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Introduction

Salinization is recognized as the main threat to environmental resources in many

countries and affects almost one billion hectares worldwide (Munns and Tester

2008; FAO Land and Nutrition Management Service 2008). Major factors

increasing salinity include irrigation of cultivated lands with saline water, poor

cultural practices, and low precipitation. Almost 300 million hectares in the world

are irrigated. Irrigated agriculture consumes about 90 % of the total water with-

drawal to produce 36 % of the global food (Rengasamy 2006; ICID 2009). It has

been estimated that inappropriate irrigation/drainage practices affect approxi-

mately fifty percent of the global irrigated areas, with an annual increase of up to

500,000 ha. These facts represent a serious threat to sustainable food production

and to our natural resources (Ondrasek et al. 2009).

Natural salinity is the result of long-term natural accumulation of salts in the

soil or in surface water. Secondary (anthropogenic) salinity results from irrigation

and is widely responsible for increasing the concentration of dissolved salts in the

soil profile to a level that impairs plant growth and that will result in abandoning

agricultural land (Munns 2005; Egamberdiyeva et al. 2007; Manchanda and Garg

2008). Many of the most cultivated and widely used crops (cereals, horticultural

crops, etc.) in human/animal nutrition are susceptible to salt stress ([4 dS m-1),

and their productivity is considerably reduced due to improper nutrition of the
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plant (Chinnusamy et al. 2005; Mantri et al. 2012). Salinity and drought also

strongly influence many other properties and processes of living organisms

(Ondrasek et al. 2009).

Climate change may lead to even more saline landscapes in many non-irrigated

regions since it is accompanied by less rainfall and higher temperatures in most

agricultural regions. It will result in a change toward again a more arid climate,

which is conducive to salt accumulation (Othman et al. 2006). Limiting crop losses

due to salinity and drought is a major area of concern to cope with the background

of increasing food requirements (Shanker and Venkateswarlu 2011). In a meeting

in October 2012, the World Food Security Committee addressed the effects of

climate change on food security and invited world leaders (1) to integrate food

security and climate change concerns, (2) to increase resilience of food systems to

climate change, and (3) to develop agricultural strategies that take into account the

need to respond to climate change and to safeguard food security (CFS 2012).

Novel agricultural technologies are required to improve food production in saline

and dry soils (Wehrheim and Martius 2008). Many scientists have attempted to

develop salt-tolerant crops through breeding, but these efforts have met with

limited success due to the genetically and physiologically complexity of the salt

tolerance trait (Flowers 2004; Araus et al. 2008; Dwivedi et al. 2010).

Promising measures for improving plant health in salinated soils are the use of

microbial inoculants, which can ameliorate salt stress, promote plant growth

(Lugtenberg et al. 2013a), and control diseases (Lugtenberg and Kamilova 2004;

Lugtenberg and Kamilova 2009; Mayak et al. 2004; Lugtenberg et al. 2013b;

Egamberdieva et al. 2008; Pliego et al. 2011). The utilization of root-associated

bacteria that interact with plants by mitigating stress opens a new advanced

technology for combating salinity. Many studies have demonstrated that the use of

beneficial microbes can enhance a plant’s resistance to adverse environmental

stresses, e.g., drought, salinity, nutrient deficiency, and heavy metal contamina-

tion. Such inoculants contribute to the development of sustainable agriculture

under stressed conditions (Glick et al. 2007; Dodd and Perez-Alfocea 2012; Berg

et al. 2013).

The inoculation of seeds of various crop plants, such as tomato, pepper, canola,

bean, and lettuce, with PGPR can result in increased root and shoot growth, dry

weight, fruit and seed yield and in enhanced tolerance of plants to salt stress (Glick

et al. 1997; Mayak et al. 2004; Yildirim and Taylor 2005; Barassi et al. 2006;

Egamberdieva et al. 2013a). According to Creus et al. (2004), PGPR may alter

plant–water relationships and show enhanced osmotic adjustment.

In the present chapter, we will review the current status of our understanding of

the action of PGPR in crop cultivation under conditions of abiotic stress. We will

start with studies about the effect of salt stress on plant growth and physiology,

followed by the role of plant growth-promoting rhizobacteria in alleviating salt

stress in plants and end with the main mechanisms involved in improvement of

plant tolerance to salt stress caused by these microbes.
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Effects of Soil Salinity on Plant Growth and Physiology

Seed germination and early seedling growth are the most salt-sensitive plant

growth stages under environmental stresses, because the seedling root is in direct

contact with soil and is affected by many soil changes, including salt stress

(Rahman et al. 2000; Jamil et al. 2006). Many studies have demonstrated that

salinity inhibits seed germination of various crops such as wheat (Egamberdieva

2009), faba bean (Rabie and Almadini 2005), rice (Xu et al. 2011), maize

(Khodarahmpour et al. 2012), and soybean (Essa 2002). Moreover, Jamil et al.

(2006) observed significant reductions in germination percentage, in germination

rate, and in seedling root and shoot lengths of cabbage, sugar beet, paniculate

amaranth, and pak-choi.

