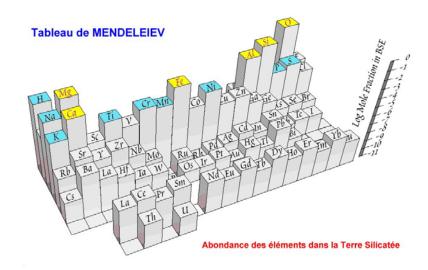
Plan

- 2.1 Rappels sur les minéraux
- 2.2 Modes de formation des roches
- 2.3 Propriétés géotechniques
- 2.4 Terrains de couverture

PO IC - Géologie de l'ingénieur

2.1 Rappel sur les minéraux


- ⊕ Qu'est-ce qu'un minéral ?
 - corps inorganique, solide à To ordinaire
 - composé de différents éléments chimiques
 - constituant des roches de l'écorce terrestre

Particularités

- composition chimique
- structure atomique

proportion des éléments chimiques dans la croûte terrestre

dans la croute ter	icstic	
Oxygène (O)	46,6 *	~75 %
Silicium (Si)	27,7	~ 7 3 70
01110101111 (01)	2','	
Aluminium (Al)	8.1	
Fer (Fe)	5,0	
Calcium (Ca)	3,6	
Sodium (Na)	2,8	
Potassium (K)	2,6	
Magnésium (Mg)	2,1	
les autres	1,5	

PO IC - Géologie de l'ingénieur

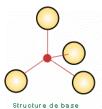
GROUPE	MINÉRAL	FORMULE	USAGE
ÉLÉMENTS NATIFS	Or Argent Cuivre Diamant Graphite Soufre Platine	Au Ag Cu C C S Pt	échange, joaillerie joaillerie, photographie conducteurs électriques gemmes, abrasifs mines à crayons, lubrifiants médicaments, produits chimiques catalyseurs, alliages
OXYDES	Hématite	Fe2 03	minerai de fer
	Magnétite	Fe304	minerai de fer
	Corindon	Al203	gemme, abrasif
SULFURES	Galène	PbS	minerai de plomb
	Sphalérite	ZnS	minerai de zinc
	Pyrite	FeS2	"or des fous"
	Chalcopyrite	CuFeS2	minerai de cuivre
	Bornite	Cu5FeS4	minerai de cuivre
	Cinabre	HgS	minerai de mercure
SULFATES	Gypse	Ca S04 .H20	plâtre et panneaux
	Anhydrite	CaS04	plâtre et panneaux
	Barite	BaS04	boue de forage
CARBONATES	Calcite	CaCO3	ciment Portland
	Dolomite	CaMg(CO3)2	ciment Portland
	Malachite	Cu2(OH)2CO3	minerai de cuivre, joaillerie
	Azurite	Cu3(OH)2(CO3)2	minerai de cuivre, joaillerie
	Rhodochrosite	MnCO3	joaillerie
SILICATES	quartz	SiO2	verre, horlogerie, calculatrices
	talc	Mg3Si4O10(OH)2	poudre pour bébés
	amiante	Mg6Si4O10(OH)8	isolant
	kaolinite	Al4Si4O10(OH)8	céramique
HALOGÉNURES	Halite	NaC1	sel commun
	Fluorite	CaF2	fabrication des aciers
	Sylvite	KC1	fertilisants
HYDROXYDES	Limonite	FeO(OH).nH2O	minerai de fer, pigment
	Bauxite	A1(OH)3. nH2O	minerai d'aluminium

PO IC - Géologie de l'ingénieur

proportion des éléments chimiques dans la croûte terrestre

> 8,1 5,0 3,6 2,8 2,6 2,1 1,5

~75 %

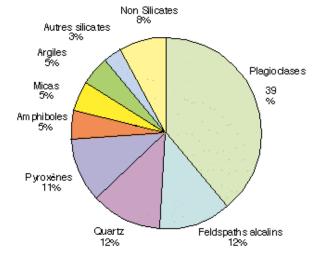

Oxygène (O) Silicium (Si)

Aluminium (AI)

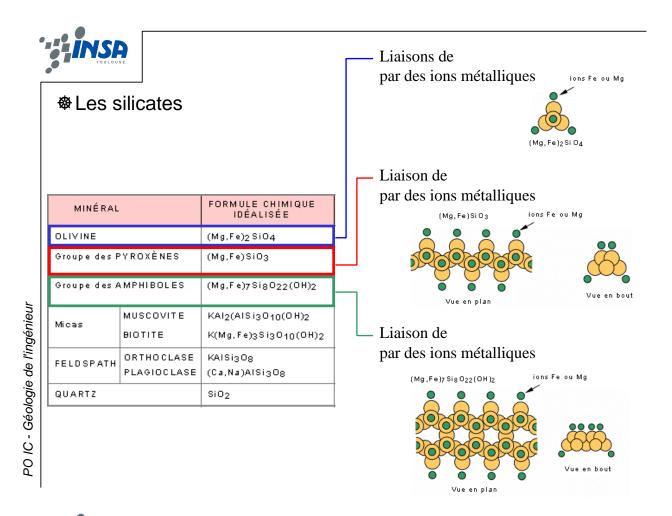
Fer (Fe)
Calcium (Ca)
Sodium (Na)
Potassium (K)
Magnésium (Mg)
... les autres

