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    Abstract     Numerous studies have shown that soil salinity decreases nodulation and 

dramatically reduces N 2  fi xation and nitrogenase activity of nodulated legumes. 

Thus, the development of salt-tolerant symbioses is an absolute necessity to enable 

cultivation of leguminous crops in salt-affected soils. Dual inoculation of legumes 

with plant growth-promoting rhizobacteria (PGPR) and rhizobia has been reported to 

increase the number of nodules compared to those formed by a rhizobial strain alone. 

The production of IAA by  Pseudomonas  strains represents a benefi cial mechanism 

that promoted enlargement of root system and thereby further enhanced nutrient 

uptake, nodulation, and shoot growth of leguminous plants. When PGPR are able 

to alleviate salt stress experienced by the plant, more nodules might develop into 

nitrogen-fi xing ones, thereby enabling the plant to obtain part of its nitrogen from 

the atmosphere. Co-inoculation techniques could be a new approach to increase 
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the salt tolerance and yield of legumes used for the food and green manure production 

in salt-affected soils, providing supply of biologically fi xed N at low cost.  

        Introduction 

 Salinity is a major concern for irrigated agriculture in arid and semiarid regions 

of the world (Vincent et al.  2006 ). In particular, secondary salinity developed from 

irrigation is widely responsible for reducing soil and water quality, limiting crop growth, 

and leading to the abandonment of agricultural land (Egamberdiyeva et al.  2007 ). 

Salt affects plant growth mainly through toxicity caused by the excessive uptake of 

salts, especially that of NaCl (FAO  2005 ). Soil salinity reduces plant growth and 

photosynthesis due to the complex negative effects of osmotic, ionic, and nutritional 

interactions (Shannon  1997 ; Shirokova et al.  2000 ). Salinity stress increases levels 

of ethylene that signifi cantly inhibits shoot and root elongation and reduces plant 

height and overall growth (Ma et al.  1998 ; Klassen and Bugbee  2002 ). 

 Most legumes are rather sensitive to salinity, and only a few agronomical legumes 

can grow in salt-affected soils (Ashraf and McNeilly  2004 ). For example, two annual 

pasture legumes, messina ( Melilotus siculus ) and burr medic ( Medicago polymor-

pha ), can persist in soils with an electrical conductivity (ECe) up to 36 dS/m (Rogers 

et al.  2005 ). Soil salinity particularly disturbs the symbiotic interaction between 

legumes and rhizobia (Marcar et al.  1991 ). Numerous studies have shown that soil 

salinity decreases rhizobial colonization and nodulation and dramatically reduces N 2  

fi xation and nitrogenase activity of nodulated legumes (Singleton and Bohlool  1984 ; 

Zahran and Sprent  1986 ; Elsheikh and Wood  1995 ; Zahran  1999 ). Thus, the develop-

ment of salt-tolerant symbioses is an absolute necessity to enable cultivation of 

leguminous crops in salt-affected soils (Velagaleti and Marsh  1989 ; Mayak et al. 

 2004 ). There is now increasing evidence that the use of benefi cial microbes can 

enhance the resistance of plants to adverse environmental stresses, e.g., drought, 

salts, nutrient defi ciency, and heavy metal contaminations (Glick et al.  2007 ). 

 In this chapter we describe (1) the effect of salinity on legume- Rhizobium  

 symbioses, (2) the  Rhizobium - Pseudomonas  interactions, (3) their ameliorative and 

benefi cial effects, and (4) the mechanisms involved in plant growth stimulation 

and alleviation of salt stress.  

