
M A N N I N G

Florian Müller
Jay Brown
Jeff Potts

FOREWORDS BY Richard J. Howarth
 John Newton

www.it-ebooks.info

http://www.it-ebooks.info/

CMIS and Apache Chemistry in Action
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CMIS and Apache
Chemistry in Action

FLORIAN MÜLLER
JAY BROWN
JEFF POTTS

M A N N I N G
SHELTER ISLAND
www.it-ebooks.info

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Karen G. Miller
20 Baldwin Road Technical proofreader: David Caruana
PO Box 261 Copyeditors: Benjamin Berg, Andy Carroll
Shelter Island, NY 11964 Proofreader: Katie Tennant
 Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 9781617291159
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13
www.it-ebooks.info

www.manning.com
http://www.it-ebooks.info/

brief contents
PART 1 UNDERSTANDING CMIS ... 1

1 ■ Introducing CMIS 3

2 ■ Exploring the CMIS domain model 19

3 ■ Creating, updating, and deleting objects with CMIS 39

4 ■ CMIS metadata: types and properties 58

5 ■ Query 83

PART 2 HANDS-ON CMIS CLIENT DEVELOPMENT. 115

6 ■ Meet your new project: The Blend 117

7 ■ The Blend: read and query functionality 150

8 ■ The Blend: create, update, and delete functionality 193

9 ■ Using other client libraries 235

10 ■ Building mobile apps with CMIS 277

PART 3 ADVANCED TOPICS . .. 313

11 ■ CMIS bindings 315

12 ■ Security and control 339

13 ■ Performance 354

14 ■ Building a CMIS server 368
v

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

contents
foreword by R.J. Howarth xv
foreword by J. Newton xviii
preface xxi
acknowledgments xxiii
about this book xxv
about the authors xxvii
about the cover illustration xxix

PART 1 UNDERSTANDING CMIS.................................... 1

1 Introducing CMIS 3
1.1 What is CMIS? 3

About the specification 6 ■ What does CMIS do? 6
Where is CMIS being adopted? 8

1.2 Setting up a CMIS test environment 9
Requirements 10 ■ Installing the OpenCMIS InMemory
Repository web application 10 ■ Installing the CMIS
Workbench 11

1.3 Writing your first CMIS code using Groovy 12
Connecting to the repository 12 ■ Try it—browse the repository
using the CMIS Workbench 13 ■ Try it—run CMIS code in the
CMIS Workbench Groovy console 14
vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSviii
1.4 CMIS considerations 16
Understanding the limitations of CMIS 16 ■ Comparing CMIS to
the Java Content Repository (JCR) API 17

1.5 Summary 18

2 Exploring the CMIS domain model 19
2.1 The CMIS service 20

The role of the CMIS service 21 ■ Bindings: what does a CMIS
service look like? 21

2.2 Repository—the CMIS database 22
Repository info and capabilities 23 ■ Capabilities across different
repository vendors 25 ■ Try it—retrieve the repository info 25

2.3 Folders 26
The role of folders 27 ■ Try it—folder navigation 28

2.4 Documents 29
The role of documents 30 ■ Properties 31 ■ Try it—list a
document’s properties 34 ■ Content streams 35 ■ Try it—
retrieve a document’s content stream 36

2.5 The item object type (version 1.1) 37
2.6 Summary 38

3 Creating, updating, and deleting objects with CMIS 39
3.1 Creating objects 40

Requirements for creating an object 40 ■ Try it—create a
folder 40 ■ Things to think about when creating folders 41
Try it—create a document 42 ■ Things to think about when
creating documents 45

3.2 Updating objects 46
Try it—rename a document or a folder 47 ■ Try it—update the
content stream 47 ■ Understanding versioning 50 ■ Try it—
upload a new version of a document 52

3.3 Deleting objects 55
Requirements for deleting objects 55 ■ Try it—delete an object 55
Things to think about when deleting objects 57

3.4 Summary 57
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS ix
4 CMIS metadata: types and properties 58
4.1 What is metadata and why do we need it? 59
4.2 Metadata in CMIS 60

Type definitions are hierarchical and attributes are inherited 61
Try it—view the types and property definitions using Workbench 61

4.3 Type collections and hierarchies 63
Try it—traversing the type hierarchy 64 ■ Try it—examining
property definitions on types 66 ■ Constraints on property
definitions 69 ■ Try it—examining constraints on property
definitions 70 ■ Attribute and attribute value inheritance 72

4.4 CMIS 1.1 metadata features 72
Type mutability 72 ■ Secondary types 80

4.5 Summary 82

5 Query 83
5.1 Query: a familiar face on search 84

Prerequisite for this chapter: SQL basics 84 ■ Exercises in this
chapter and the InMemory server 84

5.2 Introduction to the CMIS Query language 85
Reviewing clauses of the SELECT statement 85 ■ Checking Query
capabilities on a service 86 ■ Try it—checking the Query
capabilities of a CMIS service 87 ■ Try it—your first CMIS
Query 87 ■ Try it—running a query from code 89 ■ Checking
query-related attributes for properties 91 ■ Search scope 92

5.3 Components of a query 93
The SELECT clause 94 ■ WHERE clause 95 ■ Ordering and
limiting query results 102 ■ Joins and determining repository
support 103

5.4 CMIS SQL extension functions 105
CONTAINS(): full-text search 105 ■ Score() 110
Navigational functions 111

5.5 Summary 113
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSx
PART 2 HANDS-ON CMIS CLIENT DEVELOPMENT 115

6 Meet your new project: The Blend 117
6.1 Understanding the business requirements and technical

approach 118
Business requirements 118 ■ Establishing the technical
design 119

6.2 Walking through the finished product 125
6.3 Setting up the development environment 131
6.4 Configuring the InMemory server 135
6.5 Taking first steps with The Blend 137

Setting up the Eclipse project 137 ■ Creating a session
factory 139 ■ Creating the servlets 140 ■ Creating the
JSPs 145 ■ Try it—testing The Blend 147

6.6 Summary 148

7 The Blend: read and query functionality 150
7.1 Building a browse page 151

Preparing the HTML part of the browse page 152 ■ Getting the
folder object 153 ■ Taking advantage of the
OperationContext 155 ■ Getting the folder children 156
Paging 158 ■ Getting the folder parent 160 ■ Assembling the
browse page 160

7.2 Building a document page 165
Preparing the HTML part of the document page 166 ■ Retrieving
documents 167 ■ Assembling the document page 174
The download servlet 177 ■ Adding the version series to the
document page 180

7.3 Building a query page 183
Ways to query: there be three 184 ■ Assembling the search
page 189 ■ Accessing and traversing relationships 191

7.4 Summary 192

8 The Blend: create, update, and delete functionality 193
8.1 Creating folders 193

Two ways to create folders 194 ■ Create folder: doPost() 196
Enumerating the creatable folder types 198
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xi
8.2 Creating documents 200
Creating doGet() and doPost() for document creation 201
Performing file uploads 203

8.3 Updating properties 208
Concurrent access and locking 210 ■ Properties from CMIS 1.1
secondary types 212

8.4 Updating and deleting content 214
Deleting content 214 ■ Replacing content 215 ■ Appending
content 216

8.5 Versioning 217
Creating a new version 218 ■ The checkIn() method 220

8.6 Copying documents 223
8.7 Moving objects 226
8.8 Deleting objects 230

Deleting documents 231 ■ Deleting folders 232

8.9 Summary 234

9 Using other client libraries 235
9.1 Working with other client libraries 236

Common client libraries 236

9.2 Coding in .NET with DotCMIS 237
Comparing DotCMIS and OpenCMIS 237 ■ Getting started with
DotCMIS 238 ■ Try it—building a web part with .NET and
CMIS to browse The Blend 243 ■ Using SharePoint as a CMIS
repository 248 ■ Connecting to SharePoint 250

9.3 Coding in Python with cmislib 251
Comparing cmislib and OpenCMIS 253 ■ Installing
cmislib 254 ■ Connecting to a CMIS repository using the
interactive shell 254 ■ Using cmislib to synchronize objects
between two CMIS repositories 260

9.4 Apache Chemistry PHP API 267
Installing the PHP Client 268 ■ About the PHP Client
library 268 ■ PHP Client architecture 268 ■ Differences
between OpenCMIS and the PHP Client 270 ■ Using PHP to
browse The Blend 272

9.5 Summary 276
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxii
10 Building mobile apps with CMIS 277
10.1 Writing mobile apps with OpenCMIS for Android 278

Android and CMIS 278 ■ Setting up an Android
environment 279 ■ Writing your first Android CMIS
application 282 ■ Try it—writing an Android application
for The Blend 286

10.2 Writing iOS apps with ObjectiveCMIS 292
What is ObjectiveCMIS? 292 ■ Comparing ObjectiveCMIS with
OpenCMIS 293 ■ Getting started with ObjectiveCMIS 294
Using ObjectiveCMIS 302 ■ Try it—writing an iOS application
to capture new tracks for The Blend 305

10.3 Summary 310

PART 3 ADVANCED TOPICS. 313

11 CMIS bindings 315
11.1 CMIS binding overview 316

The RESTful trend 316 ■ The need for JavaScript support 316
Capturing CMIS traffic for inspection 317 ■ Try it—tracing
requests from part 1 317

11.2 A close look at the three bindings 318
The Web Services binding 318 ■ The AtomPub binding 323
The Browser binding 329

11.3 CMIS schemas and schema extensions 334
XML schema 335

11.4 The OpenCMIS low-level API 336
Reasons to use the low-level API 337

11.5 Summary 337

12 Security and control 339
12.1 General security considerations 339

Cross-site scripting (XSS) attacks 340 ■ Cross-site request
forgery (CSRF) attacks 341

12.2 Authentication 341
Cookies 342 ■ AuthenticationProvider interface 342
Example of an authentication provider 343
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xiii
12.3 Authentication in web applications using the Browser
binding 344
JavaScript entry points 344 ■ Sequence: log in, nextToken, …, log
out 344 ■ Example JavaScript 346

12.4 Authorization and permissions 346
Policies 346 ■ ACLs 347 ■ Repository-specific
permissions 349 ■ Changing permissions (applyACL) 349

12.5 Retentions and holds 351
Repository-managed retentions 351 ■ Client-managed
retentions 352 ■ Holds 352

12.6 Summary 352

13 Performance 354
13.1 CMIS performance 354
13.2 Selecting the smallest data set 356
13.3 Performance notes specific to OpenCMIS and

DotCMIS 357
13.4 Caching 358

Caching static data 359 ■ Caching objects 360

13.5 Selecting the fastest binding 364
13.6 Tuning HTTP for CMIS 364

HTTP Keep-Alive 365 ■ Compression 365 ■ Authentication
and cookies 366 ■ Timeouts 366

13.7 Summary 366

14 Building a CMIS server 368
14.1 Introduction to the OpenCMIS Server Framework 368

CmisService interface 369 ■ CmisServiceFactory interface 369
The framework 370

14.2 Generating a server stub 370
Building the CMIS server WAR file 372 ■ Dissecting the CMIS
server WAR file 373

14.3 Implementing the CmisServiceFactory interface 374
CmisServiceWrapper 374 ■ CallContext 375 ■ Other
CmisServiceFactory methods 375
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxiv
14.4 Implementing the CmisService interface 376
AbstractCmisService 376 ■ Best practices for implementing the
CmisService 376

14.5 Testing the CMIS server with the OpenCMIS TCK 377
Running the TCK with the CMIS Workbench 378 ■ TCK results
breakdown 379 ■ Deeper testing 380

14.6 AtomPub differences 380
Providing ObjectInfo 380 ■ Handling create and delete
requests 381 ■ Dealing with version series 382 ■ Managing
ACLs 382

14.7 Parsing a CMIS query 382
An example of initialization and use 382 ■ Parsing
SELECT 383 ■ Parsing FROM 384 ■ Parsing WHERE 384
Parsing ORDER BY 385 ■ Query wrap-up 385

14.8 Extracting authentication information 386
CallContext 386 ■ CallContextHandler 386 ■ Web
services 387 ■ Authentication wrap-up 388

14.9 CMIS extensions 388
14.10 Supporting CMIS 1.0 and CMIS 1.1 389
14.11 Summary 390

appendix A Apache Chemistry OpenCMIS components 391
appendix B BNF 396
appendix C CMIS cheat sheet 410
appendix D Building web applications with JavaScript 412
appendix E References and resources 431

index 433
www.it-ebooks.info

http://www.it-ebooks.info/

foreword
What would the IT industry be without standards? We wouldn’t have compatible data-
bases, communications protocols, print data streams, compression and encryption
specifications, or the World Wide Web. It’s hard to debate how standards have bene-
fited the IT industry, enabling growth, collaboration in solving problems, interopera-
bility across vendors (reducing vendor lock-in) and, most importantly, a much wider
range of choices for companies. Unfortunately these benefits didn’t apply to the ECM
industry until recently.

 I first realized the need for a content management standard in 1992. I was involved
in developing an application for a large corporate client that needed to access content
stored in a popular repository. We immediately hit a problem—the content repository
didn’t have public APIs. In order to get access to the APIs, we had to negotiate a long
and complex contract with the repository vendor and agree that we wouldn’t use
those APIs to migrate content out of the repository. This made no sense to me because
we were adding significant value to the vendor’s software through this new applica-
tion. Unfortunately, this type of thinking was typical of many content management
vendors.

 There have been several attempts at creating Enterprise Content Management
standards over the last 15 years. The Open Document Management API (ODMA) in
the mid-1990s defined an interface between desktop applications and content man-
agement systems. In 1996, work began on the Web Distributed Authoring and Ver-
sioning (WebDAV) extensions for HTTP. In the early 2000s, many of the key ECM
vendors began work on a Java ECM standard called JSR 170. Although the technical
xv

www.it-ebooks.info

http://www.manning.com/
http://www.manning.com/WindowsStoreApp
http://www.manning.com/WindowsStoreApp
http://www.manning.com/WindowsStoreApp
http://www.it-ebooks.info/

FOREWORDxvi
contributions to all of these standards were excellent, none of them succeeded as a
widely supported content management standard.

 There were many reasons these standards didn’t achieve widespread success. Lack
of interoperability testing led to incompatible implementations, and the lack of com-
mitment by some vendors resulted in limited implementations and few exploiting
applications. One of the biggest challenges with JSR 170 was the difficulty in support-
ing it on top of existing repositories that didn’t have a hierarchical data model.

 In May 2005, AIIM started a standards group called Interoperable ECM (iECM).
This group brought together many vendors and users to discuss the critical need to
enable better interoperability across ECM vendors and applications. The iECM meet-
ings were well attended, and it was clear there was still a strong need for a better ECM
standard. In 2006, while attending an iECM meeting, I began talking with Cornelia
Davis of EMC on jump-starting a new standard. We believed that coming up with an
initial draft specification targeting key ECM use cases would reduce the amount of
time it would take to produce a final standard. Ethan Gur-esh from Microsoft joined
Cornelia and me, and we created the concept of Content Management Interoperabil-
ity Services (CMIS). Additional people from our companies, including David Choy
from EMC and Al Brown from IBM, became key participants. It was exciting to see how
three major competitors could work together on solving an industry problem.

 As we defined the initial CMIS specification, we knew we had to approach the prob-
lem differently than in the past. We had three key objectives in defining CMIS: (1)
ensure the standard could easily be supported on a wide range of existing content
repositories; (2) agree on the right level of function so the standard was usable for an
initial set of key ECM use cases; and (3) define a process to ensure interoperability
between vendors.

 Once the initial CMIS draft was complete, we invited Alfresco, Oracle, SAP, and
OpenText to participate. Momentum around CMIS built, and a lot of technical work
was accomplished in a short period of time. We then moved the standard into OASIS,
and twenty additional companies began actively participating in the CMIS work. In
May 2010, CMIS 1.0 became an official OASIS standard.

 I’m often asked if CMIS will become a widely used standard for Enterprise Content
Management or if it will suffer the same fate as the previous attempts. There’s no way
to know for sure, but CMIS is seeing tremendous interest and support and has very
powerful supporters, such as Apache Chemistry, that enable companies to get started
quickly. We’re seeing CMIS projects in large corporations and application vendors that
are very promising.

 There’s little debate that CMIS has the potential to increase the usage of content
management systems across all industries and applications, dramatically simplifying
and standardizing access to unstructured content. IT projects such as a customer por-
tal that requires access to multiple content sources can be implemented more quickly
with fewer dependencies on proprietary client APIs. Small software vendors who want
to build cross-vendor industry vertical solutions can now easily do so. As CMIS matures,
www.it-ebooks.info

http://www.it-ebooks.info/

FOREWORD xvii
there will be creative new uses that we haven’t yet thought about. It’s exciting to watch
the growth and evolution of CMIS.

 A lot of people were key to creating CMIS, and I want to personally thank Cornelia
Davis, Ethan Gur-esh, John Newton, Al Brown, Betsy Fanning, and Paul Fontaine.
Without these people, and many others, CMIS would never have become a successful
industry standard.

 I would also like to thank Jay Brown, Florian Müller, and Jeff Potts for writing this
book. CMIS and Apache Chemistry in Action is the most complete, authoritative work on
CMIS you will find. It contains a wealth of technical insights as well as practical hints
and tips. If you want to learn about CMIS, or start building software using CMIS, you
will want to read this book.

RICHARD J. HOWARTH

DIRECTOR, ECM SOFTWARE DEVELOPMENT

IBM SOFTWARE GROUP
www.it-ebooks.info

http://www.it-ebooks.info/

foreword
Content has never been more important. Content drives transactions, websites, and
engagement. Content is the container of information that makes data consumable,
usable, and actionable and has become the lifeblood of many businesses and business
processes. Financial service, media, government, and high-technology organizations
wouldn’t exist without electronic documents and other forms of content. Today the
Enterprise Content Management industry is worth $5 billion in software alone,
according to analyst group IDC. Businesses dealing with the overload of information
and the need to keep that information timely and accurate are willing to pay a lot to
get content under control.

 However, in the three decades since the introduction of content management, the
number of content systems has proliferated, with many similar systems sitting side by
side. Internal IT organizations and system integrators are frequently reinventing the
wheel as the CIO struggles to meet the information needs of the enterprise. Over the
last two decades, this has led enterprises large and small to spend over $50 billion on
software, hardware, and services to deliver content solutions to end users. Solutions
such as invoice capture, contract management, regulatory submissions, and respon-
sive websites, among many, many other solutions, can take months and even years to
go into effective production.

 If only we could reuse these solutions on our other content systems! If only we
could develop solutions without worrying how and where they were going to be
deployed. If only applications developers built these solutions as complete solutions
that could deploy faster and cheaper. If only we could hire the developers trained to
build these solutions.
xviii

www.it-ebooks.info

http://www.it-ebooks.info/

FOREWORD xix
 It says a lot about the content management industry, populated by some of the
most competitive firms in enterprise software, that those competitors recognized the
customer need for these solutions and to make them affordable. The same competi-
tors recognized that a content management industry built on standards and interop-
erability could be even bigger with higher value to the customer. That’s why these
software companies got together to form CMIS as an open and common way of access-
ing all their systems and to provide a consistent way of developing their applications.

 This was no easy feat. Developing standards is a laborious process and takes a lot of
persistence. The content management industry had tried several times before, in the
previous decade, with little success. In 2008, competitors set their differences aside
and decided that growing the market for content was more important than expanding
their piece of the pie. Beginning with EMC, IBM, and Microsoft, then adding Alfresco,
OpenText, Oracle, and SAP, and finally opening it to the whole world of content
through OASIS, these competitors started the collaborative project known as CMIS.
Reacting to customer requests to provide for interoperability between diverse systems
and a desire to build a stronger ecosystem, these companies wanted to work together
to make a bigger market. The pragmatic approach of the committee, led by Chair
David Choy and editors Al Brown, Ethan Gur-esh, Ryan McVeigh, and Florian Müller,
produced a specification that was implementable on a wide range of systems.

 What was even more remarkable was the way that many of those same companies
and individuals came together to jointly develop the Apache Chemistry project, an
open and standards-based software platform to speed the development of the CMIS
standard. Florian Müller, in particular, had the vision to have one common code base
that would support multiple communication protocols and could be used either by
the vendors providing a CMIS interface or applications using CMIS to access content
repositories. Initially, the OpenCMIS group in Apache Chemistry, by sharing the load
of developing common software, made sure that everyone won—vendors, developers,
and users.

 This book illustrates the breadth and possibilities of CMIS, because having open
standards and common open source code has dramatically cut the time to implemen-
tation for both providers and users of CMIS. With the original vision of CMIS not being
tied to any particular programming language or binding, this book develops example
applications using many languages and development approaches. It’s a testament not
just to the ingenuity of the authors, but also to the dedication of the men and women
who participated in CMIS and Apache Chemistry.

 I’ve always been a keen optimist about what can be accomplished with CMIS. The
timing of the arrival of CMIS and Apache Chemistry couldn’t have been better to
tackle new applications that are social, mobile, and in the cloud. By considering
RESTful interfaces, developers can use modern tools to create these applications and
have access to some of the most important information in an enterprise, whether serv-
ing an employee, a customer, or a consumer. CMIS also provides an important bridge
of new, productive, mobile and social applications to legacy systems of production
www.it-ebooks.info

http://www.it-ebooks.info/

FOREWORDxx
enterprise systems. Content will be delivered wherever it’s needed, whether it’s in a
social media conversation, presented on a mobile device, captured in a high-through-
put scanner, or annotated in a critical process application.

 I hope this book not only educates you on how to develop portable content appli-
cations, but inspires you to put content to work in new and imaginative ways.

JOHN NEWTON

CHAIRMAN AND CTO, ALFRESCO

CHAIRMAN, AIIM
www.it-ebooks.info

http://www.it-ebooks.info/

preface
It was early 2012 (Q1), long past the OASIS approval of CMIS 1.0 as a standard. Due to
my work on the OASIS CMIS Technical Committee (TC) since 2008, I had become a
sort of hub for CMIS support within IBM, but over the last year this role had begun to
snowball. By looking at my inbox each morning, it was quickly becoming clear to me
that answering internal and customer CMIS questions could end up being a full-time
job if the volume increase continued. I figured this must also be the case for many of
my TC colleagues.

 It should have been obvious to me before then, but it wasn’t. Not until a few cus-
tomers and other IBMers had asked, “When will there be a book about CMIS?” did I
realize the time had come. I needed to talk to Florian about getting a lineup of
authors together to approach this subject. One thing I knew for sure is that his partic-
ipation would be critical. Probably a third of the internal support questions I received
about Apache Chemistry had to be deferred to him already. Hands down, nobody
knew as much about OpenCMIS as he did, and he was turning out to be a very impor-
tant library to IBM and our customers.

 Florian and I had a few meetings about this, and we decided that it would be
nice to have two more authors to help shoulder the load, because this book would
have to cover a lot of ground (we were guessing more than 500 pages), and we both
had day jobs.

 First on our wish list was Jeff Potts. Not only was Jeff the author of cmislib, which
eventually became the Python library part of Apache Chemistry, but he was already an
experienced technical author. (He had single-handedly written the very successful
xxi

www.it-ebooks.info

http://www.it-ebooks.info/

Alfresco Developer Guide in 2008.) The combination of CMIS expertise with that level
of technical writing prowess meant he was a must for this writing team.

 Luckily for us, both Florian and I had worked with Jeff in the past—Florian in his
former role at Alfresco, and myself when Jeff and I coauthored a developerWorks arti-
cle about cmislib in March 2010. Even more fortunate, Jeff agreed to join us. But there
were still some gaps to be filled. So far we had IBM, Alfresco, Apache Chemistry, and
SAP on board, but that still left us with a conspicuous gap in our lineup: Microsoft...

 A month later, we had begun courting publishers and had something tentative
going with Manning, but our roster was still not complete. SharePoint is a subject that
we didn’t want to gloss over, and we still didn’t have anyone on board with a Share-
Point CMIS background. To make a long story short, through a contact at the TC
(Adam Harmetz), we ended up getting one of the engineers who was working on the
CMIS implementation for SharePoint 13 (Matt Mooty) to commit to writing the chap-
ter that would eventually cover not only SharePoint but .NET as well.

 Of course, we still had a long list of areas we wanted to cover where we were going
to need some more outside help. That’s where Jens, Jean-Marie, Richard, Gi, Jane,
and Dave came in to save us (see the acknowledgments for details and special thanks
to these very important contributors).

 And now here we are, over a year later. We hope that this book will stand as the
authoritative CMIS reference for years to come. This was a primary goal early on, and
the reason we’ve taken on a lot of extra work to cover the new 1.1 spec, even though
the ink has barely dried. In fact, as I type this, the public review has just completed
and Oasis has made version 1.1 official.

 I know its cliché, but I’ll say it anyway. This has been more work than we ever
thought, going into the project, but now that it’s almost done I know we’re all glad we
did it and we’re extremely proud of the end result. We hope that you enjoy it and,
more importantly, that it helps you succeed in whatever project you’re undertaking
with CMIS.

JAY BROWN
www.it-ebooks.info

http://www.it-ebooks.info/

acknowledgments
Apart from the efforts of the authors, the success of this book has depended on many
other people who have made this possible.

 First, thanks go to the OASIS TC, without whom there would be no CMIS in the first
place. Writing about the protocol is certainly hard, but writing the protocol in the first
place is much harder!

 Second, we thank all the individuals who gave us support in the form of content
based on their specific areas of expertise, as well as the staff at Manning Publications,
who guided and encouraged us every step of the way through the publication process.

 We thank the many reviewers of the book who helped us with their feedback
through numerous readings of the manuscript during development: Andreas Krieg,
Andrei Bautu, Bashar Nabi, Blake Girardot, Dave Brosius, Dirk Jablonski, George
Gaines, Gregor Zurowski, John W. Reeder, Jose Rodriguez, Martin Hermes, Musannif
Zahir, Nadia Noori, Robert Casazza, Ryan McVeigh, Sebastian Danninger, and Ste-
phen Rice.

 Special thanks go to David Caruana who, in his role as technical proofreader, took
on the enormous task of going though every page of the book and verifying each of
the code examples for all of the subject areas and programming languages.

 We are grateful to Richard J. Howarth at IBM and John Newton at Alfresco and AIIM
for generously contributing the forewords to the book and for endorsing our work.

 We’d also like to acknowledge Jane Doong (Software Engineer, Enterprise Content
Management, IBM) for her significant contribution of technical material for chapter 5
(“Query”) and her role in helping make sure that the information on CMIS Query that
we presented was not only current but complete and authoritative.
xxiii

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTSxxiv
 We were fortunate enough to have Matt Mooty (Software Development Engineer,
Microsoft) at our disposal for the DotCMIS section in chapter 9. And, later in that
chapter, Richard McKnight (Principal Technical Consultant, Alfresco) pitched in with
the PHP section. We’re grateful these guys were able to give their time to the project.

 Chapter 10, which covers developing mobile applications with CMIS, wouldn’t have
been possible without Jean-Marie Pascal (Mobile Engineer, Alfresco), who contrib-
uted the Android section, and Gi Lee (Technical Architect, Zia Consulting) who con-
tributed the iOS section. Thanks to you and your respective teams and companies for
the great content.

 Also, many thanks to Jens Hübel (Software Architect, SAP AG), whose contribution
of the OpenCMIS Server (among many other things, including all the content from
our JavaScript development appendix) made it possible for us to include our own
server with this book.

 Thanks to Dave Sanders (Senior Developer, Enterprise Content Management,
IBM) who tested and converted all The Blend metadata into FileNet’s XML metadata
import format. Now readers who want to run the part 2 examples on a test FileNet
server can do so just by importing the data we’ve included with the book.

 Thanks to all of you, and to the many others who provided support, both technical
and otherwise, and who would be too numerous to list here. We’d also like to thank
our families and friends, who showed patience and understanding when we had to
stay glued to our laptops for the many nights and weekends it took to complete this
project.
www.it-ebooks.info

http://www.it-ebooks.info/

about this book
The OASIS CMIS (Content Management Interoperability Services) standard is the lin-
gua franca of Enterprise Content Management (ECM) systems. This book is a compre-
hensive guide to the CMIS standard and related ECM concepts.

 The focus of this book is on hands-on experience with the standard and with the
Apache Chemistry libraries and tools. We start with providing the basics for develop-
ers, but these early chapters will also be beneficial for nondevelopers who want to
understand the standard. As you get deeper into the book, by the end of part 2, you
should be able to build an application that connects to any content repository that
supports CMIS. We provide practical code examples for Java, Groovy, Python, C#,
Objective-C, PHP, and JavaScript. And in the final chapters, we cover expert topics like
optimizing your CMIS application and building your own CMIS server.

Audience
This book was written primarily for software developers and architects who design and
build content-centric applications. You don’t have to be an ECM expert to follow
along, but some familiarity with content management systems is assumed. Basic pro-
gramming skills will be useful for the first part of this book. Parts 2 and 3 require
knowledge of a standard programming language like Java or C#, but no previous CMIS
expertise or knowledge of the Apache Chemistry libraries are required.

Roadmap
This book is divided into three parts, each with a different target audience with
respect to experience level.
xxv

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOKxxvi
 Part 1 (chapters 1–5) is for newcomers to ECM and CMIS. The examples in this sec-
tion are very simple and cover a broad spectrum of CMIS operations at a basic level.

 Part 2 (chapters 6–10) is for a more intermediate audience, who at a minimum are
comfortable with the CMIS basics covered in part 1 and have a bit more application
development background. Part 2 is where you’ll build a functioning content-centric
application with CMIS. You’ll notice a distinct increase in pace when you get into
part 2, especially by the time you get to chapter 7.

 Part 3 (chapters 11–14), as well as some of the appendix material, is for an
advanced audience, with some of the material aimed at lead developers or architects.
This part covers low-level details around the CMIS bindings, security, and perfor-
mance, and also covers how to implement your own CMIS-compliant server.

Code conventions and downloads
All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

 You can download the source code for all listings from the Manning website,
www.manning.com/CMISandApacheChemistryinAction.

Author Online
The purchase of CMIS and Apache Chemistry in Action includes free access to a private
web forum run by Manning Publications, where you can make comments about the
book, ask technical questions, and receive help from the authors and from other users.
To access the forum and subscribe to it, point your web browser to www.manning
.com/CMISandApacheChemistryinAction. This page provides information on how to
get on the forum once you are registered, what kind of help is available, and the rules
of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.
www.it-ebooks.info

www.manning.com/CMISandApacheChemistryinAction
www.manning.com/CMISandApacheChemistryinAction
www.manning.com/CMISandApacheChemistryinAction
http://www.it-ebooks.info/

about the authors
JAY BROWN

A software developer for over 25 years, Jay has been building ECM products for IBM
and FileNet since 1999. These include the design and construction of the Java and
.NET APIs for FileNet Content Manager.

 Jay started working with CMIS in 2008 when he joined the OASIS TC (Technical
Committee) and designed IBM’s first CMIS implementation for FileNet, followed by a
list of other ECM CMIS projects. He was one of the original contributors for CMIS 1.0
in addition to having authored several of the new CMIS 1.1 specification features.

 As the CMIS Evangelist for IBM, he works with other development projects inside
and outside of the company, helping teams implement the standard while ensuring
interoperability with the ever-growing CMIS ecosystem.

 Jay lives in Los Angeles, California, with his wife Cindy.

FLORIAN MÜLLER

Florian has been developing enterprise software since the late 1990s. His focus on
document management systems began when he joined OpenText in 2002. A few
years later he moved to Alfresco and is now working as an ECM Development Archi-
tect at SAP.

 In 2008, Florian joined the OASIS CMIS TC (Technical Committee) and became one
of the specification editors for CMIS 1.0 and later for CMIS 1.1. A year later he joined
the incubator project Apache Chemistry and became the project chair in 2011 when
Apache Chemistry turned into an Apache top-level project. He is one of the core devel-
opers of the Apache Chemistry subprojects OpenCMIS (Java) and DotCMIS (.NET).

 Florian lives near Heidelberg in Germany.
xxvii

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE AUTHORSxxviii
JEFF POTTS

Jeff has been working with unstructured data and document-oriented data stores for
most of his 20-year career, starting with Lotus Notes in the early 1990s, then Web Con-
tent Management and Document Management platforms like Interwoven and Docu-
mentum, until diving into the world of open source full-time in 2006. After 5 years
implementing open source software for clients and playing a big part in the Alfresco
community, Jeff joined Alfresco as their Chief Community Officer in 2011, where he’s
responsible for growing the Alfresco community through product evangelism and
developer outreach.

 Jeff starting working with CMIS in 2008 when he created a proof-of-concept to inte-
grate Drupal and Alfresco via CMIS, which eventually grew into the Drupal CMIS API
module. Then, in 2009, he created cmislib, the Python API for CMIS, which later
joined Apache Chemistry as the first non-Java contribution to the project. Since then,
Jeff has continued to maintain cmislib and to review and comment on the CMIS speci-
fication as it continues to evolve.

 Jeff lives in Dallas, Texas, with his wife, Christy, and their two children, Justin and
Caroline.
www.it-ebooks.info

http://www.it-ebooks.info/

about the cover illustration
The figure on the cover of CMIS and Apache Chemistry in Action is captioned “Le Gamin
de Paris,” which means a street urchin in Paris. The illustration is taken from a nine-
teenth-century edition of Sylvain Maréchal’s four-volume compendium of regional
dress customs published in France. Each illustration is finely drawn and colored by
hand. The rich variety of Maréchal’s collection reminds us vividly of how culturally
apart the world’s towns and regions were just 200 years ago. Isolated from each other,
people spoke different dialects and languages. Whether on city streets, in small towns,
or in the countryside, it was easy to identify where they lived and what their trade or
station in life was just by their dress.

 Dress codes have changed since then and the diversity by region and class, so rich
at the time, has faded away. It is now hard to tell apart the inhabitants of different con-
tinents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
xxix

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part 1

Understanding CMIS

This part of the book is a gentle introduction to the Content Management
Interoperability Services (CMIS) standard, as well as the tools and concepts you
need to know to work with CMIS-compliant repositories. Chapter 1 shows you
how to perform the most basic interactions possible. Chapter 2 covers the basic
building blocks of a CMIS repository: folders and documents. As the chapters
progress, you’ll learn more and more about CMIS concepts, such as versioning
(in chapter 3), types (in chapter 4), and queries (in chapter 5). By the end of
this part of the book, you’ll be ready to write your own CMIS client.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing CMIS
This chapter introduces the Content Management Interoperability Services (CMIS)
standard. After running through a high-level overview of the standard and learning
why it’s important, you’ll work on a simple hands-on example. By the end of the
chapter, you’ll have a reference server implementation running on your local
machine and you’ll know how to use Groovy to work with objects stored in a CMIS
server by using a handy tool from Apache Chemistry called CMIS Workbench.

1.1 What is CMIS?
We’re willing to bet that at some point in your career you’ve written more than a
few applications that used a relational database for data persistence. And we’ll fur-
ther wager that if any of those were written after, say, 1992, you probably weren’t
too concerned with which relational database your application was using. Sure, you

This chapter covers
 Presenting the CMIS standard

 Setting up your development environment

 Taking your first CMIS steps using Groovy and the CMIS
Workbench

 Understanding possible limitations before using CMIS for
your project
3

www.it-ebooks.info

http://www.it-ebooks.info/

4 CHAPTER 1 Introducing CMIS
might have a preference, and the company using your application might have a stan-
dard database, but unless you were doing something out of the ordinary, it didn’t mat-
ter much.

 This database agnosticism on the part of developers is only possible because of the
standardization of SQL. Before that happened, applications were written for a specific
relational back end. Switching databases meant porting the code, which, at best, was a
costly exercise and, at worst, might be completely impractical. Before standardization,
developers had to write applications for a specific database, as shown in figure 1.1.

 This notion of writing applications that only work with a particular database seems
odd to modern-day developers who are used to tools like ODBC and JDBC that can
abstract away the details of a particular database implementation. But that’s the way it
was. And that’s the way it still is for many developers working in the world of content
management.

 Until recently, developers writing applications that needed to use Enterprise Con-
tent Management (ECM) systems for data persistence faced the same challenge as
those pre-SQL-standardization folks: Each ECM system had its own API. A software ven-
dor with expertise in accounts payable systems, for example, and a team of .NET devel-
opers were locked into a Microsoft-based repository. If a customer came along who
loved the vendor’s solution but didn’t want to run Microsoft, they had a tough choice
to make.

 That’s where CMIS comes in.
CMIS is a vendor-neutral, language-independent specification for working with

ECM systems (sometimes called rich content repositories or more loosely, unstructured
repositories). If you’re new to the term repository (or repo, for short), think of it as a place
where data—mostly files, in this case—lives, like a file cabinet.

Before 1992

Compatible
databases

Incompatible databases
(all others)

Compatible databases
(ANSI-92 compliant)

Incompatible databases

Application

Some DB’s proprietary
query language

Application

Standardized SQL

Some
DB

After 1992

Figure 1.1 Before SQL
standardization,
developers wrote
applications against
specific databases.
www.it-ebooks.info

http://www.it-ebooks.info/

5What is CMIS?
With CMIS, developers can create solutions that will work with multiple repositories,
as shown in figure 1.2. And customers can have less vendor lock-in and lower switch-
ing costs.

 The creation of the CMIS specification and its broad adoption is almost as signifi-
cant and game-changing to the content management industry as SQL standardization
and the adoption of that standard was to the relational database world. When enter-
prises choose repositories that are CMIS-compliant, they reap the following benefits.

 Content-centric applications, either custom built or bought off the shelf, are more
independent of the underlying repository because they can access repositories in a
standard way instead of through proprietary APIs. This reduces development costs and
lowers switching costs.

 Developers can ramp up quickly because they don’t have to learn a new API every
time they encounter a new type of repository. Once developers learn CMIS, they know
how to perform most of the fundamental operations they’ll need for a significant
number of industry-leading, CMIS-compliant repositories.

 Because CMIS is language-neutral, developers aren’t stuck with a particular plat-
form, language, or framework driven by the repository they happen to be using.
Instead, developers have the freedom to choose what makes the most sense for their
particular set of constraints.

 Enterprise applications can be more easily and cheaply integrated with content
repositories. Rather than developing expensive, one-off integrations, many enterprise
applications have CMIS connectors that allow them to store files in any CMIS-compliant
repository.

OK, you’re convinced. CMIS is kind of a big deal in the Enterprise Content Man-
agement world. Let’s talk a little bit about how the CMIS specification is defined, look
at an example of what you could use CMIS to do, and see a list of places where CMIS
exists in the wild.

Before CMIS

Compatible
repositories

Incompatible repositories
(all others)

Compatible repositories
(CMIS-compliant)

Incompatible repositories

Application

Some repository’s proprietary
query language

Application

Some
repo

Some
repo

After CMIS

Figure 1.2 CMIS
standardizes the way
applications work with
rich content
repositories in much the
same way SQL did for
relational databases.
www.it-ebooks.info

http://www.it-ebooks.info/

6 CHAPTER 1 Introducing CMIS
1.1.1 About the specification

CMIS is a standard, and the explanation of the standard is called a specification. The
CMIS specification describes the data model, services, and bindings (how a specific
wire protocol is hooked up to the services) that all CMIS-compliant servers must sup-
port. You’ll become intimately familiar with the data model, services, and bindings as
you work through the rest of this book.

 The CMIS specification is maintained using a collaborative, open process managed
by the Organization for the Advancement of Structured Information Standards
(OASIS). According to its website (www.oasis-open.org), “OASIS is a non-profit consor-
tium that drives the development, convergence, and adoption of open standards for
the global information society.” Using an organization like OASIS to manage the CMIS
specification ensures that anyone who’s interested can get involved in the specifica-
tion, either as an observer or as an active voting member.

 The group of people who work on the specification is called the Technical Committee
or TC, for short. What’s great is that the CMIS TC isn’t made up of only one or two
companies or individuals but is composed of more than 100 people from a wide range
of backgrounds and industries, including representation from the who’s who of con-
tent management vendors, large and small.

1.1.2 What does CMIS do?

OK, so CMIS is an open standard for working with content repositories. But what does
it do? Well, the standard doesn’t do anything. To make it interesting, you need an
implementation. More specifically, you need a CMIS-compliant server. When a content
repository is CMIS-compliant, that means that it provides a set of standard services for
working with the objects in that repository. You’ll explore each of those services in the
coming chapters, but the set includes things like creating documents and folders,
searching for objects using queries, navigating a repository, setting permissions, and
creating new versions of documents.

 Let’s discuss a real-world example. Suppose you work for a company whose content
lives in three different repositories: SharePoint, FileNet, and Alfresco. The sales team
comes to you and asks for a system that will build PowerPoint presentations on the fly
by pulling data from each of these repositories. The PowerPoint presentations need to
be based on a template that resides in SharePoint and will include, among other
things, images of the last three invoices. The invoice images reside in FileNet. The
final PowerPoint file is stored in Alfresco and accessed by the sales team using their
tablets. A high-level overview of this application is shown in figure 1.3.

 Before CMIS, your system would have to use at least three different APIs to make
this happen. With CMIS, your system can use a single API to talk to each of the three
repositories, including the mobile application.
www.it-ebooks.info

http://www.it-ebooks.info/

7What is CMIS?
API call
(.NET)

Template Invoice images

Presentation builder application (Python)

Customer
presentation

API call
(SOAP)

API call
(REST)

API call
(C/Java)

Presentation builder
mobile app

SharePoint FileNet Alfresco

Figure 1.3 Most companies store
content in multiple ECM repositories.
Content-centric applications either
have to use multiple disparate APIs, or
take advantage of CMIS’s ability to
use each repository in a standard way.

Three different ECM systems in the same organization?
You may be wondering how real-world this example is—three ECM systems in the
same organization? In fact, it happens quite often. According to AIIM, the Association
for Information and Image Management, which is a major ECM industry organization,
“72% of larger organizations have three or more ECM, Document Management, or
Records Management systems” and “25% have five or more” (“State of the ECM
Industry,” AIIM, 2011).

How does a company find itself in this situation? It happens for many reasons. Some-
times these systems start out as departmental solutions. In large organizations
where there may not be an enterprise-wide ECM strategy, multiple departments
may—knowingly or unknowingly—implement different systems because they feel
their requirements are unique, they have timelines that don’t allow for coordination
with other departments, or any number of other reasons.

Similarly, companies often bring in multiple systems because they may fill niche
requirements (like digital asset management or records management) and one ven-
dor may be perceived as offering a better fit for those highly specific requirements.
But ECM vendors, particularly large ones, often use their niche solution as a foot in
the door—it’s a common strategy for ECM vendors with “suites” of products to sub-
sequently expand their footprint from their original niche solution to other product
offerings.

As each department or niche implementation sees success, the rollouts broaden
until what once were small, self-contained solutions may grow to house critical con-
tent for entire divisions. Once each ECM system has gotten so big, the business own-
ers are reluctant to consolidate because the risk may not justify the benefit. After all,
the business owners are happy—their requirements are being met.

As a result, it’s common to walk into a company with many different ECM systems.
If this is a problem you deal with, we hope the techniques you learn in this book will
save you time, money, and frustration.
www.it-ebooks.info

http://www.it-ebooks.info/

8 CHAPTER 1 Introducing CMIS
1.1.3 Where is CMIS being adopted?

Standards that no one implements aren’t useful. So far, CMIS has avoided this fate.
Thanks to the early involvement of a number of large ECM vendors in developing the
specification, and the specification’s language neutrality, CMIS enjoys broad adoption.
If you’re currently using an ECM repository that’s updated to a fairly recent version, it’s
likely to be CMIS-compliant. Table 1.1 shows a list of common ECM vendors or open
source projects and when they started to support CMIS. This list is only a subset of the
CMIS-compliant servers available at the time of this writing. The CMIS page on Wikipe-
dia (http://en.wikipedia.org/wiki/Content_Management_Interoperability_Services)
contains a more exhaustive list. If you don’t see your favorite content server in the list,
ask your vendor.

As the previous table illustrates, a variety of CMIS-compliant servers are available. CMIS
gives you a single API that will work across all of these servers.

Table 1.1 Selection of ECM vendors, or open source projects, and their support for CMIS

Vendor Product
Release that first provided

CMIS 1.0 support

Alfresco Software Alfresco 3.3

Alfresco Software Alfresco Cloud March 2012

Apache Chemistry InMemory Repository 0.1

Apache Chemistry FileShare Repository 0.1

EMC Documentum 6.7

HP Autonomy Interwoven Worksite 8.5

IBM FileNet Content Manager 5.0

IBM Content Manager 8.4.3

IBM Content Manager On Demand 9.0

KnowledgeTree KnowledgeTree 3.7

Magnolia CMS 4.5

Microsoft SharePoint Server 2010

Nuxeo Platform 5.5

OpenText OpenText ECM ECM Suite 2010

SAP SAP NetWeaver Cloud Document Service July 2012
www.it-ebooks.info

http://en.wikipedia.org/wiki/Content_Management_Interoperability_Services
http://www.it-ebooks.info/

9Setting up a CMIS test environment
1.2 Setting up a CMIS test environment
Alright, time to roll up your sleeves and set up a working CMIS development environ-
ment that you can take advantage of as you work through the rest of this book.

 We’ll give you a proper introduction to Apache Chemistry in part 2 of the book.
For now, it’s important to know that Apache Chemistry is a project at the Apache Soft-
ware Foundation that groups together a number of CMIS-related subprojects, includ-
ing client libraries, server frameworks, and development tools. It’s the de facto
standard reference implementation of the CMIS specification. One of the Apache
Chemistry subprojects is called OpenCMIS, and it’s made up of multiple components.
For the rest of this chapter, you’ll use two of those components: the OpenCMIS
InMemory Repository and the CMIS Workbench.

 The OpenCMIS InMemory Repository, as the name suggests, is a CMIS-compliant
repository that runs entirely in memory. It’s limited in what it can do, but it’ll serve
our needs quite nicely.

 The CMIS Workbench is a Java Swing application that we’ll use as a CMIS client to
work with objects in the CMIS server. The CMIS Workbench was created using the
OpenCMIS API and is typically used by developers who want a view into a CMIS reposi-
tory that is based purely on the CMIS specification. For example, suppose you’re work-
ing with Microsoft SharePoint, which has a variety of
ways to create, query, update, and delete content that
resides within it, and you want to integrate your
application with SharePoint using CMIS. You could
use the CMIS Workbench to test some queries or
inspect the data model. If you want to know if you
can do something purely through CMIS, one test is to
try to do it through the CMIS Workbench. If the CMIS
Workbench can do it, you know you’ll be able to do it
as part of your integration.

 One of the key features of the CMIS Workbench,
from both a “developer utility” perspective and a
“let’s learn about CMIS” perspective, is its interactive
Groovy console. The Groovy console is perfect for
taking your first steps with CMIS.

 When you’re finished setting up your environ-
ment, it’ll look like figure 1.4.

 We’ve made it easy to set up your local CMIS
development environment. Everything you need is in
the zip file that accompanies this book (see appendix
E for links to resources). Let’s unzip the components
you’ll need for the rest of part 1.

OpenCMIS
Workbench

Apache Tomcat Server

Desktop

Your computer

HTTP

OpenCMIS
InMemory

Repo

Figure 1.4 Your local CMIS
development setup includes two
components: the CMIS Workbench
and the OpenCMIS InMemory
Repository. This is all you’ll need for
the examples in part 1 of this book.
www.it-ebooks.info

http://www.it-ebooks.info/

10 CHAPTER 1 Introducing CMIS
1.2.1 Requirements

For the rest of part 1, all you need is the CMIS Workbench and the OpenCMIS
InMemory Repository. These components both need a JDK (version 1.6 or higher will
do). Other than that, everything you need is in the zip.

 Before continuing, find a place to unzip the archive that accompanies this book.
We’ll call it $BOOK_HOME. Within $BOOK_HOME, create two directories: server and
workbench.

1.2.2 Installing the OpenCMIS InMemory Repository web application

Let’s install and start up the OpenCMIS InMemory Repository:

1 Change into the $BOOK_HOME/server directory and unzip inmemory-cmis-
server-pack.zip into the directory.

2 Run ./run.sh or run.bat, depending on your platform of choice.

This will start up InMemory Repository on your machine, and it will listen for connec-
tions on port 8081. If you’re already running something on port 8081, edit run.sh (or
run.bat) and change the port number. All of the directions in the book will assume
the InMemory repository is running on port 8081.

 After the server starts up, you should be able to point your browser to http://
localhost:8081/inmemory and see something that looks like figure 1.5.

 Now you have a working CMIS server running on your machine. The CMIS server
has some test data in it, but in order to work with it, you need a CMIS client. In part 1,
you’ll use a CMIS client that’s already been built. It’s a Java Swing desktop application
called CMIS Workbench. Setting it up is the subject of the next section.

Downloading and building your own CMIS tools
To save you time and make the setup easier, we’ve taken distributions from the
Apache Chemistry project and packaged them together with some sample configura-
tion and data that will be used throughout the book. When you’re ready to learn how
to download out-of-the-box versions of these components, or you want to know how
to build them from source, or you want to get the latest and greatest release of
OpenCMIS, refer to appendix A.

Figure 1.5 Apache Chemistry OpenCMIS InMemory Repository welcome page
www.it-ebooks.info

http://www.it-ebooks.info/

11Setting up a CMIS test environment
1.2.3 Installing the CMIS Workbench

The CMIS Workbench is distributed as a standalone Java Swing application. Everything
you need to run it is in the package included with the book. To install it, follow these
steps:

1 Open a new window and switch to the $BOOK_HOME/workbench directory.
2 Unzip cmis-workbench.zip into the directory.
3 Run the appropriate batch file for your operating system. For example,

on Windows, run workbench.bat. On Mac and Unix/Linux systems,
run workbench.sh.

The Workbench will start up, and you should see an empty login dialog box, like the
one in shown in figure 1.6.

 Congratulations! You now have everything you need to explore a working CMIS
implementation.

Figure 1.6 An empty CMIS Workbench login dialog box
www.it-ebooks.info

http://www.it-ebooks.info/

12 CHAPTER 1 Introducing CMIS
1.3 Writing your first CMIS code using Groovy
Your OpenCMIS InMemory Repository is running, and so is the first CMIS client you’ll
be working with, the CMIS Workbench. It’s time to get the two to work together.

1.3.1 Connecting to the repository

To talk to the OpenCMIS InMemory Repository, you need to choose a binding and you
need to know the server’s service URL, which depends on the binding you choose, as
you can see in figure 1.7.

 The binding is the method the CMIS client will use to talk to the server. You can
also think of it as the protocol it’ll use to communicate. In CMIS version 1.0, the two
choices for binding are Atom Publishing Protocol (AtomPub) and Web Services. CMIS
version 1.1 adds a third binding called the Browser binding. We’ll go through the
binding details in chapter 11. For now, we’ll use the AtomPub binding.

 The service URL is the entry point into the server. The CMIS client will learn all it
needs to know about the server it’s talking to by invoking the service URL and inspect-
ing the response it gets back. The service URL depends on the server you’re using, the
binding you’ve chosen, and how the server is deployed. In this case, the server is
deployed to a web application under the inmemory context, so the URL will begin
with http://localhost:8081/inmemory; and the AtomPub service URL is /atom, so the
full service URL is http://localhost:8081/inmemory/atom.

Figure 1.7 To connect to the repository, you must select a binding and specify the service URL.
www.it-ebooks.info

http://www.it-ebooks.info/

13Writing your first CMIS code using Groovy
THE CMIS WORKBENCH CAN CONNECT TO ANY CMIS SERVER We’re using the
Apache Chemistry InMemory Repository throughout this book because it’s
freely available, easy to install, and compliant with the CMIS specification. But,
as the name implies, it stores all of its data in memory. That would never work
for most production scenarios. Real ECM repositories persist their data to a
more durable and scalable back end. Typically this is some combination of a
relational database and a filesystem. If you have access to an ECM repository
like Alfresco, FileNet, SharePoint, or the like, you can use the CMIS Work-
bench to work with data stored in those repositories. All you need to know is
your repository’s service URL.

1.3.2 Try it—browse the repository using the CMIS Workbench

You now know enough to be able to connect to the server. Follow these steps to use
the CMIS Workbench to connect to the server and browse the repository:

1 If the CMIS Workbench isn’t running, run it as previously discussed.
2 If the CMIS Workbench isn’t displaying the login dialog box, click Connection

in the upper-left corner.
3 Specify http://localhost:8081/inmemory/atom as the URL.
4 Take all the other defaults. Click Load Repositories.
5 The InMemory Repository only has one repository. You should see it in the

Repositories list. Click Login.

If everything is working correctly, you should see the login dialog box close and the
Workbench will display the contents of the repository, as shown in figure 1.8.

 Take a few minutes to explore the Workbench. You can’t hurt anything. Every time
you restart the InMemory Repository, it’ll revert to its original state.

Figure 1.8 Root folder of the OpenCMIS InMemory Repository
www.it-ebooks.info

http://www.it-ebooks.info/

14 CHAPTER 1 Introducing CMIS
 Here are a few things to notice as you explore:

 As you click objects in the left-hand pane, the right-hand pane updates to pro-
vide details on what’s selected.

 The right-hand pane has tabs across the top that group different sets of infor-
mation about the selected object as well as actions you can take on the selected
object.

 The items in the menu bar let you do things like change the connection details,
inspect repository information, view the types defined on the server, and open a
Groovy console. That’s where we’re headed next.

1.3.3 Try it—run CMIS code in the CMIS Workbench Groovy console

Groovy is a dynamic language that’s easy for Java programmers to learn. It can run
anywhere Java can run. It’s different from Java in a few respects, such as the fact that
semicolons are optional in most cases, closures are supported, and regular expres-
sions are natively supported.

DON’T KNOW GROOVY? NO PROBLEM! Don’t worry if you don’t know Groovy.
We picked it for the examples in part 1 of this book because it’s easy to learn,
it looks similar to Java, it doesn’t require a compiler, and the CMIS Work-
bench features a Groovy console. You’ll probably easily grok what’s going on
as you work through the examples. But if you want to dive into Groovy, you
can learn more from the Groovy home page (http://groovy.codehaus.org/)
or from Groovy in Action, Second Edition (Manning, 2013).

The best way to get a feel for Groovy is to jump right in, so let’s do that. Follow these
steps to write a Groovy script that will display the repository’s name:

1 From the CMIS Workbench, click Console, and select Main Template in the
submenu.

2 A Groovy console window will be displayed with eight or nine lines of prepopu-
lated code. Delete those lines.

3 Add the following two lines of Groovy:
def info = session.getRepositoryInfo()
println "Repository Name: " + info.getName()

4 Click the Execute Groovy Script button, which is the little document with the
green arrow.

Your code should run without a hitch. The output of the program will be displayed in
the bottom half of the Groovy console. It should look something like figure 1.9.

 Let’s look at a few important things:

 You didn’t have to import anything.
 You didn’t have to retrieve a session. It was handed to you in a variable called

session that was already defined. The session variable represents a connec-
tion to the CMIS repository for the user you provided when you launched the
www.it-ebooks.info

http://groovy.codehaus.org/
http://www.it-ebooks.info/

15Writing your first CMIS code using Groovy
Workbench. The object is an instance of org.apache.chemistry.opencmis
.client.runtime.SessionImpl.

 You could have omitted the “get” and the parenthesis from the no-argument
getters. For example, you could have said session.repositoryInfo and
info.name.

 Any time you feel you need some help with the API, you can click CMIS >
OpenCMIS Client API Javadoc, and the documentation will open in a browser
window.

 When you first click Console in the CMIS Workbench, you’ll see a list of Groovy
script templates. You the choose - Main Template - and then replace it with your
own code. When you have a chance, you might want to take a look at some of
the other sample Groovy scripts that are provided.

And that’s it. You’ve written your first CMIS code. We sense some disappointment,
though. “I don’t feel like I’ve experienced the true power of CMIS yet,” you say. OK,
overachiever. Earlier you learned that one of the beauties of CMIS is that, as a devel-
oper, once you learn CMIS you should be able to write code that works with any CMIS-
compliant repository. You’ve demonstrated your ability to use the OpenCMIS
InMemory Repository. How about an enterprise-grade repository from a completely
different vendor?

 It so happens that publicly available CMIS servers are waiting for folks like you who
are testing client libraries or exploring CMIS. One of them is run by a company called
Alfresco Software; its AtomPub service URL is http://cmis.alfresco.com/cmisatom.
Unlike the InMemory Repository, you’ll need credentials to authenticate with
Alfresco. You can use the administrator’s account, which is admin, and the password is
also admin. Fair warning: the response time will be significantly slower than what you
see with the local InMemory Repository.

Figure 1.9 Groovy console after
running code to retrieve the CMIS
server name
www.it-ebooks.info

http://cmis.alfresco.com/cmisatom
http://www.it-ebooks.info/

16 CHAPTER 1 Introducing CMIS
SAVE YOUR SCRIPT To save some typing, do a File > Save on your current
Groovy script before clicking Connect to specify the Alfresco service URL and
credentials. Then, when you open the Groovy console, you can do a File >
Open to reopen your script.

Now you know how to install a reference CMIS server and a handy CMIS client. You’ve
had a glimpse of the power of CMIS as you used the same client to talk to two different
implementations.

1.4 CMIS considerations
In the next chapter, you’ll start to dive into the CMIS specification a little more deeply.
But before doing that, let’s discuss a few of the limitations of CMIS and how it com-
pares to other content management standards. This will help you decide if CMIS
might be right for your next project.

1.4.1 Understanding the limitations of CMIS

Like any industry-wide standard, CMIS has some limitations that may affect your ability
to use it for a particular project. Whether or not these limitations affect you depends
on your specific requirements.

LIMITED IN SCOPE

Enterprise Content Management systems vary broadly in their capabilities and func-
tionality. Some of the differences are significant, such as whether or not the system
has an embedded workflow engine, and others are minor, like whether or not the sys-
tem supports access control lists (ACLs). The CMIS specification is flexible enough to
accommodate differences between implementations: A repository doesn’t have to
support ACLs and can still be CMIS-compliant, for example. Or one repository might
support “unfiled” documents, but another might require that documents always live
in a folder.

 In cases where the differences between repositories are too significant to be cov-
ered by one standard definition of a repository, CMIS omits those areas from its scope.
Workflow is one example—you won’t see anything about workflow in this book, even
though workflow is a relatively common feature of ECM systems.

 As a developer, you may be able to meet all of the requirements of your application
by staying strictly with pure CMIS API calls. But there may be times when you’ll have to
supplement what CMIS provides with calls to your ECM system’s proprietary APIs.

OBJECT MODEL IS BASED ON DOCUMENTS AND FOLDERS

In the next chapter, you’ll see that two prominent domain objects covered by the spec-
ification are cmis:document and cmis:folder. That’s because the CMIS specification
assumes a general document management use case: you’re using CMIS to manage doc-
uments (files) organized in a hierarchy of folders.
www.it-ebooks.info

http://www.it-ebooks.info/

17CMIS considerations
NO USER OR GROUP MANAGEMENT

A CMIS repository typically uses named user accounts to control who can authenticate
with the repository. But the CMIS specification provides nothing that helps you create
user accounts or organize users into groups.

 Does this mean your application can’t assign ACLs to documents and folders? No.
It means that if your application needs to create new users or modify groups of users,
CMIS isn’t going to help you to do that in a standard way. You’ll have to use your repos-
itory’s API or an LDAP directory to manage users and groups, if that’s something your
repository supports.

NO SUPPORT FOR DEFINING CONTENT TYPES UNTIL CMIS 1.1
You’ll learn about content types in chapter 4. For now, realize that content in a CMIS
repository belongs to a particular type, like document, folder, image, invoice, or web
page. It’s quite common for companies to define their own business-specific content
types by updating the repository’s data dictionary.

 The first version of the CMIS specification doesn’t provide for creating or updating
content types, even if the underlying repository supports this feature natively. This
may be a challenge if your application assumes that the types it needs are already con-
figured in the repository’s data dictionary. If they don’t already exist, you’ll have to
provide documentation or configuration scripts when you deliver your CMIS applica-
tion so that the system administrators can update the data dictionary with types to sup-
port your application.

 Luckily, this is addressed in CMIS 1.1. With CMIS 1.1, your CMIS application can
check to see if the required types have been configured, and if not, it can go ahead and
create them using code, to avoid the need for manual changes to the data dictionary.

1.4.2 Comparing CMIS to the Java Content Repository (JCR) API

If you’ve worked with content management repositories for a while, you may already
be familiar with the Java Content Repository (JCR) API, which is sometimes referred to
as Java Specification Request (JSR) 170. What’s the difference between CMIS and JCR?
Table 1.2 breaks it down.

Table 1.2 Comparing CMIS and JCR

JCR CMIS

Standards body Java Community Process OASIS

Date first ratified June 2005 April 2010

Vendor adoption Limited. Several vendors provide
JCR support in their repositories,
but Adobe is the primary driver of
the specification.

Many big-name ECM vendors
actively participate in the specifi-
cation and reference implementa-
tion, including EMC, IBM, Alfresco,
SAP, HP Autonomy Interwoven, Ora-
cle, Microsoft, and several others.
www.it-ebooks.info

http://www.it-ebooks.info/

18 CHAPTER 1 Introducing CMIS
It’s important to note that CMIS and JCR aren’t completely mutually exclusive. A given
ECM repository might be compliant with both standards, which would mean develop-
ers would be free to choose which standard to use when working with that repository.
Work has also been completed recently to bridge the two standards. You could, for
example, write CMIS-compliant code that talks to a JCR repository.

1.5 Summary
You should now have a good idea of why the CMIS specification is so important to the
ECM industry. After seeing some real-world examples of how you can apply CMIS to
make your life easier as a content-centric application developer, you’ve probably
already started thinking about some of the advantages of working with CMIS to build
your applications:

 Content-centric applications can be more independent of the underlying con-
tent repository because they can access repositories in a standard way instead of
through proprietary APIs.

 Developers can ramp up quickly because CMIS reduces the need to learn a pro-
prietary API for every repository that’s involved in an application.

 Developers have the freedom to choose what platform, language, or framework
is the best fit for their particular constraints, without worrying whether or not
it’s supported by the repository they’re working with, because CMIS is language-
neutral.

 Expensive one-off integrations don’t have to be built—applications can take
advantage of standards-based connectors to CMIS-compliant repositories.

Beyond learning the why of CMIS, you rolled up your sleeves and put CMIS to work. You
now have a working CMIS development environment based on freely available compo-
nents from the Apache Chemistry project. You’ll use this setup for the rest of the
examples in part 1.

 Now that you have a working development environment, it’s time to start learning
how to navigate a CMIS repository and what kind of objects you’ll find in a CMIS repos-
itory once you connect to it. We’ll start with two of the fundamental building blocks—
folders and documents. On to chapter 2.

Primary language Java, although work is being done
to expand support to PHP.

Language-neutral. Any language
that can speak HTTP can work with
CMIS.

Reference implementation Apache Jackrabbit Apache Chemistry

Table 1.2 Comparing CMIS and JCR (continued)

JCR CMIS
www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the
CMIS domain model
In chapter 1, you received a high-level introduction to CMIS as a specification.
Every object that lives in a CMIS repository is an instance of an object type. In this
chapter, we’ll explore the basic object types that make up the CMIS domain model
as well as some of the key concepts that bind them all together into a useful system.
Along the way, you’ll write some Java/Groovy code (using the Workbench that was
introduced in chapter 1) to illustrate key concepts.

 Although it’s a bit of a cliché, a picture is still worth a thousand words, so we’ll
start this chapter with an illustration of the object types we’ll be talking about.
Sometimes a clear image in your mind can help you organize related ideas as they
arrive. Figure 2.1 shows the interrelationships between all of the high-level object

This chapter covers
 Establishing communications with a CMIS service

 Using the features of a repository

 Navigating the folder hierarchy

 Retrieving a document with its content stream and
properties (metadata)
19

www.it-ebooks.info

http://www.it-ebooks.info/

20 CHAPTER 2 Exploring the CMIS domain model
types we’ll cover in this chapter. Ordered from the highest level and progressing
downward (left to right in the figure) are the CMIS service, the binding chosen
between the service and the CMIS client, repository, folder, and finally, document.
Refer back to this diagram as you move through the sections of this chapter to refresh
your understanding of their respective roles.

 By the time you’ve finished this chapter, you’ll have a clear picture of what the
object types in figure 2.1 are, what they do in the context of a CMIS server, and how
they relate to each other. We’ll be revisiting this diagram as we move through the indi-
vidual sections of the chapter to remind you of where you are in the big picture, but
try to remember this image as we move on to the service.

2.1 The CMIS service
Of all of the items in figure 2.1, the CMIS service is unique in that it’s not a persisted
object like all of the other items; rather, it’s a running program to service your
requests. Think of the CMIS service as an interface to all of the CMIS objects you’ll be
dealing with (see figure 2.2). If a real-world analogy helps, think of it as a concierge at
a hotel. This is probably a hotel somewhere in Europe, though, because this particular
CMIS concierge must always speak two languages, and in some cases can even speak
three. This is because CMIS servers must implement two bindings (three in CMIS 1.1).

 This section will familiarize you with the CMIS service and how it’s the key to this
whole picture.

0. .n1. .n 1

N

N

0. .n1. .n

CMIS client

0. .n

Multiple clients per
service. Each client

must choose one
of the three bindings.

A given document may be
contained in any number of
folders or it may be unfiled.
Unfiled docs (shown as the

straight line from the repository
in this figure) do not belong to
any folder. Some repositories

do not support unfiled
documents as they are

optional in the specification.

The repository must have at least
one folder, which is the root.

Repository

Document

Service

Folder

Figure 2.1 CMIS high-level object types (all of which we’ll discuss in this chapter)
www.it-ebooks.info

http://www.it-ebooks.info/

21The CMIS service
2.1.1 The role of the CMIS service

At the highest level, the CMIS service is responsible for these three functions:

 Allow a client to discover what repositories are present for this particular CMIS
service.

 Provide all the details about the capabilities of these repositories.
 For each of the repositories, publish the interfaces for the nine subservices that

are exposed for every CMIS repository (see the following note).

THE NINE SUBSERVICES OF CMIS We’ll cover all of these subservices in detail in
later chapters, but in case you can’t wait, here’s a quick list:

 Repository services (discussed in this chapter)—Example: getRepositoryInfo
 Navigation services—Example: getFolderTree
 Object services—Example: getObject
 Multifiling services—Example: addObjectToFolder
 Discovery services—Example: query
 Versioning services—Example: checkOut
 Relationship services—Example: getObjectRelationships
 Policy services—Example: applyPolicy
 ACL (access control lists) services—Example: applyACL

Don’t worry too much about these nine subservices yet, because from a client perspec-
tive they’re somewhat arbitrary groupings of the functionality. We’ll introduce you to
them gradually as we move through the basic exercises in this book. By the time
you’re done with this chapter, you’ll be familiar with the first three in the list. By the
time we’re done with part 1 of the book, you’ll have used most of them.

2.1.2 Bindings: what does a CMIS service look like?

Recall that our concierge must speak at least two languages. These two languages are
analogous to the two protocol bindings (Web Services and AtomPub) that all CMIS
servers must speak. If you’re a CMIS client, you can speak either of these languages

1. .n 11N N

CMIS client

You are here

RepositoryService

Figure 2.2 The CMIS service is an interface
to all of the CMIS repositories and the objects
that they contain.
www.it-ebooks.info

http://www.it-ebooks.info/

22 CHAPTER 2 Exploring the CMIS domain model
(bindings) and always know that the hotel desk will be able to understand you. In a
perfect world with lots of unicorns and rainbows, we’d have been able to require only
one protocol, and every possible client would be able to speak it. In that same perfect
place, our European concierge would only ever have to speak one language. But the
reality is that many different types of processes exist on many platforms that need to
talk to CMIS, and some protocols are easier for some to manage than others.

 In the case of CMIS 1.0, we have the Web Services and the RESTful AtomPub bind-
ings. What about that third language that’s sometimes used? Well, CMIS 1.1 adds a new
optional binding called the Browser binding. This optional binding or protocol is sim-
ilar to the AtomPub binding in a lot of ways, except that it’s designed to be easy to
access from JavaScript in a browser. We’ll cover more differences later in the book, but
this will suffice until we get to chapter 11, when we’ll go into greater detail about the
innards of all of the bindings. Figure 2.3 shows multiple clients talking to one CMIS
service, each using one of the CMIS 1.1 supported bindings.

 Let’s get back to the questions we were trying to answer. What does a CMIS service
look like? Regardless of the binding, it looks like a simple HTTP URL. In the case of
the Web Services binding, this URL is the address of the WSDL (Web Services Descrip-
tion Language) document for the web service. In the case of the AtomPub and
Browser bindings, it’s the address of the service document (XML or JSON). When a
client retrieves these documents, they have the keys they need to start talking to CMIS
in earnest.

2.2 Repository—the CMIS database
If you were asked to distill a CMIS repository down to its most simple role, you could
safely get away with thinking of it as a database. More specifically, it’s a database that
knows a lot about the semantics of unstructured content and even more specifically
about content management. It’s a hierarchical store of content and the metadata

Web Services
binding (SOAP)

Repository functionality exposed
through the three bindings is the same.

RESTful AtomPub
binding

Browser binding
(JSON)

1. .n1

CMIS client

CMIS client

CMIS client

RepositoryService

Figure 2.3 Three bindings expose the same
functionality for clients with different needs.
www.it-ebooks.info

http://www.it-ebooks.info/

23Repository—the CMIS database
describing not only the content itself but its organization and relationships to other
content within the same repository.

 As you can see in figure 2.4, multiple repositories can optionally be exposed by a
given CMIS service. When you connected to the repository in chapter 1, you clicked
Load Repositories and then chose the only repository presented—a repository with an
ID of A1. Behind the scenes, the server was responding to a getRepository call and
returning the list of available repositories.

 A helpful analogy to use for the repository is that of a disk drive in a typical desktop
computer. A server (which would be the CMIS service in this analogy) can host many
disk drives, just like a CMIS server can support multiple repositories. Each of these
drives may be formatted with different filesystems (different metadata, in CMIS termi-
nology), and each has its own root directory, which may optionally contain other fold-
ers and files.

2.2.1 Repository info and capabilities

In chapter 1, you connected to the repository and went straight to the root folder for
the example. Normally, however, when you first talk to a CMIS service, you may want to
know a bit about what its capabilities are so that your client code can expose the
menus and commands that match the repository.

SPECIFICATION REFERENCE: GETREPOSITORYINFO For a more formal discussion
of getRepositoryInfo, check out section 2.2.2.2, getRepositoryInfo, in the
CMIS 1.0 specification. (See appendix E for references.)

For this exercise, you’ll need to go back to the CMIS Workbench session you set up in
chapter 1. Once you’re connected, look at the buttons across the top of the applica-
tion (shown in figure 2.5).

 You’ll see at the top left that the second one is labeled Repository Info. If you click
this button, the CMIS Workbench will display the information returned for the CMIS
getRepositoryInfo call. Figure 2.6 shows this information. The ACL capabilities are
omitted here because we’ll talk about those in detail in chapter 12.

1. .n1 1N

1. .n 1

RepositoryService

Folder

You are here
Figure 2.4 The repository is where
all of the objects are stored.
www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 2 Exploring the CMIS domain model
Figure 2.5 Repository Info button in the Workbench

Figure 2.6 CMIS Repository Info display in CMIS Workbench
www.it-ebooks.info

http://www.it-ebooks.info/

25Repository—the CMIS database
As you can see in figure 2.6, this call returns a wealth of information, including the fol-
lowing:

 Information about the server vendor
 The supported CMIS version
 The ID of the root folder (very important)
 Details on support for certain navigational operations
 Details on supported filing operations
 Details on supported versioning operations
 Details on supported query functions and advanced query features

We’ll discuss all of these items in more detail in later chapters. All you need to know
for now is that this response contains everything that a client needs to start talking to a
CMIS server.

2.2.2 Capabilities across different repository vendors

As you look over the capabilities that your test InMemory server is reporting, you can
start to see how CMIS manages to smoothly communicate with so many different
repository implementations. CMIS needs to be able to accommodate repositories that
have advanced features while at the same time enabling repositories with minimal fea-
tures to play. This optional capabilities information is the most coarse-grained level of
this type of information, and you’ll see more of this throughout the specification as we
explore further in upcoming chapters.

SPEC REFERENCE: OPTIONAL CAPABILITIES For a detailed list of all of the
optional capabilities, as well as their definitions, see section 2.1.1.1 of the
CMIS 1.0 specification. (See appendix E for references.)

Say you were building a folder-browsing client and you wanted to be able to pull down
the entire folder tree hierarchy in one round trip to the server, for efficiency reasons.
Your client would then want to check to see if the repository capability getFolderTree
was supported. If so, it would have the most efficient code path, and if not, it could
degrade to iteratively crawling the hierarchy to collect the needed information.

2.2.3 Try it—retrieve the repository info

Let’s look at the code you need to get at the repository info. You’ll continue to use the
CMIS Workbench for this exercise. Your code will list the repository info and the capa-
bilities of the repository you’re connected to in the Workbench.

 In the code exercise in chapter 1, you used Groovy for the example. A nice thing
about the Groovy interpreter is that pure Java syntax is valid as well. To illustrate this,
the code in the examples for this chapter will be in Java form. Feel free to use the
form you feel more comfortable with, or switch back and forth if you like variety.
Keep in mind that the project you’ll build in part 2 of the book will be written mainly
in Java.
www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 2 Exploring the CMIS domain model
 For this exercise, return to the Groovy console window in the CMIS Workbench
and then copy this code into your code pane.

import org.apache.chemistry.opencmis.commons.*
import org.apache.chemistry.opencmis.commons.data.*
import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.client.api.*

RepositoryInfo info = session.getRepositoryInfo();
println("");
println("Abbreviated repository info:");
println(" Name: " + info.getName());
println(" ID: " + info.getId());
println(" Product name: " + info.getProductName());
println(" Product version: " + info.getProductVersion());
println(" Version supported: " + info.getCmisVersionSupported());

RepositoryCapabilities caps =
session.getRepositoryInfo().getCapabilities();

println("");
println("Brief capabilities report:");
println(" Query: " + caps.getQueryCapability());
println(" GetDescendants: " + caps.isGetDescendantsSupported());
println(" GetFolderTree: " + caps.isGetFolderTreeSupported());

Figure 2.7 shows the output in the Groovy console.

As you can see, the OpenCMIS API makes parsing this information trivial. If you were
doing this without Chemistry, you’d need to parse the raw XML response into your
own structure of values either manually or with a library like JAXB (Java Architecture
for XML Binding). For a discussion of what bindings are available and what the XML
schema looks like for each, have a look at chapter 11.

2.3 Folders
In this section, we’ll cover CMIS folders at the highest level: what they do, what they
look like, and how they’re related to each other and to documents.

Listing 2.1 getRepositoryInfo code example

Display some repository
info and repository
capabilities properties
associated with current
session

Figure 2.7 Groovy console output for the getRepositoryInfo code example
www.it-ebooks.info

http://www.it-ebooks.info/

27Folders
2.3.1 The role of folders

Folders in CMIS are much like folders in filesystems that you’re already using from day
to day. Every CMIS repository must have at least one folder, the root folder, as you can
see in figure 2.8. When you retrieve the repository info, you’ll see there’s always a root
folder ID present. This is the starting point that clients must always use if they’re doing
folder navigation.

 The important rule to remember with CMIS folders is that every folder must have
one, and only one, parent folder. The only exception is the root folder. You can think
of the root folder’s parent as the repository that hosts it, even though technically CMIS
root folders are parentless—that’s the only attribute (aside from their place at the top
of the folder hierarchy) that makes them unique among all of the other folders. All
folders (like their filesystem equivalents) have an associated path, as do all CMIS
objects that are contained in folders. (We’ll talk more about the path properties of
CMIS objects in part 2 of the book.)

 Also note that every base CMIS object type has a unique ID defined by the specifica-
tion. For folders the ID is cmis:folder. When you see the name of an object type with
the cmis: prefix, you’ll know that this is an object type that’s defined in the CMIS spec-
ification’s object model. We’ll talk a lot more about the base object types when we get
to chapter 4.

SPEC REFERENCE: FOLDERS To see the full normative definition of CMIS fold-
ers, including all of their attributes, see section 2.1.5 of the CMIS 1.0 specifica-
tion. (See appendix E for references.)

CMIS Workbench has a simple, built-in folder navigation feature as well. If you recall
from your exercises in chapter 1, when you first connect to a repository, you see the
folders and documents contained in the root folder displayed in the left-most pane.
But it only shows a flat list at one level. If you want to see it presented as a hierarchy,
you’ll have to move on to the next section, where you’ll write some code to display the
entire folder hierarchy from your InMemory server.

You are here

0. .n1. .n 1

0. .n11. .n

Repository

Document

Folder

Figure 2.8 Folder shown with
relationship to repository and document
www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 2 Exploring the CMIS domain model
2.3.2 Try it—folder navigation

For listing 2.2, we’ll go back to the CMIS Workbench Groovy console view again. This
time you’ll use the CMIS folder’s getDescendants function. After making the call,
you’ll recursively iterate through the results, dumping them to the console output
window using spaces to indent each level you traverse.

import org.apache.chemistry.opencmis.commons.*
import org.apache.chemistry.opencmis.commons.data.*
import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.client.api.*

RepositoryInfo info = session.getRepositoryInfo();
RepositoryCapabilities caps =

session.getRepositoryInfo().getCapabilities();
Folder rootFolder = session.getRootFolder();

if (!caps.isGetDescendantsSupported()) {
println("n Warning: getDescendants " +

"not supported in this repository");
} else {

println("ngetDescendants " +
"is supported on this repository.");

println("nDescendants of " +
rootFolder.getName() + " : ");

for (t in rootFolder.getDescendants(-1)) {
printTree(t , "");

}
}

private static void printTree(Tree<FileableCmisObject> tree,
String tab) {

println(tab + "Descendant "+ tree.getItem().getName());
for (t in tree.getChildren()) {

printTree(t, tab + " ");
}

}

The output for this exercise is shown in figure 2.9.
 Note that in addition to the getDescendants function you used, CMIS contains a

full suite of other navigation-related functions for you to explore. We’ll touch on all of
these navigation functions in more detail in later chapters, but the full list is as follows:

 getChildren()—Gets only the direct containees of a folder
 getDescendants()—Gets the containees of a folder and all of their children to

a specified depth
 getFolderTree()—Gets the set of descendant folder objects contained in the

specified folder
 getFolderParent()—Gets the parent folder object for the specified folder
 getObjectParents()—Gets the parent folder(s) for the specified nonfolder

object

Listing 2.2 getDescendants code example

There’s only one
root per CMIS
repository.

The -1 tells the
method to return
an unlimited depth
of descendants.
www.it-ebooks.info

http://www.it-ebooks.info/

29Documents
2.4 Documents
Moving right along in our tour of the
domain model, we’ve arrived at docu-
ment. Figure 2.10 gives you a quick
high-level picture of where we are
now and how documents fit into the
larger picture.

 In CMIS, documents are where the
rubber meets the road. Without
them, there wouldn’t be much point
in having a document management
system, would there? This section will
get you familiar with the CMIS docu-
ment type at an introductory level.

Figure 2.9 Groovy console output—dumping the folder and document hierarchy

You are here

0. .n

0. .n11. .n

Document

Folder

Figure 2.10 Documents can be contained in folders
or unfiled children of a repository. Unfiled documents
are retrieved from the repository’s “unfiled
documents” collection.
www.it-ebooks.info

http://www.it-ebooks.info/

30 CHAPTER 2 Exploring the CMIS domain model
We’ll also introduce the subject of properties, which are present on all of the other
CMIS object types, like folders, but are used more extensively on documents. This is
why we waited until now to spring them on you. After we’ve covered the basics, we’ll
pop back into the CMIS Workbench to write some more code, and then create, file,
and retrieve documents and their properties. Here we go!

2.4.1 The role of documents

To properly explain the role of documents, we’ll switch to a different perspective. Fig-
ure 2.11 shows an object model view that describes the base cmis:object common
to all of the objects you’ll see in CMIS. As an extension to this base type, you see
cmis:document (which is the CMIS ID for this object type) with its content stream indi-
cated as a contained subobject. Keep in mind that there’s a lot more to cmis:document
than just being an additional content stream. We’ll cover all of those details in later
chapters, but this is all you need to be aware of for now.

A WORD ABOUT CMIS:OBJECT In this book (as well as in the 1.1 specification),
you’ll see some mention of cmis:object as if there were a base class for all of
the five base CMIS object types. Technically speaking, the specification
doesn’t call out the existence of such a base class. But the CMIS Technical
Committee has made an effort to keep a certain key set of properties com-
mon to all CMIS objects (see section 2.4.2) so that in object-oriented (OO)
language bindings, they could be modeled as if they were from a common
parent (object). Whether you choose to think of all of the base objects as
sharing these properties, or inheriting them, the end result is the same.

SPEC REFERENCE: CMIS OBJECT MODELS If you’d like to see a much more
detailed model type view of all of the CMIS object types, see section 2.1 (Data
Model) in the CMIS 1.1 specification. (See appendix E for references).

Property
type

A CMIS properties
collection has a set
of CMIS properties.

All cmis:objects
contain exactly one
properties collection.

CMIS documents have all
properties that are defined

for cmis:object.

A cmis:document may have
exactly 0 or 1 content streams.

cmis.object

cmis.document ContentStream

1n 11

0. .11

Properties

Figure 2.11 CMIS object model view: these
properties are common to all object types,
but only document has a content stream.
www.it-ebooks.info

http://www.it-ebooks.info/

31Documents
2.4.2 Properties

As you can see in figure 2.11, all CMIS objects have properties. We’ll get into much
more detail about types in chapter 4, but one of the things that distinguishes one
object type from another is the specific properties that are defined for that type. But
before we can talk about the properties on documents, we first need to take a short
diversion and talk about the properties that are common to all CMIS object types.

PROPERTIES COMMON TO ALL CMIS 1.0 OBJECT TYPES

These are the properties that you’ll find on all CMIS object types, regardless of their
base type. For a given repository, there may be many more custom properties in addi-
tion to these:

 cmis:name (String)—The name of this object.
 cmis:objectId (ID)—The opaque identifier for this object. It’s unique among

all other objects in this repository.
 cmis:baseTypeId (ID)—The opaque identifier for the base type of this object.

We’ll cover types in chapter 4.
 cmis:objectTypeId (ID)—The opaque identifier for this object’s type.
 cmis:createdBy (String)—The name of the user that created this object in this

repository.
 cmis:creationDate (DateTime)—The date and time when this object was

created.
 cmis:lastModifiedBy (String)—The name of the user who last modified this

object.
 cmis:lastModificationDate (DateTime)—The date and time this object was

last modified.
 cmis:changeToken (String)—An opaque token used to identify a point in the

lifecycle of this object. We’ll talk more about these tokens in chapter 8.

Why are these identifiers opaque?
You probably noticed that the identifiers in the list of common object types aren’t only
identifiers, they’re opaque identifiers. When something is described as opaque, it
means it should be treated as if you can’t tell what’s in it.

For example, if we showed you an identifier that looked like “jeff-potts-tulsa-1.2,” you
might try to make some sense of that string. You might assume the identifier is talk-
ing about something having to do with a person named “Jeff Potts” who has a rela-
tionship to a city named “Tulsa” and that maybe this is version 1.2 of that object.
You might even write some code that implements those assumptions. But in CMIS,
when you see that something is opaque, you must avoid the temptation to write
code that depends on an understanding of how that particular identifier is con-
structed, because the repository is free to change how it implements opaque identi-
fiers at any time.
www.it-ebooks.info

http://www.it-ebooks.info/

32 CHAPTER 2 Exploring the CMIS domain model
PROPERTIES COMMON TO ALL CMIS 1.0 DOCUMENTS

These are all of the properties that are both unique to and present on all CMIS 1.0
documents (remember that all of the properties common to all objects are also com-
mon to documents):

 cmis:isImmutable (Boolean)—Indicates the CMIS service will throw an excep-
tion on an attempt to modify this object.

 cmis:isLatestVersion (Boolean)—Indicates whether this object is the latest
version of its version series. We’ll talk more about versions in chapter 3.

 cmis:isMajorVersion (Boolean)—Indicates whether this object is a major ver-
sion (true) or minor (false).

 cmis:isLatestMajorVersion (Boolean)—Indicates whether this document is
the latest major version. The latest major version has special significance in
some repositories.

 cmis:versionLabel (String)—The string rendering of the document’s version
information. For example, 1.5 would indicate major version 1 and minor version 5.

 cmis:versionSeriesId (ID)—The opaque identifier of this object’s version
series. We’ll look more at version series objects in chapter 3.

 cmis:isVersionSeriesCheckedOut (Boolean)—Indicates whether this docu-
ment is currently in a checked-out state.

 cmis:versionSeriesCheckedOutBy (String)—The name of the user that per-
formed the checkout operation on this document.

 cmis:versionSeriesCheckedOutId (ID)—An opaque identifier of the Private
Working Copy (PWC) for this object’s version series. More on PWC objects in
chapter 3.

 cmis:checkinComment (String)—The comment associated with this version of
the document.

 cmis:contentStreamLength (Integer)—The length of this document’s associ-
ated content stream, if one is present.

 cmis:contentStreamMimeType (String)—The MIME type of the content stream
associated with this document.

 cmis:contentStreamFileName (String)—The name of the file stored in this
document’s content stream, if present.

 cmis:contentStreamId (ID)—The opaque identifier of this document’s con-
tent stream, if present.

You may notice that all of these additional properties deal with versioning and con-
tent stream information. In later chapters, when we explore the other types of base
CMIS object types, you’ll see that they each have their own set of object-type-specific
properties.
www.it-ebooks.info

http://www.it-ebooks.info/

33Documents
A FEW MORE BASIC RULES ABOUT PROPERTIES

A CMIS property may hold zero, one, or more typed data value(s), and each property
may be single- or multivalued. Single-valued properties contain (drum roll here) a sin-
gle data value, and multivalued properties contain an ordered list of data values of the
same type. The ordering in a multivalued property should be preserved by the reposi-
tory, but this isn’t guaranteed.

 Any property (single- or multivalued) can be in a not-set state, but the CMIS specifi-
cation doesn’t support a null property value.

 If a multivalued property is set, it must contain a non-empty list of individual val-
ues. Each individual value in the list must have a value (that is, it can’t be not set), and
each of those values must be of the same type, conforming to its multivalued prop-
erty’s type. In other words, a multivalued property is either set or not set in its entirety.

 Individual values of multivalued properties must be set to hold a position in the list
of values. Empty lists of values are not allowed, nor are sparse lists. For example, you
may not have a sparse string list property with values {"a," "b," null, "c"}, but a
string list with values {"a," "b," ""} would be OK, because for strings an empty string
is a set value distinct from null.

BASE PROPERTY DATA TYPES

All CMIS properties are typed and must be one of the eight base property data types
listed in the specification. Table 2.1 shows these base property types and their corre-
sponding OpenCMIS interface names. All of the OpenCMIS property interfaces are
in the org.apache.chemistry.opencmis.commons.data package, and all inherit the
org.apache.chemistry.opencmis.client.api.Property interface.

Table 2.1 Eight base property data types supported by CMIS and OpenCMIS

CMIS property Java data type OpenCMIS interface

string java.lang.String PropertyString

boolean java.lang.Boolean PropertyBoolean

integer java.math.BigInteger PropertyInteger

decimal java.math.BigDecimal PropertyDecimal

datetime java.util.Gregorian-
Calendar

PropertyDateTime

id java.lang.String PropertyId

html java.lang.String PropertyHtml

uri java.lang.String PropertyUri
www.it-ebooks.info

http://www.it-ebooks.info/

34 CHAPTER 2 Exploring the CMIS domain model
RULES TO BE AWARE OF WHEN DEALING WITH HTML, ID, AND URI PROPERTIES
 An html property value can be a fragment and need not be valid. For

example, the following string isn’t completely valid from an HTML
standpoint, but it’s allowed to be stored in an html property:
<html><body>My body is truncated.

 A uri value may or may not be checked by the repository.
 An id value doesn’t need to be a valid ID in the repository.

CUSTOM PROPERTIES

Although we’ll cover this in much more detail in chapter 4, it’s worth mentioning that
the types we’ve shown you so far are only the properties that are defined by CMIS for
all documents. These properties are common to any ECM system. The flexible thing
about ECM systems and about CMIS is that there can be many different types of docu-
ments with any number of custom properties defined on them. When we get into
part 2 of the book and start building a custom CMIS music management application,
we’ll define custom properties that are specific to music MIME types. You’ll see some
of the powerful things you can do with these properties when we talk about Query in
chapter 5.

2.4.3 Try it—list a document’s properties

It’s time now to go back to the Groovy console in CMIS Workbench to write some
code. This time you’ll find the first document object in the root folder and list all of its
system properties.

import org.apache.chemistry.opencmis.commons.*
import org.apache.chemistry.opencmis.commons.data.*
import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.client.api.*

// obtain the root folder object
Folder rootFolder = session.getRootFolder();
foundCount = 0;

for (t in rootFolder.getChildren()) {
// until we find an object that is a doc type or subtype
if (t instanceof Document) {

println("name:" + t.getName());
foundCount += 1;
List<Property<?>> props = t.getProperties();

// list all of the system properties that is those
// that begin with the cmis: prefix we listed earlier
for (p in props) {

if (p.getId().startsWith("cmis:")) {
println(" " + p.getDefinition().getId()

+ "=" + p.getValuesAsString());
}

}
}

Listing 2.3 List the system (cmis:xxx) properties for the first document we find.
www.it-ebooks.info

http://www.it-ebooks.info/

35Documents
if (foundCount > 0) {
break; // we can stop after the first one is found

}
}

Copy the code from listing 2.3 into your Groovy console and give it a run. Figure 2.12
shows the output from CMIS Workbench when it’s connected to the OpenCMIS
InMemory Repository with the default sample data loaded. The output from the run
is always displayed in the lower window.

USING THE GROOVY CONSOLE IN WORKBENCH Don’t forget that every time you
use the session object in the Groovy console, you’re sharing the session
object from the CMIS Workbench session. If the CMIS Workbench isn’t con-
nected to a live server, your session object in the console isn’t going to do
you much good.

2.4.4 Content streams

Now that we’ve covered all of the properties of a document, we can finally get to the
document itself. As you can see in figure 2.13, there can be either 0 or 1 associated
content streams with every CMIS document. This is what’s sometimes referred to as

Figure 2.12 Output from default data in the document property exercise
www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 2 Exploring the CMIS domain model

MI
t

can
a

the payload of the document. It might be a binary or text file of any MIME type and of
any size, depending on your repository limitations. This is one of a handful of things
that make a document special in CMIS and, more generally, special in all ECM systems.

2.4.5 Try it—retrieve a document’s content stream

In this exercise, you’ll retrieve a text document from your test InMemory server and
inspect its contents. Because the InMemory server starts up with some test data, you’ll
search for the first text document that you find in the root folder, and then retrieve its
content stream, as shown in listing 2.4 (the helper method that gets the contents of a
stream is taken from the “OpenCMIS Client API Developer’s Guide” at http://chemistry
.apache.org/java/developing/guide.html). Finally, so you have something to show for
all of this, you’ll display the first line of the document’s stream text to the console.

import org.apache.chemistry.opencmis.commons.*
import org.apache.chemistry.opencmis.commons.data.*
import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.client.api.*

// obtain the root folder object
Folder rootFolder = session.getRootFolder();
count = 0

// iterate through the children
for (t in rootFolder.getChildren()) {

if (t.getBaseTypeId().equals(BaseTypeId.CMIS_DOCUMENT)) {
count +=1;
println("name:" + t.getName());
Document d = (Document) t;
String mimeType = d.getContentStreamMimeType();
if ((mimeType != null) && (d.getContentStreamLength() > 0)) {

if (mimeType.startsWith("text")) {
println("Name of doc:" + d.getName());
println("FileName:" +

d.getContentStreamFileName());
println("Stream length:" +

d.getContentStreamLength());

Listing 2.4 Retrieving a document’s content stream and stream properties

cmis:object

cmis:document
0. .1

ContentStream
1

You are here

Figure 2.13 A content stream of 0 or 1
per document is accessible via CMIS.

Filter out only
document
objects, because
folders won’t
have content
streams.

Verify that
ME type is
ext so you
 display it
s a string.

Note that the
document’s name
and content stream’s
filename don’t have
to be the same.
www.it-ebooks.info

http://chemistry.apache.org/java/developing/guide.html
http://chemistry.apache.org/java/developing/guide.html
http://www.it-ebooks.info/

37The item object type (version 1.1)
String fullStream =
getContentAsString(d.getContentStream());

println("nFirst line of stream:n->" +
fullStream.substring(0, fullStream.indexOf("n")));

}
}

}
if (count > 0) {

break; // we can stop after the first one is found
}

}
private static String getContentAsString(ContentStream stream)

throws IOException {
StringBuilder sb = new StringBuilder();
Reader reader = new InputStreamReader(stream.getStream(),"UTF-8");

try {
final char[] buffer = new char[4 * 1024];
int b;
while (true) {

b = reader.read(buffer, 0, buffer.length);
if (b > 0) {

sb.append(buffer, 0, b);
} else if (b == -1) {

break;
}

}
} finally {

reader.close();
}
return sb.toString();

}

The output of this code is shown in figure 2.14.

2.5 The item object type (version 1.1)
You’re probably thinking, “Hey, where did this CMIS item object type come from any-
way? I don’t remember seeing this in the main diagram.” That’s because CMIS item
(cmis:item) is new to CMIS version 1.1, so we decided to leave it until you under-
stood the document basics. It turns out that many CMIS repositories have object types
whose instances are fileable, like documents, but that are much less heavyweight. For

This helper
method gets
the contents
of a stream.

Figure 2.14 Output of code for retrieving a
document’s content stream
www.it-ebooks.info

http://www.it-ebooks.info/

38 CHAPTER 2 Exploring the CMIS domain model
example, they might not have any content streams associated with them, and they
might not be versionable either. Don’t worry, we’ll talk about versioning in chapter 3.

 In CMIS 1.1, we created a brand-new, top-level type named item that would be the
base type for all objects that have properties but aren’t documents. At the most basic
level, you can think of an item as a fileable collection of properties or even a complex
object type. For example, suppose you want to store some configuration information
for your application in the CMIS repository. You might choose to persist the applica-
tion configuration as a set of key-value pairs that would be defined as properties on an
object type that extends cmis:item.

SPEC REFERENCE: CMIS ITEM For a detailed list of CMIS item’s properties and
attributes, see section 2.1.8 of the CMIS 1.1 specification. (See appendix E for
references.)

2.6 Summary
In this chapter, you were introduced to the key high-level concepts in a CMIS system:
the service, repository, folder (cmis:folder), document (cmis:document), and item
(cmis:item), and each one’s respective properties. We even sprinkled in a little taste
of the bindings. You used the OpenCMIS API to discover a repository’s capabilities,
browse its folder hierarchy, and retrieve its document’s properties and content
streams. Along the way, you were given your first peek at the object model for CMIS
and you saw how all CMIS object types share a common set of properties. In later chap-
ters, we’ll fill out these images you now have in your head with more details. These
concepts will be your guideposts as you progress through the rest of part 1. By the
time you have completed the next three chapters, you should have a good general
understanding of CMIS, enough to dive into part 2 and build a useful (and we hope
fun) application.
www.it-ebooks.info

http://www.it-ebooks.info/

Creating, updating, and
deleting objects with CMIS
In the previous two chapters, you’ve learned how to access a CMIS repository as well
as the objects contained within it, but you haven’t made any changes to those
objects and you haven’t created new objects. You’ll learn how to do that in this
chapter. As in previous chapters, you’ll continue using the CMIS Workbench to run
Groovy code, but now you’ll create, update, version, and delete objects in the
repository.

This chapter covers
 Creating folders

 Creating documents with and without content

 Updating properties on objects

 Checking content into and out of the repository

 Creating versions of documents

 Deleting objects
39

www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 3 Creating, updating, and deleting objects with CMIS

Ad
3.1 Creating objects
Traversing the folder structure in the repository and reading documents and their
properties is all well and good, but at some point you’ll need to create new objects.
Let’s look at how to create the two objects you know about so far: folders and docu-
ments. You’ll learn how to create instances of other objects in the CMIS domain model
in later chapters.

3.1.1 Requirements for creating an object

At a minimum, a CMIS server will always need two pieces of information from you in
order to create a new object: the name of the object and the type of object to create.
Do you remember the list of properties common to all CMIS objects that was provided
in chapter 2? If so, you may recognize the name and object type from the list:

 cmis:name (String)—The name of this object
 cmis:objectTypeId (ID)—The opaque identifier for this object’s type

Creating a new object is a matter of calling the appropriate method and passing in
these two properties with the appropriate values.

3.1.2 Try it—create a folder

Let’s create a new folder called my first folder in the root of the InMemory Repository.
You saw in the previous chapter how to grab an instance of the root folder using
session.getRootFolder. That returns a folder object. If you look at the Javadoc for
the folder interface, you’ll see a createFolder method. In fact, you’ll see two, but
here you’ll use the one that only needs a properties map.

 To create the folder, you first need a handle to the folder that will contain the new
folder. Then you set up a properties map with the name and object type ID and pass
the properties to the createFolder method, as shown in the next listing.

def rootFolder = session.rootFolder

// create a map of properties
def props = ['cmis:objectTypeId': 'cmis:folder',

'cmis:name' : 'my first folder']

def someFolder = rootFolder.createFolder(props)

println("Folder created!")
println("id:" + someFolder.id)
println("name:" + someFolder.name)

After running this code in the Groovy Console, you should be able to flip back over to
the CMIS Workbench, refresh the root folder listing by clicking Go, and see your new
folder in the list, as shown in figure 3.1.

Listing 3.1 Creating a folder with Groovy

You saw this in chapter 2

Set up a map to
hold the properties

d object
type and
name to
the map

Pass properties to
the createFolder
method
www.it-ebooks.info

http://www.it-ebooks.info/

41Creating objects
3.1.3 Things to think about when creating folders

Creating a folder is a straightforward process. Still, we should review a few things you
might want to think about. We’ll do that in the following sections.

FOLDERS—CREATED CONTEXTUALLY

In the previous example, you saw that the createFolder method was called on the
rootFolder object. Folders are created contextually. In other words, CMIS has to know
where to create the new folder.

OBJECT TYPE

In listing 3.1, you saw that cmis:folder was used as the object type ID. Many CMIS
repositories have types that inherit from cmis:folder. These might be out-of-the-box
types or even types that you’ve defined to make the schema match your specific busi-
ness requirements. Any type that inherits from cmis:folder can be specified.

FOLDER NAME

The definition of what constitutes an allowable folder name is server-specific. It’s
usually nearly identical to what you would expect when creating folders and files in a
filesystem.

ARE YOU ALLOWED TO CREATE A FOLDER?
In listing 3.1, you didn’t check to see whether or not you were allowed to create a
folder in the root folder—you tried to create it and it worked. As you work through
the rest of this book you’ll come across several actions that may not always be possible
due to limitations of the underlying server, permissions, or the state of an object.

 You can code defensively by checking to see if you’re allowed to do something
before you do it. In this case, there’s an allowable action called CAN_CREATE_FOLDER. If
you wanted to, you could make your createFolder call conditional on the presence of
that allowable action, as follows:

if (Action.CAN_CREATE_FOLDER in
rootFolder.allowableActions.allowableActions) {
...set up the properties, create the folder, etc.

}

Figure 3.1 The new folder
shows up after you run the
createFolder code in
the Groovy console.
www.it-ebooks.info

http://www.it-ebooks.info/

42 CHAPTER 3 Creating, updating, and deleting objects with CMIS

C
docu

in

cr
e

 You’ll see more examples of allowable actions later on in the book.

3.1.4 Try it—create a document

Creating documents isn’t much different from creating folders. You still need the
name and object type at a minimum.

 In this section, you’ll learn how to create documents. First you’ll create documents
that don’t have content, and then you’ll create documents using files on your local
filesystem.

 The simplest example is to create a document that doesn’t have content (a file)
associated with it. When you do that, it looks like you’re creating a folder. The only dif-
ference is the object type you’re passing in, as shown next.

def someFolder = session.getObjectByPath('/my first folder')

// create a map of properties
def props = ['cmis:objectTypeId': 'cmis:document',

'cmis:name' : 'my test doc']

def someDoc = someFolder.createDocument(props, null, null)

println("Doc created!")
println("id:" + someDoc.id)
println("name:" + someDoc.name)

Now you should be able to navigate into the folder you created earlier and see the
newly created document, as shown in figure 3.2.

 The document you created doesn’t have any content, and there are times when
you might need to create a document that includes a file. For example, a Company or
an Employee object might only have metadata associated with it and no file content. In
fact, in chapter 2 you learned that CMIS 1.1 includes a new type called cmis:item that
can be used specifically for this purpose. If you were using CMIS 1.1, you might choose
to create your Company or Employee objects as instances of cmis:item instead of
instances of cmis:document.

Listing 3.2 Creating a document that has no content looks much like creating a folder.

reate
ment

folder
you

eated
arlier

Specify
‘cmis:document’
for object type ID

Pass in null as content stream to
create a document with no content;

second null is the versioning state

Figure 3.2 The newly created document sitting in the folder you created earlier
www.it-ebooks.info

http://www.it-ebooks.info/

43Creating objects
If you’re developing an application that’s exclusively made up of contentless objects,
you might need to rethink your decision to use a content repository to persist your
data. More often, most of your objects will have files associated with them, so let’s see
how to create a document that includes a file.

 The key difference is that you have to create a content stream and then pass that to
the createDocument method. In listing 3.3, you can see a content stream being cre-
ated from a local file. In this example, it’s a PDF.

def someFolder = session.getObjectByPath('/my first folder')

def file = new File('/users/jpotts/Documents/sample/sample-a.pdf')

def name = file.getName()

def mimetype = 'application/pdf'

// create a map of properties
def props = ['cmis:objectTypeId': 'cmis:document',

'cmis:name' : name]

def contentStream = session.getObjectFactory().createContentStream(name,
file.size(),
mimetype,
new FileInputStream(file))

def someDoc = someFolder.createDocument(props, contentStream, null)

println("Doc created!")
println("id:" + someDoc.id)
println("name:" + someDoc.name)
println("length:" + someDoc.contentStreamLength)

If you run that code in the Groovy console, you should see the new document in the
CMIS Workbench (you may have to re-enter the folder or click Go to refresh the list).
If you click the link in the right-hand pane (see figure 3.3), you’ll launch the docu-
ment in its native application.

Listing 3.3 Creating a document with a content stream

Not all repositories support contentless document objects
Some repositories require document instances to always have a content stream.
For example, the OpenCMIS InMemory Repository and Alfresco don’t require content
streams, but SharePoint does. You can check whether or not your repository
requires documents to have a content stream by inspecting the type definition for
cmis:document.

You’ll learn about type definitions in chapter 4, but for now just know that the
cmis:document type definition has an attribute called contentStreamAllowed. If
the value of the attribute is required, then all instances of a document must have
a content stream. Of course, you could work around this by creating a content stream
with an empty string.

Set path to point
to sample file

Hardcode
mimetype

Instantiate a
ContentStream

Pass properties and
contentStream to

createDocument method
www.it-ebooks.info

http://www.it-ebooks.info/

44 CHAPTER 3 Creating, updating, and deleting objects with CMIS

Use
with dif

name
bef

InMe
s

req
obje

same

un
n

You might be looking at listing 3.3 and thinking, “That seems like a lot of work just to
add a file to the repository,” and you’re absolutely right. There is a shorter way to do
it. The CMIS Workbench ships with a set of helper scripts that can be accessed from
the Groovy console. The helper scripts include a function called createDocument-
FromFile, which does the work of figuring out the mimetype, setting up the proper-
ties, establishing a contentStream, and creating the document. The result, shown
next, is much more succinct.

cmis = new scripts.CMIS(session)

def someFolder = session.getObjectByPath('/my first folder')

def file = new File('/users/jpotts/Documents/sample/sample-b.pdf')

def someDoc = cmis.createDocumentFromFile(someFolder,
file,
"cmis:document",
null)

println("Doc created!")
println("id:" + someDoc.id)
println("name:" + someDoc.name)
println("length:" + someDoc.contentStreamLength)

Either way, the result is the same—the document object is created and the local file is
uploaded to the repository and set as the content stream on the document object.

 Now you know how to create folders and documents, both with and without con-
tent. If you stopped here, you could do quite a lot. Got a fileshare full of contracts and
legal documents? You could write a script to bulk load those into your company’s ECM
repository. Or how about an imaging application to feed scanned invoices into the
repository (which then might trigger an approval workflow if your repository supports
it). That’s some decent process automation, and the beauty is that it works regardless
of the repository you have now or decide to switch to at some point in the future,
because you’re coding against an industry-standard API.

Listing 3.4 Creating a document from a file by using the CMIS helper scripts

Figure 3.3 After creating a document that has a content stream, you can click
the content URL to open the file.

Load CMIS helper scripts a file
ferent
 from
ore—
mory
erver
uires
cts in
folder
to be

iquely
amed

Set up
properties,
mimetype, and
contentStream,
and create
document with a
single call
www.it-ebooks.info

http://www.it-ebooks.info/

45Creating objects

ce to
ment

 ...

copy
es

Ex
the
3.1.5 Things to think about when creating documents

There are a few things you may want to keep in mind when creating documents.

COPYING DOCUMENTS

It’s possible to create new document objects using objects that already exist in the
repository. The document object has a method called copy that takes a target folder as
its only argument. If you want to copy sample-b.pdf to another folder called target
folder, the code would look like the following.

def someDoc = session.getObjectByPath("/my first folder/sample-b.pdf")

def targetFolder = session.getObjectByPath("/target folder")

def copiedDoc = someDoc.copy(targetFolder)

Notice that the copy method doesn’t give you the opportunity to make any changes on
the source object, including the name. If you need to do that, use createDocument-
FromSource instead.

What other CMIS helper scripts are available?
You saw how the CMIS helper scripts distributed with the CMIS Workbench can make
your Groovy code more succinct. What other shortcuts are available? If you take a
look at the source code for the CMIS Workbench, you’ll find the Groovy file that
defines the CMIS helper scripts in /src/main/resources/scripts/CMIS.groovy. Con-
sult that file for the full list.

These are a few you might be interested in:

 getObject(id),getFolder(id), getDocument(id)—Retrieve a CMIS object,
folder, or document given its object ID.

 printProperties(id),printChildren(id),printRelationships(id),
printRenditions(id), printObjectSummary(id)—Dump information about
the object for the ID specified to the console.

 createFolder(), createTextDocument(), createRelationship()—Short-
cut methods for creating documents, folders, and relationships. See the code
for the method signatures.

 download(id, destination)—Downloads the file associated with the docu-
ment represented by the specified ID to the specified destination.

