
www.it-ebooks.info

http://www.it-ebooks.info/

Learning Three.js: The
JavaScript 3D Library for
WebGL

Create and animate stunning 3D graphics using the
open source Three.js JavaScript library

Jos Dirksen

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Learning Three.js: The JavaScript 3D Library
for WebGL

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1101013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-628-3

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Jos Dirksen

Reviewers
Andrea Barisone

Will Crichton

Yi-Fan Liao

Sebastian Poreba

I. Abiyasa Suhardi

Acquisition Editor
Kevin Colaco

Lead Technical Editor
Arun Nadar

Technical Editors
Anita Nayak

Ritika Singh

Project Coordinator
Leena Purkait

Proofreaders
Mario Cecere

Lawrence A. Herman

Indexer
Mariammal Chettiyar

Graphics
Abhinash Sahu

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Jos Dirksen has worked as a Software Developer and Architect for more than
a decade. He has much experience in a large range of technologies ranging from
backend technologies, such as Java and Scala, to frontend development using
HTML5, CSS, and JavaScript. Besides working with these technologies, Jos also
regularly speaks at conferences and likes to write about new and interesting
technologies on his blog. He also likes to experiment with new technologies
and see how they can best be used to create beautiful data visualizations,
the results of which you can see on his blog at http://www.smartjava.org/.

Jos is currently working as an Enterprise Architect for Malmberg, a large Dutch
publisher of educational material. He is helping to create a new digital platform
for the creation and publishing of educational content for primary, secondary,
and vocational education.

Previously, Jos has worked in many different roles in the private and public sectors,
ranging from private companies such as Philips and ASML to organizations in the
public sector, such as the Department of Defense.

Besides his interest in frontend JavaScript and HTML5 technologies, he is also
interested in backend service development using REST and traditional web service
technologies. Jos has already written two books on this subject. He is the coauthor
of the Open Source ESBs in action book that was published in 2008, and in 2012 he
published a book on how to apply SOA Governance in a practical manner. This
book is titled SOA Governance in Action.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgement

Writing books is a long and hard effort. I couldn't have done this without the
support and hard work of many others. There are many people I'd like to thank.

First off, my project coordinator Leena Purkait, without whom I would never have
finished all the chapters on time, for coordinating all the details and allowing me to
focus on creating the content. I'd also like to thank Ritika Singh and Anita Nayak for
all the time and effort they spent in finalizing the chapters.

All the other people from Packt Publishing who have helped me during the writing,
reviewing, and laying out process. Great work, guys!

I, of course, have to thank Ricardo Cabello, also known as Mr.dò_ób, for creating the
great Three.js library.

Much thanks go to the reviewers. You provided great feedback and comments that
really helped improve the book. Your positive remarks really helped shape the book!

I haven't mentioned the most important persons yet. I'd like to thank my wife Brigitte,
who once again had to endure me spending my weekends and evenings behind my
laptop, my daughter Sophie for pulling me away from my keyboard and always
making me laugh, and my daughter Amber, who, even though she is just a couple of
weeks old, makes me appreciate the really important things and moments in life.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Andrea Barisone works for a leading Italian IT company and has over 13 years
of experience in Information Technology, working on corporate projects as a
Developer using different technologies. He has also strong experience in the
ECM Systems, and several J2EE certifications. He has great ability to acquire new
technologies and to exploit the knowledge acquired while working with different
environments and technologies.

Andrea is a Technical Reviewer for Agile Web Development with Rails 4 by
Pragmatic Bookshelf, and also for BPEL and Java Cookbook by Packt Publishing
(work in progress.)

I would like to thank my parents, Renzo and Maria Carla, for the
gift of life they gave me, my beloved wife Barbara, and my two
wonderful little children, Gabriele and Aurora, for making my life
wonderful every day.

Will Crichton has been a Web Developer for many years. He is currently studying
Computer Science at the Carnegie Mellon University. Previously, he has worked
with a web design company, Webspec Design, and a biotechnology company,
Pioneer Hi-Bred. Beyond just work, Will loves creating web applications—many
merely adopted JavaScript, but he was born to it. He has created several frameworks
and applications by using HTML5 technologies and continues to do more every day.

I'd like to thank my brother, Alex, for his excellent guidance as
a brother and programming mentor, as well as my parents for
supporting me throughout my coding endeavors!

www.it-ebooks.info

http://www.it-ebooks.info/

Yi-Fan Liao is a Frontend Developer who is enthusiastic about exploring the
possibilities of the web. He started programming with .NET for building an
online medicine tutoring application in 2004 and is proficient in web application
design, architecture design, and performance tuning. He has expertise in HTML5
multiplayer game development and extensive experience in JavaScript canvas
animation. Yi-Fan loves widget-making and knowledge-sharing. He was a speaker
for Begin Three.js at JSDC 2013 and is located in Taipei, Taiwan.

Sebastian Poreba is a JavaScript Developer with a game development background.
At work, he uses the Google Closure tool chain for data analysis application. After
hours, he plays with WebGL and physics, and blogs at www.smashinglabs.pl

I. Abiyasa Suhardi is an Indonesian guy living a double life in Berlin, Germany.
His day job is as a Frontend Developer doing Flash/Flex, HTML5, and JavaScript
programming. His passion is working on indie game projects in the evenings,
weekends, or whenever he has free time. He is sort of like Batman, but instead of
saving the city himself, he made his game characters the heroes.

He has a Bachelor's Degree in Informatics Engineering, a Master's Degree in Digital
Media, and 9 years of experience working in the IT world, ranging from C/C++ for
an intranet portal, teaching Macromedia Director, founding a J2ME game company,
RIA Development using Flash/Flex, and mobile development with Android and
Adobe AIR, to JavaScript development for backend and frontend.

Currently, he is working in a startup company, while backing up his partner-in-crime,
his wife, in building their own startup.

You can follow his work at http://www.abiyasa.com and connect with him on
Twitter (@abiyasasuhardi).

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Creating Your First 3D Scene with Three.js 7

Requirements for using Three.js 11
Getting the source code 12

Using Git to clone the repository 13
Downloading and extracting the archive 14
Testing the examples 14

Python-based approach should work on most Unix/Mac systems 15
NPM-based approach if you've got Node.js installed 15
Portable version of Mongoose for Mac/Windows 15

Creating an HTML skeleton page 16
Rendering and viewing a 3D object 19
Adding materials, lights, and shadows 24
Expanding your first scene with animations 27

Introducing the requestAnimationFrame() method 27
Animating the cube 30
Bouncing the ball 30

Using the dat.GUI library to make experimenting easier 32
Using the ASCII effect 33
Summary 35

Chapter 2: Working with the Basic Components That Make
Up a Three.js Scene 37

Creating a scene 37
Basic functionality of the scene 38
Adding the fog effect to the scene 44
Using the overrideMaterial property 45

Working with the Geometry and Mesh objects 46
The properties and functions of a geometry 47

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

The functions and attributes for a mesh 52
Using the available cameras for different uses 57

The orthographic camera versus the perspective camera 57
Focusing the camera on a specific point 62

Summary 64
Chapter 3: Working with the Different Light Sources
Available in Three.js 65

Exploring the lights provided by Three.js 66
Learning about the basic lights 66

AmbientLight – a globally applied light source 67
Using the THREE.Color() object 69

PointLight – the light that shines in all directions 71
SpotLight – the light with a cone effect 75
DirectionalLight – for a far away sun-like light source 80
Using special lights for advanced lighting 83

HemisphereLight 83
AreaLight 84
LensFlare 87

Summary 91
Chapter 4: Working with the Three.js Materials 93

Understanding the common material properties 94
Basic properties 94
Blending properties 95
Advanced properties 96

Starting with the simple Mesh materials (basic, depth, and face) 97
The MeshBasicMaterial for simple surfaces 97
The MeshDepthMaterial for depth-based coloring 100
Combining the materials 102
The MeshNormalMaterial for normal-based colors 104
The MeshFaceMaterial for assigning a material to each face 107

Learning about the advanced materials 110
The MeshLambertMaterial for dull, non-shiny surfaces 110
The MeshPhongMaterial for shiny objects 112
Creating your own shaders with the ShaderMaterial 114

Using the materials for a line geometry 121
The LineBasicMaterial 122
The LineDashedMaterial 124

Summary 125

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 5: Learning to Work with Geometries 127
The basic geometries provided by Three.js 128

Two-dimensional geometries 128
PlaneGeometry 128
CircleGeometry 130
ShapeGeometry 132

Three-dimensional geometries 137
CubeGeometry 138
SphereGeometry 139
CylinderGeometry 142
TorusGeometry 144
TorusKnotGeometry 145
PolyhedronGeometry 147

Summary 150
Chapter 6: Using Advanced Geometries and Binary Operations 153

ConvexGeometry 154
LatheGeometry 156
Create a geometry by extruding 158

ExtrudeGeometry 158
TubeGeometry 160
Extrude from SVG 162
ParametricGeometry 164

Creating 3D text 167
Rendering text 167
Adding custom fonts 170

Using binary operations to combine meshes 171
The subtract function 173
The intersect function 177
The union function 179

Summary 180
Chapter 7: Particles and the Particle System 181

Understanding particles 182
Particles, the particle system, and the BasicParticleMaterial 184
Styling particles with the HTML5 canvas 187

Using HTML5 canvas with the CanvasRenderer class 188
Using HTML5 canvas with the WebGLRenderer class 190

Using textures to style particles 192
Working with sprites 199

Creating a particle system from an advanced geometry 204
Summary 206

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Chapter 8: Creating and Loading Advanced
Meshes and Geometries 207

Geometry grouping and merging 207
Grouping objects together 208
Merging multiple meshes into a single mesh 210
Loading geometries from external resources 212
Saving and loading in Three.js JSON format 213

Saving and loading a geometry 213
Saving and loading a scene 216

Working with Blender 218
Installing the Three.js exporter in Blender 219
Loading and exporting a model from Blender 221

Importing from 3D file formats 224
OBJ and MTL format 224
Loading a collada model 228
Loading STL, CTM, and VTK models 229
Showing proteins from the protein databank 231
Creating a particle system from a PLY model 234

Summary 235
Chapter 9: Animations and Moving the Camera 237

Basic animations 238
Simple animations 238
Selecting objects 240
Animating with Tween.js 242

Working with the camera 245
TrackballControls 246
FlyControls 248
RollControls 250
FirstPersonControls 250
OrbitControl 252
PathControl 254

Morphing and skeletal animation 257
Animation with morph targets 258

Animation with MorphAnimMesh 259
Creating an animation by setting the morphTargetInfluence property 262

Animation using bones and skinning 263
Creating animations using external models 266

Creating bones animation using Blender 266
Loading an animation from a collada model 270
Animation loaded from a Quake model 272

Summary 274

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Chapter 10: Loading and Working with Textures 277
Using textures in materials 278

Loading a texture and applying it to mesh 278
Using a bump map to create wrinkles 282
Using more detailed bumps and wrinkles with a normal map 284
Creating fake shadows using a light map 286
Creating fake reflections using an environment map 288
Specular map 292

Advanced usage of textures 294
Custom UV mapping 294
Repeat wrapping 297
Rendering to canvas and using it as a texture 299

Using canvas as a texture 300
Using canvas as a bump map 301
Using the output from a video as a texture 303

Summary 305
Chapter 11: Custom Shaders and Render Post Processing 307

Setting up the post processing 308
Creating the EffectComposer object 309

Configuring the EffectComposer object for post processing 310
Updating the render loop 310

Post processing passes 311
Simple post processing passes 312

Using the FilmPass to create a TV-like effect 313
Adding a bloom effect to the scene with the BloomPass 314
Outputting the scene as a set of dots with the DotScreenPass 315
Showing the output of multiple renderers on the same screen 317

Advanced EffectComposer flows by using masks 318
Using the ShaderPass for custom effects 323

Simple shaders 324
Blurring shaders 327
Advanced shaders 329

Creating custom post processing shaders 330
Custom grayscale shader 330
Creating a custom bit shader 334

Summary 336
Chapter 12: Adding Physics to Your Scene with Physijs 339

Creating a basic Three.js scene ready for Physijs 340
Material properties 346
Basic supported shapes 348
Using constraints to limit movement of objects 354

Using PointConstraint to limit movement between two points 355

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vi]

Creating door-like constraints with a HingeConstraint 357
Limiting movement to a single axis with a SliderConstraint 359
Creating a ball joint-like constraint with the ConeTwist Constraint 361
Creating detailed control with the DOFConstraint 364

Summary 368
Index 371

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
In the last couple of years, browsers have gotten more powerful and are capable
platforms to deliver complex applications and graphics. Most of this, though, is
standard 2D graphics. Most modern browsers have adopted WebGL, which allows
you to not only create 2D applications and graphics in the browser, but also create
beautiful and good performing 3D applications, using the capabilities of the GPU.

Programming WebGL directly, however, is very complex. You need to know the
inner details of WebGL and learn a complex shader language to get the most out of
WebGL. The Three.js library provides a very easy-to-use JavaScript API based on the
features of WebGL, so that you can create beautiful 3D graphics, without having to
learn the WebGL details.

The Three.js library provides a large number of features and APIs that you can use
to create 3D scenes directly in your browser. In this book you'll learn all the different
APIs that the Three.js library has to offer through lots of interactive examples and
code samples.

What this book covers
Chapter 1, Creating Your First 3D Scene with Three.js, covers the basic steps that you
need to take to get started with the Three.js library. You'll immediately create your
first Three.js scene and at the end of this chapter, you'll be able to create and animate
your first 3D scene directly in the browser.

Chapter 2, Working with the Basic Components That Make Up a Three.js Scene, explains
the basic components that you need to understand while working with the Three.js
library. You'll learn about lights, meshes, geometries, materials, and cameras. In this
chapter you will also get an overview of the different lights that the Three.js library
provides and the cameras you can use in your scene.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 3, Working with the Different Light Sources Available in Three.js, dives deeper
into the different lights that you can use in your scene. It shows examples and
explains how to use a SpotLight, DirectionLight, AmbientLight, PointLight,
HemisphereLight, and AreaLight sources. Additionally, it also shows how to
apply a LensFlare effect on your light source.

Chapter 4, Working with the Three.js Materials, talks about the materials available in
the Three.js library that you can use in your meshes. It shows all the properties that
you can set to configure the materials for your specific use and provides interactive
examples to experiment with the materials that are available in the Three.js library.

Chapter 5, Learning to Work with Geometries, is the first of two chapters that explores all
the geometries that are provided by the Three.js library. In this chapter you'll learn
how to create and configure geometries in Three.js and you can experiment by using
the provided interactive examples, with geometries such as plane, circle, shape, cube,
sphere, cylinder, Torus, TorusKnot, and PolyHedron.

Chapter 6, Using Advanced Geometries and Binary Operations, continues where Chapter 5
left off. It shows you how to configure and use the more advanced geometries that are
provided by the Three.js library such as Convex and Lathe. In this chapter you'll also
learn how to extrude 3D geometries from the 2D shapes and how you can create new
geometries by combining geometries using binary operations.

Chapter 7, Particles and the Particle System, explains how to use the particle system
from the Three.js library. You'll learn how to create a particle system from scratch,
and from the existing geometries. In this chapter you'll also learn how you can
modify the way the particles look through the use of sprites and particle materials.

Chapter 8, Creating and Loading Advanced Meshes and Geometries, shows you how to
import meshes and geometries from external sources. You'll learn how to use the
Three.js library internal JSON format in order to save the geometries and scenes. This
chapter also explains how to load models from formats like OBJ, DAE, STL, CTM,
and PLY.

Chapter 9, Animations and Moving the Camera, explores the various types of animations
that you can use to make your scene come to life. You'll learn how to use the Tween.
js library together with Three.js, and you'll learn how to work with the animation
models based on morphs and skeletons.

Chapter 10, Loading and Working with Textures, expands on Chapter 4 where materials
were introduced. In this chapter we will dive into the details of textures. It introduces
the various types of textures that are available and how you can control a texture that
is applied to your mesh. Additionally in this chapter, you are shown how you can
directly use the output from the HTML5 video and canvas elements as input for
your textures.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Chapter 11, Custom Shaders and Render Post Processing, explores how you can use the
Three.js library to apply the post processing effects to your rendered scene. With post
processing you can apply effects, such as blur, tilt shift, and sepia to your rendered
scene. Besides this, you'll also learn how to create your own post processing effect
and create a custom vertex and fragment shader.

Chapter 12, Adding Physics to Your Scene with Physijs, explains how you can add
physics to your Three.js scene. With physics, you can detect collisions between
objects, make them respond to gravity, and apply friction. This chapter shows
how to do so with the Physics JavaScript library.

What you need for this book
All that you need for this book is a text editor (for example, Sublime Text Editor) to
play around with the examples and a modern web browser to access the examples.
Some examples require a local web server, but you'll learn in Chapter 1 how to set up
a very lightweight web server to use with the examples in this book.

Disclaimer:
Before we get started, a quick note on possible problems with the
examples in this book. In Chapter 1 we give an overview of the browser
support for WebGL, which is needed for Three.js. Modern browsers such
as Chrome, Firefox, and Internet Explorer have good support for this
standard. There is, however, something you need to take into account.
When newer versions of browsers appear, they sometimes break support
for specific features of WebGL. For instance, as of finalizing this book,
Chrome and Firefox on Windows 7 have issues with the examples of
Chapter 11. So make sure to upgrade to the latest versions of Chrome and
Firefox before trying these examples.

Who this book is for
This book is great for everyone who already knows JavaScript and wants to
start with creating 3D graphics that run in any browser. You don't need to know
anything about advanced math or WebGL, all that is needed is a general knowledge
of JavaScript and HTML. The required materials and examples can be freely
downloaded and all the tools used in this book are open source. So if you've ever
wanted to learn how to create beautiful, interactive 3D graphics that run in any
modern browser, this is the book for you.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"You can see in this code that besides setting the map property, we also set the
bumpMap property to a texture."

A block of code is set as follows:

function createMesh(geom, texture, bump) {
 var texture = THREE.ImageUtils.loadTexture(
 "../assets/textures/general/" + texture)

 var mat = new THREE.MeshPhongMaterial();
 mat.map = texture;
 var bump = THREE.ImageUtils.loadTexture(
 "../assets/textures/general/" + bump)
 mat.bumpMap = bump;
 mat.bumpScale=0.2;
 var mesh = new THREE.Mesh(geom,mat);
 return mesh;
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold as shown:

function createParticles() {
 var material = new THREE.ParticleBasicMaterial({size:4});

 var geom = new THREE.Geometry();
 for (var x = -5 ; x < 5 ; x++) {
 for (var y = -5 ; y < 5 ; y++) {
 var particle = new THREE.Vector3(x*10,y*10,0);
 geom.vertices.push(particle);
 }
 }

 var system = new THREE.ParticleSystem(geom,material);
 scene.add(system);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Any command-line input or output is written as follows:

#git clone https://github.com/josdirksen/learning-threejs

New terms and important words are shown in bold as follows: "The first one uses
the HTTP Server module."

Words that you see on the screen, in menus or dialog boxes for example, appear
in the text like this: "If you want to change this color, you can do so in the menu
at the top-right corner, to a more prominent green color (#007700) and get the
following result:".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[6]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from http://www.packtpub.com/sites/
default/files/downloads/6283OS_graphics.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First 3D Scene
with Three.js

Modern browsers are slowly getting more powerful features that can be accessed
directly from JavaScript. You can easily add video and audio with the new HTML5
tags and create interactive components through the use of the HTML5 canvas. A
rather new addition to this feature set is the support of WebGL. With WebGL you
can directly make use of the processing resources of your graphics card and create
high-performance 2D and 3D computer graphics. Programming WebGL directly
from JavaScript to create and animate 3D scenes is a very complex and error-prone
process. Three.js is a library that makes this a lot easier. The following list shows
some of the things that Three.js makes easy:

• Creating simple and complex 3D geometries
• Animating and moving objects through a 3D scene
• Applying textures and materials to your objects
• Loading objects from 3D modeling software
• Creating 2D sprite-based graphics

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First 3D Scene with Three.js

[8]

With a couple lines of JavaScript you can create anything from simple 3D models to
photorealistic real-time scenes as shown:

In the first chapter, we'll directly dive into Three.js and create a couple of examples
that show you how Three.js works and you can use them to play around with. We
won't dive into all the technical details yet; that's something you'll learn in the later
chapters. In this chapter we'll cover the following points:

• Tools required for working with Three.js
• Downloading the source code and examples used in this book
• Creating your first Three.js scene
• Improving the first scene with materials, lights, and animations
• Introducing a couple of helper libraries for statistics and controlling the scene

We'll start this book with a short introduction into Three.js and then quickly move on
to the first examples and code samples. Before we get started, let's quickly look at the
most important browsers out there and their support for WebGL.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

At the moment Three.js works with the following browsers:

Browser Support
Mozilla Firefox Supported since Version 4.0.
Google Chrome Supported since Version 9.
Safari Supported since Version 5.1 and newly installed on Mac OS X

Mountain Lion, Lion, and Snow Leopard. Make sure you enable
WebGL in Safari. You can do this by navigating to Preferences |
Advanced and checking the option Show develop menu in menu
bar. After that navigate to Develop | Enable WebGL.

Opera Supported since Version 12.00. You still have to enable this by
opening the file opera:config and setting the value of WebGL
and Enable Hardware Acceleration to 1. After that, restart the
browser.

Internet Explorer Internet Explorer had long been the only major player who didn't
support WebGL. Starting with IE11, Microsoft has added WebGL
support.

Basically, Three.js runs in any of the modern browsers, except most versions of IE. So
if you want to use an older version of IE, you've got two options: you can get WebGL
support through the use of Google Chrome Frame, which you can download from
the following URL: https://developers.google.com/chrome/chrome-frame/. An
alternative you can use instead of Google Chrome Frame is the iewebgl plugin, which
you can get from http://iewebgl.com/. This installs inside IE and enables WebGL.

Google has officially dropped support for Google
Chrome Frame and it doesn't support IE10.

Currently the guys behind Three.js are working on a renderer
that uses the new CSS-3D specification, which is supported by a
lot of browsers (even IE10). Besides desktop browsers, a number
of mobile and tablet browsers also support CSS-3D.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First 3D Scene with Three.js

[10]

In this chapter, you'll directly create your first 3D scene and will be able to run this
in any of the mentioned browsers. We won't introduce too many complex Three.js
features, but at the end of this chapter you'll have created the Three.js scene that
you can see in the following screenshot:

For this first scene you'll learn about the basics of Three.js and also create your first
animation. Before you start your work on this example, in the next couple of sections
we'll first look at the tools that you need to easily work with Three.js and how you
can download the examples that are shown in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Requirements for using Three.js
Three.js is a JavaScript library, so all that you need to create Three.js WebGL
applications is a text editor and one of the supported browsers to render the
results. I do like to recommend three JavaScript editors, which I've started
using exclusively over the last couple of years:

• WebStorm: This editor from the JetBrains guides has great support for
editing JavaScript. It supports code completion, automatic deployment,
and JavaScript debugging directly from the editor. Besides this, WebStorm
has excellent Git support (and other Version Control Systems). You can
download a trial edition from http://www.jetbrains.com/webstorm/

• Notepad++: This is a general purpose editor that supports a wide range of
programming languages. It can easily lay out and format JavaScript.

Notepad++ is only for Windows.

• Sublime Text Editor: This is a great little editor that has very good support
for editing JavaScript. Besides this, it provides many very helpful selection
and edit options, which once you get used to, provide a real good JavaScript
editing environment. Sublime Text Editor can also be tested for free and can
be downloaded from http://www.sublimetext.com/

Even if you don't use these three editors there are a lot of editors available,
open source and commercial, which you can use to edit JavaScript and create
your Three.js projects. An interesting project that you might want to look into is
http://c9.io. This is a cloud-based JavaScript editor that can be connected to a
GitHub account. This way you can directly access all the source code and examples
from this book, and experiment with them.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First 3D Scene with Three.js

[12]

I had mentioned that most modern web browsers support WebGL and can be used
to run the Three.js examples. I usually run my code in Chrome. The reason is that,
most often, Chrome has the best support and performance for WebGL and it has
a really great JavaScript debugger. With this debugger you can quickly pinpoint
problems, for instance, by using breakpoints and console output. Throughout this
book I'll give you pointers on debugger usage and other debugging tips and tricks.

That's enough of an introduction for now; let's get the source code and start with the
first scene.

Getting the source code
All the code for this book can be accessed from GitHub (https://github.com/).
GitHub is an online Git-based repository that you can use to store, access, and
version source code. There are a couple of ways you can get the sources for yourself:

• Clone the Git-based repository
• Download and extract the archive

In the following sections, we'll explore these options in more detail.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Using Git to clone the repository
Git is an open source distributed Version Control System that I have used to
create and version all the examples in this book. For this I've used GitHub, a free,
online Git-based repository. You can browse this repository by following this link:
https://github.com/josdirksen/learning-threejs

To get all the examples you can clone this repository using the git command line
tool. To do this, you first need to download a Git client for your operating system.
For most modern operating systems, a client can be downloaded from http://git-
scm.com or you can use the one provided by GitHub itself (for Mac and Windows).
After installing Git, you can use this to get a clone of this book's repository. Open a
command prompt and go to the directory where you want to download the sources.
In that directory, run the following command:

git clone https://github.com/josdirksen/learning-threejs

This will start downloading all the examples as shown in the following screenshot:

The directory learning-three.js will now contain all the examples that are used
throughout this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First 3D Scene with Three.js

[14]

Downloading and extracting the archive
If you don't want to use Git to download the sources directly from GitHub, you can also
download an archive. Go to the URL https://github.com/josdirksen/learning-
threejs and click on the download link as shown in the following screenshot:

Extract this to a directory of your choice, and you'll have all the examples available.

Testing the examples
Now that you've downloaded or cloned the source code, let's do a quick check to see
if everything is working and make you familiar with the directory structure. The code
and examples are organized per chapter. There are two different ways of viewing the
examples. You can either open the extracted or cloned directory in a browser directly
and run a specific example, or you can install a local web server. The first approach
will work for most of the basic examples, but when we start loading external
resources such as models or texture images, just opening the HTML file isn't enough.
In this case we need a local web server to make sure that the external resources are
loaded correctly. In the following section, we will discuss a couple of different ways
you can set up a simple local web server for testing.

Setting up a local web server is very easy, depending on what you've already got
installed. We will list a couple of examples on how to do this.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

Python-based approach should work on most
Unix/Mac systems
Most Unix/Linux/Mac systems already have Python installed in them. On those
systems you can very easily start a local web server:

 > python -m SimpleHTTPServer

 Serving HTTP on 0.0.0.0 port 8000 ...

 Do this in the directory where you have checked out/downloaded the source code.

NPM-based approach if you've got Node.js installed
If you've already done some work with Node.js, there is a good chance that you've
got NPM installed. With NPM you've got two simple options to set up a quick local
web server for testing. The first one uses the HTTP Server module:

 > npm install -g http-server

 > http-server

Starting up http-server, serving ./ on port: 8080

Hit CTRL-C to stop the server

Alternatively you can also use the Simple HTTP Server option:

> npm install -g simple-http-server

> nserver

simple-http-server Now Serving: /Users/jos/git/Physijs at http://
localhost:8000/

A disadvantage of this second approach, however, is that it doesn't automatically
show the directory listings, whereas the first approach does.

Portable version of Mongoose for Mac/Windows
If you haven't got Python or NPM installed, there is a simple, portable web server,
named Mongoose, that you can use. First download the binaries for your specific
platform from the following URL: https://code.google.com/p/mongoose/
downloads/list. On the Windows platform, copy the downloaded file to the
directory containing the examples and double-click on it to start a web browser
showing the contents of the directory it is started in.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First 3D Scene with Three.js

[16]

For other operating systems, you must also copy the executable to the target
directory, but instead of double-clicking on the executable you have to launch it
from the command line. In both cases, a local web server will be started on port 8080.

By just clicking on a chapter, we can show and access all the examples for that
chapter. If I discuss an example in this book, I'll refer to the specific name and
folder so that you can directly test and play around with the code.

At this point you should have an editor installed and have access to all the sources.
Now it is time to start creating our first Three.js scene.

Creating an HTML skeleton page
The first thing we need to do is create an empty HTML skeleton page that we can use
as the base for all our examples. This HTML skeleton is shown as follows:

<!DOCTYPE html>

<html>

 <head>
 <title>Example 01.01 - Basic skeleton</title>
 <script type="text/javascript"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

 src="../libs/three.js"></script>
 <script type="text/javascript"
 src="../libs/jquery-1.9.0.js"></script>
 <style>
 body{
 /* set margin to 0 and overflow to hidden,
 to use the complete page */

 margin: 0;
 overflow: hidden;
 }
 </style>
 </head>
 <body>

<!-- Div which will hold the Output -->
<div id="WebGL-output">
</div>

<!-- Javascript code that runs our Three.js examples -->
 <script type="text/javascript">

 // once everything is loaded, we run our Three.js stuff.
 $(function () {
 // here we'll put the Three.js stuff
 });

 </script>
 </body>
</html>

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.it-ebooks.info/

Creating Your First 3D Scene with Three.js

[18]

As you can see from this listing, the skeleton is a very simple HTML page, with only
a couple of elements. In the <head> element, we will load the external JavaScript
libraries that we'll use for the examples. For all the examples, we'll at least load the
two mentioned in this listing: Three.js and jquery-1.9.0.js. In the <head> element,
we also add a couple of lines of CSS. These style elements remove any scroll bars
when we create a full page Three.js scene. In the <body> of this page you can see a
single <div> element. When we write our Three.js code, we'll point the output of
the Three.js renderer to that element. In the previous code snippet, you can already
see a bit of JavaScript. That small piece of code uses jQuery to call an anonymous
JavaScript function when the complete page is loaded. We'll put all the Three.js code
inside this anonymous function.

Three.js comes in two versions:

• Three.min.js: This is the library you'd normally use when deploying
Three.js sites on the internet. This is a minimized version of Three.js,
created using UglifyJS, which is half the size of the normal Three.js
library. All the examples and code used in this book are based on the
Three.js r60 project, which was released in August 2013.

• Three.js: This is the normal Three.js library. We will use this library in our
examples, since it makes debugging much easier when you can read and
understand the Three.js source code.

If we view this page in our browser, the results aren't very shocking. As you'd
expect, all that you would see is an empty page:

In the next section, you'll learn how to add the first couple of 3D objects and render
those to the <div> element that we had defined in our HTML skeleton page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

Rendering and viewing a 3D object
In this step you'll create your first scene and add a couple of objects and a camera.
Our first example will contain the following objects:

Object Description
Plane A two-dimensional rectangle that serves as our ground area. This is

rendered as the gray rectangle in the middle of the scene.
Cube A three-dimensional cube, which we'll render in red
Sphere A three-dimensional sphere, which we'll render in blue
Camera The camera determines what you'll see in the output
Axes x, y, and z axes. This is a helpful debugging tool to see where the objects are

rendered.

I'll first show you how this looks in code (the source file with comments can be found
in the chapter-01 folder and is labeled 02-first-scene.html) and then I'll explain
what's happening:

<script type="text/javascript">

 $(function () {
 var scene = new THREE.Scene();

 var camera = new THREE.PerspectiveCamera(45
 , window.innerWidth / window.innerHeight
 , 0.1, 1000);

 var renderer = new THREE.WebGLRenderer();
 renderer.setClearColorHex(0xEEEEEE);
 renderer.setSize(window.innerWidth, window.innerHeight);

 var axes = new THREE.AxisHelper(20);
 scene.add(axes);

 var planeGeometry = new THREE.PlaneGeometry(60,20,1,1);
 var planeMaterial = new THREE.MeshBasicMaterial(
 {color: 0xcccccc});
 var plane = new THREE.Mesh(planeGeometry,planeMaterial);

 plane.rotation.x=-0.5*Math.PI;

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First 3D Scene with Three.js

[20]

 plane.position.x = 15;
 plane.position.y = 0;
 plane.position.z = 0;

 scene.add(plane);

 var cubeGeometry = new THREE.CubeGeometry(4,4,4);
 var cubeMaterial = new THREE.MeshBasicMaterial(
 {color: 0xff0000, wireframe: true});
 var cube = new THREE.Mesh(cubeGeometry, cubeMaterial);

 cube.position.x = -4;
 cube.position.y = 3;
 cube.position.z = 0;

 scene.add(cube);

 var sphereGeometry = new THREE.SphereGeometry(4,20,20);
 var sphereMaterial = new THREE.MeshBasicMaterial(
 {color: 0x7777ff, wireframe: true});
 var sphere = new THREE.Mesh(sphereGeometry,sphereMaterial);

 sphere.position.x = 20;
 sphere.position.y = 4;
 sphere.position.z = 2;

 scene.add(sphere);

 camera.position.x = -30;
 camera.position.y = 40;
 camera.position.z = 30;
 camera.lookAt(scene.position);

 $("#WebGL-output").append(renderer.domElement);
 renderer.render(scene, camera);
 });

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

If we open this example in the browser, we will see something that resembles what
we're aiming for, but is still a long way off:

Before we start making this more beautiful, I'll first walk you through the code a step
at a time so that you understand what the code does:

var scene = new THREE.Scene();

var camera = new THREE.PerspectiveCamera(45
 , window.innerWidth / window.innerHeight
 , 0.1, 1000);

var renderer = new THREE.WebGLRenderer();
renderer.setClearColorHex(0xEEEEEE);
renderer.setSize(window.innerWidth, window.innerHeight);

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First 3D Scene with Three.js

[22]

Prior to the given example we defined a scene, a camera, and a renderer. The
scene variable is a container that is used to store and keep track of all the objects
that we want to render. The sphere and the cube that we want to render will be
added to this scene later on in the example. In this first fragment, we also create a
camera variable. The camera variable defines what we'll see when we render the
scene. In Chapter 2, Working with the Basic Components That Make Up a Three.js Scene,
you will learn more about the arguments that you can pass into the camera. Next,
we will define a renderer object. The renderer is responsible for calculating what
the scene will look like in the browser based on the camera angle. We will create a
WebGLRenderer object in this example that will use your graphics card to render
the scene.

If you look through the source code and the documentation of
Three.js. you'll notice that there are different renderers available
besides the WebGL-based one. There is a canvas-based renderer and
even an SVG-based one. Even though they work and can render simple
scenes, I wouldn't recommend using them. They're very CPU-intensive
and lack features such as good material support and shadows.

Here we set the background color of the renderer to almost white (0XEEEEEE) with
the setClearColorHex() function and tell the renderer how large the scene needs
to be rendered by using the setSize() function.

So far, we've got a basic empty scene, a renderer, and a camera. There is, however,
nothing yet to render. The following code adds the helper axes and the plane.

var axes = new THREE.AxisHelper(20);
scene.add(axes);

var planeGeometry = new THREE.PlaneGeometry(60,20);
var planeMaterial = new THREE.MeshBasicMaterial(
 {color: 0xcccccc});
var plane = new THREE.Mesh(planeGeometry,planeMaterial);

plane.rotation.x = -0.5*Math.PI;
plane.position.x = 15;
plane.position.y = 0;
plane.position.z = 0;
scene.add(plane);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

As you can see, we have created an axes object and used the scene.add()
function to add these axes to our scene. Now we will create the plane. This is
done in two steps. First we define what the plane looks like using the new THREE.
PlaneGeometry(60,20) code. In this case it has a width of 60 and a height of 20.
We also need to tell Three.js what this plane looks like (for example, its color and
its transparency). In Three.js we do this by creating a material object. For this first
example we'll create a basic material (by using the MeshBasicMaterial() method)
with the color 0xcccccc. Next we combine these two into a Mesh object with the
name plane. Before we add this plane to the scene we need to put it in the correct
position; we do this by first rotating it 90 degrees around the x axis and next we
defining its position in the scene by using the position property. If you're already
interested in the details of the Mesh object, look at example 06-mesh-properties.
html from Chapter 2, Working with the Basic Components That Make Up a Three.js Scene,
which shows and explains rotation and positioning. The final step that we need to do
is add this plane to the scene, just like we did with the axes.

The cube and sphere are added in the same manner, but with the wireframe
property set to true, so let's move on to the final part of this example:

camera.position.x = -30;
camera.position.y = 40;
camera.position.z = 30;
camera.lookAt(scene.position);

$("#WebGL-output").append(renderer.domElement);
renderer.render(scene, camera);

At this point all the elements that we want to render are added to the scene at
the correct positions. I've already mentioned that the camera defines what will be
rendered. In this piece of code we position the camera using the x, y, and z position
attributes to hover above our scene. To make sure that the camera is looking at our
objects, we use the lookAt() function to point it at the center of our scene. All that is
left to do is append the output from the renderer to the <div> element of our HTML
skeleton; we use jQuery to select the correct output element, and tell the renderer to
render the scene using the provided camera.

In the next couple of sections, we'll make this scene more pretty by adding lights,
more materials, and even animations.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First 3D Scene with Three.js

[24]

Adding materials, lights, and shadows
Adding new materials and lights in Three.js is very simple and is done in
pretty much the same way as we explained in the previous section. We start
by adding a light source to the scene (for the complete source, look at example
03-materials-light.html):

var spotLight = new THREE.SpotLight(0xffffff);
spotLight.position.set(-40, 60, -10);
scene.add(spotLight);

The SpotLight() method illuminates our scene from its position (spotLight.
position.set(-40, 60, -10)). If we render the scene at this time, however, you
won't see any difference with the previous one. The reason is that different materials
respond differently to light. The basic material which we used in the previous
example (by using the MeshBasicMaterial() method) doesn't do anything with the
light sources in the scene. They just render the object in the specified color. So we
have to change the materials for our plane, sphere, and cube as shown:

var planeGeometry = new THREE.PlaneGeometry(60,20);
var planeMaterial = new THREE.MeshLambertMaterial(
 {color: 0xffffff});
var plane = new THREE.Mesh(planeGeometry,planeMaterial);
...
var cubeGeometry = new THREE.CubeGeometry(4,4,4);
var cubeMaterial = new THREE.MeshLambertMaterial(
 {color: 0xff0000});
var cube = new THREE.Mesh(cubeGeometry, cubeMaterial);
...
var sphereGeometry = new THREE.SphereGeometry(4,20,20);
var sphereMaterial = new THREE.MeshLambertMaterial(
 {color: 0x7777ff});
var sphere = new THREE.Mesh(sphereGeometry,sphereMaterial);

In this piece of code, we have changed the material property for our objects to a
MeshLambertMaterial. Three.js provides two materials that take light sources into
account: MeshLambertMaterial and MeshPhongMaterial.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

The result as shown in the following screenshot, however, still isn't what we're
looking for:

We're getting there, and the cube and sphere are looking a lot better. What is still
missing though are the shadows.

Rendering shadows takes a lot of computing power and for that reason shadows are
disabled by default in Three.js. Enabling them, though, is very easy. For shadows we
have to change the source in a couple of places as shown in the following code snippet:

renderer.setClearColorHex(0xEEEEEE, 1.0);
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.shadowMapEnabled = true;

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First 3D Scene with Three.js

[26]

The first change that we need to make is to tell the renderer that we want shadows.
You can do this by setting the shadowMapEnabled property to true. If you look at
the result from this change, you won't notice anything different yet. That is because
we need to explicitly define which objects cast shadows and which objects receive
shadows. In our example, we want the sphere and the cube to cast shadows on the
ground plane. You can do this by setting the corresponding properties on those
objects to true as follows:

plane.receiveShadow = true;
...
cube.castShadow = true;
...
sphere.castShadow = true;

Now, there is just one more thing that you need to do to get the shadows. We need
to define which of the light sources in our scene will cause shadows. Not all the
lights can cast shadows, and you'll learn more about that in the next chapter, but the
SpotLight() method that we have used in this example can. We only need to set the
correct property and the shadows will finally be rendered:

spotLight.castShadow = true;

And with this we get a scene complete with shadows from our light source as shown
in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

The last feature that we'll add to this first scene is some simple animation. In Chapter 9,
Animations and Moving the Camera, you'll learn more advanced animation options.

Expanding your first scene with
animations
If we want to animate the scene, the first thing that we need to do is find some way to
rerender the scene at a specific interval. Before HTML5 and the related JavaScript APIs
came along, the way to do this was by using the setInterval(function,interval)
function. With the setInterval() method, we can specify a function that, for instance,
would be called every 100 milliseconds. The problem with this function is that it
doesn't take into account what is happening in the browser. If you were browsing
another tab, this function would still be fired every couple of milliseconds. Besides
that, the setInterval() method isn't synchronized with the redrawing of the screen.
This could lead to higher CPU usage and bad performance.

Introducing the requestAnimationFrame()
method
Modern browsers luckily have a solution for the problems associated with the
setInterval() function: the requestAnimationFrame() function. With the
requestAnimationFrame() function, you can specify a function that is called at
an interval defined by the browser. You can do any drawing that you need to do in
the supplied function and the browser will make sure it is painted as smoothly and
efficiently as possible. Using this is really simple (the complete source can be found
in the example, 04-materials-light-animation.html); you just have to create a
function that handles the rendering as shown:

function renderScene() {
 requestAnimationFrame(renderScene);
 renderer.render(scene, camera);
}

In the renderScene() function, we call the requestAnimationFrame() method
again in order to keep the animation going. The only thing that we need to change
in the code is that instead of calling the renderer.render() method after we've
created the complete scene, we call the renderScene() function once to kick off
the animation:

...
 $("#WebGL-output").append(renderer.domElement);
 renderScene();

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First 3D Scene with Three.js

[28]

If you run the given code snippet, you won't see any changes compared to the
previous example, because we didn't animate anything yet. Before we add the
animation, I want to introduce a small helper library that gives us information
about the frame rate that the animation is running at. This library, which is from
the same author as Three.js, renders a small graph that shows us the Frames Per
Second (FPS) that we're getting for this animation.

To add this statistic, we first need to include the library in the HTML <header> tag:

<script type="text/javascript" src="../libs/stats.js"></script>

And we add a <div> element that will be used as output for the statistics graph:

<div id="Stats-output"></div>

The only thing left to do is initialize the statistics and add them to the <div> element
as shown:

function initStats() {
 var stats = new Stats();
 stats.setMode(0);
 stats.domElement.style.position = 'absolute';
 stats.domElement.style.left = '0px';
 stats.domElement.style.top = '0px';
 $("#Stats-output").append(stats.domElement);
 return stats;
 }

This function initializes the statistics. The interesting part is the setMode()
function. If we set it to 0 we'll measure the FPS, and if we set it to 1, we can
measure the rendering time. For this example we're interested in FPS, so 0 it is.
At the beginning of our anonymous jQuery function, we'll call this function and
we've got the statistics enabled:

$(function () {

 var stats = initStats();
 …
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[29]

The only thing left to do is tell the stats object when we're in a new rendering cycle.
We can do this by adding a call to the stats.update() method and to the render()
function as follows:

 function render() {
 stats.update();
 ...
 requestAnimationFrame(render);
 renderer.render(scene, camera);
 }

If you run the code with these additions, you'll see the statistics in the upper-left
corner as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First 3D Scene with Three.js

[30]

Animating the cube
With the requestAnimationFrame() method and the statistics configured, we've
got a place to put our animation code. In this section we'll expand the render()
function with code that will rotate our red cube around on all of its axes. Let's start
by showing you the following code:

function render() {
 ...
 cube.rotation.x += 0.02;
 cube.rotation.y += 0.02;
 cube.rotation.z += 0.02;
 ...
 requestAnimationFrame(render);
 renderer.render(scene, camera);
 }

That looks simple, right? What we did is that we increased the rotation property of
each of the axes by 0.02 every time the render() function was called, which showed
as a cube smoothly rotating around all if its axes. Bouncing the blue ball isn't that
much harder.

Bouncing the ball
To bounce the ball, we once again add a couple of lines of code to our render()
function as follows:

var step=0;
function render() {
 ...
 step+=0.04;
 sphere.position.x = 20+(10*(Math.cos(step)));
 sphere.position.y = 2 +(10*Math.abs(Math.sin(step)));
 ...
 requestAnimationFrame(render);
 renderer.render(scene, camera);
 }

With the cube we changed the rotation property; for the sphere we're going to
change its position in the scene. We want the sphere to bounce from one point in
the scene to another with a nice, smooth curve.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[31]

For this we need to change its position on the x axis and its position on the y axis.
The Math.cos() and Math.sin() functions help us in creating a smooth trajectory
by using the step variable. I won't go into the details of how this works here. For
now all that you need to know is that step+=0.04 defines the speed of the bouncing
sphere. In Chapter 8, Creating and Loading Advanced Meshes and Geometries, we'll go
into more detail of how these functions can be used for animation, and I'll explain
everything. The following screenshot shows the scene with the animation enabled:

Before wrapping up this chapter, I want to add one more element to our basic scene.
When working with 3D scenes, animations, colors, and properties like these, it often
requires a bit of experimenting to get the correct color or speed. It would be very
easy if you could just have a simple GUI that allows you to change these kind of
properties on the fly. Luckily, there is one.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First 3D Scene with Three.js

[32]

Using the dat.GUI library to make
experimenting easier
A couple of guys from Google created a library called dat.GUI (you can find the
documentation online at http://code.google.com/p/dat-gui/), which allows you
to very easily create a simple user interface component that can change the variables
in your code. In this part of the chapter, we'll use dat.GUI to add a user interface to
our example that allows us to:

• Control the speed of the bouncing ball
• Control the rotation of the cube

Just like we had to do for the statistics, we will first add this library to the <header>
of our HTML page by using the following code:

<script type="text/javascript" src="../libs/dat.gui.js"></script>

The next thing that we need to configure is a JavaScript object which will hold the
properties that we want to change using the dat.GUI library. In the main part of
our JavaScript code, we will add the following JavaScript object:

var controls = new function() {
 this.rotationSpeed = 0.02;
 this.bouncingSpeed = 0.03;
 }

In this JavaScript object we will define two properties: this.rotationSpeed and
this.bouncingSpeed along with their default values. Next, we will pass this object
into a new dat.GUI object and define the range for these two properties as shown:

var gui = new dat.GUI();
gui.add(controls, 'rotationSpeed',0,0.5);
gui.add(controls, 'bouncingSpeed',0,0.5);

The rotationSpeed and bouncingSpeed properties are both set to a range from 0 to
0.5. All that we need to do now is make sure that in our render loop, we reference
these two properties directly, so that when we make changes through the dat.GUI
user interface, it immediately affects the rotation and bounce speed of our objects.
This is shown as follows:

function render() {
 ...
 cube.rotation.x += controls.rotationSpeed;
 cube.rotation.y += controls.rotationSpeed;
 cube.rotation.z += controls.rotationSpeed;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[33]

 step+=controls.bouncingSpeed;
 sphere.position.x = 20+(10*(Math.cos(step)));
 sphere.position.y = 2 +(10*Math.abs(Math.sin(step)));
 ...
 }

Now when you run this example (05-control-gui.html), you'll see a simple user
interface that you can use to control the bouncing and rotation speeds of the objects:

Using the ASCII effect
Throughout the chapter, we've worked at creating a pretty-looking 3D rendering
by using the most modern browser features. Three.js also has a couple of interesting
features that you can use to change the way the output is rendered. Before ending
this chapter, I want to introduce you to one of these effects: the ASCII Effect. With
the ASCII effect you can change our beautiful animation scene to a retro ASCII art-
based animation, with a couple of lines of code. For this you have to change the last
couple of lines of our main JavaScript loop from:

$("#WebGL-output").append(renderer.domElement);

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Your First 3D Scene with Three.js

[34]

To the following:

var effect = new THREE.AsciiEffect(renderer);
effect.setSize(window.innerWidth, window.innerHeight);
$("#WebGL-output").append(effect.domElement);

You also have to make a small change to the render loop. Instead of
calling the renderer.render(scene, camera) method, you have to call
the effect.render(scene,camera) method. The result of this effect is
shown in the following screenshot:

I have to admit that it isn't very useful, but it does nicely show you how easy it is to
extend various parts of Three.js just because of its modularity.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[35]

Summary
That's it for the first chapter. In this chapter you've already learned a lot about the
basic concepts that make up each Three.js scene and this should give you a good
starting point for the next chapters. What you should remember from this chapter
is the following:

• You can find all the source code for the examples in this and the other
chapters online. The best way to learn is to play around and experiment
with these examples

• In the Three.js project, you created a scene to which you added the objects
(a geometry together with a material) that you wanted to render

• The materials that you used defined what the objects looked like. Each
material reacted in a different way to light sources

• Rendering shadows is expensive and needs to be turned on for the renderer,
for each object, and for each light

• You can do easy animations by just changing the position and the rotation
properties of the objects in the scene

• Statistics and custom controls can be easily added with the two helper
libraries and a couple of lines of JavaScript

In the next chapter we'll expand on the example that we've created here. You'll learn
more about the most important building blocks that you can use in Three.js in the
later chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Basic
Components That Make Up a

Three.js Scene
In the previous chapter you learned the basics of a Three.js library. We saw a couple
of examples and you created your first complete Three.js scene. In this chapter we'll
dive a bit deeper into the Three.js library and explain the basic components that
make up a Three.js scene. In this chapter you'll explore the following topics:

• Which components are used in a Three.js scene
• What you can do with the THREE.Scene() object
• How geometries and meshes are related
• The difference between the orthographic camera and the perspective camera

We will start by looking at how you can create a scene and add objects.

Creating a scene
In the previous chapter you've already created a THREE.Scene() object, so you
already know the basics of the Three.js library. We've seen that for a scene to show
anything, we need three types of components:

Component Description
Camera It determines what is rendered on the screen
Lights They have an effect on how materials are shown and used when creating

shadow effects (discussed in detail in Chapter 3, Working with the Different
Light Sources Available in Three.js)

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Basic Components That Make Up a Three.js Scene

[38]

Component Description
Objects These are the main objects that are rendered from the perspective of the

camera: cubes, spheres, and so on

The THREE.Scene() object serves as the container for all these different objects. This
object itself doesn't have too many options and functions.

Basic functionality of the scene
The best way to explore the functionality of the scene is by looking at an example. In
the source code for this chapter (chapter-02), you can find the 01-basic-scene.
html example. I'll use this example to explain the various functions and options
that a scene has. When we open this example in the browser, the output will look
something like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

This looks pretty much like the examples that we've seen in the previous chapter.
Even though the scene looks somewhat empty, it already contains a couple of
objects. By looking at the following source code, we can see that we've used the
Scene.add(object) function from the THREE.Scene() object to add a THREE.Mesh
(the ground plane that you see), a THREE.SpotLight. and a THREE.AmbientLight
object. The THREE.Camera object is added automatically by the Three.js library when
you render the scene, but can also be added manually if you prefer.

var scene = new THREE.Scene();
var camera = new THREE.PerspectiveCamera(45,
window.innerWidth / window.innerHeight, 0.1, 1000);
...
var planeGeometry = new THREE.PlaneGeometry(60,40,1,1);
var planeMaterial = new THREE.MeshLambertMaterial({color: 0xffffff});
var plane = new THREE.Mesh(planeGeometry,planeMaterial);
...
scene.add(plane);
var ambientLight = new THREE.AmbientLight(0x0c0c0c);
scene.add(ambientLight);
...
var spotLight = new THREE.SpotLight(0xffffff);
...
scene.add(spotLight);

Before we look deeper into the THREE.Scene() object, I'll first explain what you can
do in the demonstration, and after that we'll look at some code. Open this example in
your browser and look at the controls at the upper-right corner as you can see in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Basic Components That Make Up a Three.js Scene

[40]

With these controls you can add a cube to the scene, remove the last added cube
from the scene, and show all the current objects that the scene contains. The last
entry in the control section shows the current number of objects in the scene. What
you'll probably notice when you start up the scene is that there are already four
objects in the scene. These are the ground plane, the ambient light, the spot light,
and the camera that we had mentioned earlier. In the following code fragment, we'll
look at each of the functions in the control section and start with the easiest one: the
addCube() function:

this.addCube = function() {

 var cubeSize = Math.ceil((Math.random() * 3));
 var cubeGeometry = new
 THREE.CubeGeometry(cubeSize,cubeSize,cubeSize);
 var cubeMaterial = new THREE.MeshLambertMaterial(
 {color: Math.random() * 0xffffff });
 var cube = new THREE.Mesh(cubeGeometry, cubeMaterial);
 cube.castShadow = true;
 cube.name = "cube-" + scene.children.length;
 cube.position.x=-30 + Math.round(
 (Math.random() * planeGeometry.width));
 cube.position.y= Math.round((Math.random() * 5));
 cube.position.z=-20 + Math.round((Math.random() *
 planeGeometry.height));

 scene.add(cube);
 this.numberOfObjects = scene.children.length;
};

This piece of code should be pretty easy to read by now. Not many new concepts are
introduced here. When you click on the addCube button, a new THREE.CubeGeometry
instance is created with a random size between zero and three. Besides a random size,
the cube also gets a random color and position in the scene.

A new thing in this piece of code is that we also give the cube a name by using
the name attribute. Its name is set to cube- appended with the number of objects
currently in the scene (shown by the scene.children.length property). So
you'll get names like cube-1, cube-2, cube-3, and so on. A name can be useful for
debugging purposes, but can also be used to directly find an object in your scene.
If you use the Scene.getChildByName(name) function, you can directly retrieve a
specific object and, for instance, change its location. You might wonder what the last
line in the previous code snippet does. The numberOfObjects variable is used by our
control GUI to list the number of objects in the scene. So whenever we add or remove
an object, we set this variable to the updated count.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

The next function that we can call from the control GUI is removeCube and, as the
name implies, clicking on this button removes the last added cube from the scene.
The following code snippet shows how this function is defined:

 this.removeCube = function() {
 var allChildren = scene.children;
 var lastObject = allChildren[allChildren.length-1];
 if (lastObject instanceof THREE.Mesh) {
 scene.remove(lastObject);
 this.numberOfObjects = scene.children.length;
 }
 }

To add an object to the scene we will use the add() function. To remove an object
from the scene we use the not very surprising remove() function. In the given code
fragment we have used the children property from the THREE.Scene() object to get
the last object that was added. We also need to check whether that object is a Mesh
object in order to avoid removing the camera and the lights. After we've removed the
object, we will once again update the GUI property that holds the number of objects
in the scene.

