
www.it-ebooks.info

http://www.it-ebooks.info/

jQuery Game Development
Essentials

Learn how to make fun and addictive multi-platform
games using jQuery

Selim Arsever

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

jQuery Game Development Essentials

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2013

Production Reference: 1180413

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-506-0

www.packtpub.com

Cover Image by Selim Arsever (selim.arsever@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Selim Arsever

Reviewers
Samuel Lee Deering

Acquisition Editors
Erol Staveley

Edward Gordon

Lead Technical Editor
Ankita Shashi

Technical Editors
Kirti Pujari

Lubna Shaikh

Copy Editors
Brandt D'Mello

Insiya Morbiwala

Alfida Paiva

Laxmi Subramanian

Project Coordinator
Anugya Khurana

Proofreader
Maria Gould

Indexer
Hemangini Bari

Graphics
Sheetal Aute

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Selim Arsever is a Senior Software Engineer working as a consultant in
Switzerland. Over the last 4 years, he has been developing gameQuery (http://
gamequeryjs.com), an open source game engine based on jQuery, as well as other
JavaScript games and demos. He has been giving several talks on the subject and
thinks that there is nothing more interesting than using tools beyond what they were
initially intended for. You can follow him on twitter at @SelimArsever.

Thank you to my wife and my son for their patience and support, and
to the entire JavaScript community for their passion and openness.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewer

Samuel Lee Deering is a Web Developer from England who specializes in
JavaScript and jQuery. Sam has built his expertise from a strong programming
background, including a Bachelor's degree in Computer Science, and has worked
for several high-profile companies such as Flight Centre. Sam has a very strong web
presence; he develops modern web apps and has written online publications for
renowned websites, such as jQuery Mobile Builder and Smashing Magazine. Sam's
main focus is to help improve the Web, and he shares his knowledge with millions
on his blog at http://www.jquery4u.com/.

You can find his details on the following websites:

• Profile picture: http://gravatar.com/samdeering
• Website: http://samdeering.com
• Blog: http://jquery4u.com
• Twitter: @samdeering @jquery4u

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and
more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: jQuery for Games 7

The way of jQuery 7
Chaining 8
Polymorphism 8

Moving things around 9
Chaining animations 10
Managing the queue 11

.stop() 11

.clearQueue() 11

.dequeue() 11

.delay() 11
Other usages of queues 11

Handling of events 12
.bind() 12
.delegate() 12
Removing event handlers 13
jQuery 1.7 13

Associating data with DOM elements 13
Manipulating the DOM 14

.append() 14

.prepend() 14

.html() 14

.remove() 15

.detach() 15
Stay curious my friend! 15
Summary 16

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 2: Creating Our First Game 17
How does this book work? 18
Let's get serious – the game 18
Learning the basics 19

Framework 20
Sprites 21

Implementing animations 22
Adding animations to our framework 23

Moving sprites around 25
Preloading 27

Initializing the game 30
Main loop 32

Main loop implementation 33
Collision detection 35
Summary 39

Chapter 3: Better, Faster, but not Harder 41
Intervals and timeouts 42

One interval to rule them all 42
Code 43

Keyboard polling 47
Keeping track of the keys' state 48

HTML fragments 49
Avoiding reflow 51
Moving your sprite around using CSS Transforms 52
Using requestAnimationFrame instead of timeouts 53
Summary 54

Chapter 4: Looking Sideways 55
Offline divs 55
Groups 57
Sprite transformation 59

CSS transform 59
Adding transform to the framework 61

Tile maps 62
Naive implementation 64

Collision detection 65
Colliding with tile maps 66

Finding the colliding tiles 68
Sprite versus sprite collision 69

Coding the game 70

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Basic setup of the game screen 71
Object-oriented code for the player 72

Updating the player's position 73
Controlling the player's avatar 75

Player control 77
Parallax scrolling 78
Creating enemies 79
Summary 81

Chapter 5: Putting Things into Perspective 83
Optimizing tile maps for top-down games 84

Finding the visible tiles 85
Moving the tile map 87

Sorting the occlusion 91
Sprite occlusion 92
Level versus sprite occlusion 93

Collision detection 94
Player versus environment collisions 94

Using a tile map editor 95
Player versus sprite collision 97

Talking to NPCs 99
Fighting enemies 101

The complete game 102
Isometric tiles 102

Drawing an isometric tile map 102
Occlusion for isometric games 103

Summary 103
Chapter 6: Adding Levels to Your Games 105

Implementing a multi-file game 105
Loading tile maps 106
Loading sprites and their behavior 109
Using $.ajax 111
Loading a JSON file 112
Loading a remote script 113
Debugging calls to $.ajax 114

.done() 115

.fail() 115
Modifying our platform game 116
Summary 120

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Chapter 7: Making a Multiplayer Game 121
World of Ar'PiGi 122
Managing the player's account 122

Searching elements in the database 125
Creating a new player in the database 126
Keeping the player connected 129
Logging the user into the game 131

Keeping the players in sync 131
Retrieving all the other players 132
Updating the current player position 133
Client-side code 133

Taking care of monsters 136
Implementing server-side combat 138

Summary 141
Chapter 8: Let's Get Social 143

Creating a simple leaderboard 144
Saving highscores 145
Retrieving highscores 146
Displaying the highscores 148

Making cheating harder 149
Server-side verification 149
Making your variables less readable 150
Obfuscating your code 152
Making your network protocol less readable 154

Encoding values 155
Randomly naming the variables 155
Adding random variables 156

Integrating with Twitter 157
Twitter for dummies 157
Full access to Twitter's API 158

Registering your game with Twitter 159
Server-side helper library 161
Authentication 162
Publishing high scores on Twitter 164

Integrating with Facebook 166
Authenticating with Facebook 168
Creating achievements 170
Publishing the achievements 173

Summary 175

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Chapter 9: Making Your Game Mobile 177
Making your game run well on mobile devices 178

Detecting mobile browsers 179
Client-side browser detection 180
Server-side detection 181
Should you really detect the browser? 182

Performance limitation – memory 182
Performance limitation – speed 183

Specifying the page's visible area 184
Level of details 184

Touch control 185
D-pad 186
Analog joystick 190

Event handlers 192
Integrating our game with the springboard 194

Making your game installable 194
Configuring the status bar 195
Specifying the application icon 196
Specifying a splash screen 196

Using device orientation 197
Using the offline application cache 198
Using web storage 199
Summary 200

Chapter 10: Making Some Noise 201
Abstracting audio 202

Using our small library 202
Embedding sound 204

Implementation 204
Supported format 206

HTML5 Audio element 206
Preloading a sound 208
Playing and stopping sounds 210

Web Audio API 211
Basic usage 211
Connecting more nodes 214
Loading more than one sound 216
So many nodes, so little time 216

Delay node 216
ScriptProcessor node 217
Panner node 217

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vi]

Convolver node 218
Analyser node 218
DynamicCompressor node 218
BiquadFilter node 218
WaveShaper node 219

Flash fallbacks 219
SoundManager 2 219
Alternatives to SoundManager 221

Generating sound effects 222
Summary 222

Index 223

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Writing games is not only fun but also a very good way to learn a technology
through and through. Even though HTML and JavaScript weren't conceived to run
games, over the last few years, a series of events have occurred to make writing
games in JavaScript a viable solution:

• Performance of browsers' JavaScript engines has improved dramatically,
with modern engines being ten times faster than the state of the art engines
in 2008

• jQuery and other similar libraries made working with the DOM as painless
as it can be

• Flash lost a lot of ground due, in part, to its absence on iOS
• W3C started work on many game-oriented APIs such as canvas, WebGL,

and full-screen APIs

Throughout this book, you will make three games and learn a wide array of
techniques. You will not only be able to use your own games, but most importantly
you will have fun doing so!

What this book covers
Chapter 1, jQuery for Games, provides an in-depth look at jQuery's functions that
might be useful for game development.

Chapter 2, Creating Our First Game, implements a simple game with sprites,
animation, and preloading.

Chapter 3, Better, Faster, but not Harder, optimizes the game we saw in Chapter 2,
Creating Our First Game, with various techniques such as time-out inlining,
keyboard polling, and HTML fragments.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 4, Looking Sideways, codes a platformer game with tile maps and
collision detection.

Chapter 5, Putting Things into Perspective, creates an orthogonal RPG with tile map
optimization, sprite occlusion, and better collision detection.

Chapter 6, Adding Levels to Your Games, expands the game we saw in Chapter 4, Looking
Sideways, by adding multiple levels using JSON and AJAX.

Chapter 7, Making a Multiplayer Game, transforms the games we saw in Chapter 5,
Putting Things into Perspective, to support multiple players on multiple machines.

Chapter 8, Let's Get Social, integrates the platform game with Facebook and Twitter as
well as creating a cheat-proof leaderboard.

Chapter 9, Making Your Game Mobile, optimizes the games we saw in Chapter 5, Putting
Things into Perspective, for mobile devices and touch control.

Chapter 10, Making Some Noise, adds sound effects and music to your game with the
audio element, the Web Audio API, or Flash.

What you need for this book
One of the advantages of working with web technologies is that you won't need any
complex or costly software to get you started. For strictly client-side games, you will
only need your favorite code editor (or even a simple text editor, if you don't mind
working without any syntax highlighting). If you haven't chosen any yet, there is
plenty of free software around you that you could try, ranging from very old-school,
such as VIM (http://www.vim.org/) and Emacs (http://www.gnu.org/software/
emacs/) to more modern, such as Eclipse (http://www.eclipse.org/) and Aptana
(http://www.aptana.com/), Notepad++ (http://notepad-plus-plus.org/),
or Komodo Edit (http://www.activestate.com/komodo-edit). These are only
some of the available editors that you can find. For JavaScript, you don't need a very
advanced editor, so just use the one you're more familiar with.

If you create you own graphic, you will also need an image editing software.
Here again, you will have a lot of choice. The most famous open source software
being Gimp (http://www.gimp.org/) and one of my personal favorites, Pixen
(http://pixenapp.com/).

For the part of the book that needs some server-side scripts, we will use PHP and
MySQL. If you don't already have a server that supports them, to install these on
your machine, you can use MAMP (http://www.mamp.info/), XAMPP (http://
www.apachefriends.org/en/xampp.html), or EasyPHP (http://www.easyphp.
org/) depending upon your OS.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Who this book is for
The primary audience for this book is a beginner web developer with some
experience in JavaScript and jQuery. Since the server-side part is implemented
in PHP, it will help if you have some knowledge of it too, but if you're more
comfortable with another server-side language, you could use it instead of PHP
without too much trouble.

You won't need any prior knowledge of game development at all to enjoy this book!

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The .animate() function from jQuery
allows you to make a property vary through time from the current value to a
new one."

A block of code is set as follows:

$("#myElementId")
.animate({top: 200})
.animate({left: 200})
.dequeue();

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

gf.keyboard = [];
// keyboard state handler
 $(document).keydown(function(event){
 gf.keyboard[event.keyCode] = true;
});
$(document).keyup(function(event){
 gf.keyboard[event.keyCode] = false;
});

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The
following figure shows what a typical one-dimensional intersection i of two
segments a and b would look like".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

jQuery for Games
Over the course of the last few years, jQuery has almost become the default
framework for any JavaScript development. More than 55 percent of the top 10,000
most visited websites as well as an estimated total of 24 million websites on the
Internet are using it (more at http://trends.builtwith.com/javascript/
JQuery). And this trend doesn't show any sign of stopping.

This book expects you to have some prior experience of jQuery. If you feel that you
don't meet this requirement, then you could first learn more about it in Learning
jQuery, Jonathan Chaffer, Karl Swedberg, Packt Publishing.

This chapter will quickly go through the peculiarities of jQuery and will then dive
deeper into its most game-oriented functions. Even if you probably have already
used most of them, you may not be familiar with the full extent of their capabilities.
The following is a detailed list of the topics addressed in this chapter:

• The peculiarities of jQuery
• The function that will help you for moving elements around
• Event handling
• DOM manipulation

The way of jQuery
jQuery's philosophy differs from most other JavaScript frameworks that predated
it. Understanding the design patterns it uses is key to writing readable and efficient
code. We'll cover these patterns in the next sections.

www.it-ebooks.info

http://www.it-ebooks.info/

jQuery for Games

[8]

Chaining
Most jQuery statements are of the following form: a selection followed by one or
more actions. The way those actions are combined is called chaining and is one of
the most elegant aspects of jQuery. A beginner using jQuery who wants to set the
width of an element to 300 pixels and its height to 100 pixels would typically write
something like:

$("#myElementId").width(300);
$("#myElementId").height(100);

With chaining, this would be written as:

$("#myElementId").width(300).height(100);

This has many advantages: the element is selected only once, and the resulting code
is more compact and conveys the semantic meaning that what you want to achieve is
really only one thing, which is to change the element size.

Functions that allow chaining don't only make it possible to group many calls on
the same object, but also there are many ways to actually change on what object (or
objects) the next function on the chain will operate. In these situations, it is typical to
use indentation to convey the idea that you're not working on the same elements as
the previous indentation level.

For example, the following chain first selects an element, then sets its background's
color as red. It then changes the elements in the chain to the children of the previous
element and changes their background-color attribute to yellow.

$("#myElementId").css("background-color", "red")
 .children().css("background-color", "yellow");

It's important that you always ask yourself how the current interactions with the
previous and next element in the chain can be avoided for undesired behavior.

Polymorphism
jQuery has its own way to use polymorphism, and a given function can be called
in a lot of different ways depending on how much information you want to give to
it. Let's have a look at the .css() function. If called with a String data type as the
only argument, this function will behave as a getter by returning the value of the
CSS property you asked for.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

For example, the following line retrieves the left-hand side position of a given
element (assuming it's positioned absolutely):

var elementLeft = $("#myElementId").css("left");

However, if you pass a second argument, it will start to behave like a setter and set
the value of the CSS property. The interesting thing is that the second argument can
also be a function. In this situation, the function is expected to return the value that
will be set to the CSS property.