These helper scripts will only work with your code running in the Groovy console. They
aren’t part of the OpenCMIS API.

Grab a
referen
the docu
to copy

 ... and the folder to
it to (this code assum
the folder exists).

ecute
 copy.
www.it-ebooks.info

http://www.it-ebooks.info/

46 CHAPTER 3 Creating, updating, and deleting objects with CMIS
ONLY WORKS WITH THE WEB SERVICES BINDING In CMIS version 1.0, create-
DocumentFromSource isn’t supported by the AtomPub binding—it only works
when using the Web Services binding. The copy method relies on create-
DocumentFromSource. Unfortunately, this is one of the differences that exist
between the two bindings. You’ll learn more about bindings later in the book.
If you can’t wait to try out the Web Services binding, click the Connection
button, select the Web Services binding, and specify http://localhost:8080/
chemistry/services/DiscoveryService as the service URL.

IS A PARENT FOLDER ALWAYS REQUIRED?
In the examples you’ve seen so far, you’ve been calling the createDocument method
on the folder object where the document is to be stored. But some ECM repositories
support the notion of unfiled documents. These documents are free-floating—they
don’t live in a folder. To figure out whether or not your repository supports unfiled
documents, you can query its capabilities, as follows:

session.repositoryInfo.capabilities.unfilingSupported

If this returns true and you need to create an unfiled document object, use the create-
Document method on session instead of folder and pass in null as the folder ID.

ARE YOU ALLOWED?
As you saw earlier when creating folder objects, the repository might not always allow
you to create a new document. Similar to Action.CAN_CREATE_FOLDER, you can check
the folder’s allowable actions for Action.CAN_CREATE_DOCUMENT before attempting to
create a document. Here’s an example:

if (Action.CAN_CREATE_DOCUMENT in
someFolder.allowableActions.allowableActions) {
...set up the properties, create the folder, etc.

}

Now that you know how to create objects, it’s time to learn how to make changes to
them after they’ve been created. That’s where we’re headed next.

3.2 Updating objects
Some content-centric applications are used only for archival purposes—they never
need to change the documents once they’re stored in the repository. Most often,
though, your content application will need to make updates to objects in the repository.

 In the previous section, you saw that a document object has both metadata and a
content stream. When updating objects, you can update only the properties, only the
content, or both.

 Let’s look at examples of both of these types of updates. In the first example, you’ll
see how to change the name of one of the sample documents you created earlier. In
the second, you’ll see how to update the content stream.
www.it-ebooks.info

http://www.it-ebooks.info/

47Updating objects
3.2.1 Try it—rename a document or a folder

The name of an object is stored in a property called cmis:name. To rename an object,
all you have to do is provide a new value for that property. Let’s change the name of
sample-a.pdf to sample-c.pdf. If you no longer have a document called sample-a.pdf,
no problem. You should be able to use what you learned in the previous section to cre-
ate one using code, or you can create one using the CMIS Workbench.

 Recall from section 3.1.4 that one of the things you provided when creating a doc-
ument was a properties map. To change the name of a document, you’ll provide a
map of the properties you want to update, and then call updateProperties, as shown
in the next listing.

def someDoc = session.getObjectByPath("/my first folder/sample-a.pdf")

println("Before: " + someDoc.name)

def props = ['cmis:name': 'sample-c.pdf']

someDoc.updateProperties(props, true)

println("After: " + someDoc.name)

That’s it. Now you know how to rename a document. You can use this approach to
change any property value.

GET DEFENSIVE Just like in the earlier creation examples, you can add a
defensive check (Action.CAN_UPDATE_PROPERTIES) before doing the update
if you want to. Defensive checks of the allowable actions allow you to not only
head off error messages before they are thrown, but also to adapt the user
interface based on what the server will allow. Hiding invalid choices from
users is a good usability practice.

3.2.2 Try it—update the content stream

You’ve renamed the PDF sample-a.pdf to sample-c.pdf. But if you open the file associ-
ated with that document, it’s still sample-a content, as shown in figure 3.4.

Listing 3.5 Renaming a document by updating its cmis:name property

Setting refresh to true
refreshes the object so
updated values are in
object instance

Figure 3.4 You renamed the sample-a.pdf document to sample-c.pdf, but it
still contains the original file content.
www.it-ebooks.info

http://www.it-ebooks.info/

48 CHAPTER 3 Creating, updating, and deleting objects with CMIS

con
You can fix that by updating the content stream with a file from the local filesystem
called sample-c.pdf.

 This works much like creating a document. You need to set up a content stream
and then call setContentStream on an existing document. This is shown in the fol-
lowing listing.

def someDoc = session.getObjectByPath("/my first folder/sample-c.pdf")

def file = new File('/users/jpotts/Documents/sample/sample-c.pdf')

def name = file.getName()

def mimetype = 'application/pdf'

def contentStream = session.getObjectFactory().createContentStream(name,
file.size(),
mimetype,
new FileInputStream(file))

someDoc.setContentStream(contentStream, true, true)

println("Name: " + someDoc.name)
println("Length: " + someDoc.contentStreamLength)

When you update the content stream, the first flag tells the method to overwrite the
existing stream. If the document already has a content stream set, this must be set to
true. The second flag tells it to refresh the object, which is the same concept you saw
when updating the properties.

 Now when you open the PDF associated with sample-c.pdf, it will contain the con-
tent from the sample-c.pdf file, as shown in figure 3.5.

 Excellent. You can now change the content stream on a document when you need
to update its content.

 There’s an important caveat related to setting content streams. Different ECM
repositories have different rules concerning when content streams can be updated. If
you look at your repository’s capabilities, you’ll see that the InMemory Repository
allows content stream updates any time (as shown in figure 3.6).

Listing 3.6 Updating the content stream of a document with a local file

Grab existing
document

Set up
tentStream

Update
content
stream

Figure 3.5 The sample-c.pdf document now contains the content from
the local file named sample-c.pdf.
www.it-ebooks.info

http://www.it-ebooks.info/

49Updating objects
You can also perform this check through code, as follows:

session.repositoryInfo.capabilities.contentStreamUpdatesCapability

The other two possible values for the content stream updates capability are none and
pwconly. none means what you think it means: once you set the content stream, you
can never update it. Yikes! pwc refers to the Private Working Copy, and it has to do
with versioning, which you’ll learn about in the next section. For now, know that when
a repository supports content stream updates to the PWC only, it means that to make a
change to the content stream, you’ll have to do a checkout on the document first,
which returns a PWC. Then you can update the PWC and do a check-in to commit the
change.

 Now you know how to determine if and when, generally speaking, content streams
can be updated in your repository. To check whether a specific content stream can be
updated, inspect the allowable actions on the document. You’ve seen multiple exam-
ples of this, so it should be very familiar to you now. The allowable action you’re look-
ing for is called CAN_SET_CONTENT_STREAM, and a conditional check would look
something like the following:

Figure 3.6 Some repositories don’t always allow content stream updates, but the InMemory
Repository allows them at any time.
www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 3 Creating, updating, and deleting objects with CMIS
if (Action.CAN_SET_CONTENT_STREAM in
someDoc.allowableActions.allowableActions) {
//...update the content stream

}

You can now create and update documents in your content repository, which is great.
 Now suppose you’re a developer in a law firm. Using what you know so far, you

could develop an application to help the firm’s attorneys collaboratively author con-
tracts. You can imagine that a given contract might go through several iterations
before it’s final. These are lawyers, after all. Inevitably, one of them is going to want to
undo a change (or multiple changes). Setting the content stream directly, like you’ve
been doing in this section, overwrites the file content—there’s no history, so the law-
yers wouldn’t be able to go back to an earlier version. Wouldn’t it be nice if you could
maintain older versions?

 You can, and that’s the subject of the next section.

3.2.3 Understanding versioning

Have you ever seen a file with a name something like potts_contract_v2_jtp_jb_fm_
legal_final_signed.pdf?

 This may seem like an extreme example, but it’s quite common. What’s going on
here is that multiple people are reviewing, updating, and approving the document.
The people involved in the process are attempting to keep track of the different ver-
sions of the document by adding things to the name of the file, like a version number
(v2), or their initials (jtp), or the fact that this is the final round of edits for this docu-
ment. It’s symptomatic of the fact that a plain filesystem isn’t rich enough to help you
track the multiple rounds of edits that documents and other digital assets go through
during routine business processes.

 A CMIS repository that supports versioning fixes this problem. Documents go
through their normal business process, and as they’re revised, the repository main-
tains a version history, as shown in figure 3.7.

 Users can revert back to previous versions at any time. Now the document’s name
can stay simple and descriptive, because the repository is keeping track of the version
history.

 Before we try a versioning example, let’s
talk about the mechanics of creating a ver-
sion and some of the terminology that goes
with it. Going back to the law firm example,
suppose rather than one lawyer working on a
contract, there’s a full legal team. If the legal
team is working on the contract, and the con-
tract lives in the CMIS repository, how would
you make sure that two lawyers don’t edit the
contract simultaneously? This problem is

potts_contract.pdf1.0

potts_contract.pdf1.1

potts_contract.pdf1.2

potts_contract.pdf2.0

Ti
m

e

Figure 3.7 CMIS repositories can keep
track of versions so you don’t have to.
www.it-ebooks.info

http://www.it-ebooks.info/

51Updating objects
handled with checkout and check-in. Before making a change, the lawyer does a
checkout on the contract. When it’s checked out, no other members of the legal team
can make changes. When the changes are made, the lawyer does a check-in. Now it’s
available to others to make their changes.

 When you check out a document, you create a private working copy (PWC). As the
name suggests, this is a copy of the document that only the person performing the
checkout can change. It only exists as long as the document is checked out. Once the
document is checked in, the PWC is no longer needed. Figure 3.8 shows a series of
checkouts and check-ins happening over time, resulting in the version history you saw
previously.

 Now refer to figure 3.9. Notice that each version in the version history is identified
with a number. This is called the version label. Also notice that the version labels follow
a dot syntax and that there’s a gap between 1.2 and 2.0. Version labels that are not
whole numbers (like “1.2”) are said to be minor versions, whereas version numbers that
are whole numbers (like “2.0”) are called major versions. When you check in a docu-
ment, you can tell CMIS whether you’re checking in a minor version or a major ver-
sion. The decision is usually business-specific. Typically, documents that contain a
small number of changes are checked in as minor versions, whereas more significant
changes are checked in as major versions. The most recent version in a version history
is called the latest version.

Ti
m

e

potts_contract.pdf 1.0

potts_contract.pdf 1.1

potts_contract.pdf 1.2

potts_contract.pdf 2.0

potts_contract.pdf (PWC)

Checkout

Check-in

potts_contract.pdf (PWC)

Checkout

Check-in

potts_contract.pdf (PWC)
Checkout

Check-in

Figure 3.8 Checkouts
create PWCs that are edited
and then checked in to
create new versions.
www.it-ebooks.info

http://www.it-ebooks.info/

52 CHAPTER 3 Creating, updating, and deleting objects with CMIS

any

nt
 can

le

Versionin
MAJOR arg

tells C
crea

versio
major v
You may be curious as to why the PWCs in figure 3.8 don’t have version labels. That’s
because a PWC isn’t a version. It’s a special kind of object that only exists while the
object is checked out, so it doesn’t have a version label.

 Now that you know how useful versioning can be and the terminology that goes
with it, it’s time to jump back into the CMIS Workbench and learn how to create ver-
sions in Groovy.

3.2.4 Try it—upload a new version of a document

The best way to understand how versions work is to try it yourself. In this section,
you’ll create a new document that you can then check out, modify, and check back in.
We’ll break this into three separate scripts that you’ll run from the Groovy console in
the CMIS Workbench as you’ve done in previous examples. First, you’ll write a script
to create the initial version of a document, then one to check out the document, and
finally one to check in a new version of the document.

CREATE A NEW DOCUMENT

This listing shows how to create the initial version of the document.

import org.apache.chemistry.opencmis.commons.enums.*

cmis = new scripts.CMIS(session)

def someFolder = session.getObjectByPath('/my first folder')

def f = new File('/users/jpotts/Documents/sample/potts_contract.docx')

def someDoc = cmis.createDocumentFromFile(someFolder,
f,
"cmisbook:officeDocument",
VersioningState.MAJOR)

println("Doc created!")
println("Id:" + someDoc.id)
println("Name:" + someDoc.name)
println("Length:" + someDoc.contentStreamLength)
println("Version:" + someDoc.versionLabel)
println("Is Latest?" + someDoc.latestVersion)
println("Is Major?" + someDoc.majorVersion)

Listing 3.7 Creating the initial version of a document

potts_contract.pdf Major version1.0

potts_contract.pdf Minor version1.1

potts_contract.pdf Minor version1.2

potts_contract.pdf Latest version, major version2.0

Ti
m

e
Figure 3.9 Major versions
are whole numbers; minor
versions are fractions. The
latest version is the most
recent version in the history.

Specify
sample
docume
that you
edit.

Specify a
versionab
type.

The
gState.
ument
MIS to
te this
n as a

ersion.

The version label, latest version
flag, and major version flag return
information about the version.
www.it-ebooks.info

http://www.it-ebooks.info/

53Updating objects

You may have noticed that we used a custom type called cmisbook:officeDocument
in the createInitialVersion.groovy script. In the OpenCMIS InMemory Reposi-
tory, cmis:document isn't versionable by default. In the InMemory Repository bundled
with this book, we’ve included a versionable type called cmisbook:officeDocument, so
we’re using that. If you’re building OpenCMIS from source, you can use
VersionableType, which is a versionable type shipped with that repository.

CHECK OUT AND DOWNLOAD THE DOCUMENT

Now you have an initial version of a document stored in the repository. It’s time to
check it out and download the Private Working Copy locally.

YOU MUST AUTHENTICATE TO PERFORM A CHECKOUT The OpenCMIS InMemory
Repository doesn’t require authentication, but if you don’t provide a username
and password, the server won’t let you perform a checkout. If you haven’t done
so already, go back to the connection dialog box and provide a username and
password before you run the checkout code. Any values will work.

Listing 3.8 shows how to do the checkout. It’s one method call. Once the document is
checked out, you can use the cmis.download shortcut script to download the file to
the local machine.

cmis = new scripts.CMIS(session)

def someDoc = session.
getObjectByPath('/my first folder/potts_contract.docx')

def pwcId = someDoc.checkOut()

println("Is checked out?" + someDoc.versionSeriesCheckedOut)
println("PWC ID:" + pwcId)

cmis.download(pwcId,

'/users/jpotts/Desktop/potts_contract.docx')

Make sure the target directory exists before you run this example, or you may end up
with a checked-out file that doesn’t exist locally. If this happens to you, use the CMIS
Workbench to cancel the checkout of the document, which is an action on the
Actions tab.

 After running this example, the document in the repository will be checked out and
a copy of the document will be placed on the local filesystem in the path specified.

MODIFY THE LOCAL FILE AND CHECK IT IN
The document in the repository is now checked out—that will keep others from mak-
ing changes to it while you’ve got the PWC downloaded to your machine. You don’t
have to modify the file, of course, but in real life you probably wouldn’t check it in
unless it had been modified.

 The next listing shows how to check in the modified local file as a new version.

Listing 3.8 Checking out the document and downloading it from the repository

Call checkOut
method, which
returns object ID
of the PWC

CMIS helper
includes
download method
that downloads
www.it-ebooks.info

http://www.it-ebooks.info/

54 CHAPTER 3 Creating, updating, and deleting objects with CMIS

Dumps th
of the

who chec
the do

File b
opened is

lo
mod

docum
that wi

checked
new ver
def someDoc = session.
getObjectByPath("/my first folder/potts_contract.docx")

println("id:" + someDoc.id)
println("name:" + someDoc.name)

if (!someDoc.latestVersion) {
someDoc = someDoc.getObjectOfLatestVersion(false)

}

println("Version:" + someDoc.versionLabel)
println("Is Major?" + someDoc.majorVersion)

def pwcId
if (someDoc.versionSeriesCheckedOut) {

pwcId = someDoc.versionSeriesCheckedOutId
} else {

pwcId = someDoc.checkOut()
someDoc.refresh()

}
def pwc = session.getObject(pwcId)

println("Checked out?" + someDoc.versionSeriesCheckedOut)
println("Checked out by:" +

someDoc.versionSeriesCheckedOutBy)

def file = new File('/users/jpotts/Desktop/potts_contract.docx')

def name = file.getName()

def mimetype = someDoc.contentStreamMimeType

def contentStream = session.getObjectFactory().createContentStream(name,
file.size(),
mimetype,
new FileInputStream(file))

def newDocId = pwc.checkIn(false,
null,
contentStream,
"Made a minor change")

println("Checked in new version")

def newDoc = session.getObject(newDocId)
newDoc.refresh()
println("Version:" + newDoc.versionLabel)
println("Is Latest?" + newDoc.latestVersion)
println("Is Major?" + newDoc.majorVersion)

In the preceding example, you pass a value of false to the checkIn method to indi-
cate that the document should be checked in as a minor version. The check-in com-
ment summarizes what’s changed.

 After running this code, you should be able to use the CMIS Workbench to see that
the version has been incremented. If you click the content URL, you should see that
the file contains the new version of the content.

Listing 3.9 Checking in a modified local file as a new version

Check makes sure
you’re working with
the latest version

versionSeriesCheckedOutId
property returns object ID
of the PWC

Otherwise, document
wasn’t checked out, so
example won’t work

e name
 person
ked out
cument

eing
 the
cally
ified
ent

ll be
in as
sion

Pass in null for properties
map because no properties
are being changed
www.it-ebooks.info

http://www.it-ebooks.info/

55Deleting objects
CMIS 1.1: BATCH UPDATES All of the updates shown in this section have been
against one object at a time. If you’re processing a large list of objects, this
results in more network traffic than you would probably like. New in CMIS 1.1
is the ability to perform bulk updates of properties. The new bulkUpdate-
Properties method takes an array of object IDs to update, as well as a map of
properties to set on every object in the list. The method returns a list of object
IDs that were successfully updated.

3.3 Deleting objects
You now know how to create and update objects in the repository. At some point,
you’ll need to know how to delete objects. Let’s cover some requirements for deleting
objects, and then you can try it yourself. After that we’ll discuss some special consider-
ations to think about when deleting objects.

3.3.1 Requirements for deleting objects

It’s quite easy to delete an object from the repository—you call the object’s delete
method. If the object’s allowable actions include CAN_DELETE_OBJECT, the call should
succeed and the object will be deleted. The only decision you need to make is whether
you want to delete all versions of the object or only the version you call the delete
method on.

DELETED OBJECTS CAN’T BE RETRIEVED Once you delete an object, that object is
gone. You can’t get it back. Some repositories have the notion of soft deletes,
and there are systems, like many source code repositories, that allow you to
revert or undo a delete. But there is nothing in the CMIS specification that
provides for this type of functionality. Even in CMIS repositories that support
versioning, if you delete a specific version of an object, it’s gone forever. So be
careful with that delete method.

Deleting documents differs slightly from deleting folders. Let’s delete the contract
you created in the previous section, and then delete the folder it was sitting in.

3.3.2 Try it—delete an object

In section 3.2.4, you probably created a file called potts_contract.docx. If you didn’t,
and you want to work through this example, create a test document—it doesn’t matter
what it is because it isn’t going to be around for long. The next listing shows how to
delete it.

import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.

commons.exceptions.CmisObjectNotFoundException;

def targetPath = "/my first folder/potts_contract.docx"
def someDoc
try {

Listing 3.10 Deleting a document
www.it-ebooks.info

http://www.it-ebooks.info/

56 CHAPTER 3 Creating, updating, and deleting objects with CMIS

Th
except

you try t
an obje

path and
o

doesn’t
someDoc = session.
getObjectByPath(targetPath)

} catch (CmisObjectNotFoundException confe) {
println("Could not find document to delete: " + targetPath)
return

}

println("id:" + someDoc.id)
println("name:" + someDoc.name)

if (!someDoc.latestVersion) {
someDoc = someDoc.getObjectOfLatestVersion(false)

}

someDoc.delete(true)

If you go into the CMIS Workbench and refresh the folder, you should see that your
document is no longer in the repository.

 Now let’s delete the folder. If you’ve been following along, the folder named my
first folder isn’t yet empty. Like the document class, folder has a delete method. But if
you call delete on a non-empty folder, you’ll get an exception. If you want to delete a
folder and all of its descendents, call deleteTree instead of delete, as shown in this
listing.

import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.

commons.exceptions.CmisObjectNotFoundException;

def targetPath = "/my first folder"
def someFolder
try {

someFolder = session.
getObjectByPath(targetPath)

} catch (CmisObjectNotFoundException confe) {
println("Could not find folder to delete: " + targetPath)
return

}

//someFolder.delete(true)
someFolder.deleteTree(true, UnfileObject.DELETE, true)

println("Deleted folder")

Note that when you call deleteTree, you must decide whether or not to delete all ver-
sions. You must also tell CMIS whether to delete or unfile the objects in the tree, if
unfiling is supported by the repository. The last argument passed to deleteTree indi-
cates what should happen if a failure occurs. In the preceding code, you pass in true

Listing 3.11 Deleting a folder

rows
ion if
o get
ct by
 that
bject
exist

Passes in true to delete
all versions of the
document, not only this
specific version

The delete method won’t
work, in this case, because
the folder isn’t empty.

Instead, deleteTree
will delete the
folder and all of its
descendents.
www.it-ebooks.info

http://www.it-ebooks.info/

57Summary
so that if one object in the tree fails to get deleted, the delete operation continues
with the rest of the objects in the tree.

 After running this code, my first folder and everything in it will be completely
removed from the repository.

3.3.3 Things to think about when deleting objects

We should mention a few things you might want to think about when deciding how to
handle deletes in your CMIS application. We’ve already talked about delete versus
deleteTree when deleting folders, and the fact that you can delete either specific ver-
sions of an object or every version. Let’s look at two other points.

DELETE VERSUS UNFILE

Repositories that support unfiling will allow you to unfile rather than delete an object,
if that’s what you want to do. If you want to unfile a document, use the removeFrom-
Folder method instead of the delete method.

 Once a document is unfiled, you can’t navigate to it through the folder structure
because it no longer lives in a folder. The document can be retrieved by its object ID,
or by search, or, if you’re using the AtomPub binding, by asking the repository for its
unfiled documents collection.

DELETING THE CONTENT STREAM

You may want the object to stick around but to get rid of the content that’s associated
with the object. In that case you don’t have to delete the entire object—you can delete
only the content stream by calling deleteContentStream on the document object.

3.4 Summary
We’ve covered a lot of ground in this chapter. You can now create new folders and
documents, with or without content. You also saw a few different ways to update docu-
ments. You can update them in place by updating properties or the content stream
directly. But if you do that, the version history will be lost. One way to address that
problem is to check out documents before checking them back in as new versions.
This also prevents others from making changes to the same document at the same
time.

 Last, we talked about deletes. You learned that when folders are deleted, you can
either delete only the folder, if it’s empty, or you can delete the folder as well as all of
its descendents by using deleteTree instead of delete. When deleting an object with
a version history, you can delete every version of the object or you can delete objects
individually. For some repositories, you can choose to unfile an object to remove it
from a folder instead of deleting it completely.

 You can automate a lot of document processing in your organization, armed with
what you’ve learned in this chapter. But so far you’ve only worked with generic types:
folder and document. In reality, you’ll likely want to work with types that are specific
to your business requirements. Diving deeper into types, properties, and other
advanced metadata topics is the subject of the next chapter.
www.it-ebooks.info

http://www.it-ebooks.info/

CMIS metadata:
types and properties
Up to this point, we’ve been working in the realm of data. This chapter will bring
us up a level into a discussion of metadata. We’ll start with a brief explanation of
what exactly metadata is and how it relates to data in general. Then we’ll cover all
of the basic types of CMIS metadata, including how they’re categorized and discov-
ered. Along the way, we’ll go through some exercises that show all of these con-
cepts in action. By the end of this chapter, you’ll have a good understanding of
CMIS metadata and the new metadata-related features that are coming in CMIS 1.1.

This chapter covers
 General metadata concepts

 CMIS types and property definitions

 Constraints on property definitions

 Type discovery using Chemistry

 Type mutability (CMIS 1.1)

 Secondary types (CMIS 1.1)
58

www.it-ebooks.info

http://www.it-ebooks.info/

59What is metadata and why do we need it?
4.1 What is metadata and why do we need it?
Simply put, metadata is data about data. Perhaps a slightly more helpful definition in
this case would be data about the containers of data. If that makes no sense to you, don’t
worry. It’ll all be clear in time. If you have a good grasp of metadata already and want
to get right to CMIS metadata, you can jump ahead to section 4.2.

 A good place for us to start is to relate metadata to what you already know—data.
Let’s take a library’s catalog (an old card catalog or a digital database) as an example.
Somewhere you have a book sitting on a shelf—the book is the object in this example.
The book also has an associated catalog record (physical or digital) that contains data
about the object. The data in this record is the metadata, and it includes items like the
title of the book, the author’s name, and so on. Finally, there’s an archetype for the
catalog records—a catalog record will have to conform to certain requirements
regarding the data it contains. In some cases, this description of what the cards in the
card catalog should look like may only exist in the mind of the librarian. In other
cases, it might be written down in an operations manual. Either way, that archetype
can be considered the schema. Figure 4.1 illustrates this relationship.

 For the rest of this book, when we refer to metadata, we’ll be talking about metadata
in content management systems specifically, unless otherwise noted. When we talk
about types, we’re using the CMIS name for the schema. In section 4.2, we’ll talk about
what this all looks like from a CMIS perspective, which means types and property definitions.

THE SCHEMA IS METADATA, TOO Remember that because the schema is also
data-describing data, the schema is also metadata in the general sense. But
this doesn’t mean that all metadata is same as the schema. It’s OK to loosely
refer to both metadata and the schema as metadata, in cases where the dis-
tinction isn’t important.

Now that we’ve addressed what metadata is, we’re left with the question of why we
need it. Metadata is a key part of making objects searchable. In the case of the library,
the most important thing you’re going to be doing with those catalog records is using

Object
Metadata

Describes the object
Schema

Describes the metadata

Describes Describes

Catalog entry type

+title: string
+author: string
+language: string
+publisher: string
+pages: integer
+isbn : string
+publication date: date time

Atlas Shrugged
Ayn Rand
English
Random House
1168
0-525-94892-9
October 10, 1957

Book
(object)

Figure 4.1 The schema describes metadata, which describes data.
www.it-ebooks.info

http://www.it-ebooks.info/

60 CHAPTER 4 CMIS metadata: types and properties
them to find what you want. Compare that with a CMIS example: Say you were trying
to find a photo in a CMIS repository that contained 100 million or more objects. With-
out metadata, you could visually search through them all sequentially until you found
the one you were seeking. Maybe you could even sort by filename to help out a bit if
you knew something about what the photo was called. But with proper types defined
on your repository, finding a specific image can be trivial.

 Imagine you want to see all of the images that were created after 2007 and updated
sometime between 2009 and 2011. You could further restrict this search to only those
images that have a resolution of 1024 by 768 pixels and have a description field that
contains the words “elephant” and “Swahili.” Now that 100-million-result set has
shrunk by quite a bit. Even if you found a few photos that matched this criteria, it’s
likely you wouldn’t have to visually or manually scan very many.

 That’s the power of CMIS Query, and that’s precisely what we’ll talk about in detail
in chapter 5. But remember, it’s metadata that makes this all possible.

4.2 Metadata in CMIS
Taking the library analogy a bit further, you can imagine that a library might store
more types of media than just books. It might have books on tape, CDs, DVDs, maga-
zines, eBooks, and perhaps even microfiche, among others. Each of these different
types of objects will have different types of metadata associated with them. This is also
typically the case with ECM systems, so it applies to CMIS. ECM repositories generally
have a large variety of objects, each with their own associated types. Later in this chap-
ter, you’ll see how CMIS manages the organization, storage, and retrieval of these
schema objects.

Type is the name used in the CMIS specification to identify the objects that hold the
schema for normal data objects in the repository. Recall that data objects are made up
of instances of these types. Folders and documents are the most common examples of
data objects. Type objects contain collections of property definitions that define what
properties will be present on an object instance of that type, as figure 4.2 shows. This is
directly analogous to how data objects contain collections of properties.

 As you can see in figure 4.2, all objects have one type object to describe them. Also,
for every property on that object, there’s a corresponding property definition object
on the type to describe that property. If you recall, in chapter 2 (section 2.4.2) you saw
all of the properties that are present for all objects as well as all of the additional prop-
erties that are present on all document objects. The CMIS metadata functions that
we’ll discuss in this chapter are what you use to find out which properties you should
expect to see on any object.
www.it-ebooks.info

http://www.it-ebooks.info/

61Metadata in CMIS
4.2.1 Type definitions are hierarchical and attributes are inherited

Just like the objects they describe, type objects and property definition objects have
properties themselves, but if we also called these properties, we could mistake them for
normal properties on regular instance objects, and things would get a little confus-
ing. As if they’re not already, right? To avoid this unfortunate verbal tangle, the CMIS
specification refers to properties on metadata objects as attributes. This way it’s clear
that if we say property, we’re talking about a value on an object, and if we say attribute,
we mean a value on a type or property definition. Attribute is shorter to say than
metaproperty anyway.

 All of these type objects in CMIS inherit attributes from their parent type objects.
Therefore, the document type will inherit all of the attributes that are common to all
CMIS objects, and it will then add in additional ones that are only present for docu-
ments. The same is true for the attributes on property definitions. Figure 4.3 shows
the complete base metadata hierarchy for the five base types and the eight CMIS data
types we introduced you to in sections 2.3 and 2.4.

 A sixth base type (cmis:secondary) isn’t shown in figure 4.3. This is due to its spe-
cial secondary/optional nature, which will be explained in section 4.4.2.

4.2.2 Try it—view the types and property definitions using Workbench

Now that you have a good picture of what all of this metadata looks like on paper, let’s
go into the CMIS Workbench and take a look at the types and property definitions in
the test InMemory server. In order to bring up the Types viewer in the Workbench,

Type object

Property definition
collection

Described by Described by

Property value

Legend

Metadata

Data

1 *

For each property on this object
there is a corresponding property

definition on the object’s types
that describes the property.

For every object instance
there is a corresponding
object type describing all

of its properties.

Property type

Document
object instance

1 *

Figure 4.2 CMIS metadata types and property definitions describe objects and
properties, respectively.
www.it-ebooks.info

http://www.it-ebooks.info/

62 CHAPTER 4 CMIS metadata: types and properties
locate the Types button at the top of the window, as shown in figure 4.4. Clicking this
button will load up the Types dialog box that’s shown in figure 4.5.

 Figure 4.5 shows the CMIS Types view with the cmis:document object selected in
the left pane, and the cmis:name property selected in the properties pane. Note that
the Apache Chemistry InMemory Repository we used in this example has multiple
child types of cmis:document, some of which have further subtypes, which the open

Figure 4.3 CMIS metadata base hierarchy for types and property definitions showing each
one’s attributes

Figure 4.4 Types button (circled), which launches Workbench’s Types viewer window
www.it-ebooks.info

http://www.it-ebooks.info/

63Type collections and hierarchies
folder icons indicate for each one. The version of the InMemory Repository that
you’re using may have different child types of cmis:document, because the binary
package that comes with this book will continue to be updated. Also note that in this
property definition view, there’s a separate movable column for each of the attributes
on that property definition. This makes it easy to move the columns that you’re most
interested in to the left (and more visible) portion of the window.

 In the property definitions pane in figure 4.5 (lower right), you can see that the
cmis:name property is highlighted. Although only a few of the property’s attributes
are shown here (scroll right to see more), you can see that the cmis:name property for
all cmis:document objects is of type STRING and its updateability is READWRITE. That is,
it’s settable by CMIS clients when they’re creating or editing the object. In contrast,
the cmis:objectId property on the line below it has an ID type and shows as READONLY
to all clients.

4.3 Type collections and hierarchies
ECM repositories often have a lot of types defined—hundreds in extreme cases. This
means that there needs to be a scalable way to organize and retrieve them. Some
repository designs treat these type collections as a large flat list, and others treat them
as a hierarchy. As you saw earlier in this chapter, CMIS defines a hierarchy to organize
all of the type objects. If an underlying repository only has a flat list, it would be
exposed through CMIS as a hierarchy with a depth of one.

Figure 4.5 The CMIS Types window in CMIS Workbench showing the attributes and associated
property definitions for cmis:document
www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 4 CMIS metadata: types and properties
CUSTOM APPLICATION DEVELOPERS TAKE HEED This section is of particular
importance to custom application developers. We’ll cover type collections
and how to navigate them with two code examples that show each of the main
methods for retrieving types. Property definitions will be explained, and we’ll
also discuss the constraints that CMIS permits on properties, followed by a
final example that shows how to access choice lists. You’ll use the techniques
you learn here repeatedly as you code more complex CMIS applications in
this chapter, as well as in part 2 of this book.

Recall the default type hierarchy in figure 4.3. This isn’t meant to be the sum of the
hierarchy, but rather the tip (as in an iceberg) or a starting point that’s common to all
repositories. Each of these base types can have child and grandchild types going down
as deep and as wide as is necessary for each application. Later, in part 2 of the book,
you’ll use a custom subclass of cmis:document that will be tailored for the metadata in
the music mashup example application.

4.3.1 Try it—traversing the type hierarchy

Understanding how all of these types are laid out was the first step. Now that you have
that down, it’s time to look at how your application can programmatically discover
anything it needs to know about the metadata in a repository. For this, we’re going
back to our trusty Groovy console and we’ll show you how simple this seemingly com-
plex operation can be.

 In this section, you’ll traverse the hierarchy of objects, looking at their attributes
along the way. You’ll even display attributes that are only present on documents so
that you can see how easy it is to determine the types of these objects. Although we
won’t examine all the attributes that are available in this short example, you’ll notice
that all of the attributes listed in the CMIS specification are accessible as getter meth-
ods on the various classes of type objects.

 Listing 4.1 shows the code for traversing the type hierarchy. For more examples,
please see the Javadocs for OpenCMIS (http://chemistry.apache.org/java/0.8.0/
maven/apidocs/). In part 2 of the book, you’ll see these attribute values being used in
a real application to give them a bit more context.

import org.apache.chemistry.opencmis.client.api.*
import org.apache.chemistry.opencmis.commons.enums.*

boolean includePropertyDefinitions = true;
for (t in session.getTypeDescendants(

null, // start at the top of the tree
-1, // infinite depth recursion
includePropertyDefinitions // include prop defs
)) {

printTypes(t, "");
}

Listing 4.1 getTypeDescendants code example (type walker)
www.it-ebooks.info

http://chemistry.apache.org/java/0.8.0/maven/apidocs/
http://chemistry.apache.org/java/0.8.0/maven/apidocs/
http://www.it-ebooks.info/

65Type collections and hierarchies

de

hy.

Pr
at

com
a

static void printTypes(Tree<ObjectType> tree, String tab) {

ObjectType objType = tree.getItem();
println(tab + "TYPE:" + objType.getDisplayName() +

" (" + objType.getDescription() + ")");
// Print some of the common attributes for this type
print(tab + " Id:" + objType.getId());
print(" Fileable:" + objType.isFileable());
print(" Queryable:" + objType.isQueryable());

if (objType instanceof DocumentType) {
print(" [DOC Attrs->] Versionable:" +

((DocumentType)objType).isVersionable());
print(" Content:" +

((DocumentType)objType).getContentStreamAllowed());
}
println(""); // end the line
for (t in tree.getChildren()) {

// there are more - call self for next level
printTypes(t, tab + " ");

}
}

If you look at the output from listing 4.1 (shown in figure 4.6), you’ll see the same
information you saw in figure 4.5 with all of the child levels expanded and each level
indented to show the hierarchy visually.

 Now that you know something about types and their attributes, let’s move on to the
next exercise, where we’ll expand the example to show property definitions and their
attributes as well.

This is like the co
in chapter 2 for
recursing the
directory hierarc

int some
tributes
mon to

ll types.

Show
contentStreamAllowed
and isVersionable if the
type is DocumentType.

Figure 4.6 Output from the getTypeDescendants code (type walker)
www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 4 CMIS metadata: types and properties

e

S

4.3.2 Try it—examining property definitions on types

Now you’ll modify the type walker example and add in some code to walk through the
property definitions for each type. You’ll display a few key attributes for each type, like
each property’s ID, data type, and updateability.

 Listing 4.2 shows the modified version of the code, type walker v2. This version
adds a new method, printPropDefsForType, that’s called in the type loop. As you can
see, it’s trivially easy to get this information from the type object using OpenCMIS.

import org.apache.chemistry.opencmis.client.api.*
import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.commons.definitions.*

boolean includePropertyDefinitions = true;
for (t in session.getTypeDescendants(

null, // match all types
-1, // infinite depth recursion
includePropertyDefinitions // include prop defs
)) {

 printTypes(t, "");
}

static void printTypes(Tree<ObjectType> tree, String tab) {
ObjectType objType = tree.getItem();
println(tab + "TYPE:" + objType.getDisplayName() +

" (" + objType.getDescription() + ")");
// Print some of the common attributes for this type
print(tab + " Id:" + objType.getId());
print(" Fileable:" + objType.isFileable());
print(" Queryable:" + objType.isQueryable());

if (objType.getBaseTypeId().equals(BaseTypeId.CMIS_DOCUMENT)) {
print(" [DOC Attrs->] Versionable:" +

((DocumentType)objType).isVersionable());
print(" Content:" +

((DocumentType)objType).getContentStreamAllowed());
}
println(""); // end the line
printPropDefsForType(objType, tab);

for (t in tree.getChildren()) {
// there are more - call self for next level
printTypes(t, tab + " ");

}
}

static void printPropDefsForType(ObjectType type, String tab) {
Map<String, PropertyDefinition<?>> mapDefs =

type.getPropertyDefinitions();

for (key in mapDefs.keySet()) {
print(tab + " " + key + "->");

Listing 4.2 getTypeDescendants with property definitions (type walker v2)

Add one more includ
for the
PropertyDefinition
object from OpenCMI
because it’s
referenced in the
printPropDefsForType
method.

Hook in a call to the
printPropDefsForType
method after the type
attributes are done
printing but before
recursing further.

Returns a map of the
property definitions for
this type, keyed by the
associated property name.
www.it-ebooks.info

http://www.it-ebooks.info/

67Type collections and hierarchies
PropertyDefinition defn = mapDefs.get(key);
print(" Id:[" + defn.getId() + "]");
print(" dataType:[" + defn.getPropertyType() + "]");
println(" updateable:[" + defn.getUpdatability()+"]");

}
}

Figure 4.7 shows the output of type walker v2. The figure shows the complete output
for the type named audioFile; the other types are omitted for space reasons.

 This example has two parts because you can get at the Type and Property-
Definition objects in OpenCMIS in two different ways. In listing 4.2, you retrieved the
types from the types collection and walked the types tree directly. But sometimes it’s
more convenient to get the Type object and/or corresponding PropertyDefinition

Figure 4.7 Truncated output from getTypeDescendant with property definitions included (type
walker v2)
www.it-ebooks.info

http://www.it-ebooks.info/

68 CHAPTER 4 CMIS metadata: types and properties

Any tim
an obje

you
g

direc
getTyp

Op
retr

you fr

Th
pro

definit
sam

this w
be the
often c

defi
prop
have

n
proper

used
f

select

objects for a particular instance object that you have in hand, and not worry about its
type’s location in the types hierarchy. Listing 4.3 shows how to do this using the root
folder object as a generic example. This technique will work for any CMIS object you
encounter.

SYSTEM AND CUSTOM PROPERTIES When developers talk about properties in
CMIS, some will refer to custom and system properties. These terms can have
different meanings in different contexts, but in the purest CMIS context, sys-
tem properties usually refer to those properties that are defined in the specifica-
tion, namely, the properties that look like cmis:xxx, such as cmis:objectId.
Custom properties are everything else. Because custom properties aren’t
defined by the specification, they’re repository- and type-specific. For exam-
ple, later in the book we’ll work with a subclass of cmis:document named
audioFile. This type has many custom properties relating to audio tracks,
like Album, which is a custom string property that holds the album name.
Repository developers should note that you shouldn’t use the cmis: prefix for
naming any of your custom repository’s properties. That prefix is reserved for
properties defined in the specification.

import org.apache.chemistry.opencmis.commons.*
import org.apache.chemistry.opencmis.commons.data.*
import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.client.api.*
import org.apache.chemistry.opencmis.commons.definitions.*

// obtain the root folder instance object from the session
Folder rootFolder = session.getRootFolder();

// this is how you get its type directly from the instance object
ObjectType typeObj = rootFolder.getType();

println("Id of folder's type:" + typeObj.getId());

int DefCount = typeObj.getPropertyDefinitions().entrySet().size();
println("Prop definition total:" + DefCount);

// how to get property definitions directly from the property instance
// by just looking at the defs for the properties that are present
List<Property<?>> props = rootFolder.getProperties();
int propCount = props.size();

println("Property count:" + propCount);
for (prop in props) {

PropertyDefinition<?> propDef = prop.getDefinition();

println(" property:" + prop.getDisplayName() +
" id[" + propDef.getId() + "]");

}

Listing 4.3 Retrieving type and property definitions directly from the object

e you have
ct instance,
 can always
rab its type
tly with the
e() method.

By default
enCMIS will
ieve this for
om cache if
it’s already

present.

e amount of
perties and

property
ions are the
e here, but
on’t always

 case. There
an be more

nitions than
erties if you
 unset (and

ot required)
ties, or you
 a property

ilter to omit
 properties.

Much like
getType(),
getDefinition() can
be called on any
Property object
and the definition
will be retrieved
from cache if
possible.
www.it-ebooks.info

http://www.it-ebooks.info/

69Type collections and hierarchies
If you take a look at the output in figure 4.8, you can see that the number of property
definitions that were defined on the cmis:folder type matches the number of prop-
erties that were on the instance of the folder object. See the callouts in the example
for a discussion of why this isn’t always the case.

 Now that you’ve seen how to get to the PropertyDefinition objects, let’s look at
all of the types of constraints that are permitted on them.

4.3.3 Constraints on property definitions

The last aspect of property definitions that we need to explore (before we’re ready to
talk about the new CMIS 1.1 metadata features) is the concept of constraints. Aside
from specifying what type of data the property holds and its cardinality, a property def-
inition may also place constraints on the potential values.

 Constraints break down into two main groups, as explained in the next section.

COMMON CONSTRAINTS ON PROPERTY DEFINITIONS

Here’s a quick rundown of the constraints that can be present on any of the eight
property definition object types. For a more detailed discussion of these, see section
2.1.3.3.2 of the CMIS 1.1 specification.

 choices—An explicit ordered set of values that are permissible for this prop-
erty. For example, a string property definition named PrimaryColors might
have choices = [Red, Green, Blue]. Each choice includes a displayName and
a value. The displayName may be used by clients for presentation purposes.

 openchoice (boolean)—This attribute is only applicable to properties that
provide a value for the choices attribute. If it’s FALSE, the data value for the
property must only be one of the values specified in the choices attribute. If it’s
TRUE, values other than those included in the choices attribute may be set for
the property.

Figure 4.8 Output showing type and property definition information retrieved
directly from the instance object
www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 4 CMIS metadata: types and properties
 defaultvalue—Contains the value that the repository must set for the property
if one isn’t provided at object creation time. If a property is set to required and
doesn’t have a default value, any attempt to create an object when this property
hasn’t been set will result in a constraint exception being thrown.

PROPERTY-SPECIFIC TYPES OF CONSTRAINTS

There are four additional types of constraints for specific property types. For a more
detailed discussion of these, see sections 2.1.3.3.3–2.1.3.3.5 of the CMIS 1.1 specifica-
tion. These are the four type-specific constraints:

 minValue and maxValue—Apply to Integer and Decimal property types only
and specify the minimum and maximum values permitted for this property. If
an application tries to set this property to a value outside of this range, the
repository must throw a constraint exception.

 maxLength—Applies to String property types only and specifies the maximum
length (in characters) allowed for a value of this property. If an application
attempts to set the value of this property to a string longer than the specified
maximum length, the repository must throw a constraint exception.

 resolution—This is an enum that applies only to DateTime property defini-
tions. Each value in the following list implies all of the values above it, like bit
flags. For example, if the value of time is present, this implies that time, date,
and year are persisted. The permitted values for this enum are as follows:
 year—Year resolution is persisted. The date and time portion of the value

should be ignored.
 date—Date resolution is persisted. The time portion of the value should be

ignored.
 time—Time resolution is persisted.

 precision—This is an enum that applies to property definitions of Decimal
only. The permitted values for this enum are as follows:
 32—Use 32-bit precision (“single” as specified in IEEE-754-1985)
 64—Use 64-bit precision (“double” as specified in IEEE-754-1985)

Next up, we’ll exercise some of these constraints using the Groovy console in the CMIS
Workbench.

4.3.4 Try it—examining constraints on property definitions

Ready to see how this all looks in code? Let’s go back to the CMIS Workbench again
and have a look at listing 4.4. It augments the type walker v2 example to also show
choice lists, default values, and the integer-specific constraint maxValue.

import org.apache.chemistry.opencmis.client.api.*
import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.commons.definitions.*

Listing 4.4 Examining the constraints on property definitions
www.it-ebooks.info

http://www.it-ebooks.info/

71Type collections and hierarchies

is

n

ObjectType complex = session.getTypeDefinition("cmisbook:audio"); //
printPropDefsForTypeWithContraints(complex, "");

static void printPropDefsForTypeWithContraints(ObjectType type,
String tab) {

Map<String, PropertyDefinition<?>> mapDefs = type
.getPropertyDefinitions();

for (key in mapDefs.keySet()) {
print(tab + " " + key + "->");
PropertyDefinition defn = mapDefs.get(key);
print(" Id:[" + defn.getId() + "]");
print(" dataType:[" + defn.getPropertyType() + "]");
println(" updateable:["+defn.getUpdatability()+"]");

// show min max constraint test on integer type
if (defn.getPropertyType().equals(PropertyType.INTEGER)) { //

PropertyIntegerDefinition propDefInt =
(PropertyIntegerDefinition) defn;

if (propDefInt.getMaxValue() != null) {
println(" Max value:"

+ propDefInt.getMaxValue());
}

}

// list default value if present
if (defn.getDefaultValue() != null) {

println(" default value:["
+ defn.getDefaultValue().get(0) + "]"); //

}

// list choices if present
if (defn.getChoices().size() > 0) {

// there are choices on this property
print(" choice present: values:[");
List<Choice> choices = defn.getChoices();
Cardinality card = defn.getCardinality();
for (choice in choices) {

if (card.equals(Cardinality.SINGLE)) {
print(choice.getValue().get(0) + " "); //

} else {
// code to iterate through all values in
// choice.getValue() if this was a
// multivalued choice.

}
}
println("]");

}
}

}

Figure 4.9 shows the output pane from the Groovy console window.

Grab the
type for th
example
directly by
its ID
property,
rather tha
navigating
for it.

Check for type-specific
constraints by determining the
data type of the definition and

casting it into the specific
definition type to get at the
data type–specific methods.

For brevity,
assume the
default value is
a single value.

Get the value.
www.it-ebooks.info

http://www.it-ebooks.info/

72 CHAPTER 4 CMIS metadata: types and properties

4.3.5 Attribute and attribute value inheritance

Before we get to the new CMIS 1.1 metadata features, we need to clarify one more
thing related to inheritance and attributes. You may recall (from earlier in this chap-
ter) the hierarchy of the CMIS type definitions and the attributes that are inherited
from the base CMIS object type. An object type will inherit all of its parent type’s attri-
butes, but the values of the attribute aren’t inherited.

 Let’s consider the versionable attribute of cmis:document to illustrate this. All
subtypes of cmis:document in a repository must have the versionable attribute that
was introduced at the cmis:document level. But the specific Boolean value of ver-
sionable for each of those subtypes is set independently. Therefore, in a particular
repository, cmis:document might have versionable=true and still have a subtype
named invoiceDocument that has versionable=false.

4.4 CMIS 1.1 metadata features
CMIS 1.1 adds two powerful tools that extend what clients can do with metadata:

 Type mutability—Allows CMIS clients to create, read, update, and delete (CRUD)
type definitions, which means a CMIS installer application can set up the
required types in a repository-agnostic manner. Another way of looking at this is
that the manual steps required for an administrator to create a type definition
through the repository-specific interfaces are no longer necessary.

 Secondary types—These special types can be attached to (or detached from) an
object at any point during its life. They allow you to dynamically add or remove
lists of additional properties during the lifetime of an object.

We’ll describe these tools in the following sections.

4.4.1 Type mutability

The process for creating and deleting types can be surprisingly simple. Nevertheless,
type updates have to follow a strictly defined set of rules (for the detailed list, see sec-
tion 2.1.10.1 in the CMIS 1.1 specification), which we’ll explain in this section.

Figure 4.9 Truncated output from listing 4.4, showing choice lists and default values
www.it-ebooks.info

http://www.it-ebooks.info/

73CMIS 1.1 metadata features
 The CMIS specification doesn’t allow you to create new base types, only subtypes of
existing ones. You can check whether or not a given type allows subtypes by inspecting
its type definition.

CONSTRAINT (SECURITY)
As you might expect, only special users can create types for a given repository. The
typeMutability.create flag for a given type isn’t to be interpreted as rights for the
current user. Rather, it states whether or not an administrator (or the repository equiv-
alent of the administrator) may create a subtype of this type. This is generally true for
all rights associated with type mutability. They refer to the repository as a whole in the
context of an administrator. Put another way, typeMutability.create indicates
whether the repository permits an administrator to create subtypes.

 The type mutability settings for a specific type are shown later in figure 4.12. Each
type may have any of these three optional Boolean values set. These flags are defined
in the CMIS 1.1 spec (section 2.1.3.2.1, “Attributes common to ALL Object-Type Defi-
nitions”) as follows:

 typeMutability.create—Indicates whether new child types may be created
with this type as the parent

 typeMutability.update—Indicates whether clients may make changes to this
type per the constraints defined in this specification

 typeMutability.delete—Indicates whether or not clients may delete this type
if the repository contains no instances of it

CONSTRAINT (TYPE AND PROPERTY ID VALUES)
Another point often missed is that the type ID returned by the createType operation
might not be the same as what was requested. Because the underlying repository may
have other restrictions on the ID value, you may only suggest rather than specify. If the
repository can use the ID you suggested, that’s what will be returned. Otherwise it may
be slightly modified or even entirely different. The same is true for new property type
IDs on new or existing object types. For more on this, see the constraint section later
in this chapter about order of the properties returned.

CONSTRAINT (NEW SETTABLE ATTRIBUTES)
Section 2.1.3.2.1 of the CMIS 1.1 specification lists the attributes that are common to
all object type definitions. As a quick refresher, they are the following:

 id creatable

 localName fileable

 localNamespace queryable

 displayName fulltextIndexed

 queryName includedInSupertypeQuery

 description controllablePolicy

 controllableACL
www.it-ebooks.info

http://www.it-ebooks.info/

74 CHAPTER 4 CMIS metadata: types and properties
It’s important to note that you may not necessarily be able to set all (or any) of these
attributes when creating a type. The correct way to find out for certain is to refer to
the capabilityNewTypeSettableAttributes list. This will indicate which of the attri-
butes this particular repository will accept for new types. Don’t be surprised if your
repository doesn’t allow setting any of these. Often these will be internally generated
based on other attributes of (or on inheritance from) the type.

 Figure 4.10 shows the capabilityNewTypeSettableAttributes list for the InMem-
ory Repository. If you look towards the bottom of the figure, you’ll see that the reposi-
tory hasn’t permitted any settable attributes, which isn’t correct. At the time of this
writing, the InMemory server wasn’t populating this list.

Figure 4.10 CMIS 1.1 repository information settings related to type mutability (partial)
www.it-ebooks.info

http://www.it-ebooks.info/

75CMIS 1.1 metadata features
CONSTRAINT (CREATEABLE PROPERTY TYPES)
When you’re adding properties to your new type (or adding them to existing types)
you must also be aware that a repository may not let you create properties of all of the
CMIS-defined property types, even if they’re in use elsewhere in the repository. To
make this clear for clients, the repository information will contain a list of capability-
CreatablePropertyTypes. This is a list of all of the CMIS-defined property types
(boolean, id, integer, datetime, decimal, html, string, and uri) with an associated
Boolean indicating whether or not it’s OK to create properties of each type in object
types.

 Figure 4.10 shows these settings for the InMemory Repository. If you look at the
last line in the figure, you can see that this InMemory Repository supports creating
properties for all eight of the CMIS-defined property types.

CONSTRAINT (ORDER OF RETURNED PROPERTIES)
The order of property types returned from the server is important. When an object
type is created or updated, the repository’s response will return the new type’s proper-
ties in the exact same order in which they were listed in the input (the create or
update) request. This is necessary so that clients can tell which properties correspond
to their requested properties in cases where the IDs are different from what was
requested. Remember that earlier we said that the value you pass for the type and
property ID is only a suggestion. The repository may change it if necessary, so always
use the returned value.

TYPE CREATION

To create a type, you have to provide the type definition and all of its new property
definitions. Because that’s generally a repetitious, lengthy, and error-prone piece of
code, OpenCMIS provides the TypeUtils class, which can read and write type defini-
tions from and to XML and JSON. The XML and JSON format is the same format that’s
defined in the specification to send type definitions over the wire. The simplest way to
create a new type is to save an existing type as XML or JSON from the CMIS Workbench
(by clicking the Save Type Definition button at the top of the Types screen), edit this
file, and then create the new type.

 To speed things up, we’ll include a working sample that you can use for the
upcoming examples, as well as a template for additional types you may want to create
as you’re trying things out.

 Listing 4.5 shows the XML for a new cmis:document subtype named my-document.
It has one additional integer property defined with the IDmy-int.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns3:type xmlns="http://docs.oasis-open.org/ns/cmis/core/200908/"

xmlns:ns2="http://docs.oasis-open.org/ns/cmis/messaging/200908/"
xmlns:ns3="http://docs.oasis-open.org/ns/cmis/restatom/200908/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="cmisTypeDocumentDefinitionType">

Listing 4.5 Sample XML to import for a new my-document type
www.it-ebooks.info

http://www.it-ebooks.info/

76 CHAPTER 4 CMIS metadata: types and properties
<id>my-document</id>
<localName>my-document</localName>
<localNamespace>local</localNamespace>
<displayName>CMIS Document</displayName>
<queryName>my-document</queryName>
<description>Description of My Document Type</description>
<baseId>cmis:document</baseId>
<parentId>cmis:document</parentId>
<creatable>true</creatable>
<fileable>true</fileable>
<queryable>true</queryable>
<fulltextIndexed>false</fulltextIndexed>
<includedInSupertypeQuery>true</includedInSupertypeQuery>
<controllablePolicy>false</controllablePolicy>
<controllableACL>true</controllableACL>
<versionable>false</versionable>
<contentStreamAllowed>allowed</contentStreamAllowed>

<propertyIntegerDefinition>
<id>my-int</id>
<localName>my-int</localName>
<localNamespace>local</localNamespace>
<displayName>Int</displayName>
<queryName>my-int</queryName>
<description>Int</description>
<propertyType>integer</propertyType>
<cardinality>single</cardinality>
<updatability>readwrite</updatability>
<inherited>false</inherited>
<required>false</required>
<queryable>true</queryable>
<orderable>true</orderable>
<openChoice>false</openChoice>

</propertyIntegerDefinition>
</ns3:type>

Now that the XML input file is sorted out, let’s take a look at that code. Listing 4.6
shows the steps for using TypeUtils to parse that XML into a TypeDefinition object
and then using the CreateType method to create the type. At the end of the listing,
we’ve commented out a section that shows how you’d do the same thing if your type
export file was in JSON format.

import org.apache.chemistry.opencmis.commons.*
import org.apache.chemistry.opencmis.commons.data.*
import org.apache.chemistry.opencmis.commons.definitions.*
import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.client.api.*
import org.apache.chemistry.opencmis.client.util.*

if (session.getRepositoryInfo().getCmisVersion() ==
CmisVersion.CMIS_1_0) {

println("CMIS 1.0 does not support the creation of types!");
}

Listing 4.6 Code for creating a new subtype of cmis:document using TypeUtils
www.it-ebooks.info

http://www.it-ebooks.info/

77CMIS 1.1 metadata features
else {
ObjectType parentType = session.getTypeDefinition("cmis:document");
TypeMutability typeMutability = parentType.getTypeMutability();

if (typeMutability != null &&
Boolean.TRUE.equals(typeMutability.canCreate())) {

// fix your path here
InputStream stream1 = new FileInputStream("./my-document.xml");
TypeDefinition type1 = TypeUtils.readFromXML(stream1);
ObjectType createdType1 = session.createType(type1);

// if we wanted to use json instead
//InputStream stream2 = new FileInputStream("./my-document.json");
//TypeDefinition type2 = TypeUtils.readFromJSON(stream2);
//ObjectType createdType2 = session.createType(type2);

}
}

Once the code has completed running, you can restart your Chemistry Workbench
(or at least reconnect so that the metadata will be refreshed) and have a look at the
new type, which is shown in figure 4.11. The figure shows my-document selected in the
type tree and the my-int property highlighted at the bottom of the properties pane.

Figure 4.11 CMIS Types screen showing off our newly minted my-document type
www.it-ebooks.info

http://www.it-ebooks.info/

78 CHAPTER 4 CMIS metadata: types and properties
TYPE DELETION

Unused types can be deleted subject to these constraints:

 The type delete flag in the type definition is set to true.
 The type has no subtypes currently defined in the repository.
 No objects (instances) of this type currently exist in the repository.

The first of these constraints is discovered by inspecting the type definition for the
object in question. Figure 4.12 shows the Chemistry Workbench type mutability set-
tings for the VersionedType. Note that this type supports create, update, and delete.
Recall that we already showed you how to programmatically check this in listing 4.6,
where we checked to see if we could create.

 To determine if the type has subtypes, you’ll have to navigate the type tree as we
showed you earlier in this chapter. Lastly, you can use Query to discover if any objects
of a given type currently exist. Alternatively, you can try to do the delete type opera-
tion, and if any of these constraints isn’t satisfied, the repository will let you know with
the corresponding error.

Figure 4.12 Type information for VersionedType showing the type mutability options available
www.it-ebooks.info

http://www.it-ebooks.info/

79CMIS 1.1 metadata features
The following example shows type deletion:

import org.apache.chemistry.opencmis.commons.*
import org.apache.chemistry.opencmis.commons.data.*
import org.apache.chemistry.opencmis.commons.definitions.*
import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.client.api.*

ObjectType type = session.getTypeDefinition("my:type");
TypeMutability typeMutability = type.getTypeMutability();

if (typeMutability != null &&
Boolean.TRUE.equals(typeMutability.canDelete())) {

session.deleteType(type.getId());
}

With deletion covered, we have one more modification operation to go. Update fin-
ishes off the set and is up next.

TYPE UPDATES

The logic behind updating a type is similar to creating a type, so we won’t waste space
here with a complete listing. A type definition has to be provided that contains the
changes (usually additions) that you wish to have committed. Then you commit the
change with the updateType method, as you did with createType in the first type cre-
ation example.

 The code is simple, but the restrictions on when you can update a type are a bit
more complicated. Section 2.1.10.1 of the CMIS 1.1 specification covers all of the con-
straints for metadata updates. The following list highlights these important items:

 Inherited properties must not be modified. This includes constraints of any
kind.

 Properties defined by the CMIS specification must not be modified. This
includes constraints of any kind.

 Only leaf types may be modified. That is, if a type already has child types
defined, then it (and all of its properties and constraints) must be considered
read-only.

 Any added properties marked as “required” must have a default value.
 Required properties may be changed to optional.
 Optional properties must not be changed to required.
 Property definitions must not be removed.
 Property choice constraints may be changed in the following ways:

 Open choice may change from false to true.
 Open choice must not change from true to false.
 Choices may be added or removed if open choice is true.
 Choices must not be removed if open choice is false. Validation constraints

(min/max length, min/max value, and so on) on existing properties may be
relaxed, but they must not be further restricted.
www.it-ebooks.info

http://www.it-ebooks.info/

80 CHAPTER 4 CMIS metadata: types and properties
For example, an integer property value that originally had a minimum con-
straint of 100 and a maximum constraint of 1,000 could change as follows:
– The minimum could be changed to 50 but couldn’t be changed to 150.
– The maximum could be changed to 1,100 but couldn’t be changed

to 900.
 An existing property type’s data type and cardinality must not be changed. For

example, an Integer property type must not be changed to a String.

That covers the basics of create, update, and delete for types. Next up are the new sec-
ondary types.

4.4.2 Secondary types

Support for secondary types is new in CMIS 1.1. We’ll first explain what a secondary
type is and then talk about how creating secondary types differs from what you already
know about creating normal content types. Finally, you’ll see how easy it is to add sec-
ondary types to and remove them from the objects in your CMIS repository.

WHAT IS A SECONDARY TYPE?
Suppose you’re building a case management system and you’re persisting the docu-
ments the system manages into a CMIS repository. If these are legal cases, you might
have a content type called complaint and another called deposition transcript. You
might also use an image content type for images related to the case, and these content
types might appear on different branches of the content type hierarchy. This leads to
the question of what you would do if you need to define metadata that’s common
across all of these types. To keep it simple, we’ll use a case number as an example.

 One option would be to define the property in a common ancestor type, but then
you’d end up potentially inheriting that property in places where it isn’t needed.
Another option would be to define the property redundantly—every type that needs it
would define its own case number property. Neither of these is a great option. To
address this problem, some content repositories support the concept of a free-floating
type that can be arbitrarily attached to any object in the repository. Different reposito-
ries use different names to describe these special types. For example, in Alfresco,
they’re called aspects. In CMIS they’re called secondary types.

 Using the example of the legal case management system, a document that stores the
transcript of a deposition would be created as an instance of a deposition transcript,
and because it’s related to a specific case, you can add the case-related secondary type
to it. Now the object has all of the metadata defined by the primary type, as well as the
case-related secondary type.

 Now suppose the CMIS repository will also be used to archive email. Some email
might be related to a specific case, and some may not. Email will be created using an
email content type, because that’s fundamentally what that object is, and only those
emails related to a specific case will be given the case-related secondary type. If
someone later decides that an email isn’t case-related, the case-related secondary
type can be removed without changing its primary content type.
www.it-ebooks.info

http://www.it-ebooks.info/

81CMIS 1.1 metadata features
 Later, someone might decide to add a tagging capability to the case management
system. A taggable secondary type makes it easy to add tag-related metadata to all
of the objects that need to be tagged. Now objects can be both case-related and
taggable. In this way, secondary types provide a means to achieve multiple inheri-
tance, which can’t be accomplished with primary content types alone.

 Therefore, secondary types are often used to group together properties that define
characteristics that many different content types might exhibit, in an effort to simplify
or more efficiently implement the content model. They have the added benefit of
being easy to add to and remove from an object without altering its fundamental type.

 As we mentioned, not all repositories support secondary types. We’ll discuss a spe-
cial base type called cmis:secondary in the next section. If your repository returns
cmis:secondary in the list of type definitions returned by getTypeChildren, your
repository supports secondary types.

CREATING SECONDARY TYPES

Creating a secondary type is nearly identical to creating a normal content type with
CMIS. You define your content type using XML or JSON, and then upload the defini-
tion to the repository. An important difference is that the base type must be the spe-
cial cmis:secondary base type—that’s what distinguishes secondary types from
normal types.

 Here are the constraints that must be followed when creating secondary types:

 creatable—Must be set to false. That’s because creating instances of second-
ary types isn’t allowed. All objects must be instances of primary types.

 fileable, controllablePolicy, and controllableACL—Must also be set to
false. The repository uses these values set on the primary type to decide
whether or not an object instance is fileable, controllable by a policy, or control-
lable by an ACL.

 parentId—Must not be set. Unlike primary types, secondary types aren’t
defined in a hierarchy.

USING SECONDARY TYPES

Once you’ve defined a secondary type in the repository, it’s easy to add it to or remove
it from an object. Objects in a repository that support secondary object types have a
system property called cmis:secondaryObjectTypeIds. This is a read-write, multi-
value field that lists the type IDs of the secondary types present on that specific object.

 To add a secondary type to an object, you update the property by adding the
desired secondary type’s type ID to the list. Once added, you can set the properties
defined by the secondary type as you would any other property. In fact, you can add a
secondary type and set the properties it defines simultaneously in a single update-
Properties call.

 To remove a secondary type from an object, remove the secondary type ID from
the list. The properties (and values) will be removed from the object.
www.it-ebooks.info

http://www.it-ebooks.info/

82 CHAPTER 4 CMIS metadata: types and properties
 Now you know all there is to know about the new type mutability and secondary
types features in CMIS 1.1, which brings us to the end of our adventures in the world
of metadata.

4.5 Summary
In this chapter, you learned all of the basic concepts of metadata in typical ECM sys-
tems, as well as how those concepts map to CMIS terms. In addition, you discovered
how to exercise those features programmatically in OpenCMIS. Specifically, you
learned about CMIS types and property definitions and the attributes that describe them.
This chapter also covered the different types of constraints that can be present on
these types. Finally, you walked through the new advanced CMIS 1.1 metadata fea-
tures: type mutability and secondary types.

 Now that you understand these metadata basics, you’re ready to effectively use one
of the most powerful features of the entire specification. That feature is Query, and
we’ll talk about it in great detail in the next chapter.
www.it-ebooks.info

http://www.it-ebooks.info/

Query
In the last chapter, we spent a lot of time describing types in order to prepare you
for this chapter. As we mentioned at the beginning of chapter 4, without metadata
you wouldn’t have an elegant method for narrowing your searches. Remember the
example from the beginning of chapter 4, where we were searching for a specific
photo of an elephant? Flexible query capabilities might not be a big deal when
you’re shuffling through your filing cabinet at home, but wait until you’re search-
ing on the scale of Enterprise Content Management systems, where you might be
talking about billions of documents. At that scale, you’d better be packing some
powerful tools for query, or have a lot of free time.

 Luckily, CMIS defines a powerful and flexible way to describe searches, and it
does this using a syntax that you’ve probably already been using for years—SQL. As
you get deep into this chapter, you may start to feel a little dizzy, but don’t be dis-
couraged. This chapter is hands-down the most difficult one in part 1, and one of
the most difficult in the whole book. The concepts introduced here are equally

This chapter covers
 Query overview

 CMIS Query syntax

 Advanced Query functions

 Full-text search syntax
83

www.it-ebooks.info

http://www.it-ebooks.info/

84 CHAPTER 5 Query
powerful and complex. The chapter includes a lot of detail that you may not need at
this moment, but we’ll cover the subject comprehensively. We packed this chapter
with tons of examples so that later, when you need to know the syntax of something
tricky, odds are you’ll be able to find something here to copy and paste to get you up
and running.

 Therefore, don’t worry about absorbing all of this in the first pass. The chapter is
broken up into many small chunks so you’ll be able to find what you’re looking for
later. But if you read it all the way through, we believe the path we’re taking you on is
the best route for a clear understanding. We’ll start with the basics and finish up with
the extensions CMIS has added to make certain ECM functions more natural when
used as part of a SQL query.

5.1 Query: a familiar face on search
As you may have guessed by now, this chapter will teach you everything you need to
know in order to produce an effective CMIS query. Or, stated a different way, you’ll
understand how to use CMIS to filter out all of the other noise in order to find the
data you’re looking for.

 One of the stated goals of the CMIS specification was to take advantage of technol-
ogies and standards that were mature and accepted, wherever possible. We don’t want
to reinvent the wheel. At the time the CMIS Technical Committee began work on this
specification in 2008, SQL had already been around as a standard for decades. It was
for this reason that the nearly universally known (at least among developers) SQL syn-
tax was chosen as the way to describe these queries. This is likely one of the reasons
that CMIS adoption has been so successful across the industry.

5.1.1 Prerequisite for this chapter: SQL basics

CMIS 1.0 and 1.1 Query is based on SQL-92 (ISO/IEC 9075). In order to avoid droning
on about a subject that most readers of this book will consider basic knowledge, we’ll
make one assumption: that you have a high-level understanding of SQL query syntax.
Nothing advanced is required. As long as you can look at a simple SELECT statement
without crossing your eyes, you’ll be OK.

 If you’re saying to yourself “SELECT what?” you might want to take a few minutes to
read a brief introduction to SQL. A quick internet search will turn up plenty of infor-
mation, because we’re talking about a standard that’s been firmly established for
nearly 30 years. Even the introduction to SQL in Wikipedia (http://en.wikipedia.org/
wiki/SQL) will suffice to explain the key concepts.

5.1.2 Exercises in this chapter and the InMemory server

For most of the exercises in this chapter, we’ll continue to use the CMIS InMemory
Repository package that you downloaded in chapter 1. You may remember from the
previous chapter that quite a bit of sample metadata comes preinstalled with the
InMemory server for audio files and other common document types, such as PDFs.
www.it-ebooks.info

http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/SQL
http://www.it-ebooks.info/

85Introduction to the CMIS Query language
We’ll base our queries around these types so you can run the same queries locally,
rather than viewing only static examples.

5.2 Introduction to the CMIS Query language
For a quick review, let’s look at the components of a typical database. A relational
database is composed of tables, columns, and rows. You can also envision the object
type as a spreadsheet grid, with the vertical columns as the properties and the horizon-
tal rows as the individual objects. Finally, the row headings are part of the schema. Fig-
ure 5.1 shows such a view.

This table analogy maps easily to the CMIS data model, where object types have prop-
erty definitions and the data is the instances of objects. By mapping a relational view
on the CMIS data model, you can see why the CMIS specification has defined its Query
language based on, and extended from, the SQL-92 grammar. It fits perfectly.

CMIS also has extended the Query grammar to make it easier to filter your query
results based on multivalued properties, full-text search, and folder membership.
Don’t worry about the details of these extensions for now. We’ll go into each one later
in the chapter, with examples, and you’ll see how powerful these queries can be.

CMIS SQL IS READ-ONLY Only a subset of the SQL-92 grammar related to
SELECT is included in the CMIS Query language. Specifically, you won’t be
able to do data manipulation to modify the result set data directly.

5.2.1 Reviewing clauses of the SELECT statement

Because we’ll work with examples of all of these, the following list contains the four
basic clauses of the SELECT statement. Think of this as a refresher and the start of an
agenda for the next few sections.

 SELECT—The properties that will be returned for each object in the result set;
you can call them “virtual columns.”

 FROM—The queryable object type; you can call it a “virtual table.”
 WHERE—An optional clause to specify the conditions on the virtual columns.
 ORDER BY—An optional clause to specify how the objects in the result set will be

sorted based on the virtual columns.

Most developers are familiar with these clauses, and that’s the point. If you’re a devel-
oper, you’re already familiar with large parts of CMIS before you’ve even read the first
page of the specification.

Figure 5.1 Viewing a list of documents as a spreadsheet with columns as properties and rows as
object instances
www.it-ebooks.info

http://www.it-ebooks.info/

86 CHAPTER 5 Query
5.2.2 Checking Query capabilities on a service

In the previous chapter, you learned about object type definitions, including their
attributes, property definitions, and the inheritance hierarchy. Some of this informa-
tion is directly applicable to the repository’s ability to support querying on the object
type. Before trying to construct a query, though, you’ll need to check two things: the
level of the CMIS repository’s Query support, and whether or not the particular object
type has been enabled for query.

 You might remember that one of the repository’s data fields is capabilityQuery.
As long as its value isn’t set to none, the repository supports metadata queries and/or
text search. Once you know that Query is supported by your CMIS repository, you’ll
need to know a few object type attributes in order to construct a CMIS Query. Here are
the attributes you should be aware of:

 queryable—This Boolean attribute must be true to be able to use the object
type in a CMIS Query and have the objects from this type be returned as part of
the Query result set. For example, the CMIS specification includes an object type
called cmis:relationship, which is used to establish relationships or associa-
tions between objects. If you look at the type definition for cmis:relationship,
you’ll see that it’s not queryable. Therefore, you can never have a query that says
SELECT * FROM cmis:relationship.

 includedInSuperTypeQuery—If this Boolean attribute is true, then the objects
of this object type may be returned when you query against one of its ancestor
object types. If this attribute is false, the objects in the object type may still be
returned when its queryable attribute (see the previous item in this list) is
true. For example, included among the sample object types in the InMemory
server that accompanies this book is a type called cmis:lyrics. Its parent type
is cmisbook:text, whose parent is cmis:document. Because includedInSuper-
TypeQuery is set to true for cmis:lyrics and cmisbook:text, queries that
select from cmis:document may return instances of cmis:lyrics because
cmis:document is a supertype of cmis:lyrics.

 queryName—The queryName of an object type is equivalent to the table name
used in the FROM clause to identify the object type. This is case sensitive. For
example, an object type might have an ID of cmisbook:recordLabel, but its
queryName might be cmisbook:label. When writing CMIS queries, you must
always use the value of the type definition’s queryName, not its type ID, in the
FROM clause.

SETTING UP SAMPLE DATA If you haven’t done this already, now is a good time
to add a few of the audio files into the InMemory server, so you can experi-
ment with more varieties of queries. If you don’t, you can still work with the
documents that already exist in the server, but the query results may not be as
interesting without the diversity of property values to query on.

In the next section, we’ll look at these attributes in the CMIS Workbench.
www.it-ebooks.info

http://www.it-ebooks.info/

87Introduction to the CMIS Query language
5.2.3 Try it—checking the Query capabilities of a CMIS service

For this exercise, take a quick look at the repository info for the InMemory Repository
(CMIS Workbench > Repository Info). Under Capabilities, you’ll see that Query is
BOTHCOMBINED. That means you can create powerful queries with metadata queries
and full-text searches together in one single SQL query statement.

 Because you’re working in CMIS Workbench, you can take a look at the attributes
of the object types. Go to the CMIS Workbench > Types. Click on Audio File
(cmisbook:audio) in the left pane, and you can see its attributes in the upper-right
pane, with queryable set to Yes (see figure 5.2). This means that the Audio File object
type can be used in your CMIS SQL. Also note the queryName is cmisbook:audio, so
that’s the “virtual table” name you’ll use in your SQL query. In the same upper-right
pane, you can see that Included in Super Type Queries is set to Yes for object type
Audio File. Recall that in chapter 4, you ran code to programmatically examine the
attributes for each of the types in the hierarchy. These are the same type attributes
you’re looking at now.

5.2.4 Try it—your first CMIS Query

Even though you’re starting to see how Query works, we’ll start with the simplest
query possible. This will give you a taste of what to expect later as we fill in the blanks.

 In this exercise, you’ll query on the base object type, cmis:document. Note that it
isn’t a good idea to run this query on a large production-sized system with document
objects in the millions, or more.

Figure 5.2 Examine the type attributes for cmis:audio using the CMIS Workbench Types view.
www.it-ebooks.info

http://www.it-ebooks.info/

88 CHAPTER 5 Query
If you go to the CMIS Workbench and click on Query, you can run the default SQL
that’s in the Query pane. Click the Query button, and you’ll see query results with all
the document properties:

SELECT * FROM cmis:document

Figure 5.3 shows the output of this query.
 Take a minute to scroll right in the query output to see the object property values

for the query results. You may have to widen the columns to see the column names
and values. You can also change the order of the columns by dragging them to the
right or left. Stop when you get to the cmis:objectTypeId column. You can see that
the objects that have been returned are of many different object types, such as
cmisbook:note and cmisbook:audio.

 Even though you searched for cmis:document objects, because cmisbook:note is a
subtype of cmis:document, and its includedInSuperTypeQuery attribute is true,
objects of cmisbook:note are also returned. Had includedInSuperTypeQuery been
false, the query wouldn’t have returned any cmisbook:note objects. As for
cmisbook:audio, it’s a subtype of cmisbook:media, which is itself a sub-subtype of
cmis:document, the object type in the SQL query.

 Try the following queries to see that you can specify non-CMIS object types. First,
try this (results shown in figure 5.4) :

SELECT * FROM cmisbook:note

Figure 5.3 Simple query results executed in CMIS Workbench

Figure 5.4 Simple Query for cmisbook:note objects executed in CMIS Workbench
www.it-ebooks.info

http://www.it-ebooks.info/

89Introduction to the CMIS Query language

Che
see

le
Qu

suppo

Pas
que
a s

g

f
r
. If
ort

This
able
ms.
lder

use.
for
t

e
d
Next, try this one (results shown in figure 5.5):

SELECT * FROM cmisbook:audio

Now that you’re getting comfortable executing these queries from the graphical com-
fort of CMIS Workbench, let’s move into making queries programmatically.

5.2.5 Try it—running a query from code

We showed you how easy it is to execute a simple query from CMIS Workbench using
the Query GUI. But how hard is this to do with OpenCMIS in code? It turns out to be
as easy as you’d have hoped. In this example, you’ll run the same query you saw in fig-
ure 5.3, but run it in the Groovy console to give you a chance to compare and contrast.
You’ll see that you’re still able to submit the query in much the same way in most cases.
Listing 5.1 shows this same simple query, but it’s limited to five results to save space.

import org.apache.chemistry.opencmis.commons.*

import org.apache.chemistry.opencmis.commons.data.*

import org.apache.chemistry.opencmis.client.api.*

RepositoryInfo info = session.getRepositoryInfo();

RepositoryCapabilities caps =

session.getRepositoryInfo().getCapabilities();

println("Query capability=" + caps.getQueryCapability());

String query = "SELECT * FROM cmis:document";

boolean searchAllVersions = false;

int count = 1;

ItemIterable<QueryResult> queryResult =

session.query(query, searchAllVersions);

for (qr in queryResult) {

Listing 5.1 Generating a query with OpenCMIS code in the Groovy console

Figure 5.5 Simple Query for cmisbook:audio objects executed in CMIS Workbench

ck to
 what
vel of
ery is
rted.

s in a
ry as
tring.

This simple form of
session.query takes two
parameters: the query strin
and a Boolean indicating
whether or not you want to
include all of the versions o
documents in your search o
only the most current ones
the repository doesn’t supp
the optional
AllVersionsSearchable
capability, this parameter
value must be set to FALSE.
version returns an ItemIter
collection of QueryResult ite
QueryResult is a generic ho
of property results that you
specified in your SELECT cla
If you look at the Javadocs
session.query, you’ll see tha
there’s another version of
Query that returns
CmisObjects. This alternativ
version will be discussed an
used in part 2 of this book.
www.it-ebooks.info

http://www.it-ebooks.info/

90 CHAPTER 5 Query
 println("--------------------------");

 println("");

 println(count + ": "

+ qr.getPropertyByQueryName("cmis:objectTypeId")

.getFirstValue() + " , "

+ qr.getPropertyByQueryName("cmis:name")

.getFirstValue() + " , "

+ qr.getPropertyByQueryName("cmis:createdBy")

.getFirstValue() + " , "

+ qr.getPropertyByQueryName("cmis:objectId")

.getFirstValue() + " , "

+ qr.getPropertyByQueryName("cmis:contentStreamFileName")

.getFirstValue() + " , "

+ qr.getPropertyById("cmis:contentStreamLength")

.getFirstValue());

// limit the output to 5 results

if (count++ >= 5) break;

}

Figure 5.6 shows the output of this code in the bottom output pane of the Groovy
console.

 Now you can see the direct correlation between running a query string in the
Query GUI and running a query from code. We’ll focus strictly on the query syntax for
the rest of this chapter, but you’ll have plenty of opportunities to see query code in
part 2 of the book.

 Next we’ll dig a bit deeper into the queryable aspects of the properties themselves.

Because QueryResults
must be able to hold
single- or multivalued
properties, we need to
specify which value we
want. In the case of
single-valued properties,
we can always call this
shortcut method to get us
the first value. In part 2
you’ll see examples of
retrieving multivalued
properties from a
QueryResult.

Retrieve a property by its
queryName (previous
line) or by the property’s
ID (this line).

Figure 5.6 Output from the simple query example in listing 5.1
www.it-ebooks.info

http://www.it-ebooks.info/

91Introduction to the CMIS Query language
5.2.6 Checking query-related attributes for properties

Now that you’ve played with object types as “virtual tables” in the FROM clause, we can
move on to the second set of information that you’ll need to check on—the object
type properties and their definitions. The property definitions are involved in the
other three clauses in the SELECT statement: SELECT, WHERE, and ORDER BY.

 Before using a particular object type property as a virtual column in the query,
you’ll need to check whether or not the property can be used in the query. Here are
the relevant object type property definitions:

 queryable—This Boolean attribute must be true to be able to use this property
in the WHERE clause and have the values be returned. If this attribute is false,
you can still specify the property in the SELECT clause to return the property val-
ues, but it can’t be in the WHERE clause.

 queryName—The queryName of this property. You can think of it as the name of
the virtual column from the spreadsheet example at the beginning of this chap-
ter. The property can be directly defined or inherited by the object type in the
FROM clause. You can also specify the CMIS properties that are defined in the
root object types, such as cmis:name and cmis:creationDate. Note that the
name is case sensitive.

 orderable—This Boolean attribute must be true to be able to use this property
in the ORDER BY clause. A common, sometimes required, DBMS practice is that
the properties used in the ORDER BY clause must also be in the SELECT clause.

It’s easy to see these attributes from the Workbench. Go back to the Types pane,
expand CMIS Document, and click on the Note (cmisbook:note) type. In the bottom-
right pane are the object properties ordered alphabetically by their ID and their attri-
bute definitions. Locate one of the predefined CMIS properties, such as cmis:name,
that exists for all document object types and descendant types. Examine its attributes
to make sure you can use cmis:name in your SQL query. Figure 5.7 shows the Types
window displaying the cmis:name information for cmisbook:note.

 Scrolling toward the end of the properties, find the property names with the prefix
of cmisbook:—these are the custom properties defined for Note. The other proper-
ties are inherited from cmis:document and exist for all documents in the repository.
Locate the Archived property from the list, and then scroll to the right to see its prop-
erty definition attributes. Familiarize yourself with the property and how you can use
it in your queries.

 That’s it for property attributes. Next we’ll look at the hierarchical relationships
between the types and how that relates to the search scope.
www.it-ebooks.info

http://www.it-ebooks.info/

92 CHAPTER 5 Query

5.2.7 Search scope

Now that you understand the basics of which object types and which properties can be
queried, you’ll need to determine the scope of your queries. We briefly touched on
scoping and inheritance when we described the object type’s includedInSuperType-
Query attribute. You’ll also recall the type inheritance we discussed in chapter 4. This
also applies to Query.

 We can elaborate on this concept using the existing document object types in the
InMemory server, as shown in figure 5.8.

 Querying on CMIS Document (A) will return matches from its own object type (A)
and also all of its descendant object types, (B) and (C). Querying on Text Document
(B) will return matches from Text Document (B) and Lyrics (C) object types.

Figure 5.7 Examining the queryable attribute for cmis:name
www.it-ebooks.info

http://www.it-ebooks.info/

93Components of a query
5.3 Components of a query
Armed with the basics of object types and properties as tables and columns, and know-
ing when you can use them in a CMIS Query, you’re ready to take a look at the syntax
of the supported SQL grammar. Because we’ll be talking in terms of SQL with its rela-
tionship database references, we’ll mix the jargon and refer to object types as tables
and properties as columns. The CMIS data model does map nicely to the relational
model, and it helps to think in terms of tables and columns.

 For those of you brave enough to read the Backus-Naur Form (BNF) grammar for
the CMIS SQL query syntax, we have it in appendix B for your reference in graphical
form. You’ll also find the BNF grammar in section 2.14.2.1 of the CMIS 1.1 specifica-
tion document as plain text. One look and you’ll agree—it’s not for the faint of heart.
In the rest of this chapter, we’ll explain the syntax in more user-friendly terms, along
with lots of examples. We hope that you’ll only need to refer to the BNF grammar for
the more complex queries. Take your time to explore the query syntax by entering the
SQL examples that follow into the CMIS Workbench Query editor.

Figure 5.8 Three Query scopes, A, B, and C, each with more properties
www.it-ebooks.info

http://www.it-ebooks.info/

94 CHAPTER 5 Query
BNF GRAMMAR BNF (Backus-Naur Form) is a computer science term for a
notation technique used to describe the syntax of various languages. It’s nec-
essary for official language specifications like the OASIS CMIS specification,
which must be precise in its definitions in order to avoid any misunderstand-
ings among vendors.

5.3.1 The SELECT clause

The SELECT clause describes the virtual columns or properties that will be included in
the result set. It can be a comma-separated list of one or more property queryNames,
or * to return all single-valued properties. Some CMIS repositories may also return
multivalued properties for the *, but it’s not a required implementation.

 You can specify properties defined specifically for the object type and also the pre-
defined CMIS properties from which the object type inherits.

 Aliases can be defined by adding the string AS and the alias name to the property
queryName. As you can see from the following example 4, you can alias the table name
(L), and then reference the qualified property with another alias (myTitle). Using
aliases makes it easier to refer to tables and properties in later parts of the query.

 Here are the examples:

1 SELECT * FROM cmis:folder
2 SELECT D.* FROM cmis:document D
3 SELECT cmisbook:author, cmisbook:songtitle, cmis:objectId

FROM cmisbook:lyrics
4 SELECT L.cmisbook:author, L.cmisbook:songtitle AS myTitle

FROM cmisbook:lyrics L

QUERY RESULT SETS

Any time you submit a successful query, a set of zero to many objects (or rows) is
returned. These objects only consist of properties that you’ve specified in your SELECT
clause. For each of the properties, the name of the property will be the same as the
queryName of the property definition. If an alias is used for the SELECT property, the
alias will be the name in the result set.

 For example, query 4 from the previous list will return cmisbook:author and
myTitle as the names of the properties in the result rows, as shown in figure 5.9.

Figure 5.9 Query with aliases
on the type and column
www.it-ebooks.info

http://www.it-ebooks.info/

95Components of a query
FROM CLAUSE, QUERYABLE, AND JOINCAPABILITY

At this point, you should be familiar with the FROM clause. The FROM clause describes
the virtual table(s) or object type(s) against which you want to run your query. The
object type must have its queryable attribute set to TRUE in order to use its queryName
in the FROM clause. As in the SELECT clause, aliases can be defined for the object type
by adding the string AS and the alias name to the table queryName.

 If you want to query against data from multiple object types by specifying more
than one object type in the FROM clause, you must first check that the joinCapability
is supported on your CMIS repository. Not all CMIS repositories support the join-
Capability. See section 5.3.4 on the JOIN clause for more details.

5.3.2 WHERE clause

The WHERE clause adds the constraints and conditions that objects must satisfy to be
returned as a result for the query. As with the SELECT clause, you must specify the
queryNames of the properties defined as queryable.

 The CMIS query syntax supports the following restricted set of SQL-92 query predi-
cates for single-valued queryable properties (see table 5.1). But you can’t use all of
the predicates for all of the property data types. The rules are logical for each data
type. For example, in table 5.1, you can see that Boolean properties can only use the
equality (=) comparison test. It’s either equal to TRUE or equal to FALSE.

PREDICATES In case this term is new to you, a predicate is another query con-
dition that evaluates to TRUE or FALSE.

Instead of describing the format of the data type literals, we’ll show them through our
cookbook-style example queries in the following sections. They follow the SQL con-
vention as follows:

 Numeric literals aren’t quoted.
 Character literals are quoted.

Table 5.1 Supported SQL-92 predicates, associated operators, and data types

Predicate Operators Data types

Comparison =, <>, <, <=, >, >= DateTime, Decimal, Integer

=, <> ID, String, URI

= Boolean

IN [NOT] IN DateTime, Decimal, ID, Integer,
String, URI

LIKE [NOT] LIKE String, URI

NULL IS [NOT] NULL All data types
www.it-ebooks.info

http://www.it-ebooks.info/

96 CHAPTER 5 Query
The timestamp literal is a little different and we may need to reference the syntax now
and then. What follows now are examples for all of the predicates listed in table 5.1.
We’ll start out with the predicate syntax for single-valued properties, and then follow
that with multivalued property predicates.

SQL EXAMPLES IN THIS CHAPTER It’s important to note that the many exam-
ples shown in this chapter are designed to give examples of syntactically cor-
rect queries. Many of them will return nonzero results when executed against
the sample InMemory server, and others will not. All are valid, however. We
encourage you to experiment and add additional objects to the repository to
address specific queries that are of interest.

COMPARISON PREDICATE

You’ve seen in table 5.1 the basic comparison operators that the CMIS Query language
supports (=, <>, <, <=, >, >=). They’re the common SQL comparison operators that you
can use on single-valued properties.

 The following are some additional specifications about the operators with respect
to the data types. (Again, the syntax here is for single-valued properties. Multivalued
property comparisons will be discussed later in the chapter.)

 Boolean comparisons are only equality tests, either equal to true or equal to
false. The Boolean literal doesn’t need to be quoted and the case of the liter-
als doesn’t matter (TRUE or true, FALSE or false).

 String, ID, and URI comparisons are case sensitive and limited to equal or not
equal. These literals will need to be enclosed in single quotes.

 DateTime comparisons are chronological, and the granularity of the time por-
tion of the timestamp may be repository-dependent, based on how the time-
stamp is represented in the database.

A DateTime literal has this format: TIMESTAMP 'YYYY-MM-DDThh:mm:ss.SSSZ'.
The SSS part of the timestamp is for fractions of a second. The Z stands for Zulu
time, otherwise known as GMT.

Instead of specifying a time in GMT, the time zone offset can be provided
using this syntax: TIMESTAMP 'YYYY-MM-DDThh:mm:ss.SSS{+hh:mm | -hh:mm}'.

TRY IT—COMPARISON PREDICATE

Please try the following examples in your local CMIS Workbench for the six different
types, or play around with your own variations:

 Boolean:
SELECT * from cmisbook:note where cmisbook:noteArchived = true

 DateTime using GMT time or time zone offset:
SELECT * FROM cmis:document WHERE cmis:lastModificationDate >
TIMESTAMP '2012-07-27T16:23:02.390Z'
SELECT * FROM cmis:document WHERE cmis:creationDate < TIMESTAMP '2013-
07-27T16:23:02.390+07:00'
www.it-ebooks.info

http://www.it-ebooks.info/

97Components of a query
 Decimal:
SELECT cmis:name, cmisbook:videoDuration FROM cmisbook:video
WHERE cmisbook:videoDuration > 120.0

 ID:
SELECT cmis:name, cmis:objectId FROM cmis:folder
WHERE cmis:objectId <> '100'

 Integer:
SELECT cmis:name, cmis:contentStreamLength FROM cmis:document
WHERE cmis:contentStreamLength >= 34000

 String:
SELECT cmis:name, cmis:objectId FROM cmis:document
WHERE cmis:name = 'welcome.txt'

IN PREDICATE

The IN predicate is used to specify a set of values for a single-valued property, any of
which can be matched, and the owning object is returned as a result.

 If you’re familiar with SQL, you know that the IN predicate is different from
BETWEEN, which is used to specify a range with a starting and an ending value. CMIS
Query doesn’t support BETWEEN directly, but you can construct a query with similar
results by using both the less than/equal to (<=) and the greater than/equal to (>=)
comparison operators. For example, to return all objects created on a specific date
based on the GMT, you can use two comparisons with two timestamps. Depending on
the CMIS client, you may see the timestamp property values displayed in current time,
and not GMT time:

SELECT * FROM cmis:document WHERE cmis:creationDate >=
TIMESTAMP '2012-07-27T00:00:00.000Z'
AND cmis:creationDate < TIMESTAMP '2012-07-28T00:00:00.000Z'

SOME ADDITIONAL SPECIFICATIONS ABOUT THE IN OPERATOR
AND THE DATA TYPES

 Boolean properties can’t be used.
 String, ID, and URI literals are case sensitive.
 The NOT operator can be used in conjunction with the IN predicate

for a negative test.

TRY IT—IN PREDICATE EXAMPLES

Try the following examples in your local CMIS Workbench for these five different
types, or play around with your own variations:

 String:
SELECT * FROM cmisbook:text where cmisbook:author
IN ('Jane Taylor', 'Geoffrey Chaucer')

 DateTime:
SELECT * FROM cmisbook:image WHERE cmis:creationDate
NOT IN (TIMESTAMP '2011-06-30T12:00:00.000Z',
TIMESTAMP '2012-06-30T12:00:00.000+00:00')
www.it-ebooks.info

http://www.it-ebooks.info/

98 CHAPTER 5 Query
 ID:
SELECT * FROM cmis:document WHERE cmis:objectId IN
('130','131','132','133')

 Integer:
SELECT * FROM cmisbook:audio WHERE cmisbook:year
NOT IN (1988, 1990)

 Decimal:
SELECT * FROM cmisbook:video WHERE cmisbook:videoDuration
NOT IN (0, 60.0, 120.0)

LIKE PREDICATE

Using wildcards with a LIKE predicate, you can query for specific patterns in String
and URI properties. The NOT operator can be used in conjunction with the LIKE pred-
icate for a negative test.

 The most commonly used wildcard is the percent symbol (%). In a LIKE predicate,
% means zero or more occurrences of any character. Another wildcard is the under-
score (_), which matches exactly one character.

 Depending on how the String and URI properties are defined in the repository,
their values may be padded with spaces, which means you may need to add a trailing
wildcard for a match.

 Wildcard queries are powerful, but they do incur performance costs, so you
shouldn’t overuse the LIKE predicate. You should also try not to have a wildcard at the
beginning of your pattern, and try to be as specific as you can.

ESCAPING RULES

Escaping rules for your LIKE operations can be a bit tricky at times. Here are a few
cookbook examples that may come in handy next time you’re crafting some tricky
WHERE clauses.

 To match a percent sign or underscore in a LIKE predicate, the escape character
backslash (\) must precede the % or _. This example returns all of the lyrics for song
titles that start with “Sacred_”:

SELECT cmisbook:songtitle FROM cmisbook:lyrics
WHERE cmisbook:songtitle LIKE 'Sacred_%'

This example returns all of the lyrics in which the author name ends with “%Bleu”:

SELECT cmisbook:author FROM cmisbook:lyrics
WHERE cmisbook:author LIKE '%\%Bleu'

You can add new documents in the InMemory server with string properties that have %
or _ in their values, such as in the cmisbook:songtitle or cmisbook:author proper-
ties, and try the LIKE queries out. Remember that LIKE queries are case sensitive, so
your case must match to get results returned.

 In case you’re wondering about matching quotation marks, you don’t need any
escaping for double quotes. This example returns all of the lyrics for song titles that
start with “My”:
www.it-ebooks.info

http://www.it-ebooks.info/

99Components of a query
SELECT cmisbook:songtitle FROM cmisbook:lyrics
WHERE cmisbook:songtitle LIKE '”My%'

You’ll need to add an escape character before single quotes. The CMIS specification
states that the escape character can be either a backslash or the other common escape
character for a single quote—another single quote. The following two examples
should both work to return all of the lyrics for documents where the song titles start
with “David’s”:

SELECT cmisbook:songtitle FROM cmisbook:lyrics
WHERE cmisbook:songtitle LIKE 'David''s%'

SELECT cmisbook:songtitle FROM cmisbook:lyrics
WHERE cmisbook:songtitle LIKE 'David\'s%'

Finally, if you want to match the backslash character itself, add another backslash. This
example matches “back\slash” in the song title:

SELECT cmisbook:songtitle FROM cmisbook:lyrics
WHERE cmisbook:songtitle LIKE 'back\\slash%'

TRY IT—LIKE PREDICATE EXAMPLES

Try the following examples in your local CMIS Workbench, or play around with your
own variations:

 Percent symbol wildcard (%) example #1:
SELECT * FROM cmisbook:media WHERE cmis:contentStreamMimeType
LIKE 'audio%'

 Percent symbol wildcard (%) example #2:
SELECT * FROM cmis:document WHERE cmis:name LIKE '%Document%'

 Underscore (_) wildcard:
SELECT * FROM cmisbook:lyrics WHERE cmis:createdBy LIKE 'syste_'

 NOT LIKE:
SELECT * FROM cmisbook:note WHERE cmis:versionLabel NOT LIKE 'V 0._'

NULL PREDICATE

The NULL predicate tests whether or not a property’s value has been set. CMIS doesn’t
allow properties with a NULL value, so this predicate will only test whether or not the
property has been set. The NOT operator can be used in conjunction with the NULL
predicate for a negative test.

 You can use this predicate for both single- and multivalued properties. Here are
some examples of a NULL predicate on a single String property and a multi-DateTime
property:

SELECT * FROM cmisbook:note WHERE cmis:checkinComment IS NULL
SELECT * FROM cmisbook:note WHERE cmisbook:noteReminders IS NOT NULL

You can also add a NULL condition in your query for inequality comparison. For exam-
ple, if you want to see all Note documents that don’t have a link of resource.txt, you’ll
probably also expect to see documents that didn’t set this property to any value. Try
running the following two SQL queries, and you’ll see what we mean:
www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 5 Query
SELECT * FROM cmisbook:note WHERE cmis:versionLabel <> 'comment'
SELECT * FROM cmisbook:note WHERE cmis:versionLabel <> 'comment'

OR cmis:versionLabel IS NULL

Or try testing a Boolean property for FALSE, or not set at all:

SELECT * from cmisbook:note where cmis:isVersionSeriesCheckedOut is null OR
cmis:isVersionSeriesCheckedOut = FALSE

Some CMIS repositories may have already taken this into account, and you don’t need
to add a NULL predicate in those cases, but it’s nice to know that this is how you can
accomplish the same effect. Another useful reason to add a NULL condition is to test
for an empty String property.

 Some repositories allow you to store an empty String as a valid value, whereas oth-
ers treat it as not set. You can accommodate both implementations with a query like
the following:

SELECT * FROM cmis:document WHERE cmis:lastModifiedBy = ''
OR cmis:lastModifiedBy IS NULL

MULTIVALUE PREDICATE

You may have noticed that the previous sections describe query syntax only for single-
valued properties. What if you want to query on a multivalued property? Multivalued
properties can have more than one value, and not all CMIS repositories support them.
You can always check the cardinality of the object type property definition to find out
whether a property is single-valued (single) or multivalued (multi). You saw earlier
in the CMIS Workbench Types window how you can select an object type and see the
property definition attributes in the lower-right pane.

 The Query syntax is a bit more limited for multivalued properties. You can per-
form equality tests to find a specific value in any of the multiple values of the property.
More complex queries for ranges and wildcard searches aren’t applicable here.

CMIS syntax extends the SQL-92 syntax to use the ANY quantifier for multivalue
properties (see table 5.2). If you’re already familiar with SQL-92, you’ll recognize the
syntax. We’ll discuss the quantified comparison predicate and the quantified IN predi-
cate next. The syntax for the NULL predicate is the same for both single-valued and
multivalued properties—please refer to the previous section on the NULL predicate.

Table 5.2 Supported SQL-92 multivalue predicates, associated operators, and data types

Predicate Operator Data types

Quantified comparison = ANY Multivalued properties of all
data types

Quantified IN [NOT] IN Multivalued properties of all
data types except Boolean

NULL IS [NOT] NULL Multivalued properties of all
data types
www.it-ebooks.info

http://www.it-ebooks.info/

101Components of a query
QUANTIFIED COMPARISON PREDICATE

The following syntax for the quantified comparison predicate is only used for query-
ing a multivalued property for any of its values matching a literal. In addition, you can
only use the equality test (=). Unlike the single-valued property queries, the literal is
on the left side of the equal sign, and ANY followed by the property queryName is on
the right side of the equal sign. Here are two examples:

SELECT * FROM cmisbook:image WHERE -7 = ANY cmisbook:timeZoneOffset
SELECT * FROM cmisbook:pdf WHERE 'rome' = ANY cmisbook:pdfKeywords

QUANTIFIED IN PREDICATE

If you want to compare a multivalued property with a list of values, you can use the
quantified IN predicate in your query. This syntax is only used for querying a multival-
ued property for any of its values matching one of the literal values in the IN list. The
SQL does exactly what it says: return the object as a match when any of the multivalued
property values is among the specified values.

 The same data types that support the IN predicate for single-valued properties are
allowed for the multivalued properties—that is, this predicate doesn’t support Bool-
ean multivalued properties. The NOT operator can be used in conjunction with the
quantified IN predicate for a negative test, where none of the multivalued property
values matched the list of literals. Here are two examples:

SELECT * FROM cmisbook:note WHERE ANY cmisbook:noteLinks
IN ('http://www.apachecon.eu/','http://www.ibm.com')

SELECT * FROM cmisbook:officeDocument WHERE ANY cmisbook:keywords
NOT IN ('rome', 'raven', 'cmis') OR cmisbook:keywords IS NULL

LOGICAL OPERATORS (), AND, OR, AND NOT
You’ve seen the logical operator NOT used for negating the condition that comes next
(IN, LIKE, IS, NULL). In one of the examples, we also snuck in the use of the OR opera-
tor to expand the returned query result set if the row satisfied either of the two condi-
tions. You can also use the AND logical operator to restrict the result set to rows that
satisfy both of the two conditions.

 The following example will return all cmisbook:note documents except the ones
that have a cmisbook:noteLinks with the value of resource.txt or test.txt, including
the ones that didn’t set a property value for cmisbook:noteLinks:

 SELECT * FROM cmisbook:note WHERE ANY cmisbook:noteLinks
NOT IN ('resource.txt' , 'test.txt') OR cmisbook:noteLinks IS NULL

The next example uses the AND operator to return all documents that are checked out
by user abrown:

SELECT * FROM cmis:document WHERE cmis:isVersionSeriesCheckedOut = true AND
cmis:versionSeriesCheckedOutBy = 'abrown'

If you want to have more than two conditions that mix the ANDs and ORs, you need to
use parentheses to clarify the order in which these conditions are evaluated. CMIS
query syntax doesn’t specify any implied order of precedence, although the standard
www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 5 Query
order is parentheses first, then NOT, AND, and OR last. Because it’ll be up to the CMIS
server implementation, it’s safest to use parentheses in your SQL to ensure that the
conditions are evaluated in the order you’ve specified.

 In the first of the following two examples, you might think you’re looking for
notes that aren’t 287, but the archived document 287 will be returned because you’ve
evaluated the AND operator first. In contrast, the second example won’t return docu-
ment 287:

SELECT * FROM cmisbook:note where cmisbook:noteArchived = TRUE
OR cmisbook:noteArchived = FALSE AND cmis:objectId <> '287'

SELECT * FROM cmisbook:note where (cmisbook:noteArchived = TRUE
OR cmisbook:noteArchived = FALSE) AND cmis:objectId <> '287'

Also note that the objectId values may be different in your own InMemory Reposi-
tory, so you may have to adjust the queries accordingly.

5.3.3 Ordering and limiting query results

With all the query results that are returned, you probably want to see them in some
order that makes sense to you. This calls for adding an ORDER BY clause to your query.
The ORDER BY clause comes at the end of the query, after the WHERE clause. It consists
of tuples of sorting information—namely, what property you want to sort by, and how
you want the results to be sorted, either in ascending or descending order. You can
have more than one sorting property in the ORDER BY clause. The first tuple is the pri-
mary sort specification, the next tuple is the secondary, and so on.

 The properties in the ORDER BY clause must have their attribute orderable set to
TRUE, and they must also be specified in the SELECT clause. Some CMIS server imple-
mentations may be more lenient about these two requirements.

 Because the orderable attribute for a property is supposed to apply to all queries,
getChildren, and getCheckedOutDocs, the orderable attribute might be set to false
if the CMIS implementation doesn’t support sorting on the property in getChildren
(for example).

 As for requiring sorting properties to be in the SELECT clause, some CMIS imple-
mentations may allow the sorting of CMIS properties and/or custom properties with-
out returning their values in SELECT. But it’s a good practice to have the sorting
property returned, as you’re probably interested in seeing the values of the property
anyway.

 You can order in ascending (ASC) order or in descending (DESC) order. The colla-
tion order is repository-specific, and the repository determines the ascending and
descending rules. If the collation order isn’t specified, the repository will use the
default sort order.

 The CMIS Workbench shows the orderable attribute in the object type property
definitions. You can also find out programmatically by requesting the type definition
for an object type. Recall that we’ve done this using the Groovy console in chapter 4.
Only single-valued properties of all data types can be orderable. It makes sense that
multivalued properties aren’t orderable.
www.it-ebooks.info

http://www.it-ebooks.info/

103Components of a query
 Here are two ORDER BY examples:

SELECT cmis:name, cmis:contentStreamLength FROM cmisbook:media
ORDER BY cmis:contentStreamLength ASC

SELECT cmis:name, cmis:objectId FROM cmis:document
ORDER BY cmis:name ASC, cmis:objectId DESC

5.3.4 Joins and determining repository support

A powerful query feature we’ve yet to cover is the capability to join object types based
on a common property key value. Using relational database table jargon, we can say
that a join allows you to combine and associate tables dynamically during a SELECT
query, so that the rows from multiple tables can be treated as if from the same table,
and a single set of query results can be returned.

 This is the SQL JOIN feature, but not all CMIS repositories support JOIN queries.
That’s why you have to check for the support in the repository’s capabilities list. You’ll
even find a couple of levels of support within the list of those that support JOINs.

 In our earlier exercises viewing InMemory capabilities, recall that the simple
InMemory server doesn’t support JOINs (capabilityJoin = NONE). Therefore, you
won’t be able to run any JOIN queries on the InMemory server. But we’ll continue to
use the familiar object types, such as cmisbook:media and cmisbook:text and their
properties in our JOIN examples.

 If you do have access to a CMIS server that supports JOIN queries, it’s a good idea to
learn more about this advanced topic of SQL JOINs in relational databases. Here, we’ll
assume you have a basic knowledge of JOINs, and we’ll go through the CMIS-specific
syntax, which is more limited in features than the variations allowed in SQL-92. Once
you’re familiar with the JOIN syntax and the data model specific to your CMIS server,
you can use the CMIS Workbench to create documents and objects that can be joined,
and test your JOIN queries.

 The descriptions in this section will use the relational database jargon, such as rows
and tables, because it’s easier to visualize joining tables, as opposed to joining object
types and objects.

 The next three subsections will iterate through the three levels of repository JOIN
support you’re likely to encounter. These three levels are called none, inneronly, and
innerandouter.

CAPABILITYJOIN = NONE

The JOIN clause isn’t allowed in a query when a server has capabilityJoin set to
none. If you try to run a JOIN query, the server will return an error.

CAPABILITYJOIN = INNERONLY

Only INNER JOINs are allowed in the query if capabilityJoin is set to inneronly. For
INNER JOINs, only the rows that satisfy the JOIN condition are included in the results.
You can abbreviate INNER JOIN to JOIN in the SQL. Here’s an example:

SELECT M.*, T.cmis:name textname FROM cmisbook:media
AS M JOIN cmisbook:text AS T ON M.cmis:createdBy = T.cmis:lastModifiedBy
www.it-ebooks.info

http://www.it-ebooks.info/

104 CHAPTER 5 Query
CAPABILITYJOIN = INNERANDOUTER

Both INNER JOINs and LEFT OUTER JOINs are supported when capabilityJoin is set
to innerandouter. For LEFT JOIN queries, all of the rows from the left table are
returned, regardless of whether or not the JOIN condition (ON) is true. When a row
has unmatched columns, these columns will still be included in the result set if they’re
SELECTed but with a NULL value. You can abbreviate LEFT OUTER JOIN to LEFT JOIN in
the SQL.