The final button on our GUI is labeled as outputObjects. You've probably already
clicked on it and nothing seemed to happen. What this button does is print out all
the objects that are currently in our scene and will output them to the web browser
Console as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Basic Components That Make Up a Three.js Scene

[42]

The code to output information to the Console log makes use of the built-in
console object as shown:

 this.outputObjects = function() {
 console.log(scene.children);
 }

This is great for debugging purposes; especially when you name your objects, it's
very useful for finding issues and problems with a specific object in your scene.
For instance, the properties of the cube-17 object will look like the following
code snippet:

__webglActive: true
__webglInit: true
_modelViewMatrix: THREE.Matrix4
_normalMatrix: THREE.Matrix3
_vector: THREE.Vector3
castShadow: true
children: Array[0]
eulerOrder: "XYZ"
frustumCulled: true
geometry: THREE.CubeGeometry
id: 20
material: THREE.MeshLambertMaterial
matrix: THREE.Matrix4
matrixAutoUpdate: true
matrixRotationWorld: THREE.Matrix4
matrixWorld: THREE.Matrix4
matrixWorldNeedsUpdate: false
name: "cube-17"
parent: THREE.Scene
position: THREE.Vector3
properties: Object
quaternion: THREE.Quaternion
receiveShadow: false
renderDepth: null
rotation: THREE.Vector3
rotationAutoUpdate: true
scale: THREE.Vector3
up: THREE.Vector3
useQuaternion: false
visible: true
__proto__: Object

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

So far we've seen the following scene-related functionality:

• Scene.Add(): This method adds an object to the scene
• Scene.Remove(): This removes an object from the scene
• Scene.children(): This method gets a list of all the children in the scene
• Scene.getChildByName(): This gets a specific object from the scene by using

the name attribute

These are the most important scene-related functions, and most often you won't
need any more. There are, however, a couple of helper functions that could come in
handy, and I'd like to show them based on the code that handles the cube rotation.

As you've already seen in the previous chapter, we had used a render loop to render
the scene. Let's look at the same code snippet for this example:

function render() {
 stats.update();
 scene.traverse(function(e) {
 if (e instanceof THREE.Mesh && e != plane) {
 e.rotation.x+=controls.rotationSpeed;
 e.rotation.y+=controls.rotationSpeed;
 e.rotation.z+=controls.rotationSpeed;
 }
 });

 requestAnimationFrame(render);
 renderer.render(scene, camera);
}

Here we can see that the THREE.Scene.traverse() function is being used. We can
pass a function as an argument to the traverse() function. This passed in function
will be called for each child of the scene. In the render() function, we will use the
traverse() function to update the rotation for each of the cube instances (we will
explicitly ignore the ground plane). We could also have done this by iterating over
the children property array by using a for loop.

Before we dive into the Mesh and Geometry object details, I'd like to show
you two interesting properties that you can set on the Scene object: fog and
overrideMaterial.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Basic Components That Make Up a Three.js Scene

[44]

Adding the fog effect to the scene
The fog property let's you add a fog effect to the complete scene. The farther an
object is, the more it will be hidden from sight. The following screenshot shows
how the fog property is enabled:

Enabling the fog property is really easy to do in the Three.js library. Just add the
following line of code after you've defined your scene:

scene.fog=new THREE.Fog(0xffffff, 0.015, 100);

Here we are defining a white fog (0xffffff). The last two properties can be used to
tune how the mist will appear. The 0.015 value sets the near property and the 100
value sets the far property. With these properties you can determine where the mist
will start and how fast it will get denser. There is also a different way to set the mist
for the scene; for this you will have to use the following definition:

scene.fog=new THREE.FogExp2(0xffffff, 0.015);

This time we don't specify the near and far properties, but just the color and the
mist density. It's best to experiment a bit with these properties in order to get the
effect that you want.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

Using the overrideMaterial property
The last property that we will discuss for the scene is the overrideMaterial
property, which is used to fix the materials of all the objects. When you use this
property as shown in the following code snippet, all the objects that you add to
the scene will make use of the same material:

scene.overrideMaterial = new
 THREE.MeshLambertMaterial({color: 0xffffff});

The scene will be rendered as shown in the following screenshot:

In the earlier screenshot, you can see that all the cube instances are rendered
by using the same material and color. In this example we've used a
MeshLambertMaterial object as the material. With this material type, you can create
non-shiny looking objects which will respond to the lights that you add to the scene.
In Chapter 4, Working with the Three.js Materials, you'll learn more about this material.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Basic Components That Make Up a Three.js Scene

[46]

In this section we've looked at the first of the core concepts of the Three.js library:
the scene. The most important thing to remember about the scene is that it is
basically a container for all the objects, lights, and cameras that you want to use
while rendering. The following table summarizes the most important functions
and attributes of the Scene object:

Function/Property Description
add(object) Adds an object to the scene. You can also use this function, as

we'll see later, to create groups of objects.
children Returns a list of all the objects that have been added to the

scene, including the camera and lights.
getChildByName(name) When you create an object, you can give it a distinct name

by using the name attribute. The Scene object has a function
that you can use to directly return an object with a specific
name.

remove(object) If you've got a reference to an object in the scene, you can also
remove it from the scene by using this function.

traverse(function) The children attribute returns a list of all the children in
the scene. With the traverse() function we can also access
these children by passing in a callback function.

fog This property allows you to set the fog for the scene. It will
render a haze that hides the objects that are far away.

overrideMaterial With this property you can force all the objects in the scene to
use the same material.

In the next section we'll look closely at the objects that you can add to the scene.

Working with the Geometry and Mesh
objects
In each of the examples so far you've already seen the geometries and meshes that are
being used. For instance, to add a sphere object to the scene we did the following:

var sphereGeometry = new THREE.SphereGeometry(4,20,20);
var sphereMaterial = new THREE.MeshBasicMaterial({color: 0x7777ff);
var sphere = new THREE.Mesh(sphereGeometry,sphereMaterial);

We have defined the shape of the object, its geometry, what this object looks like, its
material, and combined all of these in a mesh that can be added to a scene. In this
section we'll look a bit closely at what the Geometry and Mesh objects are. We'll start
with the geometry.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

The properties and functions of a geometry
The Three.js library comes with a large set of out-of-the-box geometries that you can
use in your 3D scene. Just add a material, create a mesh variable, and you're pretty
much done. The following screenshot, from example 04-geometries.html, shows a
couple of the standard geometries available in the Three.js library:

In Chapter 5, Learning to Work with Geometries, and Chapter 6, Using Advanced Geometries
and Binary Operations, we'll explore all the basic and advanced geometries that the
Three.js library has to offer. For now, we'll go into more detail on what the geometry
variable actually is.

A geometry in Three.js, and in most other 3D libraries, is basically a collection of
points in a 3D space and a number of faces connecting all those points together.
Take, for example, a cube:

• A cube has eight corners. Each of these corners can be defined as a
combination of x, y, and z coordinates. So, each cube has eight points
in a 3D space. In the Three.js library, these points are called vertices.

• A cube has six sides, with one vertex at each corner. In the Three.js library,
each of these sides is called a face.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Basic Components That Make Up a Three.js Scene

[48]

When you use one of the Three.js library-provided geometries, you don't have to
define all the vertices and faces yourself. For a cube you only need to define the
width, height, and depth. The Three.js library uses that information and creates a
geometry with eight vertices at the correct position and the correct face. Even though
you'd normally use the Three.js library-provided geometries, or generate them
automatically, you can still create geometries completely by hand by defining the
vertices and faces. This is shown in the following code snippet:

var vertices = [
 new THREE.Vector3(1,3,1),
 new THREE.Vector3(1,3,-1),
 new THREE.Vector3(1,-1,1),
 new THREE.Vector3(1,-1,-1),
 new THREE.Vector3(-1,3,-1),
 new THREE.Vector3(-1,3,1),
 new THREE.Vector3(-1,-1,-1),
 new THREE.Vector3(-1,-1,1)
];

var faces = [
 new THREE.Face3(0,2,1),
 new THREE.Face3(2,3,1),
 new THREE.Face3(4,6,5),
 new THREE.Face3(6,7,5),
 new THREE.Face3(4,5,1),
 new THREE.Face3(5,0,1),
 new THREE.Face3(7,6,2),
 new THREE.Face3(6,3,2),
 new THREE.Face3(5,7,0),
 new THREE.Face3(7,2,0),
 new THREE.Face3(1,3,4),
 new THREE.Face3(3,6,4),
];

var geom = new THREE.Geometry();
geom.vertices = vertices;
geom.faces = faces;
geom.computeCentroids();
geom.mergeVertices();

This code shows you how to create a simple cube. We have defined the points
that make up this cube in the vertices array. These points are connected to
create triangular faces and are stored in the faces array. For instance, the new
THREE.Face3(0,2,1) element creates a triangular face by using the points 0, 2,
and 1 from the vertices array.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

In this example we have used a THREE.Face3 element to define the
six sides of the cube, that is, two triangles for each face. In the previous
versions of the Three.js library, you could also use a quad instead of a
triangle. A quad uses four vertices instead of three to define the face.
Whether using quads or triangles is better is a much-heated debate in
the 3D modeling world. Basically, using quads is often preferred during
modeling, since they can be more easily enhanced and smoothed much
easier than triangles. For rendering and game engines, though, working
with triangles is easier since every shape can be rendered as a triangle.

Using these vertices and faces, we can now create our custom geometry, and use it
to create a mesh. I've created an example that you can use to play around with the
position of the vertices. In example 05-custom-geometry.html, you can change the
position of all the vertices of a cube. This is shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Basic Components That Make Up a Three.js Scene

[50]

This example, which uses the same setup as all our other examples, has a render
loop. Whenever you change one of the properties in the drop-down control box, the
cube is rendered correctly based on the changed position of one of the vertices. This
isn't something that works out-of-the-box. For performance reasons, the Three.js
library assumes that the geometry of a mesh won't change during its lifetime. To get
our example to work we need to make sure that the following is added to the code in
the render loop:

mesh.geometry.vertices=vertices;
mesh.geometry.verticesNeedUpdate=true;
mesh.geometry.computeFaceNormals();

In the first line of the given code snippet, we point the vertices of the mesh that you
see on the screen to an array of the updated vertices. We don't need to reconfigure
the faces, since they are still connected to the same points as they were before. After
we've set the updated vertices, we need to tell the geometry that the vertices need
to be updated. We can do this by setting the verticesNeedUpdate property of
the geometry to true. Finally we will do a recalculation of the faces to update the
complete model by using the computeFaceNormals() function.

The last geometry functionality that we'll look at is the clone() function. We had
mentioned that the geometry defines the form, the shape of an object, and combined
with a material we can create an object that can be added to the scene to be rendered
by the Three.js library. With the clone() function, as the name implies, we can make
a copy of the geometry and, for instance, use it to create a different mesh with a
different material. In the same example, that is, 05-custom-geometry.html, you can
see a clone button at the top of the control GUI, as seen in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[51]

If you click on this button, a clone will be made of the geometry as it currently is,
and a new object is created with a different material and is added to the scene. The
code for this is rather trivial, but is made a bit more complex because of the materials
that I have used. Let's take a step back and first look at the code that was used to
create the green material for the cube:

var materials = [
 new THREE.MeshLambertMaterial({ opacity:0.6,
 color: 0x44ff44,
 transparent:true }),
 new THREE.MeshBasicMaterial({ color: 0x000000,
 wireframe: true })
];

As you can see, I didn't use a single material, but an array of two materials. The
reason is that besides showing a transparent green cube, I also wanted to show you
the wireframe, since that shows very clearly where the vertices and faces are located.
The Three.js library, of course, supports the use of multiple materials when creating
a mesh. You can use the SceneUtils.createMultiMaterialObject() function for
this as shown:

var mesh = THREE.SceneUtils.createMultiMaterialObject(
 geom,materials);

What the Three.js library does in this function is that it doesn't create one THREE.Mesh
instance, but it creates one for each material that you have specified, and puts all of
these meshes in a group. This group can be used in the same manner that you've used
for the Scene object. You can add meshes, get meshes by name, and so on. For instance,
to add shadows to all the children in this group, we will do the following:

mesh.children.forEach(function(e) {e.castShadow=true});

Now back to the clone() function that we were discussing earlier:

this.clone = function() {

 var cloned = mesh.children[0].geometry.clone();
 var materials = [
 new THREE.MeshLambertMaterial({ opacity:0.6,
 color: 0xff44ff,
 transparent:true }),
 new THREE.MeshBasicMaterial({ color: 0x000000,
 wireframe: true })
];

 var mesh2 =

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Basic Components That Make Up a Three.js Scene

[52]

 THREE.SceneUtils.createMultiMaterialObject(cloned,materials);
 mesh2.children.forEach(function(e) {e.castShadow=true});
 mesh2.translateX(5);
 mesh2.translateZ(5);
 mesh2.name="clone";
 scene.remove(scene.getChildByName("clone"));
 scene.add(mesh2);
}

This piece of JavaScript is called when the clone button is clicked on. Here we clone
the geometry of the first child of the cube. Remember, the mesh variable contains
two children: a mesh that uses the MeshLambertMaterial and a mesh that uses the
MeshBasicMaterial. Based on this cloned geometry, we will create a new mesh,
aptly named mesh2. We can move this new mesh by using the translate() function
(more on this in Chapter 5, Learning to Work with Geometries), remove the previous
clone (if present), and add the clone to the scene.

That's enough on geometries for now.

The functions and attributes for a mesh
We've already learned that, in order to create a mesh, we need a geometry and one or
more materials. Once we have a mesh, we can add it to the scene, and it is rendered.
There are a couple of properties that you can use to change where and how this mesh
appears in the scene. In the first example, we'll look at the following set of properties
and functions:

Function/Property Description
position Determines the position of this object relative to the position

of its parent. Most often the parent of an object is a THREE.
Scene() object.

rotation With this property you can set the rotation of an object around
any of its axes.

scale This property allows you to scale the object around its x, y, and
z axes.

translateX(amount) Moves the object through the specified amount over the x axis.
translateY(amount) Moves the object through the specified amount over the y axis.
translateZ(amount) Moves the object through the specified amount over the z axis.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[53]

As always, we have an example ready for you that'll allow you to play around with
these properties. If you open up the 06-mesh-properties.html example in your
browser, you will get a drop-down menu where you can alter all these properties
and directly see the result, as shown in the following screenshot:

Let me walk you through them; I'll start with the position property. We've already
seen this property a couple of times, so let's quickly address it. With this property
you can set the x, y, and z coordinates of the object. The position of an object is
relative to its parent object, which usually is the scene that you have added the object
to. We'll get back to this in Chapter 5, Learning to Work with Geometries, when we will
look at grouping objects. We can set an object's position property in three different
ways; each coordinate can be set directly as follows:

cube.position.x=10;
cube.position.y=3;
cube.position.z=1;

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Basic Components That Make Up a Three.js Scene

[54]

But we can also set all of them at once:

cube.position.set(10,3,1);

There is also a third option. The position property is a THREE.Vector3 object. This
means that we can also do the following to set this object:

cube.postion=new THREE.Vector3(10,3,1)

I want to make a quick sidestep before looking at the other properties of this mesh.
I had mentioned that this position is set relative to the position of its parent. In the
previous section on THREE.Geometry, we made use of the THREE.SceneUtils.
createMultiMaterialObject object to create a multimaterial object. I had explained
that this doesn't really return a single mesh, but a group that contains a mesh based
on the same geometry for each material. In our case, it is a group that contains two
meshes. If we change the position of one of the meshes that is created, you can
clearly see that there really are two distinct objects. However, if we now move the
created group around, the offset will remain the same. These two meshes are shown
in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[55]

In Chapter 8, Creating and Loading Advanced Meshes and Geometries, we will look
deeper into the parent-child relations and how grouping affects transformation,
such as scaling, rotation, and translation. Ok, the next one on the list is the rotation
property. You've already seen this property being used a couple of times in this as
well as the previous chapter. With this property, you can set the rotation of the object
around one of its axes. You can set this value in the same manner as we did the for
the position property. A complete rotation, as you might remember from math
class, is two pi. The following code snippet shows how to configure this:

cube.rotation.x=0.5*Math.PI;
cube.rotation.set(0.5*Math.PI,0,0);
cube.rotation = new THREE.Vector3(0.5*Math.PI,0,0);

You can play around with this property by using the 06-mesh-properties.html
example.

The next property on our list is one that we haven't talked about: scale. The name
pretty much sums up what you can do with this property. You can scale the object
along a specific axis. If you set the scale to values smaller than one, the object will
shrink as shown:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Basic Components That Make Up a Three.js Scene

[56]

When you use values larger than one, the object will become larger as shown in the
screenshot that follows:

The last part of the mesh that we'll look at in this chapter is the translate functionality.
With translate, you can also change the position of an object, but instead of defining
the absolute position of where you want the object to be, you will define where
the object should move to, relative to its current position. For instance, we've got a
sphere object that is added to a scene and its position has been set to (1,2,3). Next,
we will translate the object along its x axis by translateX(4). Its position will now
be (5,2,3). If we want to restore the object to its original position we will set it to
translateX(-4). In the 06-mesh-properties.html example, there is a menu tab
called translate. From there you can experiment with this functionality. Just set the
translate values for the x, y, and z axes, and click on the translate button. You'll see
that the object is being moved to a new position based on these three values.

For more information on meshes, geometries, and what you can do with these
objects, look at Chapter 5, Learning to Work with Geometries, and Chapter 7, Particles
and the Particle System.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[57]

Using the available cameras for different
uses
There are two different camera types in the Three.js library: the orthographic
camera and the perspective camera. In Chapter 3, Working with the Different Light
Sources Available in Three.js, we'll have a more detailed look at how to work with
these cameras, so for this chapter I'll stick to the basics. The best way to explain
the difference between these cameras is by looking at a couple of examples.

The orthographic camera versus the
perspective camera
In the examples for this chapter you can find an example called 07-both-cameras.
html. When you open this example, you'll see something like the following screenshot:

This is called a perspective view and is the most natural view. As you can see from
this screenshot, the further away the cubes are from the camera, the smaller they
are rendered.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Basic Components That Make Up a Three.js Scene

[58]

If we change the camera to the other type supported by the Three.js library, which is
the orthographic camera, you'll see the following view of the same scene:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[59]

With the orthographic camera, all the cubes are rendered at the same size; the
distance between an object and the camera doesn't matter. This is often used in
2D games such as SimCity 4 and older versions of Civilization as shown in the
following screenshot:

In our examples we'll be using the perspective camera the most, since it best
resembles the real world. Switching cameras is really very easy. The following piece
of code is called whenever you click on the switchCamera button in the 07-both-
cameras.html example:

this.switchCamera = function() {
 if (camera instanceof THREE.PerspectiveCamera) {
 camera = new THREE.OrthographicCamera(
 window.innerWidth / - 16, window.innerWidth / 16,

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Basic Components That Make Up a Three.js Scene

[60]

 window.innerHeight / 16, window.innerHeight / - 16,
 -200, 500);
 camera.position.x = 2;
 camera.position.y = 1;
 camera.position.z = 3;
 camera.lookAt(scene.position);
 this.perspective = "Orthographic";
 } else {
 camera = new THREE.PerspectiveCamera(45,
 window.innerWidth / window.innerHeight, 0.1, 1000);
 camera.position.x = 120;
 camera.position.y = 60;
 camera.position.z = 180;

 camera.lookAt(scene.position);
 this.perspective = "Perspective";
 }
};

In this listing you can see that there is a difference in the way we create the THREE.
PerspectiveCamera as opposed to the THREE.OrthographicCamera object. Let's
look at the THREE.PerspectiveCamera object first. It takes the following arguments:

Argument Description
fov fov stands for field of view. This is the part of the scene that can be seen

from the position of the camera. Humans, for instance, have an almost
180-degree field of view, while some birds might even have a complete
360-degree field of view.
But since a normal computer screen doesn't completely fill our vision,
normally a smaller value is chosen. Most often, for games, a field of view
between 60 and 90 degrees is chosen.
Good default: 45

aspect This is the aspect ratio between the horizontal and vertical size of the
area where we'll render the output. In our case, since we will use the
entire window, we will just use that ratio. The aspect ratio determines the
difference between the horizontal field of view and the vertical field of
view as you can see in the figure on the following page.
Good default: window.innerWidth/window.innerHeight

near The near property defines from how close to the camera the Three.js
library should render the scene. Normally we set this to a very small value
to directly render everything from the position of the camera.
Good default: 0.1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[61]

Argument Description
far The far property defines how far the camera can see from the position

of the camera. If we set this as too low, a part of our scene might not be
rendered; if we set it as too high, in some cases, it might affect the rendering
performance.
Good default: 1000

The following figure gives a good overview of how these properties work together to
determine what you will see:

Camera

Near plane

Far plane

Horizontal Field of View

fov

Vertical Field of View

To configure the orthographic camera, we need to use other properties. The
orthographic projection isn't interested in the aspect ratio to use, or with what field
of view we look at the scene. All the objects are rendered at the same size. For an
orthographic camera, you need to define the cube that needs to be rendered. The
properties for the OrthographicCamera object reflect this in the following table:

Argument Description
left This is described in the Three.js documentation as Camera frustum left

plane. You should see this as what is the left border of what will be
rendered. If we set this value to -100, you won't see any objects that are
farther to the left.

right The same as for the left property, but this time it is to the other side of the
screen. Anything farther to the right won't be rendered.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Basic Components That Make Up a Three.js Scene

[62]

Argument Description
top The top position to be rendered.
bottom The bottom position to be rendered.
near From this point, based on the position of the camera, the scene will be

rendered.
far To this point, based on the position of the camera, the scene will be

rendered.

All of these properties can be summarized in the following figure:

Near plane
Far plane

Left

Top

Right

Bottom

Focusing the camera on a specific point
So far we've seen how to create a camera and what the various arguments mean.
In the previous chapter, we've also seen that you need to position your camera
somewhere in the scene and that the view from that camera to the center of the scene
is rendered. Normally the camera is pointed to the center of the scene by using the
coordinates: position (0,0,0). We can, however, easily change what the camera is
looking at as shown:

camera.lookAt(new THREE.Vector3(x,y,z));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[63]

I've added an example where the camera moves and the point it is looking at is
marked with a red dot, as you can see in the following screenshot:

If you open the example 08-cameras-lookat.html, you'll see that the scene is
moving from left to right. The scene isn't really moving. The camera is looking at
different points (see the red dot in the center), which gives the effect that the scene
is moving from left to right. In this example you can also switch the camera to the
orthographic one. There you will see that changing where the camera looks at has a
different effect than it does on the perspective camera.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Basic Components That Make Up a Three.js Scene

[64]

Summary
We've discussed a lot of items in this second introduction chapter and this
should give you a good overview of what a scene is and what the most important
components of a scene are. In the next couple of chapters we'll dive a lot deeper
into the details of the Three.js library. The following are a few of the points that
you should remember from this chapter:

• The scene is the main container in the Three.js library. You can add the
objects that you want to render to a scene.

• A scene hasn't got too many specific options and properties. The most
important ones allow you to add objects, remove objects, and work on the
children attribute of the scene.

• You can easily add the fog property to the scene by configuring one of the
supplied Fog objects.

• Geometries and meshes work closely together. A geometry defines the
shape of an object, and combined with a material you can create a mesh.
The Three.js library can render the mesh.

• The Three.js library comes with a large number of standard geometries. You
can, however, create your own ones, but that is a lot of work if not done
through an algorithm.

• You can programmatically control the position, rotation, and scale
of a mesh.

• With the translate property, you can move the mesh relative to its
current position.

• To render a scene, we need a camera. In the Three.js library there are two
different types of cameras: a perspective camera and an orthographic camera.

• The perspective camera renders the scene in a real world-like perspective.
• The orthographic camera renders all objects of the same size and doesn't take

the distance to the camera into account. Use this for SimCity-like effects.

In the next chapter we'll look at the various light sources that are available in the
Three.js library. You'll learn how the various light sources behave, how to create
and configure them, and the effect that they'll have on specific materials.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Different
Light Sources Available

in Three.js
In the first chapter you learned about the basics of the Three.js library, and in the
previous chapter we looked a bit deeper into the most important parts of the scene:
the geometries, meshes, and cameras. You might have noticed that we skipped lights
in that chapter even though they make up an important part of every Three.js scene.
Without lights, we won't see anything that is rendered. Since the Three.js library
contains a large number of lights, each of which has a specific use, we'll use this
whole chapter to explain the various details of the lights and prepare you for the next
chapter on material usage. In this chapter you'll learn about the following topics:

• Which light sources are available in the Three.js library
• When you should use a specific light source
• How you can tune and configure the behavior of all these light sources
• As a bonus, we'll also quickly look at how you can create lens flares

As with all the chapters, we've got a lot of examples that you can use to experiment
with the lights' behavior. The examples shown in this chapter can be found in the
chapter-03 folder of the supplied sources.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Different Light Sources Available in Three.js

[66]

Exploring the lights provided by Three.js
There are a number of different lights available in the Three.js library that have
specific behavior and usage. In this chapter we'll discuss the following set of lights:

Name Description
AmbientLight This is the basic light whose color is added to the current color

of the complete scene and objects.
PointLight A single point in space that emanates light in all directions.
SpotLight This light source has a cone effect like a desk lamp, a spot in the

ceiling, or a torch.
DirectionalLight Also called as an infinite light. The light rays from this light can

be seen as parallel. For instance, light from the sun.
HemisphereLight This is a special light and can be used to create more

natural-looking outdoor lighting by simulating a reflective
surface and a faintly emanating sky.

AreaLight With this light source you can specify an area that emanates
light, instead of a single point in space.

LensFlare Not a light source, but with a lens flare you can add a
LensFlare effect to the lights in your scene.

This chapter is divided into two main parts. First we'll look at the basic lights:
AmbientLight, PointLight, SpotLight, and DirectionalLight. These are simple
lights that require little setup, and can be used to recreate most of the required
lighting scenarios. In the second part, we will look at a couple of special purpose
lights and effects: HemisphereLight, AreaLight, and the LensFlare effect. You'll
probably only need these lights in very specific cases.

Learning about the basic lights
We'll start with the most basic of the lights: the AmbientLight.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

AmbientLight – a globally applied light source
When you create an AmbientLight source, the color is applied globally. There isn't
a specific direction that this light comes from and the AmbientLight source doesn't
contribute to any shadows. You don't use an AmbientLight as the single source
of light in a scene. You will use it together with the other light sources, such as a
SpotLight or a DirectionalLight, to soften the shadows or add some color to the
scene. The easiest way to understand this is by looking at the 01-ambient-light.html
example in the chapter-03 folder. In this example you will get a simple user interface
that can be used to modify the AmbientLight source that is added to the scene.

In this scene, we have a SpotLight source that handles
the lighting of the objects and provides shadows.

In the following screenshot, you can see that we've used the scene from the first
chapter and made the color of the AmbientLight source configurable:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Different Light Sources Available in Three.js

[68]

The standard color that we will use in this scene is #0c0c0c. This is a hexadecimal
representation of the color; if you're not familiar with specifying colors in
hexadecimal, you can find more information in Wikipedia: http://en.wikipedia.
org/wiki/Web_colors#Hex_triplet. In this example we will use a very dimmed
light gray color that will smoothen the hard shadows that our meshes cast on the
ground plane. If you want to change this color to a more prominent green color
(#007700), you can do so in the menu at the top-right corner; the objects will then
have a light green glow over them. This is shown in the following screenshot:

As the earlier screenshot shows, the green color is applied to all the objects and
casts a green glow over the complete scene. What you should remember while
working with this light is that you should be very conservative with the color that
you specify. If the color that you specify is too bright, you'll quickly get a completely
oversaturated image.

Now that we've seen what an AmbientLight does, let's look at how you can
create and use an AmbientLight source. The following couple of lines of code
will show you how to create an AmbientLight source and also how to connect
it to the dat.GUI control menu:

var ambiColor = "#0c0c0c";
var ambientLight = new THREE.AmbientLight(ambiColor);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

scene.add(ambientLight);
...

var controls = new function() {
 this.ambientColor = ambiColor ;
}

var gui = new dat.GUI();
gui.addColor(controls, 'ambientColor').onChange(function(e) {
 ambientLight.color = new THREE.Color(e);
});

Creating an AmbientLight source is very trivial. Since an AmbientLight source
doesn't have a position, we only need to specify the color (in hex) by using new
THREE.AmbientLight(ambiColor);. Add this light to the scene and you're done.
In the example we have bound the color of the AmbientLight source to the control
menu. To do this, you can use the same kind of configuration that we've used in
the previous chapters. The only change is that instead of using the gui.add(...)
function, we will use the gui.addColor(...) function. This will create an option
in the control menu, with which we can directly change the color of the passed in
variable. In the code you can see that we have used the onChange feature of the dat.
GUI control menu as gui.addColor(...).onChange(function(e){...}). With this
function we will tell the dat.GUI control menu to call the passed in function each
time the color changes. In this specific case we will set the color of our AmbientLight
source to a new value.

Using the THREE.Color() object
Before we move on to the next light, a quick note on using the THREE.Color() object.
In the Three.js library, when you construct an object, you can (usually) specify the
color as either a hex string (#0c0c0c) or a hex value (0x0c0c0c). The Three.js library,
internally, will convert this to a THREE.Color() object. If you want to change the
color after construction, you'll have to create a new THREE.Color() object (once
again by using a hex string or value) or modify the internal properties of the current
THREE.Color() object. This object comes with the following functions to set and get
information about the current object:

Name Description
set(value) Sets the value of this color to the supplied hex value.

This hex value may either be a string or number.
setHex(value) Sets the value of this color to the supplied numeric hex

value.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Different Light Sources Available in Three.js

[70]

Name Description
setRGB(r,g,b) Sets the value of this color based on the supplied RGB

values. The values range from 0 to 1.
setHSV(h,s,v) Sets the value of this color based on the supplied HSV

values. The values range from 0 to 1.
setStyle(style) Sets the value of this color based on a CSS color.
copy(color) Copies the color values from the provided color to this

color.
copyGammaToLinear(color) Mostly used internally:

Sets the color of this object based on the supplied
color. The color is first converted from the gamma
color space to the linear color space. The gamma color
space also uses RGB values, but uses an exponential
scale instead of a linear one.

copyLinearToGamma(color) Mostly used internally:
Sets the color of this object based on the supplied
color. The color is first converted from the linear color
space to the gamma color space.

convertGammaToLinear() Converts the current color from the gamma color
space to the linear color space.

convertLinearToGamma() Converts the current color from the linear color space
to the gamma color space.

getHex() Returns the value from this color object as a number.
getHexString() Returns the value from this color object as a hex string.
getStyle() Returns the value from this color object as a CSS-based

value.
getHSV() Returns the value from this color object as a HSV

value.
add(color) Adds the supplied color to the current color.
addColors(color1, color2) Mostly used internally:

Adds the supplied colors to the current color.
addScalar(s) Mostly used internally:

Adds a value to the RGB components of the current
color.

multiply(color) Mostly used internally:
Multiplies the current color by the supplied color.

multiplyScalar(s) Mostly used internally:
Multiplies the light by the supplied value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

Name Description
lerp(color, alpha) Mostly used internally:

Finds the color that is between the color of this
object and the supplied color. The resulting color is
multiplied by the supplied alpha value.

clone() Creates an exact copy of this color.

In this table you can see that there are many ways you can change the current color.
A lot of these functions are used internally by the Three.js library, but they also
provide a good way to easily change the color of the lights and materials.

The next light that we will look at is the PointLight.

PointLight – the light that shines in all
directions
A PointLight in the Three.js library is a light source that shines light in all directions,
emanating from a single point. A good example of a point light is a signal flare fired
in the night sky. Just as with all the lights, we've got a specific example that you can
use to play around with a PointLight. If you look at 02-point-light.html in the
chapter-03 folder, you can find an example where a PointLight source is moving
around a simple Three.js scene. The following screenshot shows this example:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Different Light Sources Available in Three.js

[72]

In this example from Chapter 1, Creating Your First 3D Scene with Three.js, a
PointLight source moves around the scene. To make it more clear where the
PointLight source is, we will move a small orange sphere along the same path.
As the light source will move around, you'll see the red cube and blue sphere
being illuminated from this light.

You might have noticed that we don't see any shadows in this
example. In the Three.js library, a PointLight source doesn't cast
shadows. Since a PointLight source emits light in all directions,
calculating shadows would be too heavy for the GPU.

With the AmbientLight source that we saw earlier, all you had to do was set the
color and add the light to the scene. With the PointLight source, however, we've
got a couple of additional options as shown:

Property Description
color The color of the light.
intensity The intensity that the light shines with. Defaults to 1.
distance The distance to which the light shines.
position The position of the light.
visible If set to true, the light is turned on; if set to false, the light is turned off.

In the next couple of examples and screenshots we'll explain these properties. First
off, let's look at how you can create a PointLight source:

var pointColor = "#ccffcc";
var pointLight = new THREE.PointLight(pointColor);
pointLight.distance = 100;
scene.add(pointLight);

Nothing new here. We will create a light with a specific color, set its position,
and add it to the scene. The first property that we'll look at is intensity. With this
property you can set how bright the light will shine. If you set it to 0 you won't see
anything, set it to 1 and you've got the default brightness, and set it to 2 and you will
get a light that shines twice as bright. In the following screenshot, for instance, we've
set the intensity property of the light to 2.4:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

All that you have to do to change the intensity property of the light is the following:

pointLight.intensity = 2.4;

You can also use the dat.GUI listener as in the following code snippet:

var controls = new function() {
 this.intensity = 1;
}
var gui = new dat.GUI();
 gui.add(controls, 'intensity', 0, 3).onChange(function (e) {
 pointLight.intensity = e;
 });

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Different Light Sources Available in Three.js

[74]

The final property of the PointLight source is a very interesting one, and best
explained with an example. In the following screenshot you will see the same scene
again, but this time with a very high intensity (as we have a very bright light), but
with a small distance:

The distance property of the SpotLight source determines how far the light will
travel from the source. You can set the property like this: pointLight.distance =
4;. In our example, the light's brightness (intensity) will slowly decrease to 0 at a
distance of 14. That's why you can still see a brightly-lit cube in the example, but
the light won't reach the blue sphere, as you can see in the earlier screenshot. The
default value for the distance property is 0, which means that the light won't decay
over a distance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

SpotLight – the light with a cone effect
A SpotLight is probably one of the lights that you'll use most often (especially
if you want a shadow). A SpotLight is a light source that has a cone effect.
You can compare this with a flashlight, or a lantern. This light has a direction
and an angle at which it produces light. The properties that we've seen for the
PointLight source also apply to the SpotLight. A SpotLight source also has
a number of additional properties:

Property Description
castShadow If set to true, this light will cast shadows.
shadowCameraNear From what point from the light the shadows should be

created.
shadowCameraFar To what point from the light should the shadows be created.
shadowCameraFov How large is the field of view that is used to create the

shadows (see the section on the perspective camera in
Chapter 2, Working with the Basic Components That Make Up a
Three.js Scene.)

target Determines where the light is aimed.
shadowBias Can be used to offset the position of the rendered shadow.
angle How wide the beam is from this light source. It is measured

in radians. Defaults to Math.PI/3.
exponent A light is aimed at a specific target. The farther away the

light source is from this direction, the more the light's
intensity will decrease. This value determines how fast the
light's intensity decreases.

onlyShadow If set to true, this light will only cast a shadow and won't
add any light to the scene.

shadowCameraVisible If set to true, you can see how and where this light source
casts a shadow (see the example in the following section).

shadowDarkness Defaults to 0.5. Defines how dark the shadow is rendered.
Can't be changed after the scene is rendered.

shadowMapWidth Determines how many pixels are used to create the shadow.
It can be increased when the shadow has jagged edges or
doesn't look smooth. Can't be changed after the scene is
rendered.

shadowMapHeight Determines how many pixels are used to create the shadow.
It can be increased when the shadow has jagged edges or
doesn't look smooth. Can't be changed after the scene is
rendered.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Different Light Sources Available in Three.js

[76]

Creating a SpotLight source is very easy. Just specify the color, set the properties
you want, and add it to the scene as shown:

var pointColor = "#ffffff";
var spotLight = new THREE.SpotLight(pointColor);
spotLight.position.set(-40, 60, -10);
spotLight.castShadow = true;
spotLight.target = plane;
scene.add(spotLight);

Not that different from the PointLight source. The only difference is that we will
set the castShadow property to true because we want shadows, and we need to set
the target for the SpotLight source. The target determines where the light is aimed
at. In this case we will point it at the center of the ground plane. When you run the
03-spot-light.html example, you'll see a scene like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

In this example you can set a number of SpotLight-specific properties. One of them
is the target property. If we set this property to the blue sphere, the light will
stay aimed at the center of the sphere, even if it moves around the scene. When we
created the light source, we aimed it at the ground plane, and in our example we
can also aim it at the other two objects. But what if you don't want to aim the light
at a specific object, but at an arbitrary point in space? You can do that by creating an
empty THREE.Object3D() instance as follows:

var target = new THREE.Object3D();
target.position = new THREE.Vector3(5, 0, 0);

And set the target property of the SpotLight source as shown:

spotlight.target = target

In the table earlier in this section, we showed a couple of properties that can be used
to control how the light emanates from the SpotLight source. The distance and
angle properties define the shape of the cone. The angle property defines the width
of the cone and, with the distance property, we can set the length of the cone. If we
dive into the Three.js source code, we can find exactly how this is defined:

var coneLength = light.distance ? light.distance : 10000;
var coneWidth = coneLength * Math.tan(light.angle * 0.5) * 2;

Without diving too deep into trigonometry, let's have a quick look at the second
statement. The tangent function (Math.tan()) can be used to determine the ratio of the
opposite side (the cone width) to the length of the adjacent side (the cone length). The
following figure shows how the angle and cone length determine the cone width:

cone length

cone w
idth

angle

In the Three.js code, the light source angle is first divided by two (see the earlier
figure), since the tangent function should be used on right-angled triangles. To get
the cone width, the result from the Math.tan() function, the ratio, is multiplied by
the cone length. This gives us half the cone width, which we will multiply by two to
get the final cone width.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Different Light Sources Available in Three.js

[78]

Usually you won't have to set these values, since they come with reasonable defaults,
but you can use these properties, for instance, to create SpotLight sources that have
a very narrow beam, or quickly decrease in light intensity. The last property that you
can use to change the way a SpotLight light is perceived is the exponent property.
With this property, you can set how fast the light intensity will decrease from the
center of the light cone, as shown in the following screenshot:

We've got a very bright light (high intensity) that rapidly decreases in intensity
(high exponent) as it moves away from the center. We could also have created the
same focused beam effect by using a small exponent value, and a small angle.

A very small angle can quickly lead to artifacts (this is a term used
in graphics for unwanted distortions and strangely-rendered parts
of the screen) in the way that the light is rendered.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[79]

Before moving on to the next light, we'll quickly look at the shadow-related
properties that are available to the SpotLight source. We've already learned that
we can get shadows by setting the castShadow property of the SpotLight source
to true. The Three.js library also allows you very fine-grained control on how the
shadow is rendered. This is done by a couple of properties that we explained in the
table earlier in this section. With the shadowCameraNear, shadowCameraFar, and
shadowCameraFov properties, you can control how and where this light will cast a
shadow. This works in the same way as the perspective camera field of view that we
explained in the previous chapter. The easiest way to see this in action is by setting
the shadowCameraVisible property to true; you can do this by checking the menu's
debug checkbox. This shows the area that is used to determine the shadows for this
light, as you can see in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Different Light Sources Available in Three.js

[80]

I'll end this section with a couple of pointers should you run into issues with shadows:

• Enable the shadowCameraVisible property. This shows the area that is
affected by this light for shadow purposes.

• If the shadow looks blocky, you can either increase the shadowMapWidth
and shadowMapHeight properties, or make sure that the area that is
used to calculate the shadow tightly wraps your object. You can use the
shadowCameraNear, shadowCameraFar, and shadowCameraFov properties to
configure this area.

• Remember that you not only have to tell the light to cast shadows, you also
have to tell each geometry whether it will receive and/or cast shadows, by
setting the castShadow and receiveShadow properties.

DirectionalLight – for a far away sun-like light
source
The last one of the basic lights that we will look at is the DirectionalLight source.
A DirectionalLight source can be seen as a light that is very far away. All the light
rays that it sends out are parallel to each other. A good example for this is the sun.
The sun is so far away that the light rays we receive on Earth are parallel to each
other. The main difference between a DirectionalLight source and the SpotLight
source that we saw earlier is that this light won't diminish the farther away it gets
from the target of the DirectionalLight source, as it does with a SpotLight source.
The complete area that is lit by the DirectionalLight source receives the same
intensity of light.

To see this in action, look at example 04-directional-light.html, which is shown
in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[81]

As you can see, there isn't a cone of light that is applied to the scene. Everything
receives the same intensity of light. Only the direction, the color, and the
intensity of the load is used to calculate the colors and shadows.

Just as with the SpotLight source, there are a couple of properties that you can set to
control the intensity of the light and the way it casts shadows. A DirectionalLight
source has a lot of properties that are the same as those of a SpotLight: position,
target, intensity, distance, castShadow, onlyShadow, shadowCameraNear,
shadowCameraFar, shadowDarkness, shadowCameraVisible, shadowMapWidth,
shadowMapHeight, and shadowBias. For more information on these properties,
you can look at the earlier section on the SpotLight source. Only the additional
properties are discussed in the following couple of paragraphs.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Different Light Sources Available in Three.js

[82]

If you look at the SpotLight source examples, you would see that we had to define
the cone of light where shadows were applied. For a DirectionalLight source,
since all the rays are parallel to each other, we don't have a cone of light; instead,
we have a cube, as you can see in the following screenshot:

Everything that falls within the cube can cast and receive shadows from the light.
Just as for the SpotLight source, the tighter you define the area around the objects,
the better your shadows will look. You can define the cube instance by using the
following properties:

directionalLight.shadowCameraNear = 2;
directionalLight.shadowCameraFar = 200;
directionalLight.shadowCameraLeft = -50;
directionalLight.shadowCameraRight = 50;
directionalLight.shadowCameraTop = 50;
directionalLight.shadowCameraBottom = -50;

You can compare this with the way that we configured the orthographic camera in
the Using the available cameras for different uses, section in Chapter 2, Working with the
Basic Components That Make Up a Three.js Scene.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[83]

Using special lights for advanced lighting
In this section on special lights we'll discuss two additional lights provided by the
Three.js library. First we'll discuss the HemisphereLight source that helps to create
more natural lighting for outdoor scenes, then we'll look at an AreaLight source that
emits light from a large area instead of a single point, and finally we'll show you how
you can add a LensFlare effect to your scene.

HemisphereLight
The first special light that we're going to look at is the THREE.HemisphereLight.
With a HemisphereLight source, we can create a more natural-looking outdoor
lighting. Without this light we could simulate the outdoors by creating a
DirectionalLight source emulating the sun, and maybe add an AmbientLight
source to provide some general color to the scene. This, however, won't look really
natural. When you're outdoors, not all the light comes directly from above; much is
diffused by the atmosphere, reflected by the ground, and reflected by other objects.
The HemisphereLight source in the Three.js library is created for this scenario.
It provides an easy way to get more natural-looking outdoor lighting. To see an
example, look at 05-hemisphere-light.html. This is the first example that requires
a local web server. If you haven't done so, look at Chapter 1, Creating Your First 3D
Scene with Three.js, and set up a local web server. The following screenshot shows a
scene where a HemisphereLight source is used:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Different Light Sources Available in Three.js

[84]

In this example, you can turn the HemisphereLight source on and off, and set the
color and intensity. Creating a HemisphereLight source is very easy, as shown
in the following code snippet:

var hemiLight = new THREE.HemisphereLight(0x0000ff, 0x00ff00, 0.6);
hemiLight.position.set(0, 500, 0);
scene.add(hemiLight);

You just have to specify the color from the top, the color received from the sky, the
color received from the ground, and the intensity with which they shine. If you want
to change these properties later on, you can use the following properties:

Property Description
groundColor The color that is emitted from the ground
Color The color that is emitted from the sky
intensity The intensity with which the light shines

AreaLight
The last real light source that we'll look at is the AreaLight source. With the
AreaLight source, we can define a rectangular area that emits light. The AreaLight
source isn't included in the standard Three.js library, but in its extensions, so we have
to take a couple of additional steps before we can use this light source. Before we
look at the details, let's first look at the result that we're aiming for (06-area-light.
html opens this example):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[85]

When you want to use an AreaLight source, we can't use the THREE.WebGLRenderer
object that we've used in our examples so far. The reason is that an AreaLight source
is a very complex light source; this would cause a very serious performance penalty
in the normal THREE.WebGLRenderer object. The THREE.WebGLDeferredRenderer
object uses a different approach when rendering a scene and can handle complex
lights (or a very high number of light sources for that matter.)

To use the THREE.WebGLDeferredRenderer object, we have to include a couple of
additional Three.js-provided JavaScript sources. In the head of your HTML skeleton,
make sure that you've got the following set of <script/> sources defined:

<head>
 <title>Example 03.07 - Area Light</title>
 <script type="text/javascript" src="../libs/three.js"></script>
 <script type="text/javascript"
 src="../libs/jquery-1.9.0.js"></script>
 <script type="text/javascript" src="../libs/stats.js"></script>
 <script type="text/javascript" src="../libs/dat.gui.js"></script>
 <script type="text/javascript"
 src="../libs/WebGLDeferredRenderer.js"></script>
 <script type="text/javascript"
 src="../libs/ShaderDeferred.js"></script>
 <script type="text/javascript"
 src="../libs/RenderPass.js"></script>
 <script type="text/javascript"
 src="../libs/EffectComposer.js"></script>
 <script type="text/javascript"
 src="../libs/CopyShader.js"></script>
 <script type="text/javascript"
 src="../libs/ShaderPass.js"></script>
 <script type="text/javascript"
 src="../libs/FXAAShader.js"></script>
 <script type="text/javascript"
 src="../libs/MaskPass.js"></script>
</head>

With these libraries included, we can use the THREE.WebGLDeferredRenderer
object; you can use this renderer in pretty much the same way as the one that
we have used in the other examples. It just takes a couple of extra arguments,
as shown in the following code snippet:

var renderer = new THREE.WebGLDeferredRenderer({
 width: window.innerWidth,
 height: window.innerHeight,
 scale: 1, antialias: true,
 tonemapping: THREE.FilmicOperator, brightness: 2.5 });

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Different Light Sources Available in Three.js

[86]

Don't worry too much at the moment about what all these properties mean.
In Chapter 10, Loading and Working with Textures, we'll dive deeper into the
THREE.WebGLDeferredRenderer object and explain it to you. With the
correct JavaScript libraries and a different renderer, we can start adding the
Three.AreaLight object properties.

You can do this in pretty much the same way as all the other lights:

var areaLight1 = new THREE.AreaLight(0xff0000, 3);
areaLight1.position.set(-10, 10, -35);
areaLight1.rotation.set(-Math.PI / 2, 0, 0);
areaLight1.width = 4;
areaLight1.height = 9.9;
scene.add(areaLight1);

In this example, we have created a new THREE.AreaLight instance. This light has
a color of value 0xff0000 and an intensity of 3. Just like the other lights, we can
use the position attribute to set its location in the scene. When you create a THREE.
AreaLight instance, it will be created as a horizontal plane. In our example, we've
created three AreaLight sources that are positioned vertically, so we need to rotate
our lights by -Math.PI/2 around their x axes. Finally we will set the size of the
AreaLight source by using the width and height properties and add them to the
scene. If you try this by yourself for the first time, you might wonder why you don't
see anything where you positioned your light. This is because you can't see the light
source itself but the light that it emits, which you can only see when it touches an
object. If you want to recreate what I've shown in the example, you can add a plane
or cube at the same position to simulate the area emitting the light as follows:

var planeGeometry1 = new THREE.CubeGeometry(4, 10, 0);
var planeGeometry1Mat = new THREE.MeshBasicMaterial({color: 0xff0000})
var plane1 = new THREE.Mesh(planeGeometry1, planeGeometry1Mat);
plane1.position = areaLight1.position;
scene.add(plane1);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[87]

You can create really beautiful effects with a THREE.AreaLight instance, but you'll
probably have to experiment a bit to get the desired effect. If you pull down the dat.
GUI control panel at the top-right corner, you've got some controls that you can play
around with to set the color and intensity of the three lights from this scene, as
shown in the following screenshot:

LensFlare
The last subject that we'll explore in this chapter deals with lens flares. You are
probably already familiar with lens flares. For instance, they appear when you take
a photograph directly towards the sun. In most cases you want to avoid this, but for
games and 3D-generated images, it provides a nice effect that makes the scenes look
a bit more realistic.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Different Light Sources Available in Three.js

[88]

The Three.js library also has support for lens flares, and makes it very easy to add
them to your scene. In this section we're going to add a lens flare to a scene and
create the output you can see in the following screenshot. You can see this for
yourself by opening the 07-lensflares.html example.

We can create a lens flare by instantiating the THREE.LensFlare object. The first
thing that we need to do is create this object. The THREE.LensFlare object takes
the following arguments:

THREE.LensFlare=function(texture, size, distance, blending,
color);

These arguments are explained in the following table:

Argument Description
texture A texture argument is used as the material for the flare. This

determines what the flare looks like.
size We can specify how large the flare should be. This is the size in pixels. If

you specify -1, the size of the texture itself is used.
distance This is the distance from the light source (0) to the camera (1).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[89]

Argument Description
blending We can specify multiple texture arguments for the flares. The

blending mode determines how these are blended together. The default
to use with the LensFlare is THREE.AdditiveBlending, which
provides a nice semitransparent flare. More on this in the next chapter.

color The color of the flare.

Let's look at the code that is used to create this object (see example
07-lensflares.html):

var textureFlare0 = THREE.ImageUtils.loadTexture
 ("../assets/textures/lensflare/lensflare0.png");

var flareColor = new THREE.Color(0xffaacc);
var lensFlare = new THREE.LensFlare(textureFlare0, 350, 0.0, THREE.
AdditiveBlending, flareColor);

lensFlare.position = spotLight.position;
scene.add(lensFlare);

We will first load a texture. For this example I've used the LensFlare texture
provided in the Three.js library examples, as shown in the screenshot that follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Different Light Sources Available in Three.js

[90]

If you compare this texture with the screenshot that is present earlier in this section,
you can see that it defines what the lens flare looks like. Next, we will define the
color of the lens flare by using new THREE.Color(0xffaacc);. This will give the
lens flare a red glow. With these two objects, we can create the THREE.LensFlare
object. For this example we've set the size of the flare to 350 and the distance to
0.0 (directly at the light source.)

After we've created the THREE.LensFlare object, we will position it at the location of
our light and add it to the scene, as shown in the following screenshot:

It already looks nice, but if you compare this with the screenshot from earlier in the
chapter, you'll notice that we're missing the small round artifacts in the middle of the
page. We will create these in pretty much the same way as we did the main flare:

var textureFlare3 = THREE.ImageUtils.loadTexture
 ("../assets/textures/lensflare/lensflare3.png");

lensFlare.add(textureFlare3, 60, 0.6, THREE.AdditiveBlending);
lensFlare.add(textureFlare3, 70, 0.7, THREE.AdditiveBlending);
lensFlare.add(textureFlare3, 120, 0.9, THREE.AdditiveBlending);
lensFlare.add(textureFlare3, 70, 1.0, THREE.AdditiveBlending);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[91]

This time, though, we don't create a new THREE.LensFlare object, but use the
add() function provided by the THREE.LensFlare object that we just created. In
this method we need to specify the texture, size, distance, blending mode, and
that's it. The texture that we will use for these flares is a very light circle as shown:

If you look at the scene again, you'll see the artifacts appearing at the positions that
you've specified with the distance argument.

Summary
That was a lot of information about the different kinds of lights that are available
in the Three.js library. The most important things to remember from this chapter
are the following:

• Configuring the lights, colors, and shadows is not an exact science.
Experiment with it; use a dat.GUI control to fine-tune your configuration.

• An AmbientLight source color is added to each and every color in the
scene. It has no position. Usually this light is used to smooth hard colors
and shadows.

• A PointLight source doesn't create shadows and emits light in all directions.
You can compare this light with a flare in the night sky.

• A SpotLight is a light that resembles a flash light. It has a conical shape
and can be configured to fade over distance. A SpotLight source can be
configured to cast shadows.

• A SpotLight, just like a DirectionalLight, has a debug flag that you can
use to fine-tune the shadow camera configuration.

• A DirectionalLight source can be compared with a far away light,
such as the sun, whose light rays travel parallel to each other. The farther
away it gets from the configured target, the more the intensity of the
light decreases.

• If you want a more natural outdoor effect, you can use the HemisphereLight,
which takes into account the ground and sky reflections.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Different Light Sources Available in Three.js

[92]

• When you want to use an AreaLight source, you have to remember to
use the WebGLDeferredRenderer object. If you have a large number of
lights, and performance becomes an issue, you should consider using the
WebGLDeferredRenderer object instead of the WebGLRenderer.

• For a photographic-like lens flare, you can use the LensFlare component
from the Three.js library to add this effect to the light sources in your scene.

In the chapters so far, we've already introduced a couple of different materials, and
in this chapter you've seen that not all materials respond in the same manner to the
available lights. In the next chapter, we'll give an overview of the materials that are
available in the Three.js library.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the
Three.js Materials

In the previous chapters we've already talked a bit about materials. You've learned that
a material, together with a geometry, forms a mesh. The material is like the skin of the
object, which defines what the outside of a geometry looks like. For example, a skin
defines whether a geometry is metallic-looking, transparent, or shown as a wireframe.
This mesh can then be added to the scene to be rendered by the Three.js library. So far
we haven't really looked at the materials in much detail. In this chapter, we'll dive into
all the materials that the Three.js library has to offer and you'll learn how you can use
these materials to create good-looking 3D objects. The materials that we'll explore in
this chapter are shown in the following table:

Name Description
MeshBasicMaterial The basic material that you can use to give your geometries a

simple color or show the wireframe of your geometries
MeshDepthMaterial A material that uses the distance from the camera to

determine how to color your mesh
MeshNormalMaterial A simple material that bases the color of a face on its normal

vector
MeshFaceMaterial A container that allows you to specify a unique material for

each face of the geometry
MeshLambertMaterial A material that takes lighting into effect and is used to create

dull, non-shiny looking objects
MeshPhongMaterial A material that also takes lighting into effect and can be used

to create shiny objects
ShaderMaterial This material allows you to specify your own shader

programs to directly control how vertices are positioned and
pixels are colored

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Three.js Materials

[94]

Name Description
LineBasicMaterial A material that can be used on the THREE.Line geometry to

create colored lines
LineDashedMaterial This is the same as the LineBasicMaterial, but this one

also allows you to create a dash effect

Materials have a number of common properties, so before we look at the first
material, that is, the MeshBasicMaterial, we'll look at the properties that are
shared by all the materials.