In our previous work, we observed that increasing salt content reduced the

shoot length (50 %) and root length (7 %) of bean seedling grown in a gnotobiotic

sand system in a growth cabinet (Egamberdieva 2011). These observations are in

line with earlier reports about ground nut (Mensah et al. 2006), and chickpea (Al-

Mutawa 2003), for which was reported that increased salinity leads to decreased

root length. A similar result was observed by Demir and Arif (2003), who reported

that the root growth of safflower was more inhibited by salinity than shoot growth.

Ashraf (2004) and Razmjoo et al. (2008) found that high salt causes a significant

reduction in the growth of shoot and root as well as in the essential oil content of

Ammolei majus, Hyoscyamus niger, and Matricaria chamomile. Salinity also

decreases photosynthesis, stomatal conductance, chlorophyll content, and mineral

uptake of basil (Ocimum basilicum) (Golpayegani and Tilebeni 2011).

Several explanations for these effects have been proposed, such as disturbance

of the hormonal balance (Prakash and Prathapasenan 1990), alteration of protein

metabolism (Dantas et al. 2005), inhibition of the activity of enzymes involved in

nucleic acid metabolism (Arbona et al. 2005), and the loss of control on nutrient

uptake. These effects are assumed to be caused by the osmotic effect (Shirokova

et al. 2000) and the ion toxicity of salt (Munns 2002; Tavakkoli et al. 2011).

The inhibition of root growth by salinity may be caused by a reduction in water

uptake and an unbalanced nutrient uptake by the seedling (Dolatabadian et al.

2011). In addition, Atak et al. (2006) and Neamatollahi et al. (2009) pointed out

that higher saline concentrations may reduce the germination percentage due to

increased osmotic pressure. Abundance of Na+ and Cl- ions can lead to a

reduction in accessibility and uptake of some elements such as N, P, K, and Mg by

the plant (Heidari and Jamshid 2010). In another study, Xiong and Zhu (2002)

reported that salinity induces inhibition of phytohormone synthesis and maturation

of cell walls.

Most legumes are sensitive to salinity. Soil salinity particularly disturbs the

symbiotic interaction between legumes and Rhizobium bacteria. These bacteria

form root nodules in which they fix atmospheric nitrogen through the nitrogenase

complex and make it available to the plant (Quispel 1988). Soil salinity reduces N2

fixation and nitrogenase activity of several legumes such as soybean (Glycine max)
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(Singleton and Bohlool 1984), common bean (Phaseolus vulgaris), and faba bean

(Vicia faba) (Rabie et al. 2005).

Only a few agronomical legumes can grow in salt-affected soils (Ashraf and

McNeilly 2004). Galega offfcinalis L (goat’s rue, French lilac) might be a good

candidate to cultivate in salt-affected soils because they are perennial, deep rooted,

and grow fast after initial establishment. We have observed that G. officinalis

plants inoculated with their rhizobial symbiont Rhizobium galegae suffer from

retarded growth and impaired nodulation when grown under 75 mM NaCl con-

ditions (Fig. 4.1). Salt stress also decreased the number of Rhizobium cells able of

colonize G. officinalis root tips (Egamberdieva et al. 2013a).

An explanation for the reduction in symbiotic legume growth might be that the

salt stress causes a failure of the infection and nodulation process. For example,

according to Bouhmouch et al. (2005), salt inhibits the absorption of Ca2+ ions,

which causes reduction in the growth of roots, root tips, and root hairs, thereby

decreasing sites for potential rhizobial infection and further nodule development.

Fig. 4.1 Effect of 50 mM NaCl on growth of goat’s rue plants (Galega officinalis L.). The effects

of the treatment of G. officinalis with NaCl solutions were evaluated after plants were grown for

eight weeks in lowly fertilized potting soil in the greenhouse. A salt concentration of 50 mM

NaCl retarded significantly the growth of shoots and roots, as well as the nodulation of G.

officinalis plants inoculated with Rhizobium galegae
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Rhizobacteria in Saline Soils

Soil salinity not only inhibits plant growth and development, but also negatively

affects the composition and activities of rhizosphere bacteria (Ofek et al. 2006).

Nelson and Mele (2007) reported that sodium chloride affects the rhizosphere

microbial community structure through its influence on the quantity and/or quality

of root exudates. Also, increasing salinity decreases the diversity of Pseudomonas

species associated with rice. Pseudomonas species found in saline soil include

P. aeruginosa, P. fluorescens, P. putida, P. stutzeri, P. mendocina, P. mallei, and

P. diminuta (Nagarajan et al. 2002). Non-saline soil favors the growth of the

fluorescent Pseudomonas population, whereas in saline soil the dominant Pseu-

domonas subpopulation consists of P. alcaligenes and/or P. pseudoalcaligenes.

Loganathan and Nair (2004) isolated salt-tolerant, nitrogen-fixing bacteria from

mangrove-associated wild rice and identified them as Swaminathania salitolerans.

Tripathi et al. (2002) isolated and identified salt-tolerant rhizobacteria from rice

roots, including Serratia marcescens, P. aeruginosa, Alcaligenes xylosoxidans,

and Ochrobactrum anthropi.

