples of table-based layouts if you peek at another designer’s source
code. This method of design grew out of the old (mid-1990s to early 2000s)
inconsistencies in browser support for CSS. All browsers supported tables
and in generally the same way, so web designers latched on to the table-
based method of content creation to achieve the same visual page display
across all browsers. However, now that support for CSS is relatively similar
across all major browsers, designers can follow the long-standing stan-
dards-based recommendation not to use tables for page layout.

The World Wide Web Consortium (W3C), the standards body that oversees
the future of the Web, promotes style sheets as the proper way to lay out
pages (instead of using tables). Style sheets are ultimately much more
powerful than tables, which is why the bulk of this book teaches you how
to use style sheets for page layout.

The main reasons for avoiding using tables for layout include the following:

. Mixing presentation with content—One of the goals of CSS and
standards-compliant web design is to separate the presentation layer
from the content layer.

NOTE

Although the cellpadding and
cellspacing attributes are still
allowed in XHTML, a CSS equiv-
alent for them exists in the form
of the padding and border-
spacing style properties.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Summary 117

. Creating unnecessarily difficult redesigns—To change a table-based
layout, you would have to change the table-based layout on every
single page of your site (unless it is part of a complicated, dynamical-
ly driven site, in which case you would have to undo all the dynamic
pieces and remake them).

. Accessibility issues—Screen reading software looks to tables for con-
tent and will often try to read your layout table as a content table.

. Rendering on mobile devices—Table layouts are often not flexible
enough to scale downward to small screens (see Chapter 12,
“Creating Fixed or Liquid Layouts”).

These are but a few of the issues in table-based web design. For a closer
look at some of these issues, see the popular presentation “Why Tables for
Layout Is Stupid” at http://www.hotdesign.com/seybold/everything.html.

Summary
In this brief chapter, you learned to arrange text and images into organized
arrangements of rows and columns called tables. You learned the three
basic tags for creating tables and many optional attributes and styles for
controlling the alignment, spacing, and appearance of tables. You also dis-
covered that tables can be used together and nested within one another for
an even wider variety of layout options.

Table 6.1 summarizes the tags and attributes covered in this chapter.

TABLE 6.1 HTML Tags and Attributes Covered in Chapter 6

Tag/Attribute Function

<table>...</table> Creates a table that can contain any number of rows
(<tr> tags).

Attributes

border=”width” Indicates the width in pixels of the table borders.
Using border=”0” or omitting the border attribute
makes borders invisible.

cellspacing= The amount of space between the cells in the
➥”spacing” table, in pixels.

cellpadding= The amount of space between the edges of the
➥”padding” cell and its contents, in pixels.

style= The width of the table on the page, either in exact
➥”width:width” pixel values or as a percentage of the page width.

www.it-ebooks.info

http://www.hotdesign.com/seybold/everything.html
http://www.it-ebooks.info/

ptg999

118 CHAPTER 6 Using Tables to Display Information

style= The height of the table on the page, either in exact
➥”height:height” pixel values or as a percentage of the page height.

style=”background- Background color of the table and individual table
➥color:color” cells that don’t already have a background color.

style= A background image to display within the table
➥”backgroundimage: and individual table cells that don’t already have
➥url(imageurl)” a background image. (If a background color is also

specified, the color will show through transparent
areas of the image.)

Attributes

<tr>…</tr> Defines a table row containing one or more cells
(<td> tags).

Attributes

style=”text-align: The horizontal alignment of the contents of the
alignment” cells within this row. Possible values are left,

right, and center.

style=”vertical- The vertical alignment of the contents of the cells
align:alignment” within this row. Commonly used values include top,

middle, and bottom.

style=”background- Background color of all cells in the row that do not
color:color” already have a background color.

style= Background image to display within all cells in the
”backgroundimage: row that do not already have their own background
url(imageurl)” image.

<td>...</td> Defines a table data cell.

<th>...</th> Defines a table heading cell. (Accepts all the
same attributes and styles as <td>.)

Attributes

style=”text- The horizontal alignment of the contents of the
align:alignment” cell. Possible values are left, right, and center.

style=”vertical- The vertical alignment of the contents of the cell.
align:alignment” Commonly used values are top, middle, and bottom.

rowspan=”numrows” The number of rows this cell will span.

colspan=”numcols” The number of columns this cell will span.

style=”width:width” The width of this column of cells, in exact pixel
values or as a percentage of the table width.

TABLE 6.1 Continued

Tag/Attribute Function

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Summary 119

Attributes

style= The height of this row of cells, in exact pixel
”height:height” values or as a percentage of the table height.

style=”background- Background color of the cell.
color:color”

style= Background image to display within the cell.
”backgroundimage:

url(imageurl)”

TABLE 6.1 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

120 CHAPTER 6 Using Tables to Display Information

Q&A
Q. I made a big table and when I load the page, nothing appears on the

page for a long time. Why the wait?

A. Complex tables can take a while to appear on the screen. The web
browser has to figure out the size of everything in the table before it
can display any part of it. You can speed things up a bit by always
including width and height attributes for every graphics image within a
table. Using width attributes in the <table> and <td> tags also helps.

Q. Can I put a table within a table?

A. Yes, you can nest tables within other table cells. However, nested
tables—especially large ones—take time to load and render properly.
Before you create a nested table, think about the content you are plac-
ing on the page and ask yourself if it could be displayed using CSS. You
might not know all the answers until you finish this book, but here’s a
hint: In most cases, the answer will be yes.

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. How would you create a simple two-row, two-column table with a stan-

dard border?

2. Expanding on question 1, how would you add 30 pixels of space
between the table border and the cells?

3. Continuing with the table you’ve built in questions 1 and 2, how would
you make the top-left cell green, the top-right cell red, the bottom-left
cell yellow, and the bottom-right cell blue?

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Workshop 121

Answers
1. Use the following HTML:

<table border=”1”>
<tr>
<td>Top left...</td>
<td>Top right...</td>

</tr>
<tr>
<td>Bottom left...</td>
<td>Bottom right...</td>

</tr>
</table>

2. Add cellspacing=”30” to the <table> tag.

3. Add style=”background-color:green” to the top left <td> tag, add
style=”background-color:red” to the top right <td> tag, add
style=”background-color:yellow” to the bottom left <td> tag, and
add style=”background-color:blue” to the bottom right <td> tag.

Exercises
. Do you have any pages that have information visitors might be interest-

ed in viewing as lists or tables? Use a table to present some tabular
information. Make sure each column has its own heading (or perhaps
its own graphic). Play around with the various types of alignment and
spacing that you have learned in this chapter.

. You will often see alternating row colors in a table, with one row having
a grey background and the next a white background. The goal of alter-
nating colors in table rows is so that the individual rows are easier to
discern when looking quickly at the table full of data. Create a table
with alternating row colors and text colors (if necessary). Although the
lesson on colors comes in Chapter 8, you have enough information in
this lesson to begin trying out the process.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

So far, you have learned how to use HTML tags to create some basic web
pages. However, at this point, those pieces of content are islands unto
themselves, with no connection to anything else (although it is true that in
Chapter 3, “Understanding Cascading Style Sheets,” I sneaked a few page
links into the examples). To turn your work into real web content, you
need to connect it to the rest of the Web—or at least to your other pages
within your own personal or corporate sites.

This chapter shows you how to create hypertext links to content within
your own document and how to link to other external documents.
Additionally, you will learn how to style hypertext links so that they dis-
play in the color and decoration that you desire—not necessarily the
default blue underlined display.

Using Web Addresses
The simplest way to store web content for an individual website is to place
the files all in the same folder together. When files are stored together like
this, you can link to them by simply providing the name of the file in the
href attribute of the <a> tag.

An attribute is an extra piece of information associated with a tag that pro-
vides further details about the tag. For example, the href attribute of the
<a> tag identifies the address of the page to which you are linking.

After you have more than a few pages, or when you start to have an
organization structure to the content in your site, you should put your files
into directories (or folders, if you will) whose names reflect the content
within them. For example, all your images could be in an “images” direc-
tory, corporate information could be in an “about” directory, and so on.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How to use anchor links

. How to link between pages
on your own site

. How to link to external
content

. How to link to an email
address

. How to use window target-
ing with your links

. How to style your links with
CSS

CHAPTER 7
Using External and Internal Links

NOTE

Before we begin, you might
want a refresher on the basics
of where to put files on your
server and how to manage files
within a set of directories. This
information is important to
know when creating links in
web content. Refer back to
Chapter 1, “Publishing Web
Content,” specifically the sec-
tion titled “Understanding
Where to Place Files on the
Web Server.”

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

124 CHAPTER 7 Using External and Internal Links

Regardless of how you organize your documents within your own web
server, you can use relative addresses, which include only enough informa-
tion to find one page from another.

A relative address describes the path from one web page to another, instead
of a full (or absolute) Internet address.

If you recall from Chapter 1, the document root of your web server is the
directory designated as the top-level directory for your web content. In
web addresses, that document root is represented by the forward slash (/).
All subsequent levels of directories are separated by the same type of for-
ward slash. For example:

/directory/subdirectory/subsubdirectory/

Suppose you are creating a page named zoo.html in your document root
and you want to include a link to pages named african.html and asian.html
in the elephants subdirectory. The links would look like the following:

Learn about African elephants.
Learn about Asian elephants.

These specific addresses are actually called relative-root addresses in that
they are relative addresses that lack the entire domain name, but they are
specifically relative to the document root specified by the forward slash.

Using a regular relative address, you can skip the initial forward slash.
This type of address allows the links to become relative to whatever direc-
tory they are in—it could be the document root or it could be another
directory one or more levels down from the document root:

Learn about African elephants.
Learn about Asian elephants.

Your african.html and asian.html documents in the elephants subdirectory
could link back to the main zoo.html page in either of these ways:

Return to the zoo.
Return to the zoo.
Return to the zoo.

The first link is an absolute link. With an absolute link there is absolutely no
doubt where the link should go because the full URL is provided—domain
name included.

The second link is a relative-root link. It is relative to the domain you are
currently browsing and therefore does not require the protocol type (for

CAUTION

The / forward slash is always
used to separate directories in
HTML. Don’t use the \ back-
slash (which is normally used in
Windows) to separate your
directories. Remember, every-
thing in the Web moves forward,
so use forward slashes.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using Web Addresses 125

example, http://) and the domain name (for example, www.yourdomain.
com), but the initial forward slash is provided to show that the address
begins at the document root.

In the third link, the double dot (..) is a special command that indicates the
folder that contains the current folder—in other words, the parent folder.
Anytime you see the double dot, just think to yourself “go up a level” in
the directory structure.

If you use relative addressing consistently throughout your web pages,
you can move the pages to another folder, disk drive, or web server with-
out changing the links.

Relative addresses can span quite complex directory structures if necessary.
Chapter 27, “Organizing and Managing a Website,” offers more detailed
advice for organizing and linking large numbers of web pages.

TIP

The general rule surrounding
relative addressing (elephants/
african.html) versus absolute
addressing (http://www.takeme
2thezoo.com/elephants/african
.html) is that you should use
relative addressing when linking
to files that are stored together,
such as files that are all part of
the same website. Absolute
addressing should be used
when you’re linking to files
somewhere else—another com-
puter, another disk drive, or,
more commonly, another web-
site on the Internet.

Creating a Simple
Site Architecture

Hopefully, by now, you’ve created a page or two of your own while working
through the chapters. Follow these steps to add a few more pages and link
them together:

1. Use a home page as a main entrance and as a central hub to which all
of your other pages are connected. If you created a page about yourself
or your business, use that page as your home page. You also might like
to create a new page now for this purpose.

2. On the home page, put a list of links to the other HTML files you’ve cre-
ated (or placeholders for the HTML files you plan to create soon). Be
sure that the exact spelling of the filename, including any capitalization,
is correct in every link.

3. On every other page besides the home page, include a link at the bot-
tom (or top) leading back to your home page. That makes it simple and
easy to navigate around your site.

4. You might also want to include a list of links to related or interesting
sites, either on your home page or on a separate links page. People
often include a list of their friends’ personal pages on their own home
page. Businesses, however, should be careful not to lead potential cus-
tomers away to other sites too quickly—there’s no guarantee they’ll
remember to use relative addressing for links between your own pages
and absolute addressing for links to other sites.

TRY IT YOURSELF ▼

www.it-ebooks.info

http://www.takeme2thezoo.com/elephants/african.html
http://www.takeme2thezoo.com/elephants/african.html
http://www.takeme2thezoo.com/elephants/african.html
http://www.it-ebooks.info/

ptg999

126 CHAPTER 7 Using External and Internal Links

Linking Within a Page Using Anchors
The <a> tag—the tag responsible for hyperlinks on the Web—got its name
from the word “anchor,”and means a link serves as a designation for a
spot in a web page. In examples shown throughout this book so far, you’ve
learned how to use the <a> tag to link to somewhere else, but that’s only
half of its usefulness. Let’s get started working with anchor links that link
to content within the same page.

Identifying Locations in a Page with Anchors
The <a> tag can be used to mark a spot on a page as an anchor, enabling
you to create a link that points to that exact spot. Listing 7.1, which is pre-
sented a bit later in this chapter, demonstrates a link to an anchor within a
page. To see how such links are made, let’s take a quick peek ahead at the
first <a> tag in the listing:

The <a> tag normally uses the href attribute to specify a hyperlinked tar-
get. The <a href> is what you click and <a id> is where you go when you
click there. In this example, the <a> tag is still specifying a target but no
actual link is created. Instead, the <a> tag gives a name to the specific point
on the page where the tag occurs. The tag must be included and a
unique name must be assigned to the id attribute, but no text between <a>
and is necessary.

Linking to Anchor Locations
Listing 7.1 shows a site with various anchor points placed throughout a
single page. Take a look at the last <a> tag in Listing 7.1 to see an example:

Return to Index.

The # symbol means that the word top refers to a named anchor point
within the current document, rather than to a separate page. When a user
clicks Return to Index, the web browser displays the part of the page
starting with the tag.

NOTE

Instead of using id, older ver-
sions of HTML used name. Newer
versions of HTML and XHTML
have done away with the name
attribute and instead use id.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Linking Within a Page Using Anchors 127

LISTING 7.1 Setting Anchor Points by Using the <a> Tag with an id Attribute
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Alphabetical Shakespeare</title>
</head>

<body>
<h1>First Lines of Shakespearean Sonnets</h1>
<p>Don’t you just hate when you go a-courting, and you’re down
on one knee about to rattle off a totally romantic Shakespearean
sonnet, and zap! You space it. ”Um... It was, uh... I think it
started with a B...”</p>
<p>Well, appearest thou no longer the dork. Simply refer to this page,
click on the first letter of the sonnet you want, and get an instant
reminder of the first line to get you started. ”Beshrew that
heart that makes my heart to groan...”</p>
<h2 style=”text-align:center”>Alphabetical Index</h2>
<h3 style=”text-align:center”>
A B C
D E F
G H I
J K L
M N O
P Q R
S T U
V W X
Y Z
</h3>
<hr />
<h3>A</h3>

A woman’s face with nature’s own hand painted,
Accuse me thus, that I have scanted all,
Against my love shall be as I am now
Against that time (if ever that time come)
Ah wherefore with infection should he live,
Alack what poverty my muse brings forth,
Alas ‘tis true, I have gone here and there,
As a decrepit father takes delight,
As an unperfect actor on the stage,
As fast as thou shalt wane so fast thou grow’st,

<p>Return to Index.</p>
<hr />
<!-- continue with the alphabet -->
<h3>Z</h3>
<p>(No sonnets start with Z.)</p>
<p>Return to Index.</p>
</body>
</html>

NOTE
Near the end of Listing 7.1 you
will see a line that reads:

<!-- continue with the
alphabet -->

This text (an HTML comment)
will appear in your source code,
but will not be displayed by the
browser. You can learn more
about commenting your code in
Chapter 27.

CAUTION

Anchor names specified via the
id attribute in the <a> tag must
start with an alphanumeric
character. So, if you want to
simply number the IDs of
anchors, be sure to start them
with text (as in photo1, photo2,
and so on) instead of just 1, 2,
and so on. Purely numeric
anchor IDs will work in
browsers, but they don’t qualify
as valid XHTML code.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

128 CHAPTER 7 Using External and Internal Links

Each of the <a href> links in Listing 7.1 makes an underlined link leading
to a corresponding <a id> anchor—or it would if I had filled in all the text.
Only A and Z will work in this example because only the A and Z links
have corresponding text to link to, but feel free to fill in the rest on your
own! Clicking the letter Z under Alphabetical Index in Figure 7.1, for
example, takes you to the part of the page shown in Figure 7.2.

FIGURE 7.1
The <a id> tags in Listing 7.1
don’t appear at all on the web
page. The <a href> tags appear
as underlined links.

FIGURE 7.2
Clicking the letter Z on the page
shown in Figure 7.1 takes you to
the appropriate section of the
same page.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Linking Between Your Own Web Content 129

Having mastered the concept of linking to sections of text within a single
page, you can now learn to link together other pieces of web content.

Linking Between Your Own Web
Content
As you learned earlier in this chapter, you do not need to include http://
before each address specified in the href attribute when linking to content
within your domain (or on the same computer, if you are viewing your site
locally). When you create a link from one file to another file within the
same domain or on the same computer, you don’t need to specify a com-
plete Internet address. In fact, if the two files are stored in the same folder,
you can simply use the name of the HTML file by itself:

Go to Page 2.

As an example, Listing 7.2 and Figure 7.3 show a quiz page with a link to
the answers page shown in Listing 7.3 and Figure 7.4. The answers page
contains a link back to the quiz page. Because the page in Listing 7.2 links
to another page in the same directory, the filename can be used in place of
a complete address.

LISTING 7.2 The historyanswers.html file
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>History Quiz</title>
</head>

<body>
<h1>History Quiz</h1>
<p>Complete the following rhymes. (Example: William the Conqueror
Played cruel tricks on the Saxons in... ten sixty-six.)</p>

Columbus sailed the ocean blue in...
The Spanish Armada met its fate in...
London burnt like rotten sticks in...

<p style=”text-align: center;font-weight: bold;”>
Check Your Answers!
</p>
</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

130 CHAPTER 7 Using External and Internal Links

LISTING 7.3 The historyanswers.html File That historyquiz.html
Links To
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>History Quiz Answers</title>
</head>

<body>
<h1>History Quiz Answers</h1>

...fourteen hundred and ninety-two.
...fifteen hundred and eighty eight.
...sixteen hundred and sixty-six.

<p style=”text-align: center;font-weight: bold;”>
Return to the Questions
</p>
</body>
</html>

FIGURE 7.3
This is the historyquiz.html file
listed in Listing 7.2 and referred
to by the link in Listing 7.3.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Linking to External Web Content 131

Using filenames instead of complete Internet addresses saves you a lot of
typing. More important, the links between your pages will work properly
no matter where the group of pages is stored. You can test the links while
the files are still on your computer’s hard drive. You can then move them
to a web server, a CD-ROM, a DVD, or a memory card, and all the links
will still work correctly. There is nothing magic about this simplified
approach to identifying web pages—it all has to do with web page
addressing, as you’ve already learned.

Linking to External Web Content
The only difference between linking to pages within your own site and link-
ing to external web content is that when linking outside your site, you need
to include the full address to that bit of content. The full address includes
the http:// before the domain name, and then the full pathname to the file
(for example, an HTML file, image file, multimedia file, and so on).

For example, to include a link to Google from within one of your own web
pages, you would use this type of absolute addressing in your <a> link:

Go to Google

You can apply what you learned in previous sections to creating links to
named anchors on other pages. Linked anchors are not limited to the same
page. You can link to a named anchor on another page by including the
address or filename followed by # and the anchor name. For example, the

FIGURE 7.4
The Check Your Answers! link in
Figure 7.3 takes you to this
answers page. The Return to the
Questions link takes you back to
what’s shown in Figure 7.3.

CAUTION

As you might know, you can
leave out the http:// at the
front of any address when typ-
ing it into most web browsers.
However, you cannot leave that
part out when you type an
Internet address into an <a
href> link on a web page.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

132 CHAPTER 7 Using External and Internal Links

following link would take you to an anchor named photos within the
african.html page inside the elephants directory on the domain
www.takeme2thezoo.com.

Check out the African Elephant Photos!

If you are linking from another page already on the www.takemetothezoo.
com domain (because you are, in fact, the site maintainer), your link might
simply be as follows:

Check out the
African Elephant Photos!

The http:// and the domain name would not be necessary in that instance,
as you have already learned.

Linking to an Email Address
In addition to linking between pages and between parts of a single page,
the <a> tag allows you to link to email addresses. This is the simplest way
to enable your web page visitors to talk back to you. Of course, you could
just provide visitors with your email address and trust them to type it into
whatever email programs they use, but that increases the likelihood for
errors. By providing a clickable link to your email address, you can make it
almost completely effortless for them to send you messages and eliminate
the chance for typos.

An HTML link to an email address looks like the following:

Send me an
email message.

The words Send me an email message will appear just like any other <a>
link.

If you want people to see your actual email address (so that they can make
note of it or send a message using a different email program), include it
both in the href attribute and as part of the message between the <a> and
 tags, like this:

you@yourdomain.com

In most web browsers, when someone clicks the link, she gets a window into
which she can type a message that is immediately sent to you—whatever
email program the person uses to send and receive email will automatically

CAUTION

Be sure to include the # symbol
only in <a href> link tags. Don’t
put the # symbol in the <a id>
tag; links to that name won’t
work in that case.

www.it-ebooks.info

www.takeme2thezoo.com
www.takemetothezoo.com
www.takemetothezoo.com
http://www.it-ebooks.info/

ptg999

Linking to an Email Address 133

be used. You can provide some additional information in the link so that the
subject and body of the message also have default values. You do this by
adding subject and body variables to the mailto link. You separate the vari-
ables from the email address with a question mark (?), the value from the
variable with an equal sign (=), and then separate each of the variable and
value pairs with an ampersand (&). You don’t have to understand the vari-
able/value terminology at this point. Here is an example of specifying a sub-
ject and body for the preceding email example:

<a href=”mailto:author@somedomain.com?subject=Book Question&body=
When is the next edition coming out?”>author@somedomain.com

When a user clicks this link, an email message is created with author@
somedomain.com as the recipient, Book Question as the subject of the mes-
sage, and When is the next edition coming out? as the message body.

Before you run off and start plastering your email address all over your
web pages, I have to give you a little warning and then let you in on a
handy trick. You’re no doubt familiar with spammers that build up data-
bases of email addresses and then bombard them with junk mail advertise-
ments. One way spammers harvest email addresses is by using programs
that automatically search web pages for mailto links.

Fortunately, there is a little trick that will thwart the vast majority of spam-
mers. This trick involves using character entities to encode your email
address, which confuses scraper programs that attempt to harvest your
email address from your web pages. As an example, take the email
address, jcmeloni@gmail.com. If you replace the letters in the address with
their character entity equivalents, most email harvesting programs will be
thrown off. Lowercase ASCII character entities begin at a for letter a
and increase through the alphabet in order. For example, letter j is j, c
is c, and so on. Replacing all the characters with their ASCII attributes
produces the following:

<a href=”mailto:jcmeloni
@gmail.com”>Send
me an email message.

Because the browser interprets the character encoding as, well, characters,
the end result is the same from the browser’s perspective. However, auto-
mated email harvesting programs search the raw HTML code for pages,
which in this case is showing a fairly jumbled-looking email address. If
you don’t want to figure out the character encoding for your own address,
just type email address encoder in your search engine and you will find
some services online that will produce an encoded string for you.

TIP
If you want to specify only an
email message subject and not
the body, you can just leave off
the ampersand and the body
variable, equal sign, and value
text string as follows:
<a href=”mailto:
author@somedomain.com?
subject=
Book Question>
author@somedomain.com

TIP

It is customary to put an email
link to the web page author at
the bottom of every web page.
Not only does this make it easy
for others to contact you, it
gives them a way to tell you
about any problems with the
page that your testing might
have missed. Just don’t forget
to use the email address char-
acter entity trick so that your
address flies under the radar of
spammers.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

134 CHAPTER 7 Using External and Internal Links

Opening a Link in a New Browser
Window
Now that you have a handle on how to create addresses for links—both
internal (within your site) and external (to other sites)—there is one addi-
tional method of linking: forcing the user to open links in new windows.

You’ve no doubt heard of pop-up windows, which are browser windows—typi-
cally advertising products or services—that are opened and displayed auto-
matically without the user’s approval. However, the concept of opening anoth-
er window or targeting another location does serve a valid purpose in some
instances. For example, you might want to present information in a smaller
secondary browser window but still allow the user to see the information in
the main window. This is often the case when clicking on a link to an animated
demo, movie clip, or other multimedia element. You could also want to target
a new browser window when you are linking to content off-site.

However, opening a new browser window on behalf of your user—especially
when it’s a full-size new window—goes against some principles of usability
and accessibility. When people opened new windows, typically it happened
through the use of the target attribute of the <a> tag. The target attribute has
been removed from the <a> tag in the strict XHTML 1.1 specification.

There are valid ways to achieve the same result while still adhering to prin-
ciples of usability and accessibility, but these methods require a little
JavaScript and other advanced techniques. You will learn about these meth-
ods as we move into the JavaScript portion of this book, which will also
cover standards-compliant and accessible ways to invoke new windows
with your external links.

Using CSS to Style Hyperlinks
The default display of a text-based hyperlink on a web page is underlined
blue text. You might also have noticed that links you have previously visit-
ed appear as underlined purple text—that color is also a default. If you’ve
spent any time at all on the Web, you will also have noticed that not all
links are blue or purple—and for that, I think, we are all thankful. Using a
little CSS and knowledge of the various pseudoclasses for the <a> link, you
can make your links look however you want.

A pseudoclass is a class that describes styles for elements that apply to certain
circumstances, such as various states of user interaction with that element.

NOTE

You can use graphics as links
(instead of using text as links)
by putting an tag
between the opening <a> and
closing tags. You’ll learn
how to use graphics as links in
Chapter 8, “Working with
Colors, Images, and
Multimedia.”

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using CSS to Style Hyperlinks 135

For example, the common pseudoclasses for the <a> tag are link, visited,
hover, and active. You can remember them with the mnemonic “Love-
Hate”—LV (love) HA (hate), if you choose.

. a:link describes the style of a hyperlink that has not been visited
previously.

. a:visited describes the style of a hyperlink that has been visited
previously and is present in the browser’s memory.

. a:hover describes the style of a hyperlink as a user’s mouse hovers
over it (and before it has been clicked).

. a:active describes the style of a hyperlink that is in the act of being
clicked, but has not yet been released.

For example, let’s say you want to produce a link with the following styles:

. A font that is bold and Verdana (and not underlined, meaning it has
no text decoration)

. A base color that is light blue

. A color of red when users hover over it or when they are clicking it

. A color of gray after users have visited it

Your style sheet entries might look like the following:

a {
font-family: Verdana, sans-serif;
font-weight: bold;
text-decoration: none;

}
a:link {

color: #6479A0;
}
a:visited {

color: #CCCCCC;
}
a:hover {

color: #E03A3E;
}
a:active {

color: #E03A3E;
}

Because the sample link will be Verdana bold (and not underlined) regard-
less of the state it is in, those three property and value pairs can reside in
the rule for the a selector. However, because each pseudoclass must have a

NOTE

The colors in this example are
indicated by their hexadecimal
values, which you will learn
about in Chapter 8.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

136 CHAPTER 7 Using External and Internal Links

specific color associated with it, we use a rule for each pseudoclass as
shown in the code example. The pseudoclass inherits the style of the parent
rule, unless the rule for the pseudoclass specifically overrides that rule. In
other words, all the pseudoclasses in the previous example will be Verdana
bold (and not underlined). If, however, we had used the following rule for
the hover pseudoclass, the text would display in Comic Sans when users
hovered over it (if, in fact, the user has the Comic Sans font installed):

a:hover {
font-family: “Comic Sans MS”;
color: #E03A3E;

}

Additionally, because the active and hover pseudoclasses use the same font
color, you can combine style rules for them:

a:hover, a:active {
color: #E03A3E;

}

Listing 7.4 puts these code snippets together to produce a page using
styled pseudoclasses; the results of this code can be seen in Figure 7.5.

LISTING 7.4 Using Styles to Display Link Pseudoclasses
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Sample Link Style</title>

<style type=”text/css”>
a {
font-family: Verdana, sans-serif;
font-weight: bold;
text-decoration: none;
}
a:link {
color: #6479A0;
}
a:visited {
color: #CCCCCC;
}
a:hover, a:active {
color: #FF0000;
}

</style>
</head>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using CSS to Style Hyperlinks 137

<body>
<h1>Sample Link Style</h1>

<p>The first time you see me,
I should be a light blue, bold, non-underlined link in
the Verdana font.</p>

</body>
</html>

LISTING 7.4 Continued

FIGURE 7.5
A link can use particular styles to
control the visual display.

If you view the example in your web browser, indeed the link should be a
light blue, bold, non-underlined Verdana font. If you hover over the link,
or click the link without releasing it, it should turn red. If you click and
release the link, the page will simply reload because the link points to the
file with the same name. However, at that point the link will be in your
browser’s memory and thus will be displayed as a visited link—and it will
appear gray instead of blue.

You can use CSS to apply a wide range of text-related changes to your
links. You can change fonts, sizes, weights, decoration, and so on.
Sometimes you might want several different sets of link styles in your
style sheet. In that case, you can create classes; you aren’t limited to work-
ing with only one set of styles for the <a> tag. The following example is a
set of style sheet rules for a footerlink class for links I might want to
place in the footer area of my website:

a.footerlink {
font-family: Verdana, sans-serif;
font-weight: bold;
font-size: 75%;
text-decoration: none;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

138 CHAPTER 7 Using External and Internal Links

}
a.footerlink:link, a.footerlink:visited {

color: #6479A0;
}
a.footerlink:hover, a.footerlink:active {

color: #E03A3E;
}

As you can see in the example that follows, the class name (footerlink)
appears after the selector name (a), separated by a dot, and before the
pseudoclass name (hover), separated by a colon:

selector.class:pseudoclass
a.footerlink:hover

Summary
The <a> tag is what makes hypertext “hyper.” With it, you can create links
between pages and links to specific anchor points on any page. This chap-
ter focused on creating and styling simple links to other pages using either
relative or absolute addressing to identify the pages.

You learned that when you’re creating links to other people’s pages, it’s
important to include the full Internet address of each page in an <a href>
tag. For links between your own pages, include just the filenames and
enough directory information to get from one page to another.

You discovered how to create named anchor points within a page and how
to create links to a specific anchor. You also learned how to link to your
email address so that users can easily send you messages. You even
learned how to protect your email address from spammers. Finally, you
learned methods for controlling the display of your links using CSS.

Table 7.1 summarizes the <a> tag discussed in this chapter.

TABLE 7.1 HTML Tags and Attributes Covered in Chapter 7

Tag/Attribute Function

<a>... With the href attribute, this creates a link to another
document or anchor; with the id attribute, this creates
an anchor that can be linked to.

Attributes

href=”address” The address of the document or anchor point to link to.

id=”name” The name for this anchor point in the document.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

139Q&A

Q&A
Q. What happens if I link to a page on the Internet, and then the person

who owns that page deletes or moves it?

A. That depends on how the maintainer of that external page has set up
his web server. Usually, you will see a page not found message or
something to that effect when you click a link that has been moved or
deleted. You can still click the Back button to return to your page. As a
site maintainer, you can periodically run link-checking programs to
ensure your internal and external links are valid. An example of this is
the Link Checker service at http://validator.w3.org/checklink.

Q. One of the internal links on my website works fine on my computer,
but when I put the pages on the Internet, the link doesn’t work any-
more. What’s up?

A. These are the most likely culprits:

. Capitalization problems—On Windows computers, linking to a file
named MyFile.html with will work. On
most web servers, the link must be (or
you must change the name of the file to MyFile.html). To make
matters worse, some text editors and file transfer programs actu-
ally change the capitalization without telling you! The best solu-
tion is to stick with all-lowercase filenames for web pages.

. Spaces in filenames—Most web servers don’t allow filenames
with spaces. For example, you should never name a web page
my page.html. Instead, name it mypage.html or even
my_page.html (using an underscore instead of a space).

. Local absolute addresses—If, for some reason, you link to a file
using a local absolute address, such as C:\mywebsite\news.
html, the link won’t work when you place the file on the Internet.
You should never use local absolute addresses; when this
occurs, it is usually an accident caused by a temporary link that
was created to test part of a page. So, be careful to remove any
test links before publishing a page on the Web.

Q. Can I put both href and id in the same <a> tag? Would I want to for
any reason?

A. You can, and it might save you some typing if you have a named anchor
point and a link right next to each other. It’s generally better, however, to
use <a href> and <a id> separately to avoid confusion because they
play very different roles in an HTML document.

Q. What happens if I accidentally misspell the name of an anchor or
forget to put the # in front of it?

A. If you link to an anchor name that doesn’t exist within a page or mis-
spell the anchor name, the link goes to the top of that page.

www.it-ebooks.info

http://validator.w3.org/checklink
http://www.it-ebooks.info/

ptg999

140 CHAPTER 7 Using External and Internal Links

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. Your best friend from elementary school finds you on the Internet and

says he wants to trade home page links. How do you put a link to his
site at www.supercheapsuits.com/~billybob/ on one of your pages?

2. What HTML would you use to make it possible for someone clicking the
words “About the Authors” at the top of a page to skip down to a list of
credits somewhere else on the page?

3. If your email address is bon@soir.com, how would you make the text
“goodnight greeting” into a link that people can click to compose and
send you an email message?

Answers
1. Put the following on your page:

Billy
Bob’s site

2. Type this at the top of the page:

About the Authors

Type this at the beginning of the credits section:

3. Type the following on your web page:

Send me a goodnight greeting!

Exercises
. Create an HTML file consisting of a formatted list of your favorite web-

sites. You might already have these sites bookmarked in your web
browser, in which case you can visit them to find the exact URL in the
browser’s address bar.

. If you have created any pages for a website, look through them and
consider whether there are any places in the text where you’d like to
make it easy for people to contact you. Include a link in that place to
your email address. You can never provide too many opportunities for
people to contact you and tell you what they need or what they think
about your products—especially if you’re running a business.

www.it-ebooks.info

www.supercheapsuits.com/~billybob/
http://www.it-ebooks.info/

ptg999

This list might look long, but each of these tasks is short and sweet, and
will help you move your web development experience from the white
background/black text examples so far in this book to more interesting (or
at least colorful) examples. But that’s not to say that dark text on a light
background is bad—in fact, it’s the most common color combination you’ll
find online.

Although paying attention to color schemes and producing a visually
appealing website is important, you don’t have to be an artist by trade to
put high-impact graphics on your web pages. More importantly, you don’t
need to spend hundreds or thousands of dollars on software, either. This
chapter will help you get started with creating some of the images you can
use in your website. Although the sample figures in this chapter use a pop-
ular and free graphics program for Windows, Mac, and Linux users (GNU
Image Manipulation Program, or GIMP), you can apply the knowledge
learned in this chapter to any major Windows or Macintosh graphics appli-
cation—although the menus and options will look slightly different.

After you learn to create the graphics themselves, you’ll learn how to inte-
grate your graphics using HTML and CSS. At the end of the chapter you’ll
learn a bit about integrating additional media, or multimedia, into your
website.

Best Practices for Choosing Colors
I can’t tell you exactly which colors to use in your website, but I can help
you understand the considerations you should make when selecting those
colors on your own. The colors you use can greatly influence your visitors;
if you are running an e-commerce site, you will want to use colors that

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How to choose colors for
your website that work on
the Web

. How to use CSS to set
background, text, and bor-
der colors

. How to prepare photo-
graphs for use online

. How to create banners and
buttons

. How to reduce the number
of colors in an image

. How to create transparent
images

. How to prepare an image
for a tiled background

. How to place an image on
a web page

. How to describe images
with text

. How to specify image
height and width

. How to align images

. How to use background
images

. How to use imagemaps

. How to use multimedia
files

CHAPTER 8
Working with Colors, Images, and

Multimedia

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

142 CHAPTER 8 Working with Colors, Images, and Multimedia

entice your users to view your catalog and eventually purchase something.
To that end, you want to make sure colors are used judiciously and with
respect. You might wonder how respect enters into the mix when talking
about colors, but remember the World Wide Web is an international com-
munity and interpretations differ; for instance, pink is a very popular color
in Japan, but very unpopular in Eastern European countries. Similarly,
green is the color of money in the United States, but the vast majority of
other countries have multi-colored paper bills such that “the color of
money” isn’t a single color at all and thus the metaphor would be of no
value to them.

Besides using colors that are culturally sensitive, other best practices
include the following:

. Use a natural palette of colors. This doesn’t mean you should use
earth tones, but instead refers to using colors that one would natural-
ly see on a casual stroll around town—avoid ultrabright colors that
can cause eye strain.

. Use a small color palette. You don’t need to use 15 different colors to
achieve your goals. In fact, if your page includes text and images in
15 different colors, you might reevaluate the message you’re attempt-
ing to send. Focus on three or four main colors with a few compli-
mentary colors, at the most.

. Consider your demographics. You are likely not able to control your
demographics and thus have to find a middle ground that accommo-
dates everyone. The colors enjoyed by younger people are not neces-
sarily those appreciated by older people, just as there are color biases
between men and women and people from different geographic
regions and cultures.

With just these few tips in mind, it might seem as if your color options are
limited. Not so—it simply means you should think about the decisions
you’re making before you make them. A search for color theory in the
search engine of your choice should give you more food for thought, as
will the use of the color wheel.

The color wheel is a chart that shows the organization of colors in a circular
manner. The method of display is an attempt to help you visualize the rela-
tionships between primary, secondary, and complementary colors. Color
schemes are developed from working with the color wheel; understanding
color schemes can help you determine the color palette to use consistently
throughout your website. For example, knowing something about color

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Understanding Web Colors 143

relationships will hopefully enable you to avoid using orange text on a
light blue background, or bright blue text on a brown background.

Some common color schemes in web design are as follows:

. Analogous—Colors that are adjacent to each other on the color
wheel, such as yellow and green. One color is the dominant color
and its analogous friend is used to enrich the display.

. Complementary—Colors that are opposite from each other on the
color wheel, such as a warm color (red) and a cool color (green).

. Triadic—Three colors that are equally spaced around the color
wheel. The triadic scheme provides balance while still allowing rich
color use.

There are entire books and courses devoted to understanding color theory,
so continuing the discussion in this book would indeed be a tangent.
However, if you intend to work in web design and development, you will
be served well by a solid understanding of the basics of color theory.
Spend some time reading about it—an online search will provide a wealth
of information.

Additionally, spend some hands-on time with the color wheel. The Color
Scheme Generator at http://colorschemedesigner.com/ enables you to
start with a base color and produce monochromatic, complementary, tri-
adic, tetradic, analogic, and accented analogic color schemes.

Understanding Web Colors
Specifying a background color other than white for a web page is easier
than you probably realize. For example, to specify blue as the background
color for a page, put style=”background-color:blue” inside the <body>
tag or in the style sheet rule for the body element. Of course, you can use
many colors other than blue. In fact, there are 16 colors listed in the W3C
standards: aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive,
purple, red, silver, teal, white, and yellow.

Obviously there are many more colors displayed on the Web than just
those 16. In fact, there are 140 color names that you can use with assurance
that all browsers will display these colors similarly. Here’s a partial list of
the 140 descriptive color names: azure, bisque, cornflowerblue, dark-
salmon, firebrick, honeydew, lemonchiffon, papayawhip, peachpuff, sad-
dlebrown, thistle, tomato, wheat, and whitesmoke.

NOTE

For a complete list of the 140
descriptive color names, their
hexadecimal codes, and an
example of the color as dis-
played by your browser, visit
http://www.w3schools.com/
HTML/html_colornames.asp.

www.it-ebooks.info

http://colorschemedesigner.com/
http://www.w3schools.com/HTML/html_colornames.asp
http://www.w3schools.com/HTML/html_colornames.asp
http://www.it-ebooks.info/

ptg999

144 CHAPTER 8 Working with Colors, Images, and Multimedia

But names are subjective—for instance, if you look at the color chart of 140
cross-browser color names, you will not be able to distinguish between
fuchsia and magenta. You will then realize that the associated hexadecimal
color values for those two terms, fuchsia and magenta, are exactly the
same: #FF00FF. You’ll learn about hexadecimal color values in the next sec-
tion, but for now, know that if you want to be standards-compliant and
use more than the 16 color names the W3C standards dictate, you should
use the hexadecimal color codes whenever possible.

There are, in fact, 16 million colors made possible with hexadecimal color
codes. However, most modern computer displays can display “only”
16,384. But 16,384 is still a lot more than 140, or 16.

You should be aware that not all computer monitors display colors in the
same hues. What might appear as a beautiful light blue background color
on your monitor might be more of a purple hue on another user’s monitor.
Neutral, earth-tone colors (such as medium gray, tan, and ivory) can pro-
duce even more unpredictable results on many computer monitors. These
colors might even seem to change color on one monitor depending on
lighting conditions in the room or the time of day.

In addition to changing the background of your pages to a color other than
white, you can change the color of text links, including various properties
of links (such as the color for when a user hovers over a link versus when
the user clicks a link—as you learned in previous chapters). You can also
set the background color of container elements (such as paragraphs, divs,
blockquotes, and table cells), and you can use colors to specify the borders
around those elements. You’ll see some examples of colors and container
elements later in this chapter.

There are plenty of very bad websites, some created by earnest people with
no trace of irony whatsoever. However, “The World’s Worst Website”
shown in Figure 8.1 was purposefully created to show some of the more
egregious sins of website design, especially with its use of colors. A screen-
shot does not do it justice—visit and experience the site for yourself at
http://www.angelfire.com/super/badwebs/main.htm.

If you search for bad website examples in your search engine, you will find
many sites that collect examples of bad design and explain just why such a
site should be in a Hall of Shame rather than a Hall of Fame. Many sites are
considered bad because of their visual displays, and that display begins
with color selection. Therefore, understanding colors, as well as the nuances
of their specification and use, is a crucial step to creating a good website.

TIP

It’s worth pointing out that color
names are not case-sensitive.
So, Black, black, and BLACK
are all black, although most
web designers stick with lower-
case or mixed case (if they use
color names at all, as most
designers will use the hexadeci-
mal notation for a more
nuanced approach to color
use).

www.it-ebooks.info

http://www.angelfire.com/super/badwebs/main.htm
http://www.it-ebooks.info/

ptg999

Using Hexadecimal Values for Colors 145

Using Hexadecimal Values for Colors
To remain standards-compliant, as well as to retain precise control over the
colors in your website, you can reference colors by their hexadecimal
value. The hexadecimal value of a color is an indication of how much red,
green, and blue light should be mixed into each color. It works a little bit
like Play-Doh—just mix in the amounts of red, blue, and green you want
to get the appropriate color.

The hexadecimal color format is #rrggbb, in which rr, gg, and bb are two-
digit hexadecimal values for the red (rr), green (gg), and blue (bb) compo-
nents of the color. If you’re not familiar with hexadecimal numbers, don’t
sweat it. Just remember that FF is the maximum and 00 is the minimum.
Use one of the following codes for each component:

. FF means full brightness.

. CC means 80% brightness.

. 99 means 60% brightness.

. 66 means 40% brightness.

. 33 means 20% brightness.

. 00 means none of this color component.

FIGURE 8.1
A partial screenshot of “The
World’s Worst Website.”

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

146 CHAPTER 8 Working with Colors, Images, and Multimedia

For example, bright red is #FF0000, dark green is #003300, bluish-purple is
#660099, and medium-gray is #999999. To make a page with a red back-
ground and dark green text, the HTML code would look like the following:

<body style=”background-color:#FF0000; color:#003300”>

Although only six examples of two-digit hexadecimal values are shown
here, there are actually 225 combinations of two-digit hexadecimal values—
0 through 9 and A through F, paired up. For example, F0 is a possible hex
value (decimal value 240), 62 is a possible hex value (decimal value 98), and
so on.

As previously discussed, the rr, gg, and bb in the #rrggbb hexadecimal color
code format stand for the red, green, and blue components of the color. Each
of those components has a decimal value ranging from 0 (no color) to 255
(full color).

So, white (or #FFFFFF) translates to a red value of 255, a green value of
255, and a blue value of 255. Similarly, black (#000000) translates to a red
value of 0, a green value of 0, and a blue value of 0. True red is #FF0000
(all red, no green, and no blue), true green is #00FF00 (no red, all green, no
blue), and true blue is #0000FF (no red, no green, and all blue). All other
hexadecimal notations translate to some variation of the 255 possible val-
ues for each of the three colors. The cross-browser compatible color name
cornflowerblue is associated with the hexadecimal notation #6495ED—a
red value of 40, a green value of 149, and a blue value of 237 (almost all of
the available blue values).

When picking colors, either through a graphics program or by finding
something online that you like, you might see the color notion in hexadeci-
mal or decimal. If you type hexadecimal color converter in your search
engine, you will find numerous options to help you convert color values
into something you can use in your style sheets.

Using CSS to Set Background, Text,
and Border Colors
When using CSS, there are three instances in which color values can be
used: when specifying the background color, the text color, or the border
color of elements. Previous chapters contained examples of specifying col-
ors without going in great detail about color notion or color theory. For
example, in Chapter 7, “Using External and Internal Links,” you learned
about using colors for various link states.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using CSS to Set Background, Text, and Border Colors 147

Figure 8.2 shows an example of color usage that could easily go into a web
design Hall of Shame. I can’t imagine ever using these combinations of col-
ors and styles in a serious website, but it serves here as an example of how
color style could be applied to various elements.

FIGURE 8.2
Background, text, and border col-
ors can all be set using CSS.

Listing 8.1 shows the XHTML and CSS styles used to produce Figure 8.2.

LISTING 8.1 Using Styles to Produce Background, Text, and Border
Colors
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Background, Text, and Border Colors</title>

</head>

<body>
<h1>Background, Text, and Border Colors</h1>

<p style=”background-color:#CCCCCC;
border:1px solid #000000; color:#FF0000”>
Grey paragraph, black border, red text with a
orange span.</p>

<div style=”width:300px; height:75px; margin-bottom: 12px;
background-color:#000000; border:2px dashed #FF0000;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

148 CHAPTER 8 Working with Colors, Images, and Multimedia

color: #FFFFFF”>
Black div, red border, white text. </div>

<table border=”1”>
<tr>
<td style=”background-color: #00FF00”>Green Table Cell</td>
<td style=”background-color: #FF0000”>Red Table Cell</td>
</tr>
<tr>
<td style=”background-color: #FFFF00”>Blue Table Cell</td>
<td style=”background-color: #0000FF”>Yellow Table Cell</td>
</tr>
</table>

<blockquote style=”background-color:#0000FF;
border:4px dotted #FFFF00; color:#FFFFFF”><p>Blue blockquote,
yellow border, white text.</p></blockquote>

</body>
</html>

Looking at the styles used in Listing 8.1, you should be able to figure out
almost everything except some of the border styles. In CSS, borders can’t
be designated as a color without also having a width and type; in the first
example shown in Listing 8.1, the border width is 1px, and the border type
is solid. In the second example shown in Listing 8.1, the border width is
2px, and the border type is dashed. In the fourth example shown in Listing
8.1, the border width is 4px, and the border type is dotted.

When picking colors for your website, remember that a little bit goes a
long way—if you really like a bright and spectacular color, use it as an
accent color and not throughout the primary design elements. For readabil-
ity, remember that light backgrounds with dark text are much easier to
read than dark backgrounds with light text.

Finally, consider the not-insignificant portion of your audience that might
be color blind. For accessibility, you might consider using the Colorblind
Web Page Filter tool at http://colorfilter.wickline.org/ to see what your
site will look like to a person with color blindness.

Choosing Graphics Software
Selecting an overall color scheme for your website is one thing; creating or
editing images to go into those templates are quite another—and beyond
the scope of this book (or a single book, for that matter). However, in the

LISTING 8.1 Continued

NOTE

Adobe Photoshop is without a
doubt the cream of the crop
when it comes to image-editing
programs. However, it is expen-
sive and quite complex if you
don’t have experience working
with computer graphics. For more
information on Adobe’s products,
visit the Adobe website at
http://www.adobe.com/. If you
are in the market for one of their
products, you can download a
free evaluation version from their
site.

www.it-ebooks.info

http://colorfilter.wickline.org/
http://www.adobe.com/
http://www.it-ebooks.info/

ptg999

The Least You Need to Know About Graphics 149

sections that follow, you’ll learn a few of the basic actions that anyone
maintaining a website should quickly master.

You can use almost any graphics program to create and edit images for
your website, from the simple paint program that typically comes free with
your computer’s operating system to an expensive professional program
such as Adobe Photoshop. Similarly, if you have a digital camera or scanner
attached to your computer, it probably came with some graphics software
capable of creating web page graphics. There are also several free image
editors available for download—or even online as a web application—that
deal just with the manipulation of photographic elements.

If you already have software you think might be good for creating web
graphics, try using it to do everything described in these next sections. If
your software can’t do some of the tasks covered here, it probably won’t be
a good tool for web graphics. In that case, download and install GIMP
from http://www.gimp.org. This fully functional graphics program is
completely free and is used to perform the actions shown in this chapter.

If GIMP doesn’t suit you, consider downloading the evaluation version of
Adobe Photoshop or Corel DRAW. For photo manipulation only, there are
many free options, all with helpful features. Google’s Picasa, which is
available free at http://picasa.google.com/, is one such option. Picnik
(http://www.picnik.com/) is another. Both of these programs are suited
for editing images rather than creating them from scratch, and Picasa is
also oriented toward organizing your digital photograph collection. As
such, these types of programs are not necessarily going to help you design
a banner or button image for your site. However, these programs can help
you work with some supplementary images, and they are powerful
enough that they are worth checking out.

The Least You Need to Know About
Graphics
Two forces are always at odds when you post graphics and multimedia on
the Internet. The users’ eyes and ears want all your content to be as
detailed and accurate as possible, and they also want that information dis-
played immediately. Intricate, colorful graphics mean big file sizes, which
increase the transfer time even over a fast connection. How do you maxi-
mize the quality of your presentation while minimizing file size? To make
these choices, you need to understand how color and resolution work
together to create a subjective sense of quality.

Using Another Site’s
Material
One of the best ways to save time
creating the graphics and media
files for web pages is, of course,
to avoid creating them altogether.
Grabbing a graphic from any web
page is as simple as right-clicking
it (or clicking and holding the but-
ton on a Macintosh mouse) and
selecting Save Image As or Save
Picture As (depending on your
browser). Extracting a background
image from a page is just as
easy: Right-click it and select Save
Background As.

However, you should never use
images without the explicit per-
mission of the owner, either by
asking them or by looking for a
Creative Commons license. To
take images without explicit per-
mission is a copyright violation
(and is also distasteful). To learn
more about copyrights, visit
http://www.utsystem.edu/OGC/
IntellectualProperty/cprtindx.htm.

You might also want to consider
royalty-free clip art, which doesn’t
require you to get copyright per-
mission. A good source of clip
art online is Microsoft’s Office
Online Clip Art and Media web-
site, which is located at
http://office.microsoft.com/
clipart/. Barry’s Clipart Server is
another popular clip art destina-
tion, and it’s located at
http://www.barrysclipart.com/.

www.it-ebooks.info

http://www.gimp.org
http://picasa.google.com/
http://www.picnik.com/
http://www.utsystem.edu/OGC/IntellectualProperty/cprtindx.htm
http://www.utsystem.edu/OGC/IntellectualProperty/cprtindx.htm
http://office.microsoft.com/clipart/
http://office.microsoft.com/clipart/
http://www.barrysclipart.com/
http://www.it-ebooks.info/

ptg999

150 CHAPTER 8 Working with Colors, Images, and Multimedia

The resolution of an image is the number of individual dots, or pixels, that
make up an image. Large, high-resolution images generally take longer to
transfer and display than small, low-resolution images. Resolution is usu-
ally specified as the width times the height of the image, expressed in pix-
els; a 300×200 image, for example, is 300 pixels wide and 200 pixels high.

You might be surprised to find that resolution isn’t the most significant fac-
tor determining an image file’s storage size (and transfer time). This is
because images used on web pages are always stored and transferred in
compressed form. Image compression is the mathematical manipulation
that images are put through to squeeze out repetitive patterns. The mathe-
matics of image compression is complex, but the basic idea is that repeat-
ing patterns or large areas of the same color can be squeezed out when the
image is stored on a disk. This makes the image file much smaller and
allows it to be transferred faster over the Internet. The web browser then
restores the original appearance of the image when the image is displayed.

In the sections that follow, you’ll learn how to create graphics with big
visual impact but small file sizes. The techniques you’ll use to accomplish
this depend on the contents and purpose of each image. There are as many
uses for web graphics as there are web pages, but four types of graphics
are by far the most common:

. Photos of people, products, or places

. Graphical banners and logos

. Buttons or icons to indicate actions and provide links

. Background textures for container elements

Preparing Photographic Images
To put photos on your web pages, you need to convert your print-based
photos to digital images or create photos digitally by using a digital cam-
era. You might need to use the custom software that comes with your scan-
ner or camera to save pictures onto your hard drive, or you can just drag
and drop files from your camera to your hard drive. If you are using a
scanner to create digital versions of your print photos, you can control just
about any scanner directly from the graphics program of your choice—see
the software documentation for details.

NOTE

There are several types of
image resolution, including
pixel, spatial, spectral, tempo-
ral, and radiometric. You could
spend hours just learning about
each type; and if you were tak-
ing a graphics design class, you
might do just that. For now,
however, all you need to remem-
ber is that large images take
longer to download and also
use a lot of space in your dis-
play. Display size and storage
or transfer size are factors you
should take into consideration
when designing your website.

TIP

If you don’t have a scanner or
digital camera, almost all film
developers offer a service that
transfers photos from 35mm
film to a CD-ROM or DVD-ROM
for a modest fee. You can then
copy the files from the CD-ROM
or DVD-ROM to your hard drive,
and then use your graphics pro-
gram to open and modify the
image files.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Preparing Photographic Images 151

After you transfer the digital image files to your computer, you can use
your graphics program to crop, resize, color-correct, and compress to get
them ready for use in your website.

Cropping an Image
Because you want web page graphics to be as compact as possible, you’ll
usually need to crop your digital photos. When you crop a photo, you
select the area you want to display, and you crop away the rest.

Cropping in GIMP
The GIMP toolbox offers quick access to the crop tool and its possible attrib-
utes. Find an image file—either a digital image you have taken with your cam-
era and stored on your hard drive or an image you have found online. After
opening the image in GIMP, perform the following steps to crop it in GIMP:

1. In the GIMP toolbox, click the crop tool (see Figure 8.3). Depending on
the tool you select, there might be additional attributes you can select.
For example, Figure 8.3 shows the attributes for the cropping tool (such
as the aspect ratio, position, size, and so on).

TRY IT YOURSELF ▼

FIGURE 8.3
Select the crop tool from the
toolbox.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

152 CHAPTER 8 Working with Colors, Images, and Multimedia

3. Click one of the corners of the selection to apply the cropping.

Your graphics program will likely have a different method than the one shown, but
the concept is the same: select the area to keep, and then crop out the rest.

TRY IT YOURSELF▼

Cropping in GIMP
continued

2. In the image you want to crop, draw a box around the selection by click-
ing the upper-left corner of the portion of the image you want to keep
and holding the left mouse button while you drag down to the lower-
right corner (see Figure 8.4).

FIGURE 8.4
Select the area of the image
that you want to display.

Even after your image has been cropped, it might be larger than it needs to
be for a web page. Depending on the design of a specific web page, you
might want to limit large images to no more than 800×600 pixels (if it is
shown on a page by itself, such as an item catalog) or even 640×480 pixels
or smaller. When shown alongside text, images tend to be in the 250 to 350
pixel range for width, so there’s just enough room for the text as well. In
some cases, you might want to also provide a thumbnail version of the
image that links to a larger version, in which case you’ll probably stick
closer to 100 pixels in the larger dimension for the thumbnail.

TIP
Your graphics software will likely
have an omnipresent size dis-
play somewhere in the image
window itself. In GIMP, the cur-
rent image size can be seen in
the top of the window. Other
programs might show it in the
lower-right or lower-left corner.
You might also see the magnifi-
cation ratio in the window and
the ability to change it (by
zooming in or zooming out).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Preparing Photographic Images 153

Resizing an Image
The exact tool necessary to change an image’s size will depend on the pro-
gram you are using. In GIMP, go to the Image menu and click Scale Image
to open the Scale Image dialog box (see Figure 8.5).

FIGURE 8.5
Use the Scale Image dialog box to
change the size of an image.

You’ll almost always want to resize using the existing aspect ratio, meaning
that when you enter the width you’d like the image to be, the height will be
calculated automatically (and vice versa) to keep the image from squishing
out of shape. In GIMP, the aspect ratio is locked by default, as indicated by
the chain link displayed next to the Width and Height options shown in
Figure 8.5. Clicking once on the chain will unlock it, enabling you to specify
pixel widths and heights of your own choosing—squished or not.

In most, if not all, graphics programs, you can also resize the image based
on percentages instead of providing specific pixel dimensions. For exam-
ple, if my image started out as 1629×1487, and I didn’t want to do the math
to determine the values necessary to show it as half that width, I could
simply select Percent (in this instance from the drop-down next to the pixel
display shown in Figure 8.5) and change the default setting (100) to 50. The
image width would then become 815 pixels wide by 744 high—and no
math was necessary on my part.

Tweaking Image Colors
If you are editing photographic images rather than creating your own
graphics, you might need to use some color-correction tools to get the

NOTE

As with many of the features in
GIMP, the Scale Image dialog
box appears in front of the win-
dow containing the image being
resized. This placement enables
you to make changes in the dia-
log box, apply them, and see
the results immediately.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

154 CHAPTER 8 Working with Colors, Images, and Multimedia

photo just right. Like many image editing programs, GIMP offers several
options for adjusting an image’s brightness, contrast, and color balance, as
well as a filter to reduce the dreaded red-eye. To remove red-eye using
GIMP, go to Filters, click Enhance, and then click Red Eye Removal.

Most of these options are pretty intuitive. If you want the image to be
brighter, adjust the brightness. If you want more red in your image, adjust
the color balance. In GIMP, the Colors menu gives you access to numerous
tools. As with the Scale Image dialog box described in the previous section,
each tool displays a dialog box in the foreground of your workspace. As
you adjust the colors, the image reflects those changes. This preview func-
tion is a feature included in most image editing software.

Figure 8.6 shows the Adjust Hue/Lightness/Saturation tool, one of the
many tools provided on the Colors menu. As shown in the figure, many
color-related changes occur by using various sliders in dialog boxes to
adjust the values you are working with. The Preview feature enables you
to see what you are doing as you are doing it. The Reset Color button
returns the image to its original state without any changes applied.

FIGURE 8.6
The Adjust Hue/Lightness/
Saturation tool is one of many
slider-based color modification
tools available in GIMP.

Because of the numerous tools available to you and the preview function
available with each tool, a little playful experimentation is the best way to
find out what each tool does.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating Banners and Buttons 155

Controlling JPEG Compression
Photographic images on the Web work best when saved in the JPEG file
format rather than GIF; JPEG enables you to retain the number of colors in
the file while still keeping the overall file size to a manageable level. When
you’re finished adjusting the size and appearance of your photo, select
File, Save As and choose JPEG as the file type. Your graphics program will
likely provide you with another dialog box through which you can control
various JPEG options, such as compression.

Figure 8.7 shows the Save as JPEG dialog box you’ll see when you save a
JPEG in GIMP. You can see here that you can control the compression ratio
for saving JPEG files by adjusting the Quality slider between 1 (low quali-
ty, small file size) and 100 (high quality, large file size).

FIGURE 8.7
GIMP enables you to reduce file
size while still retaining image
quality by saving in the JPEG
format.

You might want to experiment a bit to see how various JPEG compression
levels affect the quality of your images, but 85% quality (or 15% compres-
sion) is generally a good compromise between file size (and therefore
download speed) and quality for most photographic images.

Creating Banners and Buttons
Graphics that you create from scratch, such as banners and buttons,
require you to make considerations uniquely different from photographs.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

156 CHAPTER 8 Working with Colors, Images, and Multimedia

The first decision you need to make when you produce a banner or button
is how big it should be. Most people accessing the web now have a com-
puter with a screen that is at least 1024×768 pixels in resolution, if not con-
siderably larger. For example, my screen is currently set at 1440×900 pixels.
You should generally plan your graphics so that they will always fit within
smaller screens (1024×768), with room to spare for scrollbars and margins.
The crucial size constraint is the horizontal width of your pages because
scrolling a page horizontally is a huge hassle and a source of confusion for
web users. Vertically scrolling a page is much more acceptable, so it’s okay
if your pages are taller than the minimum screen sizes.

Assuming that you target a minimum resolution of 800×600 pixels, full-sized
banners and title graphics should be no more than 770 pixels wide by 430
pixels tall, which is the maximum viewable area of the page after you’ve
accounted for scrollbars, toolbars, and other parts of the browser window.
Within a page, normal photos and artwork should be from 100 to 300 pixels
in each dimension, and smaller buttons and icons should be 20 to 100 pixels
tall and wide. Obviously, if you design for the 1024×768 resolution, you have
more screen “real estate” to work with, but the size guidelines for banners,
buttons, and other supplementary graphics are still in effect.

To create a new image in GIMP, go to File and choose New. The Create a
New Image dialog box displays (see Figure 8.8). If you aren’t sure how big
the image needs to be, just accept the default size of a 640×480. Or you can
choose one of the other pre-determined sizes in the Template drop-down,
such as Web banner common 468×60 or Web banner huge 728×90. Those
two settings are indeed considered “common” and “huge” for website
banners. Otherwise, enter the width and height of the new image.

For the image’s background color, you should usually choose white to
match the background that most web browsers use for web pages
(although as you learned in the previous chapter, that color can be
changed). When you know that you’ll be creating a page with a back-
ground other than white, you can choose a different background color for
your image. Or you might want to create an image with no background at
all, in which case you’ll select Transparency as the background color. When
an image’s background is transparent, the web page behind the image is
allowed to show through those areas of the image. In GIMP, select the
background color for your new image by opening the Advanced Options
in the Create a New Image dialog box.

TIP
For many years, designing for
800×600 screen resolution has
been the norm. Still keep that
low number in mind, as many
people do not open applica-
tions in full-screen mode.
However, designing for a base-
line 1,024×768 screen resolu-
tion is not a bad idea.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Reducing the Number of Colors in an Image 157

When you enter the width and height of the image in pixels and click OK,
you are faced with a blank canvas—an intimidating sight if you’re as art-
phobic as most of us! However, because there are so many image creation
tutorials (not to mention entire books) available to lead you through the
process, I am comfortable leaving you to your own creative devices. This
section is all about introducing you to the things you want to keep in mind
when creating graphics for use in your sites. This section does not neces-
sarily teach you exactly how to do it because being comfortable with the
tool you choose is the first step to mastering them.

Reducing the Number of Colors in
an Image
One of the most effective ways to reduce the size of, and therefore the
download time for, an image is to reduce the number of colors used in the
image. This can drastically reduce the visual quality of some photographic
images, but it works great for most banners, buttons, and other icons.

You’ll be glad to know that there is a special file format for images with a
limited number of colors; it’s called the Graphics Interchange Format
(GIF). When you save an image as a GIF, you might be prompted to flatten
layers or reduce the number of colors by converting to an indexed image,

FIGURE 8.8
You need to decide on the size of
an image before you start working
on it.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

158 CHAPTER 8 Working with Colors, Images, and Multimedia

as those are requirements for GIFs, as shown in Figure 8.9. The dialog box
will simply ask you to confirm these changes that the save process will do
for you—do not concern yourself with understanding these options at this
time, but read your software’s help file regarding layers and indexed col-
ors for a full understanding.

TIP

Dithering is a technique used
by image-editing programs to
simulate a color that isn’t in
the color palette with alternat-
ing pixels of two similar colors.
For example, a dithered pink
color would consist of alternat-
ing pixels of red and white pix-
els, which would give the gener-
al impression of pink. Dithering
can make images look better in
some cases, but it should usu-
ally be avoided for web page
graphics. Why? It substantially
increases the information com-
plexity of an image, and that
usually results in much larger
file sizes and slower down-
loads.

FIGURE 8.9
When saving an image as a GIF, you might be prompted to convert it to an indexed
color palette.

Remember, the GIF image format is designed for images that contain areas
of solid colors, such as web page titles and other illustrated graphics; the
GIF format is not ideal for photographs.

PNG (pronounced “ping”) is another useful file format that is supported in
all major web browsers. Although the GIF image format enables you to speci-
fy a single transparent color, which means that the background of the web
page will show through those areas of an image, the PNG format takes things
a step further by enabling you to specify varying degrees of transparency.

Working with Transparent Images
You might have seen websites that use background colors or images in
their container elements, but also have images present in the foreground
that allow the background to show through parts of the foreground graph-
ics. In these cases, the images in the foreground have portions which are
transparent, so that the images themselves—which are always on a rectan-
gular canvas—do not show the areas of the canvas in which the design
does not occur. You’ll often want to use these types of partially transparent
images to make graphics look good over any background color or back-
ground image you might have in place.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating Tiled Backgrounds 159

To make part of an image transparent, the image must be saved in the GIF
or PNG file format. As mentioned previously in this chapter, most graphics
programs that support the GIF format enable you to specify one color to be
transparent, whereas PNG images allow for a range of transparency.
Largely because of this transparency range, the PNG format is superior to
GIF. All the latest web browsers already support PNG images. For more
information on the PNG image format, visit http://www.libpng.org/
pub/png/pngintro.html.

The process of creating a transparent image depends on the type of image
you are creating (GIF or PNG) and the graphics software you are using to
create it. For instructions, look in your graphics program’s help files or type
transparent images with [your program here] into your search engine.

Creating Tiled Backgrounds
Any GIF or JPEG image can be used as a background tile within a contain-
er element. However, before you go off and create a tiled background,
especially a highly patterned tiled background, ask yourself what that tiled
background adds to the overall look and feel of your website, and—more
importantly—ask yourself if the text of the site can be read easily when
placed over that pattern.

Think about the websites you frequent every day and consider the fact that
few use tiled, patterned backgrounds on their entire page. If you restrict
your browsing to websites for companies, products, sports teams, or other
sites in which information (primarily text) is privileged, the number of
sites with tiled, patterned backgrounds will decrease even further.
Although the Web affords everyone the right of individuality in design, if
you are creating a site for your business, you might want to avoid a highly
patterned background with contrasting colored text.

If you do use a tiled, patterned background image for your entire site,
remember that tiled images look best when you can’t tell they’re tiled
images. In other words, you know you have a good image when the top
edge of a background tile matches seamlessly with the bottom edge, and
the left edge matches with the right.

Figures 8.10 and 8.11 show background tiles in use, both with seamless
background, but with varying degrees of effectiveness.

www.it-ebooks.info

http://www.libpng.org/pub/png/pngintro.html
http://www.libpng.org/pub/png/pngintro.html
http://www.it-ebooks.info/

ptg999

160 CHAPTER 8 Working with Colors, Images, and Multimedia

Further on in this chapter, you’ll learn how to place background images
within your container elements. Despite my warnings in this section, there
are actually times when background images can be powerful weapons in
your design arsenal—just not when used as entire page backgrounds.

Creating Animated Web Graphics
The GIF image format enables you to create animated images that can be
used to add some motion that will spice up any web page. Animated GIF

FIGURE 8.10
This is an example of a seamless
background image whereby you
can tell the background is tiled
because you can see six identical
shapes.

FIGURE 8.11
This is also an example of a seam-
less background image, only you
can’t tell that it is tiled.

TIP

If you really want to use a back-
ground tile but you just cannot
seem to get the pattern you
want, you can check out some
of the hundreds of sites on the
Internet offering public-domain
background images that are
free or inexpensive, yet profes-
sionally designed.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Placing Images on a Web Page 161

images also transfer much faster than most of the video or multimedia files
that are often used for similar effect. With GIMP, you can create animated
GIFs by creating multiple layers within an image, and then modifying the
Animated GIF options when saving the file. Additionally, if you have a
series of images you want to animate, you can use the free, web-based GIF
animation service at Gickr (http://www.gickr.com/).

The first step in creating a GIF animation is to create a series of images to be
displayed one after the other—or a series of layers, depending on your partic-
ular software program. Each of these images is called a frame. By the way, this
use of the word frame has nothing whatsoever to do with the frames you’ll
learn about in Chapter 20, “Using Windows and Frames.” Instead, think of
the frames like how movies or cartoons are put together—the images that
you see on the screen are made up of many individual frames with slight dif-
ferences in their appearance. After you have your frames in mind, the process
of tying them together is relatively simple—it’s the planning stage that’s the
most difficult. Take some time to sketch out the frames in storyboard fashion,
especially if you plan to have more than just a few frames. After you know
how your frames are going to fit together, use the Gickr service mentioned
earlier in this section, or read the documentation for your graphics software
to learn its particular process for pulling it all together.

Preparing Images for
Use in Your Website

You should get two or three images ready now so that you can try putting
them on your own pages as you follow along the rest of this chapter. If you
have some image files already saved in the GIF, PNG, or JPEG format (the file-
names will end in .gif, .png, or .jpg), use those. It’s also fine to use any graph-
ics you created while reading the preceding section.

Search engines (such as Google) can become a gold mine of images by leading
you to sites related to your own theme. Search engines can also help you discov-
er the oodles of sites specifically dedicated to providing free and cheap access
to reusable media collections. Also, don’t forget Microsoft’s massive clip art
library at the Office Online Clip Art and Media website, located at http://office.
microsoft.com/clipart/. Other valuable sources include Google Images
(http://images.google.com/) and Flickr (http://www.flickr.com)—look for images
using Creative Commons licenses that allow for free use with attribution.

TRY IT YOURSELF ▼

Placing Images on a Web Page
To put an image on a web page, first move the image file into the same fold-
er as the HTML file or in a directory named images for easy organization.

www.it-ebooks.info

http://www.gickr.com/
http://office.microsoft.com/clipart/
http://office.microsoft.com/clipart/
http://images.google.com/
http://www.flickr.com
http://www.it-ebooks.info/

ptg999

162 CHAPTER 8 Working with Colors, Images, and Multimedia

Insert the following HTML tag at the point in the text where you want the
image to appear. Use the name of your image file instead of myimage.gif:

If your image file were in the images directory below the document root,
you would use the following:

Both the src and the alt attributes of the tag are required in
XHTML web pages. The src attribute identifies the image file, and the alt
attribute enables you to specify descriptive text about the image, the latter
of which is intended to serve as an alternative to the image in the event
that a user is unable to view the image. You’ll read more on the alt attrib-
ute later, in the section “Describing Images with Text.”

As an example of how to use the tag, Listing 8.2 inserts an image
at the top of the page, before a paragraph of text. Whenever a web browser
displays the HTML file in Listing 8.2, it automatically retrieves and dis-
plays the image file, as shown in Figure 8.12.

LISTING 8.2 Using the Tag to Place Images on a Web Page
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>A Spectacular Yosemite View</title>
</head>

<body>
<h1>A Spectacular Yosemite View</h1>
<p></p>
<p>Half Dome is a granite dome in Yosemite National

➥Park,
located in northeastern Mariposa County, California, at the eastern
end of Yosemite Valley. The granite crest rises more than 4,737 ft
(1,444 m) above the valley floor.</p>
<p>This particular view is of Half Dome as seen from Washburn

Point.</p>
</body>
</html>

NOTE

It doesn’t matter to the web
server, web browser, or end
user where you put your
images, as long as you know
where they are and as long as
you use the correct paths in
your HTML code.

NOTE

The tag also supports
a title attribute that is used
to describe an image. Unlike
the alt attribute, the title
attribute is truly intended to
provide an image description
with the assumption that the
image is visible. The alt attrib-
ute serves a more important
purpose and is put into play pri-
marily when an image cannot
be displayed, such as when a
blind user is “viewing” a page
using supplementary screen-
reading software. The alt
attribute is required, but it’s a
good idea to provide both alt
and title attributes if you want
to ensure that your images are
all well-described.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Describing Images with Text 163

If you guessed that img stands for image, you’re right. And src stands for
source, which is a reference to the location of the image file. As discussed at
the beginning of this book, an image is always stored in a file separate
from the text, even though it appears to be part of the same page when
viewed in a browser.

Just as with the <a href> tag used for hyperlinks, you can specify any
complete Internet address in the src attribute of the tag.
Alternatively, if an image is located in the same folder as the HTML file,
you can specify just the filename. You can also use relative addresses, such
as /images/birdy.jpg or ../smiley.gif.

Describing Images with Text
Each tag in Listing 8.2 includes a short text message, such as
alt=”Half Dome”. The alt stands for alternate text, which is the message
that appears in place of the image itself if it does not load. An image might
not load if its address is incorrect, if the user has turned off automatic
image downloading in her web browser preferences, or if the Internet con-
nection is very slow and the data has yet to transfer. Figure 8.13 shows an
example of alt text used in place of an image.

FIGURE 8.12
When a web browser displays the
HTML code shown in Listing 8.2, it
renders the hd.jpg image.

NOTE
Theoretically, you can include
an image from any website with-
in your own pages. In those
cases, the image is retrieved
from the other page’s web serv-
er whenever your page is dis-
played. You could do this, but
you shouldn’t! Not only is it bad
manners because you are using
the other person’s bandwidth
for your own personal gain, it
also can make your pages dis-
play more slowly. You also have
no way of controlling when the
image might be changed or
deleted.

If you are granted permission to
republish an image from anoth-
er web page, always transfer a
copy of that image to your com-
puter and use a local file refer-
ence, such as <img src=

”myimage.jpg” /> instead of
<img src=”http://www.
otherserver.com/theirimage.

jpg” />. This advice is not
applicable, however, when you
host your images—such as
photographs—at a service
specifically meant as an image
repository, such as Flickr
(http://
www.flickr.com/). Services like
Flickr provide you with a URL for
each image, and each URL
includes Flickr’s domain in the
address.

www.it-ebooks.info

http://www.flickr.com/
http://www.flickr.com/
http://www.it-ebooks.info/

ptg999

164 CHAPTER 8 Working with Colors, Images, and Multimedia

Even when graphics have fully loaded and are visible in the web browser,
the alt message typically appears in a little box (known as a tool tip) when-
ever the mouse pointer passes over an image. The alt message also helps
any user who is visually impaired (or is using a voice-based interface to
read the web page).

You must include a suitable alt attribute in every tag on your web
page, keeping in mind the variety of situations in which people might see
that message. A brief description of the image is usually best, but web page
authors sometimes put short advertising messages or subtle humor in their
alt messages; too much humor and not enough information is frowned
upon, however. For small or unimportant images, it’s tempting to omit the
alt message altogether, but it is a required attribute of the tag.
This doesn’t mean your page won’t display properly, but it does mean
you’ll be in violation of the latest XHTML standards. I recommend assign-
ing an empty text message to alt if you absolutely don’t need it (alt=””),
which is sometimes the case with small or decorative images.

The title attribute is not required by the tag, but it functions
similarly to the alt attribute; in fact, the title attribute supersedes the
alt attribute for tool tips if both attributes are present. Knowing this, the
best approach for describing images via text is to use both the alt attribute
and the title attribute to provide relevant notation or helpful hints about
the image that you think might be useful when viewed as a tool tip or via
screen reader software.

FIGURE 8.13
Users will see alt messages
when images do not appear.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Aligning Images 165

Specifying Image Height and Width
Because text moves over the Internet much faster than graphics, most web
browsers display the text on a page before they display images. This gives
users something to read while they’re waiting to see the pictures, which
makes the whole page seem to load faster.

You can make sure that everything on your page appears as quickly as
possible and in the right places by explicitly stating each image’s height
and width. That way, a web browser can immediately and accurately make
room for each image as it lays out the page and while it waits for the
images to finish transferring.

For each image you want to include in your site, you can use your graph-
ics program to determine its exact height and width in pixels. You might
also be able to find these image properties by using system tools. For
example, in Windows, you can see an image’s height and width by right-
clicking on the image, selecting Properties, and then selecting Details. After
you know the height and width of an image, you can include its dimen-
sions in the tag, like this:

Aligning Images
Just as you can align text on a page, you can align images on the page
using special attributes. Not only can you align images horizontally, you
also can align them vertically with respect to text and other images that
surround them.

Horizontal Image Alignment
As discussed in Chapter 5, “Working with Fonts, Text Blocks, and Lists,”
you can use <div style=”text-align:center”>, <div style=”text-
align:right”> and <div style=”text-align:left”> to align an element
to the center, to the right margin, or to the left margin. These style settings
affect both text and images and can be used within the <p> tag as well.

Like text, images are normally lined up with the left margin unless a
style=”text-align:center” or style=”text-align:right” setting indi-
cates that they should be centered or right-justified. In other words, left is
the default value of the text-align style property.

TIP

The height and width specified
for an image doesn’t have to
match the image’s actual height
and width. A web browser will
try to squish or stretch the
image to display whatever size
you specify. However, this is
generally a bad idea because
browsers aren’t particularly
good at resizing images. If you
want an image to display small-
er, you’re definitely better off
resizing it in an image editor.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

166 CHAPTER 8 Working with Colors, Images, and Multimedia

You can also wrap text around images by using the float style property
directly within the tag.

In Listing 8.3, aligns the first image to the
left and wraps text around the right side of it, as you might expect.
Similarly, aligns the second image to the
right and wraps text around the left side of it. Figure 8.14 shows how these
images align on a web page. There is no concept of floating an image to the
center because there would be no way to determine how to wrap text on
each side of it.

LISTING 8.3 Using text-align Styles to Align Images on a Web Page
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>More Spectacular Yosemite Views</title>
</head>

<body>
<h1>More Spectacular Yosemite Views</h1>
<p><img src=”elcap_sm.jpg” alt=”El Capitan” width=”100”
height=”75” style=”float:left; padding: 6px;”/>El
Capitan is a 3,000-foot (910 m) vertical rock formation
in Yosemite National Park, located on the north side of Yosemite
Valley, near its western end. The granite monolith is one of the
world’s favorite challenges for rock climbers. The formation was
named “El Capitan” by the Mariposa Battalion when it explored the
valley in 1851.</p>
<p><img src=”tunnelview_sm.jpg” alt=”Tunnel View” width=”100”
height=”80” style=”float:right; padding: 6px;”/>Tunnel
View is a viewpoint on State Route 41 located directly east
of the Wawona Tunnel as one enters Yosemite Valley from the south.
The view looks east into Yosemite Valley including the southwest face
of El Capitan, Half Dome, and Bridalveil Falls. This is, to many, the
first views of the popular attractions in Yosemite.</p>
</body>
</html>

NOTE

The float style property is
actually more powerful than
described here and, in fact,
applies to more than just
images. You can use the float
style property creatively to
arrive at some interesting page
layouts, as you’ll learn later in
the book.

NOTE

Notice the addition of padding
in the style attribute for both
 tags used in Listing 8.3.
This padding provides some
breathing room between the
image and the text—6 pixels on
all four sides of the image. You
will learn more about padding in
Chapter 9, “Working with
Margins, Padding, Alignment,
and Floating.”

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Aligning Images 167

Vertical Image Alignment
Sometimes, you might want to insert a small image in the middle of a line
of text; or you might like to put a single line of text next to an image as a
caption. In either case, it would be handy to have some control over how
the text and images line up vertically. Should the bottom of the image line
up with the bottom of the letters, or should the text and images all be
arranged so that their middles line up? You can choose between these and
several other options:

. To line up the top of an image with the top of the tallest image or letter
on the same line, use .

. To line up the bottom of an image with the bottom of the text, use
.

. To line up the middle of an image with the overall vertical center of
everything on the line, use .

. To line up the bottom of an image with the baseline of the text, use
.

All four of these options are used in Listing 8.4 and displayed in Figure
8.15. Four thumbnail images are now listed vertically down the page,
along with descriptive text next to each image. Various settings for the
vertical-align style property are used to align each image and its rele-
vant text.

FIGURE 8.14
Showing the image alignment from
Listing 8.3.

NOTE

The vertical-align style prop-
erty also supports values of top
and bottom, which can be used
to align images with the overall
top or bottom of a line of ele-
ments regardless of any text on
the line.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

168 CHAPTER 8 Working with Colors, Images, and Multimedia

LISTING 8.4 Using vertical-align Styles to Align Text with Images
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Small But Mighty Spectacular Yosemite Views</title>
</head>

<body>
<h1>Small But Mighty Yosemite Views</h1>
<p><img src=”elcap_sm.jpg” alt=”El Capitan” width=”100”
height=”75” style=”vertical-align:text-top;”/>El
Capitan is a 3,000-foot (910 m) vertical rock formation
in Yosemite National Park.</p>
<p><img src=”tunnelview_sm.jpg” alt=”Tunnel View” width=”100”
height=”80” style=”vertical-align:text-bottom;”/>Tunnel
View looks east into Yosemite Valley.</p>
<p><img src=”upperyosefalls_sm.jpg” alt=”Upper Yosemite Falls”
width=”87” height=”100” style=”vertical-align:middle;”/>Upper
Yosemite Falls are 1,430 ft and are among the twenty highest
waterfalls in the world. </p>
<p><img src=”hangingrock_sm.jpg” alt=”Hanging Rock” width=”100”
height=”75” style=”vertical-align:baseline;”/>Hanging
Rock, off Glacier Point, used to be a popular spot for people
to, well, hang from. Crazy people.</p>
</body>
</html>

TIP

If you don’t include any align
attribute in an tag, the
bottom of the image will line up
with the baseline of any text
next to it. That means you
never actually have to type
style=”vertical-align:
baseline” because it is
assumed by default. However, if
you specify a margin for an
image and intend for the align-
ment to be a bit more exacting
with the text, you might want to
explicitly set the vertical-
align attribute to text-bottom.
Take a look at the last image
shown in Figure 8.15 to see an
example of the text appearing
slightly below the image due to
the image margin—this is a
result of the baseline setting
for vertical-align.

FIGURE 8.15
Showing the vertical image align-
ment options used in Listing 8.4.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Turning Images into Links 169

Turning Images into Links
You probably noticed in Figure 8.12 that the image on the page is quite
large, which is fine in this particular example but isn’t ideal when you’re
trying to present multiple images. It makes more sense in this case to cre-
ate smaller image thumbnails that link to larger versions of each image.
Then, you can arrange the thumbnails on the page so that visitors can easi-
ly see all the content, even if they see only a smaller version of the actual
(larger) image. Thumbnails are one of the many ways you can use image
links to spice up your pages.

To turn any image into a clickable link to another page or image, you can
use the <a href> tag that you used previously to make text links. Listing
8.5 contains the code for a modification of Listing 8.3—which already used
thumbnails—to provide links to larger versions of the images. To ensure
that the user knows to click the thumbnails, the image and some helper
text is enclosed in a <div>, as shown in Figure 8.16.

LISTING 8.5 Using Thumbnails for Effective Image Links
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>More Spectacular Yosemite Views</title>
<style type=”text/css”>
div.imageleft {
float:left;
clear: all;
text-align:center;
font-size:9px;
font-style:italic;
}
div.imageright {
float:right;
clear: all;
text-align:center;
font-size:9px;
font-style:italic;
}
img {
padding: 6px;
border: none;
}
</style>

</head>
<body>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

170 CHAPTER 8 Working with Colors, Images, and Multimedia

<h1>More Spectacular Yosemite Views</h1>
<p><div class=”imageleft”>

click image to enlarge</div>El Capitan
is a 3,000-foot (910 m) vertical rock formation in Yosemite National
Park, located on the north side of Yosemite Valley, near its western
end. The granite monolith is one of the world’s favorite challenges
for rock climbers. The formation was named “El Capitan” by the
Mariposa Battalion when it explored the valley in 1851.</p>
<p><div class=”imageright”>

click image to enlarge</div>Tunnel View is a
viewpoint on State Route 41 located directly east of the Wawona Tunnel
as one enters Yosemite Valley from the south. The view looks east into
Yosemite Valley including the southwest face of El Capitan, Half Dome,
and Bridalveil Falls. This is, to many, the first views of the popular
attractions in Yosemite.</p>
</body>

</html>

LISTING 8.5 Continued

FIGURE 8.16
Using thumbnails as links
improves the layout of a page that
uses large images.

The code in Listing 8.5 uses additional styles that will be explained in more
detail in later chapters, but you should be able to figure out the basics:

. The <a> tags link these particular images to larger versions, which in
this case are stored on an external server (at Flickr).

. The <div> tags, and their styles, are used to align those sets of graph-
ics and caption text (and also include some padding).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using Background Images 171

Unless instructed otherwise, web browsers display a colored rectangle
around the edge of each image link. Like text links, the rectangle usually
appears blue for links that haven’t been visited recently or purple for links
that have been visited recently—unless you specify different colored links
in your style sheet. Because you seldom, if ever, want this unsightly line
around your linked images, you should usually include
style=”border:none” in any tag within a link. In this instance,
the border:none style is made part of the style sheet entry for the img ele-
ment because we use the same styles twice.

When you click one of the thumbnail images on the sample page shown,
the link is opened in the browser, as shown in Figure 8.17.

Using Background Images
As you learned earlier in this chapter, you can use background images to
act as a sort of wallpaper in a container element, so that the text or other
images appear on top of this underlying design.

The basic style properties that work together to create a background are as
follows:

. background-color—Specifies the background color of the element.
Although not image-related, it is part of the set of background-related
properties.

FIGURE 8.17
Clicking a linked thumbnail image
opens the target of the link.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

172 CHAPTER 8 Working with Colors, Images, and Multimedia

. background-image—Specifies the image to use as the background of
the element using the following syntax: url(‘imagename.gif’).

. background-repeat—Specifies how the image should repeat, both
horizontally and vertically. By default (without specifying anything),
background images will repeat both horizontally and vertically. Other
options are repeat (same as default), repeat-x (horizontal), repeat-y
(vertical), and no-repeat (only one appearance of the graphic).

. background-position—Specifies where the image should be initially
placed relative to its container. Options include top-left, top-center,
top-right, center-left, center-center, center-right, bottom-left,
bottom-center, bottom-right, and specific pixel and percentage
placements.

When specifying a background image, you can put all of these specifica-
tions together into one property, like so:

body {
background: #ffffff url(‘imagename.gif’) no-repeat top right;

}

In the previous style sheet entry, the body element of the web page will be
white and include a graphic named imagename.gif on the top right. Another
use for the background property is the creation of custom bullets for your
unordered lists. To use images as bullets, first define the style for the tag
as follows:

ul {
list-style-type: none;
padding-left: 0;
margin-left: 0;

}

Next, change the declaration for the tag to:

li {
background: url(mybullet.gif) left center no-repeat

}

Make sure that mybullet.gif (or whatever you name your graphic) is on
the web server and accessible; in that case, all unordered list items will
show your custom image rather than the standard-filled disc bullet.

We will return to the specific use of background properties in Part III,
“Advanced Web Page Design with CSS,” when using CSS for overall page
layouts.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using Imagemaps 173

Using Imagemaps
Sometimes you might want to use an image as navigation, but beyond the
simple button-based or link-based navigation that you often see in websites.
For example, perhaps you have a website with medical information, and
you want to show an image of the human body that links to pages that pro-
vide information about various body parts. Or, you have a website that pro-
vides a world map users can click to access information about countries.
You can divide an image into regions that link to different documents,
depending on where users click within that image. This is called an
imagemap, and any image can be made into an imagemap.

Why Imagemaps Aren’t Always Necessary
The first thing you should know about imagemaps is that you probably
won’t need to use them except in very special cases. It’s almost always easi-
er and more efficient to use several ordinary images that are placed directly
next to one another and provide a separate link for each image.

For example, see Figure 8.18. This is a web page that shows 12 different corpo-
rate logos; this example is a common type of web page in the business world,
one in which you give a little free advertisement to your partners. You could
present these logos as one large image and create an imagemap that provides
links to each of the 12 companies. Users could click each logo in the image to
visit each company’s site. Or, you could display the images on the page as in
this example and use 12 separate images—one for each company—with each
image including a link to that particular company.

An imagemap is the best choice for an image that has numerous parts, is
oddly arranged, or the design of the image itself might be too complicated
to divide into separate images. Figure 8.19 shows an image that is best suit-
ed as an imagemap.

Mapping Regions Within an Image
To create any type of imagemap, you need to figure out the numerical pixel
coordinates of each region within the image that you want to turn into a click-
able link. These clickable links are also known as areas. Your graphics program
might provide you with an easy way to find these coordinates. Or you might
want to use a standalone imagemapping tool such as Mapedit (http://www.
boutell.com/mapedit/) or the online imagemap maker at http://www.
image-maps.com/. In addition to helping you map the coordinates, these
tools also provide the HTML code necessary to make the maps work.

www.it-ebooks.info

http://www.boutell.com/mapedit/
http://www.boutell.com/mapedit/
http://www.image-maps.com/
http://www.image-maps.com/
http://www.it-ebooks.info/

ptg999

174 CHAPTER 8 Working with Colors, Images, and Multimedia

Using an imagemapping tool is often as simple as using your mouse to
draw a rectangle (or a custom shape) around the area you want to be a
link. Figure 8.20 shows the result of one of these rectangular selections as

FIGURE 8.18
Web page with 12 different logos;
this could be presented as a sin-
gle imagemap or divided into 12
separate pieces.

FIGURE 8.19
An image that wouldn’t take well to
being sliced up—better make it an
imagemap.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using Imagemaps 175

well as the interface for adding the URL and the title or alternate text for
this link. Several pieces of information are necessary to creating the HTML
for your imagemap: coordinates, target URL, title of link, and alternative
text for the link.

FIGURE 8.20
Using an imagemapping tool to
create linked areas of a single
graphic.

Creating Your Own
Imagemap

You’re more likely to remember how to make imagemaps if you get an image
of your own and turn it into an imagemap as you continue with this chapter:

. For starters, it’s easiest to choose a fairly large image that is visually
divided into roughly rectangular regions.

. If you don’t have a suitable image handy, use your favorite graphics pro-
gram to make one. Perhaps use a single photograph showing several
people and use each person as an area of the imagemap.

. Try a few different imagemapping tools to determine which you like
best. Start with standalone software such as MapEdit
(http://www.boutell.com/mapedit/) and move to the online imagemap
maker at http://www.image-maps.com/. There are others; use the
search engine of your choice to find variations on the imagemap soft-
ware theme.