 In the following example, we’ll change our previous INNER JOIN SQL to a LEFT
OUTER JOIN. More results will be returned, and they’ll now include all the cmisbook:
media documents in the system, even if their creator never modified a cmisbook:
text file (ON condition). In those cases, the text name for the resulting row will be
NULL. Look at this example:

SELECT M.*, T.cmis:name textname FROM cmisbook:media
AS M LEFT JOIN cmisbook:text AS T ON M.cmis:createdBy
 = T.cmis:lastModifiedBy

MULTIPLE JOINS

As in relational database SQL, you can have more than one JOIN in your SELECT query
to JOIN with more than one table. The syntax rule for nested JOINs follows the basic
SQL rules. But parentheses are required around the JOIN-ON syntax (for example,
table2 JOIN table3 ON t2.A = t3.B), as in this example:

SELECT M.cmis:name AS mName, M.cmis:objectId AS mID, T.cmis:createdBy
AS creatorName, N.cmis:name AS noteName FROM (cmisbook:media AS M JOIN
cmisbook:text AS T ON M.cmis:createdBy = T.cmis:lastModifiedBy) INNER
JOIN cmisbook:note AS N ON N.cmis:createdBy = T.cmis:createdBy WHERE
N.cmisbook:noteArchived = TRUE

PERFORMANCE OF JOINS JOINs can be resource intensive and may degrade
your system performance, which means you should always try to minimize the
number of tables you JOIN, particularly in frequently run queries.

GENERAL JOIN LIMITATIONS IN CMIS
Here are some more notes and limitations you should know for the CMIS JOIN syntax:

 Only explicit JOINs are supported, using the JOIN ... ON syntax. Don’t use the
implicit JOIN syntax, where you only specify multiple tables in the FROM clause;
for example, SELECT * FROM Object1, Object2. The implicit JOIN syntax isn’t
supported.

 Only equijoin is supported, where the JOIN condition in the ON clause can only
be an equality test between the object properties. The object properties can be
of any data type. The object properties in the JOIN condition don’t have to have
the same name, but the comparison operator must be the equal sign (=). Here’s
an example:
SELECT M.*, T.cmis:name textname FROM cmisbook:media AS M JOIN
cmisbook:text AS T ON M.cmis:createdBy = T.cmis:lastModifiedBy WHERE
M.cmis:createdBy <> 'unknown'
www.it-ebooks.info

http://www.it-ebooks.info/

105CMIS SQL extension functions
 The object properties used in the ON clause to JOIN the tables can only be
single-valued properties. You can’t specify a multivalued property. It wouldn’t
make sense anyway.

 RIGHT JOIN and FULL JOIN aren’t supported.

That’s it for all of the portions of CMIS SQL that are part of the standard SQL-92. Up to
this point, if you’re experienced with using SQL in general, this should all have felt
familiar—we hope even natural. Now that we’ve finished covering the standard parts
of CMIS SQL, all we have left are a few small parts that have been extended for ECM.
Hang on, we’re almost finished.

5.4 CMIS SQL extension functions
As we mentioned earlier in the chapter, CMIS extends SQL-92 in a few ways that make
sense for ECM systems. Specifically, these extensions are CONTAINS(), SCORE(),
IN_FOLDER(), and IN_TREE(). This section will cover each of them with examples.
We’ll start with CONTAINS() and full-text searching.

5.4.1 CONTAINS(): full-text search

One of the most powerful CMIS query features is the ability to search against the docu-
ment content, sometimes called full-text search. The CONTAINS() function is used to
express the text-search conditions for the query. You can search for words or phrases
with wildcards for matches on substrings. It’s much more powerful than the = and
LIKE predicates, which require exact patterns and are case sensitive.

ABOUT CMIS INMEMORY REPOSITORY AND CONTAINS() Although InMemory
reports BOTHCOMBINED, its ability to do full-text search is greatly exaggerated.
It’s more of a test/static implementation than the type of full-text search
you’ll find in any enterprise-level content management system. If you want to
exercise all of the stuff you’ll be learning in this section, it’ll be better to try
the examples with a real server. Consult table 1.1 in chapter 1 for a list of
available CMIS ECM servers. The same is true for the static nature of the
InMemory’s SCORE() function, which we’ll cover shortly.

REPOSITORY-LEVEL FULL-TEXT SEARCH CAPABILITIES

Full-text search capabilities require the CMIS repository to have a text-search engine
to perform the indexing of the documents, and to search against the index. Not all
CMIS repositories support full-text search. You should check the repository capability,
capabilityQuery, to see what types of queries are supported.

 At the beginning of this chapter, you checked the InMemory Repository informa-
tion and determined that your server supports BOTHCOMBINED. Here are those
capabilityQuery attribute values as they relate to full-text search:

 capabilityQuery = none—The CONTAINS() function isn’t supported and can’t
be used in the CMIS SQL queries for this repository.
www.it-ebooks.info

http://www.it-ebooks.info/

106 CHAPTER 5 Query
 capabilityQuery = metadataonly—The CONTAINS() function isn’t supported
and can’t be used in the CMIS SQL queries for this repository.

 capabilityQuery = fulltextonly—The CONTAINS() function is the only con-
dition allowed in the WHERE clause. The CMIS queries are limited to full-text
search of document contents.

Example: SELECT cmis:name, cmis:objectId FROM cmis:document WHERE
CONTAINS('document')

 capabilityQuery = bothseparate—The repository supports full-text search-
ing against the document content and querying against object properties, but
they can’t be in the same SQL query. Somehow the CMIS client must manage
the query results separately with separate SQL queries.

Example: SELECT * FROM cmis:document WHERE CONTAINS('document')
SELECT cmis:name, cmis:objectId FROM cmis:document WHERE cmis:name

LIKE 'update%'

 capabilityQuery=bothcombined—The repository supports full-text searching
against the document content and querying against object properties, and they
can be in the same SQL query, joined together with AND.

Example: SELECT cmis:name, cmis:objectId FROM cmis:document WHERE
CONTAINS('document') AND cmis:name LIKE 'update%'

TYPE-LEVEL FULL-TEXT SEARCH SUPPORT

Besides checking that the CMIS repository supports full-text search, you’ll need to
know whether the particular object type that you want to search on has been defined
to be text-searchable. This information has been set in the object type definition attri-
bute, fulltextindexed. If the value of this Boolean attribute is TRUE, the document
content is text-indexed and can be searched using the CONTAINS() function.

 The CMIS Workbench shows the fulltextindexed attribute for all document
object types, but you can also check this value programmatically using the techniques
we covered in chapter 4.

 Depending on the implementation and support of the repository, some reposito-
ries may also text-index the object properties along with the document content. This
means that you can use the CONTAINS() function and the powerful text-search engine
to search on the property values (mostly String properties).

 The text-search grammar defined in the CMIS query is deliberately small and
generic to account for the many text-search engines and their varying levels of search
capabilities. You should find that the syntax is sufficient for the average user who’s
accustomed to the Google keyword search.

ABOUT TEXT-SEARCH ENGINE IMPLEMENTATIONS Because the CMIS specification
is meant to be generic, the text-search results returned from different reposi-
tories are dependent on the underlying text-search server, how it’s config-
ured, and how the CMIS server has chosen to implement the CMIS text-search
syntax. If you want to learn more about text search in relational databases,
www.it-ebooks.info

http://www.it-ebooks.info/

107CMIS SQL extension functions
and how it uses linguistic processing to determine the matches, see the docu-
mentation for your particular search engine for the details.

CONTAINS() SYNTAX

Because CONTAINS() is a function, we’ll start off with a normative description of its
input and output, and then we’ll follow up with plenty of examples.

 Here’s the syntax:

CONTAINS ([<qualifier> ,] ' <text search expression> ')

In this statement, qualifier is an optional parameter for the name of the “virtual
table” or object type’s queryName. Usually the table is implied from the FROM clause of
the SQL. If the query is a JOIN, you must specify in which table the CONTAINS() func-
tion is to be applied.

 The text-search expression is a character string enclosed in single quotes that spec-
ifies the text-search criteria. You enter words (or terms) in order to find documents
that contain the words. You can also refine your searches with some additional
options:

 Phrases are denoted by enclosing words in double quotes.
 Terms separated by whitespace are ANDed together. AND is implied, and it has a

higher precedence than OR.
 Terms separated by OR are ORed together. OR is a reserved word and shouldn’t be

used as a search term.

USE OF OR IN SEARCHES “Or” shouldn’t be used as a search term. But even if
you think you want to search for the word “or,” you probably wouldn’t find it
because text indexers often filter out common words to improve storage and
performance.

 Use the minus sign (-) as a modifier to exclude documents that contain the
word. You can prefix a word or a phrase with the minus sign.

 Terms can contain wildcards. The wildcard character * substitutes for zero or
more characters. The wildcard character ? substitutes for exactly one character.

 Use the backslash (\) as the escape character when you want to search for spe-
cial characters, such as the following, in your text-search SQL:
 Minus sign (-)
 Asterisk sign (*)
 Question mark (?)
 Double quote (")
 Single quote (')
 Backslash (\)

Now let’s look at some examples.
www.it-ebooks.info

http://www.it-ebooks.info/

108 CHAPTER 5 Query
CONTAINS() EXAMPLES

For the following examples, you can create a few documents using the Workbench, or
update the content stream of existing documents with a file of your own (in the CMIS
Workbench main window, click on a document, click on the Actions tab, and then
specify your own local file to be used for Set Content Stream). Then experiment with
the text-search syntax by adding modifiers and operators (see table 5.3) to your own
terms in the CONTAINS() SQL query.

CONTAINS() ESCAPING

Escape characters are needed in a text-search string whenever you want to search on a
particular character that has a special use in text search. For example, we talked about
using the minus sign as an exclusion character. If you want to search for the minus
sign, you’ll need to add the escape character (the backslash) before the minus sign.

 Between CMIS specification versions 1.0 and 1.1, the list of characters that need
escaping, and the requirements for constructing the text-search string with respect to

Table 5.3 CONTAINS() modifiers and operators

Modifiers and
operators

Example
Query returns documents that

contain the following

Implied AND CONTAINS('document folder') Both terms, “document” and “folder”

OR CONTAINS('document OR folder') Either “document” or “folder”

- CONTAINS('document –folder') “Document” but not “folder”

* CONTAINS('class*') Words matching the combinations of
the wildcard pattern, such as “class”
or classic”

* CONTAINS('c*ss') Words matching the combinations of
the wildcard pattern, such as “class”
and cross”

* CONTAINS('*lass') Words matching the combinations of
the wildcard pattern, such as “lass”
and class”

? CONTAINS('clas?') Words matching the combinations of
the wildcard pattern, such as “class”
and clasp”

? CONTAINS('temp?r') Words matching the combinations
of the wildcard pattern, such as
“temper”

? CONTAINS('?olor') Words matching the combinations of
the wildcard pattern, such as “color”
and dolor”

Double-quoted
phrase

CONTAINS(' "class hierarchy" ') ' The exact phrase, “class hierarchy”
www.it-ebooks.info

http://www.it-ebooks.info/

109CMIS SQL extension functions
escaping, have changed. Even in version 1.0–compliant servers, there may be imple-
mentation differences for the use of escape characters in text search because of the
generality of the specifications.

 Another consideration when searching for a special character that needs escaping
is that depending on the configuration of the text-search server, these characters
might be considered delimiters and might not be text-indexed at all, resulting in no
match even if it’s properly escaped.

 In version 1.0, only two characters need escaping in a text-search string: the single
quote and the backslash. Any other occurrence of the backslash is an error. It’s left to
the individual CMIS server implementations to interpret how to handle other special
characters used in CONTAINS(), such as the minus sign.

 In version 1.1, you’ll need to think of the entire CONTAINS() SQL as having two sep-
arate grammars: a query statement–level grammar, and a text-search expression–level
grammar. The statement-level grammar will parse through SQL, identifying the
SELECT, the FROM, the WHERE, and the CONTAINS() functions, and their parameters. At
this level, the grammar knows about single-quoted character strings. Like the CMIS 1.0
specifications says, you’ll need escape characters for single quotes and backslashes at
this level.

 The second level is the text-search expression. Once the text-search expression is
isolated, you’ll realize that this expression has some more special characters that will
need to be escaped, including *, ?, -, plus the original \ and '.

 Now it’s definitely time for some examples. Let’s look in table 5.4 at the list of spe-
cial characters that need escaping, and their corresponding syntax according to CMIS
1.0 and CMIS 1.1. Some of the characters don’t have CMIS 1.0 examples because it
depends on the CMIS server implementation.

ADDITIONAL CONSTRAINTS ON CONTAINS()
The CMIS specification doesn’t dictate whether the text search is case sensitive or not
(whether searching for “TEST” and “test” will return different matches). Most of the
text-search servers in the market aren’t case sensitive, but it will be up to the reposi-
tory implementation.

Table 5.4 Table of CONTAINS() escape examples

Special character Query result contains CONTAINS() syntax

Single quote (') d'Aconia CMIS 1.0: CONTAINS('d\'Aconia')
CMIS 1.1: CONTAINS('d\\\'Aconia')

Backslash (\) \root CMIS 1.0: CONTAINS('\\root')
CMIS 1.1: CONTAINS('\\\\root')

Asterisk (*) *atlas CMIS 1.1: CONTAINS('*atlas')

Question mark (?) shrugged? CMIS 1.1: CONTAINS('shrugged\\\?')

Dash (-) value-for-value CMIS 1.1: CONTAINS('value\\\-for\\\-value')
www.it-ebooks.info

http://www.it-ebooks.info/

110 CHAPTER 5 Query
 The CONTAINS() function returns TRUE when the document object is considered
relevant with respect to the text-search expression, and it returns FALSE when the
object isn’t relevant.

 The CONTAINS() function call can only be ANDed with the combined result of all
the other conditions. Here’s an example:

SELECT * FROM cmis:document WHERE CONTAINS('documents') AND (cmis:createdBy =
'system' OR cmis:lastModifiedBy = 'system')

In one SQL query statement, you can only have one CONTAINS() function call. One of
the reasons for this is because of the syntax of the CMIS Score() function. Because the
Score() function doesn’t take any parameters, it’s implicitly tied to one and only one
CONTAINS() function in the same query. This is the perfect lead-in to our next topic,
the Score() function.

5.4.2 Score()

The Score() function allows you to quantify how relevant your search result is in
matching the criteria in the CONTAINS() text-search function.

 This function returns a floating point relevance score between 0 and 1 to show
how well the document satisfies the text-search portion of the query. How the score is
calculated depends on the repository and text-search server. If the Score() for a par-
ticular document is 0, then it didn’t satisfy the CONTAINS() function’s criteria. In prac-
tice, you’ll never see any documents with a 0 text-search score in your query results.

 The Score() function doesn’t take any parameters, and it returns a numeric repre-
sentation of the relevance of all the documents that satisfy the CONTAINS() function in
the query. There can only be one CONTAINS() function, which means there can be at
most one Score() function call in a text-search query, too.

 The CMIS specification has a limitation on how the Score() function can be used
in a query. It can only be part of the SELECT clause. This doesn’t mean you can’t use
the document score in other parts of the query, though, such as the ORDER BY clause.
After all, this is probably the most common way to use the relevance score—to order
the query results so that the most relevant results are returned first in the results. To
do that, you need to define an alias for the Score() function, and use the alias in the
ORDER BY clause.

 Try this example query:

SELECT cmis:name, cmis:objectTypeId, SCORE() AS myscore
FROM cmis:document WHERE CONTAINS('row') ORDER BY myscore DESC

SCORE() IMPLEMENTATION IN THE CMIS INMEMORY REPOSITORY You may notice
that the scores all come back with the same number in your InMemory server.
Again, this is repository-specific, and the ability of the CMIS repository to per-
form text searches doesn’t always mean that they’re also able to return a con-
version of the back-end text-search engine’s relevance score into a range from
0 to 1. Because InMemory is only a test server, it returns a static value for all
cases. Also note that not all text-search engines use the range of 0 to 1; some
www.it-ebooks.info

http://www.it-ebooks.info/

111CMIS SQL extension functions
use 0 to 100, and others may use 0 to 1,000. It’s possible that the scores are
therefore implemented to always return the full score for all of the matches in
the query results. But be assured that the query results you receive will be
sorted by their relevance, as you specified in the ORDER BY clause.

The default queryName for the Score() function is SEARCH_SCOPE, so if you don’t spec-
ify an alias, the scores will be returned under the alias name of SEARCH_SCOPE.
Here’s an example:

SELECT SCORE() FROM cmis:document WHERE CONTAINS('row')

The CMIS specification doesn’t specifically prohibit the use of the alias of Score() in
the WHERE clause.

5.4.3 Navigational functions

We’re getting to the end now—only two more functions left to discuss. Both of these
are CMIS extensions, like CONTAINS() and Score(), but these deal with folder contain-
ment. They’re In_Folder() and In_Tree().

IN_FOLDER()
In_Folder() is an interesting extension to the SQL syntax, tailored to the content
management crowd. The In_Folder() function can be used to return all matches that
reside in a specific folder. This is a powerful scoping feature for querying under a par-
ticular folder.

 Here’s the syntax:

IN_FOLDER([<qualifier>,] <folder id>)

The first input parameter, <qualifier>, is an optional parameter that indicates the
virtual table to which the In_Folder() function should be applied. This is the query-
Name of the type of objects you want to return, which should be one of the object types
in the FROM clause. The same table alias should be used here as when it’s specified in
the FROM clause.

 For example, if you want the first-level documents of the folder /texts, whose
cmis:objectId is 118, the following three SQL examples will return the same results.
(Again, please note that the objectId values may be different in your local InMemory
Repository.)

SELECT * FROM cmis:document WHERE IN_FOLDER('118')
SELECT * FROM cmis:document WHERE IN_FOLDER(cmis:document,'118')
SELECT D.* FROM cmis:document AS D WHERE IN_FOLDER(D,'118')

The <qualifier> becomes a mandatory parameter when the query is a JOIN query
and the SQL has more than one virtual table. For JOINs, you’ll get an error message if
you don’t specify the table name in the In_Folder() function:

SELECT D.* FROM cmis:document AS D JOIN cmis:folder AS F ON D.cmis:createdBy
= F.cmis:createdBy WHERE IN_FOLDER(D,'118')
www.it-ebooks.info

http://www.it-ebooks.info/

112 CHAPTER 5 Query
In the previous example, IN_FOLDER(D, '118') will return cmis:document objects
residing in folder 118. If you change the qualifier to the other table, IN_FOLDER(F,
'118') will return cmis:folders in folder 118.

 Note that In_Folder() isn’t only limited to returning base cmis:document or
cmis:folder object types. You can restrict the object type to any object type in FROM,
and type inheritance still applies. The following example SQL will return all cmisbook:
text objects and their descendant object types, including cmisbook:lyrics and
cmisbook:poem in the folder /texts.

SELECT cmis:name, cmis:objectTypeId FROM cmisbook:text WHERE IN_FOLDER('118')

The second parameter for In_Folder() is the <folder id>. This should be the
cmis:objectId of a folder. Remember that this is an ID parameter, and not the folder
name or the path name.

 Even though this is a useful function extension and it has a simple syntax, as
always, you should take care to construct a concise query. The In_Folder() function
isn’t necessarily easy for a CMIS repository to implement, and it may be performance
intensive—like our next CMIS extension, the In_Tree() predicate function.

IN_TREE()
The In_Tree() function is even more powerful than its In_Folder() cousin. This
function will return all descendant objects under the specified folder tree. For exam-
ple, if the specified folder has three more levels of subfolders, In_Tree() will return
matches from all three levels. Here’s the syntax:

IN_TREE([<qualifier>,] <folder id>)

In_Tree() has the same syntax as In_Folder(), with two parameters. <qualifier> is
the optional virtual table queryName or alias, and <folder id> is the cmis:objectId
of the relative root folder that you want to scope your query to. You can go back to the
In_Folder() section to review the details of the parameters and the examples.

 Let’s compare the two functions In_Folder() and In_Tree() against the InMem-
ory server. The first of the two following SQL statements calls In_Folder() to return
all folders in the root folder, /, which has a cmis:objectId equal to 100. The second
changes the function call to In_Tree(), and it returns all folders and subfolders
under the same root folder:

SELECT cmis:path FROM cmis:folder WHERE IN_FOLDER('100') ORDER BY cmis:path
SELECT cmis:path FROM cmis:folder WHERE IN_TREE('100') ORDER BY cmis:path

One thing you might’ve noticed about In_Folder() and In_Tree() is that you can
only return query results of the same object type, such as all folders or all documents.
This means SQL can’t return both folders and documents. You’ll have to make sepa-
rate SQL statements to get each object type.

 This same limitation affects all CMIS queries, where the results are bound by the
same object type and its descendant object types. It’s more obvious with these folder
function calls because you’re used to browsing a directory structure, opening folders,
www.it-ebooks.info

http://www.it-ebooks.info/

113Summary
and seeing all their content. For those simple scenarios, you should use the folder API
calls, such as getChildren(), to get all the object type instances in the folder.

 Again, we’ll repeat our warning about the performance implications of the
In_Tree() function call. This is one of the more powerful query capabilities that all
CMIS repositories must implement, and it could also require more database process-
ing. Please be careful and monitor your use of the In_Folder() and In_Tree() func-
tion calls.

5.5 Summary
In this chapter, you were introduced to the key high-level concepts of SQL queries,
and along the way you were shown how these ideas map to CMIS SQL concepts. We
then dove down into all of the details of Query, from the main clauses that make up a
CMIS query, to grinding through all of the predicates, to reviewing the extension func-
tions that were added for CMIS. We also used the CMIS Workbench’s query panel to
interactively execute queries and view their results, and we ran queries from the
Groovy console.

 If you understood the ideas presented in this chapter, you’re now competent in
CMIS Query functionality. Congratulations! We know this chapter was no cakewalk.
The concepts you’ve learned here, when added to the repository basics you learned in
chapters 1 through 4, make you fully prepared to do some real work (and have some
real fun) in part 2, where we’ll build a music server.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part 2

Hands-on CMIS
client development

By now you have a general familiarity with CMIS, and it’s time to apply what
you’ve learned. In this part of the book, you’ll build a custom, content-centric
application called The Blend. In chapter 6, you’ll learn more about the project
and the architecture of the solution. Then, over the next few chapters, you’ll
apply what you’ve learned about CMIS to implement the solution using Apache
Chemistry and some JSP pages. Toward the end of this part of the book, you’ll
have the opportunity to try out a few other CMIS client libraries that extend The
Blend to work with SharePoint, PHP, and mobile operating systems, like Android
and iOS.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Meet your new project:
The Blend
This chapter introduces you to the project you’re going to tackle using CMIS and
Apache Chemistry. The project is a collaborative music- and art-sharing application
called The Blend. By the end of the chapter, you’ll understand the business
requirements and the technical design of the application. You also will have set up
your development environment and configured the OpenCMIS InMemory Reposi-
tory to be ready to store the content for the application. Finally, you’ll take the first
steps toward coding the application by creating a new web application project and
writing the code necessary to log in, connect to the repository, and log out.

This chapter covers
 Previewing the functionality of The Blend

 Establishing a technical design based on business
requirements

 Setting up your development environment

 Configuring the InMemory server with custom content types

 Adding login/logout to The Blend and connecting to the
repository
117

www.it-ebooks.info

http://www.it-ebooks.info/

118 CHAPTER 6 Meet your new project: The Blend
6.1 Understanding the business requirements
and technical approach
Before we start knocking out code, let’s take a minute to talk about some of the appli-
cation’s requirements and discuss a high-level approach to the project.

6.1.1 Business requirements

The Blend is a web application that artists can use to collaborate with others and to
organize their work. The idea is for different types of artists—musicians, graphic
designers, and sound engineers—to upload, share, and remix their work. Rather than
doing this using email or simple cloud file-sharing applications, The Blend is a purpose-
built, content-centric application aimed specifically at fulfilling the needs of these types
of artists. Specifically, users of The Blend need to be able to do the following:

 Upload audio, lyrics, artwork (such as album covers), and videos.
 Group one or more songs into an album of orderable tracks.
 Tag songs, artwork, albums, and videos.
 Create new versions of audio or video files and keep track of version history.

(This is particularly important for these artists, who create lots of derivative
works as they riff on each other’s ideas.)

 Associate artwork (such as an album cover) with an album or an individual
song.

 Search the entire repository for tags or keywords that appear within lyrics, song
titles, album names, and so on.

 Organize any of these creative assets in a folder structure that makes sense to
end users. This includes the ability not only to create an arbitrary folder struc-
ture, but also to move assets between folders and rename assets.

 Play audio and video files within the web page without requiring the intermedi-
ate step of downloading the file first.

In addition, it’d be nice if the system could take advantage of some existing libraries
that know how to extract metadata from audio and video files as they’re uploaded so
end users don’t have to rekey metadata that’s already contained in existing files.

 It’s also important to get something done quickly and to implement a solution
that’s as portable and open as possible.

 That’s it for the requirements. Don’t you wish all of your projects were this straight-
forward? Now that you know what you’re about to build from a functional perspective,
let’s talk about the technical approach.
www.it-ebooks.info

http://www.it-ebooks.info/

119Understanding the business requirements and technical approach
6.1.2 Establishing the technical design

You don’t need to go overboard to design this application,
but it does make sense to discuss an approach or an overall
technical design. At a high level, the application architec-
ture looks like figure 6.1.

 To cover all the bases, we’ll need to talk about the repos-
itory, the web application framework, security, the organiza-
tion of the data, and the data model.

THE REPOSITORY

To the surprise of no one reading this book, the technical
team decides that the repository that will hold The Blend’s
data needs to be CMIS-compliant for all of the reasons we
discussed in part 1. Because you’ve already got it set up,
you’ll use the OpenCMIS InMemory Repository as the CMIS
repository for this project, but you could as easily use
Alfresco, FileNet, SAP, or any other CMIS-compliant server as
the backend for The Blend.

THE WEB APPLICATION FRAMEWORK

You can’t throw a stick without hitting a web application
framework these days. They’re as ubiquitous as dry cleaning
and frozen yogurt shops are in my little part of the world—
there’s one on every corner. Even if you decide to narrow
your scope to Java-based web application frameworks, you’ll
still be faced with hundreds to choose from.

 For this simple application, most any framework would
be fine—Grails, Spring MVC, or anything. And as much as
we’d like to pick something trendy and new, we decided that it would be best to keep
things as simple as possible and go with an approach that won’t distract you from the
task at hand—learning how to write CMIS applications. We chose to use no framework
at all and to write the application using good old Java servlets and JSPs. If you’re old
enough to remember writing apps with servlets, we’ll give you a second to reminisce.
If you’re not, well, you’re about to kick it old school.

 Using this approach, every page in the application will have a corresponding serv-
let that uses OpenCMIS to talk to the CMIS repository, and each servlet will have a cor-
responding JSP page that’s used to show the CMIS repository data to the end user. This
one-to-one mapping between servlets and JSP pages is shown in figure 6.2.

 Bear in mind that you’re likely to have additional Java classes that aren’t servlets.
And the application will include additional resources that aren’t JSPs, such as images,
style sheets, and JavaScript files.

Apache Tomcat
server

Apache Tomcat
server

Web browser

OpenCMIS
InMemory
Repository

The Blend
web application

Figure 6.1 High-level
architecture of The Blend
www.it-ebooks.info

http://www.it-ebooks.info/

120 CHAPTER 6 Meet your new project: The Blend
SECURITY

It’s always a good idea to talk about security up front. You’ll notice that the business
requirements were silent on this subject, and that’s primarily because this application
is about sharing, remixing, and reusing these creative assets freely. This means the
application doesn’t require much in the way of security.

 Depending on the capabilities of your repository, you could have certain users or
groups who could modify certain object types (like Graphic Designers can modify
Album Covers but not Songs). But for our purposes, we’ll assume that users who can
log in to the application have full rights to everything stored in the repository.

 The Blend will have a login page, and it will use the CMIS repository to validate
the user’s credentials. All pages except the login page will require a session to be
established.

DATA ORGANIZATION

In many content-centric applications, the physical organization of the data is critically
important, either because the organization of the data helps the humans who have to
work with it, or because the organization has semantic meaning to the system that’s
working with it, or both. For example, if you were building a system to manage
expense reports, you might choose to model the expense report as a folder and the
receipts as images stored in that folder. Both the human using the application and the
system get some efficiency in being able to assume that anything they find in that
expense report folder will be an expense receipt image.

 In some repositories, the security requirements may also drive folder structure. It
may be optimal, for example, to store everything with similar security settings in a
common root folder in cases where access control lists are inherited from parent to
child. Grouping objects with similar security profiles makes it easy to manage security
settings in fewer places.

 In The Blend, the songs, videos, lyrics, and other assets will be typed. We’ll talk about
the types in the next section, but for now that means that the system doesn’t need a spe-
cific folder structure to know what an object is—it can look at the object’s type.

 The Blend’s folder structure will be purely for the convenience of its human users.
The exception to this is the application’s root folder. The Blend application will let

Index servlet Browse servlet

Abstract servlet

Search servlet ...

Index JSP Browse JSP Search JSP ...

Figure 6.2 Every page in
the application will have one
servlet and one JSP.
www.it-ebooks.info

http://www.it-ebooks.info/

121Understanding the business requirements and technical approach
users browse the folder structure, but it’s
not safe to assume that the repository is
used solely for The Blend. What’s more
likely is that one folder in the repository
will be designated as the application’s root
folder. In our setup, we’ll use /blend as
the application’s root folder.

 The default folder structure is shown in
figure 6.3.

DATA MODEL

As mentioned in the previous section, every object The Blend works with will be of a
type specific to this application. The first step is to identify the types that are needed.
Next, the types need to be organized in a type hierarchy. Then properties can be
added to each type. The result is the data or content model.

Identifying types
One way to identify types is to look back at the requirements and look for words that
describe the kind of content being managed. If you do that now, you’ll likely come up
with a list that includes audio, video, lyrics, artwork, album covers, albums, and songs.

 A song is a specific type of audio. But there’s nothing special you need to do to a
song compared to a piece of audio, so there’s no need to have two different types.
Let’s start with a type called audio, and later it can be specialized to song if needed.

 Similarly, an album cover is a specific kind of artwork, and a more general form of
artwork is an image. That gives us the types shown in figure 6.4.

Organizing the types into a hierarchy
The types we’ll work with have been identified, but they need to be organized into a
hierarchy. That’s because some of these types may have characteristics in common, so
it’s helpful to group them under a common ancestor. For example, audio, video, and
album are all types of media. The application might want to display a media player
that can deal with any of these types, so it makes sense to group those.

 Now consider the tagging requirement. You have a lot of ways to implement this.
The easiest way is to create a “taggable” type that has a multivalue property that keeps

cmisbook:image cmisbook:video cmisbook:lyrics

cmisbook:audio cmisbook:album

Figure 6.4 Types of content users will work with in The Blend

Figure 6.3 Default folder structure for The
Blend
www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 6 Meet your new project: The Blend
track of tags, and then have the types that need to support tags inherit from the tagga-
ble type.

 All of these types ultimately have a file associated with them, so they all share
cmis:document as a common ancestor.

 When you prepend the type names with the cmisbook namespace and organize
them as discussed, you get the content type hierarchy shown in figure 6.5.

Identifying each type’s properties
The content types are identified and are organized in a hierarchy. The last thing you
need in order to create the complete content model is to know the properties defined
for each type. The tables that follow (tables 6.1 through 6.8) show the properties that
will be defined for each type.

 The cmis:taggable type (table 6.1) needs a single property to keep track of the
tags assigned to an object. Any other type that needs to have tags associated can
inherit from this type.

The cmisbook:image type (table 6.2) contains properties typical of digital images, and
many of these properties are part of a standard called EXIF. Most digital cameras will
set some or all of these properties when they capture the images.

Table 6.1 Properties of cmis:taggable

ID Type Multivalue?

cmisbook:tags String Yes

cmisbook:image cmisbook:media cmisbook:lyrics

cmisbook:audio cmisbook:video cmisbook:album

cmisbook:textcmisbook:taggable

cmis:document

Figure 6.5 The basic
content type hierarchy
for The Blend
www.it-ebooks.info

http://www.it-ebooks.info/

123Understanding the business requirements and technical approach
The cmisbook:media type (table 6.3) contains properties common to media such as
audio, video, and albums.

Table 6.2 Subset of properties of cmisbook:image

ID Type Multivalue?

cmisbook:imageWidth Integer No

cmisbook:imageHeight Integer No

cmisbook:bitsPerSample Integer No

cmisbook:compression Integer No

cmisbook:photometricInterpretation Integer No

cmisbook:imageDescription String No

cmisbook:make String No

cmisbook:model String No

cmisbook:orientation Integer No

cmisbook:xResolution Decimal No

cmisbook:yResolution Decimal No

cmisbook:resolutionUnit Integer No

Table 6.3 Properties of cmisbook:media

ID Type Multivalue?

cmisbook:sourceURL URI No

cmisbook:license String No

cmisbook:year Integer No

cmisbook:artwork ID No

Table 6.4 Subset of properties of cmisbook:audio

ID Type Multivalue?

cmisbook:artist String No

cmisbook:album String No

cmisbook:title String No

cmisbook:comment String No

cmisbook:genre String No

cmisbook:length Integer No
www.it-ebooks.info

http://www.it-ebooks.info/

124 CHAPTER 6 Meet your new project: The Blend
An album is a collection of songs ordered into tracks, so the cmisbook:album type
(table 6.6) needs a single multivalued property that contains the IDs of songs that
make up the album.

Lyrics are blocks of text with a song title, so the cmisbook:lyrics type (table 6.8)
needs only a song title property.

cmisbook:track Integer No

cmisbook:composer String No

cmisbook:discNo String No

cmisbook:audioFormat String No

cmisbook:sampleRate Integer No

Table 6.5 Properties of cmisbook:video

ID Type Multivalue?

cmisbook:videoHeight Integer No

cmisbook:videoWidth Integer No

cmisbook:hasVideo Boolean No

cmisbook:hasAudio Boolean No

cmisbook:datasize Integer No

cmisbook:audiosize Integer No

cmisbook:videoDuration Decimal No

cmisbook:videoFramerate Decimal No

Table 6.6 Properties of cmisbook:album

ID Type Multivalue?

cmisbook:tracks ID Yes

Table 6.7 Properties of cmisbook:text

ID Type Multivalue?

cmisbook:author String No

Table 6.4 Subset of properties of cmisbook:audio (continued)

ID Type Multivalue?
www.it-ebooks.info

http://www.it-ebooks.info/

125Walking through the finished product
Now you’ve got everything you need to define a content model. This wraps up the
high-level approach. In the next section, you’ll see what the finished application looks
like. In the real world, this would be a set of mockups or a prototype. After that you’ll
have a better idea of what it is you’re building, and you’ll be ready to prepare your
development environment so you can start to implement The Blend step by step with
your own code.

6.2 Walking through the finished product
We hate to spoil the surprise, but we thought it might be helpful for you to see the fin-
ished product before you build it. So here, as they say, is the nickel tour.

 Before starting the tour, you have a choice. You can either read through the tour of
the finished product in this section and then move on to the next section, which
shows you how to get the application running on your machine, or you can get the
application running on your machine first, and then follow along click by click as we
walk through the application. To get the application running first, jump ahead to sec-
tion 6.3, and then come back.

 When you first go to the application’s home page, you’ll see the page shown in
figure 6.6.

Table 6.8 Properties of cmisbook:lyrics

ID Type Multivalue?

cmisbook:songtitle String No

Figure 6.6 Click the link to load sample data into the OpenCMIS InMemory Repository.
www.it-ebooks.info

http://www.it-ebooks.info/

126 CHAPTER 6 Meet your new project: The Blend
The application ships with some demo data that needs to be loaded into the reposi-
tory before you use it. To load the demo data into the OpenCMIS InMemory Reposi-
tory, follow these steps:

1 Click the Here link to load sample data into the OpenCMIS InMemory
Repository.

2 Specify a username and password. Anything will do. How about admin and
admin? Then, click Install. The application will load some sample data into the
InMemory server and will tell you when it’s done.

REPEAT THE SETUP AFTER EVERY RESTART Because the InMemory server stores
everything in memory, any time you shut down the OpenCMIS InMemory
Repository, you’ll have to repeat this process.

Now that the InMemory server has some sample data, you can click around the appli-
cation and see what it can do. That will give you a good idea of the functionality you’ll
be building in the rest of part 2 of this book.

 Navigate back to the application’s home page, http://localhost:8080/the-blend, to
log in. Again, you can use admin and admin. After logging in, you’ll see The Blend’s
dashboard, as shown in figure 6.7.

Figure 6.7 The Blend’s dashboard
www.it-ebooks.info

http://www.it-ebooks.info/

127Walking through the finished product
Clicking Browse shows the children of the Blend root directory (see figure 6.8).

If you navigate to the Videos folder, you’ll see a list of sample videos. You’ll notice that
the file named public_flower_001_504x284.flv has two tags associated with it: “video”
and “flower” (see figure 6.9).

Figure 6.8 Viewing the children of the Blend root directory

Figure 6.9 The Blend supports tags on certain content types.
www.it-ebooks.info

http://www.it-ebooks.info/

128 CHAPTER 6 Meet your new project: The Blend
The Blend supports creating new objects. In figure 6.10, you’ve navigated to the
Unsorted folder. You can create a new folder by specifying a folder name in the empty
folder name field and then clicking Create Folder.

Suppose you want to create a new document in the test folder created in figure 6.10.
You can navigate into the folder, browse for a test document to upload, select Tagga-
ble from the dropdown list, and then click Create Document (see figure 6.11). By
specifying Taggable as the content type, you allow the document to have multiple tags
associated with it.

Figure 6.10 The Blend allows users to create new folders easily.

Figure 6.11 It’s easy to upload files into The Blend.
Once a document is created, you can add tags by
specifying the tag and clicking the plus icon.
www.it-ebooks.info

http://www.it-ebooks.info/

129Walking through the finished product
Searching is also easy. Just click the Search link. In figure 6.12, we typed the name of
the sample document uploaded earlier, and it shows up in the search results list.

You can also search for documents by tag. If you click the Tags link, then type the
name of one of the tags added to the test document, and then click Search (as figure
6.13 shows), the document shows up in the search results.

An alternative to adding a document from within a folder is to add it by clicking Add
in the main navigation, and then specifying the path where the document should be
created and browsing for the file on your desktop to upload to that path.

Figure 6.12 The Blend allows users to search the repository for content.

Figure 6.13 The Blend allows users to search the repository for documents with a particular tag.
www.it-ebooks.info

http://www.it-ebooks.info/

130 CHAPTER 6 Meet your new project: The Blend
The Blend features an embed-
ded audio player. You can see
this by navigating to the Songs
folder and clicking on one of
the songs in the list, as shown
in figure 6.14.

 Notice that the song’s
detail page includes an
embedded player, as shown in
figure 6.14. If you scroll down
(figure 6.15), you’ll see that
the song object’s properties
have been populated with
metadata taken from the song
file. This happens automati-
cally when a song is uploaded.

 Songs can have a piece of
artwork associated with them,
as figure 6.16 shows, but it’s a
little clumsy in this demo app.
You first have to navigate to
the Art folder to pick out a

Figure 6.14 The detail page features an embedded media player, which can play songs that reside in
the repository.

Figure 6.15 The Blend leverages an open source project
called Apache Tika to extract metadata from certain file
types and set that metadata as properties on the document.
www.it-ebooks.info

http://www.it-ebooks.info/

131Setting up the development environment
nice piece of artwork, and then click on it to find its object ID. For example, the
object ID for Sunset.jpg is 314 (yours may be different). Now you go back into the
song’s detail page and click Change Artwork, paste the ID into the Artwork ID field,
making sure Artwork Id is selected, and then click Update to save the change.

 You’ve now seen the finished product. It’s time to learn how it’s built. In the next
section, you’ll set up your development environment so you can do that.

6.3 Setting up the development environment
If you’re going to follow along and build the application, which we definitely recom-
mend, you’ll need to have a few things installed on your machine. First, review the
prerequisites to make sure you have everything you need, and then go through the
steps to build the project and run it from Eclipse. By the end of this section, you’ll
have the finished product running so you can get a feel for what you’ll build in subse-
quent chapters.

 Here’s what you’ll need to build The Blend on your own:

 Apache Maven 3.x or higher. If you need to install Apache Maven, go to http://
maven.apache.org/.

 Eclipse IDE for Java EE Developers. You can use another IDE or no IDE at all, but
these instructions and screenshots assume you’re running Eclipse. We used
Eclipse Juno, but any fairly recent version should work fine.

 Apache Tomcat. Any servlet container will work, but our instructions will
assume Apache Tomcat 6.x or 7.x. If you need to download and install Tomcat,
go to http://tomcat.apache.org/.

 The code that accompanies this book. We’ll assume you’ve expanded it in a
directory we’ll refer to as $CODE_HOME. The completed project resides in
$CODE_HOME/the-blend.

 Optionally, you can bookmark the OpenCMIS Javadoc on the Apache Chemis-
try website, which resides at http://chemistry.apache.org/.

Figure 6.16 Songs can
have artwork associated
with them if you know
the object ID for the
image you want to set as
the artwork.
www.it-ebooks.info

http://maven.apache.org/
http://maven.apache.org/
http://tomcat.apache.org/
http://chemistry.apache.org/
http://www.it-ebooks.info/

132 CHAPTER 6 Meet your new project: The Blend
With those prerequisites in place, you’re ready to use Maven to build and “Eclipsify”
the project. To do that, follow these steps:

1 On the command line, switch to $CODE_HOME/the-blend.
2 Tell Maven to clean, install, and Eclipsify the project. You can combine these

three commands into a single command, like this:
mvn clean install eclipse:eclipse

The results will look something like figure 6.17.

3 Start Eclipse.
4 Specify a new workspace for this book. We’ll use workspace-cmis-book.
5 Close the Welcome page.

Figure 6.17 Results of telling Maven to clean, install, and Eclipsify the project
www.it-ebooks.info

http://www.it-ebooks.info/

133Setting up the development environment
6 From the menu, select File > Import > General > Existing Projects into Work-
space, and then click Next, as shown in figure 6.18.

Figure 6.18 Import the project into your Eclipse workspace.
www.it-ebooks.info

http://www.it-ebooks.info/

134 CHAPTER 6 Meet your new project: The Blend
7 Select $CODE_HOME/the-blend, and then click Finish.
8 Right-click on the project and select Run As > Run on Server, as shown in

figure 6.19.

9 Manually configure a new server.
10 Specify Apache Tomcat and tell Eclipse where to find the Tomcat installation

on your machine.

DON’T SEE APACHE TOMCAT? Is Apache Tomcat missing from the list? One
reason could be that you’re running Eclipse IDE for Java Developers instead
of Eclipse for Java EE Developers. See the Eclipse site (www.eclipse.org) for
more details.

Eclipse will start the web application and render the home page in the built-in
browser, as shown in figure 6.20.

 At this point, you’ve got an Eclipse project set up with the finished product. You
can make changes to the servlets and JSPs in the Eclipse project, and those changes
will be reflected in the running application.

Figure 6.19 Run the project using Eclipse’s built-in Tomcat integration.
www.it-ebooks.info

http://www.it-ebooks.info/

135Configuring the InMemory server
You may prefer to hit the web application with a “real” web browser instead of the one
embedded in Eclipse. That’s not a problem. Open your preferred browser and navi-
gate to http://localhost:8080/the-blend.

6.4 Configuring the InMemory server
The InMemory server that accompanies this book has already been configured with a
content model for The Blend, but you might be curious how the content model is
defined. If so, read on; otherwise, feel free to skip this section.

TYPE MUTABILITY IN CMIS 1.1 In CMIS 1.0, the specification doesn’t provide
for the creation of new type definitions. That’s left up to the underlying
repository. This makes it a little tough on CMIS application developers and
their customers, because it complicates the installation process. Developers
have to provide repository-specific content models and installation instruc-
tions. In CMIS 1.1, this will change. The 1.1 version of the specification pro-
vides for type mutability, which means that the CMIS API can be used to create
new types and modify existing types. With CMIS 1.1, applications ought to be
able to inspect the repository and install the content model they require,
regardless of the underlying repository.

Figure 6.20 The Blend running in the browser built into Eclipse
www.it-ebooks.info

http://www.it-ebooks.info/

136 CHAPTER 6 Meet your new project: The Blend
When you run the InMemory server that accompanies this book, the server webapp
gets expanded to $SERVER_HOME/cmis/webapps/inmemory. If you look in the WEB-
INF folder within that, you’ll see the webapp’s web.xml file. That file contains the fol-
lowing context parameter:

<context-param>
<param-name>

org.apache.chemistry.opencmis.REPOSITORY_CONFIG_FILE
</param-name>
<param-value>/inmemory-repository.properties</param-value>

</context-param>

This context parameter tells the InMemory server to use a file called inmemory-
repository.properties for configuration. The InMemory server that accompanies this
book is configured to run using several of its assets compressed into zip files. That
inmemory-repository.properties file resides in $SERVER_HOME/inmemory-cmis-
server-sources.zip. If you were to unzip the file and look inside, you’d see the follow-
ing properties:

InMemory Server Settings
InMemoryServer.RepositoryId=A1
InMemoryServer.TypeDefinitionsFile=inmemory-types.xml
InMemoryServer.MaxSize=20971520

The InMemoryServer.TypeDefinitionsFile setting tells the InMemory server that its
type definitions reside in a file called inmemory-types.xml. That file also resides in the
inmemory-cmis-server-sources.zip file, and if you were to browse it, you’d see that it
contains several type definitions.

 The type definitions should look familiar to you from the type definition discus-
sion in chapter 4. Here’s one example of a type definition in inmemory-types.xml:

<cmisra:type xsi:type="cmisTypeDocumentDefinitionType">
<id>cmisbook:taggable</id>
<localName>Taggable</localName>
<localNamespace>http://example.org/cmisbook</localNamespace>
<parentId>cmis:document</parentId>
<displayName>Taggable</displayName>
<queryName>cmisbook:taggable</queryName>
<description>Taggable document</description>
<baseId>cmis:document</baseId>
<creatable>true</creatable>
<fileable>true</fileable>
<queryable>true</queryable>
<fulltextIndexed>true</fulltextIndexed>
<includedInSupertypeQuery>true</includedInSupertypeQuery>
<controllablePolicy>false</controllablePolicy>
<controllableACL>true</controllableACL>
<versionable>true</versionable>
<contentStreamAllowed>allowed</contentStreamAllowed>
<propertyStringDefinition>

<id>cmisbook:tags</id>
<localName>Tags</localName>
www.it-ebooks.info

http://www.it-ebooks.info/

137Taking first steps with The Blend
<displayName>Tags</displayName>
<queryName>cmisbook:tags</queryName>
<description>Tags</description>
<localNamespace>http://example.org/cmisbook</localNamespace>
<propertyType>string</propertyType>
<cardinality>multi</cardinality>
<updatability>readwrite</updatability>
<inherited>false</inherited>
<required>false</required>
<queryable>true</queryable>
<orderable>false</orderable>
<openChoice>false</openChoice>

</propertyStringDefinition>
</cmisra:type>

The inmemory-types.xml file tells the InMemory server everything it needs to know
about the types you need to support The Blend.

 Every content repository defines its content model in a different way. If you want to
run The Blend on top of a different CMIS repository, you should be able to translate
this content model into one that your CMIS repository understands. A version of this
content model that will work with Alfresco is provided with the code that accompanies
this book.

6.5 Taking first steps with The Blend
Now that you understand the business requirements and the high-level technical
approach, and you’ve seen the complete system in action, it’s time to begin your own
development effort. By the end of this section, you’ll have your own start on The
Blend, which you’ll build upon in subsequent chapters.

6.5.1 Setting up the Eclipse project

The first step is to create an Eclipse project. You’ll use Eclipse’s Dynamic Web Project
wizard, and then you’ll configure Maven for the project. After this bit of yak shaving,
the real work of coding can begin.

CREATE THE PROJECT

The first step is to create a new project in Eclipse. To do that, follow these steps:

1 In Eclipse, select File > New > Other > Web > Dynamic Web Project, and then
click Next.

2 Name the project something other than the-blend, such as my-blend, and then
click Next.

3 Remove the src folder from the build path, click Add Folder to add src/main/
java as the new source folder, and then click Next.

4 Leave the context root alone, but change the content directory to src/main/
webapp, and then click Finish.

You should now have a project that looks roughly like figure 6.21.
www.it-ebooks.info

http://www.it-ebooks.info/

138 CHAPTER 6 Meet your new project: The Blend
CONFIGURE MAVEN FOR THE PROJECT

Configuring Maven for the project means you won’t have to go searching for the
OpenCMIS JARs or any other dependencies. You’ll tell Maven what the project
depends on, and Maven will take care of the rest. To do that, follow these steps:

1 Right-click the my-blend project and select Configure > Convert to Maven
Project.

2 Specify com.manning for the Group Id, my-blend for the Artifact Id, and war for
Packaging, and then click Finish.

3 Eclipse should automatically open the pom.xml file. If it doesn’t, edit it now. It
should open in the Maven POM Editor.

4 Click the Dependencies tab, and then click Add. Specify org.apache.chemistry
.opencmis for the Group Id, chemistry-opencmis-client-impl for the Artifact
Id, and ${opencmis.version} for the Version. Then click OK.

5 Click Add again. This time specify javax.servlet as the Group Id, servlet-
api as the Artifact Id, 2.5 as the Version, and change the Scope to provided.
Then click OK.

6 Two final dependencies need to be added. You won’t need them until chapter 8,
but let’s add them now. Click Add. Specify commons-fileupload as the Group Id
and as the Artifact Id. Specify 1.2.2 as the Version and compile as the Scope.
Click OK. Click Add again. This time specify commons-io as the Group Id and as
the Artifact Id, 2.2 as the Version, and compile as the Scope. Click OK again.

7 Go back to the Overview tab and expand the Properties section. Use the Create
button to add the following properties and their values: project.build
.sourceEncoding: UTF-8, maven.compile.source: 1.6, maven.compile.target:
1.6, opencmis.version: 0.9.0-beta-1.

Figure 6.21 The my-blend project
structure after it’s first created
www.it-ebooks.info

http://www.it-ebooks.info/

139Taking first steps with The Blend
8 Go to the pom.xml tab and add the following additional plugin:
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-eclipse-plugin</artifactId>
<version>2.9</version>
<configuration>

<projectNameTemplate>the-blend-ch06</projectNameTemplate>
<wtpmanifest>true</wtpmanifest>
<wtpapplicationxml>true</wtpapplicationxml>
<wtpversion>2.0</wtpversion>
<manifest>

\$\{basedir\}/src/main/webapp/META-INF/MANIFEST.MF
</manifest>
<downloadSources>true</downloadSources>
<downloadJavadocs>true</downloadJavadocs>
<workspace>..</workspace>

</configuration>
</plugin>

9 Save the pom.xml file.

Now that you’ve configured Maven with the project’s dependencies, Eclipse shouldn’t
have any problem finding the OpenCMIS JARs as you start to add code in the next
section.

6.5.2 Creating a session factory

Nearly everything the application does is going to need an OpenCMIS session. Creat-
ing sessions is expensive—you should only do it once for each user and then store it
on the user’s HTTP session for reuse. So let’s create a session factory that knows how to
establish a session with the OpenCMIS repository. In the next section, you’ll see how
to persist the OpenCMIS session to the HTTP session when you set up the servlets.

1 Right-click Java Resources and select New > Package. Specify com.manning
.cmis.theblend.session, and click Finish.

2 Right-click the package you created and select New > Class. Specify OpenCMIS-
SessionFactory as the class name.

3 The class only needs a single static method called createOpenCmisSession that
takes a username and a password and returns an instance of org.apache
.chemistry.opencmis.client.api.Session, as you can see here:

public static Session createOpenCMISSession(
String username, String password) {

Map<String, String> parameter = new HashMap<String, String>();

parameter.put(SessionParameter.USER, username);
parameter.put(SessionParameter.PASSWORD, password);

parameter.put(SessionParameter.ATOMPUB_URL,
"http://localhost:8081/inmemory/atom");

parameter.put(SessionParameter.BINDING_TYPE,
BindingType.ATOMPUB.value());

parameter.put(SessionParameter.REPOSITORY_ID, "A1");

In the real
world, pull

this out into
configuration. Use the

AtomPub
binding.
www.it-ebooks.info

http://www.it-ebooks.info/

140 CHAPTER 6 Meet your new project: The Blend
SessionFactory factory = SessionFactoryImpl.newInstance();

return factory.createSession(parameter);
}

You may have noticed that the ID of the repository is hardcoded with a value
of "A1" and passed in via the SessionParameter.REPOSITORY_ID parameter.
Servers have one or more repositories—here we’re making an assumption
about the ID of the repository we want to use. This is also a good candidate for
configuration.

4 Resolve the imports and save the class.

6.5.3 Creating the servlets

As discussed earlier in the chapter, each page of The Blend will be implemented with
a servlet and a JSP. All of the servlets share some common functionality, and that func-
tionality will be implemented in an abstract class that all servlets will extend. Let’s
implement the abstract servlet and the servlet for the index page, as well as some util-
ity classes on which those servlets will rely.

IMPLEMENT THE ABSTRACT SERVLET

The abstract servlet will make it easy for subsequent servlets to work with the CMIS
repository by grabbing the OpenCMIS session from the HTTP session and handing it
to the concrete servlet along with the request and response. To implement the
abstract servlet, follow these steps:

1 Create a new package called com.manning.cmis.theblend.servlets.
2 In the package you created, create a new abstract class called AbstractThe-

BlendServlet that extends HttpServlet.
3 Add some constants:

public static final String JSP_DIRECTORY = "/WEB-INF/jsp/";

public static final String PAGE_INDEX = "";

public static final String ATTR_TITLE = "title";

private static final String HTTP_SESSION_SESSION = "session";

private static final long serialVersionUID = 1L;

4 Implement doGet, like this:
protected void doGet(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

// get OpenCMIS Session
Session session = getOpenCMISSession(request, response);
if (session == null) {

// no session -> forward to index (login) page
redirect("", request, response);
return;

}

You’ll
implement this

method
shortly. If there’s no

session, redirect
to the login page.
www.it-ebooks.info

http://www.it-ebooks.info/

141Taking first steps with The Blend
try {
doGet(request, response, session);

} catch (TheBlendException tbe) {
error(tbe.getMessage(), tbe.getCause(), request, response);

} catch (Exception e) {
error(e.getMessage(), e, request, response);

}
}

5 Set up an overloaded version of doGet that accepts an OpenCMIS session as an
argument in addition to the request and response. Because the “normal” doGet
calls this doGet, any servlets that need a session can implement this method:

protected void doGet(HttpServletRequest request,
HttpServletResponse response, Session session)
throws ServletException, IOException, TheBlendException {

}

6 As with doGet, you’ll need two doPost methods that follow this same pattern:

protected void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

// get OpenCMIS Session
Session session = getOpenCMISSession(request, response);
if (session == null) {

// no session -> forward to index (login) page
redirect("", request, response);
return;

}

try {
doPost(request, response, session);

} catch (TheBlendException tbe) {
error(tbe.getMessage(), tbe.getCause(), request, response);

} catch (Exception e) {
error(e.getMessage(), e, request, response);

}
}

protected void doPost(HttpServletRequest request,
HttpServletResponse response, Session session)
throws ServletException, IOException, TheBlendException {

}

7 The getOpenCMISSession method is going to look at the HTTP session and
attempt to retrieve the OpenCMIS session from it. The setOpenCMISSession
method sets the OpenCMIS session on the HTTP session. It will get called on a
successful login, as follows:

protected Session getOpenCMISSession(
HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

Session session = null;

Call doGet with
an OpenCMIS

session.
www.it-ebooks.info

http://www.it-ebooks.info/

142 CHAPTER 6 Meet your new project: The Blend
HttpSession httpSession = request.getSession(false);
if (httpSession != null) {

session = (Session) httpSession.
getAttribute(HTTP_SESSION_SESSION);

}

return session;
}

protected void setOpenCMISSession(
HttpServletRequest request,
Session session) {

HttpSession httpSession = request.getSession();
httpSession.setAttribute(HTTP_SESSION_SESSION, session);

}

8 Drop in a helper method for retrieving parameter values:

protected String getStringParameter(
HttpServletRequest request,
String name) {

return request.getParameter(name);
}

protected int getIntParameter(
HttpServletRequest request,
String name, int defValue) {

String value = getStringParameter(request, name);
if (value == null) {

return defValue;
}

try {
return Integer.parseInt(value);

} catch (NumberFormatException nfe) {
return defValue;

}
}

9 The final chunk of code is some helper methods for dispatching and redirect-
ing to JSP pages and showing the error JSP page:

protected void dispatch(String jsp, String title,
HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

request.setAttribute(ATTR_TITLE, title);

RequestDispatcher dispatcher = request
.getRequestDispatcher(JSP_DIRECTORY + jsp);

dispatcher.include(request, response);
}

protected void redirect(String url,
HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

Get the
HTTPSession

from the
request. Get the

OpenCMISSession
from the
HTTPSession.

Set the
OpenCMIS-

Session on the
HTTPSession.
www.it-ebooks.info

http://www.it-ebooks.info/

143Taking first steps with The Blend
response.sendRedirect(url);
}

/**
* Forwards to an error message.
*
* @throws IOException
* @throws ServletException
*/

protected void error(String msg, Throwable t,
HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

request.setAttribute("message", msg);
request.setAttribute("exception", t);

// show error page
dispatch("error.jsp", "Error.", request, response);

}

10 Resolve the imports and save the class.

Now you have an abstract servlet that the rest of the servlets in the application can
extend, reducing the code that has to be repeated in each servlet.

IMPLEMENT THE INDEX SERVLET

Every page in The Blend will have a corresponding servlet, so let’s create one for the
index page. It’ll display the login page. If the login is successful, we’ll display some
information about the repository for now:

1 Create a new class named IndexServlet in the com.manning.cmis.theblend
.servlets package that extends AbstractTheBlendServlet.

2 Set up parameters for the username, password, and logout:

private static final String PARAM_LOGOUT = "logout";
private static final String PARAM_USERNAME = "username";
private static final String PARAM_PASSWORD = "password";

3 Implement doGet. It needs to display the login page, unless the user is trying to
log out, in which case the session needs to be invalidated:

protected void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

if (getStringParameter(request, PARAM_LOGOUT) != null) {
HttpSession httpSession = request.getSession(false);
if (httpSession != null) {

httpSession.invalidate();
}

}

// just show index page
dispatch("index.jsp", "The Blend.", request, response);

}

If the logout
argument

exists,
invalidate the

session.
www.it-ebooks.info

http://www.it-ebooks.info/

144 CHAPTER 6 Meet your new project: The Blend
4 Implement doPost, which is what will attempt to use the OpenCMISSession-
Factory to try to log in:

protected void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

String username = getStringParameter(request, PARAM_USERNAME);
String password = getStringParameter(request, PARAM_PASSWORD);

try {
Session session = OpenCMISSessionFactory.

createOpenCMISSession(
username, password);

setOpenCMISSession(request, session);
} catch (Exception e) {

error("Could not create OpenCMIS session: " + e,
e,
request,
response);

return;
}

// show index page
dispatch("echo.jsp", "The Blend.", request, response);

}

5 Resolve the imports and save the class.

CREATE AN APPLICATION-SPECIFIC EXCEPTION CLASS

Sometimes it’s nice to be able to throw an exception that’s more specific than
java.lang.Exception. Let’s create one called TheBlendException. It can live in the
same package as the servlet classes:

1 Create a new class named TheBlendException in the com.manning.cmis
.theblend.servlets package that extends java.lang.Exception.

2 The contents of the new class are as follows:

public class TheBlendException extends Exception {

private static final long serialVersionUID = 1L;

public TheBlendException(String message) {
super(message);

}

public TheBlendException(String message, Throwable cause) {
super(message, cause);

}
}

3 Resolve the imports and save the class.

Grab the
username and

password from
the form.

Use the
username and

password to
create a CMIS

session.

Redirect to the
echo page to
display basic

repository
information.
www.it-ebooks.info

http://www.it-ebooks.info/

145Taking first steps with The Blend
CONFIGURE THE WEB.XML FILE

Like any other Java web application, the web.xml file is used to declare the servlets
used within the application. For now, you have only one servlet to configure—the
index servlet—but you’ll add to this file in subsequent chapters.

 In the project structure, the web.xml file goes in src/main/webapp/WEB-INF, as
shown in the following listing.

<display-name>The Blend</display-name>

<servlet>
<servlet-name>IndexServlet</servlet-name>
<servlet-class>

com.manning.cmis.theblend.servlets.IndexServlet
</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>IndexServlet</servlet-name>
<url-pattern>/index</url-pattern>

</servlet-mapping>

<welcome-file-list>
<welcome-file>index</welcome-file>

</welcome-file-list>

6.5.4 Creating the JSPs

The first JSP to create is an index JSP to show the login form and an echo JSP to display
some information about the repository after successful login. Every page in the appli-
cation will have a header and a footer, and you need a generic error-handling page, so
now is a good time to set those up as well.

CREATE THE INDEX JSP
In the src/main/webapp/WEB-INF/jsp directory, create a file called index.jsp (create
the directory if it doesn’t exist). This JSP doesn’t do much—it displays the login form.

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8" trimDirectiveWhitespaces="true" %>
<%@ include file="header.jsp" %>

<div class="monospace" style="text-align: center; margin: 30px;">
<div style="font-size: 15px;">

Mix it. Mash it. Blend it. Rock it.
</div>
<div style="font-size: 60px;">The Blend.</div>
<div style="font-size: 23px;">Organize your Creativity.</div>
</div>

<div class="monospace" style="text-align: center;">

<form method="POST" action="">

Listing 6.1 The Blend’s web.xml file

Listing 6.2 Display the login form
www.it-ebooks.info

http://www.it-ebooks.info/

146 CHAPTER 6 Meet your new project: The Blend
Your Username:

<input type="text" name="username">

Your Password:

<input type="password" name="password">

<input type="submit" value="Login">

</form>

</div>

<%@ include file="footer.jsp" %>

CREATE THE ECHO JSP
The echo JSP is temporary—its purpose is only to test out the login logic and to ensure
that the application can connect to the back-end CMIS repository without any prob-
lem. The contents of echo.jsp need to be as shown in the following listing.

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8" trimDirectiveWhitespaces="true" %>

<%@ page import="org.apache.chemistry.opencmis.client.api.*" %>
<%@ page import="org.apache.chemistry.opencmis.commons.enums.*" %>
<%@ page import="java.util.*" %>
<%@ include file="header.jsp" %>

<div class="monospace" style="text-align: center;">

<%
Session cmisSession = (Session) request.

getSession().
getAttribute("session");

if (cmisSession != null) {%>

<%=cmisSession.getRepositoryInfo().getVendorName() %>
<%=cmisSession.getRepositoryInfo().getProductName() %>

<%=cmisSession.getRepositoryInfo().getProductVersion() %>

<%
}
%>

</div>

<%@ include file="footer.jsp" %>

We realize it’s bad form to put Java code in the JSP, but we’re doing it anyway here and
in later chapters to keep the examples manageable.

Listing 6.3 A temporary JSP that echoes some basic information about the repository
www.it-ebooks.info

http://www.it-ebooks.info/

147Taking first steps with The Blend
CREATE THE HEADER, FOOTER, AND ERROR JSPS

The header, footer, and error JSPs are barely worth mentioning at this point. They
provide some basic information that will be expanded on in later chapters. They don’t
make any CMIS calls, so rather than include them here, we’ll let you copy them from
the completed project into your project.

 The header JSP relies on a CSS file. Copy the CSS file from the completed project
into your project. It belongs under src/main/webapp/stylesheets/main.css.

6.5.5 Try it—testing The Blend

You’ve got your OpenCMIS session factory, the abstract servlet, a concrete servlet for
the index page, and the index JSP page implemented. You’ve also set up a basic
header, footer, error page, and style sheet. Now all that’s left is to run the code and see
if the echo JSP properly connects to the InMemory server and responds with some
basic repository information.

 To test out what you have so far, follow these steps:

1 The web application’s manifest needs to be updated—if you don’t do this, when
you run the application in the embedded Tomcat server, Tomcat won’t be able
to find your dependent classes. The easiest way to do this is to open up a com-
mand line, cd to the project’s root directory (where the pom.xml lives), and
run mvn eclipse:eclipse. Then you can go back into Eclipse, refresh the proj-
ect, and the manifest file (MANIFEST.MF) will be up to date.

2 Run the application, as you did during the walk-through. Right-click on the
project, and then select Run As > Run on Server. The index page should display
in Eclipse’s embedded browser, as shown in figure 6.22.

Figure 6.22 The index page of the first iteration of The Blend
www.it-ebooks.info

http://www.it-ebooks.info/

148 CHAPTER 6 Meet your new project: The Blend
Provide a username and password. If the web application connects successfully to the
repository, you should see the echo page, and it should look something like figure 6.23.

 Your own work-in-progress copy of The Blend is off to a good start. You’ve set up
the abstract servlet and you’ve implemented one concrete servlet and its associated
JSP, which is the pattern you’ll follow for the rest of the pages. As it stands, the applica-
tion doesn’t do much with the CMIS repository, but the echo page proves you can con-
nect and retrieve some basic repository information. Now you can start to work on
pages that retrieve and display music and artwork from the back end.

6.6 Summary
This chapter introduced you to The Blend, a web application that artists can use to
mix and mash-up music, sounds, and artwork. After reviewing the business require-
ments, the chapter took a look at the technical approach. Key aspects of the approach
include

 The obvious choice of a CMIS server as the back-end data repository.
 Keeping the web application as simple as possible. The application will be built

with servlets and JSPs so that you can focus on the details around using Open-
CMIS to write web applications.

 Other than the ability to handle authentication and making sure all your pages
can only be accessed when a session has been established, this application has
no other security features.

 The application’s data will be stored in a single root folder called /blend. Below
that, the folder structure is arbitrary, but when you import some test data, it’s
likely to be organized into a default folder structure that’ll help end users find
their content.

 All objects will be typed. The types are organized in a hierarchy, and each type
has a set of properties specific to that type.

Figure 6.23 If all goes well, this iteration of The Blend should echo back some repository
information.
www.it-ebooks.info

http://www.it-ebooks.info/

149Summary
You also got a tour of the finished product. In the real world, this product likely would
have been a screen mockup or a prototype of some sort. In this chapter, you saw the
fully baked pie first, in the hope that you’d be motivated to start slicing some apples.

 Then you started to do some work. The rest of the chapter showed you how to use
XML to define the content model for the InMemory server. Then you implemented
enough code to support login, a connection to the repository, and logout.

 With this foundation in place, you can now move on to the next chapter, in which
you’ll implement all of the browse functions of The Blend.
www.it-ebooks.info

http://www.it-ebooks.info/

The Blend: read and
query functionality
In part 1 of this book, you took your first steps with the OpenCMIS client library in
the Groovy console. In this (and the next) chapter, you’ll learn how to develop an
application with OpenCMIS. You’ll fill the framework that you set up in chapter 6
and build your own version of The Blend, step by step. By the end of chapter 8,
you’ll have all the knowledge you need to build a complete CMIS solution in Java.

 In this chapter, we’ll focus on the basics: reading and querying data.

This chapter covers
 Retrieving metadata and content with OpenCMIS

 Error handling and mapping to OpenCMIS exceptions

 Paging and skipping lists

 Working with version series

 Queries
150

www.it-ebooks.info

http://www.it-ebooks.info/

151Building a browse page
7.1 Building a browse page
Let’s start with something common in content-centric applications: folder browsing.
The Blend has a basic browse page that displays the children of a folder with the fol-
lowing features:

 If the page has more than ten children, it provides links to navigate to the next
or to the previous pages.

 If the user clicks on a child that’s a subfolder, the browse page is reloaded for
this folder.

 If the displayed folder isn’t the root folder, the page will have a link to navigate
to the parent folder.

These features are what you’d expect from a typical browse page, so we’ll build that first.
Figure 7.1 shows the browse page in The Blend displaying the root folder’s children.

About .NET and the mobile version of OpenCMIS
The API we’ll cover in the next two chapters is the same for the Java SE version and
the Android version of OpenCMIS. The differences between the two OpenCMIS ver-
sions are under the hood. For example, the Android version doesn’t support the Web
Services binding. Chapter 10 includes more details on Android development.

DotCMIS is another Apache Chemistry subproject that provides a CMIS client library
for .NET. Its interfaces and behavior are similar to OpenCMIS. You can transfer most
of the concepts in this and the next chapter to DotCMIS. If you’re a .NET developer,
keep reading; chapter 9 offers more on DotCMIS.

ObjectiveCMIS is yet another Apache Chemistry subproject. This CMIS client library
for Objective-C loosely follows the OpenCMIS concepts. Although the interfaces
are different, the basic design principles are the same. Chapter 10 has more on
ObjectiveCMIS.

Figure 7.1 The Blend’s browse page showing the root folder
www.it-ebooks.info

http://www.it-ebooks.info/

152 CHAPTER 7 The Blend: read and query functionality
Besides the basic functions we’ve listed, the code behind this page will be able to han-
dle error conditions. Also, access to the repository will be optimized to retrieve only
the data required to populate the page.

7.1.1 Preparing the HTML part of the browse page

Copy the echo JSP from chapter 6 (listing 6.3), rename it to browse.jsp, and put it into
the jsp folder. Next, remove everything between the line that includes the header JSP
and the line that includes the footer JSP. The pseudo HTML between the header and
the footer will be similar to the following listing.

<h1>[name of the folder]</h1>

Path: [path of the folder]

Number of children: [total number of children]

<table>

[if folder has a parent folder]
<tr>

<td>[link to parent folder]</td>
<td></td>
<td></td>

<tr>
[end if]

[loop over children]
<tr>

<td>[name and link to the child]</td>
<td>[if child is a document][MIME type][end if]</td>
<td>[if child is a document][content size][end if]</td>

<tr>
[end loop]

</table>

[if there is a previous page][link to the previous page][end if]
[if there is a next page][link to the next page][end if]

You have a few things to do now. You have to find the folder you want to browse to learn
its name and its path and to retrieve the children. For each child, you need its name
(the cmis:name property) and its object ID for the link you’ll generate. If the child is a
document, you also need its MIME type and content size. Finally, you have to determine
whether you have previous and next pages. Let’s create a servlet that does that.

 In the package com.manning.cmis.theblend.servlets, create a new class called
BrowseServlet that extends AbstractTheBlendServlet, and then add the following
XML snippet to the web.xml file:

<servlet>
<servlet-name>BrowseServlet</servlet-name>
<servlet-class>

com.manning.cmis.theblend.servlets.BrowseServlet

Listing 7.1 Pseudocode for the browse JSP page
www.it-ebooks.info

http://www.it-ebooks.info/

153Building a browse page
</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>BrowseServlet</servlet-name>
<url-pattern>/browse</url-pattern>

</servlet-mapping>

The servlet has two doGet methods, and you want to override the one that has three
parameters. The last parameter is the OpenCMIS session that you’ll need to commu-
nicate with the CMIS repository.

 The browse page needs two pieces of information: which folder and which page it
should display. Let’s assume you accept the ID of the folder as a parameter. If it isn’t
present, you’ll fall back to the application root folder. For paging, you accept a skip
parameter that defines how many children should be skipped before the displayed
page starts. If that isn’t present, assume the user wants the first page.

 The first lines of the doGet method should look like the next listing.

String id = getStringParameter(request, "id");
if (id == null) {

id = session.getRepositoryInfo().getRootFolderId();
}

int skip = getIntParameter(request, "skip", 0);
if (skip < 0) {

skip = 0;
}

Now you’re ready for the CMIS-specific part of this business: getting the folder object.

7.1.2 Getting the folder object

The OpenCMIS folder interface provides the getChildren method that you’ll call to
get the children of the folder. First, you need the OpenCMIS folder object for the
folder.

CMIS and OpenCMIS provide two ways to retrieve an object: the getObject opera-
tion and the getObjectByPath operation. These operations are similar to each other,
with some subtle differences.

getObject takes an object ID as its parameter. Because all CMIS objects have a
unique, unchangeable object ID, getObject can retrieve any of them.

getObjectByPath, on the other hand, can only retrieve filed objects—objects that
are filed in a folder. This is because, as the name implies, it takes a path as its parame-
ter, and only filed objects have a path. More specifically, this excludes relationship
objects and unfiled documents, policies, and item objects. Because CMIS folders are
always filed, getObjectByPath can reach all folder objects. Document, policy, and
item objects that reside in more than one folder (multifiled objects) can be reached
by more than one path.

Listing 7.2 Changes for the doGet method

Falls back to the
root folder if no
ID is provided

Falls back to 0 if the
skip parameter is
invalid (negative)
www.it-ebooks.info

http://www.it-ebooks.info/

154 CHAPTER 7 The Blend: read and query functionality
 A few repositories support version-specific filing, which means different versions of
a document can reside in one or more folders. If version-specific filing isn’t sup-
ported, getObjectByPath usually returns the latest version of a document. It isn’t pos-
sible to retrieve an older version with getObjectByPath unless it’s explicitly filed.
getObject, on the other hand, can retrieve older versions because all versions have a
unique object ID.

 Let’s get back to the folder object. Folders are easy, because they’re always filed,
they have exactly one path, and they can’t be versioned. This means getObject and
getObjectByPath would both work fine for the browse page. We’ll use the folder ID
for uniformity.

 In the doGet method, you already have a few lines that provide the folder ID. Let’s
use them:

CmisObject object = session.getObject(id);

That doesn’t look like a folder object, does it? The CmisObject interface provides
access to properties and operations that are common to all primary CMIS base types.
To get access to the properties and operations that are specific to a base type, you have
to cast it to the document, the folder, the relationship, the policy, or the item inter-
face. Have a look at the OpenCMIS Javadoc to get an idea of the differences. You’ll
find the URL in appendix E.

 Before you do that cast, it’s always better to check whether the object is what you’ve
expected. The code now looks like this:

CmisObject object = session.getObject(id);

Folder folder = null;
if (object instanceof Folder) {

folder = (Folder) object;
}
else {

throw new TheBlendException("Object is not a folder!");
}

Now you have a valid folder object that you can use for a getChildren call. Is there
anything else about this folder that would be interesting for the browse page? As it
turns out, you’ll only need the name and the path of the folder, so you should be
good.

 If you were to use a debugger (or the CMIS Workbench Groovy console) to inspect
the folder object, you’d see that quite a lot of data is held in this object. At the least,
you’ll see a lot of properties, and there can also be the allowable actions—data that
you don’t need for the browse page. It took time and resources to compile that data
on the repository side, transmit it, and parse it on the client side. You might argue that
for most repositories, we’re only talking about a millisecond or two. Nothing to be
concerned about, you might also say. But what if your browse page gets used by thou-
sands of users simultaneously—every little bit of extra (and unnecessary) server work
www.it-ebooks.info

http://www.it-ebooks.info/

155Building a browse page

.
a
a

ac
th
becomes magnified. If you don’t need it, you’re better off not asking for it. This leads
us into the next topic, OperationContext.

7.1.3 Taking advantage of the OperationContext

The OperationContext object defines what data about the object(s) should be
requested from the repository. Fetching as little data as possible is obviously better, as
we’ve discussed. OpenCMIS gives you a nice set of knobs you can adjust to precisely
control what you get back with every round trip to the server. For example, you can
define a properties filter and a rendition filter. You can also turn on and off ACLs,
allowable actions, policies, and path segments. Finally, you can define the order of
items for operations like getChildren that return lists of objects.

 Let’s set up an OperationContext to fetch the folder object so you can see exactly
what this all looks like. The next listing shows your first OperationContext creation.

OperationContext folderOpCtx = session.createOperationContext();
folderOpCtx.setFilterString("cmis:name,cmis:path");
folderOpCtx.setIncludeAcls(false);
folderOpCtx.setIncludeAllowableActions(false);
folderOpCtx.setIncludePolicies(false);
folderOpCtx.setIncludeRelationships(IncludeRelationships.NONE);
folderOpCtx.setRenditionFilterString("cmis:none");
folderOpCtx.setIncludePathSegments(false);
folderOpCtx.setOrderBy(null);
folderOpCtx.setCacheEnabled(true);

Property and rendition filters can be set either as a comma-separated string or as a Set
of strings. Remember, whenever properties are referenced, you have to use the query
names of the properties. OpenCMIS automatically adds the properties cmis:objectId,
cmis:baseTypeId, and cmis:objectTypeId to the property filter because it always
needs these values internally to build a minimal and valid CmisObject.

 Finally, our next listing shows how you could make use of the OperationContext in
code.

CmisObject object = null;
try {
 object = session.getObject(id, folderOpCtx);
}
catch (CmisBaseException cbe) {

throw new TheBlendException("Could not retrieve folder!", cbe);
}

Folder folder = null;
if (object instanceof Folder) {

folder = (Folder) object;
}

Listing 7.3 Creating your first OperationContext

Listing 7.4 Using your OperationContext

Filter out
everything
except the
name and
path
properties

Don’t
include

ny of the
llowable
tions for
is object.

Use folderOpCtx created
in previous listing
www.it-ebooks.info

http://www.it-ebooks.info/

156 CHAPTER 7 The Blend: read and query functionality
else {
throw new TheBlendException("Object is not a folder!");

}

If no OperationContext is provided, OpenCMIS falls back to the default Operation-
Context of the session. For example, getObject(id) would use the default Operation-
Context. You can modify the default OperationContext, but it’s strongly
recommended that you do this only between session creation and making the first call
to the repository. Changing the default OperationContext later may have side effects
in multithreaded environments.

 You can get the default context like this and then modify it:

OperationContext context = session.getDefaultContext();

You can also set a completely new default context if you want, like this:

session.setDefaultContext(context);

But now back to that browse page. Let’s get those folder children.

7.1.4 Getting the folder children

With the folder object in hand, you can now call getChildren like so:

ItemIterable<CmisObject> children = folder.getChildren();

OpenCMIS hasn’t contacted the repository yet. It’s only created an object that knows
how to contact the repository. You can now use this children object to iterate over the
children of the folder.

 Let’s do a quick test. You can try this in the CMIS Workbench:

for (CmisObject child : children) {
System.out.println(child.getName());

}

That looks easy. When the children object is asked for the first object in the list, it con-
tacts the repository and asks for a certain number of list entries. When this batch is con-
sumed and the repository has more entries, the children object fetches the next batch
until the application stops the loop or all list entries have been consumed. As you can
see, the application code doesn’t notice that at all. It iterates over the children.

 You can control the batch size if you want. The OperationContext is your friend if
you need to do this, as shown here:

OperationContext childrenOpCtx = session.createOperationContext();
childrenOpCtx.setMaxItemsPerPage(10);

The OperationContext also provides control over the order of the returned list. For
example, the following line requests the list to be ordered by the names of the objects.
(Check the repository info first to determine whether the repository supports this fea-
ture or not. Most repositories do.)

childrenOpCtx.setOrderBy("cmis:name");
www.it-ebooks.info

http://www.it-ebooks.info/

157Building a browse page
The syntax follows the ORDER BY clause of the CMIS Query language. That is, you can
also sort by multiple properties and define whether they should be sorted in ascend-
ing or descending order.

 And while you’re here, you can define which fields of the children you want back.
How about the object ID, the object’s base type, the name, the content length, the
MIME type, and the allowable actions? That should be enough to populate the browse
page. The following listing shows how to create this OperationContext and shows its
use in the getChildren call.

OperationContext childrenOpCtx = session.createOperationContext();
childrenOpCtx.setFilterString(

"cmis:objectId,cmis:baseTypeId," +
"cmis:name,cmis:contentStreamLength," +
"cmis:contentStreamMimeType");

childrenOpCtx.setIncludeAcls(false);
childrenOpCtx.setIncludeAllowableActions(true);
childrenOpCtx.setIncludePolicies(false);
childrenOpCtx.setIncludeRelationships(IncludeRelationships.NONE);
childrenOpCtx.setRenditionFilterString("cmis:none");
childrenOpCtx.setIncludePathSegments(false);
childrenOpCtx.setOrderBy("cmis:name");
childrenOpCtx.setCacheEnabled(false);
childrenOpCtx.setMaxItemsPerPage(10);

ItemIterable<CmisObject> children = folder.getChildren(childrenOpCtx);
for (CmisObject child : children) {

System.out.println(child.getName());
}

You’ve already created your second OperationContext. You might be thinking that
you’re going to have to create a bunch of these, but this generally isn’t the case. Most
applications only need a handful of OperationContexts. You can create those in one
place, and then reuse them elsewhere in the application.

 Finally, let’s not forget the exception handling, shown next.

ItemIterable<CmisObject> children = folder.getChildren(childrenOpCtx);

try {
for (CmisObject child : children) {

System.out.println(child.getName());
}

}
catch (CmisBaseException cbe) {

throw new TheBlendException("Could not fetch children!", cbe);
}

Listing 7.5 Using a filtering OperationContext with folder.getChildren()

Listing 7.6 Exception handling example for folder.getChildren()

Use CMIS Query names for filter.

Include allowable
actions details.

Order by
cmis:name
property.

Set
batch

size
to 10.

This line doesn’t contact
the repository, so it doesn’t

throw an exception.

The repository may be contacted
several times here; each time an
exception might be thrown.
www.it-ebooks.info

http://www.it-ebooks.info/

158 CHAPTER 7 The Blend: read and query functionality
So far, so good. But this returns all of the children, and the browse page should sup-
port paging. Something is missing. Next, let’s see how to get only a page at a time.

7.1.5 Paging

To extract a page from the list of children, you have to define at which offset the page
should start and how long the page should be. The offset is the skip parameter that
you’ve already extracted in the doGet method.

 Let’s set the page size to 10:

ItemIterable<CmisObject> children = folder.getChildren(childrenOpCtx);

ItemIterable<CmisObject> page = children.skipTo(skip).getPage(10);

Hierarchical navigation
The getChildren method has two siblings. The getDescendants method and the
getFolderTree method can return more than one level of children. getDescendants
returns all children (documents, folders, policies, and items), whereas getFolder-
Tree only returns the subfolders. Both take a parameter called depth that defines
how many levels should be returned. A depth of 1 is similar to getChildren. The spe-
cial reserved depth value of -1 means you’re asking for the whole subtree (infinite
depth).

Not all repositories support these two methods. You can check the repository capa-
bilities to find out if the repository you’re talking to supports them, as shown in this
snippet:

if (Boolean.TRUE.equals(
session.getRepositoryInfo().

getCapabilities().isGetDescendantsSupported())) {

// getDescendants() is supported here
}

if (Boolean.TRUE.equals(
session.getRepositoryInfo().

getCapabilities().isGetFolderTreeSupported())) {

// getFolderTree() is supported here
}

Generally, these methods are expensive operations. Use them with care. Calling
getDescendants on the root folder of a populated repository with a depth of -1 may
return hundreds of megabytes of data—or worse, an exception if the result set
becomes too big for the repository.

Neither method supports paging or ordering. But you can and should set an
OperationContext to narrow down the data that comes back from these calls.

Skip over (skip) items and get
a page with next 10 entries
www.it-ebooks.info

http://www.it-ebooks.info/

159Building a browse page
That’s all you have to do for paging. The skipTo method lets you set any offset. If the
offset is greater than the total number of children, the repository returns an empty
list. The getPage method creates an ItemIterable object that will stop an iteration
when the provided number of objects has been processed.

 The skipTo and getPage methods don’t change the original ItemIterable object;
the children object stays untouched. Instead, they create new ItemIterable objects
with a different behavior.

 The whole paging code now looks like the following snippet—note that the for
loop only iterates over the page, as opposed to the whole children collection:

ItemIterable<CmisObject> children = folder.getChildren(childrenOpCtx);

ItemIterable<CmisObject> page = children.skipTo(skip).getPage(10);

try {
for (CmisObject child : page) {

System.out.println(child.getName());
}

}
catch (CmisBaseException cbe) {

throw new TheBlendException("Could not fetch children!");
}

The batch size in the OperationContext and the page size should be the same, to
reduce the number of calls and the amount of transferred data.

 Now let’s look at the paging navigation links. If the user is on the first page, you
obviously don’t need to provide a link to a previous page. But is there a second page?
Luckily, the page object knows the answer. The repository returns the hasMoreItems
flag, which can be retrieved with the getHasMoreItems method, shown here:

if (page.getHasMoreItems()) {
// prepare link to next page

}
else {

// this is the last page
}

Another useful piece of information would be the total number of children in the
folder. The page object provides this number as well. You only need to call getTotal-
NumItems. It’s important to note that returning this number is optional for reposito-
ries. Some repositories always return this number, some repositories never return it,
and some repositories return it sometimes. If the repository didn’t provide this num-
ber, getTotalNumItems returns -1:

if (page.getTotalNumItems() > -1) {
// repository returned the total number of children

}

Now you’re close to completing this browse page. You have the name and path of the
folder. You can get a page from the list of all children of the folder, and you know
which paging links you have to provide. You have the IDs of the children to create
www.it-ebooks.info

http://www.it-ebooks.info/

160 CHAPTER 7 The Blend: read and query functionality
navigation links to subfolders. But you can’t navigate up yet. You have no information
about the parent folder. Let’s look at how you can go about getting that next.

7.1.6 Getting the folder parent

All folders have exactly one parent folder. Only the root folder is the exception, which
never has a parent. The CMIS specification defines two operations that deal with the
parents of an object: getFolderParent returns the parent of a folder and throws an
exception for the root folder; getObjectParents returns the list of all parents for file-
able, nonfolder objects. If the object is unfiled, this list is empty. If the object is multi-
filed, the list contains two or more parents.

 OpenCMIS combines these two operations into one. All fileable types provide a
getParents method, which returns a list of Folder objects. For folders, this list con-
tains exactly one object. For the root folder, this list is empty. Let’s use the getParents
method to get information about the parent folder:

Folder parent = null;

if (!folder.isRootFolder()) {
parent = folder.getParents().get(0);

}

You can optimize this. getParents uses the default OperationContext, so you can
reuse the OperationContext for the getChildren call, like this:

Folder parent = null;
if (!folder.isRootFolder()) {

parent = folder.getParents(childrenOpCtx).get(0);
}

Now you have all the pieces together. Let’s assemble the browse page.

7.1.7 Assembling the browse page

First, gather all of the code snippets from the previous sections and compile the doGet
method. In a real application, it’s better to create the OperationContext objects in a
central place and reuse them. But for demonstration purposes, we’ll leave them as
shown in the following listing.

protected void doGet(HttpServletRequest request,
HttpServletResponse response, Session session)

throws ServletException, IOException, TheBlendException {

// --- get parameters ---
String id = getStringParameter(request, "id");
if (id == null) {

id = session.getRepositoryInfo().getRootFolderId();
}

int skip = getIntParameter(request, "skip", 0);
if (skip < 0) {

Listing 7.7 The doGet() method for the browse page, all in one place

Don’t try to get the
parent of the root folder.

Get the first (and only) parent.
www.it-ebooks.info

http://www.it-ebooks.info/

161Building a browse page
skip = 0;
}

request.setAttribute("skip", skip);

// --- fetch folder object ---
OperationContext folderOpCtx

= session.createOperationContext();
folderOpCtx.setFilterString("cmis:name,cmis:path");
folderOpCtx.setIncludeAcls(false);
folderOpCtx.setIncludeAllowableActions(false);
folderOpCtx.setIncludePolicies(false);
folderOpCtx.setIncludeRelationships(IncludeRelationships.NONE);
folderOpCtx.setRenditionFilterString("cmis:none");
folderOpCtx.setIncludePathSegments(false);
folderOpCtx.setOrderBy(null);
folderOpCtx.setCacheEnabled(true);

CmisObject object = null;
try {

object = session.getObject(id, folderOpCtx);
} catch (CmisBaseException cbe) {

throw new TheBlendException("Could not retrieve folder!", cbe);
}

Folder folder = null;
if (object instanceof Folder) {

folder = (Folder) object;
} else {

throw new TheBlendException("Object is not a folder!");
}

request.setAttribute("folder", folder);

// --- fetch children ---
OperationContext childrenOpCtx = session.createOperationContext();
childrenOpCtx.setFilterString("cmis:objectId,cmis:baseTypeId,"

+ "cmis:name,cmis:contentStreamLength,"
+ "cmis:contentStreamMimeType");

childrenOpCtx.setIncludeAcls(false);
childrenOpCtx.setIncludeAllowableActions(true);
childrenOpCtx.setIncludePolicies(false);
childrenOpCtx.setIncludeRelationships(IncludeRelationships.NONE);
childrenOpCtx.setRenditionFilterString("cmis:none");
childrenOpCtx.setIncludePathSegments(true);
childrenOpCtx.setOrderBy("cmis:name");
childrenOpCtx.setCacheEnabled(false);
childrenOpCtx.setMaxItemsPerPage(10);

ItemIterable<CmisObject> children =
folder.getChildren(childrenOpCtx);

ItemIterable<CmisObject> page = children.skipTo(skip).getPage(10);

List<CmisObject> childrenPage = new ArrayList<CmisObject>();

try {
for (CmisObject child : page) {

childrenPage.add(child);
}

www.it-ebooks.info

http://www.it-ebooks.info/

162 CHAPTER 7 The Blend: read and query functionality

c

} catch (CmisBaseException cbe) {
throw new TheBlendException("Could not fetch children!");

}

request.setAttribute("page", childrenPage);
request.setAttribute("total", page.getTotalNumItems());

// --- determine paging links ---
request.setAttribute("isFirstPage", skip == 0);
request.setAttribute("isLastPage", !page.getHasMoreItems());

// --- fetch parent ---
Folder parent = null;
if (!folder.isRootFolder()) {

try {
parent = folder.getParents(childrenOpCtx).get(0);

} catch (CmisBaseException cbe) {
throw new TheBlendException("Could not fetch parent folder!");

}
}

request.setAttribute("parent", parent);

// --- show browse page ---
dispatch("browse.jsp", folder.getName() + ". The Blend.",

request, response);
}

You might’ve noticed that the servlet calls request.setAttribute() a few times and
hands over the results of the CMIS requests. You need those to transfer the objects to
the JSP.

 The second step is to retrieve the objects again in the JSP, shown next.

<%

int skip = (Integer) request.getAttribute("skip");

Folder folder = (Folder) request.getAttribute("folder");

List<CmisObject> childrenPage =

(List<CmisObject>) request.getAttribute("page");

long total = (Long) request.getAttribute("total");

boolean isFirstPage = (Boolean) request.getAttribute("isFirstPage");

boolean isLastPage = (Boolean) request.getAttribute("isLastPage");

Folder parent = (Folder) request.getAttribute("parent");

%>

Finally, you need to change the HTML pseudocode to real code. For clarity, we’re
using the values that the repository delivers without encoding. In a real application,
you should never do that because it can be abused for cross-site scripting (XSS) and
other attacks. Make sure you always encode all values.

Listing 7.8 JSP code for getting the folder children data

The Folder object
The list of
hildren to

display The total
number of
children

The parent
Folder object
www.it-ebooks.info

http://www.it-ebooks.info/

163Building a browse page
Compare the JSP code in listing 7.9 with the pseudocode listing 7.1.

<h1><%= folder.getName() %></h1>

Path: <%= folder.getPath() %>

Number of children:

<%= (total == -1 ? "unknown" : String.valueOf(total)) %>

<table>

<% if (parent != null) { %>
<tr>

<td><a href="browse?id=<%= parent.getId() %>">..</td>
<td></td>
<td></td>

<tr>
<% } %>

<% for (CmisObject child: childrenPage) { %>
<tr>

<% if (child instanceof Folder) { %>

<td>
<a href="browse?id=<%= child.getId() %>"><%= child.getName() %>

</td>
<td></td>
<td></td>

<% } else if (child instanceof Document) { %>
<%

Document doc = (Document) child;

String mimeType = doc.getContentStreamMimeType();
if (mimeType == null) {

mimeType = "";
}

String contentLength = "";
if (doc.getContentStreamLength() > 0) {

contentLength =
String.valueOf(doc.getContentStreamLength()) + " bytes";

Listing 7.9 JSP code for folder browse

Security considerations with HTML and JavaScript
If you neglect to test the data that comes back from a CMIS repository, you make
XSS attacks too easy. Property values can contain HTML and JavaScript snippets that
are executed in the user’s browser. Because they’re running in the context of your
CMIS application, they have access to everything the user has access to and the
potential to add, remove, modify, or steal data.

You can find a lot of information on the internet about how to counteract such
attacks. A good starting point is The Open Web Application Security Project (OWASP;
www.owasp.org). It also provides libraries that help lower the risk of an attack; one
of these libraries is used in The Blend code.
www.it-ebooks.info

http://www.it-ebooks.info/

164 CHAPTER 7 The Blend: read and query functionality
}
%>

<td><a href="show?id=<%= doc.getId() %>"><%= doc.getName() %></td>
<td><%= mimeType %></td>
<td><%= contentLength %></td>

<% } else { %>

<td><%= child.getName() %></td>
<td></td>
<td></td>

<% } %>
<tr>
<% } %>

</table>

<% if (!isFirstPage) { %>
<% String skipParam = (skip < 10 ? "0" : String.valueOf(skip - 10)); %>
<a href="browse?id=<%= folder.getId() %>&skip=<%= skipParam %>">
Previous Page<a>
<% } %>

<% if (!isLastPage) { %>
<a href="browse?id=<%= folder.getId() %>&skip=<%= skip + 10 %>">
Next Page<a>
<% } %>

That’s it. Your browse page should be working now. Follow the instructions in
chapter 6 to restart the server and open the web application in a web browser. After
you’ve logged in, append /browse to the URL in the address bar, and the browse page
should appear. It should look like the screenshot in figure 7.2.

Figure 7.2 Your first simple browse page
www.it-ebooks.info

http://www.it-ebooks.info/

165Building a document page
Before we move on, we have a few things to note. Just as you checked to see if the
requested object was a folder or a document, you also need to check each child in the
JSP. If it’s a folder, you generate a link to the browse page with the ID of this folder. If
the object is a document, you cast to the OpenCMIS document interface, which pro-
vides convenience methods to access document-specific properties. Here, you’re
accessing the MIME type and the content length. You also generate a link to a page
that’s supposed to display details about the document. We’ll build this page next.

A CHALLENGE FOR .NET DEVELOPERS If you’re a .NET expert, we offer a chal-
lenge: try turning this into an ASP.NET application. We think you’ll be sur-
prised by how similar the code will be. If you do this, let us know how it turned
out on the Author Online forum. We love to hear feedback from readers, as
well as stories of how you used CMIS to solve your own real-world problems.

7.2 Building a document page
Now you can browse folders. But you also want to handle documents, and in this sec-
tion we’ll focus on only that. When you click on a document in The Blend, whether
it’s an audio file, an image, or something similar, a page will load that displays details
about the document. You’re now going to build a stripped-down version of that page.

 Figure 7.3 shows a screen from The Blend displaying document details for a song
document object.

Figure 7.3 The Blend document (song) object details page
www.it-ebooks.info

http://www.it-ebooks.info/

166 CHAPTER 7 The Blend: read and query functionality
7.2.1 Preparing the HTML part of the document page

Similar to the previous section, we’ll prepare HTML pseudocode first. Copy the echo
JSP from chapter 6, and rename it to show.jsp.

 This time the page should have the name of the document, a thumbnail if avail-
able, a download link, a list of paths to the document, its allowable actions, and finally,
all of its properties. The pseudocode for this is shown in the following listing.

<h1>[name of document]</h1>

[if document has thumbnail]
[display thumbnail]

[end if]

[if document has content]
[if current user is allowed to download content]

[download link]
[end if]

[end if]

<h2>Paths</h2>

[loop over paths]

[path]
[end loop]

<h2>Allowable Actions</h2>

[loop over allowable actions]

[allowable action]
[end loop]

<h2>Properties</h2>

<table>
[loop over properties]
<tr>

<td>[property display name]</td>
<td>[property value]</td>

</tr>
[end loop]
</table>

Again, you also need a servlet that prepares all that data. In the package com.manning
.cmis.theblend.servlets, create a new class called ShowServlet that extends
AbstractTheBlendServlet, and add the following XML snippet to the web.xml file:

<servlet>
<servlet-name>ShowServlet</servlet-name>

Listing 7.10 JSP pseudocode for document detail page
www.it-ebooks.info

http://www.it-ebooks.info/

167Building a document page
<servlet-class>
com.manning.cmis.theblend.servlets.ShowServlet

</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>ShowServlet</servlet-name>
<url-pattern>/show</url-pattern>

</servlet-mapping>

Similar to the browse page, you need to know which document to display. Again, you
can use the ID to identify the document. That allows this page to display older ver-
sions of a document, not only the latest one. If the user doesn’t provide an ID, you
can’t do anything except return an error message. These are the first lines of the
doGet methods:

String id = getStringParameter(request, "id");
if (id == null) {

throw new TheBlendException("No document id provided!");
}

Excellent. Now that you have the ID, you need to get this document.

7.2.2 Retrieving documents

From section 7.1, you already know how to fetch an object from a CMIS repository. For
a quick start, let’s borrow and slightly modify some code from there, as shown in the
next listing.

OperationContext docOpCtx = session.createOperationContext();
docOpCtx.setFilterString("*");

docOpCtx.setIncludeAcls(false);
docOpCtx.setIncludeAllowableActions(true);

docOpCtx.setIncludePolicies(false);
docOpCtx.setIncludeRelationships(IncludeRelationships.NONE);
docOpCtx.setRenditionFilterString("cmis:thumbnail");

docOpCtx.setIncludePathSegments(false);
docOpCtx.setOrderBy(null);
docOpCtx.setCacheEnabled(true);

CmisObject object = null;
try {
 object = session.getObject(id, docOpCtx);

}
catch (CmisBaseException cbe) {

throw new TheBlendException("Could not retrieve document!", cbe);
}

Document document = null;

if (object instanceof Document) {

Listing 7.11 Retrieving a document with an appropriate OperationContext

Select all of the properties
to display all the details.

Allowable actions
are included.

Include the thumbnail,
if it’s available.

Use the object
context created for
document details.

The object should be a
document in this context.
www.it-ebooks.info

http://www.it-ebooks.info/

168 CHAPTER 7 The Blend: read and query functionality

Handl
other
except
document = (Document) object;
}
else {

throw new TheBlendException("Object is not a document!");
}

The first thing you probably noticed is that this time the code tests whether the object
is a document. The second important change is in the OperationContext. The filter is
set to "*", which forces the repository to return all properties. This is different than
not setting a filter at all. If no filter is set, the repository decides which properties are
returned. It might exclude, for example, properties that are resource intensive to
compute. Because the page that you’ll develop should display all properties, the filter
must be "*".

 The browse page didn’t distinguish between different CMIS errors, and the bor-
rowed code doesn’t either. Let’s fix that before we move on.

EXCEPTION HANDLING

The CMIS specification defines 13 exceptions. Five of them are general exceptions
that might be thrown at any time. The others are specific exceptions that should only
be thrown by certain operations. You might have noticed the word “should” in the last
sentence. In reality, you should be prepared for all 13 exceptions at any time. Most
CMIS repositories follow the specification, but a few don’t.

 All CMIS exceptions have a counterpart in OpenCMIS with a similar name. For
example, the CMIS exception invalidArgument is mapped to the CmisInvalid-
ArgumentException in OpenCMIS. CMIS and OpenCMIS exceptions have a message
and a code. The code isn’t used by many repositories and usually isn’t relevant. The
quality of the messages depends on the repository. Some repositories provide only a
generic error message, and some repositories provide detailed information.

 Now let’s do a little exception handling and catch the case where the document
doesn’t exist:

CmisObject object = null;
try {
 object = session.getObject(id, docOpCtx);
}
catch (CmisObjectNotFoundException onfe) {

throw new TheBlendException("The document does not exist!", onfe);
}
catch (CmisBaseException cbe) {

throw new TheBlendException("Could not retrieve document!", cbe);
}

Because all CMIS exceptions are derived from CmisBaseException, the second catch
block covers all other error cases.

 Apart from the exceptions defined in the specification, there are a few other
exceptions to cover in OpenCMIS dealing with connection and authorization issues.
The most prominent example is the CmisConnectionException, which is thrown if
the repository can’t be reached anymore. For a list of all exceptions, refer to the
OpenCMIS Javadoc and the CMIS specification.

Catch the
“not found”
exception.

e all
CMIS
ions.
www.it-ebooks.info

http://www.it-ebooks.info/

169Building a document page
GETTING DETAILS ABOUT THE EXCEPTIONS WITH GETERRORCONTENT OpenCMIS
exceptions have a getErrorContent method that provides the content that
was sent with the exception. What that content is depends on the repository
and the binding. In many cases, it contains valuable information. A server
stack trace, for example, may tell you more than the error message. This con-
tent is nothing you can present to an end user, but it helps find issues during
development.

Now you’re equipped with the tools to handle CMIS errors. You have a document
object with all the properties and the allowable actions. What’s missing is the docu-
ment, and the content.

HANDLING CONTENT STREAMS

The OpenCMIS document interface provides a few getContentStream methods. The
simplest getContentStream method requires no parameters and returns a Content-
Stream object, or null if the document has no content. If you want to check in
advance whether the document has content, look at the content length:

if (document.getContentStreamLength() < 0) {
// the document has no content

}
else if (document.getContentStreamLength() == 0) {

// the document has an empty content
}
else {

ContentStream content = document.getContentStream();
InputStream stream = content.getStream();
String name = content.getFileName();
String mimeType = content.getMimeType();
long length = content.getLength();

}

The ContentStream object carries the stream, a filename, the MIME type of the
stream, and the stream length. The filename should be the value of the
cmis:contentStreamFileName property. The stream length isn’t always set, so don’t
rely on it.

DANGLING SOCKETS, A WARNING This is really important. If you’ve requested
the content, consume and close the stream! Always. Even if it turns out that
you don’t need it, consume it and close it. If you don’t do that, you’ll have a
dangling socket connection to the repository. Depending on your environ-
ment, only a certain number of connections are allowed to the same host, and
you’ll get stuck or get an exception in a subsequent call.

Before we move on, let’s look at the other getContentStream methods. There’s one
that accepts an offset and a length parameter, and it allows you to retrieve an excerpt
of the content. That helps you deal with big documents, or resume a download, or
something similar. Before using it, check if the repository supports it. Some repositories
ignore these parameters and always present the full stream. To test this, run one of the
following lines in the CMIS Workbench console and count the bytes that come back:

getLength() should return
the same number as
getContentStreamLength()
but in some cases returns -1.
www.it-ebooks.info

http://www.it-ebooks.info/

170 CHAPTER 7 The Blend: read and query functionality
offset = BigInteger.valueOf(10);
length = BigInteger.valueOf(200);
document.getContentStream(offset, length);

length = BigInteger.valueOf(1024)
document.getContentStream(null, length);

offset = BigInteger.valueOf(4096);
document.getContentStream(offset, null);

OPENCMIS TCK The OpenCMIS TCK (Test Compatibility Kit) also checks
whether the repository supports content ranges. You start it in the CMIS
Workbench by clicking the TCK button. You can either run all tests or select
the Content Ranges Test. Note that the support for content ranges may work
with one binding but not with another. To be sure, test all bindings. The TCK
is covered in more detail in chapter 14.

Let’s look at another getContentStream method that takes a stream ID. If the stream
ID isn’t set (is null), then it returns the content of the document. Other values repre-
sent renditions of the document or additional content streams depending on the
repository.

 How do you get to such a rendition stream ID? You may recall requesting the docu-
ment thumbnails via the OperationContext:

docOpCtx.setRenditionFilterString("cmis:thumbnail");

If the document has a thumbnail, you can find it in the renditions list:

List<Rendition> renditions = document.getRenditions();

In the OperationContext, you’ve defined that you’re only interested in thumbnails,
but it’s also possible to request all renditions ("*") or renditions of a certain MIME
type. See the “Rendition Filter Grammar” section in the CMIS specification (section
2.2.1.2.4.1) for details.

 A document can have none, one, or multiple thumbnails. If the document has
more than one, they usually differ by their size. The Rendition object contains the
width and height of the thumbnail and several other details, including the stream ID
that you can use to get the content of the thumbnail. Or you use the getContent-
Stream method provided by the Rendition object:

InputStream stream = null;
List<Rendition> renditions = document.getRenditions();
if (renditions != null) {

for (Rendition rendition: renditions) {
if (rendition.getHeight() == 16) {

String streamId = rendition.getStreamId();
stream = rendition.getContentStream().getStream();
break;

}
}

}

...

Get 200 bytes, starting
at offset 10

Get first 1024 bytes

Get all bytes from
offset 4096 to end

Look for thumbnail
that’s 16 pixels high

Get content stream
of the rendition, in
this case the
thumbnail
www.it-ebooks.info

http://www.it-ebooks.info/

171Building a document page
if (stream != null) {
stream.close();

}

FOLDER RENDITIONS The CMIS specification defines that folders can also have
renditions. A repository could, for example, provide a thumbnail as an icon
for the folder. It’s also possible for a repository to provide a zip file that con-
tains the contents of the folder and that’s created on the fly, as a rendition.

PATHS

Next on the list and in the HTML pseudocode are the document’s paths—yes, plural.
If the repository supports multifiling, documents can reside in more than one folder.
To make it a bit more confusing, the last segment of the document’s paths might not
match the cmis:name property.

 Let’s illustrate that with an example. Suppose the document’s cmis:name property
value is “Budget 2013” and it resides in two folders with the paths /engineering/devel-
opment and /engineering/budgets/2013. The document might be filed under the
paths /engineering/development/Budget 2013_01 and /engineering/budgets/2013
/Budget 2013.pdf, as shown in figure 7.4.

 As you can see, it’s the same single document, but the last path segment is differ-
ent. This isn’t common, but a repository can do that, for example, to avoid name
clashes. Combining the path of a folder with the cmis:name property of the document

Always close stream

Document
cmis:name:
Budget 2013

<Filed as: Budget 2013.pdf><Filed as: Budget 2013_01.pdf>

/engineering

/development /budgets

/2012 /2013

Figure 7.4 Multifiled document example
www.it-ebooks.info

http://www.it-ebooks.info/

172 CHAPTER 7 The Blend: read and query functionality
doesn’t necessarily generate a valid path to the document, but OpenCMIS knows how
to build the correct path.