Understanding the common material
properties
You can quickly see for yourself which properties are shared between all the
materials. The Three.js library provides a material base class, THREE.Material, that
lists all the properties. We've divided these common material properties into three
categories as shown:

• Basic properties: These are the properties that you'll use most often. With
these properties you can, for instance, control the opacity of the object,
whether it is visible or how it is referenced (by the ID or custom name).

• Blending properties: Every object has a set of blending properties. These
properties define how the object is combined with its background.

• Advanced properties: There are a number of advanced properties that
control how the low-level WebGL-context renders objects. In most cases you
won't need to mess with these properties.

We start with the first one from the list: the basic properties.

Basic properties
The basic properties from the THREE.Material class are listed in the following table.
You can see these properties in action in the section on MeshBasicMaterial.

Property Description
ID This is used to identify a material, and is assigned when you create a

material.
name You can assign a name to a material with this property.
opacity It defines how transparent an object is. Use this together with the

transparent property. The range of this property is from 0 to 1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

Property Description
transparent If set to true, the Three.js library will render this object with the set

opacity. If false, the object won't be transparent; just more lightly
colored.

overdraw When you use the THREE.CanvasRenderer object, the polygons
will be rendered a bit bigger. Set this to true when you see gaps
while using this renderer.

visible Defines whether this material is visible. If you set this to false, you
won't be able to see the object in the scene.

side With this property you can define to which side of the geometry a
material is applied. The default is THREE.FrontSide, which applies
the material to the front (outside) of an object. You can also set this to
THREE.BackSide, which applies the material to the back (inside) or
THREE.DoubleSide, which applies it to both sides.

needsUpdate For some updates to the material, you need to tell the Three.js library
that the material has changed. If this property is set to true, Three.js
will update its cache with the new material properties.

For each material you can also set a number of blending properties.

Blending properties
Materials have a couple of generic blending-related properties. We'll touch this
subject in a little while, when we will talk about combining materials, but we
won't go into much detail.

Name Description
blending It determines how the material on this object blends with the

background. The normal mode is NormalBlending, which only
shows the top layer.

blendsrc Besides using the standard blending modes, you can also create
custom blend modes by setting the blendsrc, blenddst, and
blendequation properties. This property defines how the object
(the source) is blended into the background (the destination). The
default, SrcAlphaFactor, uses the alpha (transparency) channel
for blending.

blenddst This property defines how the background (the destination) is used
in blending and defaults to OneMinusSrcAlphaFactor, which
means that it also uses the alpha channel of the source for blending
but as value uses 1 – (alpha channel of the source).

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Three.js Materials

[96]

Name Description
blendequation This defines how the blendsrc and blenddst values are

used. The default is to add the two color values by using the
AddEquation property. With these three properties, you can create
your own custom blend modes.

The last set of properties is mostly used internally and controls the specifics of how
WebGL is used to render the scene.

Advanced properties
We won't go into detail on these properties. These are related to how WebGL
works internally. If you do want to know more about these properties, the OpenGL
specification is a good starting point. You can find this specification at the following
address: http://www.khronos.org/registry/gles/specs/2.0/es_full_
spec_2.0.25.pdf

Name Description
depthTest This is an advanced WebGL property. With this property you

can enable or disable the GL_DEPTH_TEST parameter. This
parameter controls whether the depth of a pixel is used to
determine a new pixel's value. Normally you wouldn't need
to change this. More information can be found in the OpenGL
specification that we mentioned earlier.

depthWrite This is another internal property. It can be used to determine
whether this material affects the WebGL depth buffer. When
you will use an object for a 2D overlay (for example, a hub),
you should set this property to false. Usually, though, you
shouldn't need to change this property.

polygonOffset,
polygonOffsetFactor,
and
polygonOffsetUnits

With these properties you can control the POLYGON_
OFFSET_FILL WebGL feature. It is normally not needed. For
an explanation of what this does, you can look at the OpenGL
specification.

alphaTest This property can be set to a specific value (from 0 to 1).
Whenever a pixel has an alpha value smaller than this value,
it won't be drawn.

Now let's look at all the available materials, so you can see the effects that these
properties will have on the rendered output.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[97]

Starting with the simple Mesh materials
(basic, depth, and face)
In this section we'll look at a couple of simple Mesh materials: MeshBasicMaterial,
MeshDepthMaterial, MeshNormalMaterial, and MeshFaceMaterial. We will start
with the MeshBasicMaterial.

The MeshBasicMaterial for simple surfaces
The MeshBasicMaterial is a very simple material that doesn't take lighting
into account. Meshes with this material will be rendered as simple flat polygons,
and you've also got the option to show the geometry's wireframe. Besides the
common properties that we saw in the earlier section on this material, we can
set the following properties:

Name Description
color This sets the color of the material.
wireframe This property renders the material as a wireframe. It is great

for debugging purposes.
wireframeLinewidth If you enable the wireframe, this property will define the

width of the wires from the wireframe.
wireframeLinecap This property defines how the end of a line between the two

vertices will look in the wireframe mode. Possible values are
butt, round, and square. The default is round. In practice,
the results from changing this property are very difficult to see.
This property isn't supported by the WebGLRenderer object.

wireframeLinejoin This defines how the line joins are visualized. Possible values
are round, bevel, and miter. Default is round. If you
look very closely you can see this in the example using a low
opacity and a very large wireframeLinewidth. This
property isn't supported by the WebGLRenderer object.

shading This property defines how shading is applied. Possible values
are THREE.SmoothShading and THREE.FlatShading. This
property isn't enabled in the example for this material. For an
example, look at the section on the MeshNormalMaterial.

vertexColors You can define individual colors to be applied to each vertex
with this property. It doesn't work on the CanvasRenderer,
but works on the WebGLRenderer. For an example, look at the
section on the LineBasicMaterial, where we will use this
property to color the various parts of a line.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Three.js Materials

[98]

Name Description
fog This defines whether this material is affected by the global fog

settings. It is not shown in action, but if set to false the global
fog property that we saw in Chapter 2, Working with the Basic
Components That Make Up a Three.js Scene, doesn't affect how
this object is rendered.

In the previous chapters we've already seen how to create materials and assign them
to objects. We will set the MeshBasicMaterial as follows:

var meshMaterial = new THREE.MeshBasicMaterial({color: 0x7777ff});

This will create a new material and initialize the color property to 0x7777ff. All the
properties can either be passed into the constructor as shown, or you can set them
after the material is created:

var meshMaterial = new THREE.MeshBasicMaterial({color: 0x7777ff});
meshMaterial.visible = false;

I've added an example that you can use to play around with the MeshBasicMaterial
properties and the basic properties that we discussed in the previous section. If you
open example 01-basic-mesh-material.html in the chapter-04 folder, you'll see
a rotating cube as in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[99]

This is a very simple object. You can play around with the properties in the
menu at the upper-right corner and select different meshes (and even change the
renderer). For instance, let us consider a sphere. Suppose it has an opacity of 0.2,
transparent is set to true, wireframe is set to true, wireframeLinewidth is 9, and
it uses the CanvasRenderer object; then it is rendered as follows:

One of the properties that you can set in this example is the side property. With this
property, you can define to which side of a geometry the material is applied. You
can test how this property works when you select the plane mesh. Since a material
is normally only applied to the front side of an object, the rotating plane will be
invisible half the time (that is, when it shows its back to you). If you set the side
property to double, the plane will be visible the whole time, since the material is
applied to both sides of the geometry.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Three.js Materials

[100]

The MeshDepthMaterial for depth-based
coloring
The next material on the list is the MeshDepthMaterial. With this material, the way
an object looks isn't defined by the lights or a specific material property; it is defined
by the distance from the object to the camera. You can combine this with the other
materials to easily create fading effects. The only properties that this material has are
the following two, which control the wireframe:

Name Description
wireframe This defines whether to show the wireframe
wireframeLinewidth This defines the width of the wireframe

To demonstrate this, we have modified the cube example from Chapter 2, Working
with the Basic Components That Make Up a Three.js Scene, as shown in the following
screenshot (02-depth-material.html from the chapter-04 folder). Remember
that you have to click on the addCube button to populate the scene.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[101]

Even though the material doesn't have many additional properties to control how
an object is rendered, we can still control how fast the object's color fades out. In this
example, we've exposed the near and far properties of the camera. As you probably
remember from Chapter 2, Working with the Basic Components That Make Up a Three.js
Scene, we set the visible area for the camera with these two properties. Any objects that
are nearer to the camera than the near property aren't shown, and any objects that are
farther than the far property also fall outside the camera's visible area.

The distance between the near and far properties of the camera defines the
brightness and the rate at which the objects will fade out. If the distance is very
large, the objects will only fade out a little as they move away from the camera. If
the distance is small, the fade out will be much more notable, as you can see in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Three.js Materials

[102]

Creating the MeshDepthMaterial is very easy. The object doesn't take any
arguments. For this example, we've used the scene.overrideMaterial property
to make sure that all the objects in the scene reuse this material, as shown in the
following code snippet:

var scene = new THREE.Scene();
scene.overrideMaterial = new THREE.MeshDepthMaterial();

The next subject that we'll discuss in this section isn't really a material, but a way in
which you can combine all the materials together.

Combining the materials
If you will look back at the MeshDepthMaterial, you can see that there wasn't an
option to set the color of the cubes. Everything was decided for you by the default
properties of the material. The Three.js library, however, has the option to combine
the materials together to create new effects (this is also where blending comes into
play). If we use the following code, we can assign materials to the cubes in the
MeshDepthMaterial:

var cubeMaterial = new THREE.MeshDepthMaterial();
var colorMaterial = new THREE.MeshBasicMaterial({color: 0x00ff00,
 transparent: true, blending: THREE.MultiplyBlending})
var cube = new THREE.SceneUtils.createMultiMaterialObject(
 cubeGeometry, [colorMaterial, cubeMaterial]);
cube.children[1].scale.set(0.99, 0.99, 0.99);

We will then get the following green colored cubes, which will use the shading from
the MeshDepthMaterial object and the color from the MeshBasicMaterial object
(open 08-combined-material.html for this example).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[103]

Let's look at the steps that you need to take to get this specific result. First, we need
to create our two materials. For the MeshDepthMaterial we don't do anything
special; for the MeshBasicMaterial, however, we will set transparent to true, and
define a blending mode. If we don't set the transparent property to true, we'll just
have solid green objects, since the Three.js library won't apply any blending. With
transparent set to true, Three.js will check the blending property to see how the
green MeshBasicMaterial should interact with the background. The background in
this case is the cube rendered with the MeshDepthMaterial. In Chapter 9, Animations
and Moving the Camera, we'll discuss the various blend modes that are available in more
detail. For this example, though, we have used the THREE.MultiplyBlending object.
This blend mode multiplies the foreground color with the background color, and gives
you the desired effect. The last line in this code fragment is also an important one.
What will happen when we create a mesh with the createMultiMaterialObject()
function is that the geometry gets copied, and two exactly the same meshes are
returned in a group. If we render these without the last line, you'll see some flickering
effect, because they are rendered directly on top of each other. By scaling down the
mesh created with the MeshDepthMaterial, we can avoid this.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Three.js Materials

[104]

The next material is also a material that won't have any influence on the colors used
in rendering.

The MeshNormalMaterial for normal-based
colors
The easiest way to understand what this material does is by first looking at
an example. Open up example 03-mesh-normal-material.html from the
chapter-04 folder. If you select the sphere as the mesh, you'll see something
like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[105]

As you can see, each face of the mesh is rendered in a slightly different color, and
even though the sphere rotates, the colors pretty much stay at the same place. This
happens because the color of each face is based on the normal pointing out from the
face. This normal is the vector that is perpendicular to the face. The normal vector is
used in many different parts of the Three.js library. It is used to determine the light
reflections, helps in mapping textures to 3D models, and gives information on how
to light, shade, and color the pixels on a surface. Luckily, though, the Three.js library
handles the computation of these vectors and uses them internally. The following
screenshot shows an example of this normal:

The direction that this normal points to determines the color that a face gets with
the MeshNormalMaterial. Since all the normals for the faces of a sphere point in a
different direction, we get the colorful sphere that you can see in the examples.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Three.js Materials

[106]

To add these normal arrows you can use the THREE.ArrowHelper
object, as in the following code snippet:

for (var f = 0, fl = sphere.geometry.faces.length; f <
fl; f++) {
 var face = sphere.geometry.faces[f];
 var arrow = new THREE.ArrowHelper(
 face.normal,
 face.centroid,
 2,
 0x3333FF);
 sphere.add(arrow);

}

The given piece of code adds an arrow that shows the normal vector on each face of
the sphere with a length of 2 and the color 0x333ff.

There are a couple of other properties that you can set on the MeshNormalMaterial
object, as shown in the following table:

Name Description
wireframe This property defines whether to show the wireframe
wireframeLinewidth This defines the width of the wireframe
shading This is used to configure shading: flat shading with the

THREE.FlatShading or smooth shading with the THREE.
SmoothShading object

We've already seen the wireframe and wireframeLinewidth properties, but
skipped over the shading property in our example on the MeshBasicMaterial.
With the shading property, we can tell the Three.js library how to render our
objects. If you use the THREE.FlatShading object, each face will be rendered as it
is (as you can see in the previous couple of screenshots), or you can use the THREE.
SmoothShading object, which smoothens out the faces of our object. For instance, if
we render the sphere by using the THREE.SmoothShading object, the result will look
like the screenshot that follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[107]

We're almost done with the simple materials. The last one is the MeshFaceMaterial.

The MeshFaceMaterial for assigning a
material to each face
The last of the basic materials isn't really a material, but more of a container of the
other materials. The MeshFaceMaterial allows you to assign a different material
to each face of your geometry. For instance, if you have a cube, which has six faces,
you can use this material to assign a different material (for example, with a different
color) to each side of the cube. Using this material is really simple, as you can see
from the following piece of code:

var matArray = [];
matArray.push(new THREE.MeshBasicMaterial({ color: 0x009e60 }));
matArray.push(new THREE.MeshBasicMaterial({ color: 0x0051ba }));
matArray.push(new THREE.MeshBasicMaterial({ color: 0xffd500 }));
matArray.push(new THREE.MeshBasicMaterial({ color: 0xff5800 }));
matArray.push(new THREE.MeshBasicMaterial({ color: 0xC41E3A }));

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Three.js Materials

[108]

matArray.push(new THREE.MeshBasicMaterial({ color: 0xffffff }));

var faceMaterial = new THREE.MeshFaceMaterial(materialArray);

var cubeGeom = new THREE.CubeGeometry(3,3,3);
var cube = new THREE.Mesh(cubeGeom, faceMaterial);

We will first create an array, named matArray, to hold all the materials. Next, we will
create a new material (THREE.MeshBasicMaterial in this example) with a different
color for each face. With this array, we will instantiate the THREE.MeshFaceMaterial
and use it together with the cube's geometry to create the mesh. Let's dive a bit
deeper into the code and see what you need to do to recreate the following example:
a simple 3D Rubik's cube. You can find this example in the chapter-04 folder
(04-mesh-face-material.html).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[109]

This Rubik's cube consists of a number of smaller cubes: three cubes along the
x axis, three along the y axis, and three along the z axis, as shown in the following
code snippet:

var group = new THREE.Mesh();
// add all the rubik cube elements
var mats = [];
mats.push(new THREE.MeshBasicMaterial({ color: 0x009e60 }));
mats.push(new THREE.MeshBasicMaterial({ color: 0x0051ba }));
mats.push(new THREE.MeshBasicMaterial({ color: 0xffd500 }));
mats.push(new THREE.MeshBasicMaterial({ color: 0xff5800 }));
mats.push(new THREE.MeshBasicMaterial({ color: 0xC41E3A }));
mats.push(new THREE.MeshBasicMaterial({ color: 0xffffff }));
var faceMaterial = new THREE.MeshFaceMaterial(mats);

for (var x = 0; x < 3; x++) {
 for (var y = 0; y < 3; y++) {
 for (var z = 0; z < 3; z++) {
 var cubeGeom = new THREE.CubeGeometry(2.9, 2.9, 2.9);
 var cube = new THREE.Mesh(cubeGeom, faceMaterial);
 cube.position =
 new THREE.Vector3(x * 3 - 3, y * 3, z * 3 - 3);
 group.add(cube);
 }
 }
}

In this piece of code we will first create the MeshFaceMaterial. Next, we will create
three loops to make sure that we create the right number of cubes. In this loop, we
will create each of the individual cubes, assign the material, position them, and add
them to the group. What you should remember is that the position of the cubes is
relative to the position of this group. If we move or rotate the group, all the cubes
will move and rotate with it. For more information on how to work with groups,
look at Chapter 8, Creating and Loading Advanced Meshes and Geometries.

If you open the example in your browser, you can see that the complete Rubik's cube
rotates, and not the individual cubes. This happens because we use the following in
our render loop:

group.rotation.y=step+=0.01;

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Three.js Materials

[110]

This causes the complete group to rotate about its center: (0,0,0). When we
positioned the individual cubes, we made sure that they were positioned around
this center point. That's why you can see the -3 offset in the cube.position = new
THREE.Vector3(x * 3 - 3, y * 3, z * 3 - 3); code.

The MeshFaceMaterial was the last of our basic materials. In the next section,
we'll look at some of the more advanced materials available in the Three.js library.

Learning about the advanced materials
In this section we'll look at the more advanced materials that the Three.js
library has to offer. We'll first look at the MeshPhongMaterial and then the
MeshLambertMaterial. These two materials, react to light sources and can be used
to create shiny and dull-looking materials respectively. In this section we'll also look
at one of the most versatile but most difficult-to-use materials: ShaderMaterial.
With the ShaderMaterial, you can create your own shader programs that will
define how the material and object should be shown. For the last subject in this
section on advanced materials, we'll look at how you can create a mesh that has
multiple materials assigned to it instead of just one.

The MeshLambertMaterial for dull, non-shiny
surfaces
This material can be used to create dull-looking, non-shiny surfaces. This is a very
easy-to-use material, one that responds to the lighting sources available in the
scene. It can be configured with a number of properties that we've already seen
before: color, opacity, shading, blending, depthTest, depthWrite, wireframe,
wireframeLinewidth, wireframeLinecap, wireframeLinejoin, vertexColors,
and fog. We won't go into detail on these properties, but focus on the ones that are
specific to this material. That just leaves us with the following two properties:

Name Description
ambient This is the ambient color of the material. It works together with the

AmbientLight source that we saw in the previous chapter. This color
is multiplied with the color provided by the AmbientLight source.
Defaults to white.

emissive This is the color that the material emits. It doesn't really act as a light
source, but it is a solid color that is unaffected by the other lighting.
Defaults to black.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[111]

This material is created just like all the other ones, as shown:

var meshMaterial = new THREE.MeshLambertMaterial({color:
0x7777ff});

For an example of this material, look at 05-mesh-lambert-material.html; you'll
see something like the following screenshot:

As you can see in this screenshot, the material looks rather dull. There is another
material that we can use to create shiny surfaces.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Three.js Materials

[112]

The MeshPhongMaterial for shiny objects
With a MeshPhongMaterial, we can create a material that is shiny. The
properties that you can use for it are pretty much the same as that for a non-shiny
MeshLambertMaterial. We'll once again skip the basic properties and those
already discussed: color, opacity, shading, blending, depthTest, depthWrite,
wireframe, wireframeLinewidth, wireframeLinecap, wireframeLinejoin,
and vertexColors.

The interesting properties for this material are shown in the following table:

Name Description
ambient This is the ambient color of the material. It works together with the

AmbientLight source that we saw in the previous chapter. This color
is multiplied with the color provided by the AmbientLight source.
Defaults to white.

emissive This is the color that the material emits. It doesn't really act as a light
source, but it is a solid color that is unaffected by the other lighting.
Defaults to black.

specular This property defines how shiny the material is and with what color it
shines. If this is set to the same color as the color property, you will get
a more metallic-looking material. If this is set to grey, the material will
become more plastic-looking.

shininess This property defines how shiny the specular highlight is. The default
value for the shininess property is 30.

Initializing a MeshPhongMaterial object is done in the same way that we've already
seen for all the other materials:

var meshMaterial = new THREE.MeshPhongMaterial({color: 0x7777ff});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[113]

To give you the best comparison, we've created the same example for this material as
we did for the MeshLambertMaterial. You can use the control GUI to play around
with this material. For instance, the following settings will create a plastic-looking
material. You can open 06-mesh-phong-material.html to find this example.

The last one of the advanced materials is also the most complex: the ShaderMaterial.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Three.js Materials

[114]

Creating your own shaders with the
ShaderMaterial
The THREE.ShaderMaterial is one of the most versatile and complex materials
available in the Three.js library. With it, you can pass in your own custom shaders
that are directly run in the WebGL context. A shader is what converts the Three.js
JavaScript objects into pixels on the screen. With these custom shaders, you can
define exactly how your object should be rendered and overridden, or alter the
defaults from the Three.js library. In this section we won't go into the details of how
to write custom shaders yet; for more information on that, see Chapter 11, Custom
Shaders and Render Post Processing. For now we'll just look at a very basic example
that shows how you can configure this material.

The ShaderMaterial has a number of properties that you can set; the ones that
we've already seen are as follows:

Name Description
wireframe This property renders the material as a wireframe. It is great for

debugging purposes.
wireframeLinewidth If you enable the wireframe property, this property defines the

width of the wires from the wireframe.
shading This defines how shading is applied. The possible values are

THREE.SmoothShading and THREE.FlatShading. This
property isn't enabled in the example for this material. For an
example, look at the section on the MeshNormalMaterial.

vertexColors You can define individual colors to be applied to each
vertex with this property. This property doesn't work on the
CanvasRenderer, but it works on the WebGLRenderer. For
an example, look at the LineBasicMaterial example, where
we will use this property to color the various parts of a line.

fog This defines whether the material is affected by the global fog
settings. It is not shown in action, but if set to false the global
fog property that we saw in Chapter 2, Working with the Basic
Components That Make Up a Three.js Scene, doesn't affect how this
object is rendered.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[115]

Besides these properties that we've already discussed in previous sections, the
ShaderMaterial has a number of specific properties that you can use to pass in and
configure your custom shader. They may seem a bit obscure at the moment; for more
details, see Chapter 9, Animations and Moving the Camera.

Name Description
fragmentShader This shader defines the color of each pixel that is passed in.
vertexShader This shader allows you to change the position of each vertex that is

passed in.
uniforms This allows you to send information to your shader. The same

information is sent to each vertex and fragment.
defines The value of this property is converted to #define code in the

vertexShader and fragmentShader. This property can be used
to set some global variables in the shader programs.

attributes This can change between each vertex and fragment. Usually used
to pass positional and normal-related data. If you want to use
this, you need to provide information for all the vertices of the
geometry.

lights This defines whether light data should be passed into the shaders.
Defaults to false.

Before we look at an example, here's a quick explanation about the most important
parts of the ShaderMaterial: to work with this material, we have to pass in two
different shaders:

• vertexShader: The vertexShader is run on each vertex of the geometry.
You can use this shader to transform the geometry by moving the position
of the vertices around.

• fragmentShader: The fragmentShader is run on each pixel of the geometry.
In the vertexShader, we will return the color that should be shown for this
specific pixel.

For all the materials that we've discussed so far in this chapter, the Three.js library
provides its own fragmentShader and vertexShader, so you don't have to worry
about it.

For this section we'll look at a simple example that uses a very simple
vertexShader that changes the x, y, and z coordinates of the vertices of a cube,
and a fragmentShader that uses the shaders from glsl.heroku.com to create an
animating material.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Three.js Materials

[116]

Up next you can see the complete code for the vertexShader that we'll use.

Writing shaders isn't done in JavaScript. You have to
write shaders in a C-like language called GLSL.

<script id="vertex-shader" type="x-shader/x-vertex">
 uniform float time;

 void main()
 {
 vec3 posChanged = position;
 posChanged.x = posChanged.x*(abs(sin(time*1.0)));
 posChanged.y = posChanged.y*(abs(cos(time*1.0)));
 posChanged.z = posChanged.z*(abs(sin(time*1.0)));

 gl_Position = projectionMatrix
 * modelViewMatrix
 * vec4(posChanged,1.0);
 }
</script>

We won't go into too much detail here, and just focus on the most important parts
of this code snippet. To communicate with the shaders from JavaScript, we will use
something called uniforms. In this example we will use the uniform float time;
statement to pass in an external value. Based on this value, we will change the x, y, and
z coordinates of the passed in vertex (which is passed in as the position variable):

vec3 posChanged = position;
posChanged.x = posChanged.x*(abs(sin(time*1.0)));
posChanged.y = posChanged.y*(abs(cos(time*1.0)));
posChanged.z = posChanged.z*(abs(sin(time*1.0)));

The posChanged vector now contains the new coordinates for this vertex, based on
the passed in time variable. The last step that we need to do is pass this new position
back to the Three.js library, which is always done as shown:

gl_Position = projectionMatrix * modelViewMatrix
 * vec4(posChanged,1.0);

The gl_Position is a special variable that is used to return the final position.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[117]

Next we need to create a shaderMaterial and pass in the vertexShader. For this
we've created a simple helper function:

function createMaterial(vertexShader, fragmentShader) {
 var vertShader =
 document.getElementById(vertexShader).innerHTML;
 var fragShader =
 document.getElementById(fragmentShader).innerHTML;

 var attributes = {};
 var uniforms = {
 time: {type: 'f', value: 0.2},
 scale: {type: 'f', value: 0.2},
 alpha: {type: 'f', value: 0.6},
 resolution: { type: "v2", value: new THREE.Vector2() }
 };

 uniforms.resolution.value.x = window.innerWidth;
 uniforms.resolution.value.y = window.innerHeight;

 var meshMaterial = new THREE.ShaderMaterial({
 uniforms: uniforms,
 attributes: attributes,
 vertexShader: vertShader,
 fragmentShader: fragShader,
 transparent: true

 });
 return meshMaterial;
}

The function that we have created is used as shown: var meshMaterial1 =
createMaterial("vertex-shader","fragment-shader-1");. The arguments
point to the ID of the script element in the HTML page. Here you can also see that
we have set up a uniforms variable. This variable is used to pass information from
our renderer into our shader. The complete render loop for this example is shown
as follows:

function render() {
 stats.update();

 cube.rotation.y = step += 0.01;
 cube.rotation.x = step;

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Three.js Materials

[118]

 cube.rotation.z = step;

 cube.material.materials.forEach(function (e) {
 e.uniforms.time.value += 0.01;
 });

 // render using requestAnimationFrame
 requestAnimationFrame(render);
 renderer.render(scene, camera);
}

You can see that we have increased the time variable by 0.01 each time the render
loop is run. This information is passed to our vertexShader and is used to calculate
the new position of the vertices of our cube. Now open the 07-shader-material.
html example and you'll see that the cube shrinks and grows around its axis, as
shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[119]

In this example you can see that each cube face has an animating pattern. The
fragmentShader that is assigned to each face of the cube creates these patterns.
As you might have guessed, we've used the MeshFaceMaterial for this, as shown
in the following code snippet:

var cubeGeometry = new THREE.CubeGeometry(20, 20, 20);

var meshMaterial1 = createMaterial("vertex-shader", "fragment-
shader-1");
var meshMaterial2 = createMaterial("vertex-shader",
 "fragment-shader-2");
var meshMaterial3 = createMaterial("vertex-shader",
 "fragment-shader-3");
var meshMaterial4 = createMaterial("vertex-shader",
 "fragment-shader-4");
var meshMaterial5 = createMaterial("vertex-shader",
 "fragment-shader-5");
var meshMaterial6 = createMaterial("vertex-shader",
 "fragment-shader-6");

var material = new THREE.MeshFaceMaterial([meshMaterial1,
 meshMaterial2, meshMaterial3, meshMaterial4,
 meshMaterial5, meshMaterial6]);

var cube = new THREE.Mesh(cubeGeometry, material);

The only part that we haven't explained yet is the fragmentShader. For this
example, all the fragment shaders were copied from http://glsl.heroku.com. This
site provides an experimental playground where you can write and share fragment
shaders. I won't go into detail here, but the fragment-shader-6 used in this example
looks like the code snippet that follows:

<script id="fragment-shader-6" type="x-shader/x-fragment">
 #ifdef GL_ES
 precision mediump float;
 #endif

 uniform float time;
 uniform vec2 resolution;

 void main(void)

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Three.js Materials

[120]

 {

 vec2 uPos = (gl_FragCoord.xy / resolution.xy);

 uPos.x -= 1.0;
 uPos.y -= 0.5;

 vec3 color = vec3(0.0);
 float vertColor = 2.0;
 for(float i = 0.0; i < 15.0; ++i) {
 float t = time * (0.9);

 uPos.y += sin(uPos.x*i + t+i/2.0) * 0.1;
 float fTemp = abs(1.0 / uPos.y / 100.0);
 vertColor += fTemp;
 color += vec3(fTemp*(10.0-i)/10.0
 ,fTemp*i/10.0, pow(fTemp,1.5)*1.5);
 }

 vec4 color_final = vec4(color, 1.0);
 gl_FragColor = color_final;
 }
</script>

The color that finally gets passed back to the Three.js library is the one set to
gl_FragColor = color_final;. A good way to get a bit more feeling for
fragment shaders is by exploring what's available at http://glsl.heroku.com
and to use the code for your own objects. Before we move on to the next material,
the following is one more example of what is possible with a custom vertex shader
(https://www.shadertoy.com/view/4dXGR4):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[121]

Much more on the subject of fragment and vertex shaders can be found in Chapter 11,
Custom Shaders and Render Post Processing.

Using the materials for a line geometry
The last couple of materials that we're going to look at can only be used on one
specific geometry: the THREE.Line. As the name implies this is a single line that only
consists of vertices and doesn't contain any faces. The Three.js library provides two
different materials that you can use on a line, as follows:

• LineBasicMaterial: The basic material for a line that allows you to set the
colors, line width, line cap, and line join properties

• LineDashedMaterial: Has the same properties as the LineBasicMaterial, but
allows you to create a dashed effect by specifying the dash and spacing sizes

We'll start with the basic variant, and after that we'll look at the dashed variant.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Three.js Materials

[122]

The LineBasicMaterial
The materials available for the THREE.Line geometry are very simple. The following
table shows the properties available to this material:

Name Description
color This defines the color of the line. If you specify vertexColors, this

property is ignored.
linewidth This property defines the width of the line.
LineCap This defines how the end of a line between the two vertices looks in

the wireframe mode. Possible values are butt, round, and square.
The default is round. In practice, the results from changing this
property are very difficult to see. This property isn't supported on the
WebGLRenderer.

LineJoin This defines how the line joins are visualized. Possible values are
round, bevel, and miter. The default is round. If you look very
closely, you can see this in the example by using a low opacity
and a very large linewidth. This property isn't supported on the
WebGLRenderer.

vertexColors You can supply a specific color for each vertex by setting this property
to the THREE.VertexColors value.

fog This defines whether the object is affected by the global fog property.

Before we look at an example of the LineBasicMaterial, let's first have a quick look
at how we can create a THREE.Line mesh from a set of vertices, and combine it with
a LineBasicMaterial to create the mesh, as shown in the following code snippet;

var points = gosper(4, 60);
var lines = new THREE.Geometry();
var colors = [];
var i = 0;
points.forEach(function (e) {
 lines.vertices.push(new THREE.Vector3(e.x, e.z, e.y));
 colors[i] = new THREE.Color(0xffffff);
 colors[i].setHSL(e.x / 100 + 0.5, (e.y * 20) / 300, 0.8);
 i++;
});

lines.colors = colors;
var material = new THREE.LineBasicMaterial({
 opacity: 1.0,
 linewidth: 1,
 vertexColors: THREE.VertexColors });

var line = new THREE.Line(lines, material);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[123]

The first part of this code fragment, that is, var points = gosper(4, 60);, is used
as an example to get a set of x and y coordinates. This function returns a Gosper curve
(for more information, go to the following URL: http://en.wikipedia.org/wiki/
Gosper_curve), which is a simple algorithm that fills a 2D space. What we will do next
is create a THREE.Geometry instance, and for each coordinate we will create a new
vertex, which we push into the line properties of this instance. For each coordinate, we
will also calculate a color value that is used to set the colors property.

In this example we've set the color by using the setHSL() method.
Instead of providing the values for red, green, and blue, with HSL
we will provide the hue, saturation, and lightness. Using HSL is
much more intuitive than RGB and it is much easier to create sets
of matching colors. A very good explanation of HSL can be found
in the CSS3 specification at http://www.w3.org/TR/2003/CR-
css3-color-20030514/#hsl-color

Now that we have our geometry, we can create a LineBasicMaterial and use this
together with the geometry to create a THREE.Line mesh. You can see the result in
example 09-line-material.html, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Three.js Materials

[124]

The next and last material that we will discuss in this chapter is only slightly
different from the LineBasicMaterial. With the LineDashedMaterial, we can
color lines, and also add a dash effect.

The LineDashedMaterial
This material has the same properties as the LineBasicMaterial, and two
additional ones that you can use to define the dash width and the width of
the gaps between the dashes are as follows:

Name Description
scale This scales the dashSize and gapSize. If the scale is smaller than 1,

the dashSize and gapSize will increase; if the scale is larger than 1,
the dashSize and gapSize will decrease.

dashSize This defines the size of the dash.
gapSize This indicates the size of the gap.

This material works in almost the same way as the LineBasicMaterial, as shown:

lines.computeLineDistances();
var material = new THREE.LineDashedMaterial({ vertexColors: true,
 color: 0xffffff, dashSize: 10, gapSize: 1, scale: 0.1 });

The only difference here is that you have to call the computeDistances() method. If
you don't do this, the gaps won't be shown. An example of this material can be found
in 10-line-material-dashed.html and looks like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[125]

Summary
The Three.js library gives you a lot of materials that you can use to skin your
geometries. The materials range from the very simple MeshBasicMaterial to
the complex ShaderMaterial, where you can provide your own vertex and
fragment shaders. The most important subjects that were discussed in the
chapter are as follows:

• The materials share a lot of basic properties. If you know how to use a single
material, you'll probably also know how to use the other materials.

• Not all materials respond to the lights in your scene. If you want a
material that takes lighting into effect, use the MeshPhongMaterial or
MeshLambertMaterial.

• When you want to create a transparent material, it isn't enough to just set the
opacity property, you also have to set the transparent property to true.

• Most of the properties of a material can be modified at runtime. Some,
though, for example, side, can't be modified at runtime. If you change such
a value, you need to set the needsUpdate property to true. For a complete
overview of what can and cannot be changed at runtime, see the following
page: https://github.com/mrdoob/three.js/wiki/Updates

• You can assign multiple materials to a single geometry. Remember,
though, that this will create copies of the same geometry and result
in multiple meshes.

• The THREE.Line geometry can't be skinned with normal materials. For
this, you have to use either the THREE.LineBasicMaterial or the THREE.
LineDashedMaterial.

• If you want a shiny object, use the MeshPhongMaterial; if you want a
non-shiny object, use the MeshLambertMaterial.

• Use a dat.GUI approach to experiment with the properties of a material. It's
very hard to guess the correct values of the material during development.

In this and the previous chapters, we've already talked about geometries. We've used
them in our examples and already explored a couple. In the next chapter, you'll learn
everything about geometries and how you can work with them.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Learning to Work with
Geometries

In the previous chapters we've already learned a lot about how to work with Three.
js. You know how to create a basic scene, add lighting, and configure the material for
your meshes. In Chapter 2, Working with the Basic Components That Make Up a Three.js
Scene, we touched upon the available geometries that Three.js provides, which you
can use to create your 3D objects, but didn't really go into details. In this and the next
chapter we'll walk you through all the geometries that Three.js provides out of the
box. In this chapter we'll look at the following geometries:

• PlaneGeometry

• CircleGeometry

• ShapeGeometry

• CubeGeometry

• SphereGeometry

• CylinderGeometry

• TorusGeometry

• TorusKnotGeometry

• PolyhedronGeometry

• IcosahedronGeometry

• OctahedronGeometry

• TetraHedronGeometry

www.it-ebooks.info

http://www.it-ebooks.info/

Learn to Work with Geometries

[128]

And in the next chapter we'll have a look at the following complex geometries:

• ConvexGeometry

• LatheGeometry

• ExtrudeGeometry

• TubeGeometry

• ParametricGeometry

• TextGeometry

So let's look at all the basic geometries that Three.js has to offer.

The basic geometries provided by
Three.js
In Three.js we've got a couple of geometries that result in a two-dimensional mesh,
and a larger number that create a three-dimensional mesh. In this section we'll first
look at the 2D geometries: CircleGeometry, PlaneGeometry, and ShapeGeometry.
After that we'll explore all the basic 3D geometries that are available.

Two-dimensional geometries
The two-dimensional objects look like flat objects and, as the name implies, only have
two dimensions. The first two-dimensional geometry on the list is PlaneGeometry.

PlaneGeometry
A PlaneGeometry object can be used to create a very simple two-dimensional
rectangle. For an example of this geometry, look at the 01-basic-2d-geometries-
plane.html example in the sources for this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[129]

Creating this geometry is very simple as shown:

new THREE.PlaneGeometry(width, height, widthSegments,
 heightSegments);

In this example of PlaneGeometry, you can change these properties and directly
see the effect it has on the resulting 3D object. An explanation of these properties
is shown in the following table:

Property Mandatory Description
width Yes This property specifies the width of the rectangle.
height Yes This property specifies the height of the rectangle.
widthSegments No This property specifies the number of segments that

the width should be divided in. Defaults to 1.
heightSegments No This property specifies the number of segments that

the height should be divided in. Defaults to 1.

www.it-ebooks.info

http://www.it-ebooks.info/

Learn to Work with Geometries

[130]

As you can see this is not a very complex geometry. You just specify the size and
you're done. If you want to create more faces (for example, for when you want to
create a checkered pattern), you can use the widthSegments and heightSegments
properties to divide the geometry in smaller faces.

Before we move on to the next geometry, a quick note on the material used for this
example and that we also use for most of the other examples in this chapter. We use
the following method to create a mesh based on the geometry:

function createMesh(geometry) {

 // assign two materials
 var meshMaterial = new THREE.MeshNormalMaterial();
 meshMaterial.side = THREE.DoubleSide;
 var wireFrameMaterial = new THREE.MeshBasicMaterial();
 wireFrameMaterial.wireframe = true;

 // create a multimaterial
 var mesh = THREE.SceneUtils.createMultiMaterialObject(
 geometry, [meshMaterial,wireFrameMaterial]);
 return mesh;
}

In this function we create a multi-material mesh based on the provided mesh. The
first material used is the MeshNormalMaterial. As you have learned in the previous
chapter, the MeshNormalMaterial creates colored faces based on its normal vector
(its orientation). We also set this material to be double-sided (THREE.DoubleSide).
If we don't do this, we won't see this object when its back is turned towards the
camera. We also add a MeshBasicMaterial, on which we enable the wireframe
property. In this way, we can nicely see the 3D shape of the object and exactly see the
faces that a specific geometry creates.

CircleGeometry
You can probably already guess what the CircleGeometry object creates. With
this geometry you can create a very simple 2D circle (or a partial circle). Let's first
look at the example for this geometry: 02-basic-2d-geometries-circle.html.
In the following screenshot you can find an example where we've created a simple
CircleGeometry with a thetaLength property that is smaller than 2*Pi.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[131]

In this example you can see and control a mesh created from CircleGeometry.
When you create a CircleGeometry object you can specify a couple of properties
that define what the circle looks like:

Property Mandatory Description
radius Yes This property specifies the radius of a circle, which

defines its size. The radius is the distance from the center
of the circle to its side.

segments No This property defines the number of faces that are used to
create the circle. The minimum is 3, and if not specified, it
defaults to 8. The higher this value, the smoother the circle
will look.

thetaStart No This property defines the position from where to start
drawing the circle. This value can range from 0 to 2*Pi.

thetaLength No This property defines upto what extent the circle is
completed. This defaults to 2*Pi (a full circle) when not
specified. For instance, if you specify 0.5*Pi for this value,
you'll get a quarter circle. Use this property together with
the thetaStart property to define the shape of the circle.

www.it-ebooks.info

http://www.it-ebooks.info/

Learn to Work with Geometries

[132]

When you look at this from code, you can create a full circle using the following
snippet of code:

new THREE.CircleGeometry(3, 12);

If you wanted to create half a circle from this geometry, you'd use something
like this:

new THREE.CircleGeometry(3, 12, 0, Math.PI);

Before moving on to the next geometry, a quick note on
the orientation that Three.js uses when creating these two-
dimensional shapes (PlaneGeometry, CircleGeometry and
ShapeGeometry). Three.js creates these objects "standing up" using
only the x- and y-axes. Very logical, since they are two-dimensional
shapes. Often, though, especially with the PlaneGeometry, you
want to have the mesh lying down to form some sort of a ground
area on which you can position the rest of your objects. The easiest
way to create a 2D object that is horizontally orientated instead
of vertically is by rotating the mesh a quarter rotation backwards
(-pi/2) around its x-axis.

 mesh.rotation.x = -Math.PI/2;

That's all for the CircleGeometry; on to the last of the two-dimensional shapes:
ShapeGeometry.

ShapeGeometry
The PlaneGeometry and CircleGeometry geometries have limited ways of
customizing their appearance. If you want to create custom 2D shapes you can use
the ShapeGeometry. With a ShapeGeometry you've got a couple of functions you
can call to create your own shapes. You can compare this functionality with the path
functionality that is also available for the HTML canvas element and for SVG. Let's
start with an example, and after that we'll show you how you can use the various
functions to draw your own shapes. The example can be found in the sources for this
chapter, 03-basic-2d-geometries-shape.html:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[133]

In this example you can see a custom created two-dimensional shape. Without going
into a description of the properties first, let's have a look at the code that is used to
create this shape:

function drawShape() {

 // create a basic shape
 var shape = new THREE.Shape();

 // startpoint
 shape.moveTo(10, 10);

 // straight line upwards
 shape.lineTo(10, 40);

 // the top of the figure, curve to the right
 shape.bezierCurveTo(15, 25, 25, 25, 30, 40);

 // spline back down
 shape.splineThru(
 [new THREE.Vector2(32, 30),
 new THREE.Vector2(28, 20),
 new THREE.Vector2(30, 10),
])

 // curve at the bottom

www.it-ebooks.info

http://www.it-ebooks.info/

Learn to Work with Geometries

[134]

 shape.quadraticCurveTo(20, 15, 10, 10);

 // add 'eye' hole one
 var hole1 = new THREE.Path();
 hole1.absellipse(16, 24, 2, 3, 0, Math.PI * 2, true);
 shape.holes.push(hole1);

 // add 'eye hole 2'
 var hole2 = new THREE.Path();
 hole2.absellipse(23, 24, 2, 3, 0, Math.PI * 2, true);
 shape.holes.push(hole2);

 // add 'mouth'
 var hole3 = new THREE.Path();
 hole3.absarc(20, 16, 2, 0, Math.PI, true);
 shape.holes.push(hole3);

 // return the shape
 return shape;
}

In this piece of code, you can see that we've created the outline of this shape using
lines, curves, and splines. After that we've punched a number of holes in this shape
by using the holes property of the THREE.Shape class. In this section, though, we're
talking about a THREE.ShapeGeometry object and not a THREE.Shape object. To
create a geometry from the Shape we need to do the following:

new THREE.ShapeGeometry(drawShape());

The result from this function is a geometry that can be used to create a mesh. The
ShapeGeometry class has no other options you can use to configure this shape. So
let's look at the list of drawing functions that you can use to create a Shape instead:

Name Description
moveTo(x, y) This function moves the drawing position to the specified

x and y coordinates.
lineTo(x, y) This function draws a line from the current position (for

example, the position set by the moveTo function) to the
provided x and y coordinates.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[135]

Name Description
quadraticCurveTo(aCPx,
aCPy, x, y)

You can use two different ways of specifying curves. You
can use the quadraticCurveTo function or you can use
the bezierCurveTo function (see the next table row).
The difference between these two functions is how you
specify the curvature of the curve. The following diagram
explains the differences between these two options:

Quadratic Bezier Cubic Bezier

For a quadratic curve we need to specify one additional
point (using the aCPx and aCPy arguments) and the curve
is based solely on that point and of course the specified
end point (from the x and y arguments). For a cubic curve
(used by the bezierCurveTo function), you specify two
additional points to define the curve. The start point is the
current position of the path.

bezierCurveTo(aCPx1,
aCPy1, aCPx2, aCPy2,
x, y)

Draws a curve based on the supplied arguments. For
an explanation see the preceding row. The curve is
drawn based on the two coordinates that define the
curve (aCPx1, aCPy1, aCPx2, and aCPy2) and the
end coordinates (x and y). The start point is the current
position of the path.

splineThru(pts) This function draws a fluid line through the provided set
of coordinates (points). This argument should be an array
of THREE.Vector2 objects. The start point is the current
position of the path.

arc(aX, aY, aRadius,
aStartAngle,
aEndAngle, AClockwise)

Draw a circle (or part of a circle). The circle starts from the
current position of the path. aX and aY are used as offset
from the current position. The aRadius sets the size of
the circle and aStartAngle and aEndAngle define how
large a part of the circle is drawn. The Boolean property
aClockwise determines whether the circle is drawn
clockwise or counter-clockwise.

absArc(aX, aY,
aRadius, aStartAngle,
aEndAngle, AClockwise)

See description of arc. The position is absolute instead of
relative to the current position.

www.it-ebooks.info

http://www.it-ebooks.info/

Learn to Work with Geometries

[136]

Name Description
ellipse(aX, aY,
xRadius, yRadius,
aStartAngle,
aEndAngle, aClockwise)

See description of arc. As an addition, with the ellipse
function we can separately set the x-radius and the
y-radius.

absEllipse(aX, aY,
xRadius, yRadius,
aStartAngle,
aEndAngle, aClockwise)

See description of ellipse. The position is absolute
instead of relative to the current position.

A final property of the Shape object we need to address is the holes property. By
adding THREE.Shape objects to this property (see code example at the beginning of this
section) you can create holes in the shape (for instance, the eye object in this example).

In this example we've discussed about creating a ShapeGeometry from this Shape
object by using the new THREE.ShapeGeometry(drawShape())) function. The Shape
object itself also has a couple of helper functions you can use to create geometries.

Name Description
makeGeometry This function Returns a ShapeGeometry

object from this Shape object.
createPointsGeometry(divisions) This function converts the shape into a set of

points. The divisions property defines how
many points are returned. The higher this
value, the more points are returned, and the
smoother the resulting line is. The divisions
apply to each part of the path separately.

createSpacedPointsGeometry
(divisions)

This function also converts the shape into
a set of points, but this time, applies the
division to the complete path at once.

When you create a set of points using the createPointsGeometry function of the
createSpacedPointsGeometry function, you can use these points to create a line:

new THREE.Line(shape.createPointsGeometry(10), new
 THREE.LineBasicMaterial({ color: 0xff3333, linewidth: 2 }));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[137]

When you click on the asPoints or asSpacedPoints buttons in the example you'll see
something as shown in the following screenshot:

That's it for the two-dimensional shapes. The next part will show and explain the
basic three-dimensional shapes.

Three-dimensional geometries
In this section on the basic three-dimension geometries we'll start with the geometry
we've already seen a couple of times: the CubeGeometry.

www.it-ebooks.info

http://www.it-ebooks.info/

Learn to Work with Geometries

[138]

CubeGeometry
sCubeGeometry is a very simple 3D geometry that allows you to create a cube by
specifying its width, height, and depth. We've added an example where you can play
around with these properties: 04-basic-3d-geometries-cube.html. Refer
to the following screenshot:

As you can see in this example, by changing the width, height, and depth of the
CubeGeometry object you can control the size of the resulting mesh. These three
properties are also mandatory when you create a new cube as shown:

new THREE.CubeGeometry(10,10,10);

In the example you can also see a couple of other properties that you can define on
the cube. The following table explains all the properties:

Property Mandatory Description
width Yes This property specifies the width of the cube. This is

the length of the vertices of the cube along the x-axis.
height Yes This property specifies the height of the cube. This is

the length of the vertices of the cube along the y-axis.
depth Yes This property specifies the depth of the cube. This is

the length of the vertices of the cube along the z-axis.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[139]

Property Mandatory Description
widthSegments No This property specifies the number of segments to

divide a face into along the cube's x-axis. The default
value is 1.

heightSegments No This property specifies the number of segments to
divide a face into along the cube's y-axis. The default
value is 1.

depthSegments No This property specifies the number of segments to
divide a face into along the cube's z-axis. The default
value is 1.

By increasing the various segment properties, you divide the main six faces of the
cube into smaller faces. This is useful if you want to set specific material properties
on parts of the cube using the MeshFaceMaterial object. The CubeGeometry is a very
simple geometry. Another simple one is the SphereGeometry.

SphereGeometry
With a SphereGeometry object you can create a three-dimensional sphere. Let's dive
straight into the example: 05-basic-3d-geometries-sphere.html. Refer to the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Learn to Work with Geometries

[140]

In the preceding screenshot we show you a half open sphere, which was created
based on the SphereGeometry. This geometry is a very flexible one that can be used
to create all kinds of sphere-related geometries. A basic SphereGeometry though can
be created as easily as this: new THREE.SphereGeometry. The following properties
can be used to tune what the resulting mesh looks like:

Property Mandatory Description
radius No This property sets the radius for this sphere. This

defines how large the resulting mesh will be. Default
is 50.

widthSegments No This property specifies the number of segments to
use vertically. The more segments, the smoother
the surface of the sphere. Default is 8, and minimum
is 3.

heightSegments No This property specifies the number of segments to
use horizontally. The more segments, the smoother
the surface of the sphere. Default is 6 and minimum
is 2.

phiStart No This property specifies the where to start drawing
the sphere along its x-axis. Can range from 0 to
2*Pi; default is 0.

phiLength No This property specifies how far from phiStart
the sphere should be drawn. 2*Pi is a full sphere;
0.5*Pi will draw an open quarter sphere.

thetaStart No This property specifies the where to start drawing
the sphere along its x-axis. Can range from 0 to Pi;
default is 0.

thetaLength No This property specifies how far from phiStart the
sphere should be drawn. Pi is a full sphere; 0.5*Pi
will draw only the top half of the sphere.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[141]

The radius, widthSegments, and heightSegments should be clear. We've
already seen these kind of properties in other examples. The phiStart, phiLength,
thetaStart, and thetaLength properties are a bit harder to understand without
looking at an example. Luckily though, you can experiment with these properties
from the menu in the 05-basic-3d-geometries-sphere.html example, and create
interesting geometries such as these:

The next one on the list is the CylinderGeometry.

www.it-ebooks.info

http://www.it-ebooks.info/

Learn to Work with Geometries

[142]

CylinderGeometry
With this geometry we can create cylinders and cylinder-like objects. As for all
the other geometries we also have an example that lets you experiment with the
properties of this geometry: 06-basic-3d-geometries-cylinder.html. This is
also shown in the following screenshot:

When you create a CylinderGeometry there aren't any mandatory arguments. So
you can create a cylinder by just calling new THREE.CylinderGeometry(). You can
pass in a number of properties, as you can see in the example, to alter the appearance
of this cylinder. Some of these properties are listed as follows:

Property Mandatory Description
radiusTop No This property sets the size this cylinder will have at the

top. Default value is 20.
radiusBottom No This property sets the size this cylinder will have at the

bottom. Default value is 20.
height No This property sets the height of the cylinder. Default

height is 100.
segmentsX No This property sets the number of segments along the

x-axis. Defaults to 8. The higher this number, the more
smooth the cylinder.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[143]

Property Mandatory Description
segmentsY No This property sets the number of segments along the

y-axis. Default is 1. More segments mean more faces.
openEnded No This property specifies whether the mesh is closed at

the top and the bottom or not. Default is false.

All these are very basic properties you can use to configure the cylinder. One
interesting aspect though is using a negative radius for the top (or for the bottom).
If you do this, you can use this geometry to create an hourglass-like shape as shown
in the following screenshot. One thing to note here, as you can see from the colors,
is that the top half in this case is turned inside out. If you use material that isn't
configured with THREE.DoubleSide you won't see the top half.

Create an hourglass shape by setting the top radius to a negative value

The next geometry is the TorusGeometry, which you can use to create
donut-like shapes.

www.it-ebooks.info

http://www.it-ebooks.info/

Learn to Work with Geometries

[144]

TorusGeometry
A torus is a simple shape that looks like a donut. The following screenshot, which
you can get yourself by opening example 07-basic-3d-geometries-torus.html,
shows the TorusGeometry in action:

Just like most of the simple geometries, there aren't any mandatory arguments when
creating a TorusGeometry. The following table lists the arguments you can specify
when you create this geometry.

Property Mandatory Description
radius No This argument sets the size of the complete torus.

The default is 100.
tube No This argument sets the radius of the tube (the actual

donut). The default value for this attribute is 40.
radialSegments No This argument specifies the number of segments to

use along the length of the torus. The default is 8.
See the effect of changing this value in the demo.

tubularSegments No This argument specifies the number of segments to
use along the width of the torus. The default is 6. See
the effect of changing this value in the demo.

arc No With this value you can control whether the torus is
drawn full circle. The default of this value is 2*Pi (a
full circle).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[145]

Most of these are very basic properties that you've already seen. The arc property,
however, is a very interesting one. With this property you define whether the donut
makes a full circle, or only a partial one. By experimenting with this property you can
create very interesting meshes such as the following one with an arc set to 0.5*Pi:

The TorusGeometry is a very straightforward geometry. In the next section we'll
look at a geometry that almost shares its name, but is much less straightforward:
the TorusKnotGeometry.