TRY IT YOURSELF ▼

www.it-ebooks.info

http://www.boutell.com/mapedit/
http://www.image-maps.com/
http://www.it-ebooks.info/

ptg999

176 CHAPTER 8 Working with Colors, Images, and Multimedia

Creating the HTML for an Imagemap
If you use an imagemap generator, you will already have the HTML neces-
sary for creating the imagemap. However, it is a good idea to understand
the parts of the code so that you can check it for accuracy. The following
HTML code is required to start any imagemap:

<map name=”mapname”>

Keep in mind that you can use whatever name you want for the name of the
<map> tag, although it helps if you make it as descriptive as possible. Next,
you’ll need an <area /> tag for each region of the image. Following is an
example of a single <area /> tag that is used in the mapping-a-map
imagemap example:

<area shape=”rect” coords=”100,136,116,152”
href=”http://www.whitmancounty.org/”
alt=”Whitman County, WA”
title=”Whitman County, WA” />

This <area /> tag has five attributes, which you will use with every area
you describe in an imagemap:

. shape indicates whether the region is a rectangle (shape=”rect”), a
circle (shape=”circle”), or an irregular polygon (shape=”poly”).

. coords gives the exact pixel coordinates for the region. For rectangles,
give the x,y coordinates of the upper-left corner followed by the x,y
coordinates of the lower-right corner. For circles, give the x,y center
point followed by the radius in pixels. For polygons, list the x,y coor-
dinates of all the corners in a connect-the-dots order.

. href specifies the page to which the region links. You can use any
address or filename that you would use in an ordinary <a href> link
tag.

. alt enables you to provide a piece of text that is associated with the
shape. Most browsers (Firefox excluded) display this text in a small box
when a user hovers his mouse over the shape. This text adds a subtle
but important visual cue to users who might not otherwise realize that
they are looking at an imagemap. Firefox correctly uses the title attrib-
ute in addition to the alt attribute to provide a visual cue, which is why,
as noted previously in this chapter, you should use both attributes.

Each distinct clickable region in an imagemap must be described as a single
area, which means a typical imagemap consists of a list of areas. After cod-
ing the <area /> tags, you are done defining the imagemap, so wrap things
up with a closing </map> tag.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using Imagemaps 177

The last step in creating an imagemap is wiring it to the actual map image.
The map image is placed on the page using an ordinary tag.
However, there is an extra usemap attribute that is coded like this:

<img src=”map.png” usemap=”#countymap”
style=”border:none; width:650px; height:509px”
alt=”Native Peoples Census Map” />

When specifying the value of the usemap attribute, use the name you put in
the id of the <map> tag (and don’t forget the # symbol). Also include the
style attribute to specify the height and width of the image and to turn off
the border around the imagemap, which you might or might not elect to
keep in imagemaps of your own.

Listing 8.6 shows the complete code for a sample web page containing the
map graphic, its imagemap, and a few mapped areas.

LISTING 8.6 Defining the Regions of an Imagemap with <map> and
<area /> Tags
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Testing an Imagemap</title>
</head>

<body>
<h1>Testing an Imagemap</h1>
<p style=”text-align:center”>Click on a logo to go to the
county’s web site.

<img src=”map.png” usemap=”#countymap”
style=”border:none; width:650px;height:509px”
alt=”Native Peoples Census Map” /></p>

<map name=”countymap” id=”countymap”>
<area shape=”rect” coords=”100,136,116,152”
href=”http://www.whitmancounty.org/”
alt=”Whitman County, WA” title=”Whitman County, WA” />

<area shape=”rect” coords=”29,271,42,283”
href=”http://www.sccgov.org/” alt=”Santa Clara County, CA”
title=”Santa Clara County, CA” />

<area shape=”rect” coords=”535,216,548,228”
href=”http://visitingmifflincounty.com/”
alt=”Mifflin County, PA” title=”Mifflin County, PA” />

</map>
</body>

</html>

NOTE

If you’re a stickler for details,
you might have noticed—check
out the first few lines of code—
that this web page is coded as
an XHTML 1.0 document, as
opposed to the XHTML 1.1
used with most of the other
examples in the book. This is
done because some browsers
(Internet Explorer, for one) are
lagging in their support of a sin-
gle XHTML 1.1 change in how
imagemaps are used. This
change is specific to the
usemap attribute, which in
XHTML 1.1 doesn’t require the
symbol in front of the map
name. In fact, the # symbol
isn’t allowed at all in XHTML
1.1. The # symbol is, however,
allowed in XHTML 1.0, so to
satisfy current web browsers
and still provide you with a valid
web page; this particular exam-
ple uses XHTML 1.0.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

178 CHAPTER 8 Working with Colors, Images, and Multimedia

Figure 8.21 shows the imagemap in action. Notice in the bottom of your
browser window that your browser (in this example, Firefox) displays the
link address for whatever area the mouse is hovering over. Additionally,
when you hover the mouse over an area, the alt or title text for that
area—in this example, Whitman County—is displayed on the imagemap.

FIGURE 8.21
The imagemap defined in Listing
8.6 as it displays on the web
page.

NOTE

There is a method of producing
mapped images that relies
solely on CSS and not the
HTML <map> tag. You will learn
more about this in Chapter 11,
“Using CSS to Do More with
Lists, Text, and Navigation.”

Integrating Multimedia into Your
Website
Now that you’ve learned how to work with static images, the natural next
step is to work with multimedia. The term multimedia encompasses every-
thing we see and hear on a web page: audio, video, and animation, as well
as static images and text. In this section, you won’t learn how to create any
particular audio, video, or animation, but you will learn how to include
such files in your site, through either linking or embedding the content.

Remember, though, that not every user has devices that will play your
media type, nor do all users have broadband Internet connections which
allow these large files to transfer quickly. Always warn your visitors that
the links they click will take them to multimedia files and offer them the
choice to view or listen to the content—don’t force the files upon them.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Integrating Multimedia into Your Website 179

Creating multimedia of any kind can be a challenging and complicated
task. If you’re planning to create your own content from scratch, you’ll
need far more than this book to become the next crackerjack multimedia
developer. After you have some content, however, this section will show
you how to place your new creations into your web pages.

For those of us who are artistically challenged, several alternative ways to
obtain useful multimedia assets are available. Aside from the obvious
(such as hiring an artist), here are a few suggestions:

. Much of the material on the Internet is free. Of course, it’s still a
good idea to double-check with the author or current owner of the
content; you don’t want to be sued for copyright infringement. In
addition, various offices of the U.S. government generate content
which, by law, belongs to all Americans. (For example, any NASA
footage found online is free for your use.)

. Many search engines (google.com, yahoo.com, bing.com, and so on)
have specific search capabilities for finding multimedia files. As long
as you are careful about copyright issues, this can be an easy way to
find multimedia related to a specific topic. A simple search for sam-
ple Flash animations, sample QuickTime movie, or sample audio
files will produce more results than you can handle.

. If you are creatively inclined, determine the medium you like most—
for some of you it might be video production, others may enjoy audio
production, and still others might want to dabble in animation. After
you have determined a starting point, look into the various types of
software which will enable you to create such artistic masterpieces.
Many companies provide multimedia software, such as Adobe
(http://www.adobe.com/) and Apple (http://www.apple.com/).

Linking to Multimedia Files
The simplest and most reliable option for incorporating a video or audio
file into your website is to simply link it in with <a href>, exactly as you
would link to another HTML file.

For example, the following line could be used to offer a MOV video of a
hockey game:

View the hockey video clip.

NOTE

Regardless of the specific
media types shown in this
chapter, the procedures shown
for incorporating multimedia
into your web pages will be sim-
ilar no matter which media for-
mat you choose.

www.it-ebooks.info

http://www.adobe.com/
http://www.apple.com/
http://www.it-ebooks.info/

ptg999

180 CHAPTER 8 Working with Colors, Images, and Multimedia

When the user clicks the words View the hockey video clip., the
hockey.mov QuickTime video file is transferred to her computer from your
web server. Whichever helper application or plug-in she has installed auto-
matically starts as soon as the file has finished downloading. If no compat-
ible helper or plug-in can be found, the web browser will offer her a
chance to download the appropriate plug-in or save the video on her hard
drive for later viewing.

The click action results in the browser either playing the video with the
help of a plug-in (if one is found that can play the clip) or deferring to a
suitable helper application.

If you change the link from pond.wmv (Windows Media) to pond.mov
(QuickTime), your browser handles the link differently. Instead of launch-
ing another program, the QuickTime plug-in enables you to view the
movie clip directly in the browser window.

As you might have guessed, this approach of using a simple link to play
multimedia files offers the best backward compatibility because the browser
bears all the responsibility of figuring out how to play a multimedia clip.
The downside to this is that you don’t have much control over how a clip is
played, and you definitely can’t play a clip directly in the context of a page.

Embedding Multimedia Files
XHTML contains a standard <object> tag that is the preferred way to
embed multimedia of any kind in a web page. This tag is used instead of
the old <embed /> tag that you might still see in some HTML source code.

Embedding a multimedia file into a page produces a set of software con-
trols that allow the file to be played directly—no secondary window is nec-
essary, and there’s no need to navigate away from the page you are on.
Following is code to embed the pond video using the <object> tag by itself:

<object classid=”CLSID:6BF52A52-394A-11d3-B153-00C04F79FAA6”
width=”320” height=”305”>
<param name=”type” value=”video/x-ms-wmv” />
<param name=”URL” value=”pond.wmv” />
<param name=”uiMode” value=”full” />
<param name=”autoStart” value=”false” />
</object>

This code isn’t too terribly complicated when you consider that it literally
embeds a video directly into your web page (see Figure 8.22). The messiest
part of the code is the classid attribute of the <object> tag, which is set to

NOTE
In case you’re unfamiliar with
helper applications (helper apps
for short), they are the external
programs that a web browser
calls on to display any type of
file it can’t handle on its own.
Generally, the helper application
associated with a file type is
called on whenever a web
browser can’t display that type
of file on its own.

Plug-ins are a special sort of
helper application installed
directly into a web browser and
they enable you to view multi-
media content directly within
the browser window.

NOTE

If your browser has no support
for QuickTime, you can down-
load the QuickTime player free
from Apple at http://www.
apple.com/quicktime/. Even if
you do have QuickTime
installed, some browsers might
still play QuickTime movies dif-
ferently based on whether a
plug-in is installed. For exam-
ple, on my Windows computer,
Internet Explorer and Firefox
both play QuickTime movies
directly in the browser window
via a plug-in, whereas Opera
launches QuickTime as a helper
application.

www.it-ebooks.info

http://www.apple.com/quicktime/
http://www.apple.com/quicktime/
http://www.it-ebooks.info/

ptg999

Integrating Multimedia into Your Website 181

a long alphanumeric code. This code is the global ID for Windows Media
Player, which means that you’re telling the <object> tag to embed
Windows Media Player on the page to play the video clip. You can just
copy and paste this code into your own web pages.

NOTE

It’s important to note that
Windows Media Player is a
sophisticated enough media
player that it automatically
streams multimedia files, which
means that it begins playing
them after loading only the first
few seconds of content. The
idea is that the rest of the con-
tent is loaded in the back-
ground while you’re watching or
listening to earlier portions. The
result is that visitors don’t have
to wait through long download
times when viewing or listening
to your multimedia clips.

FIGURE 8.22
The <object> tag enables you to embed a video clip on a web page while specifying
which media player is to play it.

The width and height attributes of the <object> tag determine the size of
the embedded Windows Media Player window. Some browsers will auto-
matically size the embedded player to fit the content if you leave these
attributes off, whereas others won’t show anything at all. Play it safe by
setting them to a size that suits the multimedia content being played.

There are four <param> tags within the <object> tag that are responsible
for additional details about how the clip is to be played. Each tag has two
attributes, name and value, which are responsible for associating data
(value) with a particular setting (name). In this example, the URL for the
media clip is set to pond.wmv. The third parameter, uiMode, determines
which buttons and user interface options are made available by Windows
Media Player—full indicates that all user interface features are enabled,
such as the control buttons and volume slider. Finally, the autoStart
parameter is set to false so that the video clip does not automatically start
playing when the page is opened in a browser.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

182 CHAPTER 8 Working with Colors, Images, and Multimedia

The type parameter is perhaps the trickiest. It identifies the type of media
being displayed, which in this case is a Windows Media Video (WMV) file.
This media type must be specified as one of the standard Internet MIME
types.

A MIME type is an identifier for uniquely identifying different types of
media objects on the Internet. MIME stands for Multipurpose Internet Mail
Extensions, and this name comes from the fact that MIME types were orig-
inally used to identify email attachments. These MIME types should be
used in the type attribute of the <object> tag to identify what kind of
multimedia object is being referenced in the data attribute.

Following are the MIME types for several popular sound and video for-
mats you might want to use in your web pages:

. WAV Audio—audio/x-wav

. AU Audio—audio/basic

. MP3 Audio—audio/mpeg

. MIDI Audio—audio/midi

. WMA Audio—audio/x-ms-wma

. RealAudio—audio/x-pn-realaudio-plugin

. AVI—video/x-msvideo

. WMV—video/x-ms-wmv

. MPEG Video—video/mpeg

. QuickTime—video/quicktime

Listing 8.7 shows the relevant code for the pond web page, where you can
see the <object> tag as it appears in context.

LISTING 8.7 Using an <object> Tag to Directly Embed a WMV Video
Clip
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Fun in the Pond</title>
</head>

<body>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Integrating Multimedia into Your Website 183

<h1>Fun in the Pond</h1>
<div style=”float:left; padding:3px”>
<object classid=”CLSID:6BF52A52-394A-11d3-B153-00C04F79FAA6”
width=”320” height=”305”>
<param name=”type” value=”video/x-ms-wmv” />
<param name=”URL” value=”pond.wmv” />
<param name=”uiMode” value=”full” />
<param name=”autoStart” value=”false” />
<embed width=”320” height=”305” type=”video/x-ms-wmv”
src=”pond.wmv” controls=”All” loop=”false” autostart=”false”
pluginspage=”http://www.microsoft.com/windows/windowsmedia/” />
</object>
</div>
<p>Michael’s backyard pond is not only a fun hobby but also
an ongoing home improvement project that is both creative and
relaxing.</p>
<p>He has numerous fish in the pond, all Koi from various places
as far as Japan, Israel, and Australia. Although they don’t bark,
purr, or fetch anything other than food, these fish are his pets,
and good ones at that.</p>

</body>
</html>

You might notice that there’s some extra code that didn’t appear in the ear-
lier <object> tag example. Unfortunately, as discussed earlier in the section,
not all web browsers are entirely consistent in their support of the <object>
tag. For this reason, it is necessary to include an <embed /> tag within the
<object> tag to account for browser inconsistencies. This isn’t an ideal solu-
tion, but it’s all we have while browser vendors continue to lag behind pre-
vailing standards. If you pay close attention, you’ll notice that the <embed
/> tag contains all the same information as the <object> tag.

The <object> tag is a bit more complex than what is revealed here.
However, you don’t need to know how to use the more advanced facets of
the <object> tag just to play multimedia content. In other words, it isn’t
important for you to become a multimedia guru to share some multimedia
clips on your web pages.

Additional Tips for Using Multimedia
Before you add video, audio, or animations to your website, first ask your-
self if you really should. When you use these types of multimedia, be sure
to do so for a reason. Gratuitous sound and video, just like gratuitous
images, can detract from your overall message. Then again, if your mes-
sage is “Look at the videos I have made” or “Listen to my music and

LISTING 8.7 Continued NOTE

Because the <embed /> tag is
not supported in XHTML, it will
prevent your pages from validat-
ing. Unfortunately, there really
is no workaround for this prob-
lem—we’ll just have to wait for
browsers to fully support the
<object> tag by itself or move
to the <embed /> element of
HTML5.

NOTE

Video files aren’t the only
media files you can include
within your website using the
<object> and <embed /> tags.
Adding any multimedia file will
follow the same process. To
determine exactly which classid
and codebase attributes to use,
as well as additional parame-
ters (in the <param /> tags),
use your search engine to look
up something like object
embed mediatype, where
mediatype is Real Audio,
QuickTime, Flash, or whatever
you want.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

184 CHAPTER 8 Working with Colors, Images, and Multimedia

download some songs,” then multimedia absolutely must play a role in
your website.

Here are a few additional tips to keep in mind:

. Don’t include multimedia in a page and set it to automatically play
when the page loads. Always give users the option to start (and stop)
your sound or video.

. When possible, give users a choice of multimedia players. Don’t limit
yourself to multimedia content playable by only one type of player
on only one operating system.

. Multimedia files are larger than the typical graphics and text files,
which means you need to have the space on your web server to store
them, as well as the bandwidth allotment to transfer them to
whomever requests them via your website.

. If your site is entirely audio or video and offers very little by way of
text or graphics, understand that a certain segment of your audience
won’t see or hear what you want to present because of the limita-
tions of their system or bandwidth. Provide these users with addi-
tional options to get your information.

. Leverage free online video hosting services, such as YouTube
(http://www.youtube.com/). Not only does YouTube provide stor-
age for your video clips, it will provide you with the code necessary
to embed the video in your own web page. For example, Figure 8.23
shows the YouTube page for the cutest puppy in the world. If you
copy and paste the text from the Embed area shown in the figure,
you would get the following:

<object width=”425” height=”344”>
<param name=”movie” value=”http://www.youtube.com/v/yPxiHd2BOpo
&rel=0&color1=0xb1b1b1&color2=0xcfcfcf&feature=player_profilepage
&fs=1”></param>
<param name=”allowFullScreen” value=”true”></param>
<param name=”allowScriptAccess” value=”always”></param>
<embed
src=”http://www.youtube.com/v/yPxiHd2BOpo&rel=0&color1=0xb1b1b1
&color2=0xcfcfcf&feature=player_profilepage&fs=1”
type=”application/x-shockwave-flash” allowfullscreen=”true”
allowScriptAccess=”always” width=”425” height=”344”></embed>
</object>

You could then insert the code into your web page.

www.it-ebooks.info

http://www.youtube.com/
http://www.it-ebooks.info/

ptg999

Summary 185

Summary
In this chapter, you learned a few best practices for thinking about color
use, and how to use the color wheel to help you find colors that will com-
plement your text. Additionally, you learned about hexadecimal notion for
colors—that all colors are expressed in notations related to the amount of
red, green, and blue in them—and how hexadecimal notation enables you
to apply nuanced colors to your elements. More importantly, you learned
about the three color-related style properties that can be used to apply
color to container backgrounds, borders, and text using CSS.

You also learned the basics of preparing graphics for use on web pages. If
nothing else, you learned that this is a very complex topic, and you
learned just enough in this chapter to whet your appetite. The examples in
this chapter used the popular (and free!) GIMP software package, but feel
free to use the graphics software that best suits your needs. Among the
actions you learned were how to crop, resize, and tweak image colors, and
you also learned about the different file formats. There are many consider-
ations you must keep in mind when including graphics in your site,
including graphic size and resolution and how to use transparency, ani-
mated GIFs, and tiled backgrounds.

After you have created or edited some images, you can place them in your
web page, which you also learned how to do through the tag. You

FIGURE 8.23
YouTube provides storage of your
video files as well as links and
<object> code for use in your own
pages.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

186 CHAPTER 8 Working with Colors, Images, and Multimedia

learned how to include a short text message that appears in place of the image
as it loads and also appears whenever users move the mouse pointer over the
image. You also discovered how to control the horizontal and vertical align-
ment of each image and how to wrap text around the left or right of an image.

You learned how to use images as links—either by using the <a> tag around
the images or by creating imagemaps. You also learned a little bit about how
to use images in the background of container elements.

Finally, you learned how to embed video and sound into a web page. You
discovered how to use a simple link to a multimedia file, which is the most
broadly supported but least flexible option for playing media content. You
then learned how to use the <object> tag to embed a media player directly
in a web page. Not only that, you discovered that for maximum browser
compatibility, it helps to assist the <object> tag with the <embed /> tag. The
<object> and <embed /> tags can be used to include a vast array of media
types, including WAV, MP3, RealAudio, and MIDI files—not to mention
AVI, WMV, and QuickTime videos, to name just a few.

Table 8.1 summarizes the tags and attributes covered in this chapter.

TABLE 8.1 Tags and Attributes Covered in Chapter 8

Tag Function

 Places an image file within the page.

<map>...</map> A client-side imagemap referenced by <img usemap=
”...” />. Includes one or more <area /> tags.

<area /> Defines a clickable link within a client-side imagemap.

<embed /> Embeds a multimedia file to be read or displayed by a
plug-in application; this tag is technically deprecated
but still useful due to browsers not fully supporting the
<object> tag yet.

<object>...</object> Inserts images, videos, Java applets, ActiveX controls,
or other objects into a document.

<param>...</param> Runtime settings for an object, such as the width and
height of the area it occupies on a page.

Attribute/Style Function

style=”background- Sets the background color of an element (such as
color:color” <body>, <p>, <div>, <blockquote>, and other

containers).

style=”color:color” Sets the color of text within an element.

style=”border:size Sets the color of the four borders around an element.
type color “ Border colors cannot be used without also specifying

the width and type of the border.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Summary 187

src=”address” The address or filename of the image.

alt= An alternative description of the image that is
”altdescription” displayed in place of the image, primarily for users who

can’t view the image itself.

title=”title” A text message that is displayed as an image title, typi-
cally in a small pop-up box (tool tip) over the image.

width=”width” The width of the image (in pixels).

height=”height” The height of the image (in pixels).

style= Gets rid of the border around the image if the image
”border:attributes” is serving as a link.

style=”vertical- Aligns the image vertically to text-top, top, text-
align:alignment” bottom, bottom, middle, or baseline.

style=”float:float” Floats the image to one side so text can wrap around it.
Possible values are left, right, and none (default).

usemap=”name” The name of an imagemap specification for client-side
image mapping. Used with <map> and <area />.

shape=”value” Within the <area /> tag, specifies the shape of the
clickable area. Valid options for this attribute are rect,
poly, and circle.

coords=”values” Within the <area /> tag, specifies the coordinates of
the clickable region within an image. Its meaning and
setting vary according to the type of area.

href=”linkurl” Within the <area /> tag, specifies the URL that should
be loaded when the area is clicked.

name=”name” A named parameter property.

value=”value” The value associated with a named parameter property.

width=”width” The width of the embedded object in pixels.

height=”height” The height of the embedded object in pixels.

type=”mimetype” The MIME type of the multimedia content.

src=”mediaurl” The URL of the file to embed.

controls=”controls” The configuration of the user input controls for the
media player; use all to enable all controls.

loop=”loop” Play the media clip once or loop it repeatedly; set to
true or false.

autostart= Play the media clip upon opening the page; set to true
”autostart” or false.

pluginspage= The URL of the plug-in required to play the media clip.
”pluginurl”

TABLE 8.1 Continued

Attribute/Style Function

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

188 CHAPTER 8 Working with Colors, Images, and Multimedia

Q&A
Q. Instead of learning all this stuff myself, shouldn’t I just hire a graphic

artist to design my pages?

A. This is a difficult question to answer, and it’s not because I have a con-
flict of interest here—I work for a web development and design agency,
so it’s in my best interest to recommend agencies. But an agency isn’t
always the best solution. Hiring a graphic designer takes time and
money. Additionally, there are many graphic artists who do not produce
work suitable for the Web—they are specifically print-based artists, and
the print world is quite different than the online world. Also, hiring an
individual who deems himself a graphic designer to create a website
might not play to the strengths of that particular graphic designer. In
other words, he might be good at designing the graphical elements of a
website, but he might not be good as a content architect or at working
with HTML and CSS. If your site is simply a personal site, a profession-
al design might not be where you want to spend your money. But if your
site is intended to promote a business, a product, a school, or anything
else whereby your image is integral to your success, it’s worth your
while (and money) to consult with web design professional.

Q. I’ve produced graphics for printing on paper. Are web page graphics
any different?

A. Yes. In fact, many of the rules for print graphics are reversed on the
Web. Web page graphics have to be low resolution, whereas print graph-
ics should be as high resolution as possible. White washes out black
on computer screens, whereas black bleeds into white on paper. Also,
someone might stop a web page from loading when only half the graph-
ics have been downloaded. Try to avoid falling into old habits if you’ve
done a lot of print graphics design.

Q. I used the tag just as you advised, but when I view the page,
all I see is a little box with some shapes in it. What’s wrong?

A. The broken image icon you’re seeing can mean one of two things:
Either the web browser couldn’t find the image file or the image isn’t
saved in a format the browser recognizes. To solve these problems,
first check to make sure that the image is where it is supposed to be.
If it is, then open the image in your graphics editor and save it again as
a GIF, JPG, or PNG format.

Q. What happens if I overlap areas on an imagemap?

A. You are allowed to overlap areas on an imagemap. Just keep in mind that
when determining which link to follow, one area will have precedence over

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Workshop 189

the other area. Precedence is assigned according to which areas are list-
ed first in the imagemap. For example, the first area in the map has
precedence over the second area, which means that a click in the over-
lapping portion of the areas will link to the first area. If you have an area
within an imagemap that doesn’t link to anything (known as a dead area),
you can use this overlap trick to deliberately prevent this area from link-
ing to anything. To do this, just place the dead area before other areas so
that the dead area overlaps them, and then set its href attribute to “”.

Q. I hear a lot about streaming video and audio. What does that mean?

A. In the past, video and audio files took minutes and sometimes hours to
retrieve through most modems, which severely limited the inclusion of
video and audio on web pages. The goal that everyone is moving toward
is streaming video or audio, which plays while the data is being
received. In other words, you don’t have to completely download the clip
before you can start to watch it or listen to it.

Streaming playback is now widely supported through most media play-
ers, in both standalone versions and plug-ins. When you embed a
media object using the <object> tag, the underlying media player auto-
matically streams the media clip if streaming is supported in the player.

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. How would you give a web page a black background and make all text

bright green? Based on what you’ve learned in this chapter, would you
even want to use that color combination?

2. You have a scanned picture of a horse that you need to put on a web
page. How big should you make it? In what file format should you save it?

3. How would you insert an elephant.jpg image file at the top of a web
page?

4. How would you make the word Elephant display whenever the actual
elephant.jpg image couldn’t be displayed by a web browser?

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

190 CHAPTER 8 Working with Colors, Images, and Multimedia

Answers
1. Put the following at the beginning of the web page or use a style rule for

the body element:

<body style=”background-color:#000000; color:#00FF00”>

2. Depending on how important the image is to your page, you should
make it as small as 100×40 pixels or as large as 300×120 pixels. The
JPEG format, with about 85% compression, would be best. Of course,
you could also provide a thumbnail link to a larger image that is viewed
by itself.

3. Copy the image file into the same directory folder as the HTML text file.
Immediately after the <body> tag in the HTML text file, type <p></p>.

4. Use the following HTML:

Exercises
. Select a base color that you like—perhaps a lovely blue or an earthy tone—

and use the Color Scheme Generator at http://colorscheme-designer.com/
to come up with a set of colors that you can use in a website. I recommend
the tetrad or accented analogic scheme types.

. After you have a set of colors—or a few options for sets of colors—
create a basic HTML page with a <h1> element, a paragraph of text, and
perhaps some list items. Use the color-related styles you’ve learned
about in this chapter to change the background color of the page and
the text of the various block-level elements, to see how these sets of
colors might work together. See how they interact and determine which
colors are best used for containers and which are best used for plain
text, header text, and link text.

. Before you start designing graphics for an important business site, try
spicing up your own personal home page. This will give you a chance to
learn GIMP (or give you a chance to use your graphics software) so that
you’ll know what you’re doing when you tackle the task at work.

. Practicing any of the image placement methods in this chapter will go a
long way toward helping you determine the role that images can, and
will, play in the websites you design. Using a few sample images, prac-
tice using the float style to place images and text in relation to one
another. Remember the possible values for float are left, right, and
none (default).

www.it-ebooks.info

http://colorscheme-designer.com/
http://www.it-ebooks.info/

ptg999

Now that you’ve learned some of the basics of creating web content, in this
chapter you’ll learn the nitty-gritty of using CSS to enhance that content.
Throughout the previous chapter, you have learned how to use basic CSS
for display purposes (such as font sizes and colors). In the chapters that
follow, you’ll dive in to using CSS to control aspects of your entire web
page and not just individual pieces of text or graphics.

Before tackling page layout, however, it is important to understand four
particular CSS properties individually before putting them all together:

. The margin and padding properties—For adding space around ele-
ments

. The align and float properties—Used to place your elements in
relation to others

The examples provided during this chapter are not the most stylish exam-
ples of web content ever created, but they are not intended to be. Instead,
the examples clearly show just how XHTML and CSS are working togeth-
er. After you master CSS through this and other chapters, you’ll be able to
create web-based masterpieces such as the one shown in Figure 9.1, an
example at CSS Zen Garden.

The sites at CSS Zen Garden probably do not look like the typical
e-commerce or social networking sites that you visit on a regular basis.
Instead, these sites showcase the artistic possibilities that can unfold using
CSS. Make no mistake, these sites take careful thought and planning, but
the potential designs are limitless.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How to add margins
around elements

. How to add padding within
elements

. How to keep everything
aligned

. How to use the float
property

CHAPTER 9
Working with Margins, Padding,

Alignment, and Floating

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

192 CHAPTER 9 Working with Margins, Padding, Alignment, and Floating

Using Margins
Style sheet margins enable you to add empty space around the outside of the
rectangular area for an element on a web page. It is important to remember
that the margin property works with space outside of the element.

Following are the style properties for setting margins:

. margin-top—Sets the top margin

. margin-right—Sets the right margin

. margin-bottom—Sets the bottom margin

. margin-left—Sets the left margin

. margin—Sets the top, right, bottom, and left margins as a single
property

You can specify margins using any of the individual margin properties or
using the single margin property. Margins can be specified as auto, mean-
ing the browser itself sets the margin in specific lengths (pixels, points,
ems) or in percentages. If you decide to set a margin as a percentage, keep
in mind that the percentage is calculated based on the size of the entire

FIGURE 9.1
This is one of many examples in
the CSS Zen Garden of XHTML and
CSS at work.

NOTE
Sites in the CSS Zen Garden
(http://www.csszengarden.
com/) show the types of design
that can be accomplished
through using standards-
compliant CSS. All of the user-
submitted entries in the Garden
use exactly the same HTML file,
but artists are free to modify
the CSS file to create their own
visual display. The example
shown in Figure 9.1 is by
Andy Clarke of Stuff and
Nonsense (http://www.
stuffandnonsense.co.uk/).

www.it-ebooks.info

http://www.csszengarden.com/
http://www.csszengarden.com/
http://www.stuffandnonsense.co.uk/
http://www.stuffandnonsense.co.uk/
http://www.it-ebooks.info/

ptg999

Using Margins 193

page, not the size of the element. So, if you set the margin-left property
to 25%, the left margin of the element will end up being 25% of the width
of the entire page.

The code in Listing 9.1 produces four rectangles on the page, each 250 pix-
els wide, 100 pixels high, and with a 5-pixel solid black border (see Figure
9.2). Each rectangle—or <div>, in this case—has a different background
color. We want the margin around each <div> to be 15 pixels on all sides,
so we can use the following:

margin-top:15px;
margin-right:15px;
margin-bottom:15px;
margin-left:15px;

You could also write that in shorthand, using the margin property:

margin:15px 15px 15px 15px;

When you use the margin property (or padding, or border) and you want
all four values to be the same, you can simplify this even further and use:

margin:15px;

When using shorthand for setting margins, padding or borders, there are
actually three approaches, which vary based on how many values you use
when setting the property:

. One value—The size of all the margins

. Two values—The size of the top/bottom margins and the left/right
margins (in that order)

. Four values—The size of the top, right, bottom, and left margins (in
that order)

You might find it easier to stick to either using one value or all four values,
but that’s certainly not a requirement.

LISTING 9.1 Simple Code to Produce Four Colored <div>s with Borders
and Margins
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Color Blocks</title>

NOTE
You can remember the short-
hand order at least two differ-
ent ways. First, if you think of
an element as a rectangle,
start at the top and work your
way clockwise around the sides:
top side, right side, bottom
side, left side. Or you can use a
first-letter mnemonic device and
remember “TRBL,” pronounced
“trouble,” which also represents
a possible state of being
should you forget the order of
the margin properties.

Also note that the TRBL order is
valid for padding properties and
border properties as well.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

194 CHAPTER 9 Working with Margins, Padding, Alignment, and Floating

<style type=”text/css”>
div {

width:250px;
height:100px;
border:5px solid #000000;
color:black;
font-weight:bold;
text-align:center;

}

div#d1 {
background-color:red;
margin:15px;

}

div#d2 {
background-color:green;
margin:15px;

}

div#d3 {
background-color:blue;

}

div#d4 {
background-color:yellow;
margin:15px;

}
</style>

</head>

<body>
<div id=”d1”>DIV #1</div>
<div id=”d2”>DIV #2</div>
<div id=”d3”>DIV #3</div>
<div id=”d4”>DIV #4</div>

</body>
</html>

You can see the output of Listing 9.1 in Figure 9.2.

Next, working with just the margin property in the style sheet entries in
Listing 9.1, let’s shift the margins around. In this example, you can’t really
see the right-side margin on any of these <div> elements because there’s
nothing to the right of them and they are not aligned to the right. With that
in mind, let’s set margin-right to 0px in all of these. Beyond that, the next
set of goals is to produce the following:

LISTING 9.1 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using Margins 195

. No margin around the first color block.

. A left-side margin of 15 pixels, a top margin of 5 pixels, and no bot-
tom margin around the second color block.

. A left-side margin of 75 pixels and no top margin or bottom margins
around the third color block.

. A left-side margin of 250 pixels and a top margin of 25 pixels around
the fourth color block.

FIGURE 9.2
The basic color blocks sample
page shows four color blocks,
each with equal margins.

This seems like it would be straightforward—no margin is being set
around the first block. Except we want a margin at the top of the second
block, so really there will be a visible margin between the first and second
blocks, even if we are not specifying a margin for the first block.

The new style sheet entries for the four named <div>s would now look like
this:

div#d1 {
background-color:red;
margin:0px;

}

div#d2 {

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

196 CHAPTER 9 Working with Margins, Padding, Alignment, and Floating

background-color:green;
margin:5px 0px 0px 15px;

}

div#d3 {
background-color:blue;
margin:0px 0px 0px 75px;

}

div#d4 {
background-color:yellow;
margin:25px 0px 0px 250px;

}

The result of the previous code changes (see Figure 9.3) seems random but
is actually quite useful for pointing out a few other important points. For
example, when you recall that one of the goals was to produce no margin
at all around the first color block, you might expect the border of the color
block to be flush with the browser window. But, as shown in Figure 9.3,
there is a clear space between the content of the page and the frame of the
browser window.

FIGURE 9.3
Modifications to the color blocks
sample page display some differ-
ent margins.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using Margins 197

If we were working on element placement—which we will get to in the
next chapter—this would cause a problem in your layout. To ensure that
your placements and margins are counted from a position flush with the
browser, you will need to address the margin of the <body> element itself.
In this case, you would add the following to your style sheet:

body {
margin:0px;

}

Another “gotcha” to remember is that if you have two bordered elements
stacked on top of each other but with no margin between them, the point
at which they touch will appear to have a double border. You might then
consider making the top element’s border-bottom half the width and also
make the bottom element’s border-top half the width. If you do this, the
borders will appear to be the same width as the other sides when stacked
on top of each other.

Also, you might have thought that by using a left-side margin of 250 pixels—
the width of the <div>s—the fourth color block would begin where the third
color block ended. That is not the case, however, because the third color block
has a margin-left of 75 pixels. In order for them to even be close to lining
up, the margin-left value for the fourth div would have to be 325 pixels.

Changing the styles to those shown in the code that follows produces the
spacing shown in Figure 9.4.

body {
margin:0px;

}
div {
width:250px;
height:100px;
color:black;
font-weight:bold;
text-align:center;

}
div#d1 {
border:5px solid #000000;
background-color:red;
margin:0px;

}
div#d2 {
border-width:6px 6px 3px 6px;
border-style:solid;
border-color:#000000;
background-color:green;
margin:10px 0px 0px 15px;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

198 CHAPTER 9 Working with Margins, Padding, Alignment, and Floating

}
div#d3 {
border-width:3px 6px 6px 6px;
border-style:solid;
border-color:#000000;
background-color:blue;
margin:0px 0px 0px 15px;

}
div#d4 {
border:5px solid #000000;
background-color:yellow;
margin:0px 0px 0px 265px;

}

These changes give the <body> element a zero margin, thus ensuring that a
margin-left value of 25 pixels truly is 25 pixels from the edge of the
browser frame. It also shows the second and third color blocks stacked on
top of each other, but with modifications to the border element so that a
double border does not appear. Additionally, the fourth color block begins
where the third color block ends.

FIGURE 9.4
A third modification to the color
blocks pulls items into closer rela-
tion with each other.

As you can see in Figure 9.4, there is some overlap between the right edge
of the third color block and the left edge of the fourth color block. Why is
that the case, if the color blocks are 250 pixels wide, the third color block

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Padding Elements 199

has a margin-left value of 15 pixels, and the fourth color block is sup-
posed to have a 265 pixel margin to its left? Well, it does have that 265
pixel margin, but that margin size is not enough because we also have to
factor in the 6 pixels of border. If we change the margin property for the
fourth color block to reflect the following code, the third and fourth blocks
line up according to plan (see Figure 9.5):

margin:0px 0px 0px 276px;

FIGURE 9.5
Changing the margin to allow for
11 pixels of border width.

As shown in these examples, margin specifications are incredibly useful for ele-
ment placement, but you must use caution when setting these specifications.

Padding Elements
Padding is similar to margins in that it adds extra space to elements, but the
big difference is where that space is located. If you recall, margins are added
to the outside of elements. On the other hand, padding adds space inside the
rectangular area of an element. As an example, if you create a style rule for
an element that establishes a width of 50 pixels and a height of 30 pixels,
and then sets the padding of the rule to 5 pixels, the remaining content area
will be 40 pixels by 20 pixels. Also, because the padding of an element
appears within the element’s content area, it will assume the same style as
the content of the element, including the background color.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

200 CHAPTER 9 Working with Margins, Padding, Alignment, and Floating

You specify the padding of a style rule using one of the padding properties,
which work very much like the margin properties. The following padding
properties are available for use in setting the padding of style rules:

. padding-top—Sets the top padding

. padding-right—Sets the right padding

. padding-bottom—Sets the bottom padding

. padding-left—Sets the left padding

. padding—Sets the top, right, bottom, and left padding as a single
property

As with margins, you can set the padding of style rules using individual
padding properties or the single padding property. Padding can also be
expressed using either a unit of measurement or a percentage.

Following is an example of how you might set the left and right padding
for a style rule so that there are 10 pixels of padding on each side of an ele-
ment’s content:

padding-left:10px;
padding-right:10px;

As with margins, you can set all the padding for an element with a single
property (the padding property). To set the padding property, you can use
the same three approaches available for the margin property. Following is
an example of how you would set the vertical padding (top/bottom) to 12
pixels and the horizontal padding (left/right) to 8 pixels for a style rule:

padding:12px 8px;

Following is more explicit code that performs the same task by specifying
all the padding values:

padding:12px 8px 12px 8px;

In all the previous figures, you’ll note that the text DIV #1, DIV #2, and so
on appears at the top of the colored block, with just a little space between
the border and the text. That amount of space hasn’t been specified by any
padding value, but it appears as a sort of default within the element. But if
you want specific control over your element padding, Listing 9.2 shows
some examples. All of the color blocks are 250 pixels wide, 100 pixels high,
have a 5-pixel solid black border, and 25 pixels of margin (see Figure 9.6).
The fun stuff happens within the padding values for each individual <div>.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Padding Elements 201

LISTING 9.2 Simple Code to Produce Four Colored <div>s with Borders,
Margins, and Padding
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Color Blocks</title>
<style type=”text/css”>
body {

margin:0px;
}
div {

width:250px;
height:100px;
border:5px solid #000000;
color:black;
font-weight:bold;
margin:25px;

}

div#d1 {
background-color:red;
text-align:center;
padding:15px;

}

div#d2 {
background-color:green;
text-align:right;
padding:25px 50px 6px 6px;

}

div#d3 {
background-color:blue;
text-align:left;
padding:6px 6px 6px 50px;

}

div#d4 {
background-color:yellow;
text-align:center;
padding:50px;

}
</style>

</head>

<body>
<div id=”d1”>DIV #1</div>
<div id=”d2”>DIV #2</div>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

202 CHAPTER 9 Working with Margins, Padding, Alignment, and Floating

<div id=”d3”>DIV #3</div>
<div id=”d4”>DIV #4</div>

</body>
</html>

LISTING 9.2 Continued

You should immediately recognize that something is amiss in this example.
The color blocks are all supposed to be 250 pixels wide and 100 pixels
high. The color blocks in Figure 9.6 are not uniform because despite our
efforts to control the size of the <div>, the padding applied later overrides
that initial size declaration.

If you place the text in a <p> element and give that element a white back-
ground (see Figure 9.7), you can see where the padding is in relation to the
text. When there just isn’t room to use all the padding that is defined, the
surrounding element has to make adjustments. You will learn about this
effect in detail in Chapter 10, “Understanding the CSS Box Model and
Positioning.”

The greatest number of “tweaks” or “nudges” you make in your web
design with CSS will have to do with margins and padding. Just remem-
ber: margins outside the element, padding inside it.

FIGURE 9.6
The basic color blocks sample
page shows four color blocks with
variable padding.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Keeping Everything Aligned 203

Keeping Everything Aligned
Knowing that content on a web page doesn’t always fill the entire width of
the rectangular area in which it is displayed, it is often helpful to control
the alignment of the content. Even if text within a rectangular area extends
to multiple lines, alignment still enters the picture because you might want
the text left-justified, right-justified, or centered. There are two style prop-
erties that enable you to control the alignment of elements: text-align
and vertical-align.

You saw examples of these style properties in action—aligning images—in
Chapter 8, “Working with Colors, Images, and Multimedia,” but it doesn’t
hurt to mention these properties again here because alignment plays a role
in overall page design as well.

As a refresher, using text-align aligns an element horizontally within its
bounding area, and it can be set to left, right, center, or justify.

The vertical-align property is similar to text-align except that it is
used to align elements vertically. The vertical-align property specifies
how an element is aligned with its parent, or in some cases, the current
line of elements on the page. Current line refers to the vertical placement
of elements that appear within the same parent element—in other words,

FIGURE 9.7
Showing the padding in relation to
the text.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

204 CHAPTER 9 Working with Margins, Padding, Alignment, and Floating

inline elements. If several inline elements appear on the same line, you can
set their vertical alignments the same to align them vertically. A good
example would be a row of images that appear one after the next—the
vertical-align property enables you to align them vertically.

Following are common values for use with the vertical-align property:

. top—Aligns the top of an element with the current line

. middle—Aligns the middle of an element with the middle of its parent

. bottom—Aligns the bottom of an element with the current line

. text-top—Aligns the top of an element with the top of its parent

. baseline—Aligns the baseline of an element with the baseline of its
parent

. text-bottom—Aligns the bottom of an element with the bottom of
its parent

Alignment works in conjunction with margins, padding, and—as you will
learn in the next section—the float property to enable you to maintain
control over your design.

Understanding the Float Property
Understanding the float property is fundamental to understanding CSS-
based layout and design; it is one of the last pieces in the puzzle of how all
these elements fit together. Briefly stated, the float property allows ele-
ments to be moved around in the design such that other elements can
wrap around them. You will often find float used in conjunction with
images (as you saw in Chapter 8), but you can—and many designers do—
float all sorts of elements in their layout.

Elements float horizontally, not vertically, so all you have to concern yourself
with are two possible values: right and left. When used, an element that
floats will float as far right or as far left (depending on the value of float) as
the containing element will allow it. For example, if you have three <div>s
float values of left, they will all line up to the left of the containing body ele-
ment. If you have your <div>s within another <div>, they will line up to the
left of that element, even if that element itself is floated to the right.

Floating is best understood by seeing a few examples, so let’s move on to
Listing 9.3. This listing simply defines three rectangular <div>s and floats
them next to each other (floating to the left).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Understanding the Float Property 205

LISTING 9.3 Using float to Place <div>s
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Color Blocks</title>
<style type=”text/css”>
body {

margin:0px;
}
div {

width:250px;
height:100px;
border:5px solid #000000;
color:black;
font-weight:bold;
margin:25px;

}

div#d1 {
background-color:red;
float:left;

}

div#d2 {
background-color:green;
float:left;

}

div#d3 {
background-color:blue;
float:left;

}
</style>

</head>

<body>
<div id=”d1”>DIV #1</div>
<div id=”d2”>DIV #2</div>
<div id=”d3”>DIV #3</div>

</body>
</html>

The resulting page is shown in Figure 9.8, and already you can see a problem—
these three color blocks were supposed to be floated next to each other. Well,
actually they are floated next to each other, except the browser window is not
wide enough to display these three 250-pixel-wide blocks with 25 pixels of
margin between them. Because they are floating, the third one simply floats to
the next line.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

206 CHAPTER 9 Working with Margins, Padding, Alignment, and Floating

You can imagine this could be a problem in a specifically designed visual lay-
out, so pay attention to your margins, padding, alignment, and floating while
also testing within a target browser window size. Granted, the browser win-
dow shown in Figure 9.8 is a small one—to make this point about floating ele-
ments moving to the next line when there is no room for them to fit where
they should. In other words, if you open the same HTML file with a larger
browser window, you might not see the issue—this is why you should also
check your sites at different resolutions to see if a fix is needed. The fix here is
to adjust the margins and other size-related properties of your <div>s.

Figure 9.9 shows another interesting possibility when using the float proper-
ty. The only changes made to the code from Listing 9.3 involved making the
color blocks only 100-pixels wide, reducing the margins to 10px, and changing
the float alignment of the second color block to right (instead of left).

However, something very interesting happened. The second color block now
appears visually as the third color block because it is flush right. The second
color block has a float value of right, so it has floated all the way to the right.
The first and third color blocks are floating as left as possible, regardless of the
way in which the <div> code appears in the HTML, which is as follows:

<div id=”d1”>DIV #1</div>
<div id=”d2”>DIV #2</div>
<div id=”d3”>DIV #3</div>

FIGURE 9.8
Using float to place the color
blocks.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Summary 207

Floating takes a lot of practice to get used to, especially when there are
additional elements in your page and not just a few colored blocks. For
example, what happens when you add a basic paragraph into the mix? All
elements placed after the floating element will float around that element.
To avoid that, use the clear property.

The clear property has five possible values: left, right, both, none, and
inherit. The most common values are left, right, and both. Specifying
clear:left ensures there are no other floating elements allowed to the left,
clear:right ensures there are no other floating elements to the right, and
so on. Floating and clearing is a learn-by-doing process, so look for more
situations in the Workshop section later in this chapter.

Summary
This chapter introduced you to some of the most fundamental style prop-
erties in CSS-based design: margin, padding, and float. You learned how
the margin property controls space around the outside of elements and
how the padding property works with space within the elements.

After a refresher on the text-align and vertical-align properties you
learned about in a previous lesson, you learned about the float property.
The float property allows for specific placement of elements and addi-
tional content around those elements.

FIGURE 9.9
Using float to place the color
blocks.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

208 CHAPTER 9 Working with Margins, Padding, Alignment, and Floating

Q&A
Q. The examples of margins and padding all had to do with boxes and

text. Can I apply margins and padding to images as well?

A. Yes, you can apply margins and padding to any block-level element,
such as a <p>, a <div>, an , lists such as and , and
list items ()—just to name a few.

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. To place two <div> elements next to each other, but with a 30-pixel mar-

gin between them, what entry or entries can you use in the style sheet?

2. Which CSS style property and value is used to ensure that content
does not appear to the left of a floating element?

3. What style sheet entry is used to place text within a <div> to appear
12 pixels from the top of the element?

Answers
1. You can use several. The first <div> uses a style property of margin-

right:15px and the second <div> uses a style property of margin-
left:15px. Or you can assign the full 30 pixels to either <div> using
margin-right or margin-left as appropriate.

2. In this instance, use clear:left.

3. padding-top:12px

Exercises
. Fully understanding margins, padding, alignment, and floating takes

practice. Using the color blocks code or <div>s of your own, practice all
manner and sorts of spacing and floating before moving on to the next
chapter. The next chapter discusses the CSS box model as a whole,
which encompasses the individual items discussed in this chapter.

. While you’re at it, practice applying margins and padding to every block-
level element you’ve learned so far. Get used to putting images within
blocks of text and putting margins around the images so that the text
does not run right up to the edge of the graphic.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

In the previous chapter, I mentioned the CSS Box Model a few times—this
chapter begins with a discussion of the box model and explains how the
information you learned in the previous chapter helps you understand this
model. By learning the box model, you won’t tear your hair out when you
create a design, and then realize the elements don’t line up or that they
seem a little “off.” You’ll know that in almost all cases, something—the
margin, the padding, or the border—just needs a little tweaking for it to
work out.

You’ll also learn more about CSS positioning, including stacking elements
on top of each in a three-dimensional way (rather than a vertical way).
Finally, you’ll learn about controlling the flow of text around elements
using the float property.

The CSS Box Model
Every element in HTML is considered a “box,” whether it is a paragraph, a
<div>, an image, or so on. Boxes have consistent properties, whether we
see them or not, and whether they are specified at all in the style sheet or
not. They’re always present, and as designers, we have to keep their pres-
ence in mind when creating a layout.

Figure 10.1 is a diagram of the box model. The box model describes the
way in which every HTML block-level element has the potential for a bor-
der, padding, and margin and how the border, padding, and margin are
applied. In other words, all elements have some padding between the con-
tent and the border of the element. Additionally, the border might or might
not be visible, but there is space for it, just as there is a margin between the
border of the element and any other content outside of the element.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How to conceptualize the
CSS box model

. How to position your
elements

. How to control the way
elements stack up

. How to manage the flow of
text

CHAPTER 10
Understanding the CSS Box Model

and Positioning

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

210 CHAPTER 10 Understanding the CSS Box Model and Positioning

Here’s yet another explanation of the box model, going from the outside
inward:

. The margin is the area outside of the element. It never has color; it is
always transparent.

. The border extends around the element, on the outer edge of any
padding. The border can be of several types, widths, and colors.

. The padding exists around the content and inherits the background
color of the content area.

. The content is surrounded by padding.

Here’s where the tricky part comes in: To know the true height and width of
an element, you have to take all the elements of the box model into account.
If you remember the example from the previous chapter when, despite
specifically indicating a <div> should be 250 pixels wide and 100 pixels high,
that <div> had to grow larger to accommodate the padding in use.

You already know how to set the width and height of an element using the
width and height properties. The following example shows how to define
a <div> that is 250 pixels wide, 100 pixels high, has a red background, and
has a black single pixel border:

div {
width: 250px;
height: 100px;

MARGIN

BORDER

PADDING

CONTENT GOES HERE

FIGURE 10.1
Every element in HTML is repre-
sented by the CSS box model.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

The CSS Box Model 211

background-color: #ff0000;
border: 1px solid #000000;

}

This simple <div> is shown in Figure 10.2.

FIGURE 10.2
This is a simple <div>.

If we define a second element with these same properties, but also add
margin and padding properties of a certain size, we begin to see how the
size of the element changes. This is because of the box model.

The second <div> will be defined as follows, just adding 10 pixels of mar-
gin and 10 pixels of padding to the element:

div#d2 {
width: 250px;
height: 100px;
background-color: #ff0000;
border: 5px solid #000000;
margin: 10px;
padding: 10px;

}

The second <div>, shown in Figure 10.3, is defined as the same height and
width as the first one, but the overall height and width of the entire box
surrounding the element itself is much larger when margins and padding
are put in play.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

212 CHAPTER 10 Understanding the CSS Box Model and Positioning

The total width of an element is the sum of the following:

width + padding-left + padding-right + border-left + border-right +
margin-left + margin-right

The total height of an element is the sum of the following:

height + padding-top + padding-bottom + border-top + border-bottom +
margin-top + margin-bottom

Therefore, the second <div> has an actual width of 300 (250 + 10 + 10 + 5 +
5 + 10 + 10) and an actual height of 150 (100 + 10 + 10 + 5 + 5 + 10 + 10).

By now you can begin to see how the box model will affect your design.
Let’s say you have only 250 pixels of horizontal space, but you like 10 pixels
of margin, 10 pixels of padding, and 5 pixels of border on all sides. To
accommodate what you like with what you have room to display, you must
specify the width of your <div> as only 200 pixels, so that 200 + 10 + 10 + 5
+ 5 + 10 + 10 would add up to that 250 pixels of available horizontal space.

Not only is it important to understand the concept behind the box model,
but the mathematics of the model are important as well. In dynamically
driven sites or sites in which the client-side display is driven by user interac-
tions (such as through JavaScript events), your server-side or client-side code
may draw and re-draw container elements on the fly. In other words, your
code will produce the numbers, but you have to provide the boundaries.

Now that you’ve been schooled in the way of the box model, keep it in
mind throughout the rest of the work you do in this book and in your web

FIGURE 10.3
This is supposed to be another
simple <div> but the box model
affects the size of the second
<div>.

NOTE

Throughout this book you’ve
been drilled in the use of the
DOCTYPE declaration—all sam-
ple code includes a DOCTYPE.
Continue this practice not only
so that your code validates, but
because there is a very specific
issue with Internet Explorer and
the CSS box model: If a DOC-
TYPE is not defined, Internet
Explorer manipulates the height
and width of your elements in a
way you did not intend. This
causes browser incompatibility
issues with your layout, so just
remember to include a DOC-
TYPE.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

The Whole Scoop on Positioning 213

design. Among other things, it will affect element positioning and content
flow, which are the two topics we will tackle next.

The Whole Scoop on Positioning
Relative positioning is the default type of positioning used by HTML. You
can think of relative positioning as being akin to laying out checkers on a
checkerboard: The checkers are arranged from left to right, and when you
get to the edge of the board, you move on to the next row. Elements that
are styled with the block value for the display style property are automat-
ically placed on a new row, whereas inline elements are placed on the
same row immediately next to the element preceding them. As an exam-
ple, <p> and <div> tags are considered block elements, whereas the
tag is considered an inline element.

The other type of positioning supported by CSS is known as absolute position-
ing because it enables you to set the exact position of HTML content on a
page. Although absolute positioning gives you the freedom to spell out exact-
ly where an element is to appear, the position is still relative to any parent
elements that appear on the page. In other words, absolute positioning
enables you to specify the exact location of an element’s rectangular area with
respect to its parent’s area, which is very different from relative positioning.

With the freedom of placing elements anywhere you want on a page, you
can run into the problem of overlap, which is when an element takes up
space used by another element. There is nothing stopping you from speci-
fying the absolute locations of elements so they overlap. In this case, CSS
relies on the z-index of each element to determine which element is on the
top and which is on the bottom. You’ll learn more about the z-index of ele-
ments later in the chapter. For now, let’s look at exactly how you control
whether a style rule uses relative or absolute positioning.

The type of positioning (relative or absolute) used by a particular style rule
is determined by the position property, which is capable of having one of
the following two values: relative or absolute. After specifying the type
of positioning, you then provide the specific position using the following
properties:

. left—The left position offset

. right—The right position offset

. top—The top position offset

. bottom—The bottom position offset

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

214 CHAPTER 10 Understanding the CSS Box Model and Positioning

You might think that these position properties make sense only for
absolute positioning, but they actually apply to both types of positioning.
Under relative positioning, the position of an element is specified as an off-
set relative to the original position of the element. So, if you set the left
property of an element to 25px, the left side of the element will be shifted
over 25 pixels from its original (relative) position. An absolute position, on
the other hand, is specified relative to the parent of the element to which
the style is applied. So, if you set the left property of an element to 25px
under absolute positioning, the left side of the element will appear 25 pix-
els to the right of the parent element’s left edge. On the other hand, using
the right property with the same value would position the element so that
its right side is 25 pixels to the right of the parent’s right edge.

Let’s return to the color blocks example to show how positioning works. In
Listing 10.1, the four color blocks have relative positioning specified. As
you can see in Figure 10.4, the blocks are positioned vertically.

FIGURE 10.4
The color blocks are positioned
vertically with one on top of the
other.

LISTING 10.1 Showing Relative Positioning with Four Color Blocks
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd””>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Positioning the Color Blocks</title>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

The Whole Scoop on Positioning 215

<style type=”text/css”>
div {
position:relative;
width:250px;
height:100px;
border:5px solid #000;
color:black;
font-weight:bold;
text-align:center;
}
div#d1 {
background-color:red;
}

div#d2 {
background-color:green;
}

div#d3 {
background-color:blue;
}

div#d4 {
background-color:yellow;
}
</style>

</head>
<body>
<div id=”d1”>DIV #1</div>
<div id=”d2”>DIV #2</div>
<div id=”d3”>DIV #3</div>
<div id=”d4”>DIV #4</div>
</body>
</html>

The style sheet entry for the <div> element itself sets the position style
property for the <div> element to relative. Because the remaining style
rules are inherited from the <div> style rule, they inherit its relative posi-
tioning. In fact, the only difference between the other style rules is that
they have different background colors.

Notice in Figure 10.4 that the <div> elements are displayed one after the
next, which is what you would expect with relative positioning. But to
make things more interesting, which is what we’re here to do, you can
change the positioning to absolute and explicitly specify the placement of
the colors. In Listing 10.2, the style sheet entries are changed to use
absolute positioning to arrange the color blocks.

LISTING 10.1 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

216 CHAPTER 10 Understanding the CSS Box Model and Positioning

LISTING 10.2 Using Absolute Positioning of the Color Blocks
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Positioning the Color Blocks</title>
<style type=”text/css”>
div {
position:absolute;
width:250px;
height:100px;
border:5px solid #000;
color:black;
font-weight:bold;
text-align:center;
}
div#d1 {
background-color:red;
left:0px;
toppx;
}
div#d2 {
background-color:green;
left:75px;
top:25px;
}
div#d3 {
background-color:blue;
left:150px;
top:50px;
}
div#d4 {
background-color:yellow;
left:225px;
top:75px;
}
</style>

</head>
<body>
<div id=”d1”>DIV #1</div>
<div id=”d2”>DIV #2</div>

<div id=”d3”>DIV #3</div>
<div id=”d4”>DIV #4</div>
</body>
</html>

This style sheet sets the position property to absolute, which is necessary
for the style sheet to use absolute positioning. Additionally, the left and
top properties are set for each of the inherited <div> style rules. However,

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Controlling the Way Things Stack Up 217

the position of each of these rules is set so that the elements are displayed
overlapping each other, as shown in Figure 10.5.

FIGURE 10.5
The color blocks are displayed
using absolute positioning.

Now we’re talking layout! Figure 10.5 shows how absolute positioning
enables you to place elements exactly where you want them. It also reveals
how easy it is to arrange elements so that they overlap each other. You
might be curious as to how a web browser knows which elements to draw
on top when they overlap. The next section covers how you can control
stacking order.

Controlling the Way Things Stack Up
There are situations in which you’d like to carefully control the manner in
which elements overlap each other on a web page. The z-index style prop-
erty enables you to set the order of elements with respect to how they
stack on top of each other. Although the name z-index might sound a little
strange, it refers to the notion of a third dimension (Z) that points into the
computer screen, in addition to the two dimensions that go across (X) and
down (Y) the screen. Another way to think of the z-index is the relative
position of a single magazine within a stack of magazines. A magazine
near the top of the stack has a higher z-index than a magazine lower in the
stack. Similarly, an overlapped element with a higher z-index is displayed
on top of an element with a lower z-index.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

218 CHAPTER 10 Understanding the CSS Box Model and Positioning

The z-index property is used to set a numeric value that indicates the rela-
tive z-index of a style rule. The number assigned to z-index has meaning
only with respect to other style rules in a style sheet, which means that set-
ting the z-index property for a single rule doesn’t mean much. On the
other hand, if you set z-index for several style rules that apply to over-
lapped elements, the elements with higher z-index values will appear on
top of elements with lower z-index values.

Listing 10.3 contains another version of the color blocks style sheet and
HTML that uses z-index settings to alter the natural overlap of elements.

LISTING 10.3 Using z-index to Alter the Display of Elements in the
Color Blocks Sample
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Positioning the Color Blocks</title>
<style type=”text/css”>
div {
position:absolute;
width:250px;
height:100px;
border:5px solid #000;
color:black;
font-weight:bold;
text-align:center;
}
div#d1 {
background-color:red;
left:0px;
top:0px;
z-index:0;
}
div#d2 {
background-color:green;
left:75px;
top:25px;
z-index:3;
}
div#d3 {
background-color:blue;
left:150px;
top:50px;
z-index:2;
}
div#d4 {

NOTE
Regardless of the z-index
value you set for a style rule,
an element displayed with the
rule will always appear on top
of its parent.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Controlling the Way Things Stack Up 219

background-color:yellow;
left:225px;
top:75px;
z-index:1;
}
</style>

</head>
<body>
<div id=”d1”>DIV #1</div>
<div id=”d2”>DIV #2</div>
<div id=”d3”>DIV #3</div>
<div id=”d4”>DIV #4</div>
</body>
</html>

The only change in this code from what you saw in Listing 10.2 is the addi-
tion of the z-index property in each of the numbered div style classes.
Notice that the first numbered div has a z-index setting of 0, which
should make it the lowest element in terms of the z-index, whereas the sec-
ond div has the highest z-index. Figure 10.6 shows the color blocks page as
displayed with this style sheet, which clearly shows how the z-index
affects the displayed content and makes it possible to carefully control the
overlap of elements.

LISTING 10.3 Continued

FIGURE 10.6
Using z-index to alter the display
of the color blocks.

Although the examples show color blocks that are simple <div> elements,
the z-index style property can affect any HTML content, including images.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

220 CHAPTER 10 Understanding the CSS Box Model and Positioning

Managing the Flow of Text
Now that you’ve seen some examples of placing elements relative to other
elements or placing them absolutely, it’s time to revisit the flow of content
around elements. The conceptual current line is an invisible line used to
place elements on a page. This line has to do with the flow of elements on
a page; it comes into play as elements are arranged next to each other
across and down the page. Part of the flow of elements is the flow of text
on a page. When you mix text with other elements (such as images), it’s
important to control how the text flows around those other elements.

You’ve already seen two of these style properties in Chapter 9, “Working
with Margins, Padding, Alignment, and Floating.” Following are some
style properties that provide you with control over text flow:

. float—Determines how text flows around an element

. clear—Stops the flow of text around an element

. overflow—Controls the overflow of text when an element is too
small to contain all the text

The float property is used to control how text flows around an element. It
can be set to either left or right. These values determine where to posi-
tion an element with respect to flowing text. So, setting an image’s float
property to left positions the image to the left of flowing text.

As you learned in the previous chapter, you can prevent text from flowing
next to an element by using the clear property, which can be set to none,
left, right, or both. The default value for the clear property is none, indi-
cating that text is to flow with no special considerations for the element.
The left value causes text to stop flowing around an element until the left
side of the page is free of the element. Likewise, the right value means
that text is not to flow around the right side of the element. The both value
indicates that text isn’t to flow around either side of the element.

The overflow property handles overflow text, which is text that doesn’t fit
within its rectangular area; this can happen if you set the width and
height of an element too small. The overflow property can be set to
visible, hidden, or scroll. The visible setting automatically enlarges the
element so that the overflow text will fit within it; this is the default setting

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Summary 221

for the property. The hidden value leaves the element the same size, allow-
ing the overflow text to remain hidden from view. Perhaps the most inter-
esting value is scroll, which adds scrollbars to the element so that you
can move around and see the text.

Summary
This chapter began with an important discussion about the CSS box model
and how to calculate the width and height of elements when taking mar-
gins, padding, and borders into consideration. The chapter continued by
tackling absolute positioning of elements, and then you learned about
positioning using z-index. You also discovered a few nifty little style prop-
erties that enable you to control the flow of text on a page.

This chapter was brief, but chock full of fundamental information about
controlling the design of your site. It is worth re-reading and working
through the examples so that you have a good foundation for your work.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

222 CHAPTER 10 Understanding the CSS Box Model and Positioning

Q&A
Q. How would I determine when to use relative positioning and when to

use absolute positioning?

A. Although there are no set guidelines regarding the use of relative ver-
sus absolute positioning, the general idea is that absolute positioning
is required only when you want to exert a finer degree of control over
how content is positioned. This has to do with the fact that absolute
positioning enables you to position content down to the exact pixel,
whereas relative positioning is much less predictable in terms of how it
positions content. This isn’t to say that relative positioning can’t do a
good job of positioning elements on a page; it just means that absolute
positioning is more exact. Of course, this also makes absolute position-
ing potentially more susceptible to changes in screen size, which you
can’t really control.

Q. If I don’t specify the z-index of two elements that overlap each other,
how do I know which element will appear on top?

A. If the z-index property isn’t set for overlapping elements, the element
appearing later in the web page will appear on top. The easy way to
remember this is to think of a web browser drawing each element on a
page as it reads it from the HTML document; elements read later in the
document are drawn on top of those that were read earlier.

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. What’s the difference between relative positioning and absolute posi-

tioning?

2. Which CSS style property controls the manner in which elements over-
lap each other?

3. What HTML code could you use to display the words “Where would you
like to” starting exactly at the upper-left corner of the browser window
and displays the words “GO TODAY?” in large type exactly 80 pixels
down and 20 pixels to the left of the corner?

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Workshop 223

Answers
1. In relative positioning, content is displayed according to the flow of a

page, with each element physically appearing after the element preced-
ing it in the HTML code. Absolute positioning, on the other hand, allows
you to set the exact position of content on a page.

2. The z-index style property is used to control the manner in which ele-
ments overlap each other.

3. You could use the following:

Where would you like to
<h1 style=”position:absolute;left:80px;top:20px”>GO TODAY?</h1>

Exercises
. Practice working with the intricacies of the CSS box model by creating a

series of elements with different margins, padding, and borders and
see how these properties affect their height and width.

. Find a group of images that you like and use absolute positioning and
maybe even some z-index values to arrange them in a sort of gallery.
Try to place your images so they form a design (such as a square, trian-
gle, or circle).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

In Chapter 5, “Working with Fonts, Text Blocks, and Lists,” you were intro-
duced to three types of HTML lists, and in Chapter 9, “Working with
Margins, Padding, Alignment, and Floating,” you learned about margins,
padding, and alignment of elements. In this chapter, you will learn how
margins, padding, and alignment styles can be applied to different types of
HTML lists, helping you produce some powerful design elements purely
in HTML and CSS.

Specifically, you will learn how to modify the appearance of list ele-
ments—beyond the use of the list-style-type property that you learned
in Chapter 5—and how to use a CSS-styled list to replace the client-side
image maps you learned about in Chapter 8, “Working with Colors,
Images, and Multimedia.” You will put into practice many of the CSS
styles you’ve learned thus far, and the knowledge you will gain in this
chapter will lead directly into using lists for more than just simply present-
ing a bulleted or numbered set of items. You will learn a few of the many
ways to use lists as vertical or horizontal navigation, including how to use
lists to create drop-down menus.

The methods explained in this chapter represent a very small subset of the
numerous and varied navigation methods you can create using lists.
However, the concepts are all similar; different results come from your
own creativity and application of these basic concepts. To help you get
your creative juices flowing, I will provide pointers to other examples of
CSS-based navigation at the end of this chapter.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How the CSS box model
affects lists

. How to customize the list
item indicator

. How to use list items and
CSS to create an image
map

. How navigation lists differ
from regular lists

. How to create vertical navi-
gation with CSS

. How to create horizontal
navigation with CSS

CHAPTER 11
Using CSS to Do More with Lists,

Text, and Navigation

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

226 CHAPTER 11 Using CSS to Do More with Lists, Text, and Navigation

HTML List Refresher
As you learned in Chapter 5, there are three basic types of HTML lists. Each
presents content in a slightly different way based on its type and the context:

. The ordered list is an indented list that displays numbers or letters
before each list item. The ordered list is surrounded by and
 tags and list items are enclosed in the tag pair. This
list type is often used to display numbered steps or levels of content.

. The unordered list is an indented list that displays a bullet or other
symbol before each list item. The unordered list is surrounded by
 and tags, and list items are enclosed in the tag
pair. This list type is often used to provide a visual cue to show that
brief, yet specific, bits of information will follow.

. A definition list is often used to display terms and their meanings,
thereby providing information hierarchy within the context of the list
itself—much like the ordered list but without the numbering. The
definition list is surrounded by <dl> and </dl> tags with <dt> and
</dt> tags enclosing the term, and <dd> and </dd> tags enclosing the
definitions.

When the content warrants it, you can nest your ordered and unordered —
or place lists within other lists. Nested lists produce a content hierarchy, so
reserve their use for when your content actually has a hierarchy you want
to display (such as content outlines or tables of content). Or, as you will
learn later in this chapter, you can use nested lists when your site naviga-
tion contains sub-navigational elements.

How the CSS Box Model Affects
Lists
Specific list-related styles include list-style-image (for placement of an
image as a list-item marker), list-style-position (indicating where to
place the list-item marker), and list-style-type (the type of list-item
marker itself). But although these styles control the structure of the list and
list items, you can use margin, padding, color, and background-color
styles to achieve even more specific displays with your lists.

In Chapter 9, you learned that every element has some padding between
the content and the border of the element; you also learned there is a mar-
gin between the border of the element and any other content. This is true

NOTE

Some older browsers handle
margins and padding differently,
especially around lists and list
items. However, at the time of
writing, the HTML and CSS in
this and other chapters in this
book are displayed identically in
current versions of the major
web browsers (Apple Safari,
Google Chrome, Microsoft
Internet Explorer, Mozilla
Firefox, and Opera). Of course,
you should still review your web
content in all browsers before
you publish it online, but the
need for “hacking” style sheets
to accommodate the rendering
idiosyncrasies of browsers is
fading away.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

How the CSS Box Model Affects Lists 227

for lists, and when you are styling lists, you must remember that a “list” is
actually made up of two elements: the parent list element type (or
) and the individual list items themselves. Each of these elements has
margins and padding that can be affected by a style sheet.

The examples in this chapter show you how different CSS styles affect the
visual display of HTML lists and list items. Keep these basic differences in
mind as you practice working with lists in this chapter, and you will be
able to use lists to achieve advanced visual effects within site navigation.

Listing 11.1 creates a basic list containing three items. In this listing, the
unordered list itself (the) is given a blue background, a black border,
and a specific width of 100 pixels, as shown in Figure 11.1. The list items
(the individual) have a gray background and a yellow border. The list
item text and indicators (the bullet) are black.

LISTING 11.1 Creating a Basic List with Color and Border Styles
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>List Test</title>
<style type=”text/css”>
ul {

background-color: #6666ff;
border: 1px solid #000000;
width:100px;

}
li {

background-color: #cccccc;
border: 1px solid #ffff00;

}
</style>

</head>

<body>
<h1>List Test</h1>

Item #1
Item #2
Item #3

</body>

</html>

NOTE

You can test the default
padding-left value as displayed
by different browsers by creat-
ing a simple test file such as
that shown in Listing 11.1.
Then, add padding-left:
40px; to the declaration for the
ul selector in the style sheet. If
you reload the page and the
display does not change, then
you know that your test browser
uses 40 pixels as a default
value for padding-left.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

228 CHAPTER 11 Using CSS to Do More with Lists, Text, and Navigation

As shown in Figure 11.1, the creates a box in which the individual list
items are placed. In this example, the entirety of the box has a blue back-
ground. But also note that the individual list items—in this example, they
use a gray background and a yellow border—do not extend to the left edge
of the box created by the .

This is because browsers automatically add a certain amount of padding to
the left side of the . Browsers don’t add padding to the margin, as that
would appear around the outside of the box. They add padding inside the
box and only on the left side. That padding value is approximately 40 pixels.

The default left-side padding value remains the same regardless of the type
of list. If you add the following line to the style sheet, creating a list with no
item indicators, you will find the padding remains the same (see Figure 11.2):

list-style-type: none;

FIGURE 11.1
Styling the list and list items with
colors and borders.

FIGURE 11.2
The default left-side padding
remains the same with or without
list item indicators.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Placing List Item Indicators 229

When you are creating a page layout that includes lists of any type, play
around with padding to place the items “just so” on the page. Similarly,
just because there is no default margin associated with lists doesn’t mean
you can’t assign some to the display; adding margin values to the declara-
tion for the ul selector will provide additional layout control.

But remember, so far we’ve worked with only the list definition itself; we
haven’t worked with the application of styles to the individual list items.
In Figures 11.1 and 11.2, the gray background and yellow border of the list
item shows no default padding or margin. Figure 11.3 shows the different
effects created by applying padding or margin values to list items rather
than the overall list “box” itself.

FIGURE 11.3
Different values affect the padding
and margins on list items.

The first list item is the base item with no padding or margin applied to it.
However, the second list item uses style=”padding: 6px;”, and you can
see the six pixels of padding on all sides (between the content and the yel-
low border surrounding the element). Note that the placement of the bullet
remains the same as the first list item. The third list item uses style=
”margin: 6px;” to apply six pixels of margin around the list item; this
margin allows the blue background of the to show through.

Placing List Item Indicators
All this talk of margins and padding raises other issues: the control of list
item indicators (when used) and how text should wrap around them (or
not). The default value of the list-style-position property is “outside”—
this placement means the bullets, numbers, or other indicators are kept to
the left of the text, outside of the box created by the tag pair.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

230 CHAPTER 11 Using CSS to Do More with Lists, Text, and Navigation

When text wraps within the list item, it wraps within that box and remains
flush left with the left border of element.

But when the value of list-style-position is “inside,” the indicators are
inside the box created by the tag pair. Not only are the list item
indicators then indented further (they essentially become part of the text),
the text wraps beneath each item indicator.

An example of both outside and inside list-style-positions is shown in
Figure 11.4. The only changes between Listing 11.1 and the code used to
produce the example shown in Figure 11.4 (not including the filler text
added to “Item #2” and “Item #3”) is that the second list item contains
style=”list-style-position: outside;”, and the third list item contains
style=”list-style-position: inside;”.

FIGURE 11.4
The difference between outside
and inside values for list-style-
position.

The additional filler text used for the second list item shows how the text
wraps when the width of the list is defined as a value that is too narrow to
display all on one line. The same result would have been achieved without
using style=”list-style-position: outside;” because that is the
default value of list-style-position without any explicit statement in
the code.

However, you can clearly see the difference when the “inside” position is
used. In the third list item, the bullet and the text are both within the gray
area bordered by yellow—the list item itself. Margins and padding affect
list items differently when the value of list-style-position is inside
(see Figure 11.5).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating Image Maps with List Items and CSS 231

In Figure 11.5, both the second and third list items have a list-style-
position value of inside. However, the second list item has a margin-
left value of 12 pixels, and the third list item has a padding-left value of
12 pixels. Although both content blocks (list indicator plus the text) show
text wrapped around the bullet, and the placement of these blocks within
the gray area defining the list item is the same, the affected area is the list
item within the list itself.

As you would expect, the list item with the margin-left value of 12 pixels
displays 12 pixels of red showing through the transparent margin surround-
ing the list item. Similarly, the list item with the padding-left value of 12
pixels displays 12 pixels of gray background (of the list item) before the con-
tent begins. Padding is within the element; margin is outside the element.

By understanding the way margins and padding affect both list items and
the list in which they appear, you should be able to create navigation ele-
ments in your website that are pure CSS and do not rely on external
images. Later in this chapter, you will learn how to create both vertical and
horizontal navigation menus as well as menu drop-downs.

Creating Image Maps with List
Items and CSS
In Chapter 8, you learned how to create client-side image maps using the
<map/> tag in HTML. Image maps enable you to define an area of an image
and assign a link to that area (rather than having to slice an image into
pieces, apply links to individual pieces, and stitch the image back together
in HTML). However, you can also create an image map purely out of valid
XHTML and CSS.

FIGURE 11.5
Margin and padding changes the
display of items using the inside
list-style-position.

NOTE

For links to several tutorials
geared toward creating XHTML
and CSS image maps, visit
http://designreviver.com/
tutorials/css-image-map-
techniques-and-tutorials/. The
levels of interactivity in these
tutorials differ, and some might
introduce client-side coding out-
side of the scope of this book,
but the explanations are
thorough.

www.it-ebooks.info

http://designreviver.com/tutorials/css-image-map-techniques-and-tutorials/
http://designreviver.com/tutorials/css-image-map-techniques-and-tutorials/
http://designreviver.com/tutorials/css-image-map-techniques-and-tutorials/
http://www.it-ebooks.info/

ptg999

232 CHAPTER 11 Using CSS to Do More with Lists, Text, and Navigation

The code in Listing 11.2 produces an image map similar to the one shown
in Figure 11.6. (The code in Listing 11.2 does not produce the red borders
shown in the figure. The borders were added to the figure to highlight the
defined areas.) When the code is rendered in a web browser, it simply
looks like a web page with an image placed in it. The actions happen when
your mouse hovers over a “hot” area.

LISTING 11.2 Creating an Image Map Using CSS
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>CSS Image Map Example</title>
<style type=”text/css”>
#theImg {

width:500px;
height:375px;
background:url(tea_shipment.jpg) no-repeat;
position:relative;
border: 1px solid #000000;

}
#theImg ul {

margin:0px;
padding:0px;
list-style:none;

}
#theImg a {

position:absolute;
text-indent: -1000em;

}
#theImg a:hover {

border: 1px solid #ffffff;
}
#ss a {

top:0px;
left:5px;
width:80px;
height:225px;

}
#gn a {

top:226px;
left:15px;
width:70px;
height:110px;

}
#ib a {

top:225px;
left:85px;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating Image Maps with List Items and CSS 233

width:60px;
height:90px;

}
#iTEA1 a {

top:100px;
left:320px;
width:178px;
height:125px;

}
#iTEA2 a {

top:225px;
left:375px;
width:123px;
height:115px;

}
</style>

</head>
<body>

<div id=”theImg”>

<li id=”ss”><a href=”[some URL]”

title=”Sugarshots”>Sugarshots
<li id=”gn”><a href=”[some URL]”

title=”Golden Needle”>Golden Needle
<li id=”ib”><a href=”[some URL]”

title=”Irish Breakfast”>Irish Breakfast
<li id=”iTEA1”><a href=”[some URL]”

title=”IngenuiTEA”>IngenuiTEA
<li id=”iTEA2”><a href=”[some URL]”

title=”IngenuiTEA”>IngenuiTEA

</div>
</body>

</html>

As shown in Listing 11.2, the style sheet has quite a few entries but the
actual HTML is quite short. List items are used to create five distinct click-
able areas; those “areas” are list items given a specific height and width
and placed over an image that sits in the background. If the image is
removed from the background of the <div> that surrounds the list, the list
items still exist and are still clickable.

Let’s walk through the style sheet so that you understand the pieces that
make up this XHTML and CSS image map, which is—at its most basic
level—just a list of links.

LISTING 11.2 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

234 CHAPTER 11 Using CSS to Do More with Lists, Text, and Navigation

The list of links is enclosed in a <div> named “theImg”. In the style sheet,
this <div> is defined as block element that is 500 pixels wide, 375 pixels
high, and with a 1-pixel solid black border. The background of this element
is an image named tea_shipment.jpg that is placed in one position and
does not repeat. The next bit of HTML that you see is the beginning of the
unordered list (). In the style sheet, this unordered list is given margin
and padding values of zero pixels all around and a list-style of none—
list items will not be preceded by any icon.

The list item text itself never appears to the user because of this trick in the
style sheet entry for all <a> tags within the <div>:

text-indent: -1000em;

By indenting the text negative 1000 ems, you can be assured that the text
will never appear. It does exist, but it exists in a nonviewable area 1000
ems to the left of the browser window. In other words, if you raise your
left hand and place it to the side of your computer monitor, text-indent:-
1000em places the text somewhere to the left of your pinky finger. But
that’s what we want because we don’t need to see the text link. We just
need an area to be defined as a link so that the user’s cursor will change as
it does when rolling over any link in a website.

When the user’s cursor hovers over a list item containing a link, that list
item shows a one-pixel border that is solid white, thanks to this entry in
the style sheet:

FIGURE 11.6
CSS enables you to define
hotspots in an image map.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

How Navigation Lists Differ from Regular Lists 235

#theImg a:hover {
border: 1px solid #ffffff;

}

The list items themselves are then defined and placed in specific positions
based on the areas of the image that are supposed to be the clickable areas.
For example, the list item with the “ss” id for “Sugarshots”—the name of
the item shown in the figure—has its top-left corner placed zero pixels
from the top of the <div> and five pixels in from the left edge of the <div>.
This list item is 80 pixels wide and 225 pixels high. Similar style declara-
tions are made for the “#gn”, “#ib”, “#iTEA1”, and “#iTEA2” list items,
such that the linked areas associated with those IDs appear in certain posi-
tions relative to the image.

How Navigation Lists Differ from
Regular Lists
When we talk about using lists to create navigation elements, we really
mean using CSS to display content in the way website visitors expect navi-
gation to look—in short, different from simple bulleted or numbered lists.
Although it is true that a set of navigation elements is essentially a list of
links, those links are typically displayed in a way that makes it clear that
users should interact with the content:

. The user’s mouse cursor will change to indicate that the element is
clickable.

. The area around the element changes appearance when the mouse
hovers over it.

. The content area is visually set apart from regular text.

Older methods of creating navigation tended to rely on images—such as
graphics with beveled edges and the use of contrasting colors for back-
grounds and text—plus client-side programming with JavaScript to handle
image-swapping based on mouse actions. But using pure CSS to create
navigation from list elements produces a more usable, flexible, and search-
engine friendly display that is accessible by users using all manner and
sorts of devices.

Regardless of the layout of your navigational elements—horizontal or
vertical—this chapter discusses two levels of navigation: primary and

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

236 CHAPTER 11 Using CSS to Do More with Lists, Text, and Navigation

secondary. Primary navigation takes users to the introductory pages of main
sections of your site; secondary navigation reflects those pages within a cer-
tain section.

Creating Vertical Navigation with
CSS
Depending on your site architecture—both the display template you have
created and the manner in which you have categorized the information in
the site—you might find yourself using vertical navigation for either pri-
mary navigation or secondary navigation.

For example, suppose you have created a website for your company and
the primary sections are About Us, Products, Support, and Press. Within
the primary About Us section, you might have several other pages, such as
Mission, History, Executive Team, and Contact Us—these other pages are
the secondary navigation within the primary About Us section.

Listing 11.3 sets up a basic secondary page with vertical navigation in the
side of the page and content in the middle of the page. The links in the side
and the links in the content area of the page are basic HTML list elements.

This listing and the example shown in Figure 11.7 provides a starting point
for showing you how CSS enables you to transform two similar HTML struc-
tures into two different visual displays (and thus two different contexts).

LISTING 11.3 Basic Page with Vertical Navigation in a List
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>About Us</title>
<style type=”text/css”>
body {

font: 12pt Verdana, Arial, Georgia, sans-serif;
}
#nav {

width:150px;
float:left;
margin-top:12px;
margin-right:18px;

}
#content {

width:550px;
float:left;

}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating Vertical Navigation with CSS 237

</style>
</head>

<body>
<div id=”nav”>

Mission
History
Executive Team
Contact Us

</div>
<div id=”content”>
<h1>About Us</h1>
<p>On the introductory pages of main sections, it can be useful
to repeat the secondary navigation and provide more context,
such as:</p>

Mission: Learn more about our corporate
mission and philanthropic efforts.
History: Read about our corporate history
and learn how we grew to become the largest widget maker
in the country.
Executive Team: Our team of executives makes
the company run like a well-oiled machine (also useful for
making widgets).
Contact Us: Here you can find multiple
methods for contacting us (and we really do care what you
have to say).

</div>
</body>

</html>

FIGURE 11.7
The starting point: unstyled list
navigation.

LISTING 11.3 continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

238 CHAPTER 11 Using CSS to Do More with Lists, Text, and Navigation

The contents of this page are set up in two <div> elements that sit next to
each other: one is given an id value of nav and the other is given an id
value of content. The only styles assigned to anything in this basic page
are the width, margin, and float values associated with each <div>. No
styles have been applied to the list elements.

To differentiate between the links present in the list in the content area and
the links present in the list in the side navigation, add the following styles
to the style sheet:

#nav a {
text-decoration: none;

}
#content a {

text-decoration: none;
font-weight: bold;

}

These styles simply say that all <a> links in the <div> with the id of nav
have no underline, and all <a> links in the <div> with the id of content
have no underline and are bold. The difference is shown in Figure 11.8.

FIGURE 11.8
Differentiating the list elements
using CSS.

But to really make the side navigation list look like something special, you
have to dig deeper into the style sheet.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating Vertical Navigation with CSS 239

Styling the Single-Level Vertical Navigation
The goal with this particular set of navigation elements is simply to pres-
ent them as a block of links without bullets and with background and text
colors that change depending on their link state (regular link, visited link,
hovering over the link, or activated link). The first step in the process is
already complete: separating the navigation from the content. We have
done that by putting the navigation in a <div> with an id of nav.

Next, you need to modify the that defines the link within the nav
<div>. Let’s take away the list indicator and ensure that there is no extra
margin or padding hanging around besides the top margin. That top mar-
gin is used to line up the top of the navigation with the top of the “About
Us” header text in the content area of the page:

#nav ul {
list-style: none;
margin: 12px 0px 0px 0px;;
padding: 0px;

}

Because the navigation list items themselves appear as colored areas, give
each list item a bottom border so that some visual separation of the content
can occur:

#nav li {
border-bottom: 1px solid #ffffff;

}

Now on to building the rest of the list items. The idea is that when the list
items simply sit there acting as links, they are a special shade of blue with
bold white text (although they are a smaller font size than the body text
itself). To achieve that, add the following:

#nav li a:link, #nav li a:visited {
font-size: 10pt;
font-weight: bold;
display: block;
padding: 3px 0px 3px 3px;
background-color: #628794;
color: #ffffff;

}

All the styles used previously should be familiar to you, except perhaps
the use of display: block; in the style sheet entry. Setting the display
property to block ensures that the entire element is in play when a
user hovers his mouse over it. Figure 11.9 shows the vertical list menu with
these new styles applied to it.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

240 CHAPTER 11 Using CSS to Do More with Lists, Text, and Navigation

When the user’s mouse hovers over a navigational list element, the idea is
that some visual change takes place so the user knows the element is click-
able. This is akin to how most software menus change color when a user’s
cursor hovers over the menu items. In this case, we’ll change the back-
ground color of the list item, and we’ll change the text color of the list
item; they’ll be different from the blue and white shown previously.

#nav li a:hover, #nav li a:active {
font-size: 10pt;
font-weight: bold;
display: block;
padding: 3px 0px 3px 3px;
background-color: #6cac46;
color: #000000;

}

Figure 11.10 shows the results of all the stylistic work so far. By using a few
entries in a style sheet, the simple list has been transformed into a visually
differentiated menu.

Styling the Multilevel Vertical Navigation
What if your site architecture calls for another level of navigation that you
want your users to see at all times? That is represented by nested lists
(which you learned about in previous chapters) and more style sheet
entries. In this case, assume that there are four navigation elements under
the Executive Team link. In the HTML, modify the list as follows:

FIGURE 11.9
The vertical list is starting to look
like a navigation menu.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating Vertical Navigation with CSS 241

Mission
History
Executive Team

» CEO
» CFO
» COO
» Other Minions

Contact Us

FIGURE 11.10
The list items now change color
when the mouse hovers over
them.

This code produces a nested list under the Executive Team link (see Figure
11.11). The » HTML entity produces the right-pointing arrows that
are displayed before the text in the new links.

The new items appear as block elements within the list, but the hierarchy of
information is not visually represented. To add some sort of visual element
that identifies these items as sub-navigational elements attached to the
Executive Team link, modify the style sheet again to add some indentation.

But before doing that, modify some of the other style sheet entries as well.
In the previous section, we added selectors such as #nav ul and #nav li,
which indicate “all in the <div> called nav” and “all in the
<div> called nav,” respectively. However, we now have two instances of
 and another set of elements with the <div> called nav, all of
which we want to appear different from the original set.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

242 CHAPTER 11 Using CSS to Do More with Lists, Text, and Navigation

To ensure both sets of list items are styled appropriately, make sure that
the style sheet selectors clearly indicate the hierarchy of the lists. To do
that, use entries such as #nav ul and #nav ul li for the first level of lists
and #nav ul ul and #nav ul ul li for the second level of lists. Listing
11.4 shows the new version of style sheet entries and HTML that produces
the menu shown in Figure 11.12.

LISTING 11.4 Multilevel Vertical Navigation in a List
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>About Us</title>
<style type=”text/css”>
body {

font: 12pt Verdana, Arial, Georgia, sans-serif;
}
#nav {

width:150px;
float:left;
margin-top:12px;
margin-right:18px;

}
#content {

width:550px;
float:left;

}
#nav a {

FIGURE 11.11
Creating a nested navigation list
(but one that is not yet styled
well).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating Vertical Navigation with CSS 243

text-decoration: none;
}
#content a {

text-decoration: none;
font-weight: bold;

}
#nav ul {

list-style: none;
margin: 12px 0px 0px 0px;
padding: 0px;

}
#nav ul li {

border-bottom: 1px solid #ffffff;
}
#nav ul li a:link, #nav ul li a:visited {

font-size: 10pt;
font-weight: bold;
display: block;
padding: 3px 0px 3px 3px;
background-color: #628794;
color: #ffffff;

}
#nav ul li a:hover, #nav ul li a:active {

font-size: 10pt;
font-weight: bold;
display: block;
padding: 3px 0px 3px 3px;
background-color: #c6a648;
color: #000000;

}
#nav ul ul {

margin: 0px;
padding: 0px;

}
#nav ul ul li {

border-bottom: none;
}
#nav ul ul li a:link, #nav ul ul li a:visited {

font-size: 8pt;
font-weight: bold;
display: block;
padding: 3px 0px 3px 18px;
background-color: #628794;
color: #ffffff;

}
#nav ul ul li a:hover, #nav ul ul li a:active {

font-size: 8pt;
font-weight: bold;
display: block;
padding: 3px 0px 3px 18px;
background-color: #c6a648;

LISTING 11.4 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

244 CHAPTER 11 Using CSS to Do More with Lists, Text, and Navigation

color: #000000;
}

</style>
</head>

<body>
<div id=”nav”>

Mission
History
Executive Team

» CEO
» CFO
» COO
» Other Minions

Contact Us

</div>
<div id=”content”>
<h1>About Us</h1>
<p>On the introductory pages of main sections, it can be useful
to repeat the secondary navigation and provide more context,
such as:</p>

Mission: Learn more about our corporate
mission and philanthropic efforts.
History: Read about our corporate history
and learn how we grew to become the largest widget maker
in the country.
Executive Team: Our team of executives makes
the company run like a well-oiled machine (also useful for
making widgets).
Contact Us: Here you can find multiple
methods for contacting us (and we really do care what you
have to say.