The following code does just that and uses a function that will increase the left-hand
side position of the element by one:

$("#myElementId").css("left", function(index, value){
 return parseInt(value)+1;
});

However; wait, there's more! If you pass just one element to the same function,
but that element is an object literal, then it will be considered as holding a map of
properties/values. This will allow you to change many CSS properties in one single
call, like setting the left and top position to 100 pixels in the following example:

$("#myElementId").css({
 left: 100,
 top: 100
});

You can also use strings as the key and value of your object literal as it's done
in JSON.

A very complete resource for finding about all the ways to call a function is the
jQuery API website (http://api.jquery.com).

We will now focus on a few functions that are of interest for developing games.

Moving things around
Chaining has a slightly different signification for animation. Though you may never
actually need to use jQuery animation functions in most of your games, it may still
be interesting to see the peculiarities of their functioning as it may be the cause of
many strange behaviors.

www.it-ebooks.info

http://www.it-ebooks.info/

jQuery for Games

[10]

Chaining animations
The .animate() function from jQuery allows you to make a property vary through
time from the current value to a new one. A typical effect, for example, would be to
move it left from 10 pixels, or change its height. From what you've seen earlier and
experienced for other type of functions, you may expect the following code to make
a div (DOM division element) move diagonally to the position left = 200px and
top = 200px.

$("#myElementId").animate({top: 200}).animate({left: 200});

However, it doesn't! What you will see instead is the div first moves to reach top
= 200px and only then moves to left = 200px. This is called queuing; each call to
animate will be queued to the previous ones and will only execute once they're all
finished. If you want to have two movements executed at the same time, thereby
generating a diagonal movement, you'll have to use only one call to .animate().

$("#myElementId").animate({top: 200,left: 200});

Another possibility is to explicitly tell the .animate() function not to queue
the animations:

$("#myElementId").animate({top: 200}).animate({left: 200},{queue:
false});

Keep in mind that this also applies to other functions that are in fact wrappers
around the .animate() function, such as the following:

• fadeIn(), fadeOut(), and fadeTo()
• hide() and show()
• slideUp() and slideDown()

queued animate top value animate left value

time

not queued
animate top value

animate left value

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Managing the queue
Here is a list of functions that you can use to manipulate this queue of animations.

.stop()
The .stop() function stops the current animation of the queue. If you provide some
more arguments to the call, you can also clear the queue and define if the elements
should stop being animated and stay where they are, or jump to their destination.

.clearQueue()
The .clearQueue() function removes all animations from the queue; not only the
current one, but also all the next ones.

.dequeue()
The .dequeue() function starts the next animation in the queue. This means that if
an animation is being executed when this function is called, then the new one will
start as the current one finishes executing. For example, if we take the example at the
beginning of this section and add a dequeue() function at the end, the elements will
actually start moving diagonally.

$("#myElementId")
.animate({top: 200})
.animate({left: 200})
.dequeue();

.delay()
The .delay() function allows you to insert a pause between two animations in the
queue. For example, if you want to make an element visible with .fadeIn(), then
wait for 2 seconds and make it disappear again with .fadeOut(). This would be
written like this:

$("#myElementId").fadeIn().delay(2000).fadeOut();

Other usages of queues
Queues are not used only for animations. When you don't specify otherwise, the
queue manipulated by those functions is the fx queue. This is the default queue used
by animations. However, if you want to, you could create another queue and add
any number of custom functions and delays to script some time-dependent behavior
in your game.

www.it-ebooks.info

http://www.it-ebooks.info/

jQuery for Games

[12]

Handling of events
If you have used jQuery before, you probably used .click() at some point. It is
used to define an event handler that will respond to a mouse click in jQuery. There
are many more of those, going from keyboard input, form submission, and window
resizing, but we will not go through all these. Instead we will focus on the more
"low-level" functions to handle events in jQuery and explain exactly the subtle
differences between them.

You would typically use some of those functions to implement the control of your
games either with mouse or keyboard inputs.

.bind()
The .bind() function is the basic way to handle events. .click() is, for example,
just a wrapper around it. The two lines of the following example have exactly the
same effect:

$("#myElementId").click(function(){alert("Clicked!")});
$("#myElementId").bind('click', function(){alert("Clicked!")});

However, there is a limitation with the usage of bind. Like all other jQuery functions,
it only applies to the selected elements. Now, imagine a situation where you want to
execute some task each time a user clicks a link with a given class. You would write
something like this:

$(".myClass").click(function(){/** do something **/});

This will work as intended, but only for the link present in the webpage at the
moment of its execution. What if you change the content of the page with an Ajax
call, and the new content also contains links with this class? You will have to call this
line of code again to enhance the new links!

This is far from ideal, because you have to manually track all event handlers you
defined that may require to be called again later and all the places where you change
the content of the page. This process is very likely to go wrong and you'll end up
with some inconsistencies.

The solution to this problem is .delegate(), which is explained in detail in the
following section.

.delegate()
With .delegate(), you give the responsibility of handling events to a parent node.
This way all elements added later on as a child to this node (directly under it or not)
will still see the corresponding handler execute.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

The following code fixes the preceding example to make it work with a link added
later on. It's implied that all those links are children of a div with the ID attribute
as page.

$("#page").delegate(
".myClass",
"click",
function(){/** do something **/});

This is a very elegant way to solve the problem and it will come in very handy while
creating games, for example, where you click on sprites.

Removing event handlers
If you need to remove an event handler you can simply use the .unbind() and
.undelegate() functions.

jQuery 1.7
In jQuery 1.7, .delegate() and .bind() have been replaced by .on() (and .off()
to remove the handlers). Think of it as a .delegate() function with the capacity to
behave like .bind(). If you understand how .delegate() works, you will have no
problem to use .on().

Associating data with DOM elements
Let's say you create a div element for each enemy in your game. You will probably
want to associate them to some numerical value, like their life. You may even want
to associate an object if you're writing object-oriented code.

jQuery provides a simple method to do this, that is, .data(). This method takes
a key and a value. If you later call it with only the key, it will return the value.
For example, the following code associates the numerical value 3 with the key
"numberOfLife" for the element with ID enemy3.

 $("#enemy3").data("numberOfLife", 3);

You may be thinking, "Why shouldn't I simply store my values directly on the DOM
element?". There is a very good answer for that. By using .data(), you completely
decouple your value and the DOM, which will make it way easier to avoid a
situation where the garbage collector doesn't free the memory associated with the
DOM of a removed element because you're still holding some cyclic reference to
it somewhere.

www.it-ebooks.info

http://www.it-ebooks.info/

jQuery for Games

[14]

If you defined some values using the HTML5 data attribute (http://ejohn.org/
blog/html-5-data-attributes/), the .data() function retrieves them too.

However, you have to keep in mind that making calls to this function has some
performance cost, and if you have many values to store for an element, you may
want to store all of them in an object literal associated with a single key instead of
many values, each associated with their own key.

Manipulating the DOM
While creating a game with jQuery, you will spend quite some time adding and
removing nodes to the DOM. For example, you could create new enemies or
remove dead ones. In the next section we'll cover the functions you will be using
and we will also see how they work.

.append()
This function allows you to add a child to the currently selected element (or
elements). It takes as argument some already existing DOM element, a string
containing HTML code that describes an element (or a whole hierarchy of elements),
or a jQuery element selecting some nodes. For example, if you wanted to add a child
to a node with the ID "content", you would write:

$("#content").append("<div>This is a new div!</div>");

Keep in mind that if you give a string to this function, the content will have to be
parsed and that this could have some performance issues if you do it too often or
for very large strings.

.prepend()
This function works exactly like .append(), but adds the new content before the first
child of the selected element instead of after its last one.

.html()
This function allows you to completely replace the content of the selected node(s)
with the string passed as an argument. If called without an argument, it will return
the current HTML content of the first of the selected elements.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

If you call it with an empty string, you will erase all the content of the nodes. This
could also be achieved by calling .empty().

Selected Element

Added with
prepend()

Selected Element
content

Added with
append()

replaced with html()

.remove()
This function will simply delete all the selected elements and unregister all the
associated event handlers and data.

.detach()
In some situations, you may only want to remove some content for a short period of
time and add it again later. This is typically a case where .remove() does too much
of a good job. What you really want is to keep all those other things you associated
with your nodes so that when they get added later on, they will work exactly like
before. .detach() has been created exactly for this situation. It will behave like
.remove(), but will allow you to reinsert your elements easily.

Stay curious my friend!
So that's it. I would really encourage you to read the API for each of these functions
because there are still some sets of arguments that have not been shown here. If
anything is still unclear about any of those functions, don't hesitate to look around
the Web for more examples on how to use them. As jQuery is such a popular library,
and the Web's culture is one of openness, you will easily find lots of help online.

www.it-ebooks.info

http://www.it-ebooks.info/

jQuery for Games

[16]

Here are some places where you can start looking for more information
about jQuery:

• jQuery's API: http://api.jquery.com/
• Learning jQuery: http://www.learningjquery.com/

Summary
In this chapter, we've seen some of the most useful jQuery functions for game
development and how to use them. By now you should be familiar with the jQuery
philosophy and syntax. In the next chapter, we will put what we've learned into
practice and create our first game.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Game
If you lay your eyes on an electronic device, chances are that there is a browser
running on it! You probably have more than one installed on each of your PCs and
some more running on your portable devices. If you want to distribute your games
to a wide audience for a minimal cost of entry, making it run in the browser makes
a lot of sense.

Flash was for a long time the go-to platform for games in browsers, but it has
been losing speed in the last few years. There are many reasons for this and there
have been countless arguments about whether this is a good thing or not. There is,
however, a consensus on the fact that you can now make games run in the browser
without plugins at a reasonable speed.

This book will focus on 2D games as they are the ones that run well on current
browsers and the features they depend on are standardized. This means that an
update of the browser shouldn't break your games and that for the most part you
don't have to worry too much about difference between browsers.

You will, however, in the near future be able to develop modern 3D games, like you
would on a game console and have them run on browsers. If that's what you thrive
on, this book will provide you with fluency in the basic knowledge that you will
need to make those games.

In this chapter we will cover the following topics:

• Creating animated sprites
• Moving sprite around
• Preloading assets
• Main game loop implementation using a finite state machine
• Basic collision detection

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Game

[18]

How does this book work?
Making games has this amazing advantage that you immediately see the result of the
code you just wrote move before your eyes. This is the reason why everything you
learn in this book will directly be applied to some practical examples. In this chapter,
we will write a small game together inspired by the classic Frogger. In the following
chapters, we will then make a platformer and a role playing game (RPG).

I really encourage you to write your own version of the games presented here and
modify the code provided to see the effects it has. There is no better way of learning
than to get your hands dirty!

Let's get serious – the game
The game we will implement now is inspired by Frogger. In this old school arcade
game, you played the role of a frog trying to cross the screen by jumping on logs and
avoiding cars.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[19]

In our version, the player is a developer who has to cross the network cable by
jumping packets and then cross the browser "road" by avoiding bugs. To sum up,
the game specifications are as follows:

• If the player presses the up arrow key once, the "frog" will go forward
one step.

• By pressing the right and left arrow key, the player can move horizontally.
• In the first part (the network cable) the player has to jump on packets

coming from the left of the screen and moving to the right. The packets are
organized in lines where packets of each line travel at different speeds. Once
the player is on a packet, he/she will move along with it. If a packet drives
the player outside of the screen, or if the player jumps on the cable without
reaching a packet, he/she will die and start at the beginning of the same
level once again.

• In the second part (the browser part) the player has to cross the browser
screen by avoiding the bugs coming from the left. If the player gets hit
by a bug he/she will start at the beginning of the same level once again.

These are very simple rules, but as you will see they will already give us plenty of
things to think about.

Learning the basics
Throughout this book, we will use DOM elements to render game elements. Another
popular solution would be to use the Canvas element. There are plus and minus
points for both technologies and there are a few effects that are simply not possible
to produce with only DOM elements.

However, for the beginner, the DOM offers the advantage of being easier to debug,
to work on almost all existing browsers (yes, even on Internet Explorer 6), and in
most cases to offer reasonable speed for games. The DOM also abstracts the dirty
business of having to target individual pixels and tracking which part of the screen
has to be redrawn.

Even though Internet Explorer supports most of the features we will see in this book,
I would not recommend creating a game that supports it. Indeed, its market share
is negligible nowadays (http://www.ie6countdown.com/) and you will encounter
some performance issues.

Now from some game terminology, sprites are the moving part of a game. They may
be animated or nonanimated (in the sense of changing their aspect versus simply
moving around). Other parts of the game may include the background, the UI, and
tiles (we will look more into this in Chapter 4, Looking Sideways).

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Game

[20]

Framework
During this book, we will write some code; part of the code belongs to an example
game and is used to describe scenes or logic that are specific to it. Some code,
however, is very likely to be reused in each of your games. For this reason, we
will regroup some of those functions into a framework that we will cleverly call
gameFramework or gf in short.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

A very simple way to define a namespace in JavaScript is to create an object and add
all your function directly to it. The following code gives you an example of what this
might look like for two functions, shake and stir, in the namespace cocktail.

// define the namespace
var cocktail = {};

// add the function shake to the namespace
cocktail.shake = function(){...}

// add the function stir to the namespace
cocktail.stir = function(){...}

This has the advantage of avoiding collision with other libraries that use similar
names for their objects or functions. Therefore, from now on when you see any
function added to the namespace, it will mean that we think those functions will
be used by the other games we will create later in this book or that you might want
to create yourself.

The following code is another notation for namespace. Which one you use is a
personal preference and you should really use the one that feels right to you!

var cocktail = {

 // add the function shake to the namespace
 shake: function(){...},

 // add the function stir to the namespace
 stir: function(){...}
};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

Typically, you would keep the code of the framework in a JS file (let's say
gameFramework.js) and the code of the game in another JS file. Once your game
is ready to be published, you may want to regroup all your JavaScript code into
one file (including jQuery if you wish so) and minimize it. However, for the whole
development phase it will be way more convenient to keep them separate.

Sprites
Sprites are the basic building blocks of your game. They are basically images that can
be animated and moved around the screen. To create them you can use any image
editor. If you work on OS X, there is a free one that I find has been particularly well
done, Pixen (http://pixenapp.com/).

