(MIS
Apac
Chem

INACTI

Florian Miiller

Jay Brown
Jeff Potts

Foreworns BY Richard J. Howarth
John Newton

/ll MANNING

www.it-ebooks.info

http://www.it-ebooks.info/

CMIS and Apache Chemistry in Action

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CMIS and Apache
Chemustry in Action

FLORIAN MULLER
JAY BROWN
JEFF POTTS

MANNING
SHELTER ISLAND

www.it-ebooks.info

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 261

Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

/I/I Manning Publications Co. Development editor: Karen G. Miller
20 Baldwin Road Technical proofreader: David Caruana
PO Box 261 Copyeditors: Benjamin Berg, Andy Carroll
Shelter Island, NY 11964 Proofreader: Katie Tennant

Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781617291159
Printed in the United States of America
12345678910 - MAL - 18 17 16 15 14 13

www.it-ebooks.info

www.manning.com
http://www.it-ebooks.info/

brief contents

PART 1 UNDERSTANDING CMIS ..cueiutieeieeeeeerencercecencescesescescncens 1

1 = Introducing CMIS 3

= Exploring the CMIS domain model 19

= (Creating, updating, and deleting objects with CMIS 39
= CMIS metadata: types and properties 58

" Query 383

PART 2 HANDS-ON CMIS CLIENT DEVELOPMENT . c.cccevereececenes 115

o~ W N

6 = Meetyour new project: The Blend 117
7 = The Blend: read and query functionality 150
8 = The Blend: create, update, and delete functionality 193
9 = Using other client libraries 235
10 = Building mobile apps with CMIS 277

PART 3 ADVANCED TOPICS . ceeeereeeecececerceceserescscesessscesesessscnsens 313

11 = CMIS bindings 315

12 = Security and control 339
13 = Performance 354

14 = Building a CMIS server 368

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

contents

Sforeword by R.J. Howarth — xv
Sforeword by J. Newton — xviii
preface xxi
acknowledgments xxiii
about this book xxv

about the authors — xxvii

about the cover illustration xxix

PART 1 UNDERSTANDING CMIS...cuteereerececescensoesccnseenss 1

Introducing CMIS 3
1.1 Whatis CMIS? 3

About the specification 6 = What does CMIS do? 6
Where is CMIS being adopted? 8

1.2 Setting up a CMIS test environment 9

Requirements 10 = Installing the OpenCMIS InMemory

Repository web application 10 = Installing the CMIS
Workbench 11

1.3 Writing your first CMIS code using Groovy 12

Connecting to the repository 12 = Try it—browse the repository
using the CMIS Workbench 13 » Try it—run CMIS code in the
CMIS Workbench Groovy console 14

www.it-ebooks.info

http://www.it-ebooks.info/

viii CONTENTS

1.4 CMIS considerations 16

Understanding the limitations of CMIS 16 = Comparing CMIS to
the Java Content Repository (JCR) APl 17

1.5 Summary 18

Exploring the CMIS domain model 19

2.1 The CMIS service 20

The role of the CMIS service 21 = Bindings: what does a CMIS
service look like? 21

2.2 Repository—the CMIS database 22

Repository info and capabilities 23 = Capabilities across different
repository vendors 25 = Try it—retrieve the repository info 25

2.3 Folders 26
The role of folders 27 = Try it—folder navigation 28

2.4 Documents 29

The role of documents 30 = Properties 31 = Tryit—list a
document’s properties 34 = Content streams 35 = Try it—
retrieve a document’s content stream 36

2.5 The item object type (version 1.1) 37
2.6 Summary 38

Creating, updating, and deleting objects with CMIS 39
3.1 Creating objects 40

Requirements for creating an object 40 = Try it—create a
Jolder 40 = Things to think about when creating folders 41
Try it—create a document 42 = Things to think about when
creating documents 45

3.2 Updating objects 46

Try it—rename a document or a folder 47 = Try it—update the
content stream 47 = Understanding versioning 50 = Try it—
upload a new version of a document 52

3.3 Deleting objects 55

Requirements for deleting objects 55 = Try it—delete an object 55
Things to think about when deleting objects 57

3.4 Summary 57

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS ix

CMIS metadata: types and properties 58

4.1 What is metadata and why do we need it? 59
4.2 Metadata in CMIS 60

Type definitions are hierarchical and attributes are inherited 61
Try it—view the types and property definitions using Workbench 61

4.3 Type collections and hierarchies 63

Try it—traversing the type hierarchy 64 = Try it—examining
property definitions on types 66 = Constraints on property
definitions 69 = Try it—examining constraints on property
definitions 70 = Attribute and attribute value inheritance 72

4.4 CMIS 1.1 metadata features 72
Type mutability 72 = Secondary types 80
4.5 Summary 82

Query &3
5.1 Query: a familiar face on search 84
Prerequisite for this chapter: SQL basics 84 = Exercises in this
chapter and the InMemory server 84
5.2 Introduction to the CMIS Query language 85

Reviewing clauses of the SELECT statement 85 = Checking Query
capabilities on a service 86 = Try it—checking the Query
capabilities of a CMIS service 87 = Try it—your first CMIS
Query 87 = Try it—running a query from code 89 = Checking
query-related attributes for properties 91 = Search scope 92

5.3 Components of a query 93

The SELECT clause 94 = WHERE clause 95 = Ordering and
limiting query results 102 = Joins and determining repository
support 103

5.4 CMIS SQL extension functions 105

CONTAINS(): full-text search 105 = Score() 110
Navigational functions 111

5.5 Summary 113

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

PART 2 HANDS-ON CMIS CLIENT DEVELOPMENT....... 115

Meet your new project: The Blend 117
6.1 Understanding the business requirements and technical
approach 118

Business requirements 118 = Establishing the technical

design 119
6.2 Walking through the finished product 125

6.3 Setting up the development environment 131
6.4 Configuring the InMemory server 135
6.5 Taking first steps with The Blend 137

Setting up the Eclipse project 137 = Creating a session
Sfactory 139 = Creating the servlets 140 = Creating the
JSPs 145 = Try it—testing The Blend 147

6.6 Summary 148

The Blend: read and query functionality 150
7.1 Building a browse page 151

Preparing the HTML part of the browse page 152 = Getting the
Jolder object 153 = Taking advantage of the
OperationContext 155 = Gelting the folder children 156

Paging 158 = Getting the folder parent 160 = Assembling the
browse page 160

7.2 Building a document page 165

Preparing the HTML part of the document page 166 = Retrieving
documents 167 = Assembling the document page 174

The download servlet 177 = Adding the version series to the
document page 180

7.3 Building a query page 183

Ways to query: there be three 184 = Assembling the search
page 189 = Accessing and traversing relationships 191

7.4 Summary 192

The Blend: create, update, and delete functionality 193
8.1 Creating folders 193

Two ways to create folders 194 = Create folder: doPost() 196
Enumerating the creatable folder types 198

www.it-ebooks.info

http://www.it-ebooks.info/

8.2

8.3

8.4

8.5
8.6
8.7
8.8

8.9

CONTENTS xi

Creating documents 200

Creating doGel() and doPost() for document creation 201
Performing file uploads 203

Updating properties 208

Concurrent access and locking 210 = Properties from CMIS 1.1
secondary types 212

Updating and deleting content 214

Deleting content 214 = Replacing content 215 = Appending
content 216

Versioning 217

Creating a new version 218 = The checkIn() method 220
Copying documents 223
Moving objects 226
Deleting objects 230

Deleting documents 231 = Deleting folders 232
Summary 234

Using other client ibraries 235

9.1

9.2

9.3

9.4

9.5

Working with other client libraries 236

Common client libraries 236

Coding in .NET with DotCMIS 237
Comparing DotCMIS and OpenCMIS 237 = Getting started with
DotCMIS 238 = Try it—building a web part with NET and
CMIS to browse The Blend 243 = Using SharePoint as a CMIS
repository 248 w Connecting to SharePoint 250

Coding in Python with cmislib 251

Comparing cmislib and OpenCMIS 253 = Installing
cmislib 254 = Connecting to a CMIS repository using the
interactive shell 254 = Using cmislib to synchronize objects
between two CMIS repositories 260

Apache Chemistry PHP API 267

Installing the PHP Client 268 = About the PHP Client
library 268 = PHP Client architecture 268 = Differences
between OpenCMIS and the PHP Client 270 = Using PHP to
browse The Blend 272

Summary 276

www.it-ebooks.info

http://www.it-ebooks.info/

xii CONTENTS

Building mobile apps with CMIS 277

10.1 Writing mobile apps with OpenCMIS for Android 278

Android and CMIS 278 = Setting up an Android
environment 279 = Writing your first Android CMIS
application 282 = Try it—uwriting an Android application
Jor The Blend 286

10.2 Writing iOS apps with ObjectiveCMIS 292

What is ObjectiveCMIS? 292 = Comparing ObjectiveCMIS with
OpenCMIS 293 = Getting started with ObjectiveCMIS 294
Using ObjectiveCMIS 302 = Try it—uwriting an 10S application
to capture new tracks for The Blend 305

10.3 Summary 310

PART 3 ADVANCED TOPICS. ceeeeereereereeceecercescescescescesces 313

CMIS bindings 315

11.1 CMIS binding overview 316
The RESTful trend 316 = The need for JavaScript support 316
Capturing CMIS traffic for inspection 317 = Try it—tracing
requests from part 1 317

11.2 A close look at the three bindings 318

The Web Services binding 318 = The AtomPub binding 323
The Browser binding 329

11.3 CMIS schemas and schema extensions 334
XML schema 335

11.4 The OpenCMIS low-level API 336
Reasons to use the low-level AP[337

11.5 Summary 337

Security and control 339

12.1 General security considerations 339

Cross-site scripting (XSS) attacks 340 = Cross-site request
forgery (CSRF) attacks 341

12.2 Authentication 341

Cookies 342 = AuthenticationProvider interface 342
Example of an authentication provider 343

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xiii

12.3 Authentication in web applications using the Browser
binding 344

JavaScript entry points 344 = Sequence: log in, nextToken, ..., log
out 344 = Example JavaScript 346

12.4 Authorization and permissions 346

Policies 346 = ACLs 347 = Repository-specific
permissions 349 = Changing permissions (applyACL) 349

12.5 Retentions and holds 351

Repository-managed retentions 351 = Client-managed
retentions 352 = Holds 352

12.6 Summary 352

Performance 354

13.1 CMIS performance 354
13.2 Selecting the smallest data set 356

13.3 Performance notes specific to OpenCMIS and
DotCMIS 357

13.4 Caching 358

Caching static data 359 = Caching objects 360
13.5 Selecting the fastest binding 364
13.6 Tuning HTTP for CMIS 364

HTTP Keep-Alive 365 = Compression 365 = Authentication
and cookies 366 » Timeouts 366

13.7 Summary 366

Building a CMIS server 368

14.1 Introduction to the OpenCMIS Server Framework 368

CmusService interface 369 = CmisServiceFactory interface 369
The framework 370

14.2 Generating a server stub 370

Building the CMIS server WAR file 372 = Dissecting the CMIS
server WAR file 373

14.3 Implementing the CmisServiceFactory interface 374

CmisServiceWrapper 374 = CallContext 375 = Other
CmisServiceFactory methods 375

www.it-ebooks.info

http://www.it-ebooks.info/

xiv

14.4

14.5

14.6

14.7

14.8

14.9
14.10
14.11

appendix A
appendix B
appendix C
appendix D
appendix E

CONTENTS

Implementing the CmisService interface 376

AbstractCmisService 376 = Best practices for implementing the
CmisService 376

Testing the CMIS server with the OpenCMIS TCK 377
Running the TCK with the CMIS Workbench 378 = TCK results
breakdown 379 = Deeper testing 380

AtomPub differences 380

Providing ObjectInfo 380 = Handling create and delete

requests 381 = Dealing with version series 382 = Managing
ACLs 382

Parsing a CMIS query 382

An example of initialization and use 382 = Parsing
SELECT 383 = Parsing FROM 384 = Parsing WHERE 384
Parsing ORDER BY 385 = Query wrap-up 385

Extracting authentication information 386

CallContext 386 = CallContextHandler 386 = Web
services 387 = Authentication wrap-up 388

CMIS extensions 388
Supporting CMIS 1.0 and CMIS 1.1 389
Summary 390

Apache Chemistry OpenCMIS components 391
BNF 396

CMIS cheat sheet 410

Building web applications with JavaScript 412
References and resources 431

index 433

www.it-ebooks.info

http://www.it-ebooks.info/

Joreword

What would the IT industry be without standards? We wouldn’t have compatible data-
bases, communications protocols, print data streams, compression and encryption
specifications, or the World Wide Web. It’s hard to debate how standards have bene-
fited the IT industry, enabling growth, collaboration in solving problems, interopera-
bility across vendors (reducing vendor lock-in) and, most importantly, a much wider
range of choices for companies. Unfortunately these benefits didn’t apply to the ECM
industry until recently.

I first realized the need for a content management standard in 1992. I was involved
in developing an application for a large corporate client that needed to access content
stored in a popular repository. We immediately hit a problem—the content repository
didn’t have public APIs. In order to get access to the APIs, we had to negotiate a long
and complex contract with the repository vendor and agree that we wouldn’t use
those APIs to migrate content out of the repository. This made no sense to me because
we were adding significant value to the vendor’s software through this new applica-
tion. Unfortunately, this type of thinking was typical of many content management
vendors.

There have been several attempts at creating Enterprise Content Management
standards over the last 15 years. The Open Document Management API (ODMA) in
the mid-1990s defined an interface between desktop applications and content man-
agement systems. In 1996, work began on the Web Distributed Authoring and Ver-
sioning (WebDAV) extensions for HTTP. In the early 2000s, many of the key ECM
vendors began work on a Java ECM standard called JSR 170. Although the technical

XV

www.it-ebooks.info

http://www.manning.com/
http://www.manning.com/WindowsStoreApp
http://www.manning.com/WindowsStoreApp
http://www.manning.com/WindowsStoreApp
http://www.it-ebooks.info/

xvi

FOREWORD

contributions to all of these standards were excellent, none of them succeeded as a
widely supported content management standard.

There were many reasons these standards didn’t achieve widespread success. Lack
of interoperability testing led to incompatible implementations, and the lack of com-
mitment by some vendors resulted in limited implementations and few exploiting
applications. One of the biggest challenges with JSR 170 was the difficulty in support-
ing it on top of existing repositories that didn’t have a hierarchical data model.

In May 2005, AIIM started a standards group called Interoperable ECM (iECM).
This group brought together many vendors and users to discuss the critical need to
enable better interoperability across ECM vendors and applications. The iECM meet-
ings were well attended, and it was clear there was still a strong need for a better ECM
standard. In 2006, while attending an iECM meeting, I began talking with Cornelia
Davis of EMC on jump-starting a new standard. We believed that coming up with an
initial draft specification targeting key ECM use cases would reduce the amount of
time it would take to produce a final standard. Ethan Gur-esh from Microsoft joined
Cornelia and me, and we created the concept of Content Management Interoperabil-
ity Services (CMIS). Additional people from our companies, including David Choy
from EMC and Al Brown from IBM, became key participants. It was exciting to see how
three major competitors could work together on solving an industry problem.

As we defined the initial CMIS specification, we knew we had to approach the prob-
lem differently than in the past. We had three key objectives in defining CMIS: (1)
ensure the standard could easily be supported on a wide range of existing content
repositories; (2) agree on the right level of function so the standard was usable for an
initial set of key ECM use cases; and (3) define a process to ensure interoperability
between vendors.

Once the initial CMIS draft was complete, we invited Alfresco, Oracle, SAP, and
OpenText to participate. Momentum around CMIS built, and a lot of technical work
was accomplished in a short period of time. We then moved the standard into OASIS,
and twenty additional companies began actively participating in the CMIS work. In
May 2010, CMIS 1.0 became an official OASIS standard.

I’'m often asked if CMIS will become a widely used standard for Enterprise Content
Management or if it will suffer the same fate as the previous attempts. There’s no way
to know for sure, but CMIS is seeing tremendous interest and support and has very
powerful supporters, such as Apache Chemistry, that enable companies to get started
quickly. We’re seeing CMIS projects in large corporations and application vendors that
are very promising.

There’s little debate that CMIS has the potential to increase the usage of content
management systems across all industries and applications, dramatically simplifying
and standardizing access to unstructured content. IT projects such as a customer por-
tal that requires access to multiple content sources can be implemented more quickly
with fewer dependencies on proprietary client APIs. Small software vendors who want
to build cross-vendor industry vertical solutions can now easily do so. As CMIS matures,

www.it-ebooks.info

http://www.it-ebooks.info/

FOREWORD xvii

there will be creative new uses that we haven’t yet thought about. It’s exciting to watch
the growth and evolution of CMIS.

A lot of people were key to creating CMIS, and I want to personally thank Cornelia
Davis, Ethan Gur-esh, John Newton, Al Brown, Betsy Fanning, and Paul Fontaine.
Without these people, and many others, CMIS would never have become a successful
industry standard.

I would also like to thank Jay Brown, Florian Muller, and Jeff Potts for writing this
book. CMIS and Apache Chemistry in Action is the most complete, authoritative work on
CMIS you will find. It contains a wealth of technical insights as well as practical hints
and tips. If you want to learn about CMIS, or start building software using CMIS, you
will want to read this book.

RICHARD J HOWARTH
DIRECTOR, ECM SOFTWARE DEVELOPMENT
IBM SOFTWARE GROUP

www.it-ebooks.info

http://www.it-ebooks.info/

Joreword

Content has never been more important. Content drives transactions, websites, and
engagement. Content is the container of information that makes data consumable,
usable, and actionable and has become the lifeblood of many businesses and business
processes. Financial service, media, government, and high-technology organizations
wouldn’t exist without electronic documents and other forms of content. Today the
Enterprise Content Management industry is worth $5 billion in software alone,
according to analyst group IDC. Businesses dealing with the overload of information
and the need to keep that information timely and accurate are willing to pay a lot to
get content under control.

However, in the three decades since the introduction of content management, the
number of content systems has proliferated, with many similar systems sitting side by
side. Internal IT organizations and system integrators are frequently reinventing the
wheel as the CIO struggles to meet the information needs of the enterprise. Over the
last two decades, this has led enterprises large and small to spend over $50 billion on
software, hardware, and services to deliver content solutions to end users. Solutions
such as invoice capture, contract management, regulatory submissions, and respon-
sive websites, among many, many other solutions, can take months and even years to
go into effective production.

If only we could reuse these solutions on our other content systems! If only we
could develop solutions without worrying how and where they were going to be
deployed. If only applications developers built these solutions as complete solutions
that could deploy faster and cheaper. If only we could hire the developers trained to
build these solutions.

xviii

www.it-ebooks.info

http://www.it-ebooks.info/

FOREWORD Xix

It says a lot about the content management industry, populated by some of the
most competitive firms in enterprise software, that those competitors recognized the
customer need for these solutions and to make them affordable. The same competi-
tors recognized that a content management industry built on standards and interop-
erability could be even bigger with higher value to the customer. That’s why these
software companies got together to form CMIS as an open and common way of access-
ing all their systems and to provide a consistent way of developing their applications.

This was no easy feat. Developing standards is a laborious process and takes a lot of
persistence. The content management industry had tried several times before, in the
previous decade, with little success. In 2008, competitors set their differences aside
and decided that growing the market for content was more important than expanding
their piece of the pie. Beginning with EMC, IBM, and Microsoft, then adding Alfresco,
OpenText, Oracle, and SAP, and finally opening it to the whole world of content
through OASIS, these competitors started the collaborative project known as CMIS.
Reacting to customer requests to provide for interoperability between diverse systems
and a desire to build a stronger ecosystem, these companies wanted to work together
to make a bigger market. The pragmatic approach of the committee, led by Chair
David Choy and editors Al Brown, Ethan Gur-esh, Ryan McVeigh, and Florian Miiller,
produced a specification that was implementable on a wide range of systems.

What was even more remarkable was the way that many of those same companies
and individuals came together to jointly develop the Apache Chemistry project, an
open and standards-based software platform to speed the development of the CMIS
standard. Florian Miiller, in particular, had the vision to have one common code base
that would support multiple communication protocols and could be used either by
the vendors providing a CMIS interface or applications using CMIS to access content
repositories. Initially, the OpenCMIS group in Apache Chemistry, by sharing the load
of developing common software, made sure that everyone won—vendors, developers,
and users.

This book illustrates the breadth and possibilities of CMIS, because having open
standards and common open source code has dramatically cut the time to implemen-
tation for both providers and users of CMIS. With the original vision of CMIS not being
tied to any particular programming language or binding, this book develops example
applications using many languages and development approaches. It’s a testament not
just to the ingenuity of the authors, but also to the dedication of the men and women
who participated in CMIS and Apache Chemistry.

I’'ve always been a keen optimist about what can be accomplished with CMIS. The
timing of the arrival of CMIS and Apache Chemistry couldn’t have been better to
tackle new applications that are social, mobile, and in the cloud. By considering
RESTful interfaces, developers can use modern tools to create these applications and
have access to some of the most important information in an enterprise, whether serv-
ing an employee, a customer, or a consumer. CMIS also provides an important bridge
of new, productive, mobile and social applications to legacy systems of production

www.it-ebooks.info

http://www.it-ebooks.info/

p.0. ¢

FOREWORD

enterprise systems. Content will be delivered wherever it’s needed, whether it’s in a
social media conversation, presented on a mobile device, captured in a high-through-
put scanner, or annotated in a critical process application.

I hope this book not only educates you on how to develop portable content appli-
cations, but inspires you to put content to work in new and imaginative ways.

JOHN NEWTON

CHAIRMAN AND CTO, ALFRESCO
CHAIRMAN, AIIM

www.it-ebooks.info

http://www.it-ebooks.info/

preface

It was early 2012 (Ql1), long past the OASIS approval of CMIS 1.0 as a standard. Due to
my work on the OASIS CMIS Technical Committee (TC) since 2008, I had become a
sort of hub for CMIS support within IBM, but over the last year this role had begun to
snowball. By looking at my inbox each morning, it was quickly becoming clear to me
that answering internal and customer CMIS questions could end up being a full-time
job if the volume increase continued. I figured this must also be the case for many of
my TC colleagues.

It should have been obvious to me before then, but it wasn’t. Not until a few cus-
tomers and other IBMers had asked, “When will there be a book about CMIS?” did 1
realize the time had come. I needed to talk to Florian about getting a lineup of
authors together to approach this subject. One thing I knew for sure is that his partic-
ipation would be critical. Probably a third of the internal support questions I received
about Apache Chemistry had to be deferred to him already. Hands down, nobody
knew as much about OpenCMIS as he did, and he was turning out to be a very impor-
tant library to IBM and our customers.

Florian and I had a few meetings about this, and we decided that it would be
nice to have two more authors to help shoulder the load, because this book would
have to cover a lot of ground (we were guessing more than 500 pages), and we both
had day jobs.

First on our wish list was Jeff Potts. Not only was Jeff the author of cmislib, which
eventually became the Python library part of Apache Chemistry, but he was already an
experienced technical author. (He had single-handedly written the very successful

xxi

www.it-ebooks.info

http://www.it-ebooks.info/

Alfresco Developer Guide in 2008.) The combination of CMIS expertise with that level
of technical writing prowess meant he was a must for this writing team.

Luckily for us, both Florian and I had worked with Jeff in the past—Florian in his
former role at Alfresco, and myself when Jeff and I coauthored a developerWorks arti-
cle about cmislib in March 2010. Even more fortunate, Jeff agreed to join us. But there
were still some gaps to be filled. So far we had IBM, Alfresco, Apache Chemistry, and
SAP on board, but that still left us with a conspicuous gap in our lineup: Microsoft...

A month later, we had begun courting publishers and had something tentative
going with Manning, but our roster was still not complete. SharePoint is a subject that
we didn’t want to gloss over, and we still didn’t have anyone on board with a Share-
Point CMIS background. To make a long story short, through a contact at the TC
(Adam Harmetz), we ended up getting one of the engineers who was working on the
CMIS implementation for SharePoint 13 (Matt Mooty) to commit to writing the chap-
ter that would eventually cover not only SharePoint but .NET as well.

Of course, we still had a long list of areas we wanted to cover where we were going
to need some more outside help. That’s where Jens, Jean-Marie, Richard, Gi, Jane,
and Dave came in to save us (see the acknowledgments for details and special thanks
to these very important contributors).

And now here we are, over a year later. We hope that this book will stand as the
authoritative CMIS reference for years to come. This was a primary goal early on, and
the reason we’ve taken on a lot of extra work to cover the new 1.1 spec, even though
the ink has barely dried. In fact, as I type this, the public review has just completed
and Oasis has made version 1.1 official.

I know its cliché, but I’ll say it anyway. This has been more work than we ever
thought, going into the project, but now that it’s almost done I know we’re all glad we
did it and we’re extremely proud of the end result. We hope that you enjoy it and,
more importantly, that it helps you succeed in whatever project you’re undertaking
with CMIS.

JAY BROWN

www.it-ebooks.info

http://www.it-ebooks.info/

acknowledgments

Apart from the efforts of the authors, the success of this book has depended on many
other people who have made this possible.

First, thanks go to the OASIS TC, without whom there would be no CMIS in the first
place. Writing about the protocol is certainly hard, but writing the protocol in the first
place is much harder!

Second, we thank all the individuals who gave us support in the form of content
based on their specific areas of expertise, as well as the staff at Manning Publications,
who guided and encouraged us every step of the way through the publication process.

We thank the many reviewers of the book who helped us with their feedback
through numerous readings of the manuscript during development: Andreas Krieg,
Andrei Bautu, Bashar Nabi, Blake Girardot, Dave Brosius, Dirk Jablonski, George
Gaines, Gregor Zurowski, John W. Reeder, Jose Rodriguez, Martin Hermes, Musannif
Zahir, Nadia Noori, Robert Casazza, Ryan McVeigh, Sebastian Danninger, and Ste-
phen Rice.

Special thanks go to David Caruana who, in his role as technical proofreader, took
on the enormous task of going though every page of the book and verifying each of
the code examples for all of the subject areas and programming languages.

We are grateful to Richard J. Howarth at IBM and John Newton at Alfresco and AIIM
for generously contributing the forewords to the book and for endorsing our work.

We’d also like to acknowledge Jane Doong (Software Engineer, Enterprise Content
Management, IBM) for her significant contribution of technical material for chapter 5
(“Query”) and her role in helping make sure that the information on CMIS Query that
we presented was not only current but complete and authoritative.

xxiii

www.it-ebooks.info

http://www.it-ebooks.info/

xxiv

ACKNOWLEDGMENTS

We were fortunate enough to have Matt Mooty (Software Development Engineer,
Microsoft) at our disposal for the DotCMIS section in chapter 9. And, later in that
chapter, Richard McKnight (Principal Technical Consultant, Alfresco) pitched in with
the PHP section. We’re grateful these guys were able to give their time to the project.

Chapter 10, which covers developing mobile applications with CMIS, wouldn’t have
been possible without Jean-Marie Pascal (Mobile Engineer, Alfresco), who contrib-
uted the Android section, and Gi Lee (Technical Architect, Zia Consulting) who con-
tributed the iOS section. Thanks to you and your respective teams and companies for
the great content.

Also, many thanks to Jens Hiibel (Software Architect, SAP AG), whose contribution
of the OpenCMIS Server (among many other things, including all the content from
our JavaScript development appendix) made it possible for us to include our own
server with this book.

Thanks to Dave Sanders (Senior Developer, Enterprise Content Management,
IBM) who tested and converted all The Blend metadata into FileNet’s XML metadata
import format. Now readers who want to run the part 2 examples on a test FileNet
server can do so just by importing the data we’ve included with the book.

Thanks to all of you, and to the many others who provided support, both technical
and otherwise, and who would be too numerous to list here. We’d also like to thank
our families and friends, who showed patience and understanding when we had to
stay glued to our laptops for the many nights and weekends it took to complete this
project.

www.it-ebooks.info

http://www.it-ebooks.info/

about this book

The OASIS CMIS (Content Management Interoperability Services) standard is the lin-
gua franca of Enterprise Content Management (ECM) systems. This book is a compre-
hensive guide to the CMIS standard and related ECM concepts.

The focus of this book is on hands-on experience with the standard and with the
Apache Chemistry libraries and tools. We start with providing the basics for develop-
ers, but these early chapters will also be beneficial for nondevelopers who want to
understand the standard. As you get deeper into the book, by the end of part 2, you
should be able to build an application that connects to any content repository that
supports CMIS. We provide practical code examples for Java, Groovy, Python, C#,
Objective-C, PHP, and JavaScript. And in the final chapters, we cover expert topics like
optimizing your CMIS application and building your own CMIS server.

Audience

This book was written primarily for software developers and architects who design and
build content-centric applications. You don’t have to be an ECM expert to follow
along, but some familiarity with content management systems is assumed. Basic pro-
gramming skills will be useful for the first part of this book. Parts 2 and 3 require
knowledge of a standard programming language like Java or C#, but no previous CMIS
expertise or knowledge of the Apache Chemistry libraries are required.

Roadmap

This book is divided into three parts, each with a different target audience with
respect to experience level.

XXV

www.it-ebooks.info

http://www.it-ebooks.info/

xxvi

ABOUT THIS BOOK

Part 1 (chapters 1-5) is for newcomers to ECM and CMIS. The examples in this sec-
tion are very simple and cover a broad spectrum of CMIS operations at a basic level.

Part 2 (chapters 6-10) is for a more intermediate audience, who at a minimum are
comfortable with the CMIS basics covered in part 1 and have a bit more application
development background. Part 2 is where you’ll build a functioning content-centric
application with CMIS. You’ll notice a distinct increase in pace when you get into
part 2, especially by the time you get to chapter 7.

Part 3 (chapters 11-14), as well as some of the appendix material, is for an
advanced audience, with some of the material aimed at lead developers or architects.
This part covers low-level details around the CMIS bindings, security, and perfor-
mance, and also covers how to implement your own CMIS-compliant server.

Code conventions and downloads

All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

You can download the source code for all listings from the Manning website,
www.manning.com/CMISandApacheChemistryinAction.

Author Online

The purchase of CMIS and Apache Chemistry in Action includes free access to a private
web forum run by Manning Publications, where you can make comments about the
book, ask technical questions, and receive help from the authors and from other users.
To access the forum and subscribe to it, point your web browser to www.manning
.com/CMISandApacheChemistryinAction. This page provides information on how to
get on the forum once you are registered, what kind of help is available, and the rules
of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions lest their interest stray!

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

www.it-ebooks.info

www.manning.com/CMISandApacheChemistryinAction
www.manning.com/CMISandApacheChemistryinAction
www.manning.com/CMISandApacheChemistryinAction
http://www.it-ebooks.info/

about the authors

JAY BROWN

A software developer for over 25 years, Jay has been building ECM products for IBM
and FileNet since 1999. These include the design and construction of the Java and
.NET APIs for FileNet Content Manager.

Jay started working with CMIS in 2008 when he joined the OASIS TC (Technical
Committee) and designed IBM’s first CMIS implementation for FileNet, followed by a
list of other ECM CMIS projects. He was one of the original contributors for CMIS 1.0
in addition to having authored several of the new CMIS 1.1 specification features.

As the CMIS Evangelist for IBM, he works with other development projects inside
and outside of the company, helping teams implement the standard while ensuring
interoperability with the ever-growing CMIS ecosystem.

Jay lives in Los Angeles, California, with his wife Cindy.

FLORIAN MULLER

Florian has been developing enterprise software since the late 1990s. His focus on
document management systems began when he joined OpenText in 2002. A few
years later he moved to Alfresco and is now working as an ECM Development Archi-
tect at SAP.

In 2008, Florian joined the OASIS CMIS TC (Technical Committee) and became one
of the specification editors for CMIS 1.0 and later for CMIS 1.1. A year later he joined
the incubator project Apache Chemistry and became the project chair in 2011 when
Apache Chemistry turned into an Apache top-level project. He is one of the core devel-
opers of the Apache Chemistry subprojects OpenCMIS (Java) and DotCMIS (.NET).

Florian lives near Heidelberg in Germany.

xxvii

www.it-ebooks.info

http://www.it-ebooks.info/

xxviii

ABOUT THE AUTHORS

JEFF POTTS

Jeff has been working with unstructured data and document-oriented data stores for
most of his 20-year career, starting with Lotus Notes in the early 1990s, then Web Con-
tent Management and Document Management platforms like Interwoven and Docu-
mentum, until diving into the world of open source full-time in 2006. After 5 years
implementing open source software for clients and playing a big part in the Alfresco
community, Jeff joined Alfresco as their Chief Community Officer in 2011, where he’s
responsible for growing the Alfresco community through product evangelism and
developer outreach.

Jeff starting working with CMIS in 2008 when he created a proof-of-concept to inte-
grate Drupal and Alfresco via CMIS, which eventually grew into the Drupal CMIS API
module. Then, in 2009, he created cmislib, the Python API for CMIS, which later
joined Apache Chemistry as the first non-Java contribution to the project. Since then,
Jeff has continued to maintain cmislib and to review and comment on the CMIS speci-
fication as it continues to evolve.

Jeff lives in Dallas, Texas, with his wife, Christy, and their two children, Justin and
Caroline.

www.it-ebooks.info

http://www.it-ebooks.info/

about the cover illustration

The figure on the cover of CMIS and Apache Chemistry in Action is captioned “Le Gamin
de Paris,” which means a street urchin in Paris. The illustration is taken from a nine-
teenth-century edition of Sylvain Maréchal’s four-volume compendium of regional
dress customs published in France. Each illustration is finely drawn and colored by
hand. The rich variety of Maréchal’s collection reminds us vividly of how culturally
apart the world’s towns and regions were just 200 years ago. Isolated from each other,
people spoke different dialects and languages. Whether on city streets, in small towns,
or in the countryside, it was easy to identify where they lived and what their trade or
station in life was just by their dress.

Dress codes have changed since then and the diversity by region and class, so rich
at the time, has faded away. It is now hard to tell apart the inhabitants of different con-
tinents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.

Xxix

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part 1

Understanding CMIS

Tﬁis part of the book is a gentle introduction to the Content Management
Interoperability Services (CMIS) standard, as well as the tools and concepts you
need to know to work with CMIS-compliant repositories. Chapter 1 shows you
how to perform the most basic interactions possible. Chapter 2 covers the basic
building blocks of a CMIS repository: folders and documents. As the chapters
progress, you’ll learn more and more about CMIS concepts, such as versioning
(in chapter 3), types (in chapter 4), and queries (in chapter 5). By the end of
this part of the book, you’ll be ready to write your own CMIS client.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

1.1

Introducing CMIS

This chapter covers

Presenting the CMIS standard

Setting up your development environment

Taking your first CMIS steps using Groovy and the CMIS
Workbench

Understanding possible limitations before using CMIS for
your project

This chapter introduces the Content Management Interoperability Services (CMIS)
standard. After running through a high-level overview of the standard and learning
why it’s important, you’ll work on a simple hands-on example. By the end of the
chapter, you’ll have a reference server implementation running on your local
machine and you’ll know how to use Groovy to work with objects stored in a CMIS
server by using a handy tool from Apache Chemistry called CMIS Workbench.

What is CMIS?

We’re willing to bet that at some point in your career you’ve written more than a
few applications that used a relational database for data persistence. And we’ll fur-
ther wager that if any of those were written after, say, 1992, you probably weren’t
too concerned with which relational database your application was using. Sure, you

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 Introducing CMIS

might have a preference, and the company using your application might have a stan-
dard database, but unless you were doing something out of the ordinary, it didn’t mat-
ter much.