    Effects of Salinity on Legume- Rhizobium  Symbioses 

 Many studies reported the negative effects of soil salinity on crop yield and total 

nitrogen fi xation of leguminous plants such as bean, chickpea, lentil, and soybean 

(van Hoorn et al.  2001 ). Similar results were observed by Mensah and Ihenyen 

( 2009 ) on mung bean ( Vigna mungo  L. Hepper), where they observed decreases 

in percentage germination and seedling emergence with increases in salinity. The 

existence of inter- and intraspecifi c variability in the sensitivity of N 2  fi xation to 
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salinity has also been reported in legumes (Serraj et al.  2001 ).    Subbarao et al. ( 1990 ) 

observed that nodule initiation by  Rhizobium  was the most salt-susceptible aspect 

of pigeon pea than growth. Rhizobial species  Rhizobium ,  Bradyrhizobium ,  Sinor-

hizobium , and  Mesorhizobium  lead to symbiotic interactions with legumes and 

result in root nodule formation. However, root nodulation in legumes is dependent 

on numerous soil and environmental factors, and very often the introduced 

 Rhizobium  has to overcome intense competition from native microorganisms that 

colonize the rhizosphere (Mishra et al.  2009 ). Salinity leads to a failure in the 

establishment of rhizobia in the rhizosphere, by reducing survival and proliferation 

of rhizobia in the soil and rhizosphere, or by inhibiting very early symbiotic events, 

such as root hair colonization (Singleton and Bohlool  1984 ; Hashem et al.  1998 ). 

Cordovilla et al. ( 1999 ) reported that  R. leguminosarum  formed an infective 

 symbiosis with faba bean under saline conditions, and that N 2  fi xation was more 

sensitive to salinity than plant growth. The reduction of N 2 -fi xing activity is usually 

attributed to a reduction in respiration of the nodules and leghemoglobin production 

(Delgado et al.  1994 ; Walsh  1995 ). An explanation for the reduction in symbiotic 

legume growth might be that the salt stress causes a failure of the infection and 

nodulation process. For example, according to Bouhmouch et al. ( 2005 ), salt  inhibits 

the absorption of Ca, which reduces the growth of roots, root tips, and root hairs, 

thereby decreasing sites for potential rhizobial infection and further nodule devel-

opment. Cordovilla et al. ( 1995 ) observed that the depressive effect of salt stress on 

N 2  fi xation by legumes is directly related to the salt-induced decline in dry weight, 

N content in the shoot, and the salt-induced distortions in nodule structure (Zahran 

and Abu-Gharbia  1995 ). 

 According to Rekha et al. ( 2007 ), colonization of the inoculated bacteria in the 

rhizosphere largely depends on the availability of the empty niche and the capacity 

of competing with other microfl ora. The colonization of leguminous root hairs by 

rhizobial cells is fundamental for the establishment of the legume- Rhizobium  sym-

biosis (Gulash et al.  1984 ). The very early symbiotic events, colonization and infec-

tion of root hairs by rhizobial cells, are especially sensitive to environmental stresses 

(Räsänen et al.  2003 ). A decrease in the number of rhizobial cells was demonstrated 

to occur in the root of soybean, common bean, and chickpea ( Cicer arietinum ) 

grown under salt stress (Zahran and Sprent  1986 ; Bouhmouch et al.  2005 ). Since the 

symbiotic performance of legumes depends upon the population size and survival of 

introduced rhizobia in the root, the improvement of their colonization in saline con-

ditions is important to develop salt-tolerant symbioses (Velagaleti and Marsh  1989 ).  

    Plant Growth-Promoting Rhizobacteria 

 Benefi cial rhizosphere bacteria are of two general types: those forming a symbiotic 

relationship with the plant and those that are free living in soil and root (Barriuso 

et al.  2005 ; Lugtenberg and Kamilova  2009 ). The use of plant growth-promoting 

rhizobacteria (PGPR) in improvement of crop yield started long time ago, and there 

are many reports where benefi cial microbes can enhance plant growth,  development, 
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nutrient uptake, and yield (Lugtenberg et al.  2001 ; Arora et al.  2008 ; Egamberdieva 

et al.  2010 ). Treatments with PGPR like  Alcaligenes ,  Arthrobacter ,  Azospirillum , 

 Azotobacter ,  Enterobacter ,  Pseudomonas ,  Burkholderia ,  Bacillus , and  Serratia  

increase germination percentage, emergence, root and shoot growth, total biomass 

of the plants, seed weight, grains, and yields (Mantelin and Touraine  2004 ; Joseph 

et al.  2007 ; Yasmin et al.  2007 ). Further studies also confi rmed enhanced growth, 

nodulation, and yield of chickpea by  Rhizobium  (Carter et al.  1994 ; Elsheikh and 

Elzidany  1997 ; Akhtar and Siddiqui  2009 ; Khosravi et al.  2010 ). 