Potential human pathogenic bacteria have been found in saline soils in a sur-

prisingly high frequency. Egamberdieva et al. (2008) have isolated salt-tolerant

rhizobacteria with high rhizosphere competence from wheat roots grown in sali-

nated Uzbek desert soils. They observed that many of the root-associated bacteria

are potential human pathogens, which were identified as Alcaligenes faecalis,

Acinetobacter sp., Enterobacter hormaechei, Pantoea agglomerans, P. aerugin-

osa, Bacillus cereus, and Staphylococcus saprophyticus.

The presence of other human pathogens on plant roots in saline environments,

such as Salinivibrio, Halomonas, Chromohalobacter, Bacillus, Salinicoccus,

Candida tropicalis, Alcaligenes faecalis, S. marcescens, and A. xylosoxidans, was

also reported (Tripathi et al. 2002; Sanchez-Porro et al. 2003; Bastos et al. 2004).

Salt-tolerant Mycobacterium phlei strains were also found in association with roots

of corn planted in saline soils of Uzbekistan (Egamberdieva 2011).

The presence of P. aeruginosa in the rhizosphere of wheat has been reported

previously (Morales et al. 1996; Germida and Siciliano 2001). The consistent pres-

ence of P. aeruginosa in saline soils indicates a widespread incidence of this bacte-

rium in the rhizosphere of plants growing in saline soil. Microorganisms compete for

nutrients and niches in the plant rhizosphere. Exudates are thought not only to attract

beneficial bacteria to colonize the roots, but also human pathogens which apparently

have evolved to respond to the same signals (Roberts et al. 2000; Ji andWilson 2002).

Morales et al. (1996) and Jablasone et al. (2005) reported that the survival and

colonization of potentially pathogenic human-associated bacteria in the rhizo-

sphere of plants are poor and that their persistence and colonization on plants are

decreased by co-inoculation of pathogens with naturally occurring bacteria. We

have also observed that the potential human pathogenic strains B. cereus,

S. saprophyticus, P. aeruginosa, and Acinetobacter sp., isolated from roots of

wheat plants growing in salinated soils, showed poor competitive colonization of
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the wheat rhizosphere when compared with P. fluorescens WCS365, an excellent

root tip colonizer (Egamberdieva and Kucharova 2009). Since the potential

pathogens were probably derived from manure used for fertilization, it is likely

that the root-derived bacteria out compete the potential pathogens derived from

humans and animals (Egamberdieva et al. 2011).

Egamberdieva and Kucharova (2009) have selected enhanced root tip colo-

nizing bacteria from wheat grown in saline soil using an enrichment procedure

described by Kamilova et al. (2005). The four selected strains were identified as

P. putida, P. extremorientalis, P. chlororaphis, and P. aureantiaca, and since they

do not belong to risk group 2 (Anonymous 1998), they are nonpathogenic. Those

findings suggest that the screening procedure for the selection of enhanced root-

colonizing rhizobacteria can select for environmentally save bacterial strains,

which can be applied for plant growth promotion in salinated and stressed soil

conditions. Moreover, they are likely to out compete potential pathogens of human

and animal origin.

Plant Salt Stress Alleviation Using Plant Growth-

Promoting Rhizobacteria

The rhizosphere is colonized more intensively by microorganisms than the other

regions of the soil. These microbes can be beneficial, neutral, or pathogenic. Ben-

eficial rhizobacteria can improve seed germination, root and shoot growth, nutrient

uptake, and plant stress tolerance. Moreover, they are able to control various dis-

eases. They are often referred to as plant growth-promoting rhizobacteria (PGPR)

(Hiltner 1904; Lugtenberg et al. 2001; Compant et al. 2005; Arora et al. 2008;

Lugtenberg and Kamilova 2009). A range of salt-tolerant rhizobacteria (e.g., Rhi-

zobium, Azospirillum, Pseudomonas, Flavobacterium, Arthrobacter, and Bacillus)

has so far shown beneficial interactions with plants in stressed environments

(Egamberdieva and Islam 2008; Egamberdieva et al. 2011; Adesemoye et al. 2008).

The majority of cultivated plant species, especially widely grown horticultural

and cereal crops, are susceptible to excessive concentrations of dissolved ions (e.g.,

[30 mM or[3.0 dS/m) in the rhizosphere (Ondrasek et al. 2009). For example,

the yield of crops such as potato, corn, onion, and bean can be reduced by 50 %

when the soil EC is increased to 5.0 dS/m (Horneck et al. 2007).

Earlier reports claim that salinity negatively affects soil bacterial activity by

high osmotic strength and toxic effects by salts, but that salt-tolerant bacteria can

survive and proliferate in the soil and in the rhizosphere in a harsh environment

(Garcia and Hernandez 1996). Diby et al. (2005) observed that the population of

the salt-tolerant P. pseudoalcaligenes strain MSP-538 did not change considerably

with increasing salinity in the soil. Root-associated bacteria are more tolerant to

salt stress than soil bacteria, since salinity stress is higher in the rhizosphere due to

depletion of water by the plant root, resulting in an increase in both ionic strength

and osmolality (Tripathi et al. 1998).
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Several PGPR strains, such as Serratia plymuthica RR2-5-10, S. rhizophila

e-p10, P. fluorescens SPB2145, P. chlororaphis TSAU 13, P. putida TSAU1,

P. extremorientalis TSAU20, P. fluorescens PCL1751, and P. aureofaciens

TSAU22, are salt tolerant up to at least 3 % NaCl and temperature resistant up to

40 �C (Egamberdieva and Kucharova 2009; Egamberdieva et al. 2011). Thus, it is

likely that salt-tolerant PGPR strains are able to survive in the rhizosphere of

plants due to their persistence and competitiveness under saline arid soil conditions

(Mayak et al. 2004; Yasmin et al. 2007).