TorusKnotGeometry
With a TorusKnotGeometry you can create a torus knot. A torus knot is a special
kind of knot that looks like a tube that winds around itself a couple of times. The
best way to explain this is by looking at the 08-basic-3d-geometries-torus-
knot.html example:

www.it-ebooks.info

http://www.it-ebooks.info/

Learn to Work with Geometries

[146]

If you open this example and play around with the p and q properties you can create
all kinds of beautiful geometries. The p property defines how often the knot winds
around its axis, and the q property defines how much the knot winds around its
interior. If this sounds a bit vague, don't worry. You don't need to understand these
properties to create beautiful knots (for those interested in the details: Wikipedia has
a good article on this subject at http://en.wikipedia.org/wiki/Torus_knot).

With the example for this geometry you can play around with these properties and
see the effect various combinations of p and q have on this geometry as shown in the
preceding screenshot.

Property Mandatory Description
radius No This property sets the size of the complete torus. The

default is 100.
tube No This property sets the radius of the tube (the actual

donut). The default value for this attribute is 40.
radialSegments No This property specifies the number of segments to

use along the length of the torus knot. The default is
64. See the effect of changing this value in the demo.

tubularSegments No This property specifies the number of segments to
use along the width of the torus knot. The default is
8. See the effect of changing this value in the demo.

p No This property defines the shape of the knot. Defaults
to 2.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[147]

Property Mandatory Description
q No This property defines the shape of the knot. Defaults

to 3.
heightScale No With this property you can stretch out the torus

knot. Default value is 1.

The next geometry on the list is the last one of the basic geometries,
the PolyhedronGeometry.

PolyhedronGeometry
With this geometry you can easily create polyhedrons. A polyhedron is a geometry
that has only flat faces and straight edges. Most often, though, you won't use
this geometry directly. Three.js provides a number of specific polyhedrons that
you can use directly without having to specify the vertices and the faces of the
PolyhedronGeometry directly. We'll discuss these polyhedrons further down in
this section. If you do want to use the PolyhedronGeometry directly, you have to
specify the vertices and the faces (just like we did for the cube in Chapter 3, Working
with the Different Light Sources Available in Three.js). For instance, we can create a
pyramid-shaped polyhedron as shown:

var vertices = [
 [1, 0, 1],
 [1, 0, -1],
 [-1, 0, -1],
 [-1, 0, 1],
 [0, 1, 0]
];

var faces = [
 [0, 1, 2, 3],
 [0, 1, 4],
 [1, 2, 4],
 [2, 3, 4],
 [3, 0, 4]
];

polyhedron = createMesh(new THREE.PolyhedronGeometry(vertices,
 faces, controls.radius, controls.detail));

www.it-ebooks.info

http://www.it-ebooks.info/

Learn to Work with Geometries

[148]

To construct the PolyhedronGeometry object we pass in the vertices,
the faces, the radius, and the detail arguments (more on these later).
The resulting PolyhedronGeometry is shown in example 09-basic-3d-
geometries-polyhedron.html (select type: Custom):

When you create a polyhedron you can pass in the following four properties:

Property Mandatory Description
vertices Yes This property specifies the points that make up the

polyhedron.
faces Yes This property specifies the faces created from the vertices.
radius No This property specifies the size of the polyhedron. Default is 1.
detail No With this property you can add additional detail to

the polyhedron. If you set this to 1, each triangle in the
polyhedron will be split into 4 smaller triangles. If set to 2,
those 4 smaller triangles will each be again split into 4 smaller
triangles, and so on.

In the beginning of this section we mentioned that Three.js comes with a couple
of polyhedrons out of the box. In the following subsections we'll quickly show
you these.

All these polyhedron types can be viewed by looking at example 09-basic-3d-
geometries-polyhedron.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[149]

IcosahedronGeometry
The IcosahedronGeometry creates a polyhedron that has 20 identical triangular
faces created from 12 vertices. When creating this polyhedron, all you need to specify
are the radius and the detail level as shown in the following screenshot:

TetrahedronGeometry
A tetrahedron is one of the simplest polyhedrons. This polyhedron only contains
four triangular faces created from four vertices. You create a TetrahedronGeometry,
just like the other polyhedrons provided by Three.js, by specifying the radius and
the detail level as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Learn to Work with Geometries

[150]

Octahedron
The last polyhedron provided by Three.js is the octahedron. As the name implies,
this polyhedron has 8 faces. These faces are created from 6 vertices. The following
screenshot shows this geometry:

That's the end of the section on the basic two-dimensional and three-dimensional
geometries provided by Three.js.

Summary
In this chapter we've discussed all of the standard geometries that Three.js has
to offer. As you've seen, there are a whole lot of geometries that you can use right out
of the box. The most important subjects to remember from this chapter are
the following:

• Experiment with the geometries that are available. Use the examples in
this chapter to get to know the properties that you can use to customize the
standard set of geometries available from Three.js.

• When starting with geometries, choose an appropriate material. Don't
go directly for the complex materials, but start in a simple way with a
MeshBasicMaterial with wireframe set to true, or a MeshNormalMaterial.
That way you'll get a much better picture of the true shape of the geometries.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[151]

• Remember that, when creating 2D shapes, the z-axis is ignored. If you want
to have a 2D shape horizontally, you'll have to rotate the mesh around the
x-axis for –0.5*Pi.

• If you're rotating a 2D shape, or a 3D shape that is open (for example, a
cylinder or a tube), remember to set the material to THREE.DoubleSide.
If you don't do this, the inside or back of your geometry will be invisible.

In this chapter we focused on the simple, straightforward meshes. Three.js also
provides ways to create complex geometries. In the following chapter you'll learn
how to create these.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Using Advanced Geometries
and Binary Operations

In the previous chapter we showed you all the basic geometries provided by
Three.js. Besides these basic geometries, Three.js also offers a set of more advanced
and specialized objects. In this chapter we'll show you these advanced geometries
and cover the following subjects:

• You'll learn how to use advanced geometries such as ConvexGeometry,
LatheGeometry, and TubeGeometry.

• We'll show you how to create 3D shapes from 2D shapes using the
ExtrudeGeometry. We'll do this based on a 2D shape drawn using
Three.js provided functionality, and we'll show an example where
we created a 3D shape based on an externally loaded SVG image.

• If you want to create custom shapes yourself, you can append the ones we
discuss in this and in the previous section. Three.js, however, also offers a
ParamtericGeometry object. With this object, you can create a geometry
based on a set of equations.

• Finally, we'll look at how you can create 3D text effects using the
TextGeometry.

• Additionally, we'll show you how you can create new geometries
from existing ones using binary operations provided by the Three.js
extension: THREEBSP.

We start with the first one from this table: ConvexGeometry

www.it-ebooks.info

http://www.it-ebooks.info/

Using Advanced Geometries and Binary Operations

[154]

ConvexGeometry
With ConvexGeometry we can create a convex hull around a set of points. A convex
hull is the minimal shape that encompasses all these points. The easiest way to
understand this is by looking at an example. If you open up example 01-advanced-
3d-geometries-convex.html, you'll see the convex hull for a random set of points:

In this example we generate a random set of points and based on these points we
create a ConvexGeometry. In the example you can click on redraw, which will generate
20 new points and draw the convex hull. We've also added each of these points as a
small SphereGeometry to make it more clear how a convex hull works. The following
piece of code shows how these points were created and added to the scene:

function generatePoints() {
 // add 10 random spheres
 var points = [];
 for (var i = 0; i < 20; i++) {
 var randomX = -15 + Math.round(Math.random() * 30);
 var randomY = -15 + Math.round(Math.random() * 30);
 var randomZ = -15 + Math.round(Math.random() * 30);
 points.push(new THREE.Vector3(randomX, randomY, randomZ));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[155]

 }

 spGroup = new THREE.Object3D();
 var material = new THREE.MeshBasicMaterial(
 {color: 0xff0000, transparent: false});
 points.forEach(function (point) {
 var spGeom = new THREE.SphereGeometry(0.2);
 var spMesh = new THREE.Mesh(spGeom, material);
 spMesh.position = point;
 spGroup.add(spMesh);
 });

 // add the points as a group to the scene
 scene.add(spGroup);
}

As you can see in these couple of lines of code, we create 20 random points (THREE.
Vector3), which we push into an array. Next we iterate over this array and create
a SphereGeometry whose position we set to one of these points. All the points are
added to a group (more on this in Chapter 7, Particles and the Particle System), so we
can rotate them easily.

Creating a ConvexGeometry object from these points is very easy:

// use the same points to create a convexgeometry
var convexGeometry = new THREE.ConvexGeometry(points);
convexMesh = createMesh(convexGeometry);
scene.add(convexMesh);

An array containing vertices (of the type THREE.Vector3) is the only argument the
ConvexGeometry constructor takes. One final note on the createMesh() function we
call here. In the previous examples we've used this method to create a mesh using
MeshNormalMaterial. For this example we changed this to a translucent green
MeshBasicMaterial, to better show the convex hull we've created.

The next complex geometry is the LatheGeometry, which can be used to create
vase-like objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Advanced Geometries and Binary Operations

[156]

LatheGeometry
A LatheGeometry allows you to create shapes from a smooth curve. This curve is
defined by a number of points (also called knots) and is most often called a spline. This
spline is rotated around a fixed point and results in vase- and bell-like shapes. Once
again, the easiest way to understand what a LatheGeometry does is by looking at an
example. This geometry is shown in 02-advanced-3d-geometries-lathe.html:

In this screenshot you can see the spline as a set of small red spheres. The positions
of these spheres are passed into the LatheGeometry constructor, together with a
couple of other arguments. In this example we rotate this spline for half a circle
and based on this spline we extract the shape you can see. Before we look at
all the arguments, let's look at the code used to create the spline, and how the
LatheGeometry uses this spline:

function generatePoints(segments, phiStart, phiLength) {
 // add 10 random spheres
 var points = [];
 var height = 5;
 var count = 30;
 for (var i = 0; i < count; i++) {
 points.push(new THREE.Vector3((Math.sin(i * 0.2)
 + Math.cos(i * 0.3)) * height + 12,
 0, (i - count) + count / 2));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[157]

 }

 ...

 // use the same points to create a convexgeometry
 var latheGeometry = new THREE.LatheGeometry
 (points, segments, phiStart, phiLength);
 latheMesh = createMesh(latheGeometry);
 scene.add(latheMesh);
}

In this piece of JavaScript, you can see that we generate 30 points whose x coordinate
is based on a combination of a sinus and cosinus function, while the z -coordinate
is based on the i and count variables. This creates the spline visualized by the red
dots in the screenshot we saw earlier.

Based on these points we can create the LatheGeometry. The LatheGeometry takes
a couple of other arguments besides the array of vertices. The following table lists all
the arguments:

Property Mandatory Description
points Yes This property specifies the points that make up the

spline used to generate the bell/vase shape from.
segments No This property specifies the number of segments to use

when creating the shape. The higher this number, the
more round the resulting shape will be. The default
value for this is 12.

phiStart No This property specifies where to start, on a circle, when
generating the shape. This can range from 0 to 2*Pi.
The default value is 0.

phiLength No This property defines how fully generated the shape is.
For instance a quarter shape will be 0.5*Pi. The default
is the full 360 degrees or 2*Pi.

In the beginning of this chapter we showed you a couple of two-dimensional shapes.
In the next section we'll look at how we can create three-dimensional shapes from
these two-dimensional shapes by something called extruding.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Advanced Geometries and Binary Operations

[158]

Create a geometry by extruding
Three.js provides a couple of ways we can extrude a 2D shape to a 3D shape. With
extruding we mean stretching out a 2D shape along its z-axis to convert it to 3D.
For instance, if we extrude the THREE.CircleGeometry object, we get a shape that
looks like a cylinder and if we extrude a THREE.PlaneGeometry object, we get a
cube-like shape.

The most versatile way of extruding a shape is by using the THREE.ExtrudeGeometry
object.

ExtrudeGeometry
With the ExtrudeGeometry you can create a 3D object from a 2D shape. Before we
dive into the details of this geometry, let's first look at an example, 03-extrude-
geometry.html, shown in the following screenshot:

In this example we've taken the 2D shape that we created earlier in this chapter and
used the ExtrudeGeometry to convert it to 3D. As you can see in this screenshot, the
shape is extruded along the z-axis, which results in a 3D shape. The code to create
this ExtrudeGeometry is very easy:

var options = {
 amount: 10,
 bevelThickness: 2,
 bevelSize: 1,
 bevelSegments: 3,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[159]

 bevelEnabled: true,
 curveSegments: 12,
 steps: 1
};

shape = createMesh(new THREE.ExtrudeGeometry(drawShape(),
 options));

In this code example we create the shape with the drawShape() function, just
like we did earlier in the previous chapter. This shape is passed on to the THREE.
ExtrudeGeometry constructor along with an options object. With the options you
can define exactly how the shape should be extruded. The following table explains
the options you can pass into the THREE.ExtrudeGeometry.

Property Mandatory Description
amount No This property specifies how far the shape

should be extruded. Default is 100.
bevelThickness No This property specifies the depth of the bevel.

The bevel is the rounded corner between the
front and back faces and the extrusion. Default
is 6.

bevelSize No This property specifies the height of the bevel.
Default is bevelThickness-2.

bevelSegments No This property defines the number of segments
that will be used by the bevel. The more that are
used, the smoother the bevel will look. Default
is 3.

bevelEnabled No If set to true, a bevel is added. Default is true.
curveSegments No This property specifies how many segments

will be used when extruding the curves of
shapes. The more that are used, the smoother
the curves will look. Default is 12.

steps No This property defines into how many segments
the extrusion will be divided. Default is 1.

extrudePath No This property specifies the path along which the
shape should be extruded. If this isn't specified,
the shape is extruded along the z-axis.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Advanced Geometries and Binary Operations

[160]

Property Mandatory Description
material No This property specifies the index of the

material to use for the front and the
back faces. Use the THREE.SceneUtils.
createMultiMaterialObject function to create
the mesh.

extrudeMaterial No This property specifies the index of the
material to use for the bevel and the
extrusion. Use the THREE.SceneUtils.
createMultiMaterialObject function to create
the mesh.

You can experiment with these options using the menu from example
12-extrude-geometry.html.

In this example we extruded the shape along its z-axis. As you could have seen in
the options, you can also extrude a shape along a path. In the following geometry,
the TubeGeometry, we'll do just that.

TubeGeometry
A TubeGeometry creates a tube that extrudes along a 3D spline. You specify the
path using a number of vertices, and the TubeGeometry will create the tube. An
example you can experiment with can be found in the sources for this chapter:
13-extrude-tube.html. Refer to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[161]

As you can see in this example, we generate a number of random points, and use
those points to draw the tube. With the controls in the upper-right corner, we can
define how the tube looks or generate a new tube by clicking on the newPoints
button. The code needed to create a tube is very simple:

var points = [];
for (var i = 0 ; i < controls.numberOfPoints ; i++) {
 var randomX = -20 + Math.round(Math.random() * 50);
 var randomY = -15 + Math.round(Math.random() * 40);
 var randomZ = -20 + Math.round(Math.random() * 40);

 points.push(new THREE.Vector3(randomX, randomY, randomZ));
}

var tubeGeometry = new THREE.TubeGeometry(
 new THREE.SplineCurve3(points),
 segments, radius, radiusSegments, closed);

var tubeMesh = createMesh(tubeGeometry);
scene.add(tubeMesh);

What we need to do is, first get a set of vertices of the type THREE.Vector3. Just like
we did for the THREE.ConvexGeometry class or the THREE.LatheGeometry class.
Before we can use these points, however, to create the tube, we first need to convert
these points to a THREE.SplineCurve3 class. In other words we need to define a
smooth curve through the points we've defined. We can simply do this by passing
the array of vertices to the constructor of THREE.SplineCurve3. With this spline, and
the other arguments (which we'll explain in a bit), we can create the tube and add it
to the scene.

Besides the THREE.SplineCurve3 object, the TubeGeometry constructor takes some
other arguments. The following table lists all the arguments for the TubeGeometry:

Property Mandatory Description
path Yes This property specifies the THREE.

SplineCurve3 object that describes the path this
tube should follow.

segments No This property specifies the segments used to
build up the tube. Default value is 64. The longer
the path, the more segments you should specify.

radius No This property specifies the radius of the tube.
Default is 1.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Advanced Geometries and Binary Operations

[162]

Property Mandatory Description
radiusSegments No This property specifies the number of segments

to use along the length of the tube. Default is 8.
The more you use, the more round the tube will look.

closed No If set to true, the start of the tube and the end will
be connected together. Default is false.

debug No If set to true, extra debug information will be
added to the tube.

The last extrude example we'll show in this chapter isn't really a different geometry.
In the next section we'll show you how you can use the ExtrudeGeometry to create
extrusions from existing SVG paths.

Extrude from SVG
When we discussed the ShapeGeometry, we mentioned that SVG and canvas follow
pretty much the same approach to drawing shapes. SVG especially has a very close
match with how Three.js handles shapes. In this section we'll look at how you can
use a small library from https://github.com/asutherland/d3-threeD to convert
SVG paths to a Three.js shape.

As an example, I've taken an SVG drawing of the Batman logo and used the
ExtrudeGeometry to convert it to 3D. An example you can experiment with
can be found in the sources for this chapter, 05-extrude-svg.html:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[163]

First let's look at what the original SVG looks like (you can also see this for yourself
when looking at the source code for this example):

<svg version="1.0" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="1152px" height="1152px" xml:space="preserve">
<g>
<path id="batman-path" style="fill:rgb(0,0,0);" d="M 261.135
114.535 C 254.906 116.662 247.491 118.825 244.659 119.344 C
229.433 122.131 177.907 142.565 151.973 156.101 C 111.417 177.269
78.9808 203.399 49.2992 238.815 C 41.0479 248.66 26.5057 277.248
21.0148 294.418 C 14.873 313.624 15.3588 357.341 21.9304 376.806 C
29.244 398.469 39.6107 416.935 52.0865 430.524 C 58.2431 437.23
63.3085 443.321 63.3431 444.06 ... 261.135 114.535 "/>
</g>
</svg>

Unless you're an SVG guru, this will probably mean nothing to you. Basically
though, what you see here, are a set of drawing instructions. For instance: C 277.987
119.348 279.673 116.786 279.673 115.867 tells the browser to draw a cubic
Bezier curve and the L 489.242 111.787 tells us that we should draw a line on
that specific position. Luckily, though, we won't have to write the code to interpret
this ourselves. With the d3-threeD library, we can convert this automatically. This
library was originally created for use together with the excellent D3.js library, but
with some small adaptions we can also use this specific functionality standalone.

SVG stands for Scalable Vector Graphics. This is an XML-based
standard that can be used to create vector-based 2D images for
the web. This is an open standard that is supported by all of the
modern browsers. Directly working with SVG and manipulating it
from JavaScript, however, isn't very straightforward. Luckily there
are a couple of open source JavaScript libraries that make working
with SVG a lot easier. D3.js and Raphael.js are two of the best.

The following code fragment shows how you can load in the SVG you saw earlier
convert it to an ExtrudeGeometry and show it on screen:

function drawShape() {

 var svgString = $("#batman-path").attr("d");
 var shape = transformSVGPathExposed(svgString);
 return shape;
}

var options = {
 amount: 10,

www.it-ebooks.info

http://www.it-ebooks.info/

Using Advanced Geometries and Binary Operations

[164]

 bevelThickness: 2,
 bevelSize: 1,
 bevelSegments: 3,
 bevelEnabled: true,
 curveSegments: 12,
 steps: 1
};

shape = createMesh(new THREE.ExtrudeGeometry(drawShape(),
 options));

In this code fragment you'll see a call to the transformSVGPathExposed function.
This function is provided by the d3-ThreeD library and takes as argument an SVG
string. We get this SVG string directly from the SVG element with the expression:
$("#batman-path").attr("d"). In SVG the d attribute contains the path statements
used to draw a shape. Add a nice-looking, shiny material, a spotlight and you've
recreated this example.

The last geometry we'll discuss in this section is the ParametricGeometry. With this
geometry, you can specify a couple of functions that are used to programmatically
create geometries.

ParametricGeometry
With the ParametricGeometry you can create a geometry based on an equation.
Before we dive into our own example, a good starting point is looking at the
examples already provided by Three.js. When you download the Three.js
distribution you get the following file: examples/js/ParametricGeometries.js.
In this file you can find a couple of examples of equations you can use together with
the ParametricGeometry. The most basic example is the function to create a plane:

function plane(u, v) {
 var x = u * width;
 var y = 0;
 var z = v * depth;
 return new THREE.Vector3(x, y, z);
}

This function is called by the ParametricGeometry. The u and v values will range
from 0 to 1 and will be called a large number of times for all the values from 0 to 1. In
this example the u value is used to determine the x coordinate of the vector and the
v value is used to determine the z coordinate. When this is run, you'll have a basic
plane with a width of width and depth of depth.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[165]

In our example we do something similar. But instead of creating a flat plane, we create
a wave-like pattern, as you can see in example 06-parametric-geometries.html:

To create this shape we've passed the following function into the
ParametricGeometry:

radialWave = function (u, v) {
 var r = 50;

 var x = Math.sin(u) * r;
 var z = Math.sin(v / 2) * 2 * r;
 var y = (Math.sin(u * 4 * Math.PI)
 + Math.cos(v * 2 * Math.PI)) * 2.8;

 return new THREE.Vector3(x, y, z);
}

var mesh = createMesh(new THREE.ParametricGeometry(radialWave,
 120, 120, false));

www.it-ebooks.info

http://www.it-ebooks.info/

Using Advanced Geometries and Binary Operations

[166]

As you can see in this example, with a couple of lines of code, we can create really
interesting geometries. In this example you can also see the arguments we can pass
into the ParametricGeometry. These are explained in the following table:

Property Mandatory Description
function Yes The THREE.SplineCurve3 that describes the path this tube

should follow.
slices Yes Defines into how many parts the u value should be

divided.
stacks Yes Defines into how many parts the v value should be

divided.
useTris No Default is false. If set to true, the geometry will be

created using triangle faces. If set to false quads will be
used.

I'd like to make a final note on how to use the slices and stacks property, before
moving on to the final part of this chapter. We mentioned that the u and v properties
are passed into the provided function and that the values of these two properties
range from 0 to 1. With the slices and stacks property we can define how often the
passed in function is called. If, for instance, we set slices to 5 and stacks to 4, the
function will be called with the following values:

u:0/5, v:0/4
u:1/5, v:0/4
u:2/5, v:0/4
u:3/5, v:0/4
u:4/5, v:0/4
u:5/5, v:0/4
u:0/5, v:1/4
u:1/5, v:1/4
...
u:5/5, v:3/4
u:5/5, v:4/4

So the higher this value, the more vertices you get to specify, and the more smooth
your created geometry will look.

For more examples you can look at examples/js/ParametricGeometries.js in the
Three.js distribution. This file contains functions to create the following geometries:

• Klein bottle
• Plane
• Flat Mobius strip

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[167]

• 3d Mobius strip
• Tube
• Torus knot
• Sphere

The last part of this chapter deals with creating 3D text objects.

Creating 3D text
In the last part of this chapter we'll have a quick look at how you can create 3D text
effects. First, we'll look at how to render text using the fonts provided by Three.js,
and after that we'll have a quick look at how you can use your own fonts for this.

Rendering text
Rendering text in Three.js is very easy. All you have to do is define the font you
want to use, and the basic extrude properties we've seen when we discussed the
ExtrudeGeometry. The following screenshot shows an example of how to render
text in Three.js: 07-text-geometry.html

www.it-ebooks.info

http://www.it-ebooks.info/

Using Advanced Geometries and Binary Operations

[168]

The code required to print these couple of lines is shown next:

var options = {
 size: 90,
 height: 90,
 weight: 'normal',
 font: 'helvetiker',
 style: 'normal',
 bevelThickness: 2,
 bevelSize: 4,
 bevelSegments: 3,
 bevelEnabled: true,
 curveSegments: 12,
 steps: 1
};

text1 = createMesh(new THREE.TextGeometry("Learning", options));
text1.position.z = -100;
text1.position.y = 100;
scene.add(text1);

text2 = createMesh(new THREE.TextGeometry("Three.js", options));
scene.add(text2);
};

Let's look at all the options we can specify for this TextGeometry:

Property Mandatory Description
size No This property specifies the size of the text,

defaults to the height property. Default is 100.
height No This property specifies the length of the

extrusion, defaults to 50.
weight This property specifies the weight of the font.

Possible values are normal and bold. Default is
normal.

font This property specifies the name of the font to
use. Default is helvetiker.

style This property specifies the weight of the font.
Possible values are normal and italic. Default is
normal.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[169]

Property Mandatory Description
bevelThickness No This property specifies the depth of the bevel.

The bevel is the rounded corner between the
front and back faces and the extrusion. Default
is 10.

bevelSize No This property specifies the height of the bevel.
Default is 8.

bevelSegments No This property defines the number of segments
that will be used by the bevel. The more that are
used, the smoother the bevel will look. Default
is 3.

bevelEnabled No This property if set to true, a bevel is added.
Default is false.

curveSegments No This property specifies the how many segments
will be used when extruding the curves of
shapes. The more that are used, the smoother
the curves will look. Default is 4.

steps No This property defines how many segments the
extrusion will be divided into. Default is 1.

extrudePath No This property specifies the path along which the
shape should be extruded. If this isn't specified,
the shape is extruded along the z-axis.

material No This property specifies the index of the
material to use for the front and the
back faces. Use the THREE.SceneUtils.
createMultiMaterialObject function to create
the mesh.

extrudeMaterial No This property specifies the index of the
material to use for the bevel and the
extrusion. Use the THREE.SceneUtils.
createMultiMaterialObject function to create
the mesh.

The fonts that are included in Three.js are also added to the sources for this book.
You can find them in the assets/fonts folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Advanced Geometries and Binary Operations

[170]

If you want to render fonts in 2D, for instance, to use them as
a texture for a material, you shouldn't use TextGeometry. A
TextGeometry and the JavaScript fonts introduce a lot of overhead.
For simple 2D font rendering, it is better to just use the HTML5
canvas. With the context.font property you can set the font to use
and with context.fillText you can output text to the canvas.

It's also possible to use other fonts with this geometry, but you first need to convert
them to JavaScript. How to do this is shown in the next section.

Adding custom fonts
There are a couple of fonts provided by Three.js that you can use in your scenes.
These fonts are based on the fonts provided by typeface.js (http://typeface.
neocracy.org). typeface.js is a library that can convert TrueType or OpenType
fonts to JavaScript. The resulting JavaScript file can be included in your page,
and the font can then be used in Three.js.

To convert an existing OpenType or TrueType font you can use the webpage at
http://typeface.neocracy.org/fonts.html. On this page you can upload a
font, and it will be converted to JavaScript for you. To include that font just add
the following line to the top of your HTML page:

<script type="text/javascript"
 src="../assets/fonts/bitstream_vera_sans_mono_roman.typeface.js">
</script>

This will load the font, and make it available to Three.js. If you want to know the
name of the font (to use with the font property), you can print out the font cache
to the console using the following line of JavaScript:

console.log(THREE.FontUtils.faces);

This will print out something as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[171]

Here you can see that we can use the helvetiker font with weight bold and normal.
And the bitstream vera sans mono font with weight normal. An alternative way
of determining the font name is by looking at the JavaScript source file for the font.
At the end of the file you'll find a property with the name familyName. This property
also contains the name of the font.

"familyName":"Bitstream Vera Sans Mono"

In the next part of this chapter we'll introduce the THREEBSP library to create
very interesting looking geometries using the binary operations: intersect,
subtract, and union.

Using binary operations to combine
meshes
In this section we'll look at a different way of creating geometries. In this chapter so
far and in the previous chapter we use the default geometries provided by Three.
js to create interesting-looking geometries. With the default set of properties you
can create beautiful models, but you are limited to what Three.js provides. In this
section we'll show you how you can combine various of these standard geometries
to create new ones. For this we use the Three.js extension THREEBSP, which you can
find online here: https://github.com/skalnik/ThreeBSP. This additional library
provides the following three functions:

Name Description
intersect This function allows you to create a new geometry based on the

intersection of two existing geometries. The area where both
geometries overlap, will define the shape of this new geometry.

union The union function can be used to combine two geometries to
create a new one. You can compare this with the mergeGeometry
function we'll look at in Chapter 8, Creating and Loading Advanced
Meshes and Geometries.

subtract The subtract function is the opposite of the union function. With
the function you can create a new geometry by removing the
overlapping area from the first geometry.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Advanced Geometries and Binary Operations

[172]

In the following sections we'll look at each of these functions in more detail.

The preceding screenshot shows an example of what you can create by just using the
union and subtract functionality one after the other. To use this library we need
to include it in our page. This library is written in coffee-script, a more user-friendly
variant of JavaScript. To get this working we have two options. We can add the
coffee-script file and compile it on the fly, or we can precompile it to JavaScript and
include directly. For the first approach we need to do the following:

<script type="text/javascript"
 src="../libs/coffee-script.js"></script>
<script type="text/coffeescript"
 src="../libs/ThreeBSP.coffee"></script>

The ThreeBSP.coffee file contains the functionality we need for this example, and
the coffee-script.js file can interpret the coffee language used for ThreeBSP. A
final step we need to take is to make sure the ThreeBSP.coffee file has been parsed
completely before we start using the ThreeBSP functionality. For this we add the
following to the bottom of the file:

<script type="text/coffeescript">
 onReady();
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[173]

And we rename our initial anonymous jQuery function to onReady:

function onReady() {
 // Three.js code
}

If we precompile the coffee-script to JavaScript using the coffee-script command
line tool, we can include the resulting JavaScript file directly. To convert it to
JavaScript use the following command:

coffee --compile ThreeBSP.coffee

This command creates a ThreeBSP.js file that we can include in our example like we
do for the other JavaScript files. In our examples we use this second approach, since
it'll load quicker than compiling the coffee-script each time we load the page.

The subtract function
Before we start with the subtract function, there is one important step you need
to keep in mind. These three functions use the absolute position of the mesh for
calculations. So if you group meshes or use multiple materials before applying these
functions you'll probably get strange results. For the best and most predictable result
make sure you're working with ungrouped meshes.

Let's start by demonstrating the subtract functionality. For this we've provided an
example: 08-binary-operations.html. With this example you can experiment with
the three operations. When you first open the example you'll see something like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Using Advanced Geometries and Binary Operations

[174]

It consists of three wireframes: a cube and two spheres. Sphere1, the center sphere,
is the object on which all operations are executed, Sphere2 is the right sphere and
"cube" is the left cube. On Sphere2 and Cube you can define one of four actions:
subtract, union, intersect, and none. These actions are applied from the point of
view of Sphere1. When we set Sphere2 to subtract and select showResult, (and hide
the wireframes) the result will show Sphere1 minus the area where Sphere1 and
Sphere2 overlap. Note that some of these operations might take a couple of seconds
to complete after you've pushed the showResult button.

In this example, first the action defined for Sphere2 is executed and then the action
for the cube is executed. So if we subtract both Sphere2 and the cube (which we scale
a bit along the x-axis), we get the following result:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[175]

The best way to understand the subtract functionality, is to just play around with the
example. The ThreeBSP code to accomplish this is very trivial and in this example
it is implemented in the redrawResult function, which is called whenever the
showResult button from the example is clicked.

function redrawResult() {
 scene.remove(result);
 var sphere1BSP = new ThreeBSP(sphere1);
 var sphere2BSP = new ThreeBSP(sphere2);
 var cube2BSP = new ThreeBSP(cube);

 var resultBSP;

 // first do the sphere
 switch (controls.actionSphere) {
 case "subtract":
 resultBSP = sphere1BSP.subtract(sphere2BSP);
 break;
 case "intersect":
 resultBSP = sphere1BSP.intersect(sphere2BSP);
 break;
 case "union":
 resultBSP = sphere1BSP.union(sphere2BSP);
 break;
 case "none": // noop;
 }

 // next do the cube
 if (!resultBSP) resultBSP = sphere1BSP;
 switch (controls.actionCube) {
 case "subtract":
 resultBSP = resultBSP.subtract(cube2BSP);
 break;
 case "intersect":
 resultBSP = resultBSP.intersect(cube2BSP);
 break;
 case "union":
 resultBSP = resultBSP.union(cube2BSP);

www.it-ebooks.info

http://www.it-ebooks.info/

Using Advanced Geometries and Binary Operations

[176]

 break;
 case "none": // noop;
 }

 if (controls.actionCube === "none"
 && controls.actionSphere === "none") {
 // do nothing
 }
 else {
 result = resultBSP.toMesh();
 result.geometry.computeFaceNormals();
 result.geometry.computeVertexNormals();
 scene.add(result);
 }
}

The first thing we do in this code is wrap our meshes (the wireframes you can see)
in a ThreeBSP object. This allows us to apply the substract, intersect, and union
functions on these objects. Now we can just call the specific function we want on the
ThreeBSP object wrapped around the center sphere (sphere1BSP), and the result
from this function will contain all the information we need to create a new mesh.
To create this mesh we just call the toMesh() function, make sure all the normals
are computed correctly by first calling computeFaceNormals and then calling
computeVertexNormals(). These compute functions need to be called since, by
running one of the binary operations, the vertices and faces of the geometry are
probably changed. Three.js uses the face normal and the vertex normal in shading
calculations. Explicitly recalculating them will make sure your new object is shaded
smoothly (when shading on the material has been set to THREE.SmoothShading) and
renders correctly and we can add the result to the scene.

For intersect and union we use exactly the same approach.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[177]

The intersect function
With everything we've explained in the previous section, there isn't much left to
explain for the intersect function. With this function only that part of the meshes
that overlap is left.

If you look at the example and play around with the settings you'll see that it's
very easy to create these kinds of objects. And remember, this can be applied to
every mesh you can create, even the complex ones we saw in this chapter such as:
ParametricGeometry and TextGeometry.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Advanced Geometries and Binary Operations

[178]

The functions subtract and intersect work great together. The example we
showed in the beginning of this chapter was created by first subtracting a smaller
sphere to create a hollow sphere. After that we used a cube to intersect with this
hollow sphere to get the desired result:

The last function provided by ThreeBSP is the union function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[179]

The union function
The final function is the least interesting one. With this function we can combine two
meshes together to create a new one. So when we apply this to the two spheres and
the cube, we get a single object:

Not really that useful, since this is also functionality provided by Three.js itself (see
Chapter 8, Creating and Loading Advanced Meshes and Geometries, where we explain
how to use THREE.GeometryUtils.merge for this), and also offers slightly better
performance. If you enable rotation, you can see that this union is applied from the
perspective of the center sphere, since it is rotating around the center of that sphere.
The same applies for the other two operations.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Advanced Geometries and Binary Operations

[180]

Summary
We've seen a lot in this chapter. We've introduced a couple of advanced geometries
and even showed you how you can create interesting looking geometries using a
couple of simple binary operations. The most important things to remember from
this chapter are these:

• You can create really beautiful shapes using the advanced geometries such
as ConvexGeometry, TubeGeometry, and LatheGeometry. Once again,
experiment with these geometries.

• It is possible to convert existing SVG paths to Three.js. You still might need to
fine-tune the paths using tools such as Inkscape.

• With ExtrudeGeometry you can easily create 3D geometries from 2D shapes.
Normally this is done by extruding along the z-axis, but you can also extrude
along a custom path.

• When working with text you need to specify the font to use. Three.js comes
with a couple of fonts you can use. You can also create your own fonts, but
more complex fonts often won't convert correctly.

• With ThreeBSP you have access to three binary operations you can apply
to your Mesh: union, subtract, and intersect. With union, you combine
two meshes together, with subtract you remove the overlapping part of the
meshes from the source mesh, and with intersect only the overlapping part
is kept.

So far we've looked at solid (or wireframe) geometries, where vertices are connected
to each other to form faces. In the following chapter we'll look at an alternative way
of visualizing geometries using something called particles. With particles we don't
render complete geometries, we just render the vertices as points in space. This
allows you to create great-looking, good-performing 3D effects.

www.it-ebooks.info

http://www.it-ebooks.info/

Particles and the
Particle System

In the previous chapters we've discussed the most important concepts, objects, and
APIs that Three.js has to offer. In this chapter, we'll look into the only concept we've
skipped so far: particles. With particles it is very easy to create many small objects
that you can use to simulate rain and snow. You can also use particles as a way to
create interesting 3D effects. For instance, you can render individual geometries as a
set of particles and control these particles separately. In this chapter we'll explore the
various particle features provided by Three.js. To be more specific we'll look at the
following subjects in this chapter:

• Creating and styling particles using the ParticleBasicMaterial.
• Using a particle system to create a grouped set of particles.
• Creating a particle system from existing geometries
• Animating particles and the particle system
• Using a texture to style the particles
• Using the canvas to style a particle with the ParticleCanvasMaterial

Let's start by exploring what a particle is, and how you can create one.

www.it-ebooks.info

http://www.it-ebooks.info/

Particles and the Particle System

[182]

Understanding particles
Like we do with most new concepts we'll start with an example. In the sources for
this chapter, you'll find an example with the name 01-particles.html. Open this
example and you'll see a couple of very uninteresting looking white cubes as shown
in the following screenshot:

What you see in this screenshot are 100 particles. If you create a particle without
any properties, they are rendered as small, white, two-dimensional squares. These
particles were created with the following lines of code:

function createParticles() {
 var material = new THREE.ParticleBasicMaterial();
 for (var x = -5; x < 5; x++) {
 for (var y = -5; y < 5; y++) {
 var particle = new THREE.Particle(material);
 particle.position.set(x * 10, y * 10, 0);
 scene.add(particle);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[183]

In this example, we create the particles manually with the THREE.
Particle(material) constructor. The only item we pass in is a material. This has to
be either a ParticleBasicMaterial or a ParticleProgramMaterial. We'll look at
both of these materials in more depth in the rest of this chapter.

Before we move on to more interesting particles, let's look a bit closer at the THREE.
Particle. A THREE.Particle extends from the THREE.Object3D object, just like a
THREE.Mesh does. This means that most of the properties and functions you know
from a THREE.Mesh can be used on a THREE.Particle. You can set its position using
the position attribute, scale it using the scale property and move it relatively using
the relevant translate properties.

We'd just like to add a last note on creating particles this way. If you look at
the complete source code for this example, you might notice that we used the
CanvasRenderer class for this, instead of the WebGLRenderer we used for most
examples. The reason is that creating particles and adding them to the scene directly,
only works for the CanvasRenderer. For the WebGLRenderer class we first have to
create a THREE.ParticleSystem object and add create particles from there. To get
the same result as the screenshot we saw earlier, for the WebGLRenderer we have to
use the following code:

function createParticles() {

 var geom = new THREE.Geometry();
 var material = new THREE.ParticleBasicMaterial({size: 4,
 vertexColors: true, color: 0xffffff});

 for (var x = -5; x < 5; x++) {
 for (var y = -5; y < 5; y++) {
 var particle = new THREE.Vector3(x * 10, y * 10, 0);
 geom.vertices.push(particle);
 geom.colors.push(
 new THREE.Color(Math.random() * 0x00ffff));
 }
 }

 var system = new THREE.ParticleSystem(geom, material);
 scene.add(system);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Particles and the Particle System

[184]

As you can see, for each particle, we need to create a vertex (represented by
Vector3), add it to a geometry, create a ParticleSystem object, and add the
ParticleSystem object to the scene. An example of the WebGLRenderer in action
(with colored squares) can be found in example 02-particles-webgl.html, also
shown in the following screenshot:

In the following sections we'll explore this ParticleSystem class further.

Particles, the particle system, and the
BasicParticleMaterial
At the end of the previous section we quickly introduced the ParticleSystem
class. Unless you're using the CanvasRenderer class, you'll need a ParticleSystem
class to show particles. The constructor of the ParticleSystem class takes two
properties: a geometry and a material. The material is used to color and texturize
the particles (as we'll see later on), and the geometry defines where the particles
are positioned. Each vertex, each point used to define the geometry of the supplied
geometry is shown as a particle. When we create a ParticleSystem object based on
a CubeGeometry object, we get eight particles, one for each corner of the cube.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[185]

Normally, though, you won't create a ParticleSystem from one of the standard
Three.js geometries, but add the vertices manually to a geometry created
from scratch, just like we did at the end of the previous section. In this section
we'll dive a bit deeper into this approach and look at how you can use the
BasicParticleMaterial to style the particles. We'll explore this using example
03-basic-particle-system.html that looks as shown in the following screenshot:

In this example we create a ParticleSystem which we fill with 15,000 particles.
All the particles are styled with a BasicParticleMaterial. To create this
ParticleSystem we used the following code:

function createParticles(size, transparent, opacity,
 vertexColors, sizeAttenuation, color) {

 var geom = new THREE.Geometry();
 var material = new THREE.ParticleBasicMaterial({
 size: size,
 transparent: transparent,
 opacity: opacity,
 vertexColors: vertexColors,
 sizeAttenuation: sizeAttenuation,
 color: color

www.it-ebooks.info

http://www.it-ebooks.info/

Particles and the Particle System

[186]

 });

 var range = 500;
 for (var i = 0; i < 15000; i++) {
 var particle = new THREE.Vector3(
 Math.random() * range - range / 2,
 Math.random() * range - range / 2,
 Math.random() * range - range / 2
);
 geom.vertices.push(particle);
 var color = new THREE.Color(0x00ff00);
 color.setHSL(color.getHSL().h,
 color.getHSL().s,
 Math.random() * color.getHSL().l);
 geom.colors.push(color);
 }

 system = new THREE.ParticleSystem(geom, material);
 scene.add(system);
}

In this listing we first create a THREE.Geometry object. We'll add the particles,
represented as a THREE.Vector3 object, to this geometry. For this we've created a
simple loop that creates a THREE.Vector3 at a random position and add it. In this
same loop we also specify the array of colors: geom.colors that are used when
we set the vertexColors property of the ParticleBasicMaterial object to true.
The last thing to do is create a ParticleBasicMaterial object, using the supplied
properties, create the ParticleSystem and add it to the scene. The following table
explains all the properties you can set on the ParticleBasicMaterial object:

Name Description
color The color of all the particles in the ParticleSystem object. Setting

the vertexColors property to true and specifying the colors
using the colors property of the geometry overrides this property.
The default value is 0xFFFFFF

map With this property you can apply a texture to the particles. You
can, for instance, make them look like snowflakes. This property
isn't shown in this example, but is explained further down in this
chapter.

size This property specifies the size of the particle. Default is 1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[187]

Name Description
sizeAnnutation If set to false all the particles will have the same size, regardless of

how far from the camera they are located. If this is set to true, the
size is based on the distance from the camera. Default is true.

vertexColors Normally all the particles in the ParticleSystem have the same
color. If this property is set to true, and the colors array in the
geometry has been filled, the colors from that array will be used
instead. Default value is false.

opacity Along with the transparent property sets the opacity of the
particle. Default is 1 (no opacity).

transparent If set to true, the particle will be rendered with the opacity set by
the opacity property. Default is false.

blending The blend mode to use when rendering the particle. See Chapter 9,
Animations and Moving the Camera, for more information on blend
modes.

fog Whether the particles are affected by fog added to the scene.
Defaults to true.

The previous example provides a simple control menu that you can use to
experiment with the ParticleBasicMaterial specific properties.

So far we've only rendered the particles as small cubes which is the default behavior.
There are, however, two different ways you can follow to style the particles. We
can apply the ParticleCanvasMaterial to use the results from an HTML canvas
element as a texture, or load an external image file using the map property of the
ParticleBasicMaterial. In the next section we look into how you can do this.

Styling particles with the HTML5 canvas
Three.js offers two different ways in which you can use an HTML5 canvas to style your
particles. If you use the CanvasRenderer class you can directly reference an HTML5
canvas from the ParticleCanvasMaterial object. When you use the WebGLRenderer
class you need to take a couple of extra steps to use an HTML5 canvas as a style for
your particle. In the following two sections we'll show you both of these approaches.

www.it-ebooks.info

http://www.it-ebooks.info/

Particles and the Particle System

[188]

Using HTML5 canvas with the
CanvasRenderer class
With the ParticleCanvasMaterial you can use the output from the HTML5
Canvas as a texture for your particles. This material is specifically created for the
CanvasRenderer and only works when you use this specific renderer. Before we look
at how to use this material, let's first look at the attributes you can set on this material:

Name Description
color The color of the particle. Depending on the specified blending mode

this affects the color of the canvas image.
program A function that takes a canvas context as parameter. This function is

called when the particle is rendered. The output from the calls to this
2D drawing context are shown as the particle.

opacity The opacity of the particle. Default is 1, no opacity.
transparent Whether the particle is transparent or not. Works together with the

opacity property.
Blending The blend mode to use. See Chapter 9, Animations and Moving the

Camera, for more details.

To see the ParticleCanvasMaterial in action, you can open example 04-program-
based-particle-system.html:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[189]

In this example the particles are created in the createParticles function:

function createParticles() {

 var material = new THREE.ParticleCanvasMaterial({
 program: draw,
 color: 0xffffff});
 var range = 500;
 for (var i = 0; i < 1000; i++) {
 var particle = new THREE.Particle(material);
 particle.position = new THREE.Vector3(
 Math.random() * range - range / 2,
 Math.random() * range - range / 2,
 Math.random() * range - range / 2);
 particle.scale = 0.1;
 particle.rotation.z = Math.PI;
 scene.add(particle);
 }
}

This code looks a lot like the code we saw in the previous section. The main change
is that, because we're working with the CanvasRenderer, we create THREE.Particle
objects directly, instead of using a ParticleSystem. In this code we also define a
ParticleCanvasMaterial with a program attribute that points to the draw function.
This draw function defines what a particle will look like (a ghost from Pac-Man):

var draw = function(ctx) {
 ctx.fillStyle = "orange";
 ...
 // lots of other ctx drawing calls
 ...
 ctx.beginPath();
 ctx.fill();
}

We won't dive into the actual canvas code required to draw our shape. What's
important here is that we define a function that accepts a 2D canvas context as its
parameter. Everything that is drawn onto that context is used as the shape for the
THREE.Particle.

www.it-ebooks.info

http://www.it-ebooks.info/

Particles and the Particle System

[190]

Using HTML5 canvas with the
WebGLRenderer class
If we want to do the same thing with the WebGLRenderer class, we have to take a
slightly different approach. The ParticleCanvasMaterial class won't work so we
have to use the ParticleBasicMaterial for this purpose. In the attributes for the
ParticleBasicMaterial we already mentioned the map property. With the map
property we can load a texture for the particle. With Three.js, this texture can also be
the output from an HTML5 canvas. An example showing this concept can be found
here: 05-program-based-particle-system-webgl.html. The output is also shown
in the following screenshot:

Let's look at the code we wrote to get this effect. Most of the code is the same as our
previous WebGL example, so we won't go too much into detail. The important code
changes that were made to get this example are shown in the following code snippet:

var getTexture = function() {
 var canvas = document.createElement('canvas');
 canvas.width = 32;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[191]

 canvas.height = 32;

 var ctx = canvas.getContext('2d');
 ...
 // draw the ghost
 ...
 ctx.fill();
 var texture = new THREE.Texture(canvas);
 texture.needsUpdate = true;
 return texture;
}

function createParticles(size, transparent, opacity,
 sizeAttenuation, color) {

 var geom = new THREE.Geometry();

 var material = new THREE.ParticleBasicMaterial({
 size: size,
 transparent: transparent,
 opacity: opacity,
 map: getTexture(),
 sizeAttenuation: sizeAttenuation,
 color: color});

 var range = 500;
 for (var i = 0; i < 5000; i++) {
 var particle = new THREE.Vector3(
 Math.random() * range - range / 2,
 Math.random() * range - range / 2,
 Math.random() * range - range / 2);
 geom.vertices.push(particle);
 }

 system = new THREE.ParticleSystem(geom, material);
 system.sortParticles = true;
 system.name = "particles";
 scene.add(system);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Particles and the Particle System

[192]

In the first of these two JavaScript functions, getTexture, we create a THREE.
Texture object based on an HTML5 canvas element. In the second function,
createParticles, we assign this texture to the map property. In this function you
can also see that we set sortParticles property of the ParticleSystem object to
true. This property ensures that before the particles are rendered, they are sorted
according to their z-position on screen. If you see partly overlapping particles or
incorrect transparency, setting this property to true will in most of the cases fix
that. While we're talking about ParticleSystem properties, there is one additional
property you can set on the ParticleSystem: FrustrumCulled. If this property is
set to true, it means that if particles fall outside the visible camera range, they aren't
rendered. This can be used to improve performance and framerate if needed.

The result of this is that everything we draw to the canvas in the getTexture()
method is used for our particles. In the following section, we'll look a bit deeper
into how this works with the textures that we load from external files. Note that
in this example, we only see a very small part of what is possible with textures.
In Chapter 10, Loading and Working with Textures, we'll dive into the details of
what can be done with textures.

Using textures to style particles
In the previous example we saw how you could style a particle system using an
HTML5 canvas. Since you can draw anything you want, even load external images,
you can use this approach to add all kinds of styles to the particle system. There is,
however, also a more direct way to use an image to style your particles. Three.js allows
you to load external images with the THREE.ImageUtils.loadTexture() function.

In this section we'll show you two examples, and explain how to create them. Both
these examples use an image as a texture for your particles. In the first example
we create an example that simulates rain 06-rainy-scene.html as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[193]

The first thing we need to do is get a texture that will represent our raindrop.
You can find a couple of examples in the assets/textures/particles folder.
In Chapter 9, Animations and Moving the Camera, we'll explain all the details and
requirements for textures. For now, all you need to know is that the texture should
be a square and a power of 2 (for example, 64x64, 128x128, 256x256). For this
example we'll use this texture:

www.it-ebooks.info

http://www.it-ebooks.info/

Particles and the Particle System

[194]

This image uses a black background (needed for correct blending) and shows
the shape and color of a raindrop. Before we can use this texture in our
ParticleBasicMaterial, we first need to load it. This can be done with the
following line of code:

var texture = THREE.ImageUtils.loadTexture(
 "../assets/textures/particles/raindrop-2.png");

With this line of code Three.js will load the texture, and we can use it in our material.
For this example we defined the material as shown in the following code snippet:

var material = new THREE.ParticleBasicMaterial({
 size: 3,
 transparent: true,
 opacity: true,
 map: texture,
 blending: THREE.AdditiveBlending,
 sizeAttenuation: true,
 color: 0xffffff}
);

In this chapter we've already discussed all of these properties. The main thing
to understand here is that the map property points to the texture we loaded
with the THREE.ImageUtils.loadTexture() function and we specify THREE.
AdditiveBlending as blending mode. This blending mode means that when a
new pixel is drawn, the color of the background pixel, is added to the color of this
new pixel. For our raindrop texture, this means that the black background won't
be shown. An alternative would be to define the black color from our texture as
transparent, but that's a combination that doesn't work with particles and WebGL.

That takes care of styling the particle system. What you'll also see when you open up
this example is that the particles themselves are moving. In the previous examples we
moved the entire particle system, this time we position the individual particles within
the particle system. Doing this is actually very simple. Each particle is represented
as a vertex that makes up the geometry that was used to create the ParticleSystem
object. Let's look at how we add the particles for this ParticleSystem:

var range = 40;
for (var i = 0; i < 1500; i++) {
 var particle = new THREE.Vector3(
 Math.random() * range - range / 2,
 Math.random() * range * 1.5,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[195]

 Math.random() * range - range / 2);
 particle.velocityY = 0.1 + Math.random() / 5;
 particle.velocityX = (Math.random() - 0.5) / 3;
 geom2.vertices.push(particle);
}

This isn't that different from the previous examples we saw. The only thing
we added here is that to each particle (a THREE.Vector3 object) two additional
properties are added: velocityX and velocityY. The first one defines how a particle
(a raindrop) moves horizontally, and the second one defines how fast the raindrop
falls down. The horizontal velocity ranges from -0.16 to +0.16 and the vertical speed
ranges from 0.1 to 0.3. Now that each raindrop has its own speed, we can move the
individual particles inside the render loop as shown in the following code snippet:

var vertices = system2.geometry.vertices;
vertices.forEach(function (v) {
 v.y = v.y - (v.velocityY);
 v.x = v.x - (v.velocityX);

 if (v.y <= 0) v.y = 60;
 if (v.x <= -20 || v.x >= 20) v.velocityX = v.velocityX * -1;
});

In this piece of code we get all the vertices (particles) from the geometry that
was used to create the ParticleSystem object. For each of the particles we take
velocityX and velocityY and use them to change the current position of the
particle. The last two lines make sure the particles stay within the range we've
defined. If the y position drops below zero, we add the raindrop back to the top
and if the x position reaches any of the edges, we make it bounce back by inverting
the horizontal velocity.

www.it-ebooks.info

http://www.it-ebooks.info/

Particles and the Particle System

[196]

Let's look at another example. This time we won't make rain, but we'll make snow.
Additionally we won't be using a single texture, but we'll use five separate images
(taken from the Three.js examples). Let's start by looking at the result again (see
07-snowy-scene.html):

In this image you can see that instead of using a single image as texture, we've used
multiple. You might wonder how we did this. As you probably remember, we can
only have a single material for a ParticleSystem. If we want to have multiple
materials, we just have to make multiple particle systems:

function createParticles(size, transparent, opacity,
 sizeAttenuation, color) {

 var texture1 = THREE.ImageUtils.loadTexture(
 "../assets/textures/particles/snowflake1.png");
 var texture2 = THREE.ImageUtils.loadTexture(
 "../assets/textures/particles/snowflake2.png");
 var texture3 = THREE.ImageUtils.loadTexture(
 "../assets/textures/particles/snowflake3.png");
 var texture4 = THREE.ImageUtils.loadTexture(
 "../assets/textures/particles/snowflake5.png");

 scene.add(createSystem("system1", texture1, size, transparent,
 opacity, sizeAttenuation, color));
 scene.add(createSystem("system2", texture2, size, transparent,
 opacity, sizeAttenuation, color));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[197]

 scene.add(createSystem("system3", texture3, size, transparent,
 opacity, sizeAttenuation, color));
 scene.add(createSystem("system4", texture4, size, transparent,
 opacity, sizeAttenuation, color));
}

Here you can see that we load the textures separately, and pass all the information
on how to create the ParticleSystem for the createSystem function. This function
looks as shown in the following code snippet:

function createSystem(name, texture, size, transparent, opacity,
 sizeAttenuation, color) {
 var geom = new THREE.Geometry();

 var color = new THREE.Color(color);
 color.setHSL(color.getHSL().h,
 color.getHSL().s,
 (Math.random()) * color.getHSL().l);

 var material = new THREE.ParticleBasicMaterial({
 size: size,
 transparent: transparent,
 opacity: opacity,
 map: texture,
 blending: THREE.AdditiveBlending,
 depthWrite: false,
 sizeAttenuation: sizeAttenuation,
 color: color});

 var range = 40;
 for (var i = 0; i < 50; i++) {
 var particle = new THREE.Vector3(
 Math.random() * range - range / 2,
 Math.random() * range * 1.5,
 Math.random() * range - range / 2);
 particle.velocityY = 0.1 + Math.random() / 5;
 particle.velocityX = (Math.random() - 0.5) / 3;
 particle.velocityZ = (Math.random() - 0.5) / 3;
 geom.vertices.push(particle);
 }

 var system = new THREE.ParticleSystem(geom, material);
 system.name = name;
 system.sortParticles = true;
 return system;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Particles and the Particle System

[198]

The first thing we do in this function is define the color the particles for this specific
texture should be rendered in. This is done by randomly changing the 'lightness' of
the color that is passed in. Next the material is created in the same manner as we did
before. The only change here is that the depthWrite property is set to false. This
property defines whether this object affects the WebGL depth buffer. By setting this to
false we make sure that the various particle systems don't interfere with each other.
If this property isn't disabled, you'll see that the black background from the texture
is sometimes shown when a particle is in front of a particle from another particle
system. The last step taken in this piece of code is randomly placing the particles and
adding a random speed to each particle. In the render loop we can now update each
particle from each particle system as shown in the following code snippet:

scene.children.forEach(function (child) {
 if (child instanceof THREE.ParticleSystem) {
 var vertices = child.geometry.vertices;
 vertices.forEach(function (v) {
 v.y = v.y - (v.velocityY);
 v.x = v.x - (v.velocityX);
 v.z = v.z - (v.velocityZ);

 if (v.y <= 0) v.y = 60;
 if (v.x <= -20 || v.x >= 20)
 v.velocityX = v.velocityX * -1;
 if (v.z <= -20 || v.z >= 20)
 v.velocityZ = v.velocityZ * -1;
 });
 }
});

With this approach we can have particles that have different textures. This approach,
however, is a bit limited. The more different textures we want, the more particle
systems we'll have to create and manage. It would be easier if we could use a single
particle, like we showed in the beginning of this chapter for the CanvasRenderer,
and style that instead. With the CanvasRenderer class we'll quickly run into
performance issues, though. Using single THREE.Particle class objects doesn't work
with the WebGLRenderer. There is, however, an alternative I haven't mentioned yet
—the THREE.Sprite.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[199]

Working with sprites
The THREE.Sprite object can be used for two different goals:

• Create an object that is moved, positioned, and scaled based on screen
coordinates. You can use this to create a Head-Up display (HUD) like
a layer for your 3D content.