This database agnosticism on the part of developers is only possible because of the
standardization of SQL. Before that happened, applications were written for a specific
relational back end. Switching databases meant porting the code, which, at best, was a
costly exercise and, at worst, might be completely impractical. Before standardization,
developers had to write applications for a specific database, as shown in figure 1.1.

This notion of writing applications that only work with a particular database seems
odd to modern-day developers who are used to tools like ODBC and JDBC that can
abstract away the details of a particular database implementation. But that’s the way it
was. And that’s the way it still is for many developers working in the world of content
management.

Until recently, developers writing applications that needed to use Enterprise Con-
tent Management (ECM) systems for data persistence faced the same challenge as
those pre-SQL-standardization folks: Each ECM system had its own API. A software ven-
dor with expertise in accounts payable systems, for example, and a team of .NET devel-
opers were locked into a Microsoft-based repository. If a customer came along who
loved the vendor’s solution but didn’t want to run Microsoft, they had a tough choice
to make.

That’s where CMIS comes in.

CMIS is a vendor-neutral, language-independent specification for working with
ECM systems (sometimes called rich content repositories or more loosely, unstructured
repositories) . If you’re new to the term repository (or repo, for short), think of it as a place
where data—mostly files, in this case—lives, like a file cabinet.

Before 1992 After 1992

—

— /

Compatible

databases Compatible databases

(ANSI-92 compliant) Figure 1.1 Before SQL
standardization,
developers wrote
applications against

Incompatible databases specific databases.

Incompatible databases
(all others)

www.it-ebooks.info

http://www.it-ebooks.info/

What is CMIS? 5

Before CMIS After CMIS
Scmis

/ /

Figure 1.2 CMIS
Compatible repositories standardizes the way
(CMIS-compliant) applications work with
rich content
Incompatible repositories repositories in much the
(all others) same way SQL did for
Incompatible repositories yelational databases.

Compatible
repositories

With CMIS, developers can create solutions that will work with multiple repositories,
as shown in figure 1.2. And customers can have less vendor lock-in and lower switch-
ing costs.

The creation of the CMIS specification and its broad adoption is almost as signifi-
cant and game-changing to the content management industry as SQL standardization
and the adoption of that standard was to the relational database world. When enter-
prises choose repositories that are CMIS-compliant, they reap the following benefits.

Content-centric applications, either custom built or bought off the shelf, are more
independent of the underlying repository because they can access repositories in a
standard way instead of through proprietary APIs. This reduces development costs and
lowers switching costs.

Developers can ramp up quickly because they don’t have to learn a new API every
time they encounter a new type of repository. Once developers learn CMIS, they know
how to perform most of the fundamental operations they’ll need for a significant
number of industry-leading, CMIS-compliant repositories.

Because CMIS is language-neutral, developers aren’t stuck with a particular plat
form, language, or framework driven by the repository they happen to be using.
Instead, developers have the freedom to choose what makes the most sense for their
particular set of constraints.

Enterprise applications can be more easily and cheaply integrated with content
repositories. Rather than developing expensive, one-off integrations, many enterprise
applications have CMIS connectors that allow them to store files in any CMIS-compliant
repository.

OK, you’re convinced. CMIS is kind of a big deal in the Enterprise Content Man-
agement world. Let’s talk a little bit about how the CMIS specification is defined, look
at an example of what you could use CMIS to do, and see a list of places where CMIS
exists in the wild.

www.it-ebooks.info

http://www.it-ebooks.info/

111

112

CHAPTER 1 Introducing CMIS

About the specification

CMIS is a standard, and the explanation of the standard is called a specification. The
CMIS specification describes the data model, services, and bindings (how a specific
wire protocol is hooked up to the services) that all CMIS-compliant servers must sup-
port. You’ll become intimately familiar with the data model, services, and bindings as
you work through the rest of this book.

The CMIS specification is maintained using a collaborative, open process managed
by the Organization for the Advancement of Structured Information Standards
(OASIS). According to its website (www.oasis-open.org), “OASIS is a non-profit consor-
tium that drives the development, convergence, and adoption of open standards for
the global information society.” Using an organization like OASIS to manage the CMIS
specification ensures that anyone who’s interested can get involved in the specifica-
tion, either as an observer or as an active voting member.

The group of people who work on the specification is called the Technical Committee
or TC, for short. What’s great is that the CMIS TC isn’t made up of only one or two
companies or individuals but is composed of more than 100 people from a wide range
of backgrounds and industries, including representation from the who’s who of con-
tent management vendors, large and small.

What does CMIS do?

OK, so CMIS is an open standard for working with content repositories. But what does
it do? Well, the standard doesn’t do anything. To make it interesting, you need an
implementation. More specifically, you need a CMIS-compliant server. When a content
repository is CMIS-compliant, that means that it provides a set of standard services for
working with the objects in that repository. You’ll explore each of those services in the
coming chapters, but the set includes things like creating documents and folders,
searching for objects using queries, navigating a repository, setting permissions, and
creating new versions of documents.

Let’s discuss a real-world example. Suppose you work for a company whose content
lives in three different repositories: SharePoint, FileNet, and Alfresco. The sales team
comes to you and asks for a system that will build PowerPoint presentations on the fly
by pulling data from each of these repositories. The PowerPoint presentations need to
be based on a template that resides in SharePoint and will include, among other
things, images of the last three invoices. The invoice images reside in FileNet. The
final PowerPoint file is stored in Alfresco and accessed by the sales team using their
tablets. A high-level overview of this application is shown in figure 1.3.

Before CMIS, your system would have to use at least three different APIs to make
this happen. With CMIS, your system can use a single API to talk to each of the three
repositories, including the mobile application.

www.it-ebooks.info

http://www.it-ebooks.info/

What is CMIS? 7

API call

— (ClJava)

Presentation builder
API call API call API call mobile app
(.NET) (SOAP) (REST)
/’/ \\
= rlj = —m = Figure 1.3 Most companies store
content in multiple ECM repositories.
Template Invoice images Customer Content-centric applications either
presentation have to use multiple disparate APIs, or
\ Presentation builder application (Python) | take advantag? of C.MIS 8 abllity to
o % use each repository in a standard way.

Three different ECM systems in the same organization?

You may be wondering how real-world this example is—three ECM systems in the
same organization? In fact, it happens quite often. According to AlIM, the Association
for Information and Image Management, which is a major ECM industry organization,
“T72% of larger organizations have three or more ECM, Document Management, or
Records Management systems” and “25% have five or more” (“State of the ECM
Industry,” AllM, 2011).

How does a company find itself in this situation? It happens for many reasons. Some-
times these systems start out as departmental solutions. In large organizations
where there may not be an enterprise-wide ECM strategy, multiple departments
may—knowingly or unknowingly—implement different systems because they feel
their requirements are unique, they have timelines that don’t allow for coordination
with other departments, or any number of other reasons.

Similarly, companies often bring in multiple systems because they may fill niche
requirements (like digital asset management or records management) and one ven-
dor may be perceived as offering a better fit for those highly specific requirements.
But ECM vendors, particularly large ones, often use their niche solution as a foot in
the door—it’s a common strategy for ECM vendors with “suites” of products to sub-
sequently expand their footprint from their original niche solution to other product
offerings.

As each department or niche implementation sees success, the rollouts broaden
until what once were small, self-contained solutions may grow to house critical con-
tent for entire divisions. Once each ECM system has gotten so big, the business own-
ers are reluctant to consolidate because the risk may not justify the benefit. After all,
the business owners are happy—their requirements are being met.

As a result, it's common to walk into a company with many different ECM systems.
If this is a problem you deal with, we hope the techniques you learn in this book will
save you time, money, and frustration.

www.it-ebooks.info

http://www.it-ebooks.info/

113

CHAPTER 1 Introducing CMIS

Where is CMIS being adopted?

Standards that no one implements aren’t useful. So far, CMIS has avoided this fate.
Thanks to the early involvement of a number of large ECM vendors in developing the
specification, and the specification’s language neutrality, CMIS enjoys broad adoption.
If you’re currently using an ECM repository that’s updated to a fairly recent version, it’s
likely to be CMIS-compliant. Table 1.1 shows a list of common ECM vendors or open
source projects and when they started to support CMIS. This list is only a subset of the
CMIS-compliant servers available at the time of this writing. The CMIS page on Wikipe-
dia (http://en.wikipedia.org/wiki/Content_Management_Interoperability_Services)
contains a more exhaustive list. If you don’t see your favorite content server in the list,
ask your vendor.

Table 1.1 Selection of ECM vendors, or open source projects, and their support for CMIS

Release that first provided

Vendor Product CMIS 1.0 support
Alfresco Software Alfresco 3.3
Alfresco Software Alfresco Cloud March 2012
Apache Chemistry InMemory Repository 0.1
Apache Chemistry FileShare Repository 0.1
EMC Documentum 6.7
HP Autonomy Interwoven Worksite 8.5
IBM FileNet Content Manager 5.0
IBM Content Manager 8.4.3
IBM Content Manager On Demand 9.0
KnowledgeTree KnowledgeTree 3.7
Magnolia CMS 4.5
Microsoft SharePoint Server 2010
Nuxeo Platform 5.5
OpenText OpenText ECM ECM Suite 2010
SAP SAP NetWeaver Cloud Document Service July 2012

As the previous table illustrates, a variety of CMIS-compliant servers are available. CMIS
gives you a single API that will work across all of these servers.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Content_Management_Interoperability_Services
http://www.it-ebooks.info/

1.2

Setting up a CMIS test environment 9

Setting up a CMIS test environment

Alright, time to roll up your sleeves and set up a working CMIS development environ-
ment that you can take advantage of as you work through the rest of this book.

We’ll give you a proper introduction to Apache Chemistry in part 2 of the book.
For now, it’s important to know that Apache Chemistry is a project at the Apache Soft-
ware Foundation that groups together a number of CMIS-related subprojects, includ-
ing client libraries, server frameworks, and development tools. It’s the de facto
standard reference implementation of the CMIS specification. One of the Apache
Chemistry subprojects is called OpenCMIS, and it’s made up of multiple components.
For the rest of this chapter, you’ll use two of those components: the OpenCMIS
InMemory Repository and the CMIS Workbench.

The OpenCMIS InMemory Repository, as the name suggests, is a CMIS-compliant
repository that runs entirely in memory. It’s limited in what it can do, but it’ll serve
our needs quite nicely.

The CMIS Workbench is a Java Swing application that we’ll use as a CMIS client to
work with objects in the CMIS server. The CMIS Workbench was created using the
OpenCMIS API and is typically used by developers who want a view into a CMIS reposi-
tory that is based purely on the CMIS specification. For example, suppose you’re work-

ing with Microsoft SharePoint, which has a variety of -~ ~
ways to create, query, update, and delete content that /} =)
resides within it, and you want to integrate your i
application with SharePoint using CMIS. You could -
use the CMIS Workbench to test some queries or ShepomIS
orkbench

inspect the data model. If you want to know if you) Deskiop
can do something purely through CMIS, one test is to \
try to do it through the CMIS Workbench. If the CMIS HTTP
Workbench can do it, you know you’ll be able to do it (
as part of your integration.

One of the key features of the CMIS Workbench,
from both a “developer utility” perspective and a
“let’s learn about CMIS” perspective, is its interactive
Groovy console. The Groovy console is perfect for Apache Tomcat Server
taking your first steps with CMIS. \

When you’re finished setting up your environ- Your computer

ment, it’ll look like figure 1.4.

We’ve made it easy to set up your local CMIS Figure 1.4 Your local CMIS

development environment. Everything you need isin development setup includes two
the zip file that accompanies this book (see appendix components: the CMIS Workbench

. , . d the OpenCMIS InM
E for links to resources). Let’s unzip the components ancd the Openu il ‘nlemory
Repository. This is all you’ll need for

you’ll need for the rest of part 1. the examples in part 1 of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

10

1.2.1

122

CHAPTER 1 Introducing CMIS

Downloading and building your own CMIS tools

To save you time and make the setup easier, we’ve taken distributions from the
Apache Chemistry project and packaged them together with some sample configura-
tion and data that will be used throughout the book. When you're ready to learn how
to download out-of-the-box versions of these components, or you want to know how
to build them from source, or you want to get the latest and greatest release of
OpenCMIS, refer to appendix A.

Requirements

For the rest of part 1, all you need is the CMIS Workbench and the OpenCMIS
InMemory Repository. These components both need a JDK (version 1.6 or higher will
do). Other than that, everything you need is in the zip.

Before continuing, find a place to unzip the archive that accompanies this book.
We'll call it $BOOK_HOME. Within $BOOK_HOME, create two directories: server and
workbench.

Installing the OpenCMIS InMemory Repository web application
Let’s install and start up the OpenCMIS InMemory Repository:

1 Change into the $BOOK_HOME/server directory and unzip inmemory-cmis-
server-pack.zip into the directory.

2 Run ./run.sh or run.bat, depending on your platform of choice.

This will start up InMemory Repository on your machine, and it will listen for connec-
tions on port 8081. If you're already running something on port 8081, edit run.sh (or
run.bat) and change the port number. All of the directions in the book will assume
the InMemory repository is running on port 8081.

After the server starts up, you should be able to point your browser to http://
localhost:8081/inmemory and see something that looks like figure 1.5.

Now you have a working CMIS server running on your machine. The CMIS server
has some test data in it, but in order to work with it, you need a CMIS client. In part 1,
you’ll use a CMIS client that’s already been built. It’s a Java Swing desktop application
called CMIS Workbench. Setting it up is the subject of the next section.

Apache Chemistry OpenCMIS InMemory Repository is up and running!

CMIS Web Services Binding: http://localhost8081/1 /services/RepositoryServicefwadl
CMIS AtomPub Binding: http://localhost 8081/ inmemory/atom
CMIS Browser Binding Binding: http://localhost:8081/4 browser

Figure 1.5 Apache Chemistry OpenCMIS InMemory Repository welcome page

www.it-ebooks.info

http://www.it-ebooks.info/

1.2.3

Setting up a CMIS test environment 11

Installing the CMIS Workbench

The CMIS Workbench is distributed as a standalone Java Swing application. Everything
you need to run it is in the package included with the book. To install it, follow these
steps:

1 Open a new window and switch to the $BOOK_HOME/workbench directory.
2 Unzip cmis-workbench.zip into the directory.
3 Run the appropriate batch file for your operating system. For example,

on Windows, run workbench.bat. On Mac and Unix/Linux systems,

run workbench. sh.

The Workbench will start up, and you should see an empty login dialog box, like the
one in shown in figure 1.6.

Congratulations! You now have everything you need to explore a working CMIS
implementation.

i s
| [} connection [Repository Info (B8 Types €4 query (I Change Logger [l Console 49 Tck [Create Object (= Log () nfo
. % iilw_e_ﬂ_]kliols]- perties | Relark | Renditions | AcL | Policies | versions | Type | E |
;Name' L8.0.0 Login e

[as] oxpen

URL: | htp:/ flocalhost: 8081 finmemaory/atom

| Binding: (®) AtomPub () Web Services () Browser

[Username: test
Password: |
: (U None @) NTLM
| Compression: (&) On () Off
| Client Compression: () On (8) Off |
Cookies: @) On () Off

! Load Repositories

|
LS S Ve

Figure 1.6 An empty CMIS Workbench login dialog box

www.it-ebooks.info

http://www.it-ebooks.info/

12

1.3

13.1

CHAPTER 1 Introducing CMIS

Writing your first CMIS code using Groovy

Your OpenCMIS InMemory Repository is running, and so is the first CMIS client you’ll
be working with, the CMIS Workbench. It’s time to get the two to work together.

Connecting to the repository

To talk to the OpenCMIS InMemory Repository, you need to choose a binding and you
need to know the server’s service URL, which depends on the binding you choose, as
you can see in figure 1.7.

The binding is the method the CMIS client will use to talk to the server. You can
also think of it as the protocol it’ll use to communicate. In CMIS version 1.0, the two
choices for binding are Atom Publishing Protocol (AtomPub) and Web Services. CMIS
version 1.1 adds a third binding called the Browser binding. We’ll go through the
binding details in chapter 11. For now, we’ll use the AtomPub binding.

The service URL is the entry point into the server. The CMIS client will learn all it
needs to know about the server it’s talking to by invoking the service URL and inspect-
ing the response it gets back. The service URL depends on the server you’re using, the
binding you’ve chosen, and how the server is deployed. In this case, the server is
deployed to a web application under the inmemory context, so the URL will begin
with http://localhost:8081 /inmemory; and the AtomPub service URL is /atom, so the
full service URL is http://localhost:8081 /inmemory/atom.

H-NaN:) Login
Service URL —E“"—‘im
. URL: | hup:/ flocalhost 8081 finmemory/atom
Binding: @ AtomPub () Web Services (_) Browser

Binding Username: test
Password:

Authentication: |_) None (8 Standard (_ NTLM
Compression: @ On () Off
Client Compression: () On (@ Off
Cookies: (@ On () Off

| Load Repositories

Figure 1.7 To connect to the repository, you must select a binding and specify the service URL.

www.it-ebooks.info

http://www.it-ebooks.info/

1.3.2

THE

Writing your first CMIS code using Groovy 13

CMIS WORKBENCH CAN CONNECT TO ANY CMIS SERVER We’'re using the

Apache Chemistry InMemory Repository throughout this book because it’s
freely available, easy to install, and compliant with the CMIS specification. But,
as the name implies, it stores all of its data in memory. That would never work

for

most production scenarios. Real ECM repositories persist their data to a

more durable and scalable back end. Typically this is some combination of a
relational database and a filesystem. If you have access to an ECM repository

like

Alfresco, FileNet, SharePoint, or the like, you can use the CMIS Work-

bench to work with data stored in those repositories. All you need to know is

you

r repository’s service URL.

Try it—browse the repository using the CMIS Workbench

You now know enough to be able to connect to the server. Follow these steps to use
the CMIS Workbench to connect to the server and browse the repository:

1

If the CMIS Workbench isn’t running, run it as previously discussed.

If the CMIS Workbench isn’t displaying the login dialog box, click Connection
in the upper-left corner.

Specify http://localhost:8081 /inmemory/atom as the URL.

Take all the other defaults. Click Load Repositories.

The InMemory Repository only has one repository. You should see it in the
Repositories list. Click Login.

If everything is working correctly, you should see the login dialog box close and the
Workbench will display the contents of the repository, as shown in figure 1.8.

Take a few minutes to explore the Workbench. You can’t hurt anything. Every time
you restart the InMemory Repository, it'll revert to its original state.

enn

CMIS Waorkbench - (test) - Apache Chemistry OpenCMIS InMemory Repository o

| r_ Cmneclmnj | Repository Info () Types 4 query (1 Change Logger B Console Q TCK Create Object () Log '.5-_;} Info

| ! | g0 | | [object | Actions | Properties | | renditions | AcL | policies | versions | Type | jons |
| Name IType Name: RootFolder
|| &8 cmis cmis:folder id 100
|| folderl cmis:folder T
& folderz cmis:folder Type cmis:folder
:E| folder3 cmis';u:der Base Type CMIS_FOLDER
Images cmis:folder
8 media cmis:folder faths !
B notes cmis:folder Version Label:
B texts cmis:folder
welcome. txt emisbook:text

Content URL (not available)

Allowable Actions: CAN_GET_PROPERTIES
CAN_GET_FOLDER_TREE
CAN_GET_DESCENDANTS
CAN_GET_CHILDREN
CAN_CREATE_DOCUMENT
CAN_CREATE_FOLDER
CAN_GET_RENDITIONS

| Refresh || Check specification compliance

Figure 1.8 Root folder of the OpenCMIS InMemory Repository

www.it-ebooks.info

http://www.it-ebooks.info/

14

1.3.3

CHAPTER 1 Introducing CMIS

Here are a few things to notice as you explore:

= As you click objects in the left-hand pane, the right-hand pane updates to pro-
vide details on what’s selected.

= The right-hand pane has tabs across the top that group different sets of infor-
mation about the selected object as well as actions you can take on the selected
object.

= The items in the menu bar let you do things like change the connection details,
inspect repository information, view the types defined on the server, and open a
Groovy console. That’s where we’re headed next.

Try it—run CMIS code in the CMIS Workbench Groovy console

Groovy is a dynamic language that’s easy for Java programmers to learn. It can run
anywhere Java can run. It’s different from Java in a few respects, such as the fact that
semicolons are optional in most cases, closures are supported, and regular expres-
sions are natively supported.

DON'T KNOW GROOVY? NO PROBLEM! Don’t worry if you don’t know Groovy.
We picked it for the examples in part 1 of this book because it’s easy to learn,
it looks similar to Java, it doesn’t require a compiler, and the CMIS Work-
bench features a Groovy console. You’ll probably easily grok what’s going on
as you work through the examples. But if you want to dive into Groovy, you
can learn more from the Groovy home page (http://groovy.codehaus.org/)
or from Groovy in Action, Second Edition (Manning, 2013).

The best way to get a feel for Groovy is to jump right in, so let’s do that. Follow these
steps to write a Groovy script that will display the repository’s name:

1 From the CMIS Workbench, click Console, and select Main Template in the
submenu.

2 A Groovy console window will be displayed with eight or nine lines of prepopu-
lated code. Delete those lines.

3 Add the following two lines of Groovy:

def info = session.getRepositoryInfo()
println "Repository Name: " + info.getName ()

4 Click the Execute Groovy Script button, which is the little document with the
green arrow.

Your code should run without a hitch. The output of the program will be displayed in
the bottom half of the Groovy console. It should look something like figure 1.9.
Let’s look at a few important things:

= You didn’t have to import anything.

= You didn’t have to retrieve a session. It was handed to you in a variable called
session that was already defined. The session variable represents a connec-
tion to the CMIS repository for the user you provided when you launched the

www.it-ebooks.info

http://groovy.codehaus.org/
http://www.it-ebooks.info/

Writing your first CMIS code using Groovy 15

ann GroovyConsole

File Edit Miew History Script CMIS
DEH 9¢€ 40D e E0 [4X
1 def info = session.getRepositoryInfo()
Z println "Repository Name: " + info.getName()
]

Repository Name: Apache Chemistry Open(MIS InMemory Repository

Figure 1.9 Groovy console after
running code to retrieve the CMIS
Execution complete. Result was null. 3k server name

Workbench. The object is an instance of org.apache.chemistry.opencmis
.client.runtime.SessionImpl.

= You could have omitted the “get” and the parenthesis from the no-argument
getters. For example, you could have said session.repositoryInfo and
info.name.

= Any time you feel you need some help with the API, you can click CMIS >
OpenCMIS Client API Javadoc, and the documentation will open in a browser
window.

= When you first click Console in the CMIS Workbench, you’ll see a list of Groovy
script templates. You the choose - Main Template - and then replace it with your
own code. When you have a chance, you might want to take a look at some of
the other sample Groovy scripts that are provided.

And that’s it. You’ve written your first CMIS code. We sense some disappointment,
though. “I don’t feel like I've experienced the true power of CMIS yet,” you say. OK,
overachiever. Earlier you learned that one of the beauties of CMIS is that, as a devel-
oper, once you learn CMIS you should be able to write code that works with any CMIS-
compliant repository. You've demonstrated your ability to use the OpenCMIS
InMemory Repository. How about an enterprise-grade repository from a completely
different vendor?

It so happens that publicly available CMIS servers are waiting for folks like you who
are testing client libraries or exploring CMIS. One of them is run by a company called
Alfresco Software; its AtomPub service URL is http://cmis.alfresco.com/cmisatom.
Unlike the InMemory Repository, you'll need credentials to authenticate with
Alfresco. You can use the administrator’s account, which is admin, and the password is
also admin. Fair warning: the response time will be significantly slower than what you
see with the local InMemory Repository.

www.it-ebooks.info

http://cmis.alfresco.com/cmisatom
http://www.it-ebooks.info/

16

1.4

14.1

CHAPTER 1 Introducing CMIS

SAVE YOUR SCRIPT To save some typing, do a File > Save on your current
Groovy script before clicking Connect to specify the Alfresco service URL and
credentials. Then, when you open the Groovy console, you can do a File >
Open to reopen your script.

Now you know how to install a reference CMIS server and a handy CMIS client. You’ve
had a glimpse of the power of CMIS as you used the same client to talk to two different
implementations.

CMIS considerations

In the next chapter, you’ll start to dive into the CMIS specification a little more deeply.
But before doing that, let’s discuss a few of the limitations of CMIS and how it com-
pares to other content management standards. This will help you decide if CMIS
might be right for your next project.

Understanding the limitations of CMIS

Like any industry-wide standard, CMIS has some limitations that may affect your ability
to use it for a particular project. Whether or not these limitations affect you depends
on your specific requirements.

LIMITED IN SCOPE

Enterprise Content Management systems vary broadly in their capabilities and func-
tionality. Some of the differences are significant, such as whether or not the system
has an embedded workflow engine, and others are minor, like whether or not the sys-
tem supports access control lists (ACLs). The CMIS specification is flexible enough to
accommodate differences between implementations: A repository doesn’t have to
support ACLs and can still be CMIS-compliant, for example. Or one repository might
support “unfiled” documents, but another might require that documents always live
in a folder.

In cases where the differences between repositories are too significant to be cov-
ered by one standard definition of a repository, CMIS omits those areas from its scope.
Workflow is one example—you won'’t see anything about workflow in this book, even
though workflow is a relatively common feature of ECM systems.

As a developer, you may be able to meet all of the requirements of your application
by staying strictly with pure CMIS API calls. But there may be times when you’ll have to
supplement what CMIS provides with calls to your ECM system’s proprietary APIs.

OBJECT MODEL IS BASED ON DOCUMENTS AND FOLDERS

In the next chapter, you’ll see that two prominent domain objects covered by the spec-
ification are cmis:document and cmis:folder. That’s because the CMIS specification
assumes a general document management use case: you're using CMIS to manage doc-
uments (files) organized in a hierarchy of folders.

www.it-ebooks.info

http://www.it-ebooks.info/

14.2

CMIS considerations 17

NO USER OR GROUP MANAGEMENT
A CMIS repository typically uses named user accounts to control who can authenticate
with the repository. But the CMIS specification provides nothing that helps you create
user accounts or organize users into groups.

Does this mean your application can’t assign ACLs to documents and folders? No.
It means that if your application needs to create new users or modify groups of users,
CMIS isn’t going to help you to do that in a standard way. You’ll have to use your repos-
itory’s API or an LDAP directory to manage users and groups, if that’s something your
repository supports.

NO SUPPORT FOR DEFINING CONTENT TYPES UNTIL CMIS 1.1

You’ll learn about content types in chapter 4. For now, realize that content in a CMIS
repository belongs to a particular type, like document, folder, image, invoice, or web
page. It’s quite common for companies to define their own business-specific content
types by updating the repository’s data dictionary.

The first version of the CMIS specification doesn’t provide for creating or updating
content types, even if the underlying repository supports this feature natively. This
may be a challenge if your application assumes that the types it needs are already con-
figured in the repository’s data dictionary. If they don’t already exist, you’ll have to
provide documentation or configuration scripts when you deliver your CMIS applica-
tion so that the system administrators can update the data dictionary with types to sup-
port your application.

Luckily, this is addressed in CMIS 1.1. With CMIS 1.1, your CMIS application can
check to see if the required types have been configured, and if not, it can go ahead and
create them using code, to avoid the need for manual changes to the data dictionary.

Comparing CMIS to the Java Content Repository (JCR) API

If you’ve worked with content management repositories for a while, you may already
be familiar with the Java Content Repository (JCR) API, which is sometimes referred to
as Java Specification Request (JSR) 170. What'’s the difference between CMIS and JCR?
Table 1.2 breaks it down.

Table 1.2 Comparing CMIS and JCR

Standards body Java Community Process OASIS
Date first ratified June 2005 April 2010
Vendor adoption Limited. Several vendors provide Many big-name ECM vendors

JCR support in their repositories, actively participate in the specifi-
but Adobe is the primary driver of cation and reference implementa-
the specification. tion, including EMC, IBM, Alfresco,
SAR HP Autonomy Interwoven, Ora-
cle, Microsoft, and several others.

www.it-ebooks.info

http://www.it-ebooks.info/

18

1.5

CHAPTER 1 Introducing CMIS

Table 1.2 Comparing CMIS and JCR (continued)

Primary language Java, although work is being done | Language-neutral. Any language
to expand support to PHR that can speak HTTP can work with
CMIS.
Reference implementation Apache Jackrabbit Apache Chemistry

It’s important to note that CMIS and JCR aren’t completely mutually exclusive. A given
ECM repository might be compliant with both standards, which would mean develop-
ers would be free to choose which standard to use when working with that repository.
Work has also been completed recently to bridge the two standards. You could, for
example, write CMIS-compliant code that talks to a JCR repository.

Summary

You should now have a good idea of why the CMIS specification is so important to the
ECM industry. After seeing some real-world examples of how you can apply CMIS to
make your life easier as a content-centric application developer, you’ve probably
already started thinking about some of the advantages of working with CMIS to build
your applications:

= Content-centric applications can be more independent of the underlying con-
tent repository because they can access repositories in a standard way instead of
through proprietary APIs.

= Developers can ramp up quickly because CMIS reduces the need to learn a pro-
prietary API for every repository that’s involved in an application.

= Developers have the freedom to choose what platform, language, or framework
is the best fit for their particular constraints, without worrying whether or not
it’s supported by the repository they’re working with, because CMIS is language-
neutral.

= Expensive one-off integrations don’t have to be built—applications can take
advantage of standards-based connectors to CMIS-compliant repositories.

Beyond learning the why of CMIS, you rolled up your sleeves and put CMIS to work. You
now have a working CMIS development environment based on freely available compo-
nents from the Apache Chemistry project. You’ll use this setup for the rest of the
examples in part 1.

Now that you have a working development environment, it’s time to start learning
how to navigate a CMIS repository and what kind of objects you’ll find in a CMIS repos-
itory once you connect to it. We’ll start with two of the fundamental building blocks—
folders and documents. On to chapter 2.

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring the
CMIS domain model

This chapter covers

Establishing communications with a CMIS service
Using the features of a repository
Navigating the folder hierarchy

Retrieving a document with its content stream and
properties (metadata)

In chapter 1, you received a high-level introduction to CMIS as a specification.
Every object that lives in a CMIS repository is an instance of an object type. In this
chapter, we’ll explore the basic object types that make up the CMIS domain model
as well as some of the key concepts that bind them all together into a useful system.
Along the way, you’ll write some Java/Groovy code (using the Workbench that was
introduced in chapter 1) to illustrate key concepts.

Although it’s a bit of a cliché, a picture is still worth a thousand words, so we’ll
start this chapter with an illustration of the object types we’ll be talking about.
Sometimes a clear image in your mind can help you organize related ideas as they
arrive. Figure 2.1 shows the interrelationships between all of the high-level object

19

www.it-ebooks.info

http://www.it-ebooks.info/

20

2.1

CHAPTER 2 Exploring the CMIS domain model

Document

CMIS client

Figure 2.1 CMIS high-level object types (all of which we’ll discuss in this chapter)

types we’ll cover in this chapter. Ordered from the highest level and progressing
downward (left to right in the figure) are the CMIS service, the binding chosen
between the service and the CMIS client, repository, folder, and finally, document.
Refer back to this diagram as you move through the sections of this chapter to refresh
your understanding of their respective roles.

By the time you’ve finished this chapter, you’ll have a clear picture of what the
object types in figure 2.1 are, what they do in the context of a CMIS server, and how
they relate to each other. We’ll be revisiting this diagram as we move through the indi-
vidual sections of the chapter to remind you of where you are in the big picture, but
try to remember this image as we move on to the service.

The CMIS service

Of all of the items in figure 2.1, the CMIS service is unique in that it’s not a persisted
object like all of the other items; rather, it’s a running program to service your
requests. Think of the CMIS service as an interface to all of the CMIS objects you’ll be
dealing with (see figure 2.2). If a real-world analogy helps, think of it as a concierge at
a hotel. This is probably a hotel somewhere in Europe, though, because this particular
CMIS concierge must always speak two languages, and in some cases can even speak
three. This is because CMIS servers must implement two bindings (three in CMIS 1.1).

This section will familiarize you with the CMIS service and how it’s the key to this
whole picture.

www.it-ebooks.info

http://www.it-ebooks.info/

N N : : 1 1..n

CMIS client

The CMIS service 21

’ 1
Figure 2.2 The CMIS service is an interface

to all of the CMIS repositories and the objects
You are here that they contain.

2.1.1 The role of the CMIS service

At the highest level, the CMIS service is responsible for these three functions:

212

= Allow a client to discover what repositories are present for this particular CMIS
service.

= Provide all the details about the capabilities of these repositories.

= For each of the repositories, publish the interfaces for the nine subservices that
are exposed for every CMIS repository (see the following note).

THE NINE SUBSERVICES OF CMIS We’ll cover all of these subservices in detail in
later chapters, but in case you can’t wait, here’s a quick list:

Repository services (discussed in this chapter)—Example: getRepositoryInfo
Navigation services—Example: getFolderTree

Object services—Example: getObject

Multifiling services—Example: addObjectToFolder

Discovery services—Example: query

Versioning services—Example: checkOut

Relationship services—Example: getObjectRelationships

Policy services—Example: applyPolicy

ACL (access control lists) services—Example: applyACL

Don’t worry too much about these nine subservices yet, because from a client perspec-
tive they’re somewhat arbitrary groupings of the functionality. We’ll introduce you to

them gradually as we move through the basic exercises in this book. By the time

you’re done with this chapter, you’ll be familiar with the first three in the list. By the
time we’re done with part 1 of the book, you’ll have used most of them.

Bindings: what does a CMIS service look like?

Recall that our concierge must speak at least two languages. These two languages are
analogous to the two protocol bindings (Web Services and AtomPub) that all CMIS
servers must speak. If you’re a CMIS client, you can speak either of these languages

www.it-ebooks.info

http://www.it-ebooks.info/

22

2.2

CHAPTER 2 Exploring the CMIS domain model

CMIS client
1 1..n
CMIS client
Figure 2.3 Three bindings expose the same
CMIS client functionality for clients with different needs.

(bindings) and always know that the hotel desk will be able to understand you. In a
perfect world with lots of unicorns and rainbows, we’d have been able to require only
one protocol, and every possible client would be able to speak it. In that same perfect
place, our European concierge would only ever have to speak one language. But the
reality is that many different types of processes exist on many platforms that need to
talk to CMIS, and some protocols are easier for some to manage than others.

In the case of CMIS 1.0, we have the Web Services and the RESTful AtomPub bind-
ings. What about that third language that’s sometimes used? Well, CMIS 1.1 adds a new
optional binding called the Browser binding. This optional binding or protocol is sim-
ilar to the AtomPub binding in a lot of ways, except that it’s designed to be easy to
access from JavaScript in a browser. We’ll cover more differences later in the book, but
this will suffice until we get to chapter 11, when we’ll go into greater detail about the
innards of all of the bindings. Figure 2.3 shows multiple clients talking to one CMIS
service, each using one of the CMIS 1.1 supported bindings.

Let’s get back to the questions we were trying to answer. What does a CMIS service
look like? Regardless of the binding, it looks like a simple HTTP URL. In the case of
the Web Services binding, this URL is the address of the WSDL (Web Services Descrip-
tion Language) document for the web service. In the case of the AtomPub and
Browser bindings, it’s the address of the service document (XML or JSON). When a
client retrieves these documents, they have the keys they need to start talking to CMIS
in earnest.