There are many reports on the improvement of plant growth, development, and

nutrient uptake by salt-tolerant bacterial inoculants (Dodd and Perez-Alfocea

2012). An overview of ameliorative effects of PGPR on various plants mentioned

in the literature is presented in Table 4.1. For example, Heidari et al. (2011)

reported that plant growth, as well as auxin and protein contents of Ociumum

basilicm inoculated with Pseudomonas sp. under conditions of drought stress

increased. Golpayegani and Tilebeni (2011) observed that inoculation of basil with

Pseudomonas sp. and Bacillus lentus alleviated the salinity effects on growth,

photosynthesis, mineral content, and antioxidant enzymes. Dardanelli et al. (2008)

observed that Azospirillum brasilense promoted root branching in bean seedling

roots and increased secretion of flavonoids and lipochitooligosaccharides.

Inoculation of wheat with the halotolerant A. brasilense strain NH improved

germination and growth of wheat under saline soil conditions (Nabti et al. 2010).

Similar results were obtained by Abbaspoor et al. (2009) who reported increased

plant growth, grain yield, and 1,000 grain weight of wheat by inoculation with

P. fluorescens 153 and P. putida 108. In one of our studies, plant treatments with

salt-tolerant strains, such as P. chlororaphis TSAU13 and P. extremorientalis

TSAU20, increased shoot growth and dry weight of wheat at 50, 100, and 125 mM

NaCl, compared to control plants (Figs. 4.2 and 4.3). The nutrient (N, P, K, and

Mg) uptake of wheat was also increased by Mycobacterium phlei MbP18 and

Mycoplana bullata MpB46 (Egamberdieva and Hoflich 2003).

According to Sivritepe et al. (2003), an increase in the potassium content in

roots and shoots of plants grown under salt stress can reduce the negative effect of

salinity on plant growth. A similar observation, namely that plants with a higher

potassium content are more tolerance to salt stress, was reported by Kaya et al.

(2003) for pepper and cucumber. P. chlororaphis TSAU13 and P. extremorientalis

TSAU20 are able to stimulate root length (by 47 %) and dry weight (by 50 %) of

bean (Egamberdieva 2011). Salinity did not inhibit the plant stimulating properties

of salt-tolerant bacterial strains for wheat.

Hasnain and Sabri (1996) reported that inoculation of wheat with Pseudomonas

sp. stimulated plant growth by reducing the uptake of toxic ions and increasing the

auxin content. In another study, the PGPR strains P. alcaligenes PsA15,

P. chlororaphis TSAU13, P. extremorientalis TSAU20, and B. amyloliquefaciens

BcA12 significantly (P\ 0.05) increased the length and dry weight of cotton roots

and shoots in saline soil in comparison with the uninoculated control plants (E-

gamberdieva and Jabborova 2013). Similar results were reported by Yue et al.

(2007) for Klebsiella oxytoca which, upon inoculation, was able to relieve salt
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Table 4.1 Summary of the reported ameliorative effects of PGPR on crop plants under stress conditions

PGPR Crop Effects of inoculation References

Achromobacter piechaudii Tomato (Lycopersicon

esculentum)

Fresh and dry weight Mayak et al. (2004)

Pseudomonas fluorescens Groundnut (Arachis

hypogaea L.)

Plant growth, yield Saravanakumar and

Samiyappan (2007)

P. fluorescens Maize (Zea maize L.) Root elongation, fresh weight Kausar and Shahzad

(2006)

Pseudomonas sp. Pea (Pisum sativum) Plant growth, yield Arshad et al. (2008)

Azospirillum, Pseudomonas, and

Mezorhizobium

Chickpea (Cicer

arietinum L.)

Plant growth, yield Rokhzadi et al. (2008)

Azospirillum brasilense Wheat (Triticum durum

var. waha)

Germination, growth, spike length, stem height Nabti et al. (2007)

Glomus clarum and A. brasilense Bean (Vicia faba) Plant growth, nodule number, protein content, N and P

uptake, nitrogenase activity

Rabie and Almadini

(2005)

Bacillus pumilus, Exiguobacterium

oxidotolerans

Brahmi (Bacopa

monnieri),

Plant weight, bacoside-A content Bharti et al. (2013)

Pseudomonas putida, P. fluorescens, Wheat (Triticum

aestivum, L.)

Plant growth, grain yield, and 1000 grain weight Abbaspoor et al. (2009)

Staphylococcus kloosii, Kocuria

erythromyxa

Radish (Raphanus

Sativus l.)

Shoot/root fresh and dry weight, chlorophyll content Yildirim et al. (2008)

Bacillus megaterium Maize (Zea maize L.) Root growth, necrotic leaf area, leaf relative water

content

Marulanda et al. (2010)

Pseudomonas pseudoalcaligenes, B. pumilus Rice (Oryza sativa) Shoot biomass, glycine betaine-like quaternary

compounds

Jha et al. (2010)

A. brasilense Bean (Phaseolus

vulgaris)

Root branching, increased secretion of flavonoid and

lipochitooligosaccharide

Dardanelli et al. (2008)

Pseudomonas sp. Wheat (Triticum

aestivum, L.)