 The plant growth promotion activity of rhizobacteria is primarily related to its 

impact on root growth and morphology (Dobbelaere et al.  2001 ). Creus et al. ( 2004 ) 

reported that bacterial inoculation caused the production of lengthy root hairs, 

stimulated the production of lateral roots, and improved the root diameter and surface 

respectively. The ability of other PGPR species to improve growth, nodulation, and 

nitrogen fi xation is documented for many legume species (Burdman et al.  2000 ; 

Tanimoto  2005 ; Egamberdieva et al.  2010 ).  

     Rhizobium - Pseudomonas  Interactions 

 In the rhizosphere, a synergism between various bacterial genera such as  Bacillus , 

 Pseudomonas ,  Arthrobacter , and  Rhizobium  has been shown to promote plant 

growth of various plants such as peanut, corn, soybean, and maize (Dey et al. 

 2004 ; Ratti et al.  2001 ). Available reports indicate improved yield of legumes 

health, and nodulation when co-inoculated with PGPB, compared to inoculation 

with  Rhizobium  alone (Valverde et al.  2005 ; Egamberdieva et al.  2010 ; Yadegari 

and Rahmani  2010 ). In other studies the co-inoculation with  Pseudomonas  spp. 

and  Rhizobium  spp. enhanced nodulation and nitrogen fi xation, plant biomass, 

and grain yield in various leguminous species including alfalfa (Bolton et al. 

 1990 ), soybean (Dashti et al.  1998 ), chickpea (Goel et al.  2002 ), and pea (Tilak 

et al.  2006 ). 

 There are several reports on the positive effects of co-inoculation of legumes 

with  Pseudomonas  and  Rhizobium  spp .  A signifi cant increase in N content of root 

and shoot of  Galega orientalis  was also observed after co-inoculation of 

 Pseudomonas trivialis  strain 3Re27 with  Rhizobium galegae  HAMBI 540 which 

signifi cantly increased the N content of the roots by 20 % and of the shoots by 52 % 

compared to  R. galegae  HAMBI 540 alone. Shoot and root growth was also 

increased by co-inoculation of both strains (Egamberdieva et al.  2010 ). Improved 

mineral nutrition would explain the promotion of root and shoot growth (Burdman 

et al.  1997 ; Cakmakci et al.  2005 ). Similar results were observed by Khurana and 

Sharma ( 2000 ) and Siddiqui et al. ( 2001 ) where combined inoculation of  Rhizobium  

and  Pseudomonas  increased nodulation, nitrogenase activity, growth, and yield of 

chickpea under greenhouse conditions. In other studies a greater number of nodules 

and dry weight was recorded in soybean and alfalfa when the co-inoculation with 

 B. japonicum  and  Pseudomona s was observed by Rosas et al. ( 2006 ).  
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    Alleviation of Salt Stress in Plants 

 The ameliorative effects of PGPR on plant growth under saline conditions have 

been shown for various plant species, such as tomato, pepper, canola, bean, and 

 lettuce (Barassi et al.  2009 ; Kang et al.  2009 ; Egamberdieva  2009 ).    Salt-stressed 

soybean plants had signifi cantly decreased plant growth, photosynthesis, and 

mineral uptake with increasing salinity, and inoculation of salt-stressed plants with 

PGPR strains could alleviate salinity stress (Han and Lee  2005 ). These PGPR 

(e.g.,  Rhizobium ,  Azospirillum ,  Pseudomonas ,  Flavobacterium ,  Arthrobacter , and 