Repository—the CMIS database

If you were asked to distill a CMIS repository down to its most simple role, you could
safely get away with thinking of it as a database. More specifically, it’s a database that
knows a lot about the semantics of unstructured content and even more specifically
about content management. It’s a hierarchical store of content and the metadata

www.it-ebooks.info

http://www.it-ebooks.info/

221

Repository—the CMIS database 23

Figure 2.4 The repository is where
You are here all of the objects are stored.

describing not only the content itself but its organization and relationships to other
content within the same repository.

As you can see in figure 2.4, multiple repositories can optionally be exposed by a
given CMIS service. When you connected to the repository in chapter 1, you clicked
Load Repositories and then chose the only repository presented—a repository with an
ID of Al. Behind the scenes, the server was responding to a getRepository call and
returning the list of available repositories.

A helpful analogy to use for the repository is that of a disk drive in a typical desktop
computer. A server (which would be the CMIS service in this analogy) can host many
disk drives, just like a CMIS server can support multiple repositories. Each of these
drives may be formatted with different filesystems (different metadata, in CMIS termi-
nology), and each has its own root directory, which may optionally contain other fold-
ers and files.

Repository info and capabilities

In chapter 1, you connected to the repository and went straight to the root folder for
the example. Normally, however, when you first talk to a CMIS service, you may want to
know a bit about what its capabilities are so that your client code can expose the
menus and commands that match the repository.

SPECIFICATION REFERENCE: GETREPOSITORYINFO For a more formal discussion
of getRepositoryInfo, check out section 2.2.2.2, getRepositoryInfo, in the
CMIS 1.0 specification. (See appendix E for references.)

For this exercise, you’ll need to go back to the CMIS Workbench session you set up in
chapter 1. Once you’re connected, look at the buttons across the top of the applica-
tion (shown in figure 2.5).

You’ll see at the top left that the second one is labeled Repository Info. If you click
this button, the CMIS Workbench will display the information returned for the CMIS
getRepositoryInfo call. Figure 2.6 shows this information. The ACL capabilities are
omitted here because we’ll talk about those in detail in chapter 12.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 Exploring the CMIS domain model

Cbe.

-.{Re he Cherm penCl tory — M
@T\mﬂ Qnur\r .mmmrﬁc«m @TCK Dﬁumobjm {
i/ [Obiect | Actions | Properties | Refationships | Renditons | acL|
Jiianrie | Type | Name: RootFolder -3\
& emis cmis:folder d:
2 folderl cmis:folder : Lo
[folder2 cmis:folder Type: cmis:folder
& folder3 cmis:folder Base Type: CMIS_FOLDER
9 images cmis:folder paths: J
media cmis:folder :
notes cmis:folder Version Label:
rexts cmis:folder I PWC:
2 i :
Welcome.xc emishoolccent Content URL: (not available)
Allowable Actions: CAN_GET_PROPERTIES
CAN_GET_FOLDER_TREE
CAN_GET_DESCENDANTS
CAN_GET_CHILDREN
CAN_CREATE_DOCUMENT
CAN_CREATE_FOLDER
CAN_GET_RENDITIONS
| Refresh || Check specification e | W
a ¥ — %]

Figure 2.5 Repository Info button in the Workbench

800 CMIS Repository info - Apache Chemistry OpenCMIS InMemory Reposito
Name: Apache Chemistry OpenCMIS InMemory Repository -:\
Id: Al
Description: Apache Chemistry OpenCMIS InMemory Repository (Version: 0.9.0-SNAPSHOT)
Vendor: Apache Chemistry
Product: Apache-Chemistry-OpenCMIS. y/0.9.0-SNAPSHOT 0.9.0-SNAPSHOT
CMIS Version: 1.0
Root folder Id: 100
Latest change token: 0
Thin client URI:

Principal id y

Principal id anyone: anyone |
Changes incomplete: / Yes 1
Changes on type:

Capabilities:

Get descendants supported: J Yes

Get folder tree supported: V Yes

Unfiling supported: v Yes

Multifiling supported: v Yes

Version specific filing supported: X No

Query: EOTHCOMBINED

Joins: MNONE

All versions searchable: X No

PWC searchable: X No

PWC updatable: J Yes

Content stream updates: ANYTIME

Renditions: READ

Changes: NONE b
ACLs: MANAGE v
ELS Zrl]

Figure 2.6 CMIS Repository Info display in CMIS Workbench

www.it-ebooks.info

http://www.it-ebooks.info/

222

223

Repository—the CMIS database 25

Asyou can see in figure 2.6, this call returns a wealth of information, including the fol-
lowing:

= Information about the server vendor

= The supported CMIS version

= The ID of the root folder (very important)

= Details on support for certain navigational operations

= Details on supported filing operations

= Details on supported versioning operations

= Details on supported query functions and advanced query features

We’ll discuss all of these items in more detail in later chapters. All you need to know
for now is that this response contains everything that a client needs to start talking to a
CMIS server.

Capabilities across different repository vendors

As you look over the capabilities that your test InMemory server is reporting, you can
start to see how CMIS manages to smoothly communicate with so many different
repository implementations. CMIS needs to be able to accommodate repositories that
have advanced features while at the same time enabling repositories with minimal fea-
tures to play. This optional capabilities information is the most coarse-grained level of
this type of information, and you’ll see more of this throughout the specification as we
explore further in upcoming chapters.

SPEC REFERENCE: OPTIONAL CAPABILITIES For a detailed list of all of the
optional capabilities, as well as their definitions, see section 2.1.1.1 of the
CMIS 1.0 specification. (See appendix E for references.)

Say you were building a folder-browsing client and you wanted to be able to pull down
the entire folder tree hierarchy in one round trip to the server, for efficiency reasons.
Your client would then want to check to see if the repository capability getFolderTree
was supported. If so, it would have the most efficient code path, and if not, it could
degrade to iteratively crawling the hierarchy to collect the needed information.

Try it—retrieve the repository info

Let’s look at the code you need to get at the repository info. You’ll continue to use the
CMIS Workbench for this exercise. Your code will list the repository info and the capa-
bilities of the repository you're connected to in the Workbench.

In the code exercise in chapter 1, you used Groovy for the example. A nice thing
about the Groovy interpreter is that pure Java syntax is valid as well. To illustrate this,
the code in the examples for this chapter will be in Java form. Feel free to use the
form you feel more comfortable with, or switch back and forth if you like variety.
Keep in mind that the project you’ll build in part 2 of the book will be written mainly
in Java.

www.it-ebooks.info

http://www.it-ebooks.info/

26

2.3

CHAPTER 2 Exploring the CMIS domain model

For this exercise, return to the Groovy console window in the CMIS Workbench

and then copy this code into your code pane.

Listing 2.1 getRepositoryInfo code example

import org.apache.chemistry.opencmis.commons. *
import org.apache.chemistry.opencmis.commons.data.*
import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.client.api.*

RepositoryInfo info = session.getRepositoryInfol(); 4 session
println("");

println ("Abbreviated repository info:");

println(" Name: " + info.getName()) ;

println(" ID: " + info.getId());

println(" Product name: " + info.getProductName()) ;

println(" Product version: " + info.getProductVersion());
println(" Version supported: " + info.getCmisVersionSupported());

RepositoryCapabilities caps =
session.getRepositoryInfo () .getCapabilities() ;

println("");

println("Brief capabilities report:");

println(" Query: " + caps.getQueryCapability());

println(" GetDescendants: " + caps.isGetDescendantsSupported()) ;
println(" GetFolderTree: " + caps.isGetFolderTreeSupported()) ;

Figure 2.7 shows the output in the Groovy console.

Abbreviated repository info:
Name: Apache Chemistry Open(MIS InMemory Repository
ID: Al
Product name: Apache-Chemistry-OpenCMIS-InMemory/@.9.@-SNAPSHOT
Product version: @.9.@-SNAPSHOT
Version supported: 1.8

Brief copabilities report:
Query: BOTHCOMBINED
GetDescendants: true
GetFolderTree: true

Execution complete. Result was null.

Figure 2.7 Groovy console output for the getRepositoryInfo code example

Display some repository
info and repository
capabilities properties
associated with current

23:1

As you can see, the OpenCMIS API makes parsing this information trivial. If you were
doing this without Chemistry, you'd need to parse the raw XML response into your
own structure of values either manually or with a library like JAXB (Java Architecture
for XML Binding). For a discussion of what bindings are available and what the XML

schema looks like for each, have a look at chapter 11.

Folders

In this section, we’ll cover CMIS folders at the highest level: what they do, what they

look like, and how they’re related to each other and to documents.

www.it-ebooks.info

http://www.it-ebooks.info/

23.1

Folders 27

The role of folders

Folders in CMIS are much like folders in filesystems that you’re already using from day
to day. Every CMIS repository must have at least one folder, the root folder, as you can
see in figure 2.8. When you retrieve the repository info, you’ll see there’s always a root
folder ID present. This is the starting point that clients must always use if they’re doing
folder navigation.

The important rule to remember with CMIS folders is that every folder must have
one, and only one, parent folder. The only exception is the root folder. You can think
of the root folder’s parent as the repository that hosts it, even though technically CMIS
root folders are parentless—that’s the only attribute (aside from their place at the top
of the folder hierarchy) that makes them unique among all of the other folders. All
folders (like their filesystem equivalents) have an associated path, as do all CMIS
objects that are contained in folders. (We’ll talk more about the path properties of
CMIS objects in part 2 of the book.)

Also note that every base CMIS object type has a unique ID defined by the specifica-
tion. For folders the ID is cmis: folder. When you see the name of an object type with
the cmis: prefix, you’ll know that this is an object type that’s defined in the CMIS spec-
ification’s object model. We’ll talk a lot more about the base object types when we get
to chapter 4.

SPEC REFERENCE: FOLDERS To see the full normative definition of CMIS fold-
ers, including all of their attributes, see section 2.1.5 of the CMIS 1.0 specifica-
tion. (See appendix E for references.)

CMIS Workbench has a simple, built-in folder navigation feature as well. If you recall
from your exercises in chapter 1, when you first connect to a repository, you see the
folders and documents contained in the root folder displayed in the left-most pane.
But it only shows a flat list at one level. If you want to see it presented as a hierarchy,
you’ll have to move on to the next section, where you’ll write some code to display the
entire folder hierarchy from your InMemory server.

Document

Figure 2.8 Folder shown with
You are here relationship to repository and document

www.it-ebooks.info

http://www.it-ebooks.info/

28

23.2

CHAPTER 2 Exploring the CMIS domain model

Try it—folder navigation

For listing 2.2, we’ll go back to the CMIS Workbench Groovy console view again. This
time you’ll use the CMIS folder’s getDescendants function. After making the call,
you’ll recursively iterate through the results, dumping them to the console output
window using spaces to indent each level you traverse.

Listing 2.2 getDescendants code example

import org.apache.chemistry.opencmis.commons.*
import org.apache.chemistry.opencmis.commons.data.*
import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.client.api.*

RepositoryInfo info = session.getRepositoryInfol(); There’s only one
RepositoryCapabilities caps = J root per CMIS
session.getRepositoryInfo().getCapabilities() ; < reposkorx
Folder rootFolder = session.getRootFolder();
if (!caps.isGetDescendantsSupported()) {
println("n Warning: getDescendants " +
"not supported in this repository");
} else {
println("ngetDescendants " +
is supported on this repository."); The -I tells the
println("nDescendants of " + method to return
rootFolder.getName () + " : "); an unlimited depth
for (t in rootFolder.getDescendants(-1)) { of descendants.

printTree(t , "");

}

private static void printTree (Tree<FileableCmisObject> tree,
String tab) {
println(tab + "Descendant "+ tree.getItem().getName()) ;
for (t in tree.getChildren()) {
printTree(t, tab + " ");

}

The output for this exercise is shown in figure 2.9.

Note that in addition to the getDescendants function you used, CMIS contains a
full suite of other navigation-related functions for you to explore. We’ll touch on all of
these navigation functions in more detail in later chapters, but the full list is as follows:

= getChildren()—Gets only the direct containees of a folder

= getDescendants ()—Gets the containees of a folder and all of their children to
a specified depth

= getFolderTree ()—Gets the set of descendant folder objects contained in the
specified folder

= getFolderParent () —Gets the parent folder object for the specified folder
= getObjectParents ()—Gets the parent folder(s) for the specified nonfolder
object

www.it-ebooks.info

http://www.it-ebooks.info/

24

Documents 29

getDescendants is supported on this repository.

Descendants of RootFolder :
Descendant cmis
Descendant README.txt
Descendant logo

Descendant (MIS_Logo_Boiler-Plate_Statement.docx

Descendant cmis-logo.png
Descendant specification

Descendant CMIS 1.1 Committee Specification Draft @1

Descendant folderl
Descendant subfolderl
Descendant subfolder2
Descendant folder2
Descendant folder3
Descendant images
Descendant Frére Jacques (score)
Descendant media
Descendant Reverie (small theme).mp3
Descendant RowRowRowYourBoat.ogg
Descendant TwinkleTwinklelLittle5Star.ogg
Descendant notes
Descendant ApacheCon Europe 2012
Descendant Burn Rome!
Descendant (MIS Documents
Descendant Oxford Geek Nights
Descendant Read about CMIS
Descendant texts
Descendant CMIS 1.1 Changes
Descendant Frerelacques.txt
Descendant RowRowRowYourBoat.txt
Descendant TheRaven.txt
Descendant ToMyEmptyPurse.txt
Descendant TwinkleTwinkleLittleStar.txt
Descendant welcome.txt

Execution complete. Result was null.

T

35:1

Figure 2.9 Groovy console output—dumping the folder and document hierarchy

Documents

Moving right along in our tour of the
domain model, we’ve arrived at docu-
ment. Figure 2.10 gives you a quick
high-level picture of where we are
now and how documents fit into the
larger picture.

In CMIS, documents are where the
rubber meets the road. Without
them, there wouldn’t be much point
in having a document management
system, would there? This section will
get you familiar with the CMIS docu-
ment type at an introductory level.

Document

You are here

Figure 2.10 Documents can be contained in folders
or unfiled children of a repository. Unfiled documents
are retrieved from the repository’s “unfiled
documents” collection.

www.it-ebooks.info

http://www.it-ebooks.info/

30

24.1

CHAPTER 2 Exploring the CMIS domain model

We’ll also introduce the subject of properties, which are present on all of the other
CMIS object types, like folders, but are used more extensively on documents. This is
why we waited until now to spring them on you. After we’ve covered the basics, we’ll
pop back into the CMIS Workbench to write some more code, and then create, file,
and retrieve documents and their properties. Here we go!

The role of documents

To properly explain the role of documents, we’ll switch to a different perspective. Fig-
ure 2.11 shows an object model view that describes the base cmis:object common
to all of the objects you’ll see in CMIS. As an extension to this base type, you see
cmis:document (which is the CMIS ID for this object type) with its content stream indi-
cated as a contained subobject. Keep in mind that there’s a lot more to cmis: document
than just being an additional content stream. We’ll cover all of those details in later
chapters, but this is all you need to be aware of for now.

A WORD ABOUT CMIS:OBJECT In this book (as well as in the 1.1 specification),
you’ll see some mention of cmis:object as if there were a base class for all of
the five base CMIS object types. Technically speaking, the specification
doesn’t call out the existence of such a base class. But the CMIS Technical
Committee has made an effort to keep a certain key set of properties com-
mon to all CMIS objects (see section 2.4.2) so that in object-oriented (OO)
language bindings, they could be modeled as if they were from a common
parent (object). Whether you choose to think of all of the base objects as
sharing these properties, or inheriting them, the end result is the same.

SPEC REFERENCE: CMIS OBJECT MODELS If you’d like to see a much more
detailed model type view of all of the CMIS object types, see section 2.1 (Data
Model) in the CMIS 1.1 specification. (See appendix E for references).

Figure 2.11 CMIS object model view: these
properties are common to all object types,
but only document has a content stream.

www.it-ebooks.info

http://www.it-ebooks.info/

24.2

Documents 31

Properties

As you can see in figure 2.11, all CMIS objects have properties. We’ll get into much
more detail about types in chapter 4, but one of the things that distinguishes one
object type from another is the specific properties that are defined for that type. But
before we can talk about the properties on documents, we first need to take a short
diversion and talk about the properties that are common to all CMIS object types.

PROPERTIES COMMON TO ALL CMIS 1.0 OBJECT TYPES
These are the properties that you’ll find on all CMIS object types, regardless of their

base type. For a given repository, there may be many more custom properties in addi-

tion to these:

cmis:name (String)—The name of this object.

cmis:objectId (ID)—The opaque identifier for this object. It’s unique among
all other objects in this repository.

cmis:baseTypeId (ID)—The opaque identifier for the base type of this object.
We’ll cover types in chapter 4.

cmis:objectTypeld (ID)—The opaque identifier for this object’s type.
cmis:createdBy (String)—The name of the user that created this object in this
repository.

cmis:creationDate (DateTime)—The date and time when this object was
created.

cmis:lastModifiedBy (String)—The name of the user who last modified this
object.

cmis:lastModificationDate (DateTime)—The date and time this object was
last modified.

cmis:changeToken (String)—An opaque token used to identify a point in the
lifecycle of this object. We’ll talk more about these tokens in chapter 8.

Why are these identifiers opaque?

You probably noticed that the identifiers in the list of common object types aren’t only
identifiers, they’'re opaque identifiers. When something is described as opaque, it
means it should be treated as if you can’t tell what’s in it.

For example, if we showed you an identifier that looked like “jeff-potts-tulsa-1.2,” you
might try to make some sense of that string. You might assume the identifier is talk-
ing about something having to do with a person named “Jeff Potts” who has a rela-
tionship to a city named “Tulsa” and that maybe this is version 1.2 of that object.
You might even write some code that implements those assumptions. But in CMIS,
when you see that something is opaque, you must avoid the temptation to write
code that depends on an understanding of how that particular identifier is con-
structed, because the repository is free to change how it implements opaque identi-
fiers at any time.

www.it-ebooks.info

http://www.it-ebooks.info/

32

CHAPTER 2 Exploring the CMIS domain model

PROPERTIES COMMON TO ALL CMIS 1.0 DOCUMENTS

These are all of the properties that are both unique to and present on all CMIS 1.0
documents (remember that all of the properties common to all objects are also com-
mon to documents):

cmis:isImmutable (Boolean)—Indicates the CMIS service will throw an excep-
tion on an attempt to modify this object.

cmis:isLatestVersion (Boolean)—Indicates whether this object is the latest
version of its version series. We’ll talk more about versions in chapter 3.
cmis:isMajorVersion (Boolean)—Indicates whether this object is a major ver-
sion (true) or minor (false).

cmis:isLatestMajorVersion (Boolean)—Indicates whether this document is
the latest major version. The latest major version has special significance in
some repositories.

cmis:versionLabel (String)—The string rendering of the document’s version
information. For example, 1.5 would indicate major version 1 and minor version 5.
cmis:versionSeriesId (ID)—The opaque identifier of this object’s version
series. We’ll look more at version series objects in chapter 3.
cmis:isVersionSeriesCheckedOut (Boolean)—Indicates whether this docu-
ment is currently in a checked-out state.

cmis:versionSeriesCheckedOutBy (String)—The name of the user that per-
formed the checkout operation on this document.
cmis:versionSeriesCheckedOutId (ID)—An opaque identifier of the Private
Working Copy (PWC) for this object’s version series. More on PWC objects in
chapter 3.

cmis:checkinComment (String)—The comment associated with this version of
the document.

cmis:contentStreamLength (Integer)—The length of this document’s associ-
ated content stream, if one is present.

cmis:contentStreamMimeType (String)—The MIME type of the content stream
associated with this document.

cmis:contentStreamFileName (String)—The name of the file stored in this
document’s content stream, if present.

cmis:contentStreamId (ID)—The opaque identifier of this document’s con-
tent stream, if present.

You may notice that all of these additional properties deal with versioning and con-

tent stream information. In later chapters, when we explore the other types of base

CMIS object types, you’ll see that they each have their own set of object-type-specific
properties.

www.it-ebooks.info

http://www.it-ebooks.info/

Documents 33

A FEW MORE BASIC RULES ABOUT PROPERTIES

A CMIS property may hold zero, one, or more typed data value(s), and each property
may be single- or multivalued. Single-valued properties contain (drum roll here) a sin-
gle data value, and multivalued properties contain an ordered list of data values of the
same type. The ordering in a multivalued property should be preserved by the reposi-
tory, but this isn’t guaranteed.

Any property (single- or multivalued) can be in a not-set state, but the CMIS specifi-
cation doesn’t support a null property value.

If a multivalued property is set, it must contain a non-empty list of individual val-
ues. Each individual value in the list must have a value (that is, it can’t be not set), and
each of those values must be of the same type, conforming to its multivalued prop-
erty’s type. In other words, a multivalued property is either set or not set in its entirety.

Individual values of multivalued properties must be set to hold a position in the list
of values. Empty lists of values are not allowed, nor are sparse lists. For example, you
may not have a sparse string list property with values {"a," "b," null, "c"}, buta
string list with values {"a, " "b, " ""} would be OK, because for strings an empty string
is a set value distinct from null.

BASE PROPERTY DATA TYPES

All CMIS properties are typed and must be one of the eight base property data types
listed in the specification. Table 2.1 shows these base property types and their corre-
sponding OpenCMIS interface names. All of the OpenCMIS property interfaces are
in the org.apache.chemistry.opencmis.commons.data package, and all inherit the
org.apache.chemistry.opencmis.client.api.Property interface.

Table 2.1 Eight base property data types supported by CMIS and OpenCMIS

CMIS property Java data type OpenCMIS interface
string java.lang.String PropertyString
boolean java.lang.Boolean PropertyBoolean
integer java.math.BigInteger PropertyInteger
decimal java.math.BigDecimal PropertyDecimal
datetime java.util.Gregorian- PropertyDateTime

Calendar
id java.lang.String PropertyId
html java.lang.String PropertyHtml
uri java.lang.String PropertyUri

www.it-ebooks.info

http://www.it-ebooks.info/

34

24.3

CHAPTER 2 Exploring the CMIS domain model

RULES TO BE AWARE OF WHEN DEALING WITH HTML, ID, AND URI PROPERTIES
= An html property value can be a fragment and need not be valid. For
example, the following string isn’t completely valid from an HTML
standpoint, but it’s allowed to be stored in an html property:
<html><body>My body is truncated.
= A uri value may or may not be checked by the repository.
= An idvalue doesn’t need to be a valid ID in the repository.

CUSTOM PROPERTIES

Although we’ll cover this in much more detail in chapter 4, it’s worth mentioning that
the types we’ve shown you so far are only the properties that are defined by CMIS for
all documents. These properties are common to any ECM system. The flexible thing
about ECM systems and about CMIS is that there can be many different types of docu-
ments with any number of custom properties defined on them. When we get into
part 2 of the book and start building a custom CMIS music management application,
we’ll define custom properties that are specific to music MIME types. You’ll see some
of the powerful things you can do with these properties when we talk about Query in
chapter 5.

Try it—list a document’s properties

It’s time now to go back to the Groovy console in CMIS Workbench to write some
code. This time you’ll find the first document object in the root folder and list all of its
system properties.

Listing 2.3 List the system (cmis : xxx) properties for the first document we find.

import org.apache.chemistry.opencmis.commons.*
import org.apache.chemistry.opencmis.commons.data.*
import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.client.api.*

// obtain the root folder object
Folder rootFolder = session.getRootFolder () ;
foundCount = 0;

for (t in rootFolder.getChildren()) {
// until we find an object that is a doc type or subtype
if (t instanceof Document) {
println("name:" + t.getName()) ;
foundCount += 1;
List<Property<?>> props = t.getProperties();

// list all of the system properties that is those
// that begin with the cmis: prefix we listed earlier
for (p in props) {

if (p.getId().startsWith("cmis:")) {
println(" " + p.getDefinition().getId()
+ "=" + p.getValuesAsString());

www.it-ebooks.info

http://www.it-ebooks.info/

244

Documents 35

if (foundCount > 0) {
break; // we can stop after the first one is found

}

Copy the code from listing 2.3 into your Groovy console and give it a run. Figure 2.12
shows the output from CMIS Workbench when it’s connected to the OpenCMIS
InMemory Repository with the default sample data loaded. The output from the run
is always displayed in the lower window.

name: welcome. txt :
cmis: isLatestMajorVersior=[true]

cmis: contentStreamId=[]

cmis: contentStreamLength=[395]

cmis: versionSeriesCheckedOutBy=[]

cmis: objectTypeld=[cmis: document]

cmis: versionSeriesCheckedOutId=[]

cmis: name=[welcome. txt]

cmis: contentSt reamMimeTypes [text /plain]

cmis: versionSeriesId=[]

cmis: creationDate=[Thu Aug 02 14:45:12 PDT 2012]

cmis: changeToker=[1343943912021)

cmis; versionLabel=[]

cmis: isLatestVersiore[true]

cmis: isVersionSeriesCheckedOut=[false]

cmis: lastModif iedBy=[system]

cmis: createdBy=[system]

cmis: checkinComment=[]

cmis: objectId=[261]

cmis: isMajorVersiore[true]

cmis: isImmutable=s[false]

cmis: baseTypeld=[cmis: document]

cmis: lastModificationDate=[Thu Aug 02 14:45:12 PDT 2012]
cmis: contentSt reamFileName= [welcome. txt] | v

- 7 v,

Execution complete. Result was null. 25:35

Figure 2.12 Output from default data in the document property exercise

USING THE GROOVY CONSOLE IN WORKBENCH Don’t forget that every time you
use the session object in the Groovy console, you're sharing the session
object from the CMIS Workbench session. If the CMIS Workbench isn’t con-
nected to a live server, your session object in the console isn’t going to do
you much good.

Content streams

Now that we’ve covered all of the properties of a document, we can finally get to the
document itself. As you can see in figure 2.13, there can be either 0 or 1 associated
content streams with every CMIS document. This is what’s sometimes referred to as

www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 2 Exploring the CMIS domain model

You are here

—

1 0..1 : Figure 2.13 A content stream of O or 1

per document is accessible via CMIS.

the payload of the document. It might be a binary or text file of any MIME type and of
any size, depending on your repository limitations. This is one of a handful of things
that make a document special in CMIS and, more generally, special in all ECM systems.

2.4.5 Try it—retrieve a document’s content stream

In this exercise, you'll retrieve a text document from your test InMemory server and
inspect its contents. Because the InMemory server starts up with some test data, you’ll
search for the first text document that you find in the root folder, and then retrieve its
content stream, as shown in listing 2.4 (the helper method that gets the contents of a
stream is taken from the “OpenCMIS Client API Developer’s Guide” at http://chemistry
.apache.org/java/developing/guide.html). Finally, so you have something to show for
all of this, you’ll display the first line of the document’s stream text to the console.

Listing 2.4 Retrieving a document’s content stream and stream properties

import org.apache.chemistry.opencmis.commons.*
import org.apache.chemistry.opencmis.commons.data.*
import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.client.api.*

// obtain the root folder object

Folder rootFolder = session.getRootFolder () ; Filter out only
count = 0 document
objects, because
// iterate through the children folders won’t
for (t in rootFolder.getChildren()) { have content
if (t.getBaseTypelId() .equals (BaseTypeld.CMIS_DOCUMENT)) { streams.
count +=1;
Verify that println("name:" + t.getName());
MIME type is Document d = (Document) t;
text so you String mimeType = d.getContentStreamMimeType () ;
Cm1dhphyit if ((mimeType != null) && (d.getContentStreamLength() > 0)) {
as a string. if (mimeType.startsWith("text")) {
println("Name of doc:" + d.getName()); Note that the

println("FileName:" +
d.getContentStreamFileName ()) ;

println("Stream length:" +
d.getContentStreamLength()) ;

document’s name
and content stream’s
filename don’t have
to be the same.

www.it-ebooks.info

http://chemistry.apache.org/java/developing/guide.html
http://chemistry.apache.org/java/developing/guide.html
http://www.it-ebooks.info/

The item object type (version 1.1) 37

String fullStream =
getContentAsString (d.getContentStream()) ;
println("nFirst line of stream:n->" +
fullStream.substring (0, fullStream.indexOf("n")));

}
if (count > 0) {
break; // we can stop after the first one is found This helper

} method gets
} the contents
private static String getContentAsString(ContentStream stream) of a stream.

throws IOException {

StringBuilder sb = new StringBuilder () ;

Reader reader = new InputStreamReader (stream.getStream(), "UTF-8");
try {

final char[] buffer = new char([4 * 1024];

int b;

while (true) {
b = reader.read(buffer, 0, buffer.length);
if (b > 0) {
sb.append (buffer, 0, b);
} else if (b == -1) {
break;

}
} finally {
reader.close() ;
}
return sb.toString();
}

The output of this code is shown in figure 2.14.

name :welcome. txt

Name of doc:welcome.txt
FileName :welcome. txt
Stream length:395

First line of stream:

X Figure 2.14 Output of code for retrieving a
->Welcome to CMIS and Apache Chemistry!

document’s content stream

2.5 The item object type (version 1.1)

You’re probably thinking, “Hey, where did this CMIS item object type come from any-
way? I don’t remember seeing this in the main diagram.” That’s because CMIS item
(cmis:item) is new to CMIS version 1.1, so we decided to leave it until you under-
stood the document basics. It turns out that many CMIS repositories have object types
whose instances are fileable, like documents, but that are much less heavyweight. For

www.it-ebooks.info

http://www.it-ebooks.info/

38

2.6

CHAPTER 2 Exploring the CMIS domain model

example, they might not have any content streams associated with them, and they
might not be versionable either. Don’t worry, we’ll talk about versioning in chapter 3.

In CMIS 1.1, we created a brand-new, top-level type named item that would be the
base type for all objects that have properties but aren’t documents. At the most basic
level, you can think of an item as a fileable collection of properties or even a complex
object type. For example, suppose you want to store some configuration information
for your application in the CMIS repository. You might choose to persist the applica-
tion configuration as a set of key-value pairs that would be defined as properties on an
object type that extends cmis:item.

SPEC REFERENCE: CMIS ITEM For a detailed list of CMIS item’s properties and
attributes, see section 2.1.8 of the CMIS 1.1 specification. (See appendix E for
references.)

Summary

In this chapter, you were introduced to the key high-level concepts in a CMIS system:
the service, repository, folder (cmis:folder), document (cmis:document), and item
(cmis:item), and each one’s respective properties. We even sprinkled in a little taste
of the bindings. You used the OpenCMIS API to discover a repository’s capabilities,
browse its folder hierarchy, and retrieve its document’s properties and content
streams. Along the way, you were given your first peek at the object model for CMIS
and you saw how all CMIS object types share a common set of properties. In later chap-
ters, we’ll fill out these images you now have in your head with more details. These
concepts will be your guideposts as you progress through the rest of part 1. By the
time you have completed the next three chapters, you should have a good general
understanding of CMIS, enough to dive into part 2 and build a useful (and we hope
fun) application.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating, updating, and
deleting objects with CMIS

This chapter covers

Creating folders

Creating documents with and without content
Updating properties on objects

Checking content into and out of the repository
Creating versions of documents

Deleting objects

In the previous two chapters, you've learned how to access a CMIS repository as well
as the objects contained within it, but you haven’t made any changes to those
objects and you haven’t created new objects. You’ll learn how to do that in this
chapter. As in previous chapters, you’ll continue using the CMIS Workbench to run
Groovy code, but now you’ll create, update, version, and delete objects in the
repository.

39

www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 3 Creating, updating, and deleting objects with CMIS

3.1 Creating objects

Traversing the folder structure in the repository and reading documents and their
properties is all well and good, but at some point you’ll need to create new objects.
Let’s look at how to create the two objects you know about so far: folders and docu-
ments. You’ll learn how to create instances of other objects in the CMIS domain model
in later chapters.

3.1.1 Requirements for creating an object

At a minimum, a CMIS server will always need two pieces of information from you in
order to create a new object: the name of the object and the type of object to create.
Do you remember the list of properties common to all CMIS objects that was provided
in chapter 2? If so, you may recognize the name and object type from the list:

= cmis:name (String)—The name of this object
= cmis:objectTypeld (ID)—The opaque identifier for this object’s type

Creating a new object is a matter of calling the appropriate method and passing in
these two properties with the appropriate values.

3.1.2 Try it—create a folder

Let’s create a new folder called my first folder in the root of the InMemory Repository.
You saw in the previous chapter how to grab an instance of the root folder using
session.getRootFolder. That returns a folder object. If you look at the Javadoc for
the folder interface, you’ll see a createFolder method. In fact, you'll see two, but
here you’ll use the one that only needs a properties map.

To create the folder, you first need a handle to the folder that will contain the new
folder. Then you set up a properties map with the name and object type ID and pass
the properties to the createFolder method, as shown in the next listing.

Listing 3.1 Creating a folder with Groovy

def rootFolder = session.rootFolder <—— You saw this in chapterZ
// create a map of properties Set up a map to
def props = ['cmis:objectTypeId': 'cmis:folder', </ hold the properties
Add object > '‘cmis:name' : 'my first folder']
typeand def someFolder = rootFolder.createFolder (props) < .
name to : prop Pass properties to
the createFolder

the map | println("Folder created!")
println("id:" + someFolder.id)
println("name:" + someFolder.name)

method

After running this code in the Groovy Console, you should be able to flip back over to
the CMIS Workbench, refresh the root folder listing by clicking Go, and see your new
folder in the list, as shown in figure 3.1.

www.it-ebooks.info

http://www.it-ebooks.info/

3.13

Creating objects 41

D Connection j Repository Info L._;iTvpes &

/ (]

Name Type
& cmis cmis:folder
) folderl cmis:folder
&) folder2 cmis:folder
&) folder3 cmis:folder
) images cmis:folder
) media cmis:folder .
& my first folder emis:folder Figure 3.1 The new folder
&) notes cmis:folder shows up after you run the
D) texts cmis:folder createFolder code in
welcome.txt cmisbook:text

the Groovy console.

Things to think about when creating folders

Creating a folder is a straightforward process. Still, we should review a few things you
might want to think about. We’ll do that in the following sections.

FOLDERS—CREATED CONTEXTUALLY
In the previous example, you saw that the createFolder method was called on the
rootFolder object. Folders are created contextually. In other words, CMIS has to know
where to create the new folder.

OBJECT TYPE

In listing 3.1, you saw that cmis:folder was used as the object type ID. Many CMIS
repositories have types that inherit from cmis: folder. These might be out-of-the-box
types or even types that you've defined to make the schema match your specific busi-
ness requirements. Any type that inherits from cmis: folder can be specified.

FOLDER NAME

The definition of what constitutes an allowable folder name is serverspecific. It’s
usually nearly identical to what you would expect when creating folders and files in a
filesystem.

ARE YOU ALLOWED TO CREATE A FOLDER?

In listing 3.1, you didn’t check to see whether or not you were allowed to create a
folder in the root folder—you tried to create it and it worked. As you work through
the rest of this book you’ll come across several actions that may not always be possible
due to limitations of the underlying server, permissions, or the state of an object.

You can code defensively by checking to see if you're allowed to do something
before you do it. In this case, there’s an allowable action called CAN_CREATE_FOLDER. If
you wanted to, you could make your createFolder call conditional on the presence of
that allowable action, as follows:
if (Action.CAN_CREATE_FOLDER in

rootFolder.allowableActions.allowableActions) {
...set up the properties, create the folder, etc.

www.it-ebooks.info

http://www.it-ebooks.info/

42

3.1.4

Create
document
in folder
you
created
earlier

CHAPTER 3 Creating, updating, and deleting objects with CMIS

You’ll see more examples of allowable actions later on in the book.