Root/shoot growth, reducing toxic ions uptake Hasnain and Sabri (1996)

(continued)
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Table 4.1 (continued)

PGPR Crop Effects of inoculation References

Pseudomonas sp., Bacillus lentus Basil (Ociumum

basilicm)

Improved growth, photosynthesis, mineral content and

antioxidant enzymes

Golpayegani and

Tilebeni (2011)

Pseudomonas extremorientalis Milk thistle (Silybum

marianum)

Root, shoot length and fresh weight Egamberdieva et al.

(2013b)

Pseudomonas sp. Basil (Ociumum

basilicm)

Plant growth, auxin and protein contents Heidari et al. (2011)

Bradyrhizobium japonicum Soybean (Glycine max) Plant growth, number of nodules, grain yield and protein

content

Egamberdieva et al.

(2004)

Pseudomonas alcaligenes, P. chlororaphis,

Bacillus amyloliquefaciens

Cotton (Gossypium

hirsutum)

Root/shoot length, dry weight Egamberdieva and

Jabborova (2013)

Klebsiella oxytoca Cotton (Gossypium

hirsutum)

Root/shoot length, dry weight Yue et al. (2007)

P. extremorientalis, P. chlororaphis Bean (Vicia faba) Root/shoot growth, dry weight Egamberdieva (2011)

Bacillus megaterium Maize (Zea maize L.) Higher root hydraulic conductance Marulanda et al. (2010)

P. mendocina and Mycorrhizal fungi Lettuce (Lactuca sativa) Plant growth, glomalin-related soil protein (GRSP) Kohler et al. (2010)

S. plymuthica, S. rhizophila, P. fluorescens Cucumber (Cucumis

sativus)

Root shoot length, dry weight, fruit yield Egamberdieva et al.

(2011)

P. extremorientalis, P. trivialis and

Rhizobium galegae

Goat’s rue (G. officinalis

L.)

Root/shoot length, dry weight, nodule number, N uptake Egamberdieva et al.

(2013a)

Rhizobium tropici and Paenibacillus

polymyxa,

Common bean

(Phaseolus vulgaris

L.)

Plant growth, nitrogen content, nodule number Figueiredo et al. (2008)

Serratia sp. and Rhizobium sp. Lettuce (Lactuca sativa) Plant growth, N, P and K uptake, chlorophyll content,

antioxidant enzymes

Han and Lee (2005)

A. brasilense and Glomus clarum Faba bean (Vicia faba) Plant growth, N and P uptake, nodule number, protein

content and nitrogenase enzymes

Rabie and Almadini

(2005)
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stress and promote the growth of cotton seedlings in salinated soil. Moreover, plant

height and dry weight of cotton increased by 14.9 and 26.9 %, respectively.

Rabie and Almadini (2005) reported that inoculation of bean with the AMF

(arbuscular mycorrhizal fungus) Glomus clarum and the bacterium Azospirillum

brasilense significantly increased plant growth, nodule number, protein content,

and nitrogen and phosphorus uptake in comparison with uninoculated plants and

also improved plant stress tolerance. Yildirim et al. (2008) studied the ameliorative

Fig. 4.2 Effect of P. chlororaphis TSAU13 and P. extremorientalis TSAU20 on shoot growth of

wheat under salinated soil. Pot experiments, NaCl concentrations are 50, 100, 125 mM

Fig. 4.3 Effect of P. chlororaphis TSAU13 and P. extremorientalis TSAU20 on dry weight of

wheat in salinated soil. Pot experiments, NaCl concentrations are 50, 100, 125 mM

82 D. Egamberdieva and B. Lugtenberg



effect of Staphylococcus kloosii strain EY37 and Kocuria erythromyxa strain EY43

on radish growing in saline soil. They observed that bacterial inoculants signifi-

cantly increased shoot/root dry weight, leaf number per plant, relative water

content of the leaf, and chlorophyll content of radish fruit. Bharti et al. (2013)

observed that salt-tolerant Bacillus pumilus and Exiguobacterium oxidotolerans

stimulated plant growth and bacoside-A content of brahmi (Bacopa monnieri).

In all reports presented above, the bacterial inoculant strains were isolated from

the rhizosphere of plants naturally growing in saline soils. We observed that for the

application of bacteria in salinated soils, there is no strict need to isolate these

bacteria from plants grown in salinated soil. In our study (Egamberdieva et al.

2011), S. plymuthica strain RR2-5-10, S. rhizophila strain e-p10, and P. fluores-

cens strain SPB2145, all isolated from regions with a moderate to cold climate and

non-saline soil, were able to increase cucumber growth and yield in salinated soil

of Uzbekistan. These results are consistent with observations showing that the

rhizosphere is characterized by changing osmotic conditions, and that its microbial

inhabitants can adapt to increased osmolarity, for example by producing osmo-

protective substances (Miller and Wood 1996).

