
Copyright © 2007 University of Alberta. All rights reserved. 1

Copyright © 2007 University of Alberta. All rights reserved

AICT High Performance Computing Workshop

Shell Scripting
With Applications to HPC

Edmund Sumbar

research.support@ualberta.ca

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 2

Shell Scripting

High performance computing environment (1)

head node execution nodes

batch job

Copyright © 2007 University of Alberta. All rights reserved. 2

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 3

Shell Scripting

High performance computing environment (2)
• Portable Batch System (PBS)

• Batch job described by a PBS script

• PBS script is a shell script

• Therefore, a batch job is a shell script

• Also, shell scripts for utility purposes

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 4

Shell Scripting

What is a shell (1)

` Internet

desktop head node

Copyright © 2007 University of Alberta. All rights reserved. 3

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 5

Shell Scripting

What is a shell (2)
• ssh client (on desktop) connects to ssh server (on head node)

• User authentication (login)

• A “shell” program is launched on head node (login shell)

• Local ssh client displays the results from the shell

• Allows you to execute commands interactively on the head node

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 6

Shell Scripting

Two major shell program variants
• Bourne-like shells

• sh

• ksh

• bash

• C-like shells

• csh

• tcsh

Login shell specified for each user account
• Look for your CCID in /etc/passwd

• echo $SHELL

Copyright © 2007 University of Alberta. All rights reserved. 4

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 7

Shell Scripting

Very little difference for basic interactive use

Non-interactive use
• Execute a sequence of commands contained in a file (script)

• More advanced usage

• Differences in shell syntax become important

Focus on the bash shell

Reference documentation
• man bash

• info bash

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 8

Shell Scripting

Example commands (* internal command)
• cd*

• cp

• mv

• rm

• mkdir

• ls

• cat

• diff

• find

• grep

• read*

• chmod

• awk

• ps

• kill*

• sleep

• echo*

• exit*

• qsub

• qstat

Copyright © 2007 University of Alberta. All rights reserved. 5

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 9

Shell Scripting

Types of commands
• Simple

• ls ~/src > filelist

• test -e mhd.c

• Pipeline (sequence of one or more simple commands)

• cat mhd.c | grep MPI | grep -v Bcast

• List (sequence of one or more pipelines)

• cd ~/src ; test -e mhd.c && cp mhd.c mhd2.c &

• Compound commands (act on lists)

• if ! grep MPI mhd.c ; then echo serial code ; fi

• for f in * ; do test –L $f && rm $f ; done

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 10

Shell Scripting

Three ways to execute a script
• If script syntax is appropriate for current shell, set executable bit

on the file (chmod), and run script file directly

• Run shell program with script file as argument

(bash scriptfile)

• Specify the path to the shell program on the first line, set the

executable bit, and execute the script directly (#!/bin/bash same

effect as /bin/bash scriptfile)

Copyright © 2007 University of Alberta. All rights reserved. 6

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 11

Shell Scripting

Workshop exercises (1)
• Execute the following sequence of simple commands in a shell

script using each of the three techniques.

date

uname –n

id

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 12

Shell Scripting

Exit status
• Return value of…

• simple command

• last command in pipeline

• last command executed in list

• last command executed by compound command

• last command executed by a script

• echo $?

• 0 success

• 1..128 failure

• 128+n termination due to signal

Copyright © 2007 University of Alberta. All rights reserved. 7

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 13

Shell Scripting

Workshop exercises (2)
• What’s the difference between a command that crashes and a

command that fails?