There are many ways to draw sprites using the DOM. The most obvious one is to use
the img element. This causes several inconveniences. First, if you want to animate the
image you have two options, neither of which are exempt of drawbacks:

• You can use animated gifs. With this method you have no way to access the
index of the current frame through JavaScript, and no control over when
the animation starts to play or when it ends. Furthermore, having many
animated GIFs tends to slow things down a lot.

• You can change the source of the image. This is already a better solution,
but provides worse performance if proposed and requires a large number of
individual images.

Another disadvantage is that you cannot choose to display only one part of the
image; you have to show the entire image each time. Finally, if you want to have a
sprite made of a repeating image, you will have to use many img elements.

For the sake of completeness, we should mention here one advantage of img; it's
really easy to scale an img element—just adjust the width and height.

The proposed solution uses simple divs of defined dimensions and sets an image in
the background. To generate animated sprites, you could change the background
image, but instead we use the background position CSS property. The image used
in this situation is called a sprite sheet and typically looks something like the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Game

[22]

The mechanism by which the animation is generated is shown in the following
screenshot:

background position x-offset

current div
next frameprevious frame

Another advantage is that you can use a single sprite sheet to hold multiple
animations. This way you will avoid having to load many different images.
Depending on the situation, you may still want to use more than one sprite
sheet, but it's a good thing to try to minimize their number.

Implementing animations
It's very simple to implement this solution. We will use .css() to change the
background properties and a simple setInterval to change the current frame of
the animation. Therefore, let's say that we have a sprite sheet containing 4 frames
of a walk cycle where each frame measures 64 by 64 pixels.

First, we simply have to create a div with the sprite sheet as its background. This
div should measure 64 by 64 pixels, otherwise the next frame would leak onto the
current one. In the following example, we add the sprite to a div with the ID mygame.

$("#mygame").append("<div id='sprite1'>");
$("#sprite1").css("backgroundImage","url('spritesheet1.png')");

As the background image is by default aligned with the upper-left corner of the div,
we will only see the first frame of the walk-cycle sprite sheet. What we want is to be
able to change what frame is visible. The following function changes the background
position to the correct position based on the argument passed to it. Take a look at the
following code for the exact meaning of the arguments:

/**
 * This function sets the current frame.
 * -divId: the Id of the div from which you want to change the
 * frame
 * -frameNumber: the frame number

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

 * -frameDimension: the width of a frame
 **/
gameFramework.setFrame = function(divId,frameNumber, frameDimension) {
 $("#"+divId)
 .css("bakgroundPosition", "" + frameNumber * frameDimension +
"px 0px");
}

Now we have to call this at regular intervals to produce the animation. We will
use setInterval with an interval of 60 milliseconds, that is, around 17 frames
per second. This should be enough to give the impression of walking; however,
this really has to be fine-tuned to match your sprite sheet. To do this we use an
anonymous function that we pass to setInterval, which will in turn call our
function with the correct parameter.

var totalNumberOfFrame = 4;
var frameNumber = 0;
setInterval(function(){
 gameFramework.setFrame("sprite1",frameNumber, 64);
 frameNumber = (frameNumber + 1) % totalNumberOfFrame;
}, 60);

You probably noticed that we're doing something special to compute the current
frame. The goal is to cover values from 0 to 3 (as they're 4 frames) and to loop back to
0 when we reach 4. The operation we use for this is called modulo (%) and it's the rest
of the integer division (also known as Euclidean division).

For example, at the third frame we have 3 / 4 which is equal to 0 plus a remainder of
3, so 3 % 4 = 3. When the frame number reaches 4 we have 4 / 4 = 1 plus a remainder
of 0, so 4 % 4 = 0. This mechanism is used in a lot of situations.

Adding animations to our framework
As you can see there are more and more variables needed to generate an animation:
the URL of the image, the number of frames, their dimension, the rate of the animation,
and the current frame. Furthermore, all those variables are associated with one
animation, so if we need a second one we have to define twice as many variables.

The obvious solution is to use objects. We will create an animation object that will
hold all the variables we need (for now, it won't need any method). This object, like
all the things belonging to our framework, will be in the gameFramework namespace.
Instead of giving all the values of each of the properties of the animation as an
argument, we will use a single object literal, and all the properties that aren't defined
will default to some well-thought-out values.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Game

[24]

To do this, jQuery offers a very convenient method: $.extend. This is a very
powerful method and you should really take a look at the API documentation
(http://api.jquery.com/) to see everything that it can do. Here we will pass to it
three arguments: the first one will be extended with the values of the second one and
the resulting object will be extended with the values of the third.

/**
 * Animation Object.
 **/
gf.animation = function(options) {
 var defaultValues = {
 url : false,
 width : 64,
 numberOfFrames : 1,
 currentFrame : 0,
 rate : 30
 };
 $.extend(this, defaultValues, options);
}

To use this function we will simply create a new instance of it with the desired
values. Here you can see the values used in the preceding examples:

var firstAnim = new gameFramework.animation({
 url: "spritesheet1.png",
 numberOfFrames: 4,
 rate: 60
});

As you can see, we didn't need to specify width: 64 because it's the default value!
This pattern is very convenient and you should keep it in mind each time you need
default values and also the flexibility to override them.

We can rewrite the function to use the animation object:

gf.setFrame = function(divId, animation) {
 $("#" + divId)
 .css("bakgroundPosition", "" + animation.currentFrame *
animation.width + "px 0px");
}

Now we will create a function for our framework based on the technique we've
already seen, but this time it will use the new animation object. This function will
start animating a sprite, either once or in a loop. There is one thing we have to be
careful about—if we define an animation for a sprite that is already animated we
need to deactivate the current animation and replace it with the new one.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

To do this we will need an array to hold the list of all intervals' handles. Then we'll
only need to check if one exists for this sprite and clear it, then define it again.

gf.animationHandles = {};

/**
 * Sets the animation for the given sprite.
 **/
gf.setAnimation = function(divId, animation, loop){
 if(gf.animationHandles[divId]){
 clearInterval(gf.animationHandles[divId]);
 }
 if(animation.url){
 $("#"+divId).css("backgroundImage","url('"+animation.
url+"')");
 }
 if(animation.numberOfFrame > 1){
 gf.animationHandles[divId] = setInterval(function(){
 animation.currentFrame++;
 if(!loop && currentFrame > animation.numberOfFrame){
 clearInterval(gf.animationHandles[divId]);
 gf.animationHandles[divId] = false;
 } else {
 animation.currentFrame %= animation. numberOfFrame;
 gf.setFrame(divId, animation);
 }
 }, animation.rate);
 }
}

This will provide a convenient, flexible, and quite high-level way to set an animation
for a sprite.

Moving sprites around
Now that we know how to animate a sprite, we need to move it around to make it
interesting. A few things are necessary for this; first, the div that we use has to be
positioned absolutely. This is very important for two reasons:

• It's a nightmare for the developer to manipulate other positioning as soon as
the scene becomes complicated.

• It's by far the least expansive way for the browser to compute the position of
an element.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Game

[26]

What we want then is the sprite to be positioned relative to the div that holds the
game. This means that it too has to be positioned, absolutely, relatively, or fixed.

Once those two conditions are met, we can simply use the top and left CSS
properties to choose where the sprite appears on the screen, as shown in the
following screenshot:

game zone

top: 40 px

top: 20 px

sprite at
position
(20,40)

The following code sets the correct parameters for the container div and adds
a sprite:

$("#mygame").css("position", "relative").append("<div id='sprite1'
style='position: absolute'>");

As we will use this piece of code a lot, we will factor it into a function of our
framework event if it's trivial. As we did for the animation constructor, we will use
an object literal to define the optional arguments.

/**
 * This function adds a sprite the div defined by the first argument
 **/
gf.addSprite = function(parentId, divId, options){
 var options = $.extend({
 x: 0,
 y: 0,
 width: 64,
 height: 64
 }, options);

 $("#"+parentId).append("<div id='"+divId+"' style='position:
absolute; left:"+options.x+"px; top: "+options.y+"px; width:
"+options.width+"px ;height: "+options.height+"px'></div>");
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

We will then write a function that moves a sprite along the x axis and another one
along the y axis. One typical convention in graphic programming is to have the x axis
going from left to right and the y axis going from top to bottom. Those functions will
take the ID of the element to move and the position to move it to. To mimic the way
some jQuery functions work, our functions will return the current position of the
sprite if you don't provide a second argument.

/**
 * This function sets or returns the position along the x-axis.
 **/
gf.x = function(divId,position) {
 if(position) {
 $("#"+divId).css("left", position);
 } else {
 return parseInt($("#"+divId).css("left"));
 }
}
/**
 * This function sets or returns the position along the y-axis.
 **/
gf.y = function(divId,position) {
 if(position) {
 $("#"+divId).css("top", position);
 } else {
 return parseInt($("#"+divId).css("top"));
 }
}

With those three simple functions, you have all the basic tools that you need to
generate the graphics of your game.

Preloading
There is, however, one last thing that is required in most cases; asset loading. To
avoid starting the game before some of the images are loaded you need to load them
before. Most users expect the game to start loading only when they decide to start it.
Furthermore, they want some feedback about the progress of the loading process.

In JavaScript, you have the possibility to define, for each image, a function that will
be called once the image has finished loading. This, however, has a limitation that it
won't provide you with information about the other images. And you can't simply
define a callback for the last image that you start to run as you have no guarantee
about the order in which your images will load, and in most cases images don't load
one after the other, but rather a bunch at a time.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Game

[28]

There are many possible solutions, most of them equally good. As this code is run in
most cases only once and before the game starts, performance is not of great concern
here. What you really want is a robust, flexible system to know when all the images
are loaded and the possibility to track the overall progress.

Our solution will use two functions: one to add images to a list of image to preload
and the other one to start the preloading.

gf.imagesToPreload = [];

/**
 * Add an image to the list of image to preload
 **/
gf.addImage = function(url) {
 if ($.inArray(url, gf.imagesToPreload) < 0) {
 gf.imagesToPreload.push();
 }
 gf.imagesToPreload.push(url);
};

This first function doesn't do a lot. It simply takes an URL, checks if it's already
present in the array where we store the images to preload, and if the new image
is not in the array, add it.

The next function takes two callbacks. The first one is called once all the images
are loaded and the second one (if defined) is called with the current progress as
a percentage.

/**
 * Start the preloading of the images.
 **/
gf.startPreloading = function(endCallback, progressCallback) {
 var images = [];
 var total = gf.imagesToPreload.length;

 for (var i = 0; i < total; i++) {
 var image = new Image();
 images.push(image);
 image.src = gf.imagesToPreload[i];
 }
 var preloadingPoller = setInterval(function() {
 var counter = 0;
 var total = gf.imagesToPreload.length;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

 for (var i = 0; i < total; i++) {
 if (images[i].complete) {
 counter++;
 }
 }
 if (counter == total) {
 //we are done!
 clearInterval(preloadingPoller);
 endCallback();
 } else {
 if (progressCallback) {
 count++;
 progressCallback((count / total) * 100);
 }
 }
 }, 100);
};

In this function, we start by defining a new Image object for every URL that was
added to the list. They will automatically start loading. Then we define a function
that we will call at regular intervals. It will use the complete properties of images
to check if each image is loaded. If the number of loaded images equals the total
number of images, it means that we are done preloading.

What could be useful is to automatically add the images used for animations to the
preload list. To do this, we just need to add three lines at the end of the animation
object in the following way:

gf.animation = function(options) {
 var defaultValues = {
 url : false,
 width : 64,
 numberOfFrames : 1,
 currentFrame : 0,
 rate : 30
 };
 $.extend(this, defaultValues, options);
 if(this.url){
 gf.addImage(this.url);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Game

[30]

Initializing the game
The framework part of the game is done. Now we want to implement the graphics
and game logic. We can divide the game's code into two parts, one that will be
executed only once at the beginning, and one that will be called periodically.
We will call the first one the initialization.

This part should be executed as soon as the images are done loading; this is the
reason why we will pass it as the end callback for the startPreloading function.
This means that at the very beginning we need to add all the images that we will use
to the preload list. Then once the user launches the game (for example, by clicking an
image with the ID startButton) we will call the preloader.

The following code uses the standard jQuery way to execute a function once the
page is ready. I won't give you the complete code here because some of it is quite
repetitive, but I will give at least one example of each of the actions performed here
and you can always look at the complete source code if you're curious.

$(function() {
 var backgroundAnim = new gf.animation({
 url : "back.png"
 });
 var networkPacketsAnim = new gf.animation({
 url : "packet.png"
 });
 var bugsAnim = new gf.animation({
 url : "bug.png"
 });
 var playerAnim = new gf.animation({
 url : "player.png"
 });

 var initialize = /* we will define the function later */

 $("#startButton").click(function() {
 gf.startPreloading(initialize);
 });
});

The following is a list of what we need to do in the initialize function:

• Create the sprites that compose the game scene
• Create the GUI elements

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

The following diagram shows how we will build our game scene:

player

background

line 6

line 5

line 4

line 3

line 2

line 1

No more than eight sprites: one for the background, one for the player, three for the
network packets, and three for the bugs. To make things simpler we will use only
one sprite for each band of packets/bugs. The three bands of packets will have the
same animation and the same for the three bands of bugs.

To avoid making the elements pop up as they are added, we will first add them to an
invisible element and make this element visible only once all the sprites are created.

The only GUI element will be a small div containing the number of lives the
player has.

var initialize = function() {
 $("#mygame").append("<div id='container' style='display: none;
width: 640px; height: 480px;'>");
 gf.addSprite("container","background",{width: 640, height: 480});
 gf.addSprite("container","packets1",{width: 640, height: 40, y:
400});
 /* and so on */
 gf.addSprite("container","player",{width: 40, height: 40, y: 440,
x: 260});

 gf.setAnimation("background", backgroundAnim);
 gf.setAnimation("player", playerAnim);
 gf.setAnimation("packets1", networkPacketsAnim);
 /* and so on */

 $("#startButton").remove();
 $("#container").append("<div id='lifes' style='position: relative;
color: #FFF;'>life: 3</div>").css("display", "block");
 setInterval(gameLoop, 100);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Game

[32]

The last line of this function is starting the main loop. The main loop is the code
that will be executed periodically. It contains most (if not all) of the game logic that
doesn't immediately depend on an input from the player.