 Bacillus ) utilize osmoregulation, oligotrophic, endogenous metabolism, resistance 

to starvation, and effi cient metabolic processes to adapt under dry and saline 

 environments (Lugtenberg et al.  2001 ; Egamberdiyeva and Islam  2008 ). These bac-

teria, with a physiological adaptation and genetic potential for increased tolerance 

to drought, increased salt concentration, and high temperatures, could improve 

plant production in degraded sites. The inoculation of bean with bacterial strains  

P. extremorientalis  TSAU20 and  P. chlororaphis  TSAU13 increased shoot length of 

bean signifi cantly at 5.0, 7.5, and 10.0 dS/m up to 50 % (Egamberdieva  2011 ). The 

 Pseudomonas  strains  P .  trivialis  3Re27 and  P. extremorientalis  TSAU20 have an 

excellent root-colonizing capability and plant growth-promoting activity. They are 

also salt tolerant, capable of growing in 4 % NaCl, and able to alleviate salt stress in 

pea and soybean plants (Egamberdiyeva and Hofl ich  2002 ; Egamberdiyeva et al. 

 2004 ; Egamberdieva et al.  2010 ). Both a gnotobiotic sand system test and the green-

house experiment with low-fertilized potting soil demonstrated that the salt  tolerance 

of  Galega offi cinalis  clearly improved when the plant was inoculated besides its 

own specifi c symbiont  R. galegae  sv.  offi cinalis , with either of the two PGPR 

strains,  P. extremorientalis  TSAU20 or  P. trivialis  3Re27 (Fig.  11.1 ) (Egamberdieva 

et al.  2013 ). In earlier studies Hasnain and Sabri ( 1996 ) showed that inoculation of 

wheat with  Pseudomonas  sp. stimulated plant growth by reducing plant uptake of 

toxic ions and increasing the auxin content. Heidari et al. ( 2011 ) also reported 

that plant growth, auxin and protein contents of  Ociumum basilicm  inoculated by 

  Fig. 11.1    The effect of  R. galegae  R1141 combined with  Pseudomonas  strain TSAU20 on nodu-

lation of  Galega offi cinalis  (pot experiments, 0 and 50 mM NaCl)       
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   Table 11.1    The length of roots and shoots, biomass of whole plants, and the number of nodules 

of soybean when seedlings were inoculated with  Bradyrhizobium japonicum  strains USDA110 

alone and together with  Pseudomonas putida  TSAU1   

 Bacterial strains 

 Root a  

length (cm) 

 Shoot a  

length (cm) 

 Biomass (g) b  

weight 

 Nodule 

numbers 

  0 mM NaCl  

 USDA110  11.7  20.6  0.086  6.3 

 USDA110 + TSAU1  13.4*  23.4  0.100  8.0 

  50 mM NaCl  

 USDA110  10.2  10.6  0.067  4.2 

 USDA110 + TSAU1  12.4*  16.0*  0.088*  4.6 

  75 mM NaCl  

 USDA110   9.0   8.2  0.053  3.0 

 USDA110 + TSAU1  10.2  12.2*  0.084*  4.0 

  Plants were grown in the gnotobiotic sand system under salt stress for 3 weeks. Values represent 

means for six plants ( N  = 6) 

  a cm 

  b g/plant 

 *Signifi cantly different from plants inoculated with  B. japonicum  alone at  P  < 0.05  

 Pseudomonas  sp. under drought stress conditions increased compared to the control. 

The combined inoculation of  Azotobacter ,  Azospirillum ,  Pseudomonas , and 

 Mesorhizobium  resulted in promotion of grain yield and biomass in chickpea 

(Rokhzadi et al.  2008 ). Parmar and Dadarwall ( 1999 ) also observed that co- 

inoculation of  Pseudomonas  and  Bacillus  sp. with  Rhizobium  strains enhanced the 

nodule weight, root length, shoot biomass, and total plant nitrogen in chickpea, 

when grown in sterilized jars or under pot culture conditions. We have observed that 

the co-inoculation of salt-stressed soybean with  B. japonicum  USDA110 and 

 P. putida  TSAU1 improved root and shoot length, dry weight, and nodulation com-

pared to those plants inoculated with  B. japonicum  alone (Table  11.1 ).