• Compare the exit status of these commands

ls –l .

ls –l zzz

/home/esumbar/crasher

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 14

Shell Scripting

Execution modes
• Synchronous

• Command terminated by semicolon (;) or newline

• Shell waits for command to terminate

• Shell returns with command’s exit status

• Asynchronous

• Command terminated by ampersand (&)

• Shell does not wait for command to finish

• Command runs in the background

• Shell returns with an exit status of zero

(not the exit status of background command)

Copyright © 2007 University of Alberta. All rights reserved. 8

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 15

Shell Scripting

Special characters and words
• Metacharacters (delimit words) | & ; () < > space tab

• File name pattern matching characters * ? [

• Parameter expansion character $

• Quoting characters ‘ “ \

• Tilde character ~

• Reserved words that have a special meaning
! case do done elif else esac fi for function if in

select then until while { } time [[]]

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 16

Shell Scripting

Parameters and parameter expansion
• Named parameters (variables)

• remotehost=num.srv.ualberta.ca
ping –c 1 ${remotehost} > /dev/null

• Positional parameters (arguments passed to script)

• Assigned automatically

• echo ${1} ${15}

• Special parameters and shell variables

• Assigned automatically

• echo ${?}

• cd ${HOME}

Copyright © 2007 University of Alberta. All rights reserved. 9

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 17

Shell Scripting

Shell variables (environment variables) (1)
• All uppercase names (by convention)

• Used to define attributes

• PATH search path for commands

• HOME home directory

• PWD current working directory

• Inherited by subcommands

• Add variable to environment
• EMAIL_ADDRESS=research.support@ualberta.ca
export EMAIL_ADDRESS

• Display with printenv or env

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 18

Shell Scripting

Shell variables (environment variables) (2)
• PBS augments a script’s environment

• PBS_O_WORKDIR original working directory

• cd $PBS_O_WORKDIR

• PBS_NODEFILE name of file containing the list of exec nodes

assigned to the job

• mpirun -machinefile $PBS_NODEFILE -np $NP ./a.out

• PBS_JOBID useful for uniquely naming output files

• ./a.out > output.$PBS_JOBID

• Pass additional environment variables using -v or -V options

• qsub –v BASE=linear,TARGET=3600 scriptfile

Copyright © 2007 University of Alberta. All rights reserved. 10

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 19

Shell Scripting

Command substitution
• Standard output of command used as a string

• Old style (still valid)

• echo “current date and time is `date`”

• New style
• for file in $(ls $HOME/core*)
do rm –f $file
done

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 20

Shell Scripting

Workshop exercises (3)
• Assign the output from a command to a parameter

• nfiles=$(ls –a | wc -l)

• Recall the value of the parameter later
• echo “number of files is $nfiles”

• Try to recall the value of nfiles from a script

Copyright © 2007 University of Alberta. All rights reserved. 11

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 21

Shell Scripting

Shell arithmetic
• x=45

• Internal command let “x = x * 5”

• Compound command ((x = x * 5))

• Expansion x=$((x * 5))

• echo $x

225

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 22

Shell Scripting

Comments used in scripts
• Introduced by #

• Everything to the end of the line is ignored

• PBS directives (#PBS nodes=2) are shell script comments

• qsub scans the script for PBS directives up to the first shell

command that it encounters to determine job specs

• Any command line args to qsub override PBS script directives

Copyright © 2007 University of Alberta. All rights reserved. 12

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 23

Shell Scripting

Quoting
• Full (using single quotes)

all special characters and words lose their special meaning
• prompt=greetings
echo ‘$prompt: $(date)’

• Partial (using double quotes)

only $ and \ retain their special meaning
• args=“file1 file2”
test “$args” = “file1 file2” && rm -f $args

• Escaping (using backslash)

remove special meaning of single character

• echo “value of \$prompt: $prompt”