</div>
</body>

</html>

The different ways of styling vertical navigation are limited only by your
own creativity. You can use colors, margins, padding, background images,
and any other valid CSS to produce vertical navigation that is quite flexible
and easily modified. If you type CSS vertical navigation in your search
engine, you will find thousands of examples—and they are all based on
the simple principles you’ve learned in this chapter.

LISTING 11.4 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating Horizontal Navigation with CSS 245

Creating Horizontal Navigation with
CSS
The lessons on navigation began with vertical navigation because the con-
cept of converting a list into navigation is easier to grasp when the naviga-
tion still looks like a list of items that you might write vertically on a piece of
paper, like a grocery list. When creating horizontal navigation, you still use
HTML list elements but instead of a vertical display achieved by using the
inline value of the display property for both the and the , use the
block value of the display property instead. It really is as simple as that.

Listing 11.5 shows a starting point for a page featuring horizontal naviga-
tion. The page contains two main <div> elements: one for the header and
one for the content. The header <div> contains a logo <div> and a naviga-
tion <div> floated next to each other. The list that appears in the navigation
<div> has a display property value of inline for both the list and the list
items. You can see these elements and their placement in Figure 11.13.

LISTING 11.5 Basic Horizontal Navigation from a List
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>ACME Widgets LLC</title>

FIGURE 11.12
Creating two levels of vertical navi-
gation using CSS.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

246 CHAPTER 11 Using CSS to Do More with Lists, Text, and Navigation

<style type=”text/css”>
body {

font: 12pt Verdana, Arial, Georgia, sans-serif;
}
#header {

width: auto;
}
#logo {

float:left;
}
#nav {

float:left;
}
#nav ul {

list-style: none;
display: inline;

}
#nav li {

display: inline;
}
#content {

width: auto;
float: left;
clear: left;

}
#content a {

text-decoration: none;
font-weight: bold;

}
</style>

</head>
<body>
<div id=”header”>

<div id=”logo”>

</div>
<div id=”nav”>

About Us
Products
Support
Press

</div>
</div>
<div id=”content”>

<p>ACME Widgets LLC is the greatest widget-maker
in all the land.</p>
<p>Don’t believe us? Read on...</p>

About Us: We are pretty great.

LISTING 11.5 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating Horizontal Navigation with CSS 247

Products: Our products are the best.
Support: It is unlikely you will need support,
but we provide it anyway.
Press: Read what others are saying (about how
great we are).

</div>
</body>

</html>

LISTING 11.5 Continued

FIGURE 11.13
Creating functional—but not nec-
essarily beautiful—horizontal navi-
gation using inline list elements.

Modifying the display of this list occurs purely through CSS; the structure of
the content within the HTML itself is already set. To achieve the desired dis-
play, use the following CSS. First, modify the <div> with the id of nav to be
a particular width, display a background color and border, and use a top
margin of 85 pixels (so that it displays near the bottom of the logo).

#nav {
float:left;
margin: 85px 0px 0px 0px;
width: 400px;
background-color: #628794;
border: 1px solid black;

}

The definition for the remains the same as in Listing 11.5, except for
the changes in margin and padding:

#nav ul {
margin: 0px;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

248 CHAPTER 11 Using CSS to Do More with Lists, Text, and Navigation

padding: 0px;
list-style: none;
display: inline;

}

The definition for the remains the same as in Listing 11.5, except it
has been given a line-height value of 1.8em:

#nav li {
display: inline;
line-height: 1.8em;

}

The link styles are similar to those used in the vertical navigation; these
entries have different padding values, but the colors and font sizes remain
the same:

#nav ul li a:link, #nav ul li a:visited {
font-size: 10pt;
font-weight: bold;
text-decoration: none;
padding: 7px 10px 7px 10px;
background-color: #628794;
color: #ffffff;

}
#nav ul li a:hover, #nav ul li a:active {

font-size: 10pt;
font-weight: bold;
text-decoration: none;
padding: px 10px 7px 10px;
background-color: #c6a648;
color: #000000;

}

Putting these styles together, you produce the display shown in Figure 11.14.

When the user rolls over the navigation elements, the background and text
colors change in the same way they did when the user hovered her mouse
over the vertical navigation menu. Also, just as you did with the vertical
navigation menu, you can use nested lists to produce drop-down function-
ality in your horizontal menu. Try it yourself!

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Summary 249

Summary
This chapter began with examples of how lists and list elements are affect-
ed by padding and margin styles. You first learned about the default
padding associated with lists and how to control that padding. Next, you
learned how to modify padding and margin values and how to place the
list item indicator either inside or outside the list item so you could begin
to think about how styles and lists can affect your overall site design.
Finally, you learned how to leverage lists and list elements to create a pure
XHTML and CSS image map, thus reducing the need for slicing up linked
images or using the <map/> tag.

After learning to “think outside the (list) box,” if you will, you learned
how to use unordered lists to produce horizontal or vertical navigation
within your website. By using CSS instead of graphics, you will have more
flexibility in both the display and maintenance of your site. Throughout
this chapter you learned that with a few entries in your style sheet, you
can turn plain underlined text links into areas with borders, background
colors, and other text styles. Additionally, you learned how to present nest-
ed lists within menus.

FIGURE 11.14
Creating horizontal navigation with
some style.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

250 CHAPTER 11 Using CSS to Do More with Lists, Text, and Navigation

Q&A
Q. There are an awful lot of web pages that talk about the “box model

hack” regarding margins and padding, especially around lists and list
elements. Are you sure I don’t have to use a hack?

A. At the beginning of this chapter, you learned that the HTML and CSS in
this chapter (and others) all look the same in the current versions of
the major web browsers. This is the product of several years of web
developers having to do code hacks and other tricks before modern
browsers began handling things according to CSS specifications rather
than their own idiosyncrasies. Additionally, there is a growing movement
to rid Internet users of the very old web browsers that necessitated
most of these hacks in the first place. So, although I wouldn’t neces-
sarily advise you to design only for the current versions of the major
web browsers, I also wouldn’t recommend that you spend a ton of time
implementing hacks for the older versions of browsers—which are used
by less than 5% of the Internet population. You should continue to write
solid code that validates and adheres to design principles, test your
pages in a suite of browsers that best reflects your audience, and
release your site to the world.

Q. The CSS image map seems like a lot of work. Is the <map/> tag so
bad?

A. The <map/> tag isn’t at all bad and is valid in both XHTML and HTML5.
The determination of coordinates used in client-side image maps can
be difficult, however, especially without graphics software or software
intended for the creation of client-side image maps. The CSS version
gives you more options for defining and displaying clickable areas, only
one of which you’ve seen here.

Q. Can I use graphics in the navigation menus as a custom list indicator?

A. Yes. You can use graphics within the HTML text of the list item or as
background images within the element. You can style your naviga-
tion elements just as you style any other list element. The only differ-
ences between an HTML unordered list and a CSS-based horizontal or
vertical navigation list is that you are calling it that, and you are using
the unordered list for a specific purpose outside of the body of the text.
Along with that, you then style the list to show the user that it is indeed
something different—and you can do that with small graphics to accen-
tuate your lists.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Workshop 251

Q. Where can I find more examples of what I can do with lists?

A. The last time I checked, typing CSS navigation in a search engine
returned approximately 44 million results. Here are a few starting
places:

. A List Apart’s CSS articles at http://www.alistapart.com/topics/
code/

. Maxdesign’s CSS Listamatic at http://css.maxdesign.com.au/
listamatic/

. Vitaly Friedman’s CSS Showcase at http://www.alvit.de/
css-showcase/

Workshop
The workshop contains quiz questions and activities to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. What is the difference between the inside and outside list-style-

position values? Which is the default value?

2. Does a list-style with a value of none still produce a structured list,
either ordered or unordered?

3. When creating list-based navigation, how many levels of nested lists
can you use?

4. When creating a navigation list of any type, can the four pseudoclasses
for the a selector have the same values?

Answers
1. The list-style-position value of inside places the list item indicator

inside the block created by the list item. A value of outside places the
list item indicator outside the block. When inside, content wraps
beneath the list item indicator. The default value is outside.

2. Yes. The only difference is that no list item indicator is present before
the content within the list item.

www.it-ebooks.info

http://www.alistapart.com/topics/code/
http://www.alistapart.com/topics/code/
http://css.maxdesign.com.au/listamatic/
http://css.maxdesign.com.au/listamatic/
http://www.alvit.de/css-showcase/
http://www.alvit.de/css-showcase/
http://www.it-ebooks.info/

ptg999

252 CHAPTER 11 Using CSS to Do More with Lists, Text, and Navigation

3. Technically, you can nest your lists as deep as you want to. But from a
usability standpoint, there is a limit to the number of levels that you
would want to use to nest your lists. Three levels is typically the limit—
more than that and you run the risk of creating a poorly organized site
or simply giving the user more options than he needs to see at all
times.

4. Sure, but then you run the risk of users not realizing that your beautiful
menus are indeed menus (because no visual display would occur for a
mouse action).

Exercises
. Find an image and try your hand at mapping areas using the technique

shown in this chapter. Select an image that has areas where you could
use hot spots or clickable areas leading to other web pages on your
site or to someone else’s site. Then create the HTML and CSS to
define the clickable areas and the URLs to which they should lead.

. Using the techniques shown for a multilevel vertical list, add subnaviga-
tion items to the vertical list created at the end of the chapter.

. Look at the numerous examples of CSS-based navigation used in web-
sites and find some tricky-looking actions. Using the View Source func-
tion of your web browser, look at the CSS used by these sites and try to
implement something similar for yourself.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

So far you’ve learned a lot about styling web content, from font sizes and
colors to images, block elements, lists, and more. But what has yet to be
discussed is a high-level overview of page layout. In general, there are two
types of layouts—fixed and liquid—but also a layout that is a combination
of the two, wherein some elements are fixed while others are liquid.

In this chapter, you’ll first learn about the characteristics of these two types
of layouts and see a few examples of websites that use them. At the end of
the chapter, you will see a basic template that combines elements of both
types of layouts. Ultimately, the type of layout you decide is up to you—it’s
hard to go wrong as long as your sites follow HTML and CSS standards.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How fixed layouts work

. How liquid layouts work

. How to create a fixed/
liquid hybrid layout

CHAPTER 12
Creating Fixed or Liquid Layouts

Finding Examples of
Layouts You Like

A good place for examples of liquid layouts is the WordPress Theme Gallery
at http://wordpress.org/extend/themes/. WordPress is a blogging platform
that is seeing increasing use as a non-blog site management tool. The theme
gallery shows hundreds of examples of both fixed-width and liquid layouts
which give you an idea, if not all the code, for what you could create. Even
though you are not working with a WordPress blog as part of the exercises in
this book, the template gallery is a place where you can see and interact with
many variations on designs.

Spend some time looking at the WordPress examples and perhaps the CSS
Zen Garden as well at http://www.csszengarden.com/. This will help you get
a feel for the types of layouts you like without being swayed one way or the
other by the content within the layout.

TRY IT YOURSELF ▼

www.it-ebooks.info

http://wordpress.org/extend/themes/
http://www.csszengarden.com/
http://www.it-ebooks.info/

ptg999

254 CHAPTER 12 Creating Fixed or Liquid Layouts

Understanding Fixed Layouts
A fixed layout, or fixed-width layout, is just that: a layout in which the body
of the page is set to a specific width. That width is typically controlled by a
master “wrapper” <div> in which all content is contained. The width prop-
erty of that <div> would be set in the style attribute or in a style sheet
entry if the <div> was given an ID value such as “main” or “wrapper”
(although the name is up to you).

When creating a fixed-width layout, the most important decision is deter-
mining the minimum screen resolution you want to accommodate. For
many years, 800×600 has been the “lowest common denominator” for web
designers, resulting in a typical fixed width of approximately 760 pixels.
However, since 2007, the number of people using 800×600 screen resolution
has been less than 8% (and is currently approximately 4%). Given that, many
web designers consider 1024×768 the current minimum screen resolution,
leading to fixed-width designs anywhere between 800 and 1000 pixels wide.

A main reason for creating a fixed-width layout is so that you can have
precise control over the appearance of the content area. However, if users
visit your fixed-width site with smaller or much larger screen resolutions
than the resolution you had in mind while you designed it, they might
encounter scrollbars (if their resolution is smaller) or a large amount of
empty space (if their resolution is greater).

The current ESPN.com home page provides a visual example of this issue;
it has a content area fixed at 964 pixels wide. In Figure 12.1, the browser
window is a shade under 800 pixels wide. On the right side of the image,
important content is cut off (and at the bottom of the figure, a horizontal
scrollbar displays in the browser).

However, Figure 12.2 shows how this site looks when the browser window
is more than 1400 pixels wide: There is a lot of empty space (or “real
estate”) on both sides of the main body content.

There is another consideration when creating a fixed-width layout:
whether to place the content flush-left or whether to center it. Placing the
content flush-left produces extra space on the right side only; centering the
content area creates extra space on both sides.

CAUTION

Remember, the web browser
window contains non-viewable
areas, including the scroll bar.
So, if you are targeting a 1024-
pixel-wide screen resolution,
you really can’t use all 1024 of
those pixels.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Understanding Liquid Layouts 255

FIGURE 12.2
A fixed-width example with a larger
screen size.

FIGURE 12.1
A fixed-width example with a small-
er screen size.

Understanding Liquid Layouts
A liquid layout—also called a fluid layout—is one in which the body of the
page does not use a specified width in pixels, although it might be enclosed

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

256 CHAPTER 12 Creating Fixed or Liquid Layouts

in a master “wrapper” <div> that uses a percentage width. The idea behind
the liquid layout is that it can be perfectly usable and still retain the overall
design aesthetic even if the user has a very small or very wide screen.

Three examples of a liquid layout in action are shown in Figures 12.3, 12.4,
and 12.5.

FIGURE 12.3
A liquid layout as viewed in a rela-
tively small screen.

FIGURE 12.4
A liquid layout as viewed in a very
small screen.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Understanding Liquid Layouts 257

In Figure 12.3, the browser window is approximately 770 pixels wide. This
example shows a reasonable minimum screen width before a horizontal
scrollbar appears. In fact, the scrollbar does not appear until the browser is
735 pixels wide. On the other hand, Figure 12.4 shows a very small brows-
er window (545 pixels wide).

In Figure 12.4, you can see a horizontal scrollbar; in the header area of the
page content, the logo graphic is beginning to take over the text and
appear on top of it. But the bulk of the page is still quite usable. The infor-
mational content on the left side of the page is still legible, and it is sharing
the available space with the input form on the right side.

Figure 12.5 shows how this same page looks in a very wide screen.

In Figure 12.5, the browser window is approximately 1330 pixels wide.
There is plenty of room for all of the content on the page to spread out.
This liquid layout is achieved because all the design elements have a per-
centage width specified (instead of a fixed width). In doing so, the layout
makes use of all the available browser real estate.

The liquid layout approach might seem like the best approach at first
glance—after all, who wouldn’t want to take advantage of all the screen real
estate available to them? There is a fine line between taking advantage of
space and not allowing the content to breathe, as it were. Too much content
is overwhelming; not enough content in an open space is underwhelming.

The pure liquid layout can be quite impressive, but it requires a significant
amount of testing to ensure that it is usable in a wide range of browsers at

FIGURE 12.5
A liquid layout as viewed in a wide
screen.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

258 CHAPTER 12 Creating Fixed or Liquid Layouts

varying screen resolutions. You might not have the time and effort to pro-
duce such a design; in that case, a reasonable compromise is the fixed/
liquid hybrid layout.

Creating a Fixed/Liquid Hybrid Layout
A fixed/liquid hybrid layout is one that contains elements of both types of
layouts. For example, you could have a fluid layout that includes fixed-
width content areas either within the body area or as anchor elements
(such as a left-side column or as a top navigation strip). You can even cre-
ate a fixed content area that acts like a frame, as you’ll see in Chapter 20,
“Using Windows and Frames,” in which the fixed content area remains
fixed even as users scroll through the content.

Starting with a Basic Layout Structure
In this example, you’ll learn to create a template that is liquid but with two
fixed-width columns on either side of the main body area (which is a third
column, if you think about it, only much wider than the others). The tem-
plate will also have a delineated header and footer area. Listing 12.1 shows
the basic HTML structure for this layout.

LISTING 12.1 Basic Fixed/Liquid Hybrid Layout Structure
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Sample Layout</title>
<link href=”layout.css” rel=”stylesheet” type=”text/css” />

</head>

<body>
<div id=”header”>HEADER</div>
<div id=”wrapper”>

<div id=”content_area”>CONTENT</div>
<div id=”left_side”>LEFT SIDE</div>
<div id=”right_side”>RIGHT SIDE</div>

</div>
<div id=”footer”>FOOTER</div>

</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating a Fixed/Liquid Hybrid Layout 259

First, note that the style sheet for this layout is linked to with the <link> tag
rather than included in the template. Because a template is used for more
than one page, you want to be able to control the display elements of the
template in the most organized way possible. This means you need only to
change the definitions of those elements in one place—the style sheet.

Next, you’ll notice that the basic HTML is just that: extremely basic. And,
truth be told, this basic HTML structure can be used for a fixed layout, a liq-
uid layout, or the fixed/liquid hybrid you’ll see here because all the actual
styling that makes a layout fixed, liquid, or hybrid happens in the style sheet.

What you actually have with the HTML structure in Listing 12.1 is an iden-
tification of the content areas you want to include in your site. This plan-
ning is crucial to any development; you have to know what you want to
include before you even think about the type of layout you are going to
use, let alone the specific styles that will be applied to that layout.

At this stage, the layout.css file includes only this entry:

body {
margin:0;
padding:0;

}

If you look at the HTML in Listing 12.1 and say to yourself “but those
<div> elements will just stack on top of each other without any styles,”
you are correct. As shown in Figure 12.6, there is no layout to speak of.

FIGURE 12.6
A basic HTML template with no
styles applied to the <div> ele-
ments.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

260 CHAPTER 12 Creating Fixed or Liquid Layouts

Defining Two Columns in a Fixed/Liquid
Hybrid Layout
We can start with the easy things first. Because this layout is supposed to be
liquid, we know that whatever we put in the header and footer areas will
extend the width of the browser window regardless of how narrow or wide
the window might be.

Adding the following code to the style sheet gives the header and footer
area each a width of 100% and the same background color:

#header {
float: left;
width: 100%;
background-color: #7152F4;

}
#footer {
float: left;
width: 100%;
background-color: #7152F4;

}

Now things get a little trickier. We have to define the two fixed columns on
either side of the page, plus the column in the middle. In the HTML, note
that there is a <div> that surrounds all three, and it is called wrapper. This
element is defined as follows:

#wrapper {
float: left;
padding-left: 200px;
padding-right: 125px;

}

The use of the two padding definitions is to essentially reserve space for
the two fixed-width columns on the left and right of the page. The column
on the left will be 200 pixels wide, the column on the right will be 125 pix-
els wide, and each will have a different background color. But we also
have to position the items relative to where they would be placed if the
HTML remained unstyled (see Figure 12.6). This means adding position:
relative to the style sheet entries for each of these columns. Additionally,
we indicate that the <div> elements should float to the left.

But in the case of the left_side <div>, we also indicate that we want the
right-most margin edge to be 200 pixels in from the edge. (This is in addi-
tion to the column being defined as 200 pixels wide.) We also want the
margin on the left side to be a full negative margin; this will pull it into

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating a Fixed/Liquid Hybrid Layout 261

place (as you will soon see). The right_side <div> does not include a
value for right but it does include a negative margin on the right side:

#left_side {
position: relative;
float: left;
width: 200px;
background-color: #52f471;
right: 200px;
margin-left: -100%;

}
#right_side {
position: relative;
float: left;
width: 125px;
background-color: #f452d5;
margin-right: -125px;

}

At this point, let’s also define the content area so that it has a white back-
ground, takes up 100% of the available area, and floats to the left relative
to its position:

#content_area {
position: relative;
float: left;
background-color: #ffffff;
width: 100%;

}

At this point, the basic layout will look something like that shown in
Figure 12.7, with the areas clearly delineated.

FIGURE 12.7
A basic HTML template after some
styles have been put in place.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

262 CHAPTER 12 Creating Fixed or Liquid Layouts

However, there’s a problem with this template if the window is resized
below a certain width. Because the left column is 200 pixels wide, the right
column is 125 pixels wide, and you want at least some text in the content
area, you can imagine this page will break if the window is only 350 to 400
pixels wide. Figure 12.8 shows what happens when the window is resized
just under 400 pixels wide (390, to be exact).

FIGURE 12.8
A basic HTML template resized
under 400 pixels: bad!

Setting the Minimum Width of a Layout
Although it is unlikely that users will visit your site with a browser less
than 400 pixels wide, the example serves its purpose within the confines of
this book’s pages. You can extrapolate and apply this information broadly:
Even in fixed/liquid hybrid sites, there will be a point at which your lay-
out breaks down unless you do something about it.

That “something” is to use the min-width property. The min-width property
sets the minimum width of an element, not including padding, borders, or
margins. Figure 12.9 shows what happens when min-width is applied to the
<body> element.

Figure 12.9 shows a wee bit of the right column after scrolling to the right,
but the point is that the layout does not break when resized below a mini-
mum width. In this case, the minimum width is 525 pixels:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating a Fixed/Liquid Hybrid Layout 263

The horizontal scrollbar appears in this example because the browser window
itself is less than 500 pixels wide. The scrollbar disappears when the window is
slightly larger than 525 pixels wide, and it’s definitely out of the picture entire-
ly when the browser is approximately 875 pixels wide (see Figure 12.10).

FIGURE 12.9
A basic HTML template resized
under 400 pixels: better!

FIGURE 12.10
A basic HTML template when
viewed in a browser window wider
than 800 pixels.

body {
margin: 0;
padding: 0;
min-width: 525px;

}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

264 CHAPTER 12 Creating Fixed or Liquid Layouts

Handling Column Height in a Fixed/Liquid
Hybrid Layout
This example is all well and good except for one problem: It has no con-
tent. When content is added to the various elements, more problems arise.
As shown in Figure 12.11, the columns become as tall as necessary for the
content they contain.

FIGURE 12.11
Columns are only as tall as their
contents.

Because you cannot count on a user’s browser being a specific height, or
that the content will always be the same length, you might think this poses
a problem with the fixed/liquid hybrid layout. Not so. If you think a little
outside the box, you can apply a few more styles that will bring all the
pieces together.

First, add the following declarations in the style sheet entries for the
left_side, right_side, and content_area IDs:

margin-bottom: -2000px;
padding-bottom: 2000px;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating a Fixed/Liquid Hybrid Layout 265

These declarations add a ridiculous amount of padding and assign a
ridiculously large margin to the bottom of all three elements. You must
also add position:relative to the footer ID in the style sheet so that it is
visible despite this padding.

At this point, the page looks like Figure 12.12—still not what we want, but
closer.

FIGURE 12.12
Color fields are now visible despite
the amount of content in the
columns.

To clip off all that extra color, add the following to the style sheet for the
wrapper ID:

overflow: hidden;

Figure 12.13 shows the final result: a fixed-width/liquid hybrid layout
with the necessary column spacing.

The full HTML code can be seen in Listing 12.2, and the final style sheet is
shown in Listing 12.3.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

266 CHAPTER 12 Creating Fixed or Liquid Layouts

LISTING 12.2 Basic Fixed/Liquid Hybrid Layout Structure (with Content)
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Sample Layout</title>
<link href=”layout.css” rel=”stylesheet” type=”text/css” />

</head>

<body>
<div id=”header”><img src=”acmewidgets.jpg” alt=”ACME Widgets

LLC”/></div>
<div id=”wrapper”>

<div id=”content_area”>
<h1>Welcome to ACME Widgets!</h1>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Nam tincidunt posuere malesuada. Suspendisse ac felis ac ante
tincidunt ullamcorper. Nulla vitae ligula vitae mi rhoncus
adipiscing. Etiam congue felis id ante semper at imperdiet
massa tempor. Nullam hendrerit fermentum ligula, sit amet
pellentesque purus faucibus in. Sed molestie lacus mauris,
ultrices accumsan sem. Phasellus facilisis malesuada sem, nec
ornare ipsum dictum consectetur. Nulla libero nisl,
consectetur eget accumsan vel, interdum ut risus. Donec
vitae enim vitae nulla feugiat dignissim ut sit amet odio.
Nunc non enim id sem faucibus congue. Integer ac mi in justo
euismod sodales. Aenean imperdiet vestibulum auctor. Sed

FIGURE 12.13
Congratulations! It’s a fixed-
width/liquid hybrid layout.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating a Fixed/Liquid Hybrid Layout 267

ullamcorper congue ipsum, eget vulputate sem scelerisque in.
Donec ornare vestibulum congue. Etiam sapien nulla, rutrum
mattis mattis ut, pellentesque eget augue. Proin nisl mauris,
suscipit quis elementum ac, vestibulum quis lacus. Ut eget
justo vitae urna varius sodales. </p>
</div>
<div id=”left_side”>

Mission
History
Executive Team
Contact Us

</div>
<div id=”right_side”>SPECIAL WIDGET DEAL!

Buy three widgets and get a fourth for free.

Act now!

</div>
</div>
<div id=”footer”> Copyright information usually goes here.</div>

</body>
</html>

LISTING 12.3 Full Style Sheet for Fixed/Liquid Hybrid Layout
body {
margin:0;
padding:0;
min-width: 525px;

}
#header {
float: left;
width:100%;
background-color: #ffffff;

}
#footer {
float: left;
width:100%;
background-color: #7152f4;
font-size: 8pt;
font-weight: bold;
text-align: center;
position: relative;

}
#wrapper {
float: left;
padding-left: 200px;
padding-right: 125px;
overflow: hidden;

}

LISTING 12.2 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

268 CHAPTER 12 Creating Fixed or Liquid Layouts

#left_side {
position: relative;
float: left;
width: 200px;
background-color: #52f471;
right: 200px;
margin-left: -100%;
padding-bottom: 2000px;
margin-bottom: -2000px;

}
#right_side {
position: relative;
float: left;
width: 125px;
background-color: #f452d5;
margin-right: -125px;
padding-bottom: 2000px;
margin-bottom: -2000px;

}
#content_area {
position: relative;
float: left;
background-color: #ffffff;
width: 100%;
padding-bottom: 2000px;
margin-bottom: -2000px;

}
#left_side ul {
list-style: none;
margin: 12px 0px 0px 12px;
padding: 0px;

}
#left_side li a:link, #nav li a:visited {
font-size: 12pt;
font-weight: bold;
padding: 3px 0px 3px 3px;
color: #000000;
text-decoration: none;
display: block;

}
#left_side li a:hover, #nav li a:active {
font-size: 12pt;
font-weight: bold;
padding: 3px 0px 3px 3px;
color: #ffffff;
text-decoration: none;
display: block;

}

LISTING 12.3 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Summary 269

Summary
In this chapter, you saw some practical examples of the three main types of
layouts: fixed, liquid, and a fixed/liquid hybrid. In the third section of the
chapter, you saw an extended example that took you through the process
bit-by-bit for creating a fixed/liquid hybrid layout in which the HTML and
CSS all validate properly. Remember, the most important part of creating a
layout is figuring out the sections of content you think you might need to
account for in the design.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

270 CHAPTER 12 Creating Fixed or Liquid Layouts

Q&A
Q. I’ve heard about something called an elastic layout. How is that differ-

ent from the liquid layout?

A. An elastic layout is a layout whose content areas resize when the user
resizes the text. Elastic layouts use ems, which are inherently propor-
tional to text and font size. An em is a typographical unit of measure-
ment equal to the point size of the current font. When ems are used in
an elastic layout, if a user forces the text size to increase or decrease
in size by pressing Ctrl and using the mouse scroll wheel, the areas
containing the text increase or decrease proportionally. Elastic layouts
are very difficult to achieve and are more commonly found in portfolios
rather than actual practice due to the number of hours involved in per-
fecting them.

Q. You’ve spent a lot of time talking about liquid layouts or hybrid layouts.
Are they better than a purely fixed layout?

A. “Better” is a subjective term; in this book, the concern is with standards-
compliant code. Most designers will tell you that liquid layouts take
longer to create (and perfect), but the usability enhancements are worth
it. When might the time not be worth it? If your client does not have an
opinion and if they are paying you a flat rate rather than an hourly rate,
then it might not be worth it. In that case, you are working only to show-
case your own skills—that might be worth it to you, however.

Workshop
The workshop contains quiz questions and activities to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. Which is the best layout to use, in general: fixed, liquid, or a hybrid?

2. Can you position a fixed layout anywhere on the page?

3. What does min-width do?

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Workshop 271

Answers
1. This was a trick question; there is no “best” layout. It depends on your

content and the needs of your audience.

2. Sure. Although most fixed layouts are flush-left or centered, you could
assign a fixed position on an XY axis where you could place a <div>
that contains all the other layout <div>s.

3. The min-width property sets the minimum width of an element, not
including padding, borders, or margins.

Exercises
. Figure 12.13 shows the finished fixed/liquid hybrid layout, but notice

there are a few areas for improvement. There isn’t any space around
the text in the right-side column, there aren’t any margins between the
body text and either column, the footer strip is a little sparse, and so
on. Take some time to fix up these design elements.

. After you’ve added margin or padding as appropriate in the first exer-
cise, spruce up this page with a horizontal navigation strip and fancier
vertical navigation based on what you learned in Chapter 11, “Using
CSS to Do More with Lists, Text, and Navigation.”

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

The term dynamic means something active or something that motivates
another to become active.

When talking about websites, a dynamic website is one that incorporates
interactivity into its functionality and design, but also motivates a user to
take an action—read more, purchase a product, and so on. In this chapter,
you’ll learn a little bit about the different types of interactivity that can
make a site dynamic, including information about both server-side and
client-side scripting (as well as some practical examples of the latter, lead-
ing to the all the remaining chapters in this book that are specifically
geared toward programming with JavaScript).

You’ve had a brief introduction to client-side scripting in Chapter 4,
“Understanding JavaScript,” and you used a little of it in Chapter 11,
“Using CSS to Do More with Lists, Text, and Navigation,” when you used
event attributes and JavaScript to change the styles of particular ele-
ments—that is called manipulating the Document Object Model (DOM). You
will do a bit more of that type of manipulation in this chapter before
attacking the language with gusto in the following chapters.

Understanding the Different Types
of Scripting
In web development, there are two different types of scripting: server-side
and client-side. Server-side scripting is beyond the scope of this book,
although not too far beyond. In fact, Sams Teach Yourself PHP, MySQL and
Apache All in One is a natural extension of this book—in my not-so-humble
opinion of it (as its author).

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How to conceptualize dif-
ferent types of dynamic
content

. Basic information about
other dynamic scripting
languages

. A refresher for including
JavaScript in your HTML

. How to display randomized
text with JavaScript

. How to change images
using JavaScript and user
events

CHAPTER 13
Understanding Dynamic Websites

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

274 CHAPTER 13 Understanding Dynamic Websites

Server-side scripting refers to scripts that run on the web server, which then
sends results to your web browser. If you have ever submitted a form at a
website, which includes using a search engine, you have experienced the
results of a server-side script. Popular server-side scripting languages
include the following (to learn more, visit the websites listed here):

. PHP (PHP: Hypertext Preprocessor)—http://www.php.net/

. JSP (Java Server Pages)—http://java.sun.com/products/jsp/

. ASP (Active Server Pages)—http://www.asp.net/

. Perl—http://www.perl.org/

. Python—http://www.python.org/

. Ruby—http://www.ruby-lang.org/

On the other hand, client-side scripting refers to scripts that run within your
web browser; there is no interaction with a web server in order for the
scripts to run. The most popular client-side scripting language, by far, is
JavaScript. For several years, research has shown that more than 93% of all
web browsers have JavaScript enabled.

Another client-side scripting language is Microsoft’s VBScript (Visual Basic
Scripting Edition). This language is only available with Microsoft Internet
Explorer web browser, and therefore, it should not be used unless you are
sure that users will access your site with that web browser (such as in a
closed corporate environment).

Including JavaScript in HTML
Much of this chapter is a refresher from Chapter 4; I thought it would be a
good idea to revisit some of the basics of JavaScript after the HTML and CSS
chapters and before the heavy-duty client-side application programming
begins.

If you recall, JavaScript code can live in one of two places within your files:

. In its own file with a .js extension

. Directly in your HTML files

External files are often used for script libraries (code you can reuse
throughout many pages), whereas code appearing directly in the HTML
files tends to achieve functionality specific to those individual pages.
Regardless of where your JavaScript lives, your browser learns of its exis-
tence through the use of the <script></script> tag pair.

NOTE

Despite its name, JavaScript is
not a derivation or any other
close relative to the object-
oriented programming language
called Java. Released by Sun
Microsystems in 1995, Java is
very closely related to the
server-side scripting language
JSP. JavaScript was created by
Netscape Communications,
also in 1995, and given the
name to indicate a similarity in
appearance to Java but not a
direct connection with it.

www.it-ebooks.info

http://www.php.net/
http://java.sun.com/products/jsp/
http://www.asp.net/
http://www.perl.org/
http://www.python.org/
http://www.ruby-lang.org/
http://www.it-ebooks.info/

ptg999

Including JavaScript in HTML 275

When you store your JavaScript in external files, it is referenced in this
manner:

<script type=”text/javascript” src=”/path/to/script.js”>

These <script></script> tags are typically placed between the
<head></head> tag because it is not, strictly speaking, content that belongs
in the <body> of the page. Instead, the <script> makes available a set of
JavaScript functions or other information that the rest of the page can then
use. However, you can also just encapsulate your JavaScript functions or
code snippets with the <script> and place them anywhere in the page, as
needed. Listing 13.1 shows an example of a JavaScript snippet placed in
the <body> of an HTML document.

LISTING 13.1 Using JavaScript to Print Some Text
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>JavaScript Example</title>

</head>

<body>
<h1>JavaScript Example</h1>
<p>This text is HTML.</p>
<script type=”text/javascript”>
<!-- Hide the script from old browsers
document.write(‘<p>This text comes from JavaScript.</p>’);
// Stop hiding the script -->
</script>

</body>
</html>

Between the <script></script> tags is a single JavaScript command that
outputs the following HTML:

<p>This text comes from JavaScript.</p>

When the browser renders this HTML page, it sees the JavaScript between
the <script></script> tags, stops for a millisecond to execute the com-
mand, and then returns to rendering the output that now includes the
HTML output from the JavaScript command. Figure 13.1 shows that this
page appears as any other HTML page appears. It’s an HTML page, but
only a small part of the HTML comes from a JavaScript command.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

276 CHAPTER 13 Understanding Dynamic Websites

Displaying Random Content
You can use JavaScript to display something different each time a page is
loaded. Maybe you have a collection of text or images that you find inter-
esting enough to include in your pages?

I’m a sucker for a good quote. If you’re like me, you might find it fun to
incorporate an ever-changing quote into your web pages. To create a page
with a quote that changes each time the page loads, you must first gather
all your quotes together, along with their respective sources. You’ll then
place these quotes into a JavaScript array, which is a special type of storage
unit in programming languages that is handy for holding lists of items.

After the quotes are loaded into an array, the JavaScript used to pluck out a
quote at random is fairly simple. You’ve already seen the snippet that will
print the output into your HTML page.

Listing 13.2 contains the complete HTML and JavaScript code for a web
page that displays a random quote each time it loads.

LISTING 13.2 A Random-Quote Web Page
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Quotable Quotes</title>

FIGURE 13.1
The output of a JavaScript snippet
looks like any other output.

NOTE
You might have noticed these
two lines in Listing 13.1:

<!-- Hide the script from
old browsers

// Stop hiding the script
-->

This is an HTML comment.
Anything between the <!-- start
and the --> end will be visible
in the source code, but will not
be rendered by the browser. In
this case, JavaScript code is
surrounded by HTML comments
on the off chance that your visi-
tor is running a very old web
browser or has JavaScript
turned off.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Displaying Random Content 277

<script type=”text/javascript”>
<!-- Hide the script from old browsers
function getQuote() {
// Create the arrays
quotes = new Array(4);
sources = new Array(4);

// Initialize the arrays with quotes
quotes[0] = “When I was a boy of 14, my father was so “ +
“ignorant...but when I got to be 21, I was astonished “ +
“at how much he had learned in 7 years.”;
sources[0] = “Mark Twain”;
quotes[1] = “Everybody is ignorant. Only on different “ +
“subjects.”;
sources[1] = “Will Rogers”;
quotes[2] = “They say such nice things about people at “ +
“their funerals that it makes me sad that I’m going to “ +
“miss mine by just a few days.”;
sources[2] = “Garrison Keilor”;
quotes[3] = “What’s another word for thesaurus?”;
sources[3] = “Steven Wright”;

// Get a random index into the arrays
i = Math.floor(Math.random() * quotes.length);

// Write out the quote as HTML
document.write(“<dl style=’background-color: lightpink’>\n”);
document.write(“<dt>” + “\”” + quotes[i] + “\”\n”);
document.write(“<dd>” + “- “ + sources[i] + “\n”);
document.write(“<dl>\n”);

}
// Stop hiding the script -->

</script>
</head>

<body>
<h1>Quotable Quotes</h1>
<p>Following is a random quotable quote. To see a new quote just
reload this page.</p>
<script type=”text/javascript”>
<!-- Hide the script from old browsers
getQuote();
// Stop hiding the script -->

</script>
</body>

</html>

Although this code looks kind of long, if you look carefully, you’ll see that
a lot of it consists of the four quotes available for display on the page. After
you get past the length, the code itself isn’t too terribly complex.

LISTING 13.2 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

278 CHAPTER 13 Understanding Dynamic Websites

The large number of lines between the first set of <script></script> tags
is creating a function called getQuote(). After a function is defined, it can
be called in other places in the same page. Note that if the function existed
in an external file, the function could be called from all your pages.

If you look closely at the code, you will see some lines like this:

// Create the arrays

and

// Initialize the arrays with quotes

These are code comments. The developer uses these comments to leave
notes in the code so that anyone reading it has an idea of what the code is
doing in that particular place. After the first comment about creating the
arrays, you can see that two arrays are created—one called quotes and one
called sources—each containing four elements:

quotes = new Array(4);
sources = new Array(4);

After the second comment (about initializing the arrays with quotes), four
items are added to the arrays. We’ll look closely at one of them, the first
quote by Mark Twain:

quotes[0] = “When I was a boy of 14, my father was so “ +
“ignorant...but when I got to be 21, I was astonished at “ +
“how much he had learned in 7 years.”;
sources[0] = “Mark Twain”;

You already know that the arrays are named quotes and sources. But the
variable to which values are assigned (in this instance) are called
quotes[0] and sources[0]. Because quotes and sources are arrays, the
items in the array will each have their own position. When using arrays,
the first item in the array is not in slot #1; it is in slot #0. In other words,
you begin counting at 0 instead of 1. Therefore, the text of the first quote (a
value) is assigned to quotes[0] (a variable). Similarly, the text of the first
source is assigned to source[0].

Text strings are enclosed in quotation marks. However, in JavaScript, a line
break indicates an end of a command, such that the following would cause
problems in the code:

quotes[0] = “When I was a boy of 14, my father was so
ignorant...but when I got to be 21, I was astonished at
how much he had learned in 7 years.”;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Displaying Random Content 279

Therefore, you see that the string is built as a series of strings enclosed in
quotation marks, with a plus sign (+) connecting the strings.

The next chunk of code definitely looks the most like programming; this
line gets a random number:

i = Math.floor(Math.random() * quotes.length);

But you can’t just pick any random number because the purpose of the
random number is to determine which of the quotes and sources should be
printed—and there are only four quotes. So, this line of JavaScript does the
following:

. Uses Math.random() to get a random number between 0 and 1. For
example, 0.5482749 might be a result of Math.random().

. Multiplies the random number by the length of the quotes array,
which is currently 4; the length of the array is the number of ele-
ments in the array. If the random number is 0.5482749 (as shown pre-
viously), multiplying that by 4 results in 2.1930996.

. Uses Math.floor() to round the result down to the nearest whole
number. In other words, 2.1930996 turns into 2.

. Assigns the variable i a value of 2.

The rest of the function should look familiar, with a few exceptions. First,
as you learned earlier this chapter, document.write() is used to write
HTML, which is then rendered by the browser. Next, the strings are sepa-
rated to make it clear when something needs to be handled differently,
such as escaping the quotation marks with a backslash when they should
be printed literally (\”) or when the value of a variable is substituted. The
actual quote and source that is printed is the one that matches quotes[i]
and sources[i], where i is the number determined by the mathematical
functions shown previously.

But the act of simply writing the function doesn’t mean that any output
will be created. Further on in the HTML, you can see getQuote();
between two <script></script> tags; that is how the function is called.
Wherever that function call is made, that is where the output of the func-
tion will be placed. In this example, the output displays below a paragraph
that introduces the quotation.

Figure 13.2 shows the Quotable Quotes page as it appears when loaded in
a web browser. When the page reloads, there is a one in four chance a dif-
ferent quote displays—it is random, after all!

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

280 CHAPTER 13 Understanding Dynamic Websites

FIGURE 13.2
The Quotable Quotes page dis-
plays a random quote each time it
is loaded.

Keep in mind that you can easily modify this page to include your own
quotes or other text that you want to display randomly. You can also
increase the number of quotes available for display by adding more entries
in the quotes and sources arrays in the code.

If you use the Quotable Quotes page as a starting point, you can easily alter
the script and create your own interesting variation on the idea. And if you
make mistakes along the way, so be it. The trick to getting past mistakes in
script code is to be patient and carefully analyze the code you’ve entered.
You can always remove code to simplify a script until you get it working,
and then add new code one piece at a time to make sure each piece works.

Understanding the Document Object
Model
Client-side interactivity using JavaScript typically takes the form of manip-
ulating the DOM in some way. The DOM is the invisible structure of all
documents—not the HTML structure or the way in which you apply levels
of formatting, but a sort of overall framework or container. If this descrip-
tion seems vague, that’s because it is; it’s not a tangible object.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Changing Images Based on User Interaction 281

The overall container object is called the document. Any container within
the document that has an ID is referenced by that ID. For example, if you
have a <div> with an ID called wrapper, then in the DOM that element is
referenced by the following:

document.wrapper

In Chapter 11, you changed the visibility of a specific element by changing
something in the style object associated with it. If you wanted to access
the background-color style of the <div> with an ID called wrapper, it
would be referred to as:

document.wrapper.style.background-color

To change the value of that style to something else, perhaps based on an
interactive user event, use the following to change the color to white:

document.wrapper.style.background-color=”#ffffff”

The DOM is the framework behind your ability to refer to elements and
their associated objects in this way. Obviously, this is a brief overview of
something quite complicated, but at least you can now begin to grasp what
this document-dot-something business is all about. To learn a lot more
about the DOM, visit the World Wide Web Consortium’s information
about the DOM at http://www.w3.org/DOM/.

Changing Images Based on User
Interaction
In Chapter 11, you were introduced to the different types of user interac-
tion events, such as onclick, onmouseover, onmouseout, and so on. In that
chapter, you invoked changes in text based on user interaction; in this sec-
tion, you’ll see an example of a visible type of interaction that is both prac-
tical and dynamic.

Figure 13.3 shows a page from an online catalog for a collectibles company.
Each page in the catalog shows a large image, information about the item,
and a set of smaller images at the bottom of the page. In this type of cata-
log, close-up images of the details of each item are important to the poten-
tial buyer, but several large images on a page becomes unwieldy from both
a display and bandwidth point of view.

www.it-ebooks.info

http://www.w3.org/DOM/
http://www.it-ebooks.info/

ptg999

282 CHAPTER 13 Understanding Dynamic Websites

The large image on the page is called using this tag:

As you can see, this image is given a name of product_img. Therefore, this
image exists in the DOM as document.product_img. This is important
because a little bit of JavaScript functionality enables us to dynamically
change the value of document.product_img.src, which is the source (src)
of the image.

The following code snippet creates the fourth small image in the group of
five images shown at the bottom of Figure 13.3. The onmouseover event
indicates that when the user rolls over this small image, the value of
document.product_img.src—the large image slot—is filled with the path
to a matching large image.

<a href=”#” onmouseover=”javascript:document.product_img.src =
‘/path/to/large4.jpg’”><img src=”/path/to/small4.jpg”
width=”104” height=”104” style=”padding: 4px; border: 0px”
alt=”photo” />

Figure 13.4 shows the same page—not reloaded by the user—whereby the
slot for the large image is filled by a different image when the user rolls over
a smaller image at the bottom of the page. The mouse pointer hovers over the
second image from the right. As the user rolls over the small version of the
interior photo, the large version of it is shown in the top area on the page.

FIGURE 13.3
The catalog item page when first
loaded by the user.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Summary 283

Summary
In this brief chapter, you were reminded of the differences between server-
side scripting and client-side scripting, and you got a refresher for includ-
ing JavaScript in your HTML files to add a little interactivity to your web-
sites. You also learned how to use the JavaScript document.write()
method to display random quotes upon page load. Lastly, you learned
what the DOM is all about.

By applying the knowledge you’ve gained from previous chapters, you’ve
learned how to use client-side scripting to make images on a web page
respond to mouse movements. None of these tasks requires much in the
way of programming skills, but it should inspire you to continue on
throughout the book and to learn more about JavaScript to give your pages
more complex interactive features.

FIGURE 13.4
The large image is replaced when
the user rolls over a smaller one.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

284 CHAPTER 13 Understanding Dynamic Websites

Q&A
Q. If I want to use the random quote script from this chapter, but I want

to have a library of a lot of quotes, do I have to put all the quotes in
each page?

A. Yes. Each item in the array has to be there. This is where you can
begin to see a bit of a tipping point between something that can be
client-side and something that is better dealt with on the server side. If
you have a true library of random quotations and only one is presented
at any given time, it’s probably best to store those items in a database
table and use a little piece of server-side scripting to connect to that
database, retrieve the text, and print it on the page. Alternately, you can
always continue to carry all the quotes with you in JavaScript, but you
should at least put that JavaScript function into a different file that can
be maintained separately from the text.

Q. I’ve seen some online catalogs that display a large image in what
looks to be a layer on top of the website content. I can see the regular
website content underneath it, but the focus is on the large image.
How is that done?

A. The description sounds like an effect created by a JavaScript library
called Lightbox. The Lightbox library enables you to display an image, or
a gallery of images, in a layer that is placed over your site content. This
is a popular library used to show the details of large images or just a
set of images deemed important enough to showcase “above” the con-
tent, as it were. (To install and use it, follow the instructions included
with the software. You will be able to integrate it into your site using the
knowledge you’ve gained in this book so far.)

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. You’ve made a picture of a button and named it button.gif. You’ve also

made a simple GIF animation of the button whereby it flashes green
and white. You’ve named that GIF flashing.gif. What HTML and
JavaScript code would you use to make the button flash whenever a
user moves the mouse pointer over it and also link to a page named
gohere.html when a user clicks the button?

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Workshop 285

2. How would you modify the code you wrote for question 1 so that the
button flashes when a user moves his mouse over it and continues
flashing even if he moves the mouse away from it?

3. What does the plus sign (+) mean in the following context?

document.write(‘This is a text string ‘ + ‘that I have created.’);

Answers
1. Your code might look something like this:

<a href=”gohere.html”
onmouseover=”javascript:document.flasher.src=’flashing.gif’”
onmouseout=”javascript:document.flasher.src=’button.gif’”>

2. Your code might look something like this:

<a href=”gohere.html”
onmouseover=”javascript:document.flasher.src=’flashing.gif’”>

3. The plus sign (+) is used to join two strings together.

Exercises
. Do you have any pages that would look flashier or be easier to under-

stand if the navigation icons or other images changed when the mouse
passed over them? If so, try creating some highlighted versions of the
images and try modifying your own page using the information present-
ed in this chapter.

. You can display random images—such as graphical banners or adver-
tisements—in the same way you learned to display random content
using JavaScript earlier in this chapter. Instead of printing text, just
print the tag for the images you want to display.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

The previous chapter reminded you of what JavaScript is, what JavaScript
can do, and had you create a simple script.

In this chapter, you’ll learn a few more basic concepts and script compo-
nents that you’ll use in just about every script you write. This will prepare
you for the remaining chapters of this book, in which you’ll explore specif-
ic JavaScript functions and features in greater depth.

Basic Concepts
There are a few basic concepts and terms you’ll run into throughout this
book. In the following sections, you’ll learn about the basic building blocks
of JavaScript.

Statements
Statements are the basic units of a JavaScript program. A statement is a sec-
tion of code that performs a single action. For example, the following three
statements are from the Date and Time example in Chapter 4,
“Understanding JavaScript.”

hours = now.getHours();
mins = now.getMinutes();
secs = now.getSeconds();

Although a statement is typically a single line of JavaScript, this is not a
rule—it’s possible to break a statement across multiple lines or to include
more than one statement in a single line.

A semicolon marks the end of a statement. You can also omit the semicolon
if you start a new line after the statement. If you combine statements into a
single line, you must use semicolons to separate them.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. Organizing scripts using
functions

. What objects are and how
JavaScript uses them

. How JavaScript can
respond to events

. An introduction to condi-
tional statements and
loops

. How browsers execute
scripts in the proper order

. Syntax rules for avoiding
JavaScript errors

. Adding comments to docu-
ment your JavaScript code

CHAPTER 14
Getting Started with JavaScript

Programming

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

288 CHAPTER 14 Getting Started with JavaScript Programming

Combining Tasks with Functions
In the basic scripts you’ve examined so far, you’ve seen some JavaScript
statements that have a section in parentheses, like this:

document.write(“Testing.”);

This is an example of a function. Functions provide a simple way to handle
a task, such as adding output to a web page. JavaScript includes a wide
variety of built-in functions, which you will learn about throughout this
book. A statement that uses a function, as in the preceding example, is
referred to as a function call.

Functions take parameters (the expression inside the parentheses) to tell
them what to do. Additionally, a function can return a value to a waiting
variable. For example, the following function call prompts the user for a
response and stores it in the text variable:

text = prompt(“Enter some text.”)

You can also create your own functions. This is useful for two main rea-
sons: First, you can separate logical portions of your script to make it easi-
er to understand. Second, and more importantly, you can use the function
several times or with different data to avoid repeating script statements.

Variables
In Chapter 4, you learned that variables are containers that can store a
number, a string of text, or another value. For example, the following state-
ment creates a variable called fred and assigns it the value 27:

var fred = 27;

JavaScript variables can contain numbers, text strings, and other values.
You’ll learn more about them in Chapter 16, “Using JavaScript Variables,
Strings, and Arrays.”

Understanding Objects
JavaScript also supports objects. Like variables, objects can store data—but
they can store two or more pieces of data at once.

The items of data stored in an object are called the properties of the object.
For example, you could use objects to store information about people such
as in an address book. The properties of each person object might include a
name, an address, and a telephone number.

NOTE

You will learn how to define,
call, and return values from
your own functions in Chapter
17, “Using JavaScript Functions
and Objects.”

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Basic Concepts 289

JavaScript uses periods to separate object names and property names. For
example, for a person object called Bob, the properties might include
Bob.address and Bob.phone.

Objects can also include methods. These are functions that work with the
object’s data. For example, our person object for the address book might
include a display() method to display the person’s information. In
JavaScript terminology, the statement Bob.display() would display Bob’s
details.

Don’t worry if this sounds confusing—you’ll be exploring objects in much
more detail later in this book. For now, you just need to know the basics.
JavaScript supports three kinds of objects:

. Built-in objects are built in to the JavaScript language. You’ve already
encountered one of these, Date, in Chapter 2, “Understanding HTML
and XHTML Connections.” Other built-in objects include Array and
String, which you’ll explore in Chapter 16, and Math, which is
explained in Chapter 17.

. DOM (Document Object Model) objects represent various components
of the browser and the current HTML document. For example, the
alert() function you used earlier in this chapter is actually a
method of the window object. You’ll explore these in more detail in
Chapter 15, “Working with the Document Object Model (DOM).”

. Custom objects are objects you create yourself. For example, you could
create a person object, as mentioned earlier in this section.

Conditionals
Although event handlers notify your script when something happens, you
might want to check certain conditions yourself. For example, did the user
enter a valid email address?

JavaScript supports conditional statements, which enable you to answer
questions like this. A typical conditional uses the if statement, as in this
example:

if (count==1) alert(“The countdown has reached 1.”);

This compares the variable count with the constant 1 and displays an alert
message to the user if they are the same. You will use conditional state-
ments like this in most of your scripts.

NOTE

The document.write function
we discussed earlier this chap-
ter is actually the write
method of the document object,
which you have seen several
times already.

NOTE

You’ll learn more about condi-
tionals in Chapter 18,
“Controlling Flow with
Conditions and Loops.”

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

290 CHAPTER 14 Getting Started with JavaScript Programming

Loops
Another useful feature of JavaScript—and most other programming lan-
guages—is the capability to create loops, or groups of statements that
repeat a certain number of times. For example, these statements display
the same alert 10 times, greatly annoying the user:

for (i=1; i<=10; i++) {
alert(“Yes, it’s yet another alert!”);

}

The for statement is one of several statements JavaScript uses for loops.
This is the sort of thing computers are supposed to be good at—perform-
ing repetitive tasks. You will use loops in many of your scripts, in much
more useful ways than this example.

Event Handlers
As mentioned in Chapter 1, not all scripts are located within <script>
tags. You can also use scripts as event handlers. Although this might sound
like a complex programming term, it actually means exactly what it says:
Event handlers are scripts that handle events. You learned a little bit about
events in Chapter 11, “Using CSS to Do More with Lists, Text, and
Navigation,” but not to the extent you’ll read about now.

In real life, an event is something that happens to you. For example, the
things you write on your calendar are events: “Dentist appointment” or
“Fred’s birthday.” You also encounter unscheduled events in your life: for
example, a traffic ticket, an IRS audit, or an unexpected visit from relatives.

Whether events are scheduled or unscheduled, you probably have normal
ways of handling them. Your event handlers might include things such as
“When Fred’s birthday arrives, send him a present” or “When relatives
visit unexpectedly, turn out the lights and pretend nobody is home.”

Event handlers in JavaScript are similar: They tell the browser what to do
when a certain event occurs. The events JavaScript deals with aren’t as
exciting as the ones you deal with—they include such events as “When the
mouse button clicks” and “When this page is finished loading.”
Nevertheless, they’re a very useful part of JavaScript.

Many JavaScript events (such as mouse clicks, which you’ve seen previ-
ously) are caused by the user. Rather than doing things in a set order, your
script can respond to the user’s actions. Other events don’t involve the
user directly—for example, an event is triggered when an HTML docu-
ment finishes loading.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

JavaScript Syntax Rules 291

Each event handler is associated with a particular browser object, and you
can specify the event handler in the tag that defines the object. For exam-
ple, images and text links have an event, onMouseOver, which happens
when the mouse pointer moves over the object. Here is a typical HTML
image tag with an event handler:

You specify the event handler as an attribute to the HTML tag and include
the JavaScript statement to handle the event within the quotation marks.
This is an ideal use for functions because function names are short and to
the point and can refer to a whole series of statements.

See the Try It Yourself section at the end of this chapter for a complete
example of an event handler within an HTML document.

Which Script Runs First?
You can actually have several scripts within a web document: one or more
sets of <script> tags, external JavaScript files, and any number of event
handlers. With all of these scripts, you might wonder how the browser
knows which to execute first. Fortunately, this is done in a logical fashion:

. Sets of <script> tags within the <head> section of an HTML docu-
ment are handled first, whether they include embedded code or refer
to a JavaScript file. Because these scripts cannot create output in the
web page, it’s a good place to define functions for use later.

. Sets of <script> tags within the <body> section of the HTML docu-
ment are executed after those in the <head> section, while the web
page loads and displays. If there is more than one script in the body,
they are executed in order.

. Event handlers are executed when their events happen. For example,
the onLoad event handler is executed when the body of a web page
loads. Because the <head> section is loaded before any events, you
can define functions there and use them in event handlers.

JavaScript Syntax Rules
JavaScript is a simple language, but you do need to be careful to use its
syntax—the rules that define how you use the language—correctly. The rest
of this book covers many aspects of JavaScript syntax, but there are a few
basic rules you should understand to avoid errors.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

292 CHAPTER 14 Getting Started with JavaScript Programming

Case Sensitivity
Almost everything in JavaScript is case sensitive, which means you cannot
use lowercase and capital letters interchangeably. Here are a few general
rules:

. JavaScript keywords, such as for and if, are always lowercase.

. Built-in objects, such as Math and Date, are capitalized.

. DOM object names are usually lowercase, but their methods are
often a combination of capitals and lowercase. Usually capitals are
used for all but the first word, as in toLowerCase and
getElementById.

When in doubt, follow the exact case used in this book or another
JavaScript reference. If you use the wrong case, the browser will usually
display an error message.

Variable, Object, and Function Names
When you define your own variables, objects, or functions, you can choose
their names. Names can include uppercase letters, lowercase letters, num-
bers, and the underscore (_) character. Names must begin with a letter or
underscore.

You can choose whether to use capitals or lowercase in your variable
names, but remember that JavaScript is case sensitive: score, Score, and
SCORE would be considered three different variables. Be sure to use the
same name each time you refer to a variable.

Reserved Words
One more rule for variable names: They must not be reserved words. These
include the words that make up the JavaScript language (such as if and
for), DOM object names (such as window and document), and built-in
object names (such as Math and Date).

Spacing
Blank space (known as whitespace by programmers) is ignored by
JavaScript. You can include spaces and tabs within a line, or blank lines,
without causing an error. Blank space often makes the script more read-
able.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Best Practices for JavaScript 293

Using Comments
JavaScript comments enable you to include documentation within your
script. This will be useful if someone else tries to understand the script or
even if you try to understand it after a long break. To include comments in
a JavaScript program, begin a line with two slashes, as in this example:

//this is a comment.

You can also begin a comment with two slashes in the middle of a line,
which is useful for documenting a script. In this case, everything on the
line after the slashes is treated as a comment and ignored by the browser.
For example,

a = a + 1; // add one to the value of a

JavaScript also supports C-style comments, which begin with /* and end
with */. These comments can extend across more than one line, as the fol-
lowing example demonstrates:

/*This script includes a variety
of features, including this comment. */

Because JavaScript statements within a comment are ignored, C-style com-
ments are often used for commenting out sections of code. If you have some
lines of JavaScript that you want to temporarily take out of the picture
while you debug a script, you can add /* at the beginning of the section
and */ at the end.

Best Practices for JavaScript
You should now be familiar with the basic rules for writing valid
JavaScript. Along with following the rules, it’s also a good idea to follow
best practices. The following practices may not be required, but you’ll save
yourself and others some headaches if you follow them.

. Use comments liberally—These make your code easier for others to
understand and also easier for you to understand when you edit them
later. They are also useful for marking the major divisions of a script.

. Use a semicolon at the end of each statement and only use one
statement per line—This will make your scripts easier to debug.

. Use separate JavaScript files whenever possible—This separates
JavaScript from HTML and makes debugging easier and also encour-
ages you to write modular scripts that can be reused.

CAUTION

Because these comments are
part of JavaScript syntax, they
are only valid inside <script>
tags or within an external
JavaScript file.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

294 CHAPTER 14 Getting Started with JavaScript Programming

. Avoid being browser-specific—As you learn more about JavaScript,
you’ll learn some features that only work in one browser. Avoid them
unless absolutely necessary and always test your code in more than
one browser.

. Keep JavaScript optional—Don’t use JavaScript to perform an essen-
tial function on your site—for example, the primary navigation links.
Whenever possible, users without JavaScript should be able to use
your site, although it may not be quite as attractive or convenient.
This strategy is known as progressive enhancement.

There are many more best practices involving more advanced aspects of
JavaScript.

TRY IT YOURSELF▼

Using an Event
Handler

To conclude this chapter, here’s a simple example of an event handler. This
will demonstrate how you set up an event, which you’ll use throughout this
book, and how JavaScript works without <script> tags. Listing 14.1 shows
an HTML document that includes a simple event handler.

LISTING 14.1 An HTML Document with a Simple Event Handler
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Event Handler Example</title>

</head>

<body>
<h1>Event Handler Example</h1>
<p>
<a href=”http://www.google.com/”
onclick=”alert(‘Aha! An Event!’);”>Go to Google
</p>

</body>
</html>

The event handler is defined with the following onClick attribute within
the <a> tag that defines a link:

onclick=”alert(‘Aha! An Event!’);”

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Summary 295

This event handler uses the built-in alert() function to display a message
when you click on the link. In more complex scripts, you will usually
define your own function to act as an event handler. Figure 14.1 shows this
example in action.

FIGURE 14.1
The browser displays an alert
when you click the link.

You’ll use other event handlers similar to this in the next hour, and events
will be covered in more detail in Chapter 19, “Responding to Events.”

Summary
During this chapter, you’ve been introduced to several components of
JavaScript programming and syntax: functions, objects, event handlers,
conditions, and loops. You also learned how to use JavaScript comments to
make your script easier to read and looked at a simple example of an event
handler.

TIP

Notice that after you click the
OK button on the alert, the
browser follows the link defined
in the <a> tag. Your event han-
dler could also stop the brows-
er from following the link, as
described in Chapter 19.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

296 CHAPTER 14 Getting Started with JavaScript Programming

Q&A
Q. I’ve heard the term object-oriented applied to languages such as C++

and Java. If JavaScript supports objects, is it an object-oriented lan-
guage?

A. Yes, although it might not fit some people’s strict definitions. JavaScript
objects do not support all the features that languages such as C++ and
Java support, although the latest versions of JavaScript have added
more object-oriented features.

Q. Having several scripts that execute at different times seems confusing.
Why would I want to use event handlers?

A. Event handlers are the ideal way (and in JavaScript, the only way) to
handle gadgets within the web page, such as buttons, check boxes, and
text fields. It’s actually more convenient to handle them this way. Rather
than writing a script that sits and waits for a button to be pushed, you
can simply create an event handler and let the browser do the waiting
for you.

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. A script that executes when the user clicks the mouse button is an

example of what?

a. An object

b. An event handler

c. An impossibility

2. Which of the following are capabilities of functions in JavaScript?

a. Accept parameters

b. Return a value

c. Both of the above

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Workshop 297

3. Which of the following is executed first by a browser?

a. A script in the <head> section

b. A script in the <body> section

c. An event handler for a button

Answers
1. b. A script that executes when the user clicks the mouse button is an

event handler.

2. c. Functions can accept both parameters and return values.

3. a. Scripts defined in the <head> section of an HTML document are exe-
cuted first by the browser.

Exercises
. Examine the Date and Time script you created in Chapter 4 and find

any examples of functions and objects being used.

. Add JavaScript comments to the Date and Time script to make it more
clear what each line does. Verify that the script still runs properly.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

The previous chapter introduced you to the basic concepts of programming
in JavaScript; this chapter will help you better understand the Document
Object Model (DOM), which is the framework that properties and method of
JavaScript explicitly control so that you may develop rich user experiences.

Understanding the Document Object
Model (DOM)
One advantage that JavaScript has over plain HTML is that these client-side
scripts can manipulate the web document and its contents right there in the
browser after the content has been loaded. Your script can load a new page
into the browser, work with parts of the browser window and document,
open new windows, and even modify text within the page dynamically.

To work with the browser and documents, JavaScript uses a hierarchy of
parent and child objects called the DOM. These objects are organized into a
tree-like structure and represent all the content and components of a web
document.

The objects in the DOM have properties—variables that describe the web
page or document—and methods—functions that enable you to work with
parts of the web page.

When you refer to an object, you use the parent object name followed by
the child object name or names, separated by periods. For example,
JavaScript stores objects to represent images in a document as children of
the document object. The following refers to the image9 object, a child of
the document object, which is a child of the window object:

window.document.image9

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How the W3C DOM stan-
dard makes dynamic pages
easier to control

. The basics of the window
DOM object

. The basics of the
document DOM object

. The basics of the history
DOM object

. The basics of the
location DOM object

. How to work with nodes,
parents, children, and sib-
lings

. How to access and use the
properties of DOM nodes

. How to access and use
DOM node methods

. How to control positioning
with JavaScript

. How to hide and show
objects with JavaScript

. How to modify text within a
page with JavaScript

. How to add text to a page
with JavaScript

CHAPTER 15
Working with the Document

Object Model (DOM)

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

300 CHAPTER 15 Working with the Document Object Model (DOM)

Using window Objects
At the top of the browser object hierarchy is the window object, which repre-
sents a browser window. You’ve already used at least one method of the
window object: method, or simply alert(), displays a message in an alert box.

There can be several window objects at a time, each representing an open
browser window. Frames are also represented by window objects. You’ll
learn more about windows and frames in Chapter 20, “Using Windows
and Frames.”

The window object is the parent object for all the objects we will be looking
at in this chapter. Figure 15.1 shows the window section of the DOM object
hierarchy and a variety of its objects.

NOTE

The DOM is not part of
JavaScript or any other program-
ming language—rather, it’s an
API (application programming
interface) built in to the browser.

document

history

links[]

anchors[]

images[]

forms[]

DOM Level 1
Objects

form
elements

location

window
(parent, frames[],

self, top)

FIGURE 15.1
The window section of the DOM
object hierarchy.

Working with the document Object
The document object represents a web document or page. Web documents
are displayed within browser windows, so it shouldn’t surprise you to
learn that the document object is a child of the window object.

Because the window object always represents the current window (the one
containing the script), you can use window.document to refer to the current
document. You can also simply refer to document, which automatically
refers to the current window.

If multiple windows or frames are in use, there might be several window
objects, each with its own document object. To use one of these document
objects, you use the name of the window and the name of the document.

NOTE

You’ve already used the
document.write method to
display text within a web docu-
ment. The examples in earlier
chapters only used a single win-
dow and document, so it was
unnecessary to use window.
document.write—but this
longer syntax would have
worked equally well.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Working with the document Object 301

In the following sections, you will look at some of the properties and meth-
ods of the document object that will be useful in your scripting.

Getting Information About the Document
Several properties of the document object include information about the
current document in general:

. document.URL specifies the document’s URL. This is a simple text
field. You can’t change this property. If you need to send the user to a
different location, use the window.location object, which you will
learn about further along.

. document.title lists the title of the current page, defined by the
HTML <title> tag.

. document.referrer is the URL of the page the user was viewing prior
to the current page—usually, the page with a link to the current page.

. document.lastModified is the date the document was last modified.
This date is sent from the server along with the page.

. document.cookie enables you to read or set a cookie for the
document.

. document.images returns a collection of images used in the
document.

As an example of a document property, Listing 15.1 shows a short HTML
document that displays its last modified date using JavaScript.

LISTING 15.1 Displaying the Last Modified Date
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Displaying the Last Modified Date</title>

</head>
<body>
<h1>Displaying the Last Modified Date</h1>
<p>This page was last modified on:</p>
<script type=”text/javascript”>

document.write(document.lastModified);
</script>

</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

302 CHAPTER 15 Working with the Document Object Model (DOM)

Figure 15.2 shows the output of Listing 15.1.

FIGURE 15.2
Viewing the last modified date of a
document.

If you use JavaScript to display the value of this document property, you
don’t have to remember to update the date each time you modify the page,
should you choose to expose this information to the user. (You could also
use the script to always print the current date instead of the last modified
date, but that would be cheating.)

Writing Text in a Document
The simplest document object methods are also the ones you will use most
often. In fact, you’ve used one of them already even in the most basic exam-
ples in this book so far. The document.write method prints text as part of
the HTML in a document window. An alternative statement, document.
writeln, also prints text, but it also includes a newline (\n) character at the
end. This is handy when you want your text to be the last thing on the line.

You can use these methods only within the body of the web page, so they
will be executed when the page loads. You can’t use these methods to add
to a page that has already loaded without reloading it. You can write new
content for a document, however, as the next section explains.

The document.write method can be used within a <script> tag in the
body of an HTML document. You can also use it in a function, provided
you include a call to the function within the body of the document, as you
saw in Listing 15.1.

NOTE

You might find that the
document.lastModified prop-
erty doesn’t work on your web
pages or returns the wrong
value. The date is received from
the web server, and some
servers do not maintain modifi-
cation dates correctly.

CAUTION

Bear in mind that the newline
character is displayed as a
space by the browser, except
inside a <pre> container. You
will need to use the
 tag
if you want an actual line break.

NOTE

You can also directly modify the
text on a web page by using
more advanced features of the
DOM, which you’ll learn about
later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Accessing Browser History 303

Using Links and Anchors
Another child of the document object is the link object. Actually, there can
be multiple link objects in a document. Each one includes information
about a link to another location or an anchor.

You can access link objects with the links array. Each member of the
array is one of the link objects in the current page. A property of the array,
document.links.length, indicates the number of links in the page.

Each link object (or member of the links array) has a list of properties
defining the URL. The href property contains the entire URL, and other
properties define portions of it. These are the same properties as the
location object, defined later in this chapter.

You can refer to a property by indicating the link number and property
name. For example, the following statement assigns the entire URL of the
first link to the variable link1:

link1 = links[0].href;

The anchor objects are also children of the document object. Each anchor
object represents an anchor in the current document—a particular location
that can be jumped to directly.

Like links, you can access anchors with an array: anchors. Each element of
this array is an anchor object. The document.anchors.length property
gives you the number of elements in the anchors array.

Accessing Browser History
The history object is another child (property) of the window object. This
object holds information about the URLs that have been visited before and
after the current one, and it includes methods to go to previous or next
locations.

The history object has one property you can access:

. history.length keeps track of the length of the history list—in other
words, the number of different locations that the user has visited.

The history object has three methods you can use to move through the
history list:

NOTE

The history object has cur-
rent, previous, and next prop-
erties that store URLs of docu-
ments in the history list.
However, for security and priva-
cy reasons, these objects are
not normally accessible by
browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

304 CHAPTER 15 Working with the Document Object Model (DOM)

. history.go() opens a URL from the history list. To use this method,
specify a positive or negative number in parentheses. For example,
history.go(-2) is equivalent to pressing the Back button twice.

. history.back() loads the previous URL in the history list—equiva-
lent to pressing the Back button.

. history.forward() loads the next URL in the history list, if avail-
able. This is equivalent to pressing the Forward button.

You can use the back and forward methods of the history object to add
your own Back and Forward buttons to a web document. The browser
already has Back and Forward buttons, of course, but it’s occasionally use-
ful to include your own links that serve the same purpose.

Suppose you wanted to create a script that displays Back and Forward but-
tons and use these methods to navigate the browser. Here’s the code that
will create the Back button:

<input type=”button” onClick=”history.back();” value=”Go Back”>

The <input> tag defines a button labeled Go Back. The onClick event han-
dler uses the history.back() method to go to the previous page in history.
The code for the Go Forward button is similar:

<input type=”button” onClick=”history.forward();” value=”Go Forward”>

With these out of the way, you just need to build the rest of the HTML doc-
ument. Listing 15.2 shows a complete HTML document, and Figure 15.3
shows a browser’s display of the document. After you load this document
into a browser, visit other URLs and make sure the Back and Forward but-
tons work as expected.

LISTING 15.2 A Web Page That Uses JavaScript to Include Back and
Forward Buttons
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Using Back and Forward Buttons</title>

</head>
<body>
<h1>Using Back and Forward Buttons</h1>
<p>This page allows you to go back or forward to pages in
the history list. These should be equivalent to the back

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Working with the location Object 305

and forward arrow buttons in the browser’s toolbar.</p>
<p>
<input type=”button”

onclick=”history.back();”
value=”Go Back” />

<input type=”button”
onclick=”history.forward();”
value=”Go Forward” />

</p>
</body>
</html>

LISTING 15.2 Continued

FIGURE 15.3
Showing custom Back and Forward
buttons.

Working with the location Object
A third child of the window object is the location object. This object stores
information about the current URL stored in the window. For example, the
following statement loads a URL into the current window:

window.location.href=”http://www.google.com”;

The href property used in this statement contains the entire URL of the
window’s current location. You can also access portions of the URL with
various properties of the location object. To explain these properties, con-
sider the following URL:

http://www.google.com:80/search?q=javascript

www.it-ebooks.info

http://www.google.com:80/search?q=javascript
http://www.it-ebooks.info/

ptg999

306 CHAPTER 15 Working with the Document Object Model (DOM)

The following properties represent parts of the URL:

. location.protocol is the protocol part of the URL (http: in the
example).

. location.hostname is the host name of the URL (www.google.com
in the example).

. location.port is the port number of the URL (80 in the example).

. location.pathname is the filename part of the URL (search in the
example).

. location.search is the query portion of the URL, if any
(q=javascript in the example).

Unused in this example but also accessible are

. location.host is the hostname of the URL plus the port number.

. location.hash is the anchor name used in the URL, if any (#anchor
in the example) .

The link object, introduced earlier this chapter, also includes this list of
properties for accessing portions of the URL.

The location object has three methods:

. location.assign() loads a new document when used as follows:

location.assign(“http://www.google.com”)

. location.reload() reloads the current document. This is the same
as the Reload button on the browser’s toolbar. If you optionally
include the true parameter, it will ignore the browser’s cache and
force a reload whether the document has changed or not.

. location.replace() replaces the current location with a new one.
This is similar to setting the location object’s properties yourself.
The difference is that the replace method does not affect the brows-
er’s history. In other words, the Back button can’t be used to go to
the previous location. This is useful for splash screens or temporary
pages that it would be useless to return to.

More About the DOM Structure
Previously in this chapter, you learned how some of the most important
DOM objects are organized: The window object contains the document

CAUTION

Although the location.href
property usually contains the
same URL as the document.URL
property described earlier in
this chapter, you can’t change
the document.URL property.
Always use location.href to
load a new page.

www.it-ebooks.info

www.google.com
http://www.it-ebooks.info/

ptg999

More About the DOM Structure 307

object, and so on. Although these objects were the only ones available orig-
inally, the modern DOM adds objects under the document object for every
element of a page.

To better understand this concept, let’s look at the simple HTML document
in Listing 15.3. This document has the usual <head> and <body> sections, a
heading and a single paragraph of text.

LISTING 15.3 A Simple HTML Document
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>A Simple HTML Document</title>

</head>
<body>
<h1>This is a Level-1 Heading.</h1>
<p>This is a simple paragraph.</p>

</body>
</html>

Like all HTML documents, this one is composed of various containers and
their contents. The <html> tags form a container that includes the entire
document, the <body> tags contain the body of the page, and so on.

In the DOM, each container within the page and its contents are represent-
ed by an object. The objects are organized into a tree-like structure, with
the document object itself at the root of the tree, and individual elements
such as the heading and paragraph of text at the leaves of the tree. Figure
15.4 shows a diagram of these relationships.

In the following sections, you will examine the structure of the DOM more
closely.

Nodes
Each container or element in the document is called a node in the DOM. In
the example in Figure 15.4, each of the objects in boxes is a node, and the
lines represent the relationships between the nodes.

You will often need to refer to individual nodes in scripts. You can do this
by assigning an ID or by navigating the tree using the relationships
between the nodes.

NOTE

Don’t worry if this tree structure
confuses you; you can do
almost anything by simply
assigning IDs to elements and
referring to them. This is the
method used in some earlier
examples in this book. Further
on, you will look at more compli-
cated examples that require
you to understand the way
objects are organized in the
DOM.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

308 CHAPTER 15 Working with the Document Object Model (DOM)

Parents and Children
As you have already learned, each JavaScript object can have a parent—an
object that contains it—and can also have children—objects that it contains.
The DOM uses the same terminology.

In Figure 15.4, the document object is the parent object for the remaining
objects and does not have a parent itself. The html object is the parent of
the head and body objects, and the h1 and p objects are children of the body
object.

Text nodes work a bit differently. The actual text in the paragraph is a node
in itself and is a child of the p object. Similarly, the text within the <h1>
tags is a child of the h1 object.

Siblings
The DOM also uses another term for organization of objects: siblings. As
you might expect, this refers to objects that have the same parent—in other
words, objects at the same level in the DOM object tree.

In Figure 15.4, the h1 and p objects are siblings, as both are children of the
body object. Similarly, the head and body objects are siblings under the
html object.

FIGURE 15.4
How the DOM represents an HTML
document.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Working with DOM Nodes 309

Working with DOM Nodes
As you’ve seen, the DOM organizes objects within a web page into a tree-
like structure. Each node (object) in this tree can be accessed in JavaScript.
In the next sections, you will learn how you can use the properties and
methods of nodes to manage them.

Basic Node Properties
You have already used the style property of nodes to change their style
sheet values. Each node also has a number of basic properties that you can
examine or set. These include the following:

. nodeName is the name of the node (not the ID). For nodes based on
HTML tags, such as <p> or <body>, the name is the tag name: p or
body. For the document node, the name is a special code: #document.
Similarly, text nodes have the name #text.

. nodeType is an integer describing the node’s type: 1 for normal
HTML tags, 3 for text nodes, and 9 for the document node.

. nodeValue is the actual text contained within a text node. This prop-
erty is not valid for other types of nodes.

. innerHTML is the HTML content of any node. You can assign a value
including HTML tags to this property and change the DOM child
objects for a node dynamically.

Node Relationship Properties
In addition to the basic properties described previously, each node has a
number of properties that describe its relation to other nodes. These
include the following:

. firstChild is the first child object for a node. For nodes that contain
text, such as h1 or p, the text node containing the actual text is the
first child.

. lastChild is the node’s last child object.

. childNodes is an array that includes all of a node’s child nodes. You
can use a loop with this array to work with all the nodes under a
given node.

. previousSibling is the sibling (node at the same level) previous to
the current node.

. nextSibling is the sibling after the current node.

NOTE

The following sections only
describe the most important
properties and methods of
nodes and those that are sup-
ported by current browsers. For
a complete list of available
properties, see the W3C’s DOM
specification at http://www.w3.
org/TR/DOM-Level-2/.

NOTE

The innerHTML property is not a
part of the W3C DOM specifica-
tion. However, it is supported by
the major browsers and is often
the easiest way to change con-
tent in a page. You can also
accomplish this in a more stan-
dard way by deleting and creating
nodes, as described further on.

CAUTION

Remember that, like all
JavaScript objects and proper-
ties, the node properties and
functions described here are
case sensitive. Be sure you
type them exactly as shown.

www.it-ebooks.info

http://www.w3.org/TR/DOM-Level-2/
http://www.w3.org/TR/DOM-Level-2/
http://www.it-ebooks.info/

ptg999

310 CHAPTER 15 Working with the Document Object Model (DOM)

Document Methods
The document node itself has several methods you might find useful. You
have already used one of these, getElementById, to refer to DOM objects by
their ID properties. The document node’s methods include the following:

. getElementById(id) returns the element with the specified id
attribute.

. getElementsByTagName(tag) returns an array of all of the elements
with a specified tag name. You can use the wildcard * to return an
array containing all the nodes in the document.

. createTextNode(text) creates a new text node containing the speci-
fied text, which you can then add to the document.

. createElement(tag) creates a new HTML element for the specified
tag. As with createTextNode, you need to add the element to the
document after creating it. You can assign content within the element
by changing its child objects or the innerHTML property.

Node Methods
Each node within a page has a number of methods available. Which of
these are valid depends on the node’s position in the page and whether it
has parent or child nodes. These include the following:

. appendChild(new) appends the specified new node after all of the
object’s existing nodes.

. insertBefore(new, old) inserts the specified new child node before
the specified old child node, which must already exist.

. replaceChild(new, old) replaces the specified old child node with
a new node.

. removeChild(node) removes a child node from the object’s set of
children.

. hasChildNodes()returns a Boolean value of true if the object has one
or more child nodes or false if it has none.

. cloneNode()creates a copy of an existing node. If a parameter of
true is supplied, the copy will also include any child nodes of the
original node.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating Positionable Elements (Layers) 311

Creating Positionable Elements
(Layers)
Now that you understand a little more about how the DOM is structured,
you should be able to start thinking about how you can control any ele-
ment in a web page, such as a paragraph or an image. For example, you
can use the DOM to change the position, visibility, and other attributes of
an element.

Before the W3C DOM and CSS2 standards, you could only reposition lay-
ers, special groups of elements defined with a proprietary tag. Although
you can now position any element, it’s still useful to work with groups of
elements in many cases.

You can effectively create a layer, or a group of HTML objects that can be
controlled as a group, using the <div> or tags, which you learned
about early in this book.

To create a layer with <div>, enclose the content of the layer between the
two division tags and specify the layer’s properties in the style attribute
of the <div> tag. Here’s a simple example:

<div id=”layer1” style=”position:absolute; left:100px; top:100px”>
<p>This is the content of the layer.</p>
</div>

This code defines a layer with the name layer1. This is a moveable layer
positioned 100 pixels down and 100 pixels to the right of the upper-left
corner of the browser window.

You’ve already learned about the positioning properties and seen them in
action in Parts II and III of this book. This includes setting object size (such
as height and width) and position (such as absolute or relative), object
visibility, and object background and borders. The remaining examples in
this chapter will use HTML and CSS much like what you’ve already seen
in this book, but will show you JavaScript-based interactions with the
DOM in action.

Controlling Positioning with JavaScript
Using the code snippet from the previous section, you’ll see an example of
how you can control the positioning attributes of an object, using
JavaScript.

NOTE

As you’ve learned in earlier
chapters, you can specify CSS
properties, such as the
position property and other
layer properties, in a <style>
block, in an external style
sheet, or in the style attribute
of an HTML tag, and then con-
trol these properties using
JavaScript. The code snippets
shown here use properties in
the style attribute rather than
in a <style> block because it
is a snippet of an example and
not a full code listing.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

312 CHAPTER 15 Working with the Document Object Model (DOM)

Here is our sample layer (a <div>):

<div id=”layer1” style=”position:absolute; left:100px; top:100px”>
<p>This is the content of the layer.</p>
</div>

To move this layer up or down within the page using JavaScript, you can
change its style.top attribute. For example, the following statements
move the layer 100 pixels down from its original position:

var obj = document.getElementById(“layer1”);
obj.style.top=200;

The document.getElementById() method returns the object corresponding
to the layer’s <div> tag, and the second statement sets the object’s top
positioning property to 200px; you can also combine these two statements:

document.getElementById(“layer1”).style.top = 200;

This simply sets the style.top property for the layer without assigning a
variable to the layer’s object.

Now let’s create an HTML document that defines a layer and combine it
with a script to allow the layer to be moved, hidden, or shown using but-
tons. Listing 15.4 shows the HTML document that defines the buttons and
the layer. The script itself (position.js) will follow in Listing 15.5.

LISTING 15.4 The HTML Document for the Movable Layer Example
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Positioning Elements with JavaScript</title>
<script type=”text/javascript” src=”position.js”></script>
<style text=”text/css”>
#buttons {

text-align:center;
}
#square {

position:absolute;
top: 150px;
left: 100px;
width: 200px;
height: 200px;
border: 2px solid black;
padding: 10px;
background-color: #e0e0e0;

}

NOTE

Some CSS properties, such as
text-indent and border-
color, have hyphens in their
names. When you use these
properties in JavaScript, you
combine the hyphenated sec-
tions and use a capital letter:
textIndent and borderColor.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating Positionable Elements (Layers) 313

</style>
</head>

<body>
<h1>Positioning Elements</h1>
<form action=”” name=”form1”>
<div id=”buttons”>
<input type=”button” name=”left” value=”Left”
onclick=”pos(-1,0);” />

<input type=”button” name=”right” value=”Right”
onclick=”pos(1,0);” />

<input type=”button” name=”up” value=”Up”
onclick=”pos(0,-1);” />

<input type=”button” name=”down” value=”Down”
onclick=”pos(0,1);” />

<input type=”button” name=”hide” value=”Hide”
onclick=”hideSquare();” />

<input type=”button” name=”show” value=”Show”
onclick=”showSquare();” />

</div>
</form>
<hr />
<div id=”square”>
<p>This square is an absolutely positioned
layer that you can move using the buttons above.</p>
</div>

</body>
</html>

In addition to some basic HTML, Listing 15.4 contains the following:

. The <script> tag in the header reads a script called position.js,
which is shown in Listing 15.5.

. The <style> section is a brief style sheet that defines the properties for
the movable layer. It sets the position property to absolute to indi-
cate that it can be positioned at an exact location, sets the initial posi-
tion in the top and left properties, and sets border and background-
color properties to make the layer clearly visible.

. The <input> tags within the <form> section define six buttons: four
to move the layer left, right, up, or down and two to control whether
it is visible or hidden.

. The <div> section defines the layer itself. The id attribute is set to the
value “square”. This id is used in the style sheet to refer to the layer
and will also be used in your script.

If you load it into a browser, you should see the buttons and the “square”
layer, but the buttons won’t do anything yet. The script in Listing 15.5 adds

LISTING 15.4 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

314 CHAPTER 15 Working with the Document Object Model (DOM)

the ability to use the actions. When you load the code in Listing 15.4 into
your browser, it should look like Figure 15.5.

FIGURE 15.5
The moveable layer is ready to be
moved.

Listing 15.5 shows the JavaScript variables and functions that are called in
the HTML in Listing 15.4. This code is expected (by the <script> tag) to be
in a file called position.js.

LISTING 15.5 The Script for the Movable Layer Example
var x=100,y=150;
function pos(dx,dy) {

if (!document.getElementById) return;
x += 10*dx;
y += 10*dy;
obj = document.getElementById(“square”);
obj.style.top=y + “px”;
obj.style.left=x + “px”;

}
function hideSquare() {

if (!document.getElementById) return;
obj = document.getElementById(“square”);
obj.style.display=”none”;

}
function showSquare() {

if (!document.getElementById) return;
obj = document.getElementById(“square”);
obj.style.display=”block”;

}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating Positionable Elements (Layers) 315

The var statement at the beginning of the script defines two variables, x
and y, that will store the current position of the layer. The pos function is
called by the event handlers for all four of the movement buttons.

The parameters of the pos() function, dx and dy, tell the script how the layer
should move: If dx is negative, a number will be subtracted from x, moving
the layer to the left. If dx is positive, a number will be added to x, moving
the layer to the right. Similarly, dy indicates whether to move up or down.

The pos() function begins by making sure the getElementById() function
is supported, so it won’t attempt to run in older browsers. It then multi-
plies dx and dy by 10 (to make the movement more obvious) and applies
them to x and y. Finally, it sets the top and left properties to the new
position (including the “px” to indicate the unit of measurement), thus
moving the layer.

Two more functions, hideSquare() and showsquare(), hide or show the
layer by setting its display property to “none” (hidden) or “block” (shown).

To use this script, save it as position.js, and then load the HTML docu-
ment in Listing 15.4 into your browser. Figure 15.6 shows this script in
action—well, after an action, at least. Figure 15.6 shows the script after
pressing the Right button seven times and the Down button ten times.

FIGURE 15.6
The moveable layer has been
moved.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

316 CHAPTER 15 Working with the Document Object Model (DOM)

Hiding and Showing Objects
In the previous example, you saw some functions that could be used to
hide or show the “square.” In this section, we’ll take a closer look at hiding
and showing objects within a page.

As a refresher, objects have a visibility style property that specifies
whether they are currently visible within the page:
Object.style.visibility=”hidden”; // hides an object
Object.style.visibility=”visible”; // shows an object

Using this property, you can create a script that hides or shows objects in
either browser. Listing 15.6 shows the HTML document for a script that
allows two headings to be shown or hidden.

LISTING 15.6 Hiding and Showing Objects
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Hiding or Showing Objects</title>
<script type=”text/javascript”>
function ShowHide() {

if (!document.getElementById) return;
var head1 = document.getElementById(“head1”);
var head2 = document.getElementById(“head2”);
var showhead1 = document.form1.head1.checked;
var showhead2 = document.form1.head2.checked;
head1.style.visibility=(showhead1) ? “visible” : “hidden”;
head2.style.visibility=(showhead2) ? “visible” : “hidden”;

}
</script>

</head>
<body>
<h1 id=”head1”>This is the first heading</h1>
<h1 id=”head2”>This is the second heading</h1>
<p>Using the W3C DOM, you can choose whether to show or hide
the headings on this page using the checkboxes below.</p>
<form action=”” name=”form1”>
<div>
<input type=”checkbox” name=”head1”

onclick=”ShowHide();” checked=”checked” />
Show first heading

<input type=”checkbox” name=”head2”

onclick=”ShowHide();”checked=”checked” />
Show second heading

</div>
</form>
</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Modifying Text Within a Page 317

The <h1> tags in this document define headings with the identifiers head1
and head2. The <form> section defines a form with two check boxes, one
for each of the headings. When a check box is modified, the onClick
method is used to call the ShowHide() function.

This function is defined within the <script> statements in the header. The
function assigns the head1 and head2 variables to the objects for the head-
ings, using the getElementById() method. Next, it assigns the showhead1
and showhead2 variables to the contents of the check boxes. Finally, the
function uses the style.visibility attributes to set the visibility of the
headings.

Figure 15.7 shows this example in action. In the figure, the second head-
ing’s check box has been unchecked, so only the first heading is visible.

TIP

The lines that set the
visibility property might look
a bit strange. The ? and : char-
acters create conditional expres-
sions, a shorthand way of han-
dling if statements. To review
conditional expressions, see
Chapter 18, “Controlling Flow
with Conditions and Loops.”

FIGURE 15.7
The text hiding/showing example
in action.

Modifying Text Within a Page
Next, you can create a simple script to modify the contents of a heading
within a web page. As you learned earlier in this chapter, the nodeValue
property of a text node contains its actual text, and the text node for a
heading is a child of that heading. Thus, the syntax to change the text of a
heading with the identifier head1 would be the following:

var head1 = document.getElementById(“head1”);
head1.firstChild.nodeValue = “New Text Here”;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

318 CHAPTER 15 Working with the Document Object Model (DOM)

This assigns the variable head1 to the heading’s object. The firstChild
property returns the text node that is the only child of the heading, and its
nodeValue property contains the heading text.

Using this technique, it’s easy to create a page that allows the heading to
be changed dynamically. Listing 15.7 shows the complete HTML document
for this script.