Try it—create a document

Creating documents isn’t much different from creating folders. You still need the
name and object type at a minimum.

In this section, you’ll learn how to create documents. First you’ll create documents
that don’t have content, and then you’ll create documents using files on your local
filesystem.

The simplest example is to create a document that doesn’t have content (a file)
associated with it. When you do that, it looks like you're creating a folder. The only dif-
ference is the object type you’re passing in, as shown next.

Listing 3.2 Creating a document that has no content looks much like creating a folder.

def someFolder = session.getObjectByPath('/my first folder')

Specify
// create a map of properties ‘cmis:document’
def props = ['cmis:objectTypeId': 'cmis:document', for object type ID
'cmis:name' : 'my test doc']
def someDoc = someFolder.createDocument (props, null, null) <

println("Doc created!")
println("id:" + someDoc.id)
println("name:" + someDoc.name)

Pass in null as content stream to
create a document with no content;
second null is the versioning state

Now you should be able to navigate into the folder you created earlier and see the
newly created document, as shown in figure 3.2.

The document you created doesn’t have any content, and there are times when
you might need to create a document that includes a file. For example, a Company or
an Employee object might only have metadata associated with it and no file content. In
fact, in chapter 2 you learned that CMIS 1.1 includes a new type called cmis:item that
can be used specifically for this purpose. If you were using CMIS 1.1, you might choose
to create your Company or Employee objects as instances of cmis:item instead of
instances of cmis:document.

‘@00

{ } connection | a] Repository Info Types €L
| up imv_ﬁist folder . go i|
| | Name | Type i
|| my testdoc cmis:document|

Figure 3.2 The newly created document sitting in the folder you created earlier

www.it-ebooks.info

http://www.it-ebooks.info/

Creating objects 43

Not all repositories support contentless document objects

Some repositories require document instances to always have a content stream.
For example, the OpenCMIS InMemory Repository and Alfresco don’t require content
streams, but SharePoint does. You can check whether or not your repository
requires documents to have a content stream by inspecting the type definition for
cmis:document.

You'll learn about type definitions in chapter 4, but for now just know that the
cmis:document type definition has an attribute called contentStreamAllowed. If
the value of the attribute is required, then all instances of a document must have
a content stream. Of course, you could work around this by creating a content stream
with an empty string.

If you're developing an application that’s exclusively made up of contentless objects,
you might need to rethink your decision to use a content repository to persist your
data. More often, most of your objects will have files associated with them, so let’s see
how to create a document that includes a file.

The key difference is that you have to create a content stream and then pass that to
the createDocument method. In listing 3.3, you can see a content stream being cre-
ated from a local file. In this example, it’s a PDF.

Listing 3.3 Creating a document with a content stream

def someFolder = session.getObjectByPath('/my first folder')

def file = new File('/users/jpotts/Documents/sample/sample-a.pdf') <
def name = file.getName () Set path to point
to sample file
def mimetype = 'application/pdf’ <
// create a map of properties w H?rdcode
def props = ['cmis:objectTypeId': 'cmis:document', mimetype
'cmis:name' : name]

def contentStream = session.getObjectFactory () .createContentStream(name,
file.size(),

Instantiate a mimetype
ContentStream ! .
new FileInputStream(file))
def someDoc = someFolder.createDocument (props, contentStream, null)
println("Doc created!") Pass properties and
println("id:" + someDoc.id) contentStream to
println("name:" + someDoc.name) createDocument method
(

println("length:" + someDoc.contentStreamLength)

If you run that code in the Groovy console, you should see the new document in the
CMIS Workbench (you may have to re-enter the folder or click Go to refresh the list).
If you click the link in the right-hand pane (see figure 3.3), you’ll launch the docu-
ment in its native application.

www.it-ebooks.info

http://www.it-ebooks.info/

44

Use a file
with different
name from
before—
InMemory
server
requires
objects in
same folder
to be
uniquely
named

|—(>

CHAPTER 3 Creating, updating, and deleting objects with CMIS

the new document

e — R L
i ompeen | scmoms | rrogmnes | naimbwesness | memimo | 161 | ooy [vervmen | .

at, r .

Figure 3.3 After creating a document that has a content stream, you can click
the content URL to open the file.

You might be looking at listing 3.3 and thinking, “That seems like a lot of work just to
add a file to the repository,” and you’re absolutely right. There is a shorter way to do
it. The CMIS Workbench ships with a set of helper scripts that can be accessed from
the Groovy console. The helper scripts include a function called createDocument-
FromFile, which does the work of figuring out the mimetype, setting up the proper-
ties, establishing a contentStream, and creating the document. The result, shown
next, is much more succinct.

Listing 3.4 Creating a document from a file by using the CMIS helper scripts

cmis = new scripts.CMIS(session) <—— Load CMIS helper scripts
def someFolder = session.getObjectByPath('/my first folder')
def file = new File('/users/jpotts/Documents/sample/sample-b.pdf")

def someDoc = cmis.createDocumentFromFile (someFolder,
file,
"cmis:document",
null)

<] Setup
properties,
mimetype, and
contentStream,
and create
document with a
single call

println("Doc created!")
println("id:" + someDoc.id)
println("name:" + someDoc.name)
println("length:" + someDoc.contentStreamLength)
Either way, the result is the same—the document object is created and the local file is
uploaded to the repository and set as the content stream on the document object.
Now you know how to create folders and documents, both with and without con-
tent. If you stopped here, you could do quite a lot. Got a fileshare full of contracts and
legal documents? You could write a script to bulk load those into your company’s ECM
repository. Or how about an imaging application to feed scanned invoices into the
repository (which then might trigger an approval workflow if your repository supports
it). That’s some decent process automation, and the beauty is that it works regardless
of the repository you have now or decide to switch to at some point in the future,
because you’re coding against an industry-standard API.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating objects 45

What other CMIS helper scripts are available?

You saw how the CMIS helper scripts distributed with the CMIS Workbench can make
your Groovy code more succinct. What other shortcuts are available? If you take a
look at the source code for the CMIS Workbench, you’ll find the Groovy file that
defines the CMIS helper scripts in /src/main/resources/scripts/CMIS.groovy. Con-
sult that file for the full list.

These are a few you might be interested in:

= getObject (id),getFolder (id), getDocument (id)—Retrieve a CMIS object,
folder, or document given its object ID.

" printProperties(id),printChildren (id),printRelationships(id),
printRenditions (id), printObjectSummary (id)—Dump information about
the object for the ID specified to the console.

" createFolder (), createTextDocument (), createRelationship ()—Short-
cut methods for creating documents, folders, and relationships. See the code
for the method signatures.

= download(id, destination)—Downloads the file associated with the docu-
ment represented by the specified ID to the specified destination.

These helper scripts will only work with your code running in the Groovy console. They
aren’t part of the OpenCMIS API.

3.1.5 Things to think about when creating documents
There are a few things you may want to keep in mind when creating documents.

COPYING DOCUMENTS

It’s possible to create new document objects using objects that already exist in the
repository. The document object has a method called copy that takes a target folder as
its only argument. If you want to copy sample-b.pdf to another folder called target

Jfolder, the code would look like the following.
Grab a
reference to
the document
def someDoc = session.getObjectByPath("/my first folder/sample-b.pdf") | to copy...

def targetFolder = session.getObjectByPath("/target folder") <«

Execute ... and the folder to copy
th L . it to (this code assumes
e copy. def copiedDoc = someDoc.copy (targetFolder) the folder exists).

Notice that the copy method doesn’t give you the opportunity to make any changes on
the source object, including the name. If you need to do that, use createDocument-
FromSource instead.

www.it-ebooks.info

http://www.it-ebooks.info/

46

3.2

CHAPTER 3 Creating, updating, and deleting objects with CMIS

ONLY WORKS WITH THE WEB SERVICES BINDING In CMIS version 1.0, create-
DocumentFromSource isn’t supported by the AtomPub binding—it only works
when using the Web Services binding. The copy method relies on create-
DocumentFromSource. Unfortunately, this is one of the differences that exist
between the two bindings. You’ll learn more about bindings later in the book.
If you can’t wait to try out the Web Services binding, click the Connection
button, select the Web Services binding, and specify http://localhost:8080/
chemistry/services/DiscoveryService as the service URL.

IS A PARENT FOLDER ALWAYS REQUIRED?

In the examples you've seen so far, you’ve been calling the createDocument method
on the folder object where the document is to be stored. But some ECM repositories
support the notion of unfiled documents. These documents are free-floating—they
don’t live in a folder. To figure out whether or not your repository supports unfiled
documents, you can query its capabilities, as follows:

session.repositoryInfo.capabilities.unfilingSupported

If this returns true and you need to create an unfiled document object, use the create-
Document method on session instead of folder and pass in null as the folder ID.

ARE YOU ALLOWED?
As you saw earlier when creating folder objects, the repository might not always allow
you to create a new document. Similar to Action.CAN_CREATE_FOLDER, you can check
the folder’s allowable actions for Action.CAN_CREATE_DOCUMENT before attempting to
create a document. Here’s an example:
if (Action.CAN_CREATE_DOCUMENT in
someFolder.allowableActions.allowableActions) {
...set up the properties, create the folder, etc.
}
Now that you know how to create objects, it’s time to learn how to make changes to
them after they’ve been created. That’s where we’re headed next.

Updating objects
Some content-centric applications are used only for archival purposes—they never
need to change the documents once they’re stored in the repository. Most often,
though, your content application will need to make updates to objects in the repository.
In the previous section, you saw that a document object has both metadata and a
content stream. When updating objects, you can update only the properties, only the
content, or both.
Let’s look at examples of both of these types of updates. In the first example, you’ll
see how to change the name of one of the sample documents you created earlier. In
the second, you’ll see how to update the content stream.

www.it-ebooks.info

http://www.it-ebooks.info/

Updating objects 47

3.2.1 Try it—rename a document or a folder

The name of an object is stored in a property called cmis:name. To rename an object,
all you have to do is provide a new value for that property. Let’s change the name of
sample-a.pdf to sample-c.pdf. If you no longer have a document called sample-a.pdf,
no problem. You should be able to use what you learned in the previous section to cre-
ate one using code, or you can create one using the CMIS Workbench.

Recall from section 3.1.4 that one of the things you provided when creating a doc-
ument was a properties map. To change the name of a document, you’ll provide a
map of the properties you want to update, and then call updateProperties, as shown
in the next listing.

Listing 3.5 Renaming a document by updating its cmis : name property

def someDoc = session.getObjectByPath("/my first folder/sample-a.pdf")

println("Before: " + someDoc.name) Setting refresh to true
refreshes the object so

def props = ['cmis:name': 'sample-c.pdf'] R

updated values are in
someDoc .updateProperties (props, true) object instance
println("After: " + someDoc.name)

That’s it. Now you know how to rename a document. You can use this approach to
change any property value.

GET DEFENSIVE Just like in the earlier creation examples, you can add a
defensive check (Action.CAN_UPDATE_PROPERTIES) before doing the update
if you want to. Defensive checks of the allowable actions allow you to not only
head off error messages before they are thrown, but also to adapt the user
interface based on what the server will allow. Hiding invalid choices from
users is a good usability practice.

3.22 Try it—update the content stream

You’ve renamed the PDF sample-a.pdf to sample-c.pdf. But if you open the file associ-
ated with that document, it’s still sample-a content, as shown in figure 3.4.

800 T sample-apdi

BB E6= Gl @@ -] |[HB| 22 |

This is a sample white paper named “Sample Whitepaper A”.

Figure 3.4 You renamed the sample-a.pdf document to sample-c.pdf, but it
still contains the original file content.

www.it-ebooks.info

http://www.it-ebooks.info/

48

Set up
contentStream

CHAPTER 3 Creating, updating, and deleting objects with CMIS

You can fix that by updating the content stream with a file from the local filesystem
called sample-c.pdf.

This works much like creating a document. You need to set up a content stream
and then call setContentStream on an existing document. This is shown in the fol-
lowing listing.

Listing 3.6 Updating the content stream of a document with a local file

def someDoc = session.getObjectByPath("/my first folder/sample-c.pdf")

def file = new File('/users/jpotts/Documents/sample/sample-c.pdf"')

def name = file.getName () Grab existing
document

def mimetype = 'application/pdf'

def contentStream = session.getObjectFactory () .createContentStream(name,

file.size(),

mimetype,

new FileInputStream(file))
someDoc.setContentStream(contentStream, true, true) < Update
println("Name: " + someDoc.name) W c:ntent
println("Length: " + someDoc.contentStreamLength) stream

When you update the content stream, the first flag tells the method to overwrite the
existing stream. If the document already has a content stream set, this must be set to
true. The second flag tells it to refresh the object, which is the same concept you saw
when updating the properties.

Now when you open the PDF associated with sample-c.pdf, it will contain the con-
tent from the sample-c.pdf file, as shown in figure 3.5.

Excellent. You can now change the content stream on a document when you need
to update its content.

There’s an important caveat related to setting content streams. Different ECM
repositories have different rules concerning when content streams can be updated. If
you look at your repository’s capabilities, you’ll see that the InMemory Repository
allows content stream updates any time (as shown in figure 3.6).

|®no A sample-c-1pdf

BeRBeEe el o s m HBlo i

This is a sample white paper named “Sample Whitepaper C”.

Figure 3.5 The sample-c.pdf document now contains the content from
the local file named sample-c.pdf.

www.it-ebooks.info

http://www.it-ebooks.info/

Updating objects 49

Click Repository Info.

- - CMIS W

| D Connection E Repository Info @ Types ';; Query @ Change Log E[Cmsoh

.[w Jmy first folder. .9 00 CMIS Repository Info - Apache
| Name Capabilities
E Get descendants supported: v Yes
11| sample-b.pdf
] sample-c.pdf Get folder tree supported: v Yes
: Unfiling supported: J/ Yes
Multifiling supported: J Yes
Version specific filing supported: X No
Query: BOTHCOMBINED
Joins: NONE
' All versions searchable: X No
PWC searchable: X No
PWC updatable: v/ Yes
=8 : Content stream updates:) ANYTIME
I Renditions . NONE
Changes: NONE
| ACLs: MANAGE

This repository supports content
stream updates at any time

Figure 3.6 Some repositories don’t always allow content stream updates, but the InMemory
Repository allows them at any time.

You can also perform this check through code, as follows:
session.repositoryInfo.capabilities.contentStreamUpdatesCapability

The other two possible values for the content stream updates capability are none and
pwconly. none means what you think it means: once you set the content stream, you
can never update it. Yikes! pwc refers to the Private Working Copy, and it has to do
with versioning, which you’ll learn about in the next section. For now, know that when
a repository supports content stream updates to the PWC only, it means that to make a
change to the content stream, you’ll have to do a checkout on the document first,
which returns a PWC. Then you can update the PWC and do a check-in to commit the
change.

Now you know how to determine if and when, generally speaking, content streams
can be updated in your repository. To check whether a specific content stream can be
updated, inspect the allowable actions on the document. You've seen multiple exam-
ples of this, so it should be very familiar to you now. The allowable action you’re look-
ing for is called CAN_SET_CONTENT_STREAM, and a conditional check would look
something like the following:

www.it-ebooks.info

http://www.it-ebooks.info/

50

3.2.3

CHAPTER 3 Creating, updating, and deleting objects with CMIS

if (Action.CAN_SET_CONTENT_STREAM in
someDoc.allowableActions.allowableActions) {
//...update the content stream
}
You can now create and update documents in your content repository, which is great.
Now suppose you’re a developer in a law firm. Using what you know so far, you
could develop an application to help the firm’s attorneys collaboratively author con-
tracts. You can imagine that a given contract might go through several iterations
before it’s final. These are lawyers, after all. Inevitably, one of them is going to want to
undo a change (or multiple changes). Setting the content stream directly, like you've
been doing in this section, overwrites the file content—there’s no history, so the law-
yers wouldn’t be able to go back to an earlier version. Wouldn’t it be nice if you could
maintain older versions?
You can, and that’s the subject of the next section.

Understanding versioning

Have you ever seen a file with a name something like potts_contract_v2_jtp_jb_fm_
legal_final_signed.pdf?

This may seem like an extreme example, but it’s quite common. What’s going on
here is that multiple people are reviewing, updating, and approving the document.
The people involved in the process are attempting to keep track of the different ver-
sions of the document by adding things to the name of the file, like a version number
(v2), or their initials (jtp), or the fact that this is the final round of edits for this docu-
ment. It’s symptomatic of the fact that a plain filesystem isn’t rich enough to help you
track the multiple rounds of edits that documents and other digital assets go through
during routine business processes.

A CMIS repository that supports versioning fixes this problem. Documents go
through their normal business process, and as they’re revised, the repository main-
tains a version history, as shown in figure 3.7.

Users can revert back to previous versions at any time. Now the document’s name
can stay simple and descriptive, because the repository is keeping track of the version

history.

Before we try a versioning example, let’s /\ 20 ™ potts_contract.pdf
talk about the mechanics of creating a ver-
sion and some of the terminology that goes ° 12 ™ || potts_contract.pdf
with it. Going back to the law firm example, &
suppose rather than one lawyer working on a = 4q ™ potts_contract.pdf

contract, there’s a full legal team. If the legal

team is working on the contract, and the con- -

potts_contract.pdf

1.0
tract lives in the CMIS repository, how would J
you make sure that two lawyers don’t edit the sure 3.7 CMIS repositories can keep
contract simultaneously? This problem is track of versions so you don’t have to.

www.it-ebooks.info

http://www.it-ebooks.info/

Updating objects 51

A 2.0 ._ potts_contract.pdf

Check-in

Checkout

- potts_contract.pdf (PWC)

12 |- potts_contract.pdf

Check-in E
=
Checkout ﬁ

11 |™

potts_contract.pdf (PWC)

Time

potts_contract.pdf

Check-in E
- ‘|| potts_contract.pdf (PWC)

Checkout g—> Figure 3.8 Checkouts
create PWCs that are edited

10 |™ potts_contract.pdf and then checked in to
L : - create new versions.

handled with checkout and check-in. Before making a change, the lawyer does a
checkout on the contract. When it’s checked out, no other members of the legal team
can make changes. When the changes are made, the lawyer does a check-in. Now it’s
available to others to make their changes.

When you check out a document, you create a private working copy (PWC). As the
name suggests, this is a copy of the document that only the person performing the
checkout can change. It only exists as long as the document is checked out. Once the
document is checked in, the PWC is no longer needed. Figure 3.8 shows a series of
checkouts and check-ins happening over time, resulting in the version history you saw
previously.

Now refer to figure 3.9. Notice that each version in the version history is identified
with a number. This is called the version label. Also notice that the version labels follow
a dot syntax and that there’s a gap between 1.2 and 2.0. Version labels that are not
whole numbers (like “1.2”) are said to be minor versions, whereas version numbers that
are whole numbers (like “2.0”) are called major versions. When you check in a docu-
ment, you can tell CMIS whether you’re checking in a minor version or a major ver-
sion. The decision is usually business-specific. Typically, documents that contain a
small number of changes are checked in as minor versions, whereas more significant
changes are checked in as major versions. The most recent version in a version history
is called the latest version.

www.it-ebooks.info

http://www.it-ebooks.info/

52

3.24

The
VersioningState.
MAJOR argument
tells CMIS to
create this
version as a
major version.

CHAPTER 3 Creating, updating, and deleting objects with CMIS

A 2.0 - i potts_contract.pdf Latest version, major version
o 1.2 ! potts_contract.pdf ~ Minor version
S
= = f M . Figure 3.9 Major versions
1.1 == potts_contract.pd inor version are whole numbers; minor
versions are fractions. The
1.0 ! potts_contract.pdf Major version latest version is the most

|| . recent version in the history.

You may be curious as to why the PWCs in figure 3.8 don’t have version labels. That’s
because a PWC isn’t a version. It’s a special kind of object that only exists while the
object is checked out, so it doesn’t have a version label.

Now that you know how useful versioning can be and the terminology that goes
with it, it’s time to jump back into the CMIS Workbench and learn how to create ver-
sions in Groovy.

Try it—upload a new version of a document

The best way to understand how versions work is to try it yourself. In this section,
you’ll create a new document that you can then check out, modify, and check back in.
We’ll break this into three separate scripts that you’ll run from the Groovy console in
the CMIS Workbench as you’ve done in previous examples. First, you’ll write a script
to create the initial version of a document, then one to check out the document, and
finally one to check in a new version of the document.

CREATE A NEW DOCUMENT
This listing shows how to create the initial version of the document.

Listing 3.7 Creating the initial version of a document

import org.apache.chemistry.opencmis.commons.enums.*

Specify any
cmis = new scripts.CMIS(session) sample
) . . document
def someFolder = session.getObjectByPath('/my first folder') thatyou can
def f = new File('/users/jpotts/Documents/sample/potts_contract.docx') 4 edit.
def someDoc = cmis.createDocumentFromFile (someFolder,
£,
"cmisbook:officeDocument", <— Specify a
> VersioningState.MAJOR) versionable
println("Doc created!") type.
println("Id:" + someDoc.id)
println("Name:" + someDoc.name)
println("Length:" + someDoc.contentStreamLength)
println("Version:" + someDoc.versionLabel) <1 The version label, latest version
println("Is Latest?" + someDoc.latestVersion) W flag, and major version flag return
println("Is Major?" + someDoc.majorVersion) information about the version.

www.it-ebooks.info

http://www.it-ebooks.info/

Updating objects 53

You may have noticed that we used a custom type called cmisbook:officeDocument
in the createInitialVersion.groovy script. In the OpenCMIS InMemory Reposi-
tory, cmis:document isn't versionable by default. In the InMemory Repository bundled
with this book, we’ve included a versionable type called cmisbook:officeDocument, so
we’re using that. If you’re building OpenCMIS from source, you can use
VersionableType, which is a versionable type shipped with that repository.

CHECK OUT AND DOWNLOAD THE DOCUMENT
Now you have an initial version of a document stored in the repository. It’s time to
check it out and download the Private Working Copy locally.

YOU MUST AUTHENTICATE TO PERFORM A CHECKOUT The OpenCMIS InMemOIy
Repository doesn’t require authentication, but if you don’t provide a username
and password, the server won’t let you perform a checkout. If you haven’t done
so already, go back to the connection dialog box and provide a username and
password before you run the checkout code. Any values will work.

Listing 3.8 shows how to do the checkout. It’s one method call. Once the document is
checked out, you can use the cmis.download shortcut script to download the file to
the local machine.

Listing 3.8 Checking out the document and downloading it from the repository

cmis = new scripts.CMIS (session)
Call checkOut

method, which
returns object ID

def someDoc = session.
getObjectByPath('/my first folder/potts_contract.docx')

def pwcId = someDoc.checkOut () 4 of the PWC
println("Is checked out?" + someDoc.versionSeriesCheckedOut) FM:ireber
) includes
rintln("PWC ID:" + pwcId
P (P) download method
cmis.download (pwcId, 4 that downloads

' /users/jpotts/Desktop/potts_contract.docx"')

Make sure the target directory exists before you run this example, or you may end up
with a checked-out file that doesn’t exist locally. If this happens to you, use the CMIS
Workbench to cancel the checkout of the document, which is an action on the
Actions tab.

After running this example, the document in the repository will be checked out and
a copy of the document will be placed on the local filesystem in the path specified.

MODIFY THE LOCAL FILE AND CHECK IT IN
The document in the repository is now checked out—that will keep others from mak-
ing changes to it while you’ve got the PWC downloaded to your machine. You don’t
have to modify the file, of course, but in real life you probably wouldn’t check it in
unless it had been modified.

The next listing shows how to check in the modified local file as a new version.

www.it-ebooks.info

http://www.it-ebooks.info/

54 CHAPTER 3 Creating, updating, and deleting objects with CMIS

Listing 3.9 Checking in a modified local file as a new version

def someDoc = session.
getObjectByPath("/my first folder/potts_contract.docx")

println("id:" + someDoc.id)
Check makes sure

println("name:" + someDoc.name) y . .
you’re working with
if (!someDoc.latestVersion) { the latest version
someDoc = someDoc.getObjectOfLatestVersion (false)

}

println("Version:" + someDoc.versionLabel)
println("Is Major?" + someDoc.majorVersion)

def pwcId versionSeriesCheckedOutld

if (someDoc.versionSeriesCheckedOut) { property returns object ID
pwcId = someDoc.versionSeriesCheckedOutId < | of the PWC

} else {

pwcId = someDoc.checkOut () .
someDoc . refresh () 0the|:W|se, document
} wasn’t checked out, so
. . example won’t work
def c = session.getObject cId
Dumps the name pw ron-d J (pweld)
of the person println ("Checked out?" + someDoc.versionSeriesCheckedOut)

who checked out println("Checked out by:" +

the document someDoc.versionSeriesCheckedOutBy)
File being —> def file = new File('/users/jpotts/Desktop/potts_contract.docx')
opened is the def name = file.getName ()
locally
modified def mimetype = someDoc.contentStreamMimeType
document) .
that will be def contentStream = session.getObjectFactory().createContentStream(name,
checked in as f%le.size(),
new version mimetype,

new FileInputStream(file))

def newDocId = pwc.checkIn(false, < . .
null, Pass in null for properties

map because no properties

contentStream, .
are being changed

"Made a minor change")
println("Checked in new version")

def newDoc = session.getObject (newDocId)
newDoc.refresh()

println("Version:" + newDoc.versionLabel)
println("Is Latest?" + newDoc.latestVersion)
println("Is Major?" + newDoc.majorVersion)

In the preceding example, you pass a value of false to the checkIn method to indi-
cate that the document should be checked in as a minor version. The check-in com-
ment summarizes what’s changed.

After running this code, you should be able to use the CMIS Workbench to see that
the version has been incremented. If you click the content URL, you should see that
the file contains the new version of the content.

www.it-ebooks.info

http://www.it-ebooks.info/

3.3

331

3.3.2

Deleting objects 55

CMIS 1.1: BATCH UPDATES All of the updates shown in this section have been
against one object at a time. If you’re processing a large list of objects, this
results in more network traffic than you would probably like. New in CMIS 1.1
is the ability to perform bulk updates of properties. The new bulkUpdate-
Properties method takes an array of object IDs to update, as well as a map of
properties to set on every object in the list. The method returns a list of object
IDs that were successfully updated.

Deleting objects

You now know how to create and update objects in the repository. At some point,
you’ll need to know how to delete objects. Let’s cover some requirements for deleting
objects, and then you can try it yourself. After that we’ll discuss some special consider-
ations to think about when deleting objects.

Requirements for deleting objects

It’s quite easy to delete an object from the repository—you call the object’s delete
method. If the object’s allowable actions include CAN_DELETE_OBJECT, the call should
succeed and the object will be deleted. The only decision you need to make is whether
you want to delete all versions of the object or only the version you call the delete
method on.

DELETED OBJECTS CAN'T BE RETRIEVED Once you delete an object, that object is
gone. You can’t get it back. Some repositories have the notion of soft deletes,
and there are systems, like many source code repositories, that allow you to
revert or undo a delete. But there is nothing in the CMIS specification that
provides for this type of functionality. Even in CMIS repositories that support
versioning, if you delete a specific version of an object, it’s gone forever. So be
careful with that delete method.

Deleting documents differs slightly from deleting folders. Let’s delete the contract
you created in the previous section, and then delete the folder it was sitting in.

Try it—delete an object

In section 3.2.4, you probably created a file called potts_contract.docx. If you didn’t,
and you want to work through this example, create a test document—it doesn’t matter
what it is because it isn’t going to be around for long. The next listing shows how to
delete it.

Listing 3.10 Deleting a document

import org.apache.chemistry.opencmis.commons.enums. *
import org.apache.chemistry.opencmis.
commons . exceptions.CmisObjectNotFoundException;

def targetPath = "/my first folder/potts_contract.docx"
def someDoc
try {

www.it-ebooks.info

http://www.it-ebooks.info/

56

Throws
exception if
you try to get
an object by
path and that
object
doesn’t exist

CHAPTER 3 Creating, updating, and deleting objects with CMIS

someDoc = session.
getObjectByPath (targetPath)
} catch (CmisObjectNotFoundException confe) {
println("Could not find document to delete: " + targetPath)
return

}

println("id:" + someDoc.id)
println("name:" + someDoc.name)

if (!someDoc.latestVersion) {

someDoc = someDoc.getObjectOfLatestVersion(false) Passes in true to delete

} all versions of the
document, not only this
someDoc.delete (true) <— speaﬁcverﬁon

If you go into the CMIS Workbench and refresh the folder, you should see that your
document is no longer in the repository.

Now let’s delete the folder. If you've been following along, the folder named my
first folderisn’t yet empty. Like the document class, folder has a delete method. But if
you call delete on a non-empty folder, you’ll get an exception. If you want to delete a
folder and all of its descendents, call deleteTree instead of delete, as shown in this
listing.

Listing 3.11 Deleting a folder

import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.
commons . exceptions.CmisObjectNotFoundException;

def targetPath = "/my first folder"
def someFolder
try {
someFolder = session.
getObjectByPath (targetPath)
} catch (CmisObjectNotFoundException confe) {
println("Could not find folder to delete: " + targetPath)
return

The delete method won’t
work, in this case, because

//someFolder.delete (true) the folder isn’t empty.

someFolder.deleteTree(true, UnfileObject.DELETE, true) -
Instead, deleteTree

println("Deleted folder") will delete the
folder and all of its
descendents.

Note that when you call deleteTree, you must decide whether or not to delete all ver-
sions. You must also tell CMIS whether to delete or unfile the objects in the tree, if
unfiling is supported by the repository. The last argument passed to deleteTree indi-
cates what should happen if a failure occurs. In the preceding code, you pass in true

www.it-ebooks.info

http://www.it-ebooks.info/

3.3.3

3.4

Summary 57

so that if one object in the tree fails to get deleted, the delete operation continues
with the rest of the objects in the tree.

After running this code, my first folder and everything in it will be completely
removed from the repository.

Things to think about when deleting objects

We should mention a few things you might want to think about when deciding how to
handle deletes in your CMIS application. We’ve already talked about delete versus
deleteTree when deleting folders, and the fact that you can delete either specific ver-
sions of an object or every version. Let’s look at two other points.

DELETE VERSUS UNFILE

Repositories that support unfiling will allow you to unfile rather than delete an object,
if that’s what you want to do. If you want to unfile a document, use the removeFrom-
Folder method instead of the delete method.

Once a document is unfiled, you can’t navigate to it through the folder structure
because it no longer lives in a folder. The document can be retrieved by its object ID,
or by search, or, if you’re using the AtomPub binding, by asking the repository for its
unfiled documents collection.

DELETING THE CONTENT STREAM

You may want the object to stick around but to get rid of the content that’s associated
with the object. In that case you don’t have to delete the entire object—you can delete
only the content stream by calling deleteContentStream on the document object.

Summary

We’ve covered a lot of ground in this chapter. You can now create new folders and
documents, with or without content. You also saw a few different ways to update docu-
ments. You can update them in place by updating properties or the content stream
directly. But if you do that, the version history will be lost. One way to address that
problem is to check out documents before checking them back in as new versions.
This also prevents others from making changes to the same document at the same
time.

Last, we talked about deletes. You learned that when folders are deleted, you can
either delete only the folder, if it’s empty, or you can delete the folder as well as all of
its descendents by using deleteTree instead of delete. When deleting an object with
a version history, you can delete every version of the object or you can delete objects
individually. For some repositories, you can choose to unfile an object to remove it
from a folder instead of deleting it completely.

You can automate a lot of document processing in your organization, armed with
what you’ve learned in this chapter. But so far you’ve only worked with generic types:
folder and document. In reality, you’ll likely want to work with types that are specific
to your business requirements. Diving deeper into types, properties, and other
advanced metadata topics is the subject of the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

CMIS metadata:
types and properties

This chapter covers

General metadata concepts

CMIS types and property definitions
Constraints on property definitions
Type discovery using Chemistry
Type mutability (CMIS 1.1)
Secondary types (CMIS 1.1)

Up to this point, we’ve been working in the realm of data. This chapter will bring
us up a level into a discussion of metadata. We’ll start with a brief explanation of
what exactly metadata is and how it relates to data in general. Then we’ll cover all
of the basic types of CMIS metadata, including how they’re categorized and discov-
ered. Along the way, we’ll go through some exercises that show all of these con-
cepts in action. By the end of this chapter, you’ll have a good understanding of
CMIS metadata and the new metadata-related features that are coming in CMIS 1.1.

58

www.it-ebooks.info

http://www.it-ebooks.info/

4.1

What is metadata and why do we need it? 59

What is metadata and why do we need it?

Simply put, metadata is data about data. Perhaps a slightly more helpful definition in
this case would be data about the containers of data. If that makes no sense to you, don’t
worry. It’ll all be clear in time. If you have a good grasp of metadata already and want
to get right to CMIS metadata, you can jump ahead to section 4.2.

A good place for us to start is to relate metadata to what you already know—data.
Let’s take a library’s catalog (an old card catalog or a digital database) as an example.
Somewhere you have a book sitting on a shelf—the book is the object in this example.
The book also has an associated catalog record (physical or digital) that contains data
about the object. The data in this record is the metadata, and it includes items like the
title of the book, the author’s name, and so on. Finally, there’s an archetype for the
catalog records—a catalog record will have to conform to certain requirements
regarding the data it contains. In some cases, this description of what the cards in the
card catalog should look like may only exist in the mind of the librarian. In other
cases, it might be written down in an operations manual. Either way, that archetype
can be considered the schema. Figure 4.1 illustrates this relationship.

For the rest of this book, when we refer to metadata, we’ll be talking about metadata
in content management systems specifically, unless otherwise noted. When we talk
about types, we’re using the CMIS name for the schema. In section 4.2, we’ll talk about
what this all looks like from a CMIS perspective, which means types and property definitions.

THE SCHEMA IS METADATA, TOO Remember that because the schema is also
data-describing data, the schema is also metadata in the general sense. But
this doesn’t mean that all metadata is same as the schema. It’s OK to loosely
refer to both metadata and the schema as metadata, in cases where the dis-
tinction isn’t important.

Now that we’ve addressed what metadata is, we’'re left with the question of why we
need it. Metadata is a key part of making objects searchable. In the case of the library,
the most important thing you’re going to be doing with those catalog records is using

— Catalog entry type

Describes Describes

Figure 4.1 The schema describes metadata, which describes data.

www.it-ebooks.info

http://www.it-ebooks.info/

60

4.2

CHAPTER 4 CMIS metadata: types and properties

them to find what you want. Compare that with a CMIS example: Say you were trying
to find a photo in a CMIS repository that contained 100 million or more objects. With-
out metadata, you could visually search through them all sequentially until you found
the one you were seeking. Maybe you could even sort by filename to help out a bit if
you knew something about what the photo was called. But with proper types defined
on your repository, finding a specific image can be trivial.

Imagine you want to see all of the images that were created after 2007 and updated
sometime between 2009 and 2011. You could further restrict this search to only those
images that have a resolution of 1024 by 768 pixels and have a description field that
contains the words “elephant” and “Swahili.” Now that 100-million-result set has
shrunk by quite a bit. Even if you found a few photos that matched this criteria, it’s
likely you wouldn’t have to visually or manually scan very many.

That’s the power of CMIS Query, and that’s precisely what we’ll talk about in detail
in chapter 5. But remember, it’s metadata that makes this all possible.