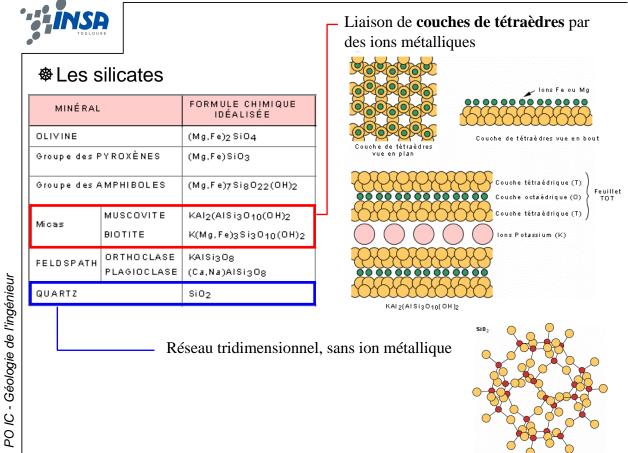
⊕ Les silicates

- du volume de la croûte terrestre
- ullet structure de base composée des ions $\mathrm{Si_4}^+$ et $\mathrm{O_2}^-$



Le tétraèdre de base




	~-4
-	
	o., 4 -

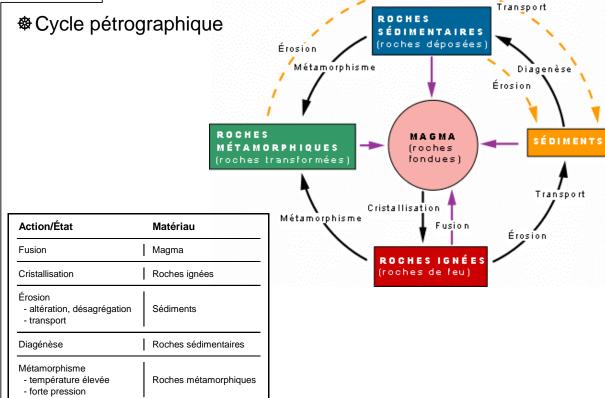
MINÉRAL		FORMULE CHIMIQUE IDÉALISÉE
OLIVINE		(Mg,Fe) ₂ SiO4
Groupe des F	YROXÈNES	(Mg,Fe)SiO3
Groupe des A	MPHIBOLES	(Mg,Fe)7Si8O22(OH)2
Micas	MUSCOVITE BIOTITE	KAI ₂ (AISi ₃ O ₁₀ (OH) ₂ K(Mg,Fe) ₃ Si ₃ O ₁₀ (OH) ₂
FELDSPATH	ORTHOCLASE PLAGIOCLASE	KAISi3O8 (Ca,Na)AISi3O8
QUARTZ		sio ₂

PO IC - Géologie de l'ingénieur

♠ Les silicates

MINÉRAL		FORMULE CHIMIQUE IDÉALISÉE
OLIVINE		(Mg,Fe) ₂ SiO ₄
Groupe des F	YROXÈNES	(Mg,Fe)SiO3
Groupe des A	MPHIBOLES	(Mg,Fe)7Si8O22(OH)2
Micas	MUSCOVITE BIOTITE	KAI ₂ (AISi ₃ O ₁₀ (OH) ₂ K(Mg,Fe) ₃ Si ₃ O ₁₀ (OH) ₂
FELDSPATH	ORTHOCLASE PLAGIOCLASE	KAISi308 (Ca,Na)AISi308
QUARTZ		SiO ₂

• Structure complexe


 Réseau tridimensionnel, où les coins des tétraèdres sont liés par les oxygènes, avec des ions positifs Na, K, Ca se situant dans les interstices du réseau chargé négativement

Albite	0-10 %	Anorthite
Oligoclase	10-30 %	-
Andésine	30-50 %	-
Labrador	50-70 %	-
Bytownite	70-90 %	-
Anorthite	90-100 %	_

Tableau 2 – Quelques propriétés des minéraux courants						
	Minéraux	Masse volumique (t/m³)	Dureté Vickers (HV)	Vitesse des ondes longitudinales (m/s)	Observations	
Silicates	Quartz	2,65 2,55 à 2,75 2,8 à 2,9 2,8 à 3,3 3 à 3,4 3,2 à 3,6	1 250 à 1 400 650 à 800 70 à 85 90 730 820	6 050 5 800 à 6 200 5 800 5 100 7 200 8 400	inaltérable très anisotrope très anisotrope anisotrope	
Autres	Calcite Dolomite Gypse	2,71 2,85 à 2,9 2,3 à 2,4	110 à 120 250 à 400 50 à 70	6 650 7 500 5 200	un peu soluble dans l'ea soluble dans l'eau	

2.2 Modes de formation des roches

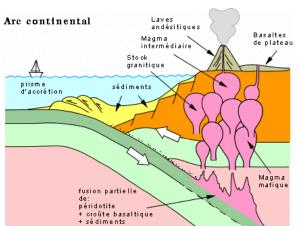
O IC - Géologie de l'ingénieur

PO IC - Géologie de l'ingénieur

2.2 Modes de formation des roches

 Classification des roches en trois catégories selon leur mode de formation

Catégorie 1


Les roches

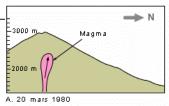
- consolidation d'un liquide contenant des % variables de cristaux : le magma
- refroidissement | brutal (trempe) $\rightarrow verre$ | lent $\rightarrow cristaux$
- 2 types de roches

(laves, projections)

(refroidies en-dessous de la surface du sol)

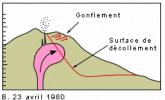
• généralement solidification ± lente d'un liquide dont les gaz dissous ont pu s'échapper

- Roches volcaniques
 - liées à l'activité volcanique
 - → remontée de magma vers la surface (fissures et cheminées)

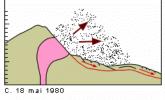

— chargé de gaz dissous

pression élevée \rightarrow fracture terrain \rightarrow cheminement vers la surface

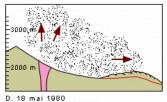
- après refroidissement : roches sous forme de dépôts tabulaires
 - \rightarrow exemple:
- Qu'est-ce qui fait monter les magmas vers la surface ?