LISTING 15.7 The Complete Text-Modifying Example
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Dynamic Text in JavaScript</title>
<script type=”text/javascript”>
function ChangeTitle() {

if (!document.getElementById) return;
var newtitle = document.form1.newtitle.value;
var head1 = document.getElementById(“head1”);
head1.firstChild.nodeValue=newtitle;

}
</script>

</head>
<body>
<h1 id=”head1”>Dynamic Text in JavaScript</h1>
<p>Using the W3C DOM, you can dynamically change the
heading at the top of this page. Enter a new title and
click the Change! button. </p>
<form action=”” name=”form1”>
<div>
<input type=”text” name=”newtitle” size=”40” />
<input type=”button” value=”Change!” onclick=”ChangeTitle();” />
</div>
</form>
</body>
</html>

This example defines a form that enables the user to enter a new heading
for the page. Pressing the button calls the ChangeTitle() function, defined
in the header. This function gets the value the user entered in the form and
changes the heading’s value to the new text.

Figure 15.8 shows this page in action after a new title has been entered and
the Change! button has been clicked.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Adding Text to a Page 319

Adding Text to a Page
Next, you can create a script that actually adds text to a page. To do this,
you must first create a new text node. This statement creates a new text
node with the text “this is a test”:

var node=document.createTextNode(“this is a test”);

Next, you can add this node to the document. To do this, you use the
appendChild method. The text can be added to any element that can con-
tain text, but we will use a paragraph. The following statement adds the
text node defined previously to the paragraph with the identifier p1:

document.getElementById(“p1”).appendChild(node);

Listing 15.8 shows the HTML document for a complete example that uses
this technique, using a form to allow the user to specify text to add to the
page.

LISTING 15.8 Adding Text to a Page
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Adding Text to a Page</title>

FIGURE 15.8
The heading modification example
in action.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

320 CHAPTER 15 Working with the Document Object Model (DOM)

<script type=”text/javascript”>
function AddText() {

if (!document.getElementById) return;
var sentence=document.form1.sentence.value;
var node=document.createTextNode(“ “ + sentence);
document.getElementById(“p1”).appendChild(node);
document.form1.sentence.value=””;

}
</script>
</head>
<body>
<h1 id=”head1”>Create Your Own Content</h1>
<p id=”p1”> Using the W3C DOM, you can dynamically add
sentences to this paragraph. Type a sentence and click
the Add! Button.</p>
<form action=”” name=”form1”>
<div>
<input type=”text” name=”sentence” size=”65” />
<input type=”button” value=”Add!” onclick=”AddText();” />
</div>

</form>
</body>
</html>

In this example, the <p> section defines the paragraph that will hold the
added text. The <form> section defines a form with a text field called
sentence, and an Add button, which calls the AddText() function.
This function is defined in the header.

The AddText() function first assigns the sentence variable to the text
typed in the text field. Next, it creates a new text node containing the sen-
tence and appends the new text node to the paragraph.

Load this document into a browser to test it and try adding several sen-
tences by typing them and clicking the Add button. Figure 15.9 shows this
document after several sentences have been added to the paragraph.

LISTING 15.8 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Summary 321

Summary
In this chapter, you’ve learned about the DOM, JavaScript’s hierarchy of
web page objects. You’ve learned how you can use the document object to
work with documents and used the history and location objects to con-
trol the current URL displayed in the browser.

Additionally, you learned the functions and properties you can use to man-
age DOM objects and used example scripts to hide and show elements
within a page, modify text, and add text. You also learned how to use
HTML and CSS to define a positionable layer and how you can use posi-
tioning properties dynamically with JavaScript.

This foundational knowledge of the DOM puts you in position (no pun
intended) to more effectively work with JavaScript in more advanced
ways, as you’ll learn in the chapters that follow.

FIGURE 15.9
The text addition example in
action.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

322 CHAPTER 15 Working with the Document Object Model (DOM)

Q&A
Q. Can I avoid assigning an id attribute to every DOM object I want to

handle with a script?

A. Yes. Although the scripts in this chapter typically use the id attribute
for convenience, you can actually locate any object in the page by using
combinations of node properties such as firstChild and nextSibling.
However, keep in mind that any change you make to the HTML can
change an element’s place in the DOM hierarchy, so the id attribute is
a reliable recommended way to handle this.

Q. I can use history and document instead of window.history and
window.document. Can I leave out the window object in other cases?

A. Yes. For example, you can use alert instead of window.alert to dis-
play a message. The window object contains the current script, so it’s
treated as a default object. However, be warned that you shouldn’t omit
the window object’s name when you’re using frames, layers, or multiple
windows or in an event handler.

Q. Can I change history entries or prevent the user from using the Back
and Forward buttons?

A. You can’t change the history entries. You can’t prevent the use of the
Back and Forward buttons, but you can use the location.replace()
method to load a series of pages that don’t appear in the history. There
are a few tricks for preventing the Back button from working properly,
but I don’t recommend them—that’s the sort of thing that gives
JavaScript a bad name.

Q. What happens when my web page includes multiple HTML documents,
such as when frames are used?

A. In this case, each window or frame has its own document object that
stores the elements of the HTML document it contains.

Q. If the DOM allows any object to be dynamically changed, why does the
positioning example need to use <div> tags to define a layer?

A. The example could just as easily move a heading or a paragraph. The
<div> is just a convenient and standard way to group objects and to
create a square object with a border.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Workshop 323

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. Which of the following DOM objects never has a parent node?

a. body

b. div

c. document

2. Which of the following is the correct syntax to get the DOM object for a
heading with the identifier head1?

a. document.getElementById(“head1”)

b. document.GetElementByID(“head1”)

c. document.getElementsById(“head1”)

3. Which of the following tags can be used to create a layer?

a. <layer>

b. <div>

c. <style>

4. Which property controls an element’s left-to-right position?

a. left

b. width

c. lrpos

5. Which of the following CSS rules would create a heading that is not cur-
rently visible in the page?

a. h1 {visibility: invisible;}

b. h1 {display: none;}

c. h1 {style: invisible;}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

324 CHAPTER 15 Working with the Document Object Model (DOM)

Answers
1. c. The document object is the root of the DOM object tree and has no

parent object.

2. a. getElementById has a lowercase g at the beginning and a lower-
case d at the end, contrary to standard English grammar.

3. b. The <div> tag can be used to create positionable layers.

4. a. The left property controls an element’s left-to-right position.

5. b. The none value for the display property makes it invisible. The
visibility property could also be used, but its possible values
are visible or hidden.

Exercises
If you want to gain more experience using the DOM features you learned in
this chapter, try the following:

. Modify the Back and Forward example in Listing 15.2 to include a
Reload button along with the Back and Forward buttons. (This button
would trigger the location.reload() method.)

. Modify the positioning example in Listings 15.4 and 15.5 to move the
square one pixel at a time rather than 10 at a time.

. Add a third check box to Listing 15.6 to allow the paragraph of text to
be shown or hidden. You will need to add an id attribute to the <p> tag,
add a check box to the form, and add the appropriate lines to the
script.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Now that you have learned some of the fundamentals of JavaScript and
the DOM, it’s time to dig into more details of the JavaScript language.

In this chapter, you’ll learn three tools for storing data in JavaScript: vari-
ables, which store numbers or text; strings, which are special variables for
working with text; and arrays, which are multiple variables you can refer to
by number.

Using Variables
Unless you skipped over the JavaScript-related chapters in the beginning
of this book, you’ve already used a few variables. You probably can also
figure out how to use a few more without any help. Nevertheless, there are
some aspects of variables you haven’t learned yet. We will now look at
some of the details.

Choosing Variable Names
Variables are named containers that can store data (for example, a number,
a text string, or an object). As you learned earlier in this book, each vari-
able has a name. There are specific rules you must follow when choosing a
variable name:

. Variable names can include letters of the alphabet, both upper- and
lowercase. They can also include the digits 0–9 and the underscore
(_) character.

. Variable names cannot include spaces or any other punctuation
characters.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How to name and declare
variables

. How to choose whether to
use local or global vari-
ables

. How to assign values to
variables

. How to convert between
different data types

. How to use variables and
literals in expressions

. How strings are stored in
String objects

. How to create and use
String objects

. How to create and use
arrays of numbers and
strings

CHAPTER 16
Using JavaScript Variables,

Strings, and Arrays

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

326 CHAPTER 16 Using JavaScript Variables, Strings, and Arrays

. The first character of the variable name must be either a letter or an
underscore.

. Variable names are case sensitive—totalnum, Totalnum, and
TotalNum are separate variable names.

. There is no official limit on the length of variable names, but they
must fit within one line.

Using these rules, the following are examples of valid variable names:

total_number_of_fish
LastInvoiceNumber
temp1
a
_var39

Using Local and Global Variables
Some computer languages require you to declare a variable before you use
it. JavaScript includes the var keyword, which can be used to declare a
variable. You can omit var in many cases; the variable is still declared the
first time you assign a value to it.

To understand where to declare a variable, you will need to understand
the concept of scope. A variable’s scope is the area of the script in which
that variable can be used. There are two types of variables:

. Global variables have the entire script (and other scripts in the same
HTML document) as their scope. They can be used anywhere, even
within functions.

. Local variables have a single function as their scope. They can be used
only within the function they are created in.

To create a global variable, you declare it in the main script, outside any
functions. You can use the var keyword to declare the variable, as in this
example:

var students = 25;

This statement declares a variable called students and assigns it a value of
25. If this statement is used outside functions, it creates a global variable.
The var keyword is optional in this case, so this statement is equivalent to
the previous one:

students = 25;

NOTE

You can choose to use either
friendly, easy-to-read names or
completely cryptic ones. Do
yourself a favor: Use longer,
friendly names whenever possi-
ble. Although you might remem-
ber the difference between a, b,
x, and x1 right now, you might
not after a good night’s sleep.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using Variables 327

Before you get in the habit of omitting the var keyword, be sure you
understand exactly when it’s required. It’s actually a good idea to always
use the var keyword—you’ll avoid errors and make your script easier to
read, and it won’t usually cause any trouble.

A local variable belongs to a particular function. Any variable you declare
with the var keyword in a function is a local variable. Additionally, the
variables in the function’s parameter list are always local variables.

To create a local variable within a function, you must use the var keyword.
This forces JavaScript to create a local variable, even if there is a global
variable with the same name.

You should now understand the difference between local and global vari-
ables. If you’re still a bit confused, don’t worry—if you use the var key-
word every time, you’ll usually end up with the right type of variable.

Assigning Values to Variables
As you learned in Chapter 4, “Understanding JavaScript,” you can use the
equal sign to assign a value to a variable. For example, this statement
assigns the value 40 to the variable lines:

lines = 40;

You can use any expression to the right of the equal sign, including other
variables. You have used this syntax earlier to add one to a variable:

lines = lines + 1;

Because incrementing or decrementing variables is quite common,
JavaScript includes two types of shorthand for this syntax. The first is the
+= operator, which enables you to create the following shorter version of
the preceding example:

lines += 1;

Similarly, you can subtract a number from a variable using the -= operator:

lines -= 1;

If you still think that’s too much to type, JavaScript also includes the incre-
ment and decrement operators, ++ and --. This statement adds one to the
value of lines:

lines++;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

328 CHAPTER 16 Using JavaScript Variables, Strings, and Arrays

Similarly, this statement subtracts one from the value of lines:

lines--;

You can alternately use the ++ or -- operators before a variable name, as in
++lines. However, these are not identical. The difference is when the
increment or decrement happens:

. If the operator is after the variable name, the increment or decrement
happens after the current expression is evaluated.

. If the operator is before the variable name, the increment or decre-
ment happens before the current expression is evaluated.

This difference is only an issue when you use the variable in an expression
and increment or decrement it in the same statement. As an example, sup-
pose you have assigned the lines variable the value 40. The following two
statements have different effects:

alert(lines++);
alert(++lines);

The first statement displays an alert with the value 40, and then increments
lines to 41. The second statement first increments lines to 41, then dis-
plays an alert with the value 41.

Understanding Expressions and
Operators
An expression is a combination of variables and values that the JavaScript
interpreter can evaluate to a single value. The characters that are used to
combine these values, such as + and /, are called operators.

Using JavaScript Operators
You’ve already used some operators, such as the + sign (addition) and the
increment and decrement operators. Table 16.1 lists some of the most
important operators you can use in JavaScript expressions.

NOTE

These operators are strictly for
your convenience. If it makes
more sense to you to stick to
lines = lines + 1, do it—
your script won’t suffer.

TIP

Along with variables and con-
stant values, you can also use
calls to functions that return
results within an expression.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Understanding Expressions and Operators 329

TABLE 16.1 Common JavaScript Operators

Operator Description Example

+ Concatenate (combine) message=”this is” + “

strings a test”;

+ Add result = 5 + 7;

- Subtract score = score - 1;

* Multiply total = quantity * price;

/ Divide average = sum / 4;

% Modulo (remainder) remainder = sum % 4;

++ Increment tries++;

-- Decrement total--;

Along with these, there are also many other operators used in conditional
statements; you’ll learn about these in Chapter 18, “Controlling Flow with
Conditions and Loops.”

Operator Precedence
When you use more than one operator in an expression, JavaScript uses
rules of operator precedence to decide how to calculate the value. Table 16.1
lists the operators from lowest to highest precedence, and operators with
highest precedence are evaluated first. For example, consider this statement:

result = 4 + 5 * 3;

If you try to calculate this result, there are two ways to do it. You could
multiply 5 * 3 first and then add 4 (result: 19) or add 4 + 5 first and then
multiply by 3 (result: 27). JavaScript solves this dilemma by following the
precedence rules: Because multiplication has a higher precedence than
addition, it first multiplies 5 * 3 and then adds 4, producing a result of 19.

Sometimes operator precedence doesn’t produce the result you want. For
example, consider this statement:

result = a + b + c + d / 4;

This is an attempt to average four numbers by adding them all together,
and then dividing by four. However, because JavaScript gives division a
higher precedence than addition, it will divide the d variable by 4 before
adding the other numbers, producing an incorrect result.

NOTE

If you’re familiar with any other
programming languages, you’ll
find that the operators and
precedence in JavaScript work,
for the most part, the same way
as those in C, C++, and Java,
as well as web scripting lan-
guages such as PHP.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

330 CHAPTER 16 Using JavaScript Variables, Strings, and Arrays

You can control precedence by using parentheses. Here’s the working
statement to calculate an average:

result = (a + b + c + d) / 4;

The parentheses ensure that the four variables are added first, and then the
sum is divided by four.

Data Types in JavaScript
In some computer languages, you have to specify the type of data a vari-
able will store, for example, a number or a string. In JavaScript, you don’t
need to specify a data type in most cases. However, you should know the
types of data JavaScript can deal with.

These are the basic JavaScript data types:

. Numbers, such as 3, 25, or 1.4142138—JavaScript supports both
integers and floating-point numbers.

. Boolean, or logical values—These can have one of two values: true
or false. These are useful for indicating whether a certain condition
is true.

. Strings, such as “I am a jelly doughnut”—These consist of one or
more characters of text. (Strictly speaking, these are String objects,
which you’ll learn about later in this chapter.)

. The null value, represented by the keyword null—This is the value
of an undefined variable. For example, the statement document.
write(fig) will result in this value (and an error message) if the
variable fig has not been previously used or defined.

Although JavaScript keeps track of the data type currently stored in each
variable, it doesn’t restrict you from changing types midstream. For exam-
ple, suppose you declared a variable by assigning it a value:

total = 31;

This statement declares a variable called total and assigns it the value of
31. This is a numeric variable. Now suppose you changed the value of
total:

total = “albatross”;

TIP

If you’re unsure about operator
precedence, you can use paren-
theses to make sure things
work the way you expect and to
make your script more
readable.

NOTE

You’ll learn more about Boolean
values and about using conditions
in JavaScript in Chapter 18.

NOTE

Although this feature of
JavaScript is convenient and
powerful, it can also make it
easy to make a mistake. For
example, if the total variable
was later used in a mathemati-
cal calculation, the result would
be invalid—but JavaScript does
not warn you that you’ve made
this mistake.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Converting Between Data Types 331

This assigns a string value to total, replacing the numeric value.
JavaScript will not display an error when this statement executes; it’s per-
fectly valid, although it’s probably not a very useful total.

Converting Between Data Types
JavaScript handles conversions between data types for you whenever it
can. For example, you’ve already used statements like this:

document.write(“The total is “ + total);

This statement prints out a message such as “The total is 40”. Because
the document.write function works with strings, the JavaScript interpreter
automatically converts any nonstrings in the expression (in this case, the
value of total) to strings before performing the function.

This works equally well with floating-point and Boolean values. However,
there are some situations where it won’t work. For example, the following
statement will work fine if the value of total is 40:

average = total / 3;

However, the total variable could also contain a string; in this case, the
preceding statement would result in an error.

In some situations, you might end up with a string containing a number
and need to convert it to a regular numeric variable. JavaScript includes
two functions for this purpose:

. parseInt()—Converts a string to an integer number.

. parseFloat()—Converts a string to a floating-point number.

Both of these functions will read a number from the beginning of the string
and return a numeric version. For example, these statements convert the
string “30 angry polar bears” to a number:

stringvar = “30 angry polar bears”;
numvar = parseInt(stringvar);

After these statements execute, the numvar variable contains the number
30. The nonnumeric portion of the string is ignored.

NOTE

These functions look for a num-
ber of the appropriate type at
the beginning of the string. If a
valid number is not found, the
function will return the special
value NaN, meaning not a num-
ber.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

332 CHAPTER 16 Using JavaScript Variables, Strings, and Arrays

Using String Objects
You’ve already used several strings in previous chapters. Strings store a
group of text characters and are named similarly to other variables. As a
simple example, this statement assigns the string This is a test to a
string variable called test:

test = “This is a test”;

Creating a String Object
JavaScript stores strings as String objects. You usually don’t need to worry
about this, but it will explain some of the techniques for working with
strings, which use methods (built-in functions) of the String object.

There are two ways to create a new String object. The first is the one
you’ve already used, whereas the second uses object-oriented syntax. The
following two statements create the same string:

test = “This is a test”;
test = new String(“This is a test”);

The second statement uses the new keyword, which you use to create
objects. This tells the browser to create a new String object containing the
text This is a test and assigns it to the variable test.

Assigning a Value
You can assign a value to a string in the same way as any other variable.
Both of the examples in the previous section assigned an initial value to
the string. You can also assign a value after the string has already been cre-
ated. For example, the following statement replaces the contents of the
test variable with a new string:

test = “This is only a test.”;

You can also use the concatenation operator (+) to combine the values of
two strings. Listing 16.1 shows a simple example of assigning and combin-
ing the values of strings.

NOTE

Although you can create a
string using object-oriented syn-
tax, the standard JavaScript
syntax is simpler, and there is
no difference in the strings cre-
ated by these two methods.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using String Objects 333

LISTING 16.1 Assigning Values to Strings and Combining Them
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>String Text</title>

</head>

<body>
<h1>String Test</h1>

<script type=”text/javascript”>
test1 = “This is a test. “;
test2 = “This is only a test.”;
both = test1 + test2;
alert(both);
</script>

</body>
</html>

This script assigns values to two string variables, test1 and test2, and
then displays an alert with their combined value. If you load this HTML
document in a browser, your output should resemble Figure 16.1.

FIGURE 16.1
The output of the string example
script.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

334 CHAPTER 16 Using JavaScript Variables, Strings, and Arrays

In addition to using the + operator to concatenate two strings, you can use
the += operator to add text to a string. For example, this statement adds a
period to the current contents of the string sentence:

sentence += “.”;

Calculating the String’s Length
From time to time, you might find it useful to know how many characters
a string variable contains. You can do this with the length property of
String objects, which you can use with any string. To use this property,
type the string’s name followed by .length.

For example, test.length refers to the length of the test string. Here is an
example of this property:

test = “This is a test.”;
document.write(test.length);

The first statement assigns the string This is a test to the test variable.
The second statement displays the length of the string—in this case, 15
characters. The length property is a read-only property, so you cannot
assign a value to it to change a string’s length.

Converting the String’s Case
Two methods of the String object enable you to convert the contents of a
string to all uppercase or all lowercase:

. toUpperCase()—Converts all characters in the string to uppercase

. toLowerCase()—Converts all characters in the string to lowercase

For example, the following statement displays the value of the test string
variable in lowercase:

document.write(test.toLowerCase());

Assuming that this variable contained the text This Is A Test, the result
would be the following string:

this is a test

Note that the statement doesn’t change the value of the text variable.
These methods return the upper- or lowercase version of the string, but

NOTE

Remember that although test
refers to a string variable, the
value of test.length is a num-
ber and can be used in any
numeric expression.

NOTE

Note that the syntax for these
methods is similar to the
length property introduced ear-
lier. The difference is that meth-
ods always use parentheses,
whereas properties don’t. The
toUpperCase and toLowerCase
methods do not take any
parameters, but you still need
to use the parentheses.

NOTE

The plus sign (+) is also used
to add numbers in JavaScript.
The browser knows whether to
use addition or concatenation
based on the types of data you
use with the plus sign. If you
use it between a number and a
string, the number is converted
to a string and concatenated.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Working with Substrings 335

they don’t change the string itself. If you want to change the string’s value,
you can use a statement like this:

test = test.toLowerCase();

Working with Substrings
So far, you’ve worked with entire strings. JavaScript also enables you to
work with substrings, or portions of a string. You can use the substring
method to retrieve a portion of a string or the charAt method to get a sin-
gle character. These are explained in the following sections.

Using Part of a String
The substring method returns a string consisting of a portion of the origi-
nal string between two index values, which you must specify in parenthe-
ses. For example, the following statement displays the fourth through sixth
characters of the text string:

document.write(text.substring(3,6));

At this point, you’re probably wondering where the 3 and the 6 come
from. There are three things you need to understand about the index
parameters:

. Indexing starts with 0 for the first character of the string, so the
fourth character is actually index 3.

. The second index is noninclusive. A second index of 6 includes up to
index 5 (the sixth character).

. You can specify the two indexes in either order. The smaller one will
be assumed to be the first index. In the previous example, (6,3)
would have produced the same result. Of course, there is rarely a
reason to use the reverse order.

As another example, suppose you defined a string called alpha to hold the
alphabet:

alpha = “ABCDEFGHIJKLMNOPQRSTUVWXYZ”;

The following are examples of the substring() method using this string:

. alpha.substring(0,4) returns ABCD.

. alpha.substring(10,12) returns KL.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

336 CHAPTER 16 Using JavaScript Variables, Strings, and Arrays

. alpha.substring(12,10) also returns KL. Because it’s smaller, 10 is
used as the first index.

. alpha.substring(6,7) returns G.

. alpha.substring(24,26) returns YZ.

. alpha.substring(0,26) returns the entire alphabet.

. alpha.substring(6,6) returns the null value, an empty string. This
is true whenever the two index values are the same.

Getting a Single Character
The charAt method is a simple way to grab a single character from a
string. You specify the character’s index, or position, in parentheses. The
indexes begin at 0 for the first character. Here are a few examples using the
alpha string:

. alpha.charAt(0) returns A.

. alpha.charAt(12) returns M.

. alpha.charAt(25) returns Z.

. alpha.charAt(27) returns an empty string because there is no char-
acter at that position.

Finding a Substring
Another use for substrings is to find a string within another string. One
way to do this is with the indexOf method. To use this method, add
indexOf to the string you want to search and specify the string to search
for in the parentheses. This example searches for “this” in the test string:

loc = test.indexOf(“this”);

The value returned in the loc variable is an index into the string, similar to
the first index in the substring method. The first character of the string is
index 0.

You can specify an optional second parameter to indicate the index value
to begin the search. For example, this statement searches for the word fish
in the temp string, starting with the 20th character:

location = temp.indexOf(“fish”,19);

CAUTION

As with most JavaScript meth-
ods and property names,
indexOf is case sensitive. Make
sure you type it exactly as
shown here when you use it in
scripts.

NOTE

One use for the second parame-
ter is to search for multiple
occurrences of a string. After
finding the first occurrence, you
search starting with that location
for the second one, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using Numeric Arrays 337

A second method, lastIndexOf(), works the same way, but finds the last
occurrence of the string. It searches the string backwards, starting with the
last character. For example, this statement finds the last occurrence of Fred
in the names string:

location = names.lastIndexOf(“Fred”);

As with indexOf(), you can specify a location to search from as the second
parameter. In this case, the string will be searched backward starting at
that location.

Using Numeric Arrays
An array is a numbered group of data items that you can treat as a single
unit. For example, you might use an array called scores to store several
scores for a game. Arrays can contain strings, numbers, objects, or other
types of data. Each item in an array is called an element of the array.

Creating a Numeric Array
Unlike most other types of JavaScript variables, you typically need to
declare an array before you use it. The following example creates an array
with four elements:

scores = new Array(4);

To assign a value to the array, you use an index in brackets. Indexes begin
with 0, so the elements of the array in this example would be numbered 0
to 3. These statements assign values to the four elements of the array:

scores[0] = 39;
scores[1] = 40;
scores[2] = 100;
scores[3] = 49;

You can also declare an array and specify values for elements at the same
time. This statement creates the same scores array in a single line:

scores = new Array(39,40,100,49);

You can also use a shorthand syntax to declare an array and specify its
contents. The following statement is an alternative way to create the
scores array:

scores = [39,40,100,49];

TIP

Remember to use parentheses
when declaring an array with
the new keyword, as in a=new
Array(3,4,5), and use brackets
when declaring an array without
new, as in a=[3,4,5]. Otherwise,
you’ll run into JavaScript errors.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

338 CHAPTER 16 Using JavaScript Variables, Strings, and Arrays

Understanding Array Length
Like strings, arrays have a length property. This tells you the number of
elements in the array. If you specified the length when creating the array,
this value becomes the length property’s value. For example, these state-
ments would print the number 30:

scores = new Array(30);
document.write(scores.length);

You can declare an array without a specific length, and change the length
later by assigning values to elements or changing the length property. For
example, these statements create a new array and assign values to two of
its elements:

test = new Array();
test[0]=21;
test[5]=22;

In this example, because the largest index number assigned so far is 5, the
array has a length property of 6—remember, elements are numbered start-
ing at 0.

Accessing Array Elements
You can read the contents of an array using the same notation you used
when assigning values. For example, the following statements would dis-
play the values of the first three elements of the scores array:

scoredisp = “Scores: “ + scores[0] + “,” + scores[1] + “,” + scores[2];
document.write(scoredisp);

Using String Arrays
So far, you’ve used arrays of numbers. JavaScript also enables you to use
string arrays, or arrays of strings. This is a powerful feature that enables
you to work with a large number of strings at the same time.

Creating a String Array
You declare a string array in the same way as a numeric array—in fact,
JavaScript does not make a distinction between them:

names = new Array(30);

TIP

Looking at this example, you
might imagine it would be
inconvenient to display all the
elements of a large array. This
is an ideal job for loops, which
enable you to perform the same
statements several times with
different values. You’ll learn all
about loops in Chapter 18.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using String Arrays 339

You can then assign string values to the array elements:

names[0] = “Henry J. Tillman”;
names[1] = “Sherlock Holmes”;

As with numeric arrays, you can also specify a string array’s contents
when you create it. Either of the following statements would create the
same string array as the preceding example:

names = new Array(“Henry J. Tillman”, “Sherlock Holmes”);
names = [“Henry J. Tillman”, “Sherlock Holmes”];

You can use string array elements anywhere you would use a string. You
can even use the string methods introduced earlier. For example, the fol-
lowing statement prints the first five characters of the first element of the
names array, resulting in Henry:

document.write(names[0].substring(0,5));

Splitting a String
JavaScript includes a string method called split, which splits a string into
its component parts. To use this method, specify the string to split and a
character to divide the parts:

test = “John Q. Public”;
parts = test.split(“ “);

In this example, the test string contains the name John Q. Public. The
split method in the second statement splits the name string at each space,
resulting in three strings. These are stored in a string array called parts.
After the example statements execute, the elements of parts contain the
following:

. parts[0] = “John”

. parts[1] = “Q.”

. parts[2] = “Public”

JavaScript also includes an array method, join, which performs the oppo-
site function. This statement reassembles the parts array into a string:

fullname = parts.join(“ “);

The value in the parentheses specifies a character to separate the parts of
the array. In this case, a space is used, resulting in the final string John Q.
Public. If you do not specify a character, commas are used.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

340 CHAPTER 16 Using JavaScript Variables, Strings, and Arrays

Sorting a String Array
JavaScript also includes a sort method for arrays, which returns an alpha-
betically sorted version of the array. For example, the following statements
initialize an array of four names and sort them:

names[0] = “Public, John Q.”;
names[1] = “Doe, Jane”;
names[2] = “Duck, Daisy”;
names[3] = “Mouse, Mickey”;
sortednames = names.sort();

The last statement sorts the names array and stores the result in a new
array, sortednames.

Sorting a Numeric Array
Because the sort method sorts alphabetically, it won’t work with a numer-
ic array—at least not the way you’d expect. If an array contains the num-
bers 4, 10, 30, and 200, for example, it would sort them as 10, 200, 30, 4—
not even close. Fortunately, there’s a solution: You can specify a function in
the sort method’s parameters, and that function will be used to compare
the numbers. The following code sorts a numeric array correctly:

function numcompare(a,b) {
return a-b;

}
nums = new Array(30, 10, 200, 4);
sortednums = nums.sort(numcompare);

This example defines a simple function, numcompare, which subtracts the
two numbers. After you specify this function in the sort method, the array
is sorted in the correct numeric order: 4, 10, 30, 200.

NOTE

JavaScript expects the compari-
son function to return a nega-
tive number if a belongs before
b, 0 if they are the same, or a
positive number if a belongs
after b. This is why a-b is all
you need for the function to
sort numerically.

TRY IT YOURSELF▼

Sorting and
Displaying Names

To gain more experience working with JavaScript’s string and array features,
you can create a script that enables the user to enter a list of names and
displays the list in sorted form.

Because this will be a larger script, you will create separate HTML and
JavaScript files, as described in Chapter 14, “Getting Started with JavaScript
Programming.” First, the sort.html file will contain the HTML structure and
form fields for the script to work with. Listing 16.2 shows the HTML document.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Sorting a Numeric Array 341

Sorting and
Displaying Names
continued

LISTING 16.2 The HTML Document for the Sorting Example
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Array Sorting Example</title>
<script type=”text/javascript” src=”sort.js”></script>
</head>

<body>
<h1>Sorting String Arrays</h1>

<p>Enter two or more names in the field below,
and the sorted list of names will appear in the
text area.</p>
<form name=”theform”>
Name:
<input type=”text” name=”newname” size=”20” />
<input type=”button” name=”addname” value=”Add”
onclick=”SortNames();”>

<h2>Sorted Names</h2>
<textarea cols=”60” rows=”10” name=”sorted”>
The sorted names will appear here.
</textarea>
</form>

</body>
</html>

Because the script will be in a separate document, the <script> tag in the
header of this document uses the src attribute to include a JavaScript file
called sort.js. You will create this file next.

This document defines a form named theform, a text field named newname,
an addname button, and a text area named sorted. Your script will use these
form fields as its user interface.

Listing 16.3 provides the JavaScript necessary for the sorting process.

LISTING 16.3 The JavaScript File for the Sorting Example
// initialize the counter and the array
var numnames=0;
var names = new Array();
function SortNames() {

// Get the name from the text field

TRY IT YOURSELF ▼

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

342 CHAPTER 16 Using JavaScript Variables, Strings, and Arrays

TRY IT YOURSELF▼

Sorting and
Displaying Names
continued

thename=document.theform.newname.value;
// Add the name to the array
names[numnames]=thename;
// Increment the counter
numnames++;
// Sort the array
names.sort();
document.theform.sorted.value=names.join(“\n”);

}

The script begins by defining two variables with the var keyword: numnames
will be a counter that increments as each name is added, and the names
array will store the names.

When you type a name into the text field and click the button, the onclick event
handler calls the SortNames function. This function stores the text field value in
a variable, thename, and then adds the name to the names array using numnames
as the index. It then increments numnames to prepare for the next name.

The final section of the script sorts the names and displays them. First, the
sort() method is used to sort the names array. Next, the join() method is
used to combine the names, separate them with line breaks, and display
them in the text area.

To test the script, save it as sort.js, and then load the sort.html file you
created previously into a browser. You can then add some names and test
the script. Figure 16.2 shows the result after sorting several names.

LISTING 16.3 Continued

FIGURE 16.2
The output of the name-sorting
example.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Summary 343

Summary
During this chapter, you’ve focused on variables and how JavaScript han-
dles them. You’ve learned how to name variables, how to declare them,
and the differences between local and global variables. You also explored
the data types supported by JavaScript and how to convert between them.

You also learned about JavaScript’s more complex variables, strings, and
arrays and looked at the features that enable you to perform operations on
them, such as converting strings to uppercase or sorting arrays.

In the next chapter, you’ll continue your foundational JavaScript education
by learning more about two additional key features: functions and objects.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

344 CHAPTER 16 Using JavaScript Variables, Strings, and Arrays

Q&A
Q. What is the importance of the var keyword? Should I always use it to

declare variables?

A. You only need to use var to define a local variable in a function.
However, if you’re unsure at all, it’s always safe to use var. Using it con-
sistently will help you keep your scripts organized and error free.

Q. Is there any reason I would want to use the var keyword to create a
local variable with the same name as a global one?

A. Not on purpose. The main reason to use var is to avoid conflicts with
global variables you might not know about. For example, you might add
a global variable in the future, or you might add another script to the
page that uses a similar variable name. This is more of an issue with
large, complex scripts.

Q. What good are Boolean variables?

A. Often in scripts, you’ll need a variable to indicate whether something has
happened—for example, whether a phone number the user has entered
is in the right format. Boolean variables are ideal for this; they’re also
useful in working with conditions, as you’ll see in Chapter 18.

Q. Can I store other types of data in an array? For example, can I have an
array of dates?

A. Absolutely. JavaScript enables you to store any data type in an array.

Q. What about two-dimensional arrays?

A. These are arrays with two indexes (such as columns and rows).
JavaScript does not directly support this type of array, but you can use
objects to achieve the same effect. You will learn more about objects in
the next chapter.

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Workshop 345

Quiz
1. Which of the following is not a valid JavaScript variable name?

a. 2names

b. first_and_last_names

c. FirstAndLast

2. If the statement var fig=2 appears in a function, which type of vari-
able does it declare?

a. A global variable

b. A local variable

c. A constant variable

3. If the string test contains the value The eagle has landed., what
would be the value of test.length?

a. 4

b. 21

c. The

4. Using the same example string, which of these statements would
return the word eagle?

a. test.substring(4,9)

b. test.substring(5,9)

c. test.substring(“eagle”)

5. What will be the result of the JavaScript expression 31 + “ angry
polar bears”?

a. An error message

b. 32

c. “31 angry polar bears”

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

346 CHAPTER 16 Using JavaScript Variables, Strings, and Arrays

Answers
1. a. 2names is an invalid JavaScript variable name because it begins with

a number. The others are valid, although they’re probably not ideal
choices for names.

2. b. Because the variable is declared in a function, it is a local variable.
The var keyword ensures that a local variable is created.

3. b. The length of the string is 21 characters.

4. a. The correct statement is test.substring(4,9). Remember that the
indexes start with 0 and that the second index is noninclusive.

5. c. JavaScript converts the whole expression to the string “31 angry
polar bears”. (No offense to polar bears, who are seldom angry and
rarely seen in groups this large.)

Exercises
. Modify the sorting example in Listing 16.3 to convert the names to all

uppercase before sorting and displaying them.

. Modify Listing 16.3 to display a numbered list of names in the text
area.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

In this chapter, you’ll learn about two more key JavaScript concepts that
you’ll use throughout the rest of this book. First, you’ll learn the details of
using functions, which enable you to group any number of statements into
a block. This is useful for repeating sections of code, and you can also cre-
ate functions that accept parameters and return values for later use.

Whereas functions enable you to group sections of code, objects enable you
to group data—you can use them to combine related data items and func-
tions for working with the data. You’ll learn how to define and use objects
and their methods and will work specifically with two useful built-in
objects, Math and Date.

Using Functions
The scripts you’ve seen so far are simple lists of instructions. The browser
begins with the first statement after the <script> tag and follows each
instruction in order until it reaches the closing </script> tag (or encoun-
ters an error).

Although this is a straightforward approach for short scripts, it can be confus-
ing to read a longer script written in this fashion. To make it easier for you to
organize your scripts, JavaScript supports functions, which you learned about
in Chapter 14, “Getting Started with JavaScript Programming.” In this sec-
tion, you will learn how to define and use functions.

Defining a Function
Functions are groups of JavaScript statements that can be treated as a single
unit. To use a function, you must first define it. Here is a simple example
of a function definition:

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How to define and call
functions

. How to return values from
functions

. How to define custom
objects

. How to use object proper-
ties and values

. How to define and use
object methods

. How to use objects to
store data and related
functions

. How to use the Math
object’s methods

. How to use with to work
with objects

. How to use the Date
object to work with dates

CHAPTER 17
Using JavaScript Functions and

Objects

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

348 CHAPTER 17 Using JavaScript Functions and Objects

function Greet() {
alert(“Greetings.”);

}

This snippet defines a function that displays an alert message to the user.
This begins with the function keyword. The function’s name is Greet.
Notice the parentheses after the function’s name. As you’ll learn next, the
space between them is not always empty.

The first and last lines of the function definition include braces ({ and }).
You use these to enclose all of the statements in the function. The browser
uses the braces to determine where the function begins and ends.

Between the braces, this particular function contains a single line. This uses
the built-in alert function, which displays an alert message. The message
will contain the text “Greetings.”

Now, about those parentheses. The current Greet function always does the
same thing: Each time you use it, it displays the same message. Although
this avoids a bit of typing, it doesn’t really provide much of an advantage.

To make your function more flexible, you can add parameters, also known
as arguments. These are variables that are received by the function each
time it is called. For example, you can add a parameter called who that tells
the function the name of the person to greet. Here is the modified Greet
function:

function Greet(who) {
alert(“Greetings, “ + who);

}

Of course, to use this function, you should include it in an HTML document.
Traditionally, the best place for a function definition is within the <head> sec-
tion of the document. Because the statements in the <head> section are exe-
cuted first, this ensures that the function is defined before it is used.

Listing 17.1 shows the Greet function embedded in the header section of
an HTML document.

LISTING 17.1 The Greet Function in an HTML Document
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>

CAUTION

Function names are case sensi-
tive. If you define a function
such as Greet with a capital
letter, be sure you use the iden-
tical name when you call the
function. That is to say, if you
define the function with the
name Greet but you attempt to
call the function using greet, it
will not work.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using Functions 349

<title>Functions</title>
<script type=”text/javascript”>
function Greet(who) {

alert(“Greetings, “ + who);
}
</script>

</head>
<body>
<p>This is the body of the page.</p>

</body>
</html>

Calling the Function
You have now defined a function and placed it in an HTML document.
However, if you load Listing 17.1 into a browser, you’ll notice that it does
absolutely nothing. This is because the function is defined—ready to be
used—but we haven’t used it yet.

Making use of a function is referred to as calling the function. To call a
function, use the function’s name as a statement in a script. You will need
to include the parentheses and the values for the function’s parameters.
For example, here’s a statement that calls the Greet function:

Greet(“Fred”);

This tells the JavaScript interpreter to transfer control to the first statement
in the Greet function. It also passes the parameter “Fred” to the function.
This value will be assigned to the who variable inside the function.

Listing 17.2 shows a complete HTML document that includes the function
definition and a second script in the body of the page that actually calls the
function. To demonstrate the usefulness of functions, we’ll call it twice to
greet two different people.

LISTING 17.2 The Complete Function Example
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Functions</title>
<script type=”text/javascript”>
function Greet(who) {

LISTING 17.1 Continued

TIP

Functions can have more than
one parameter. To define a
function with multiple parame-
ters, list a variable name for
each parameter, separated by
commas. To call the function,
specify values for each parame-
ter separated by commas.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

350 CHAPTER 17 Using JavaScript Functions and Objects

alert(“Greetings, “ + who);
}
</script>

</head>
<body>
<h1>Function Example</h1>
<p>Prepare to be greeted twice.</p>
<script type=”text/javascript”>
Greet(“Fred”);
Greet(“Ethel”);
</script>

</body>
</html>

This listing includes a second set of <script> tags in the body of the page.
The second script includes two function calls to the Greet function, each
with a different name.

Now that you have a script that actually does something, try loading it
into a browser. You should see something like Figure 17.1, which shows
the Greeting script when it is initially loaded in a browser.

LISTING 17.2 Continued

FIGURE 17.1
The output of the Greeting
example.

NOTE

Notice that the second alert
message isn’t displayed until
you press the OK button on the
first alert. This is because
JavaScript processing is halted
while alerts are displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using Functions 351

Returning a Value
The function you just created displays a message to the user, but functions
can also return a value to the script that called them. This enables you to
use functions to calculate values. As an example, you can create a function
that averages four numbers.

Your function should begin with the function keyword, the function’s
name, and the parameters it accepts. We will use the variable names a, b, c,
and d for the four numbers to average. Here is the first line of the function:

function Average(a,b,c,d) {

Next, the function needs to calculate the average of the four parameters.
You can calculate this by adding them, and then dividing by the number of
parameters (in this case, 4). Thus, here is the next line of the function:

result = (a + b + c + d) / 4;

This statement creates a variable called result and calculates the result by
adding the four numbers, and then dividing by 4. (The parentheses are
necessary to tell JavaScript to perform the addition before the division.)

To send this result back to the script that called the function, you use the
return keyword. Here is the last part of the function:

return result;
}

Listing 17.3 shows the complete Average function in an HTML document.
This HTML document also includes a small script in the <body> section
that calls the Average function and displays the result.

LISTING 17.3 The Average Function in an HTML Document
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Function Example: Average</title>
<script type=”text/javascript”>
function Average(a,b,c,d) {

result = (a + b + c + d) / 4;
return result;

}
</script>

</head>

NOTE

I’ve also included the opening
brace ({) on the first line of the
function. This is a common
style, but you can also place
the brace on the next line or on
a line by itself.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

352 CHAPTER 17 Using JavaScript Functions and Objects

<body>
<h1>Function Example: Average</h1>
<p>The following is the result of the function call.</p>
<script type=”text/javascript”>
score = Average(3,4,5,6);
document.write(“The average is: “ + score);
</script>

</body>
</html>

You can use a variable with the function call, as shown in this listing. This
statement averages the numbers 3, 4, 5, and 6 and stores the result in a
variable called score:

score = Average(3,4,5,6);

Introducing Objects
In the previous chapter, you learned how to use variables to represent dif-
ferent kinds of data in JavaScript. JavaScript also supports objects, a more
complex kind of variable that can store multiple data items and functions.

Although a variable can have only one value at a time, an object can con-
tain multiple values, as well as functions for working with the values. This
enables you to group related data items and the functions that deal with
them into a single object.

In this chapter, you’ll learn how to define and use your own objects.
You’ve already worked with some of them, including

. DOM objects—Allow your scripts to interact with web pages. You
learned about these in Chapter 15, “Working with the Document
Object Model (DOM).”

. Built-in objects—Include strings and arrays, which you learned
about in Chapter 16, “Using JavaScript Variables, Strings, and
Arrays.”

The syntax for working with all three types of objects—DOM objects, built-
in objects, and custom objects—is the same, so even if you don’t end up
creating your own objects, you should have a good understanding of
JavaScript’s object terminology and syntax.

LISTING 17.3 Continued

TIP

You can also use the function
call directly in an expression.
For example, you could use the
alert statement to display the
result of the function
alert(Average(1,2,3,4))

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Introducing Objects 353

Creating Objects
When you created an array in the previous chapter, you used the following
JavaScript statement:

scores = new Array(4);

The new keyword tells the JavaScript interpreter to use a function—in this
case, the built-in Array function—to create an object. You’ll create a func-
tion for a custom object later in this chapter.

Object Properties and Values
Each object has one or more properties—essentially, variables that will be
stored within the object. For example, in Chapter 15, you learned that the
location.href property gives you the URL of the current document. The
href property is one of the properties of the location object in the DOM.

You’ve also used the length property of String objects, as in the following
example from the previous chapter:

test = “This is a test.”;
document.write(test.length);

Like variables, each object property has a value. To read a property’s value,
you simply include the object name and property name, separated by a
period, in any expression, as in test.length previously. You can change a
property’s value using the = operator, just like a variable. The following
example sends the browser to a new URL by changing the location.href
property:

location.href=”http://www.google.com/”;

Understanding Methods
Along with properties, each object can have one or more methods. These are
functions that work with the object’s data. For example, the following
JavaScript statement reloads the current document, as you learned in
Chapter 15:

location.reload();

When you use reload(), you’re using a method of the location object.
Like normal functions, methods can accept arguments in parentheses and
can return values.

NOTE

An object can also be a proper-
ty of another object. This is
referred to as a child object.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

354 CHAPTER 17 Using JavaScript Functions and Objects

Using Objects to Simplify Scripting
Although JavaScript’s variables and arrays are versatile ways to store data,
sometimes you need a more complicated structure. For example, suppose
you are creating a script to work with a business card database that con-
tains names, addresses, and phone numbers for a variety of people.

If you were using regular variables, you would need several separate vari-
ables for each person in the database: a name variable, an address variable,
and so on. This would be very confusing.

Arrays would improve things slightly. You could have a names array, an
addresses array, and a phone number array. Each person in the database
would have an entry in each array. This would be more convenient, but
still not perfect.

With objects, you can make the variables that store the database as logical
as business cards. Each person is represented by a Card object, which has
properties for name, address, and phone number. You can even add meth-
ods to the object to display or work with the information.

In the following sections, you’ll use JavaScript to actually create the Card
object and its properties and methods. Later in this chapter, you’ll use the
Card object in a script to display information for several members of the
database.

Defining an Object
The first step in creating an object is to name it and its properties. We’ve
already decided to call the object a Card object. Each object will have the
following properties:

. name

. address

. workphone

. homephone

The first step in using this object in a JavaScript program is to create a
function to make new Card objects. This function is called the constructor
for an object. Here is the constructor function for the Card object:

function Card(name,address,work,home) {
this.name = name;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using Objects to Simplify Scripting 355

this.address = address;
this.workphone = work;
this.homephone = home;

}

The constructor is a simple function that accepts parameters to initialize a
new object and assigns them to the corresponding properties. This function
accepts several parameters from the statement that calls the function, and
then assigns them as properties of an object. Because the function is called
Card, the object is the Card object.

Notice the this keyword. You’ll use it any time you create an object defini-
tion. Use this to refer to the current object—the one that is being created by
the function.

Defining an Object Method
Next, you will create a method to work with the Card object. Because all Card
objects will have the same properties, it might be handy to have a function that
prints out the properties in a neat format. Let’s call this function PrintCard.

Your PrintCard function will be used as a method for Card objects, so you
don’t need to ask for parameters. Instead, you can use the this keyword
again to refer to the current object’s properties. Here is a function definition
for the PrintCard() function:

function PrintCard() {
line1 = “Name: “ + this.name + “
\n”;
line2 = “Address: “ + this.address + “
\n”;
line3 = “Work Phone: “ + this.workphone + “
\n”;
line4 = “Home Phone: “ + this.homephone + “<hr/>\n”;
document.write(line1, line2, line3, line4);

}

This function simply reads the properties from the current object (this),
prints each one with a caption, and skips to a new line.

You now have a function that prints a card, but it isn’t officially a method of
the Card object. The last thing you need to do is make PrintCard part of the
function definition for Card objects. Here is the modified function definition:

function Card(name,address,work,home) {
this.name = name;
this.address = address;
this.workphone = work;
this.homephone = home;
this.PrintCard = PrintCard;

}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

356 CHAPTER 17 Using JavaScript Functions and Objects

The added statement looks just like another property definition, but it
refers to the PrintCard function. This will work so long as the PrintCard
function is defined with its own function definition. Methods are essential-
ly properties that define a function rather than a simple value.

Creating an Object Instance
Now let’s use the object definition and method you just created. To use an
object definition, you create a new object. This is done with the new key-
word. This is the same keyword you’ve already used to create Date and
Array objects.

The following statement creates a new Card object called tom:

tom = new Card(“Tom Jones”, “123 Elm Street”, “555-1234”, “555-9876”);

As you can see, creating an object is easy. All you do is call the Card()
function (the object definition) and give it the required attributes, in the
same order as the definition.

After this statement executes, a new object is created to hold Tom’s infor-
mation. This is called an instance of the Card object. Just as there can be
several string variables in a program, there can be several instances of an
object you define.

Rather than specify all the information for a card with the new keyword,
you can assign them after the fact. For example, the following script creates
an empty Card object called holmes, and then assigns its properties:

holmes = new Card();
holmes.name = “Sherlock Holmes”;
holmes.address = “221B Baker Street”;
holmes.workphone = “555-2345”;
holmes.homephone = “555-3456”;

After you’ve created an instance of the Card object using either of these
methods, you can use the PrintCard() method to display its information.
For example, this statement displays the properties of the tom card:

tom.PrintCard();

Extending Built-in Objects
JavaScript includes a feature that enables you to extend the definitions of
built-in objects. For example, if you think the String object doesn’t quite

TIP

The previous example uses
lowercase names such as
workphone for properties,
and an uppercase name
(PrintCard) for the method.
You can use any case for prop-
erty and method names, but
this is one way to make it clear
that PrintCard is a method
rather than an ordinary
property.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Extending Built-in Objects 357

fit your needs, you can extend it, adding a new property or method. This
might be very useful if you were creating a large script that used many
strings.

You can add both properties and methods to an existing object by using
the prototype keyword. (A prototype is another name for an object’s defini-
tion, or constructor function.) The prototype keyword enables you to
change the definition of an object outside its constructor function.

As an example, let’s add a method to the String object definition. You will
create a method called heading, which converts a string into an HTML
heading. The following statement defines a string called title:

title = “Fred’s Home Page”;

This statement would output the contents of the title string as an HTML
level 1 header:

document.write(title.heading(1));

Listing 17.4 adds a heading method to the String object definition that
will display the string as a heading, and then displays three headings
using the method.

LISTING 17.4 Adding a Method to the String Object
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Test of Heading Method</title>

</head>
<body>
<script type=”text/javascript”>
function addhead (level) {

html = “h” + level;
text = this.toString();
start = “<” + html + “>”;
stop = “</” + html + “>”;
return start + text + stop;

}
String.prototype.heading = addhead;
document.write (“This is a heading 1”.heading(1));
document.write (“This is a heading 2”.heading(2));
document.write (“This is a heading 3”.heading(3));
</script>

</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

358 CHAPTER 17 Using JavaScript Functions and Objects

First, you define the addhead() function, which will serve as the new
string method. It accepts a number to specify the heading level. The start
and stop variables are used to store the HTML “begin header” and “end
header” tags, such as <h1> and </h1>.

After the function is defined, use the prototype keyword to add it as a
method of the String object. You can then use this method on any String
object or, in fact, any JavaScript string. This is demonstrated by the last three
statements, which display quoted text strings as level 1, 2, and 3 headers.

TRY IT YOURSELF▼

Storing Data in
Objects

Now you’ve created a new object to store business cards and a method to print
them out. As a final demonstration of objects, properties, functions, and meth-
ods, you will now use this object in a web page to display data for several cards.

Your script will need to include the function definition for PrintCard, along with
the function definition for the Card object. You will then create three cards and
print them out in the body of the document. We will use separate HTML and
JavaScript files for this example. Listing 17.5 shows the complete script.

LISTING 17.5 A Sample Script That Uses the Card Object
// define the functions
function PrintCard() {
line1 = “Name: ” + this.name + “
\n”;
line2 = “Address: ” + this.address + “
\n”;
line3 = “Work Phone: ” + this.workphone + “
\n”;
line4 = “Home Phone: ” + this.homephone + “<hr/>\n”;
document.write(line1, line2, line3, line4);
}
function Card(name,address,work,home) {

this.name = name;
this.address = address;
this.workphone = work;
this.homephone = home;
this.PrintCard = PrintCard;

}
// Create the objects
sue = new Card(“Sue Suthers”, “123 Elm Street”, “555-1234”, “555-9876”);
phred = new Card(“Phred Madsen”, “233 Oak Lane”, “555-2222”, “555-4444”);
henry = new Card(“Henry Tillman”, “233 Walnut Circle”, “555-1299”,

“555-1344”);
// And print them
sue.PrintCard();
phred.PrintCard();
henry.PrintCard();

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Extending Built-in Objects 359

Storing Data in
Objects
continued

Notice that the PrintCard() function has been modified slightly to make
things look good with the captions in boldface. To use this script, save it as
cardtest.js. Next, you’ll need to include the script in a simple HTML docu-
ment. Listing 17.6 shows the HTML document for this example.

LISTING 17.6 The HTML File for the Card Object Example
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>JavaScript Business Cards</title>

</head>
<body>
<h1>JavaScript Business Cards</h1>
<p>Script begins here.</p>
<hr/>
<script type=”text/javascript” src=”cardtest.js” > </script>

<p>End of script.</p>
</body>
</html>

To test the script, save the HTML document in the same directory as the
cardtest.js file you created earlier, and then load the HTML document into a
browser. The browser’s display of this example is shown in Figure 17.2.

TRY IT YOURSELF ▼

FIGURE 17.2
Displaying the output of the busi-
ness card example.

NOTE

This example isn’t a very
sophisticated database
because you have to include
the data for each person in the
HTML document. However, an
object like this could be used to
store a database record
retrieved from a database serv-
er with thousands of records.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

360 CHAPTER 17 Using JavaScript Functions and Objects

Using the Math Object
The Math object is a built-in JavaScript object that includes math constants
and functions. You don’t need to create a Math object; it exists automatical-
ly in any JavaScript program. The Math object’s properties represent mathe-
matical constants, and its methods are mathematical functions.

Rounding and Truncating
Three of the most useful methods of the Math object enable you to round
decimal values up and down:

. Math.ceil() rounds a number up to the next integer.

. Math.floor() rounds a number down to the next integer.

. Math.round() rounds a number to the nearest integer.

All of these take the number to be rounded as their single parameter. You
might notice one thing missing: the capability to round to a decimal place,
such as for dollar amounts. Fortunately, you can easily simulate this. Here
is a simple function that rounds numbers to two decimal places:

function round(num) {
return Math.round(num * 100) / 100;

}

This function multiplies the value by 100 to move the decimal, and then
rounds the number to the nearest integer. Finally, the value is divided by
100 to restore the decimal to its original position.

Generating Random Numbers
One of the most commonly used methods of the Math object is the
Math.random() method, which generates a random number. This method
doesn’t require any parameters. The number it returns is a random decimal
number between zero and one.

You’ll usually want a random number between one and a value. You can
do this with a general-purpose random number function. The following is
a function that generates random numbers between one and the parameter
you send it:

function rand(num) {
return Math.floor(Math.random() * num) + 1;

}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Working with Math Functions 361

This function multiplies a random number by the value specified in the num
parameter, and then converts it to an integer between one and the number
by using the Math.floor() method.

Other Math Functions
The Math object includes many functions beyond those you’ve looked at
here. For example, Math.sin() and Math.cos() calculate sines and cosines.
The Math object also includes properties for various mathematical constants,
such as Math.PI.

Working with Math Functions
The Math.random method generates a random number between 0 and 1.
However, it’s difficult for a computer to generate a truly random number. (It’s
also hard for a human being to do so—that’s why dice were invented.)

Today’s computers do reasonably well at generating random numbers, but
just how good is JavaScript’s Math.random function? One way to test it is to
generate many random numbers and calculate the average of all of them.

In theory, the average should be somewhere near .5, halfway between 0
and 1. The more random values you generate, the closer the average should
get to this middle ground.

As an example of the use of the Math object’s methods, you can create a
script that tests JavaScript’s random number function. To do this, you’ll
generate 5,000 random numbers and calculate their average.

This example will use a look, which you’ll learn more about in the next
chapter. But this is a simple enough example that you should be able to fol-
low along. In this case, the loop will generate the random numbers. You’ll
be surprised how fast JavaScript can do this.

To begin your script, you will initialize a variable called total. This vari-
able will store a running total of all of the random values, so it’s important
that it starts at 0:

total = 0;

Next, begin a loop that will execute 5,000 times. Use a for loop because you
want it to execute a fixed number of times:

for (i=1; i<=5000; i++) {

Within the loop, you will need to create a random number and add its
value to total. Here are the statements that do this and continue with the
next iteration of the loop:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

362 CHAPTER 17 Using JavaScript Functions and Objects

num = Math.random();
total += num;

}

Depending on the speed of your computer, it might take a few seconds to
generate those 5,000 random numbers. Just to be sure something is hap-
pening, the script will display a status message after each 1,000 numbers:

if (i % 1000 == 0)
document.write(“Generated “ + i + “ numbers...
”);

The final part of your script will calculate the average by dividing total
by 5,000. Your script can also round the average to three decimal places:

average = total / 5000;
average = Math.round(average * 1000) / 1000;
document.write(“<h2>Average of 5000 numbers: “ + average + “</h2>”);

To test this script and see just how random those numbers are, combine the
complete script with an HTML document and <script> tags. Listing 17.7
shows the complete random number testing script.

LISTING 17.7 A Script to Test JavaScript’s Random Number Function
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Math Example</title>

</head>
<body>
<h1>Math Example</h1>
<p>How random are JavaScript’s random numbers?
Let’s generate 5000 of them and find out.</p>
<script type=”text/javascript”>
total = 0;
for (i=1; i<=5000; i++) {
num = Math.random();
total += num;
if (i % 1000 == 0) {

document.write(“Generated “ + i + “ numbers...
”);
}

}
average = total / 5000;
average = Math.round(average * 1000) / 1000;
document.write(“<h2>Average of 5000 numbers: “ + average + “</h2>”);
</script>

</body>
</html>

NOTE

The % symbol in the previous
code is the modulo operator,
which gives you the remainder
after dividing one number by
another. Here it is used to find
even multiples of 1,000.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using the with Keyword 363

To test the script, load the HTML document into a browser. After a short
delay, you should see a result. If it’s close to .5, the numbers are reason-
ably random. My result was .503, as shown in Figure 17.3.

NOTE

The average you’ve used here
is called an arithmetic mean.
This type of average isn’t a per-
fect way to test randomness.
Actually, all it tests is the distri-
bution of the numbers above
and below .5. For example, if
the numbers turned out to be
2,500 .4s and 2,500 .6s, the
average would be a perfect
.5—but they wouldn’t be very
random numbers. (Thankfully,
JavaScript’s random numbers
don’t have this problem.)

FIGURE 17.3
The random number testing script in action.

Using the with Keyword
The with keyword is one you haven’t seen before. You can use it to make
JavaScript programming easier—or at least easier to type.

The with keyword specifies an object, and it is followed by a block of state-
ments enclosed in braces. For each statement in the block, any properties
you mention without specifying an object are assumed to be for that object.

As an example, suppose you have a string called lastname. You can use
with to perform string operations on it without specifying the name of the
string every time:

with (lastname) {
window.alert(“length of last name: “ + length);
capname = toUpperCase();

}

In this example, the length property and the toUpperCase method refer to
the lastname string, although it is only specified once with the with keyword.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

364 CHAPTER 17 Using JavaScript Functions and Objects

Obviously, the with keyword only saves a bit of typing in situations like
this. However, you might find it more useful when you’re dealing with a
DOM object throughout a large procedure, or when you are repeatedly
using a built-in object, such as the Math object.

Working with Dates
The Date object is a built-in JavaScript object that enables you to convenient-
ly work with dates and times. You can create a Date object anytime you need
to store a date and use the Date object’s methods to work with the date.

You encountered one example of a Date object in Chapter 4, “Understanding
JavaScript,” with the time/date script. The Date object has no properties. To
set or obtain values from a Date object, you must use the methods described
in the next section.

Creating a Date Object
You can create a Date object using the new keyword. You can also optional-
ly specify the date to store in the object when you create it. You can use
any of the following formats:

birthday = new Date();
birthday = new Date(“November 1, 2010 08:00:00”);
birthday = new Date(11,1, 2010);
birthday = new Date(11,1,2010, 8, 0, 0);

You can choose any of these formats, depending on which values you want
to set. If you use no parameters, as in the first example, the current date is
stored in the object. You can then set the values using the set methods,
described in the next section.

Setting Date Values
A variety of set methods enable you to set components of a Date object to
values:

. setDate() sets the day of the month.

. setMonth() sets the month. JavaScript numbers the months from 0 to
11, starting with January (0).

. setFullYear() sets the year.

. setTime() sets the time (and the date) by specifying the number of
milliseconds since January 1, 1970.

. setHours(), setMinutes(), and setSeconds() set the time.

NOTE

JavaScript dates are stored as
the number of milliseconds
since midnight, January 1,
1970. This date is called the
epoch. Dates before 1970
weren’t allowed in early ver-
sions, but are now represented
by negative numbers.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Working with Dates 365

As an example, the following statement sets the year of a Date object called
holiday to 2010:

holiday.setFullYear(2010);

Reading Date Values
You can use the get methods to get values from a Date object. This is the
only way to obtain these values because they are not available as proper-
ties. Here are the available get methods for dates:

. getDate() gets the day of the month.

. getMonth() gets the month.

. getFullYear() gets the year.

. getTime() gets the time (and the date) as the number of milliseconds
since January 1, 1970.

. getHours(), getMinutes(), getSeconds(), and getMilliseconds()
get the components of the time.

Working with Time Zones
Finally, a few functions are available to help your Date objects work with
local time values and time zones:

. getTimeZoneOffset() function gives you the local time zone’s offset
from UTC (Coordinated Universal Time, based on the old Greenwich
Mean Time standard). In this case, local refers to the location of the
browser. (Of course, this only works if the user has set his system
clock accurately.)

. toUTCString() function converts the date object’s time value to text,
using UTC. This method was introduced in JavaScript 1.2 to replace
the toGMTString method, which still works but should be avoided.

. toLocalString() function converts the date object’s time value to
text, using local time.

Along with these basic functions, JavaScript 1.2 and later include UTC ver-
sions of several of the functions described previously. These are identical to
the regular commands, but work with UTC instead of local time:

. getUTCDate() function gets the day of the month in UTC time.

. getUTCDay() function gets the day of the week in UTC time.

NOTE

Along with setFullYear and
getFullYear, which require
four-digit years, JavaScript
includes setYear and getYear
methods, which use two-digit
year values. You should always
use the four-digit version to
avoid Year 2000 issues.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

366 CHAPTER 17 Using JavaScript Functions and Objects

. getUTCFullYear() function gets the four-digit year in UTC time.

. getUTCMonth() function returns the month of the year in UTC time.

. getUTCHours(), getUTCMinutes(), getUTCSeconds(), and
getUTCMilliseconds() return the components of the time in UTC.

. setUTCDate(), setUTCFullYear(), setUTCMonth(), setUTCHours(),
setUTCMinutes(), setUTCSeconds(), and setUTCMilliseconds() set
the time in UTC.

Converting Between Date Formats
Two special methods of the Date object enable you to convert between date
formats. Instead of using these methods with a Date object you created, you
use them with the built-in object Date itself. These include the following:

. Date.parse()method converts a date string, such as November 1,
2010, to a Date object (number of milliseconds since 1/1/1970).

. Date.UTC() method does the opposite. It converts a Date object value
(number of milliseconds) to a UTC (GMT) time.

Summary
In this chapter, you learned several important features of JavaScript. First, you
learned how to use functions to group JavaScript statements and how to call
functions and use the values they return. Next, you learned about JavaScript’s
object-oriented features—defining objects with constructor functions, creating
object instances, and working with properties, property values, and methods.

As an example of these object-oriented features, you looked closer at the
Math and Date objects built into JavaScript and learned more than you ever
wanted to know about random numbers.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

367Workshop

Q&A
Q. Many objects in JavaScript, such as DOM objects, include parent and

child objects. Can I include child objects in my custom object defini-
tions?

A. Yes. Just create a constructor function for the child object, and then
add a property to the parent object that corresponds to it. For example,
if you created a Nicknames object to store several nicknames for a per-
son in the card file example, you could add it as a child object in the
Card object’s constructor: this.nick = new Nicknames();.

Q. Can I create an array of custom objects?

A. Yes. First, create the object definition as usual and define an array with
the required number of elements. Then assign a new object to each
array element (for example, cardarray[1] = new Card();). You can
use a loop, described in the next chapter, to assign objects to an entire
array at once.

Q. Can I modify all properties of objects?

A. With custom objects, yes—but this varies with built-in objects and DOM
objects. For example, you can use the length property to find the
length of a string, but it is a read-only property and cannot be modified.

Q. The random numbers are generated so quickly I can’t be sure it’s hap-
pening at all. Is there a way to slow this process down?

A. Yes. If you add one or more form fields to the example and use them to
display the data as it is generated, you’ll see a much slower result. It
will still be done within a couple of seconds on a fast computer, though.

Workshop
The workshop contains quiz questions and activities to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. What JavaScript keyword is used to create an instance of an object?

a. object

b. new

c. instance

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

368 CHAPTER 17 Using JavaScript Functions and Objects

2. What is the meaning of the this keyword in JavaScript?

a. The current object.

b. The current script.

c. It has no meaning.

3. Which of the following objects cannot be used with the new keyword?

a. Date

b. Math

c. String

4. How does JavaScript store dates in a Date object?

a. The number of milliseconds since January 1, 1970

b. The number of days since January 1, 1900

c. The number of seconds since Netscape’s public stock offering

5. What is the range of random numbers generated by the Math.random
function?

a. Between 1 and 100

b. Between 1 and the number of milliseconds since January 1, 1970

c. Between 0 and 1

Answers
1. b. The new keyword creates an object instance.

2. a. The this keyword refers to the current object.

3. b. The Math object is static; you can’t create a Math object.

4. a. Dates are stored as the number of milliseconds since January 1, 1970.

5. c. JavaScript’s random numbers are between 0 and 1.

Exercises
. Modify the Greet function to accept two parameters, who1 and who2,

and to include both names in a single greeting dialog. Modify Listing
17.2 to use a single function call to the new function.

. Modify the definition of the Card object to include a property called
email for the person’s email address. Modify the PrintCard function in
Listing 17.5 to include this property.

. Modify the random number script in Listing 17.7 to run three times, cal-
culating a total of 15,000 random numbers, and display separate totals
for each set of 5,000. (You’ll need to use another for loop that enclos-
es most of the script.)

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Statements in a JavaScript program generally execute in the order in which
they appear, one after the other. Because this isn’t always practical, most
programming languages provide flow control statements that let you con-
trol the order in which code is executed. Functions, which you learned
about in the previous chapter, are one type of flow control—although a
function might be defined first thing in your code, its statements can be
executed anywhere in the script.

In this chapter, you’ll look at two other types of flow control in JavaScript:
conditions, which allow a choice of different options depending on a value,
and loops, which allow repetitive statements.

The if Statement
One of the most important features of a computer language is the capabili-
ty to test and compare values. This allows your scripts to behave different-
ly based on the values of variables or based on input from the user.

The if statement is the main conditional statement in JavaScript. This
statement means much the same in JavaScript as it does in English—for
example, here is a typical conditional statement in English:

If the phone rings, answer it.

This statement consists of two parts: a condition (If the phone rings) and an
action (answer it). The if statement in JavaScript works much the same
way. Here is an example of a basic if statement:

if (a == 1) window.alert(“Found a 1!”);

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How to test variables with
the if statement

. How to use various opera-
tors to compare values

. How to use logical opera-
tors to combine conditions

. How to use alternative con-
ditions with else

. How to create expressions
with conditional operators

. How to test for multiple
conditions

. How to perform repeated
statements with the for
loop

. How to use while for a dif-
ferent type of loop

. How to use do...while
loops

. How to create infinite
loops (and why you
shouldn’t)

. How to escape from loops
and continuing loops

. How to loop through an
array’s properties

CHAPTER 18
Controlling Flow with Conditions

and Loops

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

370 CHAPTER 18 Controlling Flow with Conditions and Loops

This statement includes a condition (if a equals 1) and an action (display a
message). This statement checks the variable a and, if it has a value of 1,
displays an alert message. Otherwise, it does nothing.

If you use an if statement like the preceding example, you can use a single
statement as the action. You can also use multiple statements for the action
by enclosing them in braces ({}), as shown here:

if (a == 1) {
window.alert(“Found a 1!”);
a = 0;

}

This block of statements checks the variable a once again. If it finds a value
of 1, it displays a message and sets a back to 0.

Conditional Operators
The action part of an if statement can include any of the JavaScript state-
ments you’ve already learned (and any others, for that matter), but the
condition part of the statement uses its own syntax. This is called a condi-
tional expression.

A conditional expression usually includes two values to be compared (in
the preceding example, the values were a and 1). These values can be vari-
ables, constants, or even expressions in themselves.

Between the two values to be compared is a conditional operator. This opera-
tor tells JavaScript how to compare the two values. For instance, the ==
operator is used to test whether the two values are equal. A variety of con-
ditional operators is available:

. ==—Is equal to

. !=—Is not equal to

. <—Is less than

. >—Is greater than

. >=—Is greater than or equal to

. <=—Is less than or equal to

NOTE

Either side of the conditional
expression can be a variable, a
constant, or an expression. You
can compare a variable and a
value or compare two variables.
(You can compare two con-
stants, but there’s usually no
reason to.)

CAUTION

Be sure not to confuse the
equality operator (==) with the
assignment operator (=), even
though they both might be read
as “equals.” Remember to use =
when assigning a value to a vari-
able, and == when comparing val-
ues. Confusing these two is one
of the most common mistakes in
JavaScript programming.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

The if Statement 371

Combining Conditions with Logical Operators
Often, you’ll want to check a variable for more than one possible value or
check more than one variable at once. JavaScript includes logical operators,
also known as Boolean operators, for this purpose. For example, the fol-
lowing two statements check different conditions and use the same action:

if (phone == “”) window.alert(“error!”);
if (email == “”) window.alert(“error!”);

Using a logical operator, you can combine them into a single statement:

if ((phone == “”) || (email == “”)) window.alert(“Something’s Missing!”);

This statement uses the logical Or operator (||) to combine the conditions.
Translated to English, this would be, “If the phone number is blank or the
email address is blank, display an error message.”

An additional logical operator is the And operator, &&. Consider this
statement:

if ((phone == “”) && (email == “”)) window.alert(“Both are Missing!”);

This statement uses &&, so the error message will only be displayed if both
the email address and phone number variables are blank. (In this particu-
lar case, Or is a better choice.)

The third logical operator is the exclamation mark (!), which means Not. It
can be used to invert an expression—in other words, a true expression
would become false, and a false one would become true. For example,
here’s a statement that uses the Not operator:

if (!(phone == “”)) alert(“phone is OK”);

In this statement, the ! (Not) operator inverts the condition, so the action
of the if statement is executed only if the phone number variable is not
blank. The extra parentheses are necessary because all JavaScript condi-
tions must be in parentheses. You could also use the != (Not equal) opera-
tor to simplify this statement:

if (phone != “”) alert(“phone is OK”);

As with the previous statement, this alerts you if the phone number field is
not blank.

TIP

If the JavaScript interpreter dis-
covers the answer to a condi-
tional expression before reach-
ing the end, it does not evalu-
ate the rest of the condition.
For example, if the first of two
conditions separated by the &&
operator is false, the second is
not evaluated. You can take
advantage of this to improve
the speed of your scripts.

TIP

The logical operators are power-
ful, but it’s easy to accidentally
create an impossible condition
with them. For example, the
condition ((a < 10) && (a >
20)) might look correct at first
glance. However, if you read it
aloud, you get “If a is less than
10 and a is greater than 20”—
an impossibility in our universe.
In this case, Or (||) should
have been used.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

372 CHAPTER 18 Controlling Flow with Conditions and Loops

The else Keyword
An additional feature of the if statement is the else keyword. Much like
its English equivalent, else tells the JavaScript interpreter what to do if the
condition isn’t true. The following is a simple example of the else key-
word in action:

if (a == 1) {
alert(“Found a 1!”);
a = 0;

} else {
alert(“Incorrect value: “ + a);

}

This is a modified version of the previous example. This displays a mes-
sage and resets the variable a if the condition is met. If the condition is not
met (if a is not 1), a different message is displayed.

Using Shorthand Conditional
Expressions
In addition to the if statement, JavaScript provides a shorthand type of
conditional expression that you can use to make quick decisions. This uses
a peculiar syntax that is also found in other languages, such as C. A condi-
tional expression looks like this:

variable = (condition) ? (true action) : (false action);

This assigns one of two values to the variable: one if the condition is true,
and another if it is false. Here is an example of a conditional expression:

value = (a == 1) ? 1 : 0;

This statement might look confusing, but it is equivalent to the following
if statement:

if (a == 1) {
value = 1;

} else {
value = 0;

}

In other words, the value after the question mark (?) will be used if the
condition is true, and the value after the colon (:) will be used if the condi-
tion is false. The colon represents the else portion of this statement and,
like the else portion of the if statement, is optional.

NOTE

Like the if statement, else can
be followed either by a single
action statement or by a num-
ber of statements enclosed in
braces.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Testing Multiple Conditions with if and else 373

These shorthand expressions can be used anywhere JavaScript expects a
value. They provide an easy way to make simple decisions about values.
As an example, here’s an easy way to display a grammatically correct mes-
sage about a variable:

document.write(“Found “ + counter +
((counter == 1) ? “ word.” : “ words.”));

This will print the message Found 1 word if the counter variable has a
value of 1 and Found 2 words if its value is 2 or greater. This is one of the
most common uses for a conditional expression.

Testing Multiple Conditions with if
and else
You can now create an example script using if and else. In Chapter 4,
“Understanding JavaScript,” you created a simple script that displays the
current date and time. This example will use conditions to display a greet-
ing that depends on the time: “Good morning,” “Good afternoon,” “Good
evening,” or “Good day.” To accomplish this, you can use a combination of
several if statements:

if (hours < 10) {
document.write(“Good morning.”);

} else if (hours >= 14 && hours <= 17) {
document.write(“Good afternoon.”);

} else if (hours >= 17) {
document.write(“Good evening.”);

} else {
document.write(“Good day.”);

}

The first statement checks the hours variable for a value less than 10—in
other words, it checks whether the current time is before 10:00 a.m. If so, it
displays the greeting “Good morning.”

The second statement checks whether the time is between 2:00 p.m. and 5:00
p.m. and, if so, displays “Good afternoon.” This statement uses else if to
indicate that this condition will only be tested if the previous one failed—if
it’s morning, there’s no need to check whether it’s afternoon. Similarly, the
third statement checks for times after 5:00 p.m. and displays “Good evening.”

The final statement uses a simple else, meaning it will be executed if none of
the previous conditions matched. This covers the times between 10:00 a.m.
and 2:00 p.m. (neglected by the other statements) and displays “Good day.”

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

374 CHAPTER 18 Controlling Flow with Conditions and Loops

The HTML File
To try this example in a browser, you’ll need an HTML file. We will keep
the JavaScript code separate, so Listing 18.1 is the complete HTML file.
Save it as timegreet.html, but don’t load it into the browser until you’ve
prepared the JavaScript file in the next section.

LISTING 18.1 The HTML File for the Time and Greeting Example
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Time Greet Example</title>

</head>
<body>
<h1>Current Date and Time</h1>
<script type=”text/javascript” src=”timegreet.js” > </script>

</body>
</html>

The JavaScript File
Listing 18.2 shows the complete JavaScript file for the time greeting exam-
ple. This uses the built-in Date object functions to find the current date and
store it in hours, mins, and secs variables. Next, document.write state-
ments display the current time, and the if and else statements introduced
earlier display an appropriate greeting.

LISTING 18.2 A Script to Display the Current Time and a Greeting
// Get the current date
now = new Date();
// Split into hours, minutes, seconds
hours = now.getHours();
mins = now.getMinutes();
secs = now.getSeconds();
// Display the time
document.write(“<h2>”);
document.write(hours + “:” + mins + “:” + secs);
document.write(“</h2>”);
// Display a greeting
document.write(“<p>”);
if (hours < 10) {

document.write(“Good morning.”);
} else if (hours >= 14 && hours <= 17) {

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using Multiple Conditions with switch 375

document.write(“Good afternoon.”);
} else if (hours >= 17) {

document.write(“Good evening.”);
} else {

document.write(“Good day.”);
}
document.write(“</p>”);

To try this example, save this file as timegreet.js, and then load the
timegreet.html file into your browser. Figure 18.1 shows the results of
this script.

LISTING 18.2 Continued

FIGURE 18.1
The output of the time greeting
example.

Using Multiple Conditions with switch
In the previous example, you used several if statements in a row to test
for different conditions. Here is another example of this technique:

if (button==”next”) {
window.location=”next.html”;

} else if (button==”previous”) {
window.location=”prev.html”;

} else if (button==”home”) {
window.location=”home.html”;

} else if (button==”back”) {
window.location=”menu.html”;

}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

376 CHAPTER 18 Controlling Flow with Conditions and Loops

Although this is a compact way of doing things, this method can get messy
if each if statement has its own block of code with several statements. As
an alternative, JavaScript includes the switch statement, which enables
you to combine several tests of the same variable or expression into a sin-
gle block of statements. The following shows the same example converted
to use switch:

switch(button) {
case “next”:

window.location=”next.html”;
break;

case “previous”:
window.location=”prev.html”;
break;

case “home”:
window.location=”home.html”;
break;

case “back”:
window.location=”menu.html”;
break;

default:
window.alert(“Wrong button.”);

}

The switch statement has several components:

. The initial switch statement. This statement includes the value to test
(in this case, button) in parentheses.

. Braces ({ and }) enclose the contents of the switch statement, similar
to a function or an if statement.

. One or more case statements. Each of these statements specifies a
value to compare with the value specified in the switch statement. If
the values match, the statements after the case statement are execut-
ed. Otherwise, the next case is tried.

. The break statement is used to end each case. This skips to the end
of the switch. If break is not included, statements in multiple cases
might be executed whether they match or not.

. Optionally, the default case can be included and followed by one or
more statements that are executed if none of the other cases were
matched.

NOTE

You can use multiple state-
ments after each case state-
ment within the switch struc-
ture. You don’t need to enclose
them in braces. If the case
matches, the JavaScript inter-
preter executes statements
until it encounters a break or
the next case.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using for Loops 377

Using for Loops
The for keyword is the first tool to consider for creating loops, much like
you saw in the previous chapter during the random number example. A
for loop typically uses a variable (called a counter or an index) to keep
track of how many times the loop has executed, and it stops when the
counter reaches a certain number. A basic for statement looks like this:

for (var = 1; var < 10; var++) { // more code }

There are three parameters to the for loop, separated by semicolons:

. The first parameter (var = 1 in the example) specifies a variable and
assigns an initial value to it. This is called the initial expression
because it sets up the initial state for the loop.

. The second parameter (var < 10 in the example) is a condition that
must remain true to keep the loop running. This is called the condi-
tion of the loop.

. The third parameter (var++ in the example) is a statement that exe-
cutes with each iteration of the loop. This is called the increment
expression because it is typically used to increment the counter. The
increment expression executes at the end of each loop iteration.

After the three parameters are specified, a left brace ({) is used to signal
the beginning of a block. A right brace (}) is used at the end of the block.
All the statements between the braces will be executed with each iteration
of the loop.

The parameters for a for loop might sound a bit confusing, but after
you’re used to it, you’ll use for loops frequently. Here is a simple example
of this type of loop:

for (i=0; i<10; i++) {
document.write(“This is line “ + i + “
”);

}

These statements define a loop that uses the variable i, initializes it with
the value of zero, and loops as long as the value of i is less than 10. The
increment expression, i++, adds one to the value of i with each iteration of
the loop. Because this happens at the end of the loop, the output will list
the numbers zero through nine.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

378 CHAPTER 18 Controlling Flow with Conditions and Loops

When a loop includes only a single statement between the braces, as in this
example, you can omit the braces if you want. The following statement
defines the same loop without braces:

for (i=0; i<10; i++)
document.write(“This is line “ + i + “
”);

The loop in this example contains a document.write statement that will be
repeatedly executed. To see just what this loop does, you can add it to a
<script> section of an HTML document, as shown in Listing 18.3.

LISTING 18.3 A Loop Using the for Keyword
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Using a for Loop</title>

</head>
<body>
<h1>Using a for Loop</h1>
<p>The following is the output of the for loop:</p>
<script type=”text/javascript”>
for (i=1;i<10;i++) {

document.write(“This is line “ + i + “
”);
}
</script>

</body>
</html>

This example displays a message with the loop’s counter during each itera-
tion. The output of Listing 18.3 is shown in Figure 18.2.

Notice that the loop was only executed nine times. This is because the con-
ditional is i<10. When the counter (i) is incremented to 10, the expression
is no longer true. If you need the loop to count to 10, you can change the
conditional; either i<=10 or i<11 will work fine.

The for loop is traditionally used to count from one number to another,
but you can use just about any statement for the initialization, condition,
and increment. However, there’s usually a better way to do other types of
loops with the while keyword, as described in the next section.

TIP

It’s a good style convention to
use braces with all loops
whether they contain one state-
ment or many. This makes it
easy to add statements to the
loop later without causing syn-
tax errors.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using while Loops 379

Using while Loops
Another keyword for loops in JavaScript is while. Unlike for loops, while
loops don’t necessarily use a variable to count. Instead, they execute as
long as a condition is true. In fact, if the condition starts out as false, the
statements won’t execute at all.

The while statement includes the condition in parentheses, and it is fol-
lowed by a block of statements within braces, just like a for loop. Here is a
simple while loop:

while (total < 10) {
n++;
total += values[n];

}

This loop uses a counter, n, to iterate through the values array. Rather than
stopping at a certain count, however, it stops when the total of the values
reaches 10.

You might have noticed that you could have done the same thing with a
for loop:

for (n=0;total < 10; n++) {
total += values[n];

}

As a matter of fact, the for loop is nothing more than a special kind of
while loop that handles an initialization and an increment for you. You can

FIGURE 18.2
The results of the for loop
example.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

380 CHAPTER 18 Controlling Flow with Conditions and Loops

generally use while for any loop. However, it’s best to choose whichever
type of loop makes the most sense for the job, or that takes the least
amount of typing.

Using do...while Loops
JavaScript, like many other programming languages, includes a third type
of loop: the do...while loop. This type of loop is similar to an ordinary
while loop, with one difference: The condition is tested at the end of the
loop rather than the beginning. Here is a typical do...while loop:

do {
n++;
total += values[n];

}
while (total < 10);

As you’ve probably noticed, this is basically an upside-down version of the
previous while example. There is one difference: With the do loop, the condi-
tion is tested at the end of the loop. This means that the statements in the
loop will always be executed at least once, even if the condition is never true.

Working with Loops
Although you can use simple for and while loops for straightforward
tasks, there are some considerations you should make when using more
complicated loops. In the next sections, we’ll look at infinite loops and the
break and continue statements, which give you more control over your
loops.

Creating an Infinite Loop
The for and while loops give you quite a bit of control over the loop. In
some cases, this can cause problems if you’re not careful. For example,
look at the following loop code:

while (i < 10) {
n++;
values[n] = 0;

}

There’s a mistake in this example. The condition of the while loop refers to
the i variable, but that variable doesn’t actually change during the loop.

NOTE

As with the for and while
loops, the do loop can include a
single statement without braces
or a number of statements
enclosed in braces.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Working with Loops 381

This creates an infinite loop. The loop will continue executing until the user
stops it or until it generates an error of some kind.

Infinite loops can’t always be stopped by the user, except by quitting the
browser—and some loops can even prevent the browser from quitting or
cause a crash.

Obviously, infinite loops are something to avoid. They can also be difficult
to spot because JavaScript won’t give you an error that actually tells you
there is an infinite loop. Thus, each time you create a loop in a script, you
should be careful to make sure there’s a way out.

Occasionally, you might want to create an infinite loop deliberately. This
might include situations when you want your program to execute until the
user stops it, or if you are providing an escape route with the break state-
ment, which is introduced in the next section. Here’s an easy way to create
an infinite loop:

while (true) {

Because the value true is the conditional, this loop will always find its
condition to be true.

Escaping from a Loop
There is one way out of an infinite loop. You can use the break statement
during a loop to exit it immediately and continue with the first statement
after the loop. Here is a simple example of the use of break:

while (true) {
n++;
if (values[n] == 1) break;

}

Although the while statement is set up as an infinite loop, the if statement
checks the corresponding value of an array. If it finds a value of 1, it exits
the loop.

When the JavaScript interpreter encounters a break statement, it skips the
rest of the loop and continues the script with the first statement after the
right brace at the loop’s end. You can use the break statement in any type
of loop, whether infinite or not. This provides an easy way to exit if an
error occurs or if another condition is met.

NOTE

Depending on the browser ver-
sion in use, an infinite loop
might even make the browser
stop responding to the user. Be
sure you provide an escape
route from infinite loops and
save your script before you test
it just in case.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

382 CHAPTER 18 Controlling Flow with Conditions and Loops

Continuing a Loop
One more statement is available to help you control the execution of state-
ments in a loop. The continue statement skips the rest of the loop, but,
unlike break, it continues with the next iteration of the loop. Here is a sim-
ple example:

for (i=1; i<21; i++) {
if (score[i]==0) continue;
document.write(“Student number “,i, “ Score: “, score[i], “\n”);

}

This script uses a for loop to print out scores for 20 students, stored in the
score array. The if statement is used to check for scores with a value of 0.
The script assumes that a score of 0 means that the student didn’t take the
test, so it continues the loop without printing that score.

Looping Through Object Properties
Yet another type of loop is available in JavaScript. The for...in loop is not
as flexible as an ordinary for or while loop. Instead, it is specifically
designed to perform an operation on each property of an object.

For example, the navigator object contains properties that describe the
user’s browser. You can use for...in to display this object’s properties:

for (i in navigator) {
document.write(“property: “ + i);
document.write(“ value: “ + navigator[i] + “
”);

}

Like an ordinary for loop, this type of loop uses an index variable (i in the
example). For each iteration of the loop, the variable is set to the next prop-
erty of the object. This makes it easy when you need to check or modify
each of an object’s properties.

TRY IT YOURSELF▼

Working with Arrays
and Loops

To apply your knowledge of loops, you will now create a script that deals with
arrays using loops. As you progress through this script, try to imagine how dif-
ficult it would be without JavaScript’s looping features.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Looping Through Object Properties 383

Working with Arrays
and Loops
continued

This simple script will prompt the user for a series of names. After all of the
names have been entered, it will display the list of names in a numbered list.
To begin the script, initialize some variables:

names = new Array();
i = 0;

The names array will store the names the user enters. You don’t know how
many names will be entered, so you don’t need to specify a dimension for the
array. The i variable will be used as a counter in the loops.

Next, use the prompt statement to prompt the user for a series of names.
Use a loop to repeat the prompt for each name. You want the user to enter at
least one name, so a do loop is ideal:

do {
next = prompt(“Enter the Next Name”, “”);
if (next > “ “) names[i] = next;
i = i + 1;
}
while (next > “ “);

This loop prompts for a string called next. If a name was entered and isn’t
blank, it’s stored as the next entry in the names array. The i counter is then
incremented. The loop repeats until the user doesn’t enter a name or clicks
Cancel in the prompt dialog.

Next, your script can display the number of names that was entered:

document.write(“<h2>” + (names.length) + “ names entered.</h2>”);

This statement displays the length property of the names array, surrounded
by level 2 header tags for emphasis.

Next, the script should display all the names in the order they were entered.
Because the names are in an array, the for...in loop is a good choice:

document.write(“”);
for (i in names) {

document.write(“” + names[i] + “”);
}
document.write(“”);

Here you have a for…in loop that loops through the names array, assigning
the counter i to each index in turn. The script then prints the name between
opening and closing tags as an item in an ordered list. Before and after
the loop, the script prints beginning and ending tags.

TRY IT YOURSELF ▼

TIP

If you’re interested in making
your scripts as short as possi-
ble, remember that you could
use the increment (++) opera-
tor to combine the i = i + 1
statement with the previous
statement: names[i++]=1.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

384 CHAPTER 18 Controlling Flow with Conditions and Loops

TRY IT YOURSELF▼

Working with Arrays
and Loops
continued

You now have everything you need for a working script. Listing 18.4 shows
the HTML file for this example, and Listing 18.5 shows the JavaScript file.

LISTING 18.4 A Script to Prompt for Names and Display Them (HTML)
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Loops Example</title>

</head>
<body>

<h1>Loops Example</h1>
<p>Enter a series of names and I will display them in a
numbered list.</p>
<script type=”text/javascript” src=”loops.js” > </script>

</body>
</html>

LISTING 18.5 A Script to Prompt for Names and Display Them (JavaScript)
// create the array
names = new Array();
i = 0;
// loop and prompt for names
do {

next = window.prompt(“Enter the Next Name”, “”);
if (next > “ “) names[i] = next;
i = i + 1;
} while (next > “ “);

document.write(“<h2>” + (names.length) + “ names entered.</h2>”);
// display all of the names
document.write(“”);
for (i in names) {

document.write(“” + names[i] + “”);
}
document.write(“”);

To try this example, save the JavaScript file as loops.js, and then load the
HTML document into a browser. You’ll be prompted for one name at a time.
Enter several names, and then click Cancel to indicate that you’re finished.
Figure 18.3 shows what the final results should look like in a browser.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Summary 385

Summary
In this chapter, you learned two ways to control the flow of your scripts.
First, you learned how to use the if statement to evaluate conditional
expressions and react to them. You also learned a shorthand form of condi-
tional expression using the ? operator and the switch statement for work-
ing with multiple conditions.

You also learned about JavaScript’s looping capabilities using for, while,
and other loops and how to control loops further using the break and con-
tinue statements. Lastly, you looked at the for...in loop for working
with each property of an object.

Working with Arrays
and Loops
continued

TRY IT YOURSELF ▼

FIGURE 18.3
The output of the names example.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

386 CHAPTER 18 Controlling Flow with Conditions and Loops

Q&A
Q. What happens if I compare two items of different data types (for

example, a number and a string) in a conditional expression?

A. The JavaScript interpreter does its best to make the values a common
format and compare them. In this case, it would convert them both to
strings before comparing. In JavaScript 1.3 and later, you can use the
special equality operator === to compare two values and their types—
using this operator, the expression will be true only if the expressions
have the same value and the same data type.

Q. Why would I use switch if using if and else is just as simple?

A. Either one works, so it’s your choice. Personally, I find switch state-
ments confusing and prefer to use if. Your choice might also depend
on what other programming languages you’re familiar with because
some support switch and others don’t.