 Do you remember the IncludePathSegments flag in the OperationContext? It
controls whether the repository should provide the document’s path segments when
the children lists or parents lists are requested for an object. Luckily, that’s nothing
you have to deal with. OpenCMIS hides all these details, and you can (and should) set
the IncludePathSegments flag to false. All you need to call is getPaths on the
object:

List<String> paths = document.getPaths();

It returns a list of all paths to the document with the correct path segments. But be
careful with that method. It talks to the repository every single time you call it.

ALLOWABLE ACTIONS

Allowable actions are next in line. The allowable actions define what the current user
can do with this object at this point in time. They help user interfaces to activate or to
deactivate features. On the page, you’ll use them to decide whether or not to display a
download link. A user might be allowed to know about the existence of a document,
but might not be allowed to see its content. For demonstration purposes, we’ll also list
all allowable actions.

 In CMIS, the allowable actions are represented by a long list of Boolean values. In
OpenCMIS they’re represented as a Set of Action enum values. You can check if an
allowable action is set for an object by testing it in that set:

Set<Action> allowableActions =
document.getAllowableActions().getAllowableActions();

if (allowableActions.contains(Action.CAN_DELETE_OBJECT)) {
// the current user is allowed to delete the object

}

PROPERTIES

Finally, let’s look at the properties. Our web page doesn’t concern itself with the dif-
ferences between the properties, so it lists them all. A CmisObject object provides the
following three methods to access properties and property values:

 getProperties()—Returns a list of all properties that have been retrieved
 getProperty(String id)—Returns the property object for the given

property ID
 getPropertyValue(String id)—A shortcut that directly obtains the value of a

property

The CmisObject object contains only the properties that have been defined in the
property filters of the OperationContext used when the object was fetched. Only if
the property filter was set to "*" can you be sure to get all of the properties. But use
"*" with care. Some repositories return more than 100 properties for a simple docu-
ment, so only choose the ones you need.
www.it-ebooks.info

http://www.it-ebooks.info/

173Building a document page

String,

t CMIS

In

CMIS

Bo

CMIS

Date

ue
 Both getProperties and getProperty return Property objects. Those objects
hold all kinds of information about the property, and it’s worth having a look into the
OpenCMIS Javadoc. The most important data points are the data type of the property,
a flag indicating if it’s a single-value or a multivalue property, and the property value
itself. As we noted in chapter 4, the Property object carries both metadata about the
property and the property itself.

 Under the hood, all CMIS properties are transferred as lists of values. Single-value
properties are lists that must not have more than one value. You can see these echoes
of the original CMIS specification in various places in OpenCMIS. For example, the
Property object provides a getValues method, which returns a list of values. It also
provides a helper method primarily for single-valued properties named getFirst-
Value, which returns the first value in the list if the list isn’t empty. But both work for
single- and multivalue properties.

 The simplest way to get the value of a property is to call getValue on the Property
object or use the shortcut and call getProperyValue on the CmisObject. In both
cases, you only have to cast the right Java data type. If it’s a multivalue property, cast to
a List of the Java data type. If the property isn’t set—that is, it has no value—Open-
CMIS returns null. Here are a few examples:

String name1 = document.getProperty("cmis:name").getValue();
String name2 = document.getPropertyValue("cmis:name");

BigInteger width = document.getPropertyValue("picture:width");

BigDecimal height = document.getPropertyValue("scan:height");

Boolean archived = document.getPropertyValue("xray:archived");

GregorianCalendar dueDate =
document.getPropertyValue("invoice:dueDate");

Property<String> tagsProp = document.<String>getProperty("my:tags");
if (tagsProp != null) {

List<String> tags = tagsProp.getValue();
}

That’s all you need for this web page. But something is different here, compared to
the browse page. For this page you don’t just need the JSP that displays all of this
data—you also need something that serves the content. Let’s assemble the JSP first
and build a servlet that deals with the content later.

CMIS data types:
Id, URI, HTML

This line equivalen
to preceding line

 data
type:
teger

CMIS data type:
Decimal

 data
type:
olean

 data
type:
Time

Multival
String
property

If there’s no tag set, null is
returned. There are no empty
lists in CMIS. Lists are either
null or have at least one entry.
www.it-ebooks.info

http://www.it-ebooks.info/

174 CHAPTER 7 The Blend: read and query functionality
7.2.3 Assembling the document page

The code for the servlet is straightforward and speaks for itself. The Operation-
Context is in this code again, but you’re already an expert now, and you know that it
should go in a central place and would be reused in a real application. The code for
the doGet method is shown in the next listing.

protected void doGet(HttpServletRequest request,
HttpServletResponse response, Session session)

throws ServletException, IOException, TheBlendException {

// --- get parameters ---
String id = getStringParameter(request, "id");
if (id == null) {

throw new TheBlendException("No document id provided!");
}

// --- fetch document object ---
OperationContext docOpCtx = session.createOperationContext();
docOpCtx.setFilterString("*");
docOpCtx.setIncludeAcls(false);
docOpCtx.setIncludeAllowableActions(true);
docOpCtx.setIncludePolicies(false);
docOpCtx.setIncludeRelationships(IncludeRelationships.NONE);
docOpCtx.setRenditionFilterString("cmis:thumbnail");
docOpCtx.setIncludePathSegments(false);
docOpCtx.setOrderBy(null);
docOpCtx.setCacheEnabled(true);

CmisObject object = null;
try {

object = session.getObject(id, docOpCtx);
}
catch (CmisObjectNotFoundException onfe) {

throw new TheBlendException("The document does not exist!", onfe);
}
catch (CmisBaseException cbe) {

throw new TheBlendException("Error getting document!", cbe);
}

Document doc = null;
if (object instanceof Document) {

doc = (Document) object;
}
else {

throw new TheBlendException("Object is not a document!");
}

request.setAttribute("document", doc);

// --- get thumbnail stream id ---
String thumbnailStreamId = null;

List<Rendition> renditions = doc.getRenditions();
if (renditions != null && !renditions.isEmpty()) {

thumbnailStreamId = renditions.get(0).getStreamId();

Listing 7.12 doGet method for the document page

Blindly take
first rendition
www.it-ebooks.info

http://www.it-ebooks.info/

175Building a document page

doc
a

}

request.setAttribute("thumbnail", thumbnailStreamId);

// --- show the page ---
dispatch("show.jsp", doc.getName() + ". The Blend.",

request, response);
}

Next stop: JSP, which is shown in listing 7.13. Here, you fill in the blanks with the doc-
ument data. Again, we haven’t encoded the data here for code clarity and brevity, but
it would be careless to do this in a real-world application.

<%
Document doc = (Document) request.getAttribute("document");

Set<Action> allowableActions =
doc.getAllowableActions().getAllowableActions();

String thumbnailStreamId = (String) request.getAttribute("thumbnail");
%>

<h1><%= doc.getName() %></h1>

<% if (thumbnailStreamId != null) { %>
<img src="download?id=<%= doc.getId() %>&stream=

<%= thumbnailStreamId %>">
<% } %>

<% if (doc.getContentStreamLength() > 0) { %>
<% if (allowableActions.contains(Action.CAN_GET_CONTENT_STREAM)){ %>

<a href="download?id=<%= doc.getId() %>">download
<% } %>

<% } %>

<h2>Paths</h2>

<% for (String path: doc.getPaths()) { %>

<%= path %>
<% } %>

<h2>Allowable Actions</h2>

<% for (Action action: allowableActions) { %>

<%= action.value() %>
<% } %>

<h2>Properties</h2>

<table>
<% for (Property<?> prop: doc.getProperties()) { %>
<tr>

Listing 7.13 JSP code for loading the document

Document
object that
you have to
loadExtract

ument’s
llowable
actions

Make sure
user is

permitted to
download

content
www.it-ebooks.info

http://www.it-ebooks.info/

176 CHAPTER 7 The Blend: read and query functionality
<td><%= prop.getDefinition().getDisplayName() %></td>
<td>

<% if (prop.isMultiValued()) { %>

<% if (prop.getValues() != null) { %>

<% for(Object value: prop.getValues()) { %>
<%= value %>

<% } %>
<% } %>

<% } else { %>

<%= prop.getValue() %>
<% } %>

</tr>
<% } %>
</table>

When you run the code you’ve built up to this point, you’ll notice that DateTime val-
ues aren’t nicely formatted, as you can see in figure 7.5. Also, if properties aren’t set,

Check if this is
multivalued
property, and if
it is, display list
of values

Figure 7.5 The document page
www.it-ebooks.info

http://www.it-ebooks.info/

177Building a document page
you’d like to see something other than “null” displayed. But because you have to
encode these values anyway (remember the XSS attack issue), you can also use that
code to nicely format property values. That’s an exercise for you to complete on your
own if you wish. If you need some inspiration, have a look at the HTMLHelper class in
The Blend code.

 The last missing piece now is the content stream. Next up, we’ll build the down-
load servlet.

7.2.4 The download servlet

For the download servlet, we don’t need HTML or a JSP. We want to stream the content
from the repository directly to the browser.

About document URLs
As you now know, CMIS is based on HTTP, so why not use the content URLs that the
CMIS repository provides? Why do we need our own download servlet?

In some scenarios it’s possible to use the CMIS content URLs, but let’s look at some
of the downsides to that:

 The Web Services binding doesn’t provide a content URL. Only the AtomPub and
the Browser bindings do. If your application should be binding-agnostic, the
CMIS content URL isn’t an option. You’ll find more about the differences
between the bindings in chapter 11.

 Usually, users have to provide their username and password again because the
content URL doesn’t carry any authentication information. From a user-experi-
ence point of view, that’s a bad thing.

 Depending on the server setup, the end user’s web browser may not be able to
contact the CMIS repository directly. In these cases, your content URL wouldn’t
work.

You can see that use of URLs in this way is too fragile to rely on. But if you want to
do it anyway, here’s the line of code you need to get to the URL:

String contentURL =
((LinkAccess)session.getBinding().getObjectService()).

loadContentLink(session.getRepositoryInfo().getId(), documentId);

OK, wait. What happened here? That code looks complicated. A little background
explanation is necessary.

The OpenCMIS client library consists of two layers: a high-level and a low-level API.
Up to this point, you’ve only seen the high-level API. It provides a lot of conveniences
and hides the cumbersome details. The low-level API is a bit more difficult to use, but
it lets you access and control every CMIS detail, including the content URL. You’ll find
more on these two APIs in chapter 11.

The loadContentLink method on the LinkAccess interface provides the content
URL. If the current binding is the Web Services binding, it returns null. It needs the
www.it-ebooks.info

http://www.it-ebooks.info/

178 CHAPTER 7 The Blend: read and query functionality
Now you’ll prepare the new DownloadServlet, as you did for the BrowseServlet ear-
lier in this chapter. In the package com.manning.cmis.theblend.servlets, create a
new class called DownloadServlet that extends AbstractTheBlendServlet, and then
add the following XML snippet to the web.xml file:

<servlet>
<servlet-name>DownloadServlet</servlet-name>
<servlet-class>

com.manning.cmis.theblend.servlets.DownloadServlet
</servlet-class>

</servlet>
<servlet-mapping>
<servlet-name>DownloadServlet</servlet-name>
<url-pattern>/download</url-pattern>

</servlet-mapping>

You’ve already added two links from the document page to this servlet. One link pro-
vided only the document ID as a parameter. The second link provided the document
ID and a stream ID to access a rendition: the thumbnail.

 Next, let’s create the first half of the doGet method. Note the setFilterString in
the following listing. You only select the cmis:contentStreamFileName property. This
is because cmis:objectId, cmis:baseTypeId, and cmis:objectTypeId are added by
OpenCMIS automatically, as we discussed earlier. The filename helps OpenCMIS in
some cases to return the right filename in the ContentStream object.

String id = getStringParameter(request, "id");
String streamId = getStringParameter(request, "stream");

OperationContext docOpCtx = session.createOperationContext();
docOpCtx.setFilterString("cmis:contentStreamFileName");
docOpCtx.setIncludeAcls(false);
docOpCtx.setIncludeAllowableActions(false);
docOpCtx.setIncludePolicies(false);
docOpCtx.setIncludeRelationships(IncludeRelationships.NONE);
docOpCtx.setRenditionFilterString("cmis:none");
docOpCtx.setIncludePathSegments(false);
docOpCtx.setOrderBy(null);
docOpCtx.setCacheEnabled(true);

Listing 7.14 First half of the download doGet() method

(continued)
repository ID and the document ID to compile the URL. The repository ID can be found
in the repository info. The LinkAccess interface is provided by all low-level services.
To get hold of one of the service objects (in this example, it’s the object service), you
have to get the entry point to the low-level API. The getBinding method on the ses-
sion object provides this convenient entry point.
www.it-ebooks.info

http://www.it-ebooks.info/

179Building a document page
CmisObject cmisObject = null;
try {

cmisObject = session.getObject(id, docOpCtx);
} catch (CmisObjectNotFoundException onfe) {

response.sendError(HttpServletResponse.SC_NOT_FOUND,
"Document not found!");

return;
} catch (CmisBaseException cbe) {

response.sendError(HttpServletResponse.SC_INTERNAL_SERVER_ERROR,
"Error: " + cbe.getMessage());

return;
}

if (!(cmisObject instanceof Document)) {
response.sendError(HttpServletResponse.SC_BAD_REQUEST,

"Object is not a document!");
return;

}

Document document = (Document) cmisObject;

You might’ve noticed that the error handling in the previous listing is different. It’s
not throwing an exception that’s finally turned into a human-readable error page.
Instead, it returns the proper HTTP status codes. That helps web browsers and other
clients to distinguish real content from errors.

 The code block in the next listing shows how to handle the ContentStream.

ContentStream contentStream = null;
if (streamId == null) {

contentStream = document.getContentStream();
}
else {

contentStream = document.getContentStream(streamId);
}

if (contentStream == null) {
response.sendError(HttpServletResponse.SC_NOT_FOUND, "No content!");
return;

}

InputStream in = contentStream.getStream();
try {

String mimeType = contentStream.getMimeType();
if (mimeType == null || mimeType.length() == 0) {

mimeType = "application/octet-stream";
}

response.setContentType(mimeType);
OutputStream out = response.getOutputStream();

byte[] buffer = new byte[64 * 1024];
int b;
while ((b = in.read(buffer)) > -1) {

Listing 7.15 Second half of the download doGet() method

A document
that has no
content or

stream ID is
invalid

Repository didn’t
send a MIME type, so
use a generic one
www.it-ebooks.info

http://www.it-ebooks.info/

180 CHAPTER 7 The Blend: read and query functionality
out.write(buffer, 0, b);
}

out.flush();
} finally {

in.close();
}

The second half of the doGet certainly isn’t surprising. If the stream ID has been pro-
vided, it will be used. If the return content stream is null, the document has no con-
tent or the stream ID wasn’t valid. Finally, the stream is forwarded to the web browser
and the content stream is closed. Closing the stream is important in order to release
all resources that are attached to it.

 Now the document page is working, and you can finally download content. Great.
Are you in the mood for more? How about also showing the version history of the doc-
ument on the document page? Let’s do that next.

7.2.5 Adding the version series to the document page

Whether or not a document can have multiple versions depends on the type of the
document. All versions of a document share the same version series. Following that
logic, sorting all documents of a version series by their creation dates produces the
version history.

 If you want to attach the version history to the document’s page JSP, you need a bit
of HTML code first. Here’s a pseudocode version of what that would look like:

[if versionable]
<h2>Version History</h2>

<table>
[loop over versions]
<tr>

<td>[version label and link to version]</td>
<td>[version creation date]</td>
<td>[if major version] major [else] minor [end if]</td>

</tr>
[end loop]
</table>
[end if]

You only want to do this if the document is a versionable type. If it is, you list the ver-
sion label with a link and the version’s creation date. Then display whether it’s a major
or minor version. Checking if the document is versionable is easy:

DocumentType doctype = (DocumentType) document.getType();

if (Boolean.TRUE.equals(doctype.isVersionable())) {
// document is versionable

} else {
// document is not versionable

}

Getting all versions also isn’t difficult, as you can see here:

Always close stream
www.it-ebooks.info

http://www.it-ebooks.info/

181Building a document page
List<Document> versions = null;
try {

versions = document.getAllVersions();
}
catch (CmisBaseException cbe) {

throw new TheBlendException("Couldn't fetch doc versions!", cbe);
}

The method getAllVersions returns all members of the version series in reverse
order by their creation date. That is, the latest version is at the top of the list; the first
version is at the bottom of the list. If the version series is checked out, then the Private
Working Copy (PWC) is on top of this list, followed by the latest version.

 You see that getAllVersions returns a list of document objects. Does this ring a
bell? Yes, you can use an OperationContext here. Note that you can’t change the
order of the returned list. The order is defined, in this case, by the CMIS specification:

OperationContext versOpCtx = session.createOperationContext();

versOpCtx.setFilterString("cmis:versionLabel,cmis:creationDate," +
"cmis:isLatestVersion");

versOpCtx.setIncludeAcls(false);
versOpCtx.setIncludeAllowableActions(false);
versOpCtx.setIncludePolicies(false);
versOpCtx.setIncludeRelationships(IncludeRelationships.NONE);
versOpCtx.setRenditionFilterString("cmis:none");
versOpCtx.setIncludePathSegments(false);
versOpCtx.setOrderBy(null);
versOpCtx.setCacheEnabled(false);

List<Document> versions = null;
try {

versions = document.getAllVersions(versOpCtx);
}
catch (CmisBaseException cbe) {

throw new
TheBlendException("Could not fetch document versions!", cbe);

}

Let’s assemble this all together. First, add the previous code to the doGet method in
ShowServlet.java, somewhere between getting the thumbnail and the dispatch call,
and add this snippet:

List<Document> versions = null;

DocumentType doctype = (DocumentType) doc.getType();

if (Boolean.TRUE.equals(doctype.isVersionable())) {
OperationContext versOpCtx = session.createOperationContext();
versOpCtx.setFilterString("cmis:versionLabel,cmis:creationDate," +

"cmis:isMajorVersion");
versOpCtx.setIncludeAcls(false);
versOpCtx.setIncludeAllowableActions(false);
versOpCtx.setIncludePolicies(false);
versOpCtx.setIncludeRelationships(IncludeRelationships.NONE);
versOpCtx.setRenditionFilterString("cmis:none");

Properties you
want to display
www.it-ebooks.info

http://www.it-ebooks.info/

182 CHAPTER 7 The Blend: read and query functionality
versOpCtx.setIncludePathSegments(false);
versOpCtx.setOrderBy(null);
versOpCtx.setCacheEnabled(false);

try {
versions = doc.getAllVersions(versOpCtx);

}
catch (CmisBaseException cbe) {

throw new
TheBlendException("Could not fetch document versions!", cbe);

}
}

request.setAttribute("versions", versions);

Next, extend the show.jsp. In the first block, you have to extract the versions for the
attributes again, like this:

List<Document> versions = (List<Document>) request.getAttribute("versions");

Finally, append the snippet that displays the version history to the JSP, like so:

<% if (versions != null) { %>
<h2>Version History</h2>

<table>
<% for (Document version: versions) { %>
<tr>

<td><a href="show?id=<%= version.getId() %>">
<%= version.getVersionLabel() %></td>

<td><%= version.getCreationDate() %></td>
<td><% if (Boolean.TRUE.equals(version.isMajorVersion())) {

%>major<% } else { %>minor<% } %> </td>
</tr>
<% } %>
</table>
<% } %>

If it works correctly, you should now be able to jump between different versions by
clicking on the version labels. Each version is a full-blown document that will supply
both metadata and content. But have a look at the allowable actions. Most repositories
don’t allow you to change a document that isn’t the latest version. Some don’t even
allow deleting an earlier version. Each version of a document carries additional infor-
mation as well. For example, flags will help you find out if the version is the latest ver-
sion or the latest major version, if it’s checked out, and if so by whom. Have a look at
the Javadoc to discover the applicable methods.

 Note that all versioning-related properties are often calculated properties. That is,
the repository has to compute these properties values for each document every time.
For many repositories, this is a relatively expensive operation, so you should only
request those properties when, and if, you need them.

 With the code you’ve seen up to this point, you can browse folders, show docu-
ments, and traverse the version history of a document. Indeed those are all critical
www.it-ebooks.info

http://www.it-ebooks.info/

183Building a query page
features. But the most powerful way to discover content in a CMIS repository is a
query. Let’s build a query page next.

7.3 Building a query page
Chapter 5 explained the CMIS Query language, and you’ve probably played with it
already in the CMIS Workbench. In this section, you’ll learn how to use it in an appli-
cation. Let’s build a simple web page that allows the user to find documents by their
names or parts of their names. A CMIS query can do much more than this, but we’ll
start with the basics. This section provides only a blueprint for many other interesting,
Query-based use cases.

By this point in the chapter, creating a new page should be routine for you. Following
the same pattern you’ve used for the previous new pages, prepare the new Search-
Servlet. In the package com.manning.cmis.theblend.servlets, create a new class
called SearchServlet that extends AbstractTheBlendServlet, and then add the fol-
lowing XML snippet to the web.xml file:

<servlet>
<servlet-name>SearchServlet</servlet-name>
<servlet-class>

com.manning.cmis.theblend.servlets.SearchServlet

About is...() methods in OpenCMIS
Here’s one final remark on the code you’ve seen so far. Have a look at this line:
if (Boolean.TRUE.equals(version.isMajorVersion()) { ... }

That looks a bit cumbersome, doesn’t it? When you look through the OpenCMIS Java-
doc, you’ll notice that most Boolean values are Boolean objects. The reason for this
is that it’s possible that the repository won’t return a value. There are two reasons
why this could happen: either the repository doesn’t follow the CMIS specification, or
you haven’t requested the properties that back these methods. If you want the
method isMajorVersion to return a non-null value, for example, you have to include
the cmis:isMajorVersion property in your property filter. The same is true for sim-
ilar methods like isLatestVersion and isVersionSeriesCheckedOut.

Checking query capabilities
In this example, we don’t check if the repository supports queries. We assume it
does because our included repository does. But you can find this information in the
repository capabilities and test it for your own use cases. Recall from chapter 2 how
this is done:
if (session.getRepositoryInfo().getCapabilities().

getQueryCapability() != CapabilityQuery.NONE) {
// queries are supported

}

www.it-ebooks.info

http://www.it-ebooks.info/

184 CHAPTER 7 The Blend: read and query functionality
</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>SearchServlet</servlet-name>
<url-pattern>/search</url-pattern>

</servlet-mapping>

Next, you need an HTML skeleton. This has to be a simple form that takes the partial
name and a list of results. Here’s the pseudocode:

<h1>Search</h1>

<form method="GET">
Enter the name of the document:
<input type="text" name="q" value="[query]">
<input type="submit" value="Search">
</form>

[if query performed]

[loop over results]

[document name and link to show page]
[end loop]

[end if]

The form provides a parameter q to the servlet that’s backing this JSP. Getting this
parameter is first thing to do in the doGet method:

String q = getStringParameter(request, "q");

The query that you want to execute looks like this:

SELECT cmis:objectId, cmis:name FROM cmis:document
 WHERE cmis:name LIKE '%[value of q]%'

You’re selecting the ID and the name of the document and looking for documents
that contain the value of the parameter q in their name. The CMIS LIKE predicate
works as it does in SQL. The % characters are wildcards for any character sequence. For
more details on Query syntax, please refer back to chapter 5.

7.3.1 Ways to query: there be three

Sorry about that heading. We were temporarily possessed either by a pirate or an
1890s prospector. Anyway, OpenCMIS gives you three choices for how to build and
execute the query. We’ll show you all of them in this section. They all have their
advantages and disadvantages, so it’s up to you to pick the one that makes the most
sense in your application. Let’s start with the most generic query call.

THE QUERY METHOD

The OpenCMIS session object provides a query method. It takes two parameters: the
query statement and a flag indicating whether all versions should be included in the
query. Not many repositories support querying all versions; you can look up whether
www.it-ebooks.info

http://www.it-ebooks.info/

185Building a query page

or
s
d
ECT
 of
ery
it’s supported in the repository capabilities. Also, not many application scenarios need
it. In most cases, this flag will be set to false:

String statement = "SELECT cmis:objectId, cmis:name " +
"FROM cmis:document " +
"WHERE cmis:name LIKE '%" + q + "%'";

ItemIterable<QueryResult> results = session.query(statement, false);

First you assemble the query statement, and then you call the query method. The
result is an ItemIterable object of type QueryResult.

 You already know ItemIterable objects. They’re also returned by the get-
Children method that we explained at the beginning of this chapter. Everything
you’ve learned about skipping, paging, and iterating works here too. The query
method doesn’t perform the query—it only creates an object that knows how to per-
form the query. You can then use this object to extract the page from the result set
that you need:

ItemIterable<QueryResult> page = results.skipTo(20).getPage(10);

try {
for (QueryResult result : page) {

System.out.println(
result.getPropertyValueByQueryName("cmis:name"));

}
}
catch (CmisBaseException cbe) {

throw new TheBlendException("Could not perform query!");
}

A QueryResult object represents one row in the result set. It doesn’t necessarily repre-
sent an object, though. For example, if the query contained a JOIN of multiple pri-
mary types, the QueryResult object would be a mix of data from multiple objects.

 You can access the properties and the property values in a QueryResult object by
property ID and by query name or alias:

PropertyData<?> nameProp1 = result.getPropertyById("cmis:name");

PropertyData<?> nameProp2 = result.getPropertyByQueryName("cmis:name");

String name1 = result.getPropertyValueById("cmis:name");
String name2 = result.getPropertyValueByQueryName("cmis:name");

List<String> tags1 =
result.getPropertyMultivalueById("cmisbook:tags");

List<String> tags2 =
result.getPropertyMultivalueByQueryName("cmisbook:tags");

As you’ll recall, it’s recommended that you always use the query name for queries and
filters. The CMIS specification makes it optional for repositories to send the property
IDs, but repositories must always send the query names or aliases. Query names and
aliases make particular sense if JOINs are involved. If two objects with the same proper-
ties are JOINed, the property ID can be ambiguous and all overlapping properties

Skip to 20th
result in

result set and
return a page

of 10 results

Query
name
alias a
define
in SEL
clause
the qu
www.it-ebooks.info

http://www.it-ebooks.info/

186 CHAPTER 7 The Blend: read and query functionality
would be available twice with the same property ID. The aliases, on the other hand,
are always unambiguous. If you try to use the same alias for two properties, the query
would be invalid and wouldn’t be executed in the first place.

 That all looks straightforward, but there’s an issue. Did you spot it? Look again at
this query statement:

String statement = "SELECT cmis:objectId, cmis:name FROM cmis:document
 WHERE cmis:name LIKE '%" + q + "%'";

What if the parameter q contains a single quote? The query would break. A user could
even use this flaw to extend the query with additional clauses. It’s your responsibility
as an application developer to escape this value according to the CMIS Query lan-
guage specification.

 In the SQL world, this is known as “SQL injection.” It’s the same principle here, but
the consequences aren’t as severe for two reasons. First, the CMIS Query language
can’t change data, so an attacker can’t use it to add, remove, or modify data. Second,
the repository only returns results that the user is allowed to see. Even if this attack was
successfully used, it’s not possible to get data that the user doesn’t already have per-
missions to read. Attacks like this might break the application, though, or open other
security holes. It’s for this reason (and others) that we’ve the createQueryStatement
method, which we’ll cover in the next section.

THE CREATEQUERYSTATEMENT METHOD

Once again, OpenCMIS has the “SQL injection” issue handled with the Query-
Statement object. The following code shows how to create and use one:

QueryStatement stmt = session.createQueryStatement(
"SELECT cmis:objectId, cmis:name
FROM cmis:document WHERE cmis:name LIKE ?");

stmt.setStringLike(1, "%" + q + "%");

ItemIterable<QueryResult> results = stmt.query(false);

If you’re familiar with JDBC PreparedStatements, you’ll probably recognize the idea.
You create a query statement with placeholders, which are question marks (?). The
placeholders can then be replaced by values. In this example, the LIKE predicate has a
placeholder whose value is set by the setStringLike method. The first parameter of
setStringLike determines which question mark should be replaced. The numbering
starts with 1, following the example of the JDBC PreparedStatement class. This
method not only replaces the placeholder, it also escapes the value according to the
CMIS specification. There’s nothing extra you have to do.

 Let’s look at more of these set…() methods for other data types. The particularly
convenient methods are those that format DateTime values. Check the Javadoc of the
QueryStatement interface. Let’s look at a few more examples.

 This example sets String and DateTime values:

GregorianCalendar cal = new GregorianCalendar(2012, 7, 21, 10, 0, 0);

QueryStatement stmt = session.createQueryStatement(
www.it-ebooks.info

http://www.it-ebooks.info/

187Building a query page
"SELECT * FROM cmisbook:poem
WHERE cmisbook:author = ? AND cmis:creationDate < ?");

stmt.setString(1, "Edgar Allan Poe");
stmt.setDateTimeTimestamp(2, cal);

ItemIterable<QueryResult> results = stmt.query(false);

The following example sets a list of values:

QueryStatement stmt = session.createQueryStatement(
"SELECT * FROM cmisbook:media WHERE cmisbook:year IN (?)");

stmt.setNumber(1, new Integer[] { 2010, 2011, 2012 });

ItemIterable<QueryResult> results = stmt.query(false);

Finally, this example sets properties, types, and values:

QueryStatement stmt = session.createQueryStatement(
"SELECT ?, ? FROM ? WHERE ? = ?");

stmt.setProperty(1, "cmisbook:audio", "cmisbook:track");
stmt.setProperty(2, "cmisbook:audio", "cmisbook:title");
stmt.setType(3, "cmisbook:audio");
stmt.setProperty(4, "cmisbook:audio", "cmisbook:year");
stmt.setNumber(5, 2012);

ItemIterable<QueryResult> results = stmt.query(false);

This last example looks a bit funny. Even the properties and the type are set with
placeholders. This technique is handy in some situations. You know that in queries,
only query names of properties and types must be used. All CMIS specification–
defined properties and types use the property ID duplicated as the query name, but
that might not be the case for custom types because it isn’t required by the specifica-
tion. For example, if the property ID doesn’t comply with the rules for query names,
the repository must use a different value for the query name. As input, the set-
Property method takes the type and property ID and then determines the query
name for this property and sets it. That’s a task that you, as an application developer,
don’t have to worry about anymore. The setType method works similarly. It takes the
object type ID, determines the correct query name, and sets it.

 The query method of the QueryStatement interface works exactly like the query
method of the Session interface. It takes a flag specifying whether older versions
should be included in the query and returns an ItemIterable object that can be used
for skipping and paging. It also returns QueryResult objects.

THE QUERYOBJECTS METHOD

As you can imagine, the QueryResult object is only a data container and doesn’t nec-
essarily represent an object. But in some cases, they happen to also be relatively com-
plete objects as well, and in those cases it would be handy to use them like
CmisObjects. That is, use them to update properties, change permissions, delete
them, and so on.

To populate IN list,
use array of values
www.it-ebooks.info

http://www.it-ebooks.info/

188 CHAPTER 7 The Blend: read and query functionality
 There’s no way to convert QueryResult objects into CmisObjects after the fact, but
you can perform a query that returns CmisObjects in the first place. It’s called query-
Objects, and here’s how you use it:

OperationContext queryCtx = session.createOperationContext();
queryCtx.setFilterString("cmis:objectId, cmis:name");
queryCtx.setIncludeAcls(false);
queryCtx.setIncludeAllowableActions(false);
queryCtx.setIncludePolicies(false);
queryCtx.setIncludeRelationships(IncludeRelationships.NONE);
queryCtx.setRenditionFilterString("cmis:none");
queryCtx.setIncludePathSegments(false);
queryCtx.setOrderBy(null);
queryCtx.setCacheEnabled(false);

ItemIterable<CmisObject> results = session.queryObjects(
"cmis:document", "cmis:name LIKE '%" + q + "%'", false, queryCtx);

The important change in the previous code is that queryObjects returns an Item-
Iterable of full-blown CmisObjects. To get there, the query statement has been bro-
ken into multiple parts. The first parameter of queryObjects takes the type ID (not
the query name). The second parameter takes the WHERE clause of the query, and it
suffers from the same escaping issue that the vanilla query method has. We’ll solve
this issue in a moment. The third parameter specifies whether older versions should
be included in the query or not. Finally, the fourth parameter takes an Operation-
Context object that defines the SELECT clause and the ORDER BY clause of the query
statement.

 To get the WHERE clause escaping properly, you can combine a QueryStatement
with the queryObject method, like so:

QueryStatement stmt =
session.createQueryStatement("cmis:name LIKE ?");

stmt.setStringLike(1, "%" + q + "%");

String whereClause = stmt.toQueryString();

ItemIterable<CmisObject> results = session.queryObjects(
"cmis:document", whereClause, false, queryCtx);

The only limitation of queryObjects is that you can’t use JOINs or aliases. But they
wouldn’t make sense here anyway.

 Let’s get back to building the query page. The QueryStatement option seems to
work well for the page:

QueryStatement stmt = session.createQueryStatement(
"SELECT cmis:objectId, cmis:name
FROM cmis:document WHERE cmis:name LIKE ?");

stmt.setStringLike(1, "%" + q + "%");

ItemIterable<QueryResult> queryResults = stmt.query(false);

ItemIterable<QueryResult> page = queryResults.skipTo(0).getPage(10);

Query
SELECT
clause

Query ORDER BY clause

Statement doesn’t
have to be a complete
SELECT ... FROM

Instead of executing
the query, get
complied query
statement

Get only first
10 results
www.it-ebooks.info

http://www.it-ebooks.info/

189Building a query page

All you have to do now is gather the results. Because you only need the object ID and
the name of the documents, you don’t need a sophisticated data structure. A Linked-
HashMap is sufficient, and it keeps the order of the query results. Let’s use the object
ID as the key and put the document name into the value:

LinkedHashMap<String, String> results =
new LinkedHashMap<String, String>();

try {
for (QueryResult result : page) {

String docId = result.getPropertyValueByQueryName("cmis:objectId");
String name = result.getPropertyValueByQueryName("cmis:name");
results.put(docId, name);

}
}
catch (CmisBaseException cbe) {

throw new TheBlendException("Could not perform query!");
}

OK, that’s it. Next, let’s assemble the parts and build the search page.

7.3.2 Assembling the search page

Keeping up the pace on this marathon tour, and without any further ado, our next
listing shows the servlet doGet code.

protected void doGet(HttpServletRequest request,
HttpServletResponse response, Session session)
throws ServletException, IOException, TheBlendException {

String q = getStringParameter(request, "q");

if (q != null) {

request.setAttribute("q", q);

QueryStatement stmt =
session.createQueryStatement(

"SELECT cmis:objectId, cmis:name FROM cmis:document " +
"WHERE cmis:name LIKE ?");

stmt.setStringLike(1, "%" + q + "%");

ItemIterable<QueryResult> queryResults = stmt.query(false);

ItemIterable<QueryResult> page = queryResults.skipTo(0).getPage(10);

LinkedHashMap<String, String> results =
new LinkedHashMap<String, String>();

try {
for (QueryResult result : page) {

String docId =
result.getPropertyValueByQueryName("cmis:objectId");

String name =
result. getPropertyValueByQueryName("cmis:name");

Listing 7.16 Search servlet doGet() code

If page is called for
the first time, then
q is not set

Get
first 10
results
www.it-ebooks.info

http://www.it-ebooks.info/

190 CHAPTER 7 The Blend: read and query functionality
results.put(docId, name);
}

}
catch (CmisBaseException cbe) {

throw new TheBlendException("Could not perform query!");
}

request.setAttribute("results", results);
}

// --- show the search page ---
dispatch("search.jsp", "Search. The Blend.",

request, response);
}

The JSP code is equally straightforward, as shown next.

<%
String q = (String) request.getAttribute("q");
Map<String, String> results =

(Map<String, String>) request.getAttribute("results");
%>

<h1>Search</h1>

<form method="GET">
Enter the name of the document:
<input type="text" name="q" value="<%= (q == null ? "" : q) %>">
<input type="submit" value="Search">
</form>

<% if (results != null) { %>

<% for (Map.Entry<String, String> result: results.entrySet()) { %>

<a href="show?id=<%= result.getKey() %>">

<%= result.getValue() %>

<% } %>

<% } %>

Now you have a blueprint for all kinds of search pages. You can, for example, extend
the HTML form and add more criteria to the query. You can display the thumbnail for
each query result on the page. If you want to add paging for the query results, follow
the pattern that we described for the browse page. It’s exactly the same here.

 Searching and browsing are ways of finding objects in a CMIS repository. The CMIS
specification also defines relationships to interconnect objects. In the next section,
you’ll see to how to traverse relationships.

Listing 7.17 JSP code for the search page
www.it-ebooks.info

http://www.it-ebooks.info/

191Building a query page
7.3.3 Accessing and traversing relationships

This section will be a dry run without an example page in The Blend because not
many repositories support relationships. To check if a repository supports relation-
ships, call getTypeChildren:

ItemIterable<ObjectType> types = session.getTypeChildren(null, false);

getTypeChildren returns all child types of a given type. The second parameter
defines that you want the type definitions without all the property definitions. If the
first parameter, the type, is set to null, the repository returns all supported base types.
A CMIS repository must return at least the two types cmis:document and cmis:folder.
A CMIS 1.0 repository might also return the cmis:relationship and cmis:policy
types, if they’re supported. A CMIS 1.1 repository can additionally return the types
cmis:item and cmis:secondary. To test whether the repository supports relation-
ships, call getTypeChildren and check if cmis:relationship is in the list. If it is, then
this repository supports relationships.

 A relationship is an object, similar to a document or a folder, that connects two
objects: a source and a target object. A relationship object has its own object ID and
has (from a CMIS point of view) its own lifecycle. That is, if the source or target object
disappears, the relationship object might still exist with a dangling link. It’s up to the
repository to clean up dangling relationships where that makes sense, but it’s not
required by the specification.

 A relationship object can’t be filed, which means it can’t reside in a folder. You can
access such a relationship object by knowing its object ID, performing a query, or dis-
covering it from a source or target object.

 The OperationContext is the key to getting hold of the relationships of an object.
You can set the includeRelationships flag to the self-explanatory values NONE,
SOURCE, TARGET, or BOTH:

docOpCtx.setIncludeRelationships(IncludeRelationships.BOTH);

If you need more fine-grained control over the list of relationships of an object, call
getRelationships:

ItemIterable<Relationship> relationships =
session.getRelationships(objectId, true,

RelationshipDirection.EITHER, null, context);

The first parameter is the ID of the source or target object. The second and fourth
parameters define which relationship types should be considered. In this example, all
relationship types are selected. The third parameter defines whether the object is con-
sidered to be the source, the target, or either. The last parameter sets the Operation-
Context for the relationship objects. Here you could, for example, set a property filter.

 Once you have a relationship object, you can get hold of the source and the target
objects of the relationship:
www.it-ebooks.info

http://www.it-ebooks.info/

192 CHAPTER 7 The Blend: read and query functionality
try {
CmisObject source = relationship.getSource();
CmisObject target = relationship.getTarget();

}
catch (CmisObjectNotFoundException onfe) {

...
}

Because the source or target object might not exist anymore, be prepared for an
exception. There are also getSource and getTarget methods that take an Operation-
Context. If you’re only interested in the IDs of the source and the target objects, you
can get those as well:

ObjectId sourceId = relationship.getSourceId();
ObjectId targetId = relationship.getTargetId();

All four methods are backed by the properties cmis:sourceId and cmis:targetId. If
you haven’t selected them in the OperationContext that was used to fetch the rela-
tionship object, these methods will return null. When you create a relationship, you
have to set those two properties to create a proper relationship object.

7.4 Summary
This chapter has covered all of the read-only operations you usually need in a CMIS
application. We only have a few things left to talk about now.

 We haven’t mentioned permissions, ACLs, or policies yet. Chapter 12 will cover
these areas. But in most scenarios, the allowable actions that were described in this
chapter are probably the preferable path.

 We also want to mention a feature called Change Log that falls into the read-only cat-
egory. It provides the history of changes in a repository, and search engines can use it
to index the repository, or tools can use it to synchronize content between repositories.

CMIS also provides a way to get a list of all documents that are checked out in a
repository or in a specific folder. The next chapter covers how to do this.

 Finally, to summarize what we’ve done in this chapter, you first learned how to gain
access to content and metadata in a CMIS repository. You also learned how to use the
OpenCMIS API to browse a folder, obtain metadata, stream the content of a docu-
ment, fetch the version series of a document, and perform queries. In addition, you
learned how to integrate these skills into a typical web application.

 None of these operations have created, modified, or removed data in the reposi-
tory. In the next chapter, you’ll learn how to do that.
www.it-ebooks.info

http://www.it-ebooks.info/

The Blend: create, update,
and delete functionality
In the last chapter, you learned how to read metadata and content from a CMIS
repository. In this chapter, you’ll learn about adding, updating, and removing data.
You’ll enhance the web pages that you built in the previous chapter and add new
web pages to your version of The Blend.

8.1 Creating folders
In the previous chapter, we started out with folder browsing; in the opening section
of this chapter we’ll tie in with that. We’ll extend the browse page with the capabil-
ity to create a new subfolder in the folder that’s displayed.

This chapter covers
 Creating folders, documents, and document versions

 Working with primary and secondary types

 Updating properties and content

 Optimistic locking and change tokens

 Copying, moving, and deleting objects
193

www.it-ebooks.info

http://www.it-ebooks.info/

194 CHAPTER 8 The Blend: create, update, and delete functionality
 The operations that create objects in CMIS need at least two pieces of information:
the type of the object and a name for the object. If the object should be filed (and
folders are always filed), they also need a parent folder. To let the user provide these
details about the new folder, you’ll have to extend the browse page starting with this
HTML, which you can place wherever you want on the page:

<h2>Create new folder</h2>

<form method="POST" action="browse">
<input type="hidden" name="parent" value="<%= folder.getId() %>">
Folder name:
<input type="text" size="20" name="name">

Folder type:
<input type="text" size="20" name="type" value="cmis:folder">

<input type="submit" value="create">

</form>

Let’s note a few things about this code:

 The form points back to the browse servlet using HTTP POST, which means the
folder creation logic will be in the browse servlet.

 There’s a hidden field called parent that gets the ID of the current folder.
Remember, in a real application, you’d want to encode the ID. The repository
may use characters like double quotes in its IDs that must be encoded here.

 There are input fields for the name and type, and the type field is prefilled with
the value cmis:folder. It’s inconvenient for the end user that the type field is a
text field. Typically, users don’t know which types are available, and even if they
know, it’s inconvenient (and error prone) to enter a potentially long value.
Keep that in mind; we’ll fix it later.

On the browse servlet side, you have to override the doPost method, which provides
the OpenCMIS session as the third parameter. Before you can do anything else, you
have to get the values from the form like this:

String parentId = getStringParameter(request, "parent");
String name = getStringParameter(request, "name");
String typeId = getStringParameter(request, "type");

You might recall from chapter 3 that you need all three of these values to create a
folder. You can proactively check them here, but to keep the code short and readable,
we’ll let the repository throw exceptions later if something is missing.

8.1.1 Two ways to create folders

OpenCMIS offers two ways to create new objects:

 The Session object provides create methods for all the primary base types. If
you want to create an unfiled object, this is your only option. (Set the parent
folder ID to null.) These methods only return the object ID and nothing else
about the newly created object. If you want to create and forget an object, this is
www.it-ebooks.info

http://www.it-ebooks.info/

195Creating folders
your best choice. If you want to do something with the newly created object, the
next option will make more sense.

 The OpenCMIS folder interface provides create methods for all fileable base
types (which means there’s no create method for relationships). Objects cre-
ated in this manner are created already filed in this folder. Also, these create
methods return complete objects, so you can provide an OperationContext to
control what these objects should contain.

Let’s look at examples of both techniques.

SESSION.CREATEFOLDER()
This first example is straightforward—it calls the createFolder method on the
OpenCMIS Session object. This method takes two parameters: a set of properties and
the parent folder ID. It returns the ID of the new folder:

Map<String, Object> properties = new HashMap<String, Object>();

properties.put(PropertyIds.NAME, name);
properties.put(PropertyIds.OBJECT_TYPE_ID, typeId);

ObjectId parentFolderId = session.createObjectId(parentId);

ObjectId newFolderId = session.createFolder(properties, parentFolderId);

PROPERTY NAME CONSTANTS The class PropertyIds has constants for the
property names that are defined by the CMIS specification. For example,
PropertyIds.NAME maps to cmis:name and PropertyIds.OBJECT_TYPE_ID
maps to cmis:objectTypeId.

The two properties, name and type ID, are always required to create an object. You
can also set any other property that isn’t read-only. OpenCMIS filters read-only prop-
erties for you, and if you set them, they have no effect. Other libraries forward them to
the repository, and you should be prepared for an exception if you send values for
read-only properties.

 You’ll need to make sure that the data types are correct, though. OpenCMIS auto-
matically converts common Java data types into appropriate CMIS data types. For
example, Date and Calendar objects are converted to the CMIS DateTime data type,
and all Java integer types are converted to the CMIS Integer data type. But if you sup-
ply an integer for a CMIS String property, OpenCMIS throws an exception. And multi-
value properties must always be supplied as a List, as the following shows:

List<String> colors = new ArrayList<String>();
colors.add("red");
colors.add("green");
colors.add("blue");

properties.put("colors", colors);
www.it-ebooks.info

http://www.it-ebooks.info/

196 CHAPTER 8 The Blend: create, update, and delete functionality
Remember, per the specification, this list must not contain any null values. The list
itself can be null, but not empty (although OpenCMIS takes care of empty lists and
treats them like a null value).

FOLDER.CREATEFOLDER()
For the second way to create a folder, you have to get the parent Folder object first. To
simplify the following example, we’ll use the repository’s root folder:

Folder root = session.getRootFolder();

Map<String, Object> properties = new HashMap<String, Object>();
properties.put(PropertyIds.NAME, name);
properties.put(PropertyIds.OBJECT_TYPE_ID, typeId);

Folder newFolder = root.createFolder(properties);

That looks similar to the first example. The (parent) Folder object provides a
createFolder method that takes the properties. The main difference here is that it
returns a real Folder object for the newly created folder. This variant of createFolder
uses the default OperationContext of the session to fetch the new folder. As you’d
expect by now, there’s also a second createFolder method that lets you specify your
own OperationContext, among other details.

 This second option has a few advantages. For example, you can check the allow-
able actions of the parent folder to see if the current user is allowed to create a sub-
folder here. If not, you can provide an error message without even making a round
trip to the server. Repositories can also restrict which object types can be filed in a spe-
cific folder. The IDs of the allowed types are provided in the multivalue property
cmis:allowedChildObjectTypeIds. If this list isn’t set, all object types are allowed.
You can check this list before you create the folder or any other object.

 Even with all of this careful capability checking, folder creation can fail for many
other reasons. For example, the nameConstraintViolation exception can be thrown
for two reasons:

 The name is empty or contains characters that the repository doesn’t support.
 An object with this same name already exists in the folder.

If this happens, the repository is allowed to change the name or use a different path
segment. But most repositories throw an exception in this case.

8.1.2 Create folder: doPost()

Getting back to the browse servlet, you now have all the parameters you need, and you
know how to create a folder. Let’s put that all together in the doPost method, shown
in the next listing.

protected void doPost(HttpServletRequest request,
HttpServletResponse response, Session session)
throws ServletException, IOException, TheBlendException {

Listing 8.1 doPost method for creating a folder
www.it-ebooks.info

http://www.it-ebooks.info/

197Creating folders

’t

t
// --- gather input ---
String parentId = getStringParameter(request, "parent");
String name = getStringParameter(request, "name");
String typeId = getStringParameter(request, "type");

// --- fetch the parent folder ---
CmisObject parentObject = null;
try {

parentObject = session.getObject(parentId);
} catch (CmisBaseException cbe) {

throw new TheBlendException(
"Could not retrieve parent folder!", cbe);

}

// --- safety check for parent object ---
Folder parent = null;
if (parentObject instanceof Folder) {

parent = (Folder) parentObject;
} else {

throw new TheBlendException("Parent is not a folder!");
}

// --- create new folder ---
try {

Map<String, Object> properties = new HashMap<String, Object>();
properties.put(PropertyIds.NAME, name);
properties.put(PropertyIds.OBJECT_TYPE_ID, typeId);

parent.createFolder(properties);
} catch (CmisNameConstraintViolationException cncve) {

throw new TheBlendException(
"Please choose a different name and try again!", cncve);

} catch (CmisBaseException cbe) {
throw new TheBlendException(

"Could not create the folder!", cbe);
}

// --- redirect to browse page ---
try {

StringBuffer url = request.getRequestURL();
url.append("?id=");
url.append(URLEncoder.encode(parent.getId(), "UTF-8"));

redirect(url.toString(), request, response);
}
catch(UnsupportedEncodingException e) {

throw new ServletException(e);
}

}

The doPost method goes through four steps. It first gets the servlet parameters, and
then it fetches the parent folder to check that it’s a real folder. Next, it creates the new
subfolder, and finally it redirects to the browse page of the parent folder. The page
should now display the new subfolder in the list of children.

Use an
OperationContext
here.

The returned
Folder object isn
used, so an
OperationContex
that selects the
bare minimum
properties is
advisable here.
www.it-ebooks.info

http://www.it-ebooks.info/

198 CHAPTER 8 The Blend: create, update, and delete functionality

If
doe

I
is
 Folder creation should work now, but you still have this annoying text field for the
folder type. Before we move on, let’s turn that into a more convenient and mouse-
friendly select box.

8.1.3 Enumerating the creatable folder types

When you create a folder, you have to provide an object type that’s either
cmis:folder or a type derived from cmis:folder. The descendants of cmis:folder
form a hierarchy, and to reflect that on the web page you’d have to provide some kind
of a tree selection box. Let’s keep it simple and collapse this tree down to a flat list.
This list should only contain types that can be used to create a folder, because a repos-
itory might provide types that aren’t “creatable,” such as abstract types that serve as
parents for other types but can’t have objects associated with them.

 Let’s look at the methods that turn the types tree into a flat list. The getCreateable-
Types method (see listing 8.2) requires an OpenCMIS Session object and a root type
ID, which can be any valid type ID. That is, you can use this to get the list of creatable
folder types and reuse this code later to retrieve the creatable document types.

 For now, copy the methods in listing 8.2 into the browse servlet. In a real applica-
tion, you’d want to get that list only once when the application starts up and cache it.
Type information usually doesn’t change in a production environment, and it isn’t
necessary to retrieve the type hierarchy over and over again unless you have special
circumstances.

public List<ObjectType> getCreatableTypes(Session session,
String rootTypeId) {

List<ObjectType> result = new ArrayList<ObjectType>();

ObjectType rootType = null;
try {

rootType = session.getTypeDefinition(rootTypeId);
}
catch (CmisObjectNotFoundException e) {

return result;
}

boolean isCreatable =
(rootType.isCreatable() == null ? true :

rootType.isCreatable().booleanValue());

if (isCreatable) {
result.add(rootType);

}

List<Tree<ObjectType>> types =
session.getTypeDescendants(rootTypeId, -1, false);

addType(types, result);

return result;
}

Listing 8.2 getCreatableTypes() helper methods

Get type
definition of
the provided
root typegiven type

sn’t exist,
return an
empty list

Determine
whether type
is creatable
or notf root type

 creatable,
add it to

the list

Call
getTypeDescendants
to get types tree

Hand tree to addType method,
which recursively walks tree and
adds creatable types to the list
www.it-ebooks.info

http://www.it-ebooks.info/

199Creating folders
private void addType(List<Tree<ObjectType>> types,
List<ObjectType> resultList) {

for (Tree<ObjectType> tt : types) {
if (tt.getItem() != null) {

boolean isCreatable =
(tt.getItem().isCreatable() == null ? true :

tt.getItem().isCreatable().booleanValue());

if (isCreatable) {
resultList.add(tt.getItem());

}

addType(tt.getChildren(), resultList);
}

}
}

The getCreateableTypes method calls getTypeDescendants. It returns the descen-
dant types of the given root type. The method takes three parameters:

 The ID of the root type.
 The depth of the tree that should be returned. The depth here is set to -1,

which means that the whole tree should be retrieved.
 A Boolean that indicates whether the property definitions should be retrieved as

well. In this case, it’s set to false because you’re not interested in the properties.

To make the list of folder types available on the web page, add the following lines at
the top of the doGet method of the servlet:

List<ObjectType> folderTypes =
getCreatableTypes(session, "cmis:folder");

request.setAttribute("folderTypes", folderTypes);

Next, load the folder types and put the list into an attribute that can be retrieved in
the JSP, like so:

List<ObjectType> folderTypes =
(List<ObjectType>) request.getAttribute("folderTypes");

Now you can replace this line,

<input type="text" size="20" name="type" value="cmis:folder">

with this snippet:

<select name="type">
<% for(ObjectType type: folderTypes) { %>

<option value="<%= type.getId() %>"<%=
("cmis:folder".equals(type.getId()) ? " selected" : "") %>>

<%= type.getDisplayName() %>
</option>
<% } %>

</select>
www.it-ebooks.info

http://www.it-ebooks.info/

200 CHAPTER 8 The Blend: create, update, and delete functionality

The
cre

d
sta
This snippet generates a select box with all the folder types, and it preselects
cmis:folder. The user sees the display names of types instead of the type IDs. That’s
much more convenient than the text box with the type ID.

 If you’re connecting to the InMemory Repository, the list of folder types is short.
In fact, cmis:folder is the only one. It gets more interesting when you look at the
document types, though. Let’s create some documents next.

8.2 Creating documents
Creating documents is similar to creating folders. The main difference is that you
have to handle the content in addition to the properties.

 Let’s add another web page to create documents. The user has to specify the folder
in which the document should be created, a name for the document, the type of the
document, and the content. The JSP in the following listing contains a form that asks
for all this data. Copy it to the other JSPs and call it add.jsp.

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8" trimDirectiveWhitespaces="true" %>

<%@ page import="org.apache.chemistry.opencmis.client.api.*" %>
<%@ page import="org.apache.chemistry.opencmis.commons.enums.*" %>
<%@ page import="java.util.*" %>
<%@ include file="header.jsp" %>

<h1>Create new document</h1>

<form method="POST" action="add" enctype="multipart/form-data">
Path to the parent folder:
<input type="text" size="20" name="path">

Document name:
<input type="text" size="20" name="name">

Document type:
<input type="text" size="20" name="type" value="cmis:document">

File:
<input name="content" type="file">

<input type="submit" value="create">

</form>

<%@ include file="footer.jsp" %>

We’ll keep it simple. The user has to enter the path of the parent folder, and by now
you should know how to navigate folders and provide a more convenient way to let the
user pick a folder, so we won’t repeat that in this example. The user also has to enter
the type ID here. In the last section, you built a type select box for folder types, and
the same code will work here for document types. Next we’ll prepare the servlet.

 In the package titled com.manning.cmis.theblend.servlets, create a new class
called AddServlet that extends AbstractTheBlendServlet, and then add the follow-
ing XML snippet to the web.xml file:

Listing 8.3 add.jsp code for creating a new document

The <form> tag gets the attribute
enctype with the value multipart/form-
data. This is necessary to transmit the

content of the file to your servlet.HTML for
ating the
ocument
rts here.

Input field of type file
allows user to pick a file
from their desktop.
www.it-ebooks.info

http://www.it-ebooks.info/

201Creating documents

d

.

Crea
Co

S
o

<servlet>
<servlet-name>AddServlet</servlet-name>
<servlet-class>

com.manning.cmis.theblend.servlets.AddServlet
</servlet-class>

</servlet>
<servlet-mapping>
<servlet-name>AddServlet</servlet-name>
<url-pattern>/add</url-pattern>

</servlet-mapping>

8.2.1 Creating doGet() and doPost() for document creation

With all of the previous preparations completed, you’re ready to tackle the doGet and
doPost methods of the servlet. You don’t have much to do in the doGet method
except call the JSP shown here:

protected void doGet(HttpServletRequest request,
HttpServletResponse response, Session session)

throws ServletException, IOException, TheBlendException {
dispatch("add.jsp", "Add a new document", request, response);

}

The doPost method requires a bit more code. Let’s start from the beginning. As we
mentioned in the previous section, you can create documents in one of two ways. You
can use the createDocument method on the Session object or the createDocument
method on a Folder object. Because they’re similar, we’ll only look at the create-
Document method on the Session object, as shown in the next listing.

Map<String, Object> properties = new HashMap<String, Object>();

properties.put(PropertyIds.NAME, name);

properties.put(PropertyIds.OBJECT_TYPE_ID, typeId);

ObjectId parentFolderId = session.createObjectId(parentId);

File file = new File("my-content.txt");

ContentStream contentStream =

session.getObjectFactory().createContentStream(file.getName(),

file.length(), "text/plain", new FileInputStream(file));

VersioningState versioningState = null;

ObjectId newDocumentId =

Listing 8.4 createDocument() example

The property collection
must at least contain a
name for the document an
the type of the document.

To create an unfiled
document, set the
parent folder ID to null

te the
ntent-
tream
bject.

Don’t set the VersioningState—
let the repository pick one that
matches the document type.
www.it-ebooks.info

http://www.it-ebooks.info/

202 CHAPTER 8 The Blend: create, update, and delete functionality
session.createDocument(properties, parentFolderId,

contentStream, versioningState);

The first few lines of this listing should look familiar to you. The createDocument
method needs properties and a parent folder ID. The property collection must at least
contain a name for the document and the type of the document. The type ID must be
cmis:document or the ID of a type derived from cmis:document.

Creating a
document with
content requires
the ContentStream
and the properties.

Testing getContentStreamAllowed() constraints
Some repositories don’t support documents without content. To be safe, you can test
for this using the following code:

DocumentType docType =
(DocumentType) session.getTypeDefinition(typeId);

if (docType.getContentStreamAllowed() ==
ContentStreamAllowed.REQUIRED) {
// document must always have content

}
else if (docType.getContentStreamAllowed() ==

ContentStreamAllowed.NOTALLOWED) {
// document must never have content

}
else {

// document may or may not have content
}

Creating a ContentStream
ContentStream is an interface, which means you can implement it yourself. Use the
ContentStreamImpl class that comes with OpenCMIS, or use the factory method,
as shown in listing 8.4. You have to provide an input stream and we strongly recom-
mend you also provide a name, length, and MIME type for the stream.

If you don’t know the MIME type, set application/octet-stream. If you don’t know
the length, set it to null (or -1 if you’re using the object factory). The length is only
a number that’s transmitted to the repository; OpenCMIS doesn’t verify it. If this num-
ber and the length of the stream don’t match, you may or may not get an exception
from the repository.

If you want to create a document without content, don’t provide a ContentStream
object at all—set it to null. That’s entirely different from a ContentStream object
with an empty stream, because an empty stream still has a length (0), a MIME type,
and a name.
www.it-ebooks.info

http://www.it-ebooks.info/

203Creating documents
The last parameter to explain from the createDocument call is the versioningState.
It specifies whether the new document should become a major version, a minor ver-
sion, or a Private Working Copy (PWC) when the document is created. If the docu-
ment type isn’t versionable, only the fourth state, none, is valid. If you don’t set the
versioningState, as in this example, the repository will make it a major version if the
document type is versionable.

 To play it safe, you can check whether the type is versionable and set a concrete
versioningState like this:

VersioningState versioningState = VersioningState.NONE;
DocumentType docType =

(DocumentType)session.getTypeDefinition(typeId);
if (Boolean.TRUE.equals(docType.isVersionable()) {

versioningState = VersioningState.MAJOR;
}

8.2.2 Performing file uploads

You’ve now got all you need to create a CMIS document. But in a web application, you
don’t want to read the content from a file. You want to get the content from your
user’s web browser. The Apache Commons FileUpload library can help with that, as
the following listing shows.

boolean isMultipart = ServletFileUpload.isMultipartContent(request);

if (!isMultipart) {

throw new TheBlendException("Invalid request!");

}

Listing 8.5 File upload

A document without content: cmis:item
CMIS 1.1 introduced a new base type called cmis:item. This type is similar to an
unversionable, contentless document type. An Item object only carries properties.

Item objects can be used to model data (think complex types) that are obviously not
documents. Think of a project modeled as an item. It may have properties for a proj-
ect name, a project ID, a start and end date, project members, and so on. You can
attach documents and folders to this project object with relationships. Or you can dis-
cover a connection between documents using a query that takes the properties of a
project item into account. The project object itself is neither a document nor a folder.
An object type derived from cmis:item is the best choice for a such a case.

Chapter 7 explained how you can check if the repository supports relationships. The
same works for items. Call getTypeChildren() and check if cmis:item is in the
returned list. If it is, the repository supports items. You can then use the createItem
method to create cmis:item objects.

ServletFileUpload is
provided by Apache

Commons FileUpload
www.it-ebooks.info

http://www.it-ebooks.info/

204 CHAPTER 8 The Blend: create, update, and delete functionality

Path
docu

p

Use
of th
field
docu
Map<String, Object> properties = new HashMap<String, Object>();
File uploadedFile = null;

String mimeType = null;
String parentPath = null;

try {
DiskFileItemFactory factory = new DiskFileItemFactory();

ServletFileUpload upload = new ServletFileUpload(factory);
upload.setSizeMax(50 * 1024 * 1024);

@SuppressWarnings("unchecked")
List<FileItem> items = upload.parseRequest(request);

Iterator<FileItem> iter = items.iterator();
while (iter.hasNext()) {

FileItem item = iter.next();

if (item.isFormField()) {
String name = item.getFieldName();

if ("path".equalsIgnoreCase(name)) {
parentPath = item.getString();

}
else if ("name".equalsIgnoreCase(name)) {

properties.put(PropertyIds.NAME, item.getString());
}
else if ("type".equalsIgnoreCase(name)) {

properties.put(PropertyIds.OBJECT_TYPE_ID, item.getString());
}

}
else {

uploadedFile = File.createTempFile("blend", "tmp");

item.write(uploadedFile);

mimeType = item.getContentType();
if (mimeType == null) {

mimeType = "application/octet-stream";
}

}
}

} catch (Exception e) {
throw new TheBlendException("Upload failed: " + e, e);

}

if (uploadedFile == null) {
throw new TheBlendException("No content!");

}

Let’s take a quick tour through this code. First, the servlet checks whether the request
is a multipart request. If not, it hasn’t been sent from the web page and you return an
error message. If everything looks good, the code iterates over all of the form fields
and gathers the field values. The content is written to a temporary file that you’ll later
have to delete. If no content was transmitted, the code returns an error message.

 Next, the doPost method needs to perform the following functions:

Temporary file for the content

MIME reported by the web browserof the
ments
arent
folder

Limit size of the
uploaded file to
50 MB

Use value of
the path field
as parent
folder path Use value of

the name field
as the name
of document
to create

 value
e type
as the
ment
type Write received content

to a temporary file

Get MIME type of the content

If browser didn’t provide
a MIME type, fall back to
octet-stream

Check if user provided content,
and if not, throw an exception
www.it-ebooks.info

http://www.it-ebooks.info/

205Creating documents
 Get the properties, path, and content from the request
 Get the parent folder by path because you need the ID of the folder to create

the document
 Create the document with the right versioningState
 Delete the temporary file
 Redirect to the show page to display only the uploaded document

 The following listing puts this all together for you.

protected void doPost(HttpServletRequest request,
HttpServletResponse response, Session session)
throws ServletException, IOException, TheBlendException {

// --- get parent folder, properties, and content ---
boolean isMultipart = ServletFileUpload.isMultipartContent(request);
if (!isMultipart) {

throw new TheBlendException("Invalid request!");
}

Map<String, Object> properties = new HashMap<String, Object>();
File uploadedFile = null;
String mimeType = null;
String parentPath = null;
ObjectId newDocId = null;

try {
DiskFileItemFactory factory = new DiskFileItemFactory();
ServletFileUpload upload = new ServletFileUpload(factory);
upload.setSizeMax(50 * 1024 * 1024);

@SuppressWarnings("unchecked")
List<FileItem> items = upload.parseRequest(request);

Iterator<FileItem> iter = items.iterator();
while (iter.hasNext()) {

FileItem item = iter.next();

if (item.isFormField()) {
String name = item.getFieldName();

if ("path".equalsIgnoreCase(name)) {
parentPath = item.getString();

}
else if ("name".equalsIgnoreCase(name)) {

properties.put(PropertyIds.NAME, item.getString());
}
else if ("type".equalsIgnoreCase(name)) {

properties.put(PropertyIds.OBJECT_TYPE_ID,
item.getString());

}
}
else {

uploadedFile = File.createTempFile("blend", "tmp");
item.write(uploadedFile);

Listing 8.6 doPost()method for creation of document
www.it-ebooks.info

http://www.it-ebooks.info/

206 CHAPTER 8 The Blend: create, update, and delete functionality
mimeType = item.getContentType();
if (mimeType == null) {

mimeType = "application/octet-stream";
}

}
}

} catch (Exception e) {
throw new TheBlendException("Upload failed: " + e, e);

}

if (uploadedFile == null) {
throw new TheBlendException("No content!");

}

FileInputStream stream = null;

try {

// --- fetch the parent folder ---
CmisObject parentObject = null;
try {

parentObject = session.getObjectByPath(parentPath);
} catch (CmisBaseException cbe) {

throw new
TheBlendException("Could not retrieve parent folder!", cbe);

}

Folder parent = null;
if (parentObject instanceof Folder) {

parent = (Folder) parentObject;
}
else {

throw new TheBlendException("Parent is not a folder!");
}

// --- determine the VersioningState ---
VersioningState versioningState = VersioningState.NONE;

String typeId = (String)properties.get(PropertyIds.OBJECT_TYPE_ID);
DocumentType docType =

(DocumentType) session.getTypeDefinition(typeId);

if (Boolean.TRUE.equals(docType.isVersionable())) {
versioningState = VersioningState.MAJOR;

}

// --- prepare the content ---
stream = new FileInputStream(uploadedFile);
String name = (String) properties.get(PropertyIds.NAME);
ContentStream contentStream =

session.getObjectFactory().createContentStream(name,
uploadedFile.length(), mimeType, stream);

// --- create the document ---
newDocId = session.createDocument(properties, parent,

contentStream, versioningState);
}
finally {

if (stream != null) {
Close and delete
temporary file
www.it-ebooks.info

http://www.it-ebooks.info/

207Creating documents
try {
stream.close();

}
catch (IOException ioe) {

// ignore
}

}

uploadedFile.delete();
}

// --- redirect to show page ---
try {

String url = request.getRequestURL().toString();
int lastSlash = url.lastIndexOf('/');

url = url.substring(0, lastSlash) + "/show?id=" +
URLEncoder.encode(newDocId.getId(), "UTF-8");

redirect(url, request, response);
}
catch(UnsupportedEncodingException e) {

throw new ServletException(e);
}

}

Congratulations! Your application now creates documents in a CMIS repository.
Restart the server, log in, and append/add to the URL in the address bar of your web
browser.

 The web page you’ve built is simple, though. In real applications, you know the
domain the user is dealing with—be it invoices, photos, or CAD drawings—and you
know the object type of those documents.

 Properties become more important with specific types, because they let you use the
CMIS query in much more powerful ways. Your users will expect you to set more prop-
erty values at creation time. Also important is updating these properties. That’s the
topic of the next section.

APACHE TIKA If you’ve played with The Blend version that comes with this
book, you may have noticed that many property values are magically set when
you upload a file. For example, when you upload an MP3 file, the title and art-
ist are retrieved from the file and set. When you upload an image, the height
and width are set. This works for PDFs, Office files, and various types of media
files as well. The magic behind this is the Apache Tika library, which can
extract metadata and text from many different file formats. Before we create
the document in the CMIS repository, we let Apache Tika scan the temporary
file in the servlet. It delivers a set of metadata that we then map to properties
of the object type the user has specified. Apache Tika can also detect the
MIME type of a file, which is handy if you have content but no idea what type
of content it is. If you want to learn more about Apache Tika, check out Tika
in Action by Chris Mattmann and Jukka Zitting (Manning, 2011).
www.it-ebooks.info

http://www.it-ebooks.info/

208 CHAPTER 8 The Blend: create, update, and delete functionality
8.3 Updating properties
As you’ll recall, the CMIS specification defines a bunch of properties for the base
object types. You’ve seen most of them already in previous chapters. Most properties
defined in the specification are read-only, and you can only change their values indi-
rectly by doing something with the object. But only one property is modifiable for
almost all repositories and all types: the object’s name, also known as cmis:name. In
this section, you’ll build a web page that allows you to rename objects.

 To rename an object, the user has to specify the object and provide a new name.
The HTML form could look like this:

<h1>Rename object</h1>

<form method="POST" action="rename">
Object path:
<input type="text" size="20" name="path">

New name: <input type="text" size="20" name="name">

<input type="submit" value="rename">

</form>

To specify the object, we’ll use the object’s path this time. That excludes unfiled
objects, but you know already how to modify the code to accept the object ID.

 As in previous sections, copy the echo JSP from chapter 6 and rename it (to
rename.jsp). Remove everything between the line that includes the header JSP and
the line that includes the footer JSP, and copy in the previous HTML fragment. The
result should look like the next listing.

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8" trimDirectiveWhitespaces="true" %>

<%@ page import="org.apache.chemistry.opencmis.client.api.*" %>
<%@ page import="org.apache.chemistry.opencmis.commons.enums.*" %>
<%@ page import="java.util.*" %>
<%@ include file="header.jsp" %>

<h1>Rename object</h1>

<form method="POST" action="rename">
Object path:
<input type="text" size="20" name="path">

New name: <input type="text" size="20" name="name">

<input type="submit" value="rename">

</form>

<%@ include file="footer.jsp" %>

In the package titled com.manning.cmis.theblend.servlets, create a new class
called RenameServlet that extends AbstractTheBlendServlet, and then add the fol-
lowing XML snippet to the web.xml file:

<servlet>
<servlet-name>RenameServlet</servlet-name>

Listing 8.7 rename.jsp with inserted HTML form

HTML for Rename object
form inserted here
www.it-ebooks.info

http://www.it-ebooks.info/

209Updating properties
<servlet-class>
com.manning.cmis.theblend.servlets.RenameServlet

</servlet-class>
</servlet>
<servlet-mapping>

<servlet-name>RenameServlet</servlet-name>
<url-pattern>/rename</url-pattern>

</servlet-mapping>

CMIS has no explicit rename operation. The object’s name is stored in the cmis:name
property. To rename an object, you only have to modify this property and persist the
change:

String path = "/path/to/some/object.txt";
String newName = "newname.txt";
try {

CmisObject object = session.getObjectByPath(path);

Map<String, Object> properties = new HashMap<String, Object>();
properties.put(PropertyIds.NAME, newName);

CmisObject newObject = object.updateProperties(properties);
}
catch (CmisBaseException cbe) {

// handle error
}

You must first acquire a CmisObject. Then you create a Map with all the properties you
want to update and their new corresponding values. If you want to unset a property,
set the value to null. Don’t add any properties here that you don’t want to modify. At
this point, calling updateProperties will update the object on the server.

 As always, exception handling is important because the update could fail. For
example, the object might not exist anymore, or a property value might be invalid.
You’ll want to be careful about handling the CmisNameConstraintViolationExcep-
tion when changing the cmis:name property.

 The updateProperties method on CmisObject doesn’t only update the properties
in the repository, it also refreshes the Java object afterward. This means the property
values in the CmisObject are up to date after this call, including properties that have
been changed indirectly, such as the last modification date.

 Note that the CmisObject you get back may be an entirely new one, and not
merely the same object with a couple of different properties. The reason for this is
that a few repositories have autoversioning for certain document types, so that when-
ever you change a property, the repository automatically creates a new version. If
that’s the case, updateProperties returns this new version. In all other cases, includ-
ing all nondocument objects, it returns the original CmisObject.

 If you think there’s too much going on with refreshing the object and possibly
fetching a new version, here’s a second updateProperties method. You can do an
update-and-forget operation like this:
www.it-ebooks.info

http://www.it-ebooks.info/

210 CHAPTER 8 The Blend: create, update, and delete functionality
String path = "/path/to/some/object.txt";
String newName = "newname.txt";
try {

CmisObject object = session.getObjectByPath(path);

Map<String, Object> properties = new HashMap<String, Object>();
properties.put(PropertyIds.NAME, newName);

ObjectId newObjectId = object.updateProperties(properties, false);
} catch (CmisBaseException cbe) {
// handle error

}

This updateProperties method only returns the object ID rather than the whole
replacement object. The second parameter indicates whether or not the Java object
should be refreshed. In this example, the object isn’t refreshed, which is the least
expensive way to update properties.

8.3.1 Concurrent access and locking

When multiple people work on the same object at the same time, they may not see
each other’s modifications, and updates could get lost when overwritten. Some sort of
locking mechanism is required to prevent this.

CMIS doesn’t support pessimistic locking. That is, you can’t reserve an object only
for you, and do something with it, while forcing everybody else to wait until you unre-
serve it.

 But CMIS does support optimistic locking. That is, a repository can send a change
token with each object. It’s transmitted as the property cmis:changeToken. When you
update an object to include this change token, the repository can check whether
someone else has updated the object since you got your copy. If it has been updated,
the repository throws a CmisUpdateConflictException. You can then reload the
object and either reapply or merge your changes with the new object and its corre-
sponding fresh change token.

 OpenCMIS takes care of sending the change token along—if it’s available. The
token isn’t available if the repository doesn’t support optimistic locking. It’s also not
available if you didn’t select the property cmis:changeToken when you fetched the
object. This property needs to be in the property filter of your OperationContext if
you want to use this feature.

 That covers everything you need to know about updating the name of an object.
Let’s now implement the rename servlet. The doGet method has only to call the JSP, as
shown here:

protected void doGet(HttpServletRequest request,
HttpServletResponse response, Session session)

throws ServletException, IOException, TheBlendException {
dispatch("rename.jsp", "Rename an object", request, response);

}

Second parameter
defines whether object

should be refreshed
after the update
www.it-ebooks.info

http://www.it-ebooks.info/

211Updating properties
The doPost method, shown in listing 8.8, does all of the hard work. It gets the path
and name parameters, fetches the object, and updates the properties. Note that the
OperationContext selects the cmis:changeToken property.

protected void doPost(HttpServletRequest request,
HttpServletResponse response, Session session)
throws ServletException, IOException, TheBlendException {

String path = getStringParameter(request, "path");
String name = getStringParameter(request, "name");

OperationContext opCtx = session.createOperationContext();
opCtx.setFilterString("cmis:changeToken");
opCtx.setIncludeAcls(false);
opCtx.setIncludeAllowableActions(false);
opCtx.setIncludePolicies(false);
opCtx.setIncludeRelationships(IncludeRelationships.NONE);
opCtx.setRenditionFilterString("cmis:none");
opCtx.setIncludePathSegments(false);
opCtx.setOrderBy(null);
opCtx.setCacheEnabled(false);

// --- get the object and update its name ---
CmisObject object = null;

try {
object = session.getObjectByPath(path, opCtx);

Map<String, Object> properties = new HashMap<String, Object>();
properties.put(PropertyIds.NAME, name);

object.updateProperties(properties, false);
}
catch (CmisObjectNotFoundException nfe) {

throw new TheBlendException("The object doesn't exist.", nfe);
}
catch (CmisNameConstraintViolationException ncve) {

throw new TheBlendException("The name is invalid. " +
"Please try a different name.", ncve);

}
catch (CmisUpdateConflictException uce) {

throw new
TheBlendException("Somebody else updated the object. " +
"Please try again.", uce);

}
catch (CmisBaseException cbe) {

throw new
TheBlendException("Could not update the object!", cbe);

}

// --- find the parent folder to redirect to the browse page ---
String parentId = null;

if (object instanceof FileableCmisObject) {
List<Folder> parents =

Listing 8.8 doPost method for updating properties

Select change token
to allow support for
optimistic locking

Only fileable object
can have parents
www.it-ebooks.info

http://www.it-ebooks.info/

212 CHAPTER 8 The Blend: create, update, and delete functionality

Choos
p

H
error
((FileableCmisObject) object).getParents();

if (parents.size() > 0) {
parentId = parents.get(0).getId();

}
}

if (parentId == null) {
throw new TheBlendException("Object is unfiled. " +

"Don't know where to go.");
}

// --- redirect to the parents browse page ---
try {

String url = request.getRequestURL().toString();
int lastSlash = url.lastIndexOf('/');

url = url.substring(0, lastSlash) + "/browse?id=" +
URLEncoder.encode(parentId, "UTF-8");

redirect(url, request, response);
}
catch(UnsupportedEncodingException e) {

throw new ServletException(e);
}

}

As we’ve shown, updating properties isn’t difficult. What works for the cmis:name
property also works for any properties with updatability equal to read-write. For
details on property constraints, choices, default values, and other factors that might
affect a property’s writeability, take a quick pass through chapter 4 again.

8.3.2 Properties from CMIS 1.1 secondary types

CMIS 1.1 introduced two new features that have to do with properties. We’ll touch on
them briefly in this section because they’re worth mentioning, although they’re not
used in The Blend.

 When we’ve talked about properties up to this point, the type of the object defined
them. But the type doesn’t only define the properties of an object, it also defines its
behavior and the operations that you can perform on the object. These primary types

getParents also accepts
OperationContexts
object

e first
arent

Redirect to browse
page of parent folder
of this objectandle

 cases

A warning about caching
You may have noticed this line in listing 8.8:
opCtx.setCacheEnabled(false);

The OperationContext explicitly disabled the OpenCMIS cache for the getObject-
ByPath method. The reason is simple. If getObjectByPath() always got the object
data from the cache, there’s a chance that it might get an outdated change token,
which would cause all update attempts to fail. Chapter 13 explains how caching
works in detail and how to deal with this situation more elegantly.
www.it-ebooks.info

http://www.it-ebooks.info/

213Updating properties

prop
s

aren’t changeable after an object has been created. You can’t turn a document into a
folder, just as you couldn’t turn an x-ray image into an invoice.

CMIS 1.1 adds secondary types, which gives you more flexibility. A secondary type
defines a discrete bag of properties. With secondary types you can add additional
properties to an object that aren’t defined by its primary object type. You can’t use a
secondary type like a primary type to create an object, but you can attach secondary
types to or detach them from an existing object whenever you want, where they’re
supported. You can even attach a secondary type as an additional type when the object
is created. Attaching a secondary type means that the object gains the properties that
are defined by that secondary type. If a secondary type is detached from an object, the
object loses these properties and the associated property values.

 The secondary types are managed in the multivalue property cmis:secondary-
ObjectTypeIds at the object. Adding a secondary type ID to that list attaches the sec-
ondary type. Removing a type ID detaches the secondary type.

 You use the updateProperties and checkIn methods to attach and detach types.
When you attach a secondary type, you can also supply values for the new properties,
as shown here:

try {
CmisObject object = session.getObject(id);

List<String> secondaryTypes =
object.getPropertyValue("cmis:secondaryObjectTypeIds");

if (secondaryTypes == null) {
secondaryTypes = new ArrayList<String>();

}

Map<String, Object> properties = new HashMap<String, Object>();

if (!secondaryTypes.contains("project")) {
secondaryTypes.add("project");
properties.put("cmis:secondaryObjectTypeIds", secondaryTypes);

}

properties.put("project_name", "The Big Building");
properties.put("project_id", "000000001");

CmisObject newObject = object.updateProperties(properties);
} catch (CmisBaseException cbe) {

// handle error
}

The other new CMIS 1.1 addition is the bulkUpateProperties operation. As the name
suggests, it updates a bunch of objects with the same property values in one call.
That’s handy if you have to attach a secondary type to multiple objects.

Get current list of
attached
secondary types

If no secondary types are
attached yet, create new
empty list of secondary types

Only attach secondary
type project if it’s not
already attached

Set some
erties of

econdary
type

Update object with
secondary type
properties
www.it-ebooks.info

http://www.it-ebooks.info/

214 CHAPTER 8 The Blend: create, update, and delete functionality

prop
to u
 Let’s say you have a secondary type that holds data about projects. You could have
properties for the project name, a project number, the team members working on the
project, the project start date, and so on. If you have documents that belong to that
project already, you can identify them and attach the secondary type with all of that
data in one go, as in this example:

List<CmisObject> objects = new ArrayList<CmisObject>();
objects.add(session.getObject("123"));
objects.add(session.getObject("456"));
objects.add(session.getObject("789"));

Map<String, Object> properties = new HashMap<String, Object>();
properties.put("projectName", "THE project");
properties.put("projectNumber", "123456");
properties.put("projectMembers", Arrays.asList("Bob", "Fred", "Lisa"));

List<String> addSecondaryTypes =
Collections.singletonList("projectType");

List<BulkUpdateObjectIdAndChangeToken> updated =
session.bulkUpdateProperties(objects, properties,

addSecondaryTypes, /* remove secondary type */ null);

Note that the bulkUpateProperties operation isn’t an atomic operation. If some-
thing goes wrong mid-operation and this method throws an exception, some objects
might be updated and others might not. Usually, bulkUpateProperties doesn’t throw
an exception. It returns a list of all objects that have been updated. The application
has to figure out which objects haven’t been updated, if any, by comparing the input
list and the output list.

 In addition to properties, documents also have content that can be updated. Let’s
look at that next.

8.4 Updating and deleting content
The content of documents can be replaced, deleted, and, since CMIS 1.1, appended.
The Blend doesn’t have any real use case for doing any of those operations, which
means this section will be a dry run. The Blend uses document versions to add new
content, and we’ll talk about that in the next section.

8.4.1 Deleting content

You won’t find anything simpler than deleting the content of a document, as you can
see in this example:

try {
Document doc = (Document) session.getObject(id);
Document newVersion = doc.deleteContentStream();

}
catch(CmisBaseException e) {

// handle error
}

Set up list of
objects to
update

Set up
erties
pdate

Also add
secondary
type to all
objects
www.it-ebooks.info

http://www.it-ebooks.info/

215Updating and deleting content
Be prepared for exceptions, though. This example uses the change token as well,
which means you may encounter a CmisUpdateConflictException. To check in
advance if you can delete the content at all, examine the allowable actions of the doc-
ument.

 Similar to the updateProperties method, deleteContentStream refreshes the
Java object and returns a new version of the object if one has been created. A delete-
and-forget variant of this method also is available, and is shown here:

try {
Document doc = (Document) session.getObject(id);

ObjectId newVersionId = doc.deleteContentStream(false);
}
catch(CmisBaseException e) {

// handle error
}

8.4.2 Replacing content

You can replace content with the setContentStream method:

try {
Document doc = (Document) session.getObject(id);

ContentStream contentStream =
session.getObjectFactory().createContentStream(name,

length, mimeType, stream);

Document newVersion = doc.setContentStream(contentStream, true);
}

catch(CmisBaseException e) {
// handle error

}

The second parameter of this method specifies whether or not to overwrite existing
content. If it’s set to false and you already have content, the repository throws a
CmisContentAlreadyExistsException. If it’s set to false and you don’t have any con-
tent, the provided content will be set. You can’t use this method to remove content by
not setting a ContentStream object. Use deleteContentStream instead.

 The remaining behavior is similar to deleteContentStream. It refreshes the Java
object and returns a new version if one has been created. Note that there’s an allow-
able action available, which you can use to check whether new content can be set.
Again, there’s a set-and-forget variant of this method:

try {
Document doc = (Document) session.getObject(id);

ContentStream contentStream =
session.getObjectFactory().createContentStream(name,

length, mimeType, stream);

ObjectId newVersionId =
doc.setContentStream(contentStream, true, false);

}

Parameter
indicates whether
the Java object
should be
refreshed after
content is deleted

Second parameter
defines whether
existing content

should be
overwritten
www.it-ebooks.info

http://www.it-ebooks.info/

216 CHAPTER 8 The Blend: create, update, and delete functionality
catch(CmisBaseException e) {
// handle error

}

8.4.3 Appending content

Appending content is new in CMIS 1.1. It was added to support uploads of huge docu-
ments in multiple steps. Think of a video that consists of several gigabytes. Such an
upload can take some time, and the longer the time needed for such a connection,
the greater the probability of a connection failure between client and repository dur-
ing that time.

 The appendContentStream operation allows clients to upload partial chunks of the
content. Applications can, for example, chop a video into smaller chunks, say 100
megabytes, and upload them sequentially in a batch. If the connection fails, only the
last chunk has to be repeated. This operation isn’t intended to support parallel
uploads from one or multiple users. The behavior of the repository in this case isn’t
defined by the specification and may vary from repository to repository. The change
token can prevent some of these types of collisions, but not all:

byte[][] chunks = new byte[][] {
"First line\n".getBytes(),
"Second line\n".getBytes(),
"Third line\n".getBytes()

};

try {
Document doc = (Document) session.getObject(id);
doc.deleteContentStream();

for (int i = 0; i < chunks.length; i++) {

ByteArrayInputStream stream = new ByteArrayInputStream(chunks[i]);

ContentStream contentStream =
session.getObjectFactory().createContentStream("lines.txt",

chunks[i].length, "text/plain", stream);

boolean isLastChunk = (i == chunks.length - 1);

doc.appendContentStream(contentStream, isLastChunk, false);
}

} catch (CmisBaseException e) {
// handle error

}

The second parameter tells the repository whether this chunk is the last chunk of the
document. For some repositories, that can be important information, because it might
trigger some content processing in the background. For example, the repository might
create low-resolution renditions of videos, but generating such a rendition would only
make sense when the video is fully uploaded, so the repository has to know what the
last chunk is. If you define a chunk as the last chunk and then try to append yet
another chunk, the repository may throw a CmisConstraintException. You can also
start over by calling setContentStream and providing the first chunk of the content.
www.it-ebooks.info

http://www.it-ebooks.info/

217Versioning
 When you call deleteContentStream or setContentStream, you don’t leave a
trace of the content that’s been there before—you’re not able to switch back or
recover a previous state of the document. But versioning of the documents makes that
possible. The next section focuses on how to accomplish versioning.

8.5 Versioning
Chapter 3 described how versioning works in CMIS. Let’s put that into practice and
build a web page that creates a new version of a document. We can borrow quite a bit
of code from section 8.2.

 The user has to specify the document and the new content. To keep it simple, we
won’t update any properties when we create this new version. Here’s the HTML form
we’ll use:

<h1>Add a new version</h1>

<form method="POST" action="addversion" enctype="multipart/form-data">
Path to the document:
<input type="text" size="20" name="path">

File:
<input name="content" type="file">

<input type="submit" value="add version">

</form>

Copy the echo JSP from chapter 6 and rename it to addversion.jsp. Remove everything
between the line that includes the header JSP and the line that includes the footer JSP,
and copy in the preceding HTML fragment.

 In the package com.manning.cmis.theblend.servlets, create a new class called
AddVersionServlet that extends AbstractTheBlendServlet, and then add the fol-
lowing XML snippet to the web.xml file:

<servlet>
<servlet-name>AddVersionServlet</servlet-name>
<servlet-class>
com.manning.cmis.theblend.servlets.AddVersionServlet

</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>AddVersionServlet</servlet-name>
<url-pattern>/addversion</url-pattern>

</servlet-mapping>

Good. Now add the code for the doGet method. It only redirects to the JSP:

protected void doGet(HttpServletRequest request,
 HttpServletResponse response, Session session)

throws ServletException, IOException, TheBlendException {
dispatch("addversion.jsp", "Add a new version", request, response);

}

www.it-ebooks.info

http://www.it-ebooks.info/

218 CHAPTER 8 The Blend: create, update, and delete functionality
8.5.1 Creating a new version

This last piece of code looks familiar, doesn’t it? If you’re thinking that the doPost
method will be a bit longer, you’re absolutely right.

 But first things first. This next snippet shows you how to create the new version of
the specified document:

try {
Document doc = (Document) session.getObject(id);

ObjectId pwcId = doc.checkOut();

Document pwc = (Document) session.getObject(pwcId);

// ... do something with the Private Working Copy ...

ObjectId newVersionId =
pwc.checkIn(true, properties, contentStream, "a new version");

Document newVersion = (Document) session.getObject(newVersionId);
}
catch(CmisBaseException e) {

// handle error
}

Creating a version is a two-step process: check out and check in. First, you have to
check out a document. The document must also be versionable. If it isn’t, the reposi-
tory will return a CmisConstraintException. Usually, repositories only allow you to
check out the latest version, but that’s not a strict rule. Inspect the allowable actions to
verify that you can do a checkout. If you can’t, you might want to get the latest version
and try again.

 The following code snippet shows how to check if the document is the latest ver-
sion, and if it isn’t, how to retrieve the latest document version. The Boolean parame-
ter that getObjectOfLatestVersion accepts defines whether you want the latest
major version. Here, you want the very last version, even if it’s a minor version, so you
set this parameter to false:

if (!Boolean.TRUE.equals(doc.isLatestVersion())) {
doc = doc.getObjectOfLatestVersion(false);

}

Keep in mind that you have to select the cmis:isLatestVersion property when you
fetch the object to make that snippet work.

 The checkOut method returns the ID of the Private Working Copy (PWC). As the
name suggests, this working copy might only be visible to you. (There are exceptions
to this rule. For example, a few repositories provide ways to make the PWC also visible
to other users by changing the ACL of the PWC.)

 When a version series is checked out, it can’t be checked out a second time. There
can be exactly one PWC per version series, and CMIS only supports linear versioning.
You and other users can test whether the version series is checked out with the follow-
ing piece of code:
www.it-ebooks.info

http://www.it-ebooks.info/

219Versioning
if (!Boolean.TRUE.equals(doc.isVersionSeriesCheckedOut())) {
String user = doc.getVersionSeriesCheckedOutBy();
String pwcId = doc.getVersionSeriesCheckedOutId();

}

The getVersionSeriesCheckedOutBy method returns the user that owns the PWC.
This information is optional, and some repositories don’t provide it. The get-
VersionSeriesCheckedOutId method returns the ID of the PWC. If you checked out
the version series, you should get the ID. Other users may not get this ID, but that
depends on the repository. Again, make sure you’ve selected all of the properties that
are backing these methods.

 You can also retrieve the list of all checked-out documents. The Session interface
and the Folder interface both provide a getCheckedOutDocs method for this pur-
pose, though their scopes are different. The variant at the Session interface covers
the whole repository, whereas the Folder variant only covers one folder. You’re proba-
bly going to see only the documents that you’ve checked out, but they are repository-
specific. A superuser might see all checked out documents:

ItemIterable<Document> checkedOutDocs = session.getCheckedOutDocs();

for (Document pwc : checkedOutDocs) {
System.out.println(pwc.getName());

}

With the PWC ID, you can now retrieve the PWC object. This object is a copy of the
checked-out document, though a few system properties like the creation date may be
different. Most repositories also copy the content during checkout, but to be sure,
examine the content properties, length, and MIME type.

 This Document object can now be updated. You can change the properties and con-
tent as often as you want. In fact, in some cases you can change more properties than
when the document isn’t checked out. The updatability of a property can be one of
the following four states:

 READONLY—Property is a system property and can’t be changed directly.
 READWRITE—Property can be updated at any time.
 WHENCHECKEDOUT—Property can be updated only when the document is

checked out (it can only be updated on a PWC instance).
 ONCREATE—Property can only be set during object creation.

Content also has a similar flag. The repository capability ContentStreamUpdatability
tells applications when content can be updated. These are the possible values:

 ANYTIME—Content can always be updated.
 PWCONLY—Content can only be updated when the document is checked out.
 NONE—Content can never be updated.

Skipping and paging
works here too.
www.it-ebooks.info

http://www.it-ebooks.info/

220 CHAPTER 8 The Blend: create, update, and delete functionality
At some point, you’ll have to decide whether or not you want to keep your changes
and make a new version, or discard all of your changes. If you want to discard them,
you can cancel the checkout like this:

pwc.cancleCheckOut();

That deletes the Private Working Copy and all your changes are lost. The version
series can always be checked out again.

8.5.2 The checkIn() method

If you want to create the new version, you have to check it in:

ObjectId newVersionId =
pwc.checkIn(true, properties, contentStream, "a version comment");

The first parameter defines whether this new version should become a major or a
minor version. The second parameter changes properties, and the third parameter
sets new content. You can see that you can work with a PWC in one of two ways. You
can update a PWC object, and when you check it in, set the properties and content
parameters to null. The current state of the PWC then becomes the new version. You
can also get the PWC object and not change anything. When you call checkIn, you
provide all property updates and/or the new content. It’s up to you what makes more
sense for your application.

 The fourth parameter is a comment that’s associated with the version and is stored
in the property cmis:checkinComment. Some repositories don’t support it and there-
fore won’t set this property even when you supply it. Not supporting this property is
allowed in the specification for repositories that don’t have a checkIn comment.

 The checkIn method returns the ID of the newly created version, allowing you to
fetch it from the repository if you need it again. The Java object that represented the
PWC is now invalid. The new version provides a version label property, cmis:version-
Label. This property should reflect the version number. The format of the version is
repository-specific, though.

CMIS doesn’t specify how long a version series can be checked out. That’s reposi-
tory-specific, and most repositories don’t have a limit. A version series can be blocked
forever if nobody cancels a checkout or checks in the PWC. There are use cases that
require a version series to be checked out for a longer period of time, but in most
cases the time between checkout and check-in is short, and both operations are con-
trolled by the same application. It’s good practice to clean up the version series if
something goes wrong. For example, if a check-in fails, the application should try to
cancel the checkout. That enables the next application to work with the version series.

 Creating a version is straightforward, and so is the doPost method of the servlet,
which is shown in the next listing.
www.it-ebooks.info

http://www.it-ebooks.info/

221Versioning
protected void doPost(HttpServletRequest request,
HttpServletResponse response, Session session)
throws ServletException, IOException, TheBlendException {

boolean isMultipart = ServletFileUpload.isMultipartContent(request);
if (!isMultipart) {

throw new TheBlendException("Invalid request!");
}

// --- get the content for the next version ---
File uploadedFile = null;
String mimeType = null;
String docPath = null;
ObjectId newVersionId = null;

try {
DiskFileItemFactory factory = new DiskFileItemFactory();
ServletFileUpload upload = new ServletFileUpload(factory);
upload.setSizeMax(50 * 1024 * 1024);

@SuppressWarnings("unchecked")
List<FileItem> items = upload.parseRequest(request);

Iterator<FileItem> iter = items.iterator();
while (iter.hasNext()) {

FileItem item = iter.next();

if (item.isFormField()) {
String name = item.getFieldName();

if ("path".equalsIgnoreCase(name)) {
docPath = item.getString();

}
}
else {

uploadedFile = File.createTempFile("blend", "tmp");
item.write(uploadedFile);

mimeType = item.getContentType();
if (mimeType == null) {

mimeType = "application/octet-stream";
}

}
}

} catch (Exception e) {
throw new TheBlendException("Upload failed: " + e, e);

}

if (uploadedFile == null) {
throw new TheBlendException("No content!");

}

FileInputStream stream = null;

try {
// --- fetch the document ---
CmisObject cmisObject = null;

Listing 8.9 doPost method for checkIn()
www.it-ebooks.info

http://www.it-ebooks.info/

222 CHAPTER 8 The Blend: create, update, and delete functionality
try {
cmisObject = session.getObjectByPath(docPath);

} catch (CmisBaseException cbe) {
throw new TheBlendException(

"Could not retrieve the document!", cbe);
}

Document doc = null;
if (cmisObject instanceof Document) {

doc = (Document) cmisObject;
} else {

throw new TheBlendException("Object is not a document!");
}

// --- prepare the content ---
stream = new FileInputStream(uploadedFile);
ContentStream contentStream =

session.getObjectFactory().createContentStream(
doc.getContentStreamFileName(), uploadedFile.length(),

mimeType, stream);

// --- do the check out ---
Document pwc = null;
try {

ObjectId pwcId = doc.checkOut();
pwc = (Document) session.getObject(pwcId);

} catch (CmisBaseException cbe) {
throw new TheBlendException(

"Could not check out the document!", cbe);
}

// --- do the check in ---
try {

newVersionId = pwc.checkIn(true, null, contentStream, null);
} catch (CmisBaseException cbe) {

throw new TheBlendException(
"Could not check in the document!", cbe);

}
}
finally {

if (stream != null) {
try {

stream.close();
}
catch (IOException ioe) {

// ignore
}

}

uploadedFile.delete();
}

// --- redirect to show page ---
try {

String url = request.getRequestURL().toString();
int lastSlash = url.lastIndexOf('/');

Create a new major
version with new

content, but without
changing properties

and without a
comment.

The check-in failed; this
would be a good place to
call cancelCheckOut() and
thereby remove the PWC.
www.it-ebooks.info

http://www.it-ebooks.info/

223Copying documents
url = url.substring(0, lastSlash) + "/show?id=" +
URLEncoder.encode(newVersionId.getId(), "UTF-8");

redirect(url, request, response);
}
catch(UnsupportedEncodingException e) {

throw new ServletException(e);
}

}

There shouldn’t be any surprises in the doPost and checkIn code. If performs the fol-
lowing steps:

 Gathers the input parameters and the new content
 Fetches the document and checks it out
 Fetches the Private Working Copy and checks it in (creating a new version)
 Redirects to the show page where the user can gaze in awe at the new version

Now, restart the server, log in, and append /addversion to the URL in the web browser.
When you’re testing it, make sure that the document is versionable. Otherwise the
repository will throw an exception. The document type cmis:document in the
InMemory Repository isn’t versionable. You’ll have to choose another type when
you’re creating your test document.

 Sometimes creating a new version isn’t exactly what you want. Sometimes you’ll
need an independent copy of a document with its own version series. Let’s look into
copying documents next.

8.6 Copying documents
CMIS has no discrete copy operation, but you can use a createDocumentFromSource
operation, which is a close second. In this section, you’ll build a web page that makes
use of createDocumentFromSource to let the user copy a document.

 Let’s start building the copy web page. The HTML form could look like this:

<h1>Copy document</h1>

<form method="POST" action="copy">
Document path:
<input type="text" size="20" name="path">

Target folder path:
<input type="text" size="20" name="target">

<input type="submit" value="copy">

</form>

The user has to specify the document to copy and the target folder. It’s possible to cre-
ate a copy in the same folder, but we’ll discuss that later.

 Now copy the echo JSP from chapter 6 and rename it to copy.jsp. Remove everything
between the line that includes the header JSP and the line that includes the footer JSP,
and copy in the preceding HTML fragment. In the package com.manning.cmis
.theblend.servlets, create a new class called CopyServlet that extends Abstract-
TheBlendServlet, and then add the following XML snippet to the web.xml file:
www.it-ebooks.info

http://www.it-ebooks.info/

224 CHAPTER 8 The Blend: create, update, and delete functionality
<servlet>
<servlet-name>CopyServlet</servlet-name>
<servlet-class>
com.manning.cmis.theblend.servlets.CopyServlet

</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>CopyServlet</servlet-name>
<url-pattern>/copy</url-pattern>

</servlet-mapping>

Here’s the code for the doGet method:

protected void doGet(HttpServletRequest request,
HttpServletResponse response, Session session)

throws ServletException, IOException, TheBlendException {
dispatch("copy.jsp", "Copy a document.", request, response);

}

You know the pattern. It calls the JSP.
 Before we jump into the doPost method, let’s cover the basics. As mentioned pre-

viously, CMIS has no copy operation, and if you want to copy folders or other nondoc-
ument objects, you’re on your own. CMIS only provides a createDocumentFromSource
operation.

createDocumentFromSource is similar to createDocument. The only difference is
that it doesn’t accept a ContentStream object but instead copies the content of an
already existing document in the repository. You can provide properties, a versioning
state, an ACL, and policies if you want. If you don’t, the repository will copy those, too.
In the case of the properties, you only have to provide the property values you want to
change. All other properties are copied as they are in the source document. The repos-
itory might adjust the ACL depending on the parent folder of the new document.

 The main advantage of the createDocumentFromSource operation is that the con-
tent isn’t transferred to the application and then back to the repository. The content
is copied inside the repository, which saves time and bandwidth. That sounds good,
but there’s a hitch—the AtomPub binding doesn’t support this operation. If you want
or need to build a binding-agnostic application, you’ll have to handle that yourself.

 Luckily, OpenCMIS already has a solution. The Document interface provides two
copy methods. The simplest one makes a straight copy:

try {
ObjectId targetFolderId = session.createObjectId(folderId);

Document newDocument = doc.copy(targetFolderId);
}

catch(CmisBaseException e) {
// handle error

}

If you set the target folder to a folder that the source document already resides in, the
execution is likely to fail. The new document is created with the same name, and most

Copy method
returns newly
created document
www.it-ebooks.info

http://www.it-ebooks.info/

225Copying documents
repositories reward the attempt to have two documents with the same name in the
same folder with a CmisNameConstraintViolationException.

 You’re still left with the AtomPub binding problem. OpenCMIS detects whether or
not createDocumentFromSource is supported, and if it isn’t, OpenCMIS loads the
properties and the content from the source document and creates a new document
with that data. That is, it streams the content from the repository to the application
and back. That can be an expensive operation if it’s a big document. The advantage is
that you don’t have to care about this problem anymore in your business logic.

 If you want to duplicate a document in the same folder, you have to use the second
method, which lets you, among other things, define the properties that should be
changed. You only have to choose a different name:

try {
Map<String, Object> properties = new HashMap<String, Object>();
properties.put(PropertyIds.NAME, "newDocumentName");

ObjectId targetFolderId = session.createObjectId(folderId);

Document newDocument = doc.copy(
targetFolderId,
properties,
null, null, null, null,
session.getDefaultContext());

}
catch(CmisBaseException e) {

// handle error
}

This method gives you full control over the new document.
 For the servlet’s doPost method, we’ll go for the first simple option, shown in the

following listing.

protected void doPost(HttpServletRequest request,
HttpServletResponse response, Session session)
throws ServletException, IOException, TheBlendException {

String path = getStringParameter(request, "path");
String target = getStringParameter(request, "target");

// --- fetch the document ---
CmisObject object = null;
try {

object = session.getObjectByPath(path);
} catch (CmisBaseException cbe) {

throw new TheBlendException(
"Could not retrieve the document!", cbe);

}

Document doc = null;
if (object instanceof Document) {

doc = (Document) object;

Listing 8.10 doPost method for copying document

Look up other
parameters in
OpenCMIS Javadoc
www.it-ebooks.info

http://www.it-ebooks.info/

226 CHAPTER 8 The Blend: create, update, and delete functionality
}
else {

throw new TheBlendException("Object is not a document!");
}

// --- fetch the target folder ---
CmisObject targetObject = null;
try {

targetObject = session.getObjectByPath(target);

} catch (CmisBaseException cbe) {
throw new TheBlendException(

"Could not retrieve target folder!", cbe);
}

if (!(targetObject instanceof Folder)) {
throw new TheBlendException("Target is not a folder!");

}

Document newDoc = null;
try {

newDoc = doc.copy(targetObject);
} catch (CmisBaseException cbe) {

throw new TheBlendException("Could not copy the document!", cbe);
}

// --- redirect to show page ---
try {

String url = request.getRequestURL().toString();
int lastSlash = url.lastIndexOf('/');

url = url.substring(0, lastSlash) + "/show?id=" +
URLEncoder.encode(newDoc.getId(), "UTF-8");

redirect(url, request, response);
}
catch(UnsupportedEncodingException e) {

throw new ServletException(e);
}

}

Again, it’s a simple buildup. Get the parameters, fetch the document and the target
folder, copy the document, and redirect to the show web page to display the copy of
the source document.

 Copying is easy, but what about moving? Can we move a document to a different
folder? Of course we can. Read on.

8.7 Moving objects
The move operations in CMIS are slightly different than what you’re used to in a file-
system, because you have to take multifiled objects into account. In this section, you’ll
build a web page that lets a user move an object from one folder to another.

 You start as always with the web page:

<h1>Move object</h1>

<form method="POST" action="move">
www.it-ebooks.info

http://www.it-ebooks.info/

227Moving objects
Object path:
<input type="text" size="20" name="path">

Target folder path:
<input type="text" size="20" name="target">

<input type="submit" value="move">

</form>

This time you definitely want to use the path to the object. You’ll understand why in a
moment. The user must also define the target folder.

 Again, copy the echo JSP from chapter 6 and rename it to move.jsp. Remove every-
thing between the line that includes the header JSP and the line that includes the
footer JSP, and copy in the preceding HTML fragment. Our next listing shows the
result.

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8" trimDirectiveWhitespaces="true" %>

<%@ page import="org.apache.chemistry.opencmis.client.api.*" %>
<%@ page import="org.apache.chemistry.opencmis.commons.enums.*" %>
<%@ page import="java.util.*" %>
<%@ include file="header.jsp" %>

<h1>Move object</h1>

<form method="POST" action="move">
Object path:
<input type="text" size="20" name="path">

Target folder path:
<input type="text" size="20" name="target">

<input type="submit" value="move">

</form>

<%@ include file="footer.jsp" %>

In the package com.manning.cmis.theblend.servlets, create a new class called
MoveServlet that extends AbstractTheBlendServlet, and then add the following
XML snippet to the web.xml file:

<servlet>
<servlet-name>MoveServlet</servlet-name>
<servlet-class>
com.manning.cmis.theblend.servlets.MoveServlet

</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>MoveServlet</servlet-name>
<url-pattern>/move</url-pattern>

</servlet-mapping>

Here’s the code for the doGet method:

protected void doGet(HttpServletRequest request,
HttpServletResponse response, Session session)

throws ServletException, IOException, TheBlendException {

Listing 8.11 Move.jsp with inserted HTML form

HTML for move
form inserted here
www.it-ebooks.info

http://www.it-ebooks.info/

228 CHAPTER 8 The Blend: create, update, and delete functionality
dispatch("move.jsp", "Move an object", request, response);
}

You don’t have anything else to do here except call the JSP.
 CMIS provides three methods that you can use to move objects around: move,

addToFolder, and removeFromFolder.
 The move method moves an object from one folder to another folder, as the follow-

ing example shows:

try {
CmisObject object = session.getObjectByPath(path);

if (!(object instanceof FileableCmisObject)) {
throw new TheBlendException("Object is not fileable!");

}

FileableCmisObject fileableCmisObject = (FileableCmisObject) object;

ObjectId sourceFolderId = session.createObjectId(moveFromFolderId);
ObjectId targetFolderId = session.createObjectId(moveToFolderId);

FileableCmisObject movedObject =
fileableCmisObject.move(sourceFolderId, targetFolderId);

}
catch(CmisBaseException e) {

// handle error
}

The previous code snippet has three interesting aspects to it.
 First, to move an object it must be fileable. OpenCMIS classes that represent file-

able objects implement the interface FileableCmisObject. Because the move method
is declared on that interface, you have to cast to that interface first.

 The second interesting aspect is that you have to provide the ID of the source
folder when you move an object. That makes sense if the object is filed in multiple
folders, because the repository has to know from which folder it should move the
object. If the object is only filed in one folder, it’s unambiguous, but you have to pro-
vide the source folder ID anyway.