 \rightarrow

fraction liquide des zones supérieures fraction partiellement fondue du manteau supérieur



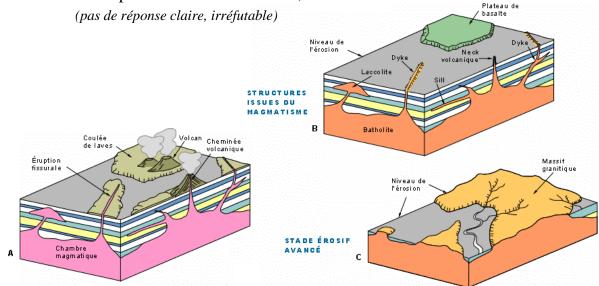
Le Mont St. Helens est un bon exemple de stratovolcan aux effets destructeurs. Ce volcan est demeuré calme durant 123 ans avant son éruption, le 18 mai 1980.


A. Le 20 mars 1980 (2 mois avant l'éruption) un premier séisme annonça le réveil possible du volcan.

B. À partir du 23 avril, on nota un gonflement progressif du côté nord du volcan, suggérant une augmentation de la pression magmatique dans le ventre du volcan.

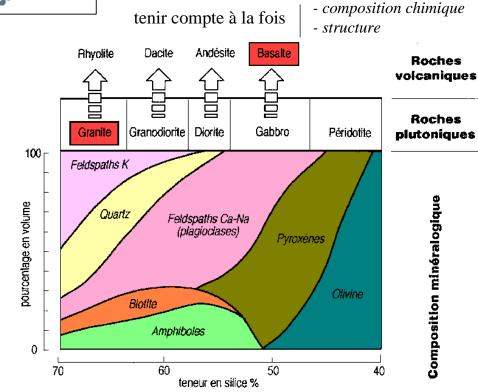
C. Le 18 mai, une secousse sismique déclencha un glissement de terrain géant (surface du décollement tracé en B) qui libéra subitement la pression dans le corps magmatique et causa une déflagration latérale formée de gaz incandescents et de matériel pyroclastique (nuée ardente).

D. Il s'ensuivit une éruption verticale qui propulsa une colonne de cendres volcaniques jusqu'à une altitude de 19 kilomètres. Cette phase de l'éruption dura 9 heures.


L'éruption du Mont St. Helens a pulvérisé une grande partie du sommet, laissant une immense échancrure. D'une altitude de 2900 mètres avant l'éruption, le sommet a été abaissé à 2490 mètres par l'éruption. La nuée ardente a atteint des températures de 800°C, brûlant tout sur son passage. Le souffle de la déflagration a couché les arbres sur une superficie de 35 × 23 kilomètres au nord du cratère. Des coulées de boue d'une température de 90°C ont envahi les vallées de la rivière Toutle sur quelques dizaines de kilomètres, arrachant tout sur leur passage.

AQUE de

• Roches plutoniques


- les filons \rightarrow remplissage de fractures ouvertes par du magma
- les massifs (faible allongement par rapport aux filons)
 - les plus grands : batholites jusqu'à plusieurs km d'épaisseur
 - mise en place : intrusion en force, différences de densité...

PO IC - Géologie de l'ingénieur

• Classification des roches magmatiques

Position schématique des principales roches magmatiques en fonction de leur composition minéralogique

r. acide

PO IC - Géologie de l'ingénieur

• Classification des roches magmatiques → granulats

ultrabasique

r. basique

- roches magmatiques à structure grenue

r, intermédiaire

• granites 50% feldspaths

30-40% quartz 3-10% micas

• diorites feldspaths + minéraux ferromagnésiens

semblables aux diorites mais moins de feldspaths

- roches magmatiques à structure microgrenue

• microgranites et microdiorites

porphyres

excellent granulats

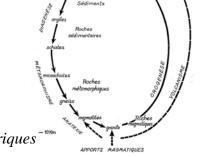
• Exemples de roches magmatiques

La côte de granite rose - Ploumanac'h (22) (Bretagne - Côtes-d'Armor)

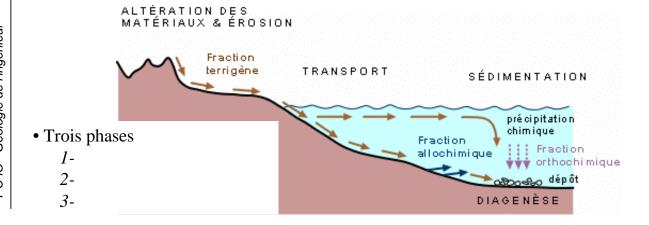
Détail du **granite rose**.

De gros cristaux jointifs de quartz, de feldspaths et de mica (structure grenue).

Des lichens (de couleur verte) se développent sur le granite.