• Create a particle like object that can be moved in the 3D space just like the
THREE.Particle allows for the CanvasRenderer. Using sprites in a 3D
environment is also sometimes called billboarding. Billboarding means that
the sprite always faces the camera, just like a billboard along the highway
faces the driver.

We'll look at both of these cases, starting with the first one. For an example we're going
to create a simple THREE.Sprite that moves from left to right over the screen. In the
background we'll render a 3D scene with a moving camera to illustrate that the THREE.
Sprite moves independently. The following screenshot shows what we'll be creating
for the first example (08-sprites.html):

www.it-ebooks.info

http://www.it-ebooks.info/

Particles and the Particle System

[200]

If you open this example in your browser you'll see a Pac-Man ghost like sprite
moving around the screen and changing color and form whenever it hits the
right edge. So a good place to start with the explanation is the construction
of the THREE.Sprite and how the various shapes the sprite can take are loaded:

function getTexture() {
 var texture = new THREE.ImageUtils.loadTexture(
 "../assets/textures/particles/sprite-sheet.png");
 return texture;
}

function createSprite(size, transparent, opacity, color,
 spriteNumber) {
 var spriteMaterial = new THREE.SpriteMaterial({
 opacity: opacity,
 color: color,
 transparent: transparent,
 useScreenCoordinates: true,
 map: getTexture()}
);

 // we have 1 row, with five sprites
 spriteMaterial.uvOffset.set(1 / 5 * spriteNumber, 0);
 spriteMaterial.uvScale.set(1 / 5, 1);
 spriteMaterial.alignment = THREE.SpriteAlignment.bottomCenter;
 spriteMaterial.scaleByViewport = true;
 spriteMaterial.blending = THREE.AdditiveBlending;

 var sprite = new THREE.Sprite(spriteMaterial);
 sprite.scale.set(size, size, size);
 sprite.position.set(200, window.innerHeight - 2, 0);
 sprite.velocityX = 5;

 scene.add(sprite);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[201]

In the getTexture() function we load a texture. But instead of loading five different
images for each ghost, we load a single texture that contains all the sprites and looks
as shown in the following screenshot:

With the uvOffset and the uvScale properties we select the correct sprite to show
on screen. With the uvOffset property, we determine the offset for the x-axis (u) and
the y-axis (v) for the texture we loaded. The scale for these properties runs from 0
to 1. In our example, if we want to select the third ghost, we set the u-offset (x-axis)
to 0.4, since we've only got one row we don't need to change the v-offset (y-axis). If
we only set this property the texture shows ghost 3, 4, and 5, compressed together,
on screen. To only show one ghost we need to zoom in. We do this by setting the
uvScale property for the u-value to 1/5. This means that we zoom in (only for the
x-axis) to only show 20% of the texture, which is exactly one ghost.

One other property we'd like to explain is the useScreenCoordinates property. If
this property is set to true you position the sprite using only its x and y coordinate,
relative to the top-left corner of the window. The camera from the screen is
completely ignored with this property set to true. For the other properties see the
following table:

Name Description
Color The color of the sprite.
Map The texture to use for this sprite. This can be a sprite sheet as

shown in the example in this section.
sizeAnnutation If set to false the size of the sprite won't be affected by the

distance its removed from the camera. Default is true.
opacity Sets the transparency of the sprite. Default is 1 (no opacity).
blending The blend mode to use when rendering the sprite. See

Chapter 9, Animations and Moving the Camera, for more
information on blend modes.

fog Whether the sprite is affected by fog added to the scene.
Defaults to true.

useScreenCoordinates If set to true, the position of the sprite is absolute. Based on
the upper left corner of the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Particles and the Particle System

[202]

Name Description
scaleByViewport Size of the sprite is based on the size of the viewport. If set to

true, size = imageWidth / viewportHeight. If set to
false, size = imageWidth / 1.0.

alignment When the sprite is scaled (using the scale property)
this property defines from where the sprite is scaled. For
instance, if set to THREE.SpriteAlignment.topLeft,
the sprite's top-left corner stays at the same position when
increasing or decreasing the scale of the sprite.

uvOffset Use along with with the uvOffset property to select a part
of the texture to use for the sprite. For an explanation see the
code example in this section.

uvScale Use along with the uvScale property to select a part of the
texture to use for the sprite. For an explanation see the code
example in this section.

You can also set depthTest and depthWrite properties on this material. For more
information on these properties see Chapter 4, Working with Three.js materials.

Before moving on to the last section on particles, let's look at the second use of the
THREE.Sprite: using it as a single particle that can be positioned in 3D space. For
this we've also created an example: 09-sprites-3D.html, the output of which is
shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[203]

If you've looked closely at the properties in the previous table, you can pretty much
guess the code required to get this effect:

function createSprite(size, transparent, opacity, color,
 spriteNumber, range) {

 var spriteMaterial = new THREE.SpriteMaterial({
 opacity: opacity,
 color: color,
 transparent: transparent,
 useScreenCoordinates: false,
 sizeAttenuation: true,
 map: getTexture()}
);

 // we have one row, with five sprites
 spriteMaterial.uvOffset.set(1 / 5 * spriteNumber, 0);
 spriteMaterial.uvScale.set(1 / 5, 1);
 spriteMaterial.alignment = THREE.SpriteAlignment.bottomCenter;
 spriteMaterial.blending = THREE.AdditiveBlending;

 var sprite = new THREE.Sprite(spriteMaterial);
 sprite.scale.set(size, size, size);
 sprite.position = new THREE.Vector3(
 Math.random() * range - range / 2,
 Math.random() * range - range / 2,
 Math.random() * range - range / 2);
 sprite.velocityX = 5;
 return sprite;
}

In this code we create 400 sprites based on the sprite sheet we showed earlier. You'll
probably know and understand most of the properties and concepts shown here.
The main thing to remember when you want to use a sprite in the 3D space is to set
the useScreenCoordinates property to false. With that property set to false, the
sprites will behave like the particles we discussed in the rest of the chapter. Rotating
all the separate sprites is very easy since we've added them to a group and can be
done as shown in the following line of code:

group.rotation.x+=0.1;

In this chapter, so far we've mainly looked at creating particles, sprites, and particle
systems from scratch. An interesting option, though, is to create a particle system
from an existing geometry.

www.it-ebooks.info

http://www.it-ebooks.info/

Particles and the Particle System

[204]

Creating a particle system from an
advanced geometry
As you remember, a particle system renders each particle based on the vertices
from the supplied geometry. This means that if we provide a complex geometry; for
example, a torus knot or a tube, we can create a particle system based on the vertices
from that specific geometry. For the last section of this chapter we'll create a torus
knot, like the one we saw in the previous chapter, and render it as a particle system.

We've already explained the torus knot in the previous chapter so we won't
go into much detail here. We're using the exact code from the previous chapter,
and we've added a single menu option that you can use to transform the rendered
mesh to a particle system. You can find the example in the sources for this
10-create-particle-system-from-model.html, the output of which is shown
in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[205]

As you can see in this image, every vertex used to generate the torus knot is used as
a particle. In this example, we've added a nice looking material, based on an HTML
canvas, to create this glowing effect. We'll only look at the code to the create the
material and the particle system, since we've already discussed the other properties
in this chapter.

function generateSprite() {

 var canvas = document.createElement('canvas');
 canvas.width = 16;
 canvas.height = 16;

 var context = canvas.getContext('2d');
 var gradient = context.createRadialGradient(
 canvas.width / 2, canvas.height / 2,
 0,
 canvas.width / 2, canvas.height / 2,
 canvas.width / 2);

 gradient.addColorStop(0, 'rgba(255,255,255,1)');
 gradient.addColorStop(0.2, 'rgba(0,255,255,1)');
 gradient.addColorStop(0.4, 'rgba(0,0,64,1)');
 gradient.addColorStop(1, 'rgba(0,0,0,1)');

 context.fillStyle = gradient;
 context.fillRect(0, 0, canvas.width, canvas.height);

 var texture = new THREE.Texture(canvas);
 texture.needsUpdate = true;
 return texture;
}

function createParticleSystem(geom) {
 var material = new THREE.ParticleBasicMaterial({
 color: 0xffffff,
 size: 3,
 transparent: true,
 blending: THREE.AdditiveBlending,
 map: generateSprite()
 });

 var system = new THREE.ParticleSystem(geom, material);
 system.sortParticles = true;
 return system;

www.it-ebooks.info

http://www.it-ebooks.info/

Particles and the Particle System

[206]

}

// use it like this
var geom = new THREE.TorusKnotGeometry(...);
var knot = createParticleSystem(geom);

In this code fragment you can see two functions: createParticleSystem()
and generateSprite(). In the first function we create a simple ParticleSystem
directly from the provided geometry (in this example a torus knot) and set the
texture (the map property) to a glowing dot (generated on an HTML5 Canvas
element) with the generateSprite() function.

Summary
That's a wrap for this chapter. We've explained what a particle, a sprite, and a
particle system are and how you can style these objects with the available materials.
The important parts to remember are listed here:

• You can use a THREE.Particle object directly when you use the
CanvasRenderer class.

• When you use the WebGLRenderer class, you can't use a THREE.Particle
object, but you can create singular particles using the THREE.Sprite object.

• If you want to create a large number of particles that share a material you
should use the THREE.ParticleSystem class. With this object each vertex is
rendered as a particle using the supplied material.

• You can easily animate particles by changing their position. This works the
same for a THREE.Particle, a THREE.Sprite, and the vertices from the
geometry used to create the THREE.ParticleSystem.

• With the map property you can use images or the output from an HTML5
Canvas element to style your particles.

• You can also use the THREE.Sprite class to create objects that function as an
overlay to the 3D scene. These objects are positioned at absolute positions on
the screen by setting the property useScreenCoordinates to true.

In the chapters so far we've created meshes based on geometries provided by Three.
js. This works great for simple models such as spheres and cubes, but isn't the best
approach when you want to create complex 3D models. For those models you'd
usually use a 3D modeling application such as Blender or 3D Studio max. In the
next chapter, you'll learn how you can load and display models created by such 3D
modeling applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Loading
Advanced Meshes and

Geometries
In this chapter, we'll look at a couple of different ways you can create advanced
and complex geometries and meshes. In Chapter 5, Learn to work with geometries,
we already showed you how to create some advanced geometries using the built-in
objects from Three.js. In this chapter we'll use the following two approaches to create
advanced geometries and meshes:

• Grouping and merging: The first approach we explain uses built-in
functionality from Three.js to group and merge existing geometries.
This creates new meshes and geometries from existing objects.

• Load from external: In this section we'll explain how you can load meshes
and geometries from external sources. For instance, we'll show you how you
can use Blender to export meshes in a format Three.js supports.

We start with the "group and merge" approach. With this approach we use the
standard Three.js grouping and the GeometryUtils.merge() function to create
new objects.

Geometry grouping and merging
In this section we'll look at two basic features of Three.js: grouping objects together
and merging multiple meshes into a single mesh. We'll start with grouping objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Loading Advanced Meshes and Geometries

[208]

Grouping objects together
In some of the previous chapters, you've already seen this when working with
multiple materials. When you create a mesh from a geometry using multiple
materials, Three.js creates a group. To this group, multiple copies of your geometry
are added, each with their own specific material. This group is returned, so it looks
like a mesh that uses multiple materials. In truth, however, it is a group that contains
a number of meshes.

Creating groups is very easy. Every mesh you create can contain child elements that
can be added using the add function. The effect of adding a child object to a group
is that you can move, scale, rotate, and translate the parent object, and all the child
objects will also be affected. Let's look at an example, 01-grouping.html, as shown
in the following screenshot:

In this example you can use the menu to move the sphere and the cube around. If
you check the rotate option, you'll see these two meshes rotating around their center.
This isn't anything new and is not very exciting. However, these two objects haven't
been added to the scene directly, but have been added as a group:

sphere = createMesh(new THREE.SphereGeometry(5, 10, 10));
cube = createMesh(new THREE.CubeGeometry(6, 6, 6));

group = new THREE.Object3D();
group.add(sphere);
group.add(cube);

scene.add(group);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[209]

In this code fragment you can see that we create a THREE.Object3D object. This is
the base class of a THREE.Mesh object and a THREE.Scene object, but in itself doesn't
contain anything or cause anything to be rendered. In this example, we use the add
function to add sphere and cube to this object and we add it to the scene instance.
If you look at the example you can still move the cube and sphere around, and scale
and rotate these two objects. You can also do these things in the group they are in. If
you look at the group menu, you'll see the position and scale options. You can use
these to scale and move the entire group around. The scale and position of the objects
inside this group are relative to the scale and position of the group itself.

Scale and position are very straightforward. One thing to keep in mind though, is
when you rotate a group, it doesn't rotate the objects inside it separately, it rotates
the entire group around its center. In this example I placed an arrow at the center of
the group:

var arrow = new THREE.ArrowHelper(
 new THREE.Vector3(0, 1, 0), group.position, 10, 0x0000ff);
scene.add(arrow);

If you check both the grouping and rotate checkboxes, the group will rotate. And
you'll see the sphere and cube rotating around the center of the group (indicated by
the arrow) as shown in the following screenshot:

When using a group you can still reference and modify the individual geometries. In
the next section, we'll look at merging, where you'll end up with a single new geometry.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Loading Advanced Meshes and Geometries

[210]

Merging multiple meshes into a single mesh
In most cases using groups allows to easily manipulate and manage a large
number of meshes. When you're dealing with a very large number of objects,
however, performance will become an issue. With groups you're still working
with individual objects that each need to be handled and rendered separately.
With THREE.GeometryUtils.merge you can merge geometries together and create
a combined one. In the following example, you can see how this works and the effect
it has on performance. If you open example 02-merging.html, you see a scene with
a randomly distributed set of semi-transparent cubes. With the slider in the menu
you can set the number of cubes you want in the scene, and redraw the scene by
clicking on the redraw button. Depending on the hardware you're running on, you'll
see a performance degradation at a certain number of cubes. In my case, as you
can see in the following screenshot, this happens at around 4000 objects, where the
refresh rate drops to around 40 fps instead of the normal 60 fps:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[211]

As you can see there is a certain limit to the number of meshes you can add to the
scene. Normally, though, you probably wouldn't need that many meshes, but when
creating specific games (for example, Minecraft) or advanced visualizations you might
run into these kind of performance issues. With THREE.GeometryUtils.merge you
can solve this problem. Before we look at the code, let's run this same example, but this
time, with the combined checkbox selected as shown in the following screenshot:

As you can see we can easily render 20,000 cubes, without any drop in performance.
To do this we use the following couple of lines of code:

var geometry = new THREE.Geometry();
for (var i = 0; i < controls.numberOfObjects; i++) {
 THREE.GeometryUtils.merge(geometry, addCube());
}
scene.add(new THREE.Mesh(geometry, cubeMaterial));

In this code fragment the addCube() function returns a THREE.CubeGeometry
object. With the THREE.GeometryUtils.merge(geometry, addCube()); statement
we merge the cube geometry in the initially empty, THREE.Geometry. We do this
20,000 times and are left with a single geometry that we add to the scene. If you look
at the code you can probably see a couple of drawbacks from this approach. Since
you're left with a single geometry, you can't apply a material to each individual
cube. This, however, can be somewhat solved, by using a THREE.MeshFaceMaterial
object. The biggest drawback, however, is that you lose control over the individual
cubes. If you want to move, rotate, or scale a single cube, you can't (unless you
search for the correct faces and vertices and position them individually).

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Loading Advanced Meshes and Geometries

[212]

With the grouping and merging approach you can create large and complex
geometries using the basic geometries provided by Three.js. If you want to create
more advanced geometries, using the programmatic approach provided by Three.
js isn't always the best and easiest option. Three.js, luckily, offers a couple of other
options to create geometries. In the next section, we'll look at how you can load
geometries and meshes from external resources.

Loading geometries from external resources
Three.js can read a number of 3D file formats and import geometries and meshes
defined in those files. The following table shows the file formats supported by Three.
js and the ones we'll look at in this section.

Format Description
JSON Three.js has its own JSON format that you can use to declaratively

define a geometry or a scene. Even though this isn't an official
format, it's very easy to use, and comes in as very helpful when you
want to reuse complex geometries or scenes.

OBJ en MTL OBJ is a simple 3D format first developed by Wavefront
Technologies. It's one of the most widely adopted 3D file
formats and is used to define the geometry of an object. MTL is a
companion format to OBJ. In an MTL file the material of the objects
in an OBJ file is specified.
Three.js also has a custom OBJ exporter, called OBJExporter.js,
should you want to export your models to OBJ from Three.js.

Collada Collada is a format for defining digital assets in an XML based
format. This is also a widely used format that is supported by pretty
much all 3D applications and rendering engines.

STL STL stands for STereoLithography and is widely used for rapid
prototyping. For instance, models for 3D printers are often defined
as an STL file.
Three.js also has a custom STL exporter, named STLExporter.js,
should you want to export your models to STL from Three.js.

CTM CTM is a file format created by openCTM. It's used as a format for
storing 3D triangle-based meshes in a compact format.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[213]

Format Description
VTK VTK is the file format defined by the Visualization Toolkit, and is

used to specify vertices and faces. There are two formats available
and Three.js supports the old, ASCII format.

PDB This is a very specialized format, created by the Protein Databank,
that is used to specify what proteins look like. Three.js can load and
visualize proteins specified in this format.

PLY This format is called the polygon file format. This is most often used
to store information from 3D scanners.

In the next chapter we'll revisit some of these formats (and look at one additional
one MD2), when we look at animation. For now we start with the first one on the list,
Three.js own internal format.

Saving and loading in Three.js JSON format
You can use Three.js' JSON format for two different scenarios in Three.js. You
can use it to save and load a single geometry, or you can use it to save and load a
complete scene.

Saving and loading a geometry
To demonstrate saving and loading we created a simple example based on a THREE.
TorusKnotGeometry class. With this example you can create a torus knot, just like
we did in Chapter 5, Learn to work with geometries, and using the save button from the
Save & Load menu you can save the current geometry. For this example, we save
using the HTML5 local storage API. This API allows us to easily store persistent
information in the client's browser and retrieve it at a later time (even after the
browser is shut down and restarted).

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Loading Advanced Meshes and Geometries

[214]

The example can be found at 03-load-save-json-object.html as shown in the
following screenshot:

To get this to work, you first have to include the GeometryExporter.js file from the
Three.js distribution, you can find this file in the examples/js/exporters directory,
into your page:

<script type="text/javascript"
 src="../libs/GeometryExporter.js"></script>

Now you can use the following JavaScript to save a geometry to your browser's
local storage:

var exporter = new THREE.GeometryExporter();
var result = exporter.parse(knot.geometry);
localStorage.setItem("json", JSON.stringify(result));

Before saving it, we first convert the result from the GeometryExporter object, a
JavaScript object, to a string using the JSON.stringify function. This results in a
JSON string that looks like the following code listing (most of the vertices and faces
are left out):

{
 "metadata": {
 "version": 4,
 "type": "geometry",
 "generator": "GeometryExporter"
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[215]

 "vertices": [14.000030624610355, -0.006999878543058498, ...],
 "uvs": [
 []
],
 "faces": [49, 0, 8, ...]
}

As you can see Three.js saves the raw geometry. It saves all the faces and vertices,
but you don't know whether it was a torus, a cube, or something else. To save
this information using the HTML5 local storage API all we have to do is call the
localStorage.setItem function. The first argument is the key value (json) that
we can later use to retrieve the information we pass in as the second argument.

Loading this geometry back into Three.js also requires just a couple of lines of code.

var json = localStorage.getItem("json");

if (json) {
 var loadedGeometry = JSON.parse(json);

 var loader = new THREE.JSONLoader();
 var geom = loader.parse(loadedGeometry);
 loadedMesh = createMesh(geom.geometry);
 loadedMesh.position.x = -35;
 loadedMesh.position.z = -5;
 scene.add(loadedMesh);
}

Here we first get the geometry from local storage, using the name we saved it with
(json in this case). For this we use the localStorage.getItem function provided by
the HTML5 localStorage API. Next we convert the string back to a JavaScript object
(JSON.parse) and use the THREE.JSONLoader class to convert the JSON object back
to a geometry. We can create a mesh from this geometry and add it to the scene. In
this example I've use the parse method on the loader to directly parse a JSON string,
the loader also provides a load function where you can pass in the URL to a file
containing the JSON definition.

As you can see here, we only save the geometry. We lose everything else. If you want
to save the complete scene, including materials, lights, positions and so on, you can
use the SceneExporter object.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Loading Advanced Meshes and Geometries

[216]

Saving and loading a scene
If you want to save a complete scene, you use the same approach as we saw in the
previous section for the geometry. A working example showing this can be found
at 04-load-save-json-scene.html as shown in the following screenshot:

In this example you've got three options: exportScene, clearScene, and importScene.
With exportScene the current state of the scene will be saved in the browser's local
storage. To test the import functionality, you can remove the scene by clicking on
the clearScene button, and load it from local storage with the importScene button.
The code to do all this is very simple, but before you can use it, you have to again
import the required exporter from the Three.js distribution (look in the examples/
js/exporters directory).

<script type="text/javascript"
 src="../libs/SceneExporter.js"></script>

With these loaders included in the page you can export a scene with the
following JavaScript:

var exporter = new THREE.SceneExporter();
var sceneJson = JSON.stringify(exporter.parse(scene));
localStorage.setItem('scene', sceneJson);

This approach is exactly the same as we did for the GeometryExporter class from
the previous section, only this time we use the THREE.SceneExporter() method.
The resulting JSON looks a bit different though:

{
 "metadata": {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[217]

 "formatVersion": 3.2,
 "type": "scene",
 "generatedBy": "SceneExporter",
 "objects": 5,
 "geometries": 3,
 "materials": 3,
 "textures": 0
 },
 "urlBaseType": "relativeToScene",
 "objects": {
 "Object_78B22F27-C5D8-46BF-A539-A42207DDDCA8": {
 "geometry": "Geometry_5",
 "material": "Material_1",
 "position": [15, 0, 0],
 "rotation": [-1.5707963267948966, 0, 0],
 "scale": [1, 1, 1],
 "visible": true
 }
 ... // removed all the other objects for legibility
 },
 "geometries": {
 "Geometry_8235FC68-64F0-45E9-917F-5981B082D5BC": {
 "type": "cube",
 "width": 4,
 "height": 4,
 "depth": 4,
 "widthSegments": 1,
 "heightSegments": 1,
 "depthSegments": 1
 }
 ... // removed all the other objects for legibility
 }
 ... other scene information like textures

The main difference is that instead of exporting the raw information from an object,
this exporter creates a JSON file that very specifically declares the objects, lights,
materials, and other data used in a scene. When you load this again, Three.js just
recreates the objects exactly as they were exported. Loading a scene is done as shown
in the following code snippet:

var json = (localStorage.getItem('scene'));
var sceneLoader = new THREE.SceneLoader();
sceneLoader.parse(JSON.parse(json), function(e) {
 scene = e.scene;
}, '.');

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Loading Advanced Meshes and Geometries

[218]

The last argument passed into the loader ('.') defines the relative URL. For instance,
if you've got materials that use textures (for example, external images), those will be
retrieved using this relative URL. In this example, where we don't use textures, we
just pass in the path of current directory. Just like with GeometryLoader, you can
also load a JSON file directly by using the load function.

There are many different 3D programs that you can use to create complex meshes.
A popular open source one is Blender (www.blender.org). Three.js has an exporter
for Blender (and for Maya and 3D Studio Max) that directly exports to Three.js' own
JSON format. In the next section we'll walk you through getting Blender configured
to use this exporter and show you how you can export a complex model in Blender
and show it in Three.js.

Working with Blender
Before we get started with the configuration, we'll show the result that we'll be aiming
for. In the following screenshot, you can see a simple Blender model that we exported
with the Three.js plugin and imported in Three.js with the JSONLoader class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[219]

Installing the Three.js exporter in Blender
To get Blender to export Three.js models, we first need to add the Three.js exporter
to Blender. The following steps are for Mac OS X, but are pretty much the same on
Windows and Linux. You can download Blender from www.blender.org and follow
the specific installation instructions for your platform. After installation you can add
the Three.js plugin. First, locate the addons directory from your Blender installation
using a terminal window as shown in the following screenshot:

On my Mac it's located here: ./blender.app/Contents/MacOS/2.68/scripts/
addons. For Windows this folder can be found at the following location:

C:\Users\USERNAME\AppData\Roaming\Blender
Foundation\Blender\2.6X\scripts\addons

And for Linux you can find this directory here:

/home/USERNAME/.config/blender/2.6X/scripts/addons

Next you need to get the Three.js distribution and unpack it locally. In this
distribution you can find the following directory: utils/exporters/blender/2.66/
scripts/addons/. In this directory there is a single subdirectory with the name: io_
mesh_threejs. Copy this directory to the addons folder of your Blender installation.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Loading Advanced Meshes and Geometries

[220]

Now all we need to do is start Blender and enable the exporter. In Blender open
the Blender User Preferences (File | User Preferences). In the window that opens,
navigate to the Addons tab and in the search box type three. This will show the
following screen:

At this point, the Three.js plugin is found, but it is still disabled. Select the small
checkbox at the right, and the Three.js exporter will be enabled. As a final check to
see whether everything is working correctly, open the File | Export menu option,
and you'll see Three.js listed as an Export option.

With the plugin installed we can load our first model.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[221]

Loading and exporting a model from Blender
As an example, we've added a simple Blender model named misc_chair01.blend
in the assets/models folder, which you can find in the sources for this book. In
this section, we'll load this model, and show the minimal steps it takes to export this
model to Three.js.

First, we need to load this model in Blender. Use File | Open and browse to the
folder containing the misc_chair01.blend file. Select this file and click on Open.
This will show you a screen looking somewhat like this:

Exporting this model to the Three.js JSON format is pretty straightforward. From
the File menu navigate to Export | Three.js, type in the name of the export file, and
select Export Three.js. This will create a JSON file in a format Three.js understands.
A part of the contents of this file are shown next:

{

 "metadata" :
 {
 "formatVersion" : 3.1,
 "generatedBy" : "Blender 2.66 Exporter",
 "vertices" : 208,
 "faces" : 124,
 "normals" : 115,
 "colors" : 0,
 "uvs" : [270,151],

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Loading Advanced Meshes and Geometries

[222]

 "materials" : 1,
 "morphTargets" : 0,
 "bones" : 0
 },
...

As you can see, this is very similar to the format we saw earlier. If you look closely
you might notice a different formatVersion. In the previous example, this property
was set to 3.2 and in this example it is set to 3.1. The reason is that version 3.2 was
only recently introduced. The Blender exporter hasn't been updated to this latest
version yet. We aren't completely done however. In the previous screenshot, you can
see that the chair contains a wooden texture. If you look through the JSON export
you can see that the export for the chair also specifies a material:

"materials": [{
 "DbgColor": 15658734,
 "DbgIndex": 0,
 "DbgName": "misc_chair01",
 "blending": "NormalBlending",
 "colorAmbient": [0.53132, 0.25074, 0.147919],
 "colorDiffuse": [0.53132, 0.25074, 0.147919],
 "colorSpecular": [0.0, 0.0, 0.0],
 "depthTest": true,
 "depthWrite": true,
 "mapDiffuse": "misc_chair01_col.jpg",
 "mapDiffuseWrap": ["repeat", "repeat"],
 "shading": "Lambert",
 "specularCoef": 50,
 "transparency": 1.0,
 "transparent": false,
 "vertexColors": false
}],

This material specifies a texture for the mapDiffuse property: misc_chair01_col.
jpg. So besides exporting the model, we also need to make sure the texture file is also
available to Three.js. Luckily, we can save this texture directly from Blender.

In Blender open the UV/Image Editor view. You can select this view from the
dropdown menu, which is at the left of the File menu option. This will replace
the top menu with the menu as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[223]

Make sure the texture, misc_chair_01_col.jpg in our case, you want to export is
selected (you can select a different one using the small image icon). Next click on the
Image menu and use the Save as Image menu option to save the image. Save it in
the same folder where you saved the model, using the name specified in the JSON
export file. At this point we're ready to load the model into Three.js.

The code to load this into Three.js at this point looks like the following code snippet:

var loader = new THREE.JSONLoader();
loader.load('../assets/models/misc_chair01.js', function
 (geometry, mat) {
 mesh = new THREE.Mesh(geometry, mat[0]);

 mesh.scale.x = 15;
 mesh.scale.y = 15;
 mesh.scale.z = 15;

 scene.add(mesh);

 }, '../assets/models');

We've already seen the JSONLoader class before, but this time we use the load
function instead of the parse function. In this function, we specify the URL we
want to load (points to the exported JSON file), we specify a callback that is called
when the object is loaded, and we specify the location, ../assets/models, where
the texture can be found (relative to the page). This callback takes two parameters:
geometry and mat. The geometry parameter contains the model and the mat
parameter contains an array of material objects. We know that there is only one
material, so when we create the THREE.Mesh instance, we directly reference that
material. If you open example 05-blender-from-json.html, you can see the chair
we just exported from Blender.

Using the Three.js exporter isn't the only way of loading models from Blender into
Three.js. Three.js understands a number of 3D file formats, and Blender can already
export in a couple of those formats. Using the Three.js format, however, is very easy,
and if things go wrong, they are often found quickly.

In the following section, we'll look at a couple of formats Three.js supports, and also
show a Blender based example for the OBJ and MTL file format.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Loading Advanced Meshes and Geometries

[224]

Importing from 3D file formats
In the beginning of this chapter we listed a number of formats that are supported
by Three.js. In this section we'll quickly walk through a couple of examples for
those formats. Note that for all these formats an additional JavaScript file needs
to be included. You can find all these files in the Three.js distribution in the
examples/js/loaders directory.

OBJ and MTL format
OBJ and MTL are companion formats and often used together. The OBJ file defines
the format of the geometry, and the MTL file defines the materials that are used. Both
OBJ and MTL are text based formats. A part of the OBJ file looks like the following
code snippet :

v -0.032442 0.010796 0.025935
v -0.028519 0.013697 0.026201
v -0.029086 0.014533 0.021409
usemtl Material
s 1
f 2731 2735 2736 2732
f 2732 2736 3043 3044

And the MTL file defines materials like the following code snippet:

newmtl Material
Ns 56.862745
Ka 0.000000 0.000000 0.000000
Kd 0.360725 0.227524 0.127497
Ks 0.010000 0.010000 0.010000
Ni 1.000000
d 1.000000
illum 2

OBJ and MTL are well understood formats by Three.js and are also supported from
Blender. So as an alternative, you could choose to export models from Blender in
OBJ/MTL format instead of the Three.js JSON format. Three.JS has two different
loaders you can use. If you only want to load the geometry you can use the
OBJLoader. We used this loader for the following example 06-load-obj.html,
the output of which is as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[225]

To import this in Three.js you have to add the ObjLoader.js file:

<script type="text/javascript"
 src="../libs/OBJLoader.js"></script>

And import the model as shown in the following code snippet:

var loader = new THREE.OBJLoader();
loader.load('../assets/models/pinecone.obj', function(geometry) {
 var material = new THREE.MeshLambertMaterial({
 color: 0x5C3A21
 });

 // geometry is a group of children.
 // If a child has one additional child it's probably a mesh
 geometry.children.forEach(function(child) {
 if (child.children.length == 1) {
 if (child.children[0] instanceof THREE.Mesh) {
 child.children[0].material = material;
 }
 }
 });

 geometry.scale.set(100, 100, 100);
 geometry.rotation.x = -0.3;
 scene.add(geometry);
});

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Loading Advanced Meshes and Geometries

[226]

In this code we use the OBJLoader class to load the model from an URL. Once the
model is loaded the callback we provide is called, and we add the model to the scene.
Usually a good first step is to print out the response from the callback to console to
understand how the geometry is built up. Often with these loaders the geometry is
returned as a hierarchy of groups and geometries. Understanding this makes it much
easier to place and apply the correct material. Also look at the position of a couple of
vertices to determine whether you need to scale the model up or down and where to
position the camera.

The next example (07-load-obj-mtl.html) uses the OBJMTLLoader class to load a
model and directly assign material.

First we need to add the correct loaders to the page:

<script type="text/javascript"
 src="../libs/OBJLoader.js"></script>
<script type="text/javascript"
 src="../libs/MTLLoader.js"></script>
<script type="text/javascript"
 src="../libs/OBJMTLLoader.js"></script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[227]

And we can load the model from the OBJ and MTL file like this:

var loader = new THREE.OBJMTLLoader();
loader.addEventListener('load', function (event) {

 var object = event.content;
 var wing2 = object.children[5].children[0];
 var wing1 = object.children[4].children[0];

 wing1.material.alphaTest = 0.5;
 wing1.material.opacity = 0.6;
 wing1.material.transparent = true;

 wing2.material.alphaTest = 0.5;
 wing2.material.opacity = 0.6;
 wing2.material.transparent = true;

 object.scale.set(140, 140, 140);
 object.rotation.x = 0.2;
 object.rotation.y = -1.3;

 scene.add(object);
});

loader.load('../assets/models/butterfly.obj',
 '../assets/models/butterfly.mtl');

The first thing to mention, before we look at the code, is that if you receive an OBJ
and MTL file and the required texture files, you'll have to check how the MTL file
references the textures. These should be referenced relatively to the MTL file, not as
an absolute path. The code itself isn't that special. For this loader, it is required to
specify an event listener for the load event. When the model, material, and textures
are loaded, this listener is called. In this specific case, we change some properties
from the materials of the wings of the butterfly. The opacity in the source files was
set incorrectly, which caused the wings to be invisible. This is something that you'll
encounter with complex models that reference materials and textures. Sometimes
you'll have to look at how the material is defined and determine what you need to
change to get it working.

But, as you can see, you can easily load complex models directly into Three.js and
render them in real time in your browser.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Loading Advanced Meshes and Geometries

[228]

Loading a collada model
Collada models (extension is .dae) are another very common format for defining
scenes and models (and animations as we'll see in the following chapter). In the
collada model not just the geometry is defined, but also the materials. It's even
possible to define light sources.

To load Collada models you have to take pretty much the same steps as for the OBJ
and MTL models. You start by including the correct loader:

<script type="text/javascript"
 src="../libs/ColladaLoader.js"></script>

For this example we'll load the following model:

Loading a collada model is once again pretty trivial:

var mesh;
loader.load("../assets/models/dae/Truck_dae.dae",
 function (result) {
 mesh = result.scene.children[0].children[0].clone();
 mesh.scale.set(4, 4, 4);
 scene.add(mesh);
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[229]

The main difference here is the result object that is returned to the callback. The
result object has the following structure:

var result = {

 scene: scene,
 morphs: morphs,
 skins: skins,
 animations: animData,
 dae: {
 ...
 }
};

In this chapter we're interested in the objects that are in the scene parameter. I first
printed out the scene (which was result.scene.children[0].children[0]) to
the console to lock where the mesh that I was interested in was,. All that was left
to do, was scale it to a reasonable size and add it to the scene. A final note on this
specific example, when I loaded this model for the first time, the materials didn't
render correctly. The reason was, that the textures used the TGA format, which isn't
supported in WebGL. To fix this, I had to convert the TGA files to PNG, and edit the
XML of the .dae model to point to these PNGs.

As you can see, for most of the complex models, including materials, you often have
to take some additional steps to get the desired results. By looking closely at how
the materials are configured (using console.log()) or replacing them with test
materials, problems are often easy to spot.

Loading STL, CTM, and VTK models
We're going to quickly skip over the next couple of file formats, since they all follow
the same principle:

1. Include the [NameOfFormat]Loader.js file in your webpage.
2. Use the [NameOfFormat]Loader.load() function to load an URL.
3. Check what the response format for the callback looks like and render

the result.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Loading Advanced Meshes and Geometries

[230]

We did include an example for all these formats:

Name Example Screenshot
STL 09-load-STL.html

CTM 10-load-CTM.html

VTK 11-load-vtk.html

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[231]

We've showed almost all the supported file formats. In the next two sections we'll
take a different approach. First we'll look at how to render proteins from the protein
databank (PDB format), and finally we'll use a model defined in the PLY format to
create a particle system.

Showing proteins from the protein databank
The protein databank (www.rcsb.org) contains detailed information about a lot of
different molecules and proteins. Besides the explanation of these proteins, they
also provide a way to download the structure of these molecules in the PDB format.
Three.js provides a loader for files specified in the PDB format. In this section we'll
give an example on how you can parse PDB files and visualize them with Three.js.

The first thing we always need to do to load in a new file format is include the correct
loader in Three.js:

<script type="text/javascript"
 src="../libs/PDBLoader.js"></script>

With this loader included, we're going to create the following 3D model of the
provided molecule description:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Loading Advanced Meshes and Geometries

[232]

Loading a PDB file is done in the same manner we already saw for the
previous formats:

var loader = new THREE.PDBLoader();
var group = new THREE.Object3D();
loader.load("../assets/models/diamond.pdb", function (geometry,
 geometryBonds) {
 var i = 0;

 geometry.vertices.forEach(function (position) {
 var sphere = new THREE.SphereGeometry(0.2);
 var material = new THREE.MeshPhongMaterial(
 { color: geometry.colors[i++] });
 var mesh = new THREE.Mesh(sphere, material);
 mesh.position = position;
 group.add(mesh);
 });

 for (var j = 0; j < geometryBonds.vertices.length; j += 2) {
 var path = new THREE.SplineCurve3(
 [geometryBonds.vertices[j],
 geometryBonds.vertices[j + 1]]);
 var tube = new THREE.TubeGeometry(path, 1, 0.04)
 var material = new THREE.MeshPhongMaterial(
 { color: 0xcccccc });
 var mesh = new THREE.Mesh(tube, material);
 group.add(mesh);
 }
 console.log(geometry);
 console.log(geometryBonds);

 scene.add(group);
});

As you can see from this example, we instantiate a PDBLoader object, pass in the
model file we want to load, and provide a callback that is called when the model is
loaded. For this specific loader, the callback function is called with two arguments:
geometry and geometryBonds. The vertices from the supplied geometry contain the
positions of the individual atoms, and the geometryBounds instance is used for the
connections between the atoms.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[233]

For each vertex we create a sphere with the color that is also supplied by the model:

var sphere = new THREE.SphereGeometry(0.2);
var material = new THREE.MeshPhongMaterial({color:
 geometry.colors[i++]});
var mesh = new THREE.Mesh(sphere, material);
mesh.position = position;
group.add(mesh)

And each connection is defined like this:

var path = new THREE.SplineCurve3(
 [geometryBonds.vertices[j], geometryBonds.vertices[j + 1]]);
var tube = new THREE.TubeGeometry(path, 1, 0.04)
var material = new THREE.MeshPhongMaterial({color: 0xcccccc});
var mesh = new THREE.Mesh(tube, material);
group.add(mesh);

For the connection we first create a 3D path using the THREE.SplineCurve3 object.
This path is used as input for a THREE.Tube object and used to create the connection
between the atoms. All the connections and atoms are added to a group, and this
group is added to the scene. There are many models you can download from the
protein databank. The following screenshot shows the structure of a diamond:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating and Loading Advanced Meshes and Geometries

[234]

Creating a particle system from a PLY model
Working with the PLY format isn't that much different from the other formats. You
include the loader, provide a callback, and visualize the model. For this last example,
however, we're going to do something different. Instead of rendering the model as a
mesh, we'll use the information from this model to create a particle system.

The JavaScript code to render the preceding screenshot is actually very simple:

var loader = new THREE.PLYLoader();
var group = new THREE.Object3D();
loader.load("../assets/models/test.ply", function (geometry) {
 var material = new THREE.ParticleBasicMaterial({
 color: 0xffffff,
 size: 0.4,
 opacity: 0.6,
 transparent: true,
 blending: THREE.AdditiveBlending,
 map: generateSprite()
 });

 group = new THREE.ParticleSystem(geometry, material);
 group.sortParticles = true;

 console.log(group);
 scene.add(group);
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[235]

As you can see, we use the PLYLoader object to load the model. The callback returns
the geometry, and we use this geometry as input for the ParticleSystem object. The
material we use is the same one we used for the last example in the previous chapter.
As you can see, with Three.js, it is very easy to combine models from various
sources, and render them in different ways, all with a couple of lines of code.

Summary
Using models from external sources isn't that hard to do in Three.js. Especially for
the simple models, you only have to take a couple of simple steps. When working
with external models or creating them using grouping and merging, it is good to
keep the following in mind:

• When you group objects, they remain available as individual objects.
Transformations applied to the parent also affect the children.

• When you merge geometries together, you lose the individual geometries
and get a single new geometry. This is especially useful, when you're dealing
with thousands of geometries you need to render and you're running into
performance issues.

• Remember that the Three.js GeometryExporter class is still a work in progress.
The same goes for the SceneExporter class and the SceneLoader class.

• When using the format loaders provided by Three.js look through the source
code, and print out the information received in the callback. This will help
you understand the steps you need to take to get the correct mesh, and set it
to the correct position and scale.

• Often when the model doesn't show correctly, the materials cause this. It
could be that incompatible texture formats are used, opacity is incorrectly
defined, or the format contains incorrect links to the texture images. Use
a test material to determine the problem, and print the material to the
JavaScript console, to check for strange values.

• When using Blender, you have different options for exporting the models.
You can use the Three.js plugin, but OBJ in combination with MTL is also a
well supported and understood format.

The models you've worked with in this chapter, and in the previous chapters, are
mostly static models. They aren't animated, don't move around, and don't change
shape. In the next chapter you'll learn how you can animate your models to make
them come to life. Besides animations, the following chapter will also explain the
various camera controls provided by Three.js. With a camera control, you can move,
pan, and rotate the camera around your scene.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Animations and
Moving the Camera

In the chapters so far we've already seen some simple animations, but nothing too
complex. In the first chapter we've introduced the basic rendering loop, and in the
following chapter we've used that to rotate some simple objects and show a couple
of other basic animation concepts. In this chapter we're going to look in more details
on how animation is supported by Three.js. We will look in detail at the following
four subjects:

• Basic animations: The basic of all animations in Three.js deals with changing
any of the following three properties of an object: its position, its rotation, and
its scale. In the first part we'll quickly look back at how you can do this from
the rendering loop we introduced in Chapter 1, Creating Your First 3D Scene
with Three.js, in the Introducing the requestAnimationFrame() method section.

• Moving the camera: An important part in animations is the ability to move
the camera around the scene. In this section we'll walk you through the
various camera controls that are supported by Three.js.

• Morphing and skinning: When you look at the ways of animating complex
meshes, there are two main options. Using morphs to define the transition
between one geometry and another, and using bones and skinning for these
transitions. In this chapter we'll explore both these options.

• Loading external animations: In the previous chapter we've seen how Three.
js supports a number of external formats. In this chapter we'll extend on that
and show you how you can load animations from external formats.

We start with the basic concepts behind animations.

www.it-ebooks.info

http://www.it-ebooks.info/

Animations and Moving the Camera

[238]

Basic animations
Before we look at the examples, let's do a quick recap of what we've shown in
Chapter 1, Creating Your First 3D Scene with Three.js, about the render loop. To
support animations we need to tell Three.js to render the scene every so often.
For this we use the standard HTML5 requestAnimationFrame functionality:

render();

function render() {

 // render the scene
 renderer.render(scene, camera);

 // schedule the next rendering using requestAnimationFrame
 requestAnimationFrame(render);
}

With this code fragment we only need to call the render() function once,
when we've done initializing the scene. In the render() function itself, we use
requestAnimationFrame to schedule the next rendering. This way the browser will
make sure the render() function is called at the correct interval (usually around 60
times a second). Before requestAnimationFrame was added to the browsers, usually
setInterval(function, interval) or setTimeout(function, interval) was
used. This would call the specified function once every set interval. The problem
with this approach is that it doesn't take into account what else is going on. Even if
your animation isn't shown or is in a hidden tab, it is still called and it uses resources.
Another issue is that these functions update the screen whenever they are called, not
when it is the best time for the browser. This once again means higher CPU usage.
With requestAnimationFrame we don't tell the browser when it needs to update the
screen, we ask the browser to run the supplied function when it's most opportune.
Usually this results in a frame rate of about 60 fps. With requestAnimationFrame
your animations will run more smoothly and will be more CPU and GPU resource
friendly and you don't have to worry about timing issues yourself.

Simple animations
With this approach we can very easily animate objects by changing their rotation,
scale, position, material, vertices, faces, and anything else you can imagine. In the
next render loop Three.js will render the changed properties. A very simple example,
based on the one we already saw in Chapter 1, Creating Your First 3D Scene with Three.js,
is available as: 01-basic-animation.html as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[239]

The render loop for this is very simple. You just need to change the properties of the
involved meshes and Three.js handles the rest:

function render() {
 cube.rotation.x += controls.rotationSpeed;
 cube.rotation.y += controls.rotationSpeed;
 cube.rotation.z += controls.rotationSpeed;

 step += controls.bouncingSpeed;
 sphere.position.x = 20 + (10 * (Math.cos(step)));
 sphere.position.y = 2 + (10 * Math.abs(Math.sin(step)));

 scalingStep += controls.scalingSpeed;
 var scaleX = Math.abs(Math.sin(scalingStep / 4));
 var scaleY = Math.abs(Math.cos(scalingStep / 5));
 var scaleZ = Math.abs(Math.sin(scalingStep / 7));
 cylinder.scale.set(scaleX, scaleY, scaleZ);

 renderer.render(scene, camera);
 requestAnimationFrame(render);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Animations and Moving the Camera

[240]

Nothing spectacular here, but it nicely shows the basic concept behind all the
animations that we discuss in this book. In the next section we'll take a quick sidestep
with regards to animations. Besides animations, an important aspect, you'll quickly
run into when working with Three.js in more complex scenes is the ability to select
objects on screen using the mouse.

Selecting objects
Even though not directly related to animations, since we'll be looking into cameras
and animations in this chapter, it is a nice addition to the subjects explained here.
What we'll show here is how you can select an object from the scene using the
mouse. We'll first look at the code required for this, before we look at the example.

var projector = new THREE.Projector();

function onDocumentMouseDown(event) {
 event.preventDefault();
 var vector = new THREE.Vector3(
 (event.clientX / window.innerWidth) * 2 - 1,
 -(event.clientY / window.innerHeight) * 2 + 1,
 0.5);
 projector.unprojectVector(vector, camera);

 var raycaster = new THREE.Raycaster(camera.position,
 vector.sub(camera.position).normalize());

 var intersects = raycaster.intersectObjects(
 [sphere, cylinder, cube]);

 if (intersects.length > 0) {
 intersects[0].object.material.transparent = true;
 intersects[0].object.material.opacity = 0.1;
 }
}

In this code we use the THREE.Projector class together with the THREE.Raycaster
class to determine whether we've clicked on a specific object. What happens when
we click on the screen is:

1. First, a vector is created based on the position that we've clicked on,
on the screen.

2. Next, with the unprojectVector function we convert the clicked position on
the screen, to coordinates in our Three.js scene.

3. Next, we use a THREE.Raycaster object (returned from the projector.
pickingRay function) to send out a ray into the world from the position
we've clicked on, on the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[241]

4. Finally we use the raycaster.intersectObjects function to determine
whether any of the supplied objects are hit by this ray.

The result from this final step contains information on any object that is hit by this
ray. The following information is provided:

distance: 49.9047088522448
face: THREE.Face4
faceIndex: 4
object: THREE.Mesh
point: THREE.Vector3

The object property is the mesh that was clicked on, face and faceIndex point to
the face of the mesh that was selected. The distance property is measured from the
camera to the clicked object and the point is the exact position on the mesh where the
object was clicked. In the example 02-selecting-objects.html you can test this out.
Any object you'll select will become transparent and the details of the selection will be
printed to the console. If you want to see the path of the ray that is cast you can enable
the showRay property from the menu as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Animations and Moving the Camera

[242]

So far we've changed the properties in our render loop ourselves. In the next section
we'll look at a small library that makes defining animations a lot easier.

Animating with Tween.js
Tween.js is a small JavaScript library that you can download from
https://github.com/sole/tween.js/, and use to easily define the transition of a
property between two values. All the intermediate points between the start and end
value are calculated for you. This process is called tweening. For instance, you can
use this library to change the x position of a mesh from 10 to 3 within 10 seconds:

var tween = new TWEEN.Tween({x: 10})
 .to({x: 3}, 10000)
 .easing(TWEEN.Easing.Elastic.InOut)
 .onUpdate(function () {
 // update the mesh
 })

In this example we've created a TWEEN.Tween object. This tween will make sure that
the x property is changed from 10 to 3 over a period of 10000 milliseconds. Tween.
js also allows you to define how this property is changed over time. Should this be
done in linear, quadratic, or any of the other possibilities (see http://sole.github.
io/tween.js/examples/03_graphs.html for a complete overview). The way the
value is changed over time is called easing. With Tween.js, you configure this using
the easing() function.

Using this library from Three.js is very simple. If you open example
03-animation-tween.html, you can see the Tween.js library in action
as shown in the following screenshot:

www.it-ebooks.info

https://github.com/sole/tween.js/
https://github.com/sole/tween.js/
http://www.it-ebooks.info/

Chapter 9

[243]

In this example, we've taken a particle system, from Chapter 7, Particles and the Particle
System, where all the particles drop down to the ground. The position of these
particles is based on a tween created with the Tween.js library:

// first create the tweens
var posSrc = {pos: 1}
var tween = new TWEEN.Tween(posSrc).to({pos: 0}, 5000);
tween.easing(TWEEN.Easing.Sinusoidal.InOut);

var tweenBack = new TWEEN.Tween(posSrc).to({pos: 1}, 5000);
tweenBack.easing(TWEEN.Easing.Sinusoidal.InOut);

tween.chain(tweenBack);

www.it-ebooks.info

http://www.it-ebooks.info/

Animations and Moving the Camera

[244]

tweenBack.chain(tween);

var onUpdate = function () {
 var count = 0;
 var pos = this.pos;

 loadedGeometry.vertices.forEach(function (e) {
 var newY = ((e.y + 3.22544) * pos) - 3.22544;
 particleSystem.geometry.vertices[count++].set(e.x,
 newY, e.z);
 });

 particleSystem.sortParticles = true;
};

tween.onUpdate(onUpdate);
tweenBack.onUpdate(onUpdate);

With this piece of code we create two tweens: tween and tweenBack. The first one
defines how the position property transitions from 1 to 0 and the second one does
the opposite. With the chain() function we chain these two tweens to each other,
so these tweens will start looping when started. The final thing we define here is the
onUpdate method. In this method we walk through all the vertices of the particle
system and change their position according to the position provided by the tween
(this.pos).

We start the tween when the model is loaded, so at the end of the following function
we call the tween.start() function:

var loader = new THREE.PLYLoader();
loader.load("../assets/models/test.ply", function (geometry) {
 ...
 tween.start()
 ...
});

When the tween is started, we need to tell the Tween.js library when we
want it to update all the tweens that it knows about. We do this by calling
the TWEEN.update() function:

function render() {
 TWEEN.update();
 webGLRenderer.render(scene, camera);
 requestAnimationFrame(render);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[245]

With these steps in place, the tween library will take care of positioning the various
particles of the particle system. As you can see, using this library is much easier than
having to manage the transitions yourself.