Q. Why don’t I get a friendly error message if I accidentally use = instead
of ==?

A. In some cases, this will result in an error. However, the incorrect ver-
sion often appears to be a correct statement. For example, in the state-
ment if (a=1), the variable a will be assigned the value 1. The if
statement is considered true, and the value of a is lost.

Q. It seems like I could use a for loop to replace any of the other loop
methods (while, do, and so on). Why so many choices?

A. You’re right. In most cases, a for loop will work, and you can do all
your loops that way if you want. For that matter, you can use while to
replace a for loop. You can use whichever looping method makes the
most sense for your application.

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Workshop 387

Quiz
1. Which of the following operators means “is not equal to” in JavaScript?

a. !

b. !=

c. <>

2. What does the switch statement do?

a. Tests a variable for a number of different values

b. Turns a variable on or off

c. Makes ordinary if statements longer and more confusing

3. Which type of JavaScript loop checks the condition at the end of the
loop?

a. for

b. while

c. do...while

4. Within a loop, what does the break statement do?

a. Crashes the browser

b. Starts the loop over

c. Escapes the loop entirely

5. The statement while (3==3) is an example of

a. A typographical error

b. An infinite loop

c. An illegal JavaScript statement

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

388 CHAPTER 18 Controlling Flow with Conditions and Loops

Answers
1. b. The != operator means is not equal to.

2. a. The switch statement can test the same variable or expression for a
number of different values.

3. c. The do...while loop uses a condition at the end of the loop.

4. c. The break statement escapes the loop.

5. b. Because the condition (3==3) will always be true, this statement cre-
ates an infinite loop.

Exercises
. Modify Listing 18.4 to sort the names in alphabetical order before dis-

playing them. You can use the sort method of the Array object,
described in Chapter 16, “Using JavaScript Variables, Strings, and
Arrays.”

. Modify Listing 18.4 to prompt for exactly 10 names. What happens if
you click the Cancel button instead of entering a name?

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

In your experience with JavaScript so far, most of the scripts you’ve writ-
ten have executed in a calm, orderly fashion, moving from the first state-
ment to the last. You’ve seen a few event handlers used in sample scripts
to focus your attention on other aspects of programming, and it is likely
that you used your common sense to follow along with the actions. That
alone speaks to the relative ease and simplicity of using JavaScript event
handlers within your HTML.

In this chapter, you’ll learn to use the wide variety of event handlers sup-
ported by JavaScript. Rather than executing in order, scripts using event
handlers can interact directly with the user. You’ll use event handlers in just
about every script you write throughout the rest of this book, and in fact
they’re likely to feature prominently in most scripts you will write, period.

Understanding Event Handlers
As you learned in Chapter 14, “Getting Started with JavaScript
Programming,” JavaScript programs don’t have to execute in order. You
also learned they can detect events and react to them. Events are things that
happen to the browser—the user clicking a button, the mouse pointer
moving, or a web page or image loading from the server.

A wide variety of events enable your scripts to respond to the mouse, the
keyboard, and other circumstances. Events are the key method JavaScript
uses to make web documents interactive.

The script that you use to detect and respond to an event is called an event
handler. Event handlers are among the most powerful features of
JavaScript. Luckily, they’re also among the easiest features to learn and
use—often, a useful event handler requires only a single statement.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How event handlers work

. How event handlers relate
to objects

. How to create an event
handler

. How to detect mouse and
keyboard actions

. How to use onclick to
change the appearance of
<div>

CHAPTER 19
Responding to Events

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

390 CHAPTER 19 Responding to Events

Objects and Events
As you learned in Chapter 15, “Working with the Document Object Model
(DOM),” JavaScript uses a set of objects to store information about the var-
ious parts of a web page—buttons, links, images, windows, and so on. An
event can often happen in more than one place (for example, the user
could click any one of the links on the page), so each event is associated
with an object.

Each event has a name. For example, the onMouseOver event occurs when
the mouse pointer moves over an object on the page. When the pointer
moves over a particular link, the onMouseOver event is sent to that link’s
event handler, if it has one.

To define an event handler, you add the word on to the beginning of the
event’s name. For example, the onMouseOver event handler is called when
the mouse moves over a link. To define the event handler, you add it to
that particular link’s <a> HTML tag.

Creating an Event Handler
You don’t need the <script> tag to define an event handler. Instead, you
can add an event handler attribute to an individual HTML tag. For exam-
ple, here is a link that includes an onMouseOver event handler:

<a href=”http://www.google.com/”
onmouseover=”alert(‘You moved over the link.’);”>
This is a link.

Note that this is all one <a> tag, although it’s split into multiple lines. This
specifies a statement to be used as the onMouseOver event handler for the
link. This statement displays an alert message when the mouse moves over
the link.

You can use JavaScript statements like the previous one in an event han-
dler, but if you need more than one statement, it’s a good idea to use a
function instead. Just define the function in the header of the document,
and then call the function as the event handler like this:

Move the mouse over this link.

This example calls a function called DoIt() when the user moves the
mouse over the link. Using a function is convenient because you can use
longer, more readable JavaScript routines as event handlers.

NOTE

Notice the strange capitaliza-
tion on the onMouseOver key-
word. This is the standard nota-
tion for event handlers. The on
is always lowercase, and each
word in the event name is capi-
talized. However, to be truly
XHTML-compliant, when you use
these event handlers in your
code, you must write them
entirely in lowercase.

NOTE

The example seen here uses
single quotation marks to sur-
round the text. This is neces-
sary in an event handler
because double quotation
marks are used to surround the
event handler itself. (You can
also use single quotation
marks to surround the event
handler and double quotation
marks within the script state-
ments.)

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Understanding Event Handlers 391

Defining Event Handlers with JavaScript
Rather than specifying an event handler in an HTML document, you can
use JavaScript to assign a function as an event handler. This enables you to
set event handlers conditionally, turn them on and off, and change the
function that handles an event dynamically.

To define an event handler in this way, you first define a function, and
then assign the function as an event handler. Event handlers are stored as
properties of the document object or another object that can receive an
event. For example, these statements define a function called mousealert,
and then assign it as the onMouseDown event handler for the document:

function mousealert() {
alert (“You clicked the mouse!”);

}
document.onmousedown = mousealert;

You can use this technique to set up an event handler for any HTML element,
but an additional step is required: You must first find the object correspon-
ding to the element. To do this, use the document.getElementById function.
First, define an element in the HTML document and specify an id attribute:

Next, in the JavaScript code, find the object and apply the event handler:

obj = document.getElementById(“link1”);
obj.onclick = MyFunction;

You can do this for any object as long as you’ve defined it with a unique id
attribute in the HTML file. Using this technique, you can easily assign the
same function to handle events for multiple objects without adding clutter
to your HTML code.

Supporting Multiple Event Handlers
What if you want more than one thing to happen when you click on an
element? For example, suppose you want two functions called update and
display to both execute when a button is clicked. You can’t assign two
functions to the onclick property. One solution is to define a function that
calls both functions:

function UpdateDisplay() {
update();
display();

}

TIP

For simple event handlers, you
can use two statements if you
separate them with a semi-
colon. However, in most cases
it’s easier to use a function to
perform the statements.

TIP

Setting up event handlers this
way is also a good practice in
general: It enables you to use
an external JavaScript file to
define the function and set up
the event, keeping the JavaScript
code completely separate from
the HTML file.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

392 CHAPTER 19 Responding to Events

This isn’t always the ideal way to do things. For example, if you’re using
two third-party scripts and both of them want to add an onLoad event to
the page, there should be a way to add both. The W3C DOM standard
defines a function, addEventListener, for this purpose. This function
defines a listener for a particular event and object, and you can add as
many listener functions as you need.

Unfortunately, addEventListener is not supported by Internet Explorer, so
you have to use a different function, attachEvent, in that browser. See
Chapter 21, “Using Unobtrusive JavaScript,” for a function that combines
these two for a cross-browser event-adding script.

Using the event Object
When an event occurs, you might need to know more about the event—for
example, for a keyboard event, you need to know which key was pressed.
The DOM includes an event object that provides this information.

To use the event object, you can pass it on to your event handler function.
For example, this statement defines an onKeyPress event that passes the
event object to a function:

<body onkeypress=”getkey(event);”>

You can then define your function to accept the event as a parameter:

function getkey(e) {
...
}

In Firefox, Safari, Opera, and Chrome, an event object is automatically
passed to the event handler function, so this will work even if you use
JavaScript rather than HTML to define an event handler. In Internet
Explorer, the most recent event is stored in the window.event object. The
previous HTML example passes this object to the event handler function. If
you define the event handler with JavaScript, this is not possible, so you
need to use some code to find the correct object:

function getkey(e) {
if (!e) e=window.event;

...
}

This checks whether the e variable is already defined. If not, it gets the
window.event object and stores it in e. This ensures that you have a valid
event object in any browser.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Understanding Event Handlers 393

Unfortunately, although both Internet Explorer and non-Internet Explorer
browsers support event objects, they support different properties. One
property that is the same in both browsers is event.type, the type of
event. This is simply the name of the event, such as mouseover for an
onMouseOver event and keypress for an onKeyPress event. The following
sections list some additional useful properties for each browser.

Internet Explorer event Properties
The following are some of the commonly used properties of the event
object for Internet Explorer:

. event.button—The mouse button that was pressed. This value is 1
for the left button and usually 2 for the right button.

. event.clientX—The x-coordinate (column, in pixels) where the
event occurred.

. event.clientY—The y-coordinate (row, in pixels) where the event
occurred.

. event.altkey—A flag that indicates whether the Alt key was
pressed during the event.

. event.ctrlkey—A flag that indicates whether the Ctrl key was
pressed.

. event.shiftkey—A flag that indicates whether the Shift key was
pressed.

. event.keyCode—The key code (in Unicode) for the key that was
pressed.

. event.srcElement—The object where the element occurred.

Non-Internet Explorer event Properties
The following are some of the commonly used properties of the event
object for modern browsers that are not Internet Explorer:

. event.modifiers—Indicates which modifier keys (Shift, Ctrl, Alt,
and so on) were held down during the event. This value is an integer
that combines binary values representing the different keys.

. event.pageX—The x-coordinate of the event within the web page.

. event.pageY—The y-coordinate of the event within the web page.

. event.which—The keycode for keyboard events (in Unicode) or the
button that was pressed for mouse events (It’s best to use the cross-
browser button property instead.)

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

394 CHAPTER 19 Responding to Events

. event.button—The mouse button that was pressed. This works just
like Internet Explorer except that the left button’s value is 0 and the
right button’s value is 2.

. event.target—The object where the element occurred.

Using Mouse Events
The DOM includes a number of event handlers for detecting mouse
actions. Your script can detect the movement of the mouse pointer and
when a button is clicked, released, or both. Some of these will be familiar
to you already because you have seen them in action in previous chapters.

Over and Out
You’ve already seen the first and most common event handler,
onMouseOver. This handler is called when the mouse pointer moves over a
link or other object.

The onMouseOut handler is the opposite—it is called when the mouse
pointer moves out of the object’s border. Unless something strange hap-
pens, this always happens sometime after the onMouseOver event is called.

This handler is particularly useful if your script has made a change when
the pointer moved over the object—for example, displaying a message in
the status line or changing an image. You can use an onMouseOut handler
to undo the action when the pointer moves away.

Ups and Downs (and Clicks)
You can also use events to detect when the mouse button is clicked. The
basic event handler for this is onClick. This event handler is called when
the mouse button is clicked while positioned over the appropriate object.

For example, you can use the following event handler to display an alert
when a link is clicked:

<a href=”http://www.google.com/”
onclick=”alert(‘You are about to leave this site.’);”>
Go Away

In this case, the onClick event handler runs before the linked page is
loaded into the browser. This is useful for making links conditional or dis-
playing a disclaimer before launching the linked page.

NOTE

The event.pageX and
event.pageY properties are
based on the top-left corner of
the element where the event
occurred, not always the exact
position of the mouse pointer.

TIP

One of the most common uses
for the onMouseOver and
onMouseOut event handlers is to
create rollovers—images that
change when the mouse moves
over them. You’ll learn how to
create these later in the chapter.

NOTE

The object in this case can be
a link. It can also be a form ele-
ment. You’ll learn more about
forms in Chapter 26, “Working
with Web-Based Forms.”

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using Mouse Events 395

If your onClick event handler returns the false value, the link will not be
followed. For example, the following is a link that displays a confirmation
dialog. If you click Cancel, the link is not followed; if you click OK, the new
page is loaded:

<a href=”http://www.google.com/”
onclick=”return(window.confirm(‘Are you sure?’));”>
Go Away

This example uses the return statement to enclose the event handler. This
ensures that the false value that is returned when the user clicks Cancel is
returned from the event handler, which prevents the link from being followed.

The onDblClick event handler is similar, but is used only if the user double-
clicks on an object. Because links usually require only a single click, you
could use this to make a link do two different things depending on the
number of clicks. (Needless to say, this could be confusing.) You can also
detect double-clicks on images and other objects.

To give you even more control of what happens when the mouse button is
pressed, two more events are included:

. onMouseDown is used when the user presses the mouse button.

. onMouseUp is used when the user releases the mouse button.

These two events are the two halves of a mouse click. If you want to detect
an entire click, use onClick. Use onMouseUp and onMouseDown to detect just
one or the other.

To detect which mouse button is pressed, you can use the button property
of the event object. This property is assigned the value 0 or 1 for the left
button and 2 for the right button. This property is assigned for onClick,
onDblClick, onMouseUp, and onMouseDown events.

As an example of these event handlers, you can create a script that displays
information about mouse button events and determines which button is
pressed. Listing 19.1 shows the mouse event script.

LISTING 19.1 The JavaScript File for the Mouse Click Example
function mousestatus(e) {

if (!e) e = window.event;
btn = e.button;
whichone = (btn < 2) ? “Left” : “Right”;
message=e.type + “ : “ + whichone + “\n”;
document.form1.info.value += message;

}

CAUTION

Browsers don’t normally detect
onClick or onDblClick events
for the right mouse button. If
you want to detect the right but-
ton, onMouseDown is the most
reliable way.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

396 CHAPTER 19 Responding to Events

obj=document.getElementById(“testlink”);
obj.onmousedown = mousestatus;
obj.onmouseup = mousestatus;
obj.onclick = mousestatus;
obj.ondblclick = mousestatus;

This script includes a function, mousestatus, that detects mouse events.
This function uses the button property of the event object to determine
which button was pressed. It also uses the type property to display the type
of event because the function will be used to handle multiple event types.

After the function, the script finds the object for a link with the id
attribute testlink and assigns its onmousedown, onmouseup, onclick,
and ondblclick events to the mousestatus function.

Save this script as click.js. Next, you will need an HTML document to
work with the script, as shown in Listing 19.2.

LISTING 19.2 The HTML File for the Mouse Click Example
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Mouse Click Text</title>

</head>
<body>
<h1>Mouse Click Test</h1>
<p>Click the mouse on the test link below. A message
will indicate which button was clicked.</p>
<h2>Test Link</h2>
<form action=”” name=”form1”>
<div>
<textarea rows=”10” cols=”70” name=”info”></textarea>
</div>
</form>
<script type=”text/javascript” src=”click.js”></script>

</body>
</html>

This file defines a test link with the id property testlink, which is used in
the script to assign event handlers. It also defines a form and a textarea
used by the script to display the events. To test this document, save it in
the same folder as the JavaScript file you created previously and load the
HTML document into a browser. The results are shown in Figure 19.1.

LISTING 19.1 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using Keyboard Events 397

Using Keyboard Events
JavaScript can also detect keyboard actions. The main event handler for this
purpose is onKeyPress, which occurs when a key is pressed and released or
held down. As with mouse buttons, you can detect the down and up parts
of the keypress with the onKeyDown and onKeyUp event handlers.

Of course, you might find it useful to know which key the user pressed.
You can find this out with the event object, which is sent to your event
handler when the event occurs. In Internet Explorer, event.keyCode stores
the ASCII character code for the key that was pressed. In non-Internet
Explorer browsers, the event.which property stores the ASCII character
code for the key that was pressed.

If you’d rather deal with actual characters than key codes, you can use the
fromCharCode string method to convert them. This method converts a
numeric ASCII code to its corresponding string character. For example, the
following statement converts the event.which property to a character and
stores it in the key variable:

key = String.fromCharCode(event.which);

Because different browsers have different ways of returning the key code,
displaying key browsers independently is a bit harder. However, you can
create a script that displays keys for either browser. The following function
will display each key as it is typed:

FIGURE 19.1
The mouse click example in
action.

NOTE

Notice that a single click of the
left mouse button triggers three
events: onMouseDown,
onMouseUp, and onClick.

NOTE

ASCII (American Standard Code
for Information Interchange) is
the standard numeric code
used by most computers to rep-
resent characters. It assigns
the numbers 0–128 to various
characters—for example, the
capital letters A through Z are
ASCII values 65 to 90.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

398 CHAPTER 19 Responding to Events

function DisplayKey(e) {
// which key was pressed?
if (e.keyCode) keycode=e.keyCode;

else keycode=e.which;
character=String.fromCharCode(keycode);
// find the object for the destination paragraph
k = document.getElementById(“keys”);
// add the character to the paragraph
k.innerHTML += character;

}

The DisplayKey function receives the event object from the event handler
and stores it in the variable e. It checks whether the e.keyCode property
exists and stores it in the keycode variable if present. Otherwise, it assumes
the browser is not Internet Explorer and assigns keycode to the e.which
property.

The remaining lines of the function convert the key code to a character and
add it to the paragraph in the document with the id attribute keys.
Listing 19.3 shows a complete example using this function.

LISTING 19.3 Displaying Typed Characters
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Displaying Keypresses</title>
<script type=”text/javascript”>
function DisplayKey(e) {

// which key was pressed?
if (e.keyCode) keycode=e.keyCode;

else keycode=e.which;
character=String.fromCharCode(keycode);
// find the object for the destination paragraph
k = document.getElementById(“keys”);
// add the character to the paragraph
k.innerHTML += character;

}
</script>

</head>
<body onkeypress=”DisplayKey(event)”>
<h1>Displaying Typed Characters</h1>
<p>This document includes a simple script that displays
the keys you type in the paragraph below. Type a few keys
to try it. </p>
<p id=”keys”></p>

</body>
</html>

NOTE

The final lines in the
DisplayKey function use the
getElementById function and
the innerHTML attribute to dis-
play the keys you type within a
paragraph on the page.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using the onLoad and onUnload Events 399

When you load this example, watch the characters you’ve typed appear in
a paragraph of the document. Figure 19.2 shows this example in action.

FIGURE 19.2
Displaying the keys that were
pressed.

Using the onLoad and onUnload
Events
Another event you might use often is onLoad. This event occurs when the
current page (including all of its images) finishes loading from the server.

The onLoad event is related to the window object, and to define it, you use
an event handler in the <body> tag. For example, the following is a <body>
tag that uses a simple event handler to display an alert when the page fin-
ishes loading:

<body onload=”alert(‘Loading complete.’);”>

Images can also have an onLoad event handler. When you define an onLoad
event handler for an tag, it is triggered as soon as the specified
image has completely loaded.

To set an onLoad event using JavaScript, you assign a function to the
onload property of the window object:

window.onload = MyFunction;

CAUTION

Because the onLoad event
occurs after the HTML document
has finished loading and display-
ing, you cannot use the
document.write or document.
open statements within an
onLoad event handler. This
would overwrite the current
document.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

400 CHAPTER 19 Responding to Events

You can also specify an onUnload event for the <body> tag. This event will
be triggered whenever the browser unloads the current document—this
occurs when another page is loaded or when the browser window is closed.

In the next section you’ll see an event handler in action, within the context
of functionality you’re likely to encounter when developing your own sites.

Using onclick to Change <div>
Appearance
As you’ve seen, the onclick event can be used to invoke all sorts of action;
you might think of a mouse click as a way to submit a form by clicking on
a button, but you can capture this event and use it to provide interactivity
within your pages as well. In this example, you will see how you can use
the onclick event to show or hide information contained in a <div>. In
this case, you are adding interactivity to your page by allowing the user to
show previously hidden information when users click on a piece of text.
This is referred to as a piece of text because, strictly speaking, the text is not
a link. That is to say, it will look like a link and act like a link, but it will
not be marked up within an <a> tag.

Listing 19.4 provides the complete code for this example, as shown initially
in Figure 19.3.

LISTING 19.4 Using onclick to Show or Hide Content
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Steptoe Butte</title>
<style type=”text/css”>
a {

text-decoration: none;
font-weight: bold;
color: #7a7abf;

}
#hide_e {

display: none;
}
#elevation {

display: none;
}
#hide_p {

display: none;

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using onclick to Change <div> Appearance 401

}
#photos {

display: none;
}
#show_e {

display: block;
}
#show_p {

display: block;
}
.fakelink {

cursor:pointer;
text-decoration: none;
font-weight: bold;
color: #E03A3E;

}
</style>

</head>
<body>
<h1>Steptoe Butte</h1>
<p><img src=”steptoebutte.jpg” alt=”View from Steptoe Butte”
style=”float:left;margin-right:12px;margin-bottom:6px;border:1px
solid #000” />Steptoe Butte is a quartzite island jutting out of the
silty loess of the <a class=”tip”
href=”http://en.wikipedia.org/wiki/Palouse”>Palouse Learn more
about the Palouse! hills in Whitman County, Washington.
The rock that forms the butte is over 400 million years old, in
Contrast with the 15-7 million year old
Columbia
River basalts that underlie the rest of the Palouse (such
“islands” of ancient rock have come to be called buttes, a
butte being defined as a small hill with a flat top, whose width at
top does not exceed its height).</p>
<p>A hotel built by Cashup Davis stood atop Steptoe Butte from
1888 to 1908, burning down several years after it closed. In 1946,
Virgil McCroskey donated 120 acres (0.49 km2) of land to form
Steptoe Butte State Park, which was later increased to over 150
acres (0.61 km2). Steptoe Butte is currently recognized as a
National Natural Landmark because of its unique geological
value. It is named in honor of
Colonel Edward Steptoe.</p>
<div class=”fakelink”

id=”show_e”
onclick=”this.style.display=’none’;
document.getElementById(‘hide_e’).style.display=’block’;
document.getElementById(‘elevation’).style.display=’inline’;

“>» Show Elevation</div>

<div class=”fakelink”
id=”hide_e”
onclick=”this.style.display=’none’;

LISTING 19.4 continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

402 CHAPTER 19 Responding to Events

document.getElementById(‘show_e’).style.display=’block’;
document.getElementById(‘elevation’).style.display=’none’;

“>» Hide Elevation</div>

<div id=”elevation”>3,612 feet (1,101 m), approximately 1,000
feet (300 m) above the surrounding countryside.</div>

<div class=”fakelink”
id=”show_p”
onclick=”this.style.display=’none’;
document.getElementById(‘hide_p’).style.display=’block’;
document.getElementById(‘photos’).style.display=’inline’;

“>» Show Photos from the Top of Steptoe Butte</div>

<div class=”fakelink”
id=”hide_p”
onclick=”this.style.display=’none’;
document.getElementById(‘show_p’).style.display=’block’;
document.getElementById(‘photos’).style.display=’none’;

“>» Hide Photos from the Top of Steptoe Butte</div>

<div id=”photos”><img src=”steptoe_sm1.jpg” alt=”View
from Steptoe Butte”style=”margin-right: 12px; border: 1px
solid #000” /><img src=”steptoe_sm2.jpg” alt=”View from
Steptoe Butte” style=”margin-right: 12px; border: 1px solid
#000” /><img src=”steptoe_sm3.jpg” alt=”View from Steptoe
Butte” style=”margin-right: 12px; border: 1px solid #000” />
</div>

<p>Text from

Wikipedia, photos
by the author.</p>

</body>
</html>

To begin, look at the six entries in the style sheet. The first entry simply
styles links that are surrounded by the <a> tag pair; these links display
as nonunderlined, bold, blue links. You can see these regular links in the two
paragraphs of text (and in the line at the bottom of the page) in Figure 19.3.

The next four entries are for specific IDs, and those IDs are all set to be
invisible (display: none) when the page initially loads. The two IDs that
follow are set to display as block elements when the page initially loads.
Again, strictly speaking, these two IDs would not have to be defined as
such because it is the default display. The style sheet includes these entries
for the purpose of illustrating the differences. If you count the number of
<div> elements in Listing 19.4, you will find six in the code: four invisible
and two that are visible upon page load.

LISTING 19.4 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using onclick to Change <div> Appearance 403

The goal in this example is to change the display value of two IDs when
another ID is clicked. But first you have to make sure users realize a piece
of text is clickable, and that typically happens when users see their mouse
pointers change to reflect a link is present. Although not shown in Figure
19.3, when you look at this example in your browser you will see that the
mouse pointer changes to a hand with a finger pointing at a particular link.

This functionality is achieved by defining a class for this particular text; the
class is called fakelink, as you can see in this snippet of code:

<div class=”fakelink”
id=”show_e”
onclick=”this.style.display=’none’;
document.getElementById(‘hide_e’).style.display=’block’;
document.getElementById(‘elevation’).style.display=’inline’;

“>» Show Elevation</div>

The fakelink class ensures that the text is rendered as nonunderlined,
bold, and red; cursor: pointer causes the mouse pointer to change in
such a way that users think the text is a link of the type that would nor-
mally be enclosed in an <a> tag. But the really interesting stuff hap-
pens when we associate an onclick attribute with a <div>. In the sample
snippet just shown, the value of the onclick attribute is a series of com-
mands that change the current value of CSS elements.

FIGURE 19.3
The initial display of Listing 19.4.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

404 CHAPTER 19 Responding to Events

Let’s look at them separately:

this.style.display=’none’;
document.getElementById(‘hide_e’).style.display=’block’;
document.getElementById(‘elevation’).style.display=’inline’;

What you are looking at are different JavaScript methods meant to change
particular elements. In the first line, the this keyword refers to the element
itself. In other words, this refers to the <div> ID called show_e. The key-
word style refers to the style object; the style object contains all the CSS
styles that you assign to the element. In this case, we are most interested in
the display style. Therefore, this.style.display means “the display style
of the show_e ID,” and what we are doing here is setting the value of the
display style to none when the text itself is clicked.

But that is not all we are doing because there are three actions that occur
within the onclick attribute. The other two actions begin with
document.getElementByID() and include a specific ID name within the
parentheses. We use document.getElementByID() instead of this because
the second and third actions set CSS style properties for elements that are
not the parent element. As you can see in the snippet, in the second and
third actions, we are setting the display property values for the element
IDs hide_e and elevation. All told, when users click the currently visible
<div> called show_e:

. The show_e <div> becomes invisible.

. The hide_e <div> becomes visible and is displayed as a block.

. The elevation <div> becomes visible and is displayed inline.

The result of these actions is shown in Figure 19.4.

There is another set of <div> elements in the code in Listing 19.3, the ones
that control the visibility of the additional photos. These elements are not
affected by the onclick actions in the elevation-related elements. That is to
say, when you click on either Show Elevation or Hide Elevation, the photo-
related <div> elements do not change at all. You could show the elevation
and not the photos (as seen in Figure 19.4), the photos and not the eleva-
tion, or both the elevation and photos at the same time (see Figure 19.5).

This brief example has shown you the very beginning of the layout and
interaction possibilities that await you when you master CSS in conjunc-
tion with JavaScript events. For example, you can code your pages so that
your users can change elements of the style sheet, change to an entirely
different style sheet, move blocks of text to other places in the layout, take
quizzes or submit forms, and much, much more.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using onclick to Change <div> Appearance 405

FIGURE 19.4
After clicking “Show Elevation,” the
visibility of it and other <div> ele-
ments change based on the com-
mands in the onclick attribute.

FIGURE 19.5
The page after clicking both Show
Elevation and Show Photos from
the Top of Steptoe Butte.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

406 CHAPTER 19 Responding to Events

Summary
In this chapter, you’ve learned to use events to detect mouse actions, key-
board actions, and other events, such as the loading of the page. You can
use event handlers to perform a simple JavaScript statement when an
event occurs or to call a more complicated function.

JavaScript includes a variety of other events. Many of these are related to
forms, which you’ll learn more about in Chapter 26. In a longer example at
the end of this chapter, you saw how to use onclick to show or hide text
in a page with some design elements in it. Some new CSS was introduced:
the use of the cursor property. Assigning a cursor property of pointer
enabled you to indicate to users that particular text was acting as a link
even though it was not enclosed in <a> tags as you are used to seeing.

In the next chapter, you’ll learn about the objects associated with windows,
frames, and layers and how they work with JavaScript.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Workshop 407

Q&A
Q. Can you capture mouse or keyboard events on elements other than

text, such as images?

A. Yes, these types of events can be applied to actions related to clicking
on or rolling over images and text. However, other multimedia objects,
such as embedded YouTube videos or Flash files, are not interacted
with in the same way, as those objects are played via additional soft-
ware for which other mouse or keyboard actions are applicable. For
instance, if you click on a YouTube video that is embedded in your web
page, you are interacting with the YouTube player and no longer your
actual web page—that action cannot be captured in the same way.

Q. What happens if I define both onKeyDown and onKeyPress event han-
dlers? Will they both be called when a key is pressed?

A. The onKeyDown event handler is called first. If it returns true, the
onKeyPress event is called. Otherwise, no keypress event is generated.

Q. When I use the onLoad event, my event handler sometimes executes
before the page is done loading or before some of the graphics. Is
there a better way?

A. This is a bug in some older browsers. One solution is to add a slight
delay to your script using the setTimeout method.

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. Which of the following is the correct event handler to detect a mouse

click on a link?

a. onMouseUp

b. onLink

c. onClick

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

408 CHAPTER 19 Responding to Events

2. When does the onLoad event handler for the <body> tag execute?

a. When an image is finished loading

b. When the entire page is finished loading

c. When the user attempts to load another page

3. Which of the following event object properties indicates which key was
pressed for an onKeyPress event in Internet Explorer?

a. event.which

b. event.keyCode

c. event.onKeyPress

Answers
1. c. The event handler for a mouse click is onClick.

2. b. The <body> tag’s onLoad handler executes when the page and all its
images are finished loading.

3. b. In Internet Explorer, the event.keyCode property stores the charac-
ter code for each key press.

Exercises
. Add commands to the onClick attributes in Listing 19.4 so that only

one of the <div> elements (the elevation or photos) is visible at a time.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Now that you’ve gotten your feet wet with basic JavaScript functionality,
let’s return to some specific aspects of the Document Object Model (DOM).
In this chapter, you’ll learn more about some of the most useful objects in
the DOM—browser windows and frames—and how JavaScript can inter-
act with them.

Controlling Windows with Objects
In Chapter 15, “Working with the Document Object Model (DOM),” you
learned that you can use DOM objects to represent various parts of the
browser window and the current HTML document. You also learned that the
history, document, and location objects are all children of the window object.

In this chapter, you’ll take a closer look at the window object itself. As
you’ve probably guessed by now, this means you’ll be dealing with brows-
er windows. A variation of the window object also enables you to work with
frames, as you’ll see later in this chapter.

The window object always refers to the current window (the one containing
the script). The self keyword is also a synonym for the current window.
As you’ll learn in the next sections, you can have more than one window
on the screen at the same time and can refer to them with different names.

Properties of the window Object
Although there is normally a single window object, there might be more
than one if you are using pop-up windows or frames. As you learned in
Chapter 15, the document, history, and location objects are properties (or
children) of the window object. In addition to these, each window object has
the following properties:

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How to access and use the
window object hierarchy

. How to create new win-
dows with JavaScript

. How to delay your script’s
actions with timeouts

. How to display alerts, con-
firmations, and prompts

. How to build a frameset

. How to link between
frames and windows

. How to use JavaScript to
work with frames

. How to use inline frames

CHAPTER 20
Using Windows and Frames

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

410 CHAPTER 20 Using Windows and Frames

. window.closed—Indicates whether the window has been closed.
This only makes sense when working with multiple windows
because the current window contains the script and cannot be closed
without ending the script.

. window.defaultstatus and window.status—The default message
for the status line and a temporary message to display on the status
line. Some recent browsers disable status line changes by default, so
you might not be able to use these.

. window.frames[]—An array of objects for frames, if the window
contains them. You’ll learn more about frames later in this chapter.

. window.name—The name specified for a frame or for a window
opened by a script.

. window.opener—In a window opened by a script, this is a reference
to the window containing the script that opened it.

. window.parent—For a frame, a reference to the parent window con-
taining the frame.

. window.screen—A child object that stores information about the
screen the window is in—its resolution, color depth, and so on.

. window.self—A synonym for the current window object.

. window.top—A reference to the top-level window when frames are
in use.

Creating a New Window
One of the most convenient uses for the window object is to create a new
window. You can do this to display a document—for example, a pop-up
advertisement or the instructions for a game—without clearing the current
window. You can also create windows for specific purposes, such as navi-
gation windows.

You can create a new browser window with the window.open() method. A
typical statement to open a new window looks like this:

WinObj=window.open(“URL”, “WindowName”, “LIST_OF_FEATURES”);

The following are the components of the window.open() statement in the
previous example:

. The WinObj variable is used to store the new window object. You can
access methods and properties of the new object by using this name.

NOTE

The properties of the
window.screen object include
height, width, availHeight,
and availWidth (the available
height and width rather than
total), and colorDepth, which
indicates the color support of
the monitor: 8 for 8-bit color, 32
for 32-bit color, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Controlling Windows with Objects 411

. The first parameter of the window.open() method is a URL, which
will be loaded into the new window. If it’s left blank, no web page
will be loaded. In this case, you could use JavaScript to fill the win-
dow with content.

. The second parameter specifies a window name (here, WindowName).
This is assigned to the window object’s name property and is used to
refer to the window.

. The third parameter is a list of optional features, separated by com-
mas. You can customize the new window by choosing whether to
include the toolbar, status line, and other features. This enables you
to create a variety of “floating” windows, which might look nothing
like a typical browser window.

The features available in the third parameter of the window.open() method
include width and height, to set the size of the window in pixels, and sev-
eral features that can be set to either yes (1) or no (0): toolbar, location,
directories, status, menubar, scrollbars, and resizable. You can list
only the features you want to change from the default.

This example creates a small window with no toolbar or status line:

SmallWin = window.open(“”,”small”,”width=100,height=120,
toolbar=0,status=0”);

Opening and Closing Windows
Of course, you can use JavaScript to close windows as well. The
window.close() method closes a window. Browsers don’t normally allow
you to close the main browser window without the user’s permission; this
method’s main purpose is for closing windows you have created. For
example, this statement closes a window called updateWindow:

updateWindow.close();

As another example, Listing 20.1 shows an HTML document that enables
you to open a small new window by pressing a button. You can then press
another button to close the new window. The third button attempts to
close the current window. Depending on your browser and its settings, this
might or might not work (for example, by default, your browser might dis-
allow scripts from closing windows that the script itself did not create or
open). If the script does close the window, most browsers will ask for con-
firmation first.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

412 CHAPTER 20 Using Windows and Frames

LISTING 20.1 An HTML Document That Uses JavaScript to Enable You
to Create and Close Windows
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Create a New Window</title>

</head>
<body>
<h1>Create a New Window</h1>
<p>Use the buttons below to open and close windows in JavaScript.</p>
<form name=”winform” action=””>
<p><input type=”button” value=”Open New Window”

onclick=”NewWin=window.open(‘’,’NewWin’,
‘toolbar=no,status=no,width=200,height=100’);” /></p>

<p><input type=”button” value=”Close New Window”
onclick=”NewWin.close();” /></p>

<p><input type=”button” value=”Close Main Window”
onclick=”window.close();” /></p>

</form>
</body>

</html>

This example uses simple event handlers to do its work by providing a dif-
ferent handler for each of the buttons. Figure 20.1 shows the result of
pressing the Open New Window button: It opens a small new window on
top of the main browser window.

FIGURE 20.1
A new browser window opened
with JavaScript.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Moving and Resizing Windows 413

Moving and Resizing Windows
The DOM also enables you to move or resize windows. You can do this
using the following methods for any window object:

. window.moveTo() moves the window to a new position. The parame-
ters specify the x (column) and y (row) position.

. window.moveBy() moves the window relative to its current position.
The x and y parameters can be positive or negative and are added to
the current values to reach the new position.

. window.resizeTo() resizes the window to the width and height
specified as parameters.

. window.resizeBy() resizes the window relative to its current size.
The parameters are used to modify the current width and height.

As an example, Listing 20.2 shows an HTML document with a simple
script that enables you to resize and move the main window based on val-
ues entered in a form.

LISTING 20.2 Moving and Resizing the Current Window
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Moving and Resizing Windows</title>
<script type=”text/javascript”>
function doIt() {
if (document.form1.w.value && document.form1.h.value) {

self.resizeTo(document.form1.w.value, document.form1.h.value);
}
if (document.form1.x.value && document.form1.y.value) {

self.moveTo(document.form1.x.value, document.form1.y.value);
}
}
</script>
</head>
<body>
<h1>Moving and Resizing Windows</h1>
<form name=”form1”>
<p>Resize to:

<input size=”5” type=”text” name=”w” /> pixels wide and

<input size=”5” type=”text” name=”h” /> pixels high </p>
<p>— AND/OR —</p>
<p>Move to:

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

414 CHAPTER 20 Using Windows and Frames

X-position: <input size=”5” type=”text” name=”x” />
Y-position: <input size=”5” type=”text” name=”y” /> </p>
<div><input type=”button” value=”Change Window”

onclick=”doIt();” /></div>
</form>
</body>

</html>

In this example, the doIt function is called as an event handler when you
click the Change Window button. This function checks whether you have
specified width and height values. If you have, it uses the self.resizeTo()
method to resize the current window. Similarly, if you have specified x and
y values, it uses self.moveTo() to move the window. If you have set both
pairs of values, the script will both resize and move your window.

Depending on their settings, some browsers might not allow your script to
resize or move the main window. In particular, Firefox can be configured
to disallow it. You can enable it by selecting Options from the menu. Select
the Content tab, click the Advanced button next to the Enable JavaScript
option, and enable or disable the Move or Resize Existing Windows option.
Other browsers are likely to have similar options available in the Options
or Preferences menus.

Using Timeouts
Sometimes the hardest thing to get a script to do is to do nothing at all—
for a specific amount of time. Fortunately, JavaScript includes a built-in
function to do this. The window.setTimeout method enables you to specify
a time delay and a command that will execute after the delay passes.

You begin a timeout with a call to the setTimeout() method, which has
two parameters. The first is a JavaScript statement, or group of statements,
enclosed in quotes. The second parameter is the time to wait in millisec-
onds (thousandths of seconds). For example, the following statement dis-
plays an alert dialog box after 10 seconds:

ident=window.setTimeout(“alert(‘Time’s up!’)”,10000);

A variable (ident in this example) stores an identifier for the timeout. This
enables you to set multiple timeouts, each with its own identifier. Before a
timeout has elapsed, you can stop it with the clearTimeout() method,
specifying the identifier of the timeout to stop:

window.clearTimeout(ident);

LISTING 20.2 Continued

CAUTION

Moving or resizing windows is a
JavaScript feature you should
think twice about before using.
These methods are best used
for resizing or moving pop-up
windows your script has gener-
ated—not as a way to force the
user to use your preferred win-
dow size, which most users will
find very annoying. Because
browser settings may be config-
ured to prevent resizing or mov-
ing windows, make sure your
script still works even without
resizing.

NOTE

Timeouts don’t actually make
the browser stop what it’s
doing. Although the statement
you specify in the setTimeout
method won’t be executed until
the delay passes, the browser
will continue to do other things
while it waits (for example, act-
ing on event handlers).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using Timeouts 415

Normally, a timeout only happens once because the statement you specify
in the setTimeout statement is only executed once. But often, you’ll want
your statement to execute over and over. For example, your script might be
updating a clock or a countdown and need to execute once per second.

You can make a timeout repeat by issuing the setTimeout() method call
again in the function called by the timeout. Listing 20.3 shows an HTML
document that demonstrates a repeating timeout.

LISTING 20.3 Using Timeouts to Update a Page Every Two Seconds
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Timeout Example</title>
<script type=”text/javascript”>
var counter = 0;

// call Update function 2 seconds after first load
ID=window.setTimeout(“Update();”,2000);

function Update() {
counter++;
textField = document.getElementById(“showText”);
textField.innerHTML = “The counter is now at “ + counter;
// set another timeout for the next count
ID=window.setTimeout(“Update();”,2000);
}

</script>
</head>
<body>
<h1>Timeout Example</h1>
<p>The counter will update every two seconds.</p>
<p>Press RESET or STOP to restart or stop the count.</p>
<hr/>
<form name=”form1”>
<p id=”showText”></p>
<div><input type=”button” value=”RESET”

onclick=”counter = 0;” />
<input type=”button” value=”STOP”
onclick=”window.clearTimeout(ID);” />

</div>
</form>
</body>

</html>

CAUTION

Like event handlers, timeouts
use a JavaScript statement
within quotation marks. Make
sure that you use a single
quote (apostrophe) on each
side of each string within the
statement, as shown in the pre-
ceding example.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

416 CHAPTER 20 Using Windows and Frames

This program displays a message inside a specially named <p> tag every two
seconds, including a counter that increments each time. The <p> tag is given
an id value of “showText” and the Update() function includes two lines that
tells the script that the text should be placed between these two tags:

textField = document.getElementById(“showText”);
textField.innerHTML = “The counter is now at “ + counter;

The first line creates a variable called textField that holds the value of the
element given the id value of “showText”. The second line says that given
that value, the text about the counter and the counter number should be
placed inside the starting and ending tags of the element with the id value
of “showText”—that is the purpose of the innerHTML method.

After the script has loaded and begun the counting, you can use the Reset
button to start the count over and the Stop button to stop the counting.

This script calls the setTimeout() method when the page loads and again
at each update. The Update()function performs the update, adding one to
the counter and setting the next timeout. The Reset button sets the counter
to zero, and the Stop button demonstrates the clearTimeout() method.
Figure 20.2 shows the display of the timeout example after the counter has
been running for a while.

FIGURE 20.2

The output of the timeout
example.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Displaying Dialog Boxes 417

Displaying Dialog Boxes
The window object includes three methods that are useful for displaying
messages and interacting with the user. You’ve already used these in some
of your scripts. Here’s a summary:

. window.alert(message) displays an alert dialog box. This dialog box
simply gives the user a message.

. window.confirm(message) displays a confirmation dialog box. This
displays a message and includes the OK and Cancel buttons. This
method returns true if OK is clicked and false if Cancel is clicked.

. window.prompt(message,default) displays a message and prompts
the user for input. It returns the text entered by the user. If the user
does not enter anything, the default value is used.

To use the confirm and prompt methods, use a variable to receive the
user’s response. For example, this statement displays a prompt and stores
the text the user enters in the text variable:

text = window.prompt(“Enter some text”,”Default value”);

As a further illustration of these types of dialog boxes, Listing 20.4 shows
an HTML document that uses buttons and event handlers to enable you to
test dialog boxes.

LISTING 20.4 An HTML Document That Uses JavaScript to Display
Alerts, Confirmations, and Prompts
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Alerts, Confirmations, and Prompts</title>
</head>
<body>
<h1>Alerts, Confirmations, and Prompts</h1>
<p>Use the buttons below to test dialogs in JavaScript.</p>
<form name=”winform”>
<div>
<input type=”button” value=”Display an Alert”

onclick=”window.alert(‘This is a test alert.’)” />
<input type=”button” value=”Display a Confirmation”

onclick=”window.confirm(‘Would you like to confirm?’);” />
<input type=”button” value=”Display a Prompt”

onclick=”window.prompt(‘Enter Text:’,

TIP

You can usually omit the win-
dow object when referring to
these methods because it is
the default context of a script
(for example, alert(“text”)).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

418 CHAPTER 20 Using Windows and Frames

‘This is the default.’);” />
</div>
</form>
</body>

</html>

This document displays three buttons, and each one uses an event handler
to display one of the dialog boxes.

Figure 20.3 shows the script in Listing 20.4 in action. The prompt dialog
box is currently displayed and shows the default value.

LISTING 20.4 Continued

FIGURE 20.3
The dialog box example’s output,
including a prompt dialog box.

Working with Frames
Browsers also support frames, which enable you to divide the browser win-
dow into multiple panes. Each frame can contain a separate URL or the
output of a script.

You might have visited websites in which the browser window seemingly
allowed you to move between several different pages. The truth is that the
browser really was allowing you to view several pages at once by separat-
ing the browser window into regions that contain separate web pages;
each region is known as a frame. Of course, from the user’s perspective,
everything comes together to form a single window of web content, but
there are separate pages at work.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Working with Frames 419

A frame is a rectangular region within the browser window that displays a web
page alongside other pages in other frames. At first glance, Figure 20.4 might
look like an ordinary web page, but it is actually two separate HTML pages,
both displayed in the same web browser window. Each page is displayed in its
own frame, arranged horizontally and separated by the horizontal bar.

FIGURE 20.4
Frames allow more than one web
page to be displayed at once.

If frames are used, typically they are used to create a framed site that takes
advantage of a static set of navigational links; you can see these links in the
top frame of Figure 20.4. When one of the links in this example is clicked,
the top frame will not change; a new page will be loaded and displayed in
the bottom frame (see Figure 20.5).

FIGURE 20.5
Clicking Products brings up a new
bottom page but leaves the top
frame the same.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

420 CHAPTER 20 Using Windows and Frames

You should be aware that frames have long been a vexed issue in web
design. The advantages have never really outweighed the disadvantages,
yet due to differences in browser support for HTML and CSS standards,
frames were seen as a way to achieve certain goals despite their shortcom-
ings. As a web developer, I do not recommend the use of frames for the
following reasons:

. Frames go against the fundamental concept of the Web, which is the
hypertextual connection between individual instances of web content
that can be accessed via a single web address (URL).

. Printing parts of a framed site is very difficult; unless you have
clicked on the specific frame you want to print, and select Print this
Frame from a context menu (if one is available), all that will print is
the frameset itself, which will have no content in it.

. If a frame lacks proper coding, or if it has proper coding but the code
is used for nefarious purposes, a user could get stuck inside a framed
site unable to view external content outside of the frame.

. Frames have been used historically in lieu of standard, professional,
accessible methods of web development and design. There is no rea-
son to choose the lesser option when the better option of CSS layout
is available.

. For these (and other) reasons, frames have been removed from the
HTML5 standard. The antiquated <frame />, <frameset>, and
<noframes> tags will simply not be available in the future.

Despite these shortcomings, in the next few sections you will learn how to
create a very simple framed site. It is quite likely that you will still encounter
framed sites, and you might need to know how to re-create the look and feel
of the site but without using frames. In that case, it is important to under-
stand how frames are constructed so you can successfully deconstruct them.

Additionally, you will learn about a type of frame—the <iframe>—that
does serve an important purpose and will still be present in HTML5.

Building a Frameset
This section shows you how to create the simple framed site shown in
Figures 20.4 and 20.5. The contents of each frame were created as ordinary
HTML pages. The pages are top.html (for the navigation), home.html,
products.html, services.html, and contact.html. These pages don’t contain
any tags you haven’t already seen in other chapters. A special page known

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Building a Frameset 421

as a frameset document was used to put the pages together; in this case,
that document is index.html.

Creating a Frameset Document
A frameset document is an HTML page that instructs the web browser to
split its window into multiple frames and specifies which web page should
be displayed in each frame.

A frameset document actually has no content. It only tells the browser
which other pages to load and how to arrange them in the browser win-
dow. Listing 20.5 shows the frameset document for the sample framed site
shown in Figures 20.4 and 20.5.

LISTING 20.5 Frameset Document for the Site Shown in Figures 20.4
and 20.5
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Sample Framed Site</title>

</head>

<frameset rows=”50,*”>
<frame src=”top.html” name=”top” />
<frame src=”home.html” name=”main” />
<noframes>
<body>
<h1>Sample Framed Site</h1>
Your browser does not support frames. Sorry!

</body>
</noframes>

</frameset>
</html>

Listing 20.4 uses a <frameset> tag instead of a <body> tag. No tags that
would normally be contained in a <body> tag can be within the <frameset>
tag. The <frameset> tag in this example includes a rows attribute, meaning
that the frames should be arranged on top of each other like the horizontal
rows of a table. If you want your frames to be side by side, use a cols
attribute (instead of a rows attribute).

You must specify the sizes of the rows or cols, either as precise pixel val-
ues or as percentages of the total size of the browser window. You can also

NOTE

It’s important to notice that the
DTD used in this sample page
is not the familiar XHTML 1.1
DTD that you’ve been using
throughout the book. This is
because frames are not sup-
ported in the standard XHTML
1.1 DTD. Therefore, to validate
a page with frames, you must
instead use the XHTML 1.0
Frameset DTD, which is a spe-
cial DTD designed just for
pages that use frames.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

422 CHAPTER 20 Using Windows and Frames

use an asterisk (*) to indicate that a frame should fill whatever space is
available in the window. If more than one frame has an * value, the
remaining space will be divided equally between them.

In Listing 20.5, <frameset rows=”50,*”> splits the window vertically into
two frames. The top frame will be exactly 50 pixels tall, and the bottom
frame will take up all the remaining space in the window. The top frame
contains the document top.html (see Listing 20.6), and the bottom frame
contains home.html (see Listing 20.7).

LISTING 20.6 The top.html Navigation Bar for the Sample Framed Site
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Sample Framed Site</title>
<style type=”text/css”>
body { background-color:#5F9F9F; }
a { color: #FFFFFF; }
.main {

text-align:center;
color:#FFFFFF;
font-weight:bold;
font-size:16pt;

}
</style>

</head>
<body>
<div class=”main”>
HOME ::
PRODUCTS ::
SERVICES ::
CONTACT

</div>
</body>

</html>

LISTING 20.7 The home.html Single Content Frame Within the Sample
Framed Site
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Sample Framed Site</title>

TIP
After the framesets in Listing
20.6, there is a complete web
page between the <body> and
</body> tags. Notice that the
content of this page doesn’t
appear at all in Figure 20.4 or
Figure 20.5. All web browsers
that support frames will ignore
anything between the
<noframes> and </noframes>
tags.

All major browsers these days
support frames, so the issue of
frames compatibility is much
less significant now than in
years past. Even so, it’s easy
enough to include the
<noframes> tag and cover the
few users who might still use
ancient browsers—if you use
frames at all, that is.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Linking Between Frames and Windows 423

<style type=”text/css”>
body { background-color:#5F9F9F; }
</style>

</head>
<body>
<h1 style=”text-align:center”>Sample Framed Site: Home</h1>
<p style=”text-align:center”>This is an example of the

“home” page.</p>
</body>

</html>

In this example, the top navigation frame has a fixed height of 50 pixels.
But because you can’t predict the size of the window in which users will
view your web page, it is often convenient to use percentages rather than
exact pixel values to dictate the size of the rows and columns. For example,
to make a left frame 20% of the width of the browser window with a right
frame taking up the remaining 80%, you would type the following:

<frameset cols=”20%,80%”>

Whenever you specify any frame size in pixels, it’s a good idea to include
at least one frame in the same frameset with a variable (*) width so that
the document can grow to fill a window of any size.

Adding Individual Frames
Within the <frameset> and </frameset> tags, you should have a <frame />
tag indicating which HTML document to display in each frame. Note that if
you have fewer <frame /> tags than the number of frames defined in the
<frameset> tag, any remaining frames will be left blank.

Include a src attribute in each <frame> tag with the address of the web
page to load in that frame. You can put the address of an image file,
instead of a web page, if you just want a frame with a single image in it.

Linking Between Frames and
Windows
The real power of frames begins to emerge when you give a frame a unique
name with the name attribute in the <frame /> tag. You can then make any
link on the page change the contents of that frame by using the target
attribute in an <a> tag. For example, Listing 20.6 includes the following tag:

<frame src=”home.html” name=”main” />

NOTE

The pages in Listing 20.6 and
Listing 20.7 use the XHTML 1.0
Transitional and XHTML 1.1
DTDs, respectively. The XHTML
1.1 DTD is newer and much
stricter, but the use of the
target attribute in Listing 20.6
requires the use of the XHTML
1.0 Transitional DTD for validity;
there is nothing in Listing 20.7
that is invalid in XHTML 1.1.

LISTING 20.7 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

424 CHAPTER 20 Using Windows and Frames

This code displays the home.html page in that frame when the page loads
and names the frame “main”.

In the code for the top frame, which is shown in Listing 20.7, you will see
the following link:

SERVICES

When the user clicks this link, services.html is displayed in the frame
named main (the lower frame). If the target=”main” attribute had been left
out, the services.html page would be displayed in the current (top) frame
instead.

Modifying Frame Borders
There are HTML attributes that you can use with your frame code to get
rid of the frame dividers, make more space in small frames by reducing the
size of the margins, and force frames not to have scrollbars. Listing 20.8
shows a modified version of the code in Listing 20.4. The two changes
made to the code are the addition of the following attributes to the
<frame> tags: scrolling=”no” and frameborder=”0”.

LISTING 20.8 Frameset Document for the Site Shown in Figure 20.6
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Frameset//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Sample Framed Site</title>

</head>

<frameset rows=”50,*”>
<frame src=”top.html” name=”top” scrolling=”no” frameborder=”0” />
<frame src=”home.html” name=”main” scrolling=”no” frameborder=”0”/>
<noframes>
<body>
<h1>Sample Framed Site</h1>
Your browser does not support frames. Sorry!

</body>
</noframes>

</frameset>
</html>

NOTE
Technically speaking, the name
tag is outdated and has been
replaced by the id tag.

However, current web browsers
still rely on name instead of id
when it comes to identifying
frames as targets and the use
of name is still valid XHTML.
So, for now, you need to stick
with the name attribute when
identifying frames. Of course,
it wouldn’t hurt to use both
attributes.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Linking Between Frames and Windows 425

Using JavaScript Objects for Frames
When a window contains multiple frames, each frame is represented in
JavaScript by a frame object. This object is equivalent to a window object,
but it is used for dealing specifically with that frame. The frame object’s
name is the same as the NAME attribute you give it in the <frame> tag.

Remember the window and self keywords, which refer to the current win-
dow? When you are using frames, these keywords refer to the current
frame instead. Another keyword, parent, enables you to refer to the main
window.

Each frame object in a window is a child of the parent window object.
Suppose you define a set of frames using the following HTML:

<frameset rows=”*,*” cols=”*,*”>
<frame name=”topleft” src=”topleft.html”>
<frame name=”topright” src=”topright.html”>
<frame name=”bottomleft” src=”botleft.html”>
<frame name=”bottomright” src=”botright.html”>
</frameset>

This simply divides the window into quarters. If you have a JavaScript
script in the topleft.html file, it would refer to the other windows as
parent.topright, parent.bottomleft, and so on. The keywords window
and self would refer to the topleft frame.

FIGURE 20.6
This is the page whose code is
shown in Listing 20.8 after attrib-
utes were added to the <frame />
tags.

NOTE

If you use nested framesets,
things are a bit more complicat-
ed. window still represents the
current frame, parent repre-
sents the frameset containing
the current frame, and top rep-
resents the main frameset that
contains all the others.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

426 CHAPTER 20 Using Windows and Frames

The frames Array
Rather than referring to frames in a document by name, you can use the
frames array. This array stores information about each of the frames in the
document. The frames are indexed starting with zero and beginning with
the first <frame> tag in the frameset document.

For example, you could refer to the frames defined in the previous exam-
ple using array references:

. parent.frames[0] is equivalent to the topleft frame.

. parent.frames[1] is equivalent to the topright frame.

. parent.frames[2] is equivalent to the bottomleft frame.

. parent.frames[3] is equivalent to the bottomright frame.

You can refer to a frame using either method interchangeably, and depend-
ing on your application, you should use the most convenient method. For
example, a document with 10 frames would probably be easier to use by
number, but a simple two-frame document is easier to use if the frames
have meaningful names.

Using Inline Frames
Inline frames do not have the same usability issues that regular frames do,
but inline frames are used for different reasons. Instead of being a pure
layout trick, the <iframe> is used much like an <object> tag—to place a
chunk of something within an existing document. In the case of the
<object> tag, that “something” is usually multimedia. You can use an
<iframe> to embed an entirely separate HTML document, image, or other
source. Listing 20.9 and Listing 20.10 show the code to produce the inline
frame shown in Figure 20.7.

LISTING 20.9 XHTML Code to Call an <iframe>
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Using an iframe</title>
<style type=”text/css”>
body { background-color:#CCCCCC; }

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using Inline Frames 427

iframe {
width:500px;
height:100px;
border:1px solid black;
background-color:#FFFFFF;

}
</style>

</head>
<body style=”background:#CCCCCC”>

<h1 style=”text-align:center”>Inline Frame Example</h1>
<div style=”text-align:center”>

<iframe src=”iframe_src.html”>
<p>Uh oh...your browser does not support iframes.</p>
</iframe>

</div>
</body>

</html>

LISTING 20.10 The Source of the <iframe> Called in Listing 20.9
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>iframe source</title>
<style type=”text/css”>
body { background-color:#FFFFFF; }
p {

color: #FF0000;
font-weight: bold;

}
</style>

</head>
<body>

<p>I AM A SOURCE DOCUMENT...inside an iframe.</p>
</body>

</html>

The only XHTML code you haven’t yet encountered in Listing 20.9 is the
<iframe> itself. You can see that it requires a value for the src attribute—
the source—and that you can use styles to define a width, height, border
type, and background color (among other things). Listing 20.10 shows the
source of the <iframe>, which is just a regular file with some text and
styles in it.

LISTING 20.9 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

428 CHAPTER 20 Using Windows and Frames

Inline frames are often used to bring in content from other websites.
Common uses include serving ads to users from third-party advertising
services and using Google’s Site Search to display search results to your
users (leveraging Google’s search technology). Figure 20.8 shows an instance
of an <iframe> used to pull search results into a custom site template.

FIGURE 20.8
Using an <iframe> to display
Google Custom Search results.

FIGURE 20.7
Listing 20.9 calls the inline frame
whose code is shown in Listing
20.10.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Summary 429

In Figure 20.8, everything in the white area is actually content in an
<iframe>, with the source being a script on Google’s website that runs and
then displays content within the template at the Digital Inspiration website.
If you look closely at Figure 20.8—and I do not believe you can see it in the
figure—you can see a faint gray border around the actual <iframe> itself.

Unlike the <frame /> you learned about earlier in this chapter, the
<iframe> is here to stay and is still a part of HTML5.

Summary
In this chapter, you’ve learned how to use the window object to work with
browser windows and used its properties and methods to set timeouts and
display dialog boxes. You’ve also learned how JavaScript can work with
framed documents.

As to the framed documents themselves, you learned how to display more
than one page simultaneously by splitting the web browser window into
frames. You learned how to use a frameset document to define the size and
arrangement of the frames and which web content will be loaded into each
frame. You learned how to create links that change the contents of any
frame you choose while leaving the other frames unchanged. You also
learned about a few optional settings that control the appearance of resiz-
able borders and scrollbars in frames. Finally, you learned how to use the
inline frame to display content from your site or other websites.

Table 20.1 summarizes the tags and attributes covered in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

430 CHAPTER 20 Using Windows and Frames

TABLE 20.1 HTML Tags and Attributes Covered in Chapter 20

Tag/Attribute Function

<frame /> Defines a single frame within a <frameset>.

Attributes

src=”url” The URL of the document to be displayed in this
frame.

id=”name” A name to be used for targeting this frame with
the target attribute in <a href> links; compli-
ant with XHTML.

name=”name” A name to be used for targeting this frame with
the target attribute in <a href> links. Will
eventually be replaced by id but for the time
being is still useful because it works in current
web browsers.

scrolling=”yes/no/auto” Determines whether a frame has scrollbars.
Possible values are yes, no, and auto.

noresize=”noresize” Prevents the user from resizing this frame (and
possibly adjacent frames) with the mouse.

<frameset>...</frameset> Divides the main window into a set of frames
that can each display a separate document.

rows=”numrows” Splits the window or frameset vertically into a
number of rows specified by a number (such as
7), a percentage of the total window width (such
as 25%), or an asterisk (*) indicating that a frame
should take up all the remaining space or divide
the space evenly between frames (if multiple *
frames are specified).

cols=”numcols” Works similar to rows, except that the window or
frameset is split horizontally into columns.

frameborder=”1/0” Specifies whether to display a border for a
frame. Options are 1 (yes) and 0 (no).

<noframes>...</noframes> Provides an alternative document body in
<frameset> documents for browsers that do not
support frames (usually encloses
<body>...</body>).

<iframe>...</iframe> Creates an inline frame; accepts all the same
attributes as does <frame /> and can be styled
with CSS.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Workshop 431

Q&A
Q. When a script is running in a window created by another script, how

can it refer back to the original window?

A. JavaScript includes the window.opener property, which lets you refer to
the window that opened the current window.

Q. How can I update two frames at once when the user clicks on a single
link?

A. You can do this by using an event handler and including two statements
to load URLs into different frames.

Q. Can I display other users’ web pages in one frame and my own pages
in another frame at the same time? What if those other sites use
frames, too?

A. You can load any document from anywhere on the Internet (or an
intranet) into a frame. If the document is a frameset, its frames are
sized to fit within the existing frame into which you load it.

For example, you could put a list of your favorite links in one frame and
use a separate frame to display the pages that those links refer to.
This makes it easy to provide links to other sites without risking that
someone will get lost and never come back to your own site.

You should also be aware that framing somebody else’s pages so that
they appear to be part of your own site might get you in legal trouble,
so be sure to get explicit written permission from anyone whose pages
you plan to put within one of your frames (just as you would if you were
putting images or text from their site on your own pages).

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. Which of the following methods displays a dialog box with OK and

Cancel buttons and waits for a response?

a. window.alert

b. window.confirm

c. window.prompt

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

432 CHAPTER 20 Using Windows and Frames

2. What does the window.setTimeout method do?

a. Executes a JavaScript statement after a delay

b. Locks up the browser for the specified amount of time

c. Sets the amount of time before the browser exits automatically

3. You’re working with a document that contains three frames with the
names first, second, and third. If a script in the second frame
needs to refer to the first frame, what is the correct syntax?

a. window.first

b. parent.first

c. frames.first

4. What <iframe> code would produce a borderless <iframe> with a white
background that encompasses 98% of the width of the page and is
250 pixels high?

Answers
1. b. The window.confirm method displays a dialog box with OK and

Cancel buttons.

2. a. The window.setTimeout method executes a JavaScript statement
after a delay.

3. b. The script in the second frame would use parent.first to refer to
the first frame.

4. Use the following code:

<iframe src=”some_source.html” style=”width:98%;height:250px;
border:none; background-color:#FFFFFF;”>

<p>Put message here for people not able to see the inline
frame.</p>
</iframe>

Exercises
. Using timeouts and JavaScript to display date and time (which you

learned earlier in this book), create a script to reload automatically
every second or two to display a “live” clock.

. Think of some ways you can use an <iframe> or two in your site—perhaps
for an ad or perhaps to leverage the free Google Site Search that you can
offer to your users. Leave room in your design for that element.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

In this chapter, you’ll learn some guidelines for creating scripts and pages
that are easy to maintain, easy to use, and follow web standards. This is
known as unobtrusive scripting: Scripts add features without getting in the
way of the user, the developer maintaining the code, or the designer build-
ing the layout of the site. You’ll also learn how to make sure your scripts
will work in multiple browsers and won’t stop working when a new
browser comes along.

Scripting Best Practices
As you start to develop more complex scripts, it’s important to know some
scripting best practices. These are guidelines for using JavaScript that more
experienced programmers have learned the hard way. Here are a few of
the benefits of following these best practices:

. Your code will be readable and easy to maintain, whether you’re
turning the page over to someone else or just trying to remember
what you did a year ago.

. You’ll create code that follows standards and won’t be crippled by a
new version of a particular browser.

. You’ll create pages that work even without JavaScript.

. It will be easy to adapt code you create for one site to another site or
project.

. Your users will thank you for creating a site that is easy to use and
easy to fix when things go wrong.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. Best practices for creating
unobtrusive scripts

. Separating content, presen-
tation, and behavior

. Following web standards to
create cross-browser
scripts

. Reading and displaying
browser information

. Using feature sensing to
avoid errors

. Supporting non-JavaScript
browsers

CHAPTER 21
Using Unobtrusive JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

434 CHAPTER 21 Using Unobtrusive JavaScript

Whether you’re writing an entire AJAX web application or simply enhanc-
ing a page with a three-line script, it’s useful to know some of the concepts
that are regularly considered by those who write complex scripts for a liv-
ing. The following sections introduce some of these best practices.

Content, Presentation, and Behavior
When you create a web page, or especially an entire site or application,
you’re dealing with three key areas: content, presentation, and behavior—all
of which you’ve learned about in the previous chapters.

. Content consists of the words that a visitor can read on your pages.
You create the content as text and mark it up with HTML to define
different classes of content—headings, paragraphs, links, and so on.

. Presentation is the appearance and layout of the words on each
page—text formatting, fonts, colors, and graphics. Although it was
common in the early days of the Web to create the presentation using
HTML only, you can now use Cascading Style Sheets (CSS) to define
the presentation.

. Behavior is what happens when you interact with a page—items that
highlight when you move over them, forms you can submit, and so
on. This is where JavaScript comes in, along with server-side lan-
guages such as PHP.

It’s a good idea to keep these three areas in mind, especially as you create
larger sites. Ideally, you want to keep content, presentation, and behavior
separated as much as possible. One good way to do this is to create an
external CSS file for the presentation, an external JavaScript file for the
behavior, and link them to the HTML document.

Keeping things separated like this makes it easier to maintain a large site—if
you need to change the color of the headings, for example, you can make a
quick edit to the CSS file without having to look through all of the HTML
markup to find the right place to edit. It also makes it easy for you to reuse
the same CSS and JavaScript on multiple pages of a site. Last but not least,
this will encourage you to use each language where its strengths lie, making
your job easier.

Progressive Enhancement
One of the old buzzwords of web design was graceful degradation. The idea
was that you could build a site that used all the bells and whistles of the

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Scripting Best Practices 435

latest browsers, as long as it would “gracefully degrade” to work on older
browsers. This mostly meant testing on a few older browsers and hoping it
worked, and there was always the possibility of problems in browsers that
didn’t support the latest features.

Ironically, you might expect browsers that lack the latest features to be older,
less popular ones, but some of the biggest problems are with brand-new
browsers—those included with mobile phones and other new devices, all of
which are primitive compared to the latest browsers running on computers.

One new approach to web design that addresses this problem is known as
progressive enhancement. The idea is to keep the HTML documents as simple
as possible so that they’ll definitely work in even the most primitive
browsers. After you’ve tested that and made sure the basic functionality is
there, you can add features that make the site easier to use or better look-
ing for those with new browsers.

If you add these features unobtrusively, they have little chance of prevent-
ing the site from working in its primitive HTML form. Here are some
guidelines for progressive enhancement:

. Enhance the presentation by adding rules to a separate CSS file. Try
to avoid using HTML markup strictly for presentation, such as
for boldface or <blockquote> for an indented section.

. Enhance behavior by adding scripts to an external JavaScript file.

. Add events without using inline event handlers, as described in
Chapter 19, “Responding to Events,” and later in this chapter.

. Use feature sensing, described later this chapter, to ensure that
JavaScript code only executes on browsers that support the features
it requires.

Adding Event Handlers
In Chapter 19, you learned that there is more than one way to set up an
event handler. The simplest way is to add them directly to an HTML tag.
For example, this <body> tag has an event handler that calls a function
called Startup.

<body onLoad=”Startup();”>

This method still works, but it does mean putting JavaScript code in the
HTML page, which means you haven’t fully separated content and

NOTE

The term progressive enhance-
ment first appeared in a pres-
entation and article on this
topic by Steve Champeon. The
original article, along with many
more web design articles, is
available on his company’s web-
site at http://hesketh.com/.

www.it-ebooks.info

http://hesketh.com/
http://www.it-ebooks.info/

ptg999

436 CHAPTER 21 Using Unobtrusive JavaScript

behavior. To keep things entirely separate, you can set up the event han-
dler in the JavaScript file instead, using syntax like this:

window.onload=Startup;

Right now, this is usually the best way to set up events: It keeps JavaScript
out of the HTML file, and it works in all modern browsers. However, it
does have one problem: You can’t attach more than one event to the same
element of a page. For example, you can’t have two different onLoad event
handlers that both execute when the page loads.

When you’re the only one writing scripts, this is no big deal—you can
combine the two into one function. But when you’re trying to use two or
three third-party scripts on a page, and all of them want to add an onLoad
event handler to the body, you have a problem.

The W3C Event Model
To solve this problem and standardize event handling, the W3C created an
event model as part of the DOM level 2 standard. This uses a method,
addEventListener(), to attach a handler to any event on any element. For
example, the following uses the W3C model to set up the same onLoad
event handler as the previous examples:

window.addEventListener(‘load’, Startup, false);

The first parameter of addEventListener() is the event name without the
on prefix—load, click, mouseover, and so on. The second parameter speci-
fies the function to handle the event, and the third is an advanced flag that
indicates how multiple events should be handled. (false works for most
purposes.)

Any number of functions can be attached to an event in this way. Because
one event handler doesn’t replace another, you use a separate function,
removeEventListener(), which uses the same parameters:

window.removeEventListener(‘load’, Startup, false);

The problem with the W3C model is that Internet Explorer (versions 6, 7
and 8) doesn’t support it (it has been introduced in IE9). Instead, it sup-
ports a proprietary method, attachEvent(), which does much the same
thing. Here’s the Startup event handler defined Microsoft-style:

window.attachEvent(‘onload’, Startup);

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Scripting Best Practices 437

The attachEvent() method has two parameters. The first is the event, with
the on prefix—onload, onclick, onmouseover, and so on. The second is the
function that will handle the event. Internet Explorer also supports a
detachEvent() method with the same parameters for removing an event
handler.

Attaching Events the Cross-Browser Way
As you can see, attaching events in this new way is complex and will require
different code for different browsers. In most cases, you’re better off using
the traditional method to attach events, and that method is used in most of
this book’s examples. However, if you really need to support multiple event
handlers, you can use some if statements to use either the W3C method or
Microsoft’s method. For example, the following code adds the ClickMe()
function as an event for the element with the id attribute btn:

obj = document.getElementById(“btn”);
if (obj.addEventListener) {

obj.addEventListener(‘click’,ClickMe,false);
} else if (obj.attachEvent) {

obj.attachEvent(‘onclick’,ClickMe);
} else {

obj.onclick=ClickMe;
}

This checks for the addEventListener() method and uses it if it’s found.
Otherwise, it checks for the attachEvent() method and uses that. If neither
is found, it uses the traditional method to attach the event handler. This
technique is called feature sensing and is explained in detail later this chapter.

Many universal functions are available to compensate for the lack of a consis-
tent way to attach events. If you are using a third-party library, there’s a good
chance it includes an event function that can simplify this process for you.

Web Standards: Avoid Being Browser Specific
The Web was built on standards, such as the HTML standard developed by
the W3C. Now there are a lot of standards involved with JavaScript—CSS, the
W3C DOM, and the ECMAScript standard that defines JavaScript’s syntax.

Microsoft, the Mozilla Project, Google, and other browser developers such
as Opera Software continually improve their browsers’ support for web
standards, but there are always going to be some browser-specific, nonstan-
dard features, and some parts of the newest standards won’t be consistently
supported between browsers.

TIP

The Yahoo! UI Library, like many
other third-party libraries,
includes an event-handling func-
tion that can attach events in
any browser, attach the same
event handler to many objects
at once, and other nice fea-
tures. See http://developer.
yahoo.net/yui/ for details, and
see Chapter 22, “Using Third-
Party Libraries,” for information
about using various other avail-
able libraries.

www.it-ebooks.info

http://developer.yahoo.net/yui/
http://developer.yahoo.net/yui/
http://www.it-ebooks.info/

ptg999

438 CHAPTER 21 Using Unobtrusive JavaScript

Although it’s perfectly fine to test your code in multiple browsers and do
whatever it takes to get it working, it’s a good idea to follow the standards
rather than browser-specific techniques when you can. This ensures that
your code will work on future browsers that improve their standards sup-
port, whereas browser-specific features might disappear in new versions.

Documenting Your Code
As you create more complex scripts, don’t forget to include comments in
your code to document what it does, especially when some of the code
seems confusing or is difficult to get working. It’s also a good idea to docu-
ment all the data structures, variables, and function arguments used in a
larger script.

Comments are a good way to organize code, and will help you work on
the script in the future. If you’re doing this for a living, you’ll definitely
need to use comments so that others can work on your code as easily as
you can.

Usability
While you’re adding cool features to your site, don’t forget about
usability— making things as easy, logical, and convenient as possible for
users of your site. Although there are many books and websites devoted to
usability information, a bit of common sense goes a long way.

For example, suppose you use a drop-down list as the only way to navi-
gate between pages of your site. This is a common use for JavaScript, and
it works well, but is it usable? Try comparing it to a simple set of links
across the top of a page.

. The list of links lets you see at a glance what the site contains; the
drop-down list requires you to click to see the same list.

. Users expect links and can spot them quickly—a drop-down list is
more likely to be part of a form than a navigation tool, and thus
won’t be the first thing they look for when they want to navigate
your site.

. Navigating with a link takes a single click—navigating with the
drop-down list takes at least two clicks.

Remember to consider the user’s point of view whenever you add
JavaScript to a site, and be sure you’re making the site easier to use—or at

NOTE

One reason to make sure you
follow standards is that your
pages can be better interpreted
by search engines, which often
helps your site get search traf-
fic. Separating content, presen-
tation, and behavior is also
good for search engines
because they can focus on the
HTML content of your site with-
out having to skip over
JavaScript or CSS.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Scripting Best Practices 439

least not harder to use. Also, make sure the site is easy to use even without
JavaScript; although this might only apply to a small percentage of your
users, that percentage is likely to include users of screen readers or other
software packages necessary for people with visual impairments.

Design Patterns
If you learn more about usability, you’ll undoubtedly see design patterns
mentioned. This is a computer science term meaning “an optimal solution
to a common problem.” In web development, design patterns are ways of
designing and implementing part of a site that webmasters run into over
and over.

For example, if you have a site that displays multiple pages of data, you’ll
have Next Page and Previous Page links, and perhaps numeric links for
each page. This is a common design pattern—a problem many web design-
ers have had to solve, and one with a generally agreed-upon solution.
Other common web design patterns include a login form, a search engine,
or a list of navigation links for a site.

Of course, you can be completely original and make a search engine, a
shopping cart, or a login form that looks nothing like any other, but unless
you have a way of making them even easier to use, you’re better off fol-
lowing the pattern and giving your users an experience that matches their
expectations.

Although you can find some common design patterns just by browsing sites
similar to yours and noticing how they solved particular problems, there are
also sites that specialize in documenting these patterns, and they’re a good
place to start if you need ideas on how to make your site work.

Accessibility
One final aspect of usability to consider is accessibility—making your site as
accessible as possible for all users, including the disabled. For example,
blind users might use a text-reading program to read your site, which will
ignore images and most scripts. More than just good manners, accessibility
is mandated by law in some countries.

The subject of accessibility is complex, but you can get most of the way
there by following the philosophy of progressive enhancement: Keep the
HTML as simple as possible, keep JavaScript and CSS separate, and make
JavaScript an enhancement rather than a requirement for using your site.

TIP

The Yahoo! Developer Network
documents a variety of design
patterns used on its network of
sites, many of which are imple-
mented using JavaScript:
http://developer.yahoo.net/
ypatterns/.

NOTE

Ensuring that sites function
without JavaScript is one of the
first steps toward accessibility
compliance. For more informa-
tion on accessibility, see
http://www.w3.org/WAI/.

www.it-ebooks.info

http://developer.yahoo.net/ypatterns/
http://developer.yahoo.net/ypatterns/
http://www.w3.org/WAI/
http://www.it-ebooks.info/

ptg999

440 CHAPTER 21 Using Unobtrusive JavaScript

Reading Browser Information
In Chapter 15, “Working with the Document Object Model (DOM),” you
learned about the various objects (such as window and document) that rep-
resent portions of the browser window and the current web document.
JavaScript also includes an object called navigator that you can use to
read information about the user’s browser.

The navigator object isn’t part of the DOM, so you can refer to it directly.
It includes a number of properties, each of which tells you something
about the browser. These include the following:

. navigator.appCodeName is the browser’s internal code name, such as
Mozilla.

. navigator.appName is the browser’s name, such as Netscape or
Microsoft Internet Explorer.

. navigator.appVersion is the version of the browser being used—for
example, 5.0 (Windows).

. navigator.userAgent is the user-agent header, a string that the
browser sends to the web server when requesting a web page. It
includes the entire version information—for example, Mozilla/5.0
(Windows NT 6.1; WOW64; rv:5.0) Gecko/20100101 Firefox/5.0.

. navigator.language is the language (such as English or Spanish) of
the browser. This is stored as a code, such as en_US for U.S. English.
This property is supported by Chrome, Firefox, Opera, and Safari.

. navigator.platform is the computer platform of the current brows-
er. This is a short string, such as Linux i686, Win32, or MacPPC. You
can use this to enable any platform-specific features—for example,
ActiveX components.

Displaying Browser Information
As an example of how to read the navigator object’s properties, Listing
21.1 shows a script that displays a list of the properties and their values for
the current browser.

LISTING 21.1 A Script to Display Information About the Browser
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>

NOTE

As you might have guessed, the
navigator object is named
after Netscape Navigator, the
browser that originally support-
ed JavaScript. Fortunately, this
object is also supported by
Internet Explorer and most
other recent browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Reading Browser Information 441

<title>Browser Information</title>
</head>
<body>
<h1>Browser Information</h1>

<p>The navigator object contains the
following information about the browser you are using:</p>
<script type=”text/javascript”>
document.write(“”);
document.write(“Code Name: “ +
navigator.appCodeName);

document.write(“App Name: “ +
navigator.appName);

document.write(“App Version: “ +
navigator.appVersion);

document.write(“User Agent: “ +
navigator.userAgent);

document.write(“Language: “ +
navigator.language);

document.write(“Platform: “ +
navigator.platform);

document.write(“”);
</script>

</body>
</html>

This script includes a basic HTML document. A script is used within the
body of the document to display each of the properties of the navigator
object using the document.write() statement.

To try this script, load it into the browser of your choice. If you have more
than one browser or browser version handy, try it in each one. Firefox’s
display of the script is shown in Figure 21.1.

LISTING 21.1 Continued

FIGURE 21.1
Firefox displays the browser
information script.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

442 CHAPTER 21 Using Unobtrusive JavaScript

Dealing with Dishonest Browsers
If you tried the browser information script in Listing 21.1 using certain ver-
sions of Internet Explorer, you probably got a surprise. Figure 21.2 shows
how Internet Explorer 6.0 displays the script.

There are several unexpected things about this display. First, the navigator.
language property is listed as undefined. This isn’t much of a surprise
because this property isn’t supported by Internet Explorer.

More importantly, you’ll notice that the word Mozilla appears in the Code
Name and User Agent fields. The full user agent string reads as follows:

Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)

FIGURE 21.2
How Internet Explorer 6 displays
the browser information script.

Believe it or not, Microsoft did have a good reason for this. At the height of
the browser wars, about the time Netscape 3.0 and IE 3.0 came out, it was
becoming common to see “Netscape only” pages. Some webmasters who
used features such as frames and JavaScript set their servers to turn away
browsers without Mozilla in their user agent string. The problem with this
was that most of these features were also supported by Internet Explorer.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Cross-Browser Scripting 443

Microsoft solved this problem in IE 4.0 by making IE’s user agent read
Mozilla, with the word compatible in parentheses. This allows IE users to
view those pages, but still includes enough details to tell web servers
which browser is in use.

You’ve probably already noticed the other problem with Internet Explorer
6.0’s user agent string: the portion reading Mozilla/4.0. Not only is IE
claiming to be Netscape, but it’s also masquerading as version 4.0. Why?

As it turns out, this was another effort by Microsoft to stay one step ahead
of the browser wars, although this one doesn’t make quite as much sense.
Because poorly written scripts were checking specifically for Mozilla/4 for
dynamic HTML pages, Microsoft was concerned that its 5.0 version would
fail to run these pages. Because changing it now would only create more
confusion, this tradition continued with IE 6.0.

Although these are two interesting episodes in the annals of the browser
wars, what does all this mean to you? Well, you’ll need to be careful when
your scripts are trying to differentiate between IE and Netscape and
between different versions. You’ll need to check for specific combinations
instead of merely checking the navigator.appVersion value. Fortunately,
there’s a better way to handle this, as you’ll learn in the next section.

Cross-Browser Scripting
If all those details about detecting different browser versions seem confusing,
here’s some good news—in most cases, you can write cross-browser scripts
without referring to the navigator object at all. This is not only easier, it’s bet-
ter because browser-checking code is often confused by new browser ver-
sions and has to be updated each time a new browser is released.

Feature Sensing
Checking browser versions is sometimes called browser sensing. The better
way of dealing with multiple browsers is called feature sensing. In feature
sensing, rather than checking for a specific browser, you check for a specif-
ic feature. For example, suppose your script needs to use the
document.getElementById() function. You can begin a script with an if
statement that checks for the existence of this function:

if (document.getElementById) {
// do stuff

}

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

444 CHAPTER 21 Using Unobtrusive JavaScript

If the getElementById function exists, the block of code between the brack-
ets will be executed. Another common way to use feature sensing is at the
beginning of a function that will make use of a feature:

function changeText() {
if (!document.getElementById) return;
// the rest of the function executes if the feature is supported

}

You don’t need to check for every feature before you use it—for example,
there’s not much point in verifying that the window object exists in most
cases. You can also assume that the existence of one feature means others
are supported: If getElementById() is supported, chances are the rest of
the W3C DOM functions are supported.

Feature sensing is a very reliable method of keeping your JavaScript
unobtrusive—if a browser supports the feature, it works, and if the browser
doesn’t, your script stays out of the way. It’s also much easier than trying to
keep track of hundreds of different browser versions and what they support.

Dealing with Browser Quirks
So, if feature sensing is better than browser sensing, why do you still need
to know about the navigator object? There’s one situation where it still
comes in handy, although if you’re lucky you won’t find yourself in that
situation.

As you develop a complex script and test it in multiple browsers, you
might run across a situation where your perfectly standard code works as
it should in one browser and fails to work in another. Assuming you’ve
eliminated the possibility of a problem with your script, you’ve probably
run into a browser bug or a difference in features between browsers at the
very least. Here are some tips for this situation:

. Double-check for a bug in your own code.

. Search the Web to see whether to the code, and you might sidestep
the bug.

. If the problem is that a feature is missing in one browser, use feature
sensing to check for that feature.

. When all else fails, use the navigator object to detect a particular
browser and substitute some code that works in that browser. This
should be your last resort.

NOTE

Feature sensing is also handy
when working with third-party
libraries, as discussed in
Chapter 22. You can check for
the existence of an object or a
function belonging to the library
to verify that the library file has
been loaded before your script
uses its features.

TIP

Peter-Paul Koch’s QuirksMode,
http://www.quirksmode.org, is
a good place to start when
you’re looking for specific infor-
mation about browser bugs.

www.it-ebooks.info

http://www.quirksmode.org
http://www.it-ebooks.info/

ptg999

Supporting Non-JavaScript Browsers 445

Supporting Non-JavaScript Browsers
Some visitors to your site will be using browsers that don’t support
JavaScript at all. These aren’t just a few holdouts using ancient browsers—
actually, there are more non-JavaScript browsers than you might think:

. Most modern browsers, such as Internet Explorer, Firefox, and
Chrome, include an option to turn off JavaScript, and some users do
so. More often, the browser might have been set up by their ISP or
employer with JavaScript turned off by default, usually in a misguid-
ed attempt to increase security.

. Some corporate firewalls and personal antivirus software block
JavaScript.

. Some ad-blocking software mistakenly prevents scripts from work-
ing even if they aren’t related to advertising.

. More and more mobile phones are coming with web browsers these
days, and most of these support little to no JavaScript.

. Some visually impaired users use special-purpose browsers or text-
only browsers that might not support JavaScript.

As you can see, it would be foolish to assume that all your visitors will
support JavaScript. Two techniques you can use to make sure these users
can still use the site are discussed in the following sections.

Using the <noscript> Tag
One way to be friendly to non-JavaScript browsers is to use the
<noscript> tag. Supported in most modern browsers, this tag displays a
message to non-JavaScript browsers. Browsers that support JavaScript
ignore the text between the <noscript> tags, whereas others display it.
Here is a simple example:

<noscript>
This page requires JavaScript. You can either switch to a browser
that supports JavaScript, turn your browser’s script support on,
or switch to the Non-JavaScript version of
this page.
</noscript>

Although this works, the trouble is that <noscript> is not consistently
supported by all browsers that support JavaScript. An alternative that
avoids <noscript> is to send users with JavaScript support to another
page. This can be accomplished with a single JavaScript statement:

NOTE

Search engines are another
“browser” that will visit your
site frequently, and they usually
don’t pay any attention to
JavaScript. If you want search
engines to fully index your site,
it’s critical that you avoid mak-
ing JavaScript a requirement to
navigate the site.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

446 CHAPTER 21 Using Unobtrusive JavaScript

<script type=”text/javascript”>
window.location=”JavaScript.html”;
</script>

This script redirects the user to a different page. If the browser doesn’t sup-
port JavaScript, of course, the script won’t be executed, and the rest of the
page can display a warning message to explain the situation.

Keeping JavaScript Optional
Although you can detect JavaScript browsers and display a message to the
rest, the best choice is to simply make your scripts unobtrusive. Use
JavaScript to enhance rather than as an essential feature; keep JavaScript in
separate files and assign event handlers in the JavaScript file rather than in
the HTML. Browsers that don’t support JavaScript will simply ignore your
script.

In those rare cases where you absolutely need JavaScript—for example, an
AJAX application or a JavaScript game—you can warn users that
JavaScript is required. However, it’s a good idea to offer an alternative
JavaScript-free way to use your site, especially if it’s an e-commerce or
business site that your business relies on. Don’t turn away customers with
lazy programming.

One place you should definitely not require JavaScript is in the navigation
of your site. Although you can create drop-down menus and other fancy
navigation tools using JavaScript, they prevent users’ non-JavaScript
browsers from viewing all of your site’s pages. They also prevent search
engines from viewing the entire site, compromising your chances of get-
ting search traffic.

Avoiding Errors
If you’ve made sure JavaScript is only an enhancement to your site, rather
than a requirement, those with browsers that don’t support JavaScript for
whatever reason will still be able to navigate your site. One last thing to
worry about: It’s possible for JavaScript to cause an error or confuse these
browsers into displaying your page incorrectly.

This is a particular concern with browsers that partially support JavaScript,
such as mobile phone browsers. They might interpret a <script> tag and
start the script, but might not support the full JavaScript language or
DOM. Here are some guidelines for avoiding errors:

NOTE

Google’s Gmail application
(http://mail.google.com), one of
the most well-known uses of
AJAX, requires JavaScript for its
elegant interface. However,
Google offers a Basic HTML
View that can be used without
JavaScript. This allows Google
to support older browsers and
mobile phones without compro-
mising the user experience for
those with modern browsers.

www.it-ebooks.info

http://mail.google.com
http://www.it-ebooks.info/

ptg999

Supporting Non-JavaScript Browsers 447

. Use a separate JavaScript file for all scripts. This is the best way to
guarantee that the browser will ignore your script completely if it
does not have JavaScript support.

. Use feature sensing whenever your script tries to use the newer
DOM features, such as document.getElementById().

. Test your pages with your browser’s JavaScript support turned off.
Make sure nothing looks strange and make sure you can still navi-
gate the site.

TIP

The developer’s toolbars for
Firefox and Internet Explorer
include a convenient way to
turn off JavaScript for testing.

Creating an
Unobtrusive Script

As an example of unobtrusive scripting, you can create a script that adds
functionality to a page with JavaScript without compromising its performance
in older browsers. In this example, you will create a script that creates graph-
ic check boxes as an alternative to regular check boxes.

Let’s start with the final result: Figure 21.3 shows this example as it appears
in Firefox. The first check box is an ordinary HTML one, and the second is a
graphic check box managed by JavaScript.

TRY IT YOURSELF ▼

FIGURE 21.3
The graphic check box example
in action, with the graphical
check box checked.

The graphic check box is just a larger graphic that you can click on to display
the checked or unchecked version of the graphic. Although this could just be
a simple JavaScript simulation that acts like a check box, it’s a bit more
sophisticated. Take a look at the HTML for this example in Listing 21.2.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

448 CHAPTER 21 Using Unobtrusive JavaScript

TRY IT YOURSELF▼

Creating an
Unobtrusive Script
continued

LISTING 21.2 The HTML File for the Graphic Check Box Example
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Graphic Checkboxes</title>

</head>
<body>
<h1>Graphic Checkbox Example</h1>
<form name=”form1” method=”post” action=””>
<p><input type=”checkbox” name=”check1” id=”check1”/>
An ordinary checkbox.</p>
<p><input type=”checkbox” name=”check2” id=”check2”/>
A graphic checkbox, created with unobtrusive JavaScript.</p>
</form>
<script type=”text/javascript” src=”checkbox.js”></script>

</body>
</html>

If you look closely at the HTML, you’ll see that the two check boxes are
defined in exactly the same way with the standard <input> tag. Rather than
substitute for a check box, this script actually replaces the regular check box
with the graphic version. The script for this example is shown in Listing 21.3.

LISTING 21.3 The JavaScript File for the Graphic Check Box Example
function graphicBox(box) {

// be unobtrusive
if (!document.getElementById) return;
// find the object and its parent
obj = document.getElementById(box);
parentobj = obj.parentNode;
// hide the regular checkbox
obj.style.visibility = “hidden”;
// create the image element and set its onclick event
img = document.createElement(“img”);
img.onclick = Toggle;
img.src = “unchecked.gif”;
// save the checkbox id within the image ID
img.id = “img” + box;
// display the graphic checkbox
parentobj.insertBefore(img,obj);

}
function Toggle(e) {

if (!e) var e=window.event;
// find the image ID

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Supporting Non-JavaScript Browsers 449

Creating an
Unobtrusive Script
continued

img = (e.target) ? e.target : e.srcElement;
// find the checkbox by removing “img” from the image ID
checkid = img.id.substring(3);
checkbox = document.getElementById(checkid);
// “click” the checkbox
checkbox.click();
// display the right image for the clicked or unclicked state
if (checkbox.checked) file = “checked.gif”;

else file=”unchecked.gif”;
img.src=file;

}
//replace the second checkbox with a graphic
graphicBox(“check2”);

This script has three main components:

. The graphicBox() function converts a regular check box to a graphic
one. It starts by hiding the existing check box by changing its
style.visibility property, and then creates a new image node con-
taining the unchecked.gif graphic and inserts it into the DOM next to
the original check box. It gives the image an id attribute containing the
text img plus the check box’s id attribute to make it easier to find the
check box later.