PO IC - Géologie de l'ingénieur


Catégorie 2

Les roches

• résultent des transformations subies par les roches en surface action des agents météoriques action des agents météoriques

• résultat : roches néoformées sous des conditions de température et de pression normales (ou presque) ...donc très différentes des conditions magmatiques

PO IC - Géologie de l'ingénieur

1- destruction de la roche mère

→ désagrégation des roches selon 2 processus

(a) processus physique:

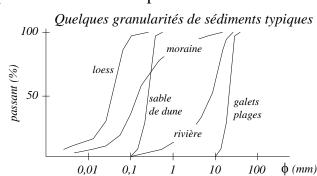
vent, eau, gel/dégel, chocs thermiques, écroulements

→ tendance à fracturer les roches cohérentes en développant le réseau de discontinuités existantes (depuis la formation)

(b) processus chimique:

effet de l'eau → dissolution et hydrolyse

- chlorures, sulfates, carbonates : très solubles
- silice : légèrement solubilisable
- feldspaths : hydrolisables plus facilement lorsque riches en Ca



2- transport puis dépôt

→ concerne des quantités de matière très importantes

Exemples : • avec une minéralisation de 0,1 g/l (moyenne des eaux douces), une petite rivière au débit de 1 m³/s transporte plus de 3000 tonnes/an

- les cours d'eau entraînent 13 km³ par an de sédiments dans les océans
 → on peut couvrir avec 2m de sédiments une superficie équivalente
 à 650 000 terrains de football
- éléments essentiels de transport eau vent
- modifications des sédiments détritiques durant leur transport
 - diminution des dimensions
 - adoucissement des arrêtes
 - → particules sphériques ou ellipsoïdales
 - disparition des minéraux les plus tendres et/ou les plus solubles
 - → changement de composition pétrographique

PO IC - Géologie de l'ingénieur

• dépôt des matières

pour les solutions : dépend des conditions de milieu chimique

exemple: $CaCO_3 + H_2O + CO_2 \stackrel{2}{\longleftarrow} (HCO_3)_2Ca$

dépôt lorsque l'équilibre est déplacé dans le sens 2

pour les sédiments détritiques : lorsque la vitesse du courant chute progressivement

- classement des dépôts
- grains grossiers puis grains de plus en plus fins

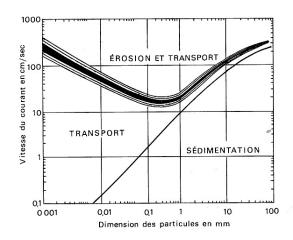


FIGURE 11.15. - Diagramme érosion - transport - sédimentation (d'après HJULSTROM). Par exemple, un grain de sable de 0,1 mm est érodé et transporté par un courant de vitesse supérieure à 20 cm/s; il est encore transporté tant que la vitesse se maintient audessus de 2 cm/s puis se dépose lorsque la vitesse devient plus faible. Un courant de 100 cm/s transporte les particules inférieures à 0,005 mm déjà en suspension, érode et transporte celles comprises entre 0,005 et 10 mm et laisse déposer celles supérieures à 10 mm. On remarque que les très fines particules (inférieures à 0,1 mm) nécessitent des vitesses croissantes pour être érodées, à cause de leur plus forte cohésion (les læss, poussières de 0,02 mm, peuvent former des falaises verticales très élevées).

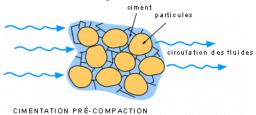
COMPARAISON DES DIFFERENTS MOYENS DE TRANSPORT DES ELEMENTS EN SEDIMENTOLOGIE COMPARISON OF DIFFERENT MEANS OF TRANSPORTATION IN SEDIMENTOLOGY

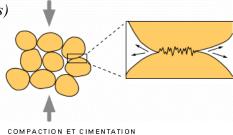
AGENT	TYPE D'ECOULEMENT	VITESSE MOYENNE	DIMENSION MAXIMUM DES ELEMENTS ENLEVES*	SURFACE AFFECTEE	CHARGE MAXIMUM SUR LE TERRAIN	TYPE DE TRANSPORT
Torrents et cours d'eau	Turbulent et à la limite, proche de laminaire	De quelques mm/s à 5 m/s	Galets, Graviers et sables	Bassins versants entiers	Jusqu'à plusieurs kg.m ⁻³	Roulement, Glissement sur le lit alluvial, en suspension, en solution
Vagues sur rivages	Uniquement turbulent	Quelques mètres par seconde	Graviers et sables. Ex- ceptionnelle- ment, blocs	Rivages	Plusieurs kg.m ⁻³	Roulement et chocs
Vent	Turbulent	Très varia- ble jusqu'à 120 km.h ⁻¹ ou 33,3 m.s ⁻¹	Sables. Dimension la plus courante: 0,2 mm	Zones arides et semi-ari- des, plages, terrainsànu	Plusieurs kg.m ⁻³	Roulement, saltation, suspension
Glaciers	Laminaire plastique	Quelques mètres par an	Gros blocs à éléments argileux	Zones monta- gneuses	Jusqu'à des centaines de kg.m ⁻³	Base, centre et surface du glacier
Eaux souterraines	Laminaire	Quelques mètres par an	Colloides et solutions	Roches et terrains baignés et traversés	Quelques kg.m ⁻³	Solution
Gravité	Mouvements irréguliers ou lents : glissements	De quelques cm.an ⁻¹ à plusieurs m.s ⁻¹	Blocs à colloïdes	Falaises, talus d'éboulis, pen- tes argileuses ou sableuses	Jusqu'à la densité des roches 2700 kg-m ⁻³	Chutes, saltation, plasticité

^{*} Cette dimension dépend, dans le cas des cours d'eau, de la turbidité des eaux. (Cf chap. 3).