Besides animating and changing objects, we can also animate a scene by moving the
camera around. In the previous chapters we've already done this a couple of times,
by manually updating the position of the camera. Three.js also provides a number of
additional ways of updating the camera.

Working with the camera
Three.js has a number of camera controls that you can use to control the camera
throughout a scene. These controls are located in the Three.js distribution and can
be found in the examples/js/controls directory. In this section we'll look at the
following controls:

Name Description
FirstPersonControls Controls that behave like those in first person shooters. Move

around with the keyboard, and look around with the mouse.
FlyControls Flight simulator like controls. Move and steer with the

keyboard and the mouse.
RollControls A simpler version of the FlyControls. Allows you to move

around and roll around the z-axis.
TrackBallControls Most used controls, allow you to use the mouse (or the

trackball) to easily move, pan, and zoom around the scene.
OrbitControls Simulates a satellite in orbit around a specific scene. Allows

you to move around with the mouse and keyboard.
PathControls With this control the camera's position moves around a

predefined path. You can compare it with a rollercoaster ride
where you can look around you, but have no influence on
your position.

Besides using these camera controls, you can of course also move the camera
around yourself by setting it's position and change where it is pointed to
using the lookAt() function.

The first of the controls we'll look at are the TrackballControls.

www.it-ebooks.info

http://www.it-ebooks.info/

Animations and Moving the Camera

[246]

TrackballControls
Before you can use the TrackballControls you first need to include the correct
JavaScript file into your page:

<script type="text/javascript"
 src="../libs/TrackballControls.js"></script>

With this included, we can create the controls and attach them to camera:

var trackballControls = new THREE.TrackballControls(camera);
trackballControls.rotateSpeed = 1.0;
trackballControls.zoomSpeed = 1.0;
trackballControls.panSpeed = 1.0;

Updating the position of the camera is something we do in the render loop:

var clock = new THREE.Clock();
function render() {
 var delta = clock.getDelta();
 trackballControls.update(delta);
 requestAnimationFrame(render);
 webGLRenderer.render(scene, camera);
}

In the previous code fragment we see a new Three.js object: THREE.Clock. THREE.
Clock can be used to exactly calculate the elapsed time a specific invocation or
rendering loop took. You can do this by calling the clock.getDelta() function.
This function will return the elapsed time between this call and the previous call to
getDelta(). To update the position of the camera we call the trackballControls.
update() function. In this function we need to provide the time that is passed
since the last time this update function was called. For this we use the getDelta()
function from the THREE.Clock object. You might wonder why we don't just pass
in the frame rate (1/60 seconds) to the update function. The reason is that when
we request an animation frame, we can expect 60 fps, but this isn't guaranteed.
Depending on all kind of external factors this frame rate might change. To make sure
that the camera turns and rotates smoothly we need to pass in the exact elapsed time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[247]

A working example for this can be found here: 04-trackball-controls-camera.
html, also shown in the following screenshot:

You can control the camera in the following manner:

Control Action
Left mouse button and move Rotate and roll the camera around the scene.
Scroll wheel Zoom in and zoom out.
Middle mouse button and move Zoom in and zoom out.
Right mouse button and move Pan around the scene.

www.it-ebooks.info

http://www.it-ebooks.info/

Animations and Moving the Camera

[248]

There are a couple of properties that you can use to fine tune how the camera
acts. For instance, you can set how fast the camera rotates with the rotateSpeed
property and disable zooming by setting the noZoom property to true. In this
chapter we won't go into detail on what each property does since they are pretty
much self-explanatory. For a complete overview of what is possible, look at the
source of the TrackballControls.js file where these properties are listed.

FlyControls
The next one we'll look at are FlyControls. With FlyControls you can fly around
a scene using controls that are also found in flight simulators. An example can be
found in 05-fly-controls-camera.html as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[249]

Enabling FlyControls works in the same manner as the TrackballControls. First
load the correct JavaScript file:

<script type="text/javascript"
 src="../libs/FlyControls.js"></script>

And next we can configure the control and attach it to the camera:

var flyControls = new THREE.FlyControls(camera);
flyControls.movementSpeed = 25;
flyControls.domElement = document.querySelector('#WebGL-output');
flyControls.rollSpeed = Math.PI / 24;
flyControls.autoForward = true;
flyControls.dragToLook = false;

Once again, we won't look into all the specific properties. Look at the source of the
FlyControls.js file for that. Let's just pick out the properties we need to configure
correctly to get this control working. The property that needs to be set correctly is the
domElement property. This property should point to the element in which we render
the scene. For the examples in this book we use the following element for our output:
<div id="WebGL-output"></div>, and we set the property by using flyControls.
domElement = document.querySelector('#WebGL-output');. If we don't set this
property correctly, moving around the mouse will result in strange behavior.

You can control the camera with this control in the following manner:

Control Action
Left and middle mouse button Start moving forward
Right mouse button Move backwards
Mouse movement Look around
W Start moving forward
S Move backwards
A Move left
D Move right
R Move up
F Move down
Left, right, up and down arrows Look left, right, up, and down
G Roll left
E Roll right

The next control we'll look at are the THREE.RollControls.

www.it-ebooks.info

http://www.it-ebooks.info/

Animations and Moving the Camera

[250]

RollControls
The RollControls behave much the same as the FlyControls, so we won't go into
detail here. RollControls can be created like this:

var rollControls = new THREE.RollControls(camera);
rollControls.movementSpeed = 25;
rollControls.lookSpeed = 3;

If you want to play around with this control, look at the 06-roll-controls-
camera.html example. Note that if you see only a black screen, move the mouse to
the bottom of your browser. The cityscape will pan into view. This camera can be
moved around with the following controls:

Control Action
Left mouse button Move forward
Right mouse button Move backwards
Left, right, up, and down arrows Move left, right, forward, and backwards
W Move forward
A Move left
S Move backwards
D Move right
Q Roll left
E Roll right
R Move up
F Move down

The last of the basic controls we'll look at are the FirstPersonControls.

FirstPersonControls
As the name implies the FirstPersonControls allows you to control the camera
just like in a first person shooter. The mouse is used to look around and the keyboard
is used to walk around. You can find an example here: 07-first-person-camera.
html. Refer to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[251]

Creating these controls follow the same principle as for the other controls we've seen
so far. The example we've just shown used the following configuration:

var camControls = new THREE.FirstPersonControls(camera);
camControls.lookSpeed = 0.4;
camControls.movementSpeed = 20;
camControls.noFly = true;
camControls.lookVertical = true;
camControls.constrainVertical = true;
camControls.verticalMin = 1.0;
camControls.verticalMax = 2.0;
camControls.lon = -150;
camControls.lat = 120;

www.it-ebooks.info

http://www.it-ebooks.info/

Animations and Moving the Camera

[252]

The only properties that you should carefully look at when using this control for
yourself are the last two, the lon and the lat properties. These two properties
define where the camera is pointed at when the scene is rendered for the first time.

The controls for this control are pretty straightforward:

Control Action
Mouse movement Look around
Left, right, up and down arrows Move left, right, forward and backwards
W Move forward
A Move left
S Move backwards
D Move right
R Move up
F Move down
Q Stop all movement

For the next controller we'll move from this first person perspective to the
perspective from space.

OrbitControl
The OrbitControl controller is a great way to rotate and pan around an object in
the center of the scene. We've included an example that shows how this controller
works: 08-controls-orbit.html. Refer to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[253]

Using the OrbitControl controller is as simple as using the other controls. Include
the correct JavaScript file, set up the control to the camera, and use a THREE.Clock
object again to update the control:

<script type="text/javascript"
 src="../libs/OrbitControls.js"></script>
...
var orbitControls = new THREE.OrbitControls(camera);
orbitControls.autoRotate = true;
var clock = new THREE.Clock();
...
var delta = clock.getDelta();
orbitControls.update(delta);

www.it-ebooks.info

http://www.it-ebooks.info/

Animations and Moving the Camera

[254]

The controls for OrbitControl are focused on using the mouse:

Control Action
Left mouse click + move Rotate the camera around the center of the scene
Scroll wheel or Middle mouse
click + move

Zoom in and zoom out

Right mouse click + move Pan around the scene
Left, right, up, and down arrows Pan around the scene

As the last control we'll look at the PathControl. With this control you can move the
camera around a fixed path.

PathControl
The PathControl is a really cool control. With this control you can set out a path
that the camera should follow and the user can move the camera to look around.
As an example, we load a model of the Statue of Liberty and use the PathControl
to slowly spiral upwards. See example 09-path-controls.html. Refer to the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[255]

This control takes a little bit of more work to get up and running. First thing we need
to do is create the path along which the camera will move:

function getPath() {
 var points = [];
 var r = 20;
 var cX = 0;
 var cY = 0;

 for (var i = 0; i < 1440; i += 5) {

 var x = r * Math.cos(i * (Math.PI / 180)) + cX;
 var z = r * Math.sin(i * (Math.PI / 180)) + cY;
 var y = i / 30;

 points.push(new THREE.Vector3(x, y, z));
 }
 return points;
}

This function returns the points that create a spiral with a radius of 20, that starts at
the bottom and slowly moves up. These points make up our path, so now we can
set up the PathControls. First thing, though, is that we need to load the correct
JavaScript file.

<script type="text/javascript"
 src="../libs/PathControls.js"></script>

Before we can load the controller, you need to make sure that you don't manually
set the camera's position or use its lookAt() function, since it can interfere with
this specific control. Now we can configure the pathControls object and add it to
the scene:

var pathControls = new THREE.PathControls(camera);

// configure the controller
pathControls.duration = 70
pathControls.useConstantSpeed = true;
pathControls.lookSpeed = 0.1;
pathControls.lookVertical = true;
pathControls.lookHorizontal = true;
pathControls.verticalAngleMap =
 {srcRange: [0, 2 * Math.PI], dstRange: [1.1, 3.8]};

www.it-ebooks.info

http://www.it-ebooks.info/

Animations and Moving the Camera

[256]

pathControls.horizontalAngleMap =
 {srcRange: [0, 2 * Math.PI], dstRange: [0.3, Math.PI - 0.3]};
pathControls.lon = 300;
pathControls.lat = 40;

// add the path
controls.points.forEach(function(e) {
 pathControls.waypoints.push([e.x, e.y, e.z])});

// when done configuring init the control
pathControls.init();

// add the animationParent to the scene and start the animation
scene.add(pathControls.animationParent);
pathControls.animation.play(true, 0);

For this controller we need to do a couple of things more than the ones for the other
controllers. The first part is the same as we've already done earlier. We set some
specific properties to fine tune the controller. Next we add the points we defined
earlier to the waypoints property. This will be the path that the camera will follow.
Now that everything is configured we can use the init() function to finalize the
initialization of this controller.

The last step from this code fragment is required to run the animation and move the
camera automatically. All that is left now is one final step. In our render loop, we
need to add the following:

var delta = clock.getDelta();
THREE.AnimationHandler.update(delta);
pathControls.update(delta);

This will result in our camera moving automatically along the path.

That's it for the camera and moving it around. In this part we've seen a lot of controls
that allow you to create interesting camera actions. In the next section we'll look at a
more advanced way of animation: morphing and skinning.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[257]

Morphing and skeletal animation
When you create animations in external programs (for instance Blender) you usually
have two main options for defining animations:

• Morph targets: With morph targets you define a deformed version, a key
position, of the mesh. For this deformed target, all vertex positions are stored.
All you need to do to animate the shape is, move all the vertices from one
position to a key position and repeat that process. The following screenshot
shows various morph targets used to express facial expressions (image
provided by the Blender foundation).

www.it-ebooks.info

http://www.it-ebooks.info/

Animations and Moving the Camera

[258]

• Skeletal animation: An alternative is using skeletal animation. With skeletal
animation you define the skeleton, the bones of the mesh, and attach
vertices to the specific bones. Now when you move a bone, any connected
bone is also moved appropriately, and the attached vertices are moved and
deformed based on the position, movement, and scaling of the bone. The
following screenshot, once again provided by the Blender foundation, shows
an example of how bones can be used to move and deform an object.

Three.js supports both modes, but generally you'll probably get better results with
morph targets. The main problem with skeletal animation is getting a good export
from a 3D program such as Blender that can be animated in Three.js. It's much easier
to get a good working model with morph targets than it is with bones and skins.

In this section we'll look at both the options and additionally look at a couple of
external formats supported by Three.js in which animations can be defined.

Animation with morph targets
Morph targets are the most straightforward way of defining an animation. You
define all the vertices for each key position and tell Three.js to move the vertices from
one position to the other. The disadvantage of this approach, though, is that for large
meshes and large animations the model files will become very large. The reason is
that for each key position all the vertices positions are repeated.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[259]

We'll show you how to work with morph targets using two examples. In the
first example, we'll let Three.js handle the transition between the various key
frames (or morph targets as we'll call them from now on), in the second one
we'll do this manually.

Animation with MorphAnimMesh
For our first morphing example, we'll use a model that is also available from
the Three.js distribution: the horse. The easiest way to understand how morph
targets-based animation works is by opening up the example: 10-morph-targets.
html. Refer to the following screenshot:

In this example the horse at the right is animated and running, and the horse on the
left is standing still. This second horse is rendered from the basic model, the original
set of vertices. With the menu at the top right, you can browse through all the morph
targets that are available and see the different positions that the left horse can take.

www.it-ebooks.info

http://www.it-ebooks.info/

Animations and Moving the Camera

[260]

Three.js provides a way to move from one position to the next, but this would mean
we have to manually keep track of the current position we're in, the target we want
to morph into, and once we've reached the target position repeat this for the other
positions. Luckily, Three.js also provides a specific mesh, the MorphAnimMesh, that
takes care of the details for us. Before we continue, a quick note on another animation
related mesh provided by Three.js called MorphBlendMesh. If you look through the
objects provided by Three.js you might notice this object. With this specific mesh
you can do pretty much the same things as you can do with MorphAnimMesh and
when you look at the source code, you can even see that much of it is duplicated
between these two objects. MorphBlendMesh, however, seems to be deprecated and
isn't used in any of the official Three.js examples. Everything you could do with
MorhpBlendMesh can be done with MorphAnimMesh, so use MorphAnimMesh for this
kind of functionality. The following piece of code shows how to load the model and
create a MorphAnimMesh object from it:

var loader = new THREE.JSONLoader();
loader.load('../assets/models/horse.js',
 function(geometry, mat) {

 var mat = new THREE.MeshLambertMaterial(
 {color: 0xffffff,
 morphNormals: false,
 morphTargets: true,
 vertexColors: THREE.FaceColors});

 morphColorsToFaceColors(geometry);
 geometry.computeMorphNormals();
 meshAnim = new THREE.MorphAnimMesh(geometry, mat);
 scene.add(meshAnim);

 },'../assets/models');

function morphColorsToFaceColors(geometry) {

 if (geometry.morphColors && geometry.morphColors.length) {

 var colorMap = geometry.morphColors[0];
 for (var i = 0; i < colorMap.colors.length; i++) {
 geometry.faces[i].color = colorMap.colors[i];
 geometry.faces[i].color.offsetHSL(0, 0.3, 0);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[261]

The same approach as we've already seen when loading other models. Instead of
creating a normal Mesh, we create a MorphAnimMesh object. There are a couple of
things you need to take into account when loading animations:

• Make sure the material you use has set morphTargets to true. If not set,
your mesh won't animate.

• Before creating the MorphAnimMesh object, make sure to call
computeMorphNormals on the geometry so that all the normal vectors
for the morph targets are calculated. This is required for correct lighting
and shadow effects.

• It's possible to define colors for faces of a specific morph target. With the
helper method morphColorsToFaceColors, we make sure the correct colors
are used in the animation.

• The default setting is to play the complete animation in one go. If there
are multiple animations defined for the same geometry you can use the
parseAnimations() function together with playAnimation(name,fps) to
play one of the defined animations. We'll use this approach in the last section
of this chapter where we load animations from a MD2 model.

All that is left to do is update the animation in the render loop. For this,
we once again use the THREE.Clock object to calculate the delta and use it
to update the animation:

function render() {

 var delta = clock.getDelta();
 webGLRenderer.clear();
 if (meshAnim) {
 meshAnim.updateAnimation(delta *1000);
 meshAnim.rotation.y += 0.01;
 }

 // render using requestAnimationFrame
 requestAnimationFrame(render);
 webGLRenderer.render(scene, camera);
}

This approach is the easiest, and allows you to quickly set up an animation from
a model that has morph targets defined. An alternative approach is to set up the
animation manually.

www.it-ebooks.info

http://www.it-ebooks.info/

Animations and Moving the Camera

[262]

Creating an animation by setting the
morphTargetInfluence property
We'll create a very simple example where we morph a cube from one shape
to another. This time, though, we manually control to which target we will be
morphing. You can find the example at: 11-morph-targets-manually.html.
Refer to the following screenshot:

In this example we've manually created two morph targets for a simple cube:

// create a cube
var cubeGeometry = new THREE.CubeGeometry(4, 4, 4);
var cubeMaterial = new THREE.MeshLambertMaterial({morphTargets:
 true, color: 0xff0000});

// define morphtargets, we'll use the vertices from these
 geometries
var cubeTarget1 = new THREE.CubeGeometry(2, 10, 2);
var cubeTarget2 = new THREE.CubeGeometry(8, 2, 8);

// define morphtargets and compute the morphnormal

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[263]

cubeGeometry.morphTargets[0] = {name: 't1', vertices:
 cubeTarget2.vertices};
cubeGeometry.morphTargets[1] = {name: 't2', vertices:
 cubeTarget1.vertices};
cubeGeometry.computeMorphNormals();

var cube = new THREE.Mesh(cubeGeometry, cubeMaterial);

As you open up this example you'll see a simple cube. With the sliders in the
top-right corner you can set the morphTargetInfluences property. In other words,
you can determine how much the initial cube should morph into the cube specified
as mt1 and how much it should morph into mt2. You can set the influence using the
morphTargetInfluences property of the mesh:

var controls = new function () {
 this.influence1 = 0.01;
 this.influence2 = 0.01;

 this.update = function () {
 cube.morphTargetInfluences[0] = controls.influence1;
 cube.morphTargetInfluences[1] = controls.influence2;
 };
}

These two examples show the most important concepts behind morph target
animations. In the next section we'll have a quick look at animation using
bones and skinning.

Animation using bones and skinning
Morph animations are very straightforward. Three.js knows all the target vertex
positions, and only needs to transition each vertex from one position to the next.
For bones and skinning it becomes a bit more complex. When you use bones for
animation you move the bone and Three.js has to determine how to translate the
attached skin (a set of vertices) accordingly. For this example, we use a model that
was exported from Blender to the Three.js format (hand-1.js in the models folder.).
This is a model of a hand, complete with a set of bones. By moving the bones around,
we can animate the complete model. Let's first look at how we loaded the model:

var loader = new THREE.JSONLoader();
loader.load('../assets/models/hand-1.js', function (geometry, mat) {
 var mat = new THREE.MeshLambertMaterial(

www.it-ebooks.info

http://www.it-ebooks.info/

Animations and Moving the Camera

[264]

 {color: 0xF0C8C9, skinning: true});

 mesh = new THREE.SkinnedMesh(geometry, mat);

 // rotate the complete hand
 mesh.rotation.x = 0.5 * Math.PI;
 mesh.rotation.z = 0.7 * Math.PI;

 // make sure to set quaternation to false for easy rotation
 mesh.bones.forEach(function (e) {
 e.useQuaternion = false;
 })

 // add the mesh
 scene.add(mesh);

 // and start the animation
 tween.start();

}, '../assets/models');

Loading a model for bone animation isn't that different from any of the other models.
We just specify the model file, which contains the bone's definition, and based on
the geometry we create a mesh. Three.js also provides a specific mesh for skinned
geometries like this named THREE.SkinnedMesh. The one thing you need to specify
to make sure the model is updated is set the skinning property of the material
that you use to true. The last thing we do here is that we set the useQuaternion
property of all the bones to false. If we don't do this, we have to specify rotations
for the bones with quaternions; if we set it to false, we can set the rotation in the
normal manner. Before we move the bones, let's look at the example: 12-bones-
manually.html. Refer to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[265]

When you open this example you see the hand making a grab-like motion. We did
this by setting the z-rotation property of the finger bones:

var onUpdate = function () {
 var pos = this.pos;

 // rotate the fingers
 mesh.bones[5].rotation.set(0, 0, pos);
 mesh.bones[6].rotation.set(0, 0, pos);
 mesh.bones[10].rotation.set(0, 0, pos);
 mesh.bones[11].rotation.set(0, 0, pos);
 mesh.bones[15].rotation.set(0, 0, pos);
 mesh.bones[16].rotation.set(0, 0, pos);
 mesh.bones[20].rotation.set(0, 0, pos);
 mesh.bones[21].rotation.set(0, 0, pos);

 // rotate the wrist
 mesh.bones[1].rotation.set(pos, 0, 0);
};

www.it-ebooks.info

http://www.it-ebooks.info/

Animations and Moving the Camera

[266]

Any time this update method is called, the relevant bones are set to the pos position.
The missing element is how to call this update method at a regular interval. For this
we use the Tween.js library, which we've also seen in the beginning of the chapter
(look in the source for more details).

As you can see working with bones takes a bit more effort, but is much more flexible
than the fixed morph targets. In this example we've only moved the rotation of the
bones, you can also move the position or change the scale. In the next section we look
at loading animations from external models. In that section we'll revisit this example,
but now we'll run a predefined animation from the model, instead of manually
moving the bones around.

Creating animations using external
models
In Chapter 8, Creating and Loading Advanced Meshes and Geometries, we've looked at a
number of 3D formats that are supported by Three.js. A couple of those formats also
support animations. In this chapter we'll look at the following examples:

• Blender with the JSON exporter: we'll start with an animation created in
blender and exported to the Three.js JSON format.

• Collada model: the collada format has support for animations. For this
example we'll load an animation from a collada file and render it with Three.js.

• MD2 model: the MD2 model is a simple format used in the older quake
engines. Even though the format is a bit dated, it is still a very good format
for storing character animations.

We'll start with the blender model.

Creating bones animation using Blender
To get started with animations from Blender you can load the example we've
included in the models folder. You can find the hand.blend file there, which
you can load in blender.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[267]

There isn't room in this book to go into much detail on how to create animations in
blender, but there are a couple of things you need to keep in mind:

• Every vertex from your model must at least be assigned to a vertex group.
• The name of the vertex groups you use in blender must correspond to the

name of the bone that controls it. That way Three.js can determine which
vertices it needs to modify when moving the bones.

• Only the first action is exported. So make sure the animation you want to
export is the first one.

• When creating keyframes, it is a good idea to select all the bones, even if they
don't change.

• When exporting the model, make sure the model is in its rest post. If this is
not the case, you'll see a very deformed animation.

www.it-ebooks.info

http://www.it-ebooks.info/

Animations and Moving the Camera

[268]

For more information on creating and exporting animations from Blender, and
the reasons for the aforementioned pointers, you can look at the following great
resource: http://devmatrix.wordpress.com/2013/02/27/creating-skeletal-
animation-in-blender-and-exporting-it-to-three-js/.

When you've created the animation in blender you can export the file using the Three.
js exporter, we've also used in the previous chapter. When exporting the file using the
Three.js exporter, you have to make sure the following properties are checked:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[269]

This will export the animation you've specified in Blender as a skeletal animation
instead of a morph animation. With a skeletal animation, the movements of the
bones is exported, which we can replay in Three.js.

Loading the model in Three.js is the same as we did for our previous example.
However, when the model is loaded, we now also create an animation:

var loader = new THREE.JSONLoader();
loader.load('../assets/models/hand-2.js',
 function (geometry, mat) {

 // register the animation
 THREE.AnimationHandler.add(geometry.animation);

 // create a material
 var mat = new THREE.MeshLambertMaterial(
 {color: 0xF0C8C9, skinning: true});

 // create and position the mesh
 mesh = new THREE.SkinnedMesh(geometry, mat);
 mesh.rotation.x = 0.5 * Math.PI;
 mesh.rotation.z = 0.7 * Math.PI;
 scene.add(mesh);

 // create the animation
 var animation = new THREE.Animation(mesh, "wave");

 // start the animation
 animation.play();

}, '../assets/models');

What is different from the previous example is that we first register the animation
with the central Three.js AnimationHandler using the AnimationHandler.
add function. This will allow us to create the animation using the new THREE.
Animation(mesh, "wave") statement. The name of this animation must be the
same as the one you specified in Blender. Finally we set the animation to play.

www.it-ebooks.info

http://www.it-ebooks.info/

Animations and Moving the Camera

[270]

As you've probably guessed, we still need to do something to actually run the
animation. In our render loop we call the THREE.AnimationHandler.update(clock.
getDelta()) function to update the animation and Three.js will use the bones to set
the model in the correct position. The result of this example is a simple waving hand:
13-animation-from-blender.html. Refer to the following screenshot:

Besides Three.js's internal format, we can use a couple of other formats to define
animations. The first one we'll look at is loading a collada model.

Loading an animation from a collada model
Loading a model from a collada file works in the same manner as for the other
formats. First you have to include the correct loader JavaScript file:

<script type="text/javascript"
 src="../libs/ColladaLoader.js"></script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[271]

Next we create a loader and use it to load the model file:

var loader = new THREE.ColladaLoader();
loader.load('../assets/models/monster.dae', function (collada) {

 var geom = collada.skins[0].geometry;
 var mat = collada.skins[0].material;

 // create a smooth skin
 geom.computeMorphNormals();
 mat.morphNormals = true;

 // create the animation
 meshAnim = new THREE.MorphAnimMesh(geom, mat);

 // position the mesh
 meshAnim.scale.set(0.15, 0.15, 0.15);
 meshAnim.rotation.x = -0.5 * Math.PI;
 meshAnim.position.x = -100;
 meshAnim.position.y = -60;

 scene.add(meshAnim);
 meshAnim.duration = 5000;
});

A collada file can contain much more than just a single mode, it can store complete
scenes including cameras, lights, animations, and more. A good way to work with a
collada model is to print out the result from the loader.load function to the console,
and determine which components you want to use. In this case there was a single
skinned mesh that used morph targets for its animation. If you look back at the
section on morph targets earlier in this chapter, you'll see that in this example we
use the exact same approach. We get the geometry and we get the material and
create a MorphAnimMesh object. Even the render loop stays the same:

function render() {
 ...
 meshAnim.updateAnimation(delta *1000);
 ...
}

www.it-ebooks.info

http://www.it-ebooks.info/

Animations and Moving the Camera

[272]

And the result for this specific collada file looks like this:

For collada files that contain bones, you can use the approach that was explained in
the section on Animating with bones.

As a last example of an external model, that also uses morph targets, we'll look at the
MD2 file format.

Animation loaded from a Quake model
The MD2 format was created to model Quake characters. Even though the newer
engines use a different format, you can still find a lot of interesting models in the
MD2 format. To use files in this format, we first have to convert them to the Three.js
JavaScript format. You can do this online using the following site:

http://oos.moxiecode.com/js_webgl/md2_converter/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[273]

After conversion you'll get a JavaScript file in the Three.js format, which you can
load and render using the MorphAnimMesh class. Since we've already seen how to
do this in the previous sections, we'll skip the code where the model is loaded. One
interesting thing though, is happening in the code. Instead of playing the complete
animation, we provide the name of the animation that needs to be played:

mesh.playAnimation('crattack', 10);

The reason is that an MD2 file usually contains a number of different character
animations. Luckily, though, Three.js provides functionality to determine the
available animations and play them using the playAnimation function. The first
thing we need to do is tell Three.js to parse the animations:

mesh.parseAnimations();

This results in a list of names for the animations that can be played using the
playAnimation function. In our example you can select the name of the animation
from the menu on the top right. The available animations are determined like this:

mesh.parseAnimations();

var animLabels = [];
for (var key in mesh.geometry.animations) {
 if (key === 'length' ||
 !mesh.geometry.animations.hasOwnProperty(key))
 continue;
 animLabels.push(key);
}

gui.add(controls,'animations',animLabels).onChange(function(e) {
 mesh.playAnimation(controls.animations,controls.fps);
});

www.it-ebooks.info

http://www.it-ebooks.info/

Animations and Moving the Camera

[274]

Whenever an animation from the menu is selected the mesh.playAnimation function
is called, with the specified animation name. The example that demonstrates this can
be found here: 15-animation-from-md2.html. Refer to the following screenshot:

Summary
In this chapter we've looked at different ways you can animate your scene. We
started with some basic animation tricks, moved on to camera movement and
control and ended with animation models using morph targets and skeleton/bones
animations. The most important things to remember from this chapter are:

• Once you have the render loop in place, adding animations is very easy.
Just change a property of the mesh and the next rendering step Three.js will
render the updated mesh.

• Three.js comes with a lot of different camera controls. Even though they do
somewhat look the same, they are useful for different purposes. If you can't
find one that exactly fits your needs, look at the code on how to configure it,
or use it as a base for your own version.

• If you want a camera control that only allows you to look around while
moving through a scene you can use the PathControl.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[275]

• There are two main forms of animating models. Using morph targets or
using skeleton animation. When you use morph targets you morph your
model from one keyframe to the other to create an animation. When you use
skeleton animation you animate the model by moving the bones. Based on
the bones' movement, Three.js will update the vertices attached to that bone.

• When loading models, a good place to start is just printing out the model to
the console. Depending on the editor you might need to manually create new
models, update materials, or fix other small issues.

• Three.js has two great helper meshes for working with morph targets and
skeletons. For morph targets use the MorphAnimMesh class and for skeleton
animations use the SkinnedMesh class.

In previous chapters we've already looked at the various materials you can use to
skin your objects. For instance, we've seen how you can change the color, shininess,
and opacity of these materials. What we haven't discussed in detail yet, however, is
how you can use external images (also called textures) together with these materials.
With textures you can easily create objects that look like they are made of wood,
metal, stone, and much more. In the following chapter we'll explore all the different
aspects of textures and how they are used in Three.js.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Loading and Working
with Textures

In Chapter 4, Working with Three.js Materials, we've introduced you to the various
materials that are available in Three.js. In that chapter, however, we didn't talk
about applying textures to meshes yet. In this chapter, we'll look at that subject.
More specifically in this chapter, we'll discuss the following topics:

• Loading textures in Three.js and applying them to a mesh
• Using bump and normal maps to apply depth and detail to a mesh
• Creating fake shadows using a light map
• Adding detailed reflection to a material using an environment map
• Using a specular map to set the 'shininess' of specific parts of the mesh
• Fine tuning the mapping with customizing the UV mapping of a mesh
• Using the HTML5 canvas and video element as input for a texture

These previous subjects all have to do with loading and displaying textures.
Additionally, in this chapter, we'll also have a quick look at how you can create your
own custom shaders by creating a vertex and a fragment shader. We start, however,
with the most basic example, where we show you how to load and apply a texture.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading and Working with Textures

[278]

Using textures in materials
There are different ways textures are used in Three.js. You can use them to define
the colors of the mesh, but you can also use them to define shininess, bumps ,and
reflections. The first example we look at, though, is the most basic approach where
we use a texture to define the colors of the individual pixels of a mesh.

Loading a texture and applying it to mesh
The most basic usage of a texture is when it's set as a map on a material. When you
use this material, together with geometry to create a mesh, the mesh will be colored,
based on the supplied texture.

Loading a texture and using it on a mesh can be done in the following manner:

function createMesh(geom, imageFile) {
 var texture = THREE.ImageUtils.loadTexture
 ("../assets/textures/general/" + imageFile)

 var mat = new THREE.MeshPhongMaterial();
 mat.map = texture;

 var mesh = new THREE.Mesh(geom, mat);
 return mesh;
}

In this code sample we use the THREE.ImageUtils.loadTexture function to load
an image file from a specific location. You can use PNG, GIF, or JPEG images as
an input for a texture. Note that loading textures is done asynchronously. In our
scenario this isn't an issue since we have a render loop, where we render the scene
around 60 times per second. If you want to wait until a texture is loaded you could
use the following approach:

texture = THREE.ImageUtils.loadTexture('texture.png', {},
 0020function() { renderer.render(scene); });

In this example we supply a callback function to loadTexture. This callback is called
when the texture is loaded. In our examples, we don't use the callback and rely on
the render loop to eventually show the texture when it's loaded.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[279]

You can use pretty much every image you'd like as texture. For best results,
however, use a square texture whose dimensions are a power of 2. So dimensions
such as 256 x 256, 512 x 512, 1024 x 1024, and so on work the best.

Since the pixels of a texture (also called texels) usually don't map one-to-one on the
pixels of the face, the texture needs to be magnified or minified. For this purpose,
WebGL and Three.js, offers a couple of different options. You specify how the texture
is magnified by setting the magFilter property, and how it is minified with the
minFilter property. These properties can be set to the following two basic values:

Name Description
THREE.NearestFilter This filter uses the color of the nearest texel that it can find.

When used for magnification, this will result in blockiness,
and when used for minification the result will lose much
detail.

THREE.LinearFilter This filter is more advanced and uses the color value
of the four neighboring texels to determine the correct
color. You'll still lose much detail in minification, but the
magnificatio006E will be much more smooth, and less blocky.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading and Working with Textures

[280]

Besides these basic values, we can also use a mipmap. A mipmap is a set of texture
images, each half the size of the previous one. These are created when you load the
texture and allow for much smoother filtering. So when you've got a square texture
(as a power of 2) you can use a couple of additional approaches for better filtering.
The properties can be set using the following values:

Name Description
THREE.
NearestMipMapNearestFilter

This property selects the mipmap that best
maps the required resolution and applies the
nearest filter principle that we discussed in the
previous table. Magnification is still blocky, but
minification looks much better.

THREE.
NearestMipMapLinearFilter

This property selects not a single mipmap but the
two nearest mipmap levels. On both these levels
a nearest filter is applied to get two intermediate
results. These two results are passed through a
linear filter to get the final result.

THREE.
LinearMipMapNearestFilter

This property selects the mipmap that best maps
the required resolution and applies the linear
filter principle we discussed in the previous table.

THREE.
LinearMipMapLinearFilter

This property selects not a single mipmap,
but the two nearest mipmap levels. On both
these levels a linear filter is applied to get two
intermediate results. These two results are passed
through a linear filter to get the final result.

If you don't specify the magFilter and minFilter properties explicitly, Three.
js uses the THREE.LinearFilter for the magFilter property and the THREE.
LinearMipMapLinearFilter for the minFilter property. In our examples we'll just
use these default properties. An example for the basic texture can be found here:
01-basic-texture.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[281]

In this example we load a couple of textures (using the code you saw earlier) and
apply them to various shapes. In these examples you can see that the textures
nicely wrap around the shapes. When you create geometries in Three.js it makes
sure that any texture that is used is applied correctly. This is done by something
called UV mapping (more on this later in this chapter). With UV Mapping we tell
the renderer which part of a texture should be applied to a specific face. The easiest
example for this is the cube. The UV mapping for one of the faces looks like this:
(0,1),(0,0),(1,0),(1,1). This means that we use the complete texture (UV
values range from 0 to 1) for this face.

In this example we've used the texture to define the color of the pixels of our mesh.
We can also use textures for other purposes. The following two examples are used
to define how shading is applied to a material. You use this to create bumps and
wrinkles on the surface of the mesh.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading and Working with Textures

[282]

Using a bump map to create wrinkles
A bump map is used to add more depth to a material. You can see this in action the
best way by opening up the following example: 02-bump-map.html. Refer to the
following screenshot:

In this example you can see that the left wall looks much more detailed and seems to
have much more depth, when you compare it with the wall on the right. This is done
by setting an additional texture, a so-called bump map, on the material:

function createMesh(geom, imageFile, bump) {
 var texture = THREE.ImageUtils.loadTexture(
 "../assets/textures/general/" + imageFile)
 var mat = new THREE.MeshPhongMaterial();
 mat.map = texture;

 var bump = THREE.ImageUtils.loadTexture(
 "../assets/textures/general/" + bump)
 mat.bumpMap = bump;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[283]

 mat.bumpScale = 0.2;

 var mesh = new THREE.Mesh(geom, mat);
 return mesh;
}

You can see in this code that besides setting the map property we also set the bumpMap
property to a texture. Additionally, with the bumpScale property, we can set the
height (or depth if set to a negative value) of the bumps. The textures used in this
example are shown here:

The bump map is a grey scale image, but you can also use a color image. The
intensity of the pixel defines the height of the bump. A bump map only contains the
relative height of a pixel. It doesn't say anything about the direction of the slope. So
the level of detail and perception of depth you can reach with a bump map is limited.
For more details you can use a normal map.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading and Working with Textures

[284]

Using more detailed bumps and wrinkles with
a normal map
In a normal map, the height (displacement) is not stored, but the direction of
the normal for each picture is stored. Without going into too much detail, with
normal maps you can create very detailed looking models that still only use a
small number of vertices and faces. For instance, have a look at the following
example: 03-normal-map.html.

In this image you can see a very detailed plastered cube towards the left. The light
source moves around the cubes, and you can see that the texture responds naturally
to the light source. This provides a very realistic-looking model, and only requires a
very simple model and a couple of textures. The following code fragment shows how
to use a normal map from Three.js:

function createMesh(geom, imageFile, normal) {
 var t = THREE.ImageUtils.loadTexture
 ("../assets/textures/general/" + imageFile);
 var m = THREE.ImageUtils.loadTexture
 ("../assets/textures/general/" + normal);
 var mat2 = new THREE.MeshPhongMaterial({

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[285]

 map: t,
 normalMap: m
 });
 var mesh = new THREE.Mesh(geom, mat2);
 return mesh;
}

The same approach is used here, as was done for the bump map. This time,
though, we set the normalMap property to the normal texture. We can also define
how pronounced the bumps look by setting the normalScale property: mat.
normalScale.set(1,1). With these two properties you can scale along the x and y
axis. Best approach, though, is to keep these values the same for the best effect. Note
that once again when these values are below zero, the heights inverse. The following
screenshot shows both the texture (on the left) and the normal map (on the right).

The problem with normal maps, however, is that they aren't very easy to create.
You need to use specialized tools, such as Blender or Photoshop. They can use high
resolution renderings or textures as input and create normal maps from them.

When modeling characters using a normal map is a good way to add lots of details to
a low-polygon model. The following example shows how this is done.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading and Working with Textures

[286]

Creating fake shadows using a light map
In the previous examples, we used specific maps to create real-looking shadows
that react to the lighting in the room. There is an alternative option to create fake
shadows. In this section we'll use a light map. A light map is a prerendered shadow
that you can use to create the illusion of a real shadow. The following screenshot,
from example 04-light-map.html, shows how this looks:

If you look at the previous example it shows a couple of very nice shadows, which
seem to be cast by the two cubes. These shadows, however, are based on a light map
texture that looks as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[287]

As you can see, the shadows as specified in the light map, are also shown as the
shadows on the ground plane, creating the illusion of real shadows. You can use this
technique to create high-resolution shadows, without incurring a heavy rendering
penalty. This, of course, only works for static scenes. Using a light map is pretty
much the same as using other textures with a couple of small differences.

var lm = THREE.ImageUtils.loadTexture(
 '../assets/textures/lightmap/lm-1.png');
var wood = THREE.ImageUtils.loadTexture(
 '../assets/textures/general/floor-wood.jpg');
var groundMaterial = new THREE.MeshBasicMaterial(
 {lightMap: lm, map: wood});
groundGeom.faceVertexUvs[1] = groundGeom.faceVertexUvs[0];

To apply a light map, we just need to set the lightMap property of the material to the
light map we just showed. There is, however, an additional required step to get the
light map to show up. We need to explicitly define the UV mapping (what part of the
texture is shown on a face) for the light map. This needs to be done so you can apply
and map the light map independently of the other textures. In our example, we just
use the basic UV mapping, automatically created by Three.js when we created the
ground plane. More information and background of why an explicit UV mapping is
required can be found here: http://stackoverflow.com/questions/15137695/
three-js-lightmap-causes-an-error-webglrenderingcontext-gl-error-gl-
invalid-op

When the shadow map is positioned correctly, we need to place the cubes in the
correct location, and we've got the example we just showed you.

Three.js provides another texture that you can use to fake advanced 3D effects. In the
next section, we'll look at using environment maps for fake reflections.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading and Working with Textures

[288]

Creating fake reflections using an
environment map
Calculating environment reflections is very CPU-intensive and usually requires a
ray tracer approach. If you want to use reflections in Three.js, you can still do that,
but you'll have to fake it. You can fake it by creating a texture of the environment the
object is in, and apply this to the specific object. First we'll show you the result we're
aiming for (see 05-env-map-static.html, also shown in the following screenshot):

In this screenshot you can see the sphere and cube reflect the environment. If you
move your mouse around, you can also see that the reflection corresponds with the
camera angle in relation to the city environment you see. To create this example we
perform the following steps:

1. Create a CubeMap object: The first thing we need to do is create a CubeMap
object. A cubeMap is a set of six textures that can be applied to each side
of a cube.

2. Create a cube with this Cubemap: The cube created with the CubeMap object
is the environment you see when you move the camera around. It gives the
illusion that you're standing in an environment where you can look around.
In reality you're inside a cube with textures rendered on the inside to give an
illusion of space.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[289]

3. Apply the CubeMap as a texture: The same CubeMap object we used to
simulate the environment can be used as a texture on the meshes. Three.js
will make sure it looks like a reflection of the environment.

Creating a CubeMap object is pretty easy, once you've got the source material. What
you need is six images that together make up a complete environment. So you need
the following pictures: looking forward (posz), looking backward (negz), looking up
(posy), looking down (negy), looking right (posx), and looking left (negx). Three.js
will patch these together to create a seamless environment map. There are a couple
of sites where you can download these pictures. The ones used in this example are
from http://www.humus.name/index.php?page=Textures.

Once you've got the pictures, you can load them as shown in the following
code fragment:

function createCubeMap() {

 var path = "../assets/textures/cubemap/parliament/";
 var format = '.jpg';
 var urls = [
 path + 'posx' + format, path + 'negx' + format,
 path + 'posy' + format, path + 'negy' + format,
 path + 'posz' + format, path + 'negz' + format
];

 var textureCube = THREE.ImageUtils.loadTextureCube(urls);
 return textureCube;
}

We again use the THREE.ImageUtils JavaScript object, but this time we pass in an
array of textures to create the CubeMap object and use the loadTextureCube function.
With this CubeMap object we first create a cube:

var textureCube = createCubeMap();
var shader = THREE.ShaderLib["cube"];
shader.uniforms["tCube"].value = textureCube;
var material = new THREE.ShaderMaterial({
 fragmentShader: shader.fragmentShader,
 vertexShader: shader.vertexShader,
 uniforms: shader.uniforms,
 depthWrite: false,
 side: THREE.BackSide
});
cubeMesh = new THREE.Mesh(
 new THREE.CubeGeometry(100, 100, 100), material);

www.it-ebooks.info

http://www.it-ebooks.info/

Loading and Working with Textures

[290]

Three.js provides a specific shader that we can use with the THREE.ShaderMaterial
class to create an environment based on the CubeMap object (var shader = THREE.
ShaderLib["cube"];). We configure this shader with our CubeMap, create a
mesh, and add it to the scene. This mesh, if seen from the inside, represents the fake
environment we're standing in.

This same CubeMap instance can be applied to the meshes we want to render to create
the fake reflection:

var sphere1 = createMesh(
 new THREE.SphereGeometry(10, 15, 15), "plaster.jpg");
sphere1.material.envMap = textureCube;
sphere1.rotation.y = -0.5;
sphere1.position.x = 12;
sphere1.position.y = 5;
scene.add(sphere1);

var sphere2 = createMesh(new THREE.CubeGeometry(10, 15, 15),
 "plaster.jpg","plaster-normal.jpg");
sphere2.material.envMap = textureCube;
sphere2.rotation.y = 0.5;
sphere2.position.x = -12;
sphere2.position.y = 5;
scene.add(sphere2);

As you can see, we set the envMap property of the material to the cubeMap object
we created, the result is a scene where it looks like we're standing in a wide,
outdoors environment, where the meshes reflect this environment. If you use the
sliders you can set the reflectivity property of the material, and, as the name
implies, this determines how much of the environment is reflected by the material.
Besides reflection, Three.js also allows you to use a CubeMap instance for refraction
(glass-like objects):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[291]

To get this effect we just need to change the loading of the textures to this:

var textureCube = THREE.ImageUtils.loadTextureCube(
 urls, new THREE.CubeRefractionMapping());

And you can control the refraction ratio with the refraction property on the
material, just like with the reflection property. In this example we've used a static
environment map for the meshes. In other words we only saw the environment
reflection and not the other meshes in this environment. In the following example
we'll show you how you can create a reflection that also shows the other objects in
the scene.

The last of the basic material we'll look at is the specular map.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading and Working with Textures

[292]

Specular map
With a specular map you can define a map that defines the shininess and the
highlight color of a material. For instance, in the following screenshot, we've used
a specular map together with a normal map to render a globe. You can see this
example if you open 06-specular-map.html in your browser. The result of this
is also shown in the following screenshot:

In this screenshot you can see that the oceans are highlighted and reflect light. The
continents, on the other hand, are very dark and don't reflect (much) light. For this
effect we didn't use any specific normal textures, but only a normal map to show
heights and the following specular map to highlight the oceans:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[293]

Basically what happens is that the higher the value of the pixel (from black to white)
the shinier the surface will appear. A specular map is usually used together with the
specular property that you can use to determine the color of the reflection. In this
case it is set to red:

var specularTexture=THREE.ImageUtils.loadTexture(
 "../assets/textures/planets/EarthSpec.png");
var normalTexture=THREE.ImageUtils.loadTexture(
 "../assets/textures/planets/EarthNormal.png");

var planetMaterial = new THREE.MeshPhongMaterial();
planetMaterial.specularMap = specularTexture;
planetMaterial.specular = new THREE.Color(0xff0000);
planetMaterial.shininess = 1;

planetMaterial.normalMap = normalTexture;

Also note that the best effects are usually realized with a low shininess,
but depending on the lighting, the specular map you use, you might need
to experiment to get the desired effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading and Working with Textures

[294]

Advanced usage of textures
In the previous section, we've seen some basic texture usages. Three.js also provides
options for more advanced texture usage. In this section we'll look at a couple of
options that Three.js provides.

Custom UV mapping
We'll start of with a deeper look at UV mappings. We explained earlier that with UV
mapping you can specify what part of a texture is shown on a specific face. When
you create a geometry in Three.js, these mappings will also be automatically created
based on the type of geometry you created. In most cases you don't really need to
change this default UV mapping. A good way to understand how UV mappings
work is to look at an example from Blender:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[295]

In this example you see two windows. The window on the left contains a cube
geometry. The window on the right is the UV mapping, where we've loaded an
example texture to show how the mapping is. In this example we've selected a single
face for the window on the left and the window on the right shows the UV mapping
for this face. As you can see each vertex of the face is positioned in one of the corners
of the UV mapping on the right (the small circles). This means that the complete
texture will be used for that face. All the other faces of this cube are mapped in the
same manner, so the result will show a cube where each face shows the complete
texture; see 07-uv-mapping.html also shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Loading and Working with Textures

[296]

This is the default for a cube in Blender (also in Three.js). Let's change the UV
mapping and see how this changes the way the texture is applied. Instead of
showing the complete texture on each side, we let each face show only a part
of the texture.

If we now show this in Three.js, you can see that the texture is applied differently.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[297]

Customizing UV mappings is normally done from programs such as Blender,
especially when the models become more complex. The most important part to
remember here is that UV mappings run in two dimensions u and v, from 0 to 1. To
customize the UV mapping you need to define, for each face, what part of the texture
should be shown. You do this by defining the u and v coordinates for each of the
vertices that make up the face.

Next, we'll look at how textures can be repeated, which is done by some internal UV
mapping tricks.

Repeat wrapping
When you apply a texture to a geometry created by Three.js, Three.js will try to
apply the texture as optimaly as possible. For instance, for cubes this means each
side will show the complete texture, and for spheres the complete texture is wrapped
around the sphere. There are, however, situations where you don't want the texture
to spread around a complete face or the complete geometry, but have the texture
repeat itself. Three.js provides detailed functionality that allows you to control this.
An example where you can play around with the repeat properties is provided in
this example: 08-repeat-wrapping.html

www.it-ebooks.info

http://www.it-ebooks.info/

Loading and Working with Textures

[298]

In this example you can set the property that controls how a texture repeats itself.

Before this property has the desired effect, you need to make sure you set the
wrapping of the texture to THREE.RepeatWrapping as shown in the following
code snippet:

cube.material.map.wrapS = THREE.RepeatWrapping;
cube.material.map.wrapT = THREE.RepeatWrapping;

The wrapS property defines how you want the texture to behave along its x-axis and
the wrapT property defines how the texture should behave along its y-axis. Three.js
provides two options for this, which are as follows:

• THREE.RepeatWrapping allows the texture to repeat itself.
• THREE.ClampToEdgeWrapping is a default setting. With THREE.

ClampToEdgeWrapping the last pixel of the texture is stretched
out to fill the remaining space

If you disable the repeatWrapping menu option, the THREE.ClampToEdgeWrapping
option is used.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[299]

If we use THREE.RepeatWrapping we can set the repeat property as shown in the
following code fragment:

cube.material.map.repeat.set(repeatX, repeatY);

The repeatX variable defines how often the texture is repeated along its x-axis and
the repeatY variable defines the same for the y-axis. If these values are set to 1, the
texture won't repeat itself; if set to a higher value, you'll see that the texture will start
repeating. You can also use values less than 1. In that case you can see that you'll
zoom in on the texture. If you set the repeat value to a negative value, the texture
will be mirrored.

When you change the repeat property, Three.js will automatically update
the textures and render with this new setting. If you change from THREE.
RepeatWrapping to THREE.ClampToEdgeWrapping you need to explicitly
update the texture:

cube.material.map.needsUpdate = true;

So far we've only used static images for our textures. Three.js, however, also has the
option to use the HTML5 canvas as a texture.

Rendering to canvas and using it as a texture
In this section we're going to look at two different examples. First we're going to look
at how you can use the canvas to create a simple texture and apply it to a mesh, and
after that we'll go one step further and create a canvas that can be used as a bump
map using a randomly generated pattern.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading and Working with Textures

[300]

Using canvas as a texture
In the first example we will use the literally library (from http://
literallycanvas.com/) to create an interactive canvas that you can draw on, see
the lower left corner in the following screenshot. You can view this example here:
09-canvas-texture.

Anything you draw on this canvas is directly rendered on the cube as a texture.
Accomplishing this in Three.js is really simple, and only takes a couple of steps.
The first thing we need to do is create a canvas element and, for this specific
example, configure it to be used with the literally library:

<div class="fs-container">
<div id="canvas-output" style="float:left">
</div>
</div>
...
var canvas = document.createElement("canvas");
$('#canvas-output')[0].appendChild(canvas);
$('#canvas-output').literallycanvas(
 {imageURLPrefix: '../libs/literally/img'});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[301]

Nothing to fancy here. We just create a canvas element from JavaScript and add it
to a specific div element. With the literallycanvas call we can create the drawing
tools that you can use to directly draw on the canvas. Next we need to create a
texture that uses the canvas drawing as its input:

function createMesh(geom) {

 var canvasMap = new THREE.Texture(canvas);
 var mat = new THREE.MeshPhongMaterial();
 mat.map = canvasMap;
 var mesh = new THREE.Mesh(geom,mat);

 return mesh;
}

As the code shows, the only thing you need to do to is pass by reference the canvas
element when you create a new texture: new THREE.Texture(canvas). This will
create a texture that uses the canvas as its material. All that is left is to update the
material whenever we render so the last version of the canvas drawing is shown on
the cube:

function render() {
 stats.update();

 cube.rotation.y += 0.01;
 cube.rotation.x += 0.01;

 cube.material.map.needsUpdate = true;
 requestAnimationFrame(render);
 webGLRenderer.render(scene, camera);
}

To inform Three.js that we want to update the texture, we just set the needsUpdate
property of the texture to true. In this example we've used the canvas as input for
the most simple of textures. We can of course use this same idea for all the different
types of maps we've seen so far. In the next example we'll use it as a bump map.

Using canvas as a bump map
As we've seen earlier in this chapter we can create a simple wrinkled texture with a
bump map. The higher the intensity of a pixel in this map, the higher the wrinkle.
Since a bump map is just a simple black and white image, nothing keeps us from
creating this on a canvas and using that canvas as an input for the bump map.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading and Working with Textures

[302]

In the following example, we use a canvas to generate a random gray scale image
and we use that image as an input for the bump map we apply to the cube. See
example 09-canvas-texture-bumpmap.html:

The JavaScript code required for this is not that different from the previous example we
explained. We need to create a canvas element and fill this canvas with some random
noise. For the noise, we use Perlin noise. Perlin noise (http://en.wikipedia.org/
wiki/Perlin_noise) generates a very natural looking random texture, as you can see
in the preceding screenshot. We use the Perlin noise function from https://github.
com/wwwtyro/perlin.js for this like so:

var ctx = canvas.getContext("2d");
function fillWithPerlin(perlin, ctx) {

 for (var x = 0; x < 512; x++) {
 for (var y = 0; y < 512; y++) {
 var base = new THREE.Color(0xffffff);
 var value = perlin.noise(x / 10, y / 10, 0);
 base.multiplyScalar(value);
 ctx.fillStyle = "#" + base.getHexString();
 ctx.fillRect(x, y, 1, 1);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[303]

We use the perlin.noise function to create a value from 0 to 1 based on the x and
y coordinate of the canvas. This value is used to draw a single pixel on the canvas.
Doing this for all the pixels creates the random map you can also see in the lower left
corner of the previous screenshot. This map can then easily be used as a bump map:

var bumpMap = new THREE.Texture(canvas);

var mat = new THREE.MeshPhongMaterial();
mat.color = new THREE.Color(0x77ff77);
mat.bumpMap = bumpMap;
bumpMap.needsUpdate = true;

var mesh = new THREE.Mesh(geom, mat);
return mesh;

The final input we use for the texture is another HTML element: the HTML5
video element.