    Increasing the salt content decreased the ability of  B. japonicum  cells to colonize 

soybean roots, colony-forming units (CFU) counts decreased from log 10  3.9 CFU 

to log 10  3.5 CFU (Table  11.2 ). However, the co-inoculation of  B. japonicum  

USDA110 with  P. putida  TSAU1 increased the number of rhizobial cells colonizing 

soybean roots. Competitive root tip colonization test showed that the  Pseudomonas  

strain was a better colonizer than  B. japonicum  (Table  11.2 ). In other study we 

demonstrated that the colonization of  G. offi cinalis  root tips by  Rhizobium  cells 

increased almost twofold under saline conditions when the plants were inoculated 

besides  Rhizobium  with  Pseudomonas  strains (Egamberdieva et al.  2013 ). Such 

combined inoculation could also enhance formation of nodules on legumes grown 

in salinated potting soil. In addition, we observed that though salt stress decreased 

the proportion of big nitrogen- fi xing nodules, enhanced nodulation achieved by 

dual inoculation compensated this decrease and the number of big nodules was 

duplicated compared to the plants inoculated with  Rhizobium  alone (Egamberdieva 

et al.  2013 ).
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   Table 11.2    The competitive 

root tip colonization of  

B. japonicum  strain 

USDA110 and  Pseudomonas 

putida  TSAU1 in the 

rhizosphere of soybean  

 Bacterial strains 

 Root colonization 

 Log CFU/1 cm root ± SD    

 USDA110  TSAU1 

  0 mM NaCl  

 USDA110  3.9 ± 0.06 

 USDA110 + TSAU1  4.1 ± 0.08  4.2 ± 0.10 

  50 mM NaCl  

 USDA110  3.7 ± 0.15 

 USDA110 + TSAU1  4.0 ± 0.05  4.1 ± 0.10 

  75 mM NaCl  

 USDA110  3.5 ± 0.19 

 USDA110 + TSAU1  3.8 ± 0.20  3.9 ± 0.10 

  Plants were grown in the gnotobiotic sand system under 

salt stress for 3 weeks  

       Biomechanisms to Enhance Plant Growth 

 Mechanisms by which bacteria are able to promote plant growth and prevent damage 

caused by salinity include production of phytohormones like indoleacetic acid 

(IAA), gibberellic acid, cytokinins, and ethylene (Spaepen et al.  2009 ; Mishra et al. 

 2010 ), production of ACC-deaminase to reduce the level of ethylene in the roots of 

developing plants (Dey et al.  2004 ), asymbiotic nitrogen fi xation (Ardakani et al. 

 2010 ), and production of exopolysaccharides (EPS) (Upadhyay et al.  2011 ). 

 Production of the auxin phytohormone indole-3-acetic acid (IAA) by bacterial 

inoculants might be responsible for the enlarged root system and number of infection 

sites prior to nodulation (Tanimoto  2005 ; Tilak et al.  2006 ). Rhizobacteria synthesize 

and release auxin as secondary metabolites because of the rich supplies of substrates 

exuded from the roots (Lugtenberg et al.  2001 ; Shahab et al.  2009 ; Egamberdieva and 

Kucharova  2009 ). Bacterial strains which belong to genera such as  Pseudomonas , 

 Bacillus ,  Rhizobium , and  Microbacterium  are among the most active IAA producers 

(Wang et al.  1982 ; Costacurta and Vanderleyden  1995 ; Mehnaz and Lazarovits  2006 ; 

Tsavkelova et al.  2007 ). The IAA that is secreted by bacteria, together with endog-

enous plant IAA, is taken by plant cells which can stimulate plant cell proliferation 

(Glick et al.  2007 ). The exogenous application of auxins to alfalfa (Gruodien and 

Zvironaite  1971 ) and groundnut (Srinivasan and Gopal  1977 ) promoted plant growth 

and nodulation. Earlier reports showed that  Rhizobium meliloti  associated with alfalfa 

produced 20 mg/ml of IAA (Williams and Singer  1990 ), whereas  Rhizobium legumi-

nosarum  produced 2.0 mg/ml of IAA (Beltra et al.  1980 ). IAA produced by nodule 

bacteria is transported to other parts of the plant and might be involved in several 

stages of the symbiotic relationship (Wheeler et al.  1979 ; Hunter  1989 ). 