Rhizobium–Legume Symbiosis Improved by PGPR

Under saline conditions, the symbiosis of legumes with Rhizobium spp. can be

improved by co-inoculation with PGPR (Valverde et al. 2005; Yadegari and

Rahmani 2010). Dual inoculation with Rhizobium and PGPR result in an increase

in the total nodule number of pigeon pea (Cajanus cajan) compared to inoculation

with Rhizobium alone (Tilak et al. 2006).

We have investigated whether the PGPR strains P. extremorientalis TSAU20

and P. trivialis 3Re27 have the ability to alleviate salinity stress in G. officinalis L

(goat’s rue). In comparison with plants inoculated with R. galegae alone, co-

inoculation of both unstressed and salt-stressed goat’s rue with Rhizobium galegae

HAMBI 1141 and either P. trivialis 3Re27 or P. extremorientalis TSAU20 sig-

nificantly improved root and shoot growth as well as nodulation of the plants. This

was the case in both gnotobiotic sand and low-fertilized potting soil. The nitrogen

content of the co-inoculated plant roots was significantly increased at both 50 and

75 mM NaCl in potting soil (Fig. 4.4) (Egamberdieva et al. 2013a).

Figueiredo et al. (2008) studied the effect of Rhizobium tropici, when co-inoc-

ulated with Paenibacillus polymyxa, on growth, nitrogen content, and nodulation of

the common bean (Phaseolus vulgaris L.) under conditions of drought stress. They

observed that plants co-inoculated with both R. tropici and P. polymyxa showed

improved plant growth, shoot dry matter, nodule dry matter, and N uptake as well as

higher nodule numbers than those inoculated with R. tropici alone.

Rokhzadi et al. (2008) showed that the combined inoculation of Azotobacter,

Azospirillum, Pseudomonas, andMezorhizobium resulted in promotion of the grain

yield and biomass in chickpea. Han and Lee (2005) observed that inoculation of

non-legume lettuce with Serratia sp. and Rhizobium sp. alleviated the negative
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effects of salinity on the plant. The inoculation resulted in increased plant growth

and N, P, and K uptake. Also, stomatal conductance, chlorophyll content, and the

activities of antioxidant enzymes such as ascorbate peroxidase and glutathione

reductase increased.

Rabie and Almadini (2005) examined tripartite interactions among a bacterium

(A. brasilens), an AMF (G. clarum), and a legume plant (Vicia faba) under

increased NaCl levels in pot cultures. Significant positive effects of inoculation

were found in the plants with respect to salinity tolerance, mycorrhizal depen-

dence, phosphorus level, phosphatase enzymes, nodule number, nitrogen uptake,

protein content, and nitrogenase activity. Based on these findings, the authors

suggested that bacterial–AMF–legume tripartite symbioses could be a new

approach for increasing the salinity tolerance of legume plants.

The studies mentioned above indicate that PGPR are able to alleviate salt stress

in leguminous plants, whereas more nodules might develop into nitrogen-fixing

ones, thereby enabling the plant to obtain part of its nitrogen from the atmosphere.

Co-inoculation techniques could be a new approach to increase the salt tolerance

and yield of legumes used for the food and green manure production in salt-

affected soils, providing a supply of biologically fixed N at low cost.

Mechanisms of Action by Which PGPR Alleviate Salt

Stress

PGPR can use various mechanisms to stimulate plant growth and development, to

protect plants from soilborne diseases, and to increase plant stress tolerance. These

mechanisms include (1) the production of phytohormones, antifungal metabolites,

Fig. 4.4 Effect of the salt-tolerant bacterium Pseudomonas trivialis 3re27 on the growth of

Galega officinalis inoculated with Rhizobium galegae R1141
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and/or lytic enzymes, (2) increasing the availability of plant nutrients, (3) reduction

in stress-induced ethylene production, and (4) induction of systemic resistance

(Lugtenberg and Kamilova 2009; Pliego et al. 2011; Egamberdieva et al. 2013a;

Penrose et al. 2001; Glick 2005).

Phytohormone Production

Phytohormones have a major role in plant growth development and in stress

responses (Shaterian et al. 2005). They may enhance different cellular defence

systems for the protection of plants from external adverse conditions (Bianco and

Defez 2009). Salinity and drought stresses inhibit the production of auxins, gib-

berellins, and zeatin in the roots and leaves of plants (Sakhabutdinova et al. 2003;

Figueiredo et al. 2008; Perez-Alfocea et al. 2010).

The decrease in hormone levels in the root system of plants results in a

reduction in the germination percentage, and of plant growth and development

(Werner and Finkelstein 1995; Sakhabutdinova et al. 2003). Salt stress reduces the

supply of cytokinin from root to shoot (Naqvi and Ansari 1974) and also the

recovery of diffusible auxin from maize coleoptile tips (Itai et al. 1968).

Salinity does not inhibit auxin production of salt-tolerant PGPR. Nabti et al.

(2007) isolated the halotolerant A. brasilense strain NH which is able to produce

auxin at a concentration of 200 mM NaCl. A similar observation was reported in

our previous work in which the PGPR strains S. plymuthica RR2-5-10, S. rhizo-

phila e-p10, P. fluorescens SPB2145, and P. chlororaphis TSAU13 were shown to

produce auxin at 1.5 % NaCl (Egamberdieva et al. 2011; Egamberdieva 2012).