 The third interesting aspect is that the move method returns the moved object
after it has been moved. There’s only one rare use case for this object. A repository
might implement the move operation by deleting the original object and creating a
new one in the target folder. In that case, the new object would have a new ID, and
that would be the only reliable way to get to the new ID. Because all serious reposito-
ries have native support for move, this isn’t generally a concern.

 Another way to move an object would be to remove it from the source folder first
and then add it to the target folder:

fileableCmisObject.removeFromFolder(sourceFolderId);
fileableCmisObject.addToFolder(targetFolderId, true);

Second parameter
specifies whether all
versions of a document
should be added or just
the one that’s calling
addToFolder
www.it-ebooks.info

http://www.it-ebooks.info/

229Moving objects

But that requires that the repository supports unfiled objects, because the object
could be potentially unfiled for a moment. It also works the other way round:

fileableCmisObject.addToFolder(targetFolderId, true);
fileableCmisObject.removeFromFolder(sourceFolderId);

The object is added to the target folder first and then removed from the source folder.
In this case, the repository has to support multifiling because the object would reside
in multiple folders for a moment. If you have to deal with unfiled and multifiled
objects, these are the two methods you want to look into. For our servlet, we’ll stick
with the move method.

 The following listing shows the completed doPost with the move logic.

protected void doPost(HttpServletRequest request,
HttpServletResponse response, Session session)
throws ServletException, IOException, TheBlendException {

String path = getStringParameter(request, "path");
String target = getStringParameter(request, "target");

// --- fetch the object ---
CmisObject object = null;
try {

object = session.getObjectByPath(path);
} catch (CmisBaseException cbe) {

throw new TheBlendException(
"Could not retrieve the object!", cbe);

}

if (!(object instanceof FileableCmisObject)) {
throw new TheBlendException("Object is not fileable!");

}

FileableCmisObject fileableCmisObject = (FileableCmisObject) object;

// --- fetch the source folder ---
CmisObject sourceObject = null;
try {

int lastSlash = path.lastIndexOf('/');
String parentPath = path.substring(0, lastSlash);
if (parentPath.length() == 0) {

parentPath = "/";
}

sourceObject = session.getObjectByPath(parentPath);
} catch (CmisBaseException cbe) {

throw new TheBlendException(
"Could not retrieve target folder!", cbe);

}

// --- fetch the target folder ---
CmisObject targetObject = null;
try {

targetObject = session.getObjectByPath(target);

Listing 8.12 doPost method for move document

That shouldn’t
happen because
you just received
the object by path,
so it must be
fileable.

Extract the path
of the parent
folder from the
object’s path.
www.it-ebooks.info

http://www.it-ebooks.info/

230 CHAPTER 8 The Blend: create, update, and delete functionality
} catch (CmisBaseException cbe) {
throw new TheBlendException(

"Could not retrieve target folder!", cbe);
}

if (!(targetObject instanceof Folder)) {
throw new TheBlendException("Target is not a folder!");

}

try {
fileableCmisObject.move(sourceObject, targetObject);

} catch (CmisBaseException cbe) {
throw new TheBlendException("Could not move the object!", cbe);

}

// --- redirect to browse page ---
try {

String url = request.getRequestURL().toString();
int lastSlash = url.lastIndexOf('/');

url = url.substring(0, lastSlash) + "/browse?id=" +
URLEncoder.encode(targetObject.getId(), "UTF-8");

redirect(url, request, response);
}
catch(UnsupportedEncodingException e) {

throw new ServletException(e);
}

}

Let’s do a quick rundown of what happens in this code. The method gets the parame-
ters, fetches the object, and checks if the object is fileable. Then it gets the parent
folder of the object because this path already contains the parent from which the
object should be moved. Even if the object is multifiled, the parent is unambiguous
here. To get to the parent object, you remove the last path segment and fetch the
folder object. Then the target folder is fetched and checked. The object is moved and
the web browser is redirected to the browse page of the new parent of the object.

 You can now create and manipulate objects with CMIS, but one important opera-
tion is missing. Let’s talk about deleting objects.

8.8 Deleting objects
It should come as no surprise that CMIS objects can be deleted, after all of these other
operations we’ve been performing on them in this chapter. Let’s build a web page that
deletes objects and handles the deletion of folder trees.

 The only input you need is an object. We’ll go with the path again, as follows:

<h1>Delete object</h1>

<form method="POST" action="delete">
Object path:
<input type="text" size="20" name="path">

<input type="submit" value="delete">

</form>
www.it-ebooks.info

http://www.it-ebooks.info/

231Deleting objects
8.8.1 Deleting documents

For unfiled objects and document versions, you’d need the object ID because they
don’t have a path. Modifying this web page to accept an ID should be a simple exercise
for you at this point.

 Next (and for the final time), copy the echo JSP from chapter 6 and rename it to
delete.jsp. Then remove all lines between the line that includes the header JSP and
the line that includes the footer JSP, and copy in the preceding HTML fragment,
shown in the next listing.

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8" trimDirectiveWhitespaces="true" %>

<%@ page import="org.apache.chemistry.opencmis.client.api.*" %>
<%@ page import="org.apache.chemistry.opencmis.commons.enums.*" %>
<%@ page import="java.util.*" %>
<%@ include file="header.jsp" %>

<h1>Delete object</h1>

<form method="POST" action="delete">
Object path:
<input type="text" size="20" name="path">

<input type="submit" value="delete">

</form>

<%@ include file="footer.jsp" %>

In the package com.manning.cmis.theblend.servlets, create a new class called
DeleteServlet that extends AbstractTheBlendServlet, and then add the following
XML snippet to the web.xml file:

<servlet>
<servlet-name>DeleteServlet</servlet-name>
<servlet-class>
com.manning.cmis.theblend.servlets.DeleteServlet

</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>DeleteServlet</servlet-name>
<url-pattern>/delete</url-pattern>

</servlet-mapping>

The doGet method only has to call the JSP:

protected void doGet(HttpServletRequest request,
HttpServletResponse response, Session session)

throws ServletException, IOException, TheBlendException {
dispatch("delete.jsp", "Delete an object", request, response);

}

Listing 8.13 delete.jsp with inserted HTML form

HTML for delete
form inserted here
www.it-ebooks.info

http://www.it-ebooks.info/

232 CHAPTER 8 The Blend: create, update, and delete functionality
The CmisObject interface has a delete method that we’ll use here:

try {
CmisObject object = session.getObject(id);
object.delete(true);

}
catch(CmisBaseException e) {

// handle error
}

The Boolean parameter is only relevant for documents. It indicates whether this one
version (false) or all versions in the version series (true) should be deleted. Before
you delete an object, you should check the allowable actions to check whether you’re
allowed to do that. The Java object becomes invalid after you’ve called delete. All sub-
sequent calls to the repository are likely to fail, and the object also removes itself from
the OpenCMIS cache.

8.8.2 Deleting folders

Folders can be deleted with the delete operation if they’re empty. When you call it on
a non-empty folder, the repository returns a CmisConstraintException. To delete a
non-empty folder, use the deleteTree method on the Folder interface:

try {
Folder folder = (Folder) session.getObject(id);
List<String> failedToDelete =

folder.deleteTree(true, UnfileObject.DELETE, true);
}
catch(CmisBaseException e) {

// handle error
}

The first parameter again defines what should happen to documents and document
versions. The second parameter lets you choose whether nonfolder children of this
folder should be deleted or unfiled. Three possible options are available:

 UNFILE—Objects aren’t deleted, only unfiled. This option is available only if the
repository supports unfiling and/or multifiling.

 DELETESINGLEFILED—Objects are deleted only if they’re not filed in another
folder.

 DELETE—Objects are deleted even if they’re also filed in another folder.

The third parameter defines whether or not the operation should continue if the
deletion of a child fails. If you set it to true, the repository deletes everything it can
delete in the context of the current user. If you set it to false, it stops when it hits the
first object the current user can’t delete. Other objects might be already deleted by
then. The deletion-processing order is repository-specific, but you can’t predict which
object in the folder tree is deleted first and which is deleted last.

 The deleteTree method returns a list of IDs of objects that couldn’t be deleted. If
this list is empty or null, the delete operation was successful. If the list contains IDs,
www.it-ebooks.info

http://www.it-ebooks.info/

233Deleting objects
objects were left undeleted. This list doesn’t need to be complete, though. If many
objects are left, some repositories truncate the list.

 That’s all you need for the doPost method; here it is in the next listing.

protected void doPost(HttpServletRequest request,
HttpServletResponse response, Session session)
throws ServletException, IOException, TheBlendException {

String path = getStringParameter(request, "path");

// --- fetch the object ---
CmisObject object = null;
try {

object = session.getObjectByPath(path);

} catch (CmisBaseException cbe) {
throw new TheBlendException(

"Could not retrieve the object!", cbe);
}

// --- delete the object ---
try {

if (object instanceof Folder) {
Folder folder = (Folder) object;
List<String> failedToDelete =

folder.deleteTree(true, UnfileObject.DELETE, true);

if (failedToDelete != null && !failedToDelete.isEmpty()) {
throw new TheBlendException("Deletion failed!");

}
}
else {

object.delete(true);
}

}
catch (CmisBaseException cbe) {

throw new TheBlendException("Could not delete the object!", cbe);
}

// --- redirect to browse page of the root folder ---
String url = request.getRequestURL().toString();
int lastSlash = url.lastIndexOf('/');
url = url.substring(0, lastSlash) + "/browse";

redirect(url, request, response);
}

You won’t find any magic in this code. It fetches the object and checks if it’s a folder or
something else. If it’s a folder, it calls deleteTree and checks if all children have been
deleted. If it isn’t a folder, it calls only the delete method.

 With this final step, you’ve rebuilt the most important parts of The Blend. Now it’s
up to you to tidy it up, add new features, and develop your own user interface.

Listing 8.14 doPost method for deleting objects
www.it-ebooks.info

http://www.it-ebooks.info/

234 CHAPTER 8 The Blend: create, update, and delete functionality
 As a final recap, let’s look at all of the functionality we’ve implemented in chapters
6, 7, and 8.

 Login/connection—Chapter 6
 Folder browsing (includes paging logic)—Chapter 7
 Document display (metadata) and retrieval (includes version series information)—

Chapter 7
 Query—Chapter 7
 Creating folders and documents—Chapter 8
 Updating properties—Chapter 8
 Updating and deleting content—Chapter 8
 Copying, moving, and deleting objects—Chapter 8

8.9 Summary
This and the previous chapter covered the bigger part of the OpenCMIS API. You
were introduced to all the major CMIS create, read, update, and delete (CRUD) opera-
tions as you rebuilt a stripped-down version of The Blend.

 With this knowledge, you’re now able to build CMIS applications in Java for the desk-
top, for the web, and for Android. These chapters were also a blueprint for .NET devel-
opers, because the Apache Chemistry DotCMIS API is similar to the OpenCMIS API.

 In the next chapters, you’ll learn more about other CMIS libraries for other pro-
gramming languages and environments. The general principles, such as type system,
properties, content, versioning, exceptions, filing, and so on, are the same for all of
the other libraries, which makes jumping between them much easier.
www.it-ebooks.info

http://www.it-ebooks.info/

Using other
client libraries
This chapter will review some of the CMIS client libraries that are available beyond
OpenCMIS. These libraries are useful if your preferred language is something
other than Java, or if OpenCMIS doesn’t meet the specific needs of the solution
you’re building (see figure 9.1). By the end of the chapter, you’ll have a working
knowledge of the capabilities of these libraries. Optionally, you can work through
the “Try it” sections for each client library to add functionality to the solution
you’ve developed in previous chapters—The Blend.

 We realize you may not have an immediate need for all of these libraries, but
we recommend that you read the entire chapter because it introduces you to
what’s available and gives you an idea of when each of these libraries might be
appropriate to use. But if you have zero interest in a particular language, feel free
to skip that section.

This chapter covers
 Overview of other CMIS client libraries

 Connecting to SharePoint with CMIS

 Using C#, Python, and PHP to write CMIS applications
235

www.it-ebooks.info

http://www.it-ebooks.info/

236 CHAPTER 9 Using other client libraries
9.1 Working with other client libraries
If you’re a Java developer, you might have the luxury of developing your applications
using only the OpenCMIS client library, depending on the type of applications you
build. But the real world is rarely that homogeneous, which is a good thing—it keeps
life interesting.

 Luckily, CMIS is language-independent, which means that if you prefer another
language, or if Java isn’t a good match for the task at hand, it’s highly likely that
another client library is available that will meet your needs.

 Let’s take a look at some common CMIS client libraries other than OpenCMIS.

9.1.1 Common client libraries

The first place to start when seeking out another client library is the Apache Chemis-
try project (http://chemistry.apache.org). This project isn’t only home to Open-
CMIS; it also hosts CMIS projects for .NET, Python, PHP, and Android. Each of these
subprojects has its own page on the Apache Chemistry site, which is where you’ll find
download packages and documentation.

 Apache Chemistry isn’t the only place to find CMIS client libraries. When develop-
ers need to work with a CMIS repository in their preferred language and a client
library doesn’t already exist, often a new client library is born. Table 9.1 lists some of
the more common client libraries.

Table 9.1 At a glance: popular non-Java libraries for working with CMIS

Library Language Project home Bindings supported Install method Key dependencies

DotCMIS .NET Apache
Chemistry

AtomPub and
Web Services

Manual Microsoft OS

cmislib Python Apache
Chemistry

AtomPub only Python setup-
tools or manual

Python 2.6 or 2.7

PHP Client PHP Apache
Chemistry

AtomPub only Manual None

Figure 9.1 Other client libraries give
non-Java developers access to any
CMIS-compliant repository.
www.it-ebooks.info

http://chemistry.apache.org
http://www.it-ebooks.info/

237Coding in .NET with DotCMIS
In this chapter, we’ll spend some time looking at each of these. You’ll learn a little bit
about each one, including how it compares to OpenCMIS, what the requirements are
for using the library, and how to install it. Once you have a feel for a given library, you
can work through a hands-on example that further expands on The Blend. By the end
of the chapter, you’ll have a better idea of what’s available and how to use each one.

9.2 Coding in .NET with DotCMIS
The first client library we’ll look at is DotCMIS, which is used when writing C#, Power-
Shell, and web parts that need to talk to a CMIS repository. By the end of this section,
you’ll know how DotCMIS compares with OpenCMIS, and you’ll have a web part that
can browse The Blend. Toward the end of this section, there will also be a discussion
of how to use Microsoft SharePoint as a CMIS provider.

9.2.1 Comparing DotCMIS and OpenCMIS

.NET provides a formidable platform for CMIS client applications targeting Windows
users. Not only do you get the opportunity to take advantage of the strongly typed,
object-oriented C# programming language, which provides comforts such as garbage
collection, operator overloading, optional arguments, and C-like syntax, but also the
opportunity to take advantage of the powerful, flexible, command-line shell and
scripting language that’s PowerShell.

 Imagine you’re in the early exploratory stages of developing the next grand slam
CMIS client application. You want to know how best to solve a problem with your algo-
rithm, but on this particular implementation detail the specification is intentionally
vague, and no other relevant documentation solves your problem. Coding up a whole
program to test your various rival theories on the best solution could take forever, but
luckily you remember that you have a PowerShell window open, with a session already
connected to a test server equipped with a CMIS producer. You type in a few method
calls using your session instance, and upon inspecting the results you come to a solid
conclusion as to which theory holds water. Now that experimentation has yielded a
solid, sanity-tested plan, you can get to work creating a high-quality compiled C# pro-
gram—using the same API that you experimented with.

 DotCMIS, as its name implies, is the .NET CMIS client library. It’s similar in archi-
tecture to the OpenCMIS client library, and it’s tightly based on the CMIS domain
model. It’s a full-featured library, including caching of CMIS objects and bindings, but
it’s limited in the area of authentication. Whereas OpenCMIS provides support for
both NTLM and Basic authentication, DotCMIS includes only Basic authentication.
On the bright side, it’s extensible to other authentication methods, as we’ll discuss
shortly.

 In the following sections, you’ll see a demonstration of the basic use of the Dot-
CMIS library in both C# and PowerShell and how to use PowerShell to change the
metadata of songs in The Blend’s repository.
www.it-ebooks.info

http://www.it-ebooks.info/

238 CHAPTER 9 Using other client libraries
9.2.2 Getting started with DotCMIS

In this section, you’ll see how to connect to the repository and perform basic CRUD
functions against it using DotCMIS.

 Regardless of whether you seek to take advantage of DotCMIS in PowerShell or C#,
your first step is the same: you must create a reference to the DotCMIS binary. In C#,
this is as simple as clicking Add a Reference for your Visual Studio project and brows-
ing to the DotCMIS binary. In PowerShell, you’ll need to run the following command:

[Reflection.Assembly]::LoadFile("C:\example\path\DotCMIS.dll")

Within the DotCMIS API, the Session object is the star of the show. You need to create a
Session instance as the first step in any CMIS client program, and once you have it, you
can use it for a myriad of different tasks, including creating and retrieving ACLs, docu-
ments, folders, policies, relationships, and type definitions—for a full list, see figure 9.2.

Figure 9.2 DotCMIS methods
www.it-ebooks.info

http://www.it-ebooks.info/

239Coding in .NET with DotCMIS
Here’s what creating an AtomPub session looks like in C#:

Dictionary<string, string> parameters =
new Dictionary<string, string>();

parameters[SessionParameter.BindingType] = BindingType.AtomPub;
parameters[SessionParameter.AtomPubUrl] =

"http://exampleServer/service/cmis/rest";
parameters[SessionParameter.User] = "exampleUser";
parameters[SessionParameter.Password] = "examplePassword";

SessionFactory factory = SessionFactory.NewInstance();
ISession session = factory.GetRepositories(parameters)[0].

CreateSession();

And here’s what it looks like in PowerShell:

#helper function
function New-GenericDictionary([type] $keyType, [type] $valueType) {

$base = [System.Collections.Generic.Dictionary``2]
$ct = $base.MakeGenericType(($keyType, $valueType))
New-Object $ct

}
$sp = New-GenericDictionary string string
$sp["org.apache.chemistry.dotcmis.binding.spi.type"] = "atompub"
$sp["org.apache.chemistry.dotcmis.binding.atompub.url"] =

"http://exampleServer/service/cmis/rest"
$sp["org.apache.chemistry.dotcmis.user"] = "exampleUser"
$sp["org.apache.chemistry.dotcmis.password"] = "examplePassword"

$factory = [DotCMIS.Client.Impl::SessionFactory]::NewInstance()
$session = $factory.GetRepositories($sp)[0].CreateSession()

Creating a SOAP Web Services session in either language is slightly different, because
it requires the endpoints not only of the repository service, but of every service. To
connect with Web Services instead of AtomPub, change the value of the binding type,
and replace the line setting the AtomPub URL with the endpoints for each service.
Here’s what that looks like in C#:

Dictionary<string, string> parameters =
new Dictionary<string, string>();

parameters[SessionParameter.BindingType] = BindingType.WebServices;
parameters[SessionParameter.WebServicesAclService] =

"https://exampleServer/cmis/soap/aclservice?wsdl";
parameters[SessionParameter.WebServicesDiscoveryService] =

"https://exampleServer/cmis/soap/discoveryservice?wsdl";
parameters[SessionParameter.WebServicesMultifilingService] =

"https://exampleServer/cmis/soap/multifilingservice?wsdl";
parameters[SessionParameter.WebServicesNavigationService] =

"https://exampleServer/cmis/soap/navigationservice?wsdl";
parameters[SessionParameter.WebServicesObjectService] =

"https://exampleServer/cmis/soap/objectservice?wsdl";
parameters[SessionParameter.WebServicesPolicyService] =

"https://exampleServer/cmis/soap/policyservice?wsdl";
parameters[SessionParameter.WebServicesRelationshipService] =
www.it-ebooks.info

http://www.it-ebooks.info/

240 CHAPTER 9 Using other client libraries
"https://exampleServer/cmis/soap/relationshipservice?wsdl";
parameters[SessionParameter.WebServicesRepositoryService] =

"https://exampleServer/cmis/soap/repositoryservice?wsdl";
parameters[SessionParameter.WebServicesVersioningService] =

"https://exampleServer/cmis/soap/versioningservice?wsdl";
parameters[SessionParameter.User] = "exampleUser";
parameters[SessionParameter.Password] = "examplePassword";

SessionFactory factory = SessionFactory.NewInstance();
ISession session = factory.GetRepositories(parameters)[0].

CreateSession();

And here’s what creating a SOAP Web Services Session looks like in PowerShell:

#helper function
function New-GenericDictionary([type] $keyType, [type] $valueType) {

$base = [System.Collections.Generic.Dictionary``2]
$ct = $base.MakeGenericType(($keyType, $valueType))
New-Object $ct

}
$sp = New-GenericDictionary string string
$sp["org.apache.chemistry.dotcmis.binding.spi.type"] = "webservices"
$sp["org.apache.chemistry.dotcmis.binding.webservices.ACLService"] =

"https://exampleServer/service/cmis/soap/aclservice?wsdl"
$sp[
"org.apache.chemistry.dotcmis.binding.webservices.DiscoveryService"
] = "https://exampleServer/service/cmis/soap/discoveryservice?wsdl"
$sp[
"org.apache.chemistry.dotcmis.binding.webservices.MultiFilingService"
] = "https://exampleServer/service/cmis/soap/multifilingservice?wsdl"
$sp[
"org.apache.chemistry.dotcmis.binding.webservices.NavigationService"
] = "https://exampleServer/service/cmis/soap/navigationservice?wsdl"
$sp["org.apache.chemistry.dotcmis.binding.webservices.ObjectService"] =

"https://exampleServer/service/cmis/soap/objectservice?wsdl"
$sp["org.apache.chemistry.dotcmis.binding.webservices.PolicyService"] =

"https://exampleServer/service/cmis/soap/policyservice?wsdl"
$sp[
"org.apache.chemistry.dotcmis.binding.webservices.RelationshipService"
] = "https://exampleServer/service/cmis/soap/relationshipservice?wsdl"
$sp[
"org.apache.chemistry.dotcmis.binding.webservices.RepositoryService"
] = "https://exampleServer/service/cmis/soap/repositoryservice?wsdl"
$sp[
"org.apache.chemistry.dotcmis.binding.webservices.VersioningService"
] = "https://exampleServer/service/cmis/soap/versioningservice?wsdl"
$sp["org.apache.chemistry.dotcmis.user"] = "exampleUser"
$sp["org.apache.chemistry.dotcmis.password"] = "examplePassword"

$factory = [DotCMIS.Client.Impl::SessionFactory]::NewInstance()
$session = $factory.GetRepositories($sp)[0].CreateSession()

If your server requires authentication, you’ll need to provide an authentication pro-
vider class, which should implement the AbstractAuthenticationProvider inter-
face. Out of the box, DotCMIS provides Basic authentication for the AtomPub REST
www.it-ebooks.info

http://www.it-ebooks.info/

241Coding in .NET with DotCMIS
binding, and Basic-over-SSL authentication for the Web Services SOAP binding, con-
tained within the DotCMIS.Binding.StandardAuthenticationProvider class. Assum-
ing you’ve decided on an appropriate authentication provider class, you can set it
along with the rest of your preconnection Session settings. Here it is in C#:

parameters[SessionParameter.AuthenticationProviderClass] =
"ExampleNamespace.ExampleAuthenticationProvider";

And here’s how to set the authentication provider in PowerShell:

$sp["org.apache.chemistry.dotcmis.binding.auth.classname"] =
"ExampleNamespace.ExampleAuthenticationProvider"

Note that in the previous examples, you get the list of repositories (through the call to
factory.getRepositories) and pick the first one. If you wish to choose a known repos-
itory by ID rather than choosing whichever repository happens to be first in the returned
list, you can specify the repository ID as a session parameter, and change the factory
method call from getRepositories to getRepositoryInfo, as shown here in C#:

Dictionary<string, string> parameters =
new Dictionary<string, string>();

parameters[SessionParameter.BindingType] = BindingType.AtomPub;
parameters[SessionParameter.AtomPubUrl] =

"http://exampleServer/service/cmis/rest";
parameters[SessionParameter.RepositoryId] =

"01234567-89ab-cdef-0123-456789abcdef";
parameters[SessionParameter.User] = "exampleUser";
parameters[SessionParameter.Password] = "examplePassword";

SessionFactory factory = SessionFactory.NewInstance();
ISession session = factory.GetRepositoryInfo(parameters)[0].

CreateSession();

And here’s the same thing shown in PowerShell:

#helper function
function New-GenericDictionary([type] $keyType, [type] $valueType) {

$base = [System.Collections.Generic.Dictionary``2]
$ct = $base.MakeGenericType(($keyType, $valueType))
New-Object $ct

}
$sp = New-GenericDictionary string string
$sp["org.apache.chemistry.dotcmis.binding.spi.type"] = "atompub"
$sp["org.apache.chemistry.dotcmis.binding.atompub.url"] =

"http://exampleServer/service/cmis/rest"
$sp["org.apache.chemistry.dotcmis. session.repository.id"] =

"01234567-89ab-cdef-0123-456789abcdef"
$sp["org.apache.chemistry.dotcmis.user"] = "exampleUser"
$sp["org.apache.chemistry.dotcmis.password"] = "examplePassword"

$factory = [DotCMIS.Client.Impl::SessionFactory]::NewInstance()
$session = $factory.GetRepositoryInfo($sp).CreateSession()

At this point, you should be able to create a session appropriate for your situation.
This enables you to, among other things, implement basic CRUD (create, read,
www.it-ebooks.info

http://www.it-ebooks.info/

242 CHAPTER 9 Using other client libraries

ano
ob
b

Cr
docum

thro
the fo

insta
update, and delete) operations. From your session instance, you can either retrieve
the root folder or get another object by ID or path, as shown in C# in a later section
(from this point on, we’ll omit the PowerShell version):

IFolder rootFolder = session.GetRootFolder();

ICmisObject objectById = session.GetObject(new ObjectId("exampleID"));

ICmisObject objectByPath = session.GetObjectByPath(

"/examplePath/exampleFile");

Once you have an ICmisObject instance, you may find it more useful to further define
it as an IFolder, IDocument, IPolicy, or IRelationship after checking its base type,
as follows:

if (objectByPath.BaseTypeId == BaseTypeId.CmisDocument)
{

IDocument document = (IDocument)objectById;

//do something
}
else if (objectByPath.BaseTypeId == BaseTypeId.CmisFolder)
{

IFolder folder = (IFolder)objectById;

//do something else
}

When creating an object, you have the choice between specifying the folder ID explic-
itly through the session instance, or by calling the creation method from that folder’s
IFolder instance directly:

Dictionary<string, object> properties = new Dictionary<string,object>()
{

{"cmis:name", "exampleName" },
{"cmis:objectType", "cmis:document"},

};
string filePath = "C:\\examplePath\\exampleFile";
string fileName = "exampleFile";
FileStream stream = File.Create(filePath);
IObjectFactory objectFactory = session.ObjectFactory;
IContentStream contentStream = session.ObjectFactory.

CreateContentStream(fileName, stream.Length, "text/plain", stream);

IDocument firstDoc = folder.CreateDocument(properties, contentStream,
VersioningState.Major);

properties["cmis:name"] = "exampleName2";
IDocument secondDoc = session.CreateDocument(properties, folder.Id,

contentStream, VersioningState.Major);

Get root folder

Get
ther
ject
y ID Get another object by path

eate
ent
ugh
lder
nce

Create document
through the session
www.it-ebooks.info

http://www.it-ebooks.info/

243Coding in .NET with DotCMIS
Suppose you want to delete the first file and then rename the second file so it has the
first file’s name. You can do that as follows:

firstDoc.Delete(true);

Dictionary<string, object> properties = new Dictionary<string,object>()
{

{"cmis:name", "exampleName" },
};
secondDoc.UpdateProperties(properties);

Finally, one of the most useful abilities of CMIS is its query functionality. In order to per-
form some action on all documents retrieved by a query, you’d do something like this:

foreach (ICmisObject cmisObject in session.Query(
"SELECT * FROM cmis:document", false))

{
//do something

}

Now that you know how to connect to a CMIS repository to perform basic operations
using DotCMIS, it’s time to revisit The Blend to see how you can expand on that
example with .NET.

9.2.3 Try it—building a web part with .NET
and CMIS to browse The Blend

In prior chapters, you wrote a Java-based web application to work with music and art
objects in sophisticated ways. Now suppose you have a new requirement to access The
Blend from a web part running within SharePoint. In this section, you’ll learn how to
do that. When you’ve finished, the CMIS Browser
web part will look like figure 9.3.

 A .NET web part can be a simple and powerful
means of displaying CMIS-powered information on
a web page. We’ll use a web part to browse The
Blend within the web browser. The user should see
a list of the files in The Blend’s CMIS repository and
be able to navigate the repository’s folder hierarchy
within the page. For the purposes of this example,
we’ll use Microsoft Visual Studio 2012 paired with
Microsoft SharePoint Server 2013.

 In order to create a SharePoint 2013 Web Part Project in Visual Studio, you’re
required to have installed the Microsoft Office Developer Tools for Visual Studio 2012
(available from Microsoft at http://mng.bz/2qzs) and the SharePoint Server 2013 Cli-
ent Components SDK (available at http://mng.bz/h2T0). After you’ve created the
project in Visual Studio, you’ll need to add a reference to the DotCMIS binary as
instructed earlier. There’s also an extra step when dealing with web parts: because this
web part will be dependent on the third-party DotCMIS binary, you must go to the

Figure 9.3 CMIS Browser web part
as it appears after working through
this section
www.it-ebooks.info

http://mng.bz/2qzs
http://mng.bz/h2T0
http://mng.bz/h2T0
http://mng.bz/h2T0
http://www.it-ebooks.info/

244 CHAPTER 9 Using other client libraries
Package file, click on the Advanced tab, and add the binary as an Additional Assembly,
as shown in figure 9.4. Don’t worry, you can keep the binary where it is; Visual Studio
will automatically deploy it to the GAC or an alternate appropriate location.

 Peering into the project, you should see the first several lines of listing 9.1 already
added into your .ascx file. Because this project calls for user-controlled dynamic navi-
gation from the contents of one folder to another, it will require postbacks to the
server to get that new content—but the web part would hardly be smooth if it
required a full-page refresh for every click. In order to handle this issue, you can use
an UpdatePanel to restrict the postback to within the bounds of that single DOM ele-
ment. You’ll also need a server-side Placeholder to serve as a container for the list of
files to be displayed, and a HiddenField to store the current folder ID that the user
has browsed to in the ViewState of the page.

<%@ Assembly
Name="$SharePoint.Project.AssemblyFullName$" %>

<%@ Assembly Name="Microsoft.Web.CommandUI, Version=15.0.0.0,
Culture=neutral, PublicKeyToken=71e9bce111e9429c" %>

<%@ Register Tagprefix="SharePoint"
Namespace="Microsoft.SharePoint.WebControls"
Assembly="Microsoft.SharePoint,
Version=15.0.0.0,
Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>

<%@ Register Tagprefix="Utilities"
Namespace="Microsoft.SharePoint.Utilities"
Assembly="Microsoft.SharePoint,
Version=15.0.0.0,
Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>

<%@ Register Tagprefix="asp"
Namespace="System.Web.UI"
Assembly="System.Web.Extensions,
Version=3.5.0.0,
Culture=neutral,

Listing 9.1 User interface for the DotCMIS-based CMIS Browser

Figure 9.4 Adding an additional assembly to your package

This entire
block is
automatically
generated.
www.it-ebooks.info

http://mng.bz/h2T0
http://mng.bz/h2T0
http://www.it-ebooks.info/

245Coding in .NET with DotCMIS
PublicKeyToken=31bf3856ad364e35" %>
<%@ Import Namespace="Microsoft.SharePoint" %>
<%@ Register Tagprefix="WebPartPages"

Namespace="Microsoft.SharePoint.WebPartPages"
Assembly="Microsoft.SharePoint,
Version=15.0.0.0,
Culture=neutral,
PublicKeyToken=71e9bce111e9429c" %>

<%@ Control Language="C#" AutoEventWireup="true"
CodeBehind="VisualWebPart1.ascx.cs"
Inherits="CMIS_Web_Part_Project.VisualWebPart1.VisualWebPart1" %>

<asp:UpdatePanel
id="CMISBrowser_UpdatePanel"
UpdateMode="Conditional"
ChildrenAsTriggers="true"
runat="server">

<ContentTemplate>
<div id="CMISBrowser_Files_Area">

<asp:Placeholder
id="CMISBrowser_Files" runat="server" />

</div>
<asp:HiddenField

id="CMISBrowser_Id"
runat="server"
value=""/>

</ContentTemplate>
<Triggers>
</Triggers>

</asp:UpdatePanel>

Next, we’ll look into the code behind the web part. This web part will have an
ISession member variable in order to maintain its connection to the repository for
the entire ASP .NET lifecycle, initialized as shown in listing 9.2. Whenever a folder (or
the Up One Level link) is clicked in the web part’s user interface, the CMISBrowser
_File_Click event handler will fire, triggering a postback and refreshing the web part
with that folder’s ID as the new parent folder ID.

using DotCMIS;
using DotCMIS.Binding;
using DotCMIS.Client;
using DotCMIS.Client.Impl;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Web;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

namespace CMIS_Web_Part_Project.CMISBrowserWebPart
{

[ToolboxItemAttribute(false)]

Listing 9.2 Logic for the DotCMIS-based web part

Postbacks will be
restricted to within
this web part.

Placeholder contains the
list of files being browsed.

Saves the ID of the
folder being browsed
between page loads.
www.it-ebooks.info

http://www.it-ebooks.info/

246 CHAPTER 9 Using other client libraries
public partial class CMISBrowserWebPart: WebPart
{

protected ISession session;

protected override void OnInit(EventArgs e)
{

base.OnInit(e);
InitializeControl();

//instantiate a session
}

protected override void OnLoad(EventArgs e)
{

base.OnLoad(e);

EnumerateFiles();
}

protected void CMISBrowser_File_Click(object sender,
EventArgs e)

{
LinkButton link = (LinkButton)sender;

CMISBrowser_Id.Value = link.Attributes["cmisObjectId"];
EnumerateFiles();

}

protected void Page_Load(object sender, EventArgs e)
{
}

}
}

The lion’s share of the logic resides in the EnumerateFiles method (shown in listing
9.3), whose purpose is to fill the CMISBrowser_Files control with the contents of the
parent folder pointed to by CMISBrowser_Id. Because the ViewState of the
CMISBrowser_Id is necessary for this method to work properly (and hence for the
proper folder’s contents being displayed), the EnumerateFiles method must be
invoked after the ViewState has been defined during the ASP .NET lifecycle, which
means no earlier than the OnPreLoad event. Even in cases where a folder has been
clicked and the CMISBrowser_File_Click event has been queued to run, the call to
EnumerateFiles inside of OnLoad is necessary, so that it can recreate the control that
initiated the call to CMISBrowser_File_Click. This allows the event handler to fire
correctly and triggers the second call to EnumerateFiles. Similarly, if the LinkButtons
didn’t have DOM IDs specified, the control’s ID wouldn’t be recreated consistently,
meaning the event handler would end up firing an unreliable portion of the time.

protected void EnumerateFiles()
{

CMISBrowser_Files.Controls.Clear();

Listing 9.3 The EnumerateFiles method of the DotCMIS-based web part

Handles the
Up One Level
link click
www.it-ebooks.info

http://www.it-ebooks.info/

247Coding in .NET with DotCMIS
ICmisObject cmisObject =
string.IsNullOrEmpty(CMISBrowser_Id.Value) ?

session.GetRootFolder() :
session.GetObject(new ObjectId(CMISBrowser_Id.Value));

if (cmisObject.BaseTypeId ==
DotCMIS.Enums.BaseTypeId.CmisFolder)

{
IFolder cmisFolder = (IFolder)cmisObject;
if (cmisFolder.FolderParent != null)
{

string folderParentId = cmisFolder.FolderParent.Id;
LinkButton upLink = new LinkButton();
upLink.Click += new EventHandler(CMISBrowser_File_Click);
upLink.Text = "Up One Level";
upLink.Attributes["cmisObjectId"] = folderParentId;
upLink.ID = "cmisObjectId" + folderParentId;
CMISBrowser_Files.Controls.Add(upLink);

}
foreach (ICmisObject cmisChild in cmisFolder.GetChildren())
{

if (cmisChild.BaseTypeId ==
DotCMIS.Enums.BaseTypeId.CmisFolder)

{
IFolder cmisChildFolder = (IFolder)cmisChild;
LinkButton childLink = new LinkButton();
childLink.Click +=

new EventHandler(CMISBrowser_File_Click);
childLink.Text =

HttpUtility.HtmlEncode(cmisChildFolder.Name);
childLink.Attributes["cmisObjectId"] =

cmisChildFolder.Id;
childLink.ID = "cmisObjectId" + cmisChildFolder.Id;
CMISBrowser_Files.Controls.Add(childLink);

}
else
{

Literal childText = new Literal();
childText.Text =

"" +
HttpUtility.HtmlEncode(cmisChild.Name) +
"";

childText.ID = "cmisObjectId" + cmisChild.Id;
CMISBrowser_Files.Controls.Add(childText);

}
}

}
}

This sample is obviously not production-ready, and many more improvements upon it
could be made, such as adding metadata other than the names of the files and folders
(artist, track time, album date, and so on) and including a visual of the album thumb-
nail next to the album title. We won’t discuss the styling of the CSS for the user inter-
face here, either, as that’s likely to be implementation-specific.

The Up One
Level link is

added as long
as the parent

folder isn’t the
root of the
repository.

The ID must be
specified; otherwise,
event handlers won't

trigger properly.

 folder.getChildren()
is called and, for

each child, if it’s a
folder, it’s made into

a link allowing the
user to drill down

into the contents of
that folder.

The ID must be
specified; otherwise,
event handlers won't

trigger properly.

If the child is a
document, only the title

is displayed and it
doesn’t link to anything.
www.it-ebooks.info

http://www.it-ebooks.info/

248 CHAPTER 9 Using other client libraries
 Now you know how to create a web part that uses CMIS to talk to a content reposi-
tory. This should serve as a solid starting point for any CMIS-powered web part, and it
hopefully illustrates how the ASP lifecycle and client-server paradigm interact with
DotCMIS.

9.2.4 Using SharePoint as a CMIS repository

You can use DotCMIS with any CMIS-compliant repository. But if you’re doing .NET
development, the chances are high that you also have access to Microsoft SharePoint
Server. In this section, you’ll learn about special considerations when using Share-
Point as a CMIS server, and you’ll see an example of how to connect to Microsoft
SharePoint Server 2013 using CMIS.

 The first thing to consider is which authentication protocol your client application
will implement—if it isn’t also supported by SharePoint 2013, you won’t be able to
connect. In an effort to be flexible and allow as many different clients to work with
SharePoint as possible, SharePoint 2013’s CMIS Producer supports the following
authentication protocols:

 Basic
 NTLM
 Digest
 Kerberos
 Windows-Claims
 Claims-Multiprotocol

SHAREPOINT SERVER 2013 Note that this section refers only to Microsoft
SharePoint Server 2013, not SharePoint Foundation 2013, which doesn’t
include support for CMIS.

The second thing to consider is which optional capabilities within the CMIS specifica-
tion you’ll use within your client application. Table 9.2 lists some of the capabilities
and limitations of the SharePoint 2013 CMIS Producer.

Table 9.2 Optional capabilities of the SharePoint 2013 CMIS Producer

Capability Value

capabilityACL Manage

capabilityAllVersionsSearchable false

capabilityChanges objectidsonly

capabilityContentStreamUpdatability anytime

capabilityGetDescendants false

capabilityGetFolderTree true

capabilityMultifiling false
www.it-ebooks.info

http://www.it-ebooks.info/

249Coding in .NET with DotCMIS
Beyond the list in table 9.2, the SharePoint 2013 CMIS Producer development team
made other choices regarding optional parts of the CMIS 1.0 specification. For exam-
ple, the SharePoint ACL model is more complex than the CMIS ACL model that it
emits: SharePoint supports custom permission levels, which can be applied to
dynamic user groups and applied to any subset of the full set of repositories on a site.
Within a repository, folders and even documents can have their own unique set of per-
missions. But when the CMIS Producer is asked for all possible permission levels, it
only returns cmis:read, cmis:write, and cmis:all, as required by the specification.
Each of these CMIS permission levels is mapped to a native SharePoint permission
level that has the same relevant permissions.

 Another nuance to consider is SharePoint 2013’s support for CMIS Query. Share-
Point supports the CONTAINS predicate as long as CONTAINS predicates are only used in
queries that don’t contain comparison predicates. For example, consider the follow-
ing queries:

SELECT cmis:name, cmis:contentStreamLength

FROM cmis:document

WHERE cmis:contentStreamLength > 31337

SELECT cmis:name, cmis:contentStreamLength

FROM cmis:document

WHERE CONTAINS('Hackers')

SELECT cmis:name, cmis:contentStreamLength

FROM cmis:document

WHERE cmis:contentStreamLength > 31337 AND CONTAINS(‘Hackers’)

The first two queries B are both supported by SharePoint 2013, yet the third query C
isn’t, because it combines CONTAINS and comparison predicates.

 Another query-related item is the fact that SharePoint 2013 supports table aliases,
as demonstrated by the t in the following query, which is functionally equivalent to
the first of the three previous queries, but with aliases inserted appropriately. These

capabilityPWCSearchable true

capabilityPWCUpdatable true

capabilityQuery bothseparate

capabilityRenditions none

capabilityUnfiling false

capabilityVersionSpecificFiling false

capabilityJoin none

cmisVersionSupported 1.0

Table 9.2 Optional capabilities of the SharePoint 2013 CMIS Producer (continued)

Capability Value

These two queries are
supported by SharePoint’s
CMIS provider.

B

This query is not supported by
SharePoint because it combines
CONTAINS and predicate branches.

C

www.it-ebooks.info

http://www.it-ebooks.info/

250 CHAPTER 9 Using other client libraries
aliases are meaningless due to SharePoint’s lack of support for JOINs, so they’re
ignored:

SELECT t.cmis:name, t.cmis:contentStreamLength FROM cmis:document t
WHERE t.cmis:contentStreamLength > 31337

With these capabilities and limitations in mind, let’s see how to make the connection
to SharePoint.

9.2.5 Connecting to SharePoint

Now that you understand the capabilities of SharePoint 2013’s CMIS Producer, let’s
move on to see how exactly you could go about setting up and connecting to it. Let’s
assume you have your SharePoint server up and running, and you know which Share-
Point libraries you want to use as CMIS repositories.

 SharePoint 2013’s CMIS capabilities are all wrapped up in a SharePoint site feature
called Content Management Interoperability Services (CMIS) Producer. This means
that for every site that contains a library you want to use as a CMIS repository, you must
follow these steps to make the library accessible via CMIS:

1 Navigate to any page on your site.
2 Click on the gear in the upper-right corner and select Site Settings (figure 9.5).

3 Click on Manage Site Features under the Site Actions header.
4 Look for the feature entitled Content Management Interoperability Services

(CMIS) Producer, and click the Activate button to the right of it.

With these steps completed, the CMIS Producer is ready to go.
 Let’s assume that you want to connect to a SharePoint site with a URL of www

.example.com/cmis. SharePoint 2013’s CMIS Producer provides both the AtomPub
binding and the Web Services binding, which means you can connect in several ways.
A typical CMIS client will connect to the AtomPub binding by calling the
getRepositories or getRepositoryInfo methods. The getRepositories method

Figure 9.5 SharePoint site settings
www.it-ebooks.info

http://www.it-ebooks.info/

251Coding in Python with cmislib
can be used to get a list of all CMIS-appropriate repositories on the SharePoint site, but,
as you saw earlier, if you already know the GUID of your repository, you can skip right
to that repository using the getRepositoryInfo method. Here are two examples:

 http://www.example.com/cmis/_vti_bin/cmis/rest?getRepositories
 http://www.example.com/cmis/_vti_bin/cmis/rest/

156939c0-7a4d-48ef-9bed-82741ccd785f?getRepositoryInfo

On the other hand, if the client application needs to use the Web Services binding, it
can connect using the WSDL file, which (if we continue our imaginary example)
should be available at the following address: http://www.example.com/cmis/_vti
_bin/cmissoapwsdl.aspx.

 Note that the preceding file, unlike some WSDLs, isn’t anonymously accessible—
you’ll need to authenticate in order to access it.

 This WSDL file will provide a list of endpoints for the various CMIS services, which
might look like these:

http://www.example.com/cmis/_vti_bin/cmis/soap/ACLService.svc
http://www.example.com/cmis/_vti_bin/cmis/soap/DiscoveryService.svc
http://www.example.com/cmis/_vti_bin/cmis/soap/NavigationService.svc
http://www.example.com/cmis/_vti_bin/cmis/soap/ObjectService.svc
http://www.example.com/cmis/_vti_bin/cmis/soap/RepositoryService.svc

 http://www.example.com/cmis/_vti_bin/cmis/soap/VersioningService.svc

From this point on, interacting with the SharePoint 2013 CMIS Producer is like work-
ing with any other CMIS server.

 Now you know how to connect to Microsoft SharePoint Server using CMIS.

9.3 Coding in Python with cmislib
Picture yourself as a digital archivist. It’s
5:30 p.m. on a Friday, and you’re about
to start your weekend when you get an
instant message from your boss. Against
your better judgment, you accept the
video chat (see figure 9.6). One look at
her frantic face is enough to send chills
down your spine. It seems that a major
acquisition is happening and you’ve got
to sift and sort through a pile of files
and metadata, organizing and storing
them in the corporate digital asset
repository so they can be tagged and
served up by the website before the
press release goes out on Monday.

What?! This is outrageous!
You owe me big time!

Good thing I
know Python!

Um, yeah, I’m gonna have to ask you to blow off your
weekend to load these images into the repo, umkay?

Figure 9.6 Handing out last-minute assignments—
like a boss. Luckily, Python and cmislib can
automate repetitive tasks like bulk content loading.
www.it-ebooks.info

http://www.example.com/cmis/_vti_bin/cmis/rest?getRepositories
http://www.example.com/cmis/_vti_bin/cmis/rest/156939c0-7a4d-48ef-9bed-82741ccd785f?getRepositoryInfo
http://www.example.com/cmis/_vti_bin/cmissoapwsdl.aspx
http://www.example.com/cmis/_vti_bin/cmissoapwsdl.aspx
http://www.example.com/cmis/_vti_bin/cmis/soap/ACLService.svc
http://www.example.com/cmis/_vti_bin/cmis/soap/DiscoveryService.svc
http://www.example.com/cmis/_vti_bin/cmis/soap/NavigationService.svc
http://www.example.com/cmis/_vti_bin/cmis/soap/ObjectService.svc
http://www.example.com/cmis/_vti_bin/cmis/soap/RepositoryService.svc
http://www.example.com/cmis/_vti_bin/cmis/soap/VersioningService.svc
http://www.it-ebooks.info/

252 CHAPTER 9 Using other client libraries
 After making your boss squirm for a few minutes, you assure her it’s all good.
You’re confident you can knock this out quickly. Why? Because you aren’t just any dig-
ital archivist. You’re a digital archivist who knows Python. And Python is one bad-ass
programming language. You can use Python to productively code all kinds of things—
from desktop applications to full-featured, consumer-grade web applications—but it’s
particularly good at command-line scripting, which is where compiled languages like
Java can’t compare.

 In addition to its clear syntax, and the fact that it’s cross-
platform (it’s installed by default on Mac OS X and most Linux-
and Unix-based operating systems), another great thing about
Python is that thousands of modules are freely available for a
broad spectrum of functionality, ranging from imaging libraries
to web application frameworks and everything in between. One
such module is cmislib, which, as the name suggests, is a CMIS
client library for Python.

 Using cmislib, anyone can make quick work of repetitive tasks. For example, sup-
pose that the pile of digital artifacts you need to sort through needs to be organized in
the CMIS repository based on some metadata the files contain rather than the current
folder structure. As shown in figure 9.7, a Python script could traverse the folder struc-
ture, and, using one of several freely available modules, read the metadata on the files
(maybe it’s EXIF or IPTC, for example, which are two common metadata sets for
images), and then upload the files into the repository, renaming them and setting
properties on the new documents along the way.

Repository

Dallas

July 2013

someco.png

widget.png widget.png

widget.png

Munich

Sept 2013

Python script

Huge mess

Dallas

July 2013

Read file
Extract

metadata

Store in CMIS
repository

Figure 9.7 Python scripts can automate repetitive tasks, like
organizing files in a CMIS repository based on metadata stored
in the file itself.

cmislib
www.it-ebooks.info

http://www.it-ebooks.info/

253Coding in Python with cmislib
Python, cmislib, and a CMIS-compliant repository are a powerful and productive com-
bination for people who need to automate content-centric tasks.

 Let’s take a look at how cmislib compares to what you already know about Open-
CMIS and also at how to install cmislib. Once that’s done, you’ll see how to use it from
the command line and how to write a script that can copy objects from one CMIS
repository to another.

9.3.1 Comparing cmislib and OpenCMIS

The motivation for the creation of the cmislib project was to make it easy for people to
learn CMIS and to explore different CMIS server implementations without having to
slog through all of the XML that’s returned by the AtomPub binding. A secondary
motivation was that the original developer loved Python and wanted to encourage the
creation of simple web applications built on top of CMIS repositories using Python
frameworks like Django and Pyramid.

 As a result, cmislib is easy for developers to pick up—its API follows the CMIS
domain model as closely as possible. Remember the domain model discussed in chap-
ter 2 and shown in figure 9.8? Well, in cmislib you’ll find CmisClient, Repository,
Folder, and Document classes, as well as others named as you’d expect based on what
you know about the CMIS specification.

Additionally, the creator made a conscious decision to minimize the number of
dependencies, to make it as easy to install as possible. Table 9.3 summarizes cmislib at
a high level.

This pragmatic approach means you’ll have a few limitations when compared to a
more full-featured library, such as the one included in OpenCMIS. These are some of
the limitations:

Table 9.3 At a glance: cmislib

Library Language Project home Bindings supported Install method Key dependencies

cmislib Python Apache Chemistry AtomPub only Python setuptools
or manual

Python 2.6 or 2.7

0. .n1

0. .n11. .n

Repository

Document

Folder

1. .n1N N

CMIS client

Service

Figure 9.8 The CMIS domain model
www.it-ebooks.info

http://www.it-ebooks.info/

254 CHAPTER 9 Using other client libraries
 cmislib supports only the AtomPub binding, although support for the new
Browser binding is a work in progress.

 cmislib offers no sophisticated level of caching.
 cmislib uses Python’s built-in XML parsing library, which is slower than other

available XML libraries.
 cmislib is maintained by a smaller development team.

Despite these potential limitations, cmislib is still valuable for a variety of uses.

9.3.2 Installing cmislib

We’ll assume you already have Python 2.6 or 2.7 installed. We also highly recommend
you use virtualenv to create and activate a virtual environment directory to keep cmis-
lib, its dependencies, and the code you write isolated from other libraries that may
exist on your system. If you need help installing Python or virtualenv, see http://
python.org.

 The easiest way to install cmislib is to use a Python package installer called setup-
tools. Using setuptools to install cmislib is as easy as typing easy_install cmislib.
The package manager does the work of finding the latest version, downloading it,
installing it, and making it available on the system path. It also does the same for each
of cmislib’s dependencies (and their dependencies, and so on).

 If you can’t or don’t want to use setuptools, it’s still easy to download and install
cmislib. Download the egg file from the Apache Chemistry website and add it to
Python’s system path.

9.3.3 Connecting to a CMIS repository using the interactive shell

Let’s slowly slither into the weeds by launching the Python interactive shell and using
it to connect to a CMIS repository. This will validate that cmislib is installed correctly. It
has the added benefit of providing instant feedback as you explore the library.

LAUNCH THE SHELL

First, launch the Python interactive shell by typing python at the command line. You
should see the Python version followed by three right angle brackets (>>>), as shown
in figure 9.9.

Figure 9.9 The Python interactive shell patiently waiting to do your bidding
www.it-ebooks.info

http://python.org
http://python.org
http://www.it-ebooks.info/

255Coding in Python with cmislib
IMPORT CMISLIB

Next, import cmislib by typing from cmislib.model import CmisClient, as shown in
figure 9.10. If you get another three angle brackets, it means Python has found the
library and you’re ready to move on.

 If you took our earlier advice and used virtualenv and setuptools to install cmislib,
it’s highly likely that when you import CmisClient on your machine, Python will
import cmislib successfully. If so, you’re ready to connect to the repository.

 But if Python complains, it means cmislib isn’t installed on your system path prop-
erly. If this happens to you, it might be a good idea to do an import sys followed by
print sys.path to start your troubleshooting.

 We’ll assume everything is looking good and you’re ready to connect to the
repository.

 In earlier chapters, you learned that when using OpenCMIS you might need to
specify many parameters before you can get a session. With cmislib it’s much easier.
Everything starts with a CmisClient object. You instantiate that by specifying the
AtomPub service URL, a username, and a password:

>>>from cmislib.model import CmisClient

>>>client = CmisClient('http://localhost:8081/inmemory/

atom', '', '')

Once you have a CmisClient object, you can get a handle to the repository:

>>> repo = client.defaultRepository

>>> type(repo)

<class 'cmislib.model.Repository'>

>>> repo.id

u'A1'

>>> repo.name

u'Apache Chemistry OpenCMIS InMemory Repository'

Figure 9.10 No news is good news: once the client successfully imports, it’s easy to connect
to the repository.

If the import succeeds,
nothing will be returned.

The CmisClient constructor takes three arguments: the AtomPub
service URL, a username, and a password (but the in-memory
CMIS server doesn’t require a username or password).

Returns
the first

repository
in the

server’s
list of

repositories.

Methods used frequently,
like getRepositoryId and
getRepositoryName, are
exposed as if they were
properties of the object.
www.it-ebooks.info

http://www.it-ebooks.info/

256 CHAPTER 9 Using other client libraries
The Repository object is like the lobby in a grand hotel. You can learn a lot about
the services a hotel offers from standing in the lobby. Is there a concierge desk?
Maybe a car rental counter? A four-star restaurant? A hopping lobby bar? Or is there
only a scary-looking guy in a stained T-shirt staring at you from behind bulletproof
glass, offering to rent you a bath towel by the hour? Different hotels offer different
capabilities and qualities of service that you can often summarize with a quick glance
at the lobby.

 Similarly, the Repository object tells you information about that particular CMIS
server and about the capabilities the server offers. For example, if you call get-
RepositoryInfo(), you’ll get a dictionary of metadata about the repository. The next
listing shows how to iterate over the items in the dictionary to see what kind of meta-
data is returned.

>>> for (k,v) in repo.getRepositoryInfo().items():
... print "%s: %s" % (k,v)
...

aclCapability: None
principalAnyone: anyone
cmisVersionSupported: 1.0
principalAnonymous: anonymous
thinClientURI: None
repositoryDescription: Apache Chemistry OpenCMIS InMemory

Repository (Version: 0.9.0-beta-1)
changesIncomplete: true
productVersion: 0.9.0-beta-1
rootFolderId: 100
latestChangeLogToken: 0
repositoryId: A1
repositoryName: Apache Chemistry OpenCMIS InMemory Repository
vendorName: Apache Chemistry
productName: Apache-Chemistry-OpenCMIS-InMemory/0.9.0-beta-1

Similarly, the Repository object can tell you what the capabilities of this particular
repository are, as shown in the following listing.

>>> for (k,v) in repo.getCapabilities().items():

... print "%s: %s" % (k,v)

...

PWCUpdatable: True
VersionSpecificFiling: False
Join: None
ContentStreamUpdatability: anytime
AllVersionsSearchable: False
Renditions: None
Multifiling: True
GetFolderTree: True
GetDescendants: True

Listing 9.4 Iterating over repository information

Listing 9.5 Retrieving the repository’s capabilities

Repository information
is returned as a Python
dictionary.

cmislib returns converted values to
Python primitives so they’re easier
to work with in a Pythonic way.
www.it-ebooks.info

http://www.it-ebooks.info/

257Coding in Python with cmislib
ACL: manage
PWCSearchable: False
Query: bothcombined
Unfiling: True
Changes: None
>>> repo.getCapabilities()['Multifiling']
True

Continuing with the hotel lobby analogy, just as the lobby leads to the elevators and
the elevators to the rooms, the Repository object is your gateway to other objects in
the system. It contains methods for things like retrieving the root folder, getting an
object by ID, getting an object by path, and running queries.

 For example, try printing the name of every child in the repository’s root folder:

>>> root = repo.rootFolder
>>> for child in root.getChildren():
... child.name
...

u'cmis'
u'folder1'
u'folder2'
u'folder3'
u'images'
u'media'
u'notes'
u'texts'
u'welcome.txt'

Get repository’s root folder

Ask root folder
for its children

Print name of
each child

Use the built-in dir() function to help learn the API
If you ever forget or don’t know what you can do with an object, Python’s built-in dir()
function will help. When you call dir with any Python object, it’ll respond with a list
of the properties and methods of the object, like so:

>>> child = root.getChildren()[0]
>>> type(child)
<class 'cmislib.model.Folder'>

>>> for func in dir(child):
... func
...

'ACL'
'addObject'
'allowableActions'
'applyACL'
'applyPolicy'
'createDocument'
'createDocumentFromString'
'createFolder'
'createRelationship'
'delete'
'deleteTree'
'getACL'
...snip...

Ask root for its first child

Ask Python what child
object is an instance of

Use dir function to
find out what you
can do with object
www.it-ebooks.info

http://www.it-ebooks.info/

258 CHAPTER 9 Using other client libraries
CREATING OBJECTS WITH CMISLIB

Now that you know how to connect to the repository and can use cmislib to navigate
the repository, you’re probably anxious to learn how to create new objects in the
repository. Let’s look at how to create a new folder and then a new document within
that. Then you’ll be ready to do something useful, like polling for changed objects to
copy from one repository to another.

 Creating objects is straightforward. If you do a dir(root), you’ll see a method
called createFolder (figure 9.11).

If you do a help(root.createFolder), you’ll see that the createFolder method takes
a name and, optionally, a dictionary of properties (see figure 9.12).

 That means creating a new folder called test as an instance of cmis:folder is as
easy as typing root.createFolder('test').

 But what if you didn’t want to create the folder as an instance of cmis:folder, but
instead wanted to use some other folder type? The object type of a folder is one of the
properties you can specify when you call the createFolder method. To create a new
folder as an instance of F:mm:expenseReport, a completely made-up type for this
example, you’d do this:

>>> props = {'cmis:objectTypeId': 'F:mm:expenseReport'}

>>> folder = root.createFolder('test2', props)

>>> folder.id '137'

>>> folder.name u'test2'

>>> folder.properties['cmis:objectTypeId']

'F:mm:expenseReport'

(continued)
If the dir() function doesn’t tell you enough about what you can do with an object,
you can try the help() function. It spits out the documentation for that object. You
can also always browse the full documentation online at the Apache Chemistry web-
site or generate the documentation yourself locally using a tool called Sphinx.

Figure 9.11 Using dir(root) to find the createFolder method

Create dictionary of
properties to set

Call createFolder
method with
folder name and

Inspect folder’s
cmis:objectTypeId
property

www.it-ebooks.info

http://www.it-ebooks.info/

259Coding in Python with cmislib

Creating a document is similar—a name for the new document is required. The
object type is also required, but cmislib will use cmis:document if one isn’t provided as
part of a properties dictionary. If a name is the only thing provided, the result will be a
new Document object that has a zero-byte content stream. You might hear people call
these content-less objects:

>>> doc = folder.createDocument('contentless-example')
>>> doc.id
'139'
>>> doc.name
u'contentless-example'
>>> doc.properties['cmis:contentStreamLength']
>>>

Another option is to use the createDocumentFromString method. This is useful if
your code is generating plain text to store as content. The next listing shows how to
use this method.

>>> doc = folder.createDocumentFromString(
'fromstring-example',
contentString='The Dude abides.',
contentType='text/plain')

>>> doc.name

u'fromstring-example'

>>> doc.properties['cmis:contentStreamLength']

16

>>> doc.properties['cmis:contentStreamMimeType']

u'text/plain'

Listing 9.6 Creating a document using a string as content

Figure 9.12 Using the built-in help() function to determine the syntax of createFolder

Call createDocument
with only a name

Result is None—this
document doesn’t have
a content stream

Call
createDocumentFromString
to provide inline content

Provide
a name

Provide content
as a stringSpecify

MIME
type of

the
content
www.it-ebooks.info

http://www.it-ebooks.info/

260 CHAPTER 9 Using other client libraries
The most common case is that a file needs to be set as the content stream:

>>> f = open('/Users/jpotts/sample/mydoc.pdf', 'rb')

>>> doc = folder.createDocument('mydoc.pdf',

contentFile=f,

contentType='application/pdf')

>>> doc.name

u'mydoc.pdf'

>>> doc.id

'142'

>>> doc.properties['cmis:contentStreamLength']

117249

You now know how to use Python to connect to a CMIS repository, navigate among the
objects stored there, and even create new objects. You can do several things with the
repository that we didn’t cover. In short, if it’s in the CMIS specification and imple-
mented in the AtomPub binding, cmislib can do it. Remember to use dir(), help(),
and the documentation if you get stuck.

 Now let’s look at a more useful example: using Python to synchronize objects
between two CMIS repositories.

9.3.4 Using cmislib to synchronize objects
between two CMIS repositories

Suppose you’ve been using The Blend with one CMIS repository and you’d like to
migrate those images, songs, and videos to another CMIS repository. You might be
moving objects from “test” to “production.” Or maybe you’ve decided to move to a dif-
ferent vendor’s CMIS implementation. Whatever the reason, Python is up to the task.

FUNCTIONAL OVERVIEW

Given two repositories, a source repository and a target repository, the goal is to copy
all new and changed objects from the source repository to the target repository. This
includes the content and the metadata.

 Here are some additional requirements for the synchronization example:

 The synchronization process should be incremental. You don’t want to have
to copy the entire source repository to the target repository every time the
script runs.

 The source and target repositories may have different content models. For
example, The Blend has a type called cmisbook:image in the InMemory Repos-
itory, but in Alfresco, the same type has an ID of D:cmisbook:image. Similarly,
properties writable in one repository may not be writable in another repository.

 The synchronization process should run constantly, polling for changes period-
ically. If the process is stopped and restarted, it should pick up where it left off.

 Two CMIS repositories from different vendors will have two different object ID
implementations, so if an object in the source repository has an object ID of

Open file as read-only

Name doesn’t
necessarily have to
match the filenamePass file to

createDocument
www.it-ebooks.info

http://www.it-ebooks.info/

261Coding in Python with cmislib
ABCD, there’s no way to use that object ID to find the equivalent object in the tar-
get repository without maintaining some sort of mapping. For this example,
we’ll use the object’s path as the unique identifier that’s common across reposi-
tories. The implication of this is that if an object moves in the source repository,
this simplified approach won’t have a way to move the equivalent object in the
target repository.

 Deletes in the source repository are going to be ignored. There’s no technical
reason to ignore deletes in the source—we’re just trying to keep it simple.

 The synchronization is one-way, from the source to the target. If something
changes on the target, the source won’t be updated, and if a subsequent change
happens in the source, the equivalent object in the target repository will be
overwritten.

THE HIGH-LEVEL APPROACH

CMIS has a built-in mechanism that will make finding the incremental changes easy.
It’s called a change token. A CMIS repository that supports changes (check the reposi-
tory’s Changes capability) will return the changes that have occurred since the time
the change token was generated. If you persist the change token after you process a
set of changes, you can provide that change token later and get all of the changes that
have occurred since then.

 The high-level algorithm will be as follows:

1 If this is the first sync, ask the repository for its changes. Otherwise, ask the
repository for the changes for a specific change token.

2 Process each change. This might involve creating new objects in the target
repository if they don’t exist, or updating existing objects in the target reposi-
tory with the modified objects from the source repository.

3 After processing all of the changes, save the latest change token.
4 Go to sleep for a configurable amount of time, and then wake up and repeat.

THE CODE

The goal is to synchronize changes in the source repository to a target repository.
We’ll take advantage of CMIS change tokens to get a list of incremental changes to
process since the last time the script processed changes. Let’s walk through some of
the code.

The main polling and processing loop
Listing 9.7 shows the two functions: main and sync. There isn’t much to the main func-
tion—it starts an infinite loop that calls the sync function, goes to sleep, and then
repeats.

 The sync function connects to the source and target repositories, asks the source
repository for its changes, and persists the change token to be used the next time sync
gets called. The function calls processChange for every object that has been created
or updated in the source repository.
www.it-ebooks.info

http://www.it-ebooks.info/

262 CHAPTER 9 Using other client libraries

C

Get t
a pre
synch
def main():
while True:

sync()
print "Polling for changes every %d seconds" %

settings.POLL_INTERVAL
print "Use ctrl+c to quit"
print "Sleeping..."
sleep(settings.POLL_INTERVAL)

def sync():
Connect to the source repo
sourceClient = CmisClient(settings.SOURCE_REPOSITORY_URL,

settings.SOURCE_USERNAME,
settings.SOURCE_PASSWORD)

sourceRepo = sourceClient.defaultRepository
dumpRepoHeader(sourceRepo, "SOURCE")

Make sure it supports changes, bail if it does not
if sourceRepo.getCapabilities()['Changes'] == None:

print "Source repository does not support changes:%s" %
sourceRepo.getCapabilities()['Changes']

sys.exit(-1)
latestChangeToken = sourceRepo.info['latestChangeLogToken']
print "Latest change token: %s" % latestChangeToken

Connect to the target repo
targetClient = CmisClient(settings.TARGET_REPOSITORY_URL,

settings.TARGET_USERNAME,
settings.TARGET_PASSWORD)

targetRepo = targetClient.defaultRepository
dumpRepoHeader(targetRepo, "TARGET")
print " Path: %s" % settings.TARGET_ROOT

Get last token synced from savefile
Using the repository IDs so that you can use this script against
multiple source-target pairs and it will remember where you are
syncKey = "%s><%s" % (sourceRepo.id, targetRepo.id)
lastChangeSynced = {}
changeToken = None
if (os.path.exists(SAVE_FILE)):

lastChangeSynced = pickle.load(open(SAVE_FILE, "rb"))
if lastChangeSynced.has_key(syncKey):

print "Last change synced: %s" % lastChangeSynced[syncKey]
changeToken = lastChangeSynced[syncKey]

else:
print "First sync..."

else:
print "First sync..."

if changeToken == latestChangeToken:
print "No changes since last sync so no work to do"
return

Ask the source repo for changes

Listing 9.7 The main and sync functions

onnect to
source

repository
Make sure
repository
supports
changes; bail
out if it doesn’t

Connect to
target
repository

oken from
vious
ronization
www.it-ebooks.info

http://www.it-ebooks.info/

263Coding in Python with cmislib
changes = None
if changeToken != None:

changes = sourceRepo.
getContentChanges(changeLogToken=changeToken)

else:
changes = sourceRepo.getContentChanges()

Process each change
for change in changes:

if change.changeType == 'created' or
change.changeType == 'updated':
processChange(change, sourceRepo, targetRepo)

lastChangeSynced[syncKey] = latestChangeToken
pickle.dump(lastChangeSynced, open(SAVE_FILE, "wb"))
return

#

Processing each change
The processChange function in listing 9.8 gets called for every object created or
updated in the source repository. It’s responsible for retrieving the source object and
then attempting to retrieve the corresponding object in the target repository. If it
finds the object in the target repository, it knows it needs to do an update. If it doesn’t
find it, it knows the object needs to be created.

def processChange(change, sourceRepo, targetRepo):
"""
Processes a given change by replicating the change from the source
to the target repository.
"""

print "Processing: %s" % change.objectId

Grab the object
sourceObj = None
try:

sourceObj = sourceRepo.getObject(change.objectId,
getAllowableActions=True)

except ObjectNotFoundException:
print "Warning: Changes included an object that "

"no longer exists"
return

if (sourceObj.properties['cmis:objectTypeId'] != 'cmis:document' and
sourceObj.properties['cmis:objectTypeId'] != 'cmis:folder' and
not(mapping.mapping.has_key(

sourceObj.properties['cmis:objectTypeId']))):
return

try:
sourcePath = sourceObj.getPaths()[0]

except NotSupportedException:
return

Listing 9.8 The processChange function

Ask source
repository
for changes

Process
each
change

Find
source
object

Assume one path
for this example
www.it-ebooks.info

http://www.it-ebooks.info/

264 CHAPTER 9 Using other client libraries

G
o

o

co
print "Source Path: %s" % sourcePath
targetPath = settings.TARGET_ROOT + sourcePath.encode('utf-8')

sourceProps = sourceObj.properties

Determine if the object exists in the target
targetObj = None
try:

targetObj = targetRepo.getObjectByPath(targetPath)

if type(targetObj) == Document:
targetObj = targetObj.getLatestVersion()
print "Version label:%s" %

targetObj.properties['cmis:versionLabel']

If it does, update its properties
props = getProperties(targetRepo, sourceProps, 'update')

if (len(props) > 0):
print props
targetObj = targetObj.updateProperties(props)

except ObjectNotFoundException:
print "Object does not exist in TARGET"
props = getProperties(targetRepo, sourceProps, 'create')
targetObj = createNewObject(targetRepo, targetPath, props)
if targetObj == None:

return

if type(sourceObj) == Folder:
return

Then, update its content if that is possible
targetObj.reload()
if sourceObj.allowableActions['canGetContentStream'] == True:

if targetObj.allowableActions['canSetContentStream'] == True:
print "Setting content stream on target"
try:

targetObj.setContentStream(
sourceObj.getContentStream(),
contentType=sourceObj.

properties['cmis:contentStreamMimeType'])
except CmisException:

print "Could not set content stream on target "
"object: %s (%s)" % (targetObj.name, targetObj.id)

elif targetObj.allowableActions['canCheckOut'] == True:
print "Updating content stream in target object ver.:%s" %

targetObj.properties['cmis:versionLabel']
pwc = targetObj.checkout()
pwc.setContentStream(

sourceObj.getContentStream(),
contentType=sourceObj.

properties['cmis:contentStreamMimeType'])
pwc.checkin(major=False)
print "Checkin is done, version:%s" %

targetObj.properties['cmis:versionLabel']
else:

print "Cannot update content stream"
#

Try to get
target object
by path

et target
bject if it

exists

Create
bject if it

doesn’t
exist

Update
ntent on
object, if
possible
www.it-ebooks.info

http://www.it-ebooks.info/

265Coding in Python with cmislib

Determining the properties to set
Listing 9.9 shows the getProperties function. Its job is to figure out what properties
need to be sent to the target repository when a given object is created or updated
based on the source object’s type and the corresponding type definition in the target
repository. This is the function that figures out that a given type in the source reposi-
tory maps to a given type in the target repository. The function also makes sure that
every property is writable in the target repository.

def getProperties(targetRepo, sourceProps, mode):
sourceTypeId = sourceProps['cmis:objectTypeId']
props = {}

if mode == 'create':
props['cmis:name'] = sourceProps['cmis:name']
props['cmis:objectTypeId'] = sourceTypeId

if the source type is cmis:document,
don't move any custom properties
set the type and return
if sourceTypeId == 'cmis:document' or

sourceTypeId == 'cmis:folder':
return props

otherwise, get the target object type from the mapping
targetObjectId = mapping.mapping[sourceTypeId]['targetType']
if mode == 'create':

props['cmis:objectTypeId'] = targetObjectId
print "Target object id: %s" % targetObjectId

targetTypeDef = targetRepo.getTypeDefinition(targetObjectId)

get all of the target properties
for propKey in mapping.mapping[sourceTypeId]['properties'].keys():

targetPropId = mapping.
mapping[sourceTypeId]['properties'][propKey]

if sourceProps[propKey] != None:
if targetTypeDef.properties[targetPropId].

getUpdatability() == 'readwrite':
props[targetPropId] = sourceProps[propKey]
print "target prop: %s" % targetPropId
print "target val: %s" % sourceProps[propKey]

else:
print "Warning, property changed but isn't writable "

"in target:%s" % targetPropId

return props
#

Notice how the last block uses the type definition to make sure that the property is
writable in the target. If it isn’t, there’s no need to attempt to write the value, so the
property isn’t added to the list of properties to sync and a warning is printed.

Listing 9.9 The getProperties function

If source type is
cmis:document or
cmis:folder, don’t move
any custom properties

Otherwise,
find target
type from
mapping
www.it-ebooks.info

http://www.it-ebooks.info/

266 CHAPTER 9 Using other client libraries
Running the sync
To test the script, we created an instance of The Blend that persisted its data to
Alfresco. If you want to try this, see the code zip download that comes with the book
for the instructions on building and deploying The Blend’s content model to
Alfresco. We chose Alfresco because it’s freely available and because it supports
change tokens.

We created a mapping file that maps Alfresco’s content types and properties to the
InMemory server’s content types and properties.

 With that in place, we started the sync and watched as the script mirrored the data
stored in the local Alfresco repository into the InMemory Repository. After the initial
pass, the script went to sleep. The output in the next listing shows what happens when
we subsequently modified a property on an image in the source Alfresco repository.

==================================
SOURCE repository info:

Name: Main Repository
Id: 068e0de6-434e-4106-99c2-a08c5ef4016d

Vendor: Alfresco
Version: 4.2.0 (4428)

Latest change token: 1022
==================================
TARGET repository info:

Name: Apache Chemistry OpenCMIS InMemory Repository
Id: A1

Vendor: Apache Chemistry
Version: 0.8.0-SNAPSHOT

Listing 9.10 Output of cmis-sync when it sees a change that needs to be synced

Configuring Alfresco for change support
Out of the box, Alfresco isn’t configured to support changes, but it’s easy to turn on.
Edit your alfresco-global.properties file and add the following:
#
Auditing
#
Enable audit in general
audit.enabled=true

Enable the alfresco-access audit application
audit.alfresco-access.enabled=true

Enable CMIS change log
audit.cmischangelog.enabled=true

Now when you start the server and invoke getCapabilities(), you’ll see that
Changes has a value of objectidsonly.
www.it-ebooks.info

http://www.it-ebooks.info/

267Apache Chemistry PHP API
Path: /cmis-sync
Last change synced: 1021
Processing: workspace://SpacesStore/1f9acfdf-d438-42c3-9bf4-2
69bb37d1617;1.0
Source Path: /blend/Art/Sunset.jpg
Version label:V 1.25
Target object id: cmisbook:image
Warning, target property changed but isn't writable in target:

cmisbook:imageHeight
target prop: cmisbook:xResolution
target val: 72.0
Warning, target property changed but isn't writable in target:

cmisbook:imageWidth
target prop: cmisbook:make
target val: Research In Motion
target prop: cmisbook:model
target val: BlackBerry 8900
target prop: cmisbook:copyright
target val: test value updated alfresco eight
target prop: cmisbook:yResolution
target val: 72.0
Updating content stream in target object version:V 1.25
Polling for changes every 10 seconds
Use ctrl+c to quit
Sleeping...

You can see that when the script woke up and asked Alfresco for its latest changes, the
script saw the change to Sunset.jpg, and then determined which properties to set on the
target object. Because cmisbook:imageHeight and cmisbook:imageWidth are marked
as createonly in the target repository instead of readwrite, the script tosses those
properties out and sets the rest. The script isn’t smart enough to know exactly which
properties have changed or whether or not the content stream was modified, so a single
change triggers the entire object and all of its properties to get updated in the target.

 You now have what you need to run Python against any CMIS-compliant repository,
and you’ve seen how Python and change tokens can help you write a CMIS synchroni-
zation daemon. Let’s now turn our attention to another one of the “P” languages: PHP.

9.4 Apache Chemistry PHP API
PHP is one of the most widely used languages for web applications. PHP is one of the
Ps that can be attributed to the LAMP stack (Perl and Python are the other Ps). Many
of the most widely used web development frameworks use PHP, including Drupal,
Moodle, Joomla, WordPress, and CakePHP. Providing a PHP client library allows devel-
opers to take advantage of CMIS-compliant content repositories as a part of their web
solutions. Currently, Drupal and WordPress have CMIS integrations that take advan-
tage of the CMIS PHP Client. You’ll see Drupal and CMIS in action in later sections.

 The next section discusses the PHP Client and how it maps CMIS objects into PHP
objects. You’ll learn how to install the PHP Client, see how it compares to OpenCMIS,
and then see some simple PHP examples before moving on to a Drupal example that
builds on The Blend.
www.it-ebooks.info

http://www.it-ebooks.info/

268 CHAPTER 9 Using other client libraries
9.4.1 Installing the PHP Client

You can install the client in one of two ways. The preferred way is to follow these two
steps:

1 Add the location of the cmis-lib to the include_path.
2 Include the following line in your code:

require_once ('cmis-lib.php');

Alternatively, you can add the following line:

require_once('<fullpath to cmis-lib>/cmis-lib.php'); .

9.4.2 About the PHP Client library

The Apache Chemistry PHP API provides access to a CMIS-compliant repository using
a structure that will make sense to PHP developers. The main access is provided by
instantiating a CMISService object that accepts a CMIS endpoint, authentication infor-
mation, and some optional settings.

 All of the operations performed against a CMIS repository using the PHP Client are
executed by calling methods on the CMISService. Not all of the methods are func-
tional—some have yet to be implemented. The methods that aren’t yet functional will
throw a CmisNotImplementedException($functionName).

 You’ll want to keep a couple of things in mind with regard to arguments passed in
to CMISService methods:

 The CMIS server expects a repository ID with every method call (except get-
Repositories). The PHP Client caches the repository ID in the CMISService
object, so developers don’t need to repeat it with each call.

 All of the required input parameters for CMISService methods are included in
the method signature. All of the optional parameters for those methods are
passed in an associative array.

9.4.3 PHP Client architecture

The PHP Client is divided into two classes: CMISRepositoryWrapper and CMISService,
as shown in figure 9.13.

 The CMISRepositoryWrapper handles the HTTP connection and has all of the
logic to marshal and unmarshal AtomPub XML to PHP objects.

 The CMISService provides an interface that implements the CMIS domain-level
methods. Rather than separating the client into the seven individual services you
learned about in part 1, the CMISService class implements all of the services you
might call.

 Table 9.4 highlights the supported return types.
www.it-ebooks.info

http://www.it-ebooks.info/

269Apache Chemistry PHP API
Table 9.4 Mapping of AtomPub types and PHP types

Return type AtomPub type PHP structure Comments

Repository
definition

Workspace An object with the following five
arrays:
1 Links (used by the client to navi-

gate the repository)
2 URI templates (used by the cli-

ent to navigate the repository)
3 Collections (used by the client

to navigate the repository)
4 Capabilities
5 Repository information

CMIS object Entry An object containing two scalars
and three arrays:
1 Links (used by the client to navi-

gate the repository)
2 Properties
3 Allowable actions
4 UUID (atom:id)
5 ID (Object ID)

The following members will be
added in the future:
1 Relationships
2 Policy IDs
3 Renditions
4 ACLs

A CMIS object can refer to
 Document
 Folder
 Policy
 Relationship
 Object ID
 Object ID + change token

CMIS domain-level methods

CMIS primitives

CMIS object access and caching

CMISRepositoryWrapper

ATOM marshaling and unmarshaling

HTTP connection

CMISService

Figure 9.13 PHP Client architecture
www.it-ebooks.info

http://www.it-ebooks.info/

270 CHAPTER 9 Using other client libraries
9.4.4 Differences between OpenCMIS and the PHP Client

OpenCMIS and the PHP Client have several differences between them. Let’s look at
some functional differences and then see some simple code examples to further illus-
trate the differences.

FUNCTIONAL DIFFERENCES

In Java-based web applications, you can cache information from one request for
future requests. In many PHP installations, PHP is run in the CGI mode, which means
that server memory has no means of caching content for access by future requests. As

List of CMIS
objects

Feed PHP object with two arrays of
Entry objects:
 objectsById—An associative

array of the Entrys
 objectList—An array of refer-

ences to the objects in the
objectsById array

Objects in the feed may not be
fully populated.

Tree of CMIS
objects

Feed with
CMIS hierarchy
extensions

Array similar to previous. Hierarchy
is achieved by adding a Children
object to each Entry that has chil-
dren. The Children object con-
tains the same structure as the
feed.

Objects in the feed may not be
fully populated.

Type defini-
tion

Entry An object with three arrays and one
scalar:
 Links (used by the client to navi-

gate the repository)
 Properties
 Attributes
 ID (object type ID)

The Type Definition data struc-
ture needs work for comple-
tion. Currently, it has enough
to support the needs of the
Object Services.

List of type
definitions

Feed PHP object with two arrays of
Entry objects:
 objectsById—An associative

array of the Entrys
 objectList—An array of refer-

ences to the objects in the
objectsById array

Objects in the feed may not be
fully populated.

Tree of type
definitions

Feed with CMIS
hierarchy exten-
sions

Array similar to previous. Hierarchy
is achieved by adding a Children
object to each Entry that has chil-
dren. The Children object con-
tains the same structure as the
feed.

Objects in the feed may not be
fully populated.

Content
stream

Content Content

Table 9.4 Mapping of AtomPub types and PHP types (continued)

Return type AtomPub type PHP structure Comments
www.it-ebooks.info

http://www.it-ebooks.info/

271Apache Chemistry PHP API
a result, the PHP Client places less emphasis on caching. Most of the caching is cen-
tered around retaining information that will be used in a single HTTP request to the
web application.

 In the OpenCMIS implementation, CMIS objects have methods. In the PHP Client,
only the CMISService object has methods; the CMIS objects contain only data—they
have no methods.

 The PHP Client only supports the AtomPub binding. Currently, work is under way
that will add a SOAP binding to the PHP Client.

 The current implementation doesn’t support CMIS endpoints with multiple
repositories.

CODE COMPARISON

It’s helpful to see a few PHP examples of things you learned to do with OpenCMIS in
earlier chapters. In this section, you’ll see how to get a session, how to run a query,
and how to update the properties on an object.

Initiating a session
In PHP, initiating a session requires you to call the CMISService constructor with the
CMIS endpoint and login credentials. The CMISService session will return a new object
that’s connected to the repository. Currently, only Basic authentication is supported:

require_once ('cmis-lib.php');

$client = new CMISService("http://localhost:8081/inmemory/atom",
"admin",
"admin");

Executing a query
You can execute queries by passing the CMIS SQL to the query method, which will
return a list of objects, like this:

$query = "SELECT * FROM cmisbook:taggable AS t
WHERE 'soul' = ANY t.cmisbook:tags";

$objs = $client->query($query);
foreach ($objs->objectList as $obj) {

print $obj->properties['cmis:name'] . "\n";
}

Updating a multivalued property
Updating a property is a matter of creating an array of properties, and then passing
that to the updateProperties method:

Set $objectId

$item = $client->getObject($objectId);

$tags = $client->getMultiValuedProp($item,'cmisbook:tags');

$tags[] = "gospel";

$changeToken = $item->properties['cmis:changeToken'];

$properties = array('cmisbook:tags' => $tags);

$client->updateProperties($objectId,$properties);

The underlying code
ensures that the
changeToken is sent
along if necessary.

The array helper function
forces a property to be
an array.
www.it-ebooks.info

http://www.it-ebooks.info/

272 CHAPTER 9 Using other client libraries
You may have noticed a difference in how OpenCMIS handles multivalued properties
compared to the PHP library. The PHP library doesn’t change all multivalued proper-
ties into a list/array. If you want to do that, you have to use the array helper function.
The maintainers of the PHP Client library might remove the need for this at a later
date, but it would involve parsing the type definition when retrieving the properties.

 That gives you a rough feel for what it’s like to work with CMIS from PHP. Let’s
move on to a more real-world example by returning to The Blend.

9.4.5 Using PHP to browse The Blend

We’ve created a module that allows users to tag content, mark content as favorites,
and search for content. We built the module as a custom Drupal 7 module on top of
the PHP CMIS library, and we used Drupal 7’s library feature to add the PHP CMIS
library as a shared library. Using PHP CMIS as a shared library allows the developer to
create multiple CMIS-based modules using the same library.

 The custom module for The Blend doesn’t use the CMIS API module that’s part of
Drupal 6. The CMIS module is still in development form for Drupal 7 and will proba-
bly need to be reworked to take advantage of the shared library.

 Let’s look at some of the details of the Drupal module for The Blend.

FUNCTIONAL OVERVIEW

The Drupal module for The Blend, shown in figure 9.14, allows a visiting user to add
tags to any taggable object and to list objects that are tagged with a specific term. The
module also allows users to create their own collections of taggable objects (for exam-
ple, playlists and photo galleries). Finally, the module allows users to store saved
searches.

Figure 9.14 The Blend as a
Drupal module
www.it-ebooks.info

http://www.it-ebooks.info/

273Apache Chemistry PHP API
TAGGING TAGGABLE ITEMS

In The Blend, tags are implemented using a multivalue property called cmis-
book:tags on a type called cmisbook:taggable. Tags on a given object are added by
updating the tags property with the new tag:

function theblend_add_tag_to_item($objectId,$tag_name) {
$client = theblend_get_cmis_client();
$item = $client->getObject($objectId);
$tags = $client->getMultiValuedProp($item, 'cmisbook:tags');
$properties = array('cmisbook:tags' => $tags);
$properties['cmisbook:tags'][] = $tag_name;
$client->updateProperties($objectId,$properties);

}

The Drupal form for adding a tag to an item is shown in figure 9.15.

LISTING ITEMS TAGGED WITH A SPECIFIC TAG

You’ll use a CMIS query with an ANY clause to find objects with a specific tag, as this
code shows:

function theblend_list_items_with_tag($tag_name) {
$client = theblend_get_cmis_client();
$query = "SELECT * FROM cmisbook:taggable AS t WHERE '" .

$tag_name . "' = ANY t.cmisbook:tags";
$objs = $client->query($query);
$output = "<h2>$query</h2>";
$output .= "";
foreach ($objs->objectList as $obj) {

$output .= "" . $obj->properties['cmis:name'] . "";

Figure 9.15 Adding a tag to
a taggable object
www.it-ebooks.info

http://www.it-ebooks.info/

274 CHAPTER 9 Using other client libraries
}
$output .= "";
return $output;

}

From Drupal, searching for a list of items with a specific tag looks like figure 9.16.

ADVANCED SEARCHES AND SAVED QUERIES

In order to store a user’s saved searches, we created a folder called /user_content.
This folder will have a subfolder for each user. The queries for the saved searches are
stored in the queries subfolder for the user. This means if joeschmoe is a user, his que-
ries would be stored in /user_content/joeschmoe/queries. The next listing shows
how the queries are saved, retrieved, and run.

function theblend_run_query($query_name) {
return $client->query(theblend_get_query($query_name));

}

// Get the saved queries folder for the user
function theblend_get_queries_folder() {

$client = theblend_get_cmis_client();

$user_content = $client->getObjectByPath("/user_content");
try {

$my_content = $client->getObjectByPath("/user_content/" .
$client->username);

} catch (Exception $exception) {
$my_content = $client->createFolder($user_content->id,

$client->username);
}
try {

Listing 9.11 Saving, retrieving, and executing saved searches

Figure 9.16 Querying for taggable
objects with a specific tag

All user content is under /
user_content/<user_name>,
and all saved queries are in a
subfolder called queries; the code
creates any required folders that
aren’t already there.
www.it-ebooks.info

http://www.it-ebooks.info/

275Apache Chemistry PHP API
$my_queries = $client->getObjectByPath("/user_content/" .
$client->username . "/queries");

} catch (Exception $exception) {
$my_queries = $client->createFolder($my_content->id,

"queries");
}
return $my_queries;

}

// get Named Query
function theblend_get_query($query_name) {

$client = theblend_get_cmis_client();

$my_queries = theblend_get_queries_folder();
$my_query = false;
try {

$my_query = $client->getObjectByPath("/user_content/" .
$client->username . "/queries/" . $query_name);

} catch (Exception $exception) {
return "";

}

return $client->getContentStream($my_query->id);
}

CREATING COLLECTIONS OF TAGGABLES (PLAYLISTS, GALLERIES)
Collections of taggables are implemented by creating folders in which taggable items
can be multifiled. A collection for a user is stored in a subfolder of a user-content
folder called collections. For example, if our user, joeschmoe, wants to create a collec-
tion called “classics,” that folder would be located at /user_content/joeschmoe/
collections/classics/. The functions that deal with creating and retrieving collections
of taggables are shown in the following listing.

function theblend_get_collection($collection_name,$create=false) {
$client = theblend_get_cmis_client();

$my_collections = theblend_get_collections_folder();
$my_collection = false;

try {
$my_collection = $client->getObjectByPath(

"/user_content/" .
$client->username .
"/collections/" .
$collection_name);

} catch (Exception $exception) {
if ($create) {

drupal_set_message("creating my collection");
$my_collection = $client->createFolder(

$my_collections->id,$collection_name);
}

Listing 9.12 Creating and retrieving collections of taggables

Call get_queries_folder
and then get the named
query.

Return contents
of the query.

Get collections
folder, which is
the container for
all collections

Get named
collection folder
(or create it if
necessary)
www.it-ebooks.info

http://www.it-ebooks.info/

276 CHAPTER 9 Using other client libraries

a

c

c

}
return $my_collection;

}

// Add item to collection
function theblend_add_item_to_collection($objectId,$collection_name) {

$client = theblend_get_cmis_client();
$collection=theblend_get_collection($collection_name);
$client->addObjectToFolder($objectId,$collection->id);

}

// Get members of a collection
function theblend_view_collection($collection_name) {

$client = theblend_get_cmis_client();

// Get children of named collection folder
$collection=theblend_get_collection($collection_name);
return $client->getChildren($collection->id);

}

Now you’ve seen how PHP and CMIS can be used together—in this case, to build a
Drupal module—and how they can work with content in a CMIS repository.

9.5 Summary
You should now have a good feel for some of the other client libraries available to you.
If you read the entire chapter and worked through all of the examples, congratula-
tions! Your laptop is now a veritable CMIS Swiss Army knife.

 Table 9.5 summarizes the client libraries we reviewed in this chapter.

All of the libraries you saw in this chapter are available as part of the Apache Chemis-
try project. Developers typically use these libraries to build desktop applications and
web applications. But what if you’re a mobile developer? Whether your platform of
choice is iOS or Android, the next chapter shows you how to build mobile applica-
tions that work with CMIS repositories.

Table 9.5 At a glance: popular non-Java libraries for working with CMIS

Library Language Project home
Bindings

supported
Install method

Key
dependencies

DotCMIS .NET Apache Chemistry AtomPub and
Web Services

Manual Microsoft OS

cmislib Python Apache Chemistry AtomPub only Python setuptools
or manual

Python
 2.6 or 2.7

PHP Client PHP Apache Chemistry AtomPub only Manual None

When
dding an

item to
ollection,

first get
named

ollection

Then add item to
the folder as a
secondary parent
www.it-ebooks.info

http://www.it-ebooks.info/

Building mobile apps
with CMIS
The emergence of modern mobile smartphones and tablets has fundamentally
changed how people interact with their mobile devices. Every day, more and more
users access and consume websites, music, email, and video directly from these
devices regardless of their physical location. Now, for both personal and profes-
sional reasons, they want their documents too.

 In this chapter, we’ll use projects from Apache Chemistry to create native
mobile applications on both the Android and Apple iOS platforms. The applica-
tions will show how easy it is to create mobile applications that store content to and
retrieve it from a CMIS repository.

This chapter covers
 Setting up an OpenCMIS development environment for

Android

 Tips for writing a mobile application with OpenCMIS for
Android

 Setting up an ObjectiveCMIS development environment

 Using ObjectiveCMIS to enhance an iOS application
277

www.it-ebooks.info

http://www.it-ebooks.info/

278 CHAPTER 10 Building mobile apps with CMIS
10.1 Writing mobile apps with OpenCMIS for Android
This section will introduce you to developing mobile applications that need to work
with CMIS repositories on Android devices. We’ll start by talking a little bit about
Android and about a port of the OpenCMIS library built specifically for Android.
Then we’ll show you how to set up a local development environment before taking
some initial steps with a simple one-screen application. Finally, we’ll wrap up by look-
ing at an Android application written specifically for The Blend.

10.1.1 Android and CMIS

Android is a Linux-based operating system for mobile devices such as smartphones
and tablet computers, developed by Google in conjunction with the Open Handset
Alliance. It is one of the world’s most popular mobile platforms. Every day more than
one million Android devices are activated.

 Android’s programming interface is Java-oriented. You may have already tried to
import Apache Chemistry OpenCMIS libraries as dependencies into an Android proj-
ect and found that it doesn’t work. That’s because OpenCMIS relies on some depen-
dencies that aren’t available in the Android platform. Although the Android SDK is
Java-based, it’s different than the JDK. They share some common packages, but they
don’t share all of them, and Android lacks several packages necessary to use straight
OpenCMIS in an Android application.

 That’s why, starting with version 0.8.0-SNAPSHOT of Apache Chemistry, a subproj-
ect named chemistry-opencmis-android-client was added. This project allows Android
developers to use OpenCMIS. It’s a merge of the opencmis-client-* and opencmis-
commons-* projects into a single JAR file.

 The OpenCMIS Android Client supports Android 2.3 and later. The coverage of
the CMIS specification is not yet complete—for example, you can’t use OpenCMIS
Android to manage ACLs or policy objects.

 The OpenCMIS Android Client is a synchronous library. What does this mean to you
as a developer? By default, all components of an Android application run in the same
process—running code, graphical user interface, and input events are all managed
from a single thread, generally called the main thread or the UI thread. This is not usu-
ally a problem if developers don’t require any time-consuming operations. When you
do need to perform a long-running operation, such as retrieving information from
the internet, the screen interface of the application will be blocked until the code has
finished running. Android will kill the application if it doesn’t react within five sec-
onds of the user’s input, so to provide a good user experience, all potentially long-
running operations in an Android application should run asynchronously, which
developers can achieve by encapsulating all operations in a background thread.

 Android has a few different objects that can help:

 Service—An application component representing either an application’s
desire to perform a longer-running operation while not interacting with the
user or to supply functionality for other applications to use.
www.it-ebooks.info

http://www.it-ebooks.info/

279Writing mobile apps with OpenCMIS for Android
 AsyncTask—Helps perform asynchronous work in the user interface. The
AsyncTask performs the blocking operations in a worker thread and then pub-
lishes the results on the UI thread.

 Loader—Available since Android HoneyComb, a Loader gives the developer a
mechanism for loading data asynchronously for an activity or fragment. A
Loader is usually easier to use than an AsyncTask.

It’s up to the developer to determine which object and overall approach is best for a
given application.

 Now that you know a little bit about the library and how it’s used in Android appli-
cations, it’s time to set up a development environment.

10.1.2 Setting up an Android environment

Before you can create your first Android project, you need to set up the Android SDK,
configure Eclipse, and install an emulator. So let’s do that now.

REQUIREMENTS

One of the nice things about Android development is that the dependencies are
freely available and will run on any platform. Here’s what you need:

 Java Development Kit (JDK)
 Java Integrated Development Environment (IDE)
 Android SDK

 Android Development Tools (ADT) Eclipse Plugin (optional, but this book
assumes you’re using the ADT with Eclipse)

 Android emulator (or a real Android device)
 OpenCMIS Android Client library

INSTALLING THE ANDROID SDK
The Android SDK includes all the tools and APIs you need to write mobile applica-
tions. You can download the latest version for your platform from the Android
developer website at http://developer.android.com/sdk/index.html. Follow the
instructions to install the SDK from the Android developer website at http://
developer.android.com/sdk/installing/index.html.

 Before you begin development, you need to download at least one SDK platform
release. The Android SDK Manager will do this for you. If you’re on Windows, run the
SDK Manager.exe file (at the root of the Android SDK directory). If you’re on Mac OS
X or Linux, run the android executable (in the /tools directory in the Android SDK).
Either way, when you open the Android SDK Manager, it will automatically select a set
of recommended packages. Then, when you click Install (see figure 10.1), the
Android SDK Manager will launch the download and installation.

 For more information, please refer to Android’s “Adding Platforms and Packages”
page: http://developer.android.com/sdk/installing/adding-packages.html.
www.it-ebooks.info

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/installing/index.html
http://developer.android.com/sdk/installing/index.html
http://www.it-ebooks.info/

280 CHAPTER 10 Building mobile apps with CMIS
INSTALLING ECLIPSE AND THE ANDROID ADT
You probably already have Eclipse installed from your work with OpenCMIS in earlier
chapters. If not, Eclipse is available for download from the Eclipse foundation website:
www.eclipse.org/downloads. Installing Eclipse consists of uncompressing the installa-
tion package file onto your filesystem.

 Android offers a custom plugin for the Eclipse IDE called Android Development
Tools (ADT). It extends the capabilities of Eclipse to let you quickly set up new
Android projects, build an application UI, use an emulator, debug your app, and
export signed (or unsigned) application packages (APKs) for distribution. To install
this plugin from Eclipse, follow these steps:

1 Select Help > Install New Software.
2 Click Add, in the top-right corner.
3 In the next dialog box, enter “Android Plugin” for the name and the following

URL for the location: https://dl-ssl.google.com/android/eclipse/. Then click
OK.

4 In the Available Software dialog box, select the check box next to Developer
Tools, and click Next.

Figure 10.1 Android SDK Manager
www.it-ebooks.info

https://dl-ssl.google.com/android/eclipse/
http://www.it-ebooks.info/

281Writing mobile apps with OpenCMIS for Android
5 Read and accept the license agreements, and then click Finish.
6 When installation is complete, restart Eclipse and update the ADT preferences.
7 After restart, in the “Welcome to Android Development” window that appears,

select Use Existing SDKs.
8 Browse and select the location of the Android SDK directory you recently

downloaded.
9 Click Next. You’re finished.

The Android SDK is now installed and running in Eclipse. If you don’t have a physical
Android device (or even if you do), you may want to configure one or more virtual
devices for testing and debugging. That’s covered in the next section.

SETTING UP AN ANDROID EMULATOR

The Android SDK includes an Android Virtual Device (AVD) Manager. As the name
implies, the AVD can create, use, and delete a virtual mobile device that runs on your
computer to emulate what end users will see when they run your application on a phys-
ical device. You can create as many AVDs as you need.

 To create an AVD, follow these steps:

1 In Eclipse, select Window
> AVD Manager, or click
the AVD Manager icon in
the Eclipse toolbar. If you
don’t see the AVD Man-
ager window, you can
launch it as you did ear-
lier.

2 In the Virtual Devices
panel, you’ll see a list of
existing AVDs. Click New
to create a new AVD. The
Create New AVD dialog
box appears, as shown in
figure 10.2.

3 Fill in the details for the
AVD.

4 Give it a name, a plat-
form target, an SD card
size, and a skin (HVGA is
the default). You can also
add specific hardware
features of the emulated
device by clicking New
and selecting the feature. Figure 10.2 The Create New AVD dialog box
www.it-ebooks.info

http://www.it-ebooks.info/

282 CHAPTER 10 Building mobile apps with CMIS
5 Click Create AVD.
6 Your AVD is now ready, and you can either close the AVD Manager, create more

AVDs, or launch an emulator with the AVD by selecting a device and clicking
Start.

You now have an Android development environment set up. It’s time to start working
with CMIS from an Android application.

10.1.3 Writing your first Android CMIS application

Let’s start with something simple. Let’s create a one-screen application that iterates
over the children in the media folder of a CMIS repository. Then we can look at a
more complex example.

CREATING AN ANDROID PROJECT

To create an Android Project, follow these steps:

1 In Eclipse, select File > New > Other.
2 In the Wizard List panel, select Android >

Android Application Project and click
Next.

3 Fill in the details for the project. Use The
Blend for the application name and
project name. Use com.manning.cmis

.theblend.android for the package
name. Then click Next.

4 In the Configure Custom Launcher Icon
panel, let your artistic side free and then
click Next.

5 In the Create Activity panel, select Blank
Activity and click Next.

6 In the New Blank Activity panel, change
the following values:
 Activity Name: FirstOpenCMISActivity
 Layout Name: activity_opencmis

7 Click Finish.

Your Android project is now ready, and it should look like the one shown in figure 10.3.

ADDING LIBRARIES

The build path of your project doesn’t yet contain the OpenCMIS Android Client. To
add it, you’ll need to download it from the Apache Chemistry OpenCMIS downloads
page (http://chemistry.apache.org/java/download.html), unzip it, and then either
drag and drop the JAR from your download folder to YourProject > libs, or you can
right-click on the libs folder and select Import > File System > Browse > Path to down-
load folder, and then select the JAR and click Finish.

Figure 10.3 Android project structure for
The Blend
www.it-ebooks.info

http://chemistry.apache.org/java/download.html
http://www.it-ebooks.info/

283Writing mobile apps with OpenCMIS for Android
 You’ll also need to add slf4j-android-1.6.1-RC1. If you don’t already have it, you can
download SLF4J Android from www.slf4j.org/android/.

USING APACHE MAVEN If you prefer to use the build tool Maven, it’s also possi-
ble to import the Android client as a Maven dependency by adding the follow-
ing to your pom.xml file: <dependencies><dependency> <groupId>org
.apache.chemistry.opencmis</groupId> <artifactId>chemistry-opencmis-
android-client</artifactId> <version>0.8.0</version> <dependency>
</dependencies>. This requires the use of the Android Maven plugin. For
more information on how to use the Android Maven plugin, see the “Android
Maven Plugin” page: http://code.google.com/p/maven-android-plugin/.

CREATING THE FIRST SCREEN

First of all, you need to modify the default layout of your screen. A layout in Android is
a type of resource that defines what’s drawn on the screen. Layouts are implemented
as XML files in the /res/layout resource directory for the application.

 By default, your application already has a layout named activity_opencmis.xml.
Let’s modify it:

1 In Eclipse, from an Explorer view, navigate to Blend/res/layout, then right-
click the file named activity_open_cmis.xml, and then click Open With > XML
Editor.

2 Edit the file as follows:

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent" >

<TextView
android:id="@+id/opencmis_text"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:text="@string/hello_world"
/>

</RelativeLayout>

Now it’s time to change the main activity of your application to use the Android
OpenCMIS Client. An Android activity is an application component that provides a
screen with which users can interact in order to do something, such as dial the phone,
take a photo, send an email, or view a map. Each activity is given a window in which to
draw its user interface. The window typically fills the screen, but it may be smaller than
the screen and can float on top of other windows.

 In your current project, you already have an activity called FirstOpenCMIS-
Activity. Let’s modify it to display the list of all documents inside the media folder.
This requires two things:

This line needs to be
added. The rest should
already exist.
www.it-ebooks.info

http://code.google.com/p/maven-android-plugin/
http://www.it-ebooks.info/

284 CHAPTER 10 Building mobile apps with CMIS
 A Session object, which can be used to list the children of the media folder
 An asynchronous mechanism to respect the UI/Background Thread model

In this example, you’ll use an AsyncTask to do the job. Here’s how:

1 In Eclipse, from an Explorer view, navigate to Blend/src/com.manning
.cmis.theblend.android and select the file named FirstOpenCMISActivity.java.

2 Edit the file and replace it with the contents of listing 10.1. The content of First-
OpenCMISAsyncTask may look familiar—it’s exactly the same logic that you
used in chapter 7 to iterate over the children in a folder with OpenCMIS.

public class FirstOpenCMISActivity extends Activity {

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_opencmis);
new FirstOpenCMISAsyncTask().execute();

}

private class FirstOpenCMISAsyncTask
extends AsyncTask<Void, Void, String> {

@Override
protected String doInBackground(Void... arg0) {

// Initiates a Session Factory
SessionFactory sessionFactory = SessionFactoryImpl.newInstance();

// Initiates connection session parameters.
Map<String, String> parameter = new HashMap<String, String>();
parameter.put(SessionParameter.USER, "admin");
parameter.put(SessionParameter.PASSWORD, "admin");
parameter.put(

SessionParameter.ATOMPUB_URL,
"http://192.168.1.36:8081/inmemory/atom/");

parameter.put(
SessionParameter.BINDING_TYPE,
BindingType.ATOMPUB.value());

// Retrieves repository information and create the session object.
Repository repository = sessionFactory.getRepositories(parameter)

.get(0);
parameter.put(SessionParameter.REPOSITORY_ID, repository.getId());
Session session = sessionFactory.createSession(parameter);

// Retrieves media folder and list all its children.
String listChildren = "";
Folder mediaFolder = (Folder) session.getObjectByPath("/media");
ItemIterable<CmisObject> children = mediaFolder.getChildren();
for (CmisObject o : children) {

listChildren += o.getName() +
" - " +
o.getType().getDisplayName() +

Listing 10.1 FirstOpenCMISActivity.java

Change this to your
local IP address; using
the loopback address
(127.0.0.1) won’t work.
www.it-ebooks.info

http://www.it-ebooks.info/

285Writing mobile apps with OpenCMIS for Android
" - " +
o.getCreatedBy() +
"bn";

}

return listChildren;
}

@Override
protected void onPostExecute(String result) {

TextView tv = (TextView) (FirstOpenCMISActivity.this)
.findViewById(R.id.opencmis_text);

tv.setText(result);
}}}

CONFIGURING PERMISSIONS

By default, an Android application has no permission to do much of anything. To
make use of the protected features of the device, you must include one or more
<uses-permission> tags declaring the permissions that your application needs in
your AndroidManifest.xml.

 The internet access permission is mandatory for the Android OpenCMIS Client.
An Android application that needs to connect to a CMIS server isn’t going to get very
far without it. Here’s how to give your application the permission:

1 In Eclipse, from an Explorer view, select the file named AndroidManifest.xml
that resides in The Blend.

2 Add the following internet permission after the uses-sdk element and before
the application element:
<uses-permission android:name="android.permission.INTERNET"/>

RUNNING YOUR APPLICATION

Now it’s time to run the application. To do that, follow these steps:

1 In Eclipse, right-click the project folder.
2 Click Run as > Android Application.
3 If you don’t use a real device, an Android emulator will start. If you use a real

device, plug in the device to your development machine with a USB cable. You
might need to install the appropriate USB driver for your device. Ensure that
USB debugging is enabled in the device settings.

4 After a few seconds, your device/emulator will display a screen that looks like
figure 10.4.
www.it-ebooks.info

http://www.it-ebooks.info/

286 CHAPTER 10 Building mobile apps with CMIS
Now you’ve created a simple Android application that has successfully connected to a
CMIS server and iterated over a folder’s children. The next step is to create a full-
blown Android application for The Blend.

10.1.4 Try it—writing an Android application for The Blend

You know the basics of how to use and incorporate CMIS in an Android application.
It’s now time to go further. Let’s build an Android application for The Blend. It will be
a simple mobile application that allows users to connect to a CMIS repository, retrieve
information about their favorite songs, and plays those songs. The full source code for
this application accompanies this book. Figure 10.5 shows mockups of what The
Blend for Android will look like.

 This application is divided into three main screens:

 The Login screen is responsible for requesting information about the CMIS
repository where the music is being stored.