. The Toggle() function is specified by graphicBox() as the event han-
dler for the new image’s onClick event. This function removes img from
the image’s id attribute to find the id of the real check box. It executes
the click() method on the check box, toggling its value. Finally, it
changes the image to unchecked.gif or checked.gif depending on the
state of the real check box.

. The last line of the script file runs the graphicBox() function to replace
the second check box with the id attribute check2.

Using this technique has three important advantages. First, it’s an unobtru-
sive script. The HTML has been kept simple, and browsers that don’t support
JavaScript will display the ordinary check box. Second, because the real
check box is still on the page but hidden, it will work correctly when the form
is submitted to a server-side script. Last but not least, you can use it to cre-
ate any number of graphic check boxes simply by defining regular ones in the
HTML file and adding a call to graphicBox() to transform each one.

To try this example, save the JavaScript file as checkbox.js and be sure the
HTML file is in the same folder. You’ll also need two graphics the same size,
unchecked.gif and checked.gif, in the same folder.

TRY IT YOURSELF ▼
LISTING 21.3 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

450 CHAPTER 21 Using Unobtrusive JavaScript

Summary
In this chapter, you’ve learned many guidelines for creating scripts that
work in as many browsers as possible and how to avoid errors and
headaches when working with different browsers. Most importantly, you
learned how you can use JavaScript while keeping your pages small, effi-
cient, and valid with web standards.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Workshop 451

Q&A
Q. Is it possible to create 100% unobtrusive JavaScript that can enhance

a page without causing any trouble for anyone?

A. Not quite. For example, the unobtrusive script in the Try It Yourself sec-
tion of this chapter is close—it will work in the latest browsers, and the
regular check box will display and work fine in even ancient browsers.
However, it can still fail if someone with a modern browser has images
turned off: The script will hide the check box because JavaScript is sup-
ported, but the image won’t be there. This is a rare circumstance, but
it’s an example of how any feature you add can potentially cause a
problem for some small percentage of your users.

Q. Can I detect the user’s email address using the navigator object or
another technique?

A. No, there is no reliable way to detect users’ email addresses using
JavaScript. (If there were, you would get hundreds of advertisements in
your mailbox every day from companies that detected your address as
you browsed their pages.) You can use a signed script to obtain the
user’s email address, but this requires the user’s permission and only
works in some versions of Netscape.

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. Which of the following is the best place to put JavaScript code?

a. Right in the HTML document

b. In a separate JavaScript file

c. In a CSS file

2. Which of the following is something you can’t do with JavaScript?

a. Send browsers that don’t support a feature to a different page

b. Send users of Internet Explorer to a different page

c. Send users of non-JavaScript browsers to a different page

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

452 CHAPTER 21 Using Unobtrusive JavaScript

3. Which of the following is the best way to define an event handler that
works in all modern browsers?

a. <body onLoad=”MyFunction()”>

b. window.onload=MyFunction;

c. window.attachEvent(‘load’,MyFunction,false);

Answers
1. b. The best place for JavaScript is in a separate JavaScript file.

2. c. You can’t use JavaScript to send users of non-JavaScript browsers to
a different page because the script won’t be executed at all.

3. b. The code window.onload=MyFunction; defines an event handler in all
modern browsers. This is better than using an inline event handler as
in (a) because it keeps JavaScript out of the HTML document. Option
(c) uses the W3C’s standard method, but does not work in Internet
Explorer.

Exercises
. Add several check boxes to the HTML document in Listing 21.2 and

add the corresponding function calls to the script in Listing 21.3 to
replace all of them with graphic check boxes.

. Modify the script in Listing 21.3 to convert all check boxes with a class
value of graphic into graphic check boxes. You can use
getElementsByTagName() and then check each item for the right
className property.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Third-party JavaScript libraries, or code libraries written and maintained
by another party for easy implementation in your own code, offer many
advantages. First and foremost, using these libraries enables you to avoid
reinventing the wheel for common tasks. Additionally, these libraries
enable you to implement cross-browser scripting and sophisticated user
interface elements without first having to become an expert in JavaScript.

Using Third-Party Libraries
When you use JavaScript’s built-in Math and Date functions, JavaScript
does most of the work—you don’t have to figure out how to convert dates
between formats or calculate a cosine. Third-party libraries are not includ-
ed with JavaScript, but they serve a similar purpose: enabling you to do
complicated things with only a small amount of code.

Using one of these libraries is usually as simple as copying one or more
files to your site and including a <script> tag in your document to load
the library. Several popular JavaScript libraries are discussed in the follow-
ing sections.

Prototype
Prototype, created by Sam Stephenson, is a JavaScript library that simpli-
fies tasks such as working with DOM objects, dealing with data in forms,
and remote scripting (AJAX). By including a single prototype.js file in your
document, you have access to many improvements to basic JavaScript.

For example, you’ve used the document.getElementById method to obtain
the DOM object for an element within a web page. Prototype includes an

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. Why you might use a third-
party JavaScript library

. How to download and use
one of the more popular
third-party JavaScript
libraries in your applications

CHAPTER 22
Using Third-Party Libraries

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

454 CHAPTER 22 Using Third-Party Libraries

improved version of this in the $() function. Not only is it easier to type,
but it is also more sophisticated than the built-in function and supports
multiple objects.

Adding Prototype to your pages requires only one file, prototype.js, and
one <script> tag:

<script type=”text/javascript” src=”prototype.js”></script>

jQuery
The first implementation of jQuery was introduced in 2006. What was orig-
inally an easy, cross-browser means DOM manipulation has subsequently
become a stable, powerful library containing not just DOM manipulation
tools, but many additional features that make cross-browser JavaScript
coding much more straightforward and productive.

The library is currently up to version 1.6.2 and now also has an additional
advanced user interface extensions library that can be used alongside the
existing library to rapidly build and deploy rich user interfaces or add a
variety of attractive effects to existing components.

Like the Prototype library described previously, jQuery has at its heart a
sophisticated, cross-browser method for selection of page elements. The
selectors used to obtain elements are based on a combination of simple
CSS-like selector styles, so with the CSS techniques you learned in Part III,
“Advanced Web Page Design with CSS,” you should have no problem get-
ting up to speed with jQuery. For example, if you want to get an element
that has an ID of someElement, all you do is use the following:

$(“#someElement”)

Or to return a collection of elements that have the someClass class name,
you can simply use the following:

$(“.someClass”)

We can very simply get or set values associated with our selected elements.
Let’s suppose, for example, that we want to hide all elements having the
class name hideMe. We can do that, in a fully cross-browser manner, in just
one line of code:

$(“.hideMe”).hide();

NOTE

Prototype is free, open-source
software. You can download it
from its official website at
http://www.prototypejs.org/.
Prototype is also built into the
Ruby on Rails framework for the
server-side language Ruby—see
http://www.rubyonrails.com/
for more information.

NOTE
jQuery’s home page is at
http://jquery.com/, where you
can not only download the lat-
est version, but also gain
access to extensive documenta-
tion and example code.

The companion UI library can
be found at http://jqueryui.
com/.

TIP
If you don’t want to download
and store the jQuery library on
your own computer, you can use
a remotely hosted version, such
as the one by Google. Instead
of including a locally hosted .js
file in your page head, use the
following code:
<script
src=”http://ajax.googleapis.c
om/ajax/libs/jquery/1.6.2/
jquery.min.js”
type=”text/javascript”></
script>

In many cases, this provides
better performance than host-
ing your own version, due to
Google’s servers being opti-
mized for low-latency, massively
parallel content delivery.

www.it-ebooks.info

http://www.prototypejs.org/
http://www.rubyonrails.com/
http://jquery.com/
http://jqueryui.com/
http://jqueryui.com/
http://www.it-ebooks.info/

ptg999

Using Third-Party Libraries 455

Manipulating HTML and CSS properties is just as straightforward. To
append the phrase “powered by jQuery” to all paragraph elements, for
example, we would simply write the following:

$(“p”).append(“ powered by jQuery”);

To then change the background color of those same elements, we can
manipulate their CSS properties directly:

$(“p”).css(“background-color”,”yellow”);

Additionally, jQuery includes simple cross-browser methods for determin-
ing whether an element has a class, adding and removing classes, getting
and setting the text or innerHTML of an element, navigating the DOM, get-
ting and setting CSS properties, and handling of easy cross-browser events.

The associated UI library adds a huge range of UI widgets (such as date
pickers, sliders, dialogs and progress bars), animation tools, drag-and-drop
capabilities, and much more.

Script.aculo.us
By the end of this book, you’ll learn to do some useful things with
JavaScript, often using complex code. But you can also include impressive
effects in your pages using a prebuilt library. This enables you to use
impressive effects with only a few lines of code.

Script.aculo.us by Thomas Fuchs is one such library. It includes functions
to simplify drag-and-drop tasks, such as rearranging lists of items. It also
includes a number of combination effects, which enable you to use high-
lighting and animated transitions within your pages. For example, a new
section of the page can be briefly highlighted in yellow to get the user’s
attention, or a portion of the page can fade out or slide off the screen.

After you’ve included the appropriate files, using effects is as easy as using
any of JavaScript’s built-in methods. For example, the following statements
use Script.aculo.us to fade out an element of the page with the id value test:

obj = document.getElementById(“test”);
new Effect.Fade(obj);

Script.aculo.us is built on the Prototype framework described in the previ-
ous section and includes all of the functions of Prototype, so you could
also simplify this further by using the $ function:

new Effect.Fade($(“test”));

TIP

You can even extend jQuery
yourself by writing further plug-
ins or use the thousands
already submitted by other
developers. Browse
http://www.jqueryplugins.com/
to see lots of examples in
searchable categories.

NOTE

You will create a script that
demonstrates several
Script.aculo.us effects in the
Try It Yourself section later this
chapter.

www.it-ebooks.info

http://www.jqueryplugins.com/
http://www.it-ebooks.info/

ptg999

456 CHAPTER 22 Using Third-Party Libraries

AJAX Frameworks
AJAX (Asynchronous JavaScript and XML), also known as remote scripting,
enables JavaScript to communicate with a program running on the web
server. This enables JavaScript to do things that were traditionally not possi-
ble, such as dynamically loading information from a database or storing
data on a server without refreshing a page.

AJAX requires some complex scripting, particularly because the methods
you use to communicate with the server vary depending on the browser in
use. Fortunately, many libraries have been created to fill the need for a sim-
ple way to use AJAX, and you’ll try your hand at this later in this book.

Both jQuery and the Prototype library, described previously, include AJAX fea-
tures. There are also many dedicated AJAX libraries. One of the most popular
is SAJAX (Simple AJAX), an open-source toolkit that makes it easy to use
AJAX to communicate with PHP, Perl, and other languages from JavaScript.
Visit the SAJAX website for details at http://www.modernmethod.com/sajax.

Other Libraries
There are many more JavaScript libraries out there, and more are appearing
all the time as JavaScript is taken more seriously as an application language.
Here are some more libraries you might want to explore:

. Dojo (http://www.dojotoolkit.org/) is an open-source toolkit that
adds power to JavaScript to simplify building applications and user
interfaces. It adds features ranging from extra string and math func-
tions to animation and AJAX.

. The Yahoo! UI Library (http://developer.yahoo.net/yui/) was devel-
oped by Yahoo! and made available to everyone under an open-source
license. It includes features for animation, DOM features, event man-
agement, and easy-to-use user interface elements such as calendars
and sliders.

. MochiKit (http://mochikit.com/) is a lightweight library that adds
features for working with the DOM, CSS colors, string formatting, and
AJAX. It also supports a nice logging mechanism for debugging your
scripts.

. MooTools (http://mootools.net/) is a compact, modular JavaScript
framework enabling you to build powerful, flexible, and cross-
browser code using a simple-to-understand, well-documented API
(application programming interface).

NOTE

See Chapter 24, “AJAX: Remote
Scripting,” for examples of
remote scripting, with and with-
out using third-party libraries.

www.it-ebooks.info

http://www.modernmethod.com/sajax
http://www.dojotoolkit.org/
http://developer.yahoo.net/yui/
http://mochikit.com/
http://mootools.net/
http://www.it-ebooks.info/

ptg999

Other Libraries 457

Adding Effects with a
Library

To see how simple it is to use an external library, you will now create an
example script that includes the Script.aculo.us library and use event han-
dlers to demonstrate several of the available effects.

Downloading the Library
To use the library, you will need to download it and copy the files you need to the
same folder where you will store your script. You can download the library from
the Script.aculo.us website at http://script.aculo.us/downloads.

The download is available as a Zip file. Inside the Zip file you will find a folder
following the naming convention of scriptaculous-js-x.x.x where each x stands
for part of the version number (the version as of this writing is 1.9.0). You will
need the following files from the folders under this folder:

. prototype.js (the Prototype library) from the lib folder

. effects.js (the effects functions) from the src folder

Copy both of these files to a folder on your computer, and be sure to create
your demonstration script in the same folder.

Including the Files
To add the library to your HTML document, simply use <script> tags to
include the two JavaScript files you copied from the download:

<script type=”text/javascript” src=”prototype.js”> </script>
<script type=”text/javascript” src=”effects.js”> </script>

If you include these statements as the first things in the <head> section of
your document, the library functions will be available to other scripts or event
handlers anywhere in the page.

Using Effects
After you have included the library, you simply need to include a bit of
JavaScript to trigger the effects. We will use a section of the page wrapped in
a <div> tag with the id value test to demonstrate the effects. Each effect is
triggered by a simple event handler on a button. For example, this code
defines the Fade Out button:

<input type=”button” value=”Fade Out”
onclick=”new Effect.Fade($(‘test’))”>

This uses the $ function built into Prototype to obtain the object for the ele-
ment with the id value test, and then passes it to the Effect.Fade function
built into Script.aculo.us.

TRY IT YOURSELF ▼

CAUTION

This example was created
using version 1.9.0 of the
Script.aculo.us library. It
should work with later ver-
sions, but the library might
have changed since this was
written. If you have trouble,
you might need to use this
specific version.

NOTE

The Script.aculo.us download
includes many other files, and
you can include the entire
library if you intend to use all
of its features. For this exam-
ple, you only need the two
files described here.

TIP

This example will demon-
strate six effects: Fade,
Appear, SlideUp, SlideDown,
Highlight, and Shake. There
are more than 16 effects in
the library, plus methods for
supporting Drag and Drop
and other features. See
http://script.aculo.us for
details.

www.it-ebooks.info

http://script.aculo.us/downloads
http://script.aculo.us
http://www.it-ebooks.info/

ptg999

458 CHAPTER 22 Using Third-Party Libraries

TRY IT YOURSELF▼

Adding Effects with a
Library
continued

Building the Script
After you have included the libraries, you can combine them with event han-
dlers and some example text to create a complete demonstration of
Script.aculo.us effects. The complete HTML document for this example is
shown in Listing 22.1.

LISTING 22.1 The Complete Library Effects Example
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Testing script.aculo.us effects</title>
<script type=”text/javascript” src=”prototype.js”></script>
<script type=”text/javascript” src=”effects.js”></script>
</head>
<body>
<h1>Testing script.aculo.us Effects</h1>
<form name=”form1”>
<input type=”button” value=”Fade Out”

onclick=”new Effect.Fade($(‘test’))”>
<input type=”button” value=”Fade In”

onclick=”new Effect.Appear($(‘test’))”>
<input type=”button” value=”Slide Up”

onclick=”new Effect.SlideUp($(‘test’))”>
<input type=”button” value=”Slide Down”

onclick=”new Effect.SlideDown($(‘test’))”>
<input type=”button” value=”Highlight”

onclick=”new Effect.Highlight($(‘test’))”>
<input type=”button” value=”Shake”

onclick=”new Effect.Shake($(‘test’))”>
</form>
<div id=”test” style=”background-color:#CCC;
margin:20px; padding:10px;”>
<h2>Testing Effects</h2>
<hr/>
<p>This section of the document is within a <div> element
with the id value of test.
The event handlers on the buttons above send this object to the
script.aculo.us library
to perform effects. Click the buttons to see the effects.</p>
</div>

</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Summary 459

Summary
In this chapter, you learned about some of the many third-party libraries
available for JavaScript. These can offer many advantages including easy
cross-browser scripting, selection and editing of HTML and CSS values,
animation, and more sophisticated user-interface tools such as drag-and-
drop.

Adding Effects with a
Library
continued

This document starts with two <script> tags to include the library’s files. The
effects are triggered by the event handlers defined for each of the six but-
tons. The <div> section at the end defines the test element that will be
used to demonstrate the effects.

To try this example, make sure the prototype.js and effects.js files from
Script.aculo.us are stored in the same folder as your script, and then load it
into a browser. The display should look like Figure 22.1, and you can use the
six buttons at the top of the page to trigger effects.

TRY IT YOURSELF ▼

FIGURE 22.1
The library effects example.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

460 CHAPTER 22 Using Third-Party Libraries

Q&A
Q. How do I include a third-party JavaScript library into my pages?

A. The process varies slightly from library to library. Usually it’s simply a
matter of including one or more external .js files into the <head> part of
your web page. See the documentation supplied with your chosen
library for specific details.

Q. Can I use more than one third-party library in the same script?

A. Yes, in theory: If the libraries are well written and designed not to inter-
fere with each other, there should be no problem combining them. In
practice, this will depend on the libraries you need and how they were
written.

Q. Can I build my own library to simplify scripting?

A. Yes, as you deal with more complicated scripts, you’ll find yourself
using the same functions over and over. You can combine them into a
library for your own use. This is as simple as creating a .js file.

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. Which of the following objects is not a JavaScript library?

a. MooTools

b. Prototype

c. AJAX

2. How can you extend jQuery yourself?

a. jQuery can’t be extended.

b. By writing server-side scripts.

c. By writing a plug-in or using a prewritten one.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Workshop 461

3. What other JavaScript third-party library does Script.aculo.us employ?

a. Prototype

b. Dojo

c. jQuery

Answers
1. c. AJAX is a programming technique enabling your scripts to use

resources hosted on your server. There are many libraries to help you
employ AJAX functionality, but AJAX itself is not a library.

2. c. jQuery has a well documented way to write and use plug-ins.

3. a. Script.aculo.us uses the prototype.js library.

Exercises
. Write a simple script using the jQuery library or use an example script

from the jQuery website. Run the script using both locally and remotely
hosted versions of jQuery. Can you see any difference in performance?

. Visit the Script.aculo.us page at http://script.aculo.us/ to find the com-
plete list of effects. Modify Listing 22.1 to add buttons for one or more
additional effects.

www.it-ebooks.info

http://script.aculo.us/
http://www.it-ebooks.info/

ptg999

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

One of the recent trends is that JavaScript is being used in new ways, both
inside and outside web browsers. In this chapter, you’ll look at
Greasemonkey, a Firefox extension that enables you to write scripts to
modify the appearance and behavior of sites you visit. User scripts can
also work in Internet Explorer, Opera, and Safari with the right add-ons,
and Chrome has native support for user scripts.

Introducing Greasemonkey
So far in this book, you’ve been using JavaScript to work on your own
sites. In this chapter, you’ll take a break from that and learn about a way to
use JavaScript on other people’s sites. Greasemonkey is an extension for the
Firefox browser that enables user scripts. These are scripts that run as soon
as you load a page and can make changes to the page’s DOM.

A user script can be designed to work on all web pages or to only affect
particular sites. Here are some of the things user scripts can do:

. Change the appearance of one or more sites—colors, font size, and
so on

. Change the behavior of one or more sites with JavaScript

. Fix a bug in a site before the site author does

. Add a feature to your browser, such as text macros—see the Try It
Yourself section later in this chapter for an example

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How Greasemonkey and
user scripts can enhance
your web browser

. How to install and config-
ure Greasemonkey in
Firefox

. Installing and managing
user scripts

. Creating your own user
scripts

. Defining metadata for
scripts

. Using the Greasemonkey
API

. Adding macros to web
forms

CHAPTER 23
Greasemonkey: Enhancing the

Web with JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

464 CHAPTER 23 Greasemonkey: Enhancing the Web with JavaScript

As a simple example, a user script called Linkify is provided with
Greasemonkey. It affects all pages you visit and turns unlinked URLs into
hyperlinks. In other words, the script looks for any string that resembles a
URL in the page, and if it finds a URL that is not enclosed in an <a> tag, it
modifies the DOM to add a link to the URL.

Greasemonkey scripts can range from simple ones such as Linkify to com-
plex scripts that add a feature to the browser, rearrange a site to make it
more usable, or eliminate annoying features of sites such as pop-up ads.

Keep in mind that Greasemonkey doesn’t do anything to the websites you
visit—it strictly affects your personal experience with the sites. In this way,
it’s similar to other browser customizations, such as personal style sheets
and browser font settings.

Installing Greasemonkey in Firefox
Greasemonkey works in Firefox for Windows, Macintosh, and Linux plat-
forms. You can install it by visiting the http://www.greasespot.net/ and
following the Download link. Use the Add To Firefox button to install
Greasemonkey (see Figure 23.1). After installation, you might be asked to
restart Firefox before Greasemonkey can be used.

NOTE

Greasemonkey was created in
2004 by Aaron Boodman. Its
official site is http://www.
greasespot.net/. At this writing,
the current version of
Greasemonkey is 0.9.10.

FIGURE 23.1
Use the Add To Firefox button to
install Greasemonkey.

NOTE

When you first install
Greasemonkey, the extension
doesn’t do anything—you’ll
need to install one or more
user scripts, as described later
in this chapter in “Working with
User Scripts,” to make it useful.

www.it-ebooks.info

http://www.greasespot.net/
http://www.greasespot.net/
http://www.greasespot.net/
http://www.it-ebooks.info/

ptg999

Introducing Greasemonkey 465

Trixie for Internet Explorer
The Greasemonkey extension was written as a Firefox extension and does
not work on other browsers (although user scripts do with the right
helpers). Fortunately, there’s an alternative for those that prefer Internet
Explorer: Trixie is an add-on for Internet Explorer that supports user
scripts. Trixie is available free from its official site at http://www.bhelpuri.
net/Trixie/. To install Trixie, you will need to make sure that you have the
.NET Framework installed.

Trixie supports most of Greasemonkey’s features, and user scripts for
Greasemonkey often work with Trixie without modification; however, due
to differences between Firefox and Internet Explorer, not all Greasemonkey
scripts can be run within IE. See the Trixie site for more detailed informa-
tion on installing and running Trixie.

Other Browsers
User script features have also appeared for other browsers. Along with
Trixie for IE, some other browsers can support user scripts:

. Opera, the cross-platform browser from Opera Software ASA, has
built-in support for user scripts and supports Greasemonkey scripts
in many cases. See Opera’s site for details at http://www.opera.
com/.

. From version 4.0, Google’s Chrome browser has included native sup-
port for Greasemonkey scripts. Behind the scenes, these are convert-
ed into Chrome extensions.

. Creammonkey is a beta add-on for Apple’s Safari browser to support
user scripts. You can find it at http://8-p.info/CreamMonkey/
index.html.en.

User Script Security
Before you get into user scripting, a word of warning: Don’t install a script
unless you understand what it’s doing or you’ve obtained it from a trust-
worthy source. Although the Greasemonkey developers have spent a great
deal of time eliminating security holes, it’s still possible for a malicious
script to cause you trouble—at the very least, it could send information
about which sites you visit to a third-party website.

www.it-ebooks.info

http://www.bhelpuri.net/Trixie/
http://www.opera.com/
http://www.opera.com/
http://8-p.info/CreamMonkey/index.html.en
http://8-p.info/CreamMonkey/index.html.en
http://www.bhelpuri.net/Trixie/
http://www.it-ebooks.info/

ptg999

466 CHAPTER 23 Greasemonkey: Enhancing the Web with JavaScript

To minimize security risks, be sure you’re running the latest version of
Greasemonkey or Trixie. Only enable scripts you are actively using and limit
scripts you don’t trust to specific pages so that they don’t run on every page
you visit.

Working with User Scripts
User scripts are a whole new way of working with JavaScript—rather than
uploading them for use on your website, you install them in the browser for
your own personal use. The following sections show you how to find useful
scripts and install and manage them.

Finding Scripts
Anyone can write user scripts, and many people have. Greasemonkey spon-
sors a directory of user scripts at http://userscripts.org/. There you can
browse or search for scripts or submit scripts you’ve written.

The script archive has thousands of scripts available. Along with general-
purpose scripts, many of the scripts are designed to add features to—or
remove annoying features from—particular sites.

Installing a Script
After you’ve found a script you want to install, you can install it from the Web:

. In Firefox with Greasemonkey, open the script in the browser, and
then select Tools, Install This User Script from the menu.

. In IE with Trixie, download the script into the Scripts directory under
the Trixie installation folder. By default, this is at Program
Files\Bhelpuri\Trixie\Scripts. Then, go to the Tools menu and select
Trixie Options (Alt-T, X). This will show the Trixie Options dialog
where you can click on the Reload Scripts button and select OK. This
will load your new script and enable it.

You can also install a script from a local file. You’ll use this technique to
install your own script later this chapter.

Managing Scripts
After you’ve installed one or more scripts with Greasemonkey, you can
manage them by selecting Greasemonkey, Manage User Scripts from the
Firefox menu. The Manage User Scripts dialog is shown in Figure 23.2.

www.it-ebooks.info

http://userscripts.org/
http://www.it-ebooks.info/

ptg999

Working with User Scripts 467

The user scripts you have available are listed in the right column. Click on a
script name to manage it:

. Use the Enable/Disable button to enable or disable each script.

. Click the Remove button to remove a script.

. Right-click and choose Edit to open a script in a text editor. When it is
saved, it will immediately take effect on pages you load.

Trixie for IE has a similar dialog. The Trixie Options dialog (Alt-T, X) can be used
to manage the scripts you have installed. From this dialog, as shown in Figure
23.3, you can view the scripts installed, enable or disable scripts, or reload
scripts. The dialog also shows which sites or pages the script will execute on.

FIGURE 23.2
Managing user scripts in
Greasemonkey.

FIGURE 23.3
The Trixie Options dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

468 CHAPTER 23 Greasemonkey: Enhancing the Web with JavaScript

Testing User Scripts
If you have a script enabled, it will be activated as soon as you load a page
that matches one of the Included Pages specified for the script. (The script
is run after the page is loaded, but before the onload event.) If you want to
make sure Greasemonkey is running, either try one of the scripts available
for a script enabled (it will activate as soon as you load a page that match-
es one download) or type in the simple script in the next section.

Activating and Deactivating Greasemonkey or
Trixie
Sometimes when a script is enabled, it will be activated as soon as you
load a page that matches one where you’ll want to turn off Greasemonkey
altogether, especially if one of the scripts you’ve installed is causing an
error. To do this, right-click on the monkey icon in the lower-right corner of
the browser window and select the Enabled option to deselect it. The mon-
key icon changes to a gray sad-faced monkey, and no user scripts will be
run at all. You can re-enable it at any time using the same option.

With Trixie for Internet Explorer, use Explorer’s Manage Add-Ons menu to
disable Trixie.

Creating Your Own User Scripts
You’ve already learned most of what you need to know to create user
scripts since they’re written in JavaScript. In this section, you’ll create and
test a simple script and look at some features you’ll use when creating
more advanced scripts.

Creating a Simple User Script
One of the best uses for Greasemonkey is to solve annoyances with sites
you visit. For example, a site might use green text on an orange back-
ground. Although you could contact the webmaster and beg for a color
change, user scripting lets you deal with the problem quickly yourself.

As a simple demonstration of user scripting, you can create a user script
that changes the text and background colors of paragraphs in sites you
visit. Listing 23.1 shows this user script.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating Your Own User Scripts 469

LISTING 23.1 A Simple User Script to Change Paragraph Colors
// Change the color of each paragraph
var zParagraphs = document.getElementsByTagName(“p”);
for (var i=0; i<zParagraphs.length; i++) {

zParagraphs[i].style.backgroundColor=”#000000”;
zParagraphs[i].style.color=”#ffffff”;

}

This script uses the getElementsByTagName() DOM method to find all the
paragraph tags in the current document and store their objects in the
zParagraphs array. The for loop iterates through the array and changes
the style.color and style.backgroundColor properties for each one.

Describing a User Script
Greasemonkey supports metadata at the beginning of your script. These are
JavaScript comments that aren’t executed by the script, but provide infor-
mation to Greasemonkey. To use this feature, enclose your comments
between // ==UserScript== and // ==/UserScript comments.

The metadata section can contain any of the following directives. All of
these are optional, but using them will make your user script easier to
install and use.

. @name—A short name for the script, displayed in Greasemonkey’s list
of scripts after installation.

. @namespace—An optional URL for the script author’s site. This is
used as a namespace for the script: Two scripts can have the same
name as long as the namespace is different.

. @description—A one-line description of the script’s purpose.

. @include—The URL of a site on which the script should be used.
You can specify any number of URLs, each in its own @include line.
You can also use the wildcard * to run the script on all sites or a par-
tial URL with a wildcard to run it on a group of sites.

. @exclude—The URL of a site on which the script should not be used.
You can specify a wildcard for @include, and then exclude one or
more sites that the script is incompatible with. The @exclude direc-
tive can also use wildcards.

Listing 23.2 shows the color-changing example with a complete set of
metadata comments added at the top.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

470 CHAPTER 23 Greasemonkey: Enhancing the Web with JavaScript

LISTING 23.2 The Color-Changing Script with Metadata Comments
// ==UserScript==
// @name WhiteOnBlack
// @namespace http://www.thickbook.com/
// @description Display paragraphs in white text on black
// @include *
// ==/UserScript==
//
// Change the color of each paragraph
var zParagraphs = document.getElementsByTagName(“p”);
for (var i=0; i<zParagraphs.length; i++) {

zParagraphs[i].style.backgroundColor=”#000000”;
zParagraphs[i].style.color=”#ffffff”;

}

Testing Your Script
Now that you’ve added the metadata, installing your script is simple.
Follow these steps to install the script in Firefox:

1. Save the script file as colors.user.js. The filename must end in .user.js
to be recognized as a Greasemonkey script.

2. In Firefox, choose File, Open from the menu.

3. Select your script from the Open File dialog.

4. After the script is displayed in the browser, select Tools, Install This
User Script.

5. An alert will display to inform you that the installation was success-
ful. The new user script is now running on all sites.

Both Greasemonkey and Trixie for IE will use the metadata you specified
to set the script’s included pages, description, and other options when you
install it.

After you’ve installed and enabled the script, any page you load will have
its paragraphs displayed in white text on a black background. For exam-
ple, Figure 23.4 shows the user script’s effect on a simple “Hello World”
script. Because the body text is enclosed in a <p> tag, it is displayed in
white on black.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating Your Own User Scripts 471

Greasemonkey API Functions
You can use all the DOM methods covered in this book to work with pages
in user scripts, along with JavaScript’s built-in functions. In addition to
these, Greasemonkey defines an API (application programming interface)
with a few functions that can be used exclusively in user scripts:

. GM_log(message, level)—Inserts a message into the JavaScript con-
sole. The level parameter indicates the severity of the message: 0 for
information, 1 for a warning, and 2 for an error.

. GM_setValue(variable, value)—Sets a variable stored by
Greasemonkey. These variables are stored on the local machine. They
are specific to the script that set them and can be used in the future
by the same script. (These are similar to cookies, but are not sent to a
server.)

. GM_getValue(variable)—Retrieves a value previously set with
GM_setValue.

. GM_registerMenuCommand(command, function)—Adds a command
to the browser menu. These commands appear under Tools, User
Script Commands. The command parameter is the name listed in the
menu, and function is a function in your script that the menu selec-
tion will activate.

. GM_xmlhttpRequest(details)—Requests a file from a remote server,
similar to the AJAX features described in Chapter 24, “AJAX: Remote
Scripting.” The details parameter is an object that can contain a
number of properties to control the request. See the Greasemonkey
documentation for all the properties you can specify.

FIGURE 23.4
A basic page altered by the color-
changing user script.

NOTE

You probably don’t want to make
a change this drastic to all sites
you visit. Instead, you can use
@include to make this script
affect only one or two sites
whose colors you find hard to
read. Don’t forget that you can
also change the colors in the
script to your own preference.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

472 CHAPTER 23 Greasemonkey: Enhancing the Web with JavaScript

Creating a Site-Specific Script
You might want to use a user script to fix a problem or add a feature to a
specific site. For example, you might want to remove all of the advertise-
ments that display on your Facebook profile page—there are numerous
Greasemonkey scripts at http://userscripts.org/ to address such an issue.
To create such custom scripts, in addition to using @include to specify the
site’s URL, you’ll need to know something about the site’s DOM.

You can use the DOM Inspector in Firefox (or the similar feature in
Internet Explorer’s developer toolbar) to browse the DOM for the site and
find the objects you want to work with. Depending on how they are
marked up, you can access them through the DOM:

. If an element has an id attribute, you can simply use
document.getElementById() in your script to find its object.

. If a nearby element has an id defined, you can use DOM methods to
find it—for example, if the parent element has an id, you can use a
method such as firstChild() to find the object you need.

. If all else fails, you can use document.getElementsByTagName() to
find all objects of a certain type—for example, all paragraphs. If you
need to refer to a specific one, you can use a loop and check each one
for a certain attribute.

As an example, Listing 23.3 shows a simple user script you could use as a
site-specific script to automatically fill out certain fields in forms.

LISTING 23.3 A User Script to Fill Out Form Fields Automatically
// ==UserScript==
// @name AutoForm
// @namespace http://www.thickbook.com/
// @description Fills in forms automatically
// @include *
// ==/UserScript==
// this function fills out form fields
//
var zTextFields = document.getElementsByTagName(“input”);
for (var i=0; i<zTextFields.length; i++) {
thefield=zTextFields[i].name;
if (!thefield) thefield=zTextFields[i].id;
// Set up your auto-fill values here
if (thefield == “yourname”) zTextFields[i].value=”Your Name Here”;
if (thefield == “phone”) zTextFields[i].value=”(xxx) xxx-xxxx”;
alert(“field:” + thefield + “ value: “ + zTextFields[i].value);

}

www.it-ebooks.info

http://userscripts.org/
http://www.it-ebooks.info/

ptg999

Creating Your Own User Scripts 473

This script uses getElementsByTagName() to find all the <input> elements
in a document, including text fields. It uses a for loop to examine each
one. If it finds a field with the name or id value “yourname” or “phone”, it
inserts the appropriate value.

To test this script, save it as autoform.user.js and install the user script as
described earlier in this chapter. To test it, save Listing 23.4 as form.html
and load it into Firefox—it happens to have both of the field names the
script looks for. The yourname and phone fields will be automatically filled
out with the value shown first in an alert, as shown in Figure 23.5.

LISTING 23.4 An HTML Form to Test AutoForm
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Auto-Fill Form Example</title>
</head>
<body>
<h1>Auto-Fill Form Example</h1>
<p>Please enter the following information:</p>
<form method=”post” action=””>
<p>Name:

<input type=”text” size=”20” name=”yourname” /></p>
<p>Address:

<input type=”text” size=”20” name=”address” /></p>
<p>Phone:

<input type=”text” size=”20” name=”phone” /></p>
<p><input type=”button” value=”Display” onclick=”display();” /></p>
</form>

</body>
</html>

To make it easy to test, Listing 23.3 doesn’t include specific sites in the
@include line. To make a true site-specific script, you would need to find
out the field names for a particular site, add if statements to the script to
fill them out, and use @include to make sure the script only runs on the
site.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

474 CHAPTER 23 Greasemonkey: Enhancing the Web with JavaScript

Debugging User Scripts
Debugging a user script is much like debugging a regular JavaScript
program—errors are displayed in the JavaScript Console in Firefox or in
an error message in Internet Explorer. Here are a few debugging tips:

. As with regular scripts, you can also use the alert() method to dis-
play information about what’s going on in your script.

. The browser may display a line number with an error message, but
when you’re working with user scripts, these line numbers are mean-
ingless—they refer neither to lines in your user script nor to the page
you’re currently viewing.

. Use the GM_log() method described earlier in this chapter to log
information about your script, such as the contents of variables, to
the JavaScript console.

. If you’re trying to write a cross-browser user script, watch for meth-
ods that are browser specific. See Chapter 21, “Using Unobtrusive
JavaScript,” for information about cross-browser issues.

. Watch for conflicts with any existing scripts on the page.

. If you’re using multiple user scripts, be sure they don’t conflict. Use
unique variable and function names in your scripts.

Most of the issues with user scripts are the same as for regular JavaScript.

FIGURE 23.5
The form-filling user script in
action.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating Your Own User Scripts 475

Creating a User Script
Now that you’ve learned the basics of Greasemonkey, you can try a more
complex—and more useful—example of a user script.

If you spend much time on the Web, you’ll find yourself needing to fill out web
forms often, and you probably type certain things—such as your name or
URL—into forms over and over. The user script you create here will let you
define macros for use in any text area. When you type a macro keyword (a
period followed by a code), and then type another character, the macro key-
word will be instantly replaced by the text you’ve defined. For example, you
can define a macro so that every time you type .cu, it will expand into the
text “See you later.”

Listing 23.5 shows the text area macro user script.

LISTING 23.5 The Text Area Macro User Script
// ==UserScript==
// @name TextMacro
// @namespace http://www.thickbook.com/
// @description expands macros in text areas as you type
// @include *
// ==/UserScript==
// this function handles the macro replacements
function textmacro(e) {

// define your macros here
zmacros = [
[“.mm”, “Michael Moncur”],
[“.js”, “JavaScript”],
[“.cu”, “See you later.”]

];
if (!e) var e = window.event;
// which textarea are we in?
thisarea= (e.target) ? e.target : e.srcElement;
// replace text
for (i=0; i<zmacros.length; i++) {

vv = thisarea.value;
vv = vv.replace(zmacros[i][0],zmacros[i][1]);
thisarea.value=vv;

}
}
// install the event handlers
var zTextAreas = document.getElementsByTagName(“textarea”);
for (var i=0; i<zTextAreas.length; i++) {

if (zTextAreas[i].addEventListener)
zTextAreas[i].addEventListener(“keydown”,textmacro,0);

else if (zTextAreas[i].attachEvent)
zTextAreas[i].attachEvent(“onkeydown”,textmacro);

}

TRY IT YOURSELF ▼

CAUTION

This script has been tested on
Greasemonkey 0.9.10 for
Firefox. Because browsers and
extensions are always chang-
ing, it might stop working at
some point.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

476 CHAPTER 23 Greasemonkey: Enhancing the Web with JavaScript

TRY IT YOURSELF▼

Creating a User Script
continued

How It Works
This user script begins with the usual comment metadata. The @include com-
mand specifies a wildcard, *, so the script will work on all sites. The actual
work is done in the textmacro function. This function begins by defining the
macros that will be available:

zmacros = [
[“.mm”, “Michael Moncur”],
[“.js”, “JavaScript”],
[“.cu”, “See you later.”]

];

This example defines three macros using a two-dimensional array. To make
the script useful to you, define your own. You can have any number of
macros—just add a comma after the last macro line and add your items
before the closing bracket.

Next, the function uses the target property to find the text area in which
you’re currently typing. Next, it uses a for loop to do a search and replace
within the text area’s value property for each of your macros.

The section of code after the textmacro() function sets up an event handler
for each text area. First, it uses getElementsByTagName() to find all the text
areas, and then it uses a for loop to add an onkeydown event handler to
each one.

Using This Script
To use this script, first make sure you’ve installed and enabled
Greasemonkey as described earlier this chapter. Save the script as
textmacro.user.js. You can then install the user script.

After the script is installed, try loading any page with a text area. You should
be able to type a macro, such as .jd or .js, followed by another character
such as a space, within the text area and see it instantly expand into the cor-
rect text.

NOTE

To avoid conflicts with existing
event handlers within web
pages, this example uses the
addEventListener() method
to add the event handler. This
method defines an event han-
dler without overwriting exist-
ing events. In Internet
Explorer, it uses the similar
attachEvent() method.

TIP

This script runs on all sites by
default. If you only want the
macros to work on certain
sites, you can change the
@include directive to specify
them. If the script causes
trouble on some sites, you
can exclude them with
@exclude.

Summary
In this chapter, you’ve learned how to use Greasemonkey for Firefox—and
its counterpart for Internet Explorer, Trixie—to enable user scripting in
your browser. You’ve learned how user scripts work and how to install
and manage them. Finally, you created two examples of functioning user
scripts.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Workshop 477

Q&A
Q. Is there any way to prevent users from using Greasemonkey while viewing

my site?

A. Because Greasemonkey affects only the user who installed it, it’s usually
harmless to allow it. If you still want to prevent its use, this is difficult, but
not impossible, and varies with different versions of Greasemonkey.
Search the Web to find current solutions.

Q. What if I want to do something more sophisticated, such as modifying
Firefox’s menu?

A. This capability does not exist in Greasemonkey, but Firefox extensions are
also written in JavaScript. In fact, you can compile a user script into a Firefox
extension, and then add more advanced features. See http://www.ghacks.
net/2009/08/31/greasemonkey-to-firefox-add-on-compiler/ for details.

Q. What happens when a new version of Firefox or Internet Explorer is
released?

A. Although I have faith in the Greasemonkey developers, there’s no guarantee
that this extension will work in future browser versions. If you’re concerned
about this, you might want to write your own Firefox extension instead.

Q. Are there limits to how much I can modify a page using Greasemonkey?

A. No—in fact, you can yank the entire content of the page’s DOM out and
replace it with HTML of your choosing using the innerHTML property. You’d
have to do quite a bit of work to make something as useful as the original
page, of course.

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before looking
at the “Answers” section that follows.

Quiz
1. Which of the following offers user scripting for Microsoft Internet Explorer?

a. Greasemonkey

b. Microsoft Live Scripting Toolbar

c. Trixie

www.it-ebooks.info

http://www.ghacks.net/2009/08/31/greasemonkey-to-firefox-add-on-compiler/
http://www.ghacks.net/2009/08/31/greasemonkey-to-firefox-add-on-compiler/
http://www.it-ebooks.info/

ptg999

478 CHAPTER 23 Greasemonkey: Enhancing the Web with JavaScript

2. Which of the following is not a valid Greasemonkey API function?

a. GM_log()

b. GM_alert()

c. GM_setValue()

3. Which is the correct @include directive to run a script on both
www.google.com and google.com?

a. @include *.google.com

b. @include www.google.com.*

c. @include google.com

Answers
1. c. Trixie is a user script add-on for Internet Explorer.

2. b. There is no GM_alert() method, although the standard alert()
method will work in a user script.

3. a. Using @include *.google.com will run the script on any page on any
site within the google.com domain.

Exercises
. Modify the color-changing user script in Listing 23.2 to use different col-

ors and add another style attribute—for example, use style.fontSize
to change the font size.

. The color-changing example works on paragraphs, but text often
appears in other places, such as bullet lists. Modify Listing 23.2 to
make the changes to tags and paragraphs.

. Currently, the macro example in the Try It Yourself section only works on
text inputs that use <textarea> tags. Modify the script in Listing 23.3
to work on <input> tags also. (You’ll need to add a second call
getElementsByTagName() and a loop to add the event handlers.)

www.it-ebooks.info

www.google.com
www.google.com
http://www.it-ebooks.info/

ptg999

Remote scripting, also known as AJAX (Asynchronous JavaScript and XML), is
a browser feature that enables JavaScript to escape its client-side boundaries
and work with files on a web server or with server-side programs. In this
chapter, you’ll learn how AJAX works and create two working examples.

Introducing AJAX
Traditionally, one of the major limitations of JavaScript is that it couldn’t
communicate with a web server because it is a client-side technology—
it stays within the browser. For example, you could create a game in
JavaScript, but keeping a list of high scores stored on a server would
require submitting a page to a server-side form, which JavaScript could not
do (because it wasn’t meant to do that).

Speaking purely about user interactions, one of the limitations of web
pages in general was that getting data from the user to the server, or from
the server to the user, generally required a new page to be loaded and dis-
played. But in 2011, you likely run across websites every day that enable
you to interact with content without loading a new page every time you
click or submit a button.

AJAX is the answer to both of these problems. AJAX refers to JavaScript’s
capability to use a built-in object, XMLHttpRequest, to communicate with a
web server without submitting a form or loading a page. This object is
supported by Internet Explorer, Firefox, Chrome, and all other modern
browsers.

Although the term AJAX was coined in 2005, XMLHttpRequest has been
supported by browsers for years—it was developed by Microsoft and first
appeared in Internet Explorer 5. Nonetheless, it has only recently become a

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How AJAX enables
JavaScript to communicate
with server-side programs
and files

. Using the XMLHttpRequest
object’s properties and
methods

. Creating your own AJAX
library

. Using AJAX to read data
from an XML file

. Debugging AJAX applica-
tions

. Using AJAX to communi-
cate with a PHP program

CHAPTER 24
AJAX: Remote Scripting

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

480 CHAPTER 24 AJAX: Remote Scripting

popular way of developing applications because browsers that support it
have become more common. Another name for this technique is remote
scripting.

The JavaScript Client (Front End)
JavaScript traditionally only has one way of communicating with a
server—submitting a form. Remote scripting allows for much more versa-
tile communication with the server. The A in AJAX stands for asynchronous,
which means that the browser (and the user) isn’t left hanging while wait-
ing for the server to respond. Here’s how a typical AJAX request works:

1. The script creates an XMLHttpRequest object and sends it to the web
server. The script can continue after sending the request.

2. The server responds by sending the contents of a file or the output of
a server-side program.

3. When the response arrives from the server, a JavaScript function is
triggered to act on the data.

4. Because the goal is a more responsive user interface, the script usual-
ly displays the data from the server using the DOM, eliminating the
need for a page refresh.

In practice, this happens quickly, but even with a slow server, it can still
work. Also, because the requests are asynchronous, more than one can be
in progress at a time.

The Server-Side Script (Back End)
The part of an application that resides on the web server is known as the
back end. The simplest back end is a static file on the server—JavaScript can
request the file with XMLHttpRequest, and then read and act on its con-
tents. More commonly, the back end is a server-side program running in a
language such as PHP, Perl, or Ruby.

JavaScript can send data to a server-side program using GET or POST meth-
ods, the same two ways an HTML form works. In a GET request, the data is
encoded in the URL that loads the program. In a POST request, it is sent
separately and can contain more data.

NOTE

The term AJAX first appeared in
an online article by Jesse
James Garrett of Adaptive Path
on February 18, 2005. It still
appears here: http://www.
adaptivepath.com/ideas/
ajax-new-approach-web-
applications.

www.it-ebooks.info

http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.it-ebooks.info/

ptg999

Introducing AJAX 481

XML
The X in AJAX stands for XML (Extensible Markup Language), the univer-
sal markup language upon which the latest versions of HTML are built. A
server-side file or program can send data in XML format, and JavaScript
can act on the data using its methods for working with XML. These are
similar to the DOM methods you’ve already used—for example, you can
use the getElementsByTagName() method to find elements with a particu-
lar tag in the data.

Keep in mind that XML is just one way to send data, and not always the
easiest. The server could just as easily send plain text, which the script
could display, or HTML, which the script could insert into the page using
the innerHTML property. Some programmers have even used server-side
scripts to return data in JavaScript format, which can be easily executed
using the eval function.

Popular Examples of AJAX
Although typical HTML and JavaScript is used to build web pages and
sites, AJAX techniques often result in web applications—web-based services
that perform work for the user. Here are a few well-known examples of
AJAX:

. Google’s Gmail mail client (http://mail.google.com/) uses AJAX to
make a fast-responding email application. You can delete messages
and perform other tasks without waiting for a new page to load.

. Amazon.com uses AJAX for some functions. For example, if you
click on one of the Yes/No voting buttons for a product comment, it
sends your vote to the server and a message appears next to the but-
ton thanking you, all without loading a page.

. Digg (http://www.digg.com) is a site where users can submit news
stories and vote to determine which ones are displayed on the front
page. The voting happens inside the page next to each story.

These are just a few examples. Subtle bits of remote scripting are appearing
all over the Web, and you might not even notice them—you’ll just be
annoyed a little bit less often at waiting for a page to load.

NOTE

JSON (JavaScript Object
Notation) takes the idea of
encoding data in JavaScript and
formalizes it. See http://www.
json.org/ for details and code
examples in many languages.

www.it-ebooks.info

http://www.digg.com
http://www.json.org/
http://www.json.org/
http://mail.google.com/
http://www.it-ebooks.info/

ptg999

482 CHAPTER 24 AJAX: Remote Scripting

AJAX Frameworks and Libraries
Because remote scripting can be complicated, especially considering the
browser differences you’ll learn about later this chapter, several frame-
works and libraries have been developed to simplify AJAX programming.

For starters, three of the libraries described earlier in this book, JQuery,
Prototype, and Script.aculo.us, include functions to simplify remote script-
ing. There are also some dedicated libraries for languages such as PHP,
Python, and Ruby.

Some libraries are designed to add server-side functions to JavaScript,
whereas others are designed to add JavaScript interactivity to a language
like PHP. You’ll build a simple library later this chapter that will be used to
handle the remote scripting functions for this chapter’s examples.

Limitations of AJAX
Remote scripting is a relatively new technology, so there are some things it
can’t do, and some things to watch out for. Here are some of the limita-
tions and potential problems of AJAX:

. The script and the XML data or server-side program it requests data
from must be on the same domain.

. Some older browsers and some less common browsers (such as
mobile browsers) don’t support XMLHttpRequest, so you can’t count
on its availability for all users.

. Requiring AJAX might compromise the accessibility of a site for dis-
abled users.

. Users may still be accustomed to seeing a new page load each time
they change something, so there might be a learning curve for them
to understand an AJAX application.

As with other advanced uses of JavaScript, the best approach is to be
unobtrusive—make sure there’s still a way to use the site without AJAX
support if possible, and use feature sensing to prevent errors on browsers
that don’t support it. See Chapter 21, “Using Unobtrusive JavaScript,” for
more details.

NOTE

See Chapter 22, “Using Third-
Party Libraries,” for information
about using third-party libraries
with JavaScript.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Using XMLHttpRequest 483

Using XMLHttpRequest
You will now look at how to use XMLHttpRequest to communicate with a
server. This might seem a bit complex, but the process is the same for any
request. Later, you will create a reusable code library to simplify this
process.

Creating a Request
The first step is to create an XMLHttpRequest object. To do this, you use the
new keyword, as with other JavaScript objects. The following statement cre-
ates a request object in some browsers:

ajaxreq = new XMLHttpRequest();

The previous example works with Firefox, Chrome, Internet Explorer 7
and 8, and other modern browsers, but not with Internet Explorer 5 or 6. It
is up to you whether you want to support these browsers or not because
their percentages of use are very low. However, some institutions might be
stuck with a lot of IE6 browsers installed at workstations, so your mileage
may vary.

From this point forward, the sample code will only support IE7 and
beyond (modern browsers), but if you want to support these old browsers,
you have to use ActiveX syntax:

ajaxreq = new ActiveXObject(“Microsoft.XMLHTTP”);

The library section later this chapter demonstrates how to use the correct
method depending on the browser in use. In either case, the variable you
use (ajaxreq in the example) stores the XMLHttpRequest object. You’ll use
the methods of this object to open and send a request, as explained in the
following sections.

Opening a URL
The open() method of the XMLHttpRequest object specifies the filename as
well as the method in which data will be sent to the server: GET or POST.
These are the same methods supported by web forms.

ajaxreq.open(“GET”,”filename”);

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

484 CHAPTER 24 AJAX: Remote Scripting

For the GET method, the data you send is included in the URL. For exam-
ple, this command opens the search.php program and sends the value
“John” for the query parameter:

ajaxreq.open(“GET”,”search.php?query=John”);

Sending the Request
You use the send() method of the XMLHttpRequest object to send the
request to the server. If you are using the POST method, the data to send is
the argument for send(). For a GET request, you can use the null value
instead:

ajaxreq.send(null);

Awaiting a Response
After the request is sent, your script will continue without waiting for a
result. Because the result could come at any time, you can detect it with an
event handler. The XMLHttpRequest object has an onreadystatechange
event handler for this purpose. You can create a function to deal with the
response and set it as the handler for this event:

ajaxreq.onreadystatechange = MyFunc;

The request object has a property, readyState, that indicates its status, and
this event is triggered whenever the readyState property changes. The
values of readyState range from 0 for a new request to 4 for a complete
request, so your event-handling function usually needs to watch for a
value of 4.

Although the request is complete, it might not have been successful. The
status property is set to 200 if the request succeeded or an error code if it
failed. The statusText property stores a text explanation of the error or
“OK” for success.

Interpreting the Response Data
When the readyState property reaches 4 and the request is complete, the
data returned from the server is available to your script in two properties:
responseText is the response in raw text form, and responseXML is the
response as an XML object. If the data was not in XML format, only the
text property will be available.

CAUTION

As usual with event handlers,
be sure to specify the function
name without parentheses.
With parentheses, you’re refer-
ring to the result of the func-
tion; without them, you’re refer-
ring to the function itself.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating a Simple AJAX Library 485

JavaScript’s DOM methods are meant to work on XML, so you can use
them with the responseXML property. Later this chapter, you’ll use the
getElementsByTagName() method to extract data from XML.

Creating a Simple AJAX Library
You should be aware by now that AJAX requests can be a bit complex. To
make things easier, you can create an AJAX library. This is a JavaScript file
that provides functions that handle making a request and receiving the
result, which you can reuse any time you need AJAX functions.

This library will be used in the two examples later this chapter. Listing 24.1
shows the complete AJAX library, including the special case for older
browsers.

LISTING 24.1 The AJAX Library
// global variables to keep track of the request
// and the function to call when done
var ajaxreq=false, ajaxCallback;
// ajaxRequest: Sets up a request
function ajaxRequest(filename) {

try {
// Firefox / IE7 / Others
ajaxreq= new XMLHttpRequest();
} catch (error) {
try {
// IE 5 / IE 6
ajaxreq = new ActiveXObject(“Microsoft.XMLHTTP”);

} catch (error) {
return false;

}
}
ajaxreq.open(“GET”, filename);
ajaxreq.onreadystatechange = ajaxResponse;
ajaxreq.send(null);

}
// ajaxResponse: Waits for response and calls a function
function ajaxResponse() {

if (ajaxreq.readyState !=4) return;
if (ajaxreq.status==200) {

// if the request succeeded...
if (ajaxCallback) ajaxCallback();

} else alert(“Request failed: “ + ajaxreq.statusText);
return true;

}

The following sections explain how this library works and how to use it.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

486 CHAPTER 24 AJAX: Remote Scripting

The ajaxRequest Function
The ajaxRequest function handles all the steps necessary to create and
send an XMLHttpRequest. First, it creates the XMLHttpRequest object. As
noted before, this requires a different command for older browsers and
will cause an error if the wrong one executes, so try and catch are used to
create the request. First the standard method is used, and if it causes an
error, the ActiveX method is tried. If that also causes an error, the ajaxreq
variable is set to false to indicate that AJAX is unsupported.

The ajaxResponse Function
The ajaxResponse function is used as the onreadystatechange event han-
dler. This function first checks the readyState property for a value of 4. If
it has a different value, the function returns without doing anything.

Next, it checks the status property for a value of 200, which indicates the
request was successful. If so, it runs the function stored in the
ajaxCallback variable. If not, it displays the error message in an alert box.

Using the Library
To use this library, follow these steps:

1. Save the library file as ajax.js in the same folder as your HTML
documents and scripts.

2. Include the script in your document with a <script src> tag. It
should be included before any other scripts that use its features.

3. In your script, create a function to be called when the request is com-
plete and set the ajaxCallback variable to the function.

4. Call the ajaxRequest() function. Its parameter is the filename of the
server-side program or file. (This library supports GET requests only,
so you don’t need to specify the method.)

5. Your function specified in ajaxCallback will be called when the
request completes successfully, and the global variable ajaxreq will
store the data in its responseXML and responseText properties.

The two remaining examples in this chapter make use of this library to cre-
ate AJAX applications.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating an AJAX Quiz Using the Library 487

Creating an AJAX Quiz Using the
Library
Now that you have a reusable AJAX library, you can use it to create
JavaScript applications that take advantage of remote scripting. This first
example displays quiz questions on a page and prompts you for the
answers.

Rather than including the questions in the script, this example reads the
quiz questions and answers from an XML file on the server as a demon-
stration of AJAX.

The HTML File
The HTML for this example is straightforward. It defines a simple form
with an Answer field and a Submit button, along with some hooks for the
script. The HTML for this example is shown in Listing 24.2.

LISTING 24.2 The HTML File for the Quiz Example
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Ajax Quiz Test</title>
<script type=”text/javascript” src=”ajax.js”></script>
</head>
<body>
<h1>Ajax Quiz Example</h1>
<form method=”post” action=””>
<p><input type=”button” value=”Start the Quiz” id=”startq” /></p>
<p>Question:
[Press Button to Start Quiz]</p>
<p>Answer:
<input type=”text” name=”answer” id=”answer” /></p>
<p><input type=”button” value=”Submit Answer” id=”submit” /></p>
</form>

<script type=”text/javascript” src=”quiz.js”></script>
</body>

</html>

This HTML file includes the following elements:

. The <script> tag in the <head> section includes the AJAX library
you created in the previous section from the ajax.js file.

CAUTION

Unlike most of the scripts in
this book, this example requires
a web server. It will not work on
a local machine due to
browsers’ security restrictions
on remote scripting.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

488 CHAPTER 24 AJAX: Remote Scripting

. The <script> tag in the <body> section includes the quiz.js file,
which will contain the quiz script.

. The tag sets up a place for the question to be
inserted by the script.

. The text field with the id value “answer” is where the user will
answer the question.

. The button with the id value “submit” will submit an answer.

. The button with the id value “startq” will start the quiz.

You can test the HTML document at this time by placing the file on your
web server and accessing it via the URL, but the buttons won’t work until
you add the XML and JavaScript files, as you’ll learn about in the next two
sections.

The XML File
The XML file for the quiz is shown in Listing 24.3. I’ve filled it with a few
JavaScript questions, but it could easily be adapted for another purpose.

LISTING 24.3 The XML File Containing the Quiz Questions and Answers
<?xml version=”1.0” ?>
<questions>

<q>What DOM object contains URL information for the window?</q>
<a>location
<q>Which method of the document object finds the

object for an element?</q>
<a>getElementById
<q>If you declare a variable outside a function,

is it global or local?</q>
<a>global
<q>What is the formal standard for the JavaScript language

called?</q>
<a>ECMAScript

</questions>

The <questions> tag encloses the entire file and each question and answer
are enclosed in <q> and <a> tags. Remember, this is XML, not HTML—
these are not standard HTML tags, but tags that were created for this
example. Because this file will be used only by your script, it does not need
to follow a standard format.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating an AJAX Quiz Using the Library 489

To use this file, save it as questions.xml in the same folder as the HTML
document. It will be loaded by the script you create in the next section.

Of course, with a quiz this small, you could have made things easier by
storing the questions and answers in a JavaScript array. But imagine a
much larger quiz, with thousands of questions, or a server-side program
that pulls questions from a database, or even a hundred different files with
different quizzes to choose from, and you can see the benefit of using a
separate XML file.

The JavaScript File
Because you have a separate library to handle the complexities of making
an AJAX request and receiving the response, the script for this example
only needs to deal with the action for the quiz itself. Listing 24.4 shows the
JavaScript file for this example.

LISTING 24.4 The JavaScript File for the Quiz Example
// global variable qn is the current question number
var qn=0;
// load the questions from the XML file
function getQuestions() {

obj=document.getElementById(“question”);
obj.firstChild.nodeValue=”(please wait)”;
ajaxCallback = nextQuestion;
ajaxRequest(“questions.xml”);

}
// display the next question
function nextQuestion() {

questions = ajaxreq.responseXML.getElementsByTagName(“q”);
obj=document.getElementById(“question”);
if (qn < questions.length) {

q = questions[qn].firstChild.nodeValue;
obj.firstChild.nodeValue=q;

} else {
obj.firstChild.nodeValue=”(no more questions)”;

}
}
// check the user’s answer
function checkAnswer() {

answers = ajaxreq.responseXML.getElementsByTagName(“a”);
a = answers[qn].firstChild.nodeValue;
answerfield = document.getElementById(“answer”);
if (a == answerfield.value) {

alert(“Correct!”);
}
else {

alert(“Incorrect. The correct answer is: “ + a);

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

490 CHAPTER 24 AJAX: Remote Scripting

}
qn = qn + 1;
answerfield.value=””;
nextQuestion();

}
// Set up the event handlers for the buttons
obj=document.getElementById(“startq”);
obj.onclick=getQuestions;
ans=document.getElementById(“submit”);
ans.onclick=checkAnswer;

This script consists of the following:

. The first var statement defines a global variable, qn, which will keep
track of which question is currently displayed. It is initially set to
zero for the first question.

. The getQuestions() function is called when the user clicks the Start
Quiz button. This function uses the AJAX library to request the con-
tents of the questions.xml file. It sets the ajaxCallback variable to
the nextQuestion() function.

. The nextQuestion() function is called when the AJAX request is
complete. This function uses the getElementsByTagName() method
on the responseXML property to find all the questions (<q> tags) and
store them in the questions array.

. The checkAnswer() function is called when the user submits an
answer. It uses getElementsByTagName() to store the answers (<a>
tags) in the answers array, and then compares the answer for the cur-
rent question with the user’s answer and displays an alert indicating
whether they were right or wrong.

. The script commands after this function set up two event handlers.
One attaches the getQuestions() function to the Start Quiz button to
set up the quiz; the other attaches the checkAnswer() function to the
Submit button.

Testing the Quiz
To try this example, you’ll need all four files in the same folder: ajax.js (the
AJAX library), quiz.js (the quiz functions), questions.xml (the questions),
and the HTML document. All but the HTML document need to have the
correct filenames so they will work correctly. Also, remember that because
it uses AJAX, this example requires a web server.

LISTING 24.4 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Debugging AJAX Applications 491

Figure 24.1 shows the quiz in action. The second question has just been
answered.

FIGURE 24.1
The quiz example loaded in a web
browser.

Debugging AJAX Applications
Dealing with remote scripting means working with several languages at
once—JavaScript, server-side languages such as PHP, XML, and of course
HTML. Thus, when you find an error, it can be difficult to track down.
Here are some tips for debugging AJAX applications:

. Be sure all filenames are correct and that all files for your application
are in the same folder on the server.

. If you are using a server-side language, test it without the script:
Load it in the browser and make sure it works; try passing variables
to it in the URL and checking the results.

. Check the statusText property for the results of your request—an
alert message is helpful here. It is often a clear message such as
“File not found” that might explain the problem.

. If you’re using a third-party AJAX library, check its documentation—
many libraries have built-in debugging features you can enable to
examine what’s going on.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

492 CHAPTER 24 AJAX: Remote Scripting

TRY IT YOURSELF▼

Making a Live Search
Form

One of the most impressive demonstrations of AJAX is live search: Whereas a
normal search form requires that you click a button and wait for a page to
load to see the results, a live search displays results within the page immedi-
ately as you type in the search field. As you type letters or press the back-
space key, the results are updated instantly to make it easy to find the result
you need.

Using the AJAX library you created earlier, live search is not too hard to imple-
ment. This example will use a PHP program on the server to provide the
search results, and can be easily adapted to any search application.

The HTML Form
The HTML for this example simply defines a search field and leaves some
room for the dynamic results. The HTML document is shown in Listing 24.5.

LISTING 24.5 The HTML File for the Live Search Example
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Ajax Live Search Example</title>
<script type=”text/javascript” src=”ajax.js”></script>
</head>
<body>
<h1>Ajax Live Search Example</h1>
<form method=”get” action=””>
<p>Search for:
<input type=”text” size=”40” id=”searchlive” /></p>
<div id=”results”>
<ul id=”list”>
[Search results will display here.]

</div>

</form>
<script type=”text/javascript” src=”search.js”></script>
</body>

</html>

This HTML document includes the following:

. The <script> tag in the <head> section includes the AJAX library, ajax.js.

. The <script> tag in the <body> section includes the search.js script,
which you’ll create next.

CAUTION

Once again, because it uses
AJAX, this example requires a
web server. You’ll also need
PHP to be installed, which it is
by default by the vast majority
of hosting services.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Debugging AJAX Applications 493

Making a Live Search
Form
continued

. The <input> element with the id value “searchlive” is where you’ll
type your search query.

. The <div> element with the id value “results” will act as a container
for the dynamically fetched results. A bulleted list is created with a
tag; this will be replaced with a list of results when you start typing.

The PHP Back End
Next, you’ll need a server-side program to produce the search results. This
PHP program includes a list of names stored in an array. It will respond to a
JavaScript query with the names that match what the user has typed so far.
The names will be returned in XML format. For example, here is the output of
the PHP program when searching for “smith”:

<names>
<name>John Smith</name>
<name>Jane Smith</name>
</names>

Although the list of names is stored within the PHP program here for simplici-
ty, in a real application it would more likely be stored in a database—and this
script could easily be adapted to work with a database containing thousands
of names. The PHP program is shown in Listing 24.6.

LISTING 24.6 The PHP Code for the Live Search Example
<?php
header(“Content-type: text/xml”);
$names = array (
“John Smith”, “John Jones”, “Jane Smith”, “Jane Tillman”,
“Abraham Lincoln”, “Sally Johnson”, “Kilgore Trout”,
“Bob Atkinson”, “Joe Cool”, “Dorothy Barnes”,
“Elizabeth Carlson”, “Frank Dixon”, “Gertrude East”,
“Harvey Frank”, “Inigo Montoya”, “Jeff Austin”,
“Lynn Arlington”, “Michael Washington”, “Nancy West”);

if (!$query) {
$query=$_GET[‘query’];

}
echo “<?xml version=\”1.0\” ?>\n”;
echo “<names>\n”;
while (list($k,$v)=each($names)) {

if (stristr($v,$query)) {
echo “<name>$v</name>\n”;

}
}
echo “</names>\n”;
?>

TRY IT YOURSELF ▼

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

494 CHAPTER 24 AJAX: Remote Scripting

TRY IT YOURSELF▼

Making a Live Search
Form
continued

This chapter is too small to teach you PHP, but here’s a summary of how this
program works:

. The header statement sends a header indicating that the output is in
XML format. This is required for XMLHttpRequest to correctly use the
responseXML property.

. The $names array stores the list of names. You can use a much longer
list of names without changing the rest of the code.

. The program looks for a GET variable called query and uses a loop to
output all the names that match the query.

. Because PHP can be embedded in an HTML file, the <?php and ?> tags
indicate that the code between them should be interpreted as PHP.

Save the PHP program as search.php in the same folder as the HTML file.
You can test it by typing a query such as search.php?query=John in the
browser’s URL field. Use the View Source command to view the XML result.

The JavaScript Front End
Finally, the JavaScript for this example is shown in Listing 24.7.

LISTING 24.7 The JavaScript File for the Live Search Example
// global variable to manage the timeout
var t;
// Start a timeout with each keypress
function StartSearch() {

if (t) window.clearTimeout(t);
t = window.setTimeout(“LiveSearch()”,200);

}
// Perform the search
function LiveSearch() {

// assemble the PHP filename
query = document.getElementById(“searchlive”).value;
filename = “search.php?query=” + query;
// DisplayResults will handle the Ajax response
ajaxCallback = DisplayResults;
// Send the Ajax request
ajaxRequest(filename);

}
// Display search results
function DisplayResults() {

// remove old list
ul = document.getElementById(“list”);
div = document.getElementById(“results”);
div.removeChild(ul);

NOTE

If you want to learn more
about PHP, try Sams Teach
Yourself PHP, MySQL and
Apache All-in-One (ISBN:
067232976X).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Debugging AJAX Applications 495

Making a Live Search
Form
continued

// make a new list
ul = document.createElement(“ul”);
ul.id=”list”;
names = ajaxreq.responseXML.getElementsByTagName(“name”);
for (i = 0; i < names.length; i++) {

li = document.createElement(“li”);
name = names[i].firstChild.nodeValue;
text = document.createTextNode(name);
li.appendChild(text);
ul.appendChild(li);

}
if (names.length==0) {

li = document.createElement(“li”);
li.appendChild(document.createTextNode(“No results”));
ul.appendChild(li);

}
// display the new list
div.appendChild(ul);

}
// set up event handler
obj=document.getElementById(“searchlive”);
obj.onkeydown = StartSearch;

This script includes the following components:

. A global variable, t, is defined. This will store a pointer to the timeout
used later in the script.

. The StartSearch() function is called when the user presses a key. This
function uses setTimeout() to call the LiveSearch() function after a
200-millisecond delay. The delay is necessary so that the key the user
types has time to appear in the search field.

. The LiveSearch() function assembles a filename that combines
search.php with the query in the search field and launches an AJAX
request using the library’s ajaxRequest() function.

. The DisplayResults() function is called when the AJAX request is com-
plete. It deletes the bulleted list from the <div id=”results”> section,
and then assembles a new list using the W3C DOM and the AJAX
results. If there were no results, it displays a “No results” message in
the list.

. The final lines of the script set the StartSearch() function up as an
event handler for the onkeydown event of the search field.

TRY IT YOURSELF ▼
LISTING 24.7 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

496 CHAPTER 24 AJAX: Remote Scripting

Summary
In this chapter, you’ve learned how AJAX, or remote scripting, allows
JavaScript to communicate with a web server. You created a reusable AJAX
library that can be used to create any number of AJAX applications, and
you created an example using an XML file. Finally, you created a live
search form using AJAX and PHP.

TRY IT YOURSELF▼

Making a Live Search
Form
continued

Making It All Work
To try this example, you’ll need three files on a web server: ajax.js (the
library), search.js (the search script), and the HTML file. Figure 24.2 shows
this example in action.

FIGURE 24.2
The live search example as dis-
played in the browser.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

497

Q&A
Q. What happens if the server is slow, or never responds to the request?

A. This is another reason you should use AJAX as an optional feature—
whether caused by the server or by the user’s connection, there will be
times when a request is slow to respond or never responds. In this
case, the callback function will be called late or not at all. This can
cause trouble with overlapping requests; for example, in the live search
example, an erratic server might cause the responses for the first few
characters typed to come in a few seconds apart, confusing the user.
You can remedy this by checking the readyState property to make sure
a request is not already in progress before you start another one.

Q. In the live search example, why is the onkeydown event handler neces-
sary? Wouldn’t the onchange event be easier to use?

A. Although onchange tells you when a form field has changed, it is not
triggered until the user moves on to a different field—it doesn’t work
for “live” search, so you have to watch for key presses instead. The
onkeypress handler would work, but in some browsers it doesn’t detect
the Backspace key, and it’s nice to have the search update when you
backspace to shorten the query.

Workshop
The workshop contains quiz questions and exercises to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. Which of the following is the A in AJAX?

a. Advanced

b. Asynchronous

c. Application

Workshop

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

498 CHAPTER 24 AJAX: Remote Scripting

2. Which property of an XMLHttpRequest object indicates whether the
request was successful?

a. status

b. readyState

c. success

3. True or False: To support old versions of Internet Explorer, you must cre-
ate an ActiveX object rather than an XMLHttpRequest object when using
AJAX.

Answers
1. b. AJAX stands for Asynchronous JavaScript and XML.

2. a. The status property indicates whether the request was successful;
readyState indicates whether the request is complete, but does not
indicate success.

3. True. Internet Explorer 5 and 6 require ActiveX, whereas versions of
Internet Explorer after version 7 support the XMLHttpRequest object
natively.

Exercises
. Build your own XML file of questions and answers on your favorite topic

and try it with the quiz example.

. Use the AJAX library to add an AJAX feature to your site or create a sim-
ple example of your own.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

If you’ve ever used an online mapping tool such as MapQuest or Google
Maps, you’ve no doubt experienced the need to print a web page.
Similarly, the proliferation of coupons offered only online, purchase
receipts for items from online resellers, and web-based flight check-in and
the ability to print boarding passes from your home computer have
increased the need for print-friendly pages. It’s true, not all web pages are
designed entirely for viewing on the screen!

You might not realize this, but it’s possible to specifically design and offer
print-friendly versions of your pages for users who want to print a copy
for offline reading—something that Google Maps offers after showing you
the on-screen version of content. CSS makes it easy to create web pages
that will change appearance based on how they are viewed. In this chapter,
you learn how to create such pages.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. What makes a page print-
friendly

. How to apply a media-
specific style sheet

. How to create a style
sheet for print pages

. How to view your web page
in print preview mode

CHAPTER 25
Creating Print-Friendly Web Pages

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

500 CHAPTER 25 Creating Print-Friendly Web Pages

What Makes a Page Print-Friendly?
It’s important to point out that some web pages are print-friendly already.
If your pages use white backgrounds with dark contrasting text and few
images, you might not even need to concern yourself with a special print-
friendly version. On the other hand, pages with dark backgrounds,
dynamic links, and several images might prove to be unwieldy for the
average printer.

The main things to keep in mind as you consider what it takes to make
your pages more print-friendly are the limitations imposed by the medi-
um. In other words, what is it about a printed page that makes it uniquely
different from a computer screen? The obvious difference is size—a printed
page is at a fixed size, typically 8 1⁄2 by 11 inches, whereas the size of
screens can vary greatly. In addition to size, printed pages also have color
limitations (even on color printers). Very few users want to waste the ink
required to print a full-color background when they really just want to
print the text on the page.

TRY IT YOURSELF▼

Reviewing Your
Content for Print-
Friendliness

As you work your way through this chapter, consider any of your own web
pages that might look good in print. Then think about what you would want to
change about them to make them look even better on the printed page. Here
are some ideas to consider:

. Even against warnings in previous chapters, do you have pages that
use a patterned background image or an unusual background color with
contrasting text? This kind of page can be difficult to print because of
the background, so you might consider offering a print version of the
page that doesn’t use a custom background image or color and simply
uses black text. When preparing a page for printing, stick to black text
on a white background if possible.

. Do your pages include lots of links? If so, you might consider changing
the appearance of links for printing so that they don’t stand out—
remove any underlining, for example. Remember, you can’t click a piece
of paper!

. Finally, is every image on your page absolutely essential? Colorful
images cost valuable ink to print on most printers, so you might consid-
er leaving some, if not all, images out of your print-friendly pages.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

What Makes a Page Print-Friendly? 501

Most users also aren’t interested in printing more than the text that serves
as the focus on the page. For example, Figure 25.1 shows a travel route
mapped out from Independence, Missouri to Oregon City, Oregon (an
approximation of the historic Oregon Trail).

FIGURE 25.1
This page isn’t very print-friendly
due to the form inputs and large
image with its own display controls.

The page shown in Figure 25.1 contains form input fields, a large image
that can itself be controlled (moved, zoomed, and so on), and other ancil-
lary items that you come to expect in web content. Above the map appears
a set of Actions that you can perform, one of which is a link to print the
page. At this point, you might wonder why you can’t just click the Print
button on your web browser. You certainly can do this, but that command
prints the page as it is shown on your screen—complete with the form
input fields and graphical elements, when all you really want to know are
the turns you need to make when driving this route.

If you click the Print link in the body of the page, your web browser will
display a page (see Figure 25.2) that Google has formatted specifically to
be printed.

As shown in the figure, the print-friendly version of this page represents a
significant improvement over the original, at least from the perspective of
a printer. All the form inputs and images were removed.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

502 CHAPTER 25 Creating Print-Friendly Web Pages

In the spirit of giving you a better grasp on what, specifically, to consider
as you move toward creating print-friendly pages, following is a list of
changes you should at least consider:

. Remove the background of the page, which effectively gives the
printed page a white background.

. Change text colors to black; it’s okay to have some color in the text
but black is preferred.

. Make sure that the font size is large enough that the page can be easi-
ly read when printed. You might have to test some different sizes.

. Remove link formatting or simply revert to a basic underlined link.
Some designers like to retain an underline just so that a visitor
knows that a link exists in the original page.

. Remove any and all nonessential images. This typically includes any
images that aren’t critical to conveying the content in the page, such
as navigation buttons, most ads, and animated images.

In addition to these suggestions, you might find it useful to add a byline
with information about the author of the page, along with a URL for the
page and copyright information. This is information that could potentially
get lost after the user leaves your website and has only the printed version
of the page in hand.

FIGURE 25.2
The print-friendly version of the
page isolates the text of the driv-
ing instructions so that it can be
printed by itself.

NOTE

If the font of printer-specific
pages is sans serif, some web
designers recommend changing
the font to serif, which is con-
sidered easier to read in print.
If you use a sans serif font on
your pages, it’s up to you to
decide whether you want to
maintain the core look of a
page when it’s printed—which
means you don’t change the
font to serif.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Applying a Media-Specific Style Sheet 503

You probably don’t need to make these changes to your pages just yet. The
idea is to plant the seed of what constitutes a print-friendly page so that
you can do a better job of creating a printer-specific style sheet. That’s
right: It’s possible to create a style sheet that is applied to pages only when
they are printed. You learn this in the next section.

Applying a Media-Specific Style
Sheet
Figure 25.1 showed how a small printer icon with a link enables you to
view a special print-friendly version of a page. This type of icon is popular
on many news sites, and it’s an important feature because you otherwise
might not want to hassle with printing a page and wasting paper and ink
on the graphics and ads that accompany articles. Although the printer icon
and link approach is intuitive and works great, there is an option that does
not require these specific links to print-friendly content.

This option involves using a print-specific style sheet that is automatically
applied to a page when the user elects to print the page. CSS supports the
concept of media-specific style sheets, which are style sheets that target a par-
ticular medium, such as the screen or printer. CSS doesn’t stop with those
two forms of media, however. Check out the following list of specific
media types that CSS 2 enables you to support with a unique style sheet:

. all—For all devices

. aural—For speech synthesizers (called speech in CSS 1 media types)

. braille—For Braille tactile feedback devices

. embossed—For paged Braille printers

. handheld—For handheld devices with limited screen size and band-
width

. print—For printed material and documents viewed on screen in
Print Preview mode

. projection—For projected presentations

. screen—For color computer screens

. tty—For devices using a fixed-pitch character grid (such as a termi-
nal, teletype, or handheld devices with limited displays)

. tv—For television-type devices, which are typically low resolution,
color and have limited ability to scroll

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

504 CHAPTER 25 Creating Print-Friendly Web Pages

Perhaps the most interesting of these media is the aural type, which allows
for web pages that can be read aloud or otherwise listened to. Clearly, the
architects of CSS envision a Web with a much broader reach than we cur-
rently think of as we design pages primarily for computer screens.
Although you probably don’t need to worry too much about aural web
page design just yet, it serves as a good heads-up as to what might be on
the horizon.

The good news about style sheets as applied to other media is that they
don’t require you to learn anything new. Okay, maybe in the case of aural
web pages you’ll need to learn a few new tricks, but for now you can use
the same style properties you’ve already learned to create print-specific
style sheets. The trick is knowing how to apply a style sheet for a particu-
lar medium.

If you recall, the <link /> tag is used to link an external style sheet to a
web page. This tag supports an attribute named media that you haven’t
seen yet. This attribute is used to specify the name of the medium to which
the style sheet applies. By default, this attribute is set to all, which means
that an external style sheet will be used for all media if you don’t specify
otherwise. The other acceptable attribute values correspond to the list of
media provided in the previous list.

Establishing a print-specific style sheet for a web page involves using two
<link /> tags, one for the printer and one for each remaining medium.
Following is code that handles this task:

<link rel=”stylesheet” type=”text/css” href=”standard.css” media=”all” />
<link rel=”stylesheet” type=”text/css” href=”for_print.css” media=”print”
/>

In this example, two style sheets are linked into a web page. The first sheet
targets all media by setting the media attribute to all. If you did nothing
else, the standard.css style sheet would apply to all media. However, the
presence of the second style sheet results in the for_print.css style sheet
being used to print the page.

You can specify multiple media types in a single <link /> tag by separat-
ing the types with a comma, like this:

<link rel=”stylesheet” type=”text/css” href=”for_pp.css”
media=”print, projector” />

This code results in the for_pp.css style sheet applying solely to the print
and projector media types and nothing else.

NOTE
You can also use the @import
command to link media-specific
style sheets. For example, the
following code works just like
the previous <link /> code:
@import url(player.css) all;
@import url(player_print.css)
print;

CAUTION

You might have been tempted
to specify media=”screen” in
the first linked style sheet in
the previous code. Although
this would work for viewing the
page in a normal web browser,
it would cause problems if a
user viewed the page using a
handheld browser or any of the
other types of media. In other
words, a style sheet applies
only to the specific media types
mentioned in the media attrib-
ute and nothing more.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Designing a Style Sheet for Print Pages 505

Designing a Style Sheet for Print
Pages
Using the recommended list of modifications required for a print-friendly
web page, it’s time to take a stab at creating a print-friendly style sheet.
Let’s first look at a page that is displayed using a normal (screen) style
sheet (see Figure 25.3).

FIGURE 25.3
A CSS-styled page as viewed in a
normal web browser.

TIP

You can specify a media type
for your style sheets even if you
aren’t linking to external ver-
sions. The <style> tag also
uses the same media attribute
as the <link /> tag.

This figure reveals how the page looks in a normal web browser. In reality,
this page isn’t too far from being print-ready, but it could still benefit from
some improvements.

The following changes can help make this web page more print-friendly:

. Change the color of all text to black.

. Remove link formatting (bold and color).

. Stack the two player information sections vertically because they are
unlikely to fit horizontally on the printed page.

. Remove the contact link entirely.

The first two changes to the normal style sheet are straightforward; they
primarily involve changing or undoing existing styles. The third change,

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

506 CHAPTER 25 Creating Print-Friendly Web Pages

however, requires a bit of thought. Because you know that printed pages
are a fixed size, you should use absolute positioning for all the elements on
the printed page. This makes it much easier to place the content sections
exactly where you want them. Finally, the last item on the list is very easy
to accommodate by simply setting the display style property of the con-
tact element to none.

Listing 25.1 shows the CSS code for the player_print.css style sheet,
which incorporates these changes into a style sheet that is perfectly suited
for printing hockey player pages.

LISTING 25.1 CSS Code for the Print-Specific Hockey Player Style Sheet
body {
font-family:Verdana, Arial;
font-size:12pt;
color:black;

}

div {
padding:3px;

}

div.title {
font-size:18pt;
font-weight:bold;
font-variant:small-caps;
letter-spacing:2px;
position:absolute;
left:0in;
top:0in;

}

div.image {
position:absolute;
left:0in;
top:0.5in;

}

div.info {
position:absolute;
left:1.75in;
top:0.5in;

}

div.favorites {
position:absolute;
left:1.75in;
top:2in;

}

CAUTION

Although absolute positioning
works for the hockey player sam-
ple page, it’s not always a good
idea for styling print-specific
pages. More specifically, if you
have a page that contains more
than a printed page worth of
content, you’re better off using
relative positioning and letting
content flow onto multiple
pages.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Designing a Style Sheet for Print Pages 507

div.footer {
position:absolute;
text-align:left;
left:0in;
top:9in;

}

table.stats {
width:100%;
text-align:right;
font-size:11pt;
position:absolute;
left:0in;
top:3.75in;

}

div.contact {
display:none;

}

.label {
font-weight:bold;
font-variant:small-caps;

}

tr.heading {
font-variant:small-caps;
background-color:black;
color:white;

}

tr.light {
background-color:white;

}

tr.dark {
background-color:#EEEEEE;

}

th.season, td.season {
text-align:left;

}

a, a:link, a:visited {
color:black;
font-weight:normal;
text-decoration:none;

}

LISTING 25.1 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

508 CHAPTER 25 Creating Print-Friendly Web Pages

Probably the neatest thing about this code is how it uses inches (in) as the
unit of measure for all the absolute positioning code. This makes sense
when you consider that we think of printed pages in terms of inches, not
pixels. If you study the code carefully, you’ll notice that the text is all black,
all special style formatting has been removed from the links, and content
sections are now absolutely positioned (so that they appear exactly where
you want them).

Viewing a Web Page in Print
Preview
Figure 25.4 shows the print-friendly version of a hockey player page as it
appears in a browser’s Print Preview window.

FIGURE 25.4
You can use Print Preview to view
the print-friendly version of a web
page before you print it.

If Figure 25.4 had shown the entire page—all 11 inches of height and then
some—you would have noticed that the print-friendly version of the page
now includes the footer at the very bottom of the page (see Figure 25.5).

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Summary 509

Just to show you how print-friendly pages can be used in a practical situa-
tion, check out Figure 25.5. This figure shows the same hockey player page
as a PDF document that can be viewed in Adobe Acrobat Reader.

Adobe’s virtual printer can be used to “print” the hockey player web page
to a PDF document. You might also find PDF converters such as DoPDF
(http://www.dopdf.com/) will work for you for at a lower cost than the
Adobe Acrobat software. Printing to a PDF effectively creates a version of
the print-friendly web page in a format that can be easily shared electroni-
cally for printing.

Summary
This chapter focused on a practical application of CSS that solves a common
need: printing web pages. You began the chapter by learning what exactly
constitutes a print-friendly web page. From there, you learned about the
mechanism built into CSS that allows a page to distinguish between the
media in which it is being rendered, and then you learned how to select a
style sheet accordingly. And finally, you created a print-specific style sheet
that was used to style a page just for printing. Although most users prefer
viewing a page on a large computer screen to reading it on paper, there are
times when a printed web page is a necessity. Be sure to give your web
page visitors the utmost in flexibility by offering print-friendly pages.

FIGURE 25.5
The hockey player page was con-
verted to a PDF document by print-
ing it as an Adobe PDF.

NOTE

To learn more about Acrobat,
visit http://www.adobe.com/
products/acrobat/.

www.it-ebooks.info

http://www.dopdf.com/
http://www.adobe.com/products/acrobat/
http://www.adobe.com/products/acrobat/
http://www.it-ebooks.info/

ptg999

510 CHAPTER 25 Creating Print-Friendly Web Pages

Q&A
Q. Can I use the media attribute of the <link /> tag to create a style

sheet specifically for viewing a web page on a handheld device?

A. Yes. By setting the media attribute of the <link /> tag to handheld, you
specifically target handheld devices with a style sheet. You will likely
see all mobile websites eventually shift toward this approach to serve
mobile pages, as opposed to using specialized markup languages such
as WML (Wireless Markup Language).

Q. Do I still need to provide printer icons on my pages so that they can
be printed?

A. No. The linked style sheet technique you learned about in this chapter
allows you to support print-friendly web pages without any special links
on the page. However, if you want to enable the user to view a print-
friendly version of a page in a browser, you can link to another version
of the page that uses the print-specific style sheet as its main (brows-
er) style sheet. Or you can provide some “fine print” on the page that
instructs the user to use the browser’s Print Preview feature to view the
print-friendly version of the page.

Workshop
The workshop contains quiz questions and activities to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. Does having a button to a print-friendly page mean the page is actually

print-friendly?

2. What happens to an external style sheet that is linked to a page with-
out any media attribute specified?

3. How would you link a style sheet named freestyle.css to a page so
that it applies only when the page is viewed on a television?

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Workshop 511

Answers
1. No—you still have to link to a page with a specific style sheet applied to

the content so that it appears print-friendly.

2. The media attribute assumes its default value of all, which causes the
style sheet to target all media types.

3. Use the following in the <head> section of your HTML:

<link rel=”stylesheet” type=”text/css” href=”freestyle.css” media=”tv”
/>

Exercises
. Create a print-friendly style sheet for a page that has a fair number of

colors and images. Be sure to add an extra <link /> tag to the page
that links in the print-specific style sheet.

. If you’re feeling really ambitious, try using the handheld value of the
<link /> tag’s media attribute to create a handheld-specific version of
one of your web pages. The concept is the same as creating a print-
friendly page, except in this case you’re dealing with an extremely con-
strained screen size instead of a printed page. You can test the page by
publishing it and then opening it on a mobile phone or handheld browser.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

To this point, pretty much everything in this book has focused on getting
information out to others. But you can also use your web pages to gather
information from the people who read them.

Web forms enable you to receive feedback, orders, or other information
from the users who visit your web pages. If you’ve ever used a search
engine such as Google, Yahoo!, or Bing, you’re familiar with HTML
forms—those single field entry forms with one button that, when pressed,
give you all the information you are looking for and then some. Product
order forms are also an extremely popular use of forms; if you’ve ordered
anything from Amazon.com or purchased something from an eBay seller,
you’ve used forms. In this chapter, you learn how to create your own
forms, but you learn only how to create the front-end of those forms.
Working with the back-end of forms requires the knowledge of a program-
ming language and is beyond the scope of this book. However, in some
instances JavaScript can play a role in form processing, such as rudimenta-
ry form content delivery and validation.

How HTML Forms Work
An HTML form is part of a web page that includes areas where users can
enter information to be sent back to you, sent to another email address that
you specify, sent to a database that you manage, or sent to another system
altogether such as a third-party management system for your forms such
as Salesforce.com.

Before you learn the HTML tags that are used to make your own forms, you
should at least conceptually understand how the information from those
forms makes its way back to you. The actual behind-the-scenes (the server-side

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How HTML forms work

. How to create the front-end
of an HTML form

. How to name pieces of
form data

. How to include hidden data
in forms

. How to choose the correct
form input controls for the
situation

. How to submit form data

. Using the form object with
JavaScript

. Sending form results by
email

. Validating a form with
JavaScript

CHAPTER 26
Working with Web-Based Forms

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

514 CHAPTER 26 Working with Web-Based Forms

or back-end) process requires knowledge of at least one programming lan-
guage or at least the ability to follow specific instructions when using some-
one else’s server-side script to handle the form input. At that point in the
process, you should either work with someone who has the technical knowl-
edge, or you should learn the basics on your own. Simple form-processing is
not difficult at all and it is likely that your web-hosting provider has several
back-end scripts that you can use with minimal customization.

Forms include a button for the user to submit the form; that button can be
an image that you create yourself or a standard HTML form button that is
created when a form <input> tag is created and given a type value of
submit. When someone clicks a form submission button, all the informa-
tion typed in the form is sent to a URL that you specify in the action
attribute of the <form> tag. That URL should point to a specific script that
will process your form, sending the form contents via email or performing
another step in an interactive process (such as requesting results from a
search engine or placing items in an online shopping cart).