Main loop
The main loop will typically contain a finite state machine (FSM). An FSM is defined
by a series of states and the list of transitions from one state to another. The FSM
for a simple game where the player would have to click three boxes that appear one
after the other would look like the following diagram:

first box
displayed

second box
displayed

third box
displayed

player clicked
the first box

player clicked
the second box

player clicked
the third box

done

When you implement an FSM, you really need to consider two things: how the game
should behave in each state, and what conditions make the game transition to a new
state. The advantage of FSMs is that they provide a formal way to organize your
game logic. It will make it easier to read your code and you can add/or change your
logic at a later time if you need it. I would recommend you to first draw the FSM for
your game and keep it somewhere to help you debug your game.

For our Frogger game there are 10 states. The initial state is START and the two
final states are GAMEOVER and WON. Here is a description of what happens exactly
in each state:

• All states: The packets and bugs move to the right
• STARTPOS: Nothing special happens
• LINE1: The player moves at the same speed as the packets of the first line; if

the player goes out of the screen it dies and goes back to START
• LINE2: The player moves at the same speed as the packets of the second line,

if the player goes out of the screen it dies and goes back to START
• LINE3: The player moves at the same speed as the packets of the third line, if

the player goes out of the screen it dies and goes back to START
• REST: Nothing special happens
• LINE4: If the player gets hit by a bug from the line, it dies and goes back

to REST

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

• LINE5: If the player gets hit by a bug from the line, it dies and goes back to
REST

• LINE6: If the player gets hit by a bug from the line, it dies and goes back to
REST

• WON and GAMEOVER: Nothing special happens

On all states except WON and GAMEOVER the player can move around. This will trigger
the following transitions:

• Successful jump: Go to the next state
• Successful left/right slide: Stay in the same state
• Failed jump of left/right slide: If the number of remaining lives is greater

than zero, go back to the last "safe" state (START or REST), otherwise transition
to GAMEOVER

Main loop implementation
The most readable way to write an FSM is to use switch statements. We will use
two, one in the main loop to update the game, and the other in the part that handles
keyboard input.

The following code is an extract of the main loop. We first initiate a few variables
that we will need to define the behavior of the game, and then code the FSM
described in the preceding section. To move the packets and bugs we will use a trick
and simply change the background-position. This is a less flexible solution than
the function that we wrote earlier, but in this situation it is faster and makes it easy to
give the impression of an infinite number of elements with a single sprite.

var screenWidth = 640;
var packets1 = {
 position: 300,
 speed: 3
}
/* and so on */

var gameState = "START";

var gameLoop = function() {
 packets1.position += packets1.speed;
 $("#packets1").css("background-position",""+ packets1.position
+"px 0px");

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Game

[34]

 /* and so on */

 var newPos = gf.x("player");
 switch(gameState){
 case "LINE1":
 newPos += packets1.speed;
 break;
 case "LINE2":
 newPos += packets2.speed;
 break;
 case "LINE3":
 newPos += packets3.speed;
 break;
 }
 gf.x("player", newPos);
};

At this point, the game displays all the moving parts. There still isn't any way for
the player to control its avatar. To do this we will use the keydown event handler.
We will implement two different solutions to move the sprite around. For the
horizontal movement, we will use the gf.x function that we wrote earlier. This
makes sense because it's a very small movement, but for the vertical jump we will
use $.animate to make the avatar move to its destination in many steps and create
a more fluid movement.

$(document).keydown(function(e){
 if(gameState != "WON" && gameState != "GAMEOVER"){
 switch(e.keyCode){
 case 37: //left
 gf.x("player",gf.x("player") - 5);
 break;
 case 39: // right
 gf.x("player",gf.x("player") + 5);
 break;
 case 38: // jump
 switch(gameState){
 case "START":
 $("#player").animate({top: 400},function()
{
 gameState = "LINE1";
 });
 break;
 case "LINE1":
 $("#player").animate({top: 330},function()
{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

 gameState = "LINE2";
 });
 break;
 /* and so on */
 case "LINE6":
 $("#player").animate({top: 0},function(){
 gameState = "WON";
 $("#lifes").html("You won!");
 });
 break;
 }
 }
 }
 });

Here we start to check the state of the game to be sure that the player is allowed
to move. Then we check which key was pressed. The left and right parts are
self-explanatory, but the jump part is subtler.

We need to check the state of the game to find out where the player should jump.
Then we use a callback that we pass to the animate function in order to update
the state of the game only once the animation is done.

That's it, you can now control the player. If you jump on a packet the player will
move with it, and when you reach the end you will win the game. However, you
may have noticed we forgot something important: there is no way for the player to
die! To add this feature we will need to detect whether the player is at a place that
is safe or not.

Collision detection
We will use some sort of collision detection, but a very simple version that is
designed only for this situation. In the later chapters, we will see more general
solutions, but this isn't necessary here.

There are six spots where collision detection matters in this game; the three lines of
packets in the first part, and the three lines of bugs in the second part. Both represent
the exact same situation. There is a succession of elements separated by some empty
space. The distance between each element is constant along with its size. We don't
need to know on which packet the player has jumped or which bugs hit the player,
what matters is only if the player stands on a packet or if he/she was hit by a bug.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Game

[36]

For this reason we will use the modulo technique we used before to reduce the
problem complexity. What we will consider is the following situation:

To know if the player touches the element or not we just need to compare its x
co-ordinate with the element position.

The following code does just that. First, it checks the game state to know what
collision to detect (if any), then uses modulo to bring the player back to the
simplified situation we want to consider. And finally, it checks the coordinates
of the player.

var detectSafe = function(state){
 switch(state){
 case "LINE1":
 var relativePosition = (gf.x("player") - packets1.
position) % 230;
 relativePosition = (relativePosition < 0) ?
relativePosition + 230: relativePosition;
 if(relativePosition > 110 && relativePosition < 210) {
 return true;
 } else {
 return false;
 }
 break;
 /* and so on */
 case "LINE4":
 var relativePosition = (gf.x("player") - bugs1.position) %
190;
 relativePosition = (relativePosition < 0) ?
relativePosition + 190: relativePosition;
 if(relativePosition < 130) {
 return true;
 } else {
 return false;
 }
 break;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

 /* and so on */
 }
 return true;
}

There is one small thing you have to be careful about: modulo can have a negative
value. This is why we check for this and simply add the width of the repeating part
to go back to a positive value.

This is a pretty fast way to detect the solution and there are many such cases where
you can design your own collision detection and make it very efficient because you
know exactly what to check in your particular situation.

Now we can call this method in our game. There are two places where this should
be done: in the main loop and in the input handler. When we detect that the player
died, we need to decrease its life and move it to the right place. Furthermore, we
want to detect that the player has no more life and change the game's state to
GAMEOVER in this situation. The following function does just that:

var life = 3;
var kill = function (){
 life--;
 if(life == 0) {
 gameState = "GAMEOVER";
 $("#lifes").html("Game Over!");
 } else {
 $("#lifes").html("life: "+life);
 switch(gameState){
 case "START":
 case "LINE1":
 case "LINE2":
 case "LINE3":
 gf.x("player", 260);
 gf.y("player", 440);
 gameState = "START";
 break;
 case "REST":
 case "LINE4":
 case "LINE5":
 case "LINE6":
 gf.x("player", 260);
 gf.y("player", 220);
 gameState = "REST";
 break;
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Game

[38]

Now we can add the collision detection in the main loop. We will need to check for
another thing: the player shouldn't go out of the screen in one of the packets.

var newPos = gf.x("player");
switch(gameState){
 case "LINE1":
 newPos += packets1.speed;
 break;
 /* and so on */
}
if(newPos > screenWidth || newPos < -40){
 kill();
} else {
 if(!detectSafe(gameState)){
 kill();
 }
 gf.x("player", newPos);
}

In the input handler, we will add the code into the callback executed at the end of the
jump animation. For example, to check collision for a jump from the start to the first
line we will write the following:

case "START":
 $("#player").animate({top: 400},function(){
 if(detectSafe("LINE1")){
 gameState = "LINE1";
 } else {
 kill();
 }
 });
 break;

Here you see why we didn't use gameState in the kill function. In this situation,
the player is still in its previous state. It still hasn't "landed" so to say.
Only if the jump was safe, we will change the player's state to the next line.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

Summary
We now have a game that completely implements the specification that we defined
at the beginning of the chapter. The code is not yet optimized and that will be the
subject of our next chapter, but to make a game that is nice to play it would really
need more polish. You could add a high-score system, integration with social
networks, and sound and touch device compatibility.

We will cover those topics and more in the future chapters. However, there are a
lot of things you can do with what you have already learned now to make the game
better: you may want to add an animation for when the player dies, a nicer GUI,
nicer graphics, the ability to jump back, and more than one level. It's these small
things that will make your game stand out and you should really invest a big part
of your time to give this professional finish to your game!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Better, Faster, but not Harder
The game we just developed will work just fine on almost all devices and in almost
all browsers, the main reason being it's very simple and contains few moving sprites.
However, as soon as you'll try to make a more complex game like we will in the
following chapters, you'll realize that you need to take great care to write optimized
code for obtaining good performance.

In this chapter, we will look back at our previous code and propose an optimized
version of some of its aspects. Some of those optimizations are there to make your
game run faster and some others are there to make your code more readable and
easier to maintain.

In general, it's a good practice to implement a first version of your game with fewer
features without worrying too much about performance, and then optimize and add
more functions to it. This helps you to avoid spending too much time on something
you may not need in the game, allowing you to benchmark your optimizations to
make sure they really make things faster, and most importantly, keep you motivated.

In this chapter, we will dive deeper into the following areas:

• Reducing the number of intervals and timeouts
• Keyboard polling
• Using HTML fragments
• Avoiding reflow
• Using CSS Transform to speed up sprite positioning
• Using requestAnimationFrame instead of timeouts

www.it-ebooks.info

http://www.it-ebooks.info/

Better, Faster, but not Harder

[42]

Intervals and timeouts
In our game we used a lot of setInterval calls. You may think that those calls are
multithreaded, but they are not. JavaScript is strictly single-threaded (with the recent
exception of WebWorkers, but we won't look into that here). This means that all
those calls are really run one after the other.

If you're interested in the dirty details of how exactly intervals and timeouts work, I
would recommend reading the excellent article written by John Resig, How JavaScript
Timers Work (http://ejohn.org/blog/how-javascript-timers-work/).

Therefore, intervals and timeouts don't add multithreading to your code, and there
are many reasons why you may want to avoid using them too much. First, it makes
your code somewhat difficult to debug. Indeed, depending on how much time each
call takes, your interval will be executed in a different order, and even those will be
of the exact same periodicity.

Furthermore, performance-wise, using setInterval and setTimeout too much can
be very taxing on older browsers.

The alternative is to use a single interval to replace all your animation's functions
and the game loop.

One interval to rule them all
Using one single interval doesn't necessarily mean that you want all your animations
to execute at the same rate. An acceptable solution in most cases is to allow any
multiple of the base interval for the animations.

Typically, you will have your game loop running at a given rate (let's say 30
milliseconds), and your animations running at the same rate or two, three, four times
slower. However, this doesn't have to be restricted to animations; you may want
to have more than one game loop, some of them executed at a much lower rate.

For example, you may want to increase the level of the water in a platform game
every second. That way, the player has the incentive to finish the level quickly,
otherwise he/she will drown. To allow this in the framework, we will add an
addCallback function that will take a function and a rate. The game loop from
our previous game will be implemented using this instead of setInterval.

This means that the startPreloading function will slightly change. After the call to
the endCallback function, we will start a setInterval function with a new function
that will call all the functions that have been defined through addCallback and take
care of the animations. Furthermore, we will change its name simply to startGame
to reflect the change in usage.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[43]

In the game, it won't be necessary to explicitly create an interval with the game loop
as this is automatically done by the startGame function; we just have to add it to the
game with the function addCallback. The following image shows a comparison of
this method and the one using many setTimeout functions:

in
te

rv
al

 a
in

te
rv

al
 a

in
te

rv
al

 b
in

te
rv

al
 b

multiple setInterval single setInterval

b delayed
and
out-of-order

in
te

rv
al

 c

function a

function b

function a

function b

function c

function a

loop function

loop function

loop function function a

function b

function c

function a

function b

function a

function b

time

ba
se

 in
te

rv
al

ba
se

 in
te

rv
al

We will implement this in our framework by providing this minimal refresh rate to
an initialize function. From this point, all the animations and periodical functions
will be defined as a multiple of it. We will still use milliseconds in the API to describe
their rate, but will store the rate internally as the closest multiple of the base rate.

Code
Our initialize function will use the $.extend function that we used. For now on, we
will only have the base refresh rate, but we will add more values as we need them.
We also need to define the default values for the base refresh rate to account for
the situation where the user didn't specify one manually.

gf = {
 baseRate: 30
};

gf.initialize = function(options) {
 $.extend(gf, options);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Better, Faster, but not Harder

[44]

The newly renamed startGame function will look like the following code:

gf.startGame = function(progressCallback) {
 /* ... */
 var preloadingPoller = setInterval(function() {
 /* ... */
 if (counter == total) {
 //we are done!
 clearInterval(preloadingPoller);
 endCallback();
 setInterval(gf.refreshGame, gf.baseRate);
 } else {
 /* ... */
 }
 }, 100);
};

We didn't change much here; after the endCallback function, we added a call to an
internal function: gf.refreshGame. It's this function that will, in turn, coordinate
both the refreshment of animations and periodic function calls.

This new function will use two lists to know when to do what, one for callbacks and
one for animations. We have one for animations already: gf.animationHandles.
We will rename it simply to gf.animations and create a second one named
gf.callbacks.