Root-colonizing bacteria which produce auxin under saline condition may

supply additional auxin into the rhizosphere, which could help to maintain root

growth under stress, and also can contribute to maintaining leaf growth (Albacete

et al. 2008). In one of our studies, the inoculation of wheat with the individual

auxin-producing bacterial strains P. aureantiaca TSAU22, P. extremorientalis

TSAU6, and P. extremorientalis TSAU20 significantly increased seedling root

growth up to 40 % and shoot growth up to 52 % at 100 mM NaCl compared to

control plants (Egamberdieva 2009). Arkhipova et al. (2007) also observed

increased root and shoot growth as well as cytokinin concentrations in plants by

treatment with a cytokinin-producing B. subtilis strain.

In conclusion, PGPR can have multiple impacts on the phytohormone status,

modifying root-to-shoot signalling and shoot hormone concentrations, which may

improve growth, development, and physiological processes of plants under salt

stress (Dodd et al. 2010).

Osmolites

Plants may protect themselves from drought and salt stress by accumulating

compatible solutes such as sugars and amino acids to osmotically adjust
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themselves (Serraj and Sinclair 2002; Evelin et al. 2009). Jha et al. (2010) reported

that paddy rice (Oryza sativa L.) inoculated with P. pseudoalcaligenes showed a

significantly higher concentration of glycine betaine-like quaternary compounds

and a higher shoot biomass under salinity conditions. Bano et al. (2013) observed

that A. lipoferum increased accumulation of free amino acids and soluble sugars in

maize, as compared to the control, under drought stress conditions.

Azospirillum inoculation leads to an increased content of proline (Kandowangko

et al. 2009) and free amino acids in maize under drought stress conditions (Sandhya

et al. 2010). Verbruggen and Hermans (2008) reported that the accumulation of

proline is one of the best-known alterations induced by water and salt stress in

plants. Kandowangko et al. (2009) observed that inoculation of corn with Azo-

spirillum causes an increase in leaf proline content. Several PGPR strains, such as

Burkholderia (Barka et al. 2006), Arthrobacter, and Bacillus (Sziderics et al. 2007),

enhance proline synthesis in stressed plants, which helps in maintaining the cell

water status, thereby helping the plant to cope with the salinity stress. Proline may

enhance the activity of various enzymes, stabilizing the pH within the cell

and maintaining antioxidant activity by scavenging reactive oxygen species

(Verbruggen and Hermans 2008).

Ashraf (2004) observed that bacterial exopolysaccharides bind the Na+ ion in

the root, through which the plant’s Na+ accumulation decreases. In that way,

bacteria may alleviate salt stress in plants. Sandhya et al. (2009) reported that

exopolysaccharides produced by PGPR exhibit increased plant resistance to water

stress. Kerepesi and Galiba (2000) indicated that the accumulation of sugars in

salinity-stressed plants prevents the destruction of soluble proteins. Co-inoculation

of Phaseolus vulgaris L. with R. tropici and the PGPR Paenibacillus polymyxa

(which produces trehalose) increased plant growth, N content, and nodulation

under drought stress (Figueiredo et al. 2008).

ACC Deaminase

The hormone ethylene is involved in the plant developmental cycle, and it may be

stimulatory or inhibitory, depending upon its concentration (Penrose et al. 2001).

Ethylene has previously been found to be an inhibitor of plant root elongation in

several different systems (Glick 2005). The production of ethylene in plants is

highly dependent on the endogenous levels of 1-aminocyclopropane-1-carboxylate

(ACC). The enzyme ACC deaminase is present in many rhizosphere bacteria

(Glick 2010). Such bacteria can take up ACC from the plant root and convert it

into a-ketobutyrate and ammonia. This results in the decrease in ACC levels and

therefore also in ethylene levels in the plant and in decreased plant stress (Bianco

and Defez 2009; Pliego et al. 2011).

PGPR containing the enzyme ACC deaminase decrease the ethylene level,

enhance the survival of some seedlings, and improve root growth and development

in various plants such as tomato, pepper, and bean under stressed conditions (Glick
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et al. 1998; Mayak et al. 2004; Nadeem et al. 2009). We have previously reported

that PGPR strain P. trivialis 3Re27 is able to utilize ACC as its sole N source,

indicating that it contains ACC deaminase. This observation suggests that the

presence of ACC deaminase leads to an increase in salt tolerance and a stimulation

of shoot and root growth of goat’s rue in salinated soil (Egamberdieva et al. 2013a).

ACC deaminase-producing Achromobacter piechaudii strain ARV8 confers

‘induced systemic tolerance’ (IST) against drought and salt stress in pepper and

tomato (Mayak et al. 2004). Shahzad et al. (2010) observed that rhizobacteria con-

taining ACC deaminase increase the number of lateral roots, lateral root length, and

root dryweight of chickpea seedlings and a direct correlation has been found between

in vitro bacterial ACC deaminase activity and root growth (Shaharoona et al. 2006).

Longer roots may take up relatively more water from deep soil under stress condi-

tions, thus increasing the water use efficiency of the plants (Zahir et al. 2008).