After you start thinking about doing more with form content than simply
emailing results to yourself, additional technical knowledge is required.
For example, if you want to create an online store that accepts credit cards
and processes transactions, there are some well-established practices for
doing so, all geared toward ensuring the security of your customers’ data.
That is not an operation that you’ll want to enter into lightly; you’ll need
more knowledge than this book provides.

Before you put a form online, you should look in the user guide for your
web-hosting provider and see what they offer in the way of form-processing
scripts. You are likely to find a readily available Perl or PHP script that you
can use with only minimal configuration.

Creating a Form
Every form must begin with a <form> tag, which can be located anywhere
in the body of the HTML document. The <form> tag normally has three
attributes, name, method and action:

<form name=”form1” method=”post” action=”/myprocessingscript.php”>

The most common method is post, which sends the form entry results as a
document. In some situations, you might need to use method=”get”, which
submits the results as part of the URL header instead. For example, get is

NOTE

PHP is the most popular server-
side programming language; it’s
supported by any web-hosting
provider worth its salt. You can
learn more about PHP at
http://www.php.net/ or you can
just dive right in to learning this
programming language (plus
database interactivity) from the
ground up in PHP, MySQL and
Apache All in One (ISBN:
067232976X). Although several
other books on PHP and related
technologies are available, I am
partial to this one because I
wrote it. It is geared toward
absolute beginners with PHP
or any other programming
language.

NOTE

There is a way to send form
data without a server-side
script, and you’ll learn about
that method—which uses a
mailto link in the action attrib-
ute of the <form>—later in this
chapter. But as you try that, be
aware that it can produce incon-
sistent results; individual web
browsers, as well as personal
security settings, can cause
that action to respond different-
ly than what you intended.

www.it-ebooks.info

http://www.php.net/
http://www.it-ebooks.info/

ptg999

Creating a Form 515

sometimes used when submitting queries to search engines from a web
form. Because you’re not yet an expert on forms, just use post unless your
web-hosting provider’s documentation tells you to do otherwise.

The action attribute specifies the address to which to send the form data.
You have two options here:

. You can type the location of a form-processing program or script on a
web server and the form data will then be sent to that program.

. You can type mailto: followed by your email address and the form
data will be sent directly to you whenever someone fills out the
form. However, this approach is completely dependent on the user’s
computer being properly configured with an email client. People
accessing your site from a public computer without an email client
will be left out in the cold.

<form method=”post” action=”mailto:me@mysite.com”>

Each form in your HTML page is represented in JavaScript by a form
object, which has the same name as the name attribute in the <form> tag
you used to define it.

Alternatively, you can use the forms array to refer to forms. This array
includes an item for each form element, indexed starting with 0. For exam-
ple, if the first form in a document has the name form1, you can refer to it
in one of two ways:

document.form1
document.forms[0]

Along with the elements, each form object also has a list of properties,
most of which are defined by the corresponding <form> tag. You can also
set these from within JavaScript. They include the following:

. action is the form’s action attribute, or the program to which the
form data will be submitted.

. encoding is the MIME type of the form, specified with the enctype
attribute. In most cases, this is not needed (unless you are uploading
a file with the form).

. length is the number of elements in the form. You cannot change
this property.

. method is the method used to submit the form, either GET or POST.
This determines the data format used to send the form result to a
CGI script and does not affect JavaScript.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

516 CHAPTER 26 Working with Web-Based Forms

. target specifies the window in which the result of the form (from
the CGI script) will be displayed. Normally, this is done in the main
window, replacing the form itself, but you can use this attribute to
work with pop-up windows or frames.

The form created in Listing 26.1 and shown in Figure 26.1 includes just
about every type of user input component you can currently use on HTML
forms. Refer to this listing and figure as you read the following explana-
tions of each type of input element.

LISTING 26.1 A Form with Various User-Input Components
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Guest Book</title>

<style type=”text/css”>
.formlabel {

font-weight:bold;
width: 250px;
margin-bottom: 12px;
float: left;
text-align: left;
clear: left;

}
.formfield {

font-weight:normal;
margin-bottom: 12px;
float: left;
text-align: left;

}

input, textarea, select {
border: 1px solid black;

}
</style>

</head>
<body>
<h1>My Guest Book</h1>

<p>Please sign my guest book. Thanks!</p>
<form name=”gbForm” method=”post” action=”URL_to_script”>

<div class=”formlabel”>What is your name?</div>
<div class=”formfield”><input type=”text” name=”name”

size=”50” /></div>

<div class=”formlabel”>What is your e-mail address?</div>
<div class=”formfield”><input type=”text” name=”email”

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Creating a Form 517

size=”50” /></div>

<div class=”formlabel”>Please check all that apply:</div>
<div class=”formfield”>

<input type=”checkbox” name=”website_response[]” value=”I
really like your Web site.” />I really like your Web site.

<input type=”checkbox” name=”website_response[]” value=”One
of the best sites I’ve seen.” />One of the best sites I’ve
seen.

<input type=”checkbox” name=”website_response[]” value=”I sure
wish my site looked as good as yours.” />I sure wish my site
looked as good as yours.

<input type=”checkbox” name=”website_response[]” value=”I have
no taste and I’m pretty dense, so your site didn’t do much for
me.” />I have no taste and I’m pretty dense, so your site
didn’t do much for me.

</div>

<div class=”formlabel”>Choose the one thing you love best about my
web site:</div>
<div class=”formfield”>

<input type=”radio” name=”lovebest” value=”me” />That gorgeous
picture of you.

<input type=”radio” name=”lovebest” value=”cats” />All the
beautiful pictures of your cats.

<input type=”radio” name=”lovebest” value=”childhood” />The
inspiring recap of your suburban childhood.

<input type=”radio” name=”lovebest” value=”treasures” />The
detailed list of all your Elvis memorabilia.

</div>

<div class=”formlabel”>If my web site were a book, how many copies
would it sell?</div>
<div class=”formfield”>
<select size=”3” name=”sales”>
<option value=”Millions, for sure.” selected=”selected”>Millions,

for sure.</option>
<option value=”100,000+ (would be Oprah’s favorite)”>100,000+

(would be Oprah’s favorite)</option>
<option value=”Thousands (an under-appreciated classic)”>

Thousands (an under-appreciated classic)</option>
<option value=”Very few: not banal enough for today’s

public”>Very few: not banal enough for today’s
public.</option>

<option value=”Sell? None. Everyone will download it
for free.”>Sell? None. Everyone will download it for
free.</option>

</select>
</div>

<div class=”formlabel”>How can I improve my web site?</div>
<div class=”formfield”>
<select name=”suggestion”>
<option value=”Couldn’t be better.” selected=”selected”>Couldn’t

LISTING 26.1 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

518 CHAPTER 26 Working with Web-Based Forms

be better.</option>
<option value=”More about the cats.”>More about the

cats.</option>
<option value=”More about the family.”>More about the

family.</option>
<option value=”More about Elvis.”>More about Elvis.</option>

</select>
</div>

<div class=”formlabel”>Feel free to type more praise,
gift offers, etc. below:</div>

<div class=”formfield”>
<textarea name=”comments” rows=”4” cols=”55”></textarea>

</div>

<div style=”float:left;”>
<input type=”submit” value=”Click Here to Submit” />
<input type=”reset” value=”Erase and Start Over” />

</div>
</form>

</body>
</html>

LISTING 26.1 Continued

FIGURE 26.1
The code shown in Listing 26.1
uses nearly every type of HTML
form input element.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Naming Each Piece of Form Data 519

The code in Listing 26.1 uses a <form> tag that contains quite a few <input
/> tags. Each <input /> tag corresponds to a specific user input compo-
nent, such as a check box or radio button. The input, select, and text area
elements contain borders in the style sheet, so it is easy to see the outline of
the elements in the form. Keep in mind that you can apply all sorts of CSS
to those elements.

The next few sections dig into the <input /> and other form-related tags
in detail.

Accepting Text Input
To ask the user for a specific piece of information within a form, use the
<input /> tag. This tag must fall between the <form> and </form> tags,
but it can be anywhere on the page in relation to text, images, and other
HTML tags. For example, to ask for someone’s name, you could type the
following text followed immediately by an <input /> field:

<p>What’s your name? <input type=”text” size=”50”
maxlength=”100” name=”user_name” /></p>

The type attribute indicates what type of form element to display—a sim-
ple, one-line text entry box in this case. (Each element type is discussed
individually in this chapter.)

The size attribute indicates approximately how many characters wide the
text input box should be. If you are using a proportionally spaced font, the
width of the input will vary depending on what the user enters. If the
input is too long to fit in the box, most web browsers will automatically
scroll the text to the left.

The maxlength attribute determines the number of characters the user is
allowed to type into the text box. If a user tries to type beyond the speci-
fied length, the extra characters won’t appear. You can specify a length that
is longer, shorter, or the same as the physical size of the text box. The size
and maxlength attributes are used only for type=”text” because other
input types (check boxes, radio buttons, and so on) have fixed sizes.

Naming Each Piece of Form Data
No matter what type an input element is, you must give a name to the
data it gathers. You can use any name you like for each input item, as long
as each one on the form is different (except in the case of radio buttons and

TIP

If you want the user to enter
text without the text being dis-
played on the screen, you can
use <input type=”password”
/> instead of <input
type=”text” />. Asterisks
(***) are then displayed in
place of the text the user types.
The size, maxlength, and name
attributes work exactly the
same for type=”password” as
they do for type=”text”. Keep
in mind that this technique of
hiding a password provides only
visual protection; there is no
encryption or other protection
associated with the password
being transmitted.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

520 CHAPTER 26 Working with Web-Based Forms

check boxes, which are discussed later in this chapter). When the form is
processed by a back-end script, each data item is identified by name. This
name becomes a variable, which is filled with a value. The value is either
what the user typed in the form or the value associated with the element
the user selected.

For example, if a user enters Jane Doe in the text box defined previously, a
variable is sent to the form processing script; the variable is user_name
and the value of the variable is Jane Doe. Form-processing scripts work
with these types of variable names and values.

To use this (or other) text fields in JavaScript, remember that the text object
uses the name attribute; you would refer to the value of the field in the pre-
vious snippet as:

document.formname.user_name.value

Additional examples of name/value pairs are covered throughout this
chapter.

Including Hidden Data in Forms
Want to send certain data items to the server script that processes a form
but don’t want the user to see those data items? Use an <input /> tag with
a type=”hidden” attribute. This attribute has no effect on the display; it
just adds any name and value you specify to the form results when they
are submitted.

If you are using a form-processing script provided by your web-hosting
provider, you might use this attribute to tell a script where to email the
form results. For example, including the following code will email the
results to me@mysite.com after the form has been submitted:

<input type=”hidden” name=”mailto” value=”me@mysite.com” />

You might sometimes see scripts using hidden input elements to carry
additional data that might be useful when you receive the results of the
form submission; some examples of hidden form fields include an email
address and a subject for the email. If you are using a script provided by
your web hosting provider, consult the documentation provided with that
script for additional details about potential required hidden fields.

NOTE

Form-processing scripts are
oversimplified here for the sake
of explanation within the scope
of this book. The exact appear-
ance (or name) of the variables
made available to your process-
ing script depends on the pro-
gramming language of that
script. But conceptually, it’s
valid to say that the name of
the input element becomes the
name of the variable and the
value of the input element
becomes that variable’s value
on the back-end.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Exploring Form Input Controls 521

Exploring Form Input Controls
Various input controls are available for retrieving information from the
user. You’ve already seen one text-entry option, and the next few sections
introduce you to most of the remaining form-input options you can use to
design forms.

Check Boxes
The simplest input type is a check box, which appears as a small square.
Users can click checkboxes to select or deselect one or more items in a
group. For example, the checkboxes listed in Listing 26.1 display after a
label that reads “Please check all that apply,” implying that the user could
indeed check all that apply.

The HTML for the check boxes in Listing 26.1 shows that the value of the
name attribute is the same for all of them: website_response[].

<input type=”checkbox” name=”website_response[]” value=”I
really like your Web site.” />I really like your Web site.

<input type=”checkbox” name=”website_response[]” value=”One
of the best sites I’ve seen.” />One of the best sites I’ve
seen.

<input type=”checkbox” name=”website_response[]” value=”I sure
wish my site looked as good as yours.” />I sure wish my site
looked as good as yours.

<input type=”checkbox” name=”website_response[]” value=”I have
no taste and I’m pretty dense, so your site didn’t do much for
me.” />I have no taste and I’m pretty dense, so your site
didn’t do much for me.

The use of the brackets in the name attribute ([]) indicates to the processing
script that a series of values will be placed into this one variable, instead of
just one value (well, it might just be one value if the user only selects one
check box). If a user selects the first check box, the text string “I really like
your Web site.” will be placed in the website_response[] bucket. If the
user selects the third checkbox, the text string “I sure wish my site looked
as good as yours.” will also be put into the website_response[] bucket.
The processing script will then work with that variable as an array of data
rather just a single entry.

However, you might see groups of check boxes that do use individual
names for the variables in the group. For example, the following is another
way of writing the check box group:

TIP
If you find that the label for an
input element is displayed too
close to the element, just add a
space between the close of the
<input /> tag and the start of
the label text, like this:
<input type=”checkbox”
name=”mini” /> Mini Piano
Stool

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

522 CHAPTER 26 Working with Web-Based Forms

<input type=”checkbox” name=”liked_site” value=”yes” /> I really like
your Web site.

<input type=”checkbox” name=”best_site” value=”yes” /> One of the best
Sites I’ve seen.

<input type=”checkbox” name=”my_site_sucks” value=”yes” />I sure wish my
site looked as good as yours.

<input type=”checkbox” name=”am_dense” value=”yes” />I have no taste and
I’m pretty dense, so your site didn’t do much for me.

In the previous check boxes, the variable name of the first check box is
“liked_site” and the value (if checked) is “yes”.

If you want a check box to be checked by default when the form is ren-
dered by the web browser, include the checked attribute. For example, the
following code creates two check boxes and the first is checked by default:

<input type=”checkbox” name=”website_response[]” value=”I
really like your Web site.” checked=”checked” />I really like
your Web site.

<input type=”checkbox” name=”website_response[]” value=”One
of the best sites I’ve seen.” />One of the best sites I’ve
seen.

The check box labeled “I really like your site.” is checked by default in this
example. The user would have to click the check box to indicate they had
another opinion of your site. The check box marked “One of the best I’ve
seen.” would be unchecked to begin with, so the user would have to click
it to turn it on. Check boxes that are not selected do not appear in the form
output at all.

If you want to handle values from the checkbox object in JavaScript, the
object has the following four properties:

. name is the name of the check box and also the object name.

. value is the “true” value for the check box—usually on. This value is
used by server-side programs to indicate whether the check box was
checked. In JavaScript, you should use the checked property instead.

. defaultChecked is the default status of the check box, assigned by
the checked attribute in HTML.

. checked is the current value. This is a Boolean value: true for
checked and false for unchecked.

To manipulate the check box or use its value, you use the checked proper-
ty. For example, this statement turns on a check box called same_address
in a form named order:

document.order.same.checked = true;

CAUTION

XHTML requires all attributes to
have an equal sign followed by
a value. This explains why
checked=”checked” is used to
indicate that a check box is
checked (as opposed to just
checked). This rule applies to
all Boolean attributes
(true/false, on/off, yes/no,
and so on) that you might come
across in HTML.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Exploring Form Input Controls 523

The check box has a single method: click(). This method simulates a click
on the box. It also has a single event, onClick, which occurs whenever the
check box is clicked. This happens whether the box was turned on or off, so
you’ll need to examine the checked property via JavaScript to see what
action really happened.

Radio Buttons
Radio buttons, for which only one choice can be selected at a time, are almost
as simple to implement as check boxes. The simplest use of a radio button is
for yes/no questions or for voting when only one candidate can be selected.

To create a radio button, just use type=”radio” and give each option its
own <input /> tag. Use the same name for all the radio buttons in a group,
but don’t use the [] that you used with the check box:

<input type=”radio” name=”vote” value=”yes” checked=”checked” /> Yes

<input type=”radio” name=”vote” value=”no” /> No

The value can be any name or code you choose. If you include the checked
attribute, that button is selected by default. No more than one radio button
with the same name can be checked.

When designing your form and choosing between checkboxes and radio
buttons, ask yourself, “Is the question being asked one that could be
answered only one way?” If so, use a radio button.

As for scripting, radio buttons are similar to check boxes, except that an
entire group of them shares a single name and a single object. You can refer
to the following properties of the radio object:

. name is the name common to the radio buttons.

. length is the number of radio buttons in the group.

To access the individual buttons in JavaScript, you treat the radio object as
an array. The buttons are indexed, starting with 0. Each individual button
has the following properties:

. value is the value assigned to the button.

. defaultChecked indicates the value of the checked attribute and the
default state of the button.

. checked is the current state.

NOTE

Radio buttons are named for
their similarity to the buttons on
old pushbutton radios. Those
buttons used a mechanical
arrangement so that when you
pushed one button in, the oth-
ers popped out.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

524 CHAPTER 26 Working with Web-Based Forms

For example, you can check the first radio button in the radio1 group on the
form1 form with this statement:

document.form1.radio1[0].checked = true;

However, if you do this, be sure you set the other values to false as needed.
This is not done automatically. You can use the click() method to do both
of these in one step.

Like a check box, radio buttons have a click() method and an onClick
event handler. Each radio button can have a separate statement for this
event.

Selection Lists
Both scrolling lists and pull-down pick lists are created with the <select> tag.
You use this tag together with the <option> tag, as the following example
shows (taken from Listing 26.1):

<select size=”3” name=”sales”>
<option value=”Millions, for sure.” selected=”selected”>Millions,

for sure.</option>
<option value=”100,000+ (would be Oprah’s favorite)”>100,000+

(would be Oprah’s favorite)</option>
<option value=”Thousands (an under-appreciated classic)”>Thousands

(an under-appreciated classic)</option>
<option value=”Very few: not banal enough for today’s public”>Very

few: not banal enough for today’s public.</option>
<option value=”Sell? None. Everyone will download it for free.”>Sell?

None. Everyone will download it for free.</option>
</select>

No HTML tags other than <option> and </option> should appear between
the <select> and </select> tags.

Unlike the text input type, the size attribute here determines how many
items show at once on the selection list. If size=”2” were used in the pre-
ceding code, only the first two options would be visible and a scrollbar
would appear next to the list so the user could scroll down to see the third
option.

Including the multiple attribute enables users to select more than one
option at a time; the selected attribute makes an option initially selected by
default. When the form is submitted, the text specified in the value attribute
for each option accompanies the selected option.

TIP
If you leave out the size attrib-
ute or specify size=”1”, the list
creates a drop-down pick list.
Pick lists don’t allow for multi-
ple choices; they are logically
equivalent to a group of radio
buttons. The following example
shows another way to choose
yes or no for a question:
<select name=”vote”>
<option

value=”yes”>Yes</option>
<option

value=”no”>No</option>
</select>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Exploring Form Input Controls 525

The object for selection lists is the select object. The object itself has the
following properties:

. name is the name of the selection list.

. length is the number of options in the list.

. options is the array of options. Each selectable option has an entry
in this array.

. selectedIndex returns the index value of the currently selected item.
You can use this to check the value easily. In a multiple-selection list,
this indicates the first selected item.

The options array has a single property of its own, length, which indi-
cates the number of selections. In addition, each item in the options array
has the following properties:

. index is the index into the array.

. defaultSelected indicates the state of the selected attribute.

. selected is the current state of the option. Setting this property to
true selects the option. The user can select multiple options if the
multiple attribute is included in the <select> tag.

. name is the value of the name attribute. This is used by the server.

. text is the text that is displayed in the option.

The select object has two methods—blur() and focus()—which perform
the same purposes as the corresponding methods for text objects. The
event handlers are onBlur, onFocus, and onChange, also similar to other
objects.

Reading the value of a selected item is a two-step process. You first use the
selectedIndex property, and then use the value property to find the value
of the selected choice. Here’s an example:

ind = document.mvform.choice.selectedIndex;
val = document.mvform.choice.options[ind].value;

This uses the ind variable to store the selected index, and then assigns the
val variable to the value of the selected choice. Things are a bit more com-
plicated with a multiple selection; you have to test each option’s selected
attribute separately.

NOTE

You can change selection lists
dynamically—for example,
choosing a product in one list
could control which options are
available in another list. You
can also add and delete
options from the list.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

526 CHAPTER 26 Working with Web-Based Forms

Text Fields and Text Areas
The <input type=”text”> attribute mentioned earlier this chapter allows
the user to enter only a single line of text. When you want to allow multiple
lines of text in a single input item, use the <textarea> and </textarea> tags
to create a text area instead of just a text field. Any text you include between
these two tags is displayed as the default entry. Here’s an example:

<textarea name=”comments” rows=”4” cols=”20”>Your
message here.</textarea>

As you probably guessed, the rows and cols attributes control the number
of rows and columns of text that fit in the input box. The cols attribute is a
little less exact than rows and approximates the number of characters that fit
in a row of text. Text area boxes do have a scrollbar, however, so the user
can enter more text than what fits in the display area.

The text and textarea objects also have a few methods you can use:

. focus() sets the focus to the field. This positions the cursor in the
field and makes it the current field.

. blur() is the opposite; it removes the focus from the field.

. select() selects the text in the field, just as a user can do with the
mouse. All of the text is selected; there is no way to select part of the text.

You can also use event handlers to detect when the value of a text field
changes. The text and textarea objects support the following event handlers:

. The onFocus event happens when the text field gains focus.

. The onBlur event happens when the text field loses focus.

. The onChange event happens when the user changes the text in the
field and then moves out of it.

. The onSelect event happens when the user selects some or all of the
text in the field. Unfortunately, there’s no way to tell exactly which
part of the text was selected. (If the text is selected with the select()
method described previously, this event is not triggered.)

If used, these event handlers should be included in the <input> tag declara-
tion. For example, the following is a text field including an onChange event
that displays an alert:

<input type=”text” name=”text1” onChange=”window.alert(‘Changed.’);” />

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Submitting Form Data 527

Submitting Form Data
Forms typically include a button that submits the form data to a script on
the server or invokes a JavaScript action. You can put any label you like on
the submit button with the value attribute:

<input type=”submit” value=”Place My Order Now!” />

A gray button will be sized to fit the label you put in the value attribute.
When the user clicks it, all data items on the form are sent to the email
address or script specified in the form’s action attribute.

You can also include a Reset button that clears all entries on the form so
users can start over if they change their minds or make mistakes. Use the
following:

<input type=”reset” value=”Clear This Form and Start Over” />

If the standard Submit and Reset buttons look a little bland to you, remember
that you can style them using CSS. If that’s not good enough, you’ll be glad to
know that there is an easy way to substitute your own graphics for these but-
tons. To use an image of your choice for a Submit button, use the following:

<input type=”image” src=”button.gif” alt=”Order Now!” />

The button.gif image will display on the page and the form will be sub-
mitted when a user clicks the button.gif image. You can also include any
attributes normally used with the tag, such as alt and style.

The form element also includes a generic button type. When using
type=”button” in the <input /> tag, you will get a button that performs no
action on its own but can have an action assigned to it using a JavaScript
event handler.

Using JavaScript for Form Events
The form object has two methods: submit() and reset(). You can use these
methods to submit the data or reset the form yourself, without requiring the
user to press a button. One reason for this is to submit the form when the
user clicks an image or performs another action that would not usually sub-
mit the form.

The form object has two event handlers, onSubmit and onReset. You can
specify a group of JavaScript statements or a function call for these events
within the <form> tag that defines the form.

CAUTION

If you use the submit() method
to send data to a server or by
email, most browsers will
prompt the user to verify that
he wants to submit the informa-
tion. There’s no way to do this
behind the user’s back.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

528 CHAPTER 26 Working with Web-Based Forms

If you specify a statement or a function for the onSubmit event, the state-
ment is called before the data is submitted to the server-side script. You
can prevent the submission from happening by returning a value of false
from the onSubmit event handler. If the statement returns true, the data
will be submitted. In the same fashion, you can prevent a Reset button
from working with an onReset event handler.

Accessing Form Elements with
JavaScript
The most important property of the form object is the elements array,
which contains an object for each of the form elements. You can refer to an
element by its own name or by its index in the array. For example, the fol-
lowing two expressions both refer to the first element in the form shown in
Listing 26.1:

document.gbForm.elements[0]
document.gbForm.name

If you do refer to forms and elements as arrays, you can use the length
property to determine the number of objects in the array: document.
forms.length is the number of forms in a document, and document.
gbForm.elements.length is the number of elements in the gbForm form.

You can also access form elements using the W3C DOM. In this case, you
use an id attribute on the form element in the HTML document, and use
the document.getElementById() method to find the object for the form.
For example, this statement finds the object for the text field called name
and stores it in the name variable:

name = document.getElementById(“name”);

This enables you to quickly access a form element without first finding the
form object. You can assign an id to the <form> tag and find the correspon-
ding object if you need to work with the form’s properties and methods.

Displaying Data from a Form
As a simple example of using forms, Listing 26.2 shows a form with name,
address, and phone number fields, as well as a JavaScript function that dis-
plays the data from the form in a pop-up window.

NOTE

Both forms and elements can
be referred to by their own
names or as indices in the
forms and elements arrays. For
clarity, the examples in this
chapter use individual form and
element names rather than
array references. You’ll also find
it easier to use names in your
own scripts.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Displaying Data from a Form 529

LISTING 26.2 A Form That Displays Data in a Pop-up Window
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Form Display Example</title>
<script type=”text/javascript”>
function display() {
dispWin = window.open(‘’,’NewWin’,
‘toolbar=no,status=no,width=300,height=200’)
message = “NAME: ” +
document.form1.name.value;
message += “ADDRESS: ” +
document.form1.address.value;
message += “PHONE: ” +
document.form1.phone.value + “”;
dispWin.document.write(message);

}
</script>

</head>
<body>
<h1>Form Display Example</h1>

<p>Enter the following information. When you press the Display
button, the data you entered will be displayed in a pop-up.</p>
<form name=”form1” method=”get” action=””>
<p>NAME: <input type=”text” name=”name” size=”50” /></p>
<p>ADDRESS: <input type=”text” name=”address” size=”50” /></p>
<p>PHONE: <input type=”text” name=”phone” size=”50” /></p>
<p><input type=”button” value=”Display” onclick=”display();” /></p>
</form>

</body>
</html>

Here is a breakdown of how this HTML document and script work:

. The <script> section in the document’s header defines a function
called display() that opens a new window and displays the infor-
mation from the form.

. The <form> tag begins the form. Because this form is handled entire-
ly by JavaScript, the form action and method have no value.

. The <input /> tags define the form’s three fields: yourname,
address, and phone. The last <input /> tag defines the Display but-
ton, which is set to run the display() function.

Figure 26.2 shows this form in action. The Display button has been

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

530 CHAPTER 26 Working with Web-Based Forms

pressed, and the pop-up window shows the results.

FIGURE 26.2

Displaying data from a form in a
pop-up window.

Sending Form Results by Email
One easy way to use a form is to send the results by email. You can do this
without using any JavaScript, although you could use JavaScript to vali-
date the information entered (as you’ll learn later in this chapter).

To send a form’s results by email, you use the mailto: action in the form’s
action attribute. Listing 26.3 is a modified version of the name and
address form from Listing 26.2 that sends the results by email.

LISTING 26.3 Sending a Form’s Results by Email
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Form Submit Example</title>

</head>
<body>
<h1>Form Submit Example</h1>

<p>Enter the following information. When you press the Send
button, the data you entered will be send via e-mail.</p>
<form name=”form1” method=”post” action=”mailto:user@domain.com”

enctype=”text/plain”>

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Sending Form Results by Email 531

<p>NAME: <input type=”text” name=”name” size=”50” /></p>
<p>ADDRESS: <input type=”text” name=”address” size=”50” /></p>
<p>PHONE: <input type=”text” name=”phone” size=”50” /></p>
<p><input type=”submit” value=”Submit Form” /></p>
</form>

</body>
</html>

To use this form, change user@domain.com in the action attribute of the
<form> tag to your email address. Notice the enctype=”text/plain” attrib-
ute in the <form> tag. This ensures that the information in the email mes-
sage will be in a readable plain-text format rather than encoded.

Although this provides a quick and dirty way of retrieving data from a
form, the disadvantage of this technique is that it is highly browser
dependent. Whether it will work for each user of your page depends on
the configuration of her browser and email client.

LISTING 26.3 Continued CAUTION

Because this technique does not
consistently work on all
browsers, I don’t recommend you
use it. Some browsers will invoke
your mail client; others will send
the form data via your browser-
based email account. This exam-
ple is offered more as an exam-
ple of a process you could use
JavaScript to accomplish and
might see in many scripts you
find on the web. For a more reli-
able way of sending form results,
you can use a server-side form-
to-email script; your hosting
provider will likely have one or
more available for your use.

Validating a Form
One of JavaScript’s most useful purposes is validating forms. This means
using a script to verify that the information entered is valid—for example, that
no fields are blank and that the data is in the right format.

You can use JavaScript to validate a form whether it’s submitted by email or
to a server-side script or is simply used by a script. Listing 26.4 is a version
of the name and address form that includes validation.

LISTING 26.4 A Form with a Validation Script
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Form Submit Example</title>
<script type=”text/javascript”>
function validate() {
if (document.form1.name.value.length < 1) {

alert(“Please enter your full name.”);
return false;

}
if (document.form1.address.value.length < 3) {

alert(“Please enter your address.”);
return false;

}

TRY IT YOURSELF ▼

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

532 CHAPTER 26 Working with Web-Based Forms

TRY IT YOURSELF▼

Validating a Form
continued

if (document.form1.phone.value.length < 3) {
alert(“Please enter your phone number.”);
return false;

}
return true;

}
</script>
</head>
<body>
<h1>Form Submit Example</h1>

<p>Enter the following information. When you press the Send
button, the data you entered will be send via e-mail.</p>
<form name=”form1” method=”post” action=”mailto:user@domain.com”

enctype=”text/plain” onsubmit=”return validate();”>
<p>NAME: <input type=”text” name=”name” size=”50” /></p>
<p>ADDRESS: <input type=”text” name=”address” size=”50” /></p>
<p>PHONE: <input type=”text” name=”phone” size=”50” /></p>
<p><input type=”submit” value=”Submit Form” /></p>
</form>

</body>
</html>

This form uses a function called validate() to check the data in each of the
form fields. Each if statement in this function checks a field’s length. If the
field is long enough to be valid, the form can be submitted; otherwise, the
submission is stopped and an alert message is displayed.

This form is set up to send its results by email, as in Listing 26.3. If you
want to use this feature, be sure to read the information about email forms
earlier in this chapter and change user@domain.com to your desired email
address.

The <form> tag uses an onsubmit event handler to call the validate() func-
tion. The return keyword ensures that the value returned by validate() will
determine whether the form is submitted.

Figure 26.3 shows this script in action. The form has been filled out except
for the name, and a dialog box indicates that the name needs to be entered.

LISTING 26.4 Continued

NOTE

The validation in this script is
basic—you could go further
and ensure that the phone
field contains only numbers
and the right amount of digits
by using JavaScript’s string
features described in Chapter
16, “Using JavaScript
Variables, Strings, and
Arrays.”

TIP

You can also use the
onchange event handler in
each form field to call a vali-
dation routine. This allows the
field to be validated before
the Submit button is pressed.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Summary 533

Summary
This chapter demonstrated how to create HTML forms, which allow your
visitors to provide information to you.

You learned about all the major form elements and how form-processing
scripts interpret the names and value attributes of those elements. When
you are ready to try a back-end form processing script, you’re now well-
versed in the front-end details.

You also learned how form elements can be used with JavaScript. You
learned about the form object and the objects for the various form elements
and used them in several sample scripts.

We stopped short of doing anything in-depth with that information
because form handling requires an external script to process that form. You
did learn one way to send simple form data by email and how to use
JavaScript to validate a form before it is submitted.

Table 26.1 summarizes the HTML tags and attributes covered in this
chapter.

Validating a Form
continued

FIGURE 26.3
The form validation example in
action.

TRY IT YOURSELF ▼

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

534 CHAPTER 26 Working with Web-Based Forms

TABLE 26.1 HTML Tags and Attributes Covered in Chapter 26

Tag/Attribute Function

<form>...</form> Indicates an input form.

Attributes

action=”scripturl” The address of the script to process this form input.

method=”post/get” How the form input will be sent to the server. Normally
set to post, rather than get.

<input /> An input element for a form.

Attributes

type=”controltype” The type for this input widget. Possible values are check-
box, hidden, radio, reset, submit, text, and image.

name=”name” The unique name of this item, as passed to the script.

value=”value” The default value for a text or hidden item. For a check
box or radio button, it’s the value to be submitted with
the form. For reset or submit buttons, it’s the label for
the button itself.

src=”imageurl” The source file for an image.

checked=”checked” For check boxes and radio buttons. Indicates that this
item is checked.

size=”width” The width, in characters, of a text input region.

maxlength= The maximum number of characters that can be
”maxlength” entered into a text region.

<textarea>... Indicates a multiline text entry form element. Default
</textarea> text can be included.

Attributes

name=”name” The name to be passed to the script.

rows=”numrows” The number of rows this text area displays.

cols=”numchars” The number of columns (characters) this text area displays.

<select>...</select> Creates a menu or scrolling list of possible items.

Attributes

name=”name” The name that is passed to the script.

size=”numelements” The number of elements to display. If size is indicated,
the selection becomes a scrolling list. If no size is
given, the selection is a drop-down pick list.

multiple=”multiple” Allows multiple selections from the list.

<option>...</option> Indicates a possible item within a <select> element.

Attributes

selected=”selected” With this attribute included, the <option> will be select-
ed by default in the list.

value=”value” The value to submit if this <option> is selected when
the form is submitted.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Workshop 535

Q&A
Q. If I use JavaScript to add validation and other features to my form, can

users with non-JavaScript browsers still use the form?

A. Yes, if you’re careful. Be sure to use a Submit button rather than the
submit action. Also, the server-side script might receive nonvalidated
data, so be sure to include the same validation in the CGI script. Non-
JavaScript users will be able to use the form, but won’t receive instant
feedback about their errors.

Q. Is there any way to create a large number of text fields without deal-
ing with different names for all of them?

A. Yes. If you use the same name for several elements in the form, their
objects will form an array. For example, if you defined 20 text fields with
the name member, you could refer to them as member[0] through
member[19]. This also works with other types of form elements.

Q. Is there a way to place the cursor on a particular field when the form
is loaded or after my validation routine displays an error message?

A. Yes. You can use the field’s focus() method to send the cursor there.
To do this when the page loads, you can use the onLoad method in the
<body> tag. However, there is no way to place the cursor in a particular
position within the field.

Workshop
The workshop contains quiz questions and activities to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. What HTML code would you use to create a guestbook form that asks

someone for his name and gender? Assume that you have a form-pro-
cessing script set up at /scripts/formscript and that you need to
include the following hidden input element to tell the script where to
send the form results:
<input type=”hidden” name=”mailto” value=”you@yoursite.com” />

2. If you created an image named submit.gif, how would you use it as
the Submit button for the form you created in Question 1?

3. Which of these attributes of a <form> tag determines where the data
will be sent?

a. action

b. method

c. name

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

536 CHAPTER 26 Working with Web-Based Forms

4. Where do you place the onsubmit event handler to validate a form?

a. In the <body> tag

b. In the <form> tag

c. In the <input /> tag for the Submit button

Answers
1. You would use HTML code similar to the following (with the appropriate

DOCTYPE and other structural markup, of course):

<form name=”form1” method=”post” action=”/scripts/formscript”>
<input type=”hidden” name=”mailto” value=”you@yoursite.com” />
<p>Your Name: <input type=”text” name=”name” size=”50” /></p>
<p>Your Gender:
<input type=”radio” name=”gender” value=”male” /> male
<input type=”radio” name=”gender” value=”female” /> female
<input type=”radio” name=”gender” value=”mind your business” />

mind your business </p>
<p><input type=”submit” value=”Submit Form” /></p>
</form>

2. Replace the following code:

<input type=”submit” value=”Submit Form” />

with this code:

<input type=”image” src=”submit.gif” />

3. a. The action attribute determines where the data is sent.

4. b. You place the onsubmit event handler in the <form> tag.

Exercises
. Create a form using all the different types of input elements and selec-

tion lists to make sure you understand how each of them works.

. Change the validate function in Listing 26.4 so that after a message
is displayed indicating that a field is wrong, the cursor is moved to that
field. (Use the focus method for the appropriate form element.)

. Add a text field to the form in Listing 26.4 for an email address. Add a
feature to the validate function that verifies that the email address is
at least five characters and that it contains the @ symbol.

. Investigate the form-handling options at your web-hosting provider and
use a script made available to you by the web-hosting provider to
process the form you created in the previous exercise.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

The bulk of this book has led you through the design and creation of your
own web content, from text to graphics and multimedia, as well as the
implementation of basic JavaScript functionality for enhanced user interac-
tion. Along the way I’ve noted some of the ways you can think about the
lifecycle of that content, but in this chapter you’ll learn how to look at your
work as a whole.

This chapter shows you how to think about organizing and presenting
multiple web pages so that visitors will be able to navigate among them
without confusion. You’ll also learn about ways to make your website
memorable enough to visit again and again. Web developers use the term
sticky to describe pages that people don’t want to leave. Hopefully this
chapter will help you to make your websites downright gooey!

Because websites can be (and usually should be) updated frequently, it’s
essential to create pages that can be easily maintained. This chapter shows
you how to add comments and other documentation to your pages so that
you—or anyone else on your staff—can understand and modify your
pages, and also introduces you to version control so that you can innovate
individually or as part of a team without overwriting work that you might
want to save.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How to determine when
one page is enough to han-
dle all your content

. How to organize a simple
site

. How to organize a larger
site

. How to write maintainable
code

. How to get started with
version control

CHAPTER 27
Organizing and Managing a

Website

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

538 CHAPTER 27 Organizing and Managing a Website

When One Page Is Enough
Building and organizing an attractive and effective website doesn’t always
need to be a complex task. If you are creating a web presence for a single
entity (such as a local event) that requires only a brief amount of very spe-
cific information, you can effectively present that information on a single
page without a lot of flashy graphics. In fact, there are several positive fea-
tures to a single-page web presence:

. All the information on the site downloads quicker than on more
extensive sites.

. The whole site can be printed on paper with a single print command,
even if it is several paper pages long.

. Visitors can easily save the site on their hard drives for future refer-
ence, especially if it uses a minimum of graphics.

. Links between different parts of the same page usually respond more
quickly than links to other pages.

Figure 27.1 shows the first part of a web page that serves its intended audi-
ence better as a single lengthy page than it would as a multipage site. The
page begins, as most introductory pages should, with a succinct explana-
tion of what the page is about and who would want to read it. A detailed
table of contents allows visitors to skip directly to the reference material in
which they are most interested. It contains about eight paper pages worth
of text explaining how to begin the process of buying a house—something
a visitor might think about printing out and reading later, perhaps while
also taking notes.

TRY IT YOURSELF▼

Evaluating Your
Organization

By this point in the book, you should have enough HTML, CSS, and JavaScript
knowledge to produce most of your website. You probably have created a
number of pages already and perhaps even published them online.

As you read this chapter, think about how your pages are organized now and
how you can improve that organization. Have you used comments in your
HTML and JavaScript or created a document showing your organization for
future website maintainers? If not, this would be a good time to start. Along
the way, don’t be surprised if you decide to do a redesign that involves chang-
ing almost all of your pages—the results are likely to be well worth the effort!

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

When One Page Is Enough 539

As Figure 27.2 shows, each short section of the page is followed by a link
leading back to the table of contents, so navigating around the page feels
much the same as navigating around a multipage site. Because the con-
tents of the page are intended as a handy reference, visitors will definitely
prefer the convenience of bookmarking or saving a single page instead of
several separate pages.

FIGURE 27.1
A good table of contents can make
a lengthy page easy to navigate.

FIGURE 27.2
Always provide a link back to the
table of contents after each sec-
tion of a long web page.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

540 CHAPTER 27 Organizing and Managing a Website

Having seen all the fancy graphics and layouts in this book, you might be
tempted to forget that a good, old-fashioned outline is often the clearest
and most efficient way to organize long web pages within a site.

Organizing a Simple Site
Although single-page sites have their place, most companies and individu-
als serve their readers better by dividing their site into short, quick-read
pages surrounded by graphical navigation that allows them to reach
almost all the information they could want within a few clicks.
Furthermore, using multiple pages instead of a series of very long pages
minimizes scrolling around on the page, which can be especially bother-
some for visitors who are using mobile devices to view the site or who
have relatively low-resolution monitors (less than 800×600).

The goal of the home page is simply to make the organization visible on
the Internet, but also—and more importantly—act as a portal to the infor-
mation contained within the site itself. The main page of a site should pro-
vide the user with enough information to provide a clear picture of the
organization, as well as traditional address and telephone contact informa-
tion and an email address to contact with questions or feedback. It should
also provide clear pathways into the highly structured information that
should be contained on other pages in the site. The main page shown in
Figure 27.3 provides examples of all these good features: basic information,
contact information, and paths to information for multiple audiences.

One of the most common mistakes beginning website developers make is
creating pages that look different than other pages on the site. Another
equally serious mistake is using the same, publicly available clip art that
thousands of other web authors are also using. Remember that on the
Internet, one click can take you around the world. The only way to make
your pages memorable and recognizable as a cohesive site is to make all
your pages adhere to a unique, unmistakable visual theme. In other words,
strive for uniqueness as compared to other websites, yet uniformity within
the site itself.

As an example of how uniformity can help make a site more cohesive,
think about large, popular sites you might have visited, such as ESPN.com.
If you visit the MLB section at ESPN.com (see Figure 27.4) and the NFL
section (see Figure 27.5), you’ll notice a very similar structure.

TIP

Regardless of how large your
site is, it’s a good idea to care-
fully organize your resources.
For example, place the images
for your web pages in a sepa-
rate folder named images.
Similarly, if you have files that
are available for download,
place them in a folder called
downloads. This makes it much
easier to keep track of web
page resources based on their
particular types (HTML pages,
GIF images, and so on).
Additionally, if you organize your
site into sections, such as
Company, Products, Press, and
so on, put the individual pages
into similarly named directories
(company, products, press, and
so on) for the same organiza-
tional reasons.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Organizing a Simple Site 541

FIGURE 27.4
The MLB section at ESPN.com.

FIGURE 27.3
This university main page uses a
basic design, minimal but useful
graphics, and clear structure to
entice users to explore for more
information.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

542 CHAPTER 27 Organizing and Managing a Website

In both examples, you see navigation elements at the top of the page
(including some sub-navigation elements), a large area in the middle of the
page for the featured item graphic, a rectangle on the right side containing
links to top stories at the moment, and a second rectangle under the top sto-
ries links for the display of an advertisement. The only difference between
the MLB section and the NFL section is the color scheme: The MLB section
is part of a predominantly blue color scheme, whereas the NFL section is
predominantly green. However, in both sections, you know that if you want
to read the popular news stories, you look to the right of the page. If you
want to navigate to another section in the site or to the site’s main page,
you look to a navigational element in the top left of the page.

These consistent elements help ensure your users will be able to navigate
throughout your content with confidence. From a maintenance perspec-
tive, the consistent structural template enables you to reuse pieces of the
code. This code reuse typically happens through dynamic server-side pro-
gramming outside the scope of this book, but in general it means that
instead of copying and pasting the same HTML and JavaScript over and
over, that client-side code only exists in one place and is applied dynami-
cally to the content. Therefore, instead of making changes to thousands of
files, you would only need to make a change once.

FIGURE 27.5
The NFL section at ESPN.com.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Organizing a Larger Site 543

Organizing a Larger Site
For complex sites, sophisticated layout and graphics can help organize and
improve the look of your site when used consistently throughout all of
your pages. To see how you can make aesthetics and organization work
hand-in-hand, let’s look at examples of navigation (and thus underlying
organization) for a few sites that present a large volume of information to
several different audiences.

Figure 27.6 shows the main page of Amazon.com, specifically with the side
navigation selected. Amazon is in the business of selling products, plain
and simple. Therefore, it makes sense for Amazon to show product cate-
gories as the main navigational elements, as shown in this figure.

FIGURE 27.6
Amazon.com shows product cate-
gories as primary navigation ele-
ments.

Although Amazon is in the business of selling products, it still has to pro-
vide information regarding who it is, how to contact it, and other ancillary
yet important information to enhance the business-to-consumer relation-
ship. Links to this sort of information appear in the footer, or bottom por-
tion, of the Amazon.com website—outside of the viewing area of this
screenshot. When creating your site template, you must determine the
most important content areas and how to organize that content; also,

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

544 CHAPTER 27 Organizing and Managing a Website

remember to provide users with basic information—especially if that infor-
mation will enhance your image and make the user feel as if you value
what they have to say.

The next example is of a secondary page within the Starbucks.com website.
All of the pages in the Starbucks.com website follow one of the common
types of presenting navigation and subnavigation: a horizontal strip for
main navigation, with secondary elements for that section placed in a ver-
tical column on the left. As shown in Figure 27.7, the section the user is
currently browsing (About Us) is highlighted. This visual indicator helps
users orient themselves within the site. Using a visual indicator is a useful
tactic because your users might arrive at a page via a search engine or by a
link from another website. After your users arrive, you want them to feel
at home—or at least feel as if they know where they are in relation to your
site—once they get there.

FIGURE 27.7
This Starbucks.com secondary
page shows a main navigation ele-
ment selected with secondary navi-
gation on the left side of the page.

As you can see by the different main navigation elements—Our Coffees, Our
Stores, Starbucks Card, At Home, For Business, About Us, and Shop
Online—the Starbucks website has to serve the needs of many different
types of people coming to the website for many different reasons. As you
organize your own site content, determine the information that is most
important to you, as well as that which is most important to your users, and
create a navigation scheme that finds a happy medium between the two.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Organizing a Larger Site 545

Figure 27.8 shows another example of a navigation style, this time with a
twist on the standard top navigation/left-side navigation scheme. In this
example, the left-side navigation (secondary navigation in this case) also
appears in a drop-down menu under the main navigation (refer to Chapter
11, “Using CSS to Do More with Lists, Text, and Navigation,” for informa-
tion on how to do something like this). Hovering the mouse over any of the
other main navigation elements shows similar menus. This scheme enables
users to have an entire site map at their fingertips because they would be
able to reach any place in the site within one click of any other page.

FIGURE 27.8
The BAWSI.org website shows sub-
navigation attached to each main
navigation element.

You will also notice that the Overview link in the side navigation window
is styled a bit differently—with heavier purple text—than the other links in
the window, indicating to visitors what page they are on. This visual
detail, similar to what you saw on the Starbucks site, is an unobtrusive
way to provide users with a sense of where they are within the current
navigational scheme.

There are many different types of navigation styles and ways of indicating
to users just where they are and where they might want to go next. Keep in
mind the following fact: Studies have repeatedly shown that people
become confused and annoyed when presented with more than seven
choices at a time, and people feel most comfortable with five or fewer
choices. Therefore, you should avoid presenting more than five links

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

546 CHAPTER 27 Organizing and Managing a Website

(either in a list or as graphical icons) next to one another if at all possible
and definitely avoid presenting more than seven at once. Amazon.com gets
a pass here because it is an Internet superstore and users expect a lot of
“departments” in which to shop when they get there. But when you need
to present more than seven links in a navigation list, break them into mul-
tiple lists with a separate heading for each of the five to seven items, as
you saw in the Amazon.com example in Figure 27.6.

It will also help your readers navigate your site without confusion if you
avoid putting any page more than two (or, at most, three) links away from
the main page. You should also always send readers back to a main catego-
ry page (or the home page) after they’ve read a subsidiary page. In other
words, try to design somewhat of a flat link structure in which most pages
are no more than one or two links deep. You don’t want visitors to have to
rely heavily, if at all, on their browsers’ Back buttons to navigate through
your site.

Writing Maintainable Code
If you’ve ever done any programming before reading this book, you
already know how important it is to write code that can be maintained—
that is, you or someone else should be able look at your code later and not
be utterly confused by it. The challenge is to make your code as immedi-
ately understandable as possible. There will come a time when you’ll look
back on a page that you wrote and you won’t have a clue what you were
thinking or why you wrote the code the way you did. Fortunately, there is
a way to combat this problem of apparent memory loss!

Documenting Code with Comments
Whenever you develop an HTML page or JavaScript snippet, keep in mind
that you or someone else will almost certainly need to make changes to it
someday. Simple text web pages are usually easy to read and revise, but
complex pages with graphics, tables, and other layout tricks can be quite
difficult to decipher.

To see what I’m talking about, visit just about any page in a web browser
and view its source code. Using Internet Explorer, click the View menu,
and then click Source. Using Firefox, click the View menu, and then click
Page Source. You might see a jumbled bunch of code that is tough to deci-
pher as pure HTML. This might be due to the fact that the markup has
been generated dynamically by content management software systems. Or

NOTE
To include comments in a
JavaScript script, put // at the
beginning of each comment
line. (No closing tag is needed
for JavaScript comments.) In
style sheets, start comments
with /* and end them with */.

The HTML <!-- and --> tags
will not work properly in scripts
or style sheets!

You can and should, however,
include one <!-- tag just after
a <script> or <style> tag,
with a --> tag just before the
matching </script> or
</style>. This hides the script
or style commands from older
browsers that would otherwise
treat them as regular text and
display them on the page.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Writing Maintainable Code 547

it might be due to the fact that its human maintainer has not paid attention
to structure, ease of reading, code commenting, and other methods for
making the code readable by humans. For the sake of maintaining your
own pages, I encourage you to impose a little more order on your HTML
markup. The same goes for your JavaScript: Proper indentation is your
(and your future development partner’s) friend.

As you have seen in several different chapters throughout this book, you
can enclose comments to yourself or your coauthors between <!-- and -->
tags. These comments will not appear on the web page when viewed with
a browser but can be read by anyone who examines the HTML code in a
text editor or via web browser’s View Source (or View Page Source) func-
tion. The following example provides a little refresher just to show you
how a comment is coded:

<!-- This image needs to be updated daily. -->

As this code reveals, the comment just before the tag provides a
clue as to how the image is used. When someone reads this code, he
knows immediately that this is an image that must be updated every day.
The text in the comment is completely ignored by web browsers.

TIP

One handy usage of comments
is to hide parts of a web page
that are currently under con-
struction. Rather than making
the text and graphics visible
and explaining that they’re
under construction, you can
hide them from view entirely
with some carefully placed
opening and closing comment
tags around the HTML you do
not want to appear. This is a
great way to work on portions
of a page gradually and show
only the end result to the world
when you’re finished.

Commenting Your
Code

It will be well worth your time now to go through all the web pages, scripts,
and style sheets you’ve created so far and add any comments that you or
others might find helpful when revising them in the future. Here’s what to do:

1. Put a comment explaining any fancy formatting or layout techniques
before the tags that make it happen.

2. Use a comment just before an tag to briefly describe any
important graphic whose function isn’t obvious from the alt message.

3. Consider using a comment (or several comments) to summarize how
the cells of a <table> are supposed to fit together visually.

4. If you use hexadecimal color codes (such as <div style=”color:
#8040B0”>), insert a comment indicating what the color actually is
(bluish-purple).

5. Place a comment near a JavaScript function that explains the purpose
of that function.

6. Indent your comments to help them stand out and make both the com-
ments and the HTML or JavaScript easier to read. Don’t forget to use
indentation in the HTML and JavaScript itself to make it more readable,
too, as we’ll discuss in the next section.

TRY IT YOURSELF ▼

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

548 CHAPTER 27 Organizing and Managing a Website

Indenting Code for Clarity
I have a confession. Throughout the book I’ve been carefully indoctrinating
you into an HTML code development style without really letting on. It’s time
to spill the beans. You’ve no doubt noticed a consistent pattern with respect to
the indentation of all the HTML code in the book. More specifically, each child
tag is indented to the right two spaces from its parent tag. Furthermore, con-
tent within a tag that spans more than one line is indented within the tag.

The best way to learn the value of indentation is to see some HTML code with-
out it. You know how the song goes—”you don’t know what you’ve got ‘til it’s
gone.” Anyway, here’s a very simple table coded without any indentation:

<table>
<tr><td>Cell One</td><td>Cell Two</td></tr>
<tr><td>Cell Three</td><td>Cell Four</td></tr>
</table>

Not only is there no indentation, there also is no delineation between rows
and columns within the table. Now compare this code with the following
code, which describes the same table:

<table>
<tr>
<td>Cell One</td>
<td>Cell Two</td>

</tr>
<tr>
<td>Cell Three</td>
<td>Cell Four</td>

</tr>
</table>

This heavily indented code makes it plainly obvious how the rows and
columns are divided up via <tr> and <td> tags.

Consistent indentation might even be more important than comments when
it comes to making your HTML code understandable and maintainable.
And you don’t have to buy into this specific indentation strategy. If you’d
rather use three or four spaces instead of two, that’s fine. And if you want to
tighten things up a bit and not indent content within a tag, that also works.
The main thing to take from this is that it’s important to develop a coding
style of your own and then ruthlessly stick to it.

Thinking About Version Control
If you’ve ever used Google Docs, you have encountered a form of version
control; in Google Docs, Google automatically saves revisions of your work

TIP

If you work with other people or
plan on working with other peo-
ple developing web pages, you
should consider getting togeth-
er as a group to formulate a
consistent coding style. That
way everyone is on the same
page, pun intended.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Thinking About Version Control 549

as you are typing. This is different than simply automatically saving your
work (although it does that, too) because you can revert to any revision
along the way. You might have encountered this concept when using pop-
ular blog-authoring software such as Blogger or WordPress, or even when
editing wikis—both of these also enable users to revise their work without
overwriting, and thus deleting for all time, the previous work.

You might be wondering, “Well, what does that have to do with code? You’re
talking about documents.” The answer is simple: Just as you might want to
revert to a previous edition of an article or letter, you might want to revert to
a previous edition of your code. This could be because you followed a good
idea to the end, and the code just proved untenable, but you don’t want to
start over entirely—just at a certain point along your revision path.

There is more to version control than just revision history. When you start
using version control systems to maintain your code, you will hear terms like:

. Commit/check-in and checkout—When you put an object into the
code repository, you are committing that file; when you checkout a
file, you are grabbing it from the repository (where all the current
and historical versions are stored) and working on it until you are
ready to commit or check-in the file again.

. Branch—The files you have under version control can branch or fork
at any point, thus creating two or more development paths. Suppose
you want to try some new display layouts or form interactivity but
you don’t want an existing site to appear modified in any way. You
might have started with one master set of files but then forked this
set of files for the new site, continuing to develop them independent-
ly. If you continued developing the original set of files, that would be
working with the trunk.

. Change/diff—This is just the term (change OR diff) for a modification
made under version control. You might also hear diff used as a verb,
as in “I diffed the files,” to refer to the action of comparing two ver-
sions of an object. (There is an underlying UNIX command called diff.)

There are many more terms than just these few listed here, but if you can
conceptualize the repository, the (local) working copy, and the process of
checking in and checking out files, you are well on your way to imple-
menting version control for your digital objects.

Using a Version Control System
Although there are several different version control systems available for
use—some free and open source and some proprietary—two of the most

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

550 CHAPTER 27 Organizing and Managing a Website

popular systems are Subversion (http://subversion.apache.org) and Git
(http://git-scm.com). If you have a web hosting service that enables you to
install Subversion, you can create your own repository and use a
Subversion client to connect to it.

But an increasingly popular tool is Git, which is a decentralized approach to
version control and also offers numerous tools and hosting options for users
who want to get started with a repository but don’t necessarily want/need/
understand all the extra installation and maintenance overhead that goes
with it. One such hosting option for Git repositories is GitHub (http://
github.org), which allows users to create accounts and store and maintain as
many code repositories for free as they would like (as long as they are open
source), while also providing paid solutions for users who would like to
maintain private code repositories.

For anyone wanting to get started with version control, I recommend Git and
GitHub for its relative ease of use and free, cross-platform tools for use. The
GitHub Help site would be a great place to start: http://help.github.com/. An
added benefit of the already-free GitHub account is the ability to use Gist
(http://gist.github.com), which is a way to share code snippets (or whole
pages) with others, while these snippets themselves are git repositories and
thus versioned and forkable in their own right. GitHub repositories, including
Gists, are both excellent ways to get started with version control of your work.

Summary
This chapter has given you examples and explanations to help you organize
your web pages into a coherent site that is informative, attractive, and easy
to navigate. Web users have grown to become quite savvy in terms of
expecting well-designed websites, and they will quickly abandon your site
if they experience a poor design that is difficult to navigate.

This chapter also discussed the importance of making your code easy to
maintain by adding comments and indentation. Comments are important
not only as a reminder for you when you revisit code later but also as
instruction if someone else should inherit your code. Indentation might
seem like an aesthetic issue, but it can truly help you to quickly analyze and
understand the structure of a web page at a glance. Because you are likely
soon to need code management tools either for yourself or yourself plus
other developers in your group, you were introduced to a few concepts in
version control. Version control enables you to innovate without losing your
solid, production-quality work and also provides more opportunities for
other developers to work within your code base.

www.it-ebooks.info

http://subversion.apache.org
http://git-scm.com
http://github.org
http://github.org
http://help.github.com/
http://gist.github.com
http://www.it-ebooks.info/

ptg999

551Workshop

Q&A
Q. I’ve seen pages that ask viewers to change the width of their browser

window or adjust other settings before proceeding beyond the home
page. Why do they do this?

A. The snarky response is that the site creators do not care about their
users. Never force your users to do something differently than they are
doing with their browsers, and especially never, ever resize the browser
automatically. Those are some of the biggest usability no-no’s. When
sites tell you to change your settings, it is because the site creators think
they can offer a better presentation if they’re given that specific control
over the size of users’ windows or fonts. Of course, few people bother to
change their settings when told to do so (as they shouldn’t), so these
sites often look weird or unreadable. You’ll be much better off using the
tips you learn in this book to make your site readable and attractive using
any window size and using a wide variety of browser settings. The better
organized your site is, the more usable it will be for visitors.

Q. Will lots of comments and spaces make my pages load slower when
someone views them?

A. The size of a little extra text in your pages is negligible when compared
to other, chunkier web page resources (such as images and multimedia).
Besides, slower dial-up modem connections typically do a decent job of
compressing text when transmitting it, so adding spaces to format your
HTML doesn’t usually change the transfer time at all. You’d have to type
hundreds of comment words to cause even one extra second of delay in
loading a page. And keep in mind that with the broadband connections
(cable, DSL, and so on) that many people now have, text travels extreme-
ly fast. It’s the graphics that slow pages down, so squeeze your images
as tightly as you can, but use text comments freely.

Workshop
The workshop contains quiz questions and activities to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

Quiz
1. What are three ways to ensure all your pages form a single cohesive

website?

2. What two types of information should always be included on your home
page?

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

552 CHAPTER 27 Organizing and Managing a Website

3. You want to say, “Don’t change this image of me. It’s my only chance at
immortality,” to future editors of a web page, but you don’t want users
who view the page to see that message. How would you do it?

Answers
1. Use consistent background, colors, fonts, and styles. Repeat the same

link words or graphics on the top of the page that the link leads to.
Repeat the same small header, buttons, or other element on every
page of the site.

2. Use enough identifying information so that users can immediately see
the name of the site and what it is about. Also, whatever the most
important message you want to convey to your intended audience is,
state it directly and concisely. Whether it’s your mission statement or
trademarked marketing slogan, make sure that it is in plain view here.

3. Put the following comment immediately before the tag:

<!-- Don’t change this image of me.
It’s my only chance at immortality. -->

Exercises
. Grab a pencil (the oldfangled kind) and sketch out your website as a

bunch of little rectangles with arrows between them. Sketch a rough
overview of what each page will look like by putting squiggles where the
text goes and doodles where the images go. Each arrow should start at
a doodle icon that corresponds to the navigation button for the page
the arrow leads to. Even if you have the latest whiz-bang website man-
agement tools (which are often more work than just creating the site
itself), sketching your site by hand can give you a much more intuitive
grasp of which pages on your site will be easy to get to and how the
layout of adjacent pages will work together—all before you invest time
in writing the actual HTML to connect the pages together. Believe it or
not, I still sketch out websites like this when I’m first designing them.
Sometimes you can’t beat a pencil and paper!

. Open the HTML files that make up your current website, and check
them all for comments and code indentation. Are there areas in which
the code needs to be explained to anyone who might look at it in the
future? If so, add explanatory comments. Is it difficult for you to tell the
hierarchy of your code? Is it difficult to see headings and sections? If
so, indent your HTML so that the structure matches the hierarchy and
thus enables you to jump quickly to the section you need to edit.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Your web pages are ultimately only as useful as they are accessible—if no
one can find your pages, your hard work in creating a useful architecture,
providing interesting content, and coding them correctly will be for naught.
The additional HTML tags you’ll discover in this chapter won’t make any
visible difference in your web pages, but they are extremely important in
that they will help your audience more easily find your web pages.

For most website creators, this might be the easiest—but most important—
chapter in the book. You’ll learn how to add elements to your pages and
how to construct your site architecture in such a way as to increase the
possibility that search engines will return links to your site when someone
searches for words related to your topic or company; this is called search
engine optimization (SEO).

Contrary to what you might hear from companies who try to sell SEO
services to you, there are no magic secrets that guarantee you’ll be at the
top of every list of search results. However, there is a set of free best prac-
tices that you can do on your own to make sure your site is as easy to find
as possible.

Publicizing Your Website
Presumably, you want your website to attract someone’s attention or you
wouldn’t bother to create it in the first place. However, if you are placing
your pages only on a local network or corporate intranet, or you are dis-
tributing your site exclusively on removable storage media, helping users
find your pages might not be much of a problem. But if you are adding the
content of your website to the billions of other pages of content indexed by
search engines, bringing your intended audience to your site is a very big
challenge indeed.

WHAT YOU’LL LEARN IN
THIS CHAPTER:

. How to publicize your
website

. How to list your pages with
the major search sites

. How to optimize your site
for search engines

CHAPTER 28
Helping People Find Your Web

Pages

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

554 CHAPTER 28 Helping People Find Your Web Pages

To tackle this problem, you need a basic understanding of how most peo-
ple decide which pages they will look at. There are basically three ways
people become aware of your website:

. Somebody tells them about it and gives them the address; they enter
that address directly into their web browser.

. They follow a link to your site from someone else’s site, an aggrega-
tor and recommendation service such as Digg or Reddit, or from a
link or mention on a social networking site such as Facebook, Twitter,
or Google+.

. They find your site indexed in the databases that power the Google,
Bing, or Yahoo! search engines (among others).

You can increase your website traffic with a little time and effort. To
increase the number of people who hear about you through word-of-
mouth, well, use your mouth—and every other channel of communication
available to you. If you have an existing contact database or mailing list,
announce your website to those people. Add the site address to your busi-
ness cards or company literature. If you have the money, go buy TV and
radio ads broadcasting your Internet address. In short, do the marketing
thing. Good old-fashioned word-of-mouth marketing is still the best thing
going, even on the Internet—we just have more and more tools available to
us online.

Increasing the number of incoming links to your site from other sites is
also pretty straightforward—although that doesn’t mean it isn’t a lot of
work. If there are specialized directories on your topic, either online or in
print, be sure you are listed. Participate in social networking, including the
implementation of Facebook fan pages (if applicable) for your service or
business. Create a Twitter account to broadcast news and connect with cus-
tomers—again, if that is applicable to your online presence. Go into the
spaces where your customers might be, such as blogs that comment on
your particular topic of interest, and participate in those communities. That
is not to say that you should find a forum on your topic or service and
spam its users with links to your site. Act as an expert in your given field,
offering advice and recommendations along with your own site URL.
There’s not much I can say in this chapter to help you with that, except to
go out and do it.

The main thing I can help you with is making sure your content has been
gathered and indexed correctly by search engines. It’s a fair assumption
that if your content isn’t in Google’s databases, you’re in trouble.

NOTE

A very popular, high traffic, and
well-respected site (due to their
accuracy and added value) for
tips for interacting in social net-
working spaces, especially for
the business user, is Mashable:
http://www.mashable.com/.

www.it-ebooks.info

http://www.mashable.com/
http://www.it-ebooks.info/

ptg999

Listing Your Pages with the Major Search Sites 555

Search engines are basically huge databases that index as much content on
the Internet as possible—including videos and other rich media. They use
automated processing to search sites, using programs called robots or spi-
ders to search pages for content and build the databases. After the content
is indexed, the search applications themselves use highly sophisticated
techniques of ranking pages to determine which content to display first,
second, third, and so on when a user enters a search term.

When the search engine processes a user query, it looks for content that
contains the key words and phrases that the user is looking for. But it is
not a simple match, as in “if this page contains this phrase, return it as a
result,” because content is ranked according to frequency and context of
the keywords and phrases, as well as the number of links from other sites
that lend credibility to it. This chapter will teach you a few ways to ensure
that your content appears appropriately in the search engine, based on the
content and context you provide.

Listing Your Pages with the Major
Search Sites
If you want users to find your pages, you absolutely must submit a request
to each of the major search sites to index your pages. Even though search
engines index web content automatically, this is the best way to ensure
your site has a presence on their sites. Each of these sites has a form for
you to fill out with the URL address, a brief description of the site, and, in
some cases, a category or list of keywords with which your listing should
be associated. These forms are easy to fill out; you can easily complete all
of them in an hour with time left over to list yourself at one or two special-
ized directories you might have found as well. (How do you find the spe-
cialized directories? Through the major search sites, of course!)

Even though listing with the major search engines is easy and quick, it can
be a bit confusing: Each search engine uses different terminology to identi-
fy where you should click to register your pages. The following list might
save you some frustration; it includes the addresses of some popular
search engines which will include your site for free, along with the exact
wording of the link you should click to register:

. Google—Visit http://www.google.com/addurl/, enter the address
of your site and a brief description, and then enter the squiggly veri-
fication text, called a CAPTCHA, (or Completely Automated Public
Turing test to tell Computers and Humans Apart) shown on the
page. Then click the Add URL button to add your site to Google.

Before You List Your
Pages
But wait! Before you rush off
this minute to submit your list-
ing requests, read the rest of
this chapter. Otherwise, you’ll
have a very serious problem,
and you will have already lost
your best opportunity to solve it.

To see what I mean, imagine
this scenario: You publish a
page selling automatic cock-
roach flatteners. I am an
Internet user who has a roach
problem, and I’m allergic to bug
spray. I open my laptop, brush
the roaches off the keyboard,
log on to my favorite search
site, and enter cockroach as a
search term. The search engine
promptly presents me with a
list of the first 10 out of
10,400,000 web pages contain-
ing the word cockroach. You
have submitted your listing
request, so you know that your
page is somewhere on that list.

Did I mention that I’m rich? And
did I mention that two roaches
are mating on my foot? You
even offer same-day delivery in
my area. Do you want your page
to be number 3 on the list or
number 8,542? Okay, now you
understand the problem. Just
getting listed in a search engine
isn’t enough—you need to work
your way up the rankings.

www.it-ebooks.info

http://www.google.com/addurl/
http://www.it-ebooks.info/

ptg999

556 CHAPTER 28 Helping People Find Your Web Pages

. Yahoo! Search—Visit http://siteexplorer.search.yahoo.com/submit,
click on Submit a Website or Webpage, enter the address of your site,
and then click the Submit URL button.

. Bing—Visit http://www.bing.com/docs/submit.aspx, enter the veri-
fication text, enter the address of your site, and then click the Submit
URL button.

. AllTheWeb—AllTheWeb search results are provided by Yahoo!
Search, so just be sure to submit your site to Yahoo! Search, as
explained previously.

. AltaVista—AltaVista search results are also provided by Yahoo!
Search, so just be sure to submit your site to Yahoo!. Search, as
explained previously.

Providing Hints for Search Engines
Fact: There is absolutely nothing you can do to guarantee that your site
will appear in the top 10 search results for a particular word or phrase in
any major search engine (short of buying ad space from the search site,
that is). After all, if there were such guarantees, why couldn’t everyone
else who wants to be number one on the list do it, too? What you can do is
avoid being last on the list and give yourself as good a chance as anyone
else of being first; this is called SEO, or optimizing the content and struc-
ture of your pages so that search engines will favor your pages over others.

Each search engine uses a different method for determining which pages
are likely to be most relevant and should therefore be sorted to the top of a
search result list. You don’t need to get too hung up on the differences,
though, because they all use some combination of the same basic criteria.
The following list includes almost everything any search engine considers
when trying to evaluate which pages best match one or more keywords:

. Do keywords appear in the <title> tag of the page?

. Do keywords appear in the first few lines of the page?

. Do keywords appear in a <meta /> tag in the page?

. Do keywords appear in <h1> headings in the page?

. Do keywords appear in the names of image files and alt text for
images in the page?

. How many other pages within the website link to the page?

TIP

There are sites that provide one
form that automatically submits
itself to all the major search
engines, plus several minor
search engines. These sites—
such as http://www.
scrubtheweb.com/,
http://www.submitexpress.com/,
and http://www.hypersubmit.
com/—are popular examples of
sites that attempt to sell you a
premium service that lists you in
many other directories and index-
es as well. Depending on your
target audience, these services
might or might not be of value,
but I strongly recommend that
you go directly to the major
search sites listed on the right
and use their forms to submit
your requests to be listed. That
way you can be sure to answer
the questions (which are slightly
different at every site) accurately,
and you will know exactly how
your site listing will appear at
each search engine.

www.it-ebooks.info

http://siteexplorer.search.yahoo.com/submit
http://www.bing.com/docs/submit.aspx
http://www.scrubtheweb.com/
http://www.scrubtheweb.com/
http://www.submitexpress.com/
http://www.hypersubmit.com/
http://www.hypersubmit.com/
http://www.it-ebooks.info/

ptg999

Providing Hints for Search Engines 557

. How many other pages in other websites link to the page? How
many other pages link to those pages?

. How many times have users chosen this page from a previous search
list result?

Clearly, the most important thing you can do to improve your position is
to consider the keywords your intended audience are most likely to enter.
I’d recommend that you not concern yourself with common, single-word
searches like food; the lists they generate are usually so long that trying to
make it to the top is like playing the lottery. Focus instead on uncommon
words and two- or three-word combinations that are most likely to indi-
cate relevance to your topic (for instance, Southern home-style cooking
instead of simply food). Make sure that those terms and phrases occur sev-
eral times on your page and be certain to put the most important ones in
the <title> tag and the first heading or introductory paragraph.

Of all the search-engine evaluation criteria just listed, the use of <meta />
tags is probably the least understood. Some people rave about <meta />
tags as if using them could instantly move you to the top of every search
list. Other people dismiss <meta /> tags as ineffective and useless. Neither
of these extremes is true.

A <meta /> tag is a general-purpose tag you can put in the <head> portion
of any document to specify some information about the page that doesn’t
belong in the <body> text. Most major search engines look at <meta /> tags
to provide them with a short description of your page and some keywords
to identify what your page is about. For example, your automatic cock-
roach flattener order form might include the following two tags:

<meta name=”description”
content=”Order the SuperSquish cockroach flattener.” />

<meta name=”keywords”
content=”cockroach,roaches,kill,squish,supersquish” />

The first tag in this example ensures that the search engine has an accurate
description of the page to present on its search results list. The second
<meta /> tag slightly increases your page’s ranking on the list whenever
any of your specified keywords are included in a search query.

NOTE
Some over-eager web page
authors put dozens or even
hundreds of repetitions of the
same word on their pages,
sometimes in small print or a
hard-to-see color, just to get the
search engines to position that
page at the top of the list when-
ever users search for that word.
This practice is called search
engine spamming.

Don’t be tempted to try this
sort of thing—all the major
search engines are aware of
this practice and immediately
delete any page from their data-
base that sets off a spam
detector by repeating the same
word or group of words in a
suspicious pattern. It’s still fine
(and quite beneficial) to have
several occurrences of impor-
tant search words on a page, in
the natural course of your con-
tent. Make sure, however, that
you use those words in normal
sentences or phrases—then
the spam police will leave you
alone.

CAUTION
Always place <meta /> tags
after the <head>, <title>, and
</title> tags but before the
closing </head> tag.

According to XHTML standards,
<title> must be the very first
tag in the <head> section of
every document.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

558 CHAPTER 28 Helping People Find Your Web Pages

You should always include <meta /> tags with name=”description” and
name=”keywords” attributes in any page that you want to be indexed by a
search engine. Doing so might not have a dramatic effect on your position
in search lists, and not all search engines look for <meta /> tags, but it can
only help.

To give you a concrete example of how to improve search engine results,
consider the page shown in Listing 28.1.

This page should be easy to find because it deals with a specific topic and
includes several occurrences of some uncommon technical terms for which
users interested in this subject would be likely to search. However, there
are several things you could do to improve the chances of this page
appearing high on a search engine results list.

LISTING 28.1 A Page That Will Have Little Visibility During an Internet
Site Search
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Fractal Central</title>

</head>

<body>
<div style=”text-align:center”>

</div>
<div style=”width:133px; float:left; padding:6px;

text-align:center; border-width:4px;
border-style:ridge”>

Discover the latest software, books and more at our
online store.

<img src=”orderform.gif”

alt=”Order Form” style=”border-style:none” />
</div>
<div style=”float:left; padding:6px”>
<h2>A Comprehensive Guide to the

Art and Science of Chaos and Complexity</h2>
<p>What’s that? You say you’re hearing about
“fractals” and “chaos” all over the place, but still
aren’t too sure what they are? How about a quick
summary of some key concepts:</p>

Even the simplest systems become deeply
complex and richly beautiful when a process is
“iterated” over and over, using the results

TIP

The previous cockroach exam-
ple aside, search engine
experts suggest that the ideal
length of a page description in
a <meta /> tag is in the 100-
to 200-character range. For key-
words, the recommended length
is in the 200- to 400-character
range. Experts also suggest not
wasting spaces in between key-
words, which is evident in the
cockroach example. And, finally,
don’t go crazy repeating the
same keywords in multiple
phrases in the keywords—some
search engines will penalize you
for attempting to overdo it.

TIP
In the unlikely event that you
don’t want a page to be includ-
ed in search engine databases
at all, you can put the following
<meta /> tag in the <head> por-
tion of that page:
<meta name=”robots”
content=”noindex,noindex” />

This causes some search
robots to ignore the page. For
more robust protection from
prying robot eyes, ask the per-
son who manages your web
server to include your page
address in the server’s
robots.txt file. (She will know
what that means and how to do
it; if not, you can refer to the
handy information at
http://www.robotstxt.org/.) All
major search spiders will then
be sure to ignore your pages.
This might apply to internal
company pages that you’d
rather not be readily available
via public searches.

www.it-ebooks.info

http://www.robotstxt.org/
http://www.it-ebooks.info/

ptg999

Providing Hints for Search Engines 559

of each step as the starting point of the next.
This is how Nature creates a magnificently
detailed 300-foot redwood tree from a seed
the size of your fingernail.
Most “iterated systems” are easily simulated
on computers, but only a few are predictable and
controllable. Why? Because a tiny influence, like
a “butterfly flapping its wings,” can be strangely
amplified to have major consequences such as
completely changing tomorrow’s weather in a distant
part of the world.
Fractals can be magnified forever without loss
of detail, so mathematics that relies on straight
lines is useless with them. However, they give us
a new concept called “fractal dimension” which
can measure the texture and complexity of anything
from coastlines to storm clouds.
While fractals win prizes at graphics shows,
their chaotic patterns pop up in every branch of
science. Physicists find beautiful artwork coming
out of their plotters. “Strange attractors” with
fractal turbulence appear in celestial mechanics.
Biologists diagnose “dynamical diseases” when
fractal rhythms fall out of sync. Even pure
mathematicians go on tour with dazzling videos of their
research.

<p>Think all these folks may be on to something?</p>

</div>
<div style=”text-align:center”>

<img src=”findout.gif” alt=”Find Out More”
style=”border-style:none” />

</div>
</body>

</html>

Now compare the page in Listing 28.1 with the changes made to the page
in Listing 28.2. The two pages look almost the same, but to search robots
and search engines, these two pages appear quite different. The following
list summarizes what was changed in the page and how those changes
affected indexing:

. Important search terms were added to the <title> tag and the first
heading on the page. The original page didn’t even include the word
fractal in either of these two key positions.

. <meta /> tags were added to assist search engines with a descrip-
tion and keywords.

LISTING 28.1 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

560 CHAPTER 28 Helping People Find Your Web Pages

. A very descriptive alt attribute was added to the first tag.
Not all search engines read and index alt text, but some do.

. The quotation marks around technical terms (such as “fractal” and
“iterated”) were removed because some search engines consider
“fractal” to be a different word than fractal. The quotation marks were
replaced with the character entity ", which search robots simply
disregard. This is also a good idea because XHTML urges web devel-
opers to use the " entity instead of quotation marks anyway.

. The keyword fractal was added twice to the text in the order-form
box.

It is impossible to quantify how much more frequently users searching for
information on fractals and chaos were able to find the page shown in Listing
28.2 versus the page shown in Listing 28.1, but it’s a sure bet that the changes
could only improve the page’s visibility to search engines. As is often the
case, the improvements made for the benefit of the search spiders probably
made the page’s subject easier for humans to recognize and understand as
well. This makes optimizing a page for search engines a win-win effort!

LISTING 28.2 An Improvement on the Page in LISTING 28.1
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Fractal Central: A Guide to Fractals, Chaos,

and Complexity</title>
<meta name=”description” content=”A comprehensive guide

to fractal geometry, chaos science and complexity
theory.” />

<meta name=”keywords” content=”fractal,fractals,chaos
science,chaos theory,fractal geometry,complexity,
complexity theory” />

</head>

<body>
<div style=”text-align:center”>
<img src=”fractalaccent.gif” alt=” Fractal Central: A

Guide to Fractals, Chaos, and Complexity “ />
</div>
<div style=”width:133px; float:left; padding:6px;

text-align:center; border-width:4px;
border-style:ridge”>

Discover the latest fractal software, books and
more at the Fractal
Central online store

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Providing Hints for Search Engines 561

<img src=”orderform.gif”
alt=”Order Form” style=”border-style:none” />
</div>

<div style=”float:left; padding:6px”>
<h2>A Comprehensive Guide to the

Art and Science of Chaos and Complexity</h2>
<p>What’s that? You say you’re hearing about
"fractals" and "chaos" all
over the place, but still aren’t too sure what
they are? How about a quick summary of some key
concepts:</p>

Even the simplest systems become deeply
complex and richly beautiful when a process is
"iterated" over and over, using the
Results of each step as the starting point of
the next. This is how Nature creates a magnificently
detailed 300-foot redwood tree from a seed
the size of your fingernail.
Most "iterated systems" are easily
simulated on computers, but only a few are predictable
and controllable. Why? Because a tiny influence, like
a "butterfly flapping its wings, " can be
strangely amplified to have major consequences such as
completely changing tomorrow’s weather in a distant
part of the world.
Fractals can be magnified forever without loss
of detail, so mathematics that relies on straight
lines is useless with them. However, they give us
a new concept called "fractal dimension"
which can measure the texture and complexity of
anything from coastlines to storm clouds.
While fractals win prizes at graphics shows,
their chaotic patterns pop up in every branch of
science. Physicists find beautiful artwork coming
out of their plotters. "Strange attractors"
with fractal turbulence appear in celestial mechanics.
Biologists diagnose "dynamical diseases"
when fractal rhythms fall out of sync. Even pure
mathematicians go on tour with dazzling videos of their
research.

<p>Think all these folks may be on to something?</p>

</div>
<div style=”text-align:center”>

<img src=”findout.gif” alt=”Find Out More”
style=”border-style:none” />

</div>
</body>

</html>

LISTING 28.2 Continued

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

562 CHAPTER 28 Helping People Find Your Web Pages

These changes will go a long way toward making the content of this site
more likely to be appropriately indexed. In addition to good, indexed con-
tent, remember that the quality of content—as well as the number of other
sites linking to yours—is important as well.

Additional Tips for Search Engine
Optimization
The most important tip I can give you regarding SEO is to not pay an SEO
company to perform your SEO tasks if that company promises specific
results for you. If a company promises that your site will be the number
one result in a Google search, run for the hills and take your checkbook
with you—no one can promise that because the search algorithms have so
many variables that the number one result might change several times
over the course of a given week. That is not to say that all SEO companies
are scam artists. Some legitimate site content and architect consultants who
perform SEO tasks get lumped in with the spammers who send unsolicited
email, such as this:

“Dear google.com, I visited your website and noticed that you are not
listed in most of the major search engines and directories...”

This sample e-mail is used as an example in Google’s own guidelines for
webmasters, along with the note to “reserve the same skepticism for unso-
licited email about search engines as you do for burn-fat-at-night diet pills
or requests to help transfer funds from deposed dictators.” Yes, someone
actually sent Google a spam e-mail about how to increase their search
ranking...in Google. For more good advice from Google, visit
http://www.google.com/webmasters/.

Here are some additional actions you can take, for free, to optimize your
content for search engines:

. Use accurate page titles. Your titles should be brief, but descriptive
and unique. Do not try to stuff your titles with keywords.

. Create human-friendly URLs, such as those with words in them that
users can easily remember. It is a lot easier to remember—and it’s
easier for search engines to index in a relevant way—a URL such as
http://www.mycompany.com/products/super_widget.html com-
pared to something like http://www.mycompany.com?c=p&id=
4&id=49f8sd7345fea.

. Create URLs that reflect your directory structure. This assumes you
have a directory structure in the first place, which you should.

www.it-ebooks.info

http://www.google.com/webmasters/
http://www.mycompany.com/products/super_widget.html
http://www.mycompany.com?c=p&id=4&id=49f8sd7345fea
http://www.mycompany.com?c=p&id=4&id=49f8sd7345fea
http://www.it-ebooks.info/

ptg999

Summary 563

. When possible, use text—not graphical elements—for navigation.

. If you have content several levels deep, use a breadcrumb trail so that
users can find their way back home. A breadcrumb trail also provides
search engines with more words to index. For example, if you are look-
ing at a recipe for biscuits in the Southern Cooking category of a food-
related website, the breadcrumb trail for this particular page might
look like this:

Home > Southern Cooking > Recipes > Biscuits

. Within the content of your page, use headings (<h1>, <h2>, <h3>)
appropriately.

In addition to providing rich and useful content for your users, you should
follow these tips to increase your site’s prominence in page rankings.

Summary
This chapter covered some extremely important territory by exploring how
to provide hints to search engines (such as Google, Bing, and Yahoo!) so that
users can find your pages more easily. You also saw an example of the
HTML behind a perfectly reasonable web page redone to make it more search
engine friendly. Finally, you learned a few more tips to optimize the index-
ing of your site overall.

Table 28.1 lists the tags and attributes covered in this chapter.

TABLE 28.1 HTML Tags and Attributes Covered in Chapter 28

Tag/Attribute Function

<meta /> Indicates meta-information about this document (information
about the document itself). Most commonly used to add a page
description and to designate keywords. Used in the document
<head>.

Attributes

name=”name” Can be used to specify which type of information about the doc-
ument is in the content attribute. For example, name=
”keywords” means that keywords for the page are in content.

content= The actual message or value for the information specified in
”value” http-equiv or name. For example, if the http-equiv attribute

is set to refresh, the content attribute should be set to the
number of seconds to wait, followed by a semicolon and the
address of the page to load.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

564 CHAPTER 28 Helping People Find Your Web Pages

Q&A
Q. I have lots of pages in my site. Do I need to fill out a separate form for

each page at each search site?

A. No. If you submit just your home page (which is presumably linked to
all the other pages), the search spiders will crawl through all the links
on the page (and all the links on the linked pages, and so on) until they
have indexed all the pages on your site.

Q. I submitted a request to be listed with a search engine, but when I
search for my page, my page never comes up—not even when I enter
my company’s unique name. What can I do?

A. Most of the big search engines offer a form you can fill out to instantly
check whether a specific address is included in their database. If you
find that it isn’t included, you can submit another request form.
Sometimes it takes days or even weeks for the spiders to get around to
indexing your pages after you submit a request.

Q. When I put keywords in a <meta /> tag, do I need to include every
possible variation of spelling and capitalization?

A. Don’t worry about capitalization; almost all searches are entered in all
lowercase letters. Do include any obvious variations or common spelling
errors as separate keywords. Although simple in concept, there are
more advanced strategies available when it comes to manipulating the
<meta /> tag than I’ve been able to cover in this chapter. Visit
http://en.wikipedia.org/wiki/Meta_element for good information on the
various attributes of this tag and how to use it.

Q. I’ve heard that I can use the <meta /> tag to make a page automati-
cally reload itself every few seconds or minutes. Is this true?

A. Yes, but there’s no point in doing that unless you have some sort of
program or script set up on your web server to provide new information
on the page. And if that is the case, the chances are good that you can
go about that refresh in a different way using AJAX (see Chapter 24,
“AJAX: Remote Scripting,” for basic information on AJAX). For usability
reasons, the use of <meta /> to refresh content is frowned upon by the
W3C and users in general.

Workshop
The workshop contains quiz questions and activities to help you solidify your
understanding of the material covered. Try to answer all questions before
looking at the “Answers” section that follows.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Meta_element
http://www.it-ebooks.info/

ptg999

Workshop 565

Quiz
1. If you publish a page about puppy adoption, how could you help make

sure that the page can be found by users who enter puppy, dog, and/or
adoption at all the major Internet search sites?

2. Suppose you decide to paste your keywords hundreds of times in your
HTML code, using a white font on a white background, so that your
readers cannot see them. How would search engine spiders deal with
this?

3. Is it better to throw all your content in one directory or to organize it
into several directories?

Answers
1. Make sure that puppy, dog, and adoption all occur frequently on your

main page (as they probably already do) and title your page something
along the lines of Puppy Dog Adoption. While you’re at it, put the follow-
ing <meta /> tags in the <head> portion of the page:

<meta name=”description”
content=”dog adoption information and services” />
<meta name=”keywords” content=”puppy, dog, adoption” />

Publish your page online, and then visit the site submittal page for each
major search engine (listed earlier in the chapter) to fill out the site
submission forms.

2. Search engine spiders would ignore the duplications and possibly black-
list you from their index and label you as a spammer.

3. Definitely organize your content into several directories. This will provide
easier maintenance of your content, but will also give you the opportu-
nity to create human-readable URLs with directory structures that make
sense. It also creates a navigational breadcrumb trail.

Exercises
. You’ve reached the end of the book. If you have a site that is ready for

the world to see, review the content and structure for the best possible
optimizations, and then submit the address to all the major search
engines.

