IMPROVED PATHS AND TRACKS PART 3

The improvement of paths and tracks in steep, hilly, and mountainous terrain presents a particular challenge. It is precisely in these areas, of course, that roads are few and rural communities depend heavily on paths and tracks for many of their journeys. So, improving paths and tracks in steep terrain can bring significant benefits to local people by making them both easier and safer to use. The main problem in steep areas is that paths and tracks can become slippery and eroded as a result of rainfall, making them dangerous to negotiate. This technical brief examines ways of improving paths and tracks by: reducing gradients by realigning steep sections; constructing steps on steep sections; and combating erosion by constructing water bars.

Reducing gradients
The most obvious method of improving a very steep section of a path or track is to reduce its gradient by choosing a new alignment. This can be achieved by constructing a path which ascends a slope diagonally, either as an oblique path or through a series of zig-zags, rather than directly up the slope.

A new route can be selected by following this basic procedure:
• Decide on the maximum desirable gradient.
• Mark this on the ground using pegs and a clinometer or other angle-measuring device.
• Walk the route to inspect for obstacles and hazards.

Desirable maximum gradient
The desirable maximum gradient is one that users of the path or track can negotiate without major difficulty. For a pedestrian, the desirable maximum gradient is 12 per cent or about 1 in 8. For wheeled vehicles and heavily loaded porters, the desirable maximum gradient is lower. General guidelines are given in Figure 1.

<table>
<thead>
<tr>
<th>User</th>
<th>Desirable</th>
<th>maximum gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicycles with trailers</td>
<td>5%</td>
<td>1 in 20</td>
</tr>
<tr>
<td>Bicycles</td>
<td>7%</td>
<td>1 in 14</td>
</tr>
<tr>
<td>Animal-drawn carts</td>
<td>8%</td>
<td>1 in 12</td>
</tr>
<tr>
<td>Loaded porters</td>
<td>10%</td>
<td>1 in 10</td>
</tr>
<tr>
<td>Pedestrians</td>
<td>12%</td>
<td>1 in 8</td>
</tr>
<tr>
<td>Pack animals</td>
<td>12%</td>
<td>1 in 8</td>
</tr>
</tbody>
</table>

Figure 1: Desirable Maximum Longitudinal Gradients for Paths and Tracks
Marking the route
The new route can be set out on the ground using wooden pegs and a clinometer. A clinometer is a small, hand-held instrument with an eyepiece through which the angle of the line of sight can be read off. A simple, but effective clinometer can be made with a spirit level, straight pole and plastic protractor, as shown in Figure 2.

It is most important to walk carefully the whole of the marked-out route to inspect for hazards and obstacles, such as gullies, unstable soils, and areas of hard rock. Time spent in adjusting and refining the route at this stage can save a lot of time and effort later. It is particularly important to look at the slope from the top downwards, as it is usually easier to spot potential difficulties from above.

Zig-zags
Reducing the gradient on long, steep slopes often requires the construction of a series of zig-zags. These are sections of gradient alternating in direction up the slope, called ‘limbs’, joined by sharp bends, called ‘hairpins’. There are a number of points to bear in mind with regard to the arrangement and details of zig-zags. Repetitive limbs of the same length between hairpins are not recommended, as each hairpin will discharge directly onto the hairpin below, creating drainage problems. Also, it can encourage users descending the path to cut across between the hairpin bends, further exacerbating slope erosion. Varying the length of the limbs, as shown in Figure 3, is the preferred arrangement.

Hairpin bends
The setting-out and construction of hairpin bends is one of the trickiest operations in path and track improvement. They are the points that are most vulnerable to erosion, and should always be positioned on a stable part of the slope. The turning area needs to be fairly flat, and the least steep part of the slope should be chosen if heavy earthworks are to be avoided. The gradient of each limb should be increased (made steeper) just before and just after each bend where possible. This discourages people from cutting across the inside of the bend. Typical details are shown in Figure 4.
Steps
The construction of steps is another method of improving the steep sections of footpaths. Steps enable moderately steep slopes to be ascended and descended safely. They do have a number of drawbacks, which must be considered before taking a decision to construct steps. The main points to consider are that steps:

- can be difficult to negotiate for anyone carrying a headload and unable to look down at their feet;
- will block the route to any wheeled vehicle;
- can be difficult for pack animals, particularly when they are going downhill; and
- will require frequent maintenance.

The tread length should be either one metre, equivalent to two paces, or half a metre, about one pace. This enables people carrying heavy loads to keep to a constant rhythm when ascending or descending the steps. For comfort, the rise of the steps should be in the range of 160 to 250mm. In any flight of steps, the rise of each step should be kept the same throughout. The steps should be wide enough so that users do not have to move off to one side to pass each other, as this encourages the development of a parallel path which may erode quickly. One metre provides a comfortable width of step. The top surface of the step should slope slightly downwards from the back to the front of the step. This helps drainage by preventing the formation of puddles on the treads. The steps themselves can be constructed of stone, timber poles, or bamboo. Wooden steps should be secured by two stakes about 500mm long. They should be driven into the ground in front of each step and positioned about 200mm from each end of the step. The top of the stakes should be level with the top of the step. Typical details of timber/bamboo steps are illustrated in Figures 5 and 6.