3- diagénèse

- Ensemble des modifications de structure et de composition des sédiments
- Modifications réalisées dans les conditions de stabilité des minéraux formés en surface


différent du métamorphisme


Principe

- tassement des sédiments sous l'effet du poids des couches supérieures
 - → expulsion de l'eau et réduction de la porosité

exemple : une boue ayant 80% de porosité

- moins 50% de porosité sous 10 MPa (1kg/cm²) de pression
- moins 90% de porosité sous 50 MPa (5kg/cm²) de pression
- achèvement de la consolidation des sédiments par des phénomènes de cimentation
 - \rightarrow précipitation puis cristallisation de minéraux cimentaires à partir de solutions interstitielles contemporaines du dépôt ou l'ayant traversé ultérieurement
 - → réduction de la porosité (vers 0 dans certains cas)

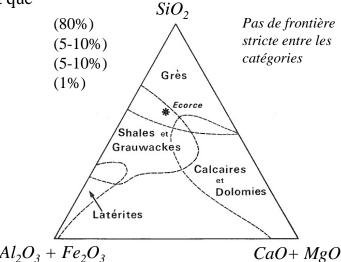
• 70%

• 20%

• Classification des roches sédimentaires

- nombreux systèmes proposés
- difficultés de compréhension entre Géologues et Ingénieurs Civil

Paramètres de classification les plus communs


- composition chimique
- mode de formation
- structure

D'une manière générale, on admet que

• 8% sédimentaires sont... • 2% argiles 42% grés 40 % 25 calcaires 18%

...des roches

Fig. 123 1. Répartition générale des principales catégories de roches sédimentaires à la surface des continents (KRYNINE, 1948).

 $Al_2O_3 + Fe_2O_3$

IC - Géologie de l'ingénieur

Conglomérat de type poudingue

Craie

Craie

fait effervescence a l'acide HCl à froche friable

Grès rouge des Vosges (granulats de qualité moyenne, utilisables s'ils sont denses et poreux)

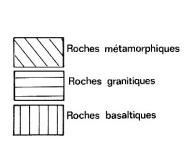
Maulianas

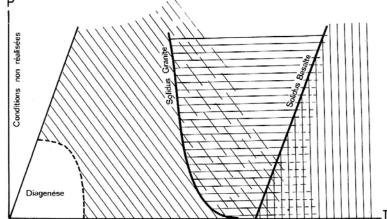
Meulières

PO IC - Géologie de l'ingénieur

(roches silicocalcaires en cours de décomposition)

Catégorie 3

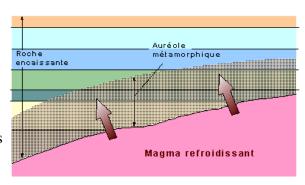

Les roches

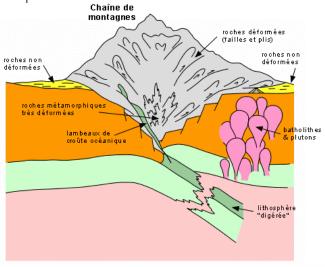

Métamorphisme

Ensemble des changements produits à l'état solide dans la composition minéralogique d'une roche lorsqu'elle est soumise à des conditions différentes de celles où elle s'est formée \rightarrow disparition et/ou apparition de nouveaux minéraux

Frontières floues avec :

- les transformations de surface (altération, diagénèse) \rightarrow roches sédimentaires
- la fusion partielle → roches magmatiques




PO IC - Géologie de l'ingénieur

• Le métamorphisme

- au voisinage d'une intrusion qui a réchauffé
- auréole métamorphique de dimension assez réduite
- formation de roches massives dures à grains très fins (roches cornéennes)

• Le métamorphisme

- affecte de grandes étendues
- thermodynamométamorphisme augmentations importantes de pression et de température
- métamorphisme des racines de chaînes de montagnes
- roches à structure orientées (roches cristallophyliennes)

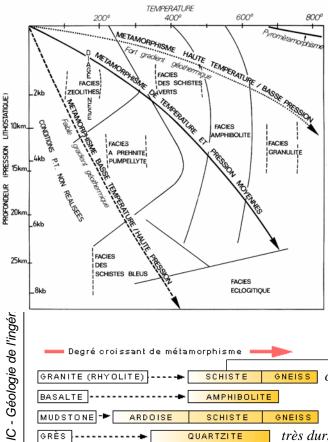


Fig. 125 59. Le métamorphisme des matériaux de la lithosphère est fonction, essentiellement, de la pression P et de la température T. Les trois principaux cheminements de la transformation des matériaux sont : le métamorphisme BT-HP, de température et pression moyenne et de HT-BP. Les assemblages minéralogiques sont fonction des zones à température et pression définies, ainsi que de la composition chimique et minéralogique initiale.

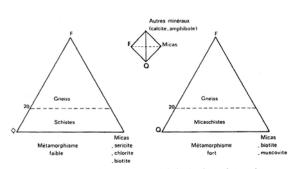
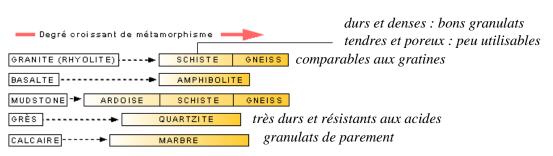
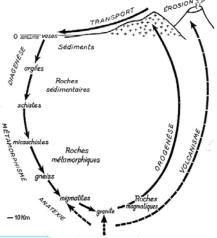



Fig. 122 17. Classification minéralogique des roches métamorphiques.