Metadata in CMIS

Taking the library analogy a bit further, you can imagine that a library might store
more types of media than just books. It might have books on tape, CDs, DVDs, maga-
zines, eBooks, and perhaps even microfiche, among others. Each of these different
types of objects will have different types of metadata associated with them. This is also
typically the case with ECM systems, so it applies to CMIS. ECM repositories generally
have a large variety of objects, each with their own associated types. Later in this chap-
ter, you’ll see how CMIS manages the organization, storage, and retrieval of these
schema objects.

Typeis the name used in the CMIS specification to identify the objects that hold the
schema for normal data objects in the repository. Recall that data objects are made up
of instances of these types. Folders and documents are the most common examples of
data objects. Type objects contain collections of property definitions that define what
properties will be present on an object instance of that #ype, as figure 4.2 shows. This is
directly analogous to how data objects contain collections of properties.

As you can see in figure 4.2, all objects have one type object to describe them. Also,
for every property on that object, there’s a corresponding property definition object
on the type to describe that property. If you recall, in chapter 2 (section 2.4.2) you saw
all of the properties that are present for all objects as well as all of the additional prop-
erties that are present on all document objects. The CMIS metadata functions that
we’ll discuss in this chapter are what you use to find out which properties you should
expect to see on any object.

www.it-ebooks.info

http://www.it-ebooks.info/

4.2.1

4.2.2

Metadata in CMIS 61

Type object Property type

Property definition
collection T Legend
1
|

-
*

Y
[

Described by Descn?ed by Metadata
— |]
I
Data

Document Property value
object instance

Figure 4.2 CMIS metadata types and property definitions describe objects and
properties, respectively.

Type definitions are hierarchical and attributes are inherited

Just like the objects they describe, type objects and property definition objects have
properties themselves, but if we also called these properties, we could mistake them for
normal properties on regular instance objects, and things would get a little confus-
ing. As if they’re not already, right? To avoid this unfortunate verbal tangle, the CMIS
specification refers to properties on metadata objects as attributes. This way it’s clear
that if we say property, we’re talking about a value on an object, and if we say attribute,
we mean a value on a type or property definition. Attribute is shorter to say than
metaproperty anyway.

All of these type objects in CMIS inherit attributes from their parent type objects.
Therefore, the document type will inherit all of the attributes that are common to all
CMIS objects, and it will then add in additional ones that are only present for docu-
ments. The same is true for the attributes on property definitions. Figure 4.3 shows
the complete base metadata hierarchy for the five base types and the eight CMIS data
types we introduced you to in sections 2.3 and 2.4.

A sixth base type (cmis:secondary) isn’t shown in figure 4.3. This is due to its spe-
cial secondary/optional nature, which will be explained in section 4.4.2.

Try it—view the types and property definitions using Workbench

Now that you have a good picture of what all of this metadata looks like on paper, let’s
go into the CMIS Workbench and take a look at the types and property definitions in
the test InMemory server. In order to bring up the Types viewer in the Workbench,

www.it-ebooks.info

http://www.it-ebooks.info/

62 CHAPTER 4 CMIS metadata: types and properties

MNote the spec does not mention a true base type for these objects,
but since these hierarchies share the same common
attributes, we find it convenient to picture it as if there is (shown).

. CMiSObetType | CMIS Property Definition T
id:id ia:1d

lecalName : String lecaliame ; Stri
lecalNamespace : String lecalNamespace : Sring

queryName : String queryiame : String

dispiayName ; String displayName : String
baseld : Enum description : String

parentd : Id ~ | PropertyType : Enum
deseription : String cordinality | Enum
creatabie : Boolean updataniiity : Enum
fileable : Boolean inkverived : Boclean
queryable : Boolean ITECIUIIQG : Boolean
controllablePolicy : Boolean queryabie : Boolean
controllableACL - Boolean | orderable : Boolean
fultextindexed : Boolean | openChaice : Boolean

IndudedinSupertypeQuery : Bodlean
typetuzability create : Bodean

typeMutabliity update : Boolean String Fropert
rypetautability delete : Boclean _i maxLength : Inbeger
n 1]
B Document Object Type L [Boalean Property Type
(— versionable : Boolean -
Here are the five base CorkanSicamANOu e Boum [Gedims Fropery Type |
5 precision : Enum
CMIS object types - Folder ObjectType Mmirkgkse ; Decimal Here are the
document, maxalue : Decimal

3 . E eight basic CMIS
folder, relationship, Jm [nteger Froperty Type | data types

olicy, and item afowedTargeeTypes : Idl] s 4
policy (masvale:integer || These are fixed for
[DsteTime Preperty Type | all repositories.

(new in CMIS 1.1).
—1 resolution ; Enum |

_| Item Object Type

Al Preperty Type]

— id Property Type

HTML Preperty Type

Figure 4.3 CMIS metadata base hierarchy for types and property definitions showing each
one’s attributes

locate the Types button at the top of the window, as shown in figure 4.4. Clicking this
button will load up the Types dialog box that’s shown in figure 4.5.

Figure 4.5 shows the CMIS Types view with the cmis:document object selected in
the left pane, and the cmis:name property selected in the properties pane. Note that
the Apache Chemistry InMemory Repository we used in this example has multiple
child types of cmis:document, some of which have further subtypes, which the open

(@00 _(_:MIS/‘NP"‘!"TP"\CQ: (test) - Apache Chemistry OpenCMIS InMemory R|
| B Connection E Repository Iri_'_o J T-,rpes & Query [] Change Logger @ Console @TCK |
I up | fmy first folder R [Olljldl Actions] Properties] Relationships r
{iName | Type | Name: my test doc
. my test doc cmis:document Id: -
| | sample-a.pdf cmis:document . 157
Type: cmis:document
|| Base Type: CMIS_DOCUMENT

Figure 4.4 Types button (circled), which launches Workbench’s Types viewer window

www.it-ebooks.info

http://www.it-ebooks.info/

4.3

Type collections and hierarchies 63

This is the hierarchy of all of the
type objects in this repository.

CMIS Types - Apache Chaniutry OpenCHIS InMemory Repository

These are the attributtes
for whatever type you
have selected in the

type hierarchy view
(currently cmis:document)

These are the property
definitions that are present
on the selected type object

MNote you can scroll to the
right to see more of each
property definition's attributes

Figure 4.5 The CMIS Types window in CMIS Workbench showing the attributes and associated
property definitions for cmis : document

folder icons indicate for each one. The version of the InMemory Repository that
you’re using may have different child types of cmis:document, because the binary
package that comes with this book will continue to be updated. Also note that in this
property definition view, there’s a separate movable column for each of the attributes
on that property definition. This makes it easy to move the columns that you’re most
interested in to the left (and more visible) portion of the window.

In the property definitions pane in figure 4.5 (lower right), you can see that the
cmis:name property is highlighted. Although only a few of the property’s attributes
are shown here (scroll right to see more), you can see that the cmis:name property for
all cmis:document objects is of type STRING and its updateability is READWRITE. That is,
it’s settable by CMIS clients when they’re creating or editing the object. In contrast,
the cmis:objectId property on the line below it has an ID type and shows as READONLY
to all clients.

Type collections and hierarchies

ECM repositories often have a lot of types defined—hundreds in extreme cases. This
means that there needs to be a scalable way to organize and retrieve them. Some
repository designs treat these type collections as a large flat list, and others treat them
as a hierarchy. As you saw earlier in this chapter, CMIS defines a hierarchy to organize
all of the type objects. If an underlying repository only has a flat list, it would be
exposed through CMIS as a hierarchy with a depth of one.

www.it-ebooks.info

http://www.it-ebooks.info/

64

4.3.1

CHAPTER 4 CMIS metadata: types and properties

CUSTOM APPLICATION DEVELOPERS TAKE HEED This section is of particular
importance to custom application developers. We’ll cover type collections
and how to navigate them with two code examples that show each of the main
methods for retrieving types. Property definitions will be explained, and we’ll
also discuss the constraints that CMIS permits on properties, followed by a
final example that shows how to access choice lists. You’ll use the techniques
you learn here repeatedly as you code more complex CMIS applications in
this chapter, as well as in part 2 of this book.

Recall the default type hierarchy in figure 4.3. This isn’t meant to be the sum of the
hierarchy, but rather the tip (as in an iceberg) or a starting point that’s common to all
repositories. Each of these base types can have child and grandchild types going down
as deep and as wide as is necessary for each application. Later, in part 2 of the book,
you’ll use a custom subclass of cmis:document that will be tailored for the metadata in
the music mashup example application.

Try it—traversing the type hierarchy

Understanding how all of these types are laid out was the first step. Now that you have
that down, it’s time to look at how your application can programmatically discover
anything it needs to know about the metadata in a repository. For this, we’re going
back to our trusty Groovy console and we’ll show you how simple this seemingly com-
plex operation can be.

In this section, you’ll traverse the hierarchy of objects, looking at their attributes
along the way. You’ll even display attributes that are only present on documents so
that you can see how easy it is to determine the types of these objects. Although we
won’t examine all the attributes that are available in this short example, you’ll notice
that all of the attributes listed in the CMIS specification are accessible as getter meth-
ods on the various classes of type objects.

Listing 4.1 shows the code for traversing the type hierarchy. For more examples,
please see the Javadocs for OpenCMIS (http://chemistry.apache.org/java/0.8.0/
maven/apidocs/). In part 2 of the book, you'll see these attribute values being used in
a real application to give them a bit more context.

Listing 4.1 getTypeDescendants code example (type walker)

import org.apache.chemistry.opencmis.client.api.*
import org.apache.chemistry.opencmis.commons.enums.*

boolean includePropertyDefinitions = true;

for (t in session.getTypeDescendants (
null, // start at the top of the tree
-1, // infinite depth recursion

includePropertyDefinitions // include prop defs

)) A
printTypes(t, "");

www.it-ebooks.info

http://chemistry.apache.org/java/0.8.0/maven/apidocs/
http://chemistry.apache.org/java/0.8.0/maven/apidocs/
http://www.it-ebooks.info/

Type collections and hierarchies 65

static void printTypes (Tree<ObjectType> tree, String tab) { This is like the code

ObjectType objType = tree.getItem(); inChaPteeror
println(tab + "TYPE:" + objType.getDisplayName() + r?“"“ngthe
" (" + objType.getDescription() + ")"); directory hierarchy.
// Print some of the common attributes for this type
Print some print (tab + " Id:" + objType.getId()):; sh
attributes print (" Fileable:" + objType.isFileable()); ow
common to print (" Queryable:" + objType.isQueryable()); C°"t?“s“?amA"Qwed
and isVersionable if the
all types. if (objType instanceof DocumentType) { type is DocumentType.

print (" [DOC Attrs->] Versionable:" +
((DocumentType) objType) .isVersionable()) ;
print (" Content:" +

((DocumentType) objType) .getContentStreamAllowed ()) ;
}
println(""); // end the line
for (t in tree.getChildren()) {
// there are more - call self for next level
printTypes(t, tab + " ");

}

If you look at the output from listing 4.1 (shown in figure 4.6), you’ll see the same
information you saw in figure 4.5 with all of the child levels expanded and each level
indented to show the hierarchy visually.

Now that you know something about types and their attributes, let’s move on to the

next exercise, where we’ll expand the example to show property definitions and their
attributes as well.

TYPE:(MIS Folder (Description of (MIS Folder Type)
Id:cmis:folder Fileable:true Queryable:true
TYPE:(MIS Document (Description of (MIS Document Type)
Id:cmis:document Fileable:true Queryable:true [DOC Attrs-»] Versionable:false Content:ALLOWED
TYPE:Toggable (Toggoble document)
Id:cmisbook:toggable Fileoble:true Queryoble:true [DOC Attrs-»] Versionable:true Content:ALLOWED
TYPE:Image (Image)
Id:cmisbook:imoge Fileable:true Queryoble:true [DOC Attrs-»] Versionable:true Content:ALLOWED
TYPE:Media (Media)
Id:cmisbook:media Fileable:true Queryable:true [DOC Attrs-»] Versionable:true Content:ALLOWED
TYPE:Audio File (Audio Content (compressed or uncompressed))
Id:cmisbook:oudio Fileable:true Queryaoble:true [DOC Attrs->] Versionable:true Content:ALLOWED
TYPE:Video File (Video Content)
Id:cmisbook:video Fileable:true Queryable:true [DOC Attrs-»] Versionable:true Content:ALLOWED
TYPE:Album (Album)
1d:cmisbook:album Fileable:true Queryable:true [DOC Attrs->] Versionable:false Content:NOTALLOWED
TYPE:POF Document (POF Document)
Id:cmisbook:pdf Fileable:true Queryoble:true [DOC Attrs-»] Versionable:true Content:ALLOWED
TYPE:Office Document (Document of type OFfice)
Id:cmisbook:officeDocument Fileable:true Queryable:true [DOC Attrs-»>] Versionable:true Content:ALLOWED
TYPE:Text Document (Text Document)
Id:cmisbook:text Fileable:true Queryable:true [DOC Attrs-»] Versionoble:true Content:ALLOWED
TYPE:Lyrics (Lyrics)
Id:cmisbook:lyrics Fileable:true Queryable:true [DOC Attrs->] Versionable:true Content:ALLOWED
TYPE:Poem (Poem)

Id:cmisbook:poem Fileable:true Queryable:true [DOC Attrs-»] Versionable:true Content:ALLOWED
TYPE:Note (Note)

&
Id:cmisbook:note Fileable:true Queryaoble:true [DOC Attrs-»] Versionoble:true Content:ALLOWED v
Execution complete. Result was null. 38:1

Figure 4.6 Output from the getTypeDescendants code (type walker)

www.it-ebooks.info

http://www.it-ebooks.info/

66

4.3.2

CHAPTER 4 CMIS metadata: types and properties

Try it—examining property definitions on types

Now you’ll modify the type walker example and add in some code to walk through the
property definitions for each type. You’ll display a few key attributes for each type, like
each property’s ID, data type, and updateability.

Listing 4.2 shows the modified version of the code, type walker v2. This version
adds a new method, printPropDefsForType, that’s called in the type loop. As you can
see, it’s trivially easy to get this information from the type object using OpenCMIS.

Listing 4.2 getTypeDescendants with property definitions (type walker v2)

import org.apache.chemistry.opencmis.client.api.*
import org.apache.chemistry.opencmis.commons.enums.*

import org.apache.chemistry.opencmis.commons.definitions. Add one more include

boolean includePropertyDefinitions = true; for the .
for (t in session.getTypeDescendants (PL?pir:yDeﬁS'tlo?:Mls
null, // match all types object from Dpen
e) because it’s
-1, // infinite depth recursion .
. e . referenced in the
includePropertyDefinitions // include prop defs .
printPropDefsForType
)) { method.

printTypes(t, "");
}

static void printTypes (Tree<ObjectType> tree, String tab) {
ObjectType objType = tree.getItem();
println(tab + "TYPE:" + objType.getDisplayName () +
" (" + objType.getDescription() + ")");
// Print some of the common attributes for this type
print(tab + " Id:" + objType.getId());
print (" Fileable:" + objType.isFileable()) ;
print (" Queryable:" + objType.isQueryable()) ;

if (objType.getBaseTypelId() .equals (BaseTypeId.CMIS_DOCUMENT)) {

print (" [DOC Attrs->] Versionable:" +
((DocumentType) objType) .isVersionable()) ;
print (" Content:" +

((DocumentType) objType) .getContentStreamAllowed()) ;
}
println(""); // end the line
printPropDefsForType (objType, tab); <7 Hook in a call to the

{ printPropDefsForType
method after the type
attributes are done
printing but before
recursing further.

for (t in tree.getChildren())
// there are more - call self for next level
printTypes(t, tab + " ");

}

static void printPropDefsForType (ObjectType type, String tab) {
Map<String, PropertyDefinition<?>> mapDefs =

type.getPropertyDefinitions () ; Reuwnsalnapofthe

i property definitions for
for (key in mapDefs.keySet()) { this type, keyed by the
print(tab + " "o+ key + "=t associated property name.

www.it-ebooks.info

http://www.it-ebooks.info/

Type collections and hierarchies 67

PropertyDefinition defn = mapDefs.get (key);
print (" Id:[" + defn.getId() + "1");
print (" dataType:[" + defn.getPropertyType() + "1");

]
println(" updateable:[" + defn.getUpdatability()+"1");

}

Figure 4.7 shows the output of type walker v2. The figure shows the complete output
for the type named audioFile; the other types are omitted for space reasons.

This example has two parts because you can get at the Type and Property-
Definition objects in OpenCMIS in two different ways. In listing 4.2, you retrieved the
types from the types collection and walked the types tree directly. But sometimes it’s
more convenient to get the Type object and/or corresponding PropertyDefinition

e e e e T e e RS o L e o e S L e e S T o m
TYPE:Audio File (Audio Content (compressed or uncompressed))
Id:cmisbook:oudio Filesble:true Queryoble:true [DOC Attrs-»] Versionable:true Content:ALLOWED
cmisbook:artist-> Id:[cmisbook:artist] dataType:[STRING] updateable:[READWRITE]
cmisbook:album-> Id:[cmisbook:album] dataType:[STRING] updateable:[READWRITE]
cmisbook:title-> Id:[cmisbook:title] dataType:[STRING] updateable: [READWRITE]
cmisbook:comment-> Id:[cmisbook:comment] dataType:[STRING] updateable:[READWRITE]
cmisbook:genre-> Id:[cmisbook:genre] dataType:[STRING] updateable: [READWRITE]
cmisbook: length-> Id:[cmisbook:length] dotaType:[INTEGER] updateable: [READWRITE]
cmisbook: track-> Id:[cmisbook:track] dataType:[INTEGER] updateable:[READNRITE]
cmisbook:composer-> Id:[cmisbook:composer] dataType:[STRING] updateable:[READWRITE]
cmisbook:discNo-> Id:[cmisbook:discNo] dataType:[STRING] updateable:[READWRITE]
cmisbook:audioFormat-> Id:[cmisbook:oudioFormat] daotaType:[STRING] updateoble: [READWRITE]
cmisbook:sampleRate-> Id:[cmisbook:sompleRote] dataType:[INTEGER] updateable:[READWRITE]
cmisbook:audioChannelType-> Id:[cmisbook:oudioChannelType] dotaType:[STRING] updateable: [READWRITE]
cmisbook:noChannels-> Id:[cmisbook:noChannels] datoType:[INTEGER] updateable:[READWRITE]
cmisbook: compressorVersion-> Id:[cmisbook:compressorVersion] dataType:[STRING] updateable:[READWRITE]
cmisbook:sourceURL-> Id:[cmisbook:sourceURL] dataType:[URI] updateable:[READWRITE]
cmisbook:license-> Id:[omisbook:license] dataType:[STRING] updateable:[READWRITE]
cmisbook:year-» Id:[cmisbook:year] dataType:[INTEGER] updateable:[READWRITE]
cmisbook:artwork-> Id:[cmisbook:artwork] dataType:[ID] updateable: [READWRITE]
cmisbook:tags-> Id:[cmisbook:togs] dataType:[STRING] updateable:[READWRITE]
cmis:name-> Id:[cmis:name] dataType:[STRING] updateable: [READWRITE]
cmis:objectId-» Id:[comis:objectId] dataType:[ID] updateable:[READONLY]
cmis:objectTypeld-> Id:[cmis:objectTypeld] dataType:[I0] updateable: [ONCREATE]
cmis:baseTypeld-> Id:[cmis:baseTypeld] dataType:[ID] updateable:[READONLY]
cmis:createdBy-> Id:[cmis:createdBy] dataType:[STRING] updateable:[READONLY]
cmis:creationDate-> Id:[omis:creationDate] dotaType:[DATETIME] updateable:[READONLY]
cmis: lastModifiedBy-> Id:[cmis:lostModifiedBy] dotaType:[STRING] updateable:[READONLY]
cmis:lastModificationDate-> Id:[cmis:lastModificationDate] dataType:[DATETIME] updateable:[READONLY)
cmis:changeToken-> Id:[cmis:changeToken] dataType:[STRING] updateable:[READONLY]
cmis:description-> Id:[cmis:description] dataType:[STRING] updateable:[READWRITE]
cmis:secondaryObjectTypelds-> Id:[cmis:secondaryObjectTypelds] dataType:[ID] updateable: [READWRITE]
cmis:isImmutoble-> Id:[emis:isImmutoble] datoType:[BOOLEAN] updateable: [READONLY)
cmis:isLatestVersion-> Id:[cmis:isLotestVersion] dotoType:[BOOLEAN] updateable:[READONLY]
cmis:isMajorVersion-> Id:[cmis:isMajorVersion] dataType:[BOOLEAN] updateable: [READONLY]
cmis:isLatestMajorVersion-> Id:[cmis:islatestMajorVersion] dataType:[BOOLEAN] updateable: [READONLY]
cmis:versionLabel-> Id:[cmis:versionLobel] dataType:[STRING] updoteable:[READONLY]
cmis:versionSeriesId-> Id:[cmis:versionSeriesId] dataType:[ID] updateable:[READONLY]
cmis:isVersionSeriesCheckedOut-> Id:[cmis:isVersionSeriesCheckedOut] dotaType:[BOOLEAN] updateable:[READONLY]
cmis:versionSeriesCheckedOutBy-> Id:[omis:versionSeriesCheckedOutBy] dataType:[STRING] updateable:[READONLY]
cmis:versionSeriesCheckedQutId-»> Id:[cmis:versionSeriesCheckedOutId] dataType:[ID] updateable:[READONLY]
cmis:checkinComment-> Id:[cmis:checkinComment] dataType:[STRING] updateable: [READONLY]
cmis:contentStreamlength-> Id:[cmis:contentStreamlength] dataType:[INTEGER] updateable:[READONLY]
cmis:contentStreonMimeType-> Id:[comis:contentStreamMimeType] dataType:[STRING] updateable: [READONLY]
cmis:contentStreamFileName-> Id:[cmis:contentStreamFileNome] dataType:[STRING] updateable:[READONLY]
cmis:contentStreamId-> Id:[cmis:contentStreamId] dataType:[ID] updateable:[READONLY]
cmis:isPrivateNorkingCopy-> Id:[cmis:isPrivateNorkingCopy] dotaType:[BOOLEAN] updateable:[READONLY]
TYPE:Video File (Video Content)
Id:cmisbook:video Fileable:true Queryoble:true [DOC Attrs-»] Versionable:true Content:ALLOWED
i chank sio dasllhi dbhes Td: Cemi chanl sin danith dbh1l dataTima - TTNTECERT undatanhl o OEANMDTTE]

Execution complete. Result was null.

= F

Figure 4.7 Truncated output from getTypeDescendant with property definitions included (type
walker v2)

www.it-ebooks.info

http://www.it-ebooks.info/

68

Any time you have
an object instance,
you can always
grab its type
directly with the
getType() method.
By default
OpenCMIS will
retrieve this for
you from cache if
it’s already
present.

The amount of
properties and
property
definitions are the
same here, but
this won’t always
be the case. There
often can be more
definitions than
properties if you
have unset (and
not required)
properties, or you
used a property
filter to omit
select properties.

CHAPTER 4 CMIS metadata: types and properties

objects for a particular instance object that you have in hand, and not worry about its
type’s location in the types hierarchy. Listing 4.3 shows how to do this using the root
folder object as a generic example. This technique will work for any CMIS object you
encounter.

SYSTEM AND CUSTOM PROPERTIES When developers talk about properties in
CMIS, some will refer to custom and system properties. These terms can have
different meanings in different contexts, but in the purest CMIS context, sys-
tem properties usually refer to those properties that are defined in the specifica-
tion, namely, the properties that look like cmis:xxx, such as cmis:objectId.
Custom properties are everything else. Because custom properties aren’t
defined by the specification, they’re repository- and type-specific. For exam-
ple, later in the book we’ll work with a subclass of cmis:document named
audioFile. This type has many custom properties relating to audio tracks,
like Album, which is a custom string property that holds the album name.
Repository developers should note that you shouldn’t use the cmis: prefix for
naming any of your custom repository’s properties. That prefix is reserved for
properties defined in the specification.

Listing 4.3 Retrieving type and property definitions directly from the object

import org.apache.chemistry.opencmis.commons.*

import org.apache.chemistry.opencmis.commons.data.*

import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.client.api.*

import org.apache.chemistry.opencmis.commons.definitions.*

// obtain the root folder instance object from the session
Folder rootFolder = session.getRootFolder () ;

// this is how you get its type directly from the instance object
L~ ObjectType typeObj = rootFolder.getType() ;

println("Id of folder's type:" + typeObj.getId());

int DefCount = typeObj.getPropertyDefinitions().entrySet().size();
println("Prop definition total:" + DefCount) ;
// how to get property definitions directly from the property instance
// by just looking at the defs for the properties that are present
List<Property<?>> props = rootFolder.getProperties();
int propCount = props.size(); Much like
getType(),
>~ println("Property count:" + propCount) ; getDefinition() can
for (prop in props) { be called on any
PropertyDefinition<?> propDef = prop.getDefinition(); QJ Property object
and the definition
println(" property:" + prop.getDisplayName () + will be retrieved
" id[" + propDef.getId() + "1"); from cache if
} possible.

www.it-ebooks.info

http://www.it-ebooks.info/

4.3.3

Type collections and hierarchies 69

|

Id of folder's type:cmis: folder
Prop definition total:12
Proparty count:12
property: Allowed Child Types id[emis: allowedChildobjectTypeIds]
property: Path id[cmis: path]
property: Modified By id[cmis:lastModifiedBy]
property: Type-Id id[cmis: objectTypeld]
property: Created By id[ecmis:createdBy]
property: Name id[cmis: name]
property: Object Id idlcmis: objectId]
property: Creation Date id[cmis:creationDate]
property: Change Token id[cmis:changeToken]
property: Base-Type-Id id[cmis: baseTypeld] |
property: Parent Id id[cmis: parentId]
property: Modif ication Date id[cmis:lastModificationDate) v
< J T

Execution complete, Result was null. 711

Figure 4.8 Output showing type and property definition information retrieved
directly from the instance object

If you take a look at the output in figure 4.8, you can see that the number of property
definitions that were defined on the cmis: folder type matches the number of prop-
erties that were on the instance of the folder object. See the callouts in the example
for a discussion of why this isn’t always the case.

Now that you’ve seen how to get to the PropertyDefinition objects, let’s look at
all of the types of constraints that are permitted on them.

Constraints on property definitions

The last aspect of property definitions that we need to explore (before we’re ready to
talk about the new CMIS 1.1 metadata features) is the concept of constraints. Aside
from specifying what type of data the property holds and its cardinality, a property def-
inition may also place constraints on the potential values.

Constraints break down into two main groups, as explained in the next section.

COMMON CONSTRAINTS ON PROPERTY DEFINITIONS

Here’s a quick rundown of the constraints that can be present on any of the eight
property definition object types. For a more detailed discussion of these, see section
2.1.3.3.2 of the CMIS 1.1 specification.

= choices—An explicit ordered set of values that are permissible for this prop-
erty. For example, a string property definition named PrimaryColors might
have choices = [Red, Green, Blue]. Each choice includes a displayName and
a value. The displayName may be used by clients for presentation purposes.

= openchoice (boolean)—This attribute is only applicable to properties that
provide a value for the choices attribute. If it’s FALSE, the data value for the
property must only be one of the values specified in the choices attribute. If it’s
TRUE, values other than those included in the choices attribute may be set for
the property.

www.it-ebooks.info

http://www.it-ebooks.info/

70

4.3.4

CHAPTER 4 CMIS metadata: types and properties

= defaultvalue—Contains the value that the repository must set for the property

if one isn’t provided at object creation time. If a property is set to required and
doesn’t have a default value, any attempt to create an object when this property
hasn’t been set will result in a constraint exception being thrown.

PROPERTY-SPECIFIC TYPES OF CONSTRAINTS

There are four additional types of constraints for specific property types. For a more
detailed discussion of these, see sections 2.1.3.3.3-2.1.3.3.5 of the CMIS 1.1 specifica-
tion. These are the four type-specific constraints:

= minValue and maxValue—Apply to Integer and Decimal property types only

and specify the minimum and maximum values permitted for this property. If
an application tries to set this property to a value outside of this range, the
repository must throw a constraint exception.

= maxLength—Applies to String property types only and specifies the maximum

length (in characters) allowed for a value of this property. If an application

attempts to set the value of this property to a string longer than the specified

maximum length, the repository must throw a constraint exception.

resolution—This is an enum that applies only to DateTime property defini-

tions. Each value in the following list implies all of the values above it, like bit

flags. For example, if the value of time is present, this implies that time, date,

and year are persisted. The permitted values for this enum are as follows:

¢ year—VYear resolution is persisted. The date and time portion of the value
should be ignored.

¢ date—Date resolution is persisted. The time portion of the value should be
ignored.

¢ time—Time resolution is persisted.

precision—This is an enum that applies to property definitions of Decimal

only. The permitted values for this enum are as follows:

¢ 32—Use 32-bit precision (“single” as specified in IEEE-754-1985)

¢ 64—Use 64-bit precision (“double” as specified in IEEE-754-1985)

Next up, we’ll exercise some of these constraints using the Groovy console in the CMIS
Workbench.

Try it—examining constraints on property definitions

Ready to see how this all looks in code? Let’s go back to the CMIS Workbench again
and have a look at listing 4.4. It augments the type walker v2 example to also show
choice lists, default values, and the integer-specific constraint maxvValue.

Listing 4.4 Examining the constraints on property definitions

import org.apache.chemistry.opencmis.client.api.*
import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.commons.definitions.*

www.it-ebooks.info

http://www.it-ebooks.info/

Type collections and hierarchies 71

ObjectType complex = session.getTypeDefinition("cmisbook:audio"); // < Grab the
printPropDefsForTypeWithContraints (complex, ""); typeforthh
static void printPropDefsForTypeWithContraints (ObjectType type, e¥amph
String tab) { f]lrectly by
Map<String, PropertyDefinition<?>> mapDefs = type its 1D
.getPropertyDefinitions() ; z;ﬁz::ﬁan
for (key in mapDefs.keySet()) { naﬁgaﬁng
print (tab + " "+ key + "->"); for it.
PropertyDefinition defn = mapDefs.get (key) ;
print (" Id:[" + defn.getId() + "1");
print (" dataType:[" + defn.getPropertyType() + "1");

println(" updateable: ["+defn.getUpdatability ()+"1");

//
if

//
if

//
if

}

show min max constraint test on integer type
(defn.getPropertyType () .equals (PropertyType.INTEGER)) { // <
PropertyIntegerDefinition propDefInt =
(PropertyIntegerDefinition) defn;
if (propDefInt.getMaxValue() != null) {
println (" Max value:"
+ propDefInt.getMaxValue()) ;

Check for type-specific
constraints by determining the
data type of the definition and
casting it into the specific

} definition type to get at the
data type—specific methods.

list default value if present

(defn.getDefaultvalue() != null) {
println(" default value:["
+ defn.getDefaultvalue() .get(0) + "1"); // < Forbrevhy
’

assume the
default value is

list choices if present .
a single value.

(defn.getChoices () .size() > 0) {
// there are choices on this property
print (" choice present: values:[");

7

)
List<Choice> choices = defn.getChoices();
Cardinality card = defn.getCardinality()
for (choice in choices) {

if (card.equals(Cardinality.SINGLE)) {

print (choice.getValue().get(0) + " "); // <—— Get the value.
} else {
// code to iterate through all values in
// choice.getValue() if this was a
// multivalued choice.
}
}
println("]");

Figure 4.9 shows the output pane from the Groovy console window.

www.it-ebooks.info

http://www.it-ebooks.info/

72

4.3.5

44

44.1

CHAPTER 4 CMIS metadata: types and properties

TR, VTS AONIE AN L0, (LIS, VT SAONL 0N | UL T YR |3 TR | UG et | PSRN T]
BooleanProp-> Id: [BooleanProp] dataType: [BOOLEAN] updateable: [READWRITE]
cmis: isVersionSeriesCheckedOut-> Id: [cmis: isVersionSeriesCheckedOut] dataType: [BOOLEAN] updateable: [READONLY]
emis: lastModif iedBy-> Id: [cmis:lastModifiedBy] dataType: [STRING] updateable: [READONLY]
emis: createdBy.> Id: [cmis: createdBy] dataType: [STRING] updateable: [READONLY]
IdPropHV-> Id:[IdPropMV] dataType: [ID] updateable: [READWRITE]
PickListProp-> Id: [PickListProp] dataType: [STRING] updatesble: [REAIWRITE]
default value: [blue]
choice present: values:[red green blue black]
IntProp-> Id: [IntProp] dataType: [INTEGER] updateable: [READWRITE]
HtmlPropMv-> Id: [HtmlPropMy] dataType: [HTHL] updateable: [READWRITE]
cmis: islatestMajorVersion-> Id: [cmis: islatestMajorVersion] dataType: [BOOLEAN] updateable: [READONLY)
emis: contentStreanld-> Id: [emis: contentStreamId] dataType: [I0] updateable: [READONLY)
emis: name-> Id: [cmis:name] dataType: [STRING] updateable: [READWRITE]
emis: contentStreamMimeType-> Id: [cmis: contentStreamMimeType] dataType: [STRING] updateable: [READONLY] 2

StringProp-> Id: [StringProp] dataType: [STRING] updateable: [READWRITE]
emis: creationDate-> Id: [cmis: creationDate] dataType: [DATETIME] updateable: [READONLY)
emis: changeToken-> Id: [cmis: changeToken] dataType: [STRING] updateable: [READONLY] v

Execution complete. Result was null. 12:1

Figure 4.9 Truncated output from listing 4.4, showing choice lists and default values

Attribute and attribute value inheritance

Before we get to the new CMIS 1.1 metadata features, we need to clarify one more
thing related to inheritance and attributes. You may recall (from earlier in this chap-
ter) the hierarchy of the CMIS type definitions and the attributes that are inherited
from the base CMIS object type. An object type will inherit all of its parent type’s attri-
butes, but the values of the attribute aren’t inherited.

Let’s consider the versionable attribute of cmis:document to illustrate this. All
subtypes of cmis:document in a repository must have the versionable attribute that
was introduced at the cmis:document level. But the specific Boolean value of ver-
sionable for each of those subtypes is set independently. Therefore, in a particular
repository, cmis:document might have versionable=true and still have a subtype
named invoiceDocument that has versionable=false.

CMIS 1.1 metadata features

CMIS 1.1 adds two powerful tools that extend what clients can do with metadata:

= Type mutabilit—Allows CMIS clients to create, read, update, and delete (CRUD)
type definitions, which means a CMIS installer application can set up the
required types in a repository-agnostic manner. Another way of looking at this is
that the manual steps required for an administrator to create a type definition
through the repository-specific interfaces are no longer necessary.

= Secondary types—These special types can be attached to (or detached from) an
object at any point during its life. They allow you to dynamically add or remove
lists of additional properties during the lifetime of an object.

We’ll describe these tools in the following sections.

Type mutability

The process for creating and deleting types can be surprisingly simple. Nevertheless,
type updates have to follow a strictly defined set of rules (for the detailed list, see sec-
tion 2.1.10.1 in the CMIS 1.1 specification), which we’ll explain in this section.

www.it-ebooks.info

http://www.it-ebooks.info/

CMIS 1.1 metadata features 73

The CMIS specification doesn’t allow you to create new base types, only subtypes of
existing ones. You can check whether or not a given type allows subtypes by inspecting
its type definition.