Both lists will have to include a way to know if they should be executed at the
current iteration of the base rate or not. To detect this, we will use a simple counter
for each animation and callback. Each time the base loop executes, we will increment
all of them and compare their values with the rate of the associate animation/
callback. If they are equal, it means that we need to execute it and reset the counter.

gf.refreshGame = function (){
 // update animations
 var finishedAnimations = [];

 for (var i=0; i < gf.animations.length; i++) {

 var animate = gf.animations[i];

 animate.counter++;
 if (animate.counter == animate.animation.rate) {
 animate.counter = 0;
 animate.animation.currentFrame++;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

 if(!animate.loop && animate.animation.currentFrame >
animate.animation.numberOfFrame){
 finishedAnimations.push(i);
 } else {
 animate.animation.currentFrame %= animate.animation.
numberOfFrame;
 gf.setFrame(animate.div, animate.animation);
 }
 }
 }
 for(var i=0; i < finishedAnimations.length; i++){
 gf.animations.splice(finishedAnimations[i], 1);
 }

 // execute the callbacks
 for (var i=0; i < gf.callbacks.length; i++) {
 var call = gf.callbacks[i];

 call.counter++;
 if (call.counter == call.rate) {
 call.counter = 0;
 call.callback();
 }
 }
}

This simple mechanism will replace the many calls to setInterval and solve the
problems associated to this that we mentioned earlier.

The function that sets animations to a div has to be adapted in consequence. As
you've seen in the preceding example, the actual code that takes care of finding out
which frame of the animation has to be defined is now in the refreshGame function.
This means that the setAnimation function just needs to add the animation to the
list without caring about how it will be animated.

The part of the function that checks if the div already has an animation associated to
it is now slightly more complicated, but otherwise the function is now much simpler.

gf.animations = [];

/**
 * Sets the animation for the given sprite.
 **/
gf.setAnimation = function(divId, animation, loop){
 var animate = {
 animation: animation,

www.it-ebooks.info

http://www.it-ebooks.info/

Better, Faster, but not Harder

[46]

 div: divId,

 loop: loop,
 counter: 0
 }

 if(animation.url){
 $("#"+divId).css("backgroundImage","url('"+animation.
url+"')");
 }

 // search if this div already has an animation
 var divFound = false;
 for (var i = 0; i < gf.animations.length; i++) {
 if(gf.animations[i].div == divId){
 divFound = true;
 gf.animations[i] = animate
 }
 }

 // otherwise we add it to the array
 if(!divFound) {
 gf.animations.push(animate);
 }
}

We need to write a similar code to add the callbacks to the base loop:

gf.callbacks = [];

gf.addCallback = function(callback, rate){
 gf.callbacks.push({
 callback: callback,
 rate: Math.round(rate / gf.baseRate),
 counter: 0
 });
}

This function is trivial; the only interesting part is the normalization of the refresh
rate to express it as a multiple of the base rate. You probably noticed that we didn't
do anything of that sort for animations, but we will do this now in the function that
creates animations. It will now look like this:

gf.animation = function(options) {
 var defaultValues = {
 url : false,
 width : 64,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

 numberOfFrames : 1,
 currentFrame : 0,
 rate : 1
 }
 $.extend(this, defaultValues, options);
 if(options.rate){
 // normalize the animation rate
 this.rate = Math.round(this.rate / gf.baseRate);
 }
 if(this.url){
 gf.addImage(this.url);
 }
}

And that's it; with those simple changes, we will get rid of most setInterval
functions. It may seem quite a lot of work to duplicate functionality that you get out
of the box with vanilla JavaScript, but you will see in time that it helps quite a lot
when you start debugging your game.

Keyboard polling
If you played the game from the last chapter, you may have noticed that the
movements from left to right from our "frog" are somewhat strange, that is, if you
press and hold the left key, your avatar will move left a bit, stall for some time, and
start moving left continually.

This behavior is not directly caused by the browser, but rather by the operating
system. What's happening here is that the OS will repeat any key when it stays
pressed long enough (also known as "sticky keys"). There are two parameters that
define this behavior:

• The grace period: This is the time during which the OS will wait before
repeating the keys. This avoids repeating the keys when you really mean
to press them once.

• The frequency at which the keys will repeat.

You have no control on those parameters or on the occurrence of this behavior. It all
depends on the OS and the way the user configured it.

For continuous actions, this is far from ideal. If you move an avatar around in an
RPG or a platformer game, you need the movement to be continuous and linear in
speed. A solution to this problem is called state polling. With this method, you want
to actively query the state of some keys instead of waiting for a change in state as is
done with event handling.

www.it-ebooks.info

http://www.it-ebooks.info/

Better, Faster, but not Harder

[48]

In your game loop, you would at some point ask if the key "left" is pressed and
react accordingly. This is used a lot in native games, but JavaScript doesn't offer
this possibility out of the box. We will have to implement a state polling
technique ourselves.

Keeping track of the keys' state
To do this we will use the only tools available: the keydown and keyup events. We
will register two event handlers:

1. If a key with a given keycode "c" is pressed, the first event handler will write
true in an array at index "c".

2. When the same key is released, the second event handler sets the value of
index "c" to false.

A nice feature of this solution is that we don't need to initialize the state of the array
for each possible key as, by default, it is undefined; so, when we check, its value will
return false. The following image illustrates how these two event handlers work:

keyState Array

event:
key with

keycode 65
pressed

event:
key with

keycode 65
released

Event Handler 1

Event Handler 2

write false

write true

64 65 66 67 68 69

keyState Array

64 65 66 67 68 69

We will register those two event handlers at the end of our framework:

gf.keyboard = [];
// keyboard state handler
 $(document).keydown(function(event){

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

 gf.keyboard[event.keyCode] = true;
});
$(document).keyup(function(event){
 gf.keyboard[event.keyCode] = false;
});

Once this is done, we can simply move the code that handles the left and right
movement to our game loop and rewrite it to use the gf.keyboard array.

if(gf.keyboard[37]){ //left
 newPos -= 5;
}
if(gf.keyboard[39]){ //right
 newPos += 5;
}

Here we don't need to check if the player dies because we already do it once in the
game loop. You just have to keep in mind that more than one key can be pressed
at the same time. This wasn't the case in the previous version that used an event
handler and where one event was generated for each key that was pressed.

If you try the game now, you will notice that the horizontal movements of your
player are much better.

As you can see, the code that uses polling is prettier and in most cases more compact.
Furthermore, it is inside the game loop, which is always a good thing. However,
there are still situations where it may not be the best solution. Making our frog jump
is a perfect example of this.

Choosing between event handling and polling really depends on the situation, but
in general, if you want to react to a key pressed once you will use events, and if you
want to react to a key pressed continuously you will use polling.

HTML fragments
Here we will look at some small optimizations in the code that creates the sprites.
As this function is called only eight times in our entire game and only during the
initialization phase, it's not very important that it's fast in this case. However,
there are many situations where you need to create lots of sprites during the game,
for example, when shooting lasers in a shoot-'em-up when creating levels of a
platformer or the maps of an RPG.

www.it-ebooks.info

http://www.it-ebooks.info/

Better, Faster, but not Harder

[50]

This technique avoids parsing the HTML code (that describes a sprite) each time that
you add one to the game. It uses what's called an HTML fragment, which is a kind of
a severed branch from the usual HTML tree of nodes.

Standard HTML tree

document

HTML Fragment

body

imgp p p

div div

variable

p p p

div

jQuery offers a very simple way to generate such a fragment:

var fragment = $("<div>fragment</div>");

In this example, the variable fragment will hold the HTML element in memory until
we need to use it. It is not automatically added to the document. If you want to add it
later you can simply write:

$("#myDiv").append(fragment);

Keep in mind that the fragment is still referencing the added element, which means
that if you add it to another location later on it will be removed from the previous
one, and if you modify it you will modify the document too.

To avoid this situation, what you want is to clone the fragment before you insert it
into your document, as shown in the following code:

$("#myDiv").append(fragment.clone());

This is exactly the way we will rewrite our addSprite function to make it faster:

gf.spriteFragment = $("<div style='position: absolute'></div>");
gf.addSprite = function(parentId, divId, options){
 var options = $.extend({}, {
 x: 0,
 y: 0,
 width: 64,
 height: 64
 }, options);
 $("#"+parentId).append(gf.spriteFragment.clone().css({

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

 left: options.x,
 top: options.y,
 width: options.width,
 height: options.height}).attr("id",divId));
};

Here we created a fragment for the only part that is common to every sprite. Then,
before we add it to the document, we clone it and add the special parameters that
were provided to the addSprite function, such as its position, size, and ID.

Like I said before, you probably won't have noticed any visible changes for our very
simple game, but this code is much more efficient and will come in handy in more
complex games where we generate lots of sprites.

Avoiding reflow
When modifying the DOM, you must try to avoid generating a complete reflow
of the whole document, or of a large part of it. There are many ways of minimizing
the risk of doing this, and modern browsers are pretty good at optimizing when
they do it.

Typically, the browser will try to regroup as much modification it can before
reflowing the document. However, if you try to access information that is dependent
on one of those modifications, it will have to perform a reflow in order to be able
to calculate the new information.

A pretty good rule of thumb is to avoid reading the DOM, like the plague, and as a
last resort, group all reads and perform them at the end of the refresh loop.

In our game there is one point where we are in this exact situation: Each time we
access the X position of the player's avatar, we force the browser to reflow. Position
and size is probably the most frequently accessed information during the game
loop. One simple way to make things faster is to avoid getting them from the DOM.
Indeed, as long as they are set through the framework function, we can simply store
them somewhere and retrieve them when needed.

To do this we will use jQuery's data function to associate our sprite with an object
literal containing those interesting values. The addSprite function would be
extended this way:

gf.addSprite = function(parentId, divId, options){
 /* ... */
 $("#"+parentId).append(gf.spriteFragment.clone().css({
 left: options.x,
 top: options.y,

www.it-ebooks.info

http://www.it-ebooks.info/

Better, Faster, but not Harder

[52]

 width: options.width,
 height: options.height}).attr("id",divId).
data("gf",options));
}

Then, in the gf.x and gf.y functions we will use this value instead of the
CSS property:

gf.x = function(divId,position) {
 if(position) {
 $("#"+divId).css("left", position);
 $("#"+divId).data("gf").x = position;
 } else {
 return $("#"+divId).data("gf").x;
 }
}
gf.y = function(divId,position) {
 if(position) {
 $("#"+divId).css("top", position);
 $("#"+divId).data("gf").y = position;
 } else {
 return $("#"+divId).data("gf").y;
 }
}

This also has the advantage of getting rid of two parseInt values, and the code of
the game doesn't even have to change!

Moving your sprite around using CSS
Transforms
Using CSS Transforms is a simple hack that allows you to move objects on the screen
much faster than it does with the use of CSS top and left properties. If you decide
to use this, you have to be aware that not all browsers support it.

We won't go into too much detail because CSS Transforms are explained in the next
chapter, Looking Sideways. The following code is the modification required to use
CSS Transforms:

gf.x = function(divId,position) {
 if(position) {
 var data = $("#"+divId).data("gf");
 var y = data.y;
 data.x = position;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

 $("#"+divId).css("transform", "translate("+position+"px,
"+y+"px)");
 } else {
 return $("#"+divId).data("gf").x;
 }
}
gf.y = function(divId,position) {
 if(position) {
 var data = $("#"+divId).data("gf");
 var x = data.x;
 data.y = position;
 $("#"+divId).css("transform", "translate("+x+"px,
"+position+"px)");
 } else {
 return $("#"+divId).data("gf").y;
 }
}

As you can see in the highlighted part of the code, we need to set both coordinates
each time. This means that we have to retrieve the y coordinate when we modify
the x coordinate and vice versa.

Using requestAnimationFrame instead
of timeouts
A new feature has been added quite recently to browsers in order to make
animations smoother: requestAnimationFrame. This makes the browser tell you
when it's the best possible time to animate your page instead of doing it whenever
you feel like it. You would use this instead of registering your callbacks with
setInterval or setTimeout.

When you use requestAnimationFrame, it's the browser that decides when it will
call the function. Therefore, you'll have to take into account the exact time that
passed since the last call. The standard specification used to define this time is
milliseconds (like the ones you would get with Date.now()), but it's now given
by a high-precision timer.

www.it-ebooks.info

http://www.it-ebooks.info/

Better, Faster, but not Harder

[54]

As there are implementations of those two versions around, and this feature is
vendor-prefixed in most browsers, you should use a tool to abstract the dirty details.
I would recommend reading these two articles, both of which provide code snippets
that you could use:

• http://paulirish.com/2011/requestanimationframe-for-smart-
animating/

• http://www.makeitgo.ws/articles/animationframe/

Summary
In this chapter, we spent some time optimizing the game we wrote in Chapter 2,
Creating Our First Game. We've seen some optimization techniques that will make
our game smoother without impacting our game's code readability.

The framework we've built is now a reasonable foundation upon which we can
build a more complete one in the following chapters. We will begin in the following
one by adding the capability to create tile maps that we will use to implement
a platformer game.

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Sideways
It's now time to make a more complex game. We will implement a very popular
genre, that of the 2D platform game. Some early examples of this genre are Super
Mario Bros and Sonic the Hedgehog. These games are typically built using small
repetitive sprites, called tile maps, for the level design. We will add these, as well as
a more general collision detection, to our framework. For the game logic itself we
will use object-oriented code.

Here is a quick list of the features we will have to add to our framework:

• Offline divs
• Groups
• Sprite transformation
• Tile maps
• Collision detections

We will first begin by going through all of these, and will then start with the game.

Offline divs
As explained at the end of the previous chapter, avoiding reflow is a good way to
speed things up. It's not always easy to completely avoid querying the state of the
DOM during your manipulations. And even if you are very careful, as a framework
developer, you are never sure what the user of your framework will do. However,
there is a way to reduce the negative effect of a reflow; detach the piece of DOM you
are working on, modify it, and then attach it back to the document.