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

This page intentionally left blank

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

INDEX

absolute positioning, 213

display property (CSS), 53

positioning property, 214-217

accessibility, JavaScript best
practices, 439

Adaptive Path, AJAX, 480

addEventListener function, 392

Adjust Hue/Lightness/Saturation tool
(GIMP), 154

Adobe Photoshop, 148

AJAX, 71, 479. See also JavaScript

AJAX Frameworks JavaScript
library, 456

debugging applications, 491-496

examples of, 481

frameworks, 482

libraries, 482

ajaxRequest function, 486

ajaxResponse function, 486

creating, 485-486

quiz building example, 487-491

using, 486

limitations of, 482

live search forms, creating, 496

front end, 495

HTML file example, 493

HTML forms, 492

JavaScript front end, 494-495

PHP back end, 493-494

Symbols

/ (forward slashes), HTML and, 124

+ (plus signs) in JavaScript state-
ments, 73

+= operator, 327

(;) semicolons, JavaScript statements,
72, 287

Numbers

140 cross-browser color names,
143-144

A

A Small Orange web hosting provider, 7

<a> tags (HTML), 170

anchor locations, linking to,
126-129

naming, 127

web pages, identifying locations
within, 126

absolute addresses, web pages and,
124-125

absolute links, web pages and, 124

quiz building example

HTML files, 487-488

JavaScript files, 489-490

testing, 490-491

XML files, 488-489

requests

awaiting responses, 484

back end, 480, 493-494

creating, 483

front end, 480, 494-495

interpreting response data, 484

JavaScript client, 480

sending, 484

server-side scripts, 480,
493-495

XML and, 481

XMLHttpRequest

awaiting responses to
requests, 484

creating requests, 483

interpretting request response
data, 484

opening URLs, 483

sending requests, 484

alert() function, event handlers
and, 295

alerts (dialog boxes), 417-418

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

aligning568

numeric arrays, 337, 340-342

string arrays, 338

sorting, 340-342

splitting, 339

ASCII text, 26, 34, 82, 397

.asp file extensions, 27

ASP scripting language, 274

attributes, 92-93, 123

auto image loading, web browsers, 20

B

 tags (HTML), 81-83

back end (AJAX requests), 480,
493-494

Back/Forward buttons, adding to
documents, 304-305

backgrounds

background-position style
property, 172

background-repeat style
property, 172

colors,

background-color property
(CSS), 55

background-color style
property, 171

CSS and 146-148

images, 171-172

tiled backgrounds, 159-160

bad website examples, 144

bandwidth, web hosting providers, 6

banners, creating, 156

Barry’s Clipart Server website, 149

BAWSI.org, website organization, 545

behavior, Javascripting scripting best
practices, 434

Berners-Lee, Sir Tim, 1

<big> tags (HTML), 83

big text, 83

aligning

align property (CSS), 191, 203-204

images

horizontal alignment, 165-166

vertical alignment, 167-168

text

attributes, 92-93

block-level elements, 93-95

paragraphs, 93-95

tables, 113-115

text-align property (CSS), 56

text-align style rule (CSS),
93-95

text-decoration property
(CSS), 56

AllTheWeb, listing websites with, 556

AltaVista, listing websites with, 556

alternate text, 163-164

Amazon.com, 481, 543

analogous color schemes, 143

anchor objects (DOM), 303

anchor tags

naming, 127

web pages, identifying locations
within, 126

web pages,linking to anchor loca-
tions, 126-129

anchors, documents, 303

animated graphics, 160-161

API functions (Greasemonkey), 471

Apple computers

HTML file creation, 27

Safari, 9, 465

arguments (JavaScript functions), 348

Arial font (text), 86

arithmetic mean, 363

arrays (JavaScript)

declaring, 337

elements of, accessing, 338

frames arrays, 426

length of, 338

Bing, listing websites with, 556

block value (CSS display property), 53

blogs, publishing to web content, 19

<body> tags, 27, 31-33

boilerplate code, web page creation,
28-30

boldface text, 82-83

Boodman, Aaron, 464

Boolean operators. See logical opera-
tors (JavaScript)

Boolean values (JavaScript), 330

borders

CSS box model, 210

border property, 54-55

border-bottom property, 54-55

border-color property, 54-55

border-left property, 54-55

border-right property, 54-55

border-style property, 54-55

border-top property, 54-55

border-width property, 54

frame borders, modifying,
424-425

lists, styling, 227-228

tables

CSS and color, 146-148

sizing, 107

spacing, 116

box model (CSS), 209, 212

borders, 210

content, 210

lists and, 226-229

margins, 210

padding, 210

sizing elements, 210-212

 tags, 32-33, 85

break statements (JavaScript), 381

browsers (web)

140 cross-browser color names,
143-144

cross-browser scripting

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

color 569

non-viewable window areas, 254

Opera, 9, 465

padding and, 226-228

pop-up windows, 134

popularity of, 26

Safari, 9

search engines, 445

sensing. See feature sensing

servers, basic browser server inter-
action, 3-5

text, adjusting font size
settings, 20

websites

comparing, 26

testing, 8-9, 26

windows

creating, 410-411

linking frames to windows,
423-424

moving, 413-414

opening/closing, 411-412

resizing, 413-414

timeouts, 414-416

built-in objects (JavaScript), 289, 352,
356-359

date object

converting date formats, 366

creating, 364

local time values, 365-366

reading date values, 365

setting date values, 364-365

time zones, 365

definitions, extending, 359

math object, 361

generating random numbers,
360-363

rounding decimal numbers, 360

truncating decimal numbers, 360

buttons, creating, 156

buying domain names, 6

debugging browsers, 444

feature sensing, 437, 443-444

CSS, support for, 51

debugging, 444

development of, 2

dialog boxes, displaying, 417-418

distributing, 18

Firefox, 9, 464

frames, 418-420

adding individual frames, 423

creating frameset documents,
421-423

frames array, 426

inline frames, 426-429

JavaScript objects and, 425

linking windows to frames,
423-424

modifying borders, 424-425

nested framesets, 425

Google Chrome, 9, 465

history, accessing, 2, 303-305

HTML development, 2

images, auto image loading, 20

information, reading via JavaScript

dishonest browsers, 442-443

displaying information,
440-441

Internet Explorer, 9

event properties, 393

Trixie, 465-468

links, opening in new browser
windows, 134

lists, displaying in, 97

margins and, 226-229

non-Internet Explorer event proper-
ties, 393-394

non-JavaScript browsers

avoiding errors, 446-449

detecting, 445-446

JavaScript optionality, 446

<noscript> tag, 445-446

<script> tag, 457

C

case statements (JavaScript), 376

case-sensitivity, JavaScript syntax, 292

CD-ROM, transferring photos to, 150

cells (tables)

creating, 107

sizing, 111-113

Champeon, Steve, 435

check boxes (forms), 521-523

child objects (JavaScript), 353

child tags. See nested tags (HTML)

children (DOM), 308

Chrome (Google), 9

error messages, displaying, 77

Greasemonkey and, 465

clarity, coding for, 548

Classic FTP FTP client

server connections, 13

website connections, 11-12

clear property (CSS), text flow
and, 220

client-side scripting, 274

clip art, 149

closing tags (HTML), 30

closing/opening browser windows,
411-412

cm value (CSS height/width
properties), 53

color

140 cross-browser color names,
143-144

analogous color schemes, 143

background color

background-color style
property, 171

CSS and, 146-148

best practices, 141-143

border color (tables), CSS and,
146-148

color property (CSS), 56

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

color570

conditional statements
(JavaScript), 289

conditions (for loops), 377

confirmations (dialog boxes), 417-418

constructor functions (JavaScript), 354

containers, 307

content (web)

creating, 2-3

CSS box model, 210

delivering, 3-5

Javascripting scripting best prac-
tices, 434

publishing

locally, 18-19

to blogs, 19

viewing locally, 5

web hosting providers, selecting,
6-8, 26

continue statements (JavaScript), 382

continuing loops (JavaScript), 382

control panels, selecting web hosting
providers, 7-8

converting

data formats (JavaScript date
objects), 366

data types (JavaScript), 331

string case (JavaScript), 334

copyrights, graphics and, 149

counters (JavaScript), for loops, 377

Creammonkey add-on, Greasemonkey
support in Safari, 465

Creative Commons licenses, 149

cropping images, 151-152

cross-browser scripting

debugging browsers, 444

event handlers, JavaScript
and, 437

feature sensing, 437, 443-444

CSS

align property, 191, 203-204

box model, 209

borders, 210

content, 210

Color Scheme Generator
website, 143

color style rule (CSS), fonts and,
86-87

color theory, 142

color wheel, 142

Colorblind Web Page Filter
tool, 148

complementary color
schemes, 143

graphics, adjusting color in, 154

hexadecimal color codes,
144-146

links and, 144

lists, styling, 227-228

monitors and, 144

tables and, 115

text

CSS and, 146-148

formatting in style sheets, 46

triadic color schemes, 143

using, 141-143

W3C color standards, 143

columns, fixed/liquid hybrid layouts

defining, 260-262

height, setting, 264-268

combining

string object values, 332-334

tasks. See functions (JavaScript)

comments

HTML, JavaScript and, 276

JavaScript, 293

websites, maintaining code via,
546-547

complementary color schemes, 143

compression

graphics, 150

JPEG, 155

conditional expressions, 317,
370-373

conditional operators (JavaScript), 370

lists and, 226-229

margins, 210

padding, 210

sizing elements, 210-212

cascading component of, 46

clear property, text flow and, 220

color, specifying via CSS, 146-148

CSS 2, 47

CSS Zen Garden, 191-192, 253

CSS1, 47

definition of, 45-46

<div> tags, 46

DOCTYPE declarations, 212

float property, 191, 204-207, 220

formatting properties, 53

background-color property, 55

border property, 54-55

border-bottom property, 54-55

border-color property, 54-55

border-left property, 54-55

border-right property, 54-55

border-style property, 54-55

border-top property, 54-55

border-width property, 54

color property, 56

font property, 56

font-family property, 55

font-size property, 55

font-style property, 56

font-weight property, 56

line-height property, 56

padding property, 56

text-align property, 55-56

text-decoration property, 56

text-indent property, 55

image maps, creating, 231-235

inline styles, 60-61

layouts

display property, 52-53

fixed layouts, 254

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

displaying 571

list-style-type style rule,
99-101

multiple style properties in, 58

text-align style rule, 93-95

viewing, 51

style sheets

creating, 47-52

definition of, 45

external style sheets, 46-51

formatting properties, 53-56

formatting text color, 46

inline styles and, 61

internal style sheets, 46,
59-60

italic text, 56

layout properties, 52-53

line-through text, 56

linking to HTML documents, 50

sizing text, 50

strikethrough text, 56

underline text, 56

tags, 50

elements and, 46

selectors, 57

validating, 61

web browsers, CSS support, 51

z-index property, 217-219

current line, text flow and, 220

custom HTML tags, creating, 58

custom objects (JavaScript), 289

customer service, web hosting
providers, 6

Cyberduck FTP client, 11

D

DailyRazor web hosting provider, 7

dashed value (CSS border-style prop-
erties), 54

fixed/liquid hybrid layouts,
258-268

height property, 53

liquid layouts, 253- 257

width property, 53

<link /> tag, 50

links, styling, 134-138

lists

horizontal navigation, 245-248

list-style-image property, 226

list-style-position property,
226, 229-231

list-style-type property, 226

navigation lists, 236-248

vertical navigation, 236-244

margin property, 191-199

media-specific style sheets,
503-504

overflow property, text flow
and, 220

padding property, 191, 199-202

positioning

absolute positioning, 213-217

overlapping elements, 213,
217-219

positioning property, 213

relative positioning, 213-215

z-index property, 217-219

print pages, desiging style sheets
for, 505-508

properties, hyphenating, 312

reference guide online resource, 47

selectors, 57

style classes, 57-58

style IDs, 59

style properties, 57

style rules, 46, 50

color style rule, 86-87

font weight style rule, 83

font-family style rule, 86

font-size style rule, 86-87

data types (JavaScript), 330-331

date object (JavaScript)

creating, 364

date formats, converting, 366

date values, reading, 365

date values, setting, 364-365

local time values, 365-366

time zones, 365

Date objects (JavaScript), time display
example, 72

debugging

AJAX applications, 491-496

browsers, 444

user scripts, 474-476

decimal numbers

rounding, 360

truncating, 360

declaring variables (JavaScript), 326

decrementing/incrementing variables
(JavaScript), 327

definition lists, 96, 226

design patterns, JavaScript best prac-
tices, 439

dialog boxes, displaying, 417-418

Digg, 481

directories (web content), 123-124

display property (CSS), 52-53

displaying

document information, 301-302

error messages, 77

time (JavaScript example)

adding scripts to web pages,
73-74

creating output, 73

Date objects, 72

error handling, 76-78

modifying scripts, 74-76

<script> tags, 71-72

statements, 72

testing scripts, 74

variables, 72

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

DisplayKey function, keyboard events572

link objects, 303, 306

location objects, 305-306

methods, 299

naming, 299

parents, 308

properties, 299

referencing, 299

showing/hiding, 316-317

siblings, 308

window objects, 300, 409-418

parents, 308

siblings, 308

structure of, 306-307

text, web pages

adding to, 319-321

modifying in, 317-318

DOM objects (JavaScript), 289

domain names, purchasing, 6

dotted value (CSS border-style
properties), 54

double value (CSS border-style proper-
ties), 54-55

downloading JavaScript libraries, 457

dynamic websites

client-side scripting, 274

DOM, 280-281

images, changing via user interac-
tion, 281-283

server-side scripting, 274

text, printing via JavaScript, 275

web content, displaying random
content via JavaScript, 276-280

E

editors, blogs, 19

effects (JavaScript), 70

elements, definition of, 46

DisplayKey function, keyboard events,
398-399

distributing web browsers, 18

dithering, 158

<div> tags (CSS), 46, 170

do, while loops (JavaScript), 380

DOCTYPE declarations, 212

document objects (DOM), 300

anchor objects, 303

document information, displaying,
301-302

link objects, 303, 306

methods of, 302, 310

properties of, 301

text, writing within documents, 302

document roots, 13-16

document.write statements
(JavaScript), 68, 73

documenting code, 546-547

documents

anchors, 303

Back/Forward buttons, adding,
304-305

information, displaying in,
301-302

links, 303, 306

text, writing within documents, 302

Dojo JavaScript library, 456

DOM, 280-281

children, 308

layers

controlling positioning via
JavaScript, 311-315

creating, 311

moveable layers, 311-315

nodes, 307, 309-310

objects, 352

anchor objects, 303

document objects,
300-303, 306

hiding/showing, 316-317

history objects, 303-305

else keyword (JavaScript), testing mul-
tiple conditions, 372-373

HTML files, 374

JavaScript files, 374-375

 tags (HTML), 83

email

addresses

email address encoders, 133

linking to, 132-133

form data, sending via, 530-531

<embed> tags (XHTML), 183

embedded multimedia files, 180-183

emphasized text. See italic text

empty tags (HTML), 30, 33

error handling, 448

JavaScript scripts, 76-78

non-JavaScript browsers, 446-449

error messages, displaying, 77

escaping loops (JavaScript), 381

ESPN.com, 254, 540-542

European languages, formatting text
for, 89-91

event handlers, 389

creating, 390-391

defining, 390-391

event objects, 392

functions and, 484

JavaScript and, 68-70,
290-291, 435

alert() function, 295

best practices, 294-295

cross-browser scripting, 437

W3C event model, 436-437

keyboard events, 397-399

mouse events

mousestatus function, 396

onClick, 394-397, 400-404

onDblClick, 395

onMouseDown, 395-397

onMouseOut, 394

onMouseOver, 394

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

formatting 573

minimum width, setting, 262-263

structure of, 258-259

Flickr, 161-163

float property (CSS), 191, 204-207, 220

float style property, 166

flow control (JavaScript), 369

break statements, 381

case statements, 376

continue statements, 382

do, while loops, 380

for loops, 377-378

for, in loops, 382-384

if statements, 369

conditional expressions,
370-373

conditional operators, 370

else keyword, 372-375

logical operators, 371

testing multiple conditions,
373-375

infinite loops, 380-381

loops

break statements, 381

continue statements, 382

escaping, 381

switch statements, using multiple
conditions, 375-376

while loops, 379-380

flowing text, 220

fluid layouts. See liquid layouts

folders (web content), 123-125

 tags (HTML), 81, 86

fonts (text)

Arial font, 86

CSS

color style rule, 86-87

font property, 56

font-family property, 55

font-family style rule, 86

font-size property, 55

font-size style rule, 86-87

onMouseUp, 395-397

rollover images, 394

multiple event handlers, 391-392

naming, 390

onLoad events, 399

onUnload events, 400

parentheses and, 484

quotation marks and, 390

syntax of, 390

Yahoo! UI Library, 437

event objects

event handlers and, 392

Internet Explorer event
properties, 393

non-Internet Explorer event
properties, 393-394

events (JavaScript), 69

expressions (JavaScript), 328

extending built-in object definitions, 359

external scripts (JavaScript), 69

external style sheets (CSS), 46-51

F

feature sensing, 437, 443-444

Fetch FTP client, 11

finding

substrings (JavaScript), 336-337

user scripts, 466

Firebug, validating web content, 37

Firefox, 9

error messages, displaying, 77

Greasemonkey, installing, 464

FireFTP FTP client, 10-11

FireZilla FTP client, 11

fixed layouts, 254

fixed/liquid hybrid layouts

columns

defining in, 260-262

setting height, 264-268

font-style property, 56

font-weight property, 56

font weight style rule, 83

foreign languages, 89-91

HTML, customizing in, 85-89

resumes, creating, 87-89

sans-serif font, 86

sizing, style sheets, 50

special characters, 89-91

Times Roman font, 86

typerwriter font. See monospaced
text

web browsers, adjusting font size
settings, 20

for loops (JavaScript), 377-378

for statements (JavaScript), 290

for, in loops (JavaScript), 382-384

foreign languages, formatting text for,
89-91

formatting

CSS, 53

background-color property, 55

border property, 54-55

border-bottom property, 54-55

border-color property, 54-55

border-left property, 54-55

border-right property, 54-55

border-style property, 54-55

border-top property, 54-55

border-width property, 54

color property, 56

font property, 56

font-family property, 55

font-size property, 55

font-style property, 56

font-weight property, 56

line-height property, 56

padding property, 56

text-align property, 55-56

text-decoration property, 56

text-indent property, 55

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

formatting574

selection lists, 524-525

text areas, 526

text fields, 526

text input, accepting, 519

user input, accepting, 519

validating, 70, 531-532

forward slashes (/), HTML and, 124

Forward/Back buttons, adding to doc-
uments, 304-305

frames, 418-420

animated graphics, 161

borders, modifying, 424-425

frames array, 426

frameset documents, creating,
421-423

individual frames, adding, 423

inline frames, 426-429

JavaScript objects and, 425

nested framesets, 425

windows, linking to frames,
423-424

front end (AJAX requests), 480,
494-495

FTP (File Transfer Protocol), 10, 29

Classic FTP client

server connections, 13

website connections, 11-12

Cyberduck, 11

Fetch, 11

FireFTP, 10-11

FireZilla, 11

FTP clients

selecting, 10-11

using, 11-13

Fuchs, Thomas, 455

functions

API functions (Greasemonkey), 471

JavaScript functions, 68, 288, 347

alert() function, 265

arguments, 348

calling, 349-350

style sheets, 46, 50

text, 82

aligning text, 92-95

big text, 83

boldface text, 82-83

color, style sheets, 46

customizing fonts in HTML,
85-89

definition lists, 96, 226

foreign languages, 89-91

italic text, 82-83

monospaced text, 84-85

multitiered lists, 100-101

nested lists, 97-100, 226

older HTML tags, 81

ordered lists, 95-96, 226

outlines, 98-100

resumes, creating, 87-89

sizing, style sheets, 50

small text, 83

special characters, 89-91

subscript text, 83

superscript text, 83

unordered lists, 95-96, 226

web page creation, 33-35

forms, 513

check boxes, 521-523

creating, 514-519

data

displaying in pop-up windows,
528-530

naming, 519-520

sending via email, 530-531

submitting, 527

elements, accessing via
JavaScript, 528

hidden data, 520

JavaScript events, 527-528

pull-down pick lists, 524-525

radio buttons, 523-524

scrolling lists, 524-525

constructor functions, 354

defining, 347-349

function call statements, 288

math functions, 361-363

naming, 292

parameters, 288, 348

returning values, 351-352

G

Garrett, Jesse James, 480

get methods (JavaScript objects), 365

Gickr, animated graphics, 161

GIFs, 157-158

animated graphics, 160-161

tiled backgrounds, 159-160

transparent images, 159

GIMP, 149

Adjust Hue/Lightness/Saturation
tool, 154

banners, creating, 156

buttons, creating, 156

images

adjusting color, 154

cropping, 151-152

JPEG compression, 155

resizing, 153

Red Eye Removal, 154

Git website version control, 550

global variables (JavaScript), 326

GMT (Greenwich Mean Time),
JavaScript time displaying
example, 71

Google

Chrome, 9

displaying error messages, 77

Greasemonkey, 465

Gmail, 446, 481

Images, 161

listing websites with, 555

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

HTML 575

height/width, specifying, 165

image maps, 173-178

JPEGs

compression, 155

tiled backgrounds, 159-160

links, turning graphics into,
169-171

Picnik, 149

PNGs, 158-159

Red Eye Removal, 154

republishing, 163

resizing, 153

resolution, 150

rollover images, 394

software, choosing, 149

text descriptions, 163-164

transparent graphics, 158

uses of, 150

web pages

grabbing graphics from, 149

placing graphics on web
pages, 161-163

Greasemonkey, 463

API functions, 471

browser support, 465

installing, 464

metadata, 470

turning on/off, 468

user scripts

creating, 468, 475

debugging user scripts,
474-476

describing, 469-470

finding, 466

installing, 466

managing, 466-467

metadata and, 469-470

site-specific user scripts,
472-473

testing, 468-471

text area macro user scripts,
475-476

Picasa, 149

searches, 4

graceful degradation, web design
and, 434

graphics

Adobe Photoshop, 148

aligning

horizontal alignment, 165-166

vertical alignment, 167-168

animated graphics, 160-161

backgrounds

background-image style
property, 172

graphics, 171-172

tiled backgrounds, 159-160

banners, creating, 156

buttons, creating, 156

CD-ROM, transferring graphics
to, 150

clip art, 149

color, adjusting, 154

compression, 150

copyrights and, 149

Creative Commons licenses, 149

cropping, 151-152

dithering, 158

file sizes, 150

Flickr, 161-163

GIFs, 157-158

animated graphics, 160-161

tiled backgrounds, 159-160

transparent images, 159

GIMP, 149

adjusting image color, 154

banners, 156

buttons, 156

cropping images, 151-152

JPEG compression, 155

resizing images, 153

Google Images, 161

Google Picasa, 149

groove value (CSS border-style
properties), 54

grouping statements (JavaScript). See
loops

H

<head> tags, 27, 31-33, 68

heading tags (HTML), 34-36

headings (tables), creating, 108

height

CSS box model, adjusting height
in, 210-212

fixed/liquid hybrid layouts, setting
column height in, 264-268

height property (CSS), 53

images, specifying height in, 165

Hello World HTML file, creating, 9-10

help

CSS, reference guide online
resource, 47

web hosting providers, selecting, 6

helper applications, 180

hexadecimal color codes, 144-146

hidden form data, 520

hiding/showing DOM objects,
316-317

history objects (DOM), 303-305

horizontal image alignment, 165-166

horizontal navigation, 245-248

horizontal rule tags (HTML), 33

<hr /> tags, 33

HTML

AJAX

live search forms, 492

quiz building example, 487-488

attributes, 92-93, 123

comments, JavaScript and, 276

containers, 307

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

HTML576

check boxes, 521-523

creating, 514-519

displaying data in pop-up
windows, 528-530

hidden data, 520

JavaScript events, 527-528

naming form data, 519-520

pull-down pick lists, 524-525

radio buttons, 523-524

scrolling lists, 524-525

selection lists, 524-525

sending data via email,
530-531

submitting form data, 527

text areas, 526

text fields, 526

text input, 519

user input, 519

validating, 531-532

forward slashes (/), 124

frames, 418-420

adding individual frames, 423

creating frameset documents,
421-423

frames array, 426

JavaScript objects and, 425

linking windows to frames,
423-424

modifying borders, 424-425

nested framesets, 425

FTP

selecting FTP clients, 10-11

using FTP clients, 11-13

future of, 28

graphics, image maps, 176-178

<head> tags, functions and, 68

Hello World sample file, creating,
9-10

history of, 1-2

html file extensions, 27

HTML-compatible word proces-
sors, creating HTML files, 27

CSS

CSS box model, 209-212

external style sheets, 51

linking style sheets to HTML
documents, 50

development of, 1-2, 38

event handlers

JavaScript, 435-437

Yahoo! UI Library, 437

file creation

boilerplate code, 28-30

comparing web page HTML
codes, 37

formatting text, 33-35

html file extensions, 27

HTML tags, 27-33

HTML-compatible word
processors, 27

indenting text, 35

line breaks, 32-33

naming files with HTML
tags, 27

Notepad, 26

organizing content via
headings, 34-36

overview of, 29

paragraphs, 32-33

saving files with HTML tags, 27

templates, 31

TextEdit, 27

Word, 27

WYSIWYG editors, 27

files

creating, 9-10

index pages, 16-18

managing, 14-16

organizing, 14-16

transfering, 10-13, 29

viewing, 29

forms, 513

accessing elements via
JavaScript, 528

HTML4, empty tags, 33

HTML5, 28, 40

images, placing on web pages,
162-163

JavaScript and, 274

adding libraries to HTML
documents, 457

adding scripts to HTML
documents, 73-74

changing images via user
interaction, 281-283

displaying random web content
via, 276-280

DOM, 280-281

HTML comments, 276

printing text via, 275

JavaScript’s advantages over, 299

.js files, linking to, 69

layouts

fixed layouts, 254

fixed/liquid hybrid layouts,
258-268

liquid layouts, 253- 257

links

absolute links, 124

anchor tags, 126-129

images as, 134

linking between web content,
129-131

linking to email addresses,
132-133

linking to external web con-
tent, 131-132

opening links in new browser
windows, 134

relative-root links, 124

styling via CSS, 134-138

lists

definition lists, 96, 226

multitiered lists, 100-101

nested lists, 97-100, 226

ordered lists, 95-96, 226

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

HTML 577

<head> tag, 27, 31-33

heading tags, 34-36

horizontal rule tag, 33

<hr /> tag, 33

<html> tag, 27, 31-33

<i> tags, 81-83

 tags, 162-163

line breaks, 32-33

naming files with, 27

nested tags, 97

opening tags, 30

<p> tag, 31-33

paragraphs, 32-33

<pre> tags, 84-85

pseudoclasses, 134-138

saving files with, 27

<small> tags, 83

<strike> tags, 84

 tags, 83

<sub> tags, 83

<sup> tags, 83

<table> tags, 107

<td> tags, 107

<th> tags, 108

<title> tags, 27, 31-33, 36

<tr> tags, 107

<tt> tags, 84-85

<u> tags, 84

xml : lang attribute, 31

xmlns attribute, 31

text, formatting

aligning text, 92-95

big text, 83

boldface text, 82-83

customizing fonts, 85-89

definition lists, 96, 226

foreign languages, 89-91

italic text, 82-83

monospaced text, 84-85

multitiered lists, 100-101

nested lists, 97-100, 226

outlines, creating via lists,
98-100

unordered lists, 95-96, 226

“marked up” text, 2

multiple conditions, testing, 374

Notepad, creating HTML files, 26

outlines, creating, 98-100

pseudoclasses, 134-138

tables

aligning within, 113-115

cells, creating, 107

cells, sizing, 111-113

color in, 115

creating, 107-110

headings, creating, 108

images in, 116

page layout via, 116-117

rows, creating, 107

sizing, 110-113

sizing borders, 107

spacing borders, 116

spanning within, 115

uses for, 107

tags, 5, 28

<a> tags, 126-129, 170

attributes, 92-93, 123

 tags, 81-83

<big> tags, 83

<body> tag, 27, 31-33

 tag, 32-33, 85

 tags, 81-83

closing tags, 30

creating custom tags, 58

<div> tags, 170

 tags, 83

empty tags, 30, 33

 tags, 83

event handlers, 68, 291

 tags, 81, 86

formatting and older HTML
tags, 81

older HTML tags, 81

ordered lists, 95-96, 226

outlines, 98-100

resumes, creating, 87-89

small text, 83

special characters, 89-91

subscript text, 83

superscript text, 83

unordered lists, 95-96, 226

whitespace, 32

TextEdit, creating HTML files, 27

validating, 36-37

web content

absolute addresses, 124-125

absolute links, 124

anchor tags, 126-129

creating, 2-3

delivering, 3-5

directories, 123-124

folders, 123-125

images as links, 134

linking between, 129-131

linking to email addresses,
132-133

linking to external web con-
tent, 131-132

opening links in new browser
windows, 134

organizing, 123-124

publishing locally, 18-19

publishing to blogs, 19

relative addresses, 124-125

relative-root addresses, 124

relative-root links, 124

selecting web hosting
providers, 6-8, 26

styling links via CSS, 134-138

website architectures,
creating, 125

whitespace, 32

Word, creating HTML files, 27

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

HTML578

clip art, 149

color, adjusting, 154

compression, 150

copyrights and, 149

Creative Commons licenses, 149

cropping, 151-152

dithering, 158

dynamic websites, changing
images via user interaction,
281-283

file sizes, 150

Flickr, 161-163

GIFs, 157-158

animated images, 160-161

tiled backgrounds, 159-160

transparent images, 159

Google Images, 161

Google Picasa, 149

height/width, specifying, 165

image maps, 173-178

JPEGs

compression, 155

tiled backgrounds, 159-160

links, images as, 134, 169-171

Picnik, 149

PNGs, 158-159

Red Eye Removal, 154

republishing, 163

resizing, 153

resolution, 150

rollover images, 394

tables and, 116

text descriptions, 163-164

transparent images, 158

uses of, 150

web pages

grabbing images from, 149

placing images on web pages,
161-163

Images (Google), 161

WYSIWYG editors, creating HTML
files, 27

XHTML, development of, 40

XML, development of, 39-40

HTML Validator, 37

hyperlinks. See links

hyphenating CSS properties, 312

I

<i> tags (HTML), 81-83

if statements (JavaScript), 369

conditional expressions, 317,
370-373

conditional operators, 370

else keyword, 372-375

logical operators, 371

multiple conditions, testing, 373

HTML files, 374

JavaScript files, 374-375

<iframe>. See inline frames

image maps, creating

creating, web resources, 231

CSS, 231-235

tutorials, 231

images

aligning

horizontal alignment, 165-166

vertical alignment, 167-168

animated images, 160-161

auto image loading, web
browsers, 20

background images, 171-172

backgrounds

background images, 171-172

tiled backgrounds, 159-160

banners, creating, 156

buttons, creating, 156

CD-ROM, transferring images
to, 150

 tags (HTML), 162-163

in value (CSS height/width
properties), 53

increment expressions (for loops), 377

incrementing/decrementing variables
(JavaScript), 327

indenting

code, 548

text, web page creation, 35

index pages, HTML file management,
16-18

indexes (JavaScript), for loops, 377

infinite loops (JavaScript), 380-381

initial expressions (for loops), 377

inline frames, 426-429

inline styles (CSS), 60-61

inline value (CSS display property), 53

inset value (CSS border-style
properties), 54

installing

Greasemonkey, 464

user scripts, 466

internal style sheets (CSS), 46, 59-61

Internet, ISP selection, 25-26

Internet Explorer, 9

DOCTYPE declarations, 212

error messages, displaying, 77

event properties, 393

Internet Explorer 6.0, JavaScript
testing, 74

Trixie, 465

installing user scripts, 466

managing user scripts, 467

turning on/off, 468

interpreted languages, 66

ISP (Internet service providers),
selecting, 25-26

italic text, 56, 82-83

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

JavaScript 579

data types, 330-331

Date objects, time display exam-
ple, 72

design patterns, 439

development of, 66

do, while loops, 380

document.write statements, 68, 73

documenting code, 438

DOM, 280-281

adding text to web pages,
319-321

anchor objects, 303

children, 308

document objects, 300-303, 306

hiding/showing objects, 316-317

history objects, 303-305

layers, 311-315

link objects, 303, 306

location objects, 305-306

modifying text in web pages,
317-318

naming objects, 299

nodes, 307-310

object methods, 299

object properties, 299

objects, 352

parents, 308

referencing objects, 299

showing/hiding objects,
316-317

siblings, 308

structure of, 306-307

window objects, 300, 409-418

else keyword, 372-375

error handling, 76-78, 446-449

event handlers, 68-70, 290-291,
389, 435

alert() function, 295

best practices, 294-295

creating, 390-391

cross-browser scripting, 437

defining, 390-391

J

JavaScript, 274. See also AJAX

accessibility, 439

AJAX, 71

live search forms, creating,
494-496

quiz building example, 489-490

requests, 480, 494-495

arrays

accessing elements of, 338

declaring, 337

length of, 338

numeric arrays, 337, 340-342

string arrays, 338-340

best practices, 293-295, 433

accessibility, 439

behavior, 434

comments, 438

content, 434

design patterns, 439

documenting code, 438

event handlers, 435-437

presentation, 434

“progressive enhancement”, 435

usability, 438-439

web standards and browser
specificity, 437-438

break statements, 381

browser specificity, web standards,
437-438

browsers, reading information on,
440-443

capabilities of, 66, 70

case statements, 376

comments, 293, 438

conditional expressions, 370-373

conditional operators, 370

continue statements, 382

cross-browser scripting

debugging browsers, 444

feature sensing, 437, 443-444

event objects, 392

keyboard events, 397-399

mouse events, 394-397,
400-404

multiple event handlers,
391-392

naming, 390

onLoad events, 399

onUnload events, 400

quotation marks and, 390

syntax of, 390

W3C event model, 436-437

events, 69

expressions, 328

external scripts, 69

flow control

break statements, 381

case statements, 376

continue statements, 382

continuing loops, 382

do, while loops, 380

escaping loops, 381

for loops, 377-378

for, in loops, 382-384

if statements, 369-375

infinite loops, 380-381

switch statements, 375-376

while loops, 379-380

for loops, 377-378

for, in loops, 382-384

form elements, accessing, 528

form events, 527-528

forms, validating, 70

function call statements, 288

functions, 68, 288

alert() function, 295

arguments, 348

calling, 349-350

constructor functions, 354

defining, 347-349

math functions, 361-363

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

JavaScript580

libraries

adding effects via, 457

adding to HTML documents,
457

AJAX Frameworks, 456

building scripts, 458-459

Dojo, 456

downloading, 457

jQuery, 454-455

Mochikit, 456

MooTools, 456

Prototype, 453-454

Script.aculo.us, 455-459

using effects via, 457

Yahoo! UI Library, 456

logical operators, 371

loops

break statements, 381

continue statements, 382

escaping, 381

modifying scripts, 74-76

modulo operators, 362

multiple conditions, testing,
374-375

non-JavaScript browsers

avoiding errors, 446-449

detecting, 445-446

JavaScript optionality, 446

<noscript> tag, 445-446

<script> tag, 457

objects, 288

built-in objects, 289, 352, 356-
361, 364-366

child objects, 353

creating, 353

creating instances of, 356

custom objects, 289

date object, 364-366

defining, 354-355

defining methods, 355-356

naming, 292

parameters, 288, 348

returning values, 351-352

Gmail and, 446

Greasemonkey, 463

API functions, 471

browser support, 465

creating user scripts, 468, 475

debugging user scripts,
474-476

describing user scripts,
469-470

finding user scripts, 466

installing, 464

installing user scripts, 466

managing user scripts, 466-467

metadata and user scripts,
469-470

site-specific user scripts,
472-473

testing user scripts, 468-471

text area macro user scripts,
475-476

turning on/off, 468

history of, 66

HTML, 274

comments, 276

JavaScript’s advantages
over, 299

if statements, 369

conditional expressions,
370-373

conditional operators, 370-371

else keyword, 372-375

testing multiple conditions,
373-375

images, changing via user interac-
tion, 281-283

infinite loops, 380-381

.js files, 69

JSON, 481

layers, controlling positioning of,
311-315

DOM objects, 289, 352

frames and, 425

math object, 360-363

methods, 289, 353, 365

naming, 292

properties, 288, 353

prototypes, 357-358

simplifying scripting via,
354-356

operators, 328-330

order of script operation, deter-
mining, 291

output, creating, 73

parseFloat() function, 331

parseInt() function, 331

programming language versus
scripting language, 66

“progressive enhancement”
strategies, 294

random web content, displaying
via, 276-280

remote scripting, 71

<script> tags, 67-72, 457

scripting language versus pro-
gramming language, 66

special effects, 70

statements

conditional statements, 289

for statements, 290

function calls, 288

loops, 290

objects, 288-289, 292

plus signs (+) in, 73

semicolons, 72

time display example, 72

variables, 288, 292

strings

calculating length of, 334

converting case, 334

string arrays, 338-340

string objects, 332-334, 357

substrings, 335-337

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

link objects (DOM) 581

declaring, 326

global variables, 326

incrementing/decrementing, 327

local variables, 326

localtime variable, 72

naming, 292, 325-326

scope of, 326

time display example, 72

UTC variable, 72

web pages, adding JavaScript to,
67-68, 73-74

websites, navigating, 70

while loops, 379-380

with keyword, 363-364

join() method, 342

JPEG

compression, 155

tiled backgrounds, 159-160

jQuery JavaScript library, 454-455

.js files, 69

JSON, 481

.jsp file extension, 27

JSP scripting language, 274

K - L

keyboard events, 397-399

Koch, Peter-Paul, 444

languages (foreign), formatting text
for, 89-91

layers (DOM)

creating, 311

moveable layers, 311-315

positioning, controlling via
JavaScript, 311-315

layouts

CSS layout properties, 52-53

fixed layouts, 254

switch statements

syntax of, 376

using multiple conditions,
375-376

syntax, 332

case-sensitivity, 292

functions, 292

objects, 292

reserved words, 292

spacing (whitespace), 292

variables, 292

testing scripts, Internet Explorer
6.0, 74

text

printing via, 275

text editors, 74

time display example

adding scripts to web pages,
73-74

creating output, 73

Date objects, 72

error handling, 76-78

modifying scripts, 74-76

<script> tags, 71-72

statements, 72

testing scripts, 74

variables, 72

toLowerCase() method, 334

toUpperCase() method, 334

Trixie, 465

installing user scripts, 466

managing user scripts, 467

turning on/off, 468

.txt file extension, 74

“unobtrusive scripting”, 433,
447-449

usability and, 438-439

using, 68

variables, 288

assigning values to variables,
327-328

fixed/liquid hybrid layouts, 258

defining columns in, 260-262

setting column height,
264-268

setting minimum width,
262-263

structure of, 258-259

liquid layouts, 255-257

web resources, 253

leading (text), line-height property
(CSS), 56

libraries (AJAX), 482

ajaxRequest function, 486

ajaxResponse function, 486

creating, 485-486

quiz building example

HTML files, 487-488

JavaScript files, 489-490

testing, 490-491

XML files, 488-489

using, 486

libraries (JavaScript)

AJAX Frameworks, 456

Dojo, 456

downloading, 457

effects, using via, 457

HTML documents, adding libraries
to, 457

jQuery, 454-455

Mochikit, 456

MooTools, 456

Prototype, 453-454

Script.aculo.us, 455-459

scripts, building, 458-459

Yahoo! UI Library, 456

line breaks, web page creation, 32-33

line-height property (CSS), 56

line-through text, style sheets, 56

<link /> tags (CSS), 50

link objects (DOM), 303, 306

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

links582

regular lists versus, 235

secondary navigation, 236

vertical navigation, 236-244

nested lists, 97-100, 226

ordered lists, 95-96, 226

outlines, creating via lists, 98-100

unordered lists, 95-96, 226

live search forms

AJAX, creating via, 496

HTML forms, 492

JavaScript front end, 494-495

PHP back end, 493-494

example, requirements for, 496

LiveScript, JavaScript development, 66

loading web content, timing, 20

local time values, date object
(JavaScript) and, 365-366

local variables (JavaScript), 326

localtime variable (JavaScript), 72

location objects (DOM), 305-306

logical operators (JavaScript), 371

loops (JavaScript), 290

break statements, 381

continue statements, 382

continuing, 382

do, while loops, 380

escaping, 381

for loops, 377-378

for, in loops, 382-384

infinite loops, 380-381

while loops, 379-380

LunarPages web hosting provider, 7

M

Macintosh computers, HTML file
creation, 27

managing

domain names, 6

HTML files, 14

links

absolute links, 124

anchor tags

identifying locations within web
pages via, 126

linking to anchor locations,
126-129

naming, 127

color and, 144

documents, 303, 306

email addresses, 132-133

images, 134, 169-171

.js files, 69

multimedia/website integration,
179-180

opening in new browser
windows, 134

relative-root links, 124

styling via CSS, 134-138

web content

linking between, 129-131

linking to external web
content, 131-132

liquid layouts, 253-257

list-item value (CSS display
property), 53

lists

borders, styling, 227-228

color, styling, 227-228

CSS box model and, 226-229

definition lists, 96, 226

list item indicators, placing,
229-231

list-style-image property
(CSS), 226

list-style-position property (CSS),
226, 229-231

list-style-type property (CSS), 226

list-style-type style rule (CSS),
99-101

multitiered lists, 100-101

navigation lists

horizontal navigation, 245-248

primary navigation, 236

document roots, 15-16

index pages, 16-18

user scripts, 466-467

web pages, headings, 34-36

websites

coding clarity, 548

comments, 546-547

documenting code, 546-547

indenting code, 548

maintainable code, 546-548

version control, 548-550

margin property (CSS), 191-199

margins

browsers and, 226-229

CSS box model, 210

marked up text in HTML, 2

Mashable.com, publicizing websites
via, 554

math object (JavaScript)

decimal numbers

rounding, 360

truncating, 360

math functions, 361-363

random numbers, generating,
360-363

media-specific style sheets, 503-504

metadata, user scripts, 469-470

methods

DOM objects, 299

document objects, 302, 310

history objects, 303

location objects, 306

JavaScript objects, 289, 353

adding to string objects, 357

defining, 355-356

get methods, 365

prototypes, 357-358

MIME types, 182

mm value (CSS height/width
properties), 53

Mochikit JavaScript library, 456

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

objects (DOM) 583

event handlers, 390

files with HTML tags, 27

form data, 519-520

JavaScript functions, 292

JavaScript objects, 292

JavaScript variables, 292, 325-326

NaN (not a number), 331

navigating websites, JavaScript, 70

navigation lists

horizontal navigation, 245-248

primary navigation, 236

regular lists versus, 235

secondary navigation, 236

vertical navigation, 236-238

multilevel vertical navigation,
240-244

single-level vertical navigation,
239-241

nested framesets, 425

nested lists, 97-100, 226

nested tags (HTML), 97

nodes (DOM), 307

methods of, 310

properties, 309

non-viewable window areas
(browsers), 254

none value (CSS)

border-style properties, 54

display property, 53

<noscript> tag (JavaScript), detecting
non-JavaScript browsers, 445-446

Notepad, creating HTML files, 26

null values (JavaScript), 330

numbers

arithmetic mean, 363

decimal numbers

rounding, 360

truncating, 360

random numbers, generating,
360-363

numeric arrays (JavaScript), 337,
340-342

numeric data types (JavaScript), 330

modifying

frame borders, 424-425

JavaScript scripts, 74-76

text in web pages, 317-318

modulo operators (JavaScript), 362

monitors and color, 144

monospaced text, 84-85

MooTools JavaScript library, 456

mouse events

mousestatus function, 396

onClick event handler, 394-397,
400-404

onDblClick event handler, 395

onMouseDown event handler,
395-397

onMouseOut event handler, 394

onMouseOver event handler, 394

onMouseUp event handler,
395-397

rollover images, 394

mousestatus function, mouse events
and, 396

moveable layers (DOM), 311-315

moving browser windows, 413-414

Mozilla Firefox web browser, 9

multimedia

QuickTime, 180

website integration with, 178-179

embedded multimedia files,
180-183

links, 179-180

streaming multimedia, 181

tips for using, 184-185

multiple event handlers, 391-392

multitiered lists, 100-101

N

naming

anchor tags, 127

DOM objects, 299

O

<object> tags (XHTML), 180-183

objects (built-in), extending
definitions, 359

objects (DOM), 352

anchor objects, 303

document objects, 300

anchor objects, 303

displaying document informa-
tion, 301-302

link objects, 303, 306

methods of, 302

properties of, 301

writing text within
documents, 302

hiding/showing, 316-317

history objects, 303-305

link objects, 303, 306

location objects, 305-306

methods, 299

document objects, 302

history objects, 303

location objects, 306

naming, 299

parents, 308

properties, 299

document objects, 301

history objects, 303

location objects, 305-306

referencing, 299

showing/hiding, 316-317

siblings, 308

window objects, 300

creating browser windows,
410-411

displaying dialog boxes,
417-418

moving browser windows,
413-414

opening/closing browser
windows, 411-412

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

objects (DOM)584

string objects

adding methods to, 357

assigning values, 332-334

combining values, 332-334

creating, 332

Office Online Clip Art and Media web-
site (Microsoft), 149

onClick event handler, 394-397,
400-404

onDblClick event handler, 395

online resources, CSS reference
guide, 47

onLoad events, 399

onMouseDown event handler, 395-397

onMouseOut event handler, 394

onMouseOver event handler, 394

onMouseUp event handler, 395-397

onUnload events, 400

opening tags (HTML), 30

opening/closing, browser windows,
411-412

Opera, 9, 465

operators (JavaScript), 328-330

ordered lists, 95-96, 226

organizing

HTML files, 14

document roots, 15-16

index pages, 16-18

web content, 123-124

web pages, headings, 34-36

websites, 538

Amazon.com, 543

BAWSI.org, 545

ESPN.com, 540-542

larger websites, 543-546

simple websites, 540-542

single-page websites, 538-539

Starbucks.com, 544

outlines, creating via lists, 98-100

outset value (CSS border-style
properties), 54

properties of, 409-410

resizing browser windows,
413-414

timeouts, 414-416

objects (JavaScript), 288

built-in objects, 289, 352, 356-359

date object, 364-366

math object, 360-361

child objects, 353

creating, 353

custom objects, 289

date object

converting date formats, 366

creating, 364

local time values, 365-366

reading date values, 365

setting date values, 364-365

time zones, 365

defining, 354-355

DOM objects, 289, 352

instances, creating, 356

math object

generating random numbers,
360-363

math functions, 361-363

rounding decimal numbers, 360

truncating decimal numbers, 360

methods, 289, 353

adding to string objects, 357

get methods, 365

prototypes, 357-358

methods, defining, 355-356

naming, 292

properties, 288

prototypes, 357-358

values, 353

prototypes, 357-358

scripting, simplifying

creating object instances, 356

defining object methods,
355-356

defining objects, 354-355

overflow property (CSS), text flow
and, 220

overlapping elements, 213, 217-219

P

<p> tags, 31-33

padding

browsers and, 226-228

CSS box model, 210

padding property (CSS), 56, 191,
199-202

paragraphs

aligning, 93-95

web page creation, 32-33

parameters (JavaScript functions),
288, 348

parent folders, 125

parents (DOM), 308

parseFloat() function (JavaScript), 331

parseInt() function (JavaScript), 331

periods (.), JavaScript objects, 289

Perl scripting language, 274

photos

aligning

horizontal alignment, 165-166

vertical alignment, 167-168

background photos, 171-172

background-image style
property, 172

CD-ROM, transferring photos to, 150

cropping, 151-152

Flickr, 161-163

Google Images, 161

height/width, specifying, 165

image maps, 173-178

links, turning images into, 169-171

Red Eye Removal, 154

republishing, 163

resizing, 153

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

<script> tag (JavaScript) 585

programming languages, strings, 72

“progressive enhancement”

strategies for, 294

web design and, 435

prompts (dialog boxes), 417-418

properties

DOM objects, 299

document objects, 301

history objects, 303

location objects, 305-306

relationship properties, 309

JavaScript objects, 288

prototypes, 357-358

values, 353

Prototype JavaScript library, 453-454

prototypes (JavaScript objects),
357-358

pseudoclasses, 134-138

pt value (CSS height/width proper-
ties), 53

publicizing websites, 553-555

publishing web content

blog publication, 19

local publication, 18-19

pull-down pick lists (forms), 524-525

purchasing domain names, 6

px value (CSS height/width
properties), 53

Python scripting language, 274

Q - R

QuickTime, 180

QuirksMode, debugging code, 444

quiz building example (AJAX)

HTML files, 487-488

JavaScript files, 489-490

testing, 490-491

XML files, 488-489

text descriptions, 163-164

web pages, placing photos on,
161-163

Photoshop (Adobe), 148

PHP, 274, 514

AJAX live search forms, creating,
493-494

.php file extensions, 27

Picasa (Google), 149

Picnik, 149

“plain” text, 26, 34, 82

plug-ins, 180

plus signs (+), JavaScript statements, 73

PNGs, 158-159

pop-up windows, 134, 528-530

positionable elements. See layers

positioning

absolute positioning, 213-217

overlapping elements, 213,
217-219

positioning property, 213

relative positioning, 213-215

presentation, JavaScript scripting best
practices, 434

<pre> tags (HTML), 84-85

pricing, web hosting providers, 6

primary navigation, 236

printing

Print Preview, viewing web pages
in, 508-509

print-friendly web pages, 499

criteria for print-friendliness,
500-503

designing style sheets for print
pages, 505-508

media-specific style sheets,
503-504

reviewing content for print-
friendliness, 500

viewing web pages in Print
Preview, 508-509

text via JavaScript, 275

radio buttons (forms), 523-524

random numbers, generating, 360-363

Red Eye Removal, 154

relationship properties (DOM
nodes), 309

relative addresses and web pages,
124-125

relative positioning, 213-215

display property (CSS), 53

positioning property, 214

relative-root addresses and web
pages, 124

relative-root links and web pages, 124

reliability, web hosting providers, 6

remote scripting, 71. See also AJAX

republishing images, 163

reserved words, JavaScript syntax, 292

resizing

browser windows, 413-414

images, 153

resolution (graphics), 150

ridge value (CSS border-style
properties), 54

rollover images, 394

rounding decimal numbers, 360

rows (tables), creating, 107

Ruby scripting language, 274

S

Safari, 9, 465

sans-serif font (text), 86

saving files

files with HTML tags, 27

.js files, 69

scaling images, 153

<script> tag (JavaScript), 67-69

detecting non-JavaScript
browsers, 457

time display example, 71-72

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

Script.aculo.us JavaScript library586

site-specific user scripts,
472-473

testing user scripts, 468-471

text area macro user scripts,
475-476

turning on/off, 468

interpreted languages, 66

JavaScript, 274

accessibility, 439

adding scripts to web pages,
73-74

adding to web pages, 67-68

advantages over HTML, 299

AJAX, 71

AJAX live search forms, 494-496

AJAX quiz building example,
489-490

AJAX requests, 480, 494-495

arrays, 337-342

best practices, 293-295,
433-439

break statements, 381

capabilities of, 66, 70

case statements, 376

changing images via user
interaction, 281-283

comments, 293, 438

conditional expressions,
370-373

conditional operators, 370

continue statements, 382

continuing loops, 382

creating .js files, 69

creating output, 73

cross-browser scripting, 437,
443-444

data types, 330-331

Date objects, 72

design patterns, 439

determining order of script
operation, 291

development of, 66

Script.aculo.us JavaScript library,
455-459

scripting

AJAX, 479

ajaxRequest function, 486

ajaxResponse function, 486

back end, 480, 493-494

debugging applications, 491-496

examples of, 481

frameworks, 482

front end, 480, 494-495

JavaScript client, 480

libraries, 482, 485-491

limitations of, 482

live search forms, 492-496

quiz building example, 487-491

requests, 480, 483-484,
493-495

server-side scripts, 480,
493-495

XML and, 481

XMLHttpRequest, 483-484

ASP, 274

client-side scripting, 274

comments, adding, 293

cross-browser scripting, 443

debugging browsers, 444

event handlers and
JavaScript, 437

feature sensing, 437, 443-444

Greasemonkey, 463-464

API functions, 471

browser support, 465

creating user scripts, 468, 475

debugging user scripts, 474-476

describing user scripts, 469-470

finding user scripts, 466

installing, 464

installing user scripts, 466

managing user scripts, 466-467

metadata and user scripts,
469-470

displaying random web content
via, 276-280

do, while loops, 380

document.write statements,
68, 73

documenting code, 438

DOM, 280-281, 299-321,
409-418

else keyword, 372-375

error handling, 76-78

escaping loops, 381

event handlers, 68-70, 290-291, 294-
295, 389-392, 394-404, 435-437

window objects (DOM), 409

events, 69

expressions, 328

external scripts, 69

flow control, 369-384

for loops, 377-378

for, in loops, 382-384

form events, 527-528

frames and JavaScript
objects, 425

functions, 68, 288, 292,
347, 352-354, 361-363

Gmail and, 446

Greasemonkey, 463-476

history of, 66

HTML and, 274-276

if statements, 369-375

infinite loops, 380-381

.js file extension, 69

JSON, 481

libraries (third-party), 453-459

linking to .js files, 69

logical operators, 371

modifying scripts, 74-76

navigating websites, 70

non-JavaScript browsers,
445-449

objects, 288-289, 292,
352-361, 364-366

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

sizing 587

usability, 438-439

using, 68

validating forms, 70

variables, 72, 288, 292,
325-328

web standards and browser
specificity, 437-438

while loops, 379-380

with keyword, 363-364

JSON, 481

JSP, 274

languages, 65

Perl, 274

PHP, 274, 514

Python, 274

remote scripting. See AJAX

Ruby, 274

server-side scripts, 274, 480,
493-495

text editors, 74

Trixie, 465

installing user scripts, 466

managing user scripts, 467

turning on/off, 468

.txt file extension, 74

“unobtrusive scripting”, 433,
447-449

user scripts

creating, 468, 475

debugging, 474-476

describing, 469-470

finding, 466

Greasemonkey, 463-476

installing, 466

managing, 466-467

metadata and, 469-470

scripting, 465

site-specific scripts, 472-473

testing, 468-471

text area macro user scripts,
475-476

Trixie, 465-467

VBScript, 274

operators, 328-330

parseFloat() function, 331

parseInt() function, 331

plus signs (+) in statements, 73

printing text via, 275

programming language versus
scripting language, 66

“progressive enhancement”
strategies, 294

reading browser information,
440-443

remote scripting, 71

saving .js files, 69

<script> tags, 67-72

scripting language versus
programming language, 66

simplifying, 354-356

special effects, 70

statements, 72, 287

statements, conditional state-
ments, 289

statements, for statements, 290

statements, function calls, 288

statements, loops, 290

statements, objects,
288-289, 292

statements, variables, 288, 292

strings, 332-340, 357

switch statements, 375-376

syntax, case-sensitivity, 292

syntax, functions, 292

syntax, objects, 292

syntax, reserved words, 292

syntax, spacing
(whitespace), 292

syntax, variables, 292

testing scripts, 74

time display example, 71-78

toLowerCase() method, 334

toUpperCase() method, 334

Trixie, 465-468

“unobtrusive scripting”, 433,
447-449

scrolling lists (forms), 524-525

search engines, 445

heading tags (HTML), 36

SEO, 553, 562-563

spamming, 557

websites, listing with search
engines, 555-562

searches

Google searches, 4

live search forms, creating via
AJAX, 496

HTML forms, 492

JavaScript front end, 494-495

PHP back end, 493-494

secondary navigation, 236

security, user scripts, 465

selection lists (forms), 524-525

selectors (CSS), 57

semicolons (;), JavaScript statements,
72, 287

server-side scripting, 274, 480, 493-495

servers

browsers, basic server
interaction, 3-5

document roots, 13-16

FTP client connections, 13

space, 6

“uptime”, 6

web hosting providers, selecting, 6

shorthand conditional expressions
(JavaScript), 372-373

siblings (DOM), 308

single-page websites, 538-539

site-specific user scripts, 472-473

sizing

borders (tables), 107

browser windows, 413-414

cells (tables), 111-113

elements (CSS box model),
210-212

images, 153

tables, 110-113

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

sizing588

strings (JavaScript), 330

case, converting, 334

length of, calculating, 334

string arrays, 338

sorting, 340

splitting, 339

string objects

adding methods to, 357

assigning values, 332-334

combining values, 332-334

creating, 332

substrings

finding, 336-337

getting single characters, 336

using parts of strings, 335-336

 tags (HTML), 83

strong text. See boldface text

style classes (CSS), 57-58

style IDs (CSS), 59

style properties (CSS), 57

style rules (CSS), 46, 50

color style rule, fonts and, 86-87

font weight style rule, 83

font-family style rule, 86

font-size style rule, 86-87

list-style-type style rule, 99-101

multiple style properties in, 58

text-align style rule, 93-95

viewing, 51

style sheets

align property, 191, 203-204

box model, 209, 212

borders, 210

content, 210

lists and, 226-229

lists and, 226

margins, 210

padding, 210

sizing elements, 210-212

clear property, text flow and, 220

text

font-size style rule (CSS), 86-87

style sheets, 50

skeleton pages. See templates

<small> tags (HTML), 83

small text, 83

solid value (CSS border-style proper-
ties), 54-55

sorting arrays (JavaScript)

numeric arrays, 340-342

string arrays, 340

source editors, blogs and, 19

spacing (whitespace), JavaScript
syntax, 292

spamming search engines, 557

spanning with tables, 115

special effects (JavaScript), 70

splitting string arrays (JavaScript), 339

Starbucks.com, website
organization, 544

statements (JavaScript), 287

conditional statements, 289

for statements, 290

function calls, 288

loops, 290

objects, 288

built-in objects, 289

custom objects, 289

DOM objects, 289

naming, 292

plus signs (+) in, 73

semicolons, 72

time display example, 72

variables, 288, 292

Stephenson, Sam, 453

streaming multimedia, 181

<strike> tags (HTML), 84

strikethrough text, style sheets, 56

string arrays, sorting, 340

strings, 72

color, specifying via style sheets,
146-148

creating, 47, 49-52

CSS tags, 50

CSS Zen Garden, 191-192

definition of, 45

DOCTYPE declarations, 212

external style sheets, 46-51

float property, 191, 204-207, 220

formatting properties, 53

background-color property, 55

border property, 54-55

border-bottom property, 54-55

border-color property, 54-55

border-left property, 54-55

border-right property, 54-55

border-style property, 54-55

border-top property, 54-55

border-width property, 54

color property, 56

font property, 56

font-family property, 55

font-size property, 55

font-style property, 56

font-weight property, 56

line-height property, 56

padding property, 56

text-align property, 55-56

text-decoration property, 56

text-indent property, 55

HTML documents, linking to, 50

image maps, creating, 231-235

inline styles, 60-61

internal style sheets, 46, 59-61

italic text, 56

layouts

display property, 52-53

fixed layouts, 254

fixed/liquid hybrid layouts,
258-268

height property, 53

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

tags (HTML) 589

text

formatting color, 46

sizing, 50

underline text, 56

validating, 61

web browsers, CSS support, 51

z-index property, 217-219

<sub> tags (HTML), 83

subscript text, 83

substrings

finding, 336-337

parts of strings, using, 335-336

single characters, getting, 336

Subversion website version control, 550

<sup> tags (HTML), 83

superscript text, 83

support

CSS, web browser support for, 51

web hosting providers, selecting, 6

switch statements (JavaScript)

multiple conditions, using,
375-376

syntax of, 376

syntax, JavaScript, 332

T

<table> tags (HTML), 107

tables

aligning within, 113-115

borders

sizing, 107

spacing, 116

specifying color via CSS,
146-148

cells

creating, 107

sizing, 111-113

color in, 115

liquid layouts, 253- 257

width property, 53

line-through text, 56

links, styling, 134-138

list-style-image property, 226

list-style-position property, 226,
229-231

list-style-type property, 226

lists

horizontal navigation, 245-248

navigation lists, 236-248

vertical navigation, 236-244

margin property, 191-199

media-specific style sheets, 503-504

overflow property, text flow and, 220

padding property, 191, 199-202

positioning

absolute positioning, 213-217

overlapping elements, 213,
217-219

positioning property, 213

relative positioning, 213-215

z-index property, 217-219

print pages, designing style sheets
for, 505-508

properties, hyphenating, 312

selectors, 57

strikethrough text, 56

style classes, 57-58

style IDs, 59

style properties, 57

style rules, 46, 50

color style rule, 86-87

font weight style rule, 83

font-family style rule, 86

font-size style rule, 86-87

list-style-type style rule, 99-101

multiple style properties in, 58

text-align style rule, 93-95

viewing, 51

creating, 107-110

headings, creating, 108

images in, 116

page layout via, 116-117

rows, creating, 107

sizing, 110-113

spanning within, 115

uses for, 107

tags (CSS), 50

elements and, 46

<link /> tag, 50

selectors, 57

tags (HTML), 5, 28

<a> tags, 170

identifying locations within web
pages, 126

linking to anchor locations,
126-129

naming, 127

attributes, 92-93, 123

 tags, 81-83

<big> tags, 83

<body> tag, 27, 31-33

 tags, 32-33, 85

closing tags, 30

containers, 307

custom tags, creating, 58

<div> tags, 170

 tags, 83

empty tags, 30, 33

event handlers, 68

 tags, 81, 86

<head> tags, 27, 31-33, 68

heading tags, 34-36

horizontal rule tag, 33

<hr /> tag, 33

<html> tag, 27, 31-33

<i> tags, 81-83

 tags, 162-163

line breaks, 32-33

naming files with, 27

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

tags (HTML)590

paragraphs, 93-95

tables, 113-115

text-align style rule (CSS),
93-95

alternate text, 163-164

ASCII text, 26, 34, 82

color, CSS and, 56, 146-148

documents, writing text within, 302

flowing text, 220

fonts

Arial font, 86

color style rule (CSS), 86-87

font property (CSS), 56

font weight style rule (CSS), 83

font-family property (CSS), 55

font-family style rule (CSS), 86

font-size property (CSS), 55

font-size style rule (CSS), 86-87

font-style property (CSS), 56

font-weight property (CSS), 56

sans-serif font, 86

Times Roman font, 86

typewriter font. See mono-
spaced text

formatting

aligning text, 92-95

big text, 83

boldface text, 82-83

customizing fonts in HTML,
85-89

definition lists, 96, 226

foreign languages, 89-91

italic text, 82-83

monospaced text, 84-85

multitiered lists, 100-101

nested lists, 97-100, 226

ordered lists, 95-96, 226

outlines, 98-100

resumes, creating, 87-89

small text, 83

special characters, 89-91

nested tags, 97

older HTML tags, formatting and, 81

opening tags, 30

<p> tag, 31-33

paragraphs, 32-33

<pre> tags, 84-85

pseudoclasses, 134-138

saving files with, 27

<script> tags, 67-72

<small> tags, 83

<strike> tags, 84

 tags, 83

<sub> tags, 83

<sup> tags, 83

<table> tags, 107

<td> tags, 107

<th> tags, 108

<title> tags, 27, 31-33, 36

<tr> tags, 107

<tt> tags, 84-85

<u> tags, 84

xml : lang attribute, 31

xmlns attribute, 31

tags (XHTML)

<embed> tags, 183

<object> tags, 180-183

tasks, combining. See functions
(JavaScript)

<td> tags (HTML), 107

templates, web page creation, 31

testing

AJAX quiz building example, 490-491

JavaScript scripts, Internet Explorer
6.0, 74

user scripts, 468, 470-471

web content, 19-20

websites, multiple web browsers,
8-9, 26

text

aligning

attributes, 92-93

block-level elements, 93-95

subscript text, 83

superscript text, 83

unordered lists, 95-96, 226

web page creation, 33-35

forms, accepting text input in, 519

graphics and, 163-164

HTML, whitespace, 32

indenting, web page creation, 35

italic text, style sheets, 56

leading, line height property
(CSS), 56

line breaks, web page creation,
32-33

line-through text, style sheets, 56

paragraphs, web page creation,
32-33

“plain” text, 26, 34, 82

printing, JavaScript and, 275

sizing, font-size style rule (CSS),
86-87

strikethrough text, style sheets, 56

style sheets, 56

formatting color, 46

sizing, 50

text-align property (CSS), 55-56

text-align style rule (CSS), 93-95

text area macro user scripts,
475-476

text areas (forms), 526

text-decoration property (CSS), 56

text editors, 74

text fields (forms), 526

text-indent property (CSS), 55

underline text, style sheets, 56

web browsers, adjusting font size
settings, 20

web pages

adding to web pages, 319-321

modifying text in, 317-318

TextEdit, creating HTML files, 27

<th> tags (HTML), 108

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

variables (JavaScript) 591

Trixie, 465

turning on/off, 468

user scripts

installing, 466

managing, 467

truncating decimal numbers, 360

<tt> tags (HTML), 84-85

turning on/off

Greasemonkey, 468

Trixie, 468

.txt file extension, 74

typewriter font. See monospaced text

U

<u> tags (HTML), 84

underline text, style sheets, 56

“unobtrusive scripting”, 433, 447-449

unordered lists, 95-96, 226

“uptime,” servers and, 6

URLs, opening, 483

usability, JavaScript best practices,
438-439

USB drivers, 18

user input, accepting in forms, 519

user scripts

creating, 468, 475

debugging, 474-476

describing, 469-470

finding, 466

Greasemonkey, 463

API functions, 471

browser support, 465

creating user scripts, 468, 475

debugging user scripts, 474-476

describing user scripts, 469-470

finding user scripts, 466

installing, 464

installing user scripts, 466

third-party JavaScript libraries

AJAX Frameworks, 456

Dojo, 456

downloading, 457

effects, adding via, 457-459

effects, using, 457

HTML documents, adding libraries
to, 457

jQuery, 454-455

Mochikit, 456

MooTools, 456

Prototype, 453-454

Script.aculo.us, 455-459

scripts, building, 458-459

Yahoo! UI Library, 456

tiled backgrounds, 159-160

time, displaying (JavaScript
example), 71

Date objects, 72

error handling, 76-78

output, creating, 73

scripts

adding to web pages, 73-74

modifying, 74-76

<script> tags, 71-72

testing, 74

statements, 72

variables, 72

time zones, date object (JavaScript)
and, 365

timeouts (browser windows), 414-416

Times Roman font (text), 86

timing loading of web content, 20

<title> tags, 27, 31-33, 36

toLowerCase() method (JavaScript), 334

tool tips, 164

toUpperCase() method (JavaScript), 334

<tr> tags (HTML), 107

transferring HTML files, FTP clients,
10-13, 29

transparent images, 158

triadic color schemes, 143

managing user scripts, 466-467

metadata and user scripts,
469-470

site-specific user scripts,
472-473

testing user scripts, 468-471

text area macro user scripts,
475-476

installing, 466

managing, 466-467

metadata and, 469-470

security, 465

site-specific scripts, 472-473

testing, 468-471

text area macro user scripts,
475-476

Trixie, 465

installing user scripts, 466

managing user scripts, 467

UTC (Universal Time [Coordinated]), 71

UTC variable (JavaScript), 72

V

validating

forms, 70, 531-532

style sheets, 61

web content, 36-37

variables (JavaScript), 288

declaring, 326

global variables, 326

incrementing/decrementing, 327

local variables, 326

localtime variable, 72

naming, 292, 325-326

scope of, 326

time display example, 72

UTC variable, 72

values, assigning to variables,
327-328

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

VBScript scripting language592

JavaScript objects and, 425

linking windows to frames,
423-424

modifying borders, 424-425

nested framesets, 425

Google Chrome, 9, 465

history, accessing, 2, 303-305

HTML development, 2

images, auto image loading, 20

information, reading via JavaScript

dishonest browsers, 442-443

displaying information, 440-441

Internet Explorer, 9

event properties, 393

Trixie, 465-468

links, opening in new browser win-
dows, 134

lists, displaying in, 97

margins and, 226-229

non-Internet Explorer event proper-
ties, 393-394

non-JavaScript browsers

avoiding errors, 446-449

detecting, 445-446

JavaScript optionality, 446

<noscript> tag, 445-446

<script> tag, 457

non-viewable window areas, 254

Opera, 9, 465

padding and, 226-228

pop-up windows, 134

popularity of, 26

Safari, 9

search engines, 445

sensing. See feature sensing

servers, basic browser server
interaction, 3-5

text, adjusting font size settings, 20

websites

comparing, 26

testing, 8-9, 26

VBScript scripting language, 274

version control, websites and, 548-550

vertical image alignment, 167-168

vertical navigation, 236-238

multilevel vertical navigation,
240-244

single-level vertical navigation,
239-241

vertical-align style property, 167

video, embedding, 182

viewing

CSS style rules, 51

HTML files, 29

web pages, 29

visual editors, blogs, 19

W

W3C color standards, 143

W3C CSS Validator, 61

W3C event model, 436-437

W3C Validation Service, 37-38

web browsers

140 cross-browser color names,
143-144

cross-browser scripting

debugging browsers, 444

feature sensing, 437, 443-444

CSS, support for, 51

debugging, 444

development of, 2

dialog boxes, displaying, 417-418

distributing, 18

Firefox, 9, 464

frames, 418-420

adding individual frames, 423

creating frameset documents,
421-423

frames array, 426

inline frames, 426-429

windows

creating, 410-411

linking frames to windows,
423-424

moving, 413-414

opening/closing, 411-412

resizing, 413-414

timeouts, 414-416

web content

absolute addresses, 124-125

aligning via align property (CSS),
191, 203-204

clear property (CSS), text flow
and, 220

color

140 cross-browser color
names, 143-144

best practices, 141-143

Colorblind Web Page Filter
tool, 148

hexadecimal color codes,
144-146

using, 141-143

W3C color standards, 143

comparing, 26

creating, 2-3

ASCII text, 26, 34

boilerplate code, 28-30

comparing web content HTML
codes, 37

formatting text, 33-35

HTML tags, 27-33

indenting text, 35

line breaks, 32-33

organizing content via head-
ings, 34-36

overview of, 29

paragraphs, 32-33

“plain” text, 26, 34

templates, 31

CSS box model, 209

borders, 210

content, 210

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

web content 593

compression, 150

copyrights and, 149

Creative Commons licenses, 149

cropping, 151-152

dithering, 158

file sizes, 150

Flickr, 161, 163

GIFs, 157-161

GIMP, 149

GIMP, adjusting image color, 154

GIMP, banners, 156

GIMP, buttons, 156

GIMP, cropping images, 151-152

GIMP, JPEG compression, 155

GIMP, resizing images, 153

Google Images, 161

Google Picasa, 149

grabbing from web pages, 149

image maps, 173-178

JPEGs, 155, 159-160

Picnik, 149

placing graphics on web pages,
161-163

PNGs, 158-159

Red Eye Removal, 154

republishing, 163

resizing, 153

resolution, 150

specifying height/width, 165

text descriptions, 163-164

tiled backgrounds, 159-160

transparent graphics, 158

turning graphics into links,
169-171

uses of, 150

images, changing images via user
interaction, 281-283

links

absolute links, 124

anchor tags, 126-129

email addresses, 132-133

lists and, 226-229

margins, 210

padding, 210

sizing elements, 210-212

delivering, 3-5

directories, 123-124

float property (CSS), 191,
204-207, 220

folders, 123-125

forms, 513

accessing elements via
JavaScript, 528

check boxes, 521-523

creating, 514-519

displaying data in pop-up
windows, 528-530

hidden data, 520

JavaScript events, 527-528

naming form data, 519-520

pull-down pick lists, 524-525

radio buttons, 523-524

scrolling lists, 524-525

selection lists, 524-525

sending data via email, 530-531

submitting form data, 527

text areas, 526

text fields, 526

text input, 519

user input, 519

validating, 531-532

“graceful degradation”, 434

graphics

adjusting color, 154

Adobe Photoshop, 148

aligning graphics, 165-168

animated graphics, 160-161

background graphics, 171-172

banners, 156

buttons, 156

choosing software, 149

clip art, 149

images as, 134

linking between, 129-131

linking to external web
content, 131-132

opening in new browser
windows, 134

relative-root links, 124

styling via CSS, 134-138

lists

borders, 227-228

color, 227-228

CSS box model and, 226-229

horizontal navigation, 245-248

navigation lists, 235-248

placing list item indicators,
229-231

vertical navigation, 236-244

loading, timing, 20

managing

coding clarity, 548

comments, 546-547

documenting code, 546-547

indenting code, 548

maintainable code, 546-548

version control, 548-550

margins

browsers and, 226-229

margin property (CSS), 191-199

multimedia, integrating with, 178

embedded multimedia files,
180-183

links, 179-180

tips for using, 184-185

organizing, 123-124, 538

larger websites, 543-546

simple websites, 540-542

single-page websites, 538-539

overflow property (CSS), text flow
and, 220

padding

browsers and, 226-228

padding property (CSS), 191,
199-202

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

web content594

cells, sizing, 111-113

color in, 115

creating, 107-110

headings, creating, 108

images in, 116

page layout via, 116-117

rows, creating, 107

sizing, 110-113

sizing borders, 107

spacing borders, 116

spanning within, 115

uses for, 107

testing, 19-20

text, formatting, 82

adding to web pages, 319-321

aligning text, 92-95

big text, 83

boldface text, 82-83

customizing fonts in HTML,
85-89

definition lists, 96, 226

flowing text, 220

foreign languages, 89-91

italic text, 82-83

modifying, 317-318

monospaced text, 84-85

multitiered lists, 100-101

nested lists, 97-100, 226

older HTML tags, 81

ordered lists, 95-96, 226

outlines, 98-100

resumes, creating, 87-89

small text, 83

special characters, 89-91

subscript text, 83

superscript text, 83

unordered lists, 95-96, 226

transferring, FPT, 29

validating, 36-37

viewing, 5, 29

Print Preview, viewing web content
in, 508-509

print-friendly web pages, 499

criteria for print-friendliness,
500-503

designing style sheets for print
pages, 505-508

media-specific style sheets,
503-504

reviewing content for print-
friendliness, 500

viewing web pages in Print
Preview, 508-509

“progressive enhancement”, 435

publishing

locally, 18-19

to blogs, 19

random web content, displaying
via JavaScript, 276-280

relative addresses, 124-125

relative-root addresses, 124

search engines, listing web
content with, 555-562

style sheets

creating, 47-52

definition of, 45

external style sheets, 46-51

formatting properties, 53-56

formatting text color, 46

inline styles, 60-61

internal style sheets, 46, 59-61

layout properties, 52-53

linking to HTML documents, 50

selectors, 57

sizing text, 50

style classes, 57-58

style IDs, 59

style properties, 57

style rules, 46, 50-51, 58

validating, 61

web browser support, 51

tables

aligning within, 113-115

cells, creating, 107

web hosting providers, selecting,
6-8, 26

website architectures, creating, 125

YouTube and, 184

web design

“graceful degradation”, 434

“progressive enhancement”, 435

web hosting provider DailyRazor, 7

web hosting providers

A Small Orange, 7

bandwidth, 6

control panels, 7-8

customer service, 6

domain names, purchasing, 6

LunarPages, 7

pricing, 6

reliability, 6

selecting, 6-8, 26

server space, 6

web pages

absolute addresses, 124-125

aligning via align property (CSS),
191, 203-204

clear property (CSS), text flow
and, 220

color

140 cross-browser color names,
143-144

best practices, 141-143

Colorblind Web Page Filter
tool, 148

hexadecimal color codes,
144-146

using, 141-143

W3C color standards, 143

creating

ASCII text, 26, 34

boilerplate code, 28-30

comparing web page HTML
codes, 37

formatting text, 33-35

HTML tags, 27-33

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

web pages 595

graphics

adjusting color, 154

Adobe Photoshop, 148

aligning graphics, 165-168

animated graphics, 160-161

background graphics, 171-172

banners, 156

buttons, 156

choosing software, 149

clip art, 149

compression, 150

copyrights and, 149

Creative Commons licenses, 149

cropping, 151-152

dithering, 158

file sizes, 150

Flickr, 161-163

GIFs, 157-161

GIMP, 149

GIMP, adjusting image color, 154

GIMP, banners, 156

GIMP, buttons, 156

GIMP, cropping images, 151-152

GIMP, JPEG compression, 155

GIMP, resizing images, 153

Google Images, 161

Google Picasa, 149

grabbing from web pages, 149

image maps, 173-178

JPEG compression, 155

JPEGs, 159-160

Picnik, 149

placing graphics on web pages,
161-163

PNGs, 158-159

Red Eye Removal, 154

republishing, 163

resizing, 153

resolution, 150

specifying height/width, 165

text descriptions, 163-164

indenting text, 35

line breaks, 32-33

organizing content via head-
ings, 34-36

overview of, 29

paragraphs, 32-33

“plain” text, 26, 34

templates, 31

CSS box model, 209

borders, 210

content, 210

lists and, 226-229

margins, 210

padding, 210

sizing elements, 210-212

directories, 123-124

float property (CSS), 191,
204-207, 220

folders, 123-125

forms, 513

accessing elements via
JavaScript, 528

check boxes, 521-523

creating, 514-519

displaying data in pop-up
windows, 528-530

hidden data, 520

JavaScript events, 527-528

naming form data, 519-520

pull-down pick lists, 524-525

radio buttons, 523-524

scrolling lists, 524-525

selection lists, 524-525

sending data via email, 530-531

submitting form data, 527

text areas, 526

text fields, 526

text input, 519

user input, 519

validating, 531-532

“graceful degradation”, 434

tiled backgrounds, 159-160

transparent graphics, 158

turning graphics into links,
169-171

uses of, 150

images, changing images via user
interaction, 281-283

JavaScript, adding to web pages,
67-68

links

absolute links, 124

anchor tags, 126-129

email addresses, 132-133

images as, 134

linking between web pages,
129-131

linking to external web pages,
131-132

opening in new browser
windows, 134

relative-root links, 124

styling via CSS, 134-138

lists

borders, 227-228

color, 227-228

CSS box model and, 226-229

horizontal navigation, 245-248

navigation lists, 235-248

placing list item indicators,
229-231

vertical navigation, 236-244

loading, timing, 20

managing

coding clarity, 548

comments, 546-547

documenting code, 546-547

indenting code, 548

maintainable code, 546-548

version control, 548-550

margins

browsers and, 226-229

margin property (CSS), 191-199

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

web pages596

selectors, 57

sizing text, 50

style classes, 57-58

style IDs, 59

style properties, 57

style rules, 46, 50-51, 58

validating, 61

web browser support, 51

tables

aligning within, 113-115

cells, creating, 107

cells, sizing, 111-113

color in, 115

creating, 107-110

headings, creating, 108

images in, 116

page layout via, 116-117

rows, creating, 107

sizing, 110-113

sizing borders, 107

spacing borders, 116

spanning within, 115

uses for, 107

text, formatting

adding to web pages, 319-321

aligning text, 92-95

big text, 83

boldface text, 82-83

customizing fonts in HTML,
85-89

definition lists, 96, 226

flowing text, 220

foreign languages, 89-91

italic text, 82-83

modifying, 317-318

monospaced text, 84-85

multitiered lists, 100-101

nested lists, 97-100, 226

older HTML tags, 81

ordered lists, 95-96, 226

outlines, 98-100

resumes, creating, 87-89

small text, 83

multimedia, integrating with, 178

embedded multimedia files,
180-183

links, 179-180

tips for using, 184-185

organizing, 123-124, 538

larger websites, 543-546

simple websites, 540, 542

single-page websites, 538-539

overflow property (CSS), text flow
and, 220

padding

browsers and, 226-228

padding property (CSS), 191,
199-202

Print Preview, viewing web pages
in, 508-509

print-friendly web pages, 499

criteria for print-friendliness,
500-503

designing style sheets for print
pages, 505-508

media-specific style sheets,
503-504

reviewing content for print-
friendliness, 500

viewing web pages in Print
Preview, 508-509

“progressive enhancement”, 435

relative addresses, 124-125

relative-root addresses, 124

scripts, adding to web pages
(JavaScript), 73-74

search engines, listing web pages
with, 555-562

style sheets

creating, 47-52

definition of, 45

external style sheets, 46-51

formatting properties, 53-56

formatting text color, 46

inline styles, 60-61

internal style sheets, 46, 59-61

layout properties, 52-53

linking to HTML documents, 50

special characters, 89-91

subscript text, 83

superscript text, 83

unordered lists, 95-96, 226

transferring FTP, 29

validating, 36-37

viewing, 29

web content, displaying random
content via JavaScript, 276-280

website architectures, creating, 125

YouTube and, 184

websites

aligning via align property (CSS),
191, 203-204

architectures, creating, 125

bad website examples, 144

clear property (CSS), text flow
and, 220

color

140 cross-browser color names,
143-144

best practices, 141-143

Colorblind Web Page Filter
tool, 148

hexadecimal color codes,
144-146

using, 141-143

W3C color standards, 143

comparing, 26

connecting to, Classic FTP client, 12

CSS box model, 209

borders, 210

content, 210

lists and, 226-229

margins, 210

padding, 210

sizing elements, 210-212

dynamic websites

changing images via user inter-
action, 281-283

client-side scripting, 274

displaying random web content
via JavaScript, 276-280

DOM, 280-281

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

websites 597

GIFs, 157-161

GIMP, 149

GIMP, adjusting image color, 154

GIMP, banners, 156

GIMP, buttons, 156

GIMP, cropping images, 151-152

GIMP, JPEG compression, 155

GIMP, resizing images, 153

Google Images, 161

Google Picasa, 149

grabbing from web pages, 149

image maps, 173-178

JPEGs, 155, 159-160

Picnik, 149

placing graphics on web pages,
161-163

PNGs, 158-159

Red Eye Removal, 154

republishing, 163

resizing, 153

resolution, 150

specifying height/width, 165

text descriptions, 163-164

tiled backgrounds, 159-160

transparent graphics, 158

turning graphics into links,
169-171

uses of, 150

links

absolute links, 124

anchor tags, 126-129

email addresses, 132-133

images as, 134

linking between web pages,
129-131

linking to external web pages,
131-132

opening in new browser
windows, 134

relative-root links, 124

styling via CSS, 134-138

lists

borders, 227-228

color, 227-228

printing text via JavaScript, 275

server-side scripting, 274

float property (CSS), 191,
204-207, 220

forms, 513

accessing elements via
JavaScript, 528

check boxes, 521-523

creating, 514-519

displaying data in pop-up
windows, 528-530

hidden data, 520

JavaScript events, 527-528

naming form data, 519-520

pull-down pick lists, 524-525

radio buttons, 523-524

scrolling lists, 524-525

selection lists, 524-525

sending data via email, 530-531

submitting form data, 527

text areas, 526

text fields, 526

text input, 519

user input, 519

validating, 531-532

“graceful degradation”, 434

graphics

adjusting color, 154

Adobe Photoshop, 148

aligning graphics, 165-168

animated graphics, 160-161

background graphics, 171-172

banners, 156

buttons, 156

choosing software, 149

clip art, 149

compression, 150

copyrights and, 149

Creative Commons licenses, 149

cropping, 151-152

dithering, 158

file sizes, 150

Flickr, 161-163

CSS box model and, 226-229

horizontal navigation, 245-248

navigation lists, 235-248

placing list item indicators,
229-231

vertical navigation, 236-244

managing

coding clarity, 548

comments, 546-547

documenting code, 546-547

indenting code, 548

maintainable code, 546-548

version control, 548-550

margins

browsers and, 226-229

margin property (CSS), 191-199

multimedia, integrating with,
178-179

embedded multimedia files,
180-183

links, 179-180

tips for using, 184-185

navigating JavaScript, 70

organizing

Amazon.com, 543

BAWSI.org, 545

ESPN.com, 540-542

larger websites, 543-546

simple websites, 540-542

single-page websites, 538-539

Starbucks.com, 544

overflow property (CSS), text flow
and, 220

padding

browsers and, 226-228

padding property (CSS), 191,
199-202

“progressive enhancement”, 435

publicizing, 553-555

search engines, listing websites
with, 555-562

SEO, 553, 562-563

single-page websites, 538-539

www.it-ebooks.info

http://www.it-ebooks.info/

ptg999

websites598

fixed/liquid hybrid layouts, setting
minimum width in, 262-263

images, specifying width in, 165

width property (CSS), 53

window objects (DOM), 300

browser windows

creating, 410-411

moving, 413-414

opening/closing, 411-412

resizing, 413-414

timeouts, 414-416

dialog boxes, displaying, 417-418

properties of, 409-410

windows (browser)

closing, 412

creating, 410-411

frames, linking to windows, 423-424

moving, 413-414

non-viewable window areas, 254

opening/closing, 411-412

pop-up windows, displaying form
data in, 528-530

resizing, 413-414

timeouts, 414-416

with keyword (JavaScript), 363-364

.WMV video clips, embedding, 182

Word, creating HTML files, 27

WordPress Theme Gallery, layouts
and, 253

writing text within documents, 302

WWW (World Wide Web), HTML devel-
opment, 2

WYSIWYG (what-you-see-is-what-you-
get) editors, 27

X

XHTML

boilerplate code, 30

check boxes (forms), 522

defining, 3

style sheets

creating, 47-52

definition of, 45

external style sheets, 46-51

formatting properties, 53-56

formatting text color, 46

inline styles, 60-61

internal style sheets, 46, 59-61

layout properties, 52-53

linking to HTML documents, 50

selectors, 57

sizing text, 50

style classes, 57-58

style IDs, 59

style properties, 57

style rules, 46, 50-51, 58

validating, 61

web browser support, 51

testing, 8-9, 26

text

adding to web pages, 319-321

flowing text, 220

modifying, 317-318

web content

absolute addresses, 124-125

directories, 123-124

folders, 123-125

organizing, 123-124

relative addresses, 124-125

relative-root addresses, 124

web pages

print-friendly web pages,
499-509

viewing in Print Preview,
508-509

YouTube and, 184

while loops (JavaScript), 379-380

whitespace (spacing)

HTML, 32

JavaScript syntax, 292

width

CSS box model, adjusting in,
210-212

development of, 40

function of, 51

goal of, 51

image maps, 231

inline frames, 426-429

tags

<embed> tags, 183

<object> tags, 180-183

xml : lang attribute (HTML tags), 31

xmlns attribute (HTML tags), 31

XML

AJAX and, 481, 488-489

boilerplate code, 30

development of, 39-40

xml : lang attribute (HTML tags), 31

XMLHttpRequest, 483

requests

awaiting responses, 484

creating, 483

interpreting response
data, 484

sending, 484

URLs, opening, 483

xmlns attribute (HTML tags), 31

Y - Z

Yahoo! Developer Network, JavaScript
design patterns, 439

Yahoo! Search, listing websites
with, 556

Yahoo! UI Library, 437, 456

YouTube, website integration, 184

z-index property (CSS), 217-219

Zen Garden (CSS), 191-192, 253

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	Table of Contents
	CHAPTER 1: Publishing Web Content
	A Brief History of HTML and the World Wide Web
	Creating Web Content
	Understanding Web Content Delivery
	Selecting a Web Hosting Provider
	Testing with Multiple Web Browsers
	Creating a Sample File
	Using FTP to Transfer Files
	Distributing Content Without a Web Server
	Tips for Testing Web Content

	CHAPTER 2: Understanding HTML and XHTML Connections
	Getting Prepared
	Getting Started with a Simple Web Page
	HTML Tags Every XHTML Web Page Must Have
	Organizing a Page with Paragraphs and Line Breaks
	Organizing Your Content with Headings
	Validating Your Web Content
	The Scoop on HTML, XML, XHTML, and HTML5

	CHAPTER 3: Understanding Cascading Style Sheets
	How CSS Works
	A Basic Style Sheet
	A CSS Style Primer
	Using Style Classes
	Using Style IDs
	Internal Style Sheets and Inline Styles

	CHAPTER 4: Understanding JavaScript
	Learning Web Scripting Basics
	How JavaScript Fits into a Web Page
	Exploring JavaScript’s Capabilities
	Displaying Time with JavaScript
	Beginning the Script
	Adding JavaScript Statements
	Creating Output
	Adding the Script to a Web Page
	Testing the Script

	CHAPTER 5: Working with Fonts, Text Blocks, and Lists
	Boldface, Italics, and Special Text Formatting
	Tweaking the Font
	Working with Special Characters
	Aligning Text on a Page
	The Three Types of HTML Lists
	Placing Lists Within Lists

	CHAPTER 6: Using Tables to Display Information
	Creating a Simple Table
	Controlling Table Sizes
	Alignment and Spanning Within Tables
	Page Layout with Tables

	CHAPTER 7: Using External and Internal Links
	Using Web Addresses
	Linking Within a Page Using Anchors
	Linking Between Your Own Web Content
	Linking to External Web Content
	Linking to an Email Address
	Opening a Link in a New Browser Window
	Using CSS to Style Hyperlinks

	CHAPTER 8: Working with Colors, Images, and Multimedia
	Best Practices for Choosing Colors
	Understanding Web Colors
	Using Hexadecimal Values for Colors
	Using CSS to Set Background, Text, and Border Colors
	Choosing Graphics Software
	The Least You Need to Know About Graphics
	Preparing Photographic Images
	Creating Banners and Buttons
	Reducing the Number of Colors in an Image
	Working with Transparent Images
	Creating Tiled Backgrounds
	Creating Animated Web Graphics
	Placing Images on a Web Page
	Describing Images with Text
	Specifying Image Height and Width
	Aligning Images
	Turning Images into Links
	Using Background Images
	Using Imagemaps
	Integrating Multimedia into Your Website

	CHAPTER 9: Working with Margins, Padding, Alignment, and Floating
	Using Margins
	Padding Elements
	Keeping Everything Aligned
	Understanding the Float Property

	CHAPTER 10: Understanding the CSS Box Model and Positioning
	The CSS Box Model
	The Whole Scoop on Positioning
	Controlling the Way Things Stack Up
	Managing the Flow of Text

	CHAPTER 11: Using CSS to Do More with Lists, Text, and Navigation
	HTML List Refresher
	How the CSS Box Model Affects Lists
	Placing List Item Indicators
	Creating Image Maps with List Items and CSS
	How Navigation Lists Differ from Regular Lists
	Creating Vertical Navigation with CSS
	Creating Horizontal Navigation with CSS

	CHAPTER 12: Creating Fixed or Liquid Layouts
	Understanding Fixed Layouts
	Understanding Liquid Layouts
	Creating a Fixed/Liquid Hybrid Layout

	CHAPTER 13: Understanding Dynamic Websites
	Understanding the Different Types of Scripting
	Including JavaScript in HTML
	Displaying Random Content
	Understanding the Document Object Model
	Changing Images Based on User Interaction

	CHAPTER 14: Getting Started with JavaScript Programming
	Basic Concepts
	JavaScript Syntax Rules
	Using Comments
	Best Practices for JavaScript

	CHAPTER 15: Working with the Document Object Model (DOM)
	Understanding the Document Object Model (DOM)
	Using window Objects
	Working with the document Object
	Accessing Browser History
	Working with the location Object
	More About the DOM Structure
	Working with DOM Nodes
	Creating Positionable Elements (Layers)
	Hiding and Showing Objects
	Modifying Text Within a Page
	Adding Text to a Page

	CHAPTER 16: Using JavaScript Variables, Strings, and Arrays
	Using Variables
	Understanding Expressions and Operators
	Data Types in JavaScript
	Converting Between Data Types
	Using String Objects
	Working with Substrings
	Using Numeric Arrays
	Using String Arrays
	Sorting a Numeric Array

	CHAPTER 17: Using JavaScript Functions and Objects
	Using Functions
	Introducing Objects
	Using Objects to Simplify Scripting
	Extending Built-in Objects
	Using the Math Object
	Working with Math Functions
	Using the with Keyword
	Working with Dates

	CHAPTER 18: Controlling Flow with Conditions and Loops
	The if Statement
	Using Shorthand Conditional Expressions
	Testing Multiple Conditions with if and else
	Using Multiple Conditions with switch
	Using for Loops
	Using while Loops
	Using do...while Loops
	Working with Loops
	Looping Through Object Properties

	CHAPTER 19: Responding to Events
	Understanding Event Handlers
	Using Mouse Events
	Using Keyboard Events
	Using the onLoad and onUnload Events
	Using onclick to Change <div> Appearance

	CHAPTER 20: Using Windows and Frames
	Controlling Windows with Objects
	Moving and Resizing Windows
	Using Timeouts
	Displaying Dialog Boxes
	Working with Frames
	Building a Frameset
	Linking Between Frames and Windows
	Using Inline Frames

	CHAPTER 21: Using Unobtrusive JavaScript
	Scripting Best Practices
	Reading Browser Information
	Cross-Browser Scripting
	Supporting Non-JavaScript Browsers

	CHAPTER 22: Using Third-Party Libraries
	Using Third-Party Libraries
	Other Libraries

	CHAPTER 23: Greasemonkey: Enhancing the Web with JavaScript
	Introducing Greasemonkey
	Working with User Scripts
	Creating Your Own User Scripts

	CHAPTER 24: AJAX: Remote Scripting
	Introducing AJAX
	Using XMLHttpRequest
	Creating a Simple AJAX Library
	Creating an AJAX Quiz Using the Library
	Debugging AJAX Applications

	CHAPTER 25: Creating Print-Friendly Web Pages
	What Makes a Page Print-Friendly?
	Applying a Media-Specific Style Sheet
	Designing a Style Sheet for Print Pages
	Viewing a Web Page in Print Preview

	CHAPTER 26: Working with Web-Based Forms
	How HTML Forms Work
	Creating a Form
	Accepting Text Input
	Naming Each Piece of Form Data
	Exploring Form Input Controls
	Submitting Form Data
	Accessing Form Elements with JavaScript
	Displaying Data from a Form
	Sending Form Results by Email

	CHAPTER 27: Organizing and Managing a Website
	When One Page Is Enough
	Organizing a Simple Site
	Organizing a Larger Site
	Writing Maintainable Code
	Thinking About Version Control

	CHAPTER 28: Helping People Find Your Web Pages
	Publicizing Your Website
	Listing Your Pages with the Major Search Sites
	Providing Hints for Search Engines
	Additional Tips for Search Engine Optimization

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K - L
	M
	N
	O
	P
	Q - R
	S
	T
	U
	V
	W
	X
	Y - Z