CONSTRAINT (SECURITY)

As you might expect, only special users can create types for a given repository. The
typeMutability.create flag for a given type isn’t to be interpreted as rights for the
current user. Rather, it states whether or not an administrator (or the repository equiv-
alent of the administrator) may create a subtype of this type. This is generally true for
all rights associated with type mutability. They refer to the repository as a whole in the
context of an administrator. Put another way, typeMutability.create indicates
whether the repository permits an administrator to create subtypes.

The type mutability settings for a specific type are shown later in figure 4.12. Each
type may have any of these three optional Boolean values set. These flags are defined
in the CMIS 1.1 spec (section 2.1.3.2.1, “Attributes common to ALL Object-Type Defi-
nitions”) as follows:

= typeMutability.create—Indicates whether new child types may be created
with this type as the parent

= typeMutability.update—Indicates whether clients may make changes to this
type per the constraints defined in this specification

= typeMutability.delete—Indicates whether or not clients may delete this type
if the repository contains no instances of it

CONSTRAINT (TYPE AND PROPERTY ID VALUES)

Another point often missed is that the type ID returned by the createType operation
might not be the same as what was requested. Because the underlying repository may
have other restrictions on the ID value, you may only suggest rather than specify. If the
repository can use the ID you suggested, that’s what will be returned. Otherwise it may
be slightly modified or even entirely different. The same is true for new property type
IDs on new or existing object types. For more on this, see the constraint section later
in this chapter about order of the properties returned.

CONSTRAINT (NEW SETTABLE ATTRIBUTES)
Section 2.1.3.2.1 of the CMIS 1.1 specification lists the attributes that are common to
all object type definitions. As a quick refresher, they are the following:

= id = creatable

= localName = fileable

= JlocalNamespace = queryable

= displayName = fulltextIndexed

= gueryName = includedInSupertypeQuery
= description = controllablePolicy

= controllableACL

www.it-ebooks.info

http://www.it-ebooks.info/

74

CHAPTER 4 CMIS metadata: types and properties

It’s important to note that you may not necessarily be able to set all (or any) of these
attributes when creating a type. The correct way to find out for certain is to refer to
the capabilityNewTypeSettableAttributes list. This will indicate which of the attri-
butes this particular repository will accept for new types. Don’t be surprised if your
repository doesn’t allow setting any of these. Often these will be internally generated
based on other attributes of (or on inheritance from) the type.

Figure 4.10 shows the capabilityNewTypeSettableAttributes list for the InMem-
ory Repository. If you look towards the bottom of the figure, you’ll see that the reposi-
tory hasn’t permitted any settable attributes, which isn’t correct. At the time of this
writing, the InMemory server wasn’t populating this list.

v CMIS Repository Info - Apache Chemistry OpenCMIS InMemory Repository -+
Name: Apache Chemistry OpenCMIS InMemory Repository I-;
Id: Al

Description: Apache Chemistry OpenCMIS InMemory Repository (Version: 0.9,0-SNAPSHOT)
Vendor: Apache Chemistry

Product: Apache-Chemistry-OpenCMIS-nMemory/0.9.0-SNAPSHOT 0.9.0-SNAPSHOT

CMIS Version: 1.1

Root folder Id: 100

Latest change token: 0

Thin client UR:

Principal id anonymous: anonymous

Principal id anyone: anyone

Changes incomplete: ¢ Yes

Changes on type: cmis:document, cmis:folder, cmis:item, cmis:secondary v

Capabilities:
Get descendants supported: s Yes

Get folder tree supported: v Yes
unfiling supported: v Yes
Multifiling supported: v Yes
Version specific filing supported: X No
Query: BOTHCOMBINED
Joins: NONE
All versions searchable: X No
PWC searchable: X No
PWC updatable: Yes
Content stream updates: ANYTIME
Renditions: READ
Changes: NONE
ACLs: MANAGE

New type settable attributes:

Creatable property types: html, datetime, id, integer, boolean, uri, decimal, string

(EL

Figure 4.10 CMIS 1.1 repository information settings related to type mutability (partial)

www.it-ebooks.info

http://www.it-ebooks.info/

CMIS 1.1 metadata features 75

CONSTRAINT (CREATEABLE PROPERTY TYPES)
When you’re adding properties to your new type (or adding them to existing types)
you must also be aware that a repository may not let you create properties of all of the
CMIS-defined property types, even if they’re in use elsewhere in the repository. To
make this clear for clients, the repository information will contain a list of capability-
CreatablePropertyTypes. This is a list of all of the CMIS-defined property types
(boolean, id, integer, datetime, decimal, html, string, and uri) with an associated
Boolean indicating whether or not it’s OK to create properties of each type in object
types.

Figure 4.10 shows these settings for the InMemory Repository. If you look at the
last line in the figure, you can see that this InMemory Repository supports creating
properties for all eight of the CMIS-defined property types.

CONSTRAINT (ORDER OF RETURNED PROPERTIES)

The order of property types returned from the server is important. When an object
type is created or updated, the repository’s response will return the new type’s proper-
ties in the exact same order in which they were listed in the input (the create or
update) request. This is necessary so that clients can tell which properties correspond
to their requested properties in cases where the IDs are different from what was
requested. Remember that earlier we said that the value you pass for the type and
property ID is only a suggestion. The repository may change it if necessary, so always
use the returned value.

TYPE CREATION

To create a type, you have to provide the type definition and all of its new property
definitions. Because that’s generally a repetitious, lengthy, and error-prone piece of
code, OpenCMIS provides the TypeUtils class, which can read and write type defini-
tions from and to XML and JSON. The XML and JSON format is the same format that’s
defined in the specification to send type definitions over the wire. The simplest way to
create a new type is to save an existing type as XML or JSON from the CMIS Workbench
(by clicking the Save Type Definition button at the top of the Types screen), edit this
file, and then create the new type.

To speed things up, we’ll include a working sample that you can use for the
upcoming examples, as well as a template for additional types you may want to create
as you’re trying things out.

Listing 4.5 shows the XML for a new cmis:document subtype named my-document.
It has one additional integer property defined with the IDmy-int.

Listing 4.5 Sample XML to import for a new my-document type

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ns3:type xmlns="http://docs.oasis-open.org/ns/cmis/core/200908/"
xmlns:ns2="http://docs.ocasis-open.org/ns/cmis/messaging/200908/"
xmlns:ns3="http://docs.oasis-open.org/ns/cmis/restatom/200908/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:type="cmisTypeDocumentDefinitionType">

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 CMIS metadata: types and properties

<id>my-document</id>
<localName>my-document</localName>
<localNamespace>local</localNamespace>
<displayName>CMIS Document</displayName>
<queryName>my-document</queryName>
<description>Description of My Document Type</description>
<baseId>cmis:document</baseId>
<parentId>cmis:document</parentId>
<creatable>true</creatable>
<fileable>true</fileable>
<queryable>true</queryable>
<fulltextIndexed>false</fulltextIndexed>
<includedInSupertypeQuery>true</includedInSupertypeQuery>
<controllablePolicy>false</controllablePolicy>
<controllableACL>true</controllableACL>
<versionable>false</versionable>
<contentStreamAllowed>allowed</contentStreamAllowed>
<propertyIntegerDefinition>
<id>my-int</id>
<localName>my-int</localName>
<localNamespace>local</localNamespace>
<displayName>Int</displayName>
<queryName>my-int</queryName>
<description>Int</description>
<propertyType>integer</propertyType>
<cardinality>single</cardinality>
<updatability>readwrite</updatability>
<inherited>false</inherited>
<required>false</required>
<queryable>true</queryable>
<orderable>true</orderable>
<openChoice>false</openChoice>
</propertyIntegerDefinition>
</ns3:type>

Now that the XML input file is sorted out, let’s take a look at that code. Listing 4.6
shows the steps for using TypeUtils to parse that XML into a TypeDefinition object
and then using the CreateType method to create the type. At the end of the listing,

we’ve commented out a section that shows how you’d do the same thing if your type
export file was in JSON format.

Listing 4.6 Code for creating a new subtype of cmis : document using TypeUtils

import org.apache.chemistry.opencmis.commons. *

import org.apache.chemistry.opencmis.commons.data.*

import org.apache.chemistry.opencmis.commons.definitions.*
import org.apache.chemistry.opencmis.commons.enums.*
import org.apache.chemistry.opencmis.client.api.*

import org.apache.chemistry.opencmis.client.util.*

if (session.getRepositoryInfo().getCmisVersion() ==
CmisVersion.CMIS_1_0) {
println("CMIS 1.0 does not support the creation of types!");

www.it-ebooks.info

http://www.it-ebooks.info/

CMIS 1.1 metadata features 77

else {
ObjectType parentType = session.getTypeDefinition("cmis:document") ;
TypeMutability typeMutability = parentType.getTypeMutability () ;

if (typeMutability != null &&
Boolean.TRUE.equals (typeMutability.canCreate())) {

// fix your path here

InputStream streaml = new FileInputStream("./my-document.xml") ;
TypeDefinition typel = TypeUtils.readFromXML (streaml) ;
ObjectType createdTypel = session.createType (typel);

// if we wanted to use json instead

//InputStream stream2 = new FileInputStream("./my-document.json");
//TypeDefinition type2 = TypeUtils.readFromJSON (stream2) ;
//ObjectType createdType2 = session.createType (type2);

}

Once the code has completed running, you can restart your Chemistry Workbench
(or at least reconnect so that the metadata will be refreshed) and have a look at the
new type, which is shown in figure 4.11. The figure shows my-document selected in the
type tree and the my-int property highlighted at the bottom of the properties pane.

| = CMIS Types - Apache Ct istry OpenCMIS ¥y Repository - 4+ x
a}' Save Type Definitlon ! Update Type . Dalete Type '_ Create Type
* ([CMIS ttem (cmis:item) Nt CMIS Document a
¥ (@ CMiS Document (cmis:document) S iRl - N
» (i My Type 1 Level 1 (MyDocTypel) escription: escription of My Document Type
» (@ My Type 2 Level 1 (MyDocType2) d: ry-document
| Complex type with properties, Level 1 (Local Namespace: local
» (i Document type with properties, Level 1/ || Local Name: ry-document
_ VersionedType (VersionableType) Query Name: rry-document
L Audio File (audioFile) Base Type: emis:document
_ Email Document (emallDocument) Creatable: J Yes
. EXIF Image (exifimage) Fileabl
» (i Office Document (officeDocument} llenuiet o/ ves
Queryable: v Yes
I Included in super type queries: / Yes
L1 €MIS Folder {cmis:folder) Full text indexed: X No
| Secondary Type {cmis:secondary)
ACL controlable: o Yes
Palicy controlable: X No
Type mutability:
Wersionable: X No
Content stream allowed: allowed v
Hame |1d Description Local Namespace |
TLnECKED UoT CCMISISVErSIONSEESLNECKE.. 1NI5 15 & LNECKed UUT prope... 1ocar |
Modification Date cmis:lastModificationDate This is a Modification Date p... local
Modified By cmis:lastModifiedBy This is a Modified By property. local
Name cmis:name This is a Name property. local
Object 1d cmis:objectid This is a Object Id property. local
Type-id cmis:objectTypeld This is a Type-ld property. local
Secondary Type Ids cmis:secondaryObjectTypelds This is a Secondary Type Ids... local
Wersion Label cmis:versionLabel This is a Version Label prop... local
Checked Out By cmisiversionSeriesChecked... This is a Checked Out By pro... local
Checked Out id cmisiversionSeriesChecked... This is a Checked Out Id pro... local
‘ersion Series Id cmisiversionseriesid This is a Version Serles Id pr..._local
v
e e 11 ||

Figure 4.11 CMIS Types screen showing off our newly minted my-document type

www.it-ebooks.info

http://www.it-ebooks.info/

78

TYPE DELETION

CHAPTER 4 CMIS metadata: types and properties

Unused types can be deleted subject to these constraints:

= The type delete flag in the type definition is set to true.

= The type has no subtypes currently defined in the repository.

= No objects (instances) of this type currently exist in the repository.

The first of these constraints is discovered by inspecting the type definition for the
object in question. Figure 4.12 shows the Chemistry Workbench type mutability set-
tings for the VersionedType. Note that this type supports create, update, and delete.
Recall that we already showed you how to programmatically check this in listing 4.6,

where we checked to see if we could create.

To determine if the type has subtypes, you’ll have to navigate the type tree as we
showed you earlier in this chapter. Lastly, you can use Query to discover if any objects
of a given type currently exist. Alternatively, you can try to do the delete type opera-
tion, and if any of these constraints isn’t satisfied, the repository will let you know with

the corresponding error.

CMIS Types - Apache Chemistry OpenCMIS InMemory Repository

\aﬂ} Save Type Definition |!/, Update Type ﬁ Delete Type |_i_ Create Type

» (B CMIS item (cmis:item)

Name:
¥ (& CMIS Document (cmis:document) T
* [My Type 1 Level 1 (MyDocTypel) l.‘(.;escrlptlon.
Id:

* [My Type 2 Level 1 (MyDocType2)
_"| Complex type with properties, Level 1 (i Local Namespace:
* (B8 Document type with properties, Level 1| || Local Name:

R VversionedType (VersionableType) Query Name:

VersionedType

Description of VersionedType Type

VersionableType
local

VersionableType
ersionableType

Fe——————r e

| Audio File (audioFile) Base Type: cmis:document
| Email Document (emailDocument) Creatable: J Yes
_| EXIF Image (exifimage) i
» [office Document (officeDocument) Fligable: of Yes
[video File (videoFile) Queryable: v Yes
__‘ CMIS Folder (cmis:folder) Included in super type queries: / Yes
| "1 Secondary Type (cmis:secondary) Eull test indexed: X No
ACL controlable: J Yes
Policy controlable: X No
Type mutability: create, update, delete
Versionable: J Yes
Content stream allowed: allowed
Allowed source types:
Allowed target types:
| Name | Id | Description |
| Sample String Property VersionedStringProp This is a Sana |
Base-Type-d cmis:baseTypeld This is a Bas
Change Token cmis:changeToken This is a Che
Checkin Comment emis:checkinComment This Is a Ch
| File Name cmis:contentStreamFileName This is a File
| Stream Id cmis:contentStreamid This is a Str
| Content Length cmis:contentStreamLength This is a Col
| Mime Type cmis:contentStreamMimeType This is @ Miry |
p g

Figure 4.12 Type information for VersionedType showing the type mutability options available

www.it-ebooks.info

http://www.it-ebooks.info/

CMIS 1.1 metadata features 79

The following example shows type deletion:

import org.apache.chemistry.opencmis.commons. *

import org.apache.chemistry.opencmis.commons.data.*

import org.apache.chemistry.opencmis.commons.definitions.*
import org.apache.chemistry.opencmis.commons.enums. *
import org.apache.chemistry.opencmis.client.api.*

ObjectType type = session.getTypeDefinition("my:type");
TypeMutability typeMutability = type.getTypeMutability () ;

if (typeMutability != null &&
Boolean.TRUE.equals (typeMutability.canDelete())) {
session.deleteType (type.getId()) ;
}
With deletion covered, we have one more modification operation to go. Update fin-
ishes off the set and is up next.

TYPE UPDATES
The logic behind updating a type is similar to creating a type, so we won’t waste space
here with a complete listing. A type definition has to be provided that contains the
changes (usually additions) that you wish to have committed. Then you commit the
change with the updateType method, as you did with createType in the first type cre-
ation example.

The code is simple, but the restrictions on when you can update a type are a bit
more complicated. Section 2.1.10.1 of the CMIS 1.1 specification covers all of the con-
straints for metadata updates. The following list highlights these important items:

= Inherited properties must not be modified. This includes constraints of any
kind.
= Properties defined by the CMIS specification must not be modified. This
includes constraints of any kind.
= Only leaf types may be modified. That is, if a type already has child types
defined, then it (and all of its properties and constraints) must be considered
read-only.
= Any added properties marked as “required” must have a default value.
= Required properties may be changed to optional.
= Optional properties must not be changed to required.
= Property definitions must not be removed.
= Property choice constraints may be changed in the following ways:
¢ Open choice may change from false to true.
¢ Open choice must not change from true to false.
¢ Choices may be added or removed if open choice is true.
¢ Choices must not be removed if open choice is false. Validation constraints
(min/max length, min/max value, and so on) on existing properties may be
relaxed, but they must not be further restricted.

www.it-ebooks.info

http://www.it-ebooks.info/

80

44.2

CHAPTER 4 CMIS metadata: types and properties

For example, an integer property value that originally had a minimum con-
straint of 100 and a maximum constraint of 1,000 could change as follows:
— The minimum could be changed to 50 but couldn’t be changed to 150.
— The maximum could be changed to 1,100 but couldn’t be changed
to 900.
= An existing property type’s data type and cardinality must not be changed. For
example, an Integer property type must not be changed to a String.

That covers the basics of create, update, and delete for types. Next up are the new sec-

ondary types.

Secondary types

Support for secondary types is new in CMIS 1.1. We’ll first explain what a secondary
type is and then talk about how creating secondary types differs from what you already
know about creating normal content types. Finally, you’ll see how easy it is to add sec-
ondary types to and remove them from the objects in your CMIS repository.

WHAT IS A SECONDARY TYPE?

Suppose you’re building a case management system and you’re persisting the docu-
ments the system manages into a CMIS repository. If these are legal cases, you might
have a content type called complaint and another called deposition transcript. You
might also use an image content type for images related to the case, and these content
types might appear on different branches of the content type hierarchy. This leads to
the question of what you would do if you need to define metadata that’s common
across all of these types. To keep it simple, we’ll use a case number as an example.

One option would be to define the property in a common ancestor type, but then
you’d end up potentially inheriting that property in places where it isn’t needed.
Another option would be to define the property redundantly—every type that needs it
would define its own case number property. Neither of these is a great option. To
address this problem, some content repositories support the concept of a free-floating
type that can be arbitrarily attached to any object in the repository. Different reposito-
ries use different names to describe these special types. For example, in Alfresco,
they’re called aspects. In CMIS they’re called secondary types.

Using the example of the legal case management system, a document that stores the
transcript of a deposition would be created as an instance of a deposition transcript,
and because it’s related to a specific case, you can add the case-relatedsecondary type
to it. Now the object has all of the metadata defined by the primary type, as well as the
case-related secondary type.

Now suppose the CMIS repository will also be used to archive email. Some email
might be related to a specific case, and some may not. Email will be created using an
email content type, because that’s fundamentally what that object is, and only those
emails related to a specific case will be given the case-related secondary type. If
someone later decides that an email isn’t case-related, the case-related secondary
type can be removed without changing its primary content type.

www.it-ebooks.info

http://www.it-ebooks.info/

CMIS 1.1 metadata features 81

Later, someone might decide to add a tagging capability to the case management
system. A taggable secondary type makes it easy to add tag-related metadata to all
of the objects that need to be tagged. Now objects can be both case-related and
taggable. In this way, secondary types provide a means to achieve multiple inheri-
tance, which can’t be accomplished with primary content types alone.

Therefore, secondary types are often used to group together properties that define
characteristics that many different content types might exhibit, in an effort to simplify
or more efficiently implement the content model. They have the added benefit of
being easy to add to and remove from an object without altering its fundamental type.

As we mentioned, not all repositories support secondary types. We’ll discuss a spe-
cial base type called cmis:secondary in the next section. If your repository returns
cmis:secondary in the list of type definitions returned by getTypeChildren, your
repository supports secondary types.

CREATING SECONDARY TYPES
Creating a secondary type is nearly identical to creating a normal content type with
CMIS. You define your content type using XML or JSON, and then upload the defini-
tion to the repository. An important difference is that the base type must be the spe-
cial cmis:secondary base type—that’s what distinguishes secondary types from
normal types.

Here are the constraints that must be followed when creating secondary types:

= creatable—Must be set to false. That’s because creating instances of second-
ary types isn’t allowed. All objects must be instances of primary types.

= fileable, controllablePolicy, and controllableACL—Must also be set to
false. The repository uses these values set on the primary type to decide
whether or not an object instance is fileable, controllable by a policy, or control-
lable by an ACL.

= parentId—Must not be set. Unlike primary types, secondary types aren’t
defined in a hierarchy.

USING SECONDARY TYPES
Once you’ve defined a secondary type in the repository, it’s easy to add it to or remove
it from an object. Objects in a repository that support secondary object types have a
system property called cmis:secondaryObjectTypeIds. This is a read-write, multi-
value field that lists the type IDs of the secondary types present on that specific object.
To add a secondary type to an object, you update the property by adding the
desired secondary type’s type ID to the list. Once added, you can set the properties
defined by the secondary type as you would any other property. In fact, you can add a
secondary type and set the properties it defines simultaneously in a single update-
Properties call.
To remove a secondary type from an object, remove the secondary type ID from
the list. The properties (and values) will be removed from the object.

www.it-ebooks.info

http://www.it-ebooks.info/

82

4.5

CHAPTER 4 CMIS metadata: types and properties

Now you know all there is to know about the new type mutability and secondary
types features in CMIS 1.1, which brings us to the end of our adventures in the world
of metadata.

Summary

In this chapter, you learned all of the basic concepts of metadata in typical ECM sys-
tems, as well as how those concepts map to CMIS terms. In addition, you discovered
how to exercise those features programmatically in OpenCMIS. Specifically, you
learned about CMIS types and property definitions and the attributes that describe them.
This chapter also covered the different types of constraints that can be present on
these types. Finally, you walked through the new advanced CMIS 1.1 metadata fea-
tures: type mutability and secondary types.

Now that you understand these metadata basics, you're ready to effectively use one
of the most powerful features of the entire specification. That feature is Query, and
we’ll talk about it in great detail in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Query

This chapter covers

Query overview

CMIS Query syntax
Advanced Query functions
Full-text search syntax

In the last chapter, we spent a lot of time describing types in order to prepare you
for this chapter. As we mentioned at the beginning of chapter 4, without metadata
you wouldn’t have an elegant method for narrowing your searches. Remember the
example from the beginning of chapter 4, where we were searching for a specific
photo of an elephant? Flexible query capabilities might not be a big deal when
you’re shuffling through your filing cabinet at home, but wait until you’re search-
ing on the scale of Enterprise Content Management systems, where you might be
talking about billions of documents. At that scale, you’d better be packing some
powerful tools for query, or have a /ot of free time.

Luckily, CMIS defines a powerful and flexible way to describe searches, and it
does this using a syntax that you’ve probably already been using for years—SQL. As
you get deep into this chapter, you may start to feel a little dizzy, but don’t be dis-
couraged. This chapter is hands-down the most difficult one in part 1, and one of
the most difficult in the whole book. The concepts introduced here are equally

83

www.it-ebooks.info

http://www.it-ebooks.info/

84

5.1

511

5.1.2

CHAPTER 5 Query

powerful and complex. The chapter includes a lot of detail that you may not need at
this moment, but we’ll cover the subject comprehensively. We packed this chapter
with tons of examples so that later, when you need to know the syntax of something
tricky, odds are you’ll be able to find something here to copy and paste to get you up
and running.

Therefore, don’t worry about absorbing all of this in the first pass. The chapter is
broken up into many small chunks so you’ll be able to find what you’re looking for
later. But if you read it all the way through, we believe the path we’re taking you on is
the best route for a clear understanding. We’ll start with the basics and finish up with
the extensions CMIS has added to make certain ECM functions more natural when
used as part of a SQL query.

Query: a familiar face on search

As you may have guessed by now, this chapter will teach you everything you need to
know in order to produce an effective CMIS query. Or, stated a different way, you’ll
understand how to use CMIS to filter out all of the other noise in order to find the
data you’re looking for.

One of the stated goals of the CMIS specification was to take advantage of technol-
ogies and standards that were mature and accepted, wherever possible. We don’t want
to reinvent the wheel. At the time the CMIS Technical Committee began work on this
specification in 2008, SQL had already been around as a standard for decades. It was
for this reason that the nearly universally known (at least among developers) SQL syn-
tax was chosen as the way to describe these queries. This is likely one of the reasons
that CMIS adoption has been so successful across the industry.

Prerequisite for this chapter: SQL basics

CMIS 1.0 and 1.1 Query is based on SQL-92 (ISO/IEC 9075). In order to avoid droning
on about a subject that most readers of this book will consider basic knowledge, we’ll
make one assumption: that you have a high-level understanding of SQL query syntax.
Nothing advanced is required. As long as you can look at a simple SELECT statement
without crossing your eyes, you’ll be OK.

If you’re saying to yourself “SELECT what?” you might want to take a few minutes to
read a brief introduction to SQL. A quick internet search will turn up plenty of infor-
mation, because we’re talking about a standard that’s been firmly established for
nearly 30 years. Even the introduction to SQL in Wikipedia (http://en.wikipedia.org/
wiki/SQL) will suffice to explain the key concepts.

Exercises in this chapter and the InMemory server

For most of the exercises in this chapter, we’ll continue to use the CMIS InMemory
Repository package that you downloaded in chapter 1. You may remember from the
previous chapter that quite a bit of sample metadata comes preinstalled with the
InMemory server for audio files and other common document types, such as PDFs.

www.it-ebooks.info

http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/SQL
http://www.it-ebooks.info/

5.2

5.21

Introduction to the CMIS Query language 85

We’ll base our queries around these types so you can run the same queries locally,
rather than viewing only static examples.

Introduction to the CMIS Query language

For a quick review, let’s look at the components of a typical database. A relational
database is composed of tables, columns, and rows. You can also envision the object
type as a spreadsheet grid, with the vertical columns as the properties and the horizon-
tal rows as the individual objects. Finally, the row headings are part of the schema. Fig-
ure 5.1 shows such a view.

| A C | D | E | F
1 cmis:name cmis:objectld cmis:createdBy cmis:versionLabel custom int prop custom string
docname. 234324 admin first version 5 foo

3 invoice doc 233445 johnsmith 4 Bl
4 | smith loan doc 342443 janesmith legal hold 6 3re

Figure 5.1 Viewing a list of documents as a spreadsheet with columns as properties and rows as
object instances

This table analogy maps easily to the CMIS data model, where object types have prop-
erty definitions and the data is the instances of objects. By mapping a relational view
on the CMIS data model, you can see why the CMIS specification has defined its Query
language based on, and extended from, the SQL-92 grammar. It fits perfectly.

CMIS also has extended the Query grammar to make it easier to filter your query
results based on multivalued properties, full-text search, and folder membership.
Don’t worry about the details of these extensions for now. We’ll go into each one later
in the chapter, with examples, and you’ll see how powerful these queries can be.

CMIS SQL IS READ-ONLY Only a subset of the SQL-92 grammar related to
SELECT is included in the CMIS Query language. Specifically, you won’t be
able to do data manipulation to modify the result set data directly.

Reviewing clauses of the SELECT statement
Because we’ll work with examples of all of these, the following list contains the four

basic clauses of the SELECT statement. Think of this as a refresher and the start of an
agenda for the next few sections.

= SELECT—The properties that will be returned for each object in the result set;
you can call them “virtual columns.”

= FROM—The queryable object type; you can call it a “virtual table.”

= WHERE—An optional clause to specify the conditions on the virtual columns.

= ORDER BY—An optional clause to specify how the objects in the result set will be
sorted based on the virtual columns.

Most developers are familiar with these clauses, and that’s the point. If you’re a devel-
oper, you’re already familiar with large parts of CMIS before you’ve even read the first
page of the specification.

www.it-ebooks.info

http://www.it-ebooks.info/

86

5.2.2

CHAPTER 5 Query

Checking Query capabilities on a service

In the previous chapter, you learned about object type definitions, including their
attributes, property definitions, and the inheritance hierarchy. Some of this informa-
tion is directly applicable to the repository’s ability to support querying on the object
type. Before trying to construct a query, though, you’ll need to check two things: the
level of the CMIS repository’s Query support, and whether or not the particular object
type has been enabled for query.

You might remember that one of the repository’s data fields is capabilityQuery.
As long as its value isn’t set to none, the repository supports metadata queries and/or
text search. Once you know that Query is supported by your CMIS repository, you’ll
need to know a few object type attributes in order to construct a CMIS Query. Here are
the attributes you should be aware of:

= queryable—This Boolean attribute must be true to be able to use the object
type in a CMIS Query and have the objects from this type be returned as part of
the Query result set. For example, the CMIS specification includes an object type
called cmis:relationship, which is used to establish relationships or associa-
tions between objects. If you look at the type definition for cmis:relationship,
you’ll see that it’s not queryable. Therefore, you can never have a query that says
SELECT * FROM cmis:relationship.

= includedInSuperTypeQuery—If this Boolean attribute is true, then the objects
of this object type may be returned when you query against one of its ancestor
object types. If this attribute is false, the objects in the object type may still be
returned when its queryable attribute (see the previous item in this list) is
true. For example, included among the sample object types in the InMemory
server that accompanies this book is a type called cmis:lyrics. Its parent type
is cmisbook: text, whose parent is cmis:document. Because includedInSuper-
TypeQuery is set to true for cmis:lyrics and cmisbook:text, queries that
select from cmis:document may return instances of cmis:lyrics because
cmis:document is a supertype of cmis:lyrics.

= queryName—The queryName of an object type is equivalent to the table name
used in the FROM clause to identify the object type. This is case sensitive. For
example, an object type might have an ID of cmisbook:recordLabel, but its
queryName might be cmisbook:label. When writing CMIS queries, you must
always use the value of the type definition’s queryName, not its type ID, in the
FROM clause.

SETTING UP SAMPLE DATA If you haven’t done this already, now is a good time
to add a few of the audio files into the InMemory server, so you can experi-
ment with more varieties of queries. If you don’t, you can still work with the
documents that already exist in the server, but the query results may not be as
interesting without the diversity of property values to query on.

In the next section, we’ll look at these attributes in the CMIS Workbench.

www.it-ebooks.info

http://www.it-ebooks.info/

5.2.3

5.24

Introduction to the CMIS Query language 87

Try it—checking the Query capabilities of a CMIS service

For this exercise, take a quick look at the repository info for the InMemory Repository
(CMIS Workbench > Repository Info). Under Capabilities, you’ll see that Query is
BOTHCOMBINED. That means you can create powerful queries with metadata queries
and full-text searches together in one single SQL query statement.

Because you’re working in CMIS Workbench, you can take a look at the attributes
of the object types. Go to the CMIS Workbench > Types. Click on Audio File
(cmisbook:audio) in the left pane, and you can see its attributes in the upperright
pane, with queryable set to Yes (see figure 5.2). This means that the Audio File object
type can be used in your CMIS SQL. Also note the queryName is cmisbook:audio, so
that’s the “virtual table” name you’ll use in your SQL query. In the same upper-right
pane, you can see that Included in Super Type Queries is set to Yes for object type
Audio File. Recall that in chapter 4, you ran code to programmatically examine the
attributes for each of the types in the hierarchy. These are the same type attributes
you’re looking at now.

Try it—your first CMIS Query

Even though you’re starting to see how Query works, we’ll start with the simplest
query possible. This will give you a taste of what to expect later as we fill in the blanks.

In this exercise, you’ll query on the base object type, cmis:document. Note that it
isn’t a good idea to run this query on a large production-sized system with document
objects in the millions, or more.

CMIS Types - Apache Chemistry OpenCMIS InMemory Repository

-~ %

& folder) . g
— CMIS Folder (cmis:folder) Mame: Audio File
¥ [CMIS Document (cmis:document) b Hor: Al Content § d 4
* [Taggable (cmisbock:taggable) escription: udio Content {compressed or uncompresse
[image (cmisbook:image) id: cmisbook:audio
v (& Media File (cmisbook:media) Local Namespace: httpeiiexample.orgicmisbook
Audio File (cmisbook:audio) Local Name: AudioFile
video File (cmisbookevideo) Query Name: cmisbook: audio
|| PDF Document (cmisbook:pdf) Base Type: cmis: document
_| Office Document (emisbook:officeDocu| | oo ahie: J Yes
¥ [Text Document {cmisbook:test) leabl .
| Lyrics (cmisboolzlyrics) Fllesbla; v Yes
" Poem (emisbook:poem) Queryable: V Yes
MNote (cmisbook:note) included in super type queries: Yes
Full text indexed: ¢ Yes
ACL controlable: ¢ Yes
Policy controlable: X No
Wersionable: o Yas
Content stream allowed: ALLOWED f
Allowed source types: v
Name id Description Query Name
Checked Out cmiszisViersionSeriesChecke... This is a Checked Out prope... cmis:iisVersionSeriesChecke... |&
Modification Date cmis:lastModificationDate This is a Modification Date p... cmis:lastModificationDate
Modified By cmis:lastModifiedBy This is a Modified By property. cmisilastModifiedBy
Hame cmis:name This is a Name property. cmisiname
Object Id cmis:objectid This is a Object Id property. cmis:objectid
Type-d cmis:objectTypeld This is a Typedd property. cmis:objectTypeid
Version Label cmis:versionLabel This is a Version Label prop... cmis:versionLabel X
-k] =% T

Figure 5.2 Examine the type attributes for cmis:audio using the CMIS Workbench Types view.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 Query

8no CMIS Query - Apache Chemistry OpenCMIS Inh R itory
SELECT * FROM cmis:documant

|:| Query Snippets 20 hits (0,052 seconds) Max hits: 100 [search all versions
cmis:name cmis:contentStreamiength | cmis:objectTypeld cmis:isLatestMajorVersion | cmisiobjectid cmis:baseTypeld | cmisicre...
Twinkle TwinkleLittleStar.txt E76 cmisbook:hyrics W 152 cmis:document system .
ApacheCon Europe 2012 61 cmisbook:note) 129 cmis:document system
welcome. txt 395 cmisbook:text] 154 cmis:document system
README. tut 102 cmishook:text o 117 cmis:document system
TheRaven.txt 6273 cmishook:poem W 148 emis:document system
RowRowRowYourBoat.ogg 140762 cmisbook:audio] 1z cmis:document system
Frerejacques.txt 316 cmishook:lyrics] 144 cmis: document system v
<k J .

Figure 5.3 Simple query results executed in CMIS Workbench

If you go to the CMIS Workbench and click on Query, you can run the default SQL

that’s in the Query pane. Click the Query button, and you’ll see query results with all
the document properties:

SELECT * FROM cmis:document

Figure 5.3 shows the output of this query.

Take a minute to scroll right in the query output to see the object property values
for the query results. You may have to widen the columns to see the column names
and values. You can also change the order of the columns by dragging them to the
right or left. Stop when you get to the cmis:objectTypeId column. You can see that
the objects that have been returned are of many different object types, such as
cmisbook:note and cmisbook:audio.

Even though you searched for cmis:document objects, because cmisbook:note is a
subtype of cmis:document, and its includedInSuperTypeQuery attribute is true,
objects of cmisbook:note are also returned. Had includedInSuperTypeQuery been
false, the query wouldn’t have returned any cmisbook:note objects. As for
cmisbook:audio, it’s a subtype of cmisbook:media, which is itself a sub-subtype of
cmis:document, the object type in the SQL query.

Try the following queries to see that you can specify non-CMIS object types. First,
try this (results shown in figure 5.4) :

SELECT * FROM cmisbook:note

ano

_CMIS Query - Apache Chemistry OpenCMIS InMemory Repository

SELECT * FROM cmisbook:note

[C] auery snippets 5 hits (0.099 seconds) Max hits: | 100] search all versions

cmis:con... | cmis:object... | cmis:ver... | cmis:ver... | cmisiver.. | cmisiver... | cmisiisla... | cmisbook:noteReminders cmis:isV... | cmisilast.. cmisicre... | cmisboo.. |
61 cmisbook note 130 V1.0 |ﬂ 2011-11-05 03:00:00 -0500 L system system 52}
52 cmisbook note 139 vio] 2013-05-01 14:00:00 -0500 =) system system =l
195 cmisbook:note system 137 134 v2.l) o system system &
68 cmishbook:note 141 V10 |ﬂ 2011-02-09 12:30:00 -0600 e system system =)
35 cmisbook note 132 V10] 0064-07-20 17:00:00 -0600 (S5 system system]
[ELS o e

Figure 5.4 Simple Query for cmisbook :note objects executed in CMIS Workbench

www.it-ebooks.info

http://www.it-ebooks.info/

5.25

Check to
see what
level of
Query is
supported.