Using the output from a video as a texture
If you've read the previous paragraph on rendering to canvas, you might have
thought about rendering video to canvas and using that as input for a texture. That
is an option, but Three.js (through WebGL) already has direct support to use the
HTML5 video element: 11-video-texture.html. Refer to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Loading and Working with Textures

[304]

Using video as input for a texture is, just like using canvas, very easy. First off, we
need to have a video element to play the video:

<video id="video"
 style="display: none;
 position: absolute; left: 15px; top: 75px;"
 src="../assets/movies/Big_Buck_Bunny_small.ogv"
 controls="true" autoplay="true">
</video>

Just a basic HTML5 video element that we set to play automatically. Next we can
configure Three.js to use this video as an input for a texture:

var video = document.getElementById('video');
texture = new THREE.Texture(video);
texture.minFilter = THREE.LinearFilter;
texture.magFilter = THREE.LinearFilter;
texture.generateMipmaps = false;

Since our video isn't square we need to make sure we disable the mipmap generation
on the material. We also set some simple high-performance filters (see the section
Loading a texture and applying it to mesh, in this chapter), since the material changes
very often. All that is left to do now is create a mesh and set the texture. In this
example, we've used the MeshFaceMaterial together with MeshBasicMaterial:

var materialArray = [];
materialArray.push(new THREE.MeshBasicMaterial(
 {color: 0x0051ba}));
materialArray.push(new THREE.MeshBasicMaterial(
 {color: 0x0051ba}));
materialArray.push(new THREE.MeshBasicMaterial(
 {color: 0x0051ba}));
materialArray.push(new THREE.MeshBasicMaterial(
 {color: 0x0051ba}));
materialArray.push(new THREE.MeshBasicMaterial(
 {map: texture }));
materialArray.push(new THREE.MeshBasicMaterial(
 {color: 0xff51ba}));

var faceMaterial = new THREE.MeshFaceMaterial(materialArray);
var mesh = new THREE.Mesh(geom,faceMaterial);

All that is left to do is to make sure that in our render loop we update the texture:

if (video.readyState === video.HAVE_ENOUGH_DATA) {
 if (texture) texture.needsUpdate = true;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[305]

In this example we just rendered the video to one side of the cube, but since this is a
normal texture, we could do anything we want with it. We could, for instance, divide
it along the sides of a cube using a custom UV mapping or we could even use video
input as input for a bump map.

Summary
Hence we complete this chapter on textures. As you've seen, there are lots of
different kinds of textures available in Three.js each with their different uses. The
most important steps to remember when working with textures are the following:

• You can use any image in PNG, JPG, or GIF format as a texture. Loading
these images is done asynchronously, so remember to either use a rendering
loop, or add a callback when you load the texture.

• You'll get the best result when you use a square texture whose size is a power
of 2 (for example, 256x256, 512x512, and 1024x1024). The reason
is that scaling such textures can be done using mipmaps which provide
better results.

• You can use textures to create great-looking objects from low poly models.
Using bump maps and normal maps allows you to create fake detailed depth
and shadows on simple models.

• In the standard way, Three.js doesn't support reflections out of the box
aren't supported. You can however easily fake reflections by using an
environment map.

• If you want a direct control over a surface's shininess, you can use a
specular map.

• You can configure textures to be repeated by setting the repeat property on
the texture. Remember to also change the wrapping for the material from
ClampToEdgeWrapping to RepeatWrapping.

• With Three.js, it is also easy to create dynamic textures using either the
HTML5 canvas element or the video element. Just define a texture with these
elements as their input and set the needsUpdate property to true whenever
you want the texture to be updated.

With this chapter out of the way we've pretty much covered all the important
concepts of Three.js. We haven't however, looked at an interesting feature Three.js
offers called post processing. With post processing you can add effect to your scene
after it is rendered. You could, for instance, blur or colorize your scene, or add a
TV-like effect using scan lines. In the next chapter we'll look at post processing
and how you can apply it to your scene.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Shaders and Render
Post Processing

We're getting to the end of the book, and in this chapter we'll look at the one main
feature of the Three.js library that we haven't touched upon: render post processing.
Besides this subject in the chapter, we'll also introduce you to how you can create
custom shaders. The main points that we'll discuss in this chapter are the following:

• Setting up a Three.js library for post processing
• The basic post processing passes provided by Three.js, such as BloomPass

and FilmPass
• Applying effects to a part of the scene by using masks
• Using the TexturePass to store the rendered results
• Using the ShaderPass to add even more basic post processing effects, such

as sepia filters, mirror effects, and color adjustments
• Using the ShaderPass for various blurring effects and more advanced filters
• Creating a custom post processing effect by writing a simple shader

In Chapter 1, Creating Your First 3D Scene with Three.js, we set up a render loop
that we've used throughout the book to render and animate our scene. For post
processing, we need to make a couple of changes to this setup to allow the Three.js
library to post process the final rendering. In the first section we'll look at how to
do this.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Shaders and Render Post Processing

[308]

Setting up the post processing
To set up the Three.js library for post processing, we need to make a couple of
changes in our current setup by taking the following steps:

1. Create an EffectComposer object that we can use to add the post
processing passes.

2. Configure this object so that it'll render our scene and apply any additional
post processing steps.

3. In the render loop, use the EffectComposer to render the scene, apply the
passes, and show the output.

As always, we have an example that you can use to experiment with and adopt
for your own uses. The first example for this chapter can be accessed in the file
01-basic-effect-composer.html. You can use the menu in the top-right corner
to modify the properties of the post processing steps used in this example, as shown
in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[309]

Creating the EffectComposer object
Let's first look at the additional JavaScript files that you need to include. These files
can be found in the Three.js distribution in the examples/js/postprocessing and
examples/js/shaders folders.

The minimal set is shown in the following code snippet:

<script type="text/javascript"
 src="../libs/postprocessing/EffectComposer.js"></script>
<script type="text/javascript"
 src="../libs/postprocessing/MaskPass.js"></script>
<script type="text/javascript"
 src="../libs/postprocessing/RenderPass.js"></script>
<script type="text/javascript"
 src="../libs/shaders/CopyShader.js"></script>
<script type="text/javascript"
 src="../libs/postprocessing/ShaderPass.js"></script>

The EffectComposer.js file provides the EffectComposer object that allows us to
add the post processing steps. The MaskPass.js, ShaderPass.js, and CopyShader.
js files are used internally by the EffectComposer, and the RenderPass.js file
allows us to add a rendering pass to our EffectComposer object. Without that pass,
our scene wouldn't be rendered at all.

For this example, we will add two additional JavaScript files to add a film-like effect
to our scene, as follows:

<script type="text/javascript"
 src="../libs/postprocessing/FilmPass.js"></script>
<script type="text/javascript"
 src="../libs/shaders/FilmShader.js"></script>

The first thing that we need to do is create an EffectComposer object. You can do
this by passing in a WebGLRenderer to its constructor as shown:

var composer = new THREE.EffectComposer(webGLRenderer);

Next, we will add various passes to this composer.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Shaders and Render Post Processing

[310]

Configuring the EffectComposer object for post
processing
Each pass is executed in the sequence that it is added to the EffectComposer. The
first pass that we will add is a RenderPass. The following pass will render our scene,
but doesn't output it to the screen:

var renderPass = new THREE.RenderPass(scene, camera);
composer.addPass(renderPass);

To create a RenderPass, we will pass in the scene that we want to render, and
the camera that we want to use. With the addPass() function, we will add this
RenderPass to the EffectComposer. The next step is to add another pass that will
output its result to the screen. Not all of the available passes allow this (more on that
later), but the FilmPass that is used in this example allows us to output the result of
its pass to the screen. To add a FilmPass, we first need to create it, and then add it to
the composer. The resulting code will look like the following code snippet:

var renderPass = new THREE.RenderPass(scene,camera);
var effectFilm = new THREE.FilmPass(0.8, 0.325, 256, false);
effectFilm.renderToScreen=true;

var composer = new THREE.EffectComposer(webGLRenderer);
composer.addPass(renderPass);
composer.addPass(effectFilm);

As you can see, we have created a FilmPass and set the renderToScreen property
to true. This pass is added after the RenderPass, so that when this composer is used
we can see the output.

Updating the render loop
Now, we just need to make a small modification to our render loop in order to use
the composer instead of the WebGLRenderer:

var clock = new THREE.Clock();
function render() {
 stats.update();

 var delta = clock.getDelta();
 orbitControls.update(delta);

 sphere.rotation.y += 0.002;

 requestAnimationFrame(render);
 composer.render(delta);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[311]

Here, we have removed webGLRenderer.render(scene, camera); and replaced
it with composer.render(delta);. This will call the render() function on our
EffectComposer and, since we had set the renderToScreen of the FilmPass to
true, the result from the FilmPass is shown on the screen.

With this basic setup, we'll look at the available post processing passes in the later
couple of sections.

Post processing passes
The Three.js library comes with a number of post processing passes that you can use
directly with an EffectComposer object. The following table gives an overview of
the passes that are available. Note that it's best to play around with the examples in
this chapter to see the result of these passes and understand what is happening.

Pass name Description
BloomPass An effect that makes the light areas bleed into the darker areas.

It simulates an effect where the camera is overwhelmed by the
extremely bright light.

DotScreenPass This applies a layer of black dots across the screen that represents the
original image.

FilmPass This pass simulates a TV screen by applying scanlines and
distortions.

MaskPass This allows you to apply a mask to the current image. The
subsequent passes are only applied to the masked area.

RenderPass This pass renders a scene based on the supplied scene and camera.
SavePass When this pass is executed, it makes a copy of the current rendering

step that you can use later. This pass isn't that useful in practice and
we won't use it in any of our examples.

ShaderPass This allows you to pass in custom shaders for the advanced or
custom post processing passes.

TexturePass This pass stores the current state of the composer in a texture that you
can use as input for the other EffectComposer instances.

Let's start with a number of simple passes.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Shaders and Render Post Processing

[312]

Simple post processing passes
For the simple passes, we'll look at what we can do with the FilmPass, the BloomPass,
and the DotScreenPass. For these passes, example 02-post-processing-simple-
passes.html is available; it allows you to experiment with these passes and see how
they affect the original output, as shown in the following screenshot:

In this example, we have shown four scenes at the same time, and in each scene
a different post processing pass is added. The one in the top-right corner shows
the FilmPass, the top-left shows the BloomPass, the bottom-left shows the
DotScreenPass, and the bottom-right shows the original render.

In this example we have also used a ShaderPass and TexturePass to reuse the
output from the original rendering as input for the other three scenes. So before we
look at the individual passes, let's look at these two passes first:

var renderPass = new THREE.RenderPass(scene, camera);
var effectCopy = new THREE.ShaderPass(THREE.CopyShader);
effectCopy.renderToScreen = true;

var composer = new THREE.EffectComposer(webGLRenderer);
composer.addPass(renderPass);
composer.addPass(effectCopy);

var renderScene = new THREE.TexturePass(composer.renderTarget2);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[313]

In this piece of code, we have set up an EffectComposer that will output the
default scene (the one at the bottom-right corner). This composer has two passes:
the RenderPass, which renders the scene, and the ShaderPass. If we configure the
ShaderPass with a CopyShader, it will render the output, without any further post
processing, to the screen if we set the renderToScreen property to true. If you've
looked at the example, you can see that we have shown the same scene four times,
but with a different effect applied. We could render the scene from scratch by using a
RenderPass four times, but that would be a bit of a waste since we can just reuse the
output from this first composer. To do this, we will create a TexturePass and pass in
the composer.renderTarget2 value. We can now use the renderScene variable as
input for our other composers, without having to render the scene from scratch. Let's
revisit the FilmPass first and see how we can use the TexturePass as input.

Using the FilmPass to create a TV-like effect
We've already looked at how to create a FilmPass in the first section of this chapter;
let's now see how to use this effect together with the TexturePass from the previous
section. This is shown in the code snippet that follows:

var effectFilm = new THREE.FilmPass(0.8, 0.325, 256, false);
effectFilm.renderToScreen=true;

var composer4 = new THREE.EffectComposer(webGLRenderer);
composer4.addPass(renderScene);
composer4.addPass(effectFilm);

The only step that you need to take to use the TexturePass is to add it as the first
pass in your composer. We can add the FilmPass next, and the effect is applied.
The FilmPass itself takes four parameters as shown:

Property Description
noiseIntensity This property allows you to control how grainy the scene is.
scanlinesIntensity The FilmPass adds a number of scanlines to the scene.

With this property, you can define how prominent these
scanlines are.

scanlinesCount The number of scanlines that are shown can be controlled
with this property.

grayscale If set to true, the output will be converted to a gray scale.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Shaders and Render Post Processing

[314]

There are actually two ways in which you can pass these parameters. In this example
we have passed them in as arguments to the constructor, but you can also set them
directly, as in the following code snippet:

effectFilm.uniforms.grayscale.value = controls.grayscale;
effectFilm.uniforms.nIntensity.value = controls.noiseIntensity;
effectFilm.uniforms.sIntensity.value =
 controls.scanlinesIntensity;
effectFilm.uniforms.sCount.value = controls.scanlinesCount;

In this approach we will use the uniforms property. It is used to communicate
directly with WebGL. In the section where we will talk about creating a custom
shader (later in this chapter), we'll go a bit deeper into uniforms; for now all that
you need to know is that you can now directly update the configuration of post
processing passes and shaders and directly see the results.

Adding a bloom effect to the scene with the
BloomPass
The effect you see in the upper-left corner is called the bloom effect. When you
apply the bloom effect, the bright areas of a scene will be made more prominent
and bleed into the darker areas. The code to create a BloomPass is shown as follows:

var bloomPass = new THREE.BloomPass(3, 25, 5, 256);
var composer3 = new THREE.EffectComposer(webGLRenderer);
composer3.addPass(renderScene);
composer3.addPass(bloomPass);
composer3.addPass(effectCopy);

If you compare this with the EffectComposer that we used with the FilmPass,
you'll notice that we add an additional pass here, the effectCopy. This step, which
we had also used for the normal output, doesn't add any special effect, but just
copies the output from the last pass to the screen. We need to add this step, since the
BloomPass can't render directly to the screen. The following table lists the properties
that you can set on the BloomPass:

Property Description
Strength This defines the strength of the bloom effect. The higher it is, the more

brighter the bright areas are, and the more they bleed to the darker areas.
kernelSize This property controls the offset of the bloom effect.
sigma With the sigma property, you can control the sharpness of the bloom

effect. The higher the value, the more blurred the bloom effect.
Resolution This defines the preciseness of the bloom effect that is created. If you

make this too low, the result will look blocky.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[315]

A better way to understand these properties is to just experiment with them by using
the previously mentioned example: 02-post-processing-simple-passes.html. In
the following screenshot, you can see what the bloom effect looks like. This example
uses a high kernelSize, a high sigma, and a low Strength.

The last of the simple effects that we will have a look at is the DotScreenPass.

Outputting the scene as a set of dots with the
DotScreenPass
Using the DotScreenPass is very similar to the BloomPass that we just saw; look at
the following code snippet:

var dotScreenPass = new THREE.DotScreenPass();
var composer1 = new THREE.EffectComposer(webGLRenderer);
composer1.addPass(renderScene);
composer1.addPass(dotScreenPass);
composer1.addPass(effectCopy);

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Shaders and Render Post Processing

[316]

With this effect, we will once again have to add the effectCopy to output the result to
the screen. The DotScreenPass can also be configured with a number of properties:

Property Description
center With the center property, you can fine-tune the way the dots are offset.
angle The dots are aligned in a certain manner. With the angle property, you can

change this alignment.
scale This sets the size of the dots to use. The lower the scale, the larger the dots.

As for this shader, the same applies as the other shaders; it's much easier to get the
right settings with experimentation. In the screenshot that follows, you can see the
result of a DotScreenPass by using a high scale setting:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[317]

Showing the output of multiple renderers on the
same screen
This section doesn't go into the details of how to use the post processing effects, but
explains how to get the output of all the four EffectComposer instances on the same
screen. First, let's look at the render loop that is used for this example:

function render() {
 stats.update();

 var delta = clock.getDelta();
 orbitControls.update(delta);

 sphere.rotation.y += 0.002;

 requestAnimationFrame(render);

 webGLRenderer.autoClear = false;
 webGLRenderer.clear();

 webGLRenderer.setViewport(0, 0,
 2 * halfWidth, 2 * halfHeight);
 composer.render(delta);

 webGLRenderer.setViewport(0, 0,
 halfWidth, halfHeight);
 composer1.render(delta);

 webGLRenderer.setViewport(halfWidth, 0,
 halfWidth, halfHeight);
 composer2.render(delta);

 webGLRenderer.setViewport(0, halfHeight,
 halfWidth, halfHeight);
 composer3.render(delta);

 webGLRenderer.setViewport(halfWidth, halfHeight,
 halfWidth, halfHeight);
 composer4.render(delta);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Shaders and Render Post Processing

[318]

The first thing to notice here is that we have set the webGLRenderer.autoClear
property to false and will now explicitly call the clear() function. If we don't do
this each time we call the render() function on a composer, the previously rendered
scenes will be cleared. With this approach, we will only clear everything at the
beginning of our render loop.

To avoid all our composers rendering in the same space, we set the viewport of
the webGLRenderer, which is used by our composers, to a part of the screen. This
function takes four arguments: x, y, width, and height. As you can see in the code
sample, we have used this function to divide the screen into four areas and make the
composers render to their individual area.

You can also use this approach with multiple scenes,
cameras, and WebGLRenderer instances if you want.

So far we've only chained a couple of simple passes. In the next example, we'll
configure a more complex EffectComposer and use masks to apply effects to a
part of the screen.

Advanced EffectComposer flows by using
masks
In the previous examples, we applied the post processing passes to the complete
screen. The Three.js library, however, also has the ability to apply passes only to a
specific area. In this section we're going to take the following steps:

1. Create a scene to serve as the background image.
2. Create a scene containing a sphere that looks like Earth.
3. Create a scene containing a sphere that looks like Mars.
4. Create an EffectComposer object that renders these three scenes into a

single image.
5. Apply a colorify effect to the sphere rendered as Mars.
6. Apply a sepia effect to the sphere rendered as Earth.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[319]

This might sound complex, but is surprisingly easy to accomplish. First, let's look at
the result that we're aiming for, in the following screenshot. It is shown in example
03-post-processing-masks.html:

The first thing that we need to set up are the various scenes that we'll be rendering,
as follows:

var sceneEarth = new THREE.Scene();
var sceneMars = new THREE.Scene();
var sceneBG = new THREE.Scene();

To create the Earth and Mars spheres, we will just create spheres with the correct
material and textures, and add them to their specific scenes, as shown in the code
snippet that follows:

var sphere = createEarthMesh(
 new THREE.SphereGeometry(10, 40, 40));
sphere.position.x = -10;
var sphere2 = createMarshMesh(
 new THREE.SphereGeometry(5, 40, 40));
sphere2.position.x = 10;
sceneEarth.add(sphere);
sceneMars.add(sphere2);

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Shaders and Render Post Processing

[320]

We also need to add some lights to the scene, just like for a normal scene, but we
won't see that here. The only thing to remember is that the same light can't be added
to different scenes, so you need to create separate lights for both the scenes. That's all
the setup we need to do for these two scenes.

For the background image we will create an OrthographicCamera instance as
shown. Remember from Chapter 2, Working with the Basic Components That Make Up a
Three.js Scene, that the sizes of objects in the orthographic projection don't depend on
the distance from the camera.

var cameraBG = new THREE.OrthographicCamera(
 -window.innerWidth,
 window.innerWidth,
 window.innerHeight,
 -window.innerHeight, -10000, 10000);
cameraBG.position.z = 50;

var materialColor = new THREE.MeshBasicMaterial(
 { map: THREE.ImageUtils.loadTexture(
 "../assets/textures/starry-deep-outer-space-galaxy.jpg"),
 depthTest: false });
var bgPlane = new THREE.Mesh(new THREE.PlaneGeometry(1, 1),
 materialColor);
bgPlane.position.z = -100;
bgPlane.scale.set(window.innerWidth * 2,
 window.innerHeight * 2, 1);
sceneBG.add(bgPlane);

We won't go into much detail for this part, but we have to take a couple of steps to
create a background image. First, we will create a material from our background
image, and we apply it to a simple plane. Next we will add this plane to the scene,
and scale it to fill the screen completely. So when we render the scene with this
camera, our background image is shown, stretched to the width of the screen.

We've now got our three scenes, and we can start to set up our passes and the
EffectComposer object. Let's start by looking at the complete chain of passes,
after which we'll look at the individual passes:

var composer = new THREE.EffectComposer(webGLRenderer);
composer.renderTarget1.stencilBuffer = true;
composer.renderTarget2.stencilBuffer = true;

composer.addPass(bgPass);
composer.addPass(renderPass);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[321]

composer.addPass(renderPass2);

composer.addPass(marsMask);
composer.addPass(effectColorify1);
composer.addPass(clearMask);

composer.addPass(earthMask);
composer.addPass(effectSepia);
composer.addPass(clearMask);

composer.addPass(effectCopy);

To work with masks, we need to create the EffectComposer object in a different
manner. In this case we need to create a new WebGLRenderTarget object and set the
stencilBuffer property of the internally used render targets to true. Let's look at
the first three passes that are added first. These three passes render the background,
the Earth scene, and the Mars scene, as shown:

var bgPass = new THREE.RenderPass(sceneBG, cameraBG);
var renderPass = new THREE.RenderPass(sceneEarth, camera);
renderPass.clear = false;
var renderPass2 = new THREE.RenderPass(sceneMars, camera);
renderPass2.clear = false;

Nothing new here, except that we have set the clear property of two of these
passes to false. If we don't do this, we'll only see the output from renderPass2,
since it will clear everything before it starts rendering. If you look back at the code
for the EffectComposer, you'll see that the next three passes are the marsMask,
effectColorify, and clearMask. First, we'll look at how these three passes
are defined:

var marsMask = new THREE.MaskPass(sceneMars, camera);
var clearMask = new THREE.ClearMaskPass();
var effectColorify = new THREE.ShaderPass(THREE.ColorifyShader);
effectColorify.uniforms['color'].value.setRGB(0.5, 0.5, 1);

The first of these three passes is a MaskPass. When creating a MaskPass, you will
pass in a scene and a camera, just like you did for a RenderPass. The MaskPass will
render the scene internally, but instead of showing this on the screen, it will use this
information to create a mask. When this MaskPass is added to an EffectComposer,
all of the subsequent passes will only be applied to the mask defined by the
MaskPass, until a ClearMaskPass is encountered. In this example, it means that
the effectColorify pass, which adds a blue glow, is only applied to the objects
rendered in sceneMars.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Shaders and Render Post Processing

[322]

We will use the same approach to apply a sepia filter on the Earth object.
We will first create a mask based on the Earth scene and use this mask in the
EffectComposer. After the MaskPass, we add the effect that we want to apply
(effectSepia in this case), and once we're done we add the ClearMaskPass to
remove the mask. The last step for this specific EffectComposer is one that we've
already seen. We need to copy the final result to the screen, and once again use the
effectCopy pass for that.

There is one additional property that's interesting when working with a MaskPass and
that's the inverse property. If this property is set to true, the mask is inversed. In
other words, the effect is applied to everything but the scene passed into the MaskPass.

So far we've used the standard passes provided by the Three.js library for our effects.
Three.js also provides a ShaderPass that can be used for custom effects and comes
with a large number of shaders that you can use and experiment with.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[323]

Using the ShaderPass for custom effects
With the ShaderPass we can apply a large number of additional effects to our scene
by passing in a custom shader. This section is divided into three parts. First we'll
look at the following set of simple shaders:

Name Description
MirrorShader This creates a mirror effect for a part of the screen.
HueSaturationShader This allows you to change the hue and saturation of

the colors.
VignetteShader This applies a vignette effect. This effect shows dark

borders around the center of the image.
ColorCorrectionShader With this shader you can change the color distribution.
RGBShiftShader This shader separates the red, green, and blue

components of a color.
BrightnessContrastShader This changes the brightness and contrast of an image.
ColorifyShader This applies a color overlay to the screen.
SepiaShader This creates a sepia-like effect on the screen.

Next, we'll look at shaders that provide a couple of blur-related effects:

Name Description
HorizontalBlurShader and
VerticalBlurShader

These apply a blur effect to the complete scene.

HorizontalTiltShiftShader
and
VerticalTiltShiftShader

These recreate the tilt shift effect. With the tilt shift
effect, it is possible to create a scene that looks like a
miniature by making sure that only part of the image
is sharp.

TriangleBlurShader This applies a blur effect by using a triangle-based
approach.

And finally, we'll look at a couple of shaders that provide advanced effects:

Name Description
BleachBypassShader This creates a bleach bypass effect. With this effect, a silver-like

overlay will be applied to the image.
EdgeShader This shader can be used to detect the sharp edges in an image

and highlight them.
FXAAShader This shader applies an antialiasing effect during the post

processing phase. Use this if applying antialiasing during
rendering is too expensive.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Shaders and Render Post Processing

[324]

Name Description
FocusShader A simple shader that results in a sharply-rendered center area,

and blurring along its borders.

We won't go into detail for all the shaders, since if you've seen how one works, you
pretty much know how the others work. In the following sections, we'll highlight
a couple of interesting ones. You can experiment with the other ones by using the
interactive examples provided for each section.

We will start with a couple of the simple ones.

Simple shaders
To experiment with the basic shaders, we've created an example where you can play
around with the shaders and see the effect directly in the scene. You can refer to the
04-shaderpass-simple.html example, as seen in the following screenshot:.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[325]

With the menu in the top-right corner, you can select the specific shader that you
want to apply, and with the various drop-down menus you can set the properties
of the shader that you've selected. For instance, the following screenshot shows the
RGBShiftShader in action:

When you change one of the properties of a shader, the result is updated directly.
For this example we will set the changed value directly on the shader. For instance,
when the values for the RGBShiftShader change, we will update the shader, like in
the following code snippet:

this.changeRGBShifter = function() {
 rgbShift.uniforms.amount.value = controls.rgbAmount;
 rgbShift.uniforms.angle.value = controls.angle;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Shaders and Render Post Processing

[326]

Let's look at a couple of other shaders. The following screenshot shows the result of
the VignetteShader:

The MirrorShader has the following effect:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[327]

That's enough for the simple shaders. As you can see, they are very versatile and can
create very interesting-looking effects. In this example we applied a single shader
each time, but you can add as many ShaderPass steps to the EffectComposer as
you like.

Blurring shaders
In this section we won't dive into the code, we'll just show you the results from the
various blur shaders. You can experiment with these by using the 05-shaderpass-
blur.html example, as shown:

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Shaders and Render Post Processing

[328]

The earlier screenshot shows the HorizontalBlurShader and the
VerticalBlurShader. You can see that the effect is a blurred scene. Besides these
two blur effects, the Three.js library provides an additional shader that blurs an
image, the TriangleShader, which is shown in the screenshot that follows:

The last blur-like effect is provided by the HorizontalTiltShiftShader and the
VerticalTiltShiftShader. This shader doesn't blur the complete scene, but only
a small area. It provides an effect called as tilt shift. This is often used to create
miniature-like scenes from normal photos. The following screenshot shows this effect:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[329]

Advanced shaders
For the advanced shaders, we'll do the same as we did for the previous blur ones. We'll
just show you the output of the shaders; for details on how to configure them, look at
example 06-shaderpass-advanced.html, as shown in the following screenshot:

The earlier example shows the EdgeShader. With this shader you can detect the
edges of the objects in your scene. In the screenshot that follows, you can see the
result from the FocusShader, which only renders the center of the screen in focus:

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Shaders and Render Post Processing

[330]

So far we've only used shaders that are provided by the Three.js library. It is,
however, also very easy to create shaders yourself.

Creating custom post processing
shaders
In this section you'll learn how to create a custom shader that you can use in post
processing. We'll create two different shaders. The first one will convert the current
image into a grayscale image, and the second one will convert the image to an 8-bit
image by reducing the number of colors that are available.

Creating the vertex and fragment shaders is a very broad subject. In
this section, we will only touch the surface of what can be done by
these shaders and how they work. For more in-depth information,
you can find the WebGL specification at http://www.khronos.
org/webgl/. An additional good resource full of examples is
shadertoy: https://www.shadertoy.com/

Custom grayscale shader
To create a custom shader for the Three.js library (and also for the other WebGL
libraries), you need to implement two components: a vertexShader and a
fragmentShader. The vertexShader can be used to change the position of
individual vertices and the fragmentShader is used to determine the color of
individual pixels. For a post processing shader, we only need to implement a
fragmentShader, and we can keep the default vertexShader provided by the
Three.js library. An important point to make, though, before looking at the code,
is that GPUs usually support multiple shader pipelines. This means that in the
vertexShader step on the GPU, multiple shaders can run in parallel, and the same
goes for the fragmentShader step.

Let's start by looking at the complete source code for the shader that applies a
grayscale effect to our image (custom-shader.js):

THREE.CustomGrayScaleShader = {

 uniforms: {

 "tDiffuse": { type: "t", value: null },
 "rPower": { type: "f", value: 0.2126 },
 "gPower": { type: "f", value: 0.7152 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[331]

 "bPower": { type: "f", value: 0.0722 }

 },

 vertexShader: [
 "varying vec2 vUv;",
 "void main() {",
 "vUv = uv;",
 "gl_Position = projectionMatrix * modelViewMatrix
 * vec4(position, 1.0);",
 "}"
].join("\n"),

 fragmentShader: [

 "uniform float rPower;",
 "uniform float gPower;",
 "uniform float bPower;",
 "uniform sampler2D tDiffuse;",

 "varying vec2 vUv;",

 "void main() {",
 "vec4 texel = texture2D(tDiffuse, vUv);",
 "float gray = texel.r*rPower +
 texel.g*gPower + texel.b*bPower;",
 "gl_FragColor = vec4(vec3(gray), texel.w);",
 "}"
].join("\n")
};

As you can see from the code, this isn't JavaScript. When you write shaders,
you will write them in the OpenGL Shading Language (GLSL), which looks
a lot like the C programming language. More information on GLSL can be
found at: http://www.khronos.org/opengles/sdk/docs/manglsl/

Let's first look at this vertex shader:

"varying vec2 vUv;",
 "void main() {",
 "vUv = uv;",
 "gl_Position = projectionMatrix * modelViewMatrix
 * vec4(position, 1.0);",
 "}"

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Shaders and Render Post Processing

[332]

For post processing, this shader doesn't really need to do anything. The given code
is the standard way in which the Three.js library implements a vertexShader. It
uses the projectionMatrix, which is the projection from the camera, together with
the modelViewMatrix, which maps each vertex of an object to the coordinates of the
scene, to determine where to render an object on the screen.

For post-processing, the only interesting thing in this piece of code is that the uv
value, which indicates the Texel (a pixel from a texture) to read from a texture, is
passed on to the fragmentShader by using the varying vec2 vUv variable. We will
use the vUv value to get the correct pixel to work on in the fragmentShader. Let's
look at the fragmentShader and see what the code is doing. We will start with the
variable declaration:

 "uniform float rPower;",
 "uniform float gPower;",
 "uniform float bPower;",
 "uniform sampler2D tDiffuse;",

 "varying vec2 vUv;",

Here, we can see four uniforms. The uniforms are those values that are passed in
from JavaScript to the shader. In this case we will pass in three floats, identified by
the type f (which is used to determine the ratio of the color to include in the final
grayscale image), and a texture (tDiffuse) is passed in, identified by the type t.
This texture contains the image from the previous pass by the EffectComposer.
Three.js makes sure that it gets passed correctly to this shader, and we can set the
other uniforms from JavaScript ourselves. Before we can use these uniforms from
JavaScript, we have to define which uniforms are available for this shader. This is
done as shown, at the top of the shader file:

 uniforms: {

 "tDiffuse": { type: "t", value: null },
 "rPower": { type: "f", value: 0.2126 },
 "gPower": { type: "f", value: 0.7152 },
 "bPower": { type: "f", value: 0.0722 }

 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[333]

At this point we can receive the configuration parameters from the Three.js library
and have received the image that we want to modify. Let's look at the code that will
convert each pixel to a gray pixel:

"void main() {",
"vec4 texel = texture2D(tDiffuse, vUv);",
"float gray = texel.r*rPower +
 texel.g*gPower + texel.b*bPower;",
"gl_FragColor = vec4(vec3(gray), texel.w);"

What happens here is that we get the correct pixel from the passed in texture. We
do this by using the texture2D() function, where we will pass in our current image
(tDiffuse) and the location of the pixel (vUv) that we want to analyze. The result is a
Texel that contains a color and an opacity (texel.w).

Next, we will use the r, g, and b properties of this Texel to calculate a gray value.
This gray value is set to the gl_FragColor variable, which is eventually shown on
the screen. With that, we've got our own custom shader. This shader works just like
the other shaders. First, we will need to set up an EffectComposer, as shown:

var renderPass = new THREE.RenderPass(scene, camera);

var effectCopy = new THREE.ShaderPass(THREE.CopyShader);
effectCopy.renderToScreen = true;

var shaderPass = new THREE.ShaderPass(THREE.CustomGrayScaleShader);

var composer = new THREE.EffectComposer(webGLRenderer);
composer.addPass(renderPass);
composer.addPass(shaderPass);
composer.addPass(effectCopy);

Then we have to call the composer.render(delta) function in the render loop. If
we want to change the properties of this shader at runtime, we can just update the
uniforms that we've defined, as follows:

shaderPass.enabled = controls.grayScale;
shaderPass.uniforms.rPower.value = controls.rPower;
shaderPass.uniforms.gPower.value = controls.gPower;
shaderPass.uniforms.bPower.value = controls.bPower;

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Shaders and Render Post Processing

[334]

And the result will look like the following screenshot (example 07-shaderpass-
custom.html):

Let's create another custom shader. This time we'll reduce the 32-bit output to a
lower bit count.

Creating a custom bit shader
Normally, the colors are represented as 24-bit values, which give us about 16 million
different colors. In the early days of computing, this wasn't possible and colors
were often represented in 8-bit or 16-bit colors. With this shader, we'll automatically
transform our 24-bit output to a color depth of 8 bits (or anything that you want).

We'll skip the vertexShader, since it hasn't changed in regard to our earlier
example, and directly list the uniforms and the fragmentShader, as shown in the
following code snippet:

uniforms: {

 "tDiffuse": { type: "t", value: null },
 "bitSize": { type: "i", value: 4 }

 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[335]

The fragmentShader itself, defined as shown:

 fragmentShader: [

 "uniform int bitSize;",

 "uniform sampler2D tDiffuse;",

 "varying vec2 vUv;",

 "void main() {",

 "vec4 texel = texture2D(tDiffuse, vUv);",
 "float n = pow(float(bitSize),2.0);",
 "float newR = floor(texel.r*n)/n;",
 "float newG = floor(texel.g*n)/n;",
 "float newB = floor(texel.b*n)/n;",

 "gl_FragColor = vec4(newR, newG, newB, texel.w);",

 "}"

].join("\n")

We will define two uniforms that can be used to configure this shader. The first one
is the one that the Three.js library uses to pass to the current screen, and the second
one is the one defined by us, as an integer (type: "i"), and serves as the color depth
that we want to render the result in. The code itself is very straightforward. The steps
are as follows:

1. We will first get the texel from the texture, tDiffuse, based on the passed
in vUv.

2. We will then calculate the amount of colors that we may have based
on the bitSize property by calculating 2 to the power of bitSize
(pow(float(bitSize),2.0)).

3. Next, we will calculate the new value of the color of the texel by
multiplying the value with n, rounding it off (floor(texel.r*n)), and
dividing it again by n.

4. The result is set to gl_FragColor (red, green, and blue values, and the
opacity) and shown on the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Shaders and Render Post Processing

[336]

You can view the result for this custom shader in the same example as our previous
custom shader: 07-shaderpass-custom.html.

That's it for the chapter on post processing.

Summary
We've talked about a lot of different post processing options in this chapter. As
you've already seen, creating the EffectComposer instances and chaining the passes
together is actually very easy. The main subjects to remember from this chapter are
the following:

• Not all the passes output to the screen. If you want to output to the screen
you can always use a ShaderPass with a CopyShader.

• The sequence in which you add the passes to a composer is important. The
effects are applied in that sequence.

• If you want to reuse the result from a specific EffectComposer, you can do
so by using a TexturePass.

• When you have more than one RenderPass in your EffectComposer object,
make sure to set the clear property to false. If not, you'll only see the
output from the last RenderPass.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[337]

• If you only want to apply an effect to a specific object, you can use MaskPass.
When you're done with mask, clear the mask with the ClearMaskPass.

• Besides the standard passes provided by the Three.js library, there are also a
large number of standard shaders available. You can use these together with
a ShaderPass.

• Creating custom shaders for post processing is very easy by using the
standard approach from the Three.js library. You only need to create
a fragmentshader.

So far we've pretty much covered everything that there is to know about Three.js. For
the next chapter, the last one, we'll look at a library called Physijs, one that you can
use to extend Three.js with physics, such as collisions, gravity, and constraints.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics to Your
Scene with Physijs

In this final chapter we'll look at another library that you can use to extend the basic
functionality of Three.js. The library we'll discuss in this chapter is called Physijs.
Physijs is a library that allows you to introduce physics into your 3D scene. By
physics, we mean that our objects are subject to gravity—they can collide with each
other, can be moved by applying impulse, and can be constrained in their movement
through hinges and sliders. This library makes use of another well known physics
engine named ammo.js.

In this chapter we'll look at how Physijs allows you to do the following:

• Create a Physijs scene where your objects are subject to gravity and can
collide with each other

• Show how to change the friction and restitution (bounciness) of the objects in
the scene

• Explain the various shapes supported by Physijs and how to use them
• How to create compound shapes by combining simple shapes together
• Show how a height field allows you to simulate a complex shape
• Limit the movement of an object by applying a point, hinge, slider, cone

twist, and the degree of freedom constraint

First thing we need to do, is create a Three.js scene that can be used with Physijs.
We'll do that in our first example.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics to Your Scene with Physijs

[340]

Creating a basic Three.js scene ready for
Physijs
Setting up a Three.js scene for Physijs is very simple and only takes a couple of
steps. First thing we need to do is include the correct JavaScript file, which you can
get from the GitHub repository available at http://chandlerprall.github.io/
Physijs/.

<script type="text/javascript" src="../libs/physi.js"></script>

Simulating a scene is rather CPU intensive. If we do this on the render thread, it
could seriously affect the frame rate of our scene. To compensate for that Physijs
does its calculations in a background thread. This background thread is provided
through the Web workers specification that is implemented by most modern
browsers. With this specification, you can run CPU-intensive tasks in a separate
thread, thus without affecting the rendering. More information on web workers
can be found at the following site: http://www.whatwg.org/specs/web-apps/
current-work/multipage/workers.html

For Physijs, this means we have to configure the JavaScript file that contains this
worker task and also tell Physijs where it can find the ammo.js file needed to
simulate our scene. The reason we need to include the ammo.js file is that Physijs
is a wrapper around ammo.js to make it easy to use. ammo.js (which you can find
here: https://github.com/kripken/ammo.js/) is the library that implements the
physics engine, Physijs just provides an easy-to-use interface to this physics library.
Since Physijs is just a wrapper, we can also use other physics engines along with
Physijs. On the Physijs repository you can also find a branch that uses Cannon.js, a
different physics engine.

We do this by setting the following two properties:

Physijs.scripts.worker = '../libs/physijs_worker.js';
Physijs.scripts.ammo = '../libs/ammo.js';

The first property points to the worker tasks that we want to execute, and the second
property to the ammo.js library that is used internally. The next step we need to do is
create a scene. Physijs provides a wrapper around Three.js normal scene, so in your
code you do the following to create a scene:

var scene = new Physijs.Scene();
scene.setGravity(new THREE.Vector3(0, -10, 0));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[341]

This creates a new scene where physics are applied, and we set the gravity. In this
case we set the gravity on the y-axis to be -10. In other words, objects fall straight
down. You can set, or change at runtime, the gravity for the various axes to any
value you see fit, and the scene will respond accordingly.

Before we can start simulating the physics in the scene we need to add some objects.
For this we can use the normal way Three.js specifies objects, but we have to wrap
them inside a specific Physijs object.

var stoneGeom = new THREE.CubeGeometry(0.6,6,2);
var stone = new Physijs.BoxMesh(stoneGeom,
 new THREE.MeshPhongMaterial({color: 0xff0000}));
scene.add(stone);

In this example we create a simple CubeGeometry. Instead of creating a THREE.Mesh
object we create a Physijs.BoxMesh object. This BoxMesh object tells Physijs to treat
the geometry as a box when simulating and detecting collisions. Physijs provides a
number of meshes you can use for various shapes. More on this later in this chapter.

Now that the BoxMesh object has been added to the scene we've got all the
ingredients for the first Physijs scene. All that is left to do is tell Phyijs.js to simulate
the physics and update the position and rotation of the objects in our scene. We can
do this by calling the simulate method on the scene we just created. So for this we
change our basic render loop to this:

render = function() {
 requestAnimationFrame(render);
 renderer.render(scene, camera);
 scene.simulate();
}

And with that final step, we've got our basic setup for a Physijs scene. If we run this
example, though, we wouldn't see much. We would just see a single cube in the
middle of the screen, which starts falling down as soon as the scene renders. So let's
look at an example, which is a bit more complex, where we'll simulate domino stones
falling down.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics to Your Scene with Physijs

[342]

For this example we're going to create the following scene:

If you open this example, 01-basic-scene.html in your browser you'll see a set
of domino stones that start falling down as soon as the scene is loaded. The first
one will tip over the second one, and so on. The complete physics of this scene is
managed by Physijs. The only thing we did to start this animation is tip over the first
domino. Creating this scene is actually very easy and only takes a couple of steps:

1. Define a Physijs scene.
2. Define the ground area that holds the stone.
3. Place the stones.
4. Tip over the first stone.

Let's skip this first step, since we've already seen how to do this, and go directly to
the second part where we define the ground. This ground shape is constructed out of
a couple of cubes that are grouped together:

function createGround() {
 var ground_material = Physijs.createMaterial(
 new THREE.MeshPhongMaterial({ map: THREE.ImageUtils.loadTexture(
 '../assets/textures/general/wood-2.jpg')}),0.9,0.3);

 var ground = new Physijs.BoxMesh(

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[343]

 new THREE.CubeGeometry(60, 1, 60), ground_material, 0);

 var borderLeft = new Physijs.BoxMesh(
 new THREE.CubeGeometry(2, 3, 60), ground_material, 0);
 borderLeft.position.x=-31;
 borderLeft.position.y=2;
 ground.add(borderLeft);

 var borderRight = new Physijs.BoxMesh(
 new THREE.CubeGeometry(2, 3, 60), ground_material, 0);
 borderRight.position.x=31;
 borderRight.position.y=2;
 ground.add(borderRight);

 var borderBottom = new Physijs.BoxMesh(
 new THREE.CubeGeometry(64, 3, 2), ground_material, 0);
 borderBottom.position.z=30;
 borderBottom.position.y=2;
 ground.add(borderBottom);

 var borderTop = new Physijs.BoxMesh(
 new THREE.CubeGeometry(64, 3, 2), ground_material, 0);
 borderTop.position.z=-30;
 borderTop.position.y=2;
 ground.add(borderTop);

 scene.add(ground);
}

This code isn't very complicated. First we create a simple cube that serves as the
ground plane, and next we add a couple of borders to prevent objects falling
off this ground plane. We add these borders to the ground object to create a
compound object. This is an object that is treated by Physijs as a single object.
More on compound objects, further in this chapter. There are a couple of other
new things in this code fragment that we'll explain in more depth in the following
sections. The first one is the ground_material that we create. We use the Physijs.
createMaterial function to create this material. This function wraps a standard
Three.js material, but allows us to set the friction and the restitution
(bounciness) properties of the material. More on this in the next section. Another
new aspect is the final parameter we add to the Physijs.BoxMesh constructor.
For all the BoxMesh objects we create we add 0 as the final parameter. With this
parameter we set the weight of the object. We do this to prevent the ground from
being subject to the gravity in the scene.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics to Your Scene with Physijs

[344]

Now that we've got the ground, we can put the dominos down. For this we create
simple Three.CubeGeometry instances that we wrap inside a BoxMesh object and
place them at a specific position on the ground mesh.

var stoneGeom = new THREE.CubeGeometry(0.6,6,2);
var stone = new Physijs.BoxMesh(stoneGeom, Physijs.createMaterial(new
THREE.MeshPhongMaterial(
 {
 color: scale(Math.random()).hex(),
 transparent:true, opacity:0.8
 })));
stone.position=point.clone();
stone.lookAt(scene.position);
stone.__dirtyRotation = true;
stone.position.y=3.5;
scene.add(stone);

We don't show the code where the position of each domino is calculated (see the
source code of the example for this), this code just shows how the dominos are
positioned. What you can see here is that we once again create a BoxMesh object
that wraps a CubeGeometry. To make sure the dominos are aligned correctly we use
the lookAt function to set their correct rotation. If we don't do this, they'll all face
the same way, and won't fall down. We have to make sure that after we manually
update the rotation (or the position) of a Physijs wrapped object; we have to tell
Physijs that something has changed. For the rotation we can do this with the __
dirtyRotation property and for the position we set the __dirtyPosition to true.

Now all that is left to do is tip the first domino. We do this by just setting the rotation
around the x-axis to 0.2, which tips it slightly. The gravity in the scene will do the
rest and completely tip over the first domino.

stones[0].rotation.x=0.2;
stones[0].__dirtyRotation = true;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[345]

This completes the first example that already shows a lot of features from Physijs. If
you want to play around with the gravity you can change it through the menu on
the top-right of the scene. The change to the gravity is applied when you click on the
resetScene button.

In the next section we'll have a closer look at how the Physijs material properties
affect the objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics to Your Scene with Physijs

[346]

Material properties
Let's begin with an explanation of the example. When you open up example
02-material-properties.html you'll see an empty box somewhat similar to the
previous example. This box is rotating up and down around its x-axis. In the menu
at the top right you've got a couple of sliders that can be used to change a couple
of Physijs properties. These properties apply to the cubes and to the spheres that
you can add with the addCubes and addSpheres buttons. When you click on the
addSpheres button, five spheres will be added to the scene and when you click on
the addCubes button, five cubes will be added, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[347]

This example allows you to play around with the restitution and friction
properties that you can set when you create a Physijs material. If, for example, you
set the cubeFriction all the way to 1 and add a couple of cubes, you'll see that, even
though the ground is moving, the cubes barely move. If you set the cubeFriction to
0, you'll notice the cubes shifting around as soon as the ground stops being level, as
shown in the following screenshot:

The other property that you can set in this example is the restitution property. The
restitution property defines how much of the energy that an object possesses is
restituted when it collides. In other words a high restitution creates a bouncy object,
a low restitution results in an object that stops immediately when it hits another
object. A good way to demonstrate this is by using spheres, setting the restitution to
1 and clicking on the addSpheres button a couple of times. This will create a lot of
bouncy spheres that bounce everywhere.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics to Your Scene with Physijs

[348]

Before we move on to the next section let's look at a bit of code used in this example:

box = new Physijs.SphereMesh(
 new THREE.SphereGeometry(2, 20),
 Physijs.createMaterial(
 new THREE.MeshPhongMaterial(
 {color: colorSphere, opacity: 0.8, transparent: true}),
 controls.sphereFriction, controls.sphereRestitution));

box.position.set(
 Math.random() * 50 -25,
 20 + Math.random() * 5,
 Math.random() * 50 -25);
scene.add(box);

This is the code that gets executed when we add spheres to the scene. This time we
use a different Physijs mesh: the SphereMesh. We're creating a SphereGeometry
and the best match from the set of meshes provided is, logically, the SphereMesh
(more on this in the next section). When we create this SphereMesh we pass in our
geometry and use the Physijs.createMaterial to create a Physijs specific material.
We do this, so that we can set the friction and restitution properties for this object.

So far we've seen the BoxMesh and the SphereMesh. In the next section we'll
explain and show all the types of meshes provided by Physijs that you can
use to wrap your geometries.

Basic supported shapes
Physijs provides a number of shapes you can use to wrap your geometries. In this
section we'll walk you through all the available Physijs meshes and demonstrate
these meshes through an example. Remember that all you have to do to use these
meshes is replace the THREE.Mesh constructor with one of these meshes.

The following table provides an overview of the meshes that are available in Physijs:

Name Description
Physijs.PlaneMesh This mesh can be used to create a zero-thickness plane.

You could also use a BoxMesh object for this along with a
THREE.CubeGeometry property with a low height.

Physijs.BoxMesh If you have geometries that look like a cube, use this
mesh. For instance, this is a good match for the THREE.
CubeGeometry property.

Physijs.SphereMesh For spherical shapes use this geometry. This geometry is a
good match for the THREE.SphereGeometry property.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[349]

Name Description
Physijs.CylinderMesh With the THREE.Cylinder property you can create

various cylindrical shapes. Physijs provides multiple
meshes depending on the shape of the cylinder. The
Physijs.CylinderMesh should be used for a normal
cylinder having a same top and bottom radius.

Physijs.ConeMesh If you specify the top radius as 0 and use a positive value
for the bottom radius, you can use the THREE.Cylinder
property to create a cone. If you want to apply physics to
such an object the best fit from Physijs is the ConeMesh
class.

Physijs.CapsuleMesh A capsule is just like a THREE.Cylinder property, but
with a rounded top and bottom. We'll show you how to
create a capsule in Three.js, further down in this section.

Physijs.ConvexMesh A Physijs.ConvexMesh is a rough shape you can use
for more complex objects. It creates a convex (just like the
THREE.ConvexGeometry property) to approximate the
shape of complex objects.

Physijs.ConcaveMesh While the ConvexMesh is a rough shape, a
ConcaveMesh is a more detailed representation of your
complex geometry. Note that the performance penalty of
using a ConcaveMesh is very high. Usually it is better to
either create separate geometries with their own specific
Physijs mesh, or group them together (like we do with the
floors shown in the previous examples).

Physijs.
HeightfieldMesh

This mesh is a very specialized one. With this mesh you
can create a height field from a THREE.PlaneGeometry
property. Look at example 03-shapes.html for an
example of this mesh.

We'll quickly walk you through these shapes using 03-shapes.html as a reference.
We don't explain Physijs.ConcaveMesh any further since its usage is very limited.

Before we look at the example, we'll first have a quick look at Physijs.PlaneMesh.
This mesh creates a simple plane, based on THREE.PlaneGeometry:

var plane = new Physijs.PlaneMesh(
 new THREE.PlaneGeometry(5,5,10,10),
 material
);

scene.add(plane);

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics to Your Scene with Physijs

[350]

In this function you can see that we just pass in a simple THREE.PlaneGeometry to
create this mesh. If you add this to the scene you'll notice something strange. The
mesh you just created doesn't respond to gravity. The reason is that a Physijs.
PlaneMesh object has a fixed weight of 0, so it won't respond to gravity or is moved
by collisions with other objects. Besides this mesh, all the other meshes respond to
gravity and collisions, as you'd expect.

The preceding screenshot shows example 03-shapes.html. In this example we've
created a random height field (more on that later) and have a menu on the top right,
which you can use to drop objects of various shapes. If you play around with this
example, you'll see how different shapes respond differently to the height map and
in collisions with other objects.

Let's look at the construction of some of these shapes:

new Physijs.SphereMesh(new THREE.SphereGeometry(3,20),mat);
new Physijs.BoxMesh(new THREE.CubeGeometry(4,2,6),mat);
new Physijs.CylinderMesh(new THREE.CylinderGeometry(2,2,6),mat);
new Physijs.ConeMesh(new THREE.CylinderGeometry(0,3,7,20,10),mat);

Nothing special here, we create a geometry and use the best-matching mesh from
Physijs to create the object we add to the scene. But what if we want to use the
Physijs.CapsuleMesh. Three.js doesn't contain a capsule-like geometry, so we have
to create one ourselves:

var cyl = new THREE.CylinderGeometry(2,2,6);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[351]

var top = new THREE.SphereGeometry(2);
var bot = new THREE.SphereGeometry(2);

// create normal meshes
var topMesh = new THREE.Mesh(top);
var botMesh = new THREE.Mesh(bot);
topMesh.position.y=3;
botMesh.position.y=-3;

// merge to create a capsule
THREE.GeometryUtils.merge(cyl,topMesh);
THREE.GeometryUtils.merge(cyl,botMesh);

// create a physijs capsule mesh
var capsule = new Physijs.CapsuleMesh(
 cyl,
 getMaterial()
);

A Phyijs.CapsuleMesh looks like a cylinder, but has a rounded top and bottom.
We can easily recreate this in Three.js by creating a cylinder (cyl) and two spheres
(top and bot) and merging them together using the THREE.GeometryUtils.
merge() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics to Your Scene with Physijs

[352]

Before we look at the height map let's look at the last of the shapes you can add to
this example: the Physijs.ConvexMesh. A convex is the minimal shape that wraps
all the vertices of a geometry. The resulting shape will only have angles smaller than
180 degrees. You could use this mesh for complex shapes such as a torus knot:

var convex = new Physijs.ConvexMesh(
 new THREE.TorusKnotGeometry(0.5,0.3,64,8,2,3,10),
 material);

In this case, for physics simulation and collisions, the convex of the torus knot will
be used. This is a very good way to apply physics and detect collisions for complex
objects, while still minimizing the performance impact.

The last mesh to discuss from Physijs is the Physijs.HeightMap.