Bilan Cycle pétrographique

Fa	mille	Teinte	Minéraux constitutifs	Principaux termes	Autres termes
Roches	volcaniques	claire ↓ sombre	quartz feldspaths amphiboles pyroxène olivine	trachyte, rhyolite andésite basalte	dolérite
magmatiques	plutoniques	claire ↓ sombre	quartz feldspaths amphiboles pyroxène	granite diorite gabbro	microgranite microdiorite monzonite péridotite
Roches métamorphiques	foliées	claire ↓ sombre	quartz micas amphibole	gneiss, micaschiste amphibolite	leptynite
	non foliées			marbre, cornéenne	
Roches sédimentaires	détritiques	sombre ↓ claire	argiles calcite quartz	pélites marnes grès	argilites
	biogènes et/ou chimiques		carbonates, sulfates, etc.	calcaires, craie, dolomies, gypse	meulière, charbon

2.3 Propriétés géotechniques des roches

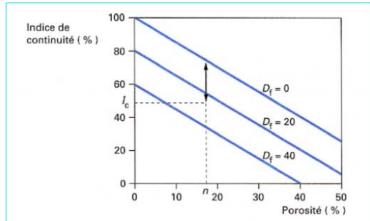
Propriétés d'usage des roches

🕨 favorisent ou interdisent leur emploi en géotechnique

Applications possibles

Tableau 3	Tableau 3 – Quelques valeurs typiques des caractéristiques des roches les plus courantes (roches saines)							
Roche	$ ho_{f r}$ (t/m ³)	n (%)	v _ℓ (m/s)	R c (MPa)	L _A	M _{DE}	A _{BR}	
Granites	2,6 à 2,7	≤ 1	4 500 à 6 000	170 à 260	15 à 25	6 à 13	900 à 1500	
Microgranites	2,6	< 1	4 500 à 6 000	200 à 350	10 à 18	5 à 10	1500 à 2000	
Basaltes	2,8 à 3,0	0 à 2	5 500 à 7 000	200 à 400	11 à 17	5 à 10	500 à 2 000	
Calcaires	2,6 à 2,7	0 à 5	5 600 à 6 500	80 à 260	18 à 40	14 à 40	10 à 50	
odiodii co	2,3 à 2,6	5 à 15	4 000 à 5 800	35 à 150	25 à 65	25 à 60	0 à 20	
	1,8 à 2,3	15 à 35	2 000 à 4 300	8 à 80	30 à 100	40 à 100	0	
Grès	2,5 à 2,6	0 à 5	3 000 à 5 500	40 à 250	12 à 25	3 à 30	600 à 2 200	
	2,2 à 2,5	5 à 20	2 500 à 5 000	20 à 200	25 à 80	20 à 100	100 à 600	
Cornéennes	2,6 à 2,7	≤ 1	5 000 à 6 500	160 à 200	10 à 16	5 à 15	800 à 900	
Gneiss	2,6 à 2,7	≤ 2	4 000 à 5 500	140 à 250	12 à 28	5 à 14	1 000 à 1 800	
Amphibolites	2,8 à 3,0	≤ 1	5 500 à 6 000	160 à 250	8 à 20	5 à 22	900 à 1 500	

C352



2.2.4 Vitesse du son v_ℓ et indice de continuité $I_{\mathbf{C}}$

La vitesse de propagation des ondes longitudinales v_{ℓ} est calculée à partir de la mesure du temps de propagation des ondes à travers une éprouvette. Cette quantité est sensible à la porosité et surtout à la microfissuration de la roche : la vitesse du son d'un granite sain (6 000 m/s environ) chute à moins de 3 000 m/s dans un granite très altéré. Le calcul de l'indice de continuité $I_{\mathbb{C}}$, rapport de la vitesse mesurée à la vitesse théorique (moyenne pondérée des vitesses des minéraux constitutifs), permet ainsi d'appréhender la « qualité » de la roche [2]. À l'aide de la porosité n, on peut aussi quantifier le degré de fissuration en calculant l'indice D_f (figure 3):

$$D_f = 100 - 1.5 n - I_C$$

n et I_C étant exprimés en pour-cent.

Un matériau est représenté par sa porosité en abscisse et son indice de continuité en ordonnée. Le graphique permet d'évaluer le degré de fissuration

Figure 3 - Indice de continuité et degré de fissuration

Pétrographie

En mesurant la vitesse v_{ℓ} dans différentes directions, on peut aussi apprécier l'anisotropie d'une roche. On définit l'indice d'anisotropie par:

$$I_A = \frac{v_{\ell \text{max}}}{v_{\ell \text{min}}}$$

qui vaut 1 pour une roche isotrope et atteint environ 2 dans certaines

Essai Los Angeles

Cet essai a pour but d'évaluer la résistance à la fragmentation par chocs. Les gravillons testés sont en général de granularité 6-10, 10-14 ou 25-50 mm. Un broyeur cylindrique à boulets fragmente les gravillons, pendant 500 ou 1 000 révolutions suivant la granularité, puis on tamise à 1,6 mm. Le coefficient Los Angeles est défini par :

$$L_A = 100 \frac{m}{M}$$

m (g): masse du passant au tamis de 1,6 mm

M(g): masse initiale de granulats

Essai Deval et micro-Deval

La production de fines par frottement des granulats entre eux ou au contact d'outils métalliques est liée aux propriétés d'usure ou d'attrition de la roche. On distingue en général l'essai à sec et l'essai en présence d'eau, ce qui permet de mettre en évidence les roches sensibles à l'eau.

L'essai Deval porte sur 7 kg de granulats 25-50 mm. Il est aujourd'hui souvent remplacé par l'essai micro-Deval.