Pass in a
query as
a string.

—>

>

Introduction to the CMIS Query language 89

B"":\ P — __CMIS Que_r-y - npathe_chomislnr OpenEES InMemu; Repos.ilﬁry

|| sELECT * FROW cmisbook-audio

‘ D Query Snippets 3 hits (0.017 seconds) Max hies: 100 Ll search all versions

i cmisicon... | cmis:ver... | cmisiobjectT... | cmisiver... | cmisiver... | cmisiisla.. | cmisiver... | cmisisV... | cmisilast.. | emisbook:tite cmisicre... | emisbook:licer
| 140762 emisbook:audio 126 [} V10 2] system Row, Row, Row Your Boat system Creative Comi
1647847 cmisbook:audio 124 &) v 1.0 L system Reverie (small theme) (ft. Fitx) system Creative Comr
456771 emisbook audio 128 o VL0 () system Twinkle Twinkle Lirtle Star system Creative Comr
IELS - .

Figure 5.5 Simple Query for cmisbook:audio objects executed in CMIS Workbench

Next, try this one (results shown in figure 5.5):
SELECT * FROM cmisbook:audio

Now that you're getting comfortable executing these queries from the graphical com-
fort of CMIS Workbench, let’s move into making queries programmatically.

Try it—running a query from code

We showed you how easy it is to execute a simple query from CMIS Workbench using
the Query GUL But how hard is this to do with OpenCMIS in code? It turns out to be
as easy as you’d have hoped. In this example, you’ll run the same query you saw in fig-
ure 5.3, but run it in the Groovy console to give you a chance to compare and contrast.
You’ll see that you're still able to submit the query in much the same way in most cases.
Listing 5.1 shows this same simple query, but it’s limited to five results to save space.

Listing 5.1 Generating a query with OpenCMIS code in the Groovy console

import org.apache.chemistry.opencmis.commons.* This simple form of
session.query takes two
parameters: the query string
import org.apache.chemistry.opencmis.client.api.* and a Boolean indicating
whether or not you want to
include all of the versions of
documents in your search or
only the most current ones. If
the repository doesn’t support

import org.apache.chemistry.opencmis.commons.data.*

RepositoryInfo info = session.getRepositoryInfol();

R . Capabilit] B the optional
spositoryCapabilities caps = AllVersionsSearchable
session.getRepositoryInfo().getCapabilities(); capability, this parameter
) . . value must be set to FALSE. This
println("Query capability=" + caps.getQueryCapability()); | version returns an Itemlterable

collection of QueryResult items.
QueryResult is a generic holder
String query = "SELECT * FROM cmis:document"; of property results that you
specified in your SELECT clause.
If you look at the Javadocs for
int count = 1; session.query, you’ll see that
there’s another version of
Query that returns
CmisObjects. This alternative
version will be discussed and
for (gr in queryResult) ({ used in part 2 of this book.

boolean searchAllVersions = false;

ItemIterable<QueryResult> queryResult =

session.query(query, searchAllVersions) ; P

www.it-ebooks.info

http://www.it-ebooks.info/

90

CHAPTER 5 Query

println("----———————————~———————————— ") ; Because QueryResults

println("");

must be able to hold
single- or multivalued

println(count + ": " properties, we need to

.getFirstvalue() + " , " <+

specify which value we
+ gr.getPropertyByQueryName ("cmis:objectTypeId") want. In the case of

single-valued properties,
we can always call this

+ gr.getPropertyByQueryName ("cmis:name") shortcut method to get us

.getFirstvalue() + " , "

the first value. In part 2
you’ll see examples of

+ gr.getPropertyByQueryName ("cmis:createdBy") retrieving multivalued

.getFirstvalue() + " , "

+ gr.getPropertyByQueryName ("cmis:objectId")
.getFirstvalue() + " , "

+ gr.getPropertyByQueryName ("cmis:contentStreamFileName")
.getFirstvalue() + " , "

+ gr.getPropertyById("cmis:contentStreamLength")

properties from a
QueryResult.

Retrieve a property by its
.getFirstvalue()); queryName (previous

line) or by the property’s

ID (this line).

// limit the output to 5 results

if (count++ >= 5) break;

Figure 5.6 shows the output of this code in the bottom output pane of the Groovy

console.

Now you can see the direct correlation between running a query string in the

Query GUI and running a query from code. We’ll focus strictly on the query syntax for

the rest of this chapter, but you’ll have plenty of opportunities to see query code in

part 2 of the book.

Next we’ll dig a bit deeper into the queryable aspects of the properties themselves.

Query capability=BOTHCOMBINED

1: cmis:document | updateProperties-request.log , system , 283 | updateProperties-request.log , 450

3 cmis:document | getTypeChildren-response.log , system , 303 | getTypeChildren-response.log , 18934

4: cmis:document | getObject-request.log , system , 289 getObject-request.log , 405

5. cmis:document | getRepositoryInfo-request.log , system , 269 , getRepositoryInfo-request.log , 2137
Execution complete. Result was null.

Figure 5.6 Output from the simple query example in listing 5.1

www.it-ebooks.info

http://www.it-ebooks.info/

5.2.6

Introduction to the CMIS Query language 91

Checking query-related attributes for properties

Now that you’ve played with object types as “virtual tables” in the FROM clause, we can
move on to the second set of information that you’ll need to check on—the object
type properties and their definitions. The property definitions are involved in the
other three clauses in the SELECT statement: SELECT, WHERE, and ORDER BY.

Before using a particular object type property as a virtual column in the query,
you’ll need to check whether or not the property can be used in the query. Here are
the relevant object type property definitions:

= queryable—This Boolean attribute must be true to be able to use this property
in the WHERE clause and have the values be returned. If this attribute is false,
you can still specify the property in the SELECT clause to return the property val-
ues, but it can’t be in the WHERE clause.

= gueryName—The queryName of this property. You can think of it as the name of
the virtual column from the spreadsheet example at the beginning of this chap-
ter. The property can be directly defined or inherited by the object type in the
FROM clause. You can also specify the CMIS properties that are defined in the
root object types, such as cmis:name and cmis:creationDate. Note that the
name is case sensitive.

= orderable—This Boolean attribute must be true to be able to use this property
in the ORDER BY clause. A common, sometimes required, DBMS practice is that
the properties used in the ORDER BY clause must also be in the SELECT clause.

It’s easy to see these attributes from the Workbench. Go back to the Types pane,
expand CMIS Document, and click on the Note (cmisbook:note) type. In the bottom-
right pane are the object properties ordered alphabetically by their ID and their attri-
bute definitions. Locate one of the predefined CMIS properties, such as cmis:name,
that exists for all document object types and descendant types. Examine its attributes
to make sure you can use cmis:name in your SQL query. Figure 5.7 shows the Types
window displaying the cmis:name information for cmisbook:note.

Scrolling toward the end of the properties, find the property names with the prefix
of cmisbook:—these are the custom properties defined for Note. The other proper-
ties are inherited from cmis:document and exist for all documents in the repository.
Locate the Archived property from the list, and then scroll to the right to see its prop-
erty definition attributes. Familiarize yourself with the property and how you can use
it in your queries.

That’s it for property attributes. Next we’ll look at the hierarchical relationships
between the types and how that relates to the search scope.

www.it-ebooks.info

http://www.it-ebooks.info/

92

5.2.7

CHAPTER 5 Query

(i CMIS Types - Apache Chemistry OpenCMIS InMemory Repository - &+

i __ CMIS Folder (cmis:folder)

o : Name: Mote
(& CMIS Document (cmis:document) !
] Image (cmisbook:image) Desgription; hlote
* [l Media File (cmisbook:media) Id: cmisbook:note
|| PDF Document (cmisbook:pdf) Local N pace: http ple.orgfemisbook
|| office Document {cmisbook:officeDocy || Local Name: Note
» [Text Document (cmishook:text) Query Name: cmisbook:note
B Note (cmisbook:note) Base Type: emis:dacument
Name |1d | Queryable | Type | Cardinality
Base-Type-d cmis:baseTypeld true 8] SINGLE
Change Token cmis:changeToken true STRING SINGLE |
Checkin Comment emis:checkinComment true STRING SINGLE
File Name cmis:contentStreamFileName true STRING SINGLE |
Stream Id cmis:contentStreamid true ¥] SINGLE
Content Length cmis:contentStreamLength true INTEGER SINGLE |
Mime Type cmis:contentStreamMimeType true STRING SINGLE
| Created By cmis:createdBy true STRING SINGLE |
|| Creation Date cmisicreationDate true DATETIME ~ SINGLE
Immutable cmissisimmutable true BOOLEAN SINGLE |
Is Latest Major Version cmistisLatestMajorversion true BOOLEAN SINGLE |
Is Latest Version cmis:isLatestVersion true BOOLEAN SINGLE |
Is Major Version cmis:isMajorversion true BOOLEAN SINGLE
Checked Out cmis:isVersionSeriesChecke... true BOOLEAN SINGLE |

cmis:lastModificationDate true DATETIME SINGLE
SINGLE
STRING SINGLE

Modification Date

true

Object id (5]
Type-id cmis:objectTypeld true o SINGLE
Version Label cmis:versionLabel true STRING SINGLE |
Checked Out By cmisiversionSeriesChecked... true STRING SINGLE
Checked Out Id cmis:versionSeriesChecked... true o] SINGLE |
ersion Series Id cmis:versionSeriesid true [¢] SINGLE
Archived cmisbook:notearchived true BOOLEAN SINGLE |
Links. cmisbook:notelinks true URI MULTI
Reminders cmisbook:noteReminders true DATETIME ~ MULTI

ELS] T

Figure 5.7 Examining the queryable attribute for cmis :name

Search scope

Now that you understand the basics of which object types and which properties can be
queried, you’ll need to determine the scope of your queries. We briefly touched on
scoping and inheritance when we described the object type’s includedInSuperType-
Query attribute. You’ll also recall the type inheritance we discussed in chapter 4. This
also applies to Query.

We can elaborate on this concept using the existing document object types in the
InMemory server, as shown in figure 5.8.

Querying on CMIS Document (A) will return matches from its own object type (A)
and also all of its descendant object types, (B) and (C). Querying on Text Document
(B) will return matches from Text Document (B) and Lyrics (C) object types.

www.it-ebooks.info

http://www.it-ebooks.info/

5.3

Components of a query 93

CMI5 Types - Apache Chemistry OpenCMIS InMemory Repository

o _ " cMIS Foldar (cmis folder) P Lyrics =
1 (emissdocument] -
sbockimage) escription: Lyries.
le femisbookmedial d: emisbookibrics
Audio File (cmisbaok-audio) Local Namespace: httpuiexample orgiemisbook
Video File (cmisbookvideo) Local Name: Lyrics
POF Document (cmisboak:pdf) Query Name:; cmisbookihyrics
e acument (cmisbook:officeDocumant) Base Type: cmisidocument .
cument (cmisbookctest) -
Name] Queryable |Type
o Base Typadd cmis:baseTypeld true (]
Mote {cmishool Change Token emisichangeTaken true STRING
Chaeckin Comment emis:checkinCamment true STRING
Fibe Name true STRING
Stream bl true o
Content Length cmisicontentStreamiength true INTEGER
Mime Type cmiscontentstraamMimeType trus STRING
Created By cmisicreatediy tree STRING
Creation Date screationDate trus DATETIME
Immutable sisimmut able true BOOLEAN
testMajoryersion true BOOLEAN
Restversion true BOOLEAN
\ c Majorversion true BOOLEAN
Chacked Out emisisversionSenesChecke.. true BOOLEAN
Modfication Date lastModificationDate DATETIME
Modified By tModifiedBy STRING
Name STRING
All props down object i o
| Typedd tTypeid 4]
to here belong to - Version Labal rearsionLabel STRING
g Checked Out By wersionSeriesChecked... STRING
A ~ Checked out 1d eriesChecked... o
scopes A, B, and C. = | || version Series id cmisrve eriasid [
Auithar cmisbool hor STRING
= | | Sang Title cmisbocki songtitle STRING
Song Title only s 7 re

belongs to scope C

e cmis:document base type

9 cmisbook:author comes from cmisbook: text, soit
also belongs to all items in scopes B and C.

@ crisbook: 1yrics adds the Song Title property o the list
of inherited props it gets from A and B.

Figure 5.8 Three Query scopes, A, B, and C, each with more properties

Components of a query

Armed with the basics of object types and properties as tables and columns, and know-
ing when you can use them in a CMIS Query, you're ready to take a look at the syntax
of the supported SQL grammar. Because we’ll be talking in terms of SQL with its rela-
tionship database references, we’ll mix the jargon and refer to object types as tables
and properties as columns. The CMIS data model does map nicely to the relational
model, and it helps to think in terms of tables and columns.

For those of you brave enough to read the Backus-Naur Form (BNF) grammar for
the CMIS SQL query syntax, we have it in appendix B for your reference in graphical
form. You’ll also find the BNF grammar in section 2.14.2.1 of the CMIS 1.1 specifica-
tion document as plain text. One look and you’ll agree—it’s not for the faint of heart.
In the rest of this chapter, we’ll explain the syntax in more userfriendly terms, along
with lots of examples. We hope that you’ll only need to refer to the BNF grammar for
the more complex queries. Take your time to explore the query syntax by entering the
SQL examples that follow into the CMIS Workbench Query editor.

www.it-ebooks.info

http://www.it-ebooks.info/

94

531

CHAPTER 5 Query

BNF GRAMMAR BNF (Backus-Naur Form) is a computer science term for a
notation technique used to describe the syntax of various languages. It’s nec-
essary for official language specifications like the OASIS CMIS specification,
which must be precise in its definitions in order to avoid any misunderstand-
ings among vendors.

The SELECT clause

The SELECT clause describes the virtual columns or properties that will be included in
the result set. It can be a comma-separated list of one or more property queryNames,
or * to return all single-valued properties. Some CMIS repositories may also return
multivalued properties for the *, but it’s not a required implementation.

You can specify properties defined specifically for the object type and also the pre-
defined CMIS properties from which the object type inherits.

Aliases can be defined by adding the string AS and the alias name to the property
queryName. As you can see from the following example 4, you can alias the table name
(L), and then reference the qualified property with another alias (myTitle). Using
aliases makes it easier to refer to tables and properties in later parts of the query.

Here are the examples:

1 SELECT * FROM cmis:folder

2 SELECT D.* FROM cmis:document D

3 SELECT cmisbook:author, cmisbook:songtitle, cmis:objectId

FROM cmisbook:lyrics
4 SELECT L.cmisbook:author, L.cmisbook:songtitle AS myTitle
FROM cmisbook:lyrics L

QUERY RESULT SETS
Any time you submit a successful query, a set of zero to many objects (or rows) is
returned. These objects only consist of properties that you’ve specified in your SELECT
clause. For each of the properties, the name of the property will be the same as the
queryName of the property definition. If an alias is used for the SELECT property, the
alias will be the name in the result set.

For example, query 4 from the previous list will return cmisbook:author and
myTitle as the names of the properties in the result rows, as shown in figure 5.9.

[-NaNs] CMIS Query - Apache Chemist:
SELECT L.cmisbook:author, L.cmisbook:songtitle AS myTitle FROM cmisbook:lyrics L
G Query Snippets 3 hits (0.012 seconds)
cmisbook:author myTitle
Jane Taylor Twinkle Twinkle Little Star
unknown (nursery rhyme) Frére Jacques . i .
unknown (nursery rhyme) Row, Row, Row Your Boat Figure 5.9 Query with aliases
on the type and column

www.it-ebooks.info

http://www.it-ebooks.info/

5.3.2

Components of a query 95

FROM CLAUSE, QUERYABLE, AND JOINCAPABILITY

At this point, you should be familiar with the FROM clause. The FROM clause describes
the virtual table(s) or object type(s) against which you want to run your query. The
object type must have its queryable attribute set to TRUE in order to use its queryName
in the FROM clause. As in the SELECT clause, aliases can be defined for the object type
by adding the string AS and the alias name to the table queryName.

If you want to query against data from multiple object types by specifying more
than one object type in the FROM clause, you must first check that the joinCapability
is supported on your CMIS repository. Not all CMIS repositories support the join-
Capability. See section 5.3.4 on the JOIN clause for more details.

WHERE clause

The WHERE clause adds the constraints and conditions that objects must satisfy to be
returned as a result for the query. As with the SELECT clause, you must specify the
queryNames of the properties defined as queryable.

The CMIS query syntax supports the following restricted set of SQL-92 query predi-
cates for single-valued queryable properties (see table 5.1). But you can’t use all of
the predicates for all of the property data types. The rules are logical for each data
type. For example, in table 5.1, you can see that Boolean properties can only use the
equality (=) comparison test. It’s either equal to TRUE or equal to FALSE.

PREDICATES In case this term is new to you, a predicate is another query con-
dition that evaluates to TRUE or FALSE.

Table 5.1 Supported SQL-92 predicates, associated operators, and data types

Predicate Operators Data types
Comparison =, <>, <, <=, >, >= DateTime, Decimal, Integer
=, <> ID, String, URI
= Boolean
IN [NOT] IN DateTime, Decimal, ID, Integer,
String, URI
LIKE [NOT] LIKE String, URI
NULL IS [NOT] NULL All data types

Instead of describing the format of the data type literals, we’ll show them through our
cookbook-style example queries in the following sections. They follow the SQL con-
vention as follows:

= Numeric literals aren’t quoted.
= Character literals are quoted.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 Query

The timestamp literal is a little different and we may need to reference the syntax now
and then. What follows now are examples for all of the predicates listed in table 5.1.
We’ll start out with the predicate syntax for single-valued properties, and then follow
that with multivalued property predicates.

SQL EXAMPLES IN THIS CHAPTER It’s important to note that the many exam-
ples shown in this chapter are designed to give examples of syntactically cor-
rect queries. Many of them will return nonzero results when executed against
the sample InMemory server, and others will not. All are valid, however. We
encourage you to experiment and add additional objects to the repository to
address specific queries that are of interest.

COMPARISON PREDICATE
You’ve seen in table 5.1 the basic comparison operators that the CMIS Query language
supports (=, <>, <, <=, >, >=). They’re the common SQL comparison operators that you
can use on single-valued properties.

The following are some additional specifications about the operators with respect
to the data types. (Again, the syntax here is for single-valued properties. Multivalued
property comparisons will be discussed later in the chapter.)

= Boolean comparisons are only equality tests, either equal to true or equal to
false. The Boolean literal doesn’t need to be quoted and the case of the liter-
als doesn’t matter (TRUE or true, FALSE or false).

= String, ID, and URI comparisons are case sensitive and limited to equal or not
equal. These literals will need to be enclosed in single quotes.

= DateTime comparisons are chronological, and the granularity of the time por-
tion of the timestamp may be repository-dependent, based on how the time-
stamp is represented in the database.

A DateTime literal has this format: TIMESTAMP 'YYYY-MM-DDThh:mm:ss.SSSZ'.

The $SS part of the timestamp is for fractions of a second. The Zstands for Zulu
time, otherwise known as GMT.

Instead of specifying a time in GMT, the time zone offset can be provided
using this syntax: TIMESTAMP 'YYYY-MM-DDThh:mm:ss.SSS{+hh:mm | ~hh:mm}'.

TRY IT—COMPARISON PREDICATE
Please try the following examples in your local CMIS Workbench for the six different
types, or play around with your own variations:

= Boolean:
SELECT * from cmisbook:note where cmisbook:noteArchived = true
= DateTime using GMT time or time zone offset:

SELECT * FROM cmis:document WHERE cmis:lastModificationDate >
TIMESTAMP '2012-07-27T16:23:02.3902Z"

SELECT * FROM cmis:document WHERE cmis:creationDate < TIMESTAMP '2013-
07-27T16:23:02.390+07:00"

www.it-ebooks.info

http://www.it-ebooks.info/

Components of a query 97

= Decimal:

SELECT cmis:name, cmisbook:videoDuration FROM cmisbook:video
WHERE cmisbook:videoDuration > 120.0

= ID:

SELECT cmis:name, cmis:objectId FROM cmis:folder
WHERE cmis:objectId <> '100'

= Integer:

SELECT cmis:name, cmis:contentStreamLength FROM cmis:document
WHERE cmis:contentStreamLength >= 34000

= String:
SELECT cmis:name, cmis:objectId FROM cmis:document
WHERE cmis:name = 'welcome.txt'
IN PREDICATE
The IN predicate is used to specify a set of values for a single-valued property, any of
which can be matched, and the owning object is returned as a result.

If you’re familiar with SQL, you know that the IN predicate is different from
BETWEEN, which is used to specify a range with a starting and an ending value. CMIS
Query doesn’t support BETWEEN directly, but you can construct a query with similar
results by using both the less than/equal to (<=) and the greater than/equal to (>=)
comparison operators. For example, to return all objects created on a specific date
based on the GMT, you can use two comparisons with two timestamps. Depending on
the CMIS client, you may see the timestamp property values displayed in current time,
and not GMT time:

SELECT * FROM cmis:document WHERE cmis:creationDate >=

TIMESTAMP '2012-07-27T00:00:00.000Z"
AND cmis:creationDate < TIMESTAMP '2012-07-28T00:00:00.000Z"

SOME ADDITIONAL SPECIFICATIONS ABOUT THE IN OPERATOR
AND THE DATA TYPES

= Boolean properties can’t be used.

= String, ID, and URI literals are case sensitive.

= The NOT operator can be used in conjunction with the IN predicate
for a negative test.

TRY IT—IN PREDICATE EXAMPLES
Try the following examples in your local CMIS Workbench for these five different
types, or play around with your own variations:

= String:
SELECT * FROM cmisbook:text where cmisbook:author
IN ('Jane Taylor', 'Geoffrey Chaucer')

= DateTime:

SELECT * FROM cmisbook:image WHERE cmis:creationDate
NOT IN (TIMESTAMP '2011-06-30T12:00:00.000z",
TIMESTAMP '2012-06-30T12:00:00.000+00:00")

www.it-ebooks.info

http://www.it-ebooks.info/

98

CHAPTER 5 Query

= ID:
SELECT * FROM cmis:document WHERE cmis:objectId IN
('130',"131",'132",'133")

= Integer:

SELECT * FROM cmisbook:audio WHERE cmisbook:year
NOT IN (1988, 1990)

= Decimal:
SELECT * FROM cmisbook:video WHERE cmisbook:videoDuration
NOT IN (0, 60.0, 120.0)
LIKE PREDICATE
Using wildcards with a LIKE predicate, you can query for specific patterns in String
and URI properties. The NOT operator can be used in conjunction with the LIKE pred-
icate for a negative test.

The most commonly used wildcard is the percent symbol (%). In a LIKE predicate,
% means zero or more occurrences of any character. Another wildcard is the under-
score (_), which matches exactly one character.

Depending on how the String and URI properties are defined in the repository,
their values may be padded with spaces, which means you may need to add a trailing
wildcard for a match.

Wildcard queries are powerful, but they do incur performance costs, so you
shouldn’t overuse the LIKE predicate. You should also try not to have a wildcard at the
beginning of your pattern, and try to be as specific as you can.

ESCAPING RULES
Escaping rules for your LIKE operations can be a bit tricky at times. Here are a few
cookbook examples that may come in handy next time you're crafting some tricky
WHERE clauses.

To match a percent sign or underscore in a LIKE predicate, the escape character
backslash (\) must precede the % or _. This example returns all of the lyrics for song
titles that start with “Sacred_":

SELECT cmisbook:songtitle FROM cmisbook:lyrics
WHERE cmisbook:songtitle LIKE 'Sacred_$%'

This example returns all of the lyrics in which the author name ends with “%Bleu”:

SELECT cmisbook:author FROM cmisbook:lyrics
WHERE cmisbook:author LIKE '%\%Bleu'
You can add new documents in the InMemory server with string properties that have %
or _ in their values, such as in the cmisbook:songtitle or cmisbook:author proper-
ties, and try the LIKE queries out. Remember that LIKE queries are case sensitive, so
your case must match to get results returned.

In case you’re wondering about matching quotation marks, you don’t need any
escaping for double quotes. This example returns all of the lyrics for song titles that
start with “My”:

www.it-ebooks.info

http://www.it-ebooks.info/

Components of a query 99

SELECT cmisbook:songtitle FROM cmisbook:lyrics

WHERE cmisbook:songtitle LIKE '”"My%'

You’ll need to add an escape character before single quotes. The CMIS specification
states that the escape character can be either a backslash or the other common escape
character for a single quote—another single quote. The following two examples
should both work to return all of the lyrics for documents where the song titles start
with “David’s™:

SELECT cmisbook:songtitle FROM cmisbook:lyrics

WHERE cmisbook:songtitle LIKE 'David''s$'

SELECT cmisbook:songtitle FROM cmisbook:lyrics

WHERE cmisbook:songtitle LIKE 'David\'s$'

Finally, if you want to match the backslash character itself, add another backslash. This
example matches “back\slash” in the song title:

SELECT cmisbook:songtitle FROM cmisbook:lyrics

WHERE cmisbook:songtitle LIKE 'back\\slash%'

TRY IT—LIKE PREDICATE EXAMPLES

Try the following examples in your local CMIS Workbench, or play around with your
own variations:

= Percent symbol wildcard (%) example #1:
SELECT * FROM cmisbook:media WHERE cmis:contentStreamMimeType
LIKE 'audio%'
= Percent symbol wildcard (%) example #2:
SELECT * FROM cmis:document WHERE cmis:name LIKE '%Document%'
= Underscore (_) wildcard:
SELECT * FROM cmisbook:lyrics WHERE cmis:createdBy LIKE 'syste_'
= NOT LIKE:
SELECT * FROM cmisbook:note WHERE cmis:versionLabel NOT LIKE 'V 0._'

NULL PREDICATE

The NULL predicate tests whether or not a property’s value has been set. CMIS doesn’t
allow properties with a NULL value, so this predicate will only test whether or not the
property has been set. The NOT operator can be used in conjunction with the NULL
predicate for a negative test.

You can use this predicate for both single- and multivalued properties. Here are
some examples of a NULL predicate on a single String property and a multi-DateTime
property:

SELECT * FROM cmisbook:note WHERE cmis:checkinComment IS NULL

SELECT * FROM cmisbook:note WHERE cmisbook:noteReminders IS NOT NULL

You can also add a NULL condition in your query for inequality comparison. For exam-
ple, if you want to see all Note documents that don’t have a link of resource.txt, you’ll
probably also expect to see documents that didn’t set this property to any value. Try
running the following two SQL queries, and you’ll see what we mean:

www.it-ebooks.info

http://www.it-ebooks.info/

100

CHAPTER 5 Query

SELECT * FROM cmisbook:note WHERE cmis:versionLabel <> 'comment'
SELECT * FROM cmisbook:note WHERE cmis:versionLabel <> 'comment'
OR cmis:versionLabel IS NULL

Or try testing a Boolean property for FALSE, or not set at all:

SELECT * from cmisbook:note where cmis:isVersionSeriesCheckedOut is null OR
cmis:isVersionSeriesCheckedOut = FALSE

Some CMIS repositories may have already taken this into account, and you don’t need

to add a NULL predicate in those cases, but it’s nice to know that this is how you can

accomplish the same effect. Another useful reason to add a NULL condition is to test

for an empty String property.

Some repositories allow you to store an empty String as a valid value, whereas oth-
ers treat it as not set. You can accommodate both implementations with a query like
the following:

SELECT * FROM cmis:document WHERE cmis:lastModifiedBy = ''

OR cmis:lastModifiedBy IS NULL
MULTIVALUE PREDICATE
You may have noticed that the previous sections describe query syntax only for single-
valued properties. What if you want to query on a multivalued property? Multivalued
properties can have more than one value, and not all CMIS repositories support them.
You can always check the cardinality of the object type property definition to find out
whether a property is single-valued (single) or multivalued (multi). You saw earlier
in the CMIS Workbench Types window how you can select an object type and see the
property definition attributes in the lower-right pane.

The Query syntax is a bit more limited for multivalued properties. You can per-
form equality tests to find a specific value in any of the multiple values of the property.
More complex queries for ranges and wildcard searches aren’t applicable here.

CMIS syntax extends the SQL-92 syntax to use the ANY quantifier for multivalue
properties (see table 5.2). If you're already familiar with SQL-92, you’ll recognize the
syntax. We’ll discuss the quantified comparison predicate and the quantified IN predi-
cate next. The syntax for the NULL predicate is the same for both single-valued and
multivalued properties—please refer to the previous section on the NULL predicate.

Table 5.2 Supported SQL-92 multivalue predicates, associated operators, and data types

Predicate Operator Data types
Quantified comparison = ANY Multivalued properties of all
data types
Quantified IN [NOT] IN Multivalued properties of all

data types except Boolean

NULL IS [NOT] NULL Multivalued properties of all
data types

www.it-ebooks.info

http://www.it-ebooks.info/

Components of a query 101

QUANTIFIED COMPARISON PREDICATE

The following syntax for the quantified comparison predicate is only used for query-
ing a multivalued property for any of its values matching a literal. In addition, you can
only use the equality test (=). Unlike the single-valued property queries, the literal is
on the left side of the equal sign, and ANY followed by the property queryName is on
the right side of the equal sign. Here are two examples:

SELECT * FROM cmisbook:image WHERE -7 = ANY cmisbook:timeZoneOffset

SELECT * FROM cmisbook:pdf WHERE 'rome' = ANY cmisbook:pdfKeywords

QUANTIFIED IN PREDICATE

If you want to compare a multivalued property with a list of values, you can use the
quantified IN predicate in your query. This syntax is only used for querying a multival-
ued property for any of its values matching one of the literal values in the IN list. The
SQL does exactly what it says: return the object as a match when any of the multivalued
property values is among the specified values.

The same data types that support the IN predicate for single-valued properties are
allowed for the multivalued properties—that is, this predicate doesn’t support Bool-
ean multivalued properties. The NOT operator can be used in conjunction with the
quantified IN predicate for a negative test, where none of the multivalued property
values matched the list of literals. Here are two examples:

SELECT * FROM cmisbook:note WHERE ANY cmisbook:noteLinks

IN ('http://www.apachecon.eu/', 'http://www.ibm.com')
SELECT * FROM cmisbook:officeDocument WHERE ANY cmisbook:keywords

NOT IN ('rome', 'raven',6 'cmis') OR cmisbook:keywords IS NULL
LoGICAL OPERATORS (), AND, OR, AND NOT
You’ve seen the logical operator NOT used for negating the condition that comes next
(IN, LIKE, IS, NULL). In one of the examples, we also snuck in the use of the OR opera-
tor to expand the returned query result set if the row satisfied either of the two condi-
tions. You can also use the AND logical operator to restrict the result set to rows that
satisfy both of the two conditions.

The following example will return all cmisbook:note documents except the ones
that have a cmisbook:noteLinks with the value of resource.txt or test.txt, including
the ones that didn’t set a property value for cmisbook:noteLinks:

SELECT * FROM cmisbook:note WHERE ANY cmisbook:noteLinks
NOT IN ('resource.txt' , 'test.txt') OR cmisbook:noteLinks IS NULL
The next example uses the AND operator to return all documents that are checked out
by user abrown:

SELECT * FROM cmis:document WHERE cmis:isVersionSeriesCheckedOut = true AND
cmis:versionSeriesCheckedOutBy = 'abrown'

If you want to have more than two conditions that mix the ANDs and ORs, you need to
use parentheses to clarify the order in which these conditions are evaluated. CMIS
query syntax doesn’t specify any implied order of precedence, although the standard

www.it-ebooks.info

http://www.it-ebooks.info/

102

5.3.3

CHAPTER 5 Query

order is parentheses first, then NOT, AND, and OR last. Because it’ll be up to the CMIS
server implementation, it’s safest to use parentheses in your SQL to ensure that the
conditions are evaluated in the order you’ve specified.

In the first of the following two examples, you might think you’re looking for
notes that aren’t 287, but the archived document 287 will be returned because you've
evaluated the AND operator first. In contrast, the second example won’t return docu-
ment 287:

SELECT * FROM cmisbook:note where cmisbook:noteArchived = TRUE
OR cmisbook:noteArchived = FALSE AND cmis:objectId <> '287'

SELECT * FROM cmisbook:note where (cmisbook:noteArchived = TRUE
OR cmisbook:noteArchived = FALSE) AND cmis:objectId <> '287'

Also note that the objectId values may be different in your own InMemory Reposi-
tory, so you may have to adjust the queries accordingly.

Ordering and limiting query results

With all the query results that are returned, you probably want to see them in some
order that makes sense to you. This calls for adding an ORDER BY clause to your query.
The ORDER BY clause comes at the end of the query, after the WHERE clause. It consists
of tuples of sorting information—namely, what property you want to sort by, and how
you want the results to be sorted, either in ascending or descending order. You can
have more than one sorting property in the ORDER BY clause. The first tuple is the pri-
mary sort specification, the next tuple is the secondary, and so on.

The properties in the ORDER BY clause must have their attribute orderable set to
TRUE, and they must also be specified in the SELECT clause. Some CMIS server imple-
mentations may be more lenient about these two requirements.

Because the orderable attribute for a property is supposed to apply to all queries,
getChildren, and getCheckedOutDocs, the orderable attribute might be set to false
if the CMIS implementation doesn’t support sorting on the property in getChildren
(for example).

As for requiring sorting properties to be in the SELECT clause, some CMIS imple-
mentations may allow the sorting of CMIS properties and/or custom properties with-
out returning their values in SELECT. But it’s a good practice to have the sorting
property returned, as you're probably interested in seeing the values of the property
anyway.

You can order in ascending (ASC) order or in descending (DESC) order. The colla-
tion order is repository-specific, and the repository determines the ascending and
descending rules. If the collation order isn’t specified, the repository will use the
default sort order.

The CMIS Workbench shows the orderable attribute in the object type property
definitions. You can also find out programmatically by requesting the type definition
for an object type. Recall that we’ve done this using the Groovy console in chapter 4.
Only single-valued properties of all data types can be orderable. It makes sense that
multivalued properties aren’t orderable.

www.it-ebooks.info

http://www.it-ebooks.info/

5.34

Components of a query 103

Here are two ORDER BY examples:

SELECT cmis:name, cmis:contentStreamLength FROM cmisbook:media
ORDER BY cmis:contentStreamLength ASC

SELECT cmis:name, cmis:objectId FROM cmis:document
ORDER BY cmis:name ASC, cmis:objectId DESC

Joins and determining repository support

A powerful query feature we’ve yet to cover is the capability to join object types based
on a common property key value. Using relational database table jargon, we can say
that a join allows you to combine and associate tables dynamically during a SELECT
query, so that the rows from multiple tables can be treated as if from the same table,
and a single set of query results can be returned.

This is the SQL JOIN feature, but not all CMIS repositories support JOIN queries.
That’s why you have to check for the support in the repository’s capabilities list. You’ll
even find a couple of levels of support within the list of those that support JOINs.