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Sideways

[56]

Let's say you have a node with the ID box and want to manipulate its child elements
in a complex manner. The following code shows you how to detach it:

// detach box
var box = $("#box").detach();

var aSubElement = box.find("#aSubElement")
// and so on

// attach it back
box.appendTo(boxParent);

This requires a small modification of our framework's API; until now, we used a
string to identify sprites. This has the side effect of requiring the sprite to be part
of the document. For example, if you call gf.x("sprite"), jQuery will try to find
a node with the ID sprite in the document. If you detach the sprite or one of its
parents,
the function won't find its ID.

The solution is simply to provide the DOM node itself to our framework's functions.
As we use jQuery, we will wrap this node in jQuery. Let's compare the current API
and the proposed one for the gf.x function.

// current API
var xCoordinate = gf.x("mySprite");

// proposed API
var xCoordinate = gf.x($("#mySprite"));

This solution has another advantage; it allows for further optimization. If we look at
the implementation of this function, we will find another problem:

gf.x = function(divId,position) {
 if(position) {
 $("#"+divId).css("left", position);
 $("#"+divId).data("gf").x = position;
 } else {
 return $("#"+divId).data("gf").x;
 }
}

You can see that each time the function is called, jQuery is used to retrieve the
element. Any access to the DOM (even using the element's ID in the selector) to find
the element has a performance cost. Ideally, if the concerned element is used more
than a few times, you may want to cache it to improve performance. This is made
possible with the proposed API.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[57]

The implementation is pretty straightforward, so we will only show the gf.x function:

gf.x = function(div,position) {
 if(position) {
 div.css("left", position);
 div.data("gf").x = position;
 } else {
 return div.data("gf").x;
 }
}

Groups
It's very convenient to organize the elements of your game in a hierarchical manner.
A typical game could be organized this way:

Game container

Enemies Player Level

Obstacle 2

Obstacle 1GroundEnemy 1 Enemy 2

To allow this, we need to add a very simple thing called groups to our framework.
A group is basically a simple div, positioned exactly like a sprite, but has no
background and no width and height. We will add a gf.addGroup function to do
this for us. Its signature will be the same as that of gf.addSprite, but the options
argument will only hold x and y coordinates.

The following example shows you how to generate the tree shown in the
previous figure:

var enemies = gf.addGroup(container,"enemies");
var enemy1 = gf.addSprite(group,"enemy1",{...});
var enemy2 = gf.addSprite(group,"enemy2",{...});

var player = gf.addSprite(group,"player",{...});

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Sideways

[58]

var level = gf.addGroup(container,"level");
var ground = gf.addSprite(group,"ground",{...});
var obstacle1 = gf.addSprite(group,"obstacle1",{...});
var obstacle2 = gf.addSprite(group,"obstacle2",{...});

The implementation of this function is very similar to that of gf.addSprite:

gf.groupFragment = $("<div style='position: absolute; overflow:
visible;'></div>");
gf.addGroup = function(parent, divId, options){
 var options = $.extend({
 x: 0,
 y: 0,
 }, options);
 var group = gf.groupFragment.clone().css({
 left: options.x,
 top: options.y}).attr("id",divId).data("gf",options);
 parent.append(group);
 return group;
}

Having multiple entities on our game screen makes it necessary to have a simple
way to differentiate between them. We could use a flag in the object literal associated
with the node through the $.data function, but we will instead use CSS classes.
This has the advantage of making it very easy to retrieve or filter all the elements
of one type.

To implement this, we just have to change the fragments for sprites and groups.
The name we will give to the CSS class will be namespaced. Namespacing in CSS is
simply done with a prefix in the class name. For example, we will give our sprites
the class gf_sprite; this will minimize the chance that another plugin uses the
same class, in contrast to, say, sprite.

The new fragment will look like this:

gf.spriteFragment = $("<div class='gf_sprite' style='position:
absolute; overflow: hidden;'></div>");
gf.groupFragment = $("<div class='gf_group' style='position: absolute;
overflow: visible;'></div>");

Now if you want to find all the children that are sprites, you can write something
like this:

$("#someElement").children(".gf_sprite");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[59]

Sprite transformation
There are many situations where you will want to transform your sprites in simple
ways. You may want, for example, to make them bigger or smaller or to rotate or flip
them. The most convenient method for doing this is by using CSS transforms. In the
last few years, CSS transforms have become well supported by most browsers.

If you decide to use this feature, you just have to realize that versions before
Microsoft Internet Explorer 9 do not support it. There is the possibility to use the
proprietary filter CSS property, but in most cases, it's way too slow.

Another possibility is that of using a technique used in some of the old 8-bit and
16-bit games. You can simply generate the images for the transformed sprite. This
has the advantage of being very fast and being compatible with all browsers. On the
other hand, it will increase the size of your artworks and requires you to regenerate
all the transformations if you need to change your sprite at some point.

We will here only implement the CSS transform solution because in most situations
it's acceptable to target modern browsers only.

CSS transform
There are many transformations that are possible in CSS, even 3D ones (you can
take a look at https://github.com/boblemarin/Sprite3D.js for some very good
examples of this), but we will stick to rotation and scaling.

In most browsers, the CSS property "transform" is vendor prefixed. This means that
in Safari, for example, it will be called -webkit-transform, and in Firefox, -moz-
transform. Working with properties of this kind used to be a real pain, but with
jQuery 1.8, you can simply forget about it and act as if there was no prefix. jQuery
will take care of using the correct prefix where it needs it.

As explained before, there are many values that this property can take, and we will
focus on two here: rotate and scale. The syntax for rotate is as follows:

transform: rotate(angle)

Here, angle is a clockwise angle expressed with its unit, either degrees or radians
(abbreviated respectively as deg and rad). The rotation is done around the origin of
the element, by default, its center. This is what you want in a game most of the time,
but if you want to change it for some reason, you can simply use the transform-
origin CSS properties to do so.

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Sideways

[60]

For example, if you want to rotate your element 10 degrees counterclockwise you
would write:

transform: rotate(-10deg);

It would look like this if your element were a red square:

The way scale works is very similar, but it has two possible syntaxes:

• transform: scale(ratio)

• transform: scale(ratio_x, ratio_y)

If you specify only one value, the result will be an isotropic transformation; in
other words, of equal magnitude along both axes. On the contrary, if you specify
two values, the first will scale along the x axis and the second one along the y axis
(anisotropic transformation). The following figure illustrates the difference between
those two.

In our case, we will not include arbitrary anisotropic scaling into our framework,
but we will still use the two-value syntax because it will allow us to flip our sprites;
indeed, if we write scale(-1,1), this will in effect mean "flip the element along the
x axis (horizontally) and leave it unchanged along the y axis". Of course, this works
with values other than 1; as long as the magnitude of the two values is the same, you
will only flip the sprite and not change its aspect ratio.

These two values for the transform property work well together, so if you wanted to
rotate an element 10 degrees counterclockwise, flip it vertically, and make it twice as
large, you would write:

transform: rotate(-10deg) scale(2,-2);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[61]

Adding transform to the framework
Now we have to write a function that does this for us. As with most of our
framework's functions, we will use an object literal to hold the optional arguments
and give the node to which the function applies as a first argument. A call to this
function to generate the example is as follows:

gf.transform (myDiv, {rotate: -10, scale: 2, flipV: true});

The angle is in degrees and the flipH and flipV options are Boolean values. The
values of the omitted parameters (flipH, in this example) won't default to a general
value; what we will do instead is to take the current value of this parameter for the
given element. This will allow you to call the transform function twice and change
two different parameters without having to know what the other call is doing.
For example:

gf.transform (myDiv, {rotate: -10});
// do some other things
gf.transform (myDiv, {scale: 2, flipV: true});

This will, however, mean that we won't be able to use the $.extend function like we
used to. Instead, we will have to manually check the stored value of the undefined
parameters for the given elements.

These values will be stored in the object literal associated with the gf key, which is
associated with our element that has the $.data function. That also means that we
will need to define the default value for those properties when we create the sprite
(or group). For example, the addSprite function will start with:

gf.addSprite = function(parent, divId, options){
 var options = $.extend({
 x: 0,
 y: 0,
 width: 64,
 height: 64,
 flipH: false,
 flipV: false,
 rotate: 0,
 scale: 1
 }, options);
//...

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Sideways

[62]

Once you've understood the way in which the CSS transform property works, the
implementation of our gf.transform function will be pretty straightforward:

gf.transform = function(div, options){
 var gf = div.data("gf");
 if(options.flipH !== undefined){
 gf.flipH = options.flipH;
 }
 if(options.flipV !== undefined){
 gf.flipV = options.flipV;
 }
 if(options.rotate !== undefined){
 gf.rotate = options.rotate;
 }
 if(options.scale !== undefined){
 gf.scale = options.scale;
 }
 var factorH = gf.flipH ? -1 : 1;
 var factorV = gf.flipV ? -1 : 1;
 div.css("transform", "rotate("+gf.rotate+"deg) scale("+(gf.
scale*factorH)+","+(gf.scale*factorV)+")");
}

Once again, this is a simple function that will provide great functionality and allow
us to create neat effects in our games. Depending on your game, you may want to
add the anisotropic scaling to it or even 3D transform, but the basic structure and
API of the function can remain the same.

Tile maps
Tile maps are a very common tool for making lots of games. The idea behind it is that
most levels are made of similar parts. The ground, for example, is likely to repeat
itself a lot, with a few variations; there will be a few kinds of different trees repeated
many times, and a few items such as stones and flowers or grass will appear many
times, represented by the exact same sprite.

This means that using one big image to describe your level is not the most efficient
solution size-wise. What you really want is to be able to give a list of all the unique
elements and then describe how they are combined to generate your level.

Tile maps are the simplest implementation of this. They add a constraint though; all
elements must be of the same size and placed on a grid. If you can work with those
constraints, this solution becomes very efficient; that's the reason why so many old
games were created with it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[63]

We will start by implementing a very naive version of it and then show, at the end of
the chapter, how we can make it faster in most situations without too much work.

To sum up, a tile map is made up of:

• A series of images (what we call animations in our framework)
• A bi-dimensional array describing what image goes where

The following figure illustrates this:

In addition to being useful for reducing the size of your game, tile maps offer the
following advantages:

• Detecting collisions with a tile map is very easy.
• The array that describes how the tile map looks also contains semantic

information about the level. For example, tiles 1 to 3 are ground tiles, while 4
to 6 are part of the scenery also. This will allow you to easily "read" the level
and react to it.

• It's very simple to generate random variation of levels. Just create the bi-
dimensional array with a few rules, and your game will be different each
time the player starts again!

• Lots of open-source tools exist that help you create them.

However, you have to realize that there are some constraints too:

• As all the elements composing the tile map have the same size, if you want
to create a bigger element, you will have to decompose it into smaller parts,
which could be tedious.

• Even if done with a lot of talent, it will give a certain continual look to your
game. If you want to avoid having some blocks that repeat around your
level, tile maps are not for you.

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Sideways

[64]

Naive implementation
We already know how to create a sprite, so basically what we need in order to create
a tile map is to generate the sprites that compose it. Just like gf.addSprite, our
gf.addTilemap function will take the parent div, the ID of the generated tile map,
and an object literal describing the options.

The options are the position of the tile map, the dimension of each tile, and the
number of tiles that compose the tile map horizontally and vertically, the list of
animations, and the bi-dimensional array describing the tile position.

We will iterate through the bi-dimensional array and create the sprite as needed. It's
often convenient to have places without sprites in our tile map, so we will use the
following conventions:

• If all the entries have zeroes, it means that no sprites need to be created at
this place

• If all the places have a number greater than zero, it means that a sprite with
an animation at the index corresponding to this number minus one in the
animation array should be created

This is typically a place where you want to create your complete tile map before
adding it to the document. We will use a cloned fragment to generate the div tag
holding all the tiles and add to it the cloned fragment we used for sprites too. Only
once all the tiles are created will we add the tile map to the document.

There is one more subtlety here. We will add two classes to our tiles, one that marks
which columns the tile belong to, and another that marks which row it belongs to.
Other than that, there are no big subtleties in the code for now:

gf.tilemapFragment = $("<div class='gf_tilemap' style='position:
absolute'></div>");
gf.addTilemap = function(parent, divId, options){
 var options = $.extend({
 x: 0,
 y: 0,
 tileWidth: 64,
 tileHeight: 64,
 width: 0,
 height: 0,
 map: [],
 animations: []
 }, options);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[65]

 //create line and row fragment:
 var tilemap = gf.tilemapFragment.clone().attr("id",divId).
data("gf",options);
 for (var i=0; i < options.height; i++){
 for(var j=0; j < options.width; j++) {
 var animationIndex = options.map[i][j];

 if(animationIndex > 0){
 var tileOptions = {
 x: options.x + j*options.tileWidth,
 y: options.y + i*options.tileHeight,
 width: options.tileWidth,
 height: options.tileHeight
 }
 var tile = gf.spriteFragment.clone().css({
 left: tileOptions.x,
 top: tileOptions.y,
 width: tileOptions.width,
 height: tileOptions.height}
).addClass("gf_line_"+i).addClass("gf_column_"+j).
data("gf", tileOptions);

 gf.setAnimation(tile, options.
animations[animationIndex-1]);

 tilemap.append(tile);
 }
 }
 }
 parent.append(tilemap);
 return tilemap;
}

That's it for now. This will generate the whole tile map at initialization time. This
means that very large tile maps will be slow. We will see at the end of the chapter
how to generate only the part of the tile map that is visible.

Collision detection
This is a very important part of our framework, and we will start by looking at how
we will do this for the case of a sprite colliding with the tile map. This situation has
the advantage of being easier than the general case, but still using most of the same
basic ideas. We will, however, stick with axis-aligned elements. This means that
collision with rotated elements will not be shown here.

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Sideways

[66]

Colliding with tile maps
Finding which tiles of a tile map collide with a sprite can be divided into two parts.
First find a box representing the intersection of the two. Then, list all the sprites
in this box. A list of some of the possible intersections is shown in red in the
following figure:

This may at first seem complicated, but it becomes much easier if you consider that
it's the exact same problem as finding two one-dimensional intersections (one for
each axis).