 In early studies, the depressive effect of salinity on plant growth was explained 

by decline in endogenous levels of hormones in the rhizosphere (Zholkevich and 

Pustovoytova  1993 ; Jackson  1997 ), whereas phytohormones released by rhizobac-

teria effect positively to seedling development (Frankenberger and Arshad  1995 ; 
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Afzal et al.  2005 ). Low concentration of pure IAA or low titer of IAA-producing 

bacteria enhanced root growth and nodulation (Remans et al.  2008 ), whereas 

high concentration of pure IAA or high titer of IAA-producing bacteria inhibited 

root growth and nodulation (Plazinski and Rolfe  1985 ). Bacterial IAA can also act 

as signal molecule in bacteria-bacteria communication (Spaepen et al.  2009 ). 

Another explanation for enhancement of nodule formation by the rhizobia in 

legumes might be the production of hydrolytic enzymes such as cellulases by root-

colonizing  Pseudomonas  strains, which could make penetration of rhizobia into 

root hairs or intercellular spaces of root cells easier, leading to increased numbers of 

nodules (Sindhu and Dadarwal  2001 ). 

 Plant stress can be reduced by 1-aminocyclopropane-carboxylate (ACC) 

deaminase- producing bacteria (Glick et al.  1997 ). The ACC-deaminase enzyme can 

cleave the ethylene precursor ACC to α-ketobutyrate and ammonium and thereby 

lower the level of ethylene in developing or stressed plants (Glick  1995 ; Glick et al. 

 1998 ; Hontzeas et al.  2005 ). PGPR releasing the enzyme ACC-deaminase may 

decrease the ethylene level and enhance the survival of seedlings (Glick et al.  1998 ). 

It has been reported that PGPR strain  P. trivialis  3Re27 was able to utilize ACC as 

N source indicating the presence of ACC-deaminase and increased salt tolerance 

of goats’ rue, stimulating shoot and root growth under salinated soil conditions 

(Egamberdieva et al.  2013 ). Similar results were observed by Shaharoona et al. ( 2006 ) 

where co-inoculation of  Bradyrhizobium  with PGPR isolates strains possessing 

ACC-deaminase activity enhanced the nodulation in mung bean compared with 

inoculation with  Bradyrhizobium  alone. Arshad et al. ( 2008 ) observed that inocula-

tion with PGPR containing ACC-deaminase was highly effective in removing the 

effects of water stress on growth, yield, and ripening of peas.  

    Conclusion 

 As discussed in this review, salinity decreases nodulation, reduces N 2  fi xation and 

nitrogenase activity of legumes, and leads to a failure in the establishment of rhizo-

bia in the rhizosphere by inhibiting very early symbiotic events. The co-inoculation 

of legumes with  Rhizobium  and PGPR  Pseudomonas  strains was able to alleviate 

salt stress of plants grown in salt-affected soils. The phytohormone auxin produced 

by root-colonizing bacteria plays an important role in alleviating salt stress in plants. 

Co-inoculation techniques could be a new approach to increase the salt tolerance 

and the yield of leguminous plants used for food and green manure production in 

salt-affected soils, providing supply of biologically fi xed N at low cost.    The future 

direction in research needs to include (1) the mechanisms involved in alleviation 

of salt stress in plants, (2) the potential competition between PGPR strains and 

indigenous soil microfl ora in the rhizosphere of plants grown under stressed 

environments, and (3) more research on the interaction between PGPR and rhizobia, 

as the latter are known to confer resistance to salt stress and drought while promoting 

growth of the host plant.     
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