In our earlier exercises viewing InMemory capabilities, recall that the simple
InMemory server doesn’t support JOINs (capabilityJoin = NONE). Therefore, you
won’t be able to run any JOIN queries on the InMemory server. But we’ll continue to
use the familiar object types, such as cmisbook:media and cmisbook:text and their
properties in our JOIN examples.

If you do have access to a CMIS server that supports JOIN queries, it’s a good idea to
learn more about this advanced topic of SQL JOINs in relational databases. Here, we’ll
assume you have a basic knowledge of JOINs, and we’ll go through the CMIS-specific
syntax, which is more limited in features than the variations allowed in SQIL-92. Once
you're familiar with the JOIN syntax and the data model specific to your CMIS server,
you can use the CMIS Workbench to create documents and objects that can be joined,
and test your JOIN queries.

The descriptions in this section will use the relational database jargon, such as rows
and tables, because it’s easier to visualize joining tables, as opposed to joining object
types and objects.

The next three subsections will iterate through the three levels of repository JOIN
support you're likely to encounter. These three levels are called none, inneronly, and
innerandouter.

CAPABILITYJOIN = NONE
The JOIN clause isn’t allowed in a query when a server has capabilityJoin set to
none. If you try to run a JOIN query, the server will return an error.

CAPABILITYJOIN = INNERONLY

Only INNER JOINs are allowed in the query if capabilityJoin is set to inneronly. For
INNER JOINSs, only the rows that satisfy the JOIN condition are included in the results.
You can abbreviate INNER JOIN to JOIN in the SQL. Here’s an example:

SELECT M.*, T.cmis:name textname FROM cmisbook:media
AS M JOIN cmisbook:text AS T ON M.cmis:createdBy = T.cmis:lastModifiedBy

www.it-ebooks.info

http://www.it-ebooks.info/

104

CHAPTER 5 Query

CAPABILITYJOIN = INNERANDOUTER

Both INNER JOINs and LEFT OUTER JOINs are supported when capabilityJoin is set
to innerandouter. For LEFT JOIN queries, all of the rows from the left table are
returned, regardless of whether or not the JOIN condition (ON) is true. When a row
has unmatched columns, these columns will still be included in the result set if they’re
SELECTed but with a NULL value. You can abbreviate LEFT OUTER JOIN to LEFT JOIN in
the SQL.

In the following example, we’ll change our previous INNER JOIN SQL to a LEFT
OUTER JOIN. More results will be returned, and they’ll now include all the cmisbook:
media documents in the system, even if their creator never modified a cmisbook:
text file (ON condition). In those cases, the text name for the resulting row will be
NULL. Look at this example:

SELECT M.*, T.cmis:name textname FROM cmisbook:media
AS M LEFT JOIN cmisbook:text AS T ON M.cmis:createdBy
= T.cmis:lastModifiedBy
MULTIPLE JOINS
As in relational database SQL, you can have more than one JOIN in your SELECT query
to JOIN with more than one table. The syntax rule for nested JOINs follows the basic
SQL rules. But parentheses are required around the JOIN-ON syntax (for example,
table2 JOIN table3 ON t2.A = t3.B), as in this example:
SELECT M.cmis:name AS mName, M.cmis:objectId AS mID, T.cmis:createdBy
AS creatorName, N.cmis:name AS noteName FROM (cmisbook:media AS M JOIN
cmisbook:text AS T ON M.cmis:createdBy = T.cmis:lastModifiedBy) INNER

JOIN cmisbook:note AS N ON N.cmis:createdBy = T.cmis:createdBy WHERE
N.cmisbook:noteArchived = TRUE

PERFORMANCE OF JOINS JOINs can be resource intensive and may degrade
your system performance, which means you should always try to minimize the
number of tables you JOIN, particularly in frequently run queries.

GENERAL JOIN LIMITATIONS IN CMIS
Here are some more notes and limitations you should know for the CMIS JOIN syntax:

= Only explicit JOINs are supported, using the JOIN ... ON syntax. Don’t use the
implicit JOIN syntax, where you only specify multiple tables in the FROM clause;
for example, SELECT * FROM Objectl, Object2. The implicit JOIN syntax isn’t
supported.

= Only equijoin is supported, where the JOIN condition in the ON clause can only
be an equality test between the object properties. The object properties can be
of any data type. The object properties in the JOIN condition don’t have to have
the same name, but the comparison operator must be the equal sign (=). Here’s
an example:

SELECT M.*, T.cmis:name textname FROM cmisbook:media AS M JOIN
cmisbook:text AS T ON M.cmis:createdBy = T.cmis:lastModifiedBy WHERE
M.cmis:createdBy <> 'unknown'

www.it-ebooks.info

http://www.it-ebooks.info/

5.4

54.1

CMIS SQL extension functions 105

= The object properties used in the ON clause to JOIN the tables can only be
single-valued properties. You can’t specify a multivalued property. It wouldn’t
make sense anyway.

= RIGHT JOIN and FULL JOIN aren’t supported.

That’s it for all of the portions of CMIS SQL that are part of the standard SQL-92. Up to
this point, if you're experienced with using SQL in general, this should all have felt
familiar—we hope even natural. Now that we’ve finished covering the standard parts
of CMIS SQL, all we have left are a few small parts that have been extended for ECM.
Hang on, we’re almost finished.

CMIS SQL extension functions

As we mentioned earlier in the chapter, CMIS extends SQL-92 in a few ways that make
sense for ECM systems. Specifically, these extensions are CONTAINS(), SCORE(),
IN_FOLDER(), and IN_TREE (). This section will cover each of them with examples.
We’ll start with CONTAINS () and full-text searching.

CONTAINS(): full-text search

One of the most powerful CMIS query features is the ability to search against the docu-
ment content, sometimes called full-text search. The CONTAINS () function is used to
express the text-search conditions for the query. You can search for words or phrases
with wildcards for matches on substrings. It’s much more powerful than the = and
LIKE predicates, which require exact patterns and are case sensitive.

ABOUT CMIS INMEMORY REPOSITORY AND CONTAINS() Although InMemory
reports BOTHCOMBINED, its ability to do full-text search is greatly exaggerated.
It’s more of a test/static implementation than the type of full-text search
you’ll find in any enterprise-level content management system. If you want to
exercise all of the stuff you’ll be learning in this section, it’ll be better to try
the examples with a real server. Consult table 1.1 in chapter 1 for a list of
available CMIS ECM servers. The same is true for the static nature of the
InMemory’s SCORE () function, which we’ll cover shortly.

REPOSITORY-LEVEL FULL-TEXT SEARCH CAPABILITIES
Full-text search capabilities require the CMIS repository to have a text-search engine
to perform the indexing of the documents, and to search against the index. Not all
CMIS repositories support full-text search. You should check the repository capability,
capabilityQuery, to see what types of queries are supported.

At the beginning of this chapter, you checked the InMemory Repository informa-
tion and determined that your server supports BOTHCOMBINED. Here are those
capabilityQuery attribute values as they relate to full-text search:

= capabilityQuery = none—The CONTAINS () function isn’t supported and can’t
be used in the CMIS SQL queries for this repository.

www.it-ebooks.info

http://www.it-ebooks.info/

106

CHAPTER 5 Query

= capabilityQuery = metadataonly—The CONTAINS () function isn’t supported
and can’t be used in the CMIS SQL queries for this repository.
= capabilityQuery = fulltextonly—The CONTAINS () function is the only con-
dition allowed in the WHERE clause. The CMIS queries are limited to full-text
search of document contents.
Example: SELECT cmis:name, cmis:objectId FROM cmis:document WHERE
CONTAINS ('document ')

= capabilityQuery = bothseparate—The repository supports full-text search-
ing against the document content and querying against object properties, but
they can’t be in the same SQL query. Somehow the CMIS client must manage
the query results separately with separate SQL queries.

Example: SELECT * FROM cmis:document WHERE CONTAINS ('document')
SELECT cmis:name, cmis:objectId FROM cmis:document WHERE cmis:name
LIKE 'update%'

= capabilityQuery=bothcombined—The repository supports full-text searching
against the document content and querying against object properties, and they
can be in the same SQL query, joined together with AND.

Example: SELECT cmis:name, cmis:objectId FROM cmis:document WHERE
CONTAINS ('document') AND cmis:name LIKE 'update%'

TYPE-LEVEL FULL-TEXT SEARCH SUPPORT

Besides checking that the CMIS repository supports full-text search, you’ll need to
know whether the particular object type that you want to search on has been defined
to be text-searchable. This information has been set in the object type definition attri-
bute, fulltextindexed. If the value of this Boolean attribute is TRUE, the document
content is text-indexed and can be searched using the CONTAINS () function.

The CMIS Workbench shows the fulltextindexed attribute for all document
object types, but you can also check this value programmatically using the techniques
we covered in chapter 4.

Depending on the implementation and support of the repository, some reposito-
ries may also text-index the object properties along with the document content. This
means that you can use the CONTAINS () function and the powerful text-search engine
to search on the property values (mostly String properties).

The text-search grammar defined in the CMIS query is deliberately small and
generic to account for the many text-search engines and their varying levels of search
capabilities. You should find that the syntax is sufficient for the average user who’s
accustomed to the Google keyword search.

ABOUT TEXT-SEARCH ENGINE IMPLEMENTATIONS Because the CMIS specification
is meant to be generic, the text-search results returned from different reposi-
tories are dependent on the underlying text-search server, how it’s config-
ured, and how the CMIS server has chosen to implement the CMIS text-search
syntax. If you want to learn more about text search in relational databases,

www.it-ebooks.info

http://www.it-ebooks.info/

CMIS SQL extension functions 107

and how it uses linguistic processing to determine the matches, see the docu-
mentation for your particular search engine for the details.

CONTAINS() SYNTAX
Because CONTAINS () is a function, we’ll start off with a normative description of its
input and output, and then we’ll follow up with plenty of examples.

Here’s the syntax:

CONTAINS ([<qualifier> ,] ' <text search expression> ')

In this statement, qualifier is an optional parameter for the name of the “virtual
table” or object type’s queryName. Usually the table is implied from the FROM clause of
the SQL. If the query is a JOIN, you must specify in which table the CONTAINS () func-
tion is to be applied.

The text-search expression is a character string enclosed in single quotes that spec-
ifies the text-search criteria. You enter words (or terms) in order to find documents
that contain the words. You can also refine your searches with some additional
options:

= Phrases are denoted by enclosing words in double quotes.

= Terms separated by whitespace are ANDed together. AND is implied, and it has a

higher precedence than OR.

= Terms separated by OR are ORed together. OR is a reserved word and shouldn’t be

used as a search term.

USE OF OR IN SEARCHES “Or” shouldn’t be used as a search term. But even if
you think you want to search for the word “or,” you probably wouldn’t find it
because text indexers often filter out common words to improve storage and
performance.

= Use the minus sign (-) as a modifier to exclude documents that contain the
word. You can prefix a word or a phrase with the minus sign.

= Terms can contain wildcards. The wildcard character * substitutes for zero or
more characters. The wildcard character ? substitutes for exactly one character.

= Use the backslash (\) as the escape character when you want to search for spe-
cial characters, such as the following, in your textsearch SQL:

Minus sign (-)

Asterisk sign (*)

Question mark (?)

Double quote (")

* & 6 o o

Single quote (')
+ Backslash (\)
Now let’s look at some examples.

www.it-ebooks.info

http://www.it-ebooks.info/

108

CHAPTER 5 Query

CONTAINS() EXAMPLES

For the following examples, you can create a few documents using the Workbench, or
update the content stream of existing documents with a file of your own (in the CMIS
Workbench main window, click on a document, click on the Actions tab, and then
specify your own local file to be used for Set Content Stream). Then experiment with
the text-search syntax by adding modifiers and operators (see table 5.3) to your own
terms in the CONTAINS () SQL query.

Table 5.3 CONTAINS () modifiers and operators

Modifiers and Query returns documents that
Example N L
operators contain the following

Implied AND CONTAINS ('document folder') Both terms, “document” and “folder”

OR CONTAINS ('document OR folder') Either “document” or “folder”

- CONTAINS ('document —-folder') “Document” but not “folder”

* CONTAINS ('class*') Words matching the combinations of
the wildcard pattern, such as “class”
or classic”

* CONTAINS('c*ss') Words matching the combinations of
the wildcard pattern, such as “class”
and cross”

* CONTAINS('*lass"') Words matching the combinations of
the wildcard pattern, such as “lass”
and class”

? CONTAINS ('clas?') Words matching the combinations of
the wildcard pattern, such as “class”
and clasp”

? CONTAINS ('temp?r') Words matching the combinations
of the wildcard pattern, such as
“temper”

? CONTAINS ('?olor"') Words matching the combinations of
the wildcard pattern, such as “color”
and dolor”

Double-quoted | CONTAINS (' "class hierarchy" ') ' | The exact phrase, “class hierarchy”

phrase

CONTAINS() ESCAPING

Escape characters are needed in a text-search string whenever you want to search on a

particular character that has a special use in text search. For example, we talked about

using the minus sign as an exclusion character. If you want to search for the minus

sign, you’ll need to add the escape character (the backslash) before the minus sign.
Between CMIS specification versions 1.0 and 1.1, the list of characters that need

escaping, and the requirements for constructing the text-search string with respect to

www.it-ebooks.info

http://www.it-ebooks.info/

CMIS SQL extension functions 109

escaping, have changed. Even in version 1.0-compliant servers, there may be imple-
mentation differences for the use of escape characters in text search because of the
generality of the specifications.

Another consideration when searching for a special character that needs escaping
is that depending on the configuration of the textsearch server, these characters
might be considered delimiters and might not be text-indexed at all, resulting in no
match even if it’s properly escaped.

In version 1.0, only two characters need escaping in a text-search string: the single
quote and the backslash. Any other occurrence of the backslash is an error. It’s left to
the individual CMIS server implementations to interpret how to handle other special
characters used in CONTAINS (), such as the minus sign.

In version 1.1, you’ll need to think of the entire CONTAINS () SQL as having two sep-
arate grammars: a query statement-level grammar, and a text-search expression-level
grammar. The statement-level grammar will parse through SQL, identifying the
SELECT, the FROM, the WHERE, and the CONTAINS () functions, and their parameters. At
this level, the grammar knows about single-quoted character strings. Like the CMIS 1.0
specifications says, you'll need escape characters for single quotes and backslashes at
this level.

The second level is the text-search expression. Once the text-search expression is
isolated, you’ll realize that this expression has some more special characters that will
need to be escaped, including *, ?, -, plus the original \ and '.

Now it’s definitely time for some examples. Let’s look in table 5.4 at the list of spe-
cial characters that need escaping, and their corresponding syntax according to CMIS
1.0 and CMIS 1.1. Some of the characters don’t have CMIS 1.0 examples because it
depends on the CMIS server implementation.

Table 5.4 Table of CONTAINS () escape examples

Special character Query result contains CONTAINS () syntax

Single quote (') d'Aconia CMIS 1.0: CONTAINS ('d\ 'Aconia')
CMIS 1.1: CONTAINS ('d\\\'Aconia")

Backslash (\) \root CMIS 1.0: CONTAINS ('\\root")
CMIS 1.1: CONTAINS ('\\\\root"')
Asterisk (*) *atlas CMIS 1.1: CONTAINS ('*atlas")
Question mark (?) shrugged? CMIS 1.1: CONTAINS ('shrugged\\\?"')
Dash (-) value-for-value CMIS 1.1: CONTAINS ('value\\\-for\\\-value"')

ADDITIONAL CONSTRAINTS ON CONTAINS()

The CMIS specification doesn’t dictate whether the text search is case sensitive or not
(whether searching for “TEST” and “test” will return different matches). Most of the
text-search servers in the market aren’t case sensitive, but it will be up to the reposi-
tory implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

110

542

CHAPTER 5 Query

The CONTAINS () function returns TRUE when the document object is considered
relevant with respect to the text-search expression, and it returns FALSE when the
object isn’t relevant.

The CONTAINS () function call can only be ANDed with the combined result of all
the other conditions. Here’s an example:

SELECT * FROM cmis:document WHERE CONTAINS ('documents') AND (cmis:createdBy =
'system' OR cmis:lastModifiedBy = 'system')

In one SQL query statement, you can only have one CONTAINS () function call. One of

the reasons for this is because of the syntax of the CMIS Score () function. Because the

Score () function doesn’t take any parameters, it’s implicitly tied to one and only one

CONTAINS () function in the same query. This is the perfect lead-in to our next topic,

the Score () function.

Score()

The Score() function allows you to quantify how relevant your search result is in
matching the criteria in the CONTAINS () text-search function.

This function returns a floating point relevance score between 0 and 1 to show
how well the document satisfies the text-search portion of the query. How the score is
calculated depends on the repository and text-search server. If the Score () for a par-
ticular document is 0, then it didn’t satisfy the CONTAINS () function’s criteria. In prac-
tice, you’ll never see any documents with a 0 text-search score in your query results.

The Score () function doesn’t take any parameters, and it returns a numeric repre-
sentation of the relevance of all the documents that satisfy the CONTAINS () function in
the query. There can only be one CONTAINS () function, which means there can be at
most one Score () function call in a textsearch query, too.

The CMIS specification has a limitation on how the Score() function can be used
in a query. It can only be part of the SELECT clause. This doesn’t mean you can’t use
the document score in other parts of the query, though, such as the ORDER BY clause.
After all, this is probably the most common way to use the relevance score—to order
the query results so that the most relevant results are returned first in the results. To
do that, you need to define an alias for the Score () function, and use the alias in the
ORDER BY clause.

Try this example query:

SELECT cmis:name, cmis:objectTypeld, SCORE() AS myscore
FROM cmis:document WHERE CONTAINS('row') ORDER BY myscore DESC

SCORE() IMPLEMENTATION IN THE CMIS INMEMORY REPOSITORY You may notice
that the scores all come back with the same number in your InMemory server.
Again, this is repository-specific, and the ability of the CMIS repository to per-
form text searches doesn’t always mean that they’re also able to return a con-
version of the back-end text-search engine’s relevance score into a range from
0 to 1. Because InMemory is only a test server, it returns a static value for all
cases. Also note that not all text-search engines use the range of 0 to 1; some

www.it-ebooks.info

http://www.it-ebooks.info/

543

CMIS SQL extension functions 111

use 0 to 100, and others may use 0 to 1,000. It’s possible that the scores are
therefore implemented to always return the full score for all of the matches in
the query results. But be assured that the query results you receive will be
sorted by their relevance, as you specified in the ORDER BY clause.

The default queryName for the Score () function is SEARCH_SCOPE, so if you don’t spec-
ify an alias, the scores will be returned under the alias name of SEARCH_SCOPE.
Here’s an example:

SELECT SCORE() FROM cmis:document WHERE CONTAINS('row')

The CMIS specification doesn’t specifically prohibit the use of the alias of Score() in
the WHERE clause.

Navigational functions

We’re getting to the end now—only two more functions left to discuss. Both of these
are CMIS extensions, like CONTAINS () and Score (), but these deal with folder contain-
ment. They’re In_Folder () and In_Tree().

IN_FOLDER()
In_Folder() is an interesting extension to the SQL syntax, tailored to the content
management crowd. The In_Folder () function can be used to return all matches that
reside in a specific folder. This is a powerful scoping feature for querying under a par-
ticular folder.

Here’s the syntax:

IN_FOLDER([<qualifier>,] <folder id>)

The first input parameter, <qualifier>, is an optional parameter that indicates the
virtual table to which the In_Folder () function should be applied. This is the query-
Name of the type of objects you want to return, which should be one of the object types
in the FROM clause. The same table alias should be used here as when it’s specified in
the FROM clause.

For example, if you want the firstlevel documents of the folder /texts, whose
cmis:objectIdis 118, the following three SQL examples will return the same results.
(Again, please note that the objectId values may be different in your local InMemory
Repository.)

SELECT * FROM cmis:document WHERE IN_FOLDER('118"')

SELECT * FROM cmis:document WHERE IN_FOLDER (cmis:document, '118")

SELECT D.* FROM cmis:document AS D WHERE IN_FOLDER(D, '118')

The <qualifier> becomes a mandatory parameter when the query is a JOIN query
and the SQL has more than one virtual table. For JOINs, you’ll get an error message if
you don’t specify the table name in the In_Folder () function:

SELECT D.* FROM cmis:document AS D JOIN cmis:folder AS F ON D.cmis:createdBy
= F.cmis:createdBy WHERE IN_FOLDER(D, '118")

www.it-ebooks.info

http://www.it-ebooks.info/

112

CHAPTER 5 Query

In the previous example, IN_FOLDER (D, '118') will return cmis:document objects
residing in folder 118. If you change the qualifier to the other table, IN_FOLDER (F,
'118") will return cmis:folders in folder 118.

Note that In_Folder () isn’t only limited to returning base cmis:document or
cmis:folder object types. You can restrict the object type to any object type in FROMN,
and type inheritance still applies. The following example SQL will return all cmisbook :
text objects and their descendant object types, including cmisbook:lyrics and
cmisbook:poem in the folder /texts.

SELECT cmis:name, cmis:objectTypeId FROM cmisbook:text WHERE IN_FOLDER('118')

The second parameter for In_Folder() is the <folder id>. This should be the
cmis:objectId of a folder. Remember that this is an ID parameter, and not the folder
name or the path name.

Even though this is a useful function extension and it has a simple syntax, as
always, you should take care to construct a concise query. The In_Folder () function
isn’t necessarily easy for a CMIS repository to implement, and it may be performance
intensive—like our next CMIS extension, the In_Tree() predicate function.

IN_TREE()

The In_Tree() function is even more powerful than its In_Folder() cousin. This
function will return all descendant objects under the specified folder tree. For exam-
ple, if the specified folder has three more levels of subfolders, In_Tree () will return
matches from all three levels. Here’s the syntax:

IN_TREE([<qualifier>,] <folder id>)

In_Tree() has the same syntax as In_Folder (), with two parameters. <qualifier> is
the optional virtual table queryName or alias, and <folder id> is the cmis:objectId
of the relative root folder that you want to scope your query to. You can go back to the
In_Folder () section to review the details of the parameters and the examples.

Let’s compare the two functions In_Folder () and In_Tree() against the InMem-
ory server. The first of the two following SQL statements calls In_Folder () to return
all folders in the root folder, /, which has a cmis:objectId equal to 100. The second
changes the function call to In_Tree(), and it returns all folders and subfolders
under the same root folder:

SELECT cmis:path FROM cmis:folder WHERE IN_FOLDER('100') ORDER BY cmis:path
SELECT cmis:path FROM cmis:folder WHERE IN_TREE('100') ORDER BY cmis:path
One thing you might've noticed about In_Folder () and In_Tree() is that you can
only return query results of the same object type, such as all folders or all documents.
This means SQL can’t return both folders and documents. You’ll have to make sepa-
rate SQL statements to get each object type.

This same limitation affects all CMIS queries, where the results are bound by the
same object type and its descendant object types. It’s more obvious with these folder
function calls because you’re used to browsing a directory structure, opening folders,

www.it-ebooks.info

http://www.it-ebooks.info/

5.5

Summary 113

and seeing all their content. For those simple scenarios, you should use the folder API
calls, such as getChildren(), to get all the object type instances in the folder.

Again, we’ll repeat our warning about the performance implications of the
In_Tree() function call. This is one of the more powerful query capabilities that all
CMIS repositories must implement, and it could also require more database process-
ing. Please be careful and monitor your use of the In_Folder () and In_Tree() func-
tion calls.

Summary

In this chapter, you were introduced to the key high-level concepts of SQL queries,
and along the way you were shown how these ideas map to CMIS SQL concepts. We
then dove down into all of the details of Query, from the main clauses that make up a
CMIS query, to grinding through all of the predicates, to reviewing the extension func-
tions that were added for CMIS. We also used the CMIS Workbench’s query panel to
interactively execute queries and view their results, and we ran queries from the
Groovy console.

If you understood the ideas presented in this chapter, you're now competent in
CMIS Query functionality. Congratulations! We know this chapter was no cakewalk.
The concepts you've learned here, when added to the repository basics you learned in
chapters 1 through 4, make you fully prepared to do some real work (and have some
real fun) in part 2, where we’ll build a music server.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part 2

Hands-on CMIS
client development

By now you have a general familiarity with CMIS, and it’s time to apply what
you’ve learned. In this part of the book, you’ll build a custom, content-centric
application called The Blend. In chapter 6, you’ll learn more about the project
and the architecture of the solution. Then, over the next few chapters, you’ll
apply what you’ve learned about CMIS to implement the solution using Apache
Chemistry and some JSP pages. Toward the end of this part of the book, you’ll
have the opportunity to try out a few other CMIS client libraries that extend The
Blend to work with SharePoint, PHP, and mobile operating systems, like Android

and iOS.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Meet your new projec:
The Blend

This chapter covers

Previewing the functionality of The Blend

Establishing a technical design based on business
requirements

Setting up your development environment

Configuring the InMemory server with custom content types

Adding login/logout to The Blend and connecting to the
repository

This chapter introduces you to the project you're going to tackle using CMIS and
Apache Chemistry. The project is a collaborative music- and art-sharing application
called The Blend. By the end of the chapter, you'll understand the business
requirements and the technical design of the application. You also will have set up
your development environment and configured the OpenCMIS InMemory Reposi-
tory to be ready to store the content for the application. Finally, you’ll take the first
steps toward coding the application by creating a new web application project and
writing the code necessary to log in, connect to the repository, and log out.

117

www.it-ebooks.info

http://www.it-ebooks.info/

118

6.1

6.1.1

CHAPTER 6 Meet your new project: The Blend

Understanding the business requirements
and technical approach

Before we start knocking out code, let’s take a minute to talk about some of the appli-
cation’s requirements and discuss a high-level approach to the project.

Business requirements

The Blend is a web application that artists can use to collaborate with others and to
organize their work. The idea is for different types of artists—musicians, graphic
designers, and sound engineers—to upload, share, and remix their work. Rather than
doing this using email or simple cloud file-sharing applications, The Blend is a purpose-
built, content-centric application aimed specifically at fulfilling the needs of these types
of artists. Specifically, users of The Blend need to be able to do the following:

= Upload audio, lyrics, artwork (such as album covers), and videos.

= Group one or more songs into an album of orderable tracks.

= Tag songs, artwork, albums, and videos.

= Create new versions of audio or video files and keep track of version history.
(This is particularly important for these artists, who create lots of derivative
works as they riff on each other’s ideas.)

= Associate artwork (such as an album cover) with an album or an individual
song.

= Search the entire repository for tags or keywords that appear within lyrics, song
titles, album names, and so on.

= Organize any of these creative assets in a folder structure that makes sense to
end users. This includes the ability not only to create an arbitrary folder struc-
ture, but also to move assets between folders and rename assets.

= Play audio and video files within the web page without requiring the intermedi-
ate step of downloading the file first.

In addition, it’d be nice if the system could take advantage of some existing libraries
that know how to extract metadata from audio and video files as they’re uploaded so
end users don’t have to rekey metadata that’s already contained in existing files.

It’s also important to get something done quickly and to implement a solution
that’s as portable and open as possible.

That’s it for the requirements. Don’t you wish all of your projects were this straight-
forward? Now that you know what you’re about to build from a functional perspective,
let’s talk about the technical approach.

www.it-ebooks.info

http://www.it-ebooks.info/

6.1.2

Understanding the business requirements and technical approach 119

Establishing the technical design

You don’t need to go overboard to design this application, i
but it does make sense to discuss an approach or an overall
technical design. At a high level, the application architec-
ture looks like figure 6.1.

To cover all the bases, we’ll need to talk about the repos-

. Web browser
itory, the web application framework, security, the organiza-

tion of the data, and the data model.

THE REPOSITORY

To the surprise of no one reading this book, the technical
team decides that the repository that will hold The Blend’s
data needs to be CMIS-compliant for all of the reasons we
discussed in part 1. Because you've already got it set up,
you’ll use the OpenCMIS InMemory Repository as the CMIS Apaiheer\zmcat
repository for this project, but you could as easily use %
Alfresco, FileNet, SAP, or any other CMIS-compliant server as
the backend for The Blend.

THE WEB APPLICATION FRAMEWORK
You can’t throw a stick without hitting a web application
framework these days. They’re as ubiquitous as dry cleaning
and frozen yogurt shops are in my little part of the world— Apache Tomat
there’s one on every corner. Even if you decide to narrow server
your scope to Java-based web application frameworks, you’ll . /
still be faced with hundreds to choose from. Figure 6.1 High-level

For this simple application, most any framework would architecture of The Blend
be fine—Grails, Spring MVC, or anything. And as much as

we’d like to pick something trendy and new, we decided that it would be best to keep

things as simple as possible and go with an approach that won’t distract you from the
task at hand—learning how to write CMIS applications. We chose to use no framework
at all and to write the application using good old Java servlets and JSPs. If you’re old
enough to remember writing apps with servlets, we’ll give you a second to reminisce.
If you’re not, well, you're about to kick it old school.

Using this approach, every page in the application will have a corresponding serv-
let that uses OpenCMIS to talk to the CMIS repository, and each servlet will have a cor-
responding JSP page that’s used to show the CMIS repository data to the end user. This
one-to-one mapping between servlets and JSP pages is shown in figure 6.2.

Bear in mind that you’re likely to have additional Java classes that aren’t servlets.
And the application will include additional resources that aren’t JSPs, such as images,
style sheets, and JavaScript files.

www.it-ebooks.info

http://www.it-ebooks.info/

120

CHAPTER 6 Meet your new project: The Blend

| | | | | |
U A, Figure 6.2 Every page in

‘] { ‘ (} } | the application will have one
{____ servlet and one JSP.

- - - =
DUR——
-~ - - —
-~ - ==

SECURITY

It’s always a good idea to talk about security up front. You’ll notice that the business
requirements were silent on this subject, and that’s primarily because this application
is about sharing, remixing, and reusing these creative assets freely. This means the
application doesn’t require much in the way of security.

Depending on the capabilities of your repository, you could have certain users or
groups who could modify certain object types (like Graphic Designers can modify
Album Covers but not Songs). But for our purposes, we’ll assume that users who can
log in to the application have full rights to everything stored in the repository.

The Blend will have a login page, and it will use the CMIS repository to validate
the user’s credentials. All pages except the login page will require a session to be
established.

DATA ORGANIZATION

In many content-centric applications, the physical organization of the data is critically
important, either because the organization of the data helps the humans who have to
work with it, or because the organization has semantic meaning to the system that’s
working with it, or both. For example, if you were building a system to manage
expense reports, you might choose to model the expense report as a folder and the
receipts as images stored in that folder. Both the human using the application and the
system get some efficiency in being able to assume that anything they find in that
expense report folder will be an expense receipt image.

In some repositories, the security requirements may also drive folder structure. It
may be optimal, for example, to store everything with similar security settings in a
common root folder in cases where access control lists are inherited from parent to
child. Grouping objects with similar security profiles makes it easy to manage security
settings in fewer places.

In The Blend, the songs, videos, lyrics, and other assets will be typed. We’ll talk about
the types in the next section, but for now that means that the system doesn’t need a spe-
cific folder structure to know what an object is—it can look at the object’s type.

The Blend’s folder structure will be purely for the convenience of its human users.
The exception to this is the application’s root folder. The Blend application will let

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the business requirements and technical approach 121

users browse the folder structure, but it’s upi|[/blend g0
not safe to assume that the repository is -
| Name | Type

used solely for The Blend. What’s more |/ an cmis:folder
likely is that one folder in the repository | & Lyrics emis:folder

. . R) samples cmis:folder
will be designated as the application’s root || Songs cmis:folder
folder. In our setup, we’ll use /blend as E gi’::::d Em:::g:ﬁs:

the application’s root folder.

The default folder structure is shown in Figure 6.3 Default folder structure for The
figure 6.3. Blend

DATA MODEL
As mentioned in the previous section, every object The Blend works with will be of a
type specific to this application. The first step is to identify the types that are needed.
Next, the types need to be organized in a type hierarchy. Then properties can be
added to each type. The result is the data or content model.
Identifying types
One way to identify types is to look back at the requirements and look for words that
describe the kind of content being managed. If you do that now, you’ll likely come up
with a list that includes audio, video, lyrics, artwork, album covers, albums, and songs.
A song is a specific type of audio. But there’s nothing special you need to do to a
song compared to a piece of audio, so there’s no need to have two different types.
Let’s start with a type called audio, and later it can be specialized to song if needed.
Similarly, an album cover is a specific kind of artwork, and a more general form of
artwork is an image. That gives us the types shown in figure 6.4.
Organizing the types into a hierarchy
The types we’ll work with have been identified, but they need to be organized into a
hierarchy. That’s because some of these types may have characteristics in common, so
it’s helpful to group them under a common ancestor. For example, audio, video, and
album are all types of media. The application might want to display a media player
that can deal with any of these types, so it makes sense to group those.
Now consider the tagging requirement. You have a lot of ways to implement this.
The easiest way is to create a “taggable” type that has a multivalue property that keeps

Figure 6.4 Types of content users will work with in The Blend

www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 6 Meet your new project: The Blend

book age book edia book Y

Figure 6.5 The basic
PDOOK audalio PDOOK video PDOOK a pul content type hierarchy
for The Blend

track of tags, and then have the types that need to support tags inherit from the tagga-
ble type.

All of these types ultimately have a file associated with them, so they all share
cmis:document as a common ancestor.

When you prepend the type names with the cmisbook namespace and organize
them as discussed, you get the content type hierarchy shown in figure 6.5.
Identifying each type’s properties
The content types are identified and are organized in a hierarchy. The last thing you
need in order to create the complete content model is to know the properties defined
for each type. The tables that follow (tables 6.1 through 6.8) show the properties that
will be defined for each type.

The cmis:taggable type (table 6.1) needs a single property to keep track of the
tags assigned to an object. Any other type that needs to have tags associated can
inherit from this type.

Table 6.1 Properties of cmis:taggable

Multivalue?

cmisbook:tags String Yes

The cmisbook:image type (table 6.2) contains properties typical of digital images, and
many of these properties are part of a standard called EXIF. Most digital cameras will
set some or all of these properties when they capture the images.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding the business requirements and technical approach

Table 6.2 Subset of properties of cmisbook: image

ID Type
cmisbook:imageWidth Integer
cmisbook:imageHeight Integer
cmisbook:bitsPerSample Integer
cmisbook:compression Integer
cmisbook:photometricInterpretation Integer
cmisbook:imageDescription String
cmisbook:make String
cmisbook:model String
cmisbook:orientation Integer
cmisbook:xResolution Decimal
cmisbook:yResolution Decimal
cmisbook:resolutionUnit Integer

No
No
No
No
No
No
No
No
No
No
No

No

Multivalue?

123

The cmisbook:media type (table 6.3) contains properties common to media such as

audio, video, and albums.

Table 6.3 Properties of cmisbook:media

Multivalue?

cmisbook: sourceURL URI No
cmisbook:license String No
cmisbook:year Integer No
cmisbook:artwork ID No

Table 6.4 Subset of properties of cmisbook:audio

ID Type
cmisbook:artist String No
cmisbook:album String No
cmisbook:title String No
cmisbook: comment String No
cmisbook:genre String No
cmisbook:length Integer No

Multivalue?

www.it-ebooks.info

http://www.it-ebooks.info/

124 CHAPTER 6 Meet your new project: The Blend

Table 6.4 Subset of properties of cmisbook:audio (continued)

ID Type Multivalue?
cmisbook: track Integer No
cmisbook: composer String No
cmisbook:discNo String No
cmisbook:audioFormat | String No
cmisbook:sampleRate Integer No

Table 6.5 Properties of cmisbook:video

ID Type Multivalue