In another study, P. fluorescens strain TDK1, which produces ACC deaminase,

improved the plant growth parameters and the salt stress resistance of groundnut

seedlings under saline condition as compared to plants inoculated with Pseudo-

monas strains lacking ACC deaminase activity (Saravanakumar and Samiyappan

2007). Similar results were observed by Kausar and Shahzad (2006), who reported

that P. fluorescens containing ACC deaminase stimulated root growth of maize

under saline conditions.

It is assumed that ACC exuded from the root will be degraded by ACC

deaminase and that the products of hydrolyzed ACC will be used by root-colo-

nizing bacteria. In that way, both plant and bacteria benefit from this process

(Glick et al. 1998; Bianco and Defez 2012). In our opinion, a more likely and more

efficient explanation is that the ACC deaminase-producing bacterium uses the

needle of the type three secretion system to suck up plant sap containing ACC and

deliver it in the bacterial cytoplasm where the enzyme ACC deaminase is located.

Root Colonization

Efficient colonization of the plant surface is the only option for bacterial soil

inoculants to survive under adverse soil conditions and to compete with the better

adapted native microflora in this highly competitive environment (Van Overbeek

and Van Elsas 1997; Lugtenberg et al. 2001; Rekha et al. 2007; Lugtenberg and

Kamilova 2009). The successful colonization of the rhizosphere by introduced

beneficial bacteria also requires that these bacteria are well adapted to the rhizo-

sphere and have some selective advantage over the numerous indigenous bacteria

which have the potential to colonize that rhizosphere (Kawaguchi et al. 2002).

In one of our studies, the salt-tolerant bacterial strains P. cholororaphis

TSAU13 and P. extremorientalis TSAU20 were able to colonize the rhizosphere of

wheat under saline conditions up to 125 mM NaCl (Table 4.2). The colonization

of P. chlororaphis TSAU13 was slightly inhibited, from 4.1 to 3.2 [Log (CFU)/cm

of root tip], at 125 mM NaCl (Table 4.2). These results show that both bacterial
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strains are able to survive on the root of wheat under saline soil condition. Sim-

ilarly, Diby et al. (2005) reported that the population of P. pseudoalcaligenes

MSP-538 in rice root was not inhibited with increasing salinity. Paul and Nair

(2008) also observed that the root colonization potential of the salt-tolerant strain

P. fluorescens MSP-393 is not hampered by high salinity in the soil.

In our previous study, rifampicin-resistant mutants of the effective biocontrol

strains P. alcaligenes PsA15, P. chlororaphis TSAU13, P. extremorientalis

TSAU20, and B. amyloliquefaciens BcA12 were able to colonize the rhizosphere

of cotton and persisted in saline soil (Egamberdieva and Jabborova 2013). Strain

P. extremorientalis TSAU20, which was isolated as an enhanced wheat root col-

onizer (Egamberdieva and Kucharova 2009), showed high colonization ability in

the rhizosphere of cotton, whereas B. amyloliquefaciens BcA12 had lower colo-

nization ability. Bacterial motility could contribute to survival in the soil and the

initial phase of colonization, where attachment and movement toward the root

surface are important (Turnbull et al. 2001). Pseudomonas strains are motile and

able to colonize the entire root system, in contrast to Bacillus which was unable to

effectively colonize the rhizosphere of plants (Fukui et al. 1994).

Conclusion and Future Prospects

The present review indicates that soil salinity decreases germination, plant growth,

plant development, and nutrient uptake. PGPR isolates are able to alleviate salt

stress in plants, increase germination, shoot/root length, dry matter production, and

yield in various agricultural and horticultural plants. Thus, PGPR can contribute

significantly to solving the plant production problems caused by high salinity.

Elucidation of the mechanisms of alleviation of salt stress and plant growth pro-

motion by PGPR, such as stimulation of root growth by the production of phy-

tohormones, decreasing ethylene levels by the enzyme ACC deaminase,

production of osmoprotectants, and competition for nutrient and niches has pro-

vided a greater understanding of possible ways to open new doors for strategies

which can improve the efficacy of PGPR agents. However, there is still a lot that is

not understood regarding the functioning of these organisms under stressed soil

conditions and also with respect to their interactions with the host plant. Knowl-

edge of the mechanisms contributing to plant stress tolerance by PGPR as well as

Table 4.2 Effect of salt stress on the colonization of bacterial strains P. chlororaphis TSAU13

and P. extremorientalis TSAU20 in the rhizosphere of wheat (Log CFU/cm of root tip), grown in

a gnotobiotic sand system for 7 days

Bacteria NaCl concentrations (mM)

0 50 100 125

P. chlororaphis TSAU13 4.1 ± 0.2 4.1 ± 0.3 4.0 ± 0.2 3.2 ± 0.2

P. extremorientalis TSAU20 4.6 ± 0.2 4.6 ± 0.1 4.4 ± 0.1 3.8 ± 0.2
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the constraints to their activity under severe conditions can facilitate a more

effective use of bacterial inoculants. More detailed studies are needed on the role

of abiotic factors in altering the activity of rhizobacteria and managing plant–

microbe interactions, with respect to their adaptability to extreme environments.

Aspects which have to be included in future research are (1) mechanisms involved

in alleviation of salt stress in plants, (2) potential competition between PGPR

strains and indigenous soil microflora in the rhizosphere of plants grown in

stressed environments, and (3) induction of salt stress tolerance at plant tissue, cell,

and molecular level.
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