Figure 5. Typical timber pole or bamboo steps
Combating erosion
Erosion becomes more of a risk to paths and tracks as the terrain steepens, because the erosive power of water increases with the increased speed of flow. As paths and tracks are not covered by a protective layer of vegetation, such as grass, they are particularly prone to erosion. They can even become waterways themselves, resulting in an accelerated cycle of gulley formation, rapidly destroying the surface of the path. To reduce the risk of erosion on paths and tracks it is necessary both to control surface run-off and to avoid excessive concentrations of water flowing over their surface. One common and inexpensive method of diverting surface water off paths is to construct water bars across the path. Similar methods can be used on tracks, but water bars are less convenient for the passage of wheeled traffic. The principle of the water bar is that it intercepts surface water flowing along the path and diverts it off the path to one side. Water bars can be constructed in stone or timber. The desirable angle of the water bar to the path varies with the steepness or longitudinal gradient of the path: the steeper the path, the greater the angle necessary. A typical timber pole water bar is illustrated in Figure 7.

![Diagram of a timber pole water bar](image)

Figure 6: Construction detail of timber pole or bamboo steps

3 logs
1 x 200m diameter
2 x 100 – 120mm diameter

<table>
<thead>
<tr>
<th>Gradient of path</th>
<th>Angle of Water bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>25°</td>
</tr>
<tr>
<td>10</td>
<td>35°</td>
</tr>
<tr>
<td>>15</td>
<td>45°</td>
</tr>
</tbody>
</table>

Figure 7. A timber pole water bar
Recommended spacing of water bars (metres)

<table>
<thead>
<tr>
<th>Type of soil</th>
<th>longitudinal gradient %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Loam</td>
<td>100</td>
</tr>
<tr>
<td>Clay – sand</td>
<td>150</td>
</tr>
<tr>
<td>Clay or clay-gravel</td>
<td>–</td>
</tr>
<tr>
<td>Gravel/rocky</td>
<td>–</td>
</tr>
</tbody>
</table>

* gradient not recommended in this soil type
– water bars not usually required

References and further reading

* These publications can also be ordered from: Practical Action Publishing, The Schumacher Centre for Technology & Development, Bourton on Dunsmore, Rugby, Warwickshire CV23 9QZ, United Kingdom
Tel +44 (0)1926 634501
Fax +44 (0)1926 634502
publishinginfo@practicalaction.org.uk
Useful addresses

IT Transport Ltd.
The Old Power Station
Arddington, Nr Wantage
Oxon
OX12 8QJ, United Kingdom
Tel: +44 (0)1235 833753 / 821366
Fax: +44 (0)1235 833753 / 821366
E-mail: itt@ittransport.co.uk
Consultants in transport for rural development.

International Forum for Rural Transport and Development (IFRTD)
2 Spitfire Studios
67-73 Collier Street
London N1 9BE
United Kingdom
Tel: +44 (0)20 7713 6699
Fax: +44 (0)20 7713 8290
E-mail: ifrd@ifrtd.org
Website: http://www.ifrtd.org
The International Forum for Rural Transport and Development is a global network of individuals and representatives from government, academia, multilateral and bilateral donor agencies, consultancies and technical institutions, national and international NGOs and groups of community organisations in 83 countries in Africa, Asia, Europe and North and South America. There are over 1800 members in the network. The Forum’s long-term vision is of a world in which rural communities, particularly those who are poor and disadvantaged, have improved accessibility and mobility.

Forum News is produced by the Secretariat, four times a year in English, French and Spanish. Members receive the newsletter free of charge. Each issue of the newsletter is based on a specific theme. Themes addressed in past newsletters have included sustainable rural livelihoods, gender and transport, engineering for transport, networking, maintenance, and community participation.

International Labour Office, Employment Intensive Investment Programme – useful publications and case studies on labour intensive road construction; not specific details on paths and tracks.

ILO/EIIP
4, Route des Morillons
CH-1211 Geneva 22, SWITZERLAND
Tel: +41 22 799 65 46
Tel: +41 22 799 84 22
Email: eiip@ilo.org

ASIST (Advisory Support, Information Service and Training) Africa
Harare Office
ILO/ASIST
Block 8, Arundel Office Park, Mt Pleasant
PO Box 210
Harare, ZIMBABWE
Tel: +263 4 369 824 up to 828
Fax: +263 4 369 829
Emails: asist@ilo.org
asist@ilosamat.org.zw
asist@africaonline.co.zw
Nairobi Office
Improved paths and tracks: Part 3 Practical Action

This technical brief was originally written for the Appropriate Technology magazine Volume 26/Number 4, 1996 ATBrief No 18, by Gary Taylor of IT Transport.

For more information about Appropriate Technology contact:
Research Information Ltd
Grenville Court, Britwell Road
Burnham, Buckinghamshire
SL1 8DF, UK
Tel: +44 (0)1628 600499
Fax: +44 (0)1628 600488
E-mail: info@researchinformation.co.uk
Website: http://www.researchinformation.co.uk
Website: http://www.apprpriatechnology.com

Practical Action
The Schumacher Centre for Technology and Development
Bourton-on-Dunsmore
Rugby, Warwickshire, CV23 9QZ
United Kingdom
Tel: +44 (0)1926 634400
Fax: +44 (0)1926 634401
E-mail: inforserv@practicalaction.org.uk
Website: http://practicalaction.org/practicalanswers/

Practical Action is a development charity with a difference. We know the simplest ideas can have the most profound, life-changing effect on poor people across the world. For over 40 years, we have been working closely with some of the world’s poorest people - using simple technology to fight poverty and transform their lives for the better. We currently work in 15 countries in Africa, South Asia and Latin America.