 The Album List screen displays a list of all albums stored in the repository.
 The Album Details screen provides information on a specific album and a list of

the tracks that make up the album.

Figure 10.4 A simple Android application
that iterates over a folder’s children
www.it-ebooks.info

http://www.it-ebooks.info/

287Writing mobile apps with OpenCMIS for Android
Each screen includes actions associated with the page context, such as “create album”
or “download a track.”

 Now that you’ve seen a high-level overview of the application, let’s look at how you
can get the source code set up in Eclipse. Then we’ll walk through how the Login and
Album List screens are built and complete the section by giving you some suggestions
for tackling some of the functionality on your own.

SETTING UP THE PROJECT IN ECLIPSE

The easiest way to step through the code and to run the application is to import the
source code that accompanies the book into Eclipse. To import the Android project,
follow these steps:

1 In Eclipse, Select File > Import > Android > Existing Android Code Into
Workspace.

2 Browse to the chapter10 folder and validate the choice by clicking Finish.

You should now have a project that looks like figure 10.6. Take a few minutes to get
familiar with the project structure:

 The components and settings are described in the AndroidManifest.xml file.
 The src folder contains Java class files. They implement the screens and behav-

iors of the application. Activities (application screens) and tasks (background
tasks to retrieve information from the server) are inside this folder. They’re
divided into a logical package structure.

 The libs folder contains all of the libraries the project depends on. This is the
same set of dependencies you configured in section 10.1.3. If this folder doesn’t

Figure 10.5 Mockups of The Blend for Android
www.it-ebooks.info

http://www.it-ebooks.info/

288 CHAPTER 10 Building mobile apps with CMIS
exist in your project after importing, create it, and import the same three JARs
you used earlier.

 The res folder contains all of the resources files, including these:
 Drawable folders—Images in different sizes to support different Android

device screen sizes
 Layout folder—XML file that describes files used to define the user interface
 Values folder—XML files used to define strings, colors, dimensions, styles, and

static arrays of strings or integers

Now that you know your way around the project, let’s take a look at the Login page.

THE BLEND: LOGIN PAGE

The main goal of the Login screen is to create the CMIS Session object and share it
with all of the other screens in the application.

Figure 10.6 The Blend after importing the source code into Eclipse
www.it-ebooks.info

http://www.it-ebooks.info/

289Writing mobile apps with OpenCMIS for Android
 The implementation of the screen is found inside com.manning.cmis.theblend
.android. It’s composed of two classes:

 LoginActivity—Displays the form and manages user interactions. It allows the
user to provide information about the CMIS server, retrieves information from
the server, and creates the SessionTask.

 SessionTask—Creates the CMIS Session object in a background thread and
displays the Album List screen when the session is created.

In an Android application, each screen or activity is totally independent of other
screens/activities. Each activity has its own context and its own lifecycle. If your appli-
cation is composed of more than one screen, you must exchange important informa-
tion, like the Session object, between screens. The CMIS Session object is critical to
The Blend. Without this object, the application can’t do anything. For this reason, it’s
important to keep it safe and to share it with all of the components that need it.

 In Android there’s a mechanism called an intent. An intent is an object that pro-
vides a runtime binding between separate components (such as two activities). The
intent represents an app’s intent to do something. You can use intents for a wide variety
of tasks, but most often they’re used to start another activity.

 An example of this is the SessionTask. After successfully creating a Session
object, the task creates an intent to display the Album List screen and uses it to trans-
fer the session, like this:

public class SessionTask extends AsyncTask<Bundle, Void, Session> {
...
@Override
protected void onPostExecute(String result) {

Bundle b = new Bundle();
b.putSerializable(BundleConstant.KEY_SESSION, result);
Intent i = new Intent(activity, AlbumsActivity.class);
i.putExtra(BundleConstant.KEY_EXTRAS, b);
activity.startActivity(i);

}}

Then, in AlbumsActivity it’s possible to retrieve the object with the get-

Intent().getExtras() method and use it inside your new screen, like so:

public class AlbumsActivity extends Activity{
...
@Override
public void onCreate(Bundle savedInstanceState){
...

// Retrieves informations from Intent
if (getIntent().getExtras() != null) {

Bundle b = getIntent().getExtras().
getBundle(BundleConstant.KEY_EXTRAS);

session = (Session) b.getSerializable(
BundleConstant.KEY_SESSION);

 }
...
}}
www.it-ebooks.info

http://www.it-ebooks.info/

290 CHAPTER 10 Building mobile apps with CMIS
This same pattern can be repeated by any other screen in the application that needs
to use the Session object.

THE BLEND: ALBUM LIST SCREEN

The Album List screen displays all of the CMIS album objects present in the CMIS
repository. The implementation for this screen is found inside com.manning

.cmis.theblend.android.albums. It consists of the following:

 AlbumsActivity—Displays the list of all of the cmisbook:album objects. The
user sees a list of albums and can scroll through them and select one to display
more information.

 AlbumsTask—First creates a CMIS request to retrieve all cmisbook:album
objects in a background thread. Then it transforms the result object into a CMIS
Document object and transfers this information to the AlbumsActivity.

 AlbumsAdapter—Used by AlbumsActivity to receive data and populate an
Android listView component. It’s responsible for creating a row for each
cmisbook:album object.

The Blend uses wireless networking to retrieve its information. But during this trans-
fer, there’s a risk of latency caused by a problem with the network, user interaction, an
incoming phone call, or any number of things. The application needs to catch and
manage errors that prevent it from getting data. A common way to address this is to
wrap information from an AsyncTask into a high-level result object. This object
encapsulates information (data expected, exceptions, and other data) from the server
side and allows other parts of the application to display the right information. In a
normal case, the code displays the information as expected. If an exception occurs,
the code can handle it gracefully and display a user notification that explains why the
action hasn’t been executed.

 In The Blend, the CmisResult class, which resides in the com.manning.cmis
.theblend.android.utils package, is responsible for implementing this pattern.

AlbumsTask uses CmisResult to change the behavior on its onPostExecute
method. If the albums list is retrieved, AlbumsTask pushes the information to the
activity. If not, it displays a user notification that contains the exception message. You
can see this happening in the following listing.

public class AlbumsTask
extends AsyncTask<Void, Void, CmisResult<List<Document>>> {

private static final String QUERY_ALL_ALBUMS =
"SELECT * FROM cmis:document" .
" where cmis:objectTypeId = 'cmisbook:album'";

...

@Override
protected CmisResult<List<Document>> doInBackground(Void... arg0) {

Listing 10.2 AlbumsTask.java
www.it-ebooks.info

http://www.it-ebooks.info/

291Writing mobile apps with OpenCMIS for Android
List<Document> listAlbums = null;
Exception exception = null;

// Try to execute a CMIS Query
// to retrieve all albums from the Server.
try {

ItemIterable<QueryResult> results =
session.query(QUERY_ALL_ALBUMS, false);

listAlbums = new ArrayList<Document>(
(int) results.getTotalNumItems());

Document album = null;

// Create a list of Albums (Document object)
// based on the result.
for (QueryResult result : results) {

album = (Document) session.getObject(
session.createObjectId((String) result.

getPropertyById(PropertyIds.OBJECT_ID).
getFirstValue()));

listAlbums.add(album);
}

} catch (Exception e) {
exception = e;

}
return new CmisResult<List<Document>>(exception, listAlbums);

}

@Override
protected void onPostExecute(CmisResult<List<Document>> results) {

// In case of exception, displays
// informations for debugging purpose.
if (results.hasException()) {

Toast.makeText(
activity,
results.getException().getMessage(),
Toast.LENGTH_LONG).show();

Log.e(TAG, Log.getStackTraceString(results.getException()));
} else if (activity instanceof AlbumsActivity) {

// Display albums inside the listview.
((AlbumsActivity) activity).listAlbums(results.getData());

}
}

...

}

All AsyncTasks inside The Blend use this principle. Instead of returning the expected
object, they return a CmisResult object that contains the information.

THE BLEND: THINGS TO TRY ON YOUR OWN

As you may have noticed, OpenCMIS Android mobile development is really similar to
OpenCMIS Java development. Just remember to respect these three rules:

1 Always take care of your Session object by using an intent to share it across all
of the screens in your application.

2 Use a background thread to execute any OpenCMIS code.

CmisResult
gets passed to
OnPostExecute

method

Display
message if
there’s a
problem
www.it-ebooks.info

http://www.it-ebooks.info/

292 CHAPTER 10 Building mobile apps with CMIS
3 Encapsulate your data into a high-level result object.

To practice what you’ve learned about OpenCMIS Android development, try to imple-
ment one or more of these features inside The Blend:

 Create an action that allows a user to create a new album
 Create an action that allows a user to add a track to an album based on a track ID
 Create a screen that displays the track list for an album
 Create a screen that displays the track object’s properties

That’s it! Now let’s turn our attention from Java and Android to Objective-C and iOS.

10.2 Writing iOS apps with ObjectiveCMIS
This section introduces you to ObjectiveCMIS, an Objective-C client library for CMIS,
and to iOS application development using ObjectiveCMIS. We’ll also look at
ObjectiveCMIS and how it compares to Apache Chemistry’s OpenCMIS client library.
We’ll then take a look at how you can incorporate ObjectiveCMIS into your existing
project and review several code snippets for a few different CMIS operations. Finally,
we’ll walk you through an example that builds a very simple audio-capture application
that can be used to upload audio to The Blend.

DON’T KNOW OBJECTIVE-C OR ARE NEW TO IOS DEVELOPMENT? A good place to
begin your adventures with Objective-C and iOS application development is
by starting at Apple’s iOS Dev Center (https://developer.apple.com/ios).
Apple provides excellent resources (documentation, videos, sample code
projects, and so on) for anyone interested in iOS development. All you need
to do is register as an Apple Developer.

10.2.1 What is ObjectiveCMIS?

ObjectiveCMIS is an open source project that provides a CMIS client API written
in Objective-C for iOS. It’s part of the Apache Chemistry project. The goal behind the
ObjectiveCMIS project is to provide a robust CMIS client library for iOS applications.

 ObjectiveCMIS is implemented as a Cocoa Touch static library for iOS develop-
ment and links against Apple’s Foundation framework. What this means to you is that
there are no third-party APIs or frameworks being used by the library. It also means that
the library is built for iOS usage—if you want to develop Mac OS X applications, you
can’t do that with ObjectiveCMIS out of the box. The library is thread-safe, and calls to
a CMIS repository are asynchronous. The asynchronous operations in ObjectiveCMIS
are provided by the extensive use of Objective-C blocks.

OBJECTIVE-C BLOCKS ObjectiveCMIS uses Objective-C blocks to provide call-
back handlers (completion blocks) for all asynchronous calls. Objective-C
blocks are also known as closures. If you’re unfamiliar with the concept, an
introduction to blocks can be found in the iOS Developer Library at http://
mng.bz/6Fz6.
www.it-ebooks.info

http://mng.bz/6Fz6
http://mng.bz/6Fz6
http://www.it-ebooks.info/

293Writing iOS apps with ObjectiveCMIS
ObjectiveCMIS is essentially an Objective-C port of the OpenCMIS Java client library
you already know so much about. Like the OpenCMIS client library, ObjectiveCMIS is
implemented so that it closely follows the CMIS domain model. Just like OpenCMIS,
ObjectiveCMIS provides two APIs: a high-level object-oriented API and a low-level
bindings API. The high-level object-oriented API is the API that you’ll most likely want
to use whenever possible—it’s much easier to use than the low-level binding API,
which will be used only when you need more fine-grained control of how your applica-
tion talks to the CMIS repository.

WHY ARE ALL CLASSES IN OBJECTIVECMIS PREFIXED WITH CMIS? When you dive
into the ObjectiveCMIS API, you’ll notice that all classes in ObjectiveCMIS are
prefixed with CMIS. This is a common pattern recommended by Apple. It’s
necessary because Objective-C doesn’t have namespaces.

Table 10.1 summarizes ObjectiveCMIS at a high level in its current state.

ObjectiveCMIS is a fairly new client library. As such, there are a few limitations you
should know about up front before deciding if it’s right for your project:

 Supports CMIS 1.0 only
 Supports the RESTful AtomPub binding only
 Doesn’t yet provide support for CMIS policies, relationships, change logs, or

full access control functionality
 Provides no caching features, other than a link cache
 Can’t be used to create OS X desktop applications out of the box

Over time, some of these limitations may go away. The project is always looking for
more contributors, so if you’re interested, reach out to the Chemistry Dev List
(dev@chemistry.apache.org).

 Although there are limitations in features and capabilities, ObjectiveCMIS is capa-
ble of performing most of the common use cases for acting upon documents and fold-
ers, search, and versioning. It’s used in multiple production applications.

10.2.2 Comparing ObjectiveCMIS with OpenCMIS

As we mentioned earlier, ObjectiveCMIS is essentially an Objective-C port of the
OpenCMIS Java client library, and it’s implemented so that it closely follows the CMIS
domain model. If you understand the OpenCMIS Java client library, you should be
able to quickly understand how to use the ObjectiveCMIS static library—the biggest
difference between the two is the programming language.

Table 10.1 ObjectiveCMIS at a high level

Library Language Project home
Bindings

supported
Install
method

Key dependencies

ObjectiveCMIS Objective-C Apache Chemistry AtomPub only Manual iOS SDK 5.1+, Xcode 4.3+
www.it-ebooks.info

http://www.it-ebooks.info/

294 CHAPTER 10 Building mobile apps with CMIS
Because of the similarity between the two, it shouldn’t surprise you that the main
entry point when interacting with a CMIS repository is the CMISSession. Once you get
a CMISSession, you can start making calls against either the high-level client API or
the low-level client binding API. However, in ObjectiveCMIS you’ll find that not all the
core CMIS domain model classes are available. ObjectiveCMIS includes support for
documents, folders, query results, and repository info objects. CMIS policy and rela-
tionship objects aren’t yet available. That leaves us with an object model that looks like
figure 10.7.

 It’s encouraging that the API is so close to OpenCMIS. If you already know how to
work with Xcode to develop mobile applications, that may be all you need to know. If
that’s the case for you, you might want to skip ahead to section 10.2.4 to learn how to
generate the ObjectiveCMIS documentation before you move on to the “Try it” sec-
tion. Otherwise, keep reading to learn how to set up the library in your local Xcode
environment.

10.2.3 Getting started with ObjectiveCMIS

Now that you have a general understanding of ObjectiveCMIS and its current capabil-
ities and limitations, it’s time to see how to use it in your own project. This section
describes the requirements for using the library, how to include ObjectiveCMIS in
your project, and finally how to build the documentation for ObjectiveCMIS.

MINIMUM REQUIREMENTS

Because ObjectiveCMIS makes use of Automatic Reference Counting (ARC) and
ObjectiveCMIS blocks, there are a few technical requirements that need to be met
before you can use ObjectiveCMIS as part of your iOS application:

 Xcode 4.3 or newer
 iOS SDK 5.1 or newer
 iOS deployment target of iOS 5.1 or above

CMISDocument

CMISQueryResult CMISObject

CMISSession

CMISRepositoryInfo

CMISFolder

Figure 10.7 ObjectiveCMIS object model
www.it-ebooks.info

http://www.it-ebooks.info/

295Writing iOS apps with ObjectiveCMIS
WHERE TO FIND THE SOURCE CODE

The ObjectiveCMIS source code and other resources you’ll need to work through the
examples in this section are provided in the zip archive that accompanies this book. If
you would prefer to work with the latest release of ObjectiveCMIS, the release pack-
ages can be found on the Apache Chemistry ObjectiveCMIS web page at http://
chemistry.apache.org/objective-c/objectivecmis.html. The ObjectiveCMIS source
code is kept in a Subversion repository located at http://svn.apache.org/repos/asf/
chemistry/objectivecmis/trunk/.

 In the next few sections, we’ll go through the process of building the Objective-
CMIS library, adding it to an Xcode project using two different approaches, and,
finally, generating the documentation. If you want to follow along, identify a folder
where you’ll unzip the ObjectiveCMIS source code archive file, ObjectiveCMIS-src.zip.
We’ll call this location $IOS_DEV_HOME. If you haven’t done so already, go ahead
and extract ObjectiveCMIS-src.zip to $IOS_DEV_HOME. You should now have the
ObjectiveCMIS Xcode project available at $IOS_DEV_HOME/ObjectiveCMIS.

 Now let’s look at how you can incorporate the ObjectiveCMIS library into your
project.

INCORPORATING OBJECTIVECMIS INTO YOUR APPLICATION PROJECT

There are two options for incorporating the static library into your new or existing
iOS application. The first option is to compile ObjectiveCMIS into a universal static
library and then add the compiled universal static library and header files to your
project. The second option is to add the ObjectiveCMIS Xcode project to an existing
Xcode workspace, and allow Xcode to properly build the explicit and implicit depen-
dencies required.

 Let’s look at each of these two options.

Using the compiled universal library file and public headers directly
The simplest way to incorporate the ObjectiveCMIS library into your mobile applica-
tion project is to directly add the compiled universal static library and public headers
to your project. For convenience, the compiled universal library file and public head-
ers are made available in the archive ObjectiveCMIS-UniversalLib.zip that accompa-
nies this book. If you want to use the precompiled files from the zip, jump to step 5.
Otherwise, you must manually compile the library file and headers. To do that, follow
these steps:

1 Change to the root folder for the ObjectiveCMIS Xcode project located at
$IOS_DEV_HOME/ObjectiveCMIS.

2 Execute the shell script build_universal_lib.sh to start the build.
3 The script will output something similar to the following:

...I will output a universal build to: /Users/dev/Code/
ObjectiveCMIS/build/Debug-universal

4 Copy the folder path the script spit out. This folder contains ObjectiveCMIS
compiled as a universal library and it’s ready to be included in an Xcode project.
www.it-ebooks.info

http://chemistry.apache.org/objective-c/objectivecmis.html
http://chemistry.apache.org/objective-c/objectivecmis.html
http://svn.apache.org/repos/asf/chemistry/objectivecmis/trunk/
http://svn.apache.org/repos/asf/chemistry/objectivecmis/trunk/
http://www.it-ebooks.info/

296 CHAPTER 10 Building mobile apps with CMIS
Open the folder using the open command and the path, which will likely be dif-
ferent on your machine:
open /Users/dev/Code/Objective-CMIS/build/Debug-universal

5 Add the generated universal library file and header files to your application
project by dragging and dropping the folder into your Xcode project or by
using the Add Files to ProjectName action from the Navigator and selecting the
folder Debug-universal. When you’re prompted for the Add options for the
new files (as shown in figure 10.8), make sure that you add the files to the target
of your iOS application.

Figure 10.8 Adding the library to the Xcode project
www.it-ebooks.info

http://www.it-ebooks.info/

297Writing iOS apps with ObjectiveCMIS
6 The ObjectiveCMIS universal library has been added, and you can verify that the
static library is available. Open the Target Summary view for your mobile appli-
cation and find libObjectiveCMIS.a as a linked library, as shown in figure 10.9.

7 Finally, you’ll need to set the flags -ObjC -all_load in the Other Linker Flags
setting available in the Target Build Settings (see figure 10.10). The -ObjC flag
must be set because ObjectiveCMIS uses categories. The flag -all_load must
be set to work around a linker bug in iOS applications (see Apple’s Technical
Q&A QA1490 for complete details—http://developer.apple.com/library/
mac/#qa/qa1490/_index.html).

Figure 10.9 Verifying that the static library is available
www.it-ebooks.info

http://developer.apple.com/library/mac/#qa/qa1490/_index.html
http://developer.apple.com/library/mac/#qa/qa1490/_index.html
http://www.it-ebooks.info/

298 CHAPTER 10 Building mobile apps with CMIS
That’s it! The ObjectiveCMIS library has been incorporated into your project and you
can now begin using ObjectiveCMIS!

Using ObjectiveCMIS in an Xcode workspace
You’ve seen the first option for making the ObjectiveCMIS library available to your
iOS application. Now let’s take a look at the second option, which is to add the entire
ObjectiveCMIS source code project to your Xcode project. Xcode then builds
ObjectiveCMIS and its dependencies when it builds your project. The advantage to
this approach is that it gives you full access to the ObjectiveCMIS source code and any
other files and projects added to the workspace. The disadvantage is that the
ObjectiveCMIS project will be built more often than you might prefer, and it requires
some additional configuration that isn’t required for the first option.

 For our purposes, the positives outweigh the negatives, so if you’re following
along, go ahead and incorporate ObjectiveCMIS into your workspace. To do that, fol-
low these steps:

1 Open or create a workspace with your existing project. If you don’t know about
Xcode workspaces, Apple provides excellent documentation in the iOS Devel-
oper Library. Go to http://developer.apple.com/library/ios and search for
workspaces.

2 Add the ObjectiveCMIS Xcode project to your workspace by adding the
ObjectiveCMIS Xcode project file, ObjectiveCMIS.xcodeproj. ObjectiveCMIS

Figure 10.10 Setting the Other Linker Flags in build settings
www.it-ebooks.info

http://developer.apple.com/library/ios
http://www.it-ebooks.info/

299Writing iOS apps with ObjectiveCMIS
should be added to the workspace as a sibling project to your other Xcode proj-
ects. Figure 10.11 shows the project navigator pane with ObjectiveCMIS and
another Xcode project.

3 Add the libObjectiveCMIS.a library from the workspace, so that it’s a linked
library. After linking libObjectiveCMIS.a, the library should now be in your list
of linked frameworks and libraries, as shown in figure 10.12.

Figure 10.11 ObjectiveCMIS
added to a workspace

Figure 10.12 Summary view showing ObjectiveCMIS as a linked library
www.it-ebooks.info

http://www.it-ebooks.info/

300 CHAPTER 10 Building mobile apps with CMIS
4 Configure the settings User Header Search Paths and Other Linker Flags in the
Target Build Settings for the mobile application. You must configure these set-
tings so that the target is able to locate the ObjectiveCMIS public headers.
 Configure the User Header Search Paths setting with value $(BUILT_

PRODUCTS_DIR), and make sure to check the recursive flag, as shown in
figure 10.13.

 Set Other Linker Flags by adding the following flags: -ObjC –all_load.
These flags are required. Figure 10.14 shows the setting correctly configured.

Figure 10.13 Setting User Header Search Paths

Figure 10.14 Setting Other Linker Flags
www.it-ebooks.info

http://www.it-ebooks.info/

301Writing iOS apps with ObjectiveCMIS
CAN’T GET OBJECTIVECMIS TO BUILD? If you encounter a problem where
ObjectiveCMIS fails to build, try updating the project scheme for the target
that you’re building so that the ObjectiveCMIS build target is explicitly built
before your application is built.

Well done! If you’ve made it this far, you’ve successfully incorporated ObjectiveCMIS
into your workspace. Now other targets within the workspace can leverage the
ObjectiveCMIS library.

GENERATING THE OBJECTIVECMIS DOCUMENTATION

ObjectiveCMIS provides the capability to output Apple-like source code documenta-
tion that’s fully indexed and browsable as an Xcode documentation set. That’s
because the ObjectiveCMIS project has a Documentation build target. However, if you
want to generate the documentation, you must have the appledoc tool installed and
available on your path. You can find instructions from the appledoc home page on
GitHub at https://github.com/tomaz/appledoc.

 It’s probably a good idea to generate the documentation so you can use it later
when you build The Blend’s mobile application. Here’s how:

1 If you don’t have appledoc installed, download and install appledoc from
GitHub as mentioned previously.

2 Run the Documentation target available in the ObjectiveCMIS Xcode project.
3 Once the Documentation target build completes, open the Xcode documenta-

tion and you should see the ObjectiveCMIS documentation, as shown in fig-
ure 10.15.

Figure 10.15 Browsing ObjectiveCMIS documentation in Xcode
www.it-ebooks.info

https://github.com/tomaz/appledoc
http://www.it-ebooks.info/

302 CHAPTER 10 Building mobile apps with CMIS
Great! You’ve got the library set up in your Xcode workspace, and you have some doc-
umentation to refer to. You’re now ready to begin developing a CMIS-based mobile
app for iOS.

10.2.4 Using ObjectiveCMIS

Now that you’ve incorporated ObjectiveCMIS into your project, let’s see how you can
use ObjectiveCMIS to do something simple, like grabbing a session and retrieving a
folder. Then we’ll knock out the application.

CREATING A CMISSESSION

As discussed earlier in the section, the CMISSession object is the main entry point to
interacting with a CMIS repository, just as it is in OpenCMIS. To create a CMIS-
Session, you must first provide session parameters for the session. The next listing
shows a simple scenario of setting up a CMISSession for the AtomPub binding.

CMISSessionParameters *sessionParams = [[CMISSessionParameters alloc]
initWithBindingType:CMISBindingTypeAtomPub];

sessionParams.atomPubUrl =
[NSURL URLWithString:@"http://localhost:8080/service/atom"];

sessionParams.username = @"bogusUser";
sessionParams.password = @"bogusPassword";
sessionParams.repositoryId = @"repo1";

[CMISSession connectWithSessionParameters:sessionParams completionBlock:

^(CMISSession *session, NSError *error)
{

if (nil == session)
{

// Error during authentication, handle gracefully
if (error) {

NSLog(@"Failed to connect the session");
}

}
else
{

// CMIS Session successfully connected
self.cmisSession = session;

}
}];

/

Once you’ve got a session, you’re standing in the CMIS hotel lobby (remember that
analogy from chapter 9?). With what you know already, together with the documenta-
tion, you’re probably good to go, but before building the app, let’s look at the differ-
ences between the ObjectiveCMIS Object API and Binding API. Let’s see how
retrieving a folder and iterating over its children differs between the two.

Listing 10.3 Setting up a CMISSession for the AtomPub binding

Set up
session
parameters

Connect using
those session

parameters

Successfully
connected; store
session for later use
www.it-ebooks.info

http://www.it-ebooks.info/

303Writing iOS apps with ObjectiveCMIS
RETRIEVING A FOLDER

Let’s use ObjectiveCMIS to grab a folder and iterate over its children using the two
different client APIs available in ObjectiveCMIS: the Object API and the Binding API.
For both examples, assume that the CMISSession object you instantiated in listing
10.3 has been authenticated successfully and is still valid.

Object API
Using the Object API to get a folder is straightforward. Use retrieveObject on the
CMISSession object. Once you have a handle on the CMISFolder, you can use the
Object API to retrieve the folder’s children, as shown in the next listing.

NSString *folderId = <some folder ObjectId>

[self.cmisSession retrieveObject:folderId completionBlock:
^(CMISObject *object, NSError *error)
{

if (nil == object) {
// Handle Error

}
else {

// Folder successfully retrieved, do something
CMISFolder *aFolder = (CMISFolder *)object;
[aFolder retrieveChildrenWithCompletionBlock:
^(CMISPagedResult *result, NSError *error)
{

if (nil == result) {
// Handle error

}
else {

for (CMISObject *childObject in result.resultArray)
{

// retrieveChildren completion block
}

}
}];

}
}];
/

Binding API
Now let’s see how you’d retrieve the same folder object using the Binding API. The
Binding API deals with each of the CMIS services you learned about in chapter 2, so to
get a folder and iterate over its children, the first step is to use the getObject service
available on the Object Services to retrieve the folder object. The second step is to call
getChildren on the Navigation Services to retrieve the children objects for the speci-
fied folder, shown next.

Listing 10.4 Getting the children of a folder

Retrieve
specified
object

Cast object to
a CMISFolder

Iterate
over paged
result set
www.it-ebooks.info

http://www.it-ebooks.info/

304 CHAPTER 10 Building mobile apps with CMIS
void (^listChildrenObjects)(CMISObjectData *objectData,
NSError *error) =

^(CMISObjectData *objectData, NSError *error)
{

if (nil == objectData) {
// Handle error gracefully
return;

}

[self.cmisSession.binding.navigationService
retrieveChildren:objectData.identifier
orderBy:nil
filter:nil
relationships:CMISIncludeRelationshipNone
renditionFilter:nil
includeAllowableActions:NO
includePathSegment:NO
skipCount:0
maxItems:nil
completionBlock:^(CMISObjectList *objectList, NSError *error) {

if (nil == objectList) {
// Handle Error state
return;

}

for (CMISObjectData *childObjectData in
objectList.objects) {

// Do something with the children
}

}];
};

[self.cmisSession.binding.objectService retrieveObject:folderId//
filter:nil

relationships:CMISIncludeRelationshipNone
includePolicyIds:NO
renditionFilder:nil
includeACL:NO
includeAllowableActions:NO
completionBlock:listChildrenObjects];

/

That example was very basic, but it gives you a feel for the two APIs available in
ObjectiveCMIS. It’s time to move on to something a little more involved. You’ll add an
iOS app to The Blend.

Listing 10.5 Using the Binding API to retrieve the children objects of a specific folder

Create a completion block
named
listChildrenObjects that
will list children objects.

Call the retrieveChildren
(getChildren) method
from within the
listChildrenObjects
completion block.

Iterate over the
children objects in
the completion block
for RetrieveChildren.

Retrieve the specified
object and provide the

listChildrenObjects
completion block.
www.it-ebooks.info

http://www.it-ebooks.info/

305Writing iOS apps with ObjectiveCMIS
10.2.5 Try it—writing an iOS application
to capture new tracks for The Blend

Alright, it’s time for a real-world example. Suppose that the artists using The Blend to
create, share, and remix audio, video, and other artwork are happy, but they’d like
more options to capture content and load it into the repository. Specifically, they want
to be able to use their iPhones and iPads to record music or even cool sounds while
they’re out and about.

 Let’s take everything that you learned in this section and put it into action by creat-
ing a mobile application for The Blend’s users. As luck would have it, some kind soul
has created an audio capture application called “Blend Capture” and made it avail-
able as open source. But it isn’t CMIS-aware. So we’ll take that app and enhance it so
that after a user captures audio on their mobile device, they can easily upload it to the
CMIS repository used by The Blend. Sound cool? We think so too.

 Before we begin, you must have The Blend web application and the InMemory
Repository running on Tomcat. If you followed along in chapter 6, you’re already
good to go. If not, flip back to that chapter, get the base web application and reposi-
tory working, and then come back.

DON’T FORGET TO RELOAD YOUR TEST DATA! Remember that the InMemory
Repository loses its data every time Tomcat restarts, so before you continue
you might need to reload the test data. See chapter 6 if you forget how to do
that.

For the remainder of this section, we’ll assume that the InMemory CMIS Repository is
running on the same ports you set up in chapter 6. As a reminder, the InMemory
Repository should be available at http://localhost:8081/inmemory/ and The Blend
web application is available at http://localhost:8080/the-blend/.

GETTING STARTED WITH THE BLEND CAPTURE XCODE PROJECT

Let’s begin by opening up the Xcode workspace for the Blend Capture mobile appli-
cation. To do that, follow these steps:

1 Unzip BlendCapture.zip to $IOS_DEV_HOME. After extracting the archive, you
should find the folder $IOS_DEV_HOME/BlendCapture.

2 Open the Xcode workspace file found at $IOS_DEV_HOME/BlendCapture/
BlendCaptureWorkspace.xcworkspace.

3 Xcode should now launch with the Blend Capture workspace and project avail-
able. The Xcode workspace will look like figure 10.16.

Now that you have the project open, you can see that the project uses Apple’s AV
Foundation framework for the audio capture and playback capabilities. The audio is
captured using the AAC encoding, as the MP3 encoding is not available out of the box
on iOS. As you look through the project, you’ll see that the application is very sim-
ple—it’s an iPhone application with a single view, nothing more.
www.it-ebooks.info

http://www.it-ebooks.info/

306 CHAPTER 10 Building mobile apps with CMIS
Go ahead and run the Blend Capture application in
the iOS simulator. If everything builds successfully,
your simulator should look like the one shown in
figure 10.17.

 Go ahead and play with the application. You
should find that it’s a very simple audio recorder that
can play back the audio it most recently captured.

USING OBJECTIVECMIS TO EXTEND BLEND CAPTURE

Great! Now that you’ve explored the project and
tested the application in the simulator, it’s time to
enhance the application so that it exposes the ability
for the user to upload captured audio to The Blend’s
CMIS repository. You’ll do the following:

 Incorporate ObjectiveCMIS into the project or
workspace.

 Update the application so that it provides the
user the ability to upload the audio that has
been captured. You’ll use ObjectiveCMIS to
do the upload.

Figure 10.16 Blend Capture workspace and project

Figure 10.17 Blend Capture
application running in the iOS
simulator
www.it-ebooks.info

http://www.it-ebooks.info/

307Writing iOS apps with ObjectiveCMIS
Incorporating ObjectiveCMIS
ObjectiveCMIS is a dependency for your project. You can either incorporate it using
the same steps you followed earlier in section 10.2.3, or you can include ObjectiveC-
MIS as a workspace project.

 If you want to include ObjectiveCMIS as a workspace project, follow these steps:

1 Add the ObjectiveCMIS Xcode project to the workspace so that it’s a sibling
project to the Blend Capture project.

2 Add the Objective CMIS static library to the Blend Capture as a linked static
library.

3 Update the User Header Search Paths setting so that it searches the
$(BUILT_PRODUCTS_DIR) path recursively.

4 Add the flags -ObjC –all_load to the Other Linker Flags.

Enhancing Blend Capture to upload captured audio
Let’s now go ahead and update the Blend Capture application so that it can be used
to upload audio to The Blend application using ObjectiveCMIS. To provide this func-
tionality, you’ll need to add a new button to the view. This new button, when pressed,
will attempt to upload the captured audio to the path /blend/Unsorted.

 The following steps will walk you through the implementation:

1 Add a new UIButtonIBOutlet named uploadButton that has an IBAction
linked to –(IBAction)uploadButtonPressed.

2 Update the nib file for the view controller by
adding a new UIButton with the text Upload
to The Blend, and then use interface
builder to wire up the new IBOutlet and
IBAction defined in the previous step. Thus,
when the new UIButton receives a touch
event, the IBAction -uploadButtonPressed
will be messaged. The updated nib should
look similar to figure 10.18.

Now that the view and view controller are wired up,
you can implement the upload logic that will allow
you to upload the captured audio to the CMIS
server used by The Blend. Begin by initializing a
CMISSession and retrieving the cmis:objectId for
the folder /blend/Unsorted. The folder /blend/
Unsorted will be the default location to which you
upload the captured audio. The following listing
implements this requirement in the viewDidLoad
method of the view controller.

Figure 10.18 Updated view showing
The Blend upload button
www.it-ebooks.info

http://www.it-ebooks.info/

308 CHAPTER 10 Building mobile apps with CMIS
CMISSessionParameters *sessionParams = [[CMISSessionParameters alloc]
initWithBindingType:CMISBindingTypeAtomPub];

sessionParams.atomPubUrl =
[NSURL URLWithString:@"http://localhost:8081/inmemory/atom"];

sessionParams.repositoryId = @"A1";

[CMISSession connectWithSessionParameters:sessionParams completionBlock
^(CMISSession *session, NSError *error)
{

if (nil == session)
{

// Handle Error
if (error) {

NSLog(@"Failed to connect session - %@",
error.localizedDescription);

}
}
else
{

self.cmisSession = session;

// Authentication Success!
[self.cmisSession retrieveObjectByPath:@"/blend/Unsorted"

completionBlock:
^(CMISObject *object, NSError *error)
{

if (nil == object)
{

if (error) {
NSLog(

@"Failed to retrieve Folder Object by path: %@",
error.localizedDescription);

}
}
else
{

self.uploadFolderId = object.identifier;
}

}];
}

}];
/

Now that you have the cmis:objectId for the Unsorted folder, you can implement
the upload logic for the newly added UIButton. The upload logic should be imple-
mented in the uploadButtonPressed IBAction method. The next listing shows an
implementation of the upload logic using the ObjectiveCMIS object-oriented API.

Listing 10.6 Determining the objectId of the target folder for the upload

Create
session
parameters
object

Initialize and
authenticate
CMISSession

Retrieve cmis:objectId
for the folder at
path /blend/Unsorted

Successfully retrieved
folder for path /blend/
Unsorted; store
cmis:objectId for later
www.it-ebooks.info

http://www.it-ebooks.info/

309Writing iOS apps with ObjectiveCMIS
- (void)uploadButtonPressed
{

// Helper block to enable all buttons
void (^reenableButtonsBlock)() = ^()
{

... snip ...
};

void (^completionBlock)(NSString *objectId, NSError *error) =
^(NSString *objectId, NSError *error)
{

if (nil == objectId)
{

self.messageLabel.text = @"Upload Failed";
}
else
{

self.messageLabel.text = @"Upload Success";
}

reenableButtonsBlock();
};

// Disable and hide all buttons while upload is in progress
... snip ...

// Update the message to inform the user
// that an upload is in progress.
self.messageLabel.text = @"Upload in Progress...";

NSString *documentName =
[NSString stringWithFormat:@"audio-captured-%f.aac",
[[NSDate date] timeIntervalSince1970]];

NSMutableDictionary *documentProperties =
[NSMutableDictionary dictionary];

[documentProperties setObject:documentName forKey:@"cmis:name"];
[documentProperties setObject:@"cmis:document"

forKey:@"cmis:objectTypeId"];

[self.cmisSession
createDocumentFromFilePath:self.capturedAudioFilePath
mimeType:@"audio/aac"
properties:documentProperties
inFolder:self.uploadFolderId
completionBlock:completionBlock
progressBlock:NULL];

}
/

Listing 10.7 Upload logic

Upload
completion

block

Generate
cmis:name for
the uploaded
audio file

Set name
and

objectType
for the

document
being

created Create
document
www.it-ebooks.info

http://www.it-ebooks.info/

310 CHAPTER 10 Building mobile apps with CMIS
Now that you’ve enhanced the Blend Capture mobile application, test it against your
CMIS repository used by The Blend. (If you weren’t able to successfully enhance the
Blend Capture mobile application, you can find an enhanced working version of the
mobile application in the archive BlendCaptureEnhanced.zip).

 To test it, follow these steps:

1 Capture some audio that you want to upload to The Blend.
2 Upload the audio to The Blend.
3 Open The Blend web application and navigate to the Unsorted directory.
4 If the upload was successful, you should find a new audio file in the Unsorted

directory. Figure 10.19 shows two audio files that were captured and uploaded
by the Blend Capture mobile application.

In this section, you learned about ObjectiveCMIS, the new CMIS library for Objective-
C and iOS. You should now have a fundamental overview of and the basic know-how
for developing iOS applications using ObjectiveCMIS.

10.3 Summary
Android and iOS are the two dominant mobile platforms today. Regardless of which
one is right for your solution, you saw in this chapter that applications on each plat-
form can work with CMIS repositories. You saw that, in both cases, the libraries are

Figure 10.19 The two .aac files shown here were captured and uploaded by the Blend Capture iOS
application.
www.it-ebooks.info

http://www.it-ebooks.info/

311Summary
fairly close ports of OpenCMIS, so a lot of what you’ve learned about OpenCMIS in
earlier chapters applies to OpenCMIS for Android and for ObjectiveCMIS.

 In the Android section, you saw that you can easily develop Android applications
directly in Eclipse with minimal setup. These are the keys to success with OpenCMIS
for Android:

 Use intents to share the CMIS session.
 Use a background thread to execute OpenCMIS code.
 Encapsulate your data in a higher-level object.

The iOS side is a little more involved in terms of setup and dependencies, and you
have to use Objective-C, which is not that difficult for people who already know Java or
C, but it requires a completely different toolchain. Hopefully, you saw that once you
make that adjustment, writing a CMIS application for iOS is very similar to writing a
Java application with OpenCMIS.

 This also concludes part 2 of the book and our client-side programming examples.
In part 3, we’ll turn our attention to more advanced topics like bindings, security, per-
formance considerations, and server-side implementations.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part 3

Advanced topics

In this part of the book, we’ll pick up the pace even further and take you
through some of the thornier issues of CMIS development. Because this section
is the most advanced, we’ll make further assumptions about the extent of your
technical background. You’ll see this in the brevity of our background explana-
tions for topics that are not specifically related to CMIS.

 This part will start with a peek under the covers as we look at the wire proto-
col in chapter 11 (CMIS bindings), followed by the often-overlooked subject of
security in chapter 12. In chapter 13, we’ll cover performance issues. Finally,
we’ll give you a tour of the major parts involved in building your own CMIS
server, leveraging OpenCMIS to make this process much easier, in chapter 14.

 You may not need this level of information right away, but we think you’ll
find it helpful to look over, and then you can come back to it when needed.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CMIS bindings
So far you’ve become acquainted with the CMIS domain model and with APIs for
several programming languages. But we haven’t yet shown you how CMIS clients
and CMIS repositories communicate with each other over the wire.

 A big part of the CMIS specification describes how the CMIS domain model is
mapped to the bytes that are transferred. These mappings are called bindings. CMIS
1.0 defines two bindings, the Web Services binding and the AtomPub binding; and
CMIS 1.1 adds a third, the Browser binding.

 The big advantage of using a CMIS library is that it hides most of the binding
details. You don’t need to know how your request is serialized into XML or JSON,
and you don’t need to know how to parse the response from the repository. Never-
theless, having a basic understanding of how the bindings work can help when
you’re debugging your application. It’s also necessary when you’re reading the fol-
lowing chapters about security and performance, because the different bindings
have different strengths and characteristics.

This chapter covers
 The CMIS bindings: Web Services, AtomPub, and Browser

 Capturing CMIS traffic

 CMIS schema
315

www.it-ebooks.info

http://www.it-ebooks.info/

316 CHAPTER 11 CMIS bindings
 For this chapter, you need a basic understanding of XML and JSON. You should
also have some high-level understanding of HTTP, Web Services, SOAP, AtomPub,
HTML, and JavaScript.

GETTING THE SPECIFICATIONS If you haven’t done so yet, now is the time to
download the CMIS specifications:

 CMIS 1.0: http://docs.oasis-open.org/cmis/CMIS/v1.0/
 CMIS 1.1: http://docs.oasis-open.org/cmis/CMIS/v1.1/

The specification document is available in an HTML version and a PDF ver-
sion. The PDF version is the better choice because it contains a complete ren-
dering of the document, including diagrams. The specification also includes
schema files and a set of sample requests and responses for each binding.
They’re useful to have around as you read this chapter.

11.1 CMIS binding overview
Usually, the first question when we start talking about the bindings is, “Why are there
three bindings and not just one?” CMIS has been designed to work in enterprise envi-
ronments. It turned out to also work well in other scenarios—for example, over the
internet—but the design focus was on enterprise environments.

 Many companies invested in big and often expensive Web Services infrastructures
a few years ago. They want to, and sometimes have to, use features such as authentica-
tion, logging, and auditing that they have in place. To be accepted in such an environ-
ment, CMIS had to speak Web Services and tie into these existing IT landscapes.
Integrating a RESTful service into such an environment can be difficult, tedious, and
expensive.

11.1.1 The RESTful trend

In spite of this long history, there has been a trend over the last few years to move away
from Web Services and to use RESTful interfaces instead. CMIS also had to provide an
answer for environments that banned Web Services and their complexity. It’s debat-
able how RESTful the CMIS AtomPub binding is, but it follows REST principles and
the AtomPub specification. As a result, any AtomPub client can interact with a CMIS
repository. Today, the CMIS AtomPub binding is more popular than the Web Services
binding.

11.1.2 The need for JavaScript support

After CMIS 1.0 was released, applications of all kinds emerged; CMIS worked well for
desktop, mobile, and web applications. Only one scenario wasn’t covered by the two
bindings: consuming CMIS directly from a JavaScript application in a web browser
turned out to be very difficult. If you’ve ever tried using Web Services from a
JavaScript application, you know that it’s problematic and not a fun experience. The
AtomPub binding had two major issues. First, the XML parsers in some web browsers
had major difficulties with XML namespaces. Second, AtomPub works by walking
through links. For example, to get to the download link from a document, a client has
www.it-ebooks.info

http://docs.oasis-open.org/cmis/CMIS/v1.0/
http://docs.oasis-open.org/cmis/CMIS/v1.1/
http://www.it-ebooks.info/

317CMIS binding overview
to make several calls and follow the chain of links. Libraries like OpenCMIS avoid
most of the calls by caching those links, but doing that in a stateless JavaScript applica-
tion is a major effort and not a feasible approach.

CMIS 1.1 introduced the Browser binding for that reason. The Browser binding has
been tailored for JavaScript applications in web browsers. It uses JSON and HTML
forms for communication between application and repository. It turns out that this
binding is more efficient, faster, and easier to implement than the other two bindings
and has the potential to replace at least the AtomPub binding in the long run.

 A CMIS-compliant repository must expose the Web Services and AtomPub bind-
ings. Support for the Browser binding is optional, and it will take a while for most
repositories to expose this new binding.

 Before we dive into the details of each binding, let’s first look at the traffic
between a CMIS client and a CMIS repository. The next section explains how to cap-
ture the traffic.

11.1.3 Capturing CMIS traffic for inspection

The best way to get an impression of the CMIS bindings is to see them in action (as the
book title implies). Because all CMIS bindings are based on HTTP, any HTTP debug
proxy should be able to capture CMIS requests and responses as long as they aren’t
encrypted.

CAPTURE TOOLS If you don’t already have a favorite capture tool in your pro-
grammer’s toolbox, either of these will help you capture CMIS traffic:

 Fiddler (Windows)—www.fiddler2.com/fiddler2
 Charles (Windows, Mac OS, Linux)—www.charlesproxy.com

The CMIS client has to be configured to use the proxy. If you want to capture the traf-
fic to and from the CMIS Workbench, open the Workbench’s start script (workbench
.bat or workbench.sh, depending on your OS) in a text editor and add the following
parameters to the JAVA_OPTS environment variable:

-Dhttp.proxyHost=localhost -Dhttp.proxyPort=8888

The host and port values depend on your debug proxy setup. If you run the client and
the repository on the same machine, make sure you don’t use localhost as the host
name in the CMIS binding URL. Use the name of your machine or your IP address
instead. If you use localhost, the traffic isn’t routed through your proxy (although in
some cases you may find that localhost works).

 After the Workbench is properly configured, the debug proxy shows you all of its
HTTP requests and responses.

11.1.4 Try it—tracing requests from part 1

If you would like to dig in further for more detail, try rerunning any of the examples
from part 1 under your new trace configuration. While doing so, try to identify which
www.it-ebooks.info

http://www.it-ebooks.info/

318 CHAPTER 11 CMIS bindings
API call maps to which HTTP call. Try changing the binding in the example, and see
the differences across the wire.

 The OpenCMIS client library can also log all URLs it calls when the log level is set
to DEBUG. In the Workbench, you can see the log and change the log level by clicking
the Log button on the toolbar. Doing so opens a log window with a drop-down menu
at the bottom where you can change the log level. Try copying the logged URLs and
opening them in a web browser.

 If you don’t want to set up a debug proxy, you can also use the request-recording
facility of the InMemory Repository. Open the InMemory start script (run.bat or
run.sh) in a text editor, and find this parameter:

-Dcmis.server.record=false

Change the value to true, and restart the server.
 Doing so creates a directory named record in the server directory. Each request or

response from this point on is written to a separate file in that location. The InMemory
server applies some XML and JSON formatting on output, so these files don’t exactly
reflect what is sent over the wire. But the formatted files are easier to read than the real
(raw) traffic.

 The next sections explain in more detail what you’ll observe in that output.

11.2 A close look at the three bindings
For space considerations, we can’t cover all aspects of the three CMIS bindings in this
book. That would require a full book itself. But the following sections provide the
basics and entry points that will make you familiar enough to solve most problems.
Note that each subsection gives you an example of what that binding looks like over
the wire. Refer to the CMIS specification for the full normative details.

11.2.1 The Web Services binding

The Web Services binding is what you probably expected. It maps CMIS operations
directly to SOAP calls.

 This binding covers the entire CMIS specification. That is, everything defined in
the specification can be done with this binding. In addition to the operation parame-
ters defined in the specification, some operations have an extra extension parameter.
This parameter lets you send and receive extra, repository-specific data. The other
bindings have different means to add extra data. There’s also a way to add binding-
agnostic extensions. We’ll explain those when we talk about the CMIS schema a bit
later in this chapter.

THE NINE WEB SERVICES AND ASSOCIATED WSDL The CMIS specification divides
all operations into nine different services. This is reflected in the CMIS Web
Services Description Language (WSDL; www.w3.org/TR/wsdl). For these ser-
vices, nine different endpoints are defined. For the sake of simplicity, most
repositories have only one WSDL that consolidates all these services, but a few
have one WSDL per service.
www.it-ebooks.info

www.w3.org/TR/wsdl
http://www.it-ebooks.info/

319A close look at the three bindings
MTOM ENCODING

All communications using the CMIS Web Services binding must be Message Transmis-
sion Optimization Mechanism (MTOM) encoded. MTOM (www.w3.org/TR/soap12-
mtom/) defines how binary data is attached to SOAP messages. The CMIS specifica-
tion defines that MTOM must also be used for operations and services that don’t
transport content.

 Web Services tools should be able to generate stubs from the CMIS WSDL, but in
some cases you have to manually enable MTOM support for all operations. If you’re
familiar with SOAP and Web Services, there shouldn’t be any surprises, except for the
following: Many Web Services toolkits aren’t designed to handle big messages that
contain content and may load them into main memory. That can be fatal if the docu-
ment you want to send or receive is bigger than available memory or if the toolkit dis-
cards the request due to its size. Libraries like OpenCMIS are crafted to avoid loading
messages to main memory and can handle documents of arbitrary size when this bind-
ing is used.

EXCEPTIONS IN WEB SERVICES

SOAP faults indicate CMIS exceptions. They must include the type of the exception
and a message. They also contain an error code (a number), which is repository-
specific and not used by many repositories. The exception types map to the exception
types in the CMIS domain model and consequently map to Java exceptions in Open-
CMIS and .NET exceptions in DotCMIS.

 One of the biggest challenges with the Web Services binding is user authentica-
tion. We’ll cover that in chapter 12, because it’s a subject worthy of deeper discussion.

EXAMPLE OF A GETOBJECTS RESPONSE OVER THE WIRE

Listing 11.1 shows a complete example of a typical getObjects call to retrieve a docu-
ment. Note that we inserted lots of extra page breaks to accommodate book format-
ting restrictions, so you can ignore those. Remember that these responses can be void
of any line breaks in their raw transmitted form. As you examine the listing, note the
length of these XML responses for comparison to the length of the JSON responses
you’ll see later.

<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Body>
<ns2:getObjectResponse
xmlns="http://docs.oasis-open.org/ns/cmis/core/200908/"
xmlns:ns2="http://docs.oasis-open.org/ns/cmis/messaging/200908/">

<ns2:object>
<properties>

<propertyBoolean
queryName="cmis:isLatestMajorVersion"
displayName="Is Latest Major Version"
localName="cmis:isLatestMajorVersion"

Listing 11.1 Example of an XML response for a typical getObjects request

Object’s
properties are
listed starting

here
www.it-ebooks.info

www.w3.org/TR/soap12-mtom/
http://www.it-ebooks.info/

320 CHAPTER 11 CMIS bindings
propertyDefinitionId="cmis:isLatestMajorVersion">
<value>true</value>

</propertyBoolean>
<propertyInteger queryName="cmis:contentStreamLength"
displayName="Content Length"
localName="cmis:contentStreamLength"
propertyDefinitionId="cmis:contentStreamLength">

<value>395</value>
</propertyInteger>
<propertyString queryName="cmis:contentStreamId"
displayName="Stream Id" localName="cmis:contentStreamId"
propertyDefinitionId="cmis:contentStreamId"/>

<propertyId queryName="cmis:objectTypeId"
displayName="Type-Id" localName="cmis:objectTypeId"
propertyDefinitionId="cmis:objectTypeId">

<value>cmisbook:text</value>
</propertyId>
<propertyString
queryName="cmis:versionSeriesCheckedOutBy"
displayName="Checked Out By"
localName="cmis:versionSeriesCheckedOutBy"
propertyDefinitionId="cmis:versionSeriesCheckedOutBy"/>

<propertyId queryName="cmis:versionSeriesCheckedOutId"
displayName="Checked Out Id"
localName="cmis:versionSeriesCheckedOutId"
propertyDefinitionId="cmis:versionSeriesCheckedOutId"/>

<propertyString queryName="cmisbook:author"
displayName="Author" localName="author"
propertyDefinitionId="cmisbook:author"/>

<propertyString queryName="cmis:name" displayName="Name"
localName="cmis:name" propertyDefinitionId="cmis:name">

<value>welcome.txt</value>
</propertyString>
<propertyString queryName="cmis:contentStreamMimeType"
displayName="Mime Type"
localName="cmis:contentStreamMimeType"
propertyDefinitionId="cmis:contentStreamMimeType">

<value>text/plain</value>
</propertyString>
<propertyId queryName="cmis:versionSeriesId"
displayName="Version Series Id"
localName="cmis:versionSeriesId"
propertyDefinitionId="cmis:versionSeriesId">

<value>162</value>
</propertyId>
<propertyDateTime queryName="cmis:creationDate"
displayName="Creation Date"
localName="cmis:creationDate"
propertyDefinitionId="cmis:creationDate">

<value>2012-11-17T19:21:04.169Z</value>
</propertyDateTime>
<propertyString queryName="cmis:changeToken"
displayName="Change Token"
localName="cmis:changeToken"
propertyDefinitionId="cmis:changeToken">

MIME type of content
on this document is

text/plain
www.it-ebooks.info

http://www.it-ebooks.info/

321A close look at the three bindings
<value>1353180064169</value>
</propertyString>
<propertyString queryName="cmis:versionLabel"
displayName="Version Label"
localName="cmis:versionLabel"
propertyDefinitionId="cmis:versionLabel">

<value>V 1.0</value>
</propertyString>
<propertyBoolean queryName="cmis:isLatestVersion"
displayName="Is Latest Version"
localName="cmis:isLatestVersion"
propertyDefinitionId="cmis:isLatestVersion">

<value>true</value>
</propertyBoolean>
<propertyBoolean
queryName="cmis:isVersionSeriesCheckedOut"
displayName="Checked Out"
localName="cmis:isVersionSeriesCheckedOut"
propertyDefinitionId="cmis:isVersionSeriesCheckedOut">

<value>false</value>
</propertyBoolean>
<propertyString queryName="cmis:lastModifiedBy"
displayName="Modified By"
localName="cmis:lastModifiedBy"
propertyDefinitionId="cmis:lastModifiedBy">

<value>system</value>
</propertyString>
<propertyString queryName="cmis:createdBy"
displayName="Created By" localName="cmis:createdBy"
propertyDefinitionId="cmis:createdBy">

<value>system</value>
</propertyString>
<propertyString queryName="cmis:checkinComment"
displayName="Checkin Comment"
localName="cmis:checkinComment"
propertyDefinitionId="cmis:checkinComment"/>

<propertyId queryName="cmis:objectId"
displayName="Object Id"
localName="cmis:objectId"
propertyDefinitionId="cmis:objectId">

<value>161</value>
</propertyId>
<propertyBoolean queryName="cmis:isMajorVersion"
displayName="Is Major Version"
localName="cmis:isMajorVersion"
propertyDefinitionId="cmis:isMajorVersion">

<value>true</value>
</propertyBoolean>
<propertyBoolean queryName="cmis:isImmutable"
displayName="Immutable" localName="cmis:isImmutable"
propertyDefinitionId="cmis:isImmutable">

<value>false</value>
</propertyBoolean>
<propertyId queryName="cmis:baseTypeId"
displayName="Base-Type-Id" localName="cmis:baseTypeId"
www.it-ebooks.info

http://www.it-ebooks.info/

322 CHAPTER 11 CMIS bindings
propertyDefinitionId="cmis:baseTypeId">
<value>cmis:document</value>

</propertyId>
<propertyString queryName="cmis:contentStreamFileName"
displayName="File Name"
localName="cmis:contentStreamFileName"
propertyDefinitionId="cmis:contentStreamFileName">

<value>welcome.txt</value>
</propertyString>
<propertyDateTime queryName="cmis:lastModificationDate"
displayName="Modification Date"
localName="cmis:lastModificationDate"
propertyDefinitionId="cmis:lastModificationDate">

<value>2012-11-17T19:21:04.169Z</value>
</propertyDateTime>

</properties>
<allowableActions>

<canDeleteObject>true</canDeleteObject>
<canUpdateProperties>true</canUpdateProperties>
<canGetFolderTree>false</canGetFolderTree>
<canGetProperties>true</canGetProperties>
<canGetObjectRelationships>false
</canGetObjectRelationships>

<canGetObjectParents>true</canGetObjectParents>
<canGetFolderParent>false</canGetFolderParent>
<canGetDescendants>false</canGetDescendants>
<canMoveObject>true</canMoveObject>
<canDeleteContentStream>true</canDeleteContentStream>
<canCheckOut>true</canCheckOut>
<canCancelCheckOut>false</canCancelCheckOut>
<canCheckIn>false</canCheckIn>
<canSetContentStream>false</canSetContentStream>
<canGetAllVersions>true</canGetAllVersions>
<canAddObjectToFolder>true</canAddObjectToFolder>
<canRemoveObjectFromFolder>true
</canRemoveObjectFromFolder>

<canGetContentStream>true</canGetContentStream>
<canApplyPolicy>false</canApplyPolicy>
<canGetAppliedPolicies>false</canGetAppliedPolicies>
<canRemovePolicy>false</canRemovePolicy>
<canGetChildren>false</canGetChildren>
<canCreateDocument>false</canCreateDocument>
<canCreateFolder>false</canCreateFolder>
<canCreateRelationship>false</canCreateRelationship>
<canDeleteTree>false</canDeleteTree>
<canGetRenditions>false</canGetRenditions>
<canGetACL>false</canGetACL>
<canApplyACL>false</canApplyACL>

</allowableActions>
<acl>

<permission>
<principal>

<principalId>anyone</principalId>
</principal>
<permission>cmis:all</permission>

Allowable actions
for the document
www.it-ebooks.info

http://www.it-ebooks.info/

323A close look at the three bindings
<direct>true</direct>
</permission>

</acl>
<policyIds/>

</ns2:object>
</ns2:getObjectResponse>

</S:Body>
</S:Envelope>

11.2.2 The AtomPub binding

The AtomPub binding is built on the AtomPub specification (http://tools.ietf.org/
html/rfc5023). AtomPub was mainly designed for publishing and simple editing of
resources. The CMIS specification extends AtomPub to support features like hierar-
chies, versioning, renditions, permissions, and so on.

 The AtomPub binding follows the REST paradigm by using the HTTP methods GET,
POST, PUT, and DELETE in the following manner:

 GET requests fetch data.
 POST requests create new objects.
 PUT requests update data and objects.
 DELETE requests remove objects.

This binding covers most of the CMIS specification. Note, though, that it doesn’t sup-
port the createDocumentFromSource operation. Other unsupported operations such
as getRenditions are implicitly covered by getObject. There are also a few values this
binding doesn’t return. If you need details, refer to the AtomPub section in the offi-
cial CMIS specification. The operation applyACL works slightly different from the
description in the CMIS domain model; we’ll cover the details in chapter 12. The spec-
ification also doesn’t define how the filename (cmis:contentStreamFileName) can be
set with this binding when a document is created. OpenCMIS and DotCMIS add an
extra <filename> tag to the document creation request. Note that this isn’t part of the
CMIS standard but is understood by all OpenCMIS-based servers.

EXCEPTIONS IN ATOMPUB

Exceptions are expressed by HTTP status codes. Unfortunately, some exceptions share
the same status code. For example, a constraint exception and a versioning exception
aren’t distinguishable by a CMIS client. Therefore, the OpenCMIS server framework
sends additional information that clients can use to figure out the right exception
type. This isn’t part of the CMIS standard, but the OpenCMIS and the DotCMIS client
libraries interpret this additional information, if they’re present; thus, this is more of a
recommendation at this point.

THE ATOMPUB SERVICE DOCUMENT AND URL TEMPLATES

The entry point for CMIS clients is the service document. This XML document lists all
available repositories, describes their capabilities, and provides URLs and URL tem-
plates for Atom collections, feeds, and entries. A CMIS client can navigate from here,
www.it-ebooks.info

http://tools.ietf.org/html/rfc5023
http://tools.ietf.org/html/rfc5023
http://www.it-ebooks.info/

324 CHAPTER 11 CMIS bindings
for example, to the root folder or the types collection. The URL templates allow cli-
ents to directly access the Atom entry of a CMIS object by its ID or its path.

 Let’s assume the URL template to get an object by ID looks like this:

http://example.com/repository/id?id={id}&filter={filter}
&includeAllowableActions={includeAllowableActions}
&includeACL={includeACL}
&includePolicyIds={includePolicyIds}
&includeRelationships={includeRelationships}
&renditionFilter={renditionFilter}

The parts in curly brackets have to be replaced by the client with parameter values. If
a client doesn’t provide a value for a parameter (that is, it sends an empty string), the
repository has to assume the default value for this parameter, which is defined in the
specification.

 Let’s look at a specific example. To select the document with the object ID 123456
with all default parameter values, the client must generate this URL:

http://example.com/repository/id?id=123456
&filter=&includeAllowableActions=&includeACL=&
includePolicyIds=&includeRelationships=&renditionFilter=

The repository returns an Atom entry with the details of this document. (See the
example in listing 11.2.)

ATOMPUB LINKS

Most CMIS operations aren’t directly accessible from the service document. For exam-
ple, to access the content of a document, the client must first get the document’s
Atom entry. The Atom entry contains a link to the content. What this content link
looks like is repository-specific and can’t be guessed by the client (and therefore must
be treated by clients as opaque). That is, two HTTP calls are necessary to access the
content. Libraries like OpenCMIS cache these links and drastically reduce the num-
ber of repeat calls to the repository.

 If you know AtomPub, you’re already familiar with CMIS requests and responses.
You’ll notice a few additional CMIS-specific links, though. You can look them up in the
specification, but most of them are self-explanatory. You might also notice the XML
namespace http://docs.oasis-open.org/ns/cmis/restatom/200908/, which is
often used with the namespace prefix cmisra. XML tags with this namespace encapsu-
late CMIS-specific data structures, which are defined in the CMIS XML schema. We’ll
talk about this schema a bit later in this chapter.

CRUD OPERATIONS (CREATE, READ, UPDATE, AND DELETE)
To update properties or delete an object, the client has to get the Atom entry and use
the URL of the self link in the entry to make an HTTP PUT (or, respectively, an HTTP
DELETE) request. The payload of the HTTP PUT request is an Atom entry that contains
all the properties that should be updated.

 To create an object, the client must send an HTTP POST request either to the URL
of the prospective parent folder or to the Unfiled Collection if the object shouldn’t be
www.it-ebooks.info

http://www.it-ebooks.info/

325A close look at the three bindings

eb
s
/2005/
2007/
(http://

is/
spaces

A

atom

ect
re
ts
es
filed. (You can find the URL of the Unfiled Collection in the service document.) The
payload of the HTTP POST request is an Atom entry that describes the new object. If
the object is a document, the content can optionally be embedded as a Base64-
encoded string into this entry to prevent the need for a second PUT request dedicated
to sending the binary content.

 Clients and repositories can extend an Atom entry with additional data that is spec-
ified neither in Atom nor in the CMIS specification. For example, a repository could
expose a link in an Atom entry to a feature that is repository-specific. If a client or a
repository doesn’t understand such an extension, it should ignore it. We’ll talk more
about extensions in the upcoming schema section. Listing 11.2 shows the AtomPub
version of the same response we showed you for Web Services in listing 11.1.

<?xml version="1.0" encoding="UTF-8"?>
<atom:entry xmlns:atom="http://www.w3.org/2005/Atom"

xmlns:cmis="http://docs.oasis-open.org/ns/cmis/core/200908/"
xmlns:cmisra="http://docs.oasis-open.org/ns/cmis/restatom/200908/"
xmlns:app="http://www.w3.org/2007/app">
<atom:author>

<atom:name>system</atom:name>
</atom:author>
<atom:id>http://chemistry.apache.org/MTYx</atom:id>
<atom:published>2012-11-17T19:21:04Z</atom:published>
<atom:title>welcome.txt</atom:title>
<app:edited>2012-11-17T19:21:04Z</app:edited>
<atom:updated>2012-11-17T19:21:04Z</atom:updated>
<atom:content

src="http://localhost:8081/inmemory/atom/A1/content/welcome.txt
?id=161" type="text/plain"/>

<cmisra:object
xmlns:ns3="http://docs.oasis-open.org/ns/cmis/messaging/200908/">
<cmis:properties>
<cmis:propertyBoolean

queryName="cmis:isLatestMajorVersion"
displayName="Is Latest Major Version"
localName="cmis:isLatestMajorVersion"
propertyDefinitionId="cmis:isLatestMajorVersion">
<cmis:value>true</cmis:value>

</cmis:propertyBoolean>
<cmis:propertyInteger queryName="cmis:contentStreamLength"

displayName="Content Length"
localName="cmis:contentStreamLength"
propertyDefinitionId="cmis:contentStreamLength">
<cmis:value>395</cmis:value>

</cmis:propertyInteger>
<cmis:propertyString queryName="cmis:contentStreamId"

displayName="Stream Id" localName="cmis:contentStreamId"
propertyDefinitionId="cmis:contentStreamId"/>

<cmis:propertyId queryName="cmis:objectTypeId"
displayName="Type-Id" localName="cmis:objectTypeId"
propertyDefinitionId="cmis:objectTypeId">

Listing 11.2 Example of an XML response for a typical getObjects request (AtomPub)

First big difference from W
Services example: include
Atom (http://www.w3.org
Atom), APP (www.w3.org/
app), and CMIS restatom
docs.oasis-open.org/ns/cm
restatom/200908/) name

Those
versed in
TOM see
familiar

elements
like

:author

CMIS obj
starts he
with all i
properti
up first
www.it-ebooks.info

http://www.w3.org/2005/Atom
http://www.w3.org/2005/Atom
www.w3.org/2007/app
www.w3.org/2007/app
http://docs.oasis-open.org/ns/cmis/restatom/200908/
http://docs.oasis-open.org/ns/cmis/restatom/200908/
http://docs.oasis-open.org/ns/cmis/restatom/200908/
http://www.it-ebooks.info/

326 CHAPTER 11 CMIS bindings
<cmis:value>cmisbook:text</cmis:value>
</cmis:propertyId>
<cmis:propertyString queryName="cmis:versionSeriesCheckedOutBy"

displayName="Checked Out By"
localName="cmis:versionSeriesCheckedOutBy"
propertyDefinitionId="cmis:versionSeriesCheckedOutBy"/>

<cmis:propertyId queryName="cmis:versionSeriesCheckedOutId"
displayName="Checked Out Id"
localName="cmis:versionSeriesCheckedOutId"
propertyDefinitionId="cmis:versionSeriesCheckedOutId"/>

<cmis:propertyString queryName="cmisbook:author"
displayName="Author" localName="author"
propertyDefinitionId="cmisbook:author"/>

<cmis:propertyString queryName="cmis:name" displayName="Name"
localName="cmis:name" propertyDefinitionId="cmis:name">
<cmis:value>welcome.txt</cmis:value>

</cmis:propertyString>
<cmis:propertyString queryName="cmis:contentStreamMimeType"

displayName="Mime Type" localName="cmis:contentStreamMimeType"
propertyDefinitionId="cmis:contentStreamMimeType">
<cmis:value>text/plain</cmis:value>

</cmis:propertyString>
<cmis:propertyId queryName="cmis:versionSeriesId"

displayName="Version Series Id"
localName="cmis:versionSeriesId"
propertyDefinitionId="cmis:versionSeriesId">
<cmis:value>162</cmis:value>

</cmis:propertyId>
<cmis:propertyDateTime queryName="cmis:creationDate"

displayName="Creation Date"
localName="cmis:creationDate"
propertyDefinitionId="cmis:creationDate">
<cmis:value>2012-11-17T19:21:04.169Z</cmis:value>

</cmis:propertyDateTime>
<cmis:propertyString queryName="cmis:changeToken"

displayName="Change Token" localName="cmis:changeToken"
propertyDefinitionId="cmis:changeToken">
<cmis:value>1353180064169</cmis:value>

</cmis:propertyString>
<cmis:propertyString queryName="cmis:versionLabel"

displayName="Version Label" localName="cmis:versionLabel"
propertyDefinitionId="cmis:versionLabel">
<cmis:value>V 1.0</cmis:value>

</cmis:propertyString>
<cmis:propertyBoolean queryName="cmis:isLatestVersion"

displayName="Is Latest Version"
localName="cmis:isLatestVersion"
propertyDefinitionId="cmis:isLatestVersion">
<cmis:value>true</cmis:value>

</cmis:propertyBoolean>
<cmis:propertyBoolean queryName="cmis:isVersionSeriesCheckedOut"

displayName="Checked Out"
localName="cmis:isVersionSeriesCheckedOut"
propertyDefinitionId="cmis:isVersionSeriesCheckedOut">
<cmis:value>false</cmis:value>
www.it-ebooks.info

http://www.it-ebooks.info/

327A close look at the three bindings
</cmis:propertyBoolean>
<cmis:propertyString queryName="cmis:lastModifiedBy"

displayName="Modified By" localName="cmis:lastModifiedBy"
propertyDefinitionId="cmis:lastModifiedBy">
<cmis:value>system</cmis:value>

</cmis:propertyString>
<cmis:propertyString queryName="cmis:createdBy"

displayName="Created By" localName="cmis:createdBy"
propertyDefinitionId="cmis:createdBy">
<cmis:value>system</cmis:value>

</cmis:propertyString>
<cmis:propertyString queryName="cmis:checkinComment"

displayName="Checkin Comment" localName="cmis:checkinComment"
propertyDefinitionId="cmis:checkinComment"/>

<cmis:propertyId queryName="cmis:objectId"
displayName="Object Id" localName="cmis:objectId"
propertyDefinitionId="cmis:objectId">
<cmis:value>161</cmis:value>

</cmis:propertyId>
<cmis:propertyBoolean queryName="cmis:isMajorVersion"

displayName="Is Major Version" localName="cmis:isMajorVersion"
propertyDefinitionId="cmis:isMajorVersion">
<cmis:value>true</cmis:value>

</cmis:propertyBoolean>
<cmis:propertyBoolean queryName="cmis:isImmutable"

displayName="Immutable" localName="cmis:isImmutable"
propertyDefinitionId="cmis:isImmutable">
<cmis:value>false</cmis:value>

</cmis:propertyBoolean>
<cmis:propertyId queryName="cmis:baseTypeId"

displayName="Base-Type-Id" localName="cmis:baseTypeId"
propertyDefinitionId="cmis:baseTypeId">
<cmis:value>cmis:document</cmis:value>

</cmis:propertyId>
<cmis:propertyString queryName="cmis:contentStreamFileName"

displayName="File Name" localName="cmis:contentStreamFileName"
propertyDefinitionId="cmis:contentStreamFileName">
<cmis:value>welcome.txt</cmis:value>

</cmis:propertyString>
<cmis:propertyDateTime queryName="cmis:lastModificationDate"

displayName="Modification Date"
localName="cmis:lastModificationDate"
propertyDefinitionId="cmis:lastModificationDate">
<cmis:value>2012-11-17T19:21:04.169Z</cmis:value>

</cmis:propertyDateTime>
</cmis:properties>
<cmis:allowableActions>
<cmis:canDeleteObject>true</cmis:canDeleteObject>
<cmis:canUpdateProperties>true</cmis:canUpdateProperties>
<cmis:canGetFolderTree>false</cmis:canGetFolderTree>
<cmis:canGetProperties>true</cmis:canGetProperties>
<cmis:canGetObjectRelationships>false

</cmis:canGetObjectRelationships>
<cmis:canGetObjectParents>true</cmis:canGetObjectParents>
<cmis:canGetFolderParent>false</cmis:canGetFolderParent>

AllowableActions
start here
www.it-ebooks.info

http://www.it-ebooks.info/

328 CHAPTER 11 CMIS bindings
<cmis:canGetDescendants>false</cmis:canGetDescendants>
<cmis:canMoveObject>true</cmis:canMoveObject>
<cmis:canDeleteContentStream>true</cmis:canDeleteContentStream>
<cmis:canCheckOut>true</cmis:canCheckOut>
<cmis:canCancelCheckOut>false</cmis:canCancelCheckOut>
<cmis:canCheckIn>false</cmis:canCheckIn>
<cmis:canSetContentStream>false</cmis:canSetContentStream>
<cmis:canGetAllVersions>true</cmis:canGetAllVersions>
<cmis:canAddObjectToFolder>true</cmis:canAddObjectToFolder>
<cmis:canRemoveObjectFromFolder>true

</cmis:canRemoveObjectFromFolder>
<cmis:canGetContentStream>true</cmis:canGetContentStream>
<cmis:canApplyPolicy>false</cmis:canApplyPolicy>
<cmis:canGetAppliedPolicies>false</cmis:canGetAppliedPolicies>
<cmis:canRemovePolicy>false</cmis:canRemovePolicy>
<cmis:canGetChildren>false</cmis:canGetChildren>
<cmis:canCreateDocument>false</cmis:canCreateDocument>
<cmis:canCreateFolder>false</cmis:canCreateFolder>
<cmis:canCreateRelationship>false</cmis:canCreateRelationship>
<cmis:canDeleteTree>false</cmis:canDeleteTree>
<cmis:canGetRenditions>false</cmis:canGetRenditions>
<cmis:canGetACL>false</cmis:canGetACL>
<cmis:canApplyACL>false</cmis:canApplyACL>

</cmis:allowableActions>
<cmis:acl>

<cmis:permission>
<cmis:principal>

<cmis:principalId>anyone</cmis:principalId>
</cmis:principal>
<cmis:permission>cmis:all</cmis:permission>
<cmis:direct>true</cmis:direct>

</cmis:permission>
</cmis:acl>
<cmis:policyIds/>

</cmisra:object>
<atom:link rel="service"

href="http://localhost:8081/inmemory/atom/A1?repositoryId=A1"
type="application/atomsvc+xml"/>

<atom:link rel="self"
href="http://localhost:8081/inmemory/atom/A1/entry?id=161"
type="application/atom+xml;type=entry" cmisra:id="161"/>

<atom:link rel="enclosure"
href="http://localhost:8081/inmemory/atom/A1/entry?id=161"
type="application/atom+xml;type=entry"/>

<atom:link rel="edit"
href="http://localhost:8081/inmemory/atom/A1/entry?id=161"
type="application/atom+xml;type=entry"/>

<atom:link rel="describedby"
href="http://localhost:8081/inmemory/atom/A1/type?

id=cmisbook%3Atext" type="application/atom+xml;type=entry"/>
<atom:link

rel="http://docs.oasis-open.org/ns/cmis/link/200908
/allowableactions" href="http://localhost:8081/inmemory/atom
/A1/allowableactions?id=161"
type="application/cmisallowableactions+xml"/>

ATOM links; note that
some are defined not by
Atom but rather by CMIS
(such as rel="http://
docs.oasis-open.org/ns/
cmis/link/200908/acl")
www.it-ebooks.info

http://docs.oasis-open.org/ns/cmis/link/200908/acl
http://docs.oasis-open.org/ns/cmis/link/200908/acl
http://docs.oasis-open.org/ns/cmis/link/200908/acl
http://www.it-ebooks.info/

329A close look at the three bindings
<atom:link rel="up"
href="http://localhost:8081/inmemory/atom/A1/parents?id=161"
type="application/atom+xml;type=feed"/>

<atom:link rel="version-history"
href="http://localhost:8081/inmemory/atom/A1/versions?

id=161&versionSeries=162"
type="application/atom+xml;type=feed"/>

<atom:link rel="edit-media"
href="http://localhost:8081/inmemory/atom/A1/content?id=161"
type="text/plain"/>

<atom:link rel="http://docs.oasis-open.org/ns/cmis/link/200908/acl"
href="http://localhost:8081/inmemory/atom/A1/acl?id=161"
type="application/cmisacl+xml"/>

</atom:entry>

11.2.3 The Browser binding

The objective of the Browser binding is to enable a JavaScript application in a web
browser to access data in a CMIS repository. The binding only makes use of features
that are available in the HTML and JavaScript specifications. It only uses the HTTP
methods GET and POST: GET for requests that read data, and POST for requests that cre-
ate, modify, or delete data. CMIS repositories return JSON responses as well as binary
contents of documents. CMIS clients use URL parameters and HTML form data to
communicate with the repository. Multipart messages are used to transport content
from the client to the repository. A simple HTML form is sufficient to create a docu-
ment in a CMIS repository.

 The Browser binding covers the entire specification. There are no restrictions as in
AtomPub, so in that respect the feature set is comparable with the Web Services bind-
ing. This includes the error handling. The Browser binding uses the same HTTP status
codes as AtomPub but additionally sends a JSON response that contains the exception
type and a message. HTTP status codes can be tricky in a browser application, but add-
ing the parameter suppressResponseCodes with the value true to a URL can turn
them off. The repository will then always return the HTTP status code 200.

THE SERVICE DOCUMENT

In contrast to those in the AtomPub binding, the URLs of this binding are entirely pre-
dictable. That is, the specification defines URL patterns that work for all repositories.
Similar to the AtomPub binding, the application must first get the service document.
The service document contains information about all repositories available at this
endpoint, two base URLs per repository. One URL is called the repository URL and the
other one is called the root folder URL. The repository URL is used for all requests that
are independent of the folder hierarchy, such as accessing or changing type defini-
tions, performing a query, or getting content changes. A URL that is derived from the
root folder URL always addresses an object, either by its ID or its path. The term root
folder URL is a bit misleading because unfiled objects can also be addressed with this
URL, so don’t be confused. To select an object by path, the object’s path is attached to
the root folder URL.
www.it-ebooks.info

http://www.it-ebooks.info/

330 CHAPTER 11 CMIS bindings
 To select an object by ID, the URL parameter objectId with the object’s ID is
attached to the root folder URL. If the parameter objectId is set, it takes precedence
over the path.

 Let’s assume the root folder URL is http://example.com/repository/root. To
select the document with the object ID 123456 and the path /myfolder/doc.txt, the
following three URLs would work:

 This one is by ID:

http://example.com/repository/root?objectId=123456

This one is by path:

http://example.com/repository/root/myfolder/doc.txt

In this one, the objectId parameter wins over the path:

http://example.com/repository/root/another/path?objectId=123456

Such URLs are called object URLs. If an object URL points to a document, the content of
this document is returned by default. If it points to a folder, the children of this folder
are the default return type. For all other base types, the object details are returned.

 A client can specify which aspect of the object the repository should return by set-
ting the parameter cmisselector. For example, a URL that gets the object details of a
document could look like this:

http://example.com/repository/root?objectId=123456&cmisselector=object

And a URL to get the versions of a document could look like this:

http://example.com/repository/root/myfolder/doc.txt
?cmisselector=versions

Other URL parameters are similar to the parameters in the AtomPub URL templates.
Property filters can be defined; allowable actions, ACLs, and policies can be turned on
and off; a rendition filter can be set; and so on. For operations that return lists, such as
getChildren, the offset, the length, the order of the list, and other things can be
defined. The official CMIS 1.1 specification is the best complete reference for all the
supported parameters and operations.

THE SUCCINCT FEATURE

A feature that is unique to the Browser binding is the succinct flag. All bindings
transport for each property the property ID, the data type, the query name, the display
name, the local name, and the value. That makes it easier for clients that don’t know
the type definition of the object to work with these properties. But if the client knows
the type definition, this is extra weight. The succinct parameter with the value true
can be attached to all Browser binding URLs that return objects. The repository then
only sends the property ID and the value, which makes the response more compact.

 Try capturing a URL from the CMIS Workbench, and open in it a web browser. The
Workbench always sets the succinct flag. Remove that flag from the URL, and reload
the URL in the web browser. You’ll see that the response is now considerably larger.
www.it-ebooks.info

http://www.it-ebooks.info/

331A close look at the three bindings
CRUD OPERATIONS

Operations that create, read, update, or delete objects use HTTP POST instead of HTTP
GET. Data is transmitted in the same format that web browsers use to send HTML form
data to a server. The form data must be URL encoded or sent as a multipart message.
If content is attached to the request, then it must be a multipart request. (Thus, that
only applies to the operations createDocument, setContentStream, appendContent-
Stream, and checkIn.)

 To indicate which operation should be invoked, the parameter cmisaction must
be included. If a new document should be created, the value of cmisaction must be
createDocument. To delete an object, cmisaction must be delete, and so on. The
CMIS specification defines a cmisaction value for each operation as well as all other
required and optional parameters.

 Complex data structures are broken down to multiple parameters and parameter
names with indexes. For example, to transmit the two base properties for creating a
document (cmis:name and cmis:objectTypeId), the four properties shown in table
11.1 are required.

You need a parameter pair (propertyId and propertyValue) to set one single-value
property. The indexes indicate which parameters belong together, but the order
doesn’t matter. This pattern is used for all complex data structures and lists such as
ACLs or lists of object IDs or change tokens.

TRANSPORTING PARAMETER NAMES AND VALUES At first glance, it looks unnec-
essarily complex to split a property into two parameters. Wouldn’t it be sim-
pler to use the property ID as the parameter name?

It would, but that could lead to ambiguities. Here’s the reason why. The
HTML specification says parameter names are case insensitive but property
IDs are case sensitive. If a repository provided a type with two properties that
differed only in the capitalization of the property ID, the client (such as a web
browser) would normalize the parameter names, and it wouldn’t be possible
to identify which property the application meant. The chance of such a situa-
tion occurring isn’t very high, but to prevent any kind of ambiguity, the Tech-
nical Committee fixed all parameter names.

Apart from that, parameter names in multipart messages should only use
7-bit ASCII characters because they’re used in HTTP headers. Property IDs

Table 11.1 Example parameters and values for createDocument

Parameter name Parameter value

propertyId[0] cmis:name

propertyValue[0] myNewDocument.txt

propertyId[1] cmis:objectTypeId

propertyValue[1] cmis:document
www.it-ebooks.info

http://www.it-ebooks.info/

332 CHAPTER 11 CMIS bindings
with characters outside this charset are very likely, so it’s better to avoid com-
patibility issues and use fixed parameter names instead.

As with the other two bindings, you can add JSON structures that aren’t defined in the
CMIS specification. Clients that don’t understand these should ignore them. The
names of these extensions should be chosen carefully, though. In the other two bind-
ings, the XML namespace can distinguish an extension tag from a CMIS or an Atom
tag. Because JSON has no namespaces, the names should be as unique as possible.
Future versions of CMIS may introduce more elements, and a name clash could lead
to incompatibilities.

 To learn more about the Browser binding and how to use it, see appendix D. It
shows how to build a JavaScript application that accesses a CMIS repository. It also
demonstrates how to use JSON-P and callbacks to work with a repository that’s hosted
on a different server. In chapter 12, we cover user authentication and CSRF attack
protection.

JSON CREATE REQUEST EXAMPLES

This section shows two examples of JSON requests. The first is an extremely simple
example of createFolder:

cmisaction=createFolder&
propertyId[0]=cmis%3AobjectTypeId&
propertyValue[0]=cmis%3Afolder&
propertyId[1]=cmis%3Aname&
propertyValue[1]=myFolder&
succinct=true

The second is a more complicated example of a createDocument multipart message:

--aPacHeCheMIStryoPEncmiS6a5a1a37createDocument13b766ab8a531763c9a
Content-Disposition: form-data; name="cmisaction"
Content-Type: text/plain; charset=utf-8

createDocument
--aPacHeCheMIStryoPEncmiS6a5a1a37createDocument13b766ab8a531763c9a
Content-Disposition: form-data; name="propertyId[0]"
Content-Type: text/plain; charset=utf-8

cmis:objectTypeId
--aPacHeCheMIStryoPEncmiS6a5a1a37createDocument13b766ab8a531763c9a
Content-Disposition: form-data; name="propertyValue[0]"
Content-Type: text/plain; charset=utf-8

cmis:document
--aPacHeCheMIStryoPEncmiS6a5a1a37createDocument13b766ab8a531763c9a
Content-Disposition: form-data; name="propertyId[1]"
Content-Type: text/plain; charset=utf-8

cmis:name
--aPacHeCheMIStryoPEncmiS6a5a1a37createDocument13b766ab8a531763c9a
Content-Disposition: form-data; name="propertyValue[1]"
Content-Type: text/plain; charset=utf-8

myDoc.txt
www.it-ebooks.info

http://www.it-ebooks.info/

333A close look at the three bindings
--aPacHeCheMIStryoPEncmiS6a5a1a37createDocument13b766ab8a531763c9a
Content-Disposition: form-data; name="versioningState"
Content-Type: text/plain; charset=utf-8

none
--aPacHeCheMIStryoPEncmiS6a5a1a37createDocument13b766ab8a531763c9a
Content-Disposition: form-data; name="content"; filename=myDoc.txt
Content-Type: text/plain
Content-Transfer-Encoding: binary

Hello World!
--aPacHeCheMIStryoPEncmiS6a5a1a37createDocument13b766ab8a531763c9a--

JSON OBJECT RESPONSE EXAMPLE

Listing 11.3 shows a typical example of a response for requested CMIS object details
via the Browser binding, with the succinct flag set to true.

{
"allowableActions":{

"canGetACL":false,
"canGetObjectRelationships":false,
"canGetContentStream":true,
"canCheckIn":false,
"canApplyACL":false,
"canRemoveObjectFromFolder":true,
"canMoveObject":true,
"canDeleteContentStream":true,
"canGetProperties":true,
"canGetAllVersions":true,
"canApplyPolicy":false,
"canGetObjectParents":true,
"canSetContentStream":false,
"canCreateRelationship":false,
"canGetFolderTree":false,
"canCheckOut":true,
"canCreateDocument":false,
"canCancelCheckOut":false,
"canAddObjectToFolder":true,
"canRemovePolicy":false,
"canDeleteObject":true,
"canGetDescendants":false,
"canGetFolderParent":false,
"canGetAppliedPolicies":false,
"canDeleteTree":false,
"canUpdateProperties":true,
"canGetRenditions":false,
"canCreateFolder":false,
"canGetChildren":false

},
"acl":{

"aces":[
{

"isDirect":true,

Listing 11.3 JSON object response

JSON responses:
much smaller and
easier to read than
other XML responses

Passes ACLs
www.it-ebooks.info

http://www.it-ebooks.info/

334 CHAPTER 11 CMIS bindings
"principal":{
"principalId":"anyone"

},
"permissions":[

"cmis:all"
]

}
]

},
"exactACL":true,
"succinctProperties":{

"cmis:isLatestMajorVersion":true,
"cmis:contentStreamLength":395,
"cmis:contentStreamId":null,
"cmis:objectTypeId":"cmisbook:text",
"cmis:versionSeriesCheckedOutBy":null,
"cmis:versionSeriesCheckedOutId":null,
"cmisbook:author":null,
"cmis:name":"welcome.txt",
"cmis:contentStreamMimeType":"text/plain",
"cmis:versionSeriesId":"162",
"cmis:creationDate":1353180064169,
"cmis:changeToken":"1353180064169",
"cmis:isLatestVersion":true,
"cmis:versionLabel":"V 1.0",
"cmis:isVersionSeriesCheckedOut":false,
"cmis:lastModifiedBy":"system",
"cmis:createdBy":"system",
"cmis:checkinComment":null,
"cmis:objectId":"161",
"cmis:isImmutable":false,
"cmis:isMajorVersion":true,
"cmis:baseTypeId":"cmis:document",
"cmis:lastModificationDate":1353180064169,
"cmis:contentStreamFileName":"welcome.txt"

}
}

To build compatible clients and servers, these XML and JSON responses must be clearly
defined. The next section explains the CMIS schemas that provide these definitions.

11.3 CMIS schemas and schema extensions
The CMIS specification defines two schemas: an XML schema for the Web Services and
AtomPub bindings and the Orderly (JSON) schema for the Browser binding. The
schemas define the structure, restrictions, and extension points of the XML and JSON
serialization of the CMIS data. The schemas are almost equivalent.

 The XML schema was introduced with CMIS 1.0 and slightly extended in CMIS 1.1.
The JSON schema came with CMIS 1.1. It’s possible to translate any CMIS XML struc-
ture into JSON, but not necessarily vice versa because the succinct feature exists only
for the Browser binding.

Properties: notice
how concise they are
www.it-ebooks.info

http://www.it-ebooks.info/

335CMIS schemas and schema extensions
11.3.1 XML schema

Reading and understanding the XML schema is straightforward, if you’re generally
familiar with XML schemas. The XSD files are part of the CMIS specification. The
schema is broken into the following three files:

 CMIS-Core.xsd contains the core definitions and is used by the Web Services
and AtomPub bindings.

 CMIS-Messaging.xsd adds message definitions for the Web Services binding.
 CMIS-RestAtom.xsd contains XML definitions used only by the AtomPub

binding.

JSON SCHEMA

JSON has no comparable schema standard. There are a few different initiatives, but
none of them have been widely accepted yet. The CMIS Technical Committee decided
to adopt and extend Orderly (http://orderly-json.org/). Orderly describes the struc-
ture of a JSON document in a simple format. The original Orderly specification by
Lloyd Hilaiel wasn’t sufficient for CMIS, and the Technical Committee had to add a
few features to it. The Orderly specification that is used by CMIS can be found in an
appendix of the CMIS specification. To understand the CMIS Orderly schema, it’s rec-
ommended that you pull down a copy and scan through it.

SCHEMA EXTENSION POINTS

The CMIS schema defines several extension points, where clients and repositories can
stick extra data. CMIS structures are extensible if they contain an Any element in the
XML schema or if the structure in the Orderly schema ends with *.

 These extension points are meant to work across all bindings so a developer can
implement a binding-agnostic application with extensions. The other extensions that
we’ve mentioned so far were binding-specific (for example, an additional Atom link)
and are of limited use.

REPOSITORY EXTENSIONS

Extensions can be useful for repository vendors to expose additional features that
aren’t covered by CMIS. Generic CMIS clients ignore them, and specific clients can
make use of the features without switching the protocol. But if an additional feature
can be mapped to a CMIS structure—for example, to a secondary type—it’s usually
better to do this. It eases the life of the application developers significantly.

 In CMIS 1.0 it wasn’t possible for a client to detect up front whether a repository
supported a specific non-CMIS feature. That changed with CMIS 1.1. A CMIS 1.1 repos-
itory’s info may list all additional specifications that are supported by the repository
on top of CMIS. Such a feature doesn’t necessarily depend on a schema extension. It
might, for example, indicate that a specific type is available or define specific seman-
tics for certain properties or secondary types. But if there are schema extensions, a
CMIS 1.1 repository should announce those in the repository info.
www.it-ebooks.info

http://orderly-json.org/
http://www.it-ebooks.info/

336 CHAPTER 11 CMIS bindings
WHICH BINDING SHOULD I USE? Answering this question properly depends on
the repository, the environment, and the library you’re using.

The Browser binding is the fastest and most lightweight binding. If it’s sup-
ported on both ends, it’s the best choice for all kinds of applications. The
most common binding at the moment (available on all CMIS servers) is the
AtomPub binding. It’s usually faster than the Web Services binding and sup-
ported in environments that don’t have a Web Services stack. Note that there
are repositories with broken (not conforming 100%) AtomPub binding
implementations, most notably SharePoint 2010.

The Web Services binding is the last resort. Most implementations are sta-
ble and correct but comparatively slow. On the upside, in environments with
a Web Services infrastructure, this binding may be easy to implement and
integrate.

Now let’s jump back from the level of bytes on the wire and look into the OpenCMIS
low-level API.

11.4 The OpenCMIS low-level API
When you compare the bindings with the OpenCMIS, DotCMIS, and ObjectiveCMIS
APIs, you might notice a disconnection. The APIs provide an object-oriented interface
with a lot of convenience, simplified data structures, and high-level operations that
don’t exist in CMIS. On the other hand, these APIs hide extension points and access to
the data structures that are transferred over the wire.

 It turns out that there’s a layer between the bindings and these APIs called the low-
level API. The low-level API provides a set of interfaces and operations that model all
the services and operations in the CMIS specification one-to-one. For each of the nine
CMIS services, there’s an interface. For each operation, there’s a method with exactly
the same name and the same parameters, in the same order. The data objects are very
close to the data structures used on the wire. The semantics and behavior are as
described in the CMIS domain model. You can use the CMIS specification as a manual
for these interfaces.

 The high-level API with which you’re now familiar always calls the low-level API.
That is, the high-level API never touches the bindings directly. The step from the low-
level API to the bindings isn’t that big. Method calls are translated to HTTP requests,
and the data is transformed to XML or JSON and back.

 The low-level API gives you full control over the data you send and receive. It lets you
access and exploit all CMIS extension points, for example. But there’s a price to pay.
The code you have to write to use this API is much longer, and there are no safety nets.
No trail markers help you ensure that you’re following the CMIS domain model path.

 Let’s create a new folder in the root folder with the high-level API and then do the
same with the low-level API. Here’s a typical example of using the high-level API that
we’ve been using throughout the book:
www.it-ebooks.info

http://www.it-ebooks.info/

337Summary
Folder root = session.getRootFolder();

Map<String, Object> properties = new HashMap<String, Object>();
properties.put(PropertyIds.OBJECT_TYPE_ID, "cmis:folder");
properties.put(PropertyIds.NAME, "myFolder");

root.createFolder(properties);

Now let’s see what’s required to do this at the low level:

CmisBinding binding = session.getBinding();
BindingsObjectFactory bof = binding.getObjectFactory();

String repositoryId = session.getRepositoryInfo().getId();
String rootFolderId = session.getRepositoryInfo().getRootFolderId();

PropertyId objectTypeId =
bof.createPropertyIdData(PropertyIds.OBJECT_TYPE_ID, "cmis:folder");

PropertyString name =
bof.createPropertyStringData(PropertyIds.NAME, "myFolder");

List<PropertyData<?>> propertiesList =
new ArrayList<PropertyData<?>>();

propertiesList.add(objectTypeId);
propertiesList.add(name);

Properties properties = bof.createPropertiesData(propertiesList);

binding.getObjectService().createFolder(repositoryId, properties,
rootFolderId, null, null, null, null);

11.4.1 Reasons to use the low-level API

There’s usually no good reason to use the low-level API. The only semi-valid reason is
to get hold of or set extension values. Before you start fiddling with the low-level API
because you think there’s no other way, ask on the Apache Chemistry mailing list;
there could be a more elegant way to solve your problem.

 If you’re starting to get all misty, thinking you’ll never see this low-level API again,
cheer up. If you’re planning to implement your own CMIS server with the OpenCMIS
server framework (see chapter 14), your paths will cross again. These are the same
interfaces and data classes that are used on the server side. But instead of calling the
interface methods, you have to implement them.

 With that knowledge about the bindings and the low-level API, you can now dive
into the security and performance aspects of CMIS.

11.5 Summary
This chapter provided some high-level insight into the three CMIS bindings and their
differences, principles of operation, and use cases. Knowing about the CMIS bindings
will help you debug, tune, deploy, and, sometimes, develop CMIS applications. The

Get root folder

Set up
properties

Create folder

Get low-level API entry point

Get repository ID
and root folder ID

Set up properties
(note that you

need to know the
data types)

Create
folder
www.it-ebooks.info

http://www.it-ebooks.info/

338 CHAPTER 11 CMIS bindings
chapter also described how to capture CMIS wire traffic, which is useful for learning
about the bindings and for debugging your application.

 The description of the bindings takes up more than 120 pages in the CMIS 1.1
specification plus schema and sample files. Due to space considerations, we could only
provide an overview here. The specification itself is always the best and most authori-
tative reference for all operations, parameters, and patterns not covered here.

 The following chapters cover security and performance topics. These can vary for
each binding, and a basic understanding of how the bindings work is assumed for
some details.
www.it-ebooks.info

http://www.it-ebooks.info/

Security and control
This chapter looks into different security- and control-related aspects of CMIS. It
starts with some general security considerations and hints for web application
developers. We’ll then cover authenticating users. The chapter also addresses
authorization, ACLs, and policies, and finally it skims through retentions and holds.

12.1 General security considerations
Many CMIS repositories contain confidential data. It’s the repository’s task to pro-
tect this data. It has to check the user’s credentials and figure out what this user is
allowed to see and do. CMIS is only the transport vehicle for that data and responsi-
ble for a secure transport.

 Because all CMIS bindings are based on HTTP, the easiest and most compatible
way to secure the connection is to use SSL everywhere. That sounds obvious and
trivial. But many CMIS repositories allow unencrypted access, which can reveal user
credentials and confidential documents. And many production CMIS applications

This chapter covers
 Authentication

 Authorization

 ACLs and policies

 Retentions and holds
339

www.it-ebooks.info

http://www.it-ebooks.info/

340 CHAPTER 12 Security and control
don’t use HTTPS or have disabled the SSL certificate checks. We strongly recommend
that you always use HTTPS in production environments!

 Having unencrypted access may help during development, though. In chapter 11,
which discusses CMIS bindings, we used it to look directly at the wire protocols.
It’s handy to find out exactly what the repository returned when you get something
unexpected.

 Once the data has reached the application, it’s the application’s responsibility to
keep the data secure. In this section, we’ll point out two general and repeating issues
with web applications: cross-site scripting (XSS) attacks and cross-site request forgery
(CSRF) attacks.

12.1.1 Cross-site scripting (XSS) attacks

Web applications should be protected against XSS attacks. That is, they should make
sure no foreign and potentially malicious HTML and JavaScript code could be injected
into a web page of the application. CMIS applications have to be careful with property
values and document content because either may contain HTML or JavaScript frag-
ments. A user might be tricked into looking at the properties of a CMIS document or
opening a document that contains malicious code. This code would run in the user’s
application context and would potentially be able to read and modify data in the CMIS
repository.

 Whether property values should be HTML-encoded before they’re displayed on a
web page depends on the application and the properties. CMIS has an HTML property
data type to indicate that the property value is an HTML fragment, and it’s generally
used for a good reason. The application has to decide if it can trust this property. All
other string property data types are usually good candidates for encoding.

 Dealing with content is a bit more complicated. Many applications provide a
means to download a document’s content. The user clicks a link, and the content is
streamed to the web browser. The web browser then decides whether to open the doc-
ument in the browser, offer the user a dialog box to open the content in another
application, or download the content to a file. Most web browsers open HTML docu-
ments in the browser, and that can be a potential attack vector. CMIS repositories pro-
vide the content as it was stored. If the content contains malicious JavaScript code, this
code is executed in the context of the user who clicked the download link.

 There’s no perfect solution for this problem. The application could encode or ban
HTML and other problematic documents. But that would prohibit a user from down-
loading the original document, which could be genuine and harmless. The applica-
tion could send a different MIME type for an HTML document, such as text/plain.
Most web browsers then show the HTML code and don’t interpret it. But this isn’t a
bulletproof solution either. Some applications store their web pages or parts of
them—for example, images—in a CMIS repository. They definitely want the original
document from the repository to be loaded by the web browser. So it’s up to the appli-
cation. But being aware of the issue is important.
www.it-ebooks.info

http://www.it-ebooks.info/

341Authentication
12.1.2 Cross-site request forgery (CSRF) attacks

The second common issue with web applications is CSRF attacks. This is an issue for
both the application and the repository. CSRF attackers take advantage of the fact that
web browsers always send cookies and basic authentication information back to the
origin website. A malicious web application might use this to send POST requests after
the user has logged in to the CMIS applications. These malicious requests would be
executed in the context of that user.

 There are generic solutions for this issue for web applications that we won’t
explore here. The CMIS 1.1 specification defines how applications and repositories
can solve the issue when the browser binding is used directly by a JavaScript applica-
tion running in a web browser. The idea is to send tokens back and forth that only the
CMIS application and the repository know. A malicious web application can’t attack
without these tokens. We’ll cover that later in this chapter.

 Repositories that allow authentication via cookies, basic authentication, or single
sign-on (SSO) for the AtomPub binding and the Web Services binding must imple-
ment their own solution. These bindings aren’t intended to be used in a web browser,
but they can be exploited by a malicious web application.

 But we’re tapping into the authentication topic. Let’s do that systematically in the
next section.

12.2 Authentication
User authentication can be the most difficult topic in a CMIS project. There are many
ways to authenticate a user, and they depend on the repository, the environment, busi-
ness and security constraints, the application itself, and the end-user device. Authenti-
cation from a mobile application might be completely different from authentication
in a web application.

 The CMIS specification doesn’t talk much about authentication. It recommends
that repositories implement basic authentication (via an HTTP header) for the Atom-
Pub binding and the Browser binding, and UsernameTokens (via a SOAP header) for
the Web Services binding. Both mechanisms require a username and password to be
sent with each request.

 Most CMIS repositories support this recommendation, and all Apache Chemistry
libraries support it out of the box. Remember the method in chapter 8 that created
the OpenCMIS session? All you had to do was add the username and password to the
session parameters, like this:

parameter.put(SessionParameter.USER, username);
parameter.put(SessionParameter.PASSWORD, password);

OpenCMIS automatically turns this information into an HTTP header or a SOAP
header and adds it to all requests. There’s nothing else you have to do. A session is
always bound to a specific user because of this.
www.it-ebooks.info

http://www.it-ebooks.info/

342 CHAPTER 12 Security and control
12.2.1 Cookies

Using usernames and passwords to authenticate can be expensive. The repository has
to check the username and password for each request. In many cases, it has to contact
another system like a user directory (for example, an LDAP server) to do this, and that
costs valuable time. Therefore, some repositories return session cookies. It’s faster to
check whether a cookie is still valid than to authenticate the user with a username and
password every time. To make that work, the repository must depend on the client to
send back that cookie. Because the CMIS specification doesn’t say a word about cook-
ies, a repository vendor must not rely on cookie support on the client side.

 Cookie support varies in the different Apache Chemistry libraries. Although cook-
ies are automatically turned on in DotCMIS, they have to be manually activated in
OpenCMIS via a session parameter:

parameter.put(SessionParameter.COOKIES, "true");

It’s recommended that you always turn on cookies. It doesn’t do any harm if the repos-
itory doesn’t send cookies. And if it does, the performance gain can be significant.

 Authentication with a username and password is simple, but also has its drawbacks.
First, the user’s credentials are always sent in clear text over the wire. That might not
be a big deal if you’re using HTTPS in production. But it might be a problem during
development when you use unencrypted access. Another common issue is that the cli-
ent application doesn’t (and shouldn’t) know the user’s password. Think of SSO sce-
narios, portals, and mobile applications.

 Many authentication mechanisms try to solve one or both issues: NTLM, Kerberos,
SSL client certificates, SAML tokens, and OAuth, just to name a few. There are also
many product-specific and homegrown solutions.

12.2.2 AuthenticationProvider interface

Because the Apache Chemistry CMIS libraries can’t implement every flavor of every
authentication mechanism, OpenCMIS, DotCMIS, and ObjectiveCMIS provide inter-
faces that let you plug in your own authentication implementations. We’re using
OpenCMIS for the following examples. The interfaces of the other libraries are slightly
different because of the underlying technologies, but the general idea is the same.

 OpenCMIS lets you provide HTTP headers and SOAP headers for the requests to
the repository, which can transport authentication details. You can also take control of
the SSL socket factory to attach an SSL client certificate to the requests, which identi-
fies the user. All you have to do is to implement the AuthenticationProvider inter-
face. To use your implementation, add the class name to the session parameters when
you set up a new session, like so:

parameters.put(SessionParameter.AUTHENTICATION_PROVIDER_CLASS,
"org.example.MyAuthenticationProvider");

parameters.put("org.example.user", "cmisuser");
parameters.put("org.example.secret", "b3BlbmNtaXMgdXNlcg==");
www.it-ebooks.info

http://www.it-ebooks.info/

343Authentication

t
m

rd-
tion-
 it
urn
eates
The example also shows that you can add your own parameters to the session parame-
ters. In your authentication provider implementation, you can access these parameter
values and use them as needed.

 It’s recommended that you not implement the AuthenticationProvider interface
directly, but instead derive your implementation from the AbstractAuthentication-
Provider class or the StandardAuthenticationProvider class. The latter gives
you support for the standard authentication recommended in the specification as
well as cookie support. You may also want to look at the source code for the Standard-
AuthenticationProvider class; it could be a good starting point for your own
implementation.

12.2.3 Example of an authentication provider

The most important method is getHTTPHeaders. It’s called before each request to the
repository for all CMIS bindings and returns the HTTP headers that should be added
to the request. Listing 12.1 shows a simple authentication provider implementation
that uses the additional parameters from the previous example. The parameter values
are sent to the repository as nonstandard HTTP headers.

public class ExampleAuthenticationProvider extends
StandardAuthenticationProvider {

private static final long serialVersionUID = 1L;

@Override
public Map<String, List<String>> getHTTPHeaders(String url) {

Map<String, List<String>> headers = super.getHTTPHeaders(url);
if (headers == null) {

headers = new HashMap<String, List<String>>();
}

Object exampleUserObject =
getSession().get("org.example.user");

if (exampleUserObject instanceof String) {
headers.put("example-user",

Collections.singletonList((String) exampleUserObject));
}

Object exampleSecretObject =
getSession().get("org.example.secret");

if (exampleSecretObject instanceof String) {
headers.put("example-secret",

Collections.singletonList((String) exampleSecretObject));
}

return headers;
}

}

Listing 12.1 A sample AuthenticationProvider implementation

Gets defaul
headers fro
the Standa
Authentica
Provider; if
doesn’t ret
headers, cr
a new Map

Gets session parameter
org.example.user and
sets the HTTP header

Gets session parameter
org.example.secret and
sets the HTTP header
www.it-ebooks.info

http://www.it-ebooks.info/

344 CHAPTER 12 Security and control
The getSOAPHeaders method works similarly to the getHTTPHeaders method. It
returns a SOAP header, which is attached to all Web Services calls. This method is
called only once per Web Services service. Therefore, you can’t customize every call.

 Another (often) important method is putResponseHeaders. It provides the HTTP
response headers and the HTTP status code after each call. If the CMIS repository
returned something that can be used to authenticate a follow-up request (a token,
perhaps), this is the method you should override to extract this information.

 The AuthenticationProvider object is kept for the whole session. Because ses-
sions can be used across multiple threads, the AuthenticationProvider object must
be thread-safe. So if you get a token back from the repository, make sure you manage
it in a thread-safe manner.

 The loose definition of how the authentication works can cause some headaches
and often requires extra code if a simple username/password combination isn’t suffi-
cient. It’s even more complicated in web applications that should directly talk to a
CMIS repository from a web browser. It not only has to authenticate the user; it also
has to prevent CSRF attacks. Fortunately, the Browser binding specification defines
this authentication process for web applications. That’s the topic of the next section.

12.3 Authentication in web applications
using the Browser binding
Web applications that use the Browser binding have another option to authenticate a
user, which additionally protects the repository from CSRF attacks. The idea is to let
the repository handle authentication. The web application only has to trigger the
authentication process and then send tokens with each request that it gets from the
repository. Let’s start at the beginning with the entry points.