With a height map, you can very easily create a terrain that contains bumps and
shallows. By using the Physijs.Heightmap class we make sure all the objects respond
correctly to the height differences of this terrain. Let's look at the code required for this:

var date = new Date();
var pn = new Perlin('rnd' + date.getTime());

function createHeightMap(pn) {

 var ground_material = Physijs.createMaterial(

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[353]

 new THREE.MeshLambertMaterial({
 map: THREE.ImageUtils.loadTexture(
 '../assets/textures/ground/grasslight-big.jpg')
 }),
 0.3, // high friction
 0.8 // low restitution
);

 var ground_geometry = new THREE.PlaneGeometry(120, 100, 100, 100);
 for (var i = 0; i < ground_geometry.vertices.length; i++) {
 var vertex = ground_geometry.vertices[i];
 var value = pn.noise(vertex.x / 10, vertex.y / 10, 0);
 vertex.z = value * 10;
 }
 ground_geometry.computeFaceNormals();
 ground_geometry.computeVertexNormals();

 var ground = new Physijs.HeightfieldMesh(
 ground_geometry,
 ground_material,
 0, // mass
 100,
 100
);
 ground.rotation.x = Math.PI / -2;
 ground.rotation.y = 0.4;
 ground.receiveShadow = true;

 return ground;
}

In this code fragment we take a couple of steps to create the height map that
you can see in the example. First off, we create the Physijs material and a simple
PlaneGeometry object. To create a bumpy terrain from the PlaneGeometry object,
we walk through each of the vertices of this geometry and randomly set the
z-property. For this we use a Perlin noise generator, just like we used in Chapter 10,
Loading and Working with Textures, in the section Using canvas as a bump map, to create
a bump map. We need to call computeFaceNormals and computeVertexNormals
functions to make sure the texture, lighting, and shadows are rendered correctly.
At this point we've got a PlaneGeometry object that contains the correct
height information. With this PlaneGeometry object we can create a Physijs.
HeightFieldMesh property. The last two parameters for the constructor take the
number of horizontal and vertical segments of the PlaneGeometry object and should
match the last two properties used to construct the PlaneGeometry object. Finally we
rotate the HeightFieldMesh instance to the position we want and can add it to the
scene. All other Physijs objects will now interact correctly with this height map.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics to Your Scene with Physijs

[354]

Using constraints to limit movement of
objects
So far we've seen some basic physics in action. We've seen how the various shapes
respond to gravity, friction, and restitution, and affect collisions. Physijs also
provides advanced constructs that allow you to limit the movement of your objects.
In Physijs these objects are called constraints. The following table gives an overview
of the constraints that are available in Physijs:

Constraint Description
PointConstraint This constraint allows you to fix the position of one object

to the position of another object. If one object moves, the
other will move with it, keeping the distance and orientation
between them the same.

HingeConstraint The hinge constraint allows you to limit the movement of an
object as if it were on a hinge, like a door.

SliderConstraint This constraint, as the name implies, allows you to limit the
movement of an object to a single axis. For instance, a sliding
door.

ConeTwistConstraint With this constraint you can limit the rotation and the
movement of one object to another. This constraint functions
like a ball-and-socket joint. For instance, the way your arm
moves in your shoulder socket.

DOFConstraint The degree of freedom constraint allows you to specify the
limit of movement around any of the three axes and it allows
you to set the minimum and maximum angle that is allowed.
This is the most versatile of the constraints available.

The easiest way to understand these constraints is to see them in action, and play
around with them. For this we've provided an example where all these constraints
are used together: 04-physijs-constraints.js.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[355]

Refer to the following screenshot:

Based on this example we'll walk you through four of these five constraints.
For the DOFConstraint we've created a separate example. The first one we
look at is the PointConstraint.

Using PointConstraint to limit movement
between two points
If you open the example you'll see two red spheres. These two spheres are connected
to each other using a PointConstraint object. With the menu on the top left, you can
move the sliders around. As soon as one of the sliders hits one of the red spheres, you'll
see that both of them move in the same manner, and they keep the distance between
them the same, while still complying with weight, gravity, friction, and other physics.

The PointConstraint in this example was created like this:

function createPointToPoint() {
 var obj1 = new THREE.SphereGeometry(2);
 var obj2 = new THREE.SphereGeometry(2);

 var objectOne = new

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics to Your Scene with Physijs

[356]

 Physijs.SphereMesh(obj1,Physijs.createMaterial(
 new THREE.MeshPhongMaterial({color: 0xff4444, transparent:
 true, opacity:0.7}),0,0));
 objectOne.position.z=-18; objectOne.position.x=-10;
 objectOne.position.y=2;
 scene.add(objectOne);

 var objectTwo = new
 Physijs.SphereMesh(obj2,Physijs.createMaterial(
 new THREE.MeshPhongMaterial({color: 0xff4444, transparent:
 true, opacity:0.7}),0,0));
 objectTwo.position.z=-5; objectTwo.position.x=-20;
 objectTwo.position.y=2;
 scene.add(objectTwo);

 var constraint = new Physijs.PointConstraint(objectOne,
 objectTwo, objectTwo.position);
 scene.addConstraint(constraint);
}

Here you can see that we create objects using a Physijs specific mesh
(a SphereMesh instance in this case), and add them to the scene. We use
the Physijs.PointConstraint constructor to create the constraint. This
constraint takes three parameters:

• The first two objects define which objects you want to connect to each other.
In this case we connect two spheres to one another.

• The third object defines at what position the constraint is bound. For
instance, if you bind the first object to a very large other object, you can set
this position, for instance, to the right side of that object. Usually if you just
want to connect two objects together, a good choice is to just set it to the
position of the second object.

If you don't want to fix an object to another one, but to a static position in the scene
you can omit the second parameter. In that case the first object keeps the same
distance to the position you specified, while complying with gravity and other
physics of course.

Once the constraint is created we can enable it by adding it to the scene with
the addConstraint function. As you start experimenting with constraints,
you'll likely run into some strange issues. To make debugging easier you can
pass in true to the addConstraint function. If you do this, the constraint point
and orientation is shown in the scene. This can help you get the rotation and
position of your constraint correctly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[357]

Creating door-like constraints with a
HingeConstraint
The HingeConstraint class, as the name tells you, allows you to create an object
that behaves like a hinge. It rotates around a specific axis, limiting the movement
to a specific angle. In our example the HingeConstraint object is shown with two
flippers at the center of the scene. These flippers are constrained to the small brown
cubes and can rotate around them. If you want to play around with these hinges, you
can enable them by checking the enableMotor checkbox in the hinge menu. This
will accelerate the flippers to the velocity specified in the general menu. A negative
velocity will move the hinges down and a positive velocity will move them up.

Let's look a bit closer at how we created one of these flippers.

var constraint = new Physijs.HingeConstraint(
 flipperLeft, flipperLeftPivot, flipperLeftPivot.position,
 new THREE.Vector3(0,1,0));
scene.addConstraint(constraint);
constraint.setLimits(-2.2, -0.6, 0.1, 0);

This constraint takes four parameters. Let's look at each one in a bit more detail:

Parameter Description
mesh_a The first object passed into the function is the object that is to be

constrained. In this example the first object is the white cube that serves
as the flipper. This is the object that is constrained in its movements.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics to Your Scene with Physijs

[358]

Parameter Description
mesh_b The second object defines to which object mesh_a is constrained. In

this example mesh a is constrained to the small brown cube. If we
move this mesh around, mesh_a would follow it around, still keeping
the HingeConstraint in place. You'll see that all constraints have
this option. You could, for instance, use this if you've created a car that
moves around, and want to create a constraint for opening a door. If this
second parameter is omitted the hinge will be constrained to the scene
(and never move around).

position The point where the constraint is applied to. In this case the hinge point
around which mesh_a rotates. If you've specified mesh_b, this hinge
point will move around with the position and rotation of mesh_b.

axis The axis around which the hinge should rotate. In this example we've set
the hinge horizontally (0,1,0).

Adding a HingeConstraint object to the scene, works in the same way as we've seen
with PointConstraint. You use the addConstraint method, specify the constraint
to add, and optionally add true to show the exact location and orientation of the
constraint for debug purposes. For a HingeConstraint object, however, we need to
set the properties of the constraint. We do this with the setLimits function.

This function takes the following four parameters:

Parameter Description
low This property specifies the minimum angle of motion in radians.
high This property specifies the maximum angle of motion in

radians.
bias_factor This property defines the rate with which the constraint corrects

itself after an error in position. For instance, when the hinge is
pushed out of its constraints by a different object, it will move
itself to its correct position. The higher this value, the faster it
will correct its position. Best to keep it below 0.5.

relaxation_
factor

This property defines the rate at which the velocity is changed
by the constraint. If this is set to a high value, the object will
bounce when it reaches its minimum or maximum angle of
motion.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[359]

You can change these properties at run time if you want. If you add a
HingeConstraint with these properties, you won't see much movement yet. The
mesh will only move when hit by another object, or based on gravity. This constraint,
as many others, however, can also be moved by an internal motor. This is what you
see when you check the enableMotor checkbox in the hinge submenu from our
example. The following code is used to enable this motor:

constraint.enableAngularMotor(controls.velocity,
 controls.acceleration);

This will speed up the mesh (in our case the flipper) to the specified velocity using
the provided acceleration. If we want to move the flipper the other way, we just
specify a negative velocity. If we didn't have any limits, this would cause our flipper
to rotate, as long as our motor keeps running. To disable a motor we can just call:

flipperLeftConstraint.disableMotor();

Now the mesh will slow down, based on friction, collisions, gravity, and other physics.

Limiting movement to a single axis with a
SliderConstraint
The next constraint is the SliderConstraint. With this constraint you can limit the
movement of an object to any one of its axes.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics to Your Scene with Physijs

[360]

The sliders in example 04-constraints.html can be controlled from the sliders
submenu. With the SlidersLeft button, the sliders will move to the left (their lower
limit), and with the SlidersRight button, they will move to the right (their upper
limit). Creating these constraints from code is very easy:

var constraint = new Physijs.SliderConstraint(
 sliderMesh,
 new THREE.Vector3(0, 2, 0),
 new THREE.Vector3(0, 1, 0));

scene.addConstraint(constraint);
constraint.setLimits(-10, 10, 0, 0);
constraint.setRestitution(0.1, 0.1);

As you can see from the code, this constraint takes three parameters (or four if
you want to constrain an object to another object). The following table explains
the arguments for this constraint:

Parameter Description
mesh_a The first object passed into the function is the object that is to be

constrained. In this example the first object is the green cube that serves as
the slider. This is the object that will be constrained in its movements.

mesh_b The second object defines to which object mesh_a is constrained. This is
an optional argument and omitted in this example. If omitted, the mesh
will be constrained to the scene. If it is specified, the slider will move
around when this mesh moves around or its orientation changes.

position The point where the constraint is applied to. This is especially important
when you constrain mesh_a to mesh_b.

axis The axis on which mesh_a will slide. Note that this is relative to the
orientation of mesh_b if that one is specified. In the current version of
Physijs, there seems to be a strange offset to this axis when using a linear
motor with linear limits. What works for this version is the following. If
you want to slide along:

• the x-axis: new THREE.Vector3(0,1,0)
• the y-axis: new THREE.Vector3(0,0,Math.PI/2)
• the z-axis: new THREE.Vector3(Math.PI/2,0,0)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[361]

After you've created the constraint and added it to the scene using scene.
addConstraint you can set the limits for this constraint to specify how far the slider
may slide: constraint.setLimits(-10, 10, 0, 0). You can set the following
limits on the SliderConstraint:

Parameter Description
linear_lower This property specifies the lower linear limit of the object.
linear_upper This property specifies the upper linear limit of the object.
angular_lower This property specifies the lower angular limit of the object.
angular_higher This property specifies the upper angular limit of the object.

And finally you can set the restitution (the bounce) that'll occur when you hit one these
limits. You do this with constraint.setRestitution(res_linear, res_angular),
where the first parameter sets the amount of bounce when you hit the linear limit, and
the second one sets the amount of bounce when you hit the angular limit.

Now the complete constraint has been configured and we can wait until collisions
occur that slide the object around or use a motor. For the SlideConstraint
we've got two options, we can use an angular motor to accelerate along the axis
we specified, and complying with the angular limits we set or use a linear motor
to accelerate along the axis we specified and complying with the linear limits. In
this example we've used a linear motor. For use of an angular motor look at the
DOFConstraint explained further down in this chapter.

Creating a ball joint-like constraint with the
ConeTwist Constraint
With the ConeTwistConstraint, it is possible to create a constraint where the
movement is limited to a set of angles. We can specify what the minimum and
maximum angles are from one object to the other for the x, y, and z-axis.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics to Your Scene with Physijs

[362]

The easiest way to understand the ConeTwistConstraint is by looking at the code
required to create one:

var baseMesh = new THREE.SphereGeometry(1);
var armMesh = new THREE.CubeGeometry(2, 12, 3);

var objectOne = new
 Physijs.BoxMesh(baseMesh,Physijs.createMaterial(
 new THREE.MeshPhongMaterial({color: 0x4444ff,
 transparent: true, opacity:0.7}), 0, 0), 0);
objectOne.position.z = 0;
objectOne.position.x = 20;
objectOne.position.y = 15.5;
objectOne.castShadow = true;
scene.add(objectOne);

var objectTwo = new
 Physijs.SphereMesh(armMesh,Physijs.createMaterial(
 new THREE.MeshPhongMaterial({color: 0x4444ff,
 transparent: true, opacity:0.7}), 0, 0), 10);
objectTwo.position.z = 0;
objectTwo.position.x = 20;
objectTwo.position.y = 7.5;
scene.add(objectTwo);
objectTwo.castShadow = true;

var constraint = new Physijs.ConeTwistConstraint(
 objectOne, objectTwo, objectOne.position);

scene.addConstraint(constraint);

constraint.setLimit(0.5*Math.PI, 0.5*Math.PI, 0.5*Math.PI);
constraint.setMaxMotorImpulse(1);
constraint.setMotorTarget(new THREE.Vector3(0, 0, 0));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[363]

In this piece of JavaScript, you'll probably already recognize a number of concepts
we've discussed earlier. We start with creating the objects that we connect to each
other with the constraint: objectOne (a sphere) and objectTwo (a box). We position
these objects so that objectTwo hangs below objectOne. Now we can create the
ConeTwistConstraint. The arguments this constraint takes aren't anything new
if you've already looked at the other constraints. The first parameter is the object
to constrain and the second parameter is the object to which the first object is
constrained and the last parameter is the location where the constraint is constructed
(in this case it's the point around which objectOne rotates). After adding the
constraint to the scene we can set its limits with the setLimit function. This function
takes three radian values that specify the maximum angle for each of the axes.

Just like with most of the other constraints, we can move objectOne by using the
motor provided by the constraint. For the ConeTwistConstraint object we set the
MaxMotorImpulse property (how much force the motor can apply) and we set the
target angles the motor should move objectOne to. In this example we move it to its
resting position directly below the sphere. In the example you can play around with
this example by setting this target value. The following screenshot shows the output
of the example 04-constraints.html:

The last constraint we look at is also the most versatile: the DOFConstraint.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics to Your Scene with Physijs

[364]

Creating detailed control with the
DOFConstraint
The DOFConstraint, also called the degree of freedom constraint, allows you
to exactly control an object's linear and angular movement. We'll show how to
use this constraint by creating an example where you can drive around a simple
car-like shape. This shape consists of a single rectangle that serves as the body
and four spheres that serve as the wheels. Let's start by creating the wheels:

function createWheel(position) {
 var wheel_material = Physijs.createMaterial(
 new THREE.MeshLambertMaterial({
 color: 0x444444,
 opacity: 0.9,
 transparent: true
 }),
 1.0, // high friction
 0.5 // medium restitution
);

 var wheel_geometry = new THREE.CylinderGeometry(4, 4, 2, 10);
 var wheel = new Physijs.CylinderMesh(
 wheel_geometry,
 wheel_material,
 100
);

 wheel.rotation.x = Math.PI / 2;
 wheel.castShadow = true;
 wheel.position = position;
 return wheel;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[365]

In this piece of code we just create a simple CylinderGeometry and a CylinderMesh
that can be used as the wheels for our car as shown in the following screenshot:

Next we need to create the body of the car and add everything to the scene:

var car = {};
var car_material = Physijs.createMaterial(
 new THREE.MeshLambertMaterial({
 color: 0xff4444,
 opacity: 0.9, transparent: true
 }), 0.5, 0.5
);

var geom = new THREE.CubeGeometry(15, 4, 4);
var body = new Physijs.BoxMesh(geom, car_material, 500);
body.position.set(5, 5, 5);
body.castShadow = true;
scene.add(body);

var fr = createWheel(new THREE.Vector3(0, 4, 10));

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics to Your Scene with Physijs

[366]

var fl = createWheel(new THREE.Vector3(0, 4, 0));
var rr = createWheel(new THREE.Vector3(10, 4, 10));
var rl = createWheel(new THREE.Vector3(10, 4, 0));

scene.add(fr);
scene.add(fl);
scene.add(rr);
scene.add(rl);

So far we've just created the separated components that will have to make up our
car. To tie everything together we're going to create constraints. Each wheel will be
constrained to the body object:

var frConstraint = new Physijs.DOFConstraint(fr,body,
 new THREE.Vector3(0,4,8));
scene.addConstraint(frConstraint);
var flConstraint = new Physijs.DOFConstraint (fl,body,
 new THREE.Vector3(0,4,2));
scene.addConstraint(flConstraint);
var rrConstraint = new Physijs.DOFConstraint (rr,body,
 new THREE.Vector3(10,4,8));
scene.addConstraint(rrConstraint);
var rlConstraint = new Physijs.DOFConstraint (rl,body,
 new THREE.Vector3(10,4,2));
scene.addConstraint(rlConstraint);

Each wheel (the first argument) has its own constraint and the position (the second
argument) defines where the wheel is attached to the body of the car. If we ran the
code with this configuration we'd see that the four wheels hold up the body of the
car. We need to do two more things to get the car moving: we need to set up the
constraints for the wheels (the axis along which they can move) and we need to
configure the correct motors. First we set up the constraints for the two front wheels,
what we want for these front wheels is to just be able to rotate along the z-axis so
they can power the car, and they shouldn't be allowed to move along the other axis.
We can code the constraints as follows:

frConstraint.setAngularLowerLimit({ x: 0, y: 0, z: 0 });
frConstraint.setAngularUpperLimit({ x: 0, y: 0, z: 0 });
flConstraint.setAngularLowerLimit({ x: 0, y: 0, z: 0 });
flConstraint.setAngularUpperLimit({ x: 0, y: 0, z: 0 });

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[367]

At first glance this might seem weird. By setting the lower and upper limits to the
same value, we make sure that no rotation is possible in the specified direction. This
would also mean that the wheels can't rotate around their z-axis. The reason we
specify it like this is that when you enable a motor for a specific axis, these limits are
ignored. So setting limits on the z-axis at this point doesn't have any effect for our
front wheels.

We're going to steer with our rear wheels and to make sure they don't fall over, we
need to fix the x-axis. With the following code, we fix the x-axis (set upper and lower
to 0), fix the y-axis so these wheels are already initially turned, and we disable any
limit on the z-axis, as follows:

rrConstraint.setAngularLowerLimit({ x: 0, y: 0.5, z: 0.1 });
rrConstraint.setAngularUpperLimit({ x: 0, y: 0.5, z: 0 });
rlConstraint.setAngularLowerLimit({ x: 0, y: 0.5, z: 0.1 });
rlConstraint.setAngularUpperLimit({ x: 0, y: 0.5, z: 0 });

As you can see, to disable the limits we have to set the lower limit of that specific axis
higher than the upper limit. This will allow free rotation around that axis. If we don't
set this for the z-axis these two wheels will just be dragged along. In this case they'll
turn together with the other wheels because of the friction with the ground.

All that is left to do is set up the motors for the front wheels:

flConstraint.configureAngularMotor(2, 0.1, 0, -2, 1500);
frConstraint.configureAngularMotor(2, 0.1, 0, -2, 1500);

Since there are three axes, we can create a motor for we need to specify the axis the
motor works on: 0 is for the x-axis, 1 is for the y-axis, and 2 is for the z-axis. The
second and third arguments define the angular limits for the motor. Here we once
again set the lower limit (0.1) higher than the upper limit (0) to allow free rotation.
The third argument specifies the velocity we want to reach, and the last argument
specifies the force this motor can apply. If this last one is too little, the car won't
move, if it's too high the rear wheels will lift off from the ground.

And enable them:

flConstraint.enableAngularMotor(2);
frConstraint.enableAngularMotor(2);

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Physics to Your Scene with Physijs

[368]

If you open up example 05-dof-constraint.html you can play around with
the various constraints and motors and drive the car around as shown in the
following screenshot:

Summary
In this last chapter we've explored how you can extend the basic 3D functionality
from Three.js by adding physics. For this we've used the Physijs library, which
allows you to add gravity, collisions, constraints, and much more. The most
important things to remember when working with this library are the following:

• To use Physijs you need to change the scene you instantiate and specify the
gravity you want to use. You also need to change the render loop to include
a simulate step that tells Physijs to calculate the position and rotation of all
the objects in the scene.

• Only geometries wrapped in their Physijs counterpart will be subject to the
physics. In most cases you can just change the THREE.Mesh definition with
the Physijs variant.

• You can specify how an object interacts with other objects by using
Physijs material. On this material you can set the friction for the object
and the restitution.

• Beware to use the correct Physijs mesh when creating meshes from your
geometries. Collisions are based on the Physijs mesh in combination with
the underlying geometry, not just on the geometry.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[369]

• When you've added an object to the scene, Physijs will be responsible for the
object's position and rotation. If these are modified outside of Physijs you
need to set the __dirtyRotation or __dirtyPosition properties to true.

• Avoid using ConcaveMesh when you've got complex shapes. This object is
very bad for the performance of your scene.

• Constraints are a very powerful way to add interactivity and physics to your
scene. Using constraints, however, isn't always very straightforward. You can
see the exact behavior of the constraint by providing true as an additional
parameter to the addConstraint function.

• Often the best way to get started with a constraint is by using a working
example and configuring and changing it to your liking.

That's it for this book on Three.js. In these chapters we've covered a lot of different
subjects and explored pretty much everything that Three.js has to offer. In the first
couple of chapters we explained the core concepts and ideas behind Three.js, after
that we looked at the available lights and seen how materials affect how an object is
rendered. After the basics, we explored the various geometries that Three.js has to
offer, and how you can combine geometries to create new ones.

In the second part of the book we looked at some more advanced subjects. You've
learned how to create particle systems, how to load models from external sources,
and create animations. And finally, in these last couple of chapters we've looked at
advanced textures you can use in skinning and post-processing effects that can be
applied after the scene is rendered. We end the book with this chapter on physics,
which, besides explaining how you can add physics to your Three.js scene, also
shows the active community of projects surrounding Three.js, which you can use to
add even more functionality to an already great library.

I hope you've enjoyed reading this book, and playing around with the examples, as
much as I have writing it!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
3D file format

geometry, importing from 224
3D object

rendering 19, 21
viewing 19, 21

3D text
creating 167
custom font, adding 170
rendering 170
rendering, TextGeometry used 167, 168

A
add(color) function 70
addColors(color1, color2) function 70
addConstraint function 356, 358
add() function 41, 46, 208
addPass() function 310
addScalar(s) function 70
advanced EffectComposer object

creating, MaskPass used 318-322
advanced geometry

about 153
amount property 159
bevelEnabled property 159
bevelSegments property 159
bevelSize property 159
bevelThickness property 159
ConvexGeometry 154, 155
curveSegments property 159
ExtrudeGeometry 158-160
extrudeMaterial property 160
extrudePath property 159
LatheGeometry 156, 157
material property 160

ParametricGeometry 164-167
steps property 159
TubeGeometry 160-162

advanced materials
about 110
MeshLambertMaterial 110, 111
MeshPhongMaterial 112, 113
ShaderMaterial 114-121

advanced properties, materials
about 94, 96
alphaTest 96
depthTest 96
depthWrite 96
polygonOffset 96
polygonOffsetFactor 96
polygonOffsetUnits 96

advanced shaders
about 323, 329, 330
BleachBypassShader 323
EdgeShader 323
FocusShader 324
FXAAShader 323

alignment property 202
alphaTest property 96
AmbientLight 66-69
ambient property 110, 112
ammo.js 339

URL 340
amount property 159
angle property 75, 316
animation

about 238-240
bones, used 263-266
creating, blender used 266-270
creating, by setting morphTargetInfluence

property 262, 263

www.it-ebooks.info

http://www.it-ebooks.info/

[372]

creating, external models used 266
defining, morph target used 257, 258
defining, skeletal animation used 258
loading, from collada model 270-272
loading, from MD2 model 272, 273
loading, prerequisites 261
objects, selecting 240-242
skinning, used 263-266
with MorphAnimMesh 259, 261

archive
downloading, to get source code 14
extracting, to get source code 14

arc property 144
AreaLight 66, 84-86
ASCII effect

about 33, 34
using 33, 34

aspect property 60
axes object 19, 23
axis parameter 358, 360

B
ball

bouncing 30, 31
basic lights

about 66
AmbientLight 66-69
DirectionalLight 66, 80, 82
PointLight 66, 71-74
SpotLight 66, 75-80

basic properties, materials 94, 95
ID 94
name 94
needsUpdate 95
opacity 94
overdraw 95
side 95
transparent 95
visible 95

bevelEnabled property 159, 169
bevelSegments property 159, 169
bevelSize property 159, 169
bevelThickness property 159, 169
billboarding 199
binary operation

used, for combining mesh 171-173

bitstream vera sans mono font 171
BleachBypassShader 323
blenddst property 95
blendequation property 96
Blender

about 218, 266
model, exporting from 221-223
model, loading from 221-223
Three.js exporter, installing in 219, 220
URL 218
URL, for downloading 219
used, for creating animation 266-270

blending attribute 89, 188
blending property, materials

about 94-96
blenddst 95
blendequation 96
blending 95
blendsrc 95

blending property 95, 103, 187, 201
blendsrc property 95
bloom effect

about 314
adding, BloomPass used 314, 315

BloomPass 311
kernelSize property 314
property 314
Resolution property 314
sigma property 314
Strength property 314
used, for adding bloom effect 314, 315

blurring shaders
about 323, 327, 328
HorizontalBlurShader 323
HorizontalTiltShiftShader 323
TriangleBlurShader 323
VerticalBlurShader 323
VerticalTiltShiftShader 323

bones
used, for animation 263-266

bottom property 62
BoxMesh 348
BrightnessContrastShader 323
browsers, Three.js

running on 9
bump map 301

about 282

www.it-ebooks.info

http://www.it-ebooks.info/

[373]

used, for creating wrinkles 282, 283
bumpMap property 283

C
callback function 232
camera

about 37, 245
controls 245
focusing, on specific point 62, 63
using 57

camera object 19, 22
camera, types

orthographic camera 57
perspective camera 57

canvas
rendering 299
using, as bump map 301-303
using, as texture 299-301

CanvasRenderer
HTML5 canvas, using with 188, 189

CapsuleMesh 349
castShadow property 75
center property 316
chain() function 244
children property 46
Chrome Frame

URL 9
CircleGeometry 130-132

property 131
clear() function 318
clear property 321
clone() function 50, 51, 71
closed property 162
Collada file format

about 212
loading 228, 229

collada model
about 266
animation, loading from 270-272

color attribute 89, 188
ColorCorrectionShader 323
ColorifyShader 323
color property 72, 84, 97, 122, 186, 201
components, Three.js scene

about 37
camera 37

lights 37
objects 38

ConcaveMesh 349
ConeMesh 349
ConeTwistConstraint 354

about 361, 363
used, for creating ball joint-like constraint

361, 363
constraints, Physijs

about 354, 355
ConeTwistConstraint 354, 361, 363
DOFConstraint 354, 364-367
HingeConstraint 354, 357-359
PointConstraint 354-356
SliderConstraint 354, 359-361
used, for controlling movement of

object 354, 355
controls, camera 245

FirstPersonControls 245, 250-252
FlyControls 245, 248, 249
OrbitControls 245, 252-254
PathControls 245, 254-256
RollControls 245, 250
TrackBallControls 245-248

convertGammaToLinear() function 70
convertLinearToGamma() function 70
ConvexGeometry 154, 155
ConvexMesh 349
copy(color) function 70
copyGammaToLinear(color) function 70
copyLinearToGamma(color) function 70
createParticles function 189
createParticleSystem() function 206
createSystem function 197
CTM file format 212

loading 229, 231
cube

animating 30
CubeGeometry

about 138, 139
property 138

cube object 19
curveSegments property 159, 169
custom bit shader

creating 334-336
custom effects

ShaderPass, using 323, 324

www.it-ebooks.info

http://www.it-ebooks.info/

[374]

custom font
adding, to 3D text 170

custom grayscale shader 330-334
custom shader

creating 330
custom bit shader 334-336
custom grayscale shader 330-334

CylinderGeometry
about 142, 143
property 142

CylinderMesh 349

D
dashSize property 124
dat.GUI library

about 32, 33
URL 32
using 32

debug property 162
degree of freedom constraint. See

DOFConstraint
depth property 138
depthSegments property 139
depthTest property 96, 202
depthWrite property 96, 198, 202
detail property 148
DirectionalLight

about 66, 80, 82
property 81

distance argument 88
distance property 72, 74
DOFConstraint 354

about 364-367
used, for creating detailed control 364-367

DotScreenPass 311
angle property 316
center property 316
property 316
scale property 316
using 315

draw function 189

E
easing 242
easing() function 242
EdgeShader 323

EffectComposer object
configuring 310
creating 309
render loop, updating 310, 311

emissive property 110, 112
environment map

used, for creating fake reflections 288-291
envMap property 290
exponent property 75
external models

used, for creating animation 266
ExtrudeGeometry 158-160
extrudeMaterial property 160, 169
extrudePath property 159, 169
extruding

from SVG 162-164

F
face 47
faces property 148
fake reflections

creating, environment map used 288-291
fake shadows

creating, light map used 286, 287
far property 44, 61, 62, 101
field of view. See fov
file format

supported, by Three.js 212, 213
FilmPass

about 311
grayscale property 313
noiseIntensity property 313
property 313
scanlinesCount property 313
scanlinesIntensity property 313
using, to create TV-like effect 313, 314

FirstPersonControls 245, 250-252
FlyControls 245, 248, 249
FocusShader 324
fog effect

adding, to Three.js scene 44
fog property 44, 46, 98, 114, 122, 187, 201
font property 168, 170
fov property 60
fragmentShader 115, 330
friction property 346-348

www.it-ebooks.info

http://www.it-ebooks.info/

[375]

function property 166
FXAAShader 323

G
gapSize property 124
generateSprite() function 206
geometry

about 127, 128
advanced geometry 153
functions 47-52
grouping and merging 207
importing, from 3D file format 224
importing, from MTL file format 224-227
importing, from OBJ file format 224-227
loading, from external resource 212, 213
loading, in JSON file format 213-215
property 47-52
saving, in JSON file format 213-215
three-dimensional geometry 128
two-dimensional geometry 128

geometry, grouping and merging 207
multiple meshes, merging 210, 211
objects, grouping together 208, 209

getChildByName(name) function 46
getDelta() function 246
getHex() function 70
getHexString() function 70
getHSV() function 70
getStyle() function 70
getTexture() function 192, 201
Git client

URL 13
git command line tool 13
GitHub

about 12
URL 12
used, for getting source code 13

Gosper curve
URL 123

grayscale property 313
groundColor property 84

H
Head-Up display (HUD) 199
HeightfieldMesh 349
height property 129, 138, 142, 168

heightScale property 147
heightSegments property 129, 139, 140
helvetiker font 171
HemisphereLight

about 66, 83, 84
Color property 84
groundColor property 84
intensity property 84

HingeConstraint 354
about 357, 359
parameters 357
used, for creating door-like

constraints 357, 359
holes property 134
HorizontalBlurShader 323
HorizontalTiltShiftShader 323
HTML5 canvas

particles, styling 187
using, with CanvasRenderer 188, 189
using, with WebGLRenderer class 190, 192

HTML skeleton page
creating 16-18

HueSaturationShader 323

I
IcosahedronGeometry 149
ID property 94
iewebgl

URL 9
init() function 256
installation, Three.js exporter

in Blender 219, 220
intensity property 72, 73, 84
intersect function 171, 177, 178

J
JSON file format

about 212
geometry, loading in 213-215
geometry, saving in 213-215
scene, loading 216, 217
scene, saving 216, 217

K
kernelSize property 314

www.it-ebooks.info

http://www.it-ebooks.info/

[376]

L
LatheGeometry

about 156, 157
phiLength property 157
phiStart property 157
points property 157
property 157
segments property 157

left property 61
LensFlare 66, 87-91
lerp(color, alpha) function 71
light map

about 286
used, for creating fake shadows 286, 287

lightMap property 287
lights

about 37, 66
adding 24-26
basic lights 66
special lights 66
SpotLight 75

LineBasicMaterial
about 94, 122-124
color property 122
fog property 122
LineCap property 122
LineJoin property 122
linewidth property 122
vertexColors property 122

LineCap property 122
LineDashedMaterial

about 94, 124
dashSize property 124
gapSize property 124
scale property 124

LineJoin property 122
linewidth property 122
literally library

about 300
URL 300

load function 215
loadTexture() function 192, 278
lookAt() function 23, 245, 255

M
map property 186, 190, 192, 194, 201, 283

MaskPass 311
used, for creating advanced

EffectComposer object 318-322
material property 160, 169
material property, Physijs 346-348
materials

about 93, 94
adding 24-26
advanced materials 93, 94, 110
advanced properties 94, 96
basic properties 94, 95
blending properties 94-96
simple materials 93, 94, 97

Math.tan() function 77
MD2 model 266

animation, loading from 272, 273
mesh

combining, binary operation used 171-173
functions 52-56
property 52-56
texture, applying to 278-281

mesh_a parameter 357, 360
MeshBasicMaterial 93

about 97-99
color property 97
fog property 98
shading property 97
vertexColors property 97
wireframeLinecap property 97
wireframeLinejoin property 97
wireframeLinewidth property 97
wireframe property 97

mesh_b parameter 358, 360
mesh, Physijs

about 348, 349
BoxMesh 348
CapsuleMesh 349
ConcaveMesh 349
ConeMesh 349
ConvexMesh 349
CylinderMesh 349
HeightfieldMesh 349
PlaneMesh 348
SphereMesh 348

MeshDepthMaterial
about 93, 100-102
wireframeLinewidth property 100

www.it-ebooks.info

http://www.it-ebooks.info/

[377]

wireframe property 100
MeshFaceMaterial 93, 107-109
MeshLambertMaterial

about 93, 110, 111
ambient property 110
emissive property 110

MeshNormalMaterial 93
about 104-107
shading property 106
wireframeLinewidth property 106
wireframe property 106

MeshPhongMaterial 93
about 112, 113
ambient property 112
emissive property 112
shininess property 112
specular property 112

mipmap 280
MirrorShader 323
model

exporting, from Blender 221-223
loading, from Blender 221-223

Mongoose
about 15, 16
URL, for downloading 15

morph animation 269
MorphAnimMesh

animation with 259, 261
morph target

used, for defining animation 257, 258
morphTargetInfluence property

setting, to create animation 262, 263
MTL file format 212

geometry, importing from 224-227
multiple meshes

merging, into single mesh 210, 211
multiple renderers

output, displaying 317, 318
multiply(color) function 70
multiplyScalar(s) function 70

N
name property 94
near property 44, 60, 62, 101
needsUpdate property 95, 301
noiseIntensity property 313

normal map
about 284, 285
using 284, 285

normalMap property 285
Notepad++ 11
NPM-based approach 15

O
objects

about 38
grouping together 208, 209
selecting 240-242

OBJ file format 212
geometry, importing from 224-227

onlyShadow property 75
opacity attribute 188
opacity property 94, 187, 201
openCTM 212
openEnded property 143
OpenGL Shading Language (GLSL)

about 331
URL 331

OrbitControls 245, 252-254
orthographic camera

about 57
bottom property 62
far property 62
left property 61
near property 62
property 61
right property 61
top property 62
vs, perspective camera 57-61

overdraw property 95
overrideMaterial property 46

about 45
using 45, 46

P
parameters, HingeConstraint

axis 358
mesh_a 357
mesh_b 358
position 358

parameters, PointConstraint 356

www.it-ebooks.info

http://www.it-ebooks.info/

[378]

ParametricGeometry
about 164, 166, 167
function property 166
slices property 166
stacks property 166
useTris property 166

parse method 215
ParticleBasicMaterial object

properties, setting 186, 187
ParticleCanvasMaterial

attributes, setting 188
particles

about 181-183
creating 182-185
styling, texture used 192-198
styling, with HTML5 canvas 187

particle system
about 184
creating 185-187, 204-206

passes, post processing
about 311
 BloomPass 311
DotScreenPass 311
FilmPass 311
MaskPass 311
RenderPass 311
SavePass 311
ShaderPass 311
TexturePass 311

PathControls 245, 254-256
path property 161
PDB 231
PDB file format 213

loading 231-233
proteins, displaying 231-233

Perlin noise
about 302
URL 302

perlin.noise function 303
perspective camera

about 57
aspect property 60
far property 61
fov property 60
near property 60
property 60
vs, orthographic camera 57-61

phiLength property 140, 157
phiStart property 140, 157
physics 339
Physijs

about 339
constraints 354, 355
material property 346-348
mesh 348, 349
shapes, supported 348-353
Three.js scene, creating for 340-345

PlaneGeometry
about 128-130
property 129

PlaneMesh 348
plane object 19
playAnimation function 273
PLY file format

about 213
particle system, creating 234, 235
working with 234, 235

PointConstraint
about 354
parameters 356
using 355, 356

PointLight
about 66, 71, 72, 74
color property 72
distance property 72
intensity property 72
position property 72
visible property 72

points property 157
polygonOffsetFactor property 96
polygonOffset property 96
polygonOffsetUnits property 96
PolyhedronGeometry

about 147, 148
IcosahedronGeometry 149
property 148
TetrahedronGeometry 149, 150

position parameter 358, 360
position property 52, 53, 55, 72
post processing

EffectComposer object, configuring 310
EffectComposer object, creating 309
passes 311
setting up 308

www.it-ebooks.info

http://www.it-ebooks.info/

[379]

simple passes 312, 313
p property 146
program attribute 188
property, DirectionalLight 81
protein databank. See PDB
Python-based approach 15

Q
q property 147

R
radialSegments property 144, 146
radiusBottom property 142
radius property 131, 140, 144, 146, 148, 161
radiusSegments property 162
radiusTop property 142
reflection property 291
reflectivity property 290
refraction property 291
remove() function 41, 46
render() function 29, 30, 43, 238, 311, 318
render loop

updating 310, 311
RenderPass 311
render post processing 307
renderScene() function 27
repeat wrapping 297-299
repository

reference link 13
requestAnimationFrame() method 27-30
resolution property 314
restitution property 346-348
RGBShiftShader 323
right property 61
RollControls 245, 250
rotation property 30, 52, 55

S
SavePass 311
Scalable Vector Graphics. See SVG
scaleByViewport property 202
scale property 52, 55, 124, 316
scanlinesCount property 313
scanlinesIntensity property 313
scene.add() function 23

Scene.Add() function 43
Scene.children() function 43
Scene.getChildByName() function 43
Scene.Remove() function 43
segments property 131, 157, 161
segmentsX property 142
segmentsY property 143
SepiaShader 323
setHex(value) function 69
setHSL() method 123
setHSV(h,s,v) function 70
setInterval() function 27
setInterval() method 27
setLimits function

about 358, 363
bias_factor parameter 358
high parameter 358
low parameter 358
relaxation_factor parameter 358

setMode() function 28
setRGB(r,g,b) function 70
setSize() function 22
setStyle(style) function 70
set(value) function 69
shader

about 114
advanced shaders 323
blurring shaders 323
creating, with ShaderMaterial 114-121
simple shaders 323

ShaderMaterial
about 93, 114-121
fog property 114
fragmentShader 115
shader, creating with 114-121
shading property 114
vertexColors property 114
vertexShader 115
wireframeLinewidth property 114
wireframe property 114

ShaderPass
about 311
using, for custom effects 323, 324

shadertoy
URL 330

shading property 97, 106, 114
shadowBias property 75

www.it-ebooks.info

http://www.it-ebooks.info/

[380]

shadowCameraFar property 75
shadowCameraFov property 75
shadowCameraNear property 75
shadowCameraVisible property 75
shadowDarkness property 75
shadowMapHeight property 75
shadowMapWidth property 75
shadows

adding 24-26
ShapeGeometry 132-137
shapes, Physijs 348-353
shininess property 112
side property 95, 99
sigma property 314
simple materials

about 97
combining 102, 103
LineDashedMaterial 122-124
MeshBasicMaterial 97-99
MeshDepthMaterial 97, 100-102
MeshFaceMaterial 97, 107-109
MeshNormalMaterial 97, 104-107

simple passes, post processing 312, 313
simple shaders

about 323-326
BrightnessContrastShader 323
ColorCorrectionShader 323
ColorifyShader 323
HueSaturationShader 323
MirrorShader 323
RGBShiftShader 323
SepiaShader 323
VignetteShader 323

sizeAnnutation property 187, 201
size argument 88
size property 168, 186
skeletal animation

about 269
used, for defining animation 258

skinning
used, in animation 263-266

slices property 166
SliderConstraint 354

about 359-361
axis parameter 360
limits, setting 361
mesh_a parameter 360

mesh_b parameter 360
position parameter 360
using 359-361

source code
getting 12
getting, by downloading archive 14
getting, by extracting archive 14
getting, GitHub used 13
testing 14

source code, testing
Mongoose 15, 16
NPM-based approach 15
Python-based approach 15

special lights
about 66
AreaLight 66, 84-86
HemisphereLight 66, 83, 84
LensFlare 66, 87-91
using 83

specular map 292
specular property 112, 293
SphereGeometry

about 139-141
property 140

SphereMesh 348
sphere object 19
SpotLight

about 66, 75-80
angle property 75
castShadow property 75
exponent property 75
onlyShadow property 75
shadowBias property 75
shadowCameraFar property 75
shadowCameraFov property 75
shadowCameraNear property 75
shadowCameraVisible property 75
shadowDarkness property 75
shadowMapHeight property 75
shadowMapWidth property 75
target property 75

SpotLight() method 24, 26
sprite

about 199-203
creating 199-203

stacks property 166
stencilBuffer property 321

www.it-ebooks.info

http://www.it-ebooks.info/

[381]

steps property 159, 169
STereoLithography. See STL
STL 212
STL file format 212

loading 229, 231
Strength property 314
style property 168
Sublime Text Editor 11

URL, for downloading 11
subtract function 171-176
SVG

about 162-164
extruding from 162-164

T
target property 75
TetrahedronGeometry 149, 150
texels 279
TextGeometry

bevelEnabled property 169
bevelSegments property 169
bevelSize property 169
bevelThickness property 169
curveSegments property 169
extrudeMaterial property 169
extrudePath property 169
font property 168
height property 168
material property 169
size property 168
steps property 169
style property 168
used, for rendering 3D text 167-170
weight property 168

texture
advanced usage 294
applying, to mesh 278-281
loading 278-281
repeat wrapping 297-299
used, for styling particles 192-198
using 278

texture2D() function 333
texture argument 88
TexturePass 311
thetaLength property 131, 140
thetaStart property 131, 140

ThreeBSP
about 171
intersect function 171, 177, 178
subtract function 171, 173-176
union function 171, 179
URL 171

THREE.Color() object
about 69, 70
add(color) function 70
addColors(color1, color2) function 70
addScalar(s) function 70
clone() function 71
convertGammaToLinear() function 70
convertLinearToGamma() function 70
copy(color) function 70
copyGammaToLinear(color) function 70
copyLinearToGamma(color) function 70
getHex() function 70
getHexString() function 70
getHSV() function 70
getStyle() function 70
lerp(color, alpha) function 71
multiply(color) function 70
multiplyScalar(s) function 70
setHex(value) function 69
setHSV(h,s,v) function 70
setRGB(r,g,b) function 70
setStyle(style) function 70
set(value) function 69
using 69-71

three-dimensional geometry
about 128, 137
CubeGeometry 138, 139
CylinderGeometry 142, 143
PolyhedronGeometry 147, 148
SphereGeometry 139-141
TorusGeometry 144, 145
TorusKnotGeometry 145

Three.js
about 7
animation 238-240
camera 245
features 7
file format, supported by 212, 213
geometry 127, 128
lights 65, 66
materials 93, 94

www.it-ebooks.info

http://www.it-ebooks.info/

[382]

particles 181-184
running, on browsers 9
sprite 199-203
using, requisites 11, 12
versions 18

Three.js exporter
installing, in Blender 219, 220

Three.js, requisites
Notepad++ 11
Sublime Text Editor 11
WebStorm 11

Three.js scene
animating 27
ball, bouncing 30, 31
components 37
creating 19, 21, 37, 38
creating, for Physijs 340-345
cube, animating 30
fog effect, adding 44
function 46
functionality 38-43
lights, adding 24-26
loading 216, 217
materials, adding 24-26
property 46
saving 216, 217
shadows, adding 24-26

THREE.LensFlare object
blending argument 89
color argument 89
distance argument 88
size argument 88
texture argument 88

top property 62
TorusGeometry

about 144, 145
property 144

TorusKnotGeometry
about 145
property 146

TrackBallControls 245-248
translate() function 52, 56
translateX(amount) function 52
translateY(amount) function 52
translateZ(amount) function 52
transparent property 95, 103, 187, 188
traverse() function 43, 46

TriangleBlurShader 323
TubeGeometry

about 160, 161, 162
closed property 162
debug property 162
path property 161
radius property 161
radiusSegments property 162
segments property 161

tube property 144, 146
tubularSegments property 144, 146
tweening 242
Tween.js

about 242
animating with 242-244
URL 242

two-dimensional geometry
about 128
CircleGeometry 130-132
PlaneGeometry 128-130
ShapeGeometry 132-137

typeface.js
about 170
URL 170

U
UglifyJS 18
uniforms property 314
union function 171, 179
update method 266
useScreenCoordinates property 201, 203
useTris property 166
UV mapping

about 281, 294, 296, 297
customizing 294-297

uvOffset property 201, 202
uvScale property 201, 202

V
vertexColors property 97, 114, 122, 187
vertexShader 115, 330
VerticalBlurShader 323
VerticalTiltShiftShader 323
vertices 47
vertices property 148

www.it-ebooks.info

http://www.it-ebooks.info/

[383]

video element
using, as texture 303, 304

VignetteShader 323
visible property 72, 95
VTK file format

about 213
loading 229, 231

W
waypoints property 256
WebGL

URL 330
WebGLRenderer class

about 190
HTML5 canvas, using with 190, 192

WebStorm 11
web workers

about 340
URL 340

weight property 168
width property 129, 138
widthSegments property 129, 139, 140
wireframeLinecap property 97
wireframeLinejoin property 97
wireframeLinewidth property 97, 100, 106,

114
wireframe property 97, 100, 106, 114
wrapS property 298
wrapT property 298

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Learning Three.js: The JavaScript

3D Library for WebGL

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning JavaScriptMVC
ISBN: 978-1-78216-020-5 Paperback: 124 pages

Learn to build well-structured JavaScript web
applications using JavaScriptMVC

1. Install JavaScriptMVC in three different ways,
including installing using Vagrant and Chef

2. Document your JavaScript codebase and
generate searchable API documentation

3. Test your codebase and application as well
as learning how to integrate tests with the
continuous integration tool, Jenkins

Blender 3D Basics
ISBN: 978-1-84951-690-7 Paperback: 468 pages

The complete novice's guide to 3D modeling and
animation

1. The best starter guide for complete newcomers
to 3D modeling and animation

2. Easier learning curve than any other book on
Blender

3. You will learn all the important foundation
skills ready to apply to any 3D software

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Ext JS 4 Web Application
Development Cookbook
ISBN: 978-1-84951-686-0 Paperback: 488 pages

Over 110 easy-to-follow recipes backed up with
real-life examples, walking you through basic Ext
JS features to advanced application design using
Sencha's Ext JS

1. Learn how to build Rich Internet Applications
with the latest version of the Ext JS framework
in a cookbook style

2. From creating forms to theming your
interface, you will learn the building blocks for
developing the perfect web application

3. Easy to follow recipes step through practical
and detailed examples which are all fully
backed up with code, illustrations, and tips

HTML5 Enterprise Application
Development
ISBN: 978-1-84968-568-9 Paperback: 332 pages

A step-by-step practical introduction to HTML5
through the building of a real-world application,
including common development practices

1. Learn the most useful HTML5 features by
developing a real-world application

2. Detailed solutions to most common problems
presented in an enterprise application
development

3. Discover the most up-to-date development tips,
tendencies, and trending libraries and tools

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:Creating Your First 3D Scene with Three.js
	Requirements for using Three.js
	Getting the source code
	Using Git to clone the repository
	Downloading and extracting the archive
	Testing the examples
	Python-based approach should work on most
Unix/Mac systems
	NPM-based approach if you've got Node.js installed
	Portable version of Mongoose for Mac/Windows

	Creating an HTML skeleton page
	Rendering and viewing a 3D object
	Adding materials, lights, and shadows
	Expanding your first scene with animations
	Introducing the requestAnimationFrame() method
	Animating the cube
	Bouncing the ball

	Using the dat.GUI library to make experimenting easier
	Using the ASCII effect
	Summary

	Chapter 2:Working with the Basic Components That Make Up a Three.js Scene
	Creating a scene
	Basic functionality of the scene
	Adding the fog effect to the scene
	Using the overrideMaterial property

	Working with the Geometry and Mesh objects
	The properties and functions of a geometry
	The functions and attributes for a mesh

	Using the available cameras for different uses
	The orthographic camera versus the perspective camera
	Focusing the camera on a specific point

	Summary

	Chapter 3:Working with the Different Light Sources Available in Three.js
	Exploring the lights provided by Three.js
	Learning about the basic lights
	AmbientLight – a globally applied light source
	Using the THREE.Color() object

	PointLight – the light that shines in all directions
	SpotLight – the light with a cone effect
	DirectionalLight – for a far away sun-like light source
	Using special lights for advanced lighting
	HemisphereLight
	AreaLight
	LensFlare

	Summary

	Chapter 4:Working with the Three.js Materials
	Understanding the common material properties
	Basic properties
	Blending properties
	Advanced properties

	Starting with the simple Mesh materials (basic, depth, and face)
	The MeshBasicMaterial for simple surfaces
	The MeshDepthMaterial for depth-based coloring
	Combining the materials
	The MeshNormalMaterial for normal-based colors
	The MeshFaceMaterial for assigning a material to each face

	Learning about the advanced materials
	The MeshLambertMaterial for dull, non-shiny surfaces
	The MeshPhongMaterial for shiny objects
	Creating your own shaders with the ShaderMaterial

	Using the materials for a line geometry
	The LineBasicMaterial
	The LineDashedMaterial

	Summary

	Chapter 5:Learning to Work with Geometries
	The basic geometries provided by
Three.js
	Two-dimensional geometries
	PlaneGeometry
	CircleGeometry
	ShapeGeometry

	Three-dimensional geometries
	CubeGeometry
	SphereGeometry
	CylinderGeometry
	TorusGeometry
	TorusKnotGeometry
	PolyhedronGeometry

	Summary

	Chapter 6:Using Advanced Geometries and Binary Operations
	ConvexGeometry
	LatheGeometry
	Create a geometry by extruding
	ExtrudeGeometry
	TubeGeometry
	Extrude from SVG
	ParametricGeometry

	Creating 3D text
	Rendering text
	Adding custom fonts

	Using binary operations to combine meshes
	The subtract function
	The intersect function
	The union function

	Summary

	Chapter 7:Particles and the Particle System
	Understanding particles
	Particles, the particle system, and the BasicParticleMaterial
	Styling particles with the HTML5 canvas
	Using HTML5 canvas with the CanvasRenderer class
	Using HTML5 canvas with the WebGLRenderer class

	Using textures to style particles
	Working with sprites

	Creating a particle system from an advanced geometry
	Summary

	Chapter 8:Creating and Loading Advanced Meshes and Geometries
	Geometry grouping and merging
	Grouping objects together
	Merging multiple meshes into a single mesh
	Loading geometries from external resources
	Saving and loading in Three.js JSON format
	Saving and loading a geometry
	Saving and loading a scene

	Working with Blender
	Installing the Three.js exporter in Blender
	Loading and exporting a model from Blender

	Importing from 3D file formats
	OBJ and MTL format
	Loading a collada model
	Loading STL, CTM, and VTK models
	Showing proteins from the protein databank
	Creating a particle system from a PLY model

	Summary

	Chapter 9:Animations and Moving the Camera
	Basic animations
	Simple animations
	Selecting objects
	Animating with Tween.js

	Working with the camera
	TrackballControls
	FlyControls
	RollControls
	FirstPersonControls
	OrbitControl
	PathControl

	Morphing and skeletal animation
	Animation with morph targets
	Animation with MorphAnimMesh
	Creating an animation by setting the morphTargetInfluence property

	Animation using bones and skinning

	Creating animations using external models
	Creating bones animation using Blender
	Loading an animation from a collada model
	Animation loaded from a Quake model

	Summary

	Chapter 10:Loading and Working with Textures
	Using textures in materials
	Loading a texture and applying it to mesh
	Using a bump map to create wrinkles
	Using more detailed bumps and wrinkles with a normal map
	Creating fake shadows using a light map
	Creating fake reflections using an environment map
	Specular map

	Advanced usage of textures
	Custom UV mapping
	Repeat wrapping
	Rendering to canvas and using it as a texture
	Using canvas as a texture
	Using canvas as a bump map
	Using the output from a video as a texture

	Summary

	Chapter 11:Custom Shaders and Render Post Processing
	Setting up the post processing
	Creating the EffectComposer object
	Configuring the EffectComposer object for post processing
	Updating the render loop

	Post processing passes
	Simple post processing passes
	Using the FilmPass to create a TV-like effect
	Adding a bloom effect to the scene with the BloomPass
	Outputting the scene as a set of dots with the DotScreenPass
	Showing the output of multiple renderers on the same screen

	Advanced EffectComposer flows by using masks
	Using the ShaderPass for custom effects
	Simple shaders
	Blurring shaders
	Advanced shaders

	Creating custom post processing shaders
	Custom grayscale shader
	Creating a custom bit shader

	Summary

	Chapter 12:Adding Physics to Your Scene with Physijs
	Creating a basic Three.js scene ready for Physijs
	Material properties
	Basic supported shapes
	Using constraints to limit movement of objects
	Using PointConstraint to limit movement between two points
	Creating door-like constraints with a HingeConstraint
	Limiting movement to a single axis with a SliderConstraint
	Creating a ball joint-like constraint with the ConeTwist Constraint
	Creating detailed control with the DOFConstraint

	Summary

	Index