Le principe est analogue à celui de l'essai Los Angeles, avec une charge plus légère (billes) et une durée de rotation plus longue : il n'y a pas de fragmentation, mais seulement une usure. Le coefficient \mathbf{M}_{DE} (essai micro-Deval effectué en présence d'eau) est défini par :

$$M_{DE} = 100 \frac{m}{M}$$

 $M_{DE} = 100 \frac{m}{M}$ m (g): masse du passant au tamis de 1,6 mm M (g): masse initiale de granulats

40

Fami	lles	Roches	M.V.R. (kg/dm ³)	Porosité	Rc (MPa)	E (GPa)	MDE	LA
	Granites	Granites	2.65	0.5	150	80	10	20
-	Grantes	Microgranites Rhyolites Porphyres	2.65	0.5	250	80	8	10 à 15
Roches		Syénites	2.7	0.5	150			
magmatiques	Diorites	Diorites	3	0.5	180	90	12	16
		Microdiorites	2.9	0.5	200	90		8 à 13
	Gabbros	Gabbros	3	0.5	200	100		
		Ophites	-3	0.5	250	100	13	14
		Basaltes	2.9	0.5	300	100	10	12 à 16
	Silicatées	Grès	1.8	30	3			
			2.2	16	20			
		Grès quartzites	2.4	8	60			
			2.5	5	120			
			2.55	3	170			
		Quartzites	2.60	1	240			
Roches			2.65	0.5	260			
sédimentaires		Silex	2.6	0.2	400			
	Carbonatées		1.5	40	5	6	100	100
			- 2	25	20	20	40	70
		Calcaires	2.2	18	40	30	27	60
		Calcaires	2.4	10	80	40	20	40
			2.6	5	150	60.	16	23
		-	2.7	0.5	200	80	12	15
	Massives	Quartzites (à grain fin)	2.65	0.5	350	90	5	15
			26	0.2	220		10	14
Roches		Cornéennes	2.6		200	80	10	20
métamorphiques	Schisteuses	Gneiss Schistes Micaschistes	2.6	. 3	100	70	12	20

Commentaires sur les roches les plus courantes

(propriétés les plus remarquables ou risques particuliers)

Granites

- qualité souvent excellente mais pas systématique

Calcaires

- résistance mécanique et au gel très variable en fonction de la porosité (ouverte)
- minerai pour chaux, ciments (calcaires impurs, marneux)
- dureté trop faible (LA et MDE) pour un emploi en revêtement de chaussée
- utilisations : pierre à bâtir, granulats à béton

Grès

- idem pour le rôle de la porosité

• Silex

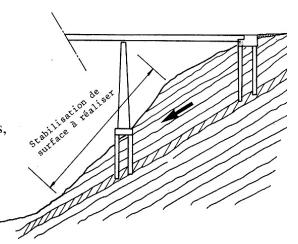
- pierre à bâtir (jadis)
- granulats à béton : problèmes de maniabilité, risques d'alcali-réaction

• Meulières

- roche sédimentaire à structure caverneuse
- légère, non gélive, bonne isolation
- mais faible résistance à l'écrasement
- utilisation : pierre de construction (ex : Paris), pas en granulats

Commentaires (suite)

• Gypse et anhydrite


- matière première fabrication du plâtre
- cause de dégradation chimique des fondations en béton
- Alluvions - granulats à béton

Schistes et micaschistes

se débitent en plaquettes

- inaptitude à faire des granulats
- aptitude à faire des éléments de toiture

massifs instables: attention aux pentes fortes, aux travaux souterrains

Gneiss

- commentaires semblables aux granites
- structure litée

2.4 Terrains de couverture

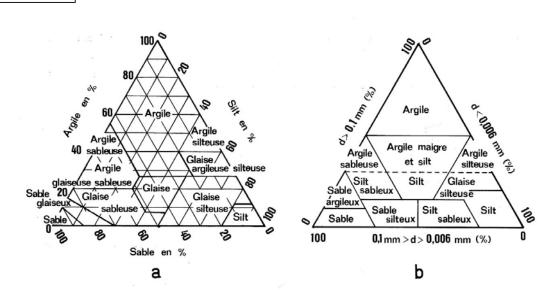


Fig. 120 13a, b. Diagramme triangulaire des sols. a) D'après Pietrowski

b) D'après l'Administration des Routes Américaines.

- Triangular soil classification charts.
 a) Proposal of Pietrowski
 b) Public Road Administration (U.S.A.).

42

PO IC - Géologie de l'ingénieur

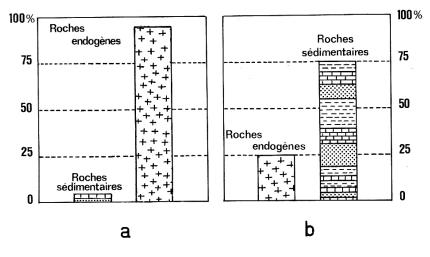


Fig. 120 1. Pourcentages relatifs des roches endogènes et sédimentaires -grès, calcaires et argiles - sur l'ensemble de la croûte (a) et sur la totalité des séries émergées (b).

Le tableau 120 1 donne la répartition des roches de la croûte.