You may not have realized it, but we used a simplified version of one-dimensional
intersections in our Frogger clone to detect collisions. The following figure shows
what a typical one-dimensional intersection, i, of two segments, a and b, would
look like:

In this situation, the intersection is simply the second element as it's completely
contained in the first one. The following figure shows you three other possible
situations:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[67]

One way to solve the problem is to express the solution from the point of view of the
second element. Two points will define the interval; let's call the left-most point i1
and the right-most i2.

Let's first consider the situation where such an intersection really exists, where the
two elements are touching. You will probably see that i1 is the bigger point between
a1 and b1. In the same manner, i2 is the smaller point between a2 and b2. However,
what if the two intervals don't intersect? We will simply return i1=b1 and i2=b1
if the interval a is at its left, and i1=b2 and i2=b2 if the interval a is at its right. To
compute this, we just have to constrain the result for i1 and i2 between b1 and b2.

The resulting function would look as follows:

gf.intersect = function(a1,a2,b1,b2){
 var i1 = Math.min(Math.max(b1, a1), b2);
 var i2 = Math.max(Math.min(b2, a2), b1);
 return [i1, i2];
}

The good part is that we only use two comparisons for each point. Now we can
apply this to our two-dimensional problem. The following figure shows you how
to decompose the box intersection into two line intersections:

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Sideways

[68]

Finding the colliding tiles
Now we will write a function that takes a sprite and a tile map. It will then find
the intersections for both axes: x1 to x2 and y1 to y2. Now the point (x1, y1) will
be the upper-left corner of the intersection box, and the point (x2, y2) will be the
lower-right corner.

However, what we really want for tile maps is not the coordinates but the indexes in
the bi-dimensional array. Therefore, we will first transform the coordinate so that the
point of origin is the upper-left corner of the tile map. Then, we will divide the new
coordinates according to the width and the respective height of a single tile. After
rounding the result of this operation, we will have the indexes of the upper-left and
lower-right tiles that compose the intersecting box:

gf.tilemapBox = function(tilemapOptions, boxOptions){
 var tmX = tilemapOptions.x;
 var tmXW = tilemapOptions.x + tilemapOptions.width *
tilemapOptions.tileWidth;
 var tmY = tilemapOptions.y;
 var tmYH = tilemapOptions.y + tilemapOptions.height *
tilemapOptions.tileHeight;

 var bX = boxOptions.x;
 var bXW = boxOptions.x + boxOptions.width;
 var bY = boxOptions.y;
 var bYH = boxOptions.y + boxOptions.height;

 var x = gf.intersect(tmX,tmXW, bX, bXW);
 var y = gf.intersect(tmY, tmYH, bY, bYH);

 return {
 x1: Math.floor((x[0] - tilemapOptions.x) / tilemapOptions.
tileWidth),
 y1: Math.floor((y[0] - tilemapOptions.y) / tilemapOptions.
tileHeight),
 x2: Math.ceil((x[1] - tilemapOptions.x) / tilemapOptions.
tileWidth),
 y2: Math.ceil((y[1] - tilemapOptions.y) / tilemapOptions.
tileHeight)
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[69]

We will now use this result in the collision detection function. We simply have to list
all the tiles between those two points. We will use the bi-dimensional array to find all
non-zero entries and then use the classes we defined for the line and column to find
our tiles.

gf.tilemapCollide = function(tilemap, box){
 var options = tilemap.data("gf");
 var collisionBox = gf.tilemapBox(options, box);
 var divs = []

 for (var i = collisionBox.y1; i < collisionBox.y2; i++){
 for (var j = collisionBox.x1; j < collisionBox.x2; j++){
 var index = options.map[i][j];
 if(index > 0){
 divs.push(tilemap.find(".gf_line_"+i+".gf_
column_"+j));
 }
 }
 }
 return divs;
}

This will allow us to find all the tiles colliding with a sprite, but we have to be careful
that the coordinate that we give for the sprite and the tile map are correct. If the
sprite is in a group that is moved ten pixels to the right, we will have to add ten to
the value of the x coordinate of the sprite; otherwise, the collision detection method
will not notice it.

We could write a version of this function that looks at the coordinates of all of the
sprites and tile maps to find what their relative offset is. This makes the function
slightly slower and a bit more complex, but you should be able to do it.

Sprite versus sprite collision
The function to detect whether two sprites collide or not will use the same
one-dimensional intersection function we just wrote. To have a collision between
the two sprites, we must have a collision on both one-dimensional projections.

If the interval returned by the gf.intersect function has a length of zero (both
values are equals), it means that the two sprites collide on this axis. To have a
collision between the two sprites, both projections have to collide.

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Sideways

[70]

The implementation of our function is very simple as most of the logic is contained
in the gf.intersect function:

gf.spriteCollide = function(sprite1, sprite2){
 var option1 = sprite1.data("gf");
 var option2 = sprite2.data("gf");

 var x = gf.intersect(
 option1.x,
 option1.x + option1.width,
 option2.x,
 option2.x + option2.width);
 var y = gf.intersect(
 option1.y,
 option1.y + option1.height,
 option2.y,
 option2.y + option2.height);

 if (x[0] == x[1] || y[0] == y[1]){
 return false;
 } else {
 return true;
 }
}

Coding the game
We now have all the tools we need to start our game. For this game, we will use
the wonderful artworks by Kenney Vleugels (http://www.kenney.nl). It will
be a classical platformer where the player can move around and jump.

There will be two kinds of enemies, a sort of blob and a flying insect. For the sake
of simplicity, the player is immortal and kills the enemies as soon as it touches them.
We will describe here each part of the game in the following order:

• Basic setup of the game screen
• Object-oriented code for the player
• Player control
• Parallax scrolling
• Enemies

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[71]

Basic setup of the game screen
This is very similar to what we did for the Frogger clone. Here is how we will
organize the game screen:

Game container

Background 1Background 2 Group

Player Tile map

Enemy 1 Enemy n...

We will have a lot of animations in this game; three for the player, three for each of
the two enemies' seven tiles, and two background animations. To make things more
readable, we will regroup them. The animations for the player and enemies will
each be stored in an object literal, and the animations for the tiles will be stored in
an array.

Here is an extract of our code:

var playerAnim = {
 stand: new gf.animation({
 url: "player.png",
 offset: 75
 }),
 walk: new gf.animation({
 url: "player.png",
 offset: 150,
 width: 75,
 numberOfFrames: 10,
 rate: 90
 }),
 jump: new gf.animation({
 url: "player.png",
 offset: 900
 })
};

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Sideways

[72]

var slimeAnim = {
 stand: new gf.animation({
 url: "slime.png"
 }),
 walk: new gf.animation({
 url: "slime.png",
 width: 43,
 numberOfFrames: 2,
 rate: 90
 }),
 dead: new gf.animation({
 url: "slime.png",
 offset: 86
 })
};

var flyAnim = {
 stand: new gf.animation({
 url: "fly.png"
 }),
 ...
}
var tiles = [
 new gf.animation({
 url: "tiles.png"
 }),
 new gf.animation({
 url: "tiles.png",
 offset: 70
 }),
 ...
];

Object-oriented code for the player
There are many reasons you may want to use object-oriented (OO) code in your
game. First, it's a very good way to organize your code. Second, it provides some
useful ways to reuse and extend your code.

If you are not familiar with OO programming, JavaScript is probably not the best
language to learn. We won't go into the theory of OO; even without it, you should
be able to see the logic behind the code we will be writing and what it brings to
the table.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[73]

As we need only one player, we will create an anonymous class and instantiate it
right away. This is quite unusual and only makes sense in this particular situation.
Here is the skeleton of our class with all methods, but without their implementation.
We will look at each of them later.

var player = new (function(){
 var acceleration = 9;
 var speed = 20;
 var status = "stand";
 var horizontalMove = 0;

 this.update = function (delta) {
 //...
 };

 this.left = function (){
 //...
 };

 this.right = function (){
 //...
 };

 this.jump = function (){
 //...
 };

 this.idle = function (){
 //...
 };
});

As you can see, we begin by defining a few variables that we will use later, and then
define the object's methods.

Updating the player's position
We have implemented a very basic physic simulation for player movement along the
y axis; if no collision occurs, the avatar will fall with a given acceleration and with a
limited maximum speed. This is sufficient to generate neat jump trajectories.

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Sideways

[74]

Let's have a look at what the update function does. First, it needs to compute the
avatar's next position:

var delta = 30;
speed = Math.min(100,Math.max(-100,speed + acceleration * delta /
100.0));
var newY = gf.y(this.div) + speed * delta / 100.0;
var newX = gf.x(this.div) + horizontalMove;
var newW = gf.width(this.div);
var newH = gf.height(this.div);

You can see in this code that we compute the speed; this is the vertical speed of the
player. We use the correct physical rule here, where the speed after a time interval is
equal to the previous speed plus the acceleration time of the interval. It's then constrained
between -100 and 100 to simulate the terminal velocity. Here, the acceleration is
constant, as is the gravitational pull.

Then we use this speed to compute the next position along the y axis, again with the
correct physical rule.

The new position along the x axis is much simpler; it's the current position modified
by the horizontal movement induced by player control (we will see later exactly how
this value is generated).

Then we need to check for collision to see if the avatar can really go where
it wants or whether there is something on the way. For this, we will use the
gf.tilemapCollision method we wrote earlier.

Once we have all the tiles that collide with our sprite, what can we do? We will look
at any of them and move the sprite out of their way through the shortest possible
movement. To do this, we will compute the exact intersection between the sprite and
the tile and find whether its width or height is its larger dimension. If the width is
more than the height, it means it's a shorter move on the y axis, and if the height is
more than the width, it's a shorter move on the x axis.

If we do this for all tiles, we will have moved the avatar to a place where it doesn't
collide with any tiles. Here is the full code of what we just described:

var collisions = gf.tilemapCollide(tilemap, {x: newX, y: newY, width:
newW, height: newH});
var i = 0;
while (i < collisions.length > 0) {
 var collision = collisions[i];
 i++;
 var collisionBox = {
 x1: gf.x(collision),

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[75]

 y1: gf.y(collision),
 x2: gf.x(collision) + gf.width(collision),
 y2: gf.y(collision) + gf.height(collision)
 };

 var x = gf.intersect(newX, newX + newW, collisionBox.
x1,collisionBox.x2);
 var y = gf.intersect(newY, newY + newH, collisionBox.
y1,collisionBox.y2);

 var diffx = (x[0] === newX)? x[0]-x[1] : x[1]-x[0];
 var diffy = (y[0] === newY)? y[0]-y[1] : y[1]-y[0];
 if (Math.abs(diffx) > Math.abs(diffy)){
 // displace along the y axis
 newY -= diffy;
 speed = 0;
 if(status=="jump" && diffy > 0){
 status="stand";
 gf.setAnimation(this.div, playerAnim.stand);
 }
 } else {
 // displace along the x axis
 newX -= diffx;
 }
 //collisions = gf.tilemapCollide(tilemap, {x: newX, y: newY,
width: newW, height: newH});
}
gf.x(this.div, newX);
gf.y(this.div, newY);
horizontalMove = 0;

You will notice that if we detect that we need to move the player upward along the
y axis, we change the avatar animation and status if the player is jumping. This is
simply because this means that the player has landed on the ground.

This code alone is enough to contain all the rules you need to produce a decent
movement of the player in the level.

Controlling the player's avatar
All methods except update directly correspond to particular types of input from the
player. They will be called during the main loop after the corresponding key has
been detected as pressed. If no keys are pressed, the idle function will be called.

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Sideways

[76]

Let's have a look at the function that moves the player to the left:

this.left = function (){
 switch (status) {
 case "stand":
 gf.setAnimation(this.div, playerAnim.walk, true);
 status = "walk";
 horizontalMove -= 7;
 break;
 case "jump":
 horizontalMove -= 5;
 break;
 case "walk":
 horizontalMove -= 7;
 break;
 }
 gf.transform(this.div, {flipH: true});
};

Its main part is a switch because we will react differently depending on the state of
the player. If the player is currently standing, we will need to change the animation
to walking, set the player's new state, and move the player along the x axis. If the
player is jumping, we just move the player along the x axis (but slightly slower). If
the player is already walking, we just move it.

The last line flips the sprite horizontally because our image depicts the player facing
right. The function for the right direction is basically the same.

The jump method will check whether the player is currently either standing
or walking, and if so, it will change the animations, change the status, and set
a vertical speed to generate the jump during the update function.

The idle status will set the status to standing and the animation function
accordingly, but only if the player is walking.

this.jump = function (){
 switch (status) {
 case "stand":
 case "walk":
 status = "jump";
 speed = -60;
 gf.setAnimation(this.div, playerAnim.jump);
 break;
 }
};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[77]

this.idle = function (){
 switch (status) {
 case "walk":
 status = "stand";
 gf.setAnimation(this.div, playerAnim.stand);
 break;
 }
};

And that's it for player movement. If you start the game with the logic contained
in this object alone, you will already have most of what makes a platformer—a
character moving around jumping from one platform to the other.

Player control
We will still need to connect the player's object to the main loop. This is really
trivial as all the logic is contained in the object. There is, however, one little detail
we omitted. As it is the player will go out of the screen if he moves left. We need
to follow him! The way we will implement it is thus: if the player goes beyond a
given point, we will start to move the group containing all the sprites and tiles in
the opposite direction. This will give the impression that the camera is following
the player.

var gameLoop = function() {

 var idle = true;
 if(gf.keyboard[37]){ //left arrow
 player.left();
 idle = false;
 }
 if(gf.keyboard[38]){ //up arrow
 player.jump();
 idle = false;
 }
 if(gf.keyboard[39]){ //right arrow
 player.right();
 idle = false;
 }
 if(idle){
 player.idle();
 }

 player.update();
 var margin = 200;

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Sideways

[78]

 var playerPos = gf.x(player.div);
 if(playerPos > 200) {
 gf.x(group, 200 - playerPos);
 }
}

This is the main loop containing everything we described earlier.

Parallax scrolling
Parallax scrolling is a very neat way of giving a little depth to a 2D game. It uses
the principle that the farther away objects are, the slower they seem to move. It's
typically what you see when you look through the side window of a moving car.