12.3.1 JavaScript entry points

The entry point for the web application is a JavaScript file that’s served from the
repository server. The application includes the file into its web page, like so:

<script src="http://cmis.example.com/cmis.js"/>

This JavaScript file defines the following four functions:

 cmisServiceURL()—Returns the URL to the Browser binding service document
(see chapter 11)

 cmisLogin(callback)—Triggers a login
 cmisLogout(callback)—Triggers a logout
 cmisNextToken(callback)—Provides a token for the next CMIS request

12.3.2 Sequence: log in, nextToken, …, log out

When the application starts up, it calls the function cmisLogin. What happens next is
repository-specific. It’s very likely that the repository will redirect the user to a login
page or to a page that handles SSO. If the user authentication was successful, the user
www.it-ebooks.info

http://www.it-ebooks.info/

345Authentication in web applications using the Browser binding
is redirected back to the application page. Now the application again calls cmisLogin.
It’s the repository’s responsibility not to run into an endless loop here. If everything
works correctly, there’s no second redirection, and the application moves on.

 Every call the application makes to the repository must be authorized with a token.
To get a token, the application calls cmisNextToken and retrieves a token from the
repository. Whether this requires another round trip to the repository depends on the
underlying implementation. If the next call is a GET request, the application attaches a
token parameter to the URL. If the next call is a POST request, the application adds a
token field to the HTML form.

 Ideally, these are one-time-use tokens. That is, a token works for one request, but a
second request with the same token would fail. Tokens may also expire after a preset
time. But these rules aren’t defined by the CMIS specification. The repository vendor
decides how the tokens are generated and managed and when they become invalid.

 The application can also log out a user by calling the function cmisLogout. All
issued tokens should become invalid, and the function cmisNextToken shouldn’t
return any more new tokens.

 Figure 12.1 shows this sequence of events as an activity diagram.

Load application

JavaScript application
in web browser CMIS JavaScript Web application host CMIS repository host

Load CMIS JavaScript (unauthenticated)

Call cmisLogin() Redirect to login page

Login page

Login
phase 2

Load application

Load CMIS JavaScript (authenticated)

Call cmisLogin()

Success

Client logs into CMIS

Redirect client back to web application

Use
(repeat)

Logout

Call cmisNextToken() Get new token (if necessary)

Call cmisLogout() Logout

(New token)

Make request with token

Login
phase 1

Figure 12.1 Activity diagram of the secure login sequence for the Browser binding
www.it-ebooks.info

http://www.it-ebooks.info/

346 CHAPTER 12 Security and control
12.3.3 Example JavaScript

Here’s a short example taken from the CMIS specification. It calls cmisLogin when the
web page is loaded. If the login was successful, it calls the displayRootFolder func-
tion, which is defined here. This function first gets the next token and provides it to
the loadChildren function, which isn’t in this example. The loadChildren function
uses the token to make requests to the CMIS repository. That’s the basic pattern for
JavaScript applications that use this authentication option:

<script src="http://cmis.example.com/cmis.js"/>
<script>

cmisLogin(function(success) {
if (success) {

displayRootFolder();
} else {

showLoginErrorMessage();
}

});

function displayRootFolder() {
cmisNextToken(function(token) {

loadChildren('/', ..., token);
});

}
</script>

This procedure should work against all CMIS repositories that support it, without
adapting the application code. If one-time tokens are used, it additionally provides
protection against CSRF attacks. If you’re interested in the details, refer to section
5.2.9.2 of the CMIS 1.1 specification. The OpenCMIS server framework ships a work-
ing example of a mini application that uses this authentication procedure.

 Once the repository knows who the user is, it can determine what the user is
allowed to see and do. The following sections examine authorization and different
forms of permissions.

12.4 Authorization and permissions
CMIS knows about two concepts of modeling permissions: policies and access control
lists (ACLs). Policies are rules that determine whether a user can do a certain action
with an object, whereas ACLs are mappings from users to permissions. Repository ven-
dors map their permission model to either one or both CMIS concepts. It’s the reposi-
tory’s responsibility to check and enforce permissions. Remember that CMIS is only
the messenger.

12.4.1 Policies

The mechanics of policies are defined in the CMIS specification, but the specific
semantics isn’t. The idea is that a repository provides a set of policy types, and applica-
tions create instances of such types and attach them to objects. Policies can be any
type of rules. For example, a policy could restrict access to a document to a certain

Boolean variable “success”
indicates whether this
function was successful the
second time it was called

Variable “token” contains
the token returned by the
repository; CMIS call is
done in the callback of
cmisNextToken
www.it-ebooks.info

http://www.it-ebooks.info/

347Authorization and permissions
time of the day. Let’s say a document should be accessible only between 8:00 a.m. and
5:00 p.m. Another policy could enforce that a document can be updated only if the
user is accessing the repository from a certain network segment. That could restrict
editing to a special part of a building. A policy could also take a user’s classification
level into account and only allow the user to download a document if they have the
required security clearance.

 To test if a repository supports policies, fetch the CMIS base types from the reposi-
tory with the operation getTypeChildren. If the base type cmis:policy is in the list of
returned types, the repository supports policies. Not all objects may be controllable by
policies, though. All CMIS types have the flag controllablePolicy, which indicates
whether policies can be applied to objects of that type.

 The base policy type is of no direct use because it doesn’t represent any rule.
Repositories derive their own policy types from that base type. The display name and
the type description should be something an end user can understand, because it’s
usually the end user who picks a policy. A policy type may also define extra properties.
A policy that restricts access to a certain time of day may need a start and an end time,
for example. Or a policy that restricts edits to a network segment may need an IP
address range.

 Before a policy can be applied, you must create a policy object and set its proper-
ties with the createPolicy operation. You then use applyPolicy to put an object
under the control of a policy. A policy object can be applied to multiple objects. The
removePolicy operation releases a policy from an object. Policy objects live on when
they’ve been removed from all objects; a policy object can’t be deleted while it’s
applied to at least one object. The next listing shows an example of manipulating pol-
icy objects using OpenCMIS.

CmisObject object = ...

Policy workingHoursPolicy =
(Policy) session.getObject("ab530ca3e7e92ab4");

Policy buildingPolicy =
(Policy) session.getObject("832ef21cabf71a6c");

object.applyPolicy(workingHoursPolicy);
object.removePolicy(buildingPolicy);

12.4.2 ACLs

ACLs are more common than policies. An ACL is an integral part of an object if the
repository supports ACLs. A capability flag in the repository info indicates whether
the repository supports ACLs, as well as the level of support, for example, read-only
versus the ability to fully manage ACLs.

 An ACL consists of zero or more access control entries (ACEs). Each ACE defines
the permissions for a principal. A principal could be a user, a group, a role, or some
grouping of that nature. CMIS has no notion of these user-management concepts and
treats the principal IDs as opaque strings. The assumption is that the client and the

Listing 12.2 Applying and removing policies with OpenCMIS

Find policies
through queries
or browsing
www.it-ebooks.info

http://www.it-ebooks.info/

348 CHAPTER 12 Security and control
repository share a common understanding of principals, which is transparent to CMIS.
For example, both client and repository are using the same LDAP directory or Active
Directory, which provides user and group information.

ANYONE, ANONYMOUS, AND CURRENT USERS Repositories that have a notion of
“any authenticated user” or “anonymous users” provide the corresponding
principal IDs with the repository info. CMIS clients can use those to compile
ACEs. The CMIS specification also defines the principal ID cmis:user. Reposi-
tories that support this macro replace this principal ID with the principal ID
of the current user when an ACL is applied.

There should be only one ACE per principal, which collects all permissions for that
principal. But some repositories do expose multiple ACEs per principal in some cases.

 The CMIS specification defines three basic permissions, but allows repositories to
expose additional, repository-specific permissions. The basic permissions are as follows:

 cmis:read—A user with this permission can read an object’s metadata and
content.

 cmis:write—A user with this permission has the authorization to update meta-
data and content. In almost all repositories, the cmis:write permission con-
tains the cmis:read permission.

 cmis:all—A user with this permission has full control of the object. This per-
mission contains the cmis:write and cmis:read permissions.

There are some fuzzy areas regarding these permissions. For example, does a user
need the cmis:write or cmis:all permission to delete an object or change the ACL
of an object? If you want to move an object, what permissions are required on the
source folder, the target folder, or the object itself? The repository info provides some
general hints: it contains a permission mapping that maps input parameters of CMIS
operations to permissions. For concrete objects, you should also check the allowable
actions of each involved object. Figure 12.2 shows the CMIS Workbench displaying the
ACLs that are set for a selected document. When you look at this, you might wonder
about the other permissions it shows. Those repository-specific permissions are dis-
cussed next.

Figure 12.2 CMIS Workbench displaying the ACLs for a document
www.it-ebooks.info

http://www.it-ebooks.info/

349Authorization and permissions
12.4.3 Repository-specific permissions

Many repositories also provide more fine-grained permissions and permissions that
are specific to each repository. For example, a repository might a have special permis-
sion for folders that sits between cmis:read and cmis:write and defines whether a
user can file an object in this folder. That would allow a repository to distinguish
between users who are only allowed to see the folder, users who are allowed to add
new children to the folder, and users who are allowed to add new children and
rename the folder. An example of a repository-specific permission could be the right
to publish a document. There’s no concept of publishing a document in CMIS, but it’s
possible to see and manage such a repository-specific permission through the CMIS
interface. This permission would be orthogonal to the CMIS basic permissions.

 A list of all available permissions is also part of the repository info. Each permission
should have a human-readable explanation, such that end users can pick the right
permission when presented with a choice.

 When an application requests the ACL of an object from the repository, it can ask
for the full ACL or an ACL that contains only the CMIS basic permissions. If the latter is
requested, the repository has to try hard to map all its specific permissions to the basic
permissions. It then also returns a flag that indicates whether the mapping is an exact
mapping or if the user has more rights that aren’t expressed with basic permissions.
Let’s assume that a user has the permission to file objects in a folder as described ear-
lier. A mapping to the basic permission would return the cmis:read permission for
this user, because that is the next-lower basic permission. The publishing permission
wouldn’t show up at all. The returned ACL would be an approximation or best fit.

12.4.4 Changing permissions (applyACL)

Calling the applyACL operation can change an object’s ACL. This operation takes a list
of ACEs that should be added to and a list of ACEs that should be removed from the
current ACL of the object. Either list can be empty. The repository takes these lists, cal-
culates and sets a new ACL, and returns it. The resulting ACL may look different than
you expect, because the repository has the freedom to change and streamline the ACL
based on its internal rules. For example, a repository might decide not to change the
ACL if a user already has the cmis:all permission and the application tries to add the
cmis:read permission. But if the application tries to remove the cmis:write permis-
sion from that user, the repository may remove all permissions for that user or
changes the permission to cmis:read.

 The applyACL operation also takes a parameter that tells the repository how to
propagate ACL changes. The three available options are as follows:

 object only—Tells the repository to change this object only.
 propagate—Forces the repository to update all inheriting objects. The reposi-

tory info provides a capability flag that indicates whether the repository sup-
ports propagation. Applications should check it before trying to propagate ACL
changes.
www.it-ebooks.info

http://www.it-ebooks.info/

350 CHAPTER 12 Security and control
 repository determined—Allows the repository to decide whether the ACL
changes should be forwarded to inheriting objects. In this case, inheriting objects
usually means that if the ACL is changed on a folder, the ACLs of all descendants
of this folder are also updated. It might also affect objects that are connected
through a relationship.

There are two models of permission propagation, and a repository usually supports
just one or the other. Propagation can mean that the ACEs are added to and removed
from each descendant. That is, if an ACE is added, the object owns the ACE. This ACE
is independent of the same ACE on the parent or a sibling. The CMIS term for such an
ACE is direct ACE. CMIS ACEs have a flag that indicates whether or not the ACE is a
direct ACE.

Nondirect ACEs are defined on a parent, but affect the descendants. They appear in
the ACLs of the descendants and have the same impact as direct ACEs, but can only be
removed or changed on the parent. For some repositories, that is the definition of
permission propagation.

 Listing 12.3 shows an example of adding ACEs to an object. You give the principals
florian and jeff write permissions and the user jay all permissions for an object. After-
ward, all three are allowed to update the object.

CmisObject object = ...

ObjectFactory of = session.getObjectFactory();

Ace ace1 = of.createAce("florian",
Collections.singletonList("cmis:write"));

Ace ace2 = of.createAce("jeff",
Collections.singletonList("cmis:write"));

Ace ace3 = of.createAce("jay",
Collections.singletonList("cmis:all"));

List<Ace> addAces = new ArrayList<Ace>();

addAces.add(ace1);
addAces.add(ace2);
addAces.add(ace3);

object.applyAcl(addAces, /* no ACEs to remove*/ null,
AclPropagation.OBJECTONLY);

Acl acl = session.getAcl(object,
/* only basic permissions */ true);

Another obstacle with ACL updates is the AtomPub binding. It works slightly differ-
ently for the procedure just described. Instead of taking the two lists of ACEs to add
and remove, it requires the client to send a complete ACL to the repository. The
repository has to calculate the difference between the retrieved ACL and the current
ACL of the object to determine which ACEs should be added and which should be
removed.

Listing 12.3 Adding ACEs to an object with OpenCMIS

Get the new ACL,
but only the basic
permissions
www.it-ebooks.info

http://www.it-ebooks.info/

351Retentions and holds
APPLYACL VERSUS SETACL OpenCMIS provides two methods to change ACLs:
applyAcl and setAcl. applyAcl works as described in the CMIS specification.
For the AtomPub binding, it calculates the complete ACL under the hood on
the client side to make it work like the other two bindings. setAcl takes a
complete ACL and tries to apply it. If the AtomPub binding is used, the ACL
is forwarded as is to the repository. For the other two bindings, OpenCMIS
calculates the ACE add list and the ACE remove list and calls applyACL.
Because that doesn’t work with propagation, the ACL can only be set for one
object.

ACL management can be repository- and binding-specific. You should carefully test
how your repository handles ACL changes. This is an area where switching from one
repository vendor to another might require some application code adjustments.

 Applications that only need to know what the user is allowed to do and don’t change
permissions should rely on the allowable actions. They’re computed by the repository,
which should take all aspects of the object into account. One of these aspects could be
the document’s retention settings; which we’ll cover in the next section.

12.5 Retentions and holds
Retentions and holds were introduced in CMIS 1.1. They control whether documents
can be updated and deleted. Before CMIS 1.1, they had to be modeled as policies.
Although it was technically possible, the lack of standardization in this area made it
difficult to build interoperable applications.

CMIS 1.1 defines two types of retentions:
 Repository-managed retentions
 Client-managed retentions

We’ll discuss them next.

12.5.1 Repository-managed retentions

A repository that supports repository-managed retentions provides a hierarchy of sec-
ondary types derived from the type cmis:rm_repMgtRetention. This hierarchy might
be the same as a classification hierarchy or a file plan in a repository. A client that
wants to put a document under retention must attach the appropriate secondary type
to the document. Some retention types need specific property values, and some need
special permissions. Not everyone is allowed to apply a certain retention type.

 The semantics of the retention types is transparent to the CMIS client, and the
impact on a document is unpredictable from the client point of view. In this regard,
repository-managed retentions are similar to policies. But in many cases, applying
such a retention means the repository calculates a date until which the document
can’t be updated or deleted. For example, if invoices have to be kept for seven years
starting from the beginning of the next month, the repository calculates the date and
makes sure the document can’t be altered and the retention can’t be removed.
www.it-ebooks.info

http://www.it-ebooks.info/

352 CHAPTER 12 Security and control
12.5.2 Client-managed retentions

Client-managed retentions allow the client to set the retention date. For this purpose,
the client has to attach to the object the secondary type cmis:rm_clientMgt-
Retention or a type derived from it. These types have the cmis:rm_expirationDate
property, which defines the retention date. This property doesn’t have to be set ini-
tially. But once it’s set, the retention time can only be prolonged and can never be
reduced. There’s also the cmis:rm_startOfRetention property, which takes the start
date of the retention. It exists only for documentation purposes and doesn’t have any
impact on document protection.

 Repositories can also provide the secondary type cmis:rm_destructionRetention,
which is derived from cmis:rm_clientMgtRetention. On top of the inherited retention-
date property, it adds the cmis:rm_destructionDate property. This date defines
when the destruction of the document should be triggered. That doesn’t necessarily
mean the document will be automatically deleted on this date; what happens depends
on the repository. Some use cases require an administrator to approve the deletion of
every document.

12.5.3 Holds

CMIS 1.1 also introduced holds. Documents that have at least one hold applied can’t
be update or deleted. But in contrast to retentions, everyone with sufficient permis-
sions can remove holds at any time.

 You set a hold by attaching the secondary type cmis:rm_hold. This type defines the
multivalue string property cmis:rm_holdIds. This list contains hold identifiers that
are defined somewhere else; they’re opaque strings for CMIS. An empty list means that
no hold is applied and the hold type can be detached.

 You may have noticed that we’ve only talked about documents in this section.
Retentions and holds are only defined for documents. To be precise, they’re only
defined for document versions and for the content of the document version. Protect-
ing a document version may or may not also protect all other documents in the ver-
sion series. Some repositories may also freeze property values, not just the content.
The semantics of setting a retention or a hold on a folder isn’t defined by the CMIS
specification, but a repository may allow that.

 Retentions and holds again demonstrate that looking at a document’s ACL doesn’t
reveal a user’s true permissions. Even if a user has the cmis:all permission, they may
not be allowed to delete the document because of a retention. But the allowable
actions should reflect this fact.

12.6 Summary
This chapter covered authentication and authorization topics and pointed out some
general security issues that CMIS applications frequently face. We started with some
obvious, but sometimes overlooked, issues in web applications that deal with docu-
ments. We then explained that CMIS doesn’t define how a client should authenticate
www.it-ebooks.info

http://www.it-ebooks.info/

353Summary
an end user against the repository. A short introduction into the implementation of
an OpenCMIS authentication provider showed you how to handle authentication in
real projects. This was followed by the special authentication mechanism for web
applications.

 We also looked into policies and access control lists and explained what they’re
good for and how to use them. Finally, we touched on retentions and holds.

 We’ve reached a major milestone in this book. At this point, we’ve covered all the
functional details of CMIS. The next chapter covers a nonfunctional but important
topic: performance.
www.it-ebooks.info

http://www.it-ebooks.info/

Performance
As a developer and end user, you know how important performance is for an appli-
cation. Creating a folder should take only a few milliseconds. If it takes longer than
that, sooner or later somebody will complain. If you’ve played with multiple CMIS
repositories, you might have discovered that some repositories are faster than others.

 The performance of a CMIS application depends on many factors. Of course, the
repository is a major factor, but often it isn’t the culprit when an application seems
to be slow. This chapter presents a collection of real-world hints about how to avoid
bottlenecks and how to improve the performance of CMIS clients and servers.

13.1 CMIS performance
When the first developers picked up OpenCMIS to build applications, there were
mixed reactions. A few blog posts on the internet talk about first experiences with
CMIS, and OpenCMIS in particular. Some reported something like this: “I quickly
got it running and could connect to Alfresco and SharePoint. That’s great! But this
CMIS thing is very slow. I don’t know if I should use it in my application.”

This chapter covers
 Selecting the optimal data set

 OpenCMIS and DotCMIS caches

 Binding performance

 HTTP tuning
354

www.it-ebooks.info

http://www.it-ebooks.info/

355CMIS performance
 What’s the reason for these apparently missed expectations? CMIS looks similar to
a filesystem, and people make calls against a repository that are similar to the calls
they would make against a filesystem. So on one hand, you have a local filesystem
where operations are usually fast. Getting the list of files in a folder or the size of a file
takes almost no time. On the other hand, CMIS communicates over a network. Each
OpenCMIS method call results in one or more calls to the repository. Each call has to
be authenticated, and each request or response must be serialized and parsed.
Although almost all of these calls take only a few milliseconds, they add up.

 Thus, some of the missed expectations are due to people making an unfair com-
parison between local filesystem performance and a remote CMIS repository. But
other reasons are linked to simple misuse of the library. Here are a few examples:

 A developer with administrator permissions requested all descendants of the
root folder, and the repository happily returned them. The response was 170
MB of XML. It worked—both the client and server were able to handle the large
response. But it took a moment to transfer this large amount of data. Because
the application needed only a fraction of it, the situation was easy to fix. Eventu-
ally, the data was reduced to a few kilobytes.

 A development team switched an application from filesystem-based storage to
CMIS. They replaced all filesystem operations with CMIS operations. They had
one method that returned the file path, one that returned the file size, and one
that returned the last modification date. In their CMIS code, each method set
up a new OpenCMIS session, fetched the object, and retrieved the requested
property. That is, each of these methods performed three or four calls to the
repository. They performed 10 calls total per document. With a bit of refactor-
ing, it was easy to reduce this to one call, which saved a few hundred millisec-
onds per document.

 A developer wanted to display the version histories of a set of documents on a
web page. He fetched the version history of each document, grabbed the object
ID of each version object, and then fetched the version object. When the docu-
ments had many versions, it took a while to load the web page. It turned out
that it wasn’t necessary to fetch each version object again. The version history
already contained all required information about the version objects. With a
few code changes, the web page’s load performance became acceptable.

 A development team built an application and tested it. It worked fine. But when
they deployed it into the production environment, performance was much
worse compared to the test environment. The culprit was a reverse proxy server
in the production environment, which handled the traffic between the
repository and the application. This proxy server closed the socket connection
after each request, ignoring HTTP Keep-Alive. After the administrator changed
the configuration of the proxy server, performance was on par with the test
environment.
www.it-ebooks.info

http://www.it-ebooks.info/

356 CHAPTER 13 Performance
CMIS can be fast if the application is properly designed, the runtime environment is
correctly set up, and the repository plays along. CMIS client libraries make develop-
ment easy, but as a developer you still have to understand what’s going on under the
covers.

 The following sections highlight a few critical spots. They’re independent of each
other, and not all will be applicable to your application. Keep them in the back of your
mind when you’re building your application.

13.2 Selecting the smallest data set
Do you remember chapters 7 and 8, where OperationContext was used everywhere?
“Not again!” you might think, but in fact, from a developer’s point of view,
the OperationContext is one of the best tools you have to tune your application’s
performance.

 Here are a few rules of thumb for an efficient CMIS application:

 Only ask for the object details you really, really need. If you can supply filters or,
with OpenCMIS and DotCMIS, an OperationContext, do it. Never rely on the
default values of the repository, because most of them will give you far more
details than you need.

 Where possible, avoid properties that the repository has to calculate. Good can-
didates to avoid are properties that have to do with versioning and paths. For
example, to find out if the document is the latest major version, the repository
has to go through the version history. That may take only a fraction of a milli-
second per object, and that’s nothing you would identify as a problem during
development. But it might make a difference in production with millions of
requests per day.

 Allowable actions are handy if you’re implementing a user interface and you
want to show users what they can and can’t do with an object. But calculating
the allowable action values is expensive for almost all repositories. The server
has to check the permissions for all operations covered by the allowable actions.
So if you don’t need them, don’t ask for them.

 Fetching the ACL of an object can be expensive for repositories that support
inherited permissions. To compile the ACL of an object, the repository has to
visit all parents, and the parents of the parents, and so on, until it hits the root.

 When you fetch an object, you can choose to retrieve no relationships, only the
relationships where the object is the source or is the target, or all relationships
the object is involved in. Some repositories have to filter which relationships
the current user is allowed to see. Even if the number of relationships that the
repository returns is small, the repository might have touched a greater num-
ber of objects, so only pick what you need. Check whether requesting the rela-
tionships with a separate getObjectRelationships call makes more sense than
getting the relationships in the same call as getObject or getObjectByPath.
This provides much better control over the result set. (The CMIS operation
www.it-ebooks.info

http://www.it-ebooks.info/

357Performance notes specific to OpenCMIS and DotCMIS
getObjectRelationships is called getRelationships in OpenCMIS and
DotCMIS.)

 Prefer getObject to getObjectByPath. getObject is a bit faster for many repos-
itories because many repositories internally organize their objects by object ID,
not by path.

 Ask only for objects you really need. Pay special attention to operations that
return lists and trees, such as getChildren, query, and getDescendants. With
lists and trees, even minimal performance penalties per object multiply quickly.
Losing a millisecond per object adds up to a second when a query returns 1,000
results. A second can be a long time for an end user.

 Use paging, and use it wisely. Ask only for the subset you really need. If you pres-
ent a list to an end user, select only the first few entries. It’s not likely that an
end user is interested in the thousandth query result. If you need to iterate over
the entire list, go for relatively large pages, because that requires fewer round
trips.

 If you have to sort a list, let the repository do it. The repository can do it more
efficiently than your application. Most operations that return lists have an
order by parameter.

 Select a reasonable tree depth for operations that take a depth parameter.
Avoid the value -1 (infinite). Repositories can restrict the number of elements
returned in a tree. Because these operations don’t support paging, asking for
too many elements can be counterproductive. An incomplete tree is often use-
less for an application.

 Never use a SELECT * FROM ... query in a production application. Always pro-
vide the list of properties you want back. You don’t know how expensive it is for
the repository to prepare the result set with all properties.

There shouldn’t been any real surprises in this list; we covered most of these items in
previous chapters. But it’s good to recap them here. You may want to use them as a
checklist when you encounter a performance issue.

13.3 Performance notes specific to OpenCMIS and DotCMIS
The list of performance considerations covered so far is applicable regardless of which
CMIS client you’re using. Here are some items specific to OpenCMIS and DotCMIS:

 When you define a property filter in an OperationContext, OpenCMIS and
DotCMIS always add the properties cmis:objectId, cmis:objectTypeId, and
cmis:baseTypeId to the filter. This is necessary to construct proper CmisObjects.

 The create methods on the Session object (createDocument, createFolder,
and so on) are faster than similar methods on other interfaces. These create
methods return only the object ID and not the full-blown new object, which
saves a round trip. If you want to create and forget objects, use these methods.
www.it-ebooks.info

http://www.it-ebooks.info/

358 CHAPTER 13 Performance
 There’s a getContentStream method on the Session object, which lets you get
the content of a document directly without getting the document object. That
can save a round trip to the repository.

 There’s also a delete method, which you can use to delete an object without
fetching it first. That can save another round trip.

 In the CMIS specification, you’ll find the terms path segment and relative path seg-
ment in conjunction with the getChildren and getObjectParents operations.
You can turn them on and off in the OperationContext, but there’s no need to
turn them on. OpenCMIS and DotCMIS request them automatically if necessary.

 The OperationContext has a setMaxItemsPerPage method, which lets you
define the actual page size that’s used when the repository is contacted to
retrieve a list. For example, if you iterate over all children in a folder (where the
folder has 1,000 children and max items per page is 100), then the library con-
tacts the repository 10 times during the iteration to get a chunk of 100 children.
There’s a trade-off between responsiveness and the total time to fetch all items
in the list. A high max items per page value decreases the total time to fetch all
items because it requires fewer round trips. But it also takes longer to retrieve
the first item because a longer list must be compiled, transferred, and parsed
first. This value depends on your use case.

 If you explicitly select a page with the getPage method, the max items per
page value still applies. If the selected page size is bigger than the max items
per page value, the library makes multiple calls until the data for the page has
been completely served. If the selected page size is smaller than the max items
per page value, the library makes one call that potentially requests more items
than necessary for the page. If your page size is small (for example, you want to
display the first 10 hits of a query), the page size and the max items per page
value should be the same.

Caching is another way to avoid unnecessary calls. The next two sections explain the
OpenCMIS and DotCMIS caches.

13.4 Caching
Caching is a common method to increase performance. OpenCMIS and DotCMIS
provide several built-in caches (see figure 13.1). Most of them are invisible to the
application, and application developers usually don’t need to be familiar with the
details. But it helps to know the basics when you debug your application and trace the
traffic between client and server.

 There are two types of caches. The first type caches static data that’s unlikely to
change. The second type deals with object data that does change during runtime. The
next two sections explain these caches.
www.it-ebooks.info

http://www.it-ebooks.info/

359Caching
CACHES FOR OTHER CMIS CLIENT LIBRARIES Other client libraries may not pro-
vide built-in caches, but applications can build something similar on top. All
programming languages provide the means to build a simple cache infra-
structure. Web applications could, for example, use the HTML5 Web Storage.
Although the following sections talk about the OpenCMIS caches and inter-
faces, these topics are also relevant for your homemade caches.

13.4.1 Caching static data

In a production environment, several things in CMIS are static and can be cached on
the client side without side effects. These are mainly the repository info and the type
definitions. This data is needed—directly or indirectly—over and over again in an
application. So fetching it only once and caching it makes sense.

 OpenCMIS transparently caches repository info and type definitions. The Session
object manages all caches. You can turn these caches off or change the cache sizes
when you set up the session. Usually you don’t have to change the cache settings—you
can live with the defaults. But if your application deals with more than 100 different
object types at the same time, you may want to increase the type definition cache size.

 In development environments, type definitions may change while your application
is running. New and removed types won’t harm your application. New types will be
picked up when the application loads an object with this type for the first time.
Removed types will stay in the cache, but there shouldn’t be any objects referencing
them. When type definitions are modified and the type definition is already cached,
OpenCMIS may throw exceptions when the first object that uses the changes is
loaded. If you find yourself in this situation, you can either clear all caches by calling
clear on the Session object or create a new Session object.

A SESSION PER USER

You may wonder why these caches are attached to a session. Wouldn’t it be possible to
have one repository info cache and one type definition cache for all sessions in the

Static caches — cached
data cannot be refreshed

or removed.

 Object cache
• Cached objects expire.
• Cached objects can be

refreshed and removed.
AtomPub binding–

specific cache

Repository info cache

Type definition cache
Path cache

Object cache

OpenCMIS session

AtomPub link cache

Figure 13.1 Built-in OpenCMIS session caches at a glance
www.it-ebooks.info

http://www.it-ebooks.info/

360 CHAPTER 13 Performance
JVM? Wouldn’t that save additional calls and memory? This is a valid idea, but it doesn’t
work that way. A session is bound to a user. A repository can return different repository
info and different type definitions for each user. For example, the display names of
type and property definitions can be localized for each user (see figure 13.2). Some
users may not be allowed to see certain type definitions. And the repository info may
return different repository capabilities if the user has admin privileges.

 The Session object and the caches belong together. That’s why you should always
keep your Session object. Create one when you need it, and then reuse it whenever pos-
sible. Creating a second Session object for the same user is equivalent to throwing
away your caches. And that adversely affects application performance.

THE ATOMPUB LINK CACHE

There’s another cache in OpenCMIS that you’ll probably never notice because it
resides deep down the stack. It caches AtomPub links (see section 11.2.2) and is cru-
cial for the performance of the AtomPub binding implementation. This cache is men-
tioned here for those who want to build their own binding library. You should keep
track of the links in Atom entries and feeds; they’re required for subsequent calls to
the repository.

 The cache settings can be adjusted with session parameters when the session is cre-
ated. In contrast to the other two caches, it’s updated very frequently because each
entry refers to a CMIS object. The cache size should reflect the number of objects your
application is dealing with. The default cache size of 400 entries should work for most
scenarios.

 Apart from caching Atom links, caching whole objects can drastically increase the
application performance. It’s a bit more difficult to manage, though. Let’s explore the
OpenCMIS object cache.

13.4.2 Caching objects

Assume you’re developing a web application. It uses Ajax calls to refresh certain areas
of your web page. Multiple Ajax calls refer to the same CMIS document. One call

Type definition cache

OpenCMIS session
User: John

Type ID: cmis:document
Display name: Document

Type ID: xyz:invoice
Display name: Invoice

Type definition cache

OpenCMIS session
User: Maximillian

Type ID: cmis:document
Display name: Dokument

Type ID: xyz:invoice
Display name: Rechnung

Type definition cache

OpenCMIS session
User: François

Type ID: cmis:document
Display name: Document

Type ID: xyz:invoice
Display name: Facture

Figure 13.2 An OpenCMIS session is bound to a user. Each user has its own cache
because a repository can return user-specific data. Here, three different users retrieved the
same type definitions, and the repository returned localized display names.
www.it-ebooks.info

http://www.it-ebooks.info/

361Caching
updates the properties view, another refreshes the ACL view, and a third lists the docu-
ment renditions. Usually, different server threads serve each call.

 Each thread could load the document data separately, but that would be a waste of
time, bandwidth, and memory. Because this is the chapter about performance, we
have a solution for you.

 OpenCMIS has an object cache. Whenever you call getObject or getObjectBy-
Path, it will first look into its cache. If the object is available, the method won’t fetch it
from the repository but will serve it from the cache (see figure 13.3). Because Open-
CMIS is thread-safe, you can and should reuse its objects across multiple threads.

 An object is the same object in the cache if the object ID is same and the same
OperationContext (remember chapter 7) was used to retrieve the object. That is, an
object can be in the cache more than once with a different set of metadata. This is
another reason to keep the number of OperationContexts small and to reuse these
objects.

 The default cache is an LRU cache; each object expires after two hours. An addi-
tional cache keeps a mapping from the object path to the object ID; these cache
entries time out after 30 minutes. All these characteristics can be adjusted when you
create the session. You can even provide your own cache implementation or turn off
the cache entirely.

Path cache Object cache

Folder
“5678”

Folder
“7890”

Folder
“9876”

Document
“6789”

Document
“2345”

Document
“1234”

Document
“0123”

getObject("0123")

getObject("1234")

getObject("2345")

getObject("5678")

getObjectByPath("/folder2")

getObjectByPath("/doc1")

getObjectByPath("/folder1")
/doc1

/folder1

/folder2/doc2

1234

2345

9876

5678

6789

CMIS
repository

Figure 13.3 Routing getObject and getObjectByPath calls through the object and path
cache. If the requested object isn’t in the cache, the request is forwarded to the repository.
www.it-ebooks.info

http://www.it-ebooks.info/

362 CHAPTER 13 Performance

Object
is ig
whe

Oper
Cont
 Caches are good for performance, but they have a common problem: they can
become stale. Sometimes you want a fresh object, and there are multiple ways to
achieve that.

 The OperationContext has a flag that controls whether the cache should be used
(or not) for an operation. That’s handy if you repeatedly need fresh data. Set up such
an OperationContext that turns off the cache, and reuse it, like this:

OperationContext context = session.createOperationContext();
context.setFilterString(

"cmis:objectId,cmis:name,cmis:lastModificationDate"
);
context.setIncludeAllowableActions(false);
context.setCacheEnabled(false);
...

CmisObject obj = session.getObject("1234567890", context);

If you want to disable the cache for all operations that don’t take an Operation-
Context, you can do this:

session.getDefaultContext().setCacheEnabled(false);

A more individual way is to call refresh on an object. The object will contact the repos-
itory and ask for the same set of data it was originally created with. If the object no lon-
ger exists in the repository, refresh will throw a CmisObjectNotFoundException:

try {
doc.refresh();

} catch(CmisObjectNotFoundException notFound) {

}

A common misuse of refresh is this:

try {
document = (Document) session.getObject("12345678");
document.refresh();

}
catch(CmisObjectNotFoundException e) {

}

The first request for the object loads the object and then immediately refreshes it.
That is, there are two calls to the repository, and the second one isn’t necessary.

 Usually you want to refresh an object only after a certain period of time. Each
object knows when it was last refreshed. If you need to know that too, call get-
RefreshTimestamp. This timestamp is also used for the refreshIfOld method.
refreshIfOld takes a duration in milliseconds. If the object has been refreshed within
this time span, refreshIfOld doesn’t do anything. Otherwise, it contacts the reposi-
tory and refreshes the object:

Document doc = (Document) session.getObject("1234567890");
...
try {

cache
nored
n this
ation-
ext is
used

getObject call
bypasses the cache
and gets the object
directly from the
repository

Call unnecessary
because of the
getObject call
immediately before it
www.it-ebooks.info

http://www.it-ebooks.info/

363Caching
doc.refreshIfOld(2 * 60 * 1000);
} catch(CmisObjectNotFoundException notFound) {
}

How would you use this? Let’s go back to the web page example with the parallel Ajax
requests. Each thread can call refreshIfOld with a duration of, let’s say, 10 seconds.
Because Ajax requests are usually pretty close together, only the first call that hits the
server refreshes the document data. It doesn’t matter which call is first.

 Whether 5 seconds, 5 minutes, or 50 minutes is the best duration depends on your
application. If your documents don’t change often, a long duration may be accept-
able. A website with many visitors can reduce the load of the repository and improve
the site’s performance with an appropriately long duration.

 A tricky combination is the cache and the getObjectByPath method. The cache
maps the path of an object to the object. If somebody deletes the object and creates a
new object with the same path, the cache won’t recognize this and will return the old
object (until it expires in the cache). Calling refresh on an object won’t help because
it tries to reload the object by its ID. Because an object with this ID doesn’t exist any-
more, you always get a CmisObjectNotFoundException. The pattern to deal with this
situation is shown in the following listing.

Document doc = (Document) session.getObjectByPath("path/to/doc");

...

ContentStream stream = null;
try {

stream = doc.getContenStream();
}
catch(CmisObjectNotFoundException e) {

session.removeObjectFromCache(doc);

try {

doc = (Document) session.getObjectByPath("/path/to/doc");
stream = doc.getContenStream();

}
catch(CmisObjectNotFoundException e) {

// there is no object at this path anymore
}

}

This listing tries to get the content of a document that was retrieved earlier by path.
Someone deleted the original document, and now getContentStream throws a
CmisObjectNotFoundException because there’s no longer a document with this
object ID. That is, the object is invalid, and you can remove it from the cache. Then

Listing 13.1 Dealing with a deleted and re-created document at the same path

Refreshes the object only if
it hasn’t been refreshed
within the last 2 minutes

Removes old object from
the cache before
requesting it again

Object is no longer in the cache,
so this call will hit the repository
www.it-ebooks.info

http://www.it-ebooks.info/

364 CHAPTER 13 Performance
you try fetching the document again by path. If there’s a new document, you get the
content stream. If there’s nothing at this path, you have to deal with it.

 The static data cache described in the previous section resides in the low-level API
implementation and therefore is available for both the low-level and high-level APIs of
OpenCMIS and DotCMIS. The object cache is a feature of the high-level API. If you’re
using the low-level API, you have to build your own object data cache.

13.5 Selecting the fastest binding
Performance varies widely among the three bindings. The Web Services binding is the
slowest of the three. The AtomPub binding is significantly faster. And the Browser
binding is even faster than the AtomPub binding.

 To give you a rough idea of the differences, we ran a test set using a typical mix of
operations against a fast repository on a fast network without compression. The Atom-
Pub binding run was about three times faster than the Web Services binding run. And
the Browser binding run was two times faster than the AtomPub binding run, as
shown in figure 13.4.

The absolute numbers depend on the repository, client, network setup, authentica-
tion method, and so on. If you have a choice, test all available bindings. OpenCMIS
makes switching the binding pretty easy (see chapter 11).

 One last word about the AtomPub binding: the content of a document is Base64-
encoded when you’re creating a document with createDocument. That is, the content
size grows by approximately a third when it’s transferred over the wire. That doesn’t
matter when you’re uploading typical office documents, but it makes a difference
when you’re uploading big video files or X-ray images. A workaround is to create an
empty document first and then add the content to the document with set-
ContentStream or appendContentStream, which don’t encode the content.

 If the repository doesn’t allow or support setContentStream or append-
ContentStream, you should at least test whether the server supports client compres-
sion, because Base64 compresses very well. The next section explains how to turn that
on. It also covers other HTTP-related and binding-independent performance hints.

13.6 Tuning HTTP for CMIS
All CMIS bindings are based on HTTP, and thus tuning HTTP performance helps CMIS
applications and servers. Let’s walk through the most important aspects.

Web Service Binding

AtomPub Binding

Browser Binding

Time

Figure 13.4 Performance
differences of the three CMIS
bindings. The Browser binding
is the fastest.
www.it-ebooks.info

http://www.it-ebooks.info/

365Tuning HTTP for CMIS
13.6.1 HTTP Keep-Alive

HTTP 1.1 defines that clients and servers should support Keep-Alive connections. That
is, a socket connection between client and server should be reused for multiple
requests. This is an important feature of CMIS because applications usually send a
burst of requests to the repository. Here’s a simple example: the application wants to
create a document in a folder. This may lead to the following sequence of calls:

1 getObjectByPath (get folder object)
2 getTypeDefinition (get the folder’s type, if not already cached)
3 getTypeDefinition (get the document’s type, if not already cached)
4 createDocument (create the document)
5 getObject (retrieve the newly created document to present the metadata to the

user)

With Keep-Alive, this can happen over one connection. There’s no overhead for estab-
lishing multiple connections. This overhead can be considerable, especially if you use
HTTPS. Many SSL handshakes can affect application performance.

 There’s usually nothing you have to do to enable Keep-Alive. Most client libraries
and repositories support it out of the box. But be prepared for a nasty surprise when
you deploy your repository and your application in your production environment.
Load balancers, proxy servers, and firewalls may not have Keep-Alive activated. If you
encounter much worse performance after you move your application from the devel-
opment to the production environment, check whether Keep-Alive is enabled along
the way.

13.6.2 Compression

CMIS sends XML and JSON requests and responses over the wire. Both compress very
well. The size of an AtomPub feed shrinks between 5% and 95% when it’s com-
pressed. Compression can burst application performance, especially on slow networks
and over the internet.

 How do you enable compression? We have to look at requests and responses sepa-
rately. Let’s start with responses.

 Clients can request response compression by setting the HTTP header Accept-
Encoding. OpenCMIS does that if you turn on compression when you set up the ses-
sion (see chapter 6, section 6.5.2):

parameter.put(SessionParameter.COMPRESSION, "true");

That doesn’t necessarily mean the repository returns a compressed response. Some
repositories support it out of the box, and others don’t. Check with the repository ven-
dor as well as the application server vendor. If you can configure it, the following
MIME types at least should be compressed:

 application/atomsvc+xml

 application/atom+xml;type=entry
www.it-ebooks.info

http://www.it-ebooks.info/

366 CHAPTER 13 Performance
 application/atom+xml;type=feed

 application/cmisquery+xml

 application/cmisallowableactions+xml

 application/cmisatom+xml

 application/cmistree+xml

 application/cmisacl+xml

 application/json

 application/xml

 text/xml

OpenCMIS can also compress requests. Turn on client compression when you set up
the session, like this:

parameter.put(SessionParameter.CLIENT_COMPRESSION, "true");

OpenCMIS uses gzip to compress the XML and JSON payloads. Only a few reposito-
ries can handle compressed requests, though. Check with the repository vendor and
application server vendor to find out if the repository you’re working with supports
this feature.

 The CMIS Workbench lets you switch request and response compression on and off
in the login dialog box. Use a debug proxy, and watch the traffic as described in chap-
ter 11. You’ll see that compression can make a huge difference.

13.6.3 Authentication and cookies

Chapter 12 covered the use of cookies for authentication. It’s important to mention it
here again in the context of performance. Turning on cookies can drastically boost
performance for some repositories because the repository has to check the user cre-
dentials only once per session. Try using the CMIS Workbench with and without cook-
ies to test whether it makes a difference for the repository you want to use.

 To turn on cookie support in OpenCMIS, use this session parameter:

parameter.put(SessionParameter.COOKIES, "true");

13.6.4 Timeouts

Connection and read timeouts aren’t performance-related. They control how quickly
a call should fail if the application can’t connect to the repository. The end user’s per-
ception of application performance may be related to this aspect.

 You can set the timeouts in milliseconds as session parameters, as follows:

parameter.put(SessionParameter.CONNECT_TIMEOUT, "20000");
parameter.put(SessionParameter.READ_TIMEOUT, "10000");

13.7 Summary
In this chapter, we discussed different factors that affect the performance of a CMIS
application. Although repository performance plays a big role, several other factors,

20 seconds
10 seconds
www.it-ebooks.info

http://www.it-ebooks.info/

367Summary
such as network infrastructure and application design, may have an impact. Read and
make sure you understand the hints in this chapter before you start your first real
CMIS application. Also be sure to revisit this chapter before you put your application
into production.

 If you’ve ever thought about building your own CMIS server, then the next chapter
is what you’ve been waiting for. It covers the OpenCMIS Server Framework.
www.it-ebooks.info

http://www.it-ebooks.info/

Building a CMIS server
In the previous chapters, we looked at CMIS mainly from a client perspective. In
this chapter, we’re changing sides and explaining how to build a CMIS server. You’ll
learn how to build a CMIS frontend on top of an existing content repository (or
similar data source) with the OpenCMIS Server Framework. For this chapter, you
should know how to work with servlets and understand the general concepts relat-
ing to building web applications.

14.1 Introduction to the OpenCMIS Server Framework
It’s hardly surprising that a CMIS server is an upside-down version of a CMIS client.
All the principles we’ve discussed in this book apply here, too. Similar to a CMIS cli-
ent, you can either implement the CMIS bindings yourself or use a library or frame-
work. Using a framework obviously saves you time and effort.

This chapter covers
 Generating a CMIS server stub with the OpenCMIS Server

Framework

 Testing a CMIS server for compliance

 Using the OpenCMIS query parser

 Changing the authentication mechanism
368

www.it-ebooks.info

http://www.it-ebooks.info/

369Introduction to the OpenCMIS Server Framework
In this chapter, we’ll discuss the OpenCMIS Server Framework, which is a Java server
implementation of CMIS. It runs on top of a servlet engine such as Tomcat or Jetty
(see figure 14.1). It implements all CMIS bindings, which means it covers all XML and
JSON handling. To connect the framework to the content repository, you have to
implement two Java interfaces: CmisService and CmisServiceFactory. Take a wild
guess what we’ll be talking about next.

14.1.1 CmisService interface

The main interface is CmisService. If you’ve played with the OpenCMIS client low-
level API, this interface should look familiar. The CmisService interface is an aggrega-
tion of all nine low-level interfaces plus a few extra methods that we’ll explain a bit
later. This interface covers all CMIS 1.0 and 1.1 operations and has over 50 methods.
The methods and parameters are named after the CMIS operations. Implementations
of this interface are supposed to behave as described in the specification; that
includes throwing the exceptions documented in the specification. The “Services” sec-
tion of the CMIS specification will become your best friend when you’re implementing
this interface.

14.1.2 CmisServiceFactory interface

The second interface is CmisServiceFactory. As the name suggests, it provides
instances of CmisService implementations. Apart from the getService method that
returns such an object, there are some methods that are called at initialization and
destruction time of the web application as well as methods that return configuration
data.

Content
repository

CMIS client

Servlet container (Tomcat, Jetty, …)

OpenCMIS Server Framework

Web
Services AtomPub Browser

CMIS client

CMIS client

S
O

A
P A

to
m

P
ub

JS
O

N

<Your CMIS server code>

Figure 14.1 The OpenCMIS Server Framework in a servlet engine
www.it-ebooks.info

http://www.it-ebooks.info/

370 CHAPTER 14 Building a CMIS server
14.1.3 The framework

The framework consists of five servlets (shown in figure 14.2) and two context listen-
ers. One context listener initializes the CmisServiceFactory implementation. The
other one sets up the Web Services binding. There are two servlets for the Web Ser-
vices binding (one for CMIS 1.0, the other for CMIS 1.1), two servlets for the AtomPub
binding (again one for CMIS 1.0 and one for CMIS 1.1), and one servlet for the
Browser binding (CMIS 1.1 only).

 When a servlet receives a CMIS request, it parses the requests, checks if the request
is syntactically correct, and turns the input parameters into Java objects. It then asks
the CmisServiceFactory implementation for an instance of the CmisService imple-
mentation and calls the appropriate method with the input Java objects. The response
of the called method is then translated into XML or JSON and sent back to the client.

That is the general mode of operation. The rest of this chapter describes how to imple-
ment the two interfaces, set up a CMIS web application, and deploy that application.

14.2 Generating a server stub
You’ll use a Maven archetype to generate a Maven project, which in turn creates a
server stub. Don’t worry if you aren’t familiar with Maven; this chapter provides step-
by-step instructions. Once the stub has been generated, you can keep the Maven proj-
ect for further development or move the stub to a different build environment of your
choice.

Web Services
binding

CMIS 1.0

Web Services
binding

CMIS 1.1

AtomPub binding
CMIS 1.0

AtomPub binding
CMIS 1.1

Browser binding
CMIS 1.1

Content repository

SOAP SOAP SOAP SOAP AtomPub
 Form

data JSONAtomPub

AtomPub

AtomPub

1 1 1 1 1

2 2 2 2 2

3

4 4 4 4 4

5

6 6 6 6 6

CmisServiceFactory CmisService

Figure 14.2 Servlets that are parts of the
framework and their associated protocols
www.it-ebooks.info

http://www.it-ebooks.info/

371Generating a server stub
 To generate the stub, you need Java 5 (or higher) and Maven 3 installed on your
computer. The stub generation is done via command line. First change to the stub’s
target directory. Then execute the following command:

mvn archetype:generate \
-DgroupId=org.example.cmis \
-DartifactId=my-cmis-server \
-Dversion=1.0-SNAPSHOT \
-Dpackage=org.example.cmis.server \
-DprojectPrefix=Example \
-DarchetypeGroupId=org.apache.chemistry.opencmis \
-DarchetypeArtifactId=chemistry-opencmis-server-archetype \
-DarchetypeVersion=0.9.0 \
-DinteractiveMode=false

This call accepts the following parameters:

 groupId, artifactId, and version—Maven coordinates for the project you’re
creating.

 package—Java package for your project.
 projectPrefix—Prefix for the classes that will be generated. For example,

the prefix Example generates the classes ExampleCmisService and
ExampleCmisServiceFactory.

 archetypeGroupId, archetypeArtifactId, and archetypeVersion—Open-
CMIS archetype and OpenCMIS version that should be used. The archetype
was introduced with OpenCMIS 0.9.0. You may choose this version or a later
version to generate the stub. This version also defines the runtime OpenCMIS
Server Framework version.

 interactiveMode—If false, Maven won’t prompt you to confirm any of the pre-
vious parameters passed in.

Next we’ll explore the results generated by this process. As you’ll see, this is a real time
saver:

|--my-cmis-server
|----pom.xml
|----src

|----main
|----java
| |----org
| |----example
| |----cmis
| |----server
| |----ExampleCmisService.java
| |----ExampleCmisServiceFactory.java
|----webapp

|----index.jsp
|----WEB-INF

|----classes
|----repository.properties
www.it-ebooks.info

http://www.it-ebooks.info/

372 CHAPTER 14 Building a CMIS server
Here are the five key files:

 pom.xml—The pom.xml file for your web project. It contains the configuration
you need to build the CMIS server. You can adapt this file if necessary.

 ExampleCmisService.java—Stub implementation of the CmisService interface.
Note that it resides in the package you provided and has the prefix defined
previously.

 ExampleCmisServiceFactory.java—Stub implementation of the CmisService-

Factory interface.
 index.jsp—Start page of the web application. It provides the URLs for the three

CMIS bindings. You can change or remove this file; it’s not required in order to
run the server.

 repository.properties—Connects the framework with your implementation. It’s a
Java properties file, which must at least contain the key class. The value for this
key is the fully qualified class name of the CmisServiceFactory implementa-
tion. If you rename or move your factory class, you have to adapt this file
accordingly.

Now that all the introductions are over, let’s build a WAR file for this new project.

14.2.1 Building the CMIS server WAR file

Change to the my-cmis-server directory, and run the following command to build the
web application:

mvn clean install

When the build is done, there should be a subdirectory called target. It contains a
ready-to-run WAR file called my-cmis-server-1.0-SNAPSHOT.war. The name is a combi-
nation of the artifactId and project version. Rename it to something shorter, such
as myserver.war, and deploy it to a servlet engine.

 For your first tests, use a plain servlet engine like Tomcat or Jetty. Some applica-
tion servers need a special classloader configuration, which we don’t cover here.
Once the deployment has finished, open the URL http://localhost:8080/myserver
(adjust host and port) in a web browser. You should see the CMIS server start page
shown in figure 14.3.

 The start page contains links to the three bindings. Copy the URLs, and try them
with the CMIS Workbench. You should be able to load the (short) list of repositories,
but further requests will fail. Nevertheless, you’ve just deployed a CMIS server.
Congratulations!

 Let’s look under the hood of the WAR file next.
www.it-ebooks.info

http://www.it-ebooks.info/

373Generating a server stub
14.2.2 Dissecting the CMIS server WAR file

When you unpack the WAR file, you should see something like this:

|----index.jsp
|----WEB-INF

|----classes
| |----org
| | |----example
| | |----cmis
| | |----server
| | |----ExampleCmisService.class
| | |----ExampleCmisServiceFactory.class
| |----repository.properties
|----lib
| |----...
|----cmis10
| |----...
|----cmis11
| |----...
|----sun-jaxws.xml
|----web.xml

Here are the high points of what you see here:

 The index.jsp file and the contents of the WEB-INF/classes directory should
look familiar. These are the generated project files.

 The WEB-INF/lib directory contains all libraries that are required to run the
CMIS server.

Figure 14.3 The CMIS server start page
www.it-ebooks.info

http://www.it-ebooks.info/

374 CHAPTER 14 Building a CMIS server
 The WEB-INF/sun-jaxws.xml file and the cmis10 and cmis11 directories are
required for the Web Services binding. The WSDL and XSD files are fixed by the
specification and shouldn’t be modified. We’ll come back to the sun-jaxws.xml
file a bit later when we talk about authentication.

 The WEB-INF/web.xml file defines all servlets and context listeners.

You can override these files and add new files by putting them in the right place under
the src directory. You can also add dependencies to other Maven projects to pom.xml.
You’ll probably want to embed a library that helps you connect to your underlying
content repository.

 At this point you have a choice of continuing to use this Maven project or taking
the contents of the WAR file plus the source files and moving to a different build envi-
ronment. The project setup is done now. Next we’ll dive into the implementation
details.

14.3 Implementing the CmisServiceFactory interface
The main task of a CmisServiceFactory implementation is to serve CmisService
instances. Before we look into this, open the generated class ExampleCmisService-
Factory and skim through it. You may notice that it doesn’t implement the interface
directly but extends the AbstractServiceFactory class instead. This abstract class
implements all the methods of the CmisServiceFactory interface except get-
Service, which provides the CmisService objects. It’s recommended that you use
this abstract class because it provides sensible default return values for the interface’s
other methods.

 How the getService method creates or manages a CmisService object is up to the
implementation. The factory can create an object for each request, can pool objects,
or can keep an object per thread in a ThreadLocal. In the end it depends on how
expensive it is to create and maintain such an object.

CmisService objects aren’t shared across threads by the framework and don't need
to be thread-safe. But if they’re reused, they must not keep any data from a previous
request. That could lead to unpredictable side effects and memory leaks.

14.3.1 CmisServiceWrapper

OpenCMIS provides an optional wrapper for CmisService objects. The CmisService-
Wrapper class checks every request before it’s forwarded to the CmisService object. If
a request obviously violates the CMIS specification, the wrapper throws the appropri-
ate exception. For example, if a client calls the getObject operation without an object
ID, the wrapper automatically throws a CmisInvalidArgumentException, and the
actual CmisService object isn’t bothered with this request.

 Additionally, the wrapper sets operation parameters that the client didn’t provide
if the specification defines a default values for these parameters. For example, if a cli-
ent calls the checkIn operation and doesn’t provide the major flag, which defines
whether the new version should become a major version, the wrapper sets the major
flag to TRUE, because that’s the default value defined in the specification. That is, your
www.it-ebooks.info

http://www.it-ebooks.info/

375Implementing the CmisServiceFactory interface
CmisService implementation always gets a value for such a parameter, even if the cli-
ent didn’t supply one.

 Clients don’t need to set the maxItems parameter for operations that return lists,
and they also don’t need to set the depth parameter for operations that return trees.
The specification says the default values for these parameters are repository-specific.
The wrapper lets you define these values and fills them in if the client didn’t provide
the parameters.

 In summary, the wrapper helps you build a specification-compliant and more
robust server, and it’s recommended that you take advantage of it. The generated
ExampleCmisServiceFactory class demonstrates how to apply this wrapper. But the
wrapper is optional—if you want or need to catch all invalid requests yourself, remove
it from the code.

14.3.2 CallContext

You may also have noticed that the getService method gets a parameter of type
CallContext. This CallContext object contains a lot of details about the current call.
Just to name a few, it provides the repository ID, the binding the client used, the CMIS
version of this call, and the username and password if the standard authentication
mechanisms were used. It also provides the call’s HttpServletRequest and Http-
ServletResponse objects, if you need low-level access.

 The getService method is also a good place for checking user credentials. The
CallContext object should provide all the necessary data. We’ll cover authentication
in detail later in this chapter; but as a rule of thumb, if the credentials are incorrect,
throw a CmisPermissionDeniedException right here.

14.3.3 Other CmisServiceFactory methods

The other methods of the CmisServiceFactory interface can be divided into two
groups. First are the two lifecycle methods init and destroy. The names suggest
when they’re called. The init method retrieves a Map of values, which represents the
content of the repository.properties file. This file can be used to provide repository
connection details.

 The second group provides several configuration details for the framework. To
handle big documents, the framework sometimes has to create temporary files in
which to park content for a very short period of time. The following methods control
the temporary files:

 getTempDirectory—Defines the directory for the temporary files. The default
is the system’s temp directory.

 encryptTempFiles—Documents can contain confidential content, so the tem-
porary files can be encrypted. If this is turned on, plain document content will
never touch a hard disk. It’s turned off by default for performance reasons. (At
the time of writing, the Web Services binding ignores this parameter, but that
may change with later OpenCMIS releases.)
www.it-ebooks.info

http://www.it-ebooks.info/

376 CHAPTER 14 Building a CMIS server
 getMemoryThreshold—Document content is written to temporary files only if
they’re bigger than the threshold value returned by this method. Documents
smaller than that are buffered in main memory. The default value is 4,194,304
bytes (4 MB).

 getMaxContentSize—Temporary space isn’t infinite. This method defines the
size at which the framework should reject the document. The default value is
4,294,967,296 bytes (4 GB). If you’re daring, you can return -1, which lifts this
restriction entirely. (At the time of writing, the Web Services binding ignores
this parameter, but that may change with later OpenCMIS releases.)

The factory is now set up, but the real work happens in the service implementation.
Let’s look into that next.

14.4 Implementing the CmisService interface
The CmisService interface is huge. We already said it has more than 50 methods. It’s
probably a good idea to split up the implementation into logical chunks, but how you
divide it is up to you. The next few subsections will suggest some logical divisions.

14.4.1 AbstractCmisService

When you look at the generated ExampleCmisService class, you may wonder where all
these methods are. The answer is that they’re in the AbstractCmisService class, which
the ExampleCmisService class extends. The abstract class provides convenience imple-
mentations for almost all CMIS operations. Most of them throw a CmisNot-
SupportedException. A few methods try deriving meaningful responses from other
methods. For example, the getAllowableActions method calls the getObject method
and extracts the allowable action from the response. That’s good enough for a start, but
probably not a sustainable solution for a productive system. For the most efficient imple-
mentation, you should eventually override all methods with your own code.

 There are a few methods that the AbstractCmisService class doesn’t implement
and that are empty in the ExampleCmisService class. These methods are the bare
minimum for a read-only CMIS server. Once those are implemented, you can browse
your repository with the CMIS Workbench. The server isn’t a fully compliant reposi-
tory yet, but it’s fairly close.

14.4.2 Best practices for implementing the CmisService

The best practices for implementing the CmisService interface work as follows:

1 Pick the next CMIS operation you want to implement, going for the read-only
operations first.

2 Read the operation description in the CMIS specification and everything related
to it.

3 Check the Javadoc of the AbstractCmisService class for implementation hints.
A few CMIS operations map to more than one method because of binding dif-
ferences. A bit later, you’ll learn that the AtomPub binding sometimes needs
www.it-ebooks.info

http://www.it-ebooks.info/

377Testing the CMIS server with the OpenCMIS TCK
special treatment. Whenever you read something about “object info” objects,
refer to “AtomPub differences,” section 14.6, later in this chapter.

4 Implement the method(s). Note that all input and output parameters are inter-
faces. You can either implement them yourself or use the implementations pro-
vided by OpenCMIS. If you want to use the OpenCMIS implementations, add
the suffix Impl to the interface names to get the implementation class names.
These classes are basic data containers with getter and setter methods. Some
parameters are wrapped in a Holder<> class; these are input and output param-
eters at the same time. Make sure you don’t forget to set the values of these
holders before your method returns.

5 Once in a while, compile and deploy your server and run the OpenCMIS Test
Compatibility Kit (TCK), which is discussed in the next section.

THE LOCAL BINDING A fourth, nonstandard binding is mentioned in the
AbstractCmisService Javadoc: the Local binding. This binding allows
OpenCMIS clients to talk to OpenCMIS servers that reside in the same JVM.
Instead of making calls over the network, the client directly invokes the
server’s Java methods.

There are all kinds of use cases for this binding. You’ll know them when
you see them, but it’s particularly handy for tests. It lets you run automated
tests outside a servlet engine, which can make testing much easier.

The process of implementing over 50 methods isn’t as tedious as it seems. There’s a
lot of code you’ll use over and over. For example, one of the first methods you have to
implement is getObject. It takes a moment to build this method’s bells and whistles,
but it pays off when you tackle all the other methods that return ObjectData objects—
getChildren, for example. Depending on the underlying content repository and how
well its concepts fit with CMIS, it’s possible to build a pretty solid and almost complete
proof of concept in about a week.

 You may also want to check out the source code of the OpenCMIS FileShare repos-
itory. This repository implementation turns a local filesystem directory on your com-
puter into a CMIS repository. The code is straightforward and simple, and you may
find some code snippets that you want to borrow—especially the type- and property
type–definition code, which should be reusable.

 Developing a proof of concept and developing a production server are two differ-
ent things. The latter needs a lot more testing, and the OpenCMIS TCK should be part
of it. We’ll cover that in the next section.

14.5 Testing the CMIS server with the OpenCMIS TCK
The CMIS Technical Committee didn’t define test cases or provide a certification pro-
gram. There’s no official test that can validate your CMIS server.

 OpenCMIS tries to fill this gap with the Test Compatibility Kit (TCK). The TCK is a
set of tests that makes a few hundred calls to a repository and checks whether the
www.it-ebooks.info

http://www.it-ebooks.info/

378 CHAPTER 14 Building a CMIS server
responses comply with the CMIS specification. It covers almost all aspects of the speci-
fication and is an essential tool for the early development stages.

14.5.1 Running the TCK with the CMIS Workbench

The easiest way to run the TCK is with the CMIS Workbench. There’s a TCK button on
the Workbench toolbar; it opens a dialog box that allows you to choose the tests you
would like to execute (see figure 14.4). The TCK session inherits the login details from
the Workbench session. When you’re doing serious testing, you should run the tests
for each binding.

 All TCK tests are also JUnit tests, and the OpenCMIS TCK includes an Ant task for
automated testing. The OpenCMIS Full Integration Test (FIT) runs the TCK with
every OpenCMIS Maven build. If you want to do something similar, you may want to
look at the OpenCMIS FIT package.

Figure 14.4 Dialog for TCK run options
www.it-ebooks.info

http://www.it-ebooks.info/

379Testing the CMIS server with the OpenCMIS TCK
14.5.2 TCK results breakdown

The TCK can report the results as XML, HTML, or plain text. There are six different
message types:

 INFO—This type provides additional information about a test or a test result.
 SKIPPED—The test was skipped because the repository doesn’t support the fea-

ture that should be tested.
 OK—The repository behaved as expected.
 WARNING—The repository didn’t behave as expected, but it didn’t violate the

specification. When you see a warning for the first time, make sure you under-
stand what’s going on. Some warnings can be tolerable; others should be fixed
to improve interoperability.

 FAILURE—The repository violated the specification. This needs to be fixed.
There shouldn’t be any failures in the final implementation.

 UNEXPECTED EXCEPTION—The repository threw an exception that the test didn’t
expect. It’s very likely that there’s a bug in the repository implementation.

The TCK tries to point out the exact cause of a problem wherever possible. But in
some cases it’s helpful to look at the TCK test code and understand exactly what’s
going on. Each result contains the name of the Java test class and a line number,
which should help you track down the issue. Figure 14.5 shows the TCK results screen
after a test run in the CMIS Workbench.

Figure 14.5 TCK results dialog box after a test run, showing first few results
www.it-ebooks.info

http://www.it-ebooks.info/

380 CHAPTER 14 Building a CMIS server
14.5.3 Deeper testing

Although the TCK covers a lot, it can’t replace repository-specific tests. Some TCK tests
are complete, whereas others are shallow. An example of a more complete test is this:
the TCK creates documents, checks that the documents are there, verifies that they’re
complete and correct, and then deletes the documents and checks that they’re gone.
Queries, on the other hand, can only be tested superficially. The TCK can perform a
query and check whether the response is syntactically correct, but it generally can’t
verify whether the result set is complete.

 The TCK is constantly growing and improving. New tests are added and existing
tests are refined with every OpenCMIS release. You may want to follow OpenCMIS
development and revalidate your server once in a while. If you have any suggestions for
TCK tests, please let the Apache Chemistry development team know (see appendix E).

 When you test, test all three bindings. That’s because the AtomPub binding is a bit
different compared to its two siblings. We’ll look into that in the next section.

14.6 AtomPub differences
The Web Services binding and Browser binding are almost one-to-one mappings of the
CMIS domain model to the wire protocol. The AtomPub binding is different, though.
It also has to comply with the AtomPub specification, and serving these two masters
makes life more difficult in some areas. In this section, we’ll explain the extra methods
in the CmisService interface that don’t directly map to the CMIS specification.

14.6.1 Providing ObjectInfo

Chapter 11 gave you some insight into the CMIS bindings. One of the main elements
of the AtomPub binding is the use of links. A CMIS client has to hop from one link to
another to access certain pieces of information about an object or trigger an action.
To make that possible, the repository must provide all these links, even if the client
hasn’t explicitly asked for them. For example, if a client calls getObject for a docu-
ment with a property filter that only contains the document’s name, the Web Services
binding and the Browser binding can return just that. But the AtomPub binding must
also provide a link to the content (if the document has content), a link for the version
history (if the document is versioned), links for each rendition (if it has any), a link
for the ACLs (if the repository supports ACLs), links to one or more parents (if the
document is filed), and so on.

 The OpenCMIS framework, which eventually has to compile and send these links,
can’t know all these details about an object. You have to tell it. The tool to do this is
called ObjectInfo. For each object the framework delivers to the client, it needs an
accompanying ObjectInfo object that carries these extra bits of information.

 If you’ve already started building your server and you’re wondering why your
AtomPub binding magically works when you’ve never touched any ObjectInfo
objects, you probably derived your implementation from the AbstractCmisService
class. This abstract class has convenience code that automatically creates ObjectInfo
www.it-ebooks.info

http://www.it-ebooks.info/

381AtomPub differences
objects on the fly if they’re missing. It does that by making several calls to your Cmis-
Service implementation and extracting the information it needs. It gets the object
and its version history, parents, and relationships, and it looks into the repository info
to check the capabilities and more. This implementation isn’t very efficient, but it’s so
generic that it works with all repositories. It’s good enough to get off the ground, but
eventually you should provide your own code optimized for your repository.

 The framework asks the CmisService object for ObjectInfo objects by calling the
getObjectInfo method. You can either implement this method or let the abstract
class manage the ObjectInfo objects for you. The abstract class keeps a Map in the
background that stores all ObjectInfo objects for one request and clears this Map after
each request. You can add your own ObjectInfo objects by calling the addObjectInfo
method. If you don’t provide an ObjectInfo object for a CMIS object, it will generate
one as explained earlier. The framework may ask for the same object multiple times
during the XML response generation, so caching these objects per request is advised.
Eventually, the framework calls the close method to indicate that the request process-
ing is finished and the CmisService object isn’t needed any more.

 The AbstractCmisService class Javadoc reveals whether and which ObjectInfo
objects should be provided for each method. The CallContext method isObject-
InfoRequired specifies whether ObjectInfo objects are required at all for the request
(it could be a Web Services binding or Browser binding request).

14.6.2 Handling create and delete requests

Create and delete requests can be ambiguous with the AtomPub binding. If a create
request comes in, all the framework knows is that an object should be created. It
doesn’t know if it’s a document, a folder, a policy, or an item. (Relationships are
slightly different.)

 Therefore, the CmisService interface has an unspecific create method that’s only
called with the AtomPub binding. The AbstractCmisService class provides a conve-
nience implementation of this method that dissects the request and forwards it to the
createDocument, createFolder, createPolicy, or createItem method. This code
might or might not be efficient for your repository. If it isn’t, you override the create
method. For example, your server may have an internal way of determining the type
of object by its ID format in some static manner.

 Delete requests have a similar issue. They’re indistinguishable from cancelCheck-
Out requests. Therefore, the framework calls the deleteObjectOrCancelCheckOut
method, and the server implementation has to figure out how to deal with it. If the
object is a private working copy, then this is definitely a cancelCheckOut request. If
the object is a document that isn’t checked out or any other nondocument object,
then this is definitely a delete request. The behavior of the repository is undefined if
the document is checked out but the referenced object isn’t the Private Working
Copy. Many repositories don’t allow a document to be deleted if it’s checked out. In
this case, the server should throw an exception.
www.it-ebooks.info

http://www.it-ebooks.info/

382 CHAPTER 14 Building a CMIS server
14.6.3 Dealing with version series

The CMIS domain model defines three operations that receive the version series ID as
a parameter:

 getAllVersions

 getObjectOfLatestVersion

 getPropertiesOfLatestVersion

You may have noticed that the AtomPub binding and Browser binding server code
don’t receive the version series ID when these operations are called. Instead, an object
ID of an object that’s part of the version series is provided. To deal with that, the corre-
sponding methods in the CmisService interface have an extra object ID parameter.
This parameter is set if the AtomPub binding or the Browser binding is used. The ver-
sion series ID isn’t set in this case. For the Web Services binding, it’s the other way
around.

14.6.4 Managing ACLs

In chapter 12, we pointed out that changing ACLs is slightly different with the Atom-
Pub binding. This is reflected in the CmisService interface. There’s an extra apply-
Acl method, which takes the complete ACL instead of a list of ACEs to add and a list of
ACEs to remove. This method is called only for the AtomPub binding, whereas the
other applyAcl method is called for the other bindings.

 These binding differences are annoying but don’t make the implementation much
more complex. What is truly complex is parsing the CMIS Query language. Luckily,
OpenCMIS provides a CMIS query parser, which we discuss next.

14.7 Parsing a CMIS query
At some point you’ll reach the query method of the CmisService interface and want
to implement it. It hands you the query statement that the client sent as a string. You
now have to parse this string to understand what the client wants. You’re free to do
whatever you want with the string. The idea of having to implement a parser can be a
bit intimidating, but fear not. If you like, OpenCMIS can support you with its own
CMIS query parser.

 The OpenCMIS query parser uses ANTLR (www.antlr.org/) to do the actual pars-
ing. If you’re familiar with ANTLR, you can take the CMIS Query language grammar
file and build your own parser; that would be the lowest level of integration. There are
a few more layers of convenience on top of that. We’ll explore just one here, which
should work for most servers.

14.7.1 An example of initialization and use

Listing 14.1 demonstrates how to initialize and use the parser. After we’ve discussed
this code, we’ll show you how to work with the individual parsed query parts.
www.it-ebooks.info

www.antlr.org/
http://www.it-ebooks.info/

383Parsing a CMIS query

e
ve

nt
s
g.
String statement =
"SELECT x, y AS z FROM demo WHERE x > 10 AND x < 20";

TypeManager tm = new DemoTypeManager();
QueryObject queryObj = new QueryObject(tm);
QueryUtil queryUtil = new QueryUtil();

try {

CmisQueryWalker walker =
queryUtil.traverseStatement(statement, queryObj, null);

List<CmisSelector> select = queryObj.getSelectReferences();
Map<String, String> from = queryObj.getTypes();
Tree where = walker.getWherePredicateTree();
List<SortSpec> orderBy = queryObj.getOrderBys();

printSelect(select);
printFrom(from);
printWhere(where);
printOrderBy(orderBy);

} catch (RecognitionException e) {
String errorMsg = queryObj.getErrorMessage();
throw new CmisInvalidArgumentException(

"Query parsing failed: " + errorMsg);
} catch (CmisBaseException e) {

throw e;
} catch (Exception e) {

throw new CmisInvalidArgumentException(
"Query parsing failed: " + e);

}

The traverseStatement method C is provided by the QueryUtil class, which hides
the complexity that is required to set up the ANTLR parser. The traverseStatement
method needs at least two parameters: the query statement that the client sent and a
QueryObject object. This object is responsible for interpreting the query statement
and managing the parsing result. It needs a TypeManager object in order to work B.
The TypeManager interface is a small interface that you have to implement first. It
gives the QueryObject access to the type system of your repository. It lets you fetch
type and property type definitions by their query names and navigate the type hierar-
chy.

 The traverseStatement method returns a CmisQueryWalker object. It contains
the abstract syntax tree (AST) of the WHERE clause, which we’ll discuss in a second.

14.7.2 Parsing SELECT

First let’s look at the SELECT part of the query. As you can see from the previous code,
you get the list of selected properties from the QueryObject. Let’s iterate through the
following code:

Listing 14.1 Initialization and use of the parser

Query parser needs a
TypeManager object.
DemoTypeManager used her
isn’t in this example; you ha
to implement it first.B

traverseStateme
method that doe
the actual parsinC
www.it-ebooks.info

http://www.it-ebooks.info/

384 CHAPTER 14 Building a CMIS server

List con
CmisSe

object fo
item
SELEC

providi
query

an
public void printSelect(List<CmisSelector> select) {
System.out.println("SELECT:");

for (CmisSelector property : select) {
System.out.print(" Query name: " + property.getName());
System.out.println(" [Alias: " + property.getAliasName() + "]");

if (property instanceof ColumnReference) {

ColumnReference colRef = (ColumnReference) property;
TypeDefinition typeDef = colRef.getTypeDefinition();
PropertyDefinition<?> propDef = colRef.getPropertyDefinition();

} else if (property instanceof FunctionReference) {
FunctionReference funcRef = (FunctionReference) property;
CmisQlFunction function = funcRef.getFunction();

}
}

}

14.7.3 Parsing FROM

Now let’s check out the FROM part. The QueryObject provides a Map that maps the alias
name to the query name:

public void printFrom(Map<String, String> from) {
System.out.println("FROM:");

for (Map.Entry<String, String> type : from.entrySet()) {
System.out.print(" Query name: " + type.getValue());
System.out.println(" [Alias: " + type.getKey() + "]");

}
}

If you need the type definition, you can call the getTypeDefinitionFromQueryName
method on the QueryObject, which in turn asks for your TypeManager object.

14.7.4 Parsing WHERE

The WHERE clause is translated into an abstract syntax tree, which you get from the
CmisQueryWalker object. Here’s one way to walk through it:

public void printWhere(Tree where) {
System.out.println("WHERE:");

if (where == null) {
return;

}

printTree(where, 1);
}

tains a
lector
r each
 in the
T list,

ng the
 name
d alias
name.

If the item is a property, the
object is also a ColumnReference
and provides the property
definition, type definition, etc.

If the item is a function, the object is also a Function-
Reference and lets you check which function it is. (Spoiler:

CMIS query language defines only one function, SCORE.)

Walk recursively
through the tree.
www.it-ebooks.info

http://www.it-ebooks.info/

385Parsing a CMIS query
private void printTree(Tree tree, int level) {
StringBuilder sb = new StringBuilder();

for (int i = 0; i < level; i++) {
sb.append(" ");

}

sb.append(tree.getText());
sb.append(" (" + tree.getType() + ")");
System.out.println(sb.toString());

for (int i = 0; i < tree.getChildCount(); i++) {
 printTree(tree.getChild(i), level + 1);

}
}

Your task is now to traverse that tree and turn it into a query that your repository
understands. Each tree node has a type and may have children. The CmisQueryWalker
class provides descriptive constants for node types. You may want to look at the source
code of the AbstractPredicateWalker class that’s part of OpenCMIS; it connects the
right dots and could serve as a good starting point for your tree-traversal code.

14.7.5 Parsing ORDER BY

Finally we’ve arrived at the ORDER BY part. The following code gets the list of proper-
ties and indicates for each one whether the sort order should be ascending or
descending:

public void printOrderBy(List<SortSpec> orderBy) {
System.out.println("ORDER BY:");

if (orderBy == null) {
return;

}

for (SortSpec property : orderBy) {
System.out.print(" " + property.getSelector().getName() + " ");
System.out.println(property.isAscending() ? "ASC" : "DESC");

}
}

14.7.6 Query wrap-up

These are the basics of the OpenCMIS query parser. Implementing the CMIS query is
one of the difficult parts of server development and requires a lot of testing. Espe-
cially challenging is making sure the current user sees only what they’re allowed to
see. The permissions for each object have to be checked before the object is added to
the result set. But to get to this point, the server must first know who the current user
is. The next section explains how authentication works with the OpenCMIS Server
Framework.

Indentations make
it look prettier.

Print node text
and type.

Go one level down
and visit the children
of this node.
www.it-ebooks.info

http://www.it-ebooks.info/

386 CHAPTER 14 Building a CMIS server
14.8 Extracting authentication information
The OpenCMIS Server Framework implements the authentication mechanisms that
are recommended by the CMIS specification. That is, it supports HTTP Basic Authenti-
cation for the AtomPub binding and the Browser binding and UsernameTokens for
the Web Services binding. These were discussed in chapter 12.

14.8.1 CallContext

The CallContext object delivers the username and password to the server implemen-
tation. It’s the responsibility of the server to verify the credentials. The framework
only provides the values as shown here:

String username = context.getUsername();
String password = context.getPassword();

Other authentication mechanisms can replace the default implementation. The inter-
face for the Web Services binding is different from the interfaces for the other bind-
ings, though. It’s important to replace both.

 The implementations of both interfaces are supposed to extract authentication
information from the request and enrich the CallContext object with this data. Usu-
ally, authentication information is transported in a request’s HTTP headers or in an
SSL client certificate. In case of the Web Services binding, there are also SOAP headers
that can contain credentials, keys, signatures, or whatever is used to identify the user.

 The CallContext object stores key-value pairs. You can add as many entries as you
want and use any key you like as long as there’s no collision with the predefined keys.
Everything you add here is accessible from the CallContext object that the frame-
work hands over to the CmisServiceFactory object.

14.8.2 CallContextHandler

Let’s focus on the AtomPub binding and the Browser binding first. The interface to
implement is called CallContextHandler. The method to implement it is called get-
CallContextMap. The following listing shows a code example.

public class MyCallContextHandler implements CallContextHandler {

@Override
public Map<String, String>

getCallContextMap(HttpServletRequest request) {

String user = ...
String password = ...

Map<String, String> callContextMap =
new HashMap<String, String>();

callContextMap.put(CallContext.USERNAME, user);
callContextMap.put(CallContext.PASSWORD, password);

Listing 14.2 A sample CallContextHandler implementation
www.it-ebooks.info

http://www.it-ebooks.info/

387Extracting authentication information
return callContextMap;
}

}

This code tries to extract a username and a password. But again, it could be anything
else. The key-value pairs that this method returns are later added to the CallContext
object.

 To activate your call-context handler, you have to change the web.xml file. Find all
servlets that have a callContextHandlerinit parameter, and set the value to the fully
qualified class name of your implementation:

<servlet>
<servlet-name>cmisbrowser</servlet-name>
<servlet-class>org.apache.chemistry.opencmis.server.\

impl.browser.CmisBrowserBindingServlet</servlet-class>
<init-param>

<param-name>callContextHandler</param-name>
<param-value>org.example.MyCallContextHandler</param-value>

</init-param>
</servlet>

14.8.3 Web services

On the web services end, you use JAX-WS handlers. A lot of documentation and exam-
ples are available on the internet, so we don’t dive deep here.

IMPORTANT ADVICE ABOUT MESSAGEHANDLER We have one important piece of
advice at this point. If you have to access the SOAP headers, extend the non-
standard MessageHandler interface and not the standard SOAPHandler and
LogicHandler interfaces. The latter two load the entire SOAP message,
including the document content, into main memory when you touch the
headers. That can be fatal if the content is bigger than the main memory.

The next listing shows a simple example of a handler that processes user credentials.

public class MyAuthHandler implements
MessageHandler<MessageHandlerContext> {

public Set<QName> getHeaders() {
return null;

}

public void close(MessageContext context) {
}

public boolean handleFault(MessageHandlerContext context) {
return true;

}

public boolean handleMessage(MessageHandlerContext context) {
Boolean outboundProperty = (Boolean) context

.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);

Listing 14.3 A sample MessageHandler implementation
www.it-ebooks.info

http://www.it-ebooks.info/

388 CHAPTER 14 Building a CMIS server
if (outboundProperty.booleanValue()) {
return true;

}

Map<String, String> callContextMap =
new HashMap<String, String>();

String user = ...
String password = ...

callContextMap.put(CallContext.USERNAME, user);
callContextMap.put(CallContext.PASSWORD, password);

context.put(AbstractService.CALL_CONTEXT_MAP,
callContextMap);

context.setScope(AbstractService.CALL_CONTEXT_MAP,
Scope.APPLICATION);

return true;
}

}

To activate your handler, you have to change the sun-jaxws.xml file. Find all handler
chain entries, and set the fully qualified class name of your handler, as shown here:

<handler-chains xmlns="http://java.sun.com/xml/ns/javaee">
<handler-chain>

<handler>
<handler-class>org.examplpe.MyAuthHandler</handler-class>

</handler>
</handler-chain>

</handler-chains>

14.8.4 Authentication wrap-up

That’s how you read and forward authentication information to the server implemen-
tation. If you make sure both implementations send the authentication information
with the same keys and in the same format, you don’t have to distinguish later
between the bindings.

14.9 CMIS extensions
We covered CMIS extensions in chapter 12 and explained what they’re good for and
when to use them. We won’t repeat that, but we want to show you how to add exten-
sions with the OpenCMIS Server Framework.

 A CMIS extension is a tree of nodes. Each node has a name, a namespace, and attri-
butes. Leaf nodes have a string value, and all other nodes have one or more child
nodes. Extensions are eventually converted into XML fragments or JSON objects.
When an extension is converted to JSON, the namespaces and attributes of the nodes
are ignored, because such concepts don’t exist in JSON. To be compatible across all
bindings, you shouldn’t rely on namespaces and attributes.

 All objects that implement the ExtensionsData interface can carry extensions.
The following example adds an extension to an object:

Important line that
hands over the key-
value pairs to
OpenCMIS
www.it-ebooks.info

http://www.it-ebooks.info/

389Supporting CMIS 1.0 and CMIS 1.1
ObjectData object = ...

String ns = "http://example.org/cmis";

List<CmisExtensionElement> extElements =
new ArrayList<CmisExtensionElement>();

String value = (new Date()).toString();
CmisExtensionElement extensionLeaf =
new CmisExtensionElementImpl(ns, "datetime",

/* no attributes */ null, value);
extElements.add(extensionLeaf);

List<CmisExtensionElement> extensions =
new ArrayList<CmisExtensionElement>();

CmisExtensionElement extensionRoot =
new CmisExtensionElementImpl(ns, "exampleExtension",

/* no attributes */ null, extElements);
extensions.add(extensionRoot);

object.setExtensions(extensions);

So far, all of this is compliant with CMIS 1.0; but with CMIS 1.1, you can also announce
your extension in the repositoryInfo. Doing so means clients no longer have to dig
around manually in the types and properties to figure out if this particular extension
feature is supported. The following code shows how to add this extra 1.1 extension
information to your repositoryInfo:

ExtensionFeatureImpl extensionFeature = new ExtensionFeatureImpl();
extensionFeature.setId("http://example.org/cmis/current-datetime");
extensionFeature.setCommonName("CurrentDateTime");
extensionFeature.setVersionLabel("1.0");
extensionFeature.setDescription(

"Adds the current date and time to each object.");

List<ExtensionFeature> extensionFeatures =
new ArrayList<ExtensionFeature>();

extensionFeatures.add(extensionFeature);

repositoryInfo.setExtensionFeature(extensionFeatures);

Speaking of CMIS 1.1, the next section explains what you should take into consider-
ation if you want to support CMIS 1.0 and CMIS 1.1 with the same server code.

14.10 Supporting CMIS 1.0 and CMIS 1.1
Because CMIS 1.1 only adds functionality to CMIS 1.0, it makes sense to have one code
base for both specifications. To make that work, you must make sure you serve CMIS
1.0 clients only data that is defined in the CMIS 1.0 specification. For example, if your
repository supports cmis:item objects, you need to suppress them in getChildren
calls. The cmis:item type definition also shouldn’t appear in getTypeChildren and
getTypeDescendants responses. Similarly, properties of secondary types must not be
included in the property set of an object. You get the idea. The TCK checks quite a bit
of that, but don’t rely on it.

Find a namespace for the
extension that’s different from
the CMIS namespaces.

Create a list for the first
level of the extension.

Add a leaf to the
extension.

Set the
extension list.
www.it-ebooks.info

http://www.it-ebooks.info/

390 CHAPTER 14 Building a CMIS server
 The CallContext provides the information about which CMIS version the client
understands:

if (context.getCmisVersion() != CmisVersion.CMIS_1_0) {
// add CMIS 1.1 stuff here

}

14.11 Summary
OpenCMIS provides a server framework to build CMIS servers on top of existing con-
tent repositories and data stores. In this chapter, we’ve outlined how to generate a
CMIS server stub and build a web application for the server. We discussed the two Java
interfaces that must be implemented and how to test the server for compliance with
the CMIS specification.

 We focused your attention on the AtomPub binding, which requires some extra cod-
ing. We also looked into the OpenCMIS query parser and how to hook nonstandard
authentication mechanisms into the server. Finally, we demonstrated how to add CMIS
extensions and discussed CMIS 1.0 and CMIS 1.1 support with the same code base.

 Many small details and best practices about building a CMIS server didn’t made it
into this chapter. The subject could probably fill a separate book of its own. If you
have any questions, please email the Apache Chemistry mailing list; the community is
very active and an ever-evolving source of information on this subject.

 This has been a long ride, if you made it all the way to this point. As you can see,
the subject of CMIS development is both broad and extremely deep in places.
Whether you’re building a client or your own server, we (the authors and contribu-
tors) hope we’ve exposed enough of the layers for you to confidently start planning
and building your application.

 Happy coding!
www.it-ebooks.info

http://www.it-ebooks.info/

appendix A
Apache Chemistry

OpenCMIS components
This appendix discusses where to get the latest Apache Chemistry OpenCMIS com-
ponents, what they’re good for, and how to build them from source. It also covers
how to update the InMemory server that we use throughout this book.

A.1 Apache Chemistry OpenCMIS
The Apache Chemistry project provides CMIS libraries and tools for several pro-
gramming languages. At the time of this writing, there was support for Java (includ-
ing support for Android), .NET, Python, PHP, and Objective-C. This appendix
focuses on the Java tools and libraries that make up the Apache Chemistry Open-
CMIS subproject.

A.1.1 OpenCMIS components overview

Figure A.1 provides a high-level overview of the OpenCMIS components. These are
the building blocks.

Client API

Client implementation

Client bindings

Server bindings

Server support

InMemory
Repository

FileShare
repository

C
om

m
on

s
im

pl
em

en
ta

tio
n

C
om

m
on

s
A

P
I
CMIS

Workbench
OpenCMIS

TCK CMIS application

JCR
bridge

A
nd

ro
id

pa

ck
ag

e

Repository
connector

O
pe

nC
M

IS
 b

rid
ge

Figure A.1 OpenCMIS components
391

www.it-ebooks.info

http://www.it-ebooks.info/

392 APPENDIX A Apache Chemistry OpenCMIS components
 Client library—The OpenCMIS client library provides the Java code that lets you
talk to a CMIS repository. Most of this book is about this library and its counter-
parts for other programming languages. The OpenCMIS client library depends
on a set of third-party libraries that are required in order to build and run appli-
cations. We’ll explain in a moment how to obtain them.

 The client library consists of the client API, the client implementation, the cli-
ent bindings, the commons API, and the commons implementation. There are
two flavors of this library: the default client library, which works for Java SE
applications and on several application servers; and the Android version, which
is tailored to run on Android devices (see chapter 10 for details). Both versions
support the AtomPub binding and the Browser binding. The Web Services
binding is only supported by the default client library. The default library con-
sists of five JARs, one for each component. The Android library is condensed
into one JAR.

 CMIS Workbench—We use this tool a lot in this book. It’s an essential developer
tool for CMIS client and server developers. It’s built on top of the client library.

 OpenCMIS TCK—The OpenCMIS Test Compatibility Kit (TCK) provides a set of
tests that checks whether a CMIS repository is compliant with the CMIS specifica-
tion and compatible with the OpenCMIS client library. You can find more
details about the TCK in chapter 14.

 Server Webapps package—The Webapps package contains two CMIS test reposito-
ries and a web application to browse CMIS repositories. One of these reposito-
ries is the InMemory Repository that we use in this book. The other repository
is called FileShare and turns a directory on your computer into a CMIS reposi-
tory. Because it’s built on top of the filesystem, it only provides a subset of the
CMIS features. There is no versioning or query support, for example.

 The browsing web application is the predecessor of the CMIS Workbench (not
shown in figure A.1). It’s an obsolete component because the CMIS Workbench
does much more and does it better. The browsing application might be useful
in environments where the CMIS Workbench doesn’t run or only a web browser
is available. These three web applications are packaged as WAR files and can be
directly deployed into an application server.

 Server Framework—Chapter 14 covers in detail how to build a CMIS server with
this framework. The framework consists of the server bindings (split into a
package that contains the code and a package that contains all auxiliary files),
server support, commons API, and commons implementation.

 The OpenCMIS build also creates a complete WAR file that’s deployable. If for
whatever reason you don’t want to use Maven to generate the scaffolding for
your server, you can use the contents of the WAR file as a starting point for your
server development.

 OpenCMIS bridge—The bridge is a server component that routes incoming CMIS
requests to another CMIS repository. On the way, it can switch the binding and
www.it-ebooks.info

http://www.it-ebooks.info/

393APPENDIX A Apache Chemistry OpenCMIS components
filter, enrich, and federate data from the back-end repository. This book doesn’t
cover the OpenCMIS bridge.

 OpenCMIS JCR bridge—This component puts a CMIS interface on top of a JCR
repository. We don’t touch on this topic in this book. If you have questions,
please refer to the Apache Chemistry mailing list. (See appendix E.)

Apart from these components, there are also packages that contain the source code
and the Javadocs. These packages aren’t divided by component but contain the code
and documentation for all components.

 Let’s look next at how to get and build the OpenCMIS components.

A.1.2 Getting and using OpenCMIS components

OpenCMIS provides three ways of delivering its components for your use:

 Source code—Each OpenCMIS release provides the full source code, which can
be easily built with Maven.

 Zip, JAR, and WAR packages—Each OpenCMIS component comes prepackaged
and ready to use. The components can be directly deployed into an application
server or unpacked and copied into a development project.

 Maven modules—The OpenCMIS components can also be referenced via Maven
or other build environments that are compatible Maven repositories. This is the
preferred way if you’re using Maven for your project.

Let’s go through the different options.

A.1.3 Building OpenCMIS

There’s usually no reason to build OpenCMIS other than getting the latest develop-
ment version. But doing so is very easy. Here’s how you do it.

 First you need the source code. Either go to the Apache Chemistry download page
and get the source code package or get the source code via SVN. (See appendix E for
the URLs.)

 All OpenCMIS components are built together with Maven. Go the root directory
of the source code, and run the following Maven command: mvn clean install.
Maven may complain during the build that it doesn’t have enough memory. Give it
more memory by setting the environment variable MAVEN_OPTS to -Xmx1024m -
XX:MaxPermSize=256m.

 After the build is complete, walk through the directories. Under each component
directory there should be a target directory that contains a zip, JAR, or WAR package.
These are the packages you can download from the Apache Chemistry website. We’ll
look at them next.

A.1.4 Download packages

The packages you download from the Apache Chemistry website contain everything
you need for the corresponding component. This includes all the required JAR files
www.it-ebooks.info

http://www.it-ebooks.info/

394 APPENDIX A Apache Chemistry OpenCMIS components
and auxiliary files. If you need to know which dependencies are required, find the
DEPENDENCIES file. In zip packages, it should be in the top directory. In JAR and WAR
files, it’s in the META-INF directory.

 For example, if you want to use the OpenCMIS client library, make sure you copy
all dependencies to your project. Although your project may compile without them, it
may not work or, worse, may do something unexpected at runtime. Depending on the
Java version you’re using, the JVM provides similar libraries or the same library in a dif-
ferent version, and OpenCMIS might not be compatible with them.

 Remember, the simplest (and recommended) way to deal with the dependencies is
to use Maven.

A.1.5 Maven modules

Using Maven is the preferred way to use OpenCMIS. The main advantage is that it
takes care of the dependencies and transitive dependencies. In chapter 6, we explain
how to get the OpenCMIS client library with Maven. Chapter 14 covers the Server
Framework and shows how to generate the scaffolding with Maven.

 The OpenCMIS components for this book are slightly different from their default
OpenCMIS counterparts. The next section explains how to update them.

A.1.6 OpenCMIS components for this book

In this book, we use the CMIS Workbench and the InMemory server. Although it
shouldn’t be necessary, you can update them with the latest OpenCMIS version.

 The CMIS Workbench is the same one you get from the Apache Chemistry website,
except for the embedded Groovy code examples from the book. If you want to
update, get the CMIS Workbench from Apache Chemistry. The zip file that comes with
the book contains all the Groovy examples as simple files. You can open them directly
in the Groovy console.

 The InMemory server is a bit different. The original InMemory Repository from
the Apache Chemistry website comes as a WAR file that you have to deploy into a serv-
let engine of your choice. When you run it, it contains only a few simple documents
and types.

 The InMemory Repository that we use in this book embeds the Tomcat servlet
engine and is preloaded with documents and types that are used in this book. To
update this InMemory Repository with the latest OpenCMIS release, you have to
replace the OpenCMIS JARs and dependencies as follows:

1 Remove all JAR files starting with chemistry-opencmis from your InMemory Repos-
itory directory.

2 Download the InMemory server (OpenCMIS Server Webapps) and the client
library (OpenCMIS Client With Dependencies) from the Apache Chemistry
website. (See appendix E for the URL.)

3 Unzip the Webapps zip file. Find the InMemory server WAR file, and unzip that,
too.
www.it-ebooks.info

http://www.it-ebooks.info/

395APPENDIX A Apache Chemistry OpenCMIS components
4 Copy all files in the WEB-INF/libs folder into your InMemory Repository
directory.

5 Unzip the client library package into the InMemory Repository directory, and
overwrite all files.

6 Restart the server.

The InMemory Repository should now be using the OpenCMIS version you’ve pro-
vided. (If you want to rebuild the server from scratch, use the source code available in
the inmemory-cmis-server-pack.zip file.)

A.1.7 Using the OpenCMIS client library on an application server

Applications servers like WebLogic, WebSphere, and GlassFish provide environments
that are slightly different from each other. The OpenCMIS client library had difficul-
ties working in a few of those environments up to the OpenCMIS version 0.9.0-beta-1.
It was necessary to tweak the application server’s class loading to get it to run, and
there were special packages for WebLogic and WebSphere.

 OpenCMIS 0.9.0 reduced the number of dependencies and therefore reduced the
chance of potential conflicts. The AtomPub binding and the Browser binding should
work without any special configuration. An OpenCMIS session that uses the Web Ser-
vices binding requires a hint, though. OpenCMIS has to know which JAX-WS imple-
mentation the application server uses. Please refer to your application server
documentation for this information.

 If your application server uses the Oracle/Sun JAX-WS Reference Implementation
(RI), add the following parameter to your session parameters when you set up the
OpenCMIS session:

parameter.put(SessionParameter.WEBSERVICES_JAXWS_IMPL, "sunri");

If the application server relies on the JAX-WS implementation that’s shipped with an
Oracle JRE or a JRE derived from it, use this session parameter:

parameter.put(SessionParameter.WEBSERVICES_JAXWS_IMPL, "sunjre");

If the application server provides the Apache CXF implementation of JAX-WS, use the
following parameter:

parameter.put(SessionParameter.WEBSERVICES_JAXWS_IMPL, "cxf");

And, finally, on WebSphere 7.0.0.5 and later, use this session parameter:

parameter.put(SessionParameter.WEBSERVICES_JAXWS_IMPL, "websphere");

If you run into a problem with that, ask about it on the Apache Chemistry mailing list.
You’ll find the address in appendix E.
www.it-ebooks.info

http://www.it-ebooks.info/

appendix B
BNF

This appendix contains graphical representations of the BNF grammar that’s con-
tained in the CMIS 1.1 specification for Query. There’s no additional information
here beyond what’s in the normative text. These graphics were generated with the
Railroad Diagram Generator tool, which you can find at http://railroad
.my28msec.com/rr/ui.

CMIS11QueryStatement
::= 'SELECT' ('*' | SelectSublist (',' SelectSublist)*) ➥
'FROM' TableReference ('WHERE' SearchCondition)? (➥
'ORDER BY' SortSpecification (',' SortSpecification)*)?

No references.

CMIS11QueryStatement

SelectSublist
396

www.it-ebooks.info

http://railroad.my28msec.com/rr/ui
http://railroad.my28msec.com/rr/ui
http://www.it-ebooks.info/

397APPENDIX B BNF
SelectSublist
::= Qualifier '.*'

| (ColumnReference | MultiValuedColumnReference | ➥
'SCORE()') ('AS'? ColumnName)?

Referenced by
 CMIS11QueryStatement

ColumnReference
::= (Qualifier '.')? ColumnName

| (Qualifier '.')? SecondaryTypeTableName '.' ➥
SecondaryTypeColumnName

Referenced by
InPredicate

JoinedTable

LikePredicate

NullPredicate

SelectSublist

SortSpecification

MultiValuedColumnReference
::= (Qualifier '.')? MultiValuedColumnName

| (Qualifier '.')? SecondaryTypeTableName '.' ➥
SecondaryTypeMultiValuedColumnName

Referenced by
 NullPredicate
 QuantifiedComparisonPredicate
 QuantifiedInPredicate
 SelectSublist

ColumnReference

MultiValuedColumnReference
www.it-ebooks.info

http://www.it-ebooks.info/

398 APPENDIX B BNF
Qualifier
::= TableName

| CorrelationName

Referenced by
 ColumnReference
 FolderPredicate
 MultiValuedColumnReference
 SelectSublist
 TextSearchPredicate

TableReference
::= TableName ('AS'? CorrelationName)?

| JoinedTable

Referenced by
 CMIS11QueryStatement
 JoinedTable

JoinedTable
::= '(' JoinedTable ')'

| TableReference ('INNER' | 'LEFT' 'OUTER'?)? 'JOIN' ➥
TableReference 'ON' ColumnReference '=' ColumnReference

Referenced by
 JoinedTable
 TableReference

Qualifier

TableReference

JoinedTable
www.it-ebooks.info

http://www.it-ebooks.info/

399APPENDIX B BNF
SearchCondition
::= BooleanTerm

| SearchCondition 'OR' BooleanTerm

Referenced by
 BooleanTest
 CMIS11QueryStatement
 SearchCondition

BooleanTerm
::= BooleanTest

| BooleanTerm 'AND' BooleanTest

Referenced by
 BooleanTerm
 SearchCondition

SearchCondition

BooleanTerm

BooleanTest
www.it-ebooks.info

http://www.it-ebooks.info/

400 APPENDIX B BNF
BooleanTest
::= 'NOT'? (ComparisonPredicate | InPredicate | LikePredicate➥
| NullPredicate | QuantifiedComparisonPredicate | ➥
QuantifiedInPredicate | TextSearchPredicate | FolderPredicate ➥
| '(' SearchCondition ')')

Referenced by
 BooleanTerm

ComparisonPredicate
::= ValueExpression ('=' | '<>' | '<' | '>' | '<=' ➥
| '>=') Literal

Referenced by
 BooleanTest

InPredicate
::= ColumnReference 'NOT'? 'IN' '(' Literal (',' Literal ➥
)* ')'

Referenced by
 BooleanTest

ComparisonPredicate

InPredicate
www.it-ebooks.info

http://www.it-ebooks.info/

401APPENDIX B BNF
Literal ::= SignedNumericLiteral
| CharacterStringLiteral
| DatetimeLiteral
| BooleanLiteral

Referenced by
 ComparisonPredicate
 InPredicate
 QuantifiedComparisonPredicate
 QuantifiedInPredicate

LikePredicate
::= ColumnReference 'NOT'? 'LIKE' CharacterStringLiteral

Referenced by
 BooleanTest

NullPredicate
::= (ColumnReference | MultiValuedColumnReference) 'IS' ➥
'NOT'? 'NULL'

Referenced by
 BooleanTest

Literal

LikePredicate

NullPredicate
www.it-ebooks.info

http://www.it-ebooks.info/

402 APPENDIX B BNF
QuantifiedComparisonPredicate
::= Literal '=' 'ANY' MultiValuedColumnReference

Referenced by
 BooleanTest

QuantifiedInPredicate
::= 'ANY' MultiValuedColumnReference 'NOT'? 'IN' '(' Literal ➥
(',' Literal)* ')'

Referenced by
 BooleanTest

TextSearchPredicate
::= 'CONTAINS' '(' (Qualifier ',')? "'" ➥
TextSearchExpression "'" ')'

Referenced by
 BooleanTest

FolderPredicate
::= ('IN_FOLDER' | 'IN_TREE') '(' (Qualifier ',')? ➥
FolderId ')'

Referenced by
 BooleanTest

QuantifiedComparisonPredicate

QuantifiedInPredicate

TextSearchPredicate

FolderPredicate
www.it-ebooks.info

http://www.it-ebooks.info/

403APPENDIX B BNF
SortSpecification
::= ColumnReference ('ASC' | 'DESC')?

Referenced by
 CMIS11QueryStatement

CorrelationName
::= Identifier

Referenced by
 Qualifier
 TableReference

TableName
::= Identifier

Referenced by
 Qualifier
 TableReference

SecondaryTypeTableName
::= Identifier

Referenced by
 ColumnReference
 MultiValuedColumnReference

SortSpecification

CorrelationName

TableName

SecondaryTypeTableName
www.it-ebooks.info

http://www.it-ebooks.info/

404 APPENDIX B BNF
ColumnName
::= Identifier

Referenced by
 ColumnReference
 SelectSublist

SecondaryTypeColumnName
::= Identifier

Referenced by
 ColumnReference

MultiValuedColumnName
::= Identifier

Referenced by
 MultiValuedColumnReference

SecondaryTypeMultiValuedColumnName
::= Identifier

Referenced by
 MultiValuedColumnReference

ColumnName

SecondaryTypeColumnName

MultiValuedColumnName

SecondaryTypeMultiValuedColumnName
www.it-ebooks.info

http://www.it-ebooks.info/

405APPENDIX B BNF
FolderId ::= CharacterStringLiteral

Referenced by
 FolderPredicate

Identifier
::= QueryName

Referenced by
 ColumnName
 CorrelationName
 MultiValuedColumnName
 SecondaryTypeColumnName
 SecondaryTypeMultiValuedColumnName
 SecondaryTypeTableName
 TableName

SignedNumericLiteral
::= SQLLiteral

Referenced by
 Literal

CharacterStringLiteral
::= SQLLiteral

Referenced by
 FolderId
 LikePredicate
 Literal

FolderId

Identifier

SignedNumericLiteral

CharacterStringLiteral
www.it-ebooks.info

http://www.it-ebooks.info/

406 APPENDIX B BNF
TextSearchExpression
::= Conjunct (Space 'OR' Space Conjunct)*

Referenced by
 TextSearchPredicate

Conjunct ::= Term (Space Term)*

Referenced by
 TextSearchExpression

Term ::= '-'? (Word | Phrase)

Referenced by
 Conjunct

Word ::= WordElement WordElement*

Referenced by
 Phrase
 Term

TextSearchExpression

Conjunct

Term

Word
www.it-ebooks.info

http://www.it-ebooks.info/

407APPENDIX B BNF
Phrase ::= '"' Word (Space Word)* '"'

Referenced by
 Term

QuoteSymbol
::= "''"

| "\'"

No references

WordElement
::= [^(' ')("\")("'")('"')]

| ("''" | "\'")

Referenced by
 Word

Phrase

QuoteSymbol

WordElement
www.it-ebooks.info

http://www.it-ebooks.info/

408 APPENDIX B BNF
Space ::= ' '+

Referenced by
 Conjunct
 Phrase
 TextSearchExpression

Char ::= AnyCharacter

No references.