TABLEAU 120 1

REPARTITION DES ROCHES DE LA CROUTE MAIN DISTRIBUTION OF ROCKS IN THE CRUST

- Roches endogènes : 64,7 %
- Granites..... 10,4 % - Granodiorites..... 11,2 % Syénites................ 0,4 % - Basaltes, gabbros...... 42,5 % - Péridotites..... 0,2 %

TABLEAU 123 2

CLASSIFICATION TEXTURALE DES PRINCIPALES ROCHES SEDIMENTAIRES D'APRES KRYNINE ET JUDD (1957) ADAPTEE DE CELLE DE MIELENS (1948) CLASSIFICATION BY TEXTURE OF THE MAIN SEDIMENTARY ROCKS AFTER KRYNINE AND JUDD (1957), ADAPTED FROM MIELENS (1948)

TEXTURE	ROCHE	COMPOSANT IDENTIFIANT	CARACTERISTIQUES
CLASTIQUE	Tillites Argiles à blocs	Fragments de roche et argile	Très large intervalle de taille et de granulométrie
	Conglomérats Graviers Blocs	Eléments de roches usés et arrondís	Plus de 50 % des éléments < 2 mm. Moins de 25 % d'argile
	Brēches	Eléments de roches anguleux et fragments de minéraux	Plus de 50 % des éléments < 2 mm. Moins de 25 % d'argile
	Sables Grės Microgrès Arkoses Grauwakes	Sables et éléments de cette taille	Plus de 50 % des éléments < 2 mm et > 0,06 mm. Moins de 25 % d'argile
	Silt Silstone (1)	Silt et éléments de cette taille	Plus de 50 % des éléments < 0,06 mm. Plus de 25 % d'argile
	Argile Shale (2) Mudstone (3) Argilite	Minéraux argileux	Plus de 25 % d'argile
	Marnes	Minéraux argileux et calcite	De 25 à 75 % de calcite finement cristallisée dans une matrice argileuse
	Calcaires	Cristaux de calcite	Plus de 50 % de calcite cristallisée. Moins de 25 % d'argile
	Tuff	Matériau volcanique	Grains fins, < 2 mm
CRISTAL- LISEE	Calcaire	Calcite	Plus de 50 % de carbonate
LISEE	Craie	Microorganismes et calcite	Plus de 50 % decalcite (4)
	Dolomie	Dolomite'	Environ quantités égales de CO ₃ C ₀ et de CO ₃ Mg
FRAGMEN- TEES, BIO- GENIQUES	Calcaires	Structures de fossiles	Plus de 50 % de coraux, d'Algues, de Foraminifères, etc.
	Tourbe Lignite Charbon	Vestiges de plantes plus ou moins carbonifiées	Matériau fibreux ou compact, carbonifié

- Silstone: terme intraduisible.
 Shale: terme intraduisible, de plus en plus admis tel quel en Français.
 Terme intraduisible: mud = vase.
 Nous avons ajoutel l'existence des "microorganismes" qui ne sont pas signalés dans la classification originale.

- Roches métamorphiques : 27,4 %
- Gneiss..... 21,4 %
- Roches sédimentaires : 7,9 %
- Sables et grès...... 1,7 %
- (D'après RONOV et YAROSHEVSKY (1969).

CLASSIFICATION DES PRINCIPAUX SEDIMENTS ET DES PRINCIPALES ROCHES D'ORIGINE SEDIMENTAIRE. (P.Ch. LEVEQUE, 1981) CLASSIFICATION OF PRINCIPAL SEDIMENTS AND PRINCIPAL ROCKS OF A SEDIMENTARY ORIGIN

METHODES D'ETUDE	TEXTURE	MATERIAU OU ROCHE	COMPOSANTS	CARACTERISTIQUES
	, ,	Eboulis	Eléments anguleux	Peu de distance de transport
SOLS	NON	Conglomérats Blocs Graviers	Blocs arrondis et fragmentés. Eléments rocheux usés	Transport sur de grandes distances
DES	COHERENTES	Sables	Degrés divers d'usure	Transport par voies hydraulique etéolienne
•	. (Silts	Grains fins	Matrice variable
IIO	'	Loess	Grains très fins	Mise en place par voie éolienne
MECANIQUE	COHERENTES	Argiles	Sept à huit prin- cipaux composants minéraux	Plastiques à des degrés variables. Dégradées ou agradées
		Brêches	Eléments anguleux de roches variables	Ciment argilo-çalcaire et gréseux
	- 1	Grès	Grains de quartz ciments variables	Typiquement détritiques
- 1		Quartzite	Grains de quartz ciment S ₁ O ₂	Cas particulier des grès
H E S	1	Arkoses Grauwakes	Reconstitution par voie sédimentaire d'éléments composant le granite	Parfois cristaux de felds- paths peu usés mais souvent altérés
၁၀	1	Argilites	Minéraux argileux	Minéraux argileux variables
ж .]	Shales Siltstones	Minéraux argileux et quartz	mais illite et chlorite souvent prépondérantes
E S	CIMENTEES	Marnes	Calcite et éléments argileux	Cimentation variable
ا ة	1	Calcaires	Calcite et éléments détritiques éventuels	Aspects et origines variables
, E	- 1	Craie	Calcite et microorga- nismes. Cimentation très variable	Origine biogenique
Z		Dolomies	Dolomite	Proportions égales de calcite et de dolomite
MECANIQU		Tuffs	Grain fin. Fragments de basaltes et de volcanites	Origine volcanique
-	\	Diatomite	Plus de 50 % de diatomées	Vestiges fossiles
		Gypse	Sulfate	Roches solubles, nécessi-
	EVAPORITIQUES	Anhydrite	de calcium	tant des précautions d'utilisation
	CRIGINE GRGANIQUE	Tourbe Lignite Charbon	Carbone dominant	Cimentation variable. La tourbe est l'un des ter- rains les plus redoutés en Génie civil routier, notamment.