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 24

Shell Scripting

I/O redirection (1)
• Three open files/file descriptors

• Standard input (default stdin from keyboard) 0

• Stardard output (default stdout to terminal) 1

• Stardard error output (default stderr to terminal) 2

• Examples…

• 0 < inputfile

• 1 > outputfile

• >> outputfile

• 2 > /dev/null

• &> outputfile

• >outputfile 2>&1

Copyright © 2007 University of Alberta. All rights reserved. 13

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 25

Shell Scripting

I/O redirection (2)
• PBS redirects stdout and stderr from the job script to files located

on the execution node

• At the end of the job, by default, PBS copies these files from the

execution node to the original working directory as

<job name>.o<job id> and <job name>.e<job id>

• Use the -o and/or -e qsub options to specify alternate files

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 26

Shell Scripting

Workshop exercises (4)
• Explain the output from this shell command

• echo 2 * 3 > 5 is a valid inequality

Copyright © 2007 University of Alberta. All rights reserved. 14

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 27

Shell Scripting

Functions
• Group command (a type of compound command)

• test -e $resultsfile && {
mkdir $resultsdir
mv $resultsfile $resultsdir
echo moved $resultsfile to $resultsdir
}

• A function is a named group command
• function store {

mkdir $resultsdir
mv $resultsfile $resultsdir
echo moved $resultsfile to $resultsdir
}

test –e $resultsfile && store

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 28

Shell Scripting

Branching (1)
• if-command branches on the basis of exit status

• if [$denominator -ne 0]
then

value=$(($numerator/$denominator))
else

echo “divide-by-zero condition”
fi

• [$denominator –ne 0]

• test $denominator -ne 0

Copyright © 2007 University of Alberta. All rights reserved. 15

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 29

Shell Scripting

Branching (2)
• case-command branches on the basis of pattern matches

• case $(uname -p) in
mips) echo “SGI machine” ;;
powerpc) echo “IBM machine” ;;
*86) echo “Intel machine” ;;
*) echo “unknown processor” ;;

esac

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 30

Shell Scripting

Looping (1)
• for-command loops over items in a “word” or “token” (a sequence

of characters considered as a single unit)

• Environment variable IFS defines the characters used to split the

word into items (by default <space> <tab> <newline>)
• for file in $(ls $PBS_O_WORKDIR/temp)
do

rm -f $file
done

Copyright © 2007 University of Alberta. All rights reserved. 16

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 31

Shell Scripting

Looping (2)
• while-command loops on the basis of exit status

• while :
do

./a.out
test -e output && break

done

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 32

Shell Scripting

Workshop exercises (5)
• Say that you’ve parameterized your PBS script to accept three

environment variables. You plan to use the -v option to specify

the values of these variables when you submit your jobs, and

you’d like to take the parameter values from a file.

Create a utility bash-shell script that formats an appropriate qsub

command line for each line of the parameter file and saves all the

command lines in a file that can be later executed as a script to

submit the jobs.

Copyright © 2007 University of Alberta. All rights reserved. 17

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 33

Shell Scripting

Workshop exercises (5)
• PBS script

• Parameter file

• Result file

#!/bin/bash
#PBS –l walltime=02:00:00

cd $PBS_O_WORKDIR

./a.out $varx $vary $varz > output.$PBS_JOBNAME

blue A 45
blue A 89
green K 35
yellow Q 51

qsub –v varx=blue,vary=A,varz=45 script.pbs
qsub –v varx=blue,vary=A,varz=89 script.pbs
...

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 34

Shell Scripting

Workshop exercises (5)

• ./format.sh param.file pbs.script result.file

#!/bin/bash

src=$1 #---parameter file
pbs=$2 #---pbs script file
res=$3 #---result file

exec 0< $src

while read x y z; do
echo “qsub –v varx=$x,vary=$y,varz=$z $pbs” >> $res

done

Copyright © 2007 University of Alberta. All rights reserved. 18

Copyright © 2007 University of Alberta. All rights reserved create delete
May 4, 2007 35

Shell Scripting

Workshop exercises (5)

#!/bin/bash

src=$1 #---parameter file
pbs=$2 #---pbs script file
res=$3 #---result file

test -e x$src || exit
test -e x$res && rm –f $res

exec 0< $src

while read x y z; do
test -n “$x” || continue
test -n “${x##\#*}” || continue
echo “qsub –N xy$z –v varx=$x,vary=$y,varz=$z $pbs” >> $res

done