DatetimeLiteral
::= 'TIMESTAMP' "'" DatetimeString "'"

Referenced by
 Literal

DatetimeString
::= YYYY '-' MM '-' DD 'T' hh ':' mm ':' ss '.' sss ('Z' | (➥
'+' | '-') hh ':' mm)

Referenced by
 DatetimeLiteral

Space

Char

DatetimeLiteral

DatetimeString
www.it-ebooks.info

http://www.it-ebooks.info/

409APPENDIX B BNF
BooleanLiteral
::= 'TRUE'

| 'FALSE'
| 'true'
| 'false'

Referenced by
 Literal

BooleanLiteral
www.it-ebooks.info

http://www.it-ebooks.info/

appendix C
CMIS cheat sheet
Legend (Abbreviations used in the following tables)

REPOSITORY SERVICE

getRepositories
getRepositoryInfo

T getTypeChildren
T getTypeDescendants
T getTypeDefinition
T, 1.1 createType
T, 1.1 updateType
T, 1.1 deleteType

NAVIGATION SERVICE

F getChildren
F getDescendants
F getFolderTree
F getFolderParent
D, P, I getObjectParents

OBJECT SERVICE

D createDocument
D createDocumentFromSource
F createFolder
R createRelationship
P createPolicy
I, 1.1 createItem
O getAllowableActions
O getObject
O getProperties
D, F, P, I getObjectByPath
D getContentStream
D, F getRenditions
O updateProperties
O, 1.1 bulkUpdateProperties
D, F, P, I moveObject

Services and operations

T Types
O All objects
D Documents
F Folders
R Relationships
P Policies
I Items
1.1 New in CMIS 1.1
w

O deleteObject
F deleteTree
D setContentStream
D, 1.1 appendContentStream
D deleteContentStream

VERSIONING SERVICE

D checkOut
D cancelCheckOut
D checkIn
D getObjectOfLatestVersion
D getPropertiesOfLatestVersion
D getAllVersions

MULTIFILING SERVICE

D, F, P, I addObjectToFolder
D, F, P, I removeObjectFromFolder

DISCOVERY SERVICE

O query
O getContentChanges

RELATIONSHIP SERVICE

O getObjectRelationships

POLICY SERVICE

O applyPolicy
O removePolicy
O getAppliedPolicies

POLICY SERVICE

O getACL
O applyACL

O String cmis:name read-write
O, 1.1 String cmis:description read-write
O ID cmis:objectId read-only
O ID cmis:baseTypeId read-only
O ID cmis:objectTypeId on-create
O String cmis:createdBy read-only
O DateTime cmis:creationDate read-only
O String cmis:lastModifiedBy read-only
O DateTime cmis:lastModificationDate read-only
O String cmis:changeToken read-only
O, 1.1 ID (multi) cmis:secondaryObjectTypeIds read-write
D Boolean cmis:isImmutable read-only
D Boolean cmis:isLatestVersion read-only
D Boolean cmis:isMajorVersion read-only

Properties
410

ww.it-ebooks.info

http://www.it-ebooks.info/

411APPENDIX C CMIS cheat sheet
D Boolean cmis:isLatestMajorVersion read-only
D String cmis:versionLabel read-only
D ID cmis:versionSeriesId read-only
D Boolean cmis:isVersionSeriesCheckedOut read-only
D String cmis:versionSeriesCheckedOutBy read-only
D ID cmis:versionSeriesCheckedOutId read-only
D, 1.1 Boolean cmis:isPrivateWorkingCopy read-only
D String cmis:checkinComment read-only
D Integer cmis:contentStreamLength read-only
D String cmis:contentStreamMimeType read-only
D String cmis:contentStreamFileName read-only
D ID cmis:contentStreamId read-only
F ID cmis:parentId read-only
F String cmis:path read-only
F ID (multi) cmis:allowedChildObjectTypeIds read-only
R ID cmis:sourceId on-create
R ID cmis:targetId on-create
P String cmis:policyText read-write

F canGetDescendants
F canGetFolderTree
F canGetChildren
F canGetFolderParent
D, F, P, I canGetObjectParents
F canCreateDocument
F canCreateFolder
F canCreateRelationship
F, 1.1 canCreateItem
O canGetProperties
D, F canGetRenditions
D canGetContentStream
O canUpdateProperties
D, F, P, I canMoveObject
O canDeleteObject
D canGetContentStream
D canSetContentStream
D canDeleteContentStream
F canDeleteTree
D, P, I canAddObjectToFolder
D, P, I canRemoveObjectFromFolder

Allowable actions
Rendition filter

www.it-ebooks.info
D canCheckOut
D canCancelCheckOut
D canCheckIn
D canGetAllVersions
O canGetObjectRelationships
O canApplyPolicy
O canRemovePolicy
O canGetAppliedPolicies
O canGetACL
O canApplyACL

invalidArgument
objectNotFound
notSupported
permissionDenied
runtime
constraint
contentAlreadyExists
filterNotValid
nameConstraintViolation
storage
streamNotSupported
updateConflict
versioning

cmis:read
cmis:write
cmis:all

ID streamId
String mimeType
Integer length
String title
String kind
Integer height
Integer width

Exceptions

Permissions

Renditions

http://www.it-ebooks.info/

appendix D
Building web applications

with JavaScript
This appendix discusses how to use the new CMIS 1.1 Browser binding with
JavaScript code, and provides hands-on examples to demonstrate some basic con-
cepts. Hold on tight; the pace will be very fast. If we explained all the background
along the way, this appendix could take an entire book on its own. For that reason,
we’re assuming you already know HTML, Ajax, and JavaScript for this high-speed
survey of the subject.

D.1 JavaScript and CMIS background
Over the last few years, rich web applications have become more and more popular.
Several factors are influencing this trend. The invention of the asynchronous
JavaScript plus XML (Ajax) technologies in the late 1990s laid the foundation to
overcome the traditional request-response scheme, where each action on a web
page resulted in a new HTML page being delivered to the browser. Instead, now you
can build web applications that behave more like desktop applications by changing
only parts of a web page and manipulating the DOM tree on the fly. A second trend
has been the enormous progress in JavaScript technology in web browsers over the
last few years. The evolution from primitive language interpreters to highly opti-
mized on-the-fly compilation has made it possible to build a new generation of
browser applications that formerly were restricted to the desktop, such as in-
browser games.

 Powerful libraries have accompanied the evolution of the language. JQuery
(http://jquery.com/) is among the most popular candidates in this space, taking
much of the burden off the developer to deal with browser and platform differ-
ences. Other libraries have a more specific domain, such as UI widget elements, lay-
out management, or Model-View-Controller frameworks helping with the
modularization of complex web applications.

 Another important factor is the enormous demand for mobile applications.
Nearly all smartphones and tablets today have a powerful web browser with
JavaScript support. HTML plus JavaScript makes it possible to build platform-
independent mobile applications. This is a huge advantage, given the abundance
of mobile platforms with their proprietary and/or incompatible programming
412

www.it-ebooks.info

http://jquery.com/
http://www.it-ebooks.info/

413APPENDIX D Building web applications with JavaScript
languages and associated APIs. Dozens of frameworks and JavaScript libraries are
focused on mobility.

 Last but not least, HTML5 is in the final stage of standardization, closing even more
gaps when compared to traditional desktop applications (for example, better support
for rich media). Today many browsers support HTML5 or parts of it.

D.1.1 CMIS and web browsers using XML

How does CMIS fit into the world of browsers and web applications? When you first
look at CMIS 1.0, you might be disappointed. As you’ll recall from earlier chapters,
CMIS 1.0 supports two protocols:

 SOAP (web services)
 AtomPub

Both are web protocols based on HTTP, but their support in JavaScript isn’t the best
match. SOAP is heavyweight, chatty, and nearly impossible to use without good library
support. It isn’t very browser friendly and therefore is almost never used in browser
applications. For these reasons, SOAP loses momentum. Things look a bit better for
AtomPub, but data is still transferred over the wire, which is an issue, especially for
mobile applications. A JavaScript application has to do a lot of work to parse the large
AtomPub responses.

D.1.2 Creation of the Browser binding

In early 2011, the CMIS TC recognized this situation, and a subcommittee was founded
to specify another binding focusing on web browsers and JavaScript. This work
resulted in the CMIS Browser binding. The Browser binding comes with CMIS 1.1 (tar-
geted to be finalized around the time this book is published).

 What makes the Browser binding better suited for web applications? First, the
underlying data encoding isn’t based on XML but on the JSON protocol (www.json.org).
The JSON syntax is oriented closely to the syntax of JavaScript. In theory, a single state-
ment in JavaScript can parse and process a JSON document. This makes parsing and
generating JSON a natural and easy task in JavaScript.

 Second, JSON is lightweight and far less verbose than XML. This makes it better
suited for low-bandwidth connections and mobile applications while still being read-
able and text-based. The mapping between JSON and the CMIS domain model is
direct and straightforward. There’s no overhead from a predefined structure as in
AtomPub, and there’s a 1:1 mapping from the CMIS JSON protocol to its domain
model. The Browser binding also defines a fixed URL syntax compared to the more
flexible approach in AtomPub. From a CMIS consumer perspective, this makes life a
lot easier. You don’t have to deal with various possibilities like, for example, how a link
is formed to get the content of a document. The URL always looks the same, and the
client always uses the same form of URL no matter what repository is used as a back
end. The CMIS Browser binding is restricted to the HTTP methods GET and POST. (All
browsers on all platforms support GET and POST.)
www.it-ebooks.info

www.json.org
http://www.it-ebooks.info/

414 APPENDIX D Building web applications with JavaScript
D.1.3 OpenCMIS support for the Browser binding today

The OpenCMIS Java library already supports the CMIS Browser binding, even if it isn’t
yet an official standard. It’s also supported in the Chemistry Workbench, and you may
have noticed the additional option in the login dialog box where you select the bind-
ing, shown in figure D.1.

 You just have to enable it in the configuration of whatever server you’re using.
Although a full tour of the Browser binding and JavaScript is out of scope for this
book, we’ll cover the most important aspects here.

 The remainder of this appendix will guide you through the first steps to take for a
CMIS application in JavaScript running entirely in a web browser. Before you begin,
you should be familiar with the basics of HTML, Ajax, and JavaScript. You can find
many tutorials on the web if you need more background on these things. To dig
deeper, you definitely should look in the Browser binding section of the CMIS 1.1
specification.

 For each method in each service of the CMIS domain model, you’ll find the URL
and the JSON syntax required. We’ll start with plain vanilla JavaScript to provide an
understanding of how things really work. Later we’ll switch to the popular JQuery
library to demonstrate how such a library can simplify your life. We’ll restrict ourselves
to a few select methods of the CMIS domain model to keep this section manageable.
But once you get the basic concepts down, it should be easy to apply them to the
remainder of the services not covered here. You can use your favorite IDE for

Figure D.1 The Chemistry Workbench supports the Browser binding today.
www.it-ebooks.info

http://www.it-ebooks.info/

415APPENDIX D Building web applications with JavaScript
JavaScript; we don’t require a specific one. A JavaScript debugger will be useful,
though. Often these are simple browser add-ons (such as Firebug for Firefox). A sim-
ple text editor, a browser, and a JavaScript debugger are sufficient.

D.2 Try it—Hello Browser binding
Let’s get started! We’ll use the Apache InMemory Repository and the data model of
the Blend application from elsewhere in the book. See chapter 1, section 1.2.2, for
setup instructions for the Apache InMemory Repository. The first exercise is the sim-
plest way to get access to a CMIS repository. Open a web browser and enter the follow-
ing URL: http://localhost:8081/inmemory/browser.

 You’ll see a page containing a lot of cryptic-looking braces and colons. This is a
JSON response. The URL calls the getRepositories method of the CMIS repository
service. You can use a browser add-on that formats the output nicely to make the
information much more readable. Figure D.2 shows an example from the JSON-View
add-on for Firefox.

Figure D.2 JSON data response for the getRepositories call
www.it-ebooks.info

http://www.it-ebooks.info/

416 APPENDIX D Building web applications with JavaScript
D.2.1 First steps

Let’s see how you can use the information from the Browser binding from a JavaScript
application. First you need some infrastructure for a basic web application. Open a
text editor and create a file called index.html with the following contents:

<!DOCTYPE html>
<head>

<meta charset="UTF-8">
<title>OpenCMIS Browser Binding</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link rel="stylesheet" type="text/css" href="../css/opencmis.css"/>
<script src="cmis.js" type="text/javascript"></script>

</head>

<body>
<h3>CMIS and JavaScript</h3>

<p>Get repository info from Apache InMemory Repository: </p>
<input type="button" value="Get RepositoryInfo"

onClick="doRepositoryInfo()">
<div id="repositoryInfo"></div>

</body>
</html>

Save your file, and open a web browser with a URL like file:///<path-of-index.html>/
code-step01/index.html. Replace <path-of-index.html> with the path where you
stored your file. Alternatively, you can drag the file to the browser’s address bar. (You
can find the full code for all the examples in this appendix in the JavaScript sample
from the download accompanying this book.)

 Now create a second file named cmis.js with the following contents:

function doRepositoryInfo() {
alert("TODO: call repository info");

}

If all works well, you should see a page like the one shown in figure D.3.
 When you click the Get RepositoryInfo button, you should see a pop-up window

displaying “TODO: call repository info.” You’ve created your first web application, con-
sisting of an HTML page with a JavaScript method. The JavaScript is included from a
separate file (you can also create JavaScript inline in the same HTML page if you pre-
fer this style). What remains to be done is the real work calling the remote repository.

Figure D.3 First signs of
JavaScript output on your
new page
www.it-ebooks.info

http://www.it-ebooks.info/

417APPENDIX D Building web applications with JavaScript
D.2.2 Your first Browser binding call (getting the repository info)

Ideally, what you’d like to do now is use a JavaScript method that calls the URL http://
localhost:8081/inmemory/browser using the Ajax technique, parse the JSON
response, and display the information from the response on your web page. Let’s try it
by adding the code from the following listing to the file cmis.js.

function doRepositoryInfo() {
callCmisRepository("http://localhost:8081/inmemory/browser",

function (json_object) {
printRepositoryInfos(json_object);

});
}

function callCmisRepository(url, callback) {
var json_object = {};
var http_request = new XMLHttpRequest();
http_request.open("GET", url, true);
http_request.onreadystatechange = function() {

if (http_request.readyState == 4 && http_request.status == 200) {
json_object = JSON.parse(http_request.responseText);

callback(json_object);
}

};
http_request.send(null);

}

function printRepositoryInfos(infos) {
for(repId in infos) {

var ri = infos[repId];
document.getElementById('repositoryInfo').innerHTML =

'<h4>Repository "' + ri.repositoryName + '" ('
+ ri.repositoryId + ')</h4>' +

'<table>' +
'<tr><td>Id:</td><td>' + ri.repositoryId + '</td></tr>' +
'<tr><td>Name:</td><td>' + ri.repositoryName + '</td></tr>' +
'<tr><td>Description:</td><td>' + ri.repositoryDescription

+ '</td></tr>' + '<tr><td>Product:</td><td>'
+ ri.vendorName + ' ' + ri.productName + ' ' +
ri.productVersion + '</td></tr>' +

'<tr><td>Root folder id:</td><td>' + ri.rootFolderId
+ '</td></tr>' + '<tr><td>Repository URL:</td><td>'
+ ri.repositoryUrl + '</td></tr>' +

'<tr><td>Root folder URL:</td><td>' + ri.rootFolderUrl
+ '</td></tr>' + '</table>';

}
}

When the button is clicked, you call a JavaScript function called doRepositoryInfo.
This calls the CMIS repository with a URL returning the available repositories using an
Ajax request. Later, if the call succeeds, a callback method is fired. This callback
parses the JSON response and dynamically adds an HTML table in your index.html
page in the <div> tag, which you use as a placeholder.

Listing D.1 Getting the repository info

Make XMLHttpRequest,
and hook up your
callback handler

Callback handler where
returned JSON is
rendered
www.it-ebooks.info

http://www.it-ebooks.info/

418 APPENDIX D Building web applications with JavaScript
 Note that the JSON response from the CMIS server can be parsed in a single line of
JavaScript code!

json_object = JSON.parse(http_request.responseText);

Also note how simple and straightforward processing the result can be when creating
the HTML table. The elements in the RepositoryInfo are directly accessible as
JavaScript elements, such as ri.repositoryName.

D.2.3 Complications: the same origin policy

Unfortunately, if you try the code and open the index.html page from your local file-
system, the code doesn’t work. The reason is a security mechanism in the browser
called the same origin policy. Ajax calls are only processed if the server is in the same
domain from which the originating page comes. Your page comes from the local file-
system, and your server runs on localhost:8081. The browser doesn’t process the call in
this case. Add a web.xml file, and package your two files into a WAR package as a real
web application first. Then deploy this on the same Tomcat server where the InMem-
ory Repository runs. Now it will work, and you’ll see the result shown in figure D.4.

Figure D.4 Repository
info displayed after you
work around the same-
origin issue
www.it-ebooks.info

http://www.it-ebooks.info/

419APPENDIX D Building web applications with JavaScript
D.2.4 Using JSON-P

You may be thinking that things look pretty bleak. Requiring that the web application
run on the same server as the repository is a severe restriction! What if you want to use
the public Alfresco server at cmis.alfresco.com, for example?

 For this reason, there’s a common technique for web applications called JSON-P.
We can’t cover the details here, but the trick is to wrap the server response in a
JavaScript method and dynamically add this method to your index.html page.

WANT TO KNOW MORE ABOUT JSON-P? Check the following web pages for
more details on JSON-P: http://www.json-p.org and http://en.wikipedia.org/
wiki/JSONP.

The server must support JSON-P. So the CMIS specification adds an optional URL
parameter, callback=. You can try opening a modified form of the previous URL:
http://localhost:8081/inmemory/browser?callback=myFct. The result will be the
same as before, but wrapped in a function call:

myFct(
{
"A1": {
"principalIdAnyone": "anyone",
"principalIdAnonymous": "anonymous",
"repositoryDescription":

"Apache Chemistry OpenCMIS InMemory Repository (Version: ?)",
"vendorName": "Apache Chemistry",
"aclCapabilities": { … },
"cmisVersionSupported": "1.0",
"productVersion": "?",
"repositoryId": "A1",
"changesIncomplete": true,
"thinClientURI": "",
"rootFolderUrl": "http://localhost:8080/inmemory/browser/A1/root",
"latestChangeLogToken": "0",
"rootFolderId": "100",
"capabilities": { … },
"repositoryName": "Apache Chemistry OpenCMIS InMemory Repository",
"repositoryUrl": "http://localhost:8080/inmemory/browser/A1",
"changesOnType": [],
"productName": "OpenCMIS InMemory-Server"
}

}
)

www.it-ebooks.info

http://www.json-p.org and http://en.wikipedia.org/wiki/JSONP
http://www.json-p.org and http://en.wikipedia.org/wiki/JSONP
http://www.it-ebooks.info/

420 APPENDIX D Building web applications with JavaScript
Now you have to add a myFct-like function to your script that’s called from the server
response. The code looks like this:

function doRepositoryInfo() {
performJsonpRequest(

"http://localhost:8080/inmemory/browser",
"processGetRepositories");

}

function processGetRepositories(json_object) {
printRepositoryInfos(json_object);

}

function performJsonpRequest(url, callback) {
var callUrl = url;

var paramChar = (url.indexOf('?') == -1) ? '?' : '&';
callUrl = url + paramChar + 'callback=' + callback;

var script = document.createElement('script');
script.setAttribute('src', callUrl);
script.setAttribute('type', 'text/javascript');
document.body.appendChild(script);

}

Leave the function printRepositories as it was. performJsonpRequest dynamically
adds a script tag to the web page fed from the server response. The InMemory
Repository responds with a function call, processGetRepositories, and passes the
JSON data as a parameter. processGetRepositories parses the result and displays the
repository information as before.

 For a real web application, things become more complicated because you may
need more callback functions. Usually a unique ID is added to the generated script,
which allows later removal. The ID must be modified on each JSON-P request. The arti-
cle at http://mng.bz/G5Y2 gives more background about JSON-P. You can find the
full code in the code download folder step2.

 This is a lot of work for a simple function call. A JavaScript library can take most of
the burden from these JSON-P requests and do the magic behind the scenes. It can
then be as simple as setting a flag that specifies whether you want to use JSON-P.

D.2.5 Hello JQuery

JQuery is such a library, and it’s very popular and widely used. It hides many browser
differences and makes the JavaScript code more readable and compact. From now on
we’ll use JQuery for the examples.

 One of the pitfalls with JSON-P is the error handling. In case of an error, the
script tag isn’t added, and there’s no chance to get more information about the
error (such as the HTTP status code). The CMIS specification for this reason adds an
optional query parameter, suppressResponseCode=true. A client can add this param-
eter to a URL, and the server will always return the HTTP status code 200. The client
www.it-ebooks.info

http://mng.bz/G5Y2
http://www.it-ebooks.info/

421APPENDIX D Building web applications with JavaScript
can use the response body to get information about the kind of error (see the spec for
error responses).

 Also note that JSON-P processing in JavaScript opens the door for cross-site request
forgery (XSRF) attacks. We don’t cover the details here; you can find more informa-
tion in chapter 11 and in the CMIS spec. OpenCMIS contains some example
JavaScript code for how to use this. Let’s do the same now using JQuery. First you have
to add JQuery to your main page in index.html:

<head>
…

<meta charset="UTF-8">
<script type="text/javascript"

src="https://ajax.googleapis.com/ajax
/libs/jquery/1.7.1/jquery.min.js">

</script>
<script src="cmis.js" type="text/javascript"></script>

</head>

The code now looks like this (the full code is in the step3 folder):

function doRepositoryInfo() {
performRequest(

"http://localhost:8080/inmemory/browser",
null,
"GET",
printRepositoryInfos,
true);

}

function errorHandler(event, jqXHR, settings, excep) {
alert("Call was aborted:" + jqXHR);

}

function performRequest(url, params, method, cbFct,
jsonp, username, password) {

$.ajax({
url: url,
data: params,
dataType: (jsonp ? "jsonp" : "json"),
type: method,
username: username,
password: password,
success: cbFct,
error: errorHandler,
timeout: 5000

});
}

function printRepositoryInfos(infos) {
for(repId in infos) {

var ri = infos[repId];
$('#repositoryInfo').html(

'<h4>Repository "' + ri.repositoryName + '" ('
+ ri.repositoryId + ')</h4>' +

'<table>' +
www.it-ebooks.info

http://www.it-ebooks.info/

422 APPENDIX D Building web applications with JavaScript
'<tr><td>Id:</td><td>' + ri.repositoryId + '</td></tr>' +
'<tr><td>Name:</td><td>' + ri.repositoryName + '</td></tr>' +
'<tr><td>Description:</td><td>' + ri.repositoryDescription

+ '</td></tr>' +
'<tr><td>Product:</td><td>' + ri.vendorName + ' '

+ ri.productName + ' ' + ri.productVersion + '</td></tr>' +
'<tr><td>Root folder id:</td><td>' + ri.rootFolderId

+ '</td></tr>' + '<tr><td>Repository URL:</td><td>'
+ ri.repositoryUrl + '</td></tr>'
+ '<tr><td>Root folder URL:</td><td>' + ri.rootFolderUrl
+ '</td></tr>' +

'</table>');
}

}

You can see that the choice of whether to use JSON or JSON-P is a parameter to the
ajax function. The code to generate the result is more compact because it uses the $
syntax instead of document.getElementById. By adding a timeout value, you have the
chance to catch an error even when using JSON-P. JQuery generates the necessary
script tags and callback function on its own.

D.3 CMIS basic operations with the Browser binding
and JQuery
With all those details out of the way, you’re ready to perform some actual CMIS opera-
tions. The next few sections go over a few basic CMIS operations like getting the chil-
dren of a folder, creating a document, and querying. First up are folder children.

D.3.1 Enumerating a folder’s children

It’s time to do something useful. You’ll get the children of a folder and display the
result on a web page (full code is in the step4 folder). Begin by adding a text box to
your web page in which a folder ID can be entered:

<body>
<h3>CMIS and JavaScript</h3>

<h4> Get Children of folder: </h4>
<form >
<fieldset>

<legend>Enter a folder id</legend>
<input type="text" id="folderidfield" value="?"/>

</fieldset>
</form>
<p></p>

<button id="getchildren">Get children!</button>

<p></p>

<div id="foldersection">
</div>
<div id="docsection">
</div>

</body>

Then modify your JavaScript file:
www.it-ebooks.info

http://www.it-ebooks.info/

423APPENDIX D Building web applications with JavaScript
$(document).ready(function() {
$('#getchildren').click(function() {

getChildren($('#folderidfield').val());
});
rootFolderId = "100";
baseUrl = "http://localhost:8080/inmemory/browser/A1";
$('#folderidfield').val(rootFolderId);

});

When the page is loaded, including the JQuery library $(document).ready, you add
an event handler for the event when the user clicks the Get children! button. This
function reads the text entered in the text box and performs a request to the server.
You pass some additional parameters to indicate that you don’t want all the informa-
tion the server can return.

 The createChildrenTable method parses the JSON response and creates two
tables: one for the folder and one for the documents found in the response. For each
result, a row is added to the table and the values for the returned properties are filled
in the columns. You omit some technical properties so the table doesn’t get too wide.
Note that some value types (such as DateTime) need a conversion to String. The
JSON result is an array of properties that once again can be directly parsed to
JavaScript elements. For each folder, the name is translated to a hyperlink that again
calls the function to get its children. You end up in a kind of mini browser for CMIS,
even if you miss a possibility to navigate up the hierarchy. For each document, you add
a link pointing to the content instead.

 Probably the best way to understand the details is to use a JavaScript debugger to
step through the code. Some debuggers can also display the HTTP communication
between browser and repository. JQuery handles all the details nicely regardless of
whether you want to use JSON or JSON-P.

 In a real-world program, you wouldn’t hardcode the URL and the ID of the root
folder. Instead, you’d first do a getRepositoryInfo request and get the values from
the response. But this example keeps things simple. The modification is a nice exer-
cise for you. To add an Up link, you need to store the parent ID for each folder you
enumerate and dynamically add a link navigating to the parent folder. Figure D.5
shows the finished page.
www.it-ebooks.info

http://www.it-ebooks.info/

424 APPENDIX D Building web applications with JavaScript
D.3.2 Integrating JavaScript components

As mentioned earlier, one of the cool things about JavaScript is that tons of reusable
components are available. Why not modify the example a bit and integrate it with a
JavaScript media player? We’ll use The Blend application from part 2 of the book; but
instead of creating a table, you’ll feed the media player the songs found in a folder.
(The full code is in the step5 folder.)

 Be sure to import the sample data into the application. To be able to listen to the
music, you have to deploy the application to a web server. Opening index.html from
the filesystem will give you the playlist but won’t play the songs. Because entering a

Figure D.5 Get Children of Folder page showing child folders and documents
www.it-ebooks.info

http://www.it-ebooks.info/

425APPENDIX D Building web applications with JavaScript
folder ID is a bit inconvenient, you modify the code to use the path instead of the ID.
You extract the artist and title properties from the metadata and construct the proper
URL for the content (the song) and feed that data to the player. The result looks like
figure D.6.

That looks much better, doesn’t it? Now that you have components figured out, let’s
move on to adding data.

D.3.3 Uploading a document

The next step will be to upload a document. The CMIS spec for the Browser binding
requires sending an HTTP POST request. Uploading a document mostly requires trans-
ferring content from the browser to the server. Uploading content in HTTP from a web
form in a browser uses the multipart/form-data content type. The CMIS spec for the
Browser binding follows this approach. This makes document creation easy and
doesn’t even require Ajax calls. In fact, uploading content with Ajax is difficult because
you have to encode into multipart/form-data on your own. Doing this directly from
a simple HTML form is much easier; Ajax doesn’t offer an advantage here.

Figure D.6 Using a JavaScript player component to listen to music from your repository
www.it-ebooks.info

http://www.it-ebooks.info/

426 APPENDIX D Building web applications with JavaScript
 The tricky part is getting the return value from the server. You’re interested in the
object ID of your newly created document. But browsers aren’t prepared to program-
matically process a form response and will directly present the JSON result to the user.
Usually, web applications respond with another HTML page from a form POST, but in
this case you get a JSON response. The spec therefore suggests sending the response to
an invisible IFrame. If your web application is on the same server as the CMIS reposi-
tory, you can directly process the response from the IFrame.

 If you’re on a different server, you’re once again in the trap of the same origin pol-
icy, and the browser won’t give you the response. The CMIS spec in this case suggests
doing another GET request, passing a token that identifies the former upload request.
The token is an arbitrary string but must be unique. Passing properties along with the
content can be done easily using HTML forms. In this example, you do the minimum
with name, folder ID, and type ID, but these can quickly be extended to other proper-
ties. Here’s the HTML code for the upload (the full code is in the step6 folder):

<form id="createdochtmlid" action="" target="createresultframe"
enctype="multipart/form-data" onsubmit="prepareCreate()"
method="post">

<fieldset>
<legend>Create document HTML</legend>
<table>

<tr>
<td><label for="name">Name:</label></td>
<td><input name="propertyValue[0]" type="text" id="name"

value="My Document"/></td>
</tr>
<tr>

<td><label for="typeId">Type-Id:</label></td>
<td><input name="propertyValue[1]" type="text" id="typeId"

value="cmis:document"/></td>
</tr>
<tr>

<td><label for="folderId">Folder-Id:</label></td>
<td><input type="text" id="folderId" name="objectId"

value="100"/></td>
</tr>
<tr>

<td><label for="contentId">Content:</label></td>
<td><input id="contentId" name="Browse..." type="file"

size="50"/></td>
</tr>
<tr>
<td><input id="createdochtml" type="submit"

value="Create Doc!"/></td>
<td></td>
</tr>

</table>
</fieldset>
<input name="propertyId[0]" type="hidden"

value="cmis:name" />
<input name="propertyId[1]" type="hidden"

value="cmis:objectTypeId" />
www.it-ebooks.info

http://www.it-ebooks.info/

427APPENDIX D Building web applications with JavaScript
<input name="cmisaction" type="hidden"
value="createDocument" />

<input id="transactionId" name="token"
type="hidden" value="" />

</form>

On submitting the form, you call a JavaScript prepareCreate function that dynami-
cally generates a unique ID for the transaction as a token and adds the URL to post the
request to prepareCreate as shown here:

function prepareCreate() {
init = true;
$("#transactionId").val(createRandomString());
$("#createdochtmlid").attr("action", rootUrl);
return true;

}

The global variable indicates that the user has started an upload and that when the
IFrame is loaded the code should do something. The target of the request is this invis-
ible IFrame:

<iframe id="createresultframe" name="createresultframe"
style="width:0px;height:0px;visibility:hidden"
onload="createDocumentDone()">

</iframe>

Once it’s loaded, the JavaScript method createDocumentDone() is called. It retrieves
the object ID from a second call, using the token identifying the transaction:

function createDocumentDone() {

if (init == null || !init)
return;

var transId = $("#transactionId").val();
getObjectFromTransaction(transId, function(data) {

var text = "Document successfully created with id: " +
data.objectId + " and transaction id: " + transId;

$("#createdocsection").html(text);
});

}

The getObjectFromTransaction method (shown next) gets the object ID by doing a
GET request. It passes a callback function that parses the object ID from the response
and handles the output on the HTML page:

function getObjectFromTransaction(transId, cbFct) {
var params = {

cmisselector: "lastResult",
token: transId,
suppressResponseCodes: true

};
$.ajax({

url: baseUrl,
data: params,
dataType: "jsonp",
www.it-ebooks.info

http://www.it-ebooks.info/

428 APPENDIX D Building web applications with JavaScript
type: "GET",
success: cbFct

});
}

If the CMIS repository is on the same server, you can avoid the second call and get the
object ID directly:

function createDocumentDone() {
try {

cont = $('#createresultframe').contents().text();
if (cont) {

var json = jQuery.parseJSON(cont);
if (!checkError(json, "#responsesection")) {

$("#responsesection").html("Document successfully
created with id: " + json.properties["cmis:objectId"].
value + " and transaction id: " + transId);

}
}

} catch (ex) {
trace("Same origin policy for transaction: " + transId + ",

exception: " + ex);
}

You can find the full code in the step6 folder. The final result is shown in figure D.7.

Figure D.7 Creating a document by posting an HTML form
www.it-ebooks.info

http://www.it-ebooks.info/

429APPENDIX D Building web applications with JavaScript
D.3.4 Query

As a next step, you perform a CMIS query and display the result in your web page (the
full code is in step05-cmisquery). First, add a text box to the web page in which the
user can enter a query string:

<body>
<h3>CMIS and JavaScript</h3>

<h4> Make a Query: </h4>
<form >
<fieldset>

<legend>Enter a query</legend>
<textarea id="queryfield" cols="80" rows="5">

SELECT * from cmis:document
</textarea>

</fieldset>
</form>

<button id="doquery">Do query!</button>

<div id="queryresponsesection"></div>

</body>

Then modify the JavaScript file:

$(document).ready(function() {
$('#doquery').click(function() {

doQuery($('#queryfield').val());
});

});

function doQuery(queryString) {
$("#queryresponsesection").html(null);
trace("doing query: " + queryString);
var params = {

cmisaction: "query",
q: queryString,
searchAllVersions: "false",
includeAllowableAction: "false",
includeRelationships: "none",
suppressResponseCodes: "false"

};

performRequest("http://localhost:8080/inmemory/browser/A1",
params, "POST", createQueryTable, true);

}

When the page is loaded, including the JQuery library $(document).ready, you add
an event handler for the button-click event of the query button. This function reads
the text entered in the text box and performs a request to the server. Note that this
time you do an HTTP POST request instead of a GET, and you pass some additional
parameters to filter out all versions, allowable actions, relationships, and renditions.
The createQueryTable method parses the JSON response, adds a row to the table for
each found object, and displays the values for some selected properties in the
www.it-ebooks.info

http://www.it-ebooks.info/

430 APPENDIX D Building web applications with JavaScript
columns. Note that some value types need a conversion to String. The JSON result is
an array of properties that once again can be directly parsed to JavaScript elements.
The full code is in the step7 folder, and the resulting page is shown in figure D.8.

Figure D.8 Query results rendered in the browser
www.it-ebooks.info

http://www.it-ebooks.info/

 appendix E
References and resources

E.1 Source code and listings
The source code used in this book is available from the Manning website. It also
provides a forum to get in touch with the authors. Feel free to post questions there.

 CMIS and Apache Chemistry in Action website—www.manning.com/mueller
 Source code package—www.manning-source.com/books/mueller/CMIS_and

_Apache_Chemistry_In_Action.zip
 Authors Online forum—www.manning-sandbox.com/forum.jspa?forumID=833

E.2 OASIS CMIS references
The OASIS CMIS Technical Committee (TC) is responsible for the CMIS specifica-
tion. If you have any questions about the specification or the specification process,
or if you want to join the TC, visit the TC’s website or send a question or comment
to the mailing list.

 CMIS TC website —https://www.oasis-open.org/committees/cmis
 CMIS mailing list —cmis-comment@lists.oasis-open.org

The CMIS specification documents are hosted on the official OASIS server. The
CMIS 1.0 and CMIS 1.1 specification documents are available as a PDF document
and as an HTML document. Both renditions contain exactly the same content.
Each specification also provides schema files and examples.

 CMIS 1.0 Specification—http://docs.oasis-open.org/cmis/CMIS/v1.0/
 CMIS 1.1 Specification—http://docs.oasis-open.org/cmis/CMIS/v1.1/

E.3 Apache Chemistry–related resources
The Apache Chemistry website is the best source for the latest information on the
project. It provides links to the subprojects, documentation, and download pages.
If you have any question about Apache Chemistry, please send an email to the
Apache Chemistry mailing list. If you found a bug or want to suggest an improve-
ment, please open an ticket in the Apache Chemistry bug tracker.

 Apache Chemistry website—http://chemistry.apache.org
 Apache Chemistry mailing list—dev@chemistry.apache.org
431

www.it-ebooks.info

www.manning.com/mueller
www.manning-source.com/books/mueller/CMIS_and_Apache_Chemistry_In_Action.zip
www.manning-source.com/books/mueller/CMIS_and_Apache_Chemistry_In_Action.zip
www.manning-sandbox.com/forum.jspa?forumID=833
https://www.oasis-open.org/committees/cmis
http://docs.oasis-open.org/cmis/CMIS/v1.0/
http://docs.oasis-open.org/cmis/CMIS/v1.1/
http://chemistry.apache.org
http://www.it-ebooks.info/

432 APPENDIX E References and resources
 Apache Chemistry mailing list archive—http://mail-archives.apache.org/
mod_mbox/chemistry-dev

 Apache Chemistry bug tracker—https://issues.apache.org/jira/browse/CMIS

The Apache Chemistry source code is managed on the Apache SVN servers. There
you’ll find the most current and unreleased source code as well as the source code of
all released versions. Keep in mind that the unreleased source code is a work in prog-
ress and might not always work as expected.

 Apache Chemistry source code (SVN repository)—http://svn.apache.org/repos/asf/
chemistry

 Apache Chemistry source code (browsable)—http://svn.apache.org/viewvc/
chemistry

The OpenCMIS and DotCMIS session parameters are documented here.

 OpenCMIS session parameters—http://chemistry.apache.org/java/developing/
dev-session-parameters.html

 DotCMIS session parameters—http://chemistry.apache.org/dotnet/
session-parameters.html

E.4 Other libraries used in this book
The Blend makes use of a few other libraries besides OpenCMIS. Here are the links to
project sites of these libraries.

 Apache Tika—http://tika.apache.org
 Apache Commons FileUpload—http://commons.apache.org/proper/

commons-fileupload
 The Open Web Application Security Project (OWASP) ESAPI (Enterprise Security API) —

https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
www.it-ebooks.info

http://mail-archives.apache.org/mod_mbox/chemistry-dev
http://mail-archives.apache.org/mod_mbox/chemistry-dev
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
https://issues.apache.org/jira/browse/CMIS
http://svn.apache.org/repos/asf/chemistry
http://svn.apache.org/repos/asf/chemistry
http://svn.apache.org/viewvc/chemistry
http://svn.apache.org/viewvc/chemistry
http://chemistry.apache.org/java/developing/dev-session-parameters.html
http://chemistry.apache.org/java/developing/dev-session-parameters.html
http://chemistry.apache.org/dotnet/session-parameters.html
http://chemistry.apache.org/dotnet/session-parameters.html
http://tika.apache.org
http://commons.apache.org/proper/commons-fileupload
http://commons.apache.org/proper/commons-fileupload
http://www.it-ebooks.info/

index

Symbols

? wildcard 107
{ } curly brackets 324
* (asterisk) 107, 168, 172, 335
\ escape character 107, 109
% wildcard 98–99, 184
> (angle brackets) 254
$ (dollar sign) 422

A

abstract servlet 140–143
AbstractAuthentication-

Provider class 240, 343
AbstractCmisService class 376,

381
AbstractPredicateWalker

class 385
AbstractServiceFactory

class 374
Accept-Encoding header 365
ACEs (access control

entries) 347
ACLs (access control lists)

16–17, 21
and performance 356
managing with AtomPub

binding 382
permissions 347–348

Action enum values 172
Active Directory 348
activities, Android 283
addObjectInfo method 381
AddServlet class 200
addToFolder() method 228
AddVersionServlet class 217

ADT (Android Development
Tools) 281–282

AIIM (Association for Informa-
tion and Image
Management) 7

Ajax (Asynchronous JavaScript
plus XML) 412, 417

ajax function 422
Album List screen 290–291
Alfresco

aspects in 80
contentless document

objects 43
enabling change

support 266
repositories in 6
support for CMIS 8
varying content models 260

Alfresco Cloud 8
-all_load flag 297, 300, 307
allowable actions 41, 172, 356
AND operator 101–102
Android 391

ADT (Android Develop-
ment Tools) 281–282

Android environment
279–282

general discussion 278–279
projects 282
SDK (Software Development

Kit)
installing 279
vs. JDK 278

writing application for
282–292

Android Virtual Device Man-
ager. See AVD Manager

AndroidManifest.xml file 285,
287

angle brackets (>) 254
ANTLR (ANother Tool for

Language
Recognition) 382

ANY clause 273
ANYTIME value 219
Apache Chemistry 8, 18, 236,

431–432
Apache Commons

FileUpload 203, 432
Apache Jackrabbit 18
Apache Software

Foundation 9
Apache Tika 207, 432
Apache Tomcat 131, 134, 369
APK (application

package) 280
appendContentStream()

method 216, 331, 364
appending content 216–217
Apple Foundation

framework 292
Apple iOS Dev Center 292
appledoc home page 301
application developers 64
application package. See APK
application servers 395
applyAcl() method 323, 349–

351, 382
applyPolicy() method 347
ARC (Automatic Reference

Counting) 294
archetypeArtifactId

parameter 371
archetypeGroupId

parameter 371
433

www.it-ebooks.info

http://www.it-ebooks.info/

434 INDEX
archetypeVersion parameter 371
architecture of PHP Client

library 268–269
array function 272
artifactId parameter 371–372
ASP.NET applications 165
aspects 80
Association for Information and

Image Management. See
AIIM

asterisk (*) 168, 172, 335
Asynchronous JavaScript plus

XML. See Ajax
AsyncTask class 279, 284, 290
AtomPub (Atom Publishing

Protocol)
binding 21
CMIS 1.0 12
create and delete

requests 381
CRUD operations 324–325
exceptions in 323
getObject method 380
handling version series 382
library support 236
link cache 360
links for 324
managing ACLs 382
ObjectInfo interface

380–381
overview 323
pros and cons 336
service document 323–324
support in PHP Client 271
URL templates 323–324

attributes
defined 61
inheritance of 72
settable 73–74
viewing 87, 91

audio, uploading 307–310
authentication

and checkouts 53
authentication provider

example 343–344
AuthenticationProvider

interface 342–343
cookies

and performance 366
overview 342

extracting information on
server
CallContext class 386
CallContextHandler

interface 386–387
MessageHandler

interface 387–388

HTTP Basic
Authentication 386

overview 341
using Browser binding

entry points 344
example 346
login sequence 344–345

AuthenticationProvider
interface 342–343

Automatic Reference Count-
ing. See ARC

AVD (Android Virtual Device)
Manager 281

B

backslash (\) 107, 109
Backus-Naur Form grammar. See

BNF grammar
Basic Authentication,

HTTP 237, 248, 386
batch updates 55
BETWEEN predicate 97
BigDecimal data type 33
BigInteger data type 33
bindings

1.0 vs. 1.1 12
and CMIS service 21
and REST 316
AtomPub binding

CRUD operations
324–325

exceptions in 323
links for 324
overview 323
service document 323–324
URL templates 323–324

Browser binding
CRUD operations

331–332
JSON create request

example 332
JSON object response

example 333–334
overview 329
service document 329–330
succinct flag 330

capturing traffic for
inspection 317–318

choosing 336
JavaScript support 316–317
Local binding 377
low-level API

overview 336–337
uses for 337

overview 316
schemas

extension points 335
JSON schema 335
overview 334
repository extensions

335–336
XML schema 335

selecting fastest 364
Web Services binding

exceptions in 319
getObjects method

using 319
MTOM encoding 319
overview 318

blocks, Objective-C 292
BNF (Backus-Naur Form) gram-

mar
BooleanLiteral 409
BooleanTest 399–400
Char 408
CharacterStringLiteral 405
CMIS11QueryStatement 396
ColumnName 404
ColumnReference 397
ComparisonPredicate 400
Conjunct 406
CorrelationName 403
DatetimeLiteral 408
DatetimeString 408
FolderId 405
FolderPredicate 402
Identifier 405
InPredicate 400
JoinedTable 398
LikePredicate 401
Literal 401
MultiValuedColumnName

404
MultiValuedColumn-

Reference 397
NullPredicate 401
overview 93–94
Phrase 407
Qualifier 398
QuantifiedComparison-

Predicate 402
QuantifiedInPredicate 402
QuoteSymbol 407
SearchCondition 399
SecondaryTypeColumnName

404
SecondaryTypeMultiValued-

ColumnName 404
SecondaryTypeTableName

403
www.it-ebooks.info

http://www.it-ebooks.info/

435INDEX
BNF (Backus-Naur Form)
grammar (continued)

SelectSublist 396–397
SignedNumericLiteral 405
SortSpecification 403
Space 408
TableName 403
TableReference 398
Term 406
TextSearchExpression 406
TextSearchPredicate 402
Word 406
WordElement 407

Boolean data type 33, 75
comparison predicate 96
IN predicate 97
NULL predicate 100

BooleanLiteral (BNF
grammar) 409

BooleanTest (BNF
grammar) 399–400

BOTH value 191
BOTHCOMBINED 105
bridge, OpenCMIS 392
browse pages, The Blend

assembling 160–165
folder children 156–158
folder object 153–155
HTML 152–153
OperationContext

object 155–156
paging 158–160
parent folder 160

Browser binding
advantages of 413
authentication using

entry points 344
example 346
login sequence 344–345

CMIS 1.0 12
CRUD operations 331–332
getObject method 380
HTTP methods 413
JavaScript with

enumerating folder
children 422–423

getting repository
info 417–418

Hello Browser binding
example 416

integrating
components 424–425

overview 412–413
queries 429–430
same origin policy 418

uploading
documents 425–428

using JQuery 420–422
using JSON-P 419–420

JSON create request
example 332

JSON object response
example 333–334

overview 329
pros and cons 336
service document 329–330
succinct flag 330
support for 414–415

BrowseServlet class 152
bug tracker for Apache

Chemistry 432
building from source 10
$(BUILT_PRODUCTS_DIR)

value 300, 307
bulkUpdateProperties()

method 55, 213

C

C# 237
caching

and sessions 359–360
and updating properties 212
AtomPub link cache 360
objects 360–364
overview 358–359
static data 359

CakePHP 267
callback parameter 419
CallContext class 375, 386
CallContextHandler

interface 386–387
cancelCheckOut()

method 220, 381
CAN_CREATE_DOCUMENT

action 46
CAN_CREATE_FOLDER

action 41
CAN_DELETE_OBJECT

action 55
CAN_UPDATE_CONTENT_

STREAM action 49
CAN_UPDATE_PROPERTIES

action 47
capability flag 347, 349
capabilityCreatableProperty-

Types list 75
capabilityNewTypeSettable-

Attributes list 74
case-related secondary type

80–81

change support in Alfresco 266
change tokens 210, 261
Char (BNF grammar) 408
CharacterStringLiteral (BNF

grammar) 405
Charles 317
checking in/out documents

checkIn() method 213, 220–
223, 331, 374

checking in 53–55
checking out 53
checkOut() method 218

Chemistry Dev List 293
child folders 156–158
choices attribute 69
Claims-Multiprotocol 248
client library, OpenCMIS 392
client-managed retentions 352
close() method 381
closures 292
cmis

all permission 249, 348–349,
352

allowedChildObjectTypeIds
property 196

baseTypeId property 31, 155
changeToken property 31,

210
checkinComment

property 32, 220
contentStreamFileName

property 32, 169, 178
contentStreamId property 32
contentStreamLength

property 32
contentStreamMimeType

property 32
createdBy property 31
creationDate property 31
document object-type 16, 30,

43, 72, 87, 122, 223, 259
folder object-type 16, 27, 41,

198, 258
isImmutable property 32
isLatestMajorVersion

property 32
isLatestVersion property 32,

218
isMajorVersion property 32
isVersionSeriesCheckedOut

property 32
item object-type 37, 42, 203,

389
lastModificationDate

property 31
www.it-ebooks.info

http://www.it-ebooks.info/

436 INDEX
cmis (continued)
lastModifiedBy property 31
name property 31, 40, 47,

152, 171, 195
object 30
objectId property 31, 155,

307
objectTypeId property 31,

40, 155, 195
policy object-type 347
prefix 27
read permission 249, 348–

349
relationship object-type 86
rm_destructionDate

property 352
rm_destructionRetention

object-type 352
rm_expirationDate

property 352
rm_hold object-type 352
rm_holdIds property 352
rm_repMgtRetention object-

type 351
rm_startOfRetention

property 352
secondary object-type 81
secondaryObjectTypeIds

property 81, 213
taggable object-type 122
user principal ID 348
versionLabel property 32,

220
versionSeriesCheckedOutBy

property 32
versionSeriesCheckedOutId

property 32
versionSeriesId property 32
write permission 249, 348–

349
CMIS (Content Management

Interoperability Services)
defined 3
development environment

installing CMIS
Workbench 11

installing OpenCMIS
InMemory Repository
web application 10

overview 9
requirements 10

documentation 64
limitations of

no content type support
until CMIS 1.1 17

no user or group
management 17

object model based on doc-
uments and folders 16

scope 16
MIME types 365–366
specification 6
uses for 6
vs. JCR API 17
where adopted 8

CMIS 1.0
bindings for 12
document properties 32
object properties 31
repository extensions 335
specifications 316, 431
supporting in server

389–390
CMIS 1.1

batch updates 55
bindings for 12
content type support 17
item object type 37
repository extensions 335
secondary types

creating 81
defined 80–81
updating properties

212–214
using 81–82

specifications 316, 431
supporting in server

389–390
type mutability

createable property
types 75

creating types using Type-
Utils library
75–77

creation permissions 73
deleting types 78–79
ID value restrictions 73
order of returned

properties 75
overview 135
settable attributes 73–74
updating types 79–80

CMIS and Apache Chemistry in
Action website 431

CMIS Producer 248, 250
CMIS Server Framework 392
CMIS Workbench

browsing repository 13
compression in 366
connecting to repository 12

defined 9
executing queries in 88
helper scripts for 44–45
installing 11
running code in console 14
running queries in 87–89
running TCK 378
version for book 394
viewing metadata 61–63

CMIS11QueryStatement (BNF
grammar) 396

cmisaction parameter 331
CmisBaseException 168
cmisbook

album object-type 124
audio object-type 123–124
image object-type 122–123
lyrics object-type 125
media object-type 123
officeDocument object-

type 53
taggable object-type 273
text object-type 124
video object-type 124

CMISBrowser_Files control 246
CmisClient class 253, 255
CmisConnectionException

168
CmisConstraintException 216,

218, 232
CmisContentAlreadyExists-

Exception 215
CmisInvalidArgument-

Exception 168, 374
cmislib

creating objects 258–260
importing cmislib 255–258
installing 254
launching shell 254
overview 251–253
synchronizing two repos-

itories
determining properties to

set 265
overview 260–261
polling loop 261–263
processing each

change 263–264
running 266–267

vs. OpenCMIS 253–254
cmisLogin() function 344
cmisLogout() function

344–345
CmisNameConstraintViolation

Exception 209, 225
www.it-ebooks.info

http://www.it-ebooks.info/

437INDEX
cmisNextToken()
function 344–345

CmisNotImplemented-
Exception 268

CmisNotSupportedException 3
76

CmisObject interface 154, 209
CmisObjectNotFound-

Exception 363
CmisQueryWalker class

383–384
cmisra namespace prefix 324
CMISRepositoryWrapper

class 268
CmisResult class 290
cmisselector parameter 330
CMISService class 268, 271
CmisService interface

AbstractCmisService
class 376

best practices using 376–377
overview 369

CmisServiceFactory interface
CallContext class 375
CmisServiceWrapper

class 374–375
methods for 375–376
overview 369, 374

cmisServiceURL()
function 344

CmisServiceWrapper class 374–
375

CMISSession class 294, 302
CmisUpdateConflictException

210, 215
cmisVersionSupported

option 249
Cocoa Touch library 292
ColumnName (BNF

grammar) 404
ColumnReference (BNF

grammar) 397
comparison operators

associated data types 95
for WHERE clause 96–97

ComparisonPredicate (BNF
grammar) 400

compile scope 138
compiled universal library

file 295–298
completion blocks 292
compression, HTTP 365–366
concurrent access to

objects 210–212
Conjunct (BNF grammar) 406

connectors, CMIS 5
console, Groovy 14
constraints, on property defini-

tions
common 69–70
examining 70–72
property-specific

constraints 70
CONTAINS predicate 249
CONTAINS() function

escaping characters 108–109
examples 108
limitations on 109–110
modifiers and operators 108
repository-level full-text

search 105–106
syntax 107
type-level full-text

search 106–107
Content Management Interop-

erability Services. See CMIS
Content Manager On

Demand 8
Content Manger 8
content streams

defined 35
deleting 57
retrieving 36
updating 47–50

content types, support for
(CMIS 1.1) 17

content URLs 177
contentless document

objects 43
ContentStream interface

169–171, 202
contentStream object 44
contentStreamAllowed

attribute 43
ContentStreamImpl class 202
ContentStreamUpdatability

219
controllableACL attribute 73,

81
controllablePolicy attribute 73,

81, 347
cookies

and performance 366
authentication 342

copy() method 45–46, 224
copying, documents 45–46,

223–226
CopyServlet class 223
CorrelationName (BNF

grammar) 403

creatable attribute 73, 81
create flag 73
create requests, for AtomPub

binding 381
create, read, update, and

delete. See CRUD
createable property types 75
createChildrenTable()

method 423
createDocument()

method 201, 331, 381
createDocumentFromFile()

function 44
createDocumentFromSource()

method 45–46, 223–225,
323

createDocumentFromString()
method 259

createFolder() method 40–41,
45, 258, 381

using Folder object 196
using Session object 195–196

createItem() method 203, 381
createPolicy() method 347, 381
createQueryStatement()

method 186–187
createRelationship()

method 45
createTextDocument()

method 45
createType() method 73, 76
cross-site request forgery

attacks. See XSRF attacks
CRUD (create, read, update,

and delete) 72, 238, 241
appending content 216–217
copying documents 223–226
creating documents

doGet() method for
201–203

doPost() method for
201–203

overview 200
uploading files 203–207

creating folders
doPost() method for

196–198
enumerating creatable

folder types 198–200
overview 193–194
using Folder object 196
using Session object

195–196
deleting content 214–215
deleting documents 231–232
www.it-ebooks.info

http://www.it-ebooks.info/

438 INDEX
CRUD (create, read, update,
and delete) (continued)

deleting folders 232–234
in AtomPub binding

324–325
in Browser binding 331–332
moving objects 226–230
replacing content 215
updating properties

and locking 210–212
for CMIS 1.1 secondary

types 212–214
overview 208–210

versioning
checkIn() method

220–223
creating version 218–220

curly brackets { } 324
custom properties 34, 68

D

data model, for The Blend
application

type hierarchy 121–122
type properties 122–125
types 121

DateTime data type
comparison predicate 96
IN predicate 97
NULL predicate 99

datetime data type 33, 75
DatetimeLiteral (BNF

grammar) 408
DatetimeString (BNF

grammar) 408
DEBUG log level 318
debugging

folder object 154
JavaScript 423

Decimal data type
comparison predicate 97
IN predicate 98

decimal data type 33, 75
defaultvalue attribute 70
defensive checks 47
delete flag 73
delete requests, for AtomPub

binding 381
delete() method 55–57,

232–233
deleteContentStream()

method 57, 215, 217
deleteObjectOrCancelCheck-

Out() method 381

DeleteServlet class 231
DELETESINGLEFILED

option 232
deleteTree() method 56, 232–

233
deleting

content 214–215
content stream 57
documents 55–57, 231–232
folders 55–57, 232–234
objects 55–57
types 78–79
vs. unfiling documents 57

DEPENDENCIES file 394
dependencies, importing

Maven 283
depth parameter 158, 199, 357,

375
description attribute 73
destroy() method 375
developers 64
development environment

for The Blend
application 131–135

installing CMIS
Workbench 11

installing OpenCMIS InMem-
ory Repository web
application 10

overview 9
requirements 10

Digest Authentication 248
dir() function 257
direct ACE 350
discovery services 21
displayName property 69, 73
displayRootFolder()

function 346
Document class 253
document interface 154, 169,

224
documentation

ObjectiveCMIS library
301–302

overview 64
documents

adding version series
180–183

checking in 53–55
checking out 53
content streams

defined 35
retrieving 36

copying 45–46, 223–226
creating 42–44, 52–53

doGet() method for
201–203

doPost() method for
201–203

overview 200
uploading files 203–207

defined 29
deleting 55–57, 231–232
download servlet 177–180
downloading 53
object model for CMIS 16
pages for

assembling 174–177
overview 166–167

parent folder for 46
paths 171–172
permissions 46
properties

common to all CMIS 1.0
documents 32

common to all CMIS 1.0
object types 31

custom 34
data types for 33
listing 34
rules for 33

purpose of 30
renaming 47
retrieving

allowable actions 172
ContentStream

objects 169–171
document paths 171–172
exception handling

168–169
properties 172–173

updating 53–55
updating content stream

47–50
uploading 425–428
versioning 50–52

Documentum 8
doGet() method 140–141, 174,

178–179, 201–203
domain model

documents
content streams 35
defined 29
properties 31
purpose of 30

folders
navigating 28
purpose of 27

item object type 37
repositories

capabilities and vendors 25
www.it-ebooks.info

http://www.it-ebooks.info/

439INDEX
domain model, repositories
(continued)
defined 22
getting info from 23, 25

service
and bindings 21
overview 20
purpose of 21

doPost() method 141–144
creating documents 201–203
creating folders 196–198

doRepositoryInfo()
function 417

DotCMIS library 336, 342, 357–
358

API methods 238–243
building web part with

.NET 243–248
connecting to

SharePoint 250–251
overview 236
using SharePoint as

repository 248–250
vs. OpenCMIS 237
vs. other libraries 151

download() method 45
downloading

documents 53
OpenCMIS

components 393–394
DownloadServlet class 177–180
Drawable folders 288
Drupal 267, 272

E

echo.jsp file, for The Blend
application 146

Eclipse
and Apache Tomcat 134
creating Android

project 287–288
creating projects 282
installing 280–281
project for The Blend appli-

cation
configuring Maven

138–139
creating 137–138

ECM (Enterprise Content
Management) 8

defined 4
using multiple in

organization 7
emulators, Android 281–282

encryptTempFiles()
method 375

Enterprise Content Manage-
ment. See ECM

Enterprise Security API. See
ESAPI

EnumerateFiles() method 246
errors, viewing content of 169
ESAPI (Enterprise Security

API) 432
escaping characters

in CONTAINS()
function 108–109

in LIKE predicate 98–99
Exception class 144
exceptions

in AtomPub binding 323
in document pages 168–169
in Web Services binding 319
viewing error content 169

Extensible Markup Language.
See XML

extension parameter 318
extension points 335
extensions, using in

server 388–389
ExtensionsData interface 388

F

FAILURE type 379
Fiddler 317
fileable attribute 73, 81
FileableCmisObject

interface 228
FileNet Content Manager 8

repositories in 6
FileShare Repository 8
FileShare Server 392
FileUpload library 203
Firebug add-on 415
FIT (Full Integration Test) 378
Folder class 253
<folder id> parameter 112
Folder object

createDocument()
method 201

createFolder() method 196
deleteTree() method 232
getCheckedOutDocs()

method 219
in browse pages 153–155

FolderId (BNF grammar) 405
FolderPredicate (BNF

grammar) 402

folders
browsing in The Blend

assembling 160–165
folder children 156–158
folder object 153–155
HTML 152–153
OperationContext

object 155–156
paging 158–160
parent folder 160

creating 40–41
doPost() method for

196–198
enumerating creatable

folder types 198–200
overview 193–194
using Folder object 196
using Session object

195–196
deleting 55–57, 232–234
enumerating children

422–423
navigating 28
object model for CMIS 16
object type for 41
permissions 41–42
purpose of 27
renaming 47
renditions for 171
retrieving with Objective-

CMIS
with Binding API 303–304
with Object API 303

structure for The Blend 121
for loop 159
FROM clause

defined 85, 95
defining aliases 95
overview 95
running queries 87

FROM operator 384
Full Integration Test. See FIT
FULL JOINs 105
fulltextIndexed attribute 73,

106

G

GET method 323, 329, 413,
426–427

getAllowableActions()
method 376

getAllVersions() method 181,
382

getBinding() method 178
www.it-ebooks.info

http://www.it-ebooks.info/

440 INDEX
getCallContextMap()
method 386

getCapabilities() method 266
getCheckedOutDocs()

method 219
getChildren() method 28, 153–

154, 156–158, 357–358
getContentStream()

method 169–170, 358
getContentStreamAllowed()

method 202
getContentStreamLength()

method 169
getCreatableTypes()

method 198
getDefinition() method 68
getDescendants() method 28,

158, 357
getDocument() method 45
getErrorContent()

method 169
getExtras() method 289
getFirstValue() method 173
getFolder() method 45
getFolderParent() method 28,

160
getFolderTree() method 28,

158
getHasMoreItems()

method 159
getHTTPHeaders()

method 343
getIntent() method 289
getLength() method 169
getMaxContentSize()

method 376
getMemoryThreshold()

method 376
getObject() method 45, 153–

154, 374, 380
caching 361
performance 357

getObjectByPath() method 153
caching 361
performance 356

getObjectFromTransaction()
method 427

getObjectInfo() method 381
getObjectOfLatestVersion()

method 218, 382
getObjectParents() method 28,

160, 358
getObjectRelationships()

method 356
getObjects() method 319, 325

getOpenCMISSession()
method 141

getPage() method 159, 358
getParents() method 160
getPaths() method 172
getProperties() function 265
getProperties() method

172–173
getPropertiesOfLatest-

Version() method 382
getProperty() method 172–173
getPropertyValue()

method 172–173
getRefreshTimestamp()

method 362
getRelationships()

method 191, 357
getRenditions() method 323
getRepositories() method 241,

250
getRepository() method 23,

415
getRepositoryInfo()

method 23, 26, 241, 250,
256, 423

getRootFolder() method 40
getService() method 369, 374–

375
getSOAPHeaders()

method 344
getSource() method 192
getTarget() method 192
getTempDirectory()

method 375
getTotalNumItems()

method 159
getType() method 68
getTypeChildren() method 81,

191, 347
getTypeDefinitionFromQuery-

Name() method 384
getTypeDescendants()

method 64, 66, 199
getValues() method 173
getVersionSeriesChecked-

OutBy() method 219
getVersionSeriesChecked-

OutId() method 219
GlassFish 395
Grails 119
GregorianCalendar data

type 33
Groovy

browsing repository using
CMIS Workbench 13

connecting to repository 12

executing queries in
console 89

generating query in code 89–
90

helper scripts for 44–45
home page 14
running code in console 14
saving scripts 16

group management 17
groupId parameter 371
GZIP compression 366

H

hasMoreItems flag 159
Hello Browser binding example

getting repository info
417–418

overview 416
same origin policy 418
using JQuery 420–422
using JSON-P 419–420

help() function 258–259
helper scripts 44–45
HiddenField control 244
high-level API 336
Hilaiel, Lloyd 335
Holder class 377
holds 352
HP Autonomy Interwoven 8
html data type 33–34, 75
HTML5 413
HTML5 Web Storage 359
HTMLHelper class 177
HTTP (Hypertext Transfer

Protocol)
performance

compression 365–366
Keep-Alive

connections 365
timeouts 366
using cookies for

authentications 366
status codes 179, 323

HTTP Basic
Authentication 386

HTTPS (Hypertext Transfer
Protocol Secure) 340, 365

HttpServlet interface 140
HttpServletRequest class 375
HttpServletResponse class 375
Hypertext Transfer Protocol

Secure. See HTTPS
Hypertext Transfer Protocol. See

HTTP
www.it-ebooks.info

http://www.it-ebooks.info/

441INDEX
I

IBAction 307
IBM 8
IBOutlet 307
ICmisObject class 242
ID data type

comparison predicate 96–97
IN predicate 97–98

ID value, restrictions on 73
Identifier (BNF grammar) 405
IDocument class 242
IFolder class 242
Impl suffix 377
IN predicate

associated operators and data
types 95

BETWEEN predicate
versus 97

overview 97–98
quantified IN predicate 101

includedInSuperTypeQuery
attribute

defined 86
returned in queries 88

IncludePathSegments flag 172
includeRelationships flag 191
index servlet, for The Blend

application 143–144
index.jsp file, for The Blend

application 145–146
INFO type 379
In_Folder() function 111–112
inheritance, of attributes 72
init method 375
init parameter 387
InMemoryServer.Type-

DefinitionsFile setting 136
inmemory-types.xml 136
INNER JOIN clauses 103–104
innerandouter value 104
inneronly value 103
InPredicate (BNF grammar)

400
installing

CMIS Workbench 11
cmislib 254
OpenCMIS InMemory Repos-

itory web application 10
PHP Client library 268

Integer data type
comparison predicate 97
IN predicate 98

intents 289
interactiveMode parameter 371
In_Tree() function 112–113

invalidArgument
exception 168

iOS Dev Center 292
iOS Developer Library 292
iOS. See ObjectiveCMIS library
IPolicy class 242
IRelationship class 242
is...() methods 183
ISession variable 245
isLatestVersion() method 183
isMajorVersion() method 183
isObjectInfoRequired()

method 381
isVersionSeriesCheckedOut()

method 183
item object type 37, 154, 203
ItemIterable interface 159, 185

J

Java 14, 391
Java Architecture for XML

Binding. See JAXB
Java Community Process 17
Java Content Repository API. See

JCR
Java Database Connectivity. See

JDBC
Java Development Kit. See JDK
Java EE Developers 131
Java exceptions 319
Java IDE (Integrated Develop-

ment Environment) 279
Java Specification Request. See

JSR
java.lang.Exception class 144
JAVA_OPTS environment

variable 317
JavaScript Object Notation with

Padding. See JSON-P
JavaScript Object Notation. See

JSON
JavaScript support in

bindings 316–317
JavaScript, using with Browser

binding
enumerating folder

children 422–423
getting repository info

417–418
integrating

components 424–425
overview 412–413, 416
queries 429–430
same origin policy 418

uploading documents
425–428

using JQuery 420–422
using JSON-P 419–420

JavaServer Pages. See JSPs
JAXB (Java Architecture for

XML Binding) 26
JAX-WS handlers 387
JCR (Java Content Repository)

API 17
JCR bridge, OpenCMIS 393
JDBC (Java Database

Connectivity) 4
JDK (Java Development

Kit) 10, 279
Jetty 369
joinCapability attribute 95
JoinedTable (BNF

grammar) 398
joins, query

capabilityJoin =
innerandouter 104

capabilityJoin =
inneronly 103

capabilityJoin = none 103
implicit syntax 104
limitations on 104–105
multiple 104
overview 103
performance of 104

Joomla 267
JQuery

defined 412
in Hello Browser binding

example 420–422
JSON (JavaScript Object Nota-

tion)
create request example 332
object response

example 333–334
vs. XML 413

JSON-P (JavaScript Object
Notation with
Padding) 419–420

JSPs (JavaServer Pages), for The
Blend application

echo.jsp file 146
index.jsp file 145–146

JSR (Java Specification
Request) 17

K

Keep-Alive connections 365
Kerberos 248, 342
KnowledgeTree 8
www.it-ebooks.info

http://www.it-ebooks.info/

442 INDEX
L

latency, network 290
Layout folder 288
layouts, Android 283
LDAP (Lightweight Directory

Access Protocol) 342, 348
libObjectiveCMIS.a library 299
libraries

Android CMIS
application 282–283

cmislib
creating objects 258–260
importing cmislib

255–258
installing 254
launching shell 254
overview 251–253
synchronizing two

repositories 260–267
vs. OpenCMIS 253–254

comparison of 236–237
DotCMIS

API methods 238–243
building web part with

.NET 243–248
connecting to

SharePoint 250–251
using SharePoint as

repository 248–250
vs. OpenCMIS 237

ObjectiveCMIS library
Blend Capture Xcode

project 305–306
CMISSession object 302
directly adding compiled

universal library file
and public
headers 295–298

general discussion
292–293

generating
documentation
301–302

in Xcode workspace
298–301

minimum
requirements 294

OpenCMIS library
versus 293–294

retrieving folder with Bind-
ing API 303–304

retrieving folder with
Object API 303

source code 295

uploading captured
audio 307–310

website for 295
OpenCMIS Android Client

library
installing Android

SDK 279
installing Eclipse and

Android ADT
280–281

overview 278–279
requirements 279
setting up emulator

281–282
writing application

using 282–292
PHP Client library 268

architecture of 268–269
browsing The Blend

application 272–276
installing 268
overview 268
vs. OpenCMIS 270–272

libs folder 287
Lightweight Directory Access

Protocol. See LDAP
LIKE predicate

associated operators and data
types 95

escaping rules for 98–99
examples 99
overview 98
wildcard character 184

LikePredicate (BNF
grammar) 401

limitations of CMIS
no content type support until

CMIS 1.1 17
no user or group

management 17
object model based on docu-

ments and folders 16
scope 16

limiting queries 102–103
LinkAccess interface 177
LinkedHashMap class 189
links for AtomPub binding 324
Linux 252
List class 195
listing properties 34
Literal (BNF grammar) 401
loadChildren() function 346
loadContentLink()

method 177
Loader class 279
Local binding 377

localName attribute 73
localNamespace attribute 73
locking and concurrent

actions 210–212
logical operators, for WHERE

clause 101–102
LogicHandler interface 387
Login page, Android CMIS

application 288–290
low-level API 336–337

M

Mac OS X 252
Magnolia 8
mailing lists for CMIS 431
main thread 278
major flag 374
major versions, vs. minor

versions 51
MANIFEST.MF file 147
Map class 384
Maven

configuring for The Blend
application 138–139

importing Android Client
library as dependency 283

modules 394
MAVEN_OPTS environment

variable 393
maxItems parameter 375
maxLength constraint 70
maxValue constraint 70
media files 207
Message Transmission Optimi-

zation Mechanism encod-
ing. See MTOM encoding

MessageHandler
interface 387–388

metadata
attributes

defined 61
inheritance of 72

CMIS 1.1 features
secondary types 80–82
type mutability 72–80

defined 59–60
extracting automatically 207
for type collections

overview 63–64
traversing type

hierarchy 64–65
overview 60
property definitions

constraints on 69–72
examining 66–69
www.it-ebooks.info

http://www.it-ebooks.info/

443INDEX
metadata (continued)
viewing using CMIS

Workbench 61–63
Microsoft Office Developer

Tools 243
Microsoft Visual Studio

2012 243
MIME types 36, 152, 169, 202,

207, 320, 340, 365
minor versions, vs. major

versions 51
minValue constraint 70
mobile apps

authentication in 341
capturing audio for The

Blend 305–310
ObjectiveCMIS library

CMISSession object 302
directly adding compiled

universal library file
and public
headers 295–298

general discussion
292–293

generating
documentation
301–302

incorporating into applica-
tion project 295–301

minimum
requirements 294

ObjectiveCMIS in Xcode
workspace 298–301

OpenCMIS versus
293–294

retrieving folder 303–304
source code 295
writing iOS application to

capture new tracks for
The Blend 305–310

OpenCMIS library for
Android
Android

environment 279–282
Android project 282
configuring

permissions 285
first screen 283–284
for The Blend 286–292
general discussion

278–279
libraries 282–283
running application

285–286
writing application

282–292

Moodle 267
move() method 228–229
MoveServlet class 227
moving objects 226–230
MP3 files 207
MTOM (Message Transmission

Optimization Mechanism)
encoding 319

multifiled objects 153, 226,
229–230

multifiling services 21
multipart requests 331
multipart/form-data content

type 425
multiple joins 104
multivalued properties 33

in WHERE clause 100
supplying as list 195
updating in PHP Client

library 271–272
MultiValuedColumnName

(BNF grammar) 404
MultiValuedColumnReference

(BNF grammar) 397
mutability of types

createable property types 75
creating types using Type-

Utils library 75–77
creation permissions 73
deleting types 78–79
ID value restrictions 73
order of returned

properties 75
settable attributes 73–74
updating types 79–80

N

NAME property 195
nameConstraintViolation

exception 196
namespaces

and JSON 332
and Objective-C 293

navigating folders 28
navigation services 21
.NET 236, 243, 248, 391

exceptions 319
nondirect ACE 350
NONE value 191, 219
none value 49
NOT operator 102

IN predicate 97
LIKE predicate 98–99
NULL predicate 99
overview 101

NTLM (NT LAN
Manager) 248, 342

NULL predicate
associated operators and data

types 95, 100
overview 99

null property values 33
null value 169, 173, 196
NullPredicate (BNF

grammar) 401
Nuxeo 8

O

OASIS (Organization for the
Advancement of Struc-
tured Information
Standards) 6, 17

OAuth 342
-ObjC flag 297, 300, 307
object model 16
object properties 31
object services 21
object types

collections of 63–64
for folders 41
for properties 33
mutability

createable property
types 75

creating types using Type-
Utils library
75–77

creation permissions 73
deleting types 78–79
ID value restrictions 73
order of returned

properties 75
settable attributes 73–74
updating types 79–80

secondary types
creating 81
defined 80–81
using 81–82

traversing type hierarchy
64–65

objectById array 270
objectId parameter 330
ObjectInfo interface 380–381
Objective-C 391
ObjectiveCMIS library

CMISSession object 302
general discussion 292–293
generating

documentation 301–302
www.it-ebooks.info

http://www.it-ebooks.info/

444 INDEX
ObjectiveCMIS library
(continued)

incorporating into applica-
tion project
adding compiled universal

library and
headers 295–298

ObjectiveCMIS in Xcode
workspace 298–301

iOS capture application for
The Blend
Blend Capture Xcode

project 305–306
extending Blend Capture

with ObjectiveCMIS
306–310

minimum requirements 294
OpenCMIS library

versus 293–294
retrieving folder

with Binding API 303–304
with Object API 303

source code 295
uploading captured

audio 307–310
website for 295

objectList array 270
objects

caching 360–364
creating 40
deleting 57

content stream 57
overview 55
vs. unfiling 57

documents
checking in 53–55
checking out 53
copying 45–46
creating 42–44, 52–53
deleting 55–57
downloading 53
parent folder for 46
permissions 46
renaming 47
updating 53–55
updating content

stream 47–50
versioning 50–52

folders
creating 40–41
deleting 55–57
object type for 41
permissions 41–42
renaming 47

OBJECT_TYPE_ID
property 195

ODBC (Open Database
Connectivity) 4

Office files 207
OK type 379
ON clause 104
ONCREATE value 215
OnLoad event 246
onPostExecute() method 290
OnPreLoad event 246
opaque identifiers 31
Open Database Connectivity. See

ODBC
Open Handset Alliance 278
Open Web Application Security

Project. See OWASP
openchoice attribute 69
OpenCMIS

building 393
components

downloading 393–394
Maven modules 394
overview 391
required 394–395

compression in 366
cookie support in 366
performance in 357–358
using on application

server 395
vs. cmislib 253–254
vs. DotCMIS 237
vs. ObjectiveCMIS

library 293–294
vs. other libraries 151
vs. PHP Client library

executing query 271
initiating session 271
overview 270–271
updating multivalued

property 271–272
OpenCMIS Android Client

library
Android environment

installing Android
SDK 279

installing Eclipse and
Android ADT 280–281

requirements 279
setting up emulator

281–282
overview 278–279
vs. other libraries 151
writing application

Android project 282
configuring

permissions 285
first screen 283–284

for The Blend 286–292
libraries 282–283
running application

285–286
OpenCMIS bridge 392
OpenCMIS InMemory Reposi-

tory
cmis, document not

versionable 223
computer restarts 126
contentless document

objects 43
for The Blend

application 135–137
installing 10
overview 8
version for book 394–395

OpenCMIS JCR bridge 393
OpenCMIS low-level API. See

low-level API
OpenCMIS project 9
OpenCMIS Server Framework

CmisService interface 369
CmisServiceFactory

interface 369
overview 368–369
servlets in 370

OpenText ECM 8
OperationContext

interface 155–156, 160
and caching 362
and performance 356–357
in browse pages 155–156

operators
comparison operators 96–97
logical operators 101–102

optional capabilities 25
OR operator 101–102
ORDER BY clause

defined 85
ordering query results 102

ORDER BY operator 385
orderable attribute 91, 102
ordering queries 102–103
Orderly 334–335
org.apache.chemistry.

opencmis.commons.data
package 33

Organization for the Advance-
ment of Structured Infor-
mation Standards. See
OASIS

OUTER JOINs 104
OWASP (Open Web Applica-

tion Security Project) 163,
432
www.it-ebooks.info

http://www.it-ebooks.info/

445INDEX
P

package parameter 371
paging 158–160, 357
parameters, session 432
parent field 194
parent folder

for documents 46
in browse pages 160

parentId constraint 81
parsing queries 382–385

example of 382–383
FROM 384
ORDER BY 385
overview 382, 385
SELECT 383
WHERE 384–385

paths
document 171–172
segments of 358

payload of document 36
PDF files 207
percent symbol (%) 98–99
performance

caching 359
and sessions 359–360
AtomPub link cache 360
objects 360–364
overview 358
static data 359

HTTP
compression 365–366
Keep-Alive

connections 365
timeouts 366
using cookies for

authentications 366
in DotCMIS 357–358
in OpenCMIS 357–358
overview 354–356
selecting fastest binding 364
selecting smallest data

set 356–357
permissions

ACLs 347–348
and documents 46
and folders 41–42
Android CMIS

application 285
changing 349–351
policies 346–347
repository-specific 349

PHP Client library 268
architecture of 268–269
browsing The Blend

application 272

creating collections
275–276

listing items with tag
273–274

overview 272
searching in 274–275
updating properties 273

installing 268
overview 236, 268
vs. OpenCMIS

executing query 271
initiating session 271
updating multivalued

property 271–272
Phrase (BNF grammar) 407
Placeholder class 244
placeholders 187
Platform 8
policies 346–347
policy interface 154
policy services 21
pom.xml file 139, 372
port number, changing 10
POST method 194, 323–324,

329, 413, 425–426, 429
PowerShell 237
precision constraint 70
predicates 95
PreparedStatement class 186
primitives, Python 256
principals 347
printChildren() method 45
printObjectSummary()

method 45
printPropDefsForType()

method 66
printProperties() method 45
printRelationships()

method 45
printRenditions() method 45
Private Working Copy. See PWC
processChange() function 261,

263
projectPrefix parameter 371
properties

determining changed when
synchronizing 265

for documents
common to all CMIS 1.0

documents 32
common to all CMIS 1.0

object types 31
custom 34
data types for 33
listing 34
rules for 33

multivalued properties 100,
271–272

order of returned 75
setting with placeholders 187
updating 208–210

and locking 210–212
for CMIS 1.1 secondary

types 212–214
vs. attributes 61

property definitions
constraints on

common 69–70
examining 70–72
property-specific

constraints 70
creatable 75
defined 60
examining 66–69
for queries 91–92

Property interface 33
PropertyBoolean interface 33
PropertyDateTime interface 33
PropertyDecimal interface 33
PropertyDefinition object 67
PropertyHtml interface 33
PropertyId interface 33
PropertyIds class 195
PropertyInteger interface 33
PropertyString interface 33
PropertyUri interface 33
provided scope 138
public headers, adding to

project 295–298
publicly available CMIS

servers 15
PUT method 323–324
putResponseHeaders()

method 344
PWC (Private Working

Copy) 32, 49, 51, 181, 203,
219

PWCONLY value 219
pwconly value 49
Python 236, 252, 391

Q

q parameter 184
<qualifier> parameter 111–112
Qualifier (BNF grammar) 398
quantified comparison predi-

cate
associated operators and data

types 100
for WHERE clause 101
www.it-ebooks.info

http://www.it-ebooks.info/

446 INDEX
quantified IN predicate
associated operators and data

types 100
for WHERE clause 101

QuantifiedComparison-
Predicate (BNF grammar)
402

QuantifiedInPredicate (BNF
grammar) 402

queries
BNF grammar 93–94

BooleanLiteral 409
BooleanTest 399–400
Char 408
CharacterStringLiteral

405
CMIS11QueryStatement

396
ColumnName 404
ColumnReference 397
ComparisonPredicate 400
Conjunct 406
CorrelationName 403
DatetimeLiteral 408
DatetimeString 408
FolderId 405
FolderPredicate 402
Identifier 405
InPredicate 400
JoinedTable 398
LikePredicate 401
Literal 401
MultiValuedColumnName

404
MultiValuedColumn-

Reference 397
NullPredicate 401
Phrase 407
Qualifier 398
QuantifiedComparison-

Predicate 402
QuantifiedInPredicate

402
QuoteSymbol 407
SearchCondition 399
SecondaryTypeColumn-

Name 404
SecondaryTypeMultiValued-

ColumnName 404
SecondaryTypeTableName

403
SelectSublist 396–397
SignedNumericLiteral 405
SortSpecification 403
Space 408

TableName 403
TableReference 398
Term 406
TextSearchExpression 406
TextSearchPredicate 402
Word 406
WordElement 407

checking service
capabilities 86–87

executing in PHP Client
library 271

extension functions
CONTAINS()

function 105–110
In_Folder() function

111–112
In_Tree() function

112–113
Score() function 110–111

FROM clause 95
generating query in code 89–

90
joinCapability attribute 95
joins

capabilityJoin =
innerandouter 104

capabilityJoin =
inneronly 103

capabilityJoin = none 103
limitations on 104–105
multiple 104
overview 103

language 85
limiting 102–103
ordering 102–103
overview 84
pages in The Blend

accessing and traversing
relationships 191–192

assembling search
page 189–190

createQueryStatement()
method 186–187

query() method 184–186
queryObjects()

method 187–189
parsing

example of 382–383
FROM 384
ORDER BY 385
overview 382, 385
SELECT 383
WHERE 384–385

prerequisite knowledge 84
property definitions 91–92

query() method 184–186,
382

queryable attribute 95
running in CMIS

Workbench 87–89
search scope 92
SELECT clause 85–94

overview 85, 94
result sets from 94

using JavaScript 429–430
WHERE clause

AND operator 101–102
comparison operators

96–97
escaping rules for LIKE

operations 98–99
IN predicate 97–98
LIKE predicate 98
LIKE predicate

examples 99
logical operators 101–102
multivalue properties 100
NOT operator 101–102
NULL predicate 99–100
OR operator 101–102
overview 95–96
quantified comparison

predicate 101
quantified IN

predicate 101
queryable attribute 73, 86, 91,

95
queryName attribute 73

defined 86, 91
Score() function 111

queryObjects() method
187–189

QueryResult class 89, 185
QueryStatement class 186
QueryUtil class 383
question mark (?) 107
QuoteSymbol (BNF

grammar) 407

R

Railroad Diagram Generator
tool 396

READONLY value 63, 214
READWRITE value 63, 214
read-write value 212
refresh() method 362
refreshIfOld() method 362
relational databases 85
relationship interface 154, 191
www.it-ebooks.info

http://www.it-ebooks.info/

447INDEX
relationship services 21
relationships, accessing and

traversing 191–192
relative path segments 358
removeFromFolder()

method 57, 228
removePolicy() method 347
RenameServlet class 208
renaming documents and

folders 47
Rendition class 170
replacing content 215
repositories

advantages of CMIS-
compliant 5

browsing 13
capabilities and vendors 25
connecting to 12
contentless document objects

in 43
defined 4, 22
determining supported

types 191
discovering 21
extensions 335–336
for The Blend

application 119
full-text search at repository

level 105–106
getting info from 23, 25
getting info using

JavaScript 417–418
permissions specific to 349
retentions managed by 351
SharePoint as 248–250
synchronizing 260–261

determining properties to
set 265

polling loop 261–263
processing each

change 263–264
running 266–267

testing data returned
from 163

URL 329
Repository class 253, 256
repository services 21
REPOSITORY_ID

parameter 140
repositoryInfo property 15
Representational State Trans-

fer. See REST
require_once statement 268
res folder 288
resolution constraint 70

resources
Apache Chemistry 431–432
for ObjectiveCMIS 295
libraries 432
source code 431
specification 431

REST (Representational State
Transfer) 316

result sets from SELECT
clause 94

retentions
client-managed 352
repository-managed 351

retrieveObject() method 303
retrieving content streams 36
reverting versions 50
rich content repositories 4
RIGHT JOINs 105
root folder

defined 27
object for 41
URL for 329

run.bat/run.sh file 10, 318

S

same origin policy 418
SAML tokens 342
SAP NetWeaver Cloud Docu-

ment Service 8
schemas 59, 334

extension points 335
JSON schema 335
repository extensions

335–336
XML schema 335

scope
for search 92
of CMIS 16

Score() function 110–111
script tags 422
search pages

accessing and traversing
relationships 191–192

assembling 189–190
createQueryStatement()

method 186–187
query() method 184–186
queryObjects() method 187–

189
search scope 92
SearchCondition (BNF

grammar) 399
SearchServlet class 183

secondary types
creating 81
defined 80
using 81–82

SecondaryTypeColumnName
(BNF grammar) 404

SecondaryTypeMultiValued-
ColumnName (BNF
grammar) 404

SecondaryTypeTableName
(BNF grammar) 403

Secure Sockets Layer. See SSL
security

authentication
authentication provider

example 343–344
AuthenticationProvider

interface 342–343
cookies 342
overview 341
using Browser

binding 344–346
CXSRF attacks 341
for The Blend

application 120
holds 352
overview 339–340
permissions

ACLs 347–348
changing 349–351
policies 346–347
repository-specific 349

retentions
client-managed 352
repository-managed

351
XSS attacks 340

SELECT clause 85–94
defined 85, 94
defining aliases 94
result sets from 94

SELECT operator 383
SelectSublist (BNF

grammar) 396–397
self link 324
Server Webapps package 392
servers

AtomPub binding
create and delete

requests 381
handling version

series 382
managing ACLs 382
ObjectInfo interface

380–381
www.it-ebooks.info

http://www.it-ebooks.info/

448 INDEX
servers (continued)
CmisService interface

AbstractCmisService
class 376

best practices using
376–377

CmisServiceFactory
interface
CallContext class 375
CmisServiceWrapper

class 374–375
methods for 375–376
overview 374

extracting authentication
information
CallContext class 386
CallContextHandler

interface 386–387
MessageHandler

interface 387–388
generating server stub

370–372
OpenCMIS Server Frame-

work
CmisService interface 369
CmisServiceFactory

interface 369
overview 368–369
servlets in 370

parsing queries 382–385
example of 382–383
FROM 384
ORDER BY 385
overview 382, 385
SELECT 383
WHERE 384–385

supporting CMIS 1.0 and
CMIS 1.1 389–390

Test Compatibility Kit 380
results from 379
running with CMIS

Workbench 378
using extensions 388–389
WAR file for 372–374

service
and bindings 21
checking query

capabilities 86–87
overview 20
purpose of 21

Service class 278
service document

for AtomPub binding
323–324

for Browser binding 329–330

servlets
for The Blend application

abstract servlet 140–143
exception class 144
index servlet 143–144
web.xml file 145

in OpenCMIS Server
Framework 370

Session object 238, 359–360
createDocument()

method 201
createFolder() method

195–196
getCheckedOutDocs()

method 219
SessionParame-

ter.REPOSITORY_ID
parameter 140

sessions
and caching 359–360
in The Blend

application 139–140
parameters for 432
variable 14

SessionTask class 289
Set interface 155
setAcl() method 351
setAttribute() method 162
setCacheEnabled()

method 212
setContentStream()

method 48, 215–216, 331,
364

setFilterString() method 178
setMaxItemsPerPage()

method 358
setOpenCMISSession()

method 141
setProperty() method 187
setStringLike() method 186
settable attributes 73–74
setuptools package

installer 254
SharePoint

as repository 248–250
connecting to 250–251
contentless document

objects 43
repositories in 6
support for CMIS 8
versions 248

SharePoint CMIS
Producer 248, 250

capabilities 248–249
SharePoint Server 2013 Client

Components SDK 243

shell, in cmislib 254
ShowServlet class 166
SignedNumericLiteral (BNF

grammar) 405
Simple Object Access Protocol.

See SOAP
single sign-on. See SSO
skip parameter 153, 158
SKIPPED type 379
skipTo() method 159
SLF4J Android 283
SOAP (Simple Object Access

Protocol) 239–240, 271,
318–319, 341, 413

SOAPHandler interface 387
socket connections 169
SortSpecification (BNF

grammar) 403
source code

Apache Chemistry 432
ObjectiveCMIS library 295
package for book 431

SOURCE value 191
Space (BNF grammar) 408
specifications

overview 316
resources for 431

Sphinx tool 258
Spring MVC 119
SQL (Structured Query

Language) 4
SQL injection 186
src folder 287
SSL (Secure Sockets

Layer) 340, 342, 365
SSO (single sign-on) 341
StandardAuthentication-

Provider class 241, 343
standardization 4
static data, caching 359
status codes, HTTP 179, 323
streams, closing 169
String data type 33

comparison predicate 96–97
IN predicate 97
NULL predicate 99

Structured Query Language. See
SQL

stub, server 370–372
succinct flag 330, 333–334
sun-jaxws.xml file 374
suppressResponseCodes

parameter 329, 420
synchronizing two repositories

determining properties to
set 265
www.it-ebooks.info

http://www.it-ebooks.info/

449INDEX
synchronizing two repositories
(continued)

overview 260–261
polling loop 261–263
processing each change 263–

264
running 266–267

synchronous library 278
system properties 68

T

TableName (BNF grammar)
403

TableReference (BNF gram-
mar) 398

taggable secondary type 81
TARGET value 191
TC (Technical Committee) 6,

335, 431
TCK (Test Compatibility

Kit) 380
content ranges in 170
defined 392
results from 379
running with CMIS

Workbench 378
Technical Committee. See TC
Term (BNF grammar) 406
Test Compatibility Kit. See TCK
testing

data returned from
repository 163

The Blend application
147–148

using publicly available
servers 15

text/plain type 340
text/xml type 366
TextSearchExpression (BNF

grammar) 406
TextSearchPredicate (BNF

grammar) 402
The Blend application

Album List screen 290–291
appending content 216–217
browse pages

assembling 160–165
folder children 156–158
folder object 153–155
HTML 152–153
OperationContext

object 155–156
paging 158–160
parent folder 160

browsing with PHP Client
library
creating collections

275–276
listing items with tag

273–274
searching in 274–275
updating properties 273

business requirements 118
code for 125–131
copying documents 223–226
creating documents

doGet() method for
201–203

doPost() method for
201–203

uploading files 203–207
creating folders 193–194

doPost() method for
196–198

enumerating creatable
folder types 198–200

using Folder object 196
using Session object

195–196
data model

type hierarchy 121–122
type properties 122–125
types 121

data organization 120–121
deleting content 214–215
deleting documents 231–232
deleting folders 232–234
development

environment 131–135
document pages

adding version series
180–183

assembling 174–177
download servlet 177–180
HTML 166–167
retrieving 167–173

Eclipse project for
configuring Maven

138–139
creating 137–138

InMemory server
configuration 135–137

JSPs
echo.jsp file 146
index.jsp file 145–146

Login page 288–290
moving objects 226–230
practicing implementing

features 291–292

query pages
accessing and traversing

relationships 191–192
assembling search

page 189–190
createQueryStatement()

method 186–187
query() method 184–186
queryObjects()

method 187–189
replacing content 215
repository for 119
security 120
servlets

abstract servlet 140–143
exception class 144
index servlet 143–144
web.xml file 145

sessions 139–140
setting up project in

Eclipse 287–288
testing 147–148
updating properties 208–210

and locking 210–212
for CMIS 1.1 secondary

types 212–214
uploading captured

audio 307–310
versioning

checkIn() method
220–223

creating version 218–220
web application

framework 119
writing iOS application to

capture new tracks
extending with

ObjectiveCMIS
306–310

Xcode project 305–306
ThreadLocal class 374
Tika in Action 207
timeouts 366
tracing requests 317
traverseStatement()

method 383
TypeDefinition object 76
TypeDefinitionsFile setting 136
TypeManager class 383
typeMutability interface 73
types 60

determining supported by
repository 191

for The Blend application 121
hierarchy 121–122
properties 122–125
www.it-ebooks.info

http://www.it-ebooks.info/

450 INDEX
types (continued)
full-text search at type

level 106–107
See also object types

TypeUtils library, creating types
using 75–77

U

UI thread 278
UIButton 307
underscore (_) 99
UNEXPECTED EXCEPTION

type 379
UNFILE option 232
unfiled documents 16, 46, 57
uniform resource locators. See

URLs
unstructured repositories 4
update flag 73
UpdatePanel control 244
updateProperties() method 47,

81, 209, 213, 271
updateType() method 79
uploading documents

203–207, 425–428
URI data type

comparison predicate 96
IN predicate 97

uri data type 33–34, 75
URL templates 323–324
URLs (uniform resource

locators) 177
USB debugging 285
User Header Search Paths

setting 300
user management 17

V

Values folder 288
vendors 25
version parameter 371
versionable attribute 72
VersionableType 53

VersionedType 78
versioning services 21
versioningState parameter 203
versions

checkIn() method 220–223
creating version 218–220
for documents 50–52
in document pages 180–183
reverting 50

viewDidLoad() method 307
ViewState property 244, 246
virtualenv package 254

W

WAR file, for servers 372–374
WARNING type 379
web application

frameworks 119
web parts, building with

.NET 243–248
Web Services binding

CMIS 1.0 12
exceptions in 319
getObject method 380
getObjects method using 319
library support 236
MTOM encoding 319
pros and cons 336
required binding 21
using WSDL file 251

Web Services Description Lan-
guage. See WSDL

web.xml file 145, 374, 418
WebLogic 395
WebSphere 395
WHENCHECKEDOUT

value 215
WHERE clause

AND operator 101–102
comparison operators 96–97
defined 85, 95
IN predicate 97–98
in queryObjects()

method 188
LIKE predicate

escaping rules for 98–99
examples 99
overview 98

logical operators 101–102
multivalue properties 100
NOT operator 101–102
NULL predicate 99–100
OR operator 101–102
quantified comparison

predicate 101
quantified IN predicate 101

WHERE operator 384–385
Windows-Claims

Authentication 248
Word (BNF grammar) 406–407
WordElement (BNF

grammar) 407
WordPress 267
Workbench. See CMIS Work-

bench
workbench.bat/workbench.sh

files 317
Worksite 8
workspaces 298
WSDL (Web Services Descrip-

tion Language) 22, 251,
318, 374

X

Xcode
extending The Blend mobile

application 306–310
ObjectiveCMIS in 298–301

XML (Extensible Markup Lan-
guage)

Android projects 283
schemas 335
vs. JSON 413

XSD files 374
XSRF (cross-site request forg-

ery) attacks 341, 421
XSS (cross-site scripting)

attacks 162–163, 340
www.it-ebooks.info

http://www.it-ebooks.info/

Müller ● Brown ● Potts

C
ontent Management Interoperability Services (CMIS) is an
OASIS standard for accessing content management systems.
It specifi es a vendor- and language-neutral way to interact

with any compliant content repository. Apache Chemistry
provides complete reference implementations of the CMIS
standard with robust APIs for developers writing tools,
applications, and servers.

Th is book is a comprehensive guide to the CMIS standard
and related ECM concepts. In it, you’ll fi nd clear teaching and
instantly useful examples for building content-centric client and
server-side applications that run against any CMIS-compliant
repository. In fact, using the CMIS Workbench and the In-
Memory Repository from Apache Chemistry, you’ll have run-
ning code talking to a real CMIS server by the end of chapter 1.

What’s Inside
● Th e only CMIS book endorsed by OASIS
● Complete coverage of the CMIS 1.0 and 1.1 specifi cations
● Cookbook-style tutorials and real-world examples

Th is book requires some familiarity with content management
systems and a standard programming language like Java or C#.
No exposure to CMIS or Apache Chemistry is assumed.

Florian Müller, Jay Brown, and Jeff Potts are among the original
authors, contributors, and leaders of Apache Chemistry and the
OASIS CMIS specifi cation. Th ey continue to shape CMIS imple-
mentations at Alfresco, IBM, and SAP.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/CMISandApacheChemistryinAction

$59.99 / Can $62.99 [INCLUDING eBOOK]

CMIS and Apache Chemistry IN ACTION

CONTENT MANAGEMENT/OPEN SOURCE

M A N N I N G

“Th e most complete,
authoritative work on

 CMIS you will fi nd.”
—From the Foreword by Richard J.

Howarth, IBM Soft ware Group

“Illustrates the breadth and
 possibilities of CMIS.”—From the Foreword by

John Newton, Alfresco and AIIM

“An excellent, in-depth
introduction to CMIS from

 the authors of the standard.”—Gregor Zurowski, Sotheby’s

“A thoughtful, thorough,
and entertaining

discussion about using
CMIS in practice. ”—Ryan McVeigh, Zia Consulting

SEE INSERT

www.it-ebooks.info

http://www.it-ebooks.info/

	CMIA and Apache
	brief contents
	contents
	foreword by R.J. Howarth
	foreword by J. Newton
	preface
	acknowledgments
	about this book
	Audience
	Roadmap
	Code conventions and downloads
	Author Online

	about the authors
	about the cover illustration
	Part 1 Understanding CMIS
	1 Introducing CMIS
	1.1 What is CMIS?
	1.1.1 About the specification
	1.1.2 What does CMIS do?
	1.1.3 Where is CMIS being adopted?

	1.2 Setting up a CMIS test environment
	1.2.1 Requirements
	1.2.2 Installing the OpenCMIS InMemory Repository web application
	1.2.3 Installing the CMIS Workbench

	1.3 Writing your first CMIS code using Groovy
	1.3.1 Connecting to the repository
	1.3.2 Try it—browse the repository using the CMIS Workbench
	1.3.3 Try it—run CMIS code in the CMIS Workbench Groovy console

	1.4 CMIS considerations
	1.4.1 Understanding the limitations of CMIS
	1.4.2 Comparing CMIS to the Java Content Repository (JCR) API

	1.5 Summary

	2 Exploring the CMIS domain model
	2.1 The CMIS service
	2.1.1 The role of the CMIS service
	2.1.2 Bindings: what does a CMIS service look like?

	2.2 Repository—the CMIS database
	2.2.1 Repository info and capabilities
	2.2.2 Capabilities across different repository vendors
	2.2.3 Try it—retrieve the repository info

	2.3 Folders
	2.3.1 The role of folders
	2.3.2 Try it—folder navigation

	2.4 Documents
	2.4.1 The role of documents
	2.4.2 Properties
	2.4.3 Try it—list a document’s properties
	2.4.4 Content streams
	2.4.5 Try it—retrieve a document’s content stream

	2.5 The item object type (version 1.1)
	2.6 Summary

	3 Creating, updating, and deleting objects with CMIS
	3.1 Creating objects
	3.1.1 Requirements for creating an object
	3.1.2 Try it—create a folder
	3.1.3 Things to think about when creating folders
	3.1.4 Try it—create a document
	3.1.5 Things to think about when creating documents

	3.2 Updating objects
	3.2.1 Try it—rename a document or a folder
	3.2.2 Try it—update the content stream
	3.2.3 Understanding versioning
	3.2.4 Try it—upload a new version of a document

	3.3 Deleting objects
	3.3.1 Requirements for deleting objects
	3.3.2 Try it—delete an object
	3.3.3 Things to think about when deleting objects

	3.4 Summary

	4 CMIS metadata: types and properties
	4.1 What is metadata and why do we need it?
	4.2 Metadata in CMIS
	4.2.1 Type definitions are hierarchical and attributes are inherited
	4.2.2 Try it—view the types and property definitions using Workbench

	4.3 Type collections and hierarchies
	4.3.1 Try it—traversing the type hierarchy
	4.3.2 Try it—examining property definitions on types
	4.3.3 Constraints on property definitions
	4.3.4 Try it—examining constraints on property definitions
	4.3.5 Attribute and attribute value inheritance

	4.4 CMIS 1.1 metadata features
	4.4.1 Type mutability
	4.4.2 Secondary types

	4.5 Summary

	5 Query
	5.1 Query: a familiar face on search
	5.1.1 Prerequisite for this chapter: SQL basics
	5.1.2 Exercises in this chapter and the InMemory server

	5.2 Introduction to the CMIS Query language
	5.2.1 Reviewing clauses of the SELECT statement
	5.2.2 Checking Query capabilities on a service
	5.2.3 Try it—checking the Query capabilities of a CMIS service
	5.2.4 Try it—your first CMIS Query
	5.2.5 Try it—running a query from code
	5.2.6 Checking query-related attributes for properties
	5.2.7 Search scope

	5.3 Components of a query
	5.3.1 The SELECT clause
	5.3.2 WHERE clause
	5.3.3 Ordering and limiting query results
	5.3.4 Joins and determining repository support

	5.4 CMIS SQL extension functions
	5.4.1 CONTAINS(): full-text search
	5.4.2 Score()
	5.4.3 Navigational functions

	5.5 Summary

	Part 2 Hands-on CMIS client development
	6 Meet your new project: The Blend
	6.1 Understanding the business requirements and technical approach
	6.1.1 Business requirements
	6.1.2 Establishing the technical design

	6.2 Walking through the finished product
	6.3 Setting up the development environment
	6.4 Configuring the InMemory server
	6.5 Taking first steps with The Blend
	6.5.1 Setting up the Eclipse project
	6.5.2 Creating a session factory
	6.5.3 Creating the servlets
	6.5.4 Creating the JSPs
	6.5.5 Try it—testing The Blend

	6.6 Summary

	7 The Blend: read and query functionality
	7.1 Building a browse page
	7.1.1 Preparing the HTML part of the browse page
	7.1.2 Getting the folder object
	7.1.3 Taking advantage of the OperationContext
	7.1.4 Getting the folder children
	7.1.5 Paging
	7.1.6 Getting the folder parent
	7.1.7 Assembling the browse page

	7.2 Building a document page
	7.2.1 Preparing the HTML part of the document page
	7.2.2 Retrieving documents
	7.2.3 Assembling the document page
	7.2.4 The download servlet
	7.2.5 Adding the version series to the document page

	7.3 Building a query page
	7.3.1 Ways to query: there be three
	7.3.2 Assembling the search page
	7.3.3 Accessing and traversing relationships

	7.4 Summary

	8 The Blend: create, update, and delete functionality
	8.1 Creating folders
	8.1.1 Two ways to create folders
	8.1.2 Create folder: doPost()
	8.1.3 Enumerating the creatable folder types

	8.2 Creating documents
	8.2.1 Creating doGet() and doPost() for document creation
	8.2.2 Performing file uploads

	8.3 Updating properties
	8.3.1 Concurrent access and locking
	8.3.2 Properties from CMIS 1.1 secondary types

	8.4 Updating and deleting content
	8.4.1 Deleting content
	8.4.2 Replacing content
	8.4.3 Appending content

	8.5 Versioning
	8.5.1 Creating a new version
	8.5.2 The checkIn() method

	8.6 Copying documents
	8.7 Moving objects
	8.8 Deleting objects
	8.8.1 Deleting documents
	8.8.2 Deleting folders

	8.9 Summary

	9 Using other client libraries
	9.1 Working with other client libraries
	9.1.1 Common client libraries

	9.2 Coding in .NET with DotCMIS
	9.2.1 Comparing DotCMIS and OpenCMIS
	9.2.2 Getting started with DotCMIS
	9.2.3 Try it—building a web part with .NET and CMIS to browse The Blend
	9.2.4 Using SharePoint as a CMIS repository
	9.2.5 Connecting to SharePoint

	9.3 Coding in Python with cmislib
	9.3.1 Comparing cmislib and OpenCMIS
	9.3.2 Installing cmislib
	9.3.3 Connecting to a CMIS repository using the interactive shell
	9.3.4 Using cmislib to synchronize objects between two CMIS repositories

	9.4 Apache Chemistry PHP API
	9.4.1 Installing the PHP Client
	9.4.2 About the PHP Client library
	9.4.3 PHP Client architecture
	9.4.4 Differences between OpenCMIS and the PHP Client
	9.4.5 Using PHP to browse The Blend

	9.5 Summary

	10 Building mobile apps with CMIS
	10.1 Writing mobile apps with OpenCMIS for Android
	10.1.1 Android and CMIS
	10.1.2 Setting up an Android environment
	10.1.3 Writing your first Android CMIS application
	10.1.4 Try it—writing an Android application for The Blend

	10.2 Writing iOS apps with ObjectiveCMIS
	10.2.1 What is ObjectiveCMIS?
	10.2.2 Comparing ObjectiveCMIS with OpenCMIS
	10.2.3 Getting started with ObjectiveCMIS
	10.2.4 Using ObjectiveCMIS
	10.2.5 Try it—writing an iOS application to capture new tracks for The Blend

	10.3 Summary

	Part 3 Advanced topics
	11 CMIS bindings
	11.1 CMIS binding overview
	11.1.1 The RESTful trend
	11.1.2 The need for JavaScript support
	11.1.3 Capturing CMIS traffic for inspection
	11.1.4 Try it—tracing requests from part 1

	11.2 A close look at the three bindings
	11.2.1 The Web Services binding
	11.2.2 The AtomPub binding
	11.2.3 The Browser binding

	11.3 CMIS schemas and schema extensions
	11.3.1 XML schema

	11.4 The OpenCMIS low-level API
	11.4.1 Reasons to use the low-level API

	11.5 Summary

	12 Security and control
	12.1 General security considerations
	12.1.1 Cross-site scripting (XSS) attacks
	12.1.2 Cross-site request forgery (CSRF) attacks

	12.2 Authentication
	12.2.1 Cookies
	12.2.2 AuthenticationProvider interface
	12.2.3 Example of an authentication provider

	12.3 Authentication in web applications using the Browser binding
	12.3.1 JavaScript entry points
	12.3.2 Sequence: log in, nextToken, …, log out
	12.3.3 Example JavaScript

	12.4 Authorization and permissions
	12.4.1 Policies
	12.4.2 ACLs
	12.4.3 Repository-specific permissions
	12.4.4 Changing permissions (applyACL)

	12.5 Retentions and holds
	12.5.1 Repository-managed retentions
	12.5.2 Client-managed retentions
	12.5.3 Holds

	12.6 Summary

	13 Performance
	13.1 CMIS performance
	13.2 Selecting the smallest data set
	13.3 Performance notes specific to OpenCMIS and DotCMIS
	13.4 Caching
	13.4.1 Caching static data
	13.4.2 Caching objects

	13.5 Selecting the fastest binding
	13.6 Tuning HTTP for CMIS
	13.6.1 HTTP Keep-Alive
	13.6.2 Compression
	13.6.3 Authentication and cookies
	13.6.4 Timeouts

	13.7 Summary

	14 Building a CMIS server
	14.1 Introduction to the OpenCMIS Server Framework
	14.1.1 CmisService interface
	14.1.2 CmisServiceFactory interface
	14.1.3 The framework

	14.2 Generating a server stub
	14.2.1 Building the CMIS server WAR file
	14.2.2 Dissecting the CMIS server WAR file

	14.3 Implementing the CmisServiceFactory interface
	14.3.1 CmisServiceWrapper
	14.3.2 CallContext
	14.3.3 Other CmisServiceFactory methods

	14.4 Implementing the CmisService interface
	14.4.1 AbstractCmisService
	14.4.2 Best practices for implementing the CmisService

	14.5 Testing the CMIS server with the OpenCMIS TCK
	14.5.1 Running the TCK with the CMIS Workbench
	14.5.2 TCK results breakdown
	14.5.3 Deeper testing

	14.6 AtomPub differences
	14.6.1 Providing ObjectInfo
	14.6.2 Handling create and delete requests
	14.6.3 Dealing with version series
	14.6.4 Managing ACLs

	14.7 Parsing a CMIS query
	14.7.1 An example of initialization and use
	14.7.2 Parsing SELECT
	14.7.3 Parsing FROM
	14.7.4 Parsing WHERE
	14.7.5 Parsing ORDER BY
	14.7.6 Query wrap-up

	14.8 Extracting authentication information
	14.8.1 CallContext
	14.8.2 CallContextHandler
	14.8.3 Web services
	14.8.4 Authentication wrap-up

	14.9 CMIS extensions
	14.10 Supporting CMIS 1.0 and CMIS 1.1
	14.11 Summary

	appendix A Apache Chemistry OpenCMIS components
	A.1 Apache Chemistry OpenCMIS
	A.1.1 OpenCMIS components overview
	A.1.2 Getting and using OpenCMIS components
	A.1.3 Building OpenCMIS
	A.1.4 Download packages
	A.1.5 Maven modules
	A.1.6 OpenCMIS components for this book
	A.1.7 Using the OpenCMIS client library on an application server

	appendix B BNF
	appendix C CMIS cheat sheet
	Legend (Abbreviations used in the following tables)

	appendix D Building web applications with JavaScript
	D.1 JavaScript and CMIS background
	D.1.1 CMIS and web browsers using XML
	D.1.2 Creation of the Browser binding
	D.1.3 OpenCMIS support for the Browser binding today

	D.2 Try it—Hello Browser binding
	D.2.1 First steps
	D.2.2 Your first Browser binding call (getting the repository info)
	D.2.3 Complications: the same origin policy
	D.2.4 Using JSON-P
	D.2.5 Hello JQuery

	D.3 CMIS basic operations with the Browser binding and JQuery
	D.3.1 Enumerating a folder’s children
	D.3.2 Integrating JavaScript components
	D.3.3 Uploading a document
	D.3.4 Query

	appendix E References and resources
	E.1 Source code and listings
	E.2 OASIS CMIS references
	E.3 Apache Chemistry–related resources
	E.4 Other libraries used in this book

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