Background2

Background1

Level

The first layer in the preceding figure will be the group containing all the sprites
and the tile map. The second and third layers will simply be images. We will use the
same technique we used in the previous game: we will simply use the background
position to generate their movement.

The final code takes place in the main game loop just after we move the group
around to keep the player visible on screen:

var margin = 200;
var playerPos = gf.x(player.div);
if(playerPos > 200) {
 gf.x(group, 200 - playerPos);
 $("#backgroundFront").css("background-position",""+(200 * 0.66 -
playerPos * 0.66)+"px 0px");
 $("#backgroundBack").css("background-position",""+(200 * 0.33 -
playerPos * 0.33)+"px 0px");
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[79]

As you can see, the code is simple; the only subtlety is in choosing the right values
for the speed of each layer. There is sadly no other way to do this than by observing
the effect with the naked eye.

Creating enemies
For the enemies, we will use OO code too. It will allow us to use inheritance only
to specify what changes between the two sorts of enemies. The first kind is slime.
Enemies of this type crawl on the ground, and when they die, they flatten and stay
where they were killed. They patrol back and forth between two points.

The second kind are flies. They behave exactly like the slimes, but they fly in the sky,
and once killed, fall into the abyss.

We will start by writing the code for the slimes. It will be similar in structure to the
player's object, only much simpler:

var Slime = function() {

 this.init = function(div, x1, x2, anim) {
 this.div = div;
 this.x1 = x1;
 this.x2 = x2;
 this.anim = anim;
 this.direction = 1;
 this.speed = 5;
 this.dead = false;

 gf.transform(div, {flipH: true});
 gf.setAnimation(div, anim.walk);
 };

 this.update = function(){
 if(this.dead){
 this.dies();
 } else {
 var position = gf.x(this.div);
 if (position < this.x1){
 this.direction = 1;
 gf.transform(this.div, {flipH: true});
 }
 if (position > this.x2){
 this.direction = -1;
 gf.transform(this.div, {flipH: false});

www.it-ebooks.info

http://www.it-ebooks.info/

Looking Sideways

[80]

 }
 gf.x(this.div, gf.x(this.div) + this.direction * this.speed);
 }
 }
 this.kill = function(){
 this.dead = true;
 gf.setAnimation(this.div, this.anim.dead);
 }
 this.dies = function(){}
};

Enemies have only two states, alive and dead. It's the update function that generates
their behavior, either by making them patrol or by letting them die. The only subtlety
here is that we use a direction variable to store whether the slime is moving to the
left or to the right.

As the behavior of the flies is so similar, we don't need to write much to implement
their object:

var Fly = function() {}
Fly.prototype = new Slime();
Fly.prototype.dies = function(){
 gf.y(this.div, gf.y(this.div) + 5);
}

Here you can see the quite strange syntax for object inheritance in JavaScript (it's
called prototypal inheritance). If you're not familiar with it, you should read some
advanced books about JavaScript because the full implication of what's going on here
is beyond the scope of this book. However, the intuitive way to understand it is this:
you create a simple object and copy all the methods of another class into it. Then you
modify the classes you want to override.

Here we really just need to change the way the fly behaves after its death by making
it fall.

Now we have to call the update function from the main game loop and check for
collision with the player. This, again, is done in a very simple way as most of the
logic is already written or is in the framework:

player.update();
for (var i = 0; i < enemies.length; i++){
 enemies[i].update();
 if (gf.spriteCollide(player.div, enemies[i].div)){
 enemies[i].kill();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[81]

This is it for our game. Of course, like for the last one, there are a lot of things you
can add here: give the player the ability to die, allow him to kill enemies only if he
jumps on them, or anything you like, really. With this basic template, you'll be able
to generate a wide variety of games with vastly different gameplays depending on
your choice of the basic rules. Here is what the final game looks like:

Summary
We now know how to draw tile maps and detect collision between them and sprites
as well as between sprites. We have a working example of object-oriented code for
our game logic that we will be able to use in lots of other kinds of games.

As for our preceding game, the resulting game here can be improved in lots of ways,
and I recommend doing so to familiarize yourself even more with the code. You
can add more enemies, make them die only if the player jumps on them, and detect
when the player reaches the end of the level.

In the next chapter, we will use the techniques we learned here to make a
top-view RPG.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Putting Things into
Perspective

We will now see how to render another very popular kind of effect: the top-down
perspective (also known as overhead perspective). There are a wide variety of games
that can be created using this technique:

• Hack and slash like Gauntlet
• Shoot 'em up like Alien Breed
• RPG like Zelda or Chrono Trigger
• Simulation like Simcity
• War game like Civilization or Warcraft

These games use what is called an orthogonal projection. This can be easily rendered
using a simple tile map like the one we implemented in the last chapter. In this
chapter, we will make an RPG that will look like The Legend of Zelda: A Link to the Past
on Super Nintendo.

www.it-ebooks.info

http://www.it-ebooks.info/

Putting Things into Perspective

[84]

We will use the graphical assets from BrowserQuest (http://browserquest.
mozilla.org), a very cool open source game developed by Mozilla to demonstrate
the capability of modern browsers. You can see it in the following screenshot:

In this chapter we will cover the following topics:

• Tile map optimization
• Sprite-level occlusion
• Advanced collision detection

At the end of this chapter, we will quickly discuss another variant of the top-down
view that can be used for the same kind of games: 2.5D or isometric projection.

Optimizing tile maps for top-down games
The tile map we implemented in the last chapter works well for side scrollers as they
typically use a sparse matrix to define their levels. This means that if your level is
100 tiles long and 7 tiles high, it will contain way less than 700 tiles. This allows us to
create all those tiles at the beginning of the game.

For a typical top-down game, we find ourselves in a very different situation. Indeed,
in order to render the map, all the possible tiles of the tile map used are defined.
This means we will have at least 700 tiles for the same level of dimensions. The
situation becomes even worse if we use many layers. To reduce this number in order
to increase performances, we will have to generate only the tiles that are visible
at startup. Then when the view moves, we will have to track which tiles become
invisible and delete them, and which tiles become visible and generate them.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[85]

There is a tradeoff here; adding and removing tiles will take time, and there is a
good chance that it will slow down the game a bit. On the other hand, having a very
large amount of tiles in your scene and moving them around will make rendering
everything slow.

Ideally, choosing between the two techniques is a matter of testing both and finding
which one generates the better result on your target platform. If you really need it,
you could even use a hybrid solution where you generate the tile map per chunk.
This will allow you to tune when you tolerate the slow down due to the creation
and deletion of tiles.

Here we will modify the framework to display only the visible tiles, and this
has proven to be fast enough for this kind of game where the player moves at a
reasonable speed and where the world is typically quite big.

Finding the visible tiles
The good part is that we already have most of the code we need to find which tiles
are visible. Indeed, we have a function that returns the tiles that are colliding with a
box. To find the visible tiles, we just need to define this box as the game screen.

// find the visible part
var offset = gf.offset(parent);
var visible = gf.tilemapBox(options, {
 x: -options.x - offset.x,
 y: -options.x - offset.y,
 width: gf.baseDiv.width(),
 height: gf.baseDiv.height()
});

Here you can see that we use a function to find the offset of the tile map. This is
needed because there is the possibility of it being nested into one or more groups
that have themselves been moved.

To find the offset, we simply need to look at the current element and all of its
parents. We will stop if the parent is not a sprite, group, or tile map. We will also
stop if the parent is the base div, that is, the div used to hold the whole game.

gf.offset = function(div){
 var options = div.data("gf");
 var x = options.x;
 var y = options.y;

 var parent = $(div.parent());
 options = parent.data("gf");

www.it-ebooks.info

http://www.it-ebooks.info/

Putting Things into Perspective

[86]

 while (!parent.is(gf.baseDiv) && options !== undefined){
 x += options.x;
 y += options.y;
 parent = $(parent.parent());
 options = parent.data("gf");
 }
 return {x: x, y: y};
}

To find if the parent is a group, sprite, or tile map, we check for the presence of an
object associated with the key "data".

Except for the part where we find the visible box, the addTilemap function itself
hasn't changed much. Here is a short version of it with the changed part highlighted:

gf.addTilemap = function(parent, divId, options){
 var options = $.extend({
 x: 0,
 ...
 }, options);

 // find the visible part
 var offset = gf.offset(parent);
 var visible = gf.tilemapBox(options, {
 x: -options.x - offset.x,
 y: -options.x - offset.y,
 width: gf.baseDiv.width(),
 height: gf.baseDiv.height()
 });
 options.visible = visible;

 //create line and row fragment:
 var tilemap = gf.tilemapFragment.clone().attr("id",divId).
data("gf",options);
 for (var i=visible.y1; i < visible.y2; i++){
 for(var j=visible.x1; j < visible.x2; j++) {
 var animationIndex = options.map[i][j];

 ...
 }
 }
 parent.append(tilemap);
 return tilemap;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[87]

Moving the tile map
We now have to track the movement of the tile maps to update which ones are
visible. As we have two functions to move any element around, we just have to
modify them.

However, we cannot just update tile maps when they are moved around; we also
have to update them when any of their parent elements are moved around. jQuery
provides a very simple way to find if an element has a tile map as its child or
grand child element: .find(). This function searches for any subelement matching
the provided selector.

As we add the class gf_tilemap to each of our tile maps, it's very easy to detect
them. The following code is the new gf.x function with the change highlighted.
The gf.y function is exactly the same.

gf.x = function(div,position) {
 if(position !== undefined) {
 div.css("left", position);
 div.data("gf").x = position;

 // if the div is a tile map we need to update the visible part
 if(div.find(".gf_tilemap").size()>0){
 div.find(".gf_tilemap").each(function(){gf.
updateVisibility($(this))});
 }
 if(div.hasClass("gf_tilemap")){
 gf.updateVisibility($(div));
 }
 } else {
 return div.data("gf").x;
 }
}

If one of the subelements, or the element itself, is a tile map, we need to update it. We
do this with the gf.updateVisibility() function. This function only finds the new
visibility box in the tile map and compares it to the old one. This means that we have
to keep this visibility stored in the data of the sprite.

The following code is the full implementation of this function:

gf.updateVisibility = function(div){
 var options = div.data("gf");
 var oldVisibility = options.visible;

www.it-ebooks.info

http://www.it-ebooks.info/

Putting Things into Perspective

[88]

 var parent = div.parent();

 var offset = gf.offset(div);
 var newVisibility = gf.tilemapBox(options, {
 x: -offset.x,
 y: -offset.y,
 width: gf.baseDiv.width(),
 height: gf.baseDiv.height()
 });

 if(oldVisibility.x1 !== newVisibility.x1 ||
 oldVisibility.x2 !== newVisibility.x2 ||
 oldVisibility.y1 !== newVisibility.y1 ||
 oldVisibility.y2 !== newVisibility.y2){

 div.detach();

 // remove old tiles
 for(var i = oldVisibility.y1; i < newVisibility.y1; i++){
 for (var j = oldVisibility.x1; j < oldVisibility.x2; j++){
 div.find(".gf_line_"+i+".gf_column_"+j).remove();
 }
 }
 for(var i = newVisibility.y2; i < oldVisibility.y2; i++){
 for (var j = oldVisibility.x1; j < oldVisibility.x2; j++){
 div.find(".gf_line_"+i+".gf_column_"+j).remove();
 }
 }
 for(var j = oldVisibility.x1; j < newVisibility.x1; j++){
 for(var i = oldVisibility.y1; i < oldVisibility.y2; i++){
 div.find(".gf_line_"+i+".gf_column_"+j).remove();
 }
 }
 for(var j = newVisibility.x2; j < oldVisibility.x2; j++){
 for(var i = oldVisibility.y1; i < oldVisibility.y2; i++){
 div.find(".gf_line_"+i+".gf_column_"+j).remove();
 }
 }
 // add new tiles

 for(var i = oldVisibility.y2; i < newVisibility.y2; i++){
 for (var j = oldVisibility.x1; j < oldVisibility.x2; j++){
 createTile(div,i,j,options);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[89]

 }
 for(var i = newVisibility.y1; i < oldVisibility.y1; i++){
 for (var j = oldVisibility.x1; j < oldVisibility.x2; j++){
 createTile(div,i,j,options);
 }
 }
 for(var j = oldVisibility.x2; j < newVisibility.x2; j++){
 for(var i = oldVisibility.y1; i < oldVisibility.y2; i++){
 createTile(div,i,j,options);
 }
 }
 for(var j = newVisibility.x1; j < oldVisibility.x1; j++){
 for(var i = oldVisibility.y1; i < oldVisibility.y2; i++){
 createTile(div,i,j,options);
 }
 }
 div.appendTo(parent);

 }
 // update visibility
 options.visible = newVisibility;
}

The first four loops are there to remove the existing tiles that are not visible anymore.
Instead of testing whether the tiles to be deleted are on the top or the bottom, we just
write two loops. The first one in the code is written as if the tiles to be deleted are on
the top. If the tiles to be deleted turn out to be at the bottom as shown in the following
figure, the loop won't execute as oldVisibility.y1 > newVisibility.y1.

old visibility

new visibility

y-axis

oldVisibility-y1

newVisibility-y1

www.it-ebooks.info

http://www.it-ebooks.info/

Putting Things into Perspective

[90]

The same goes if the tiles are to be deleted from the top, left, or right. We then use
the exact same mechanism to add new tiles. There is, however, one thing we have to
be careful about; as we add the tiles horizontally first, when we add them vertically,
we have to make sure not to create the tiles we already created a second time. The
following figure shows the overlapping tiles:

old visibility
new visibility

There are more elegant ways to do this, but here we simply check if a tile exists
before creating it. This is done in the gf.createTile function.

var createTile = function(div, i,j,options){
 var animationIndex = options.map[i][j];
 if(animationIndex > 0 && div.find(".gf_line_"+i+".gf_column_"+j).
size() === 0){
 var tileOptions = {
 x: options.x + j*options.tileWidth,
 y: options.y + i*options.tileHeight,
 width: options.tileWidth,
 height: options.tileHeight
 }
 var tile = gf.spriteFragment.clone().css({
 left: tileOptions.x,
 top: tileOptions.y,
 width: tileOptions.width,
 height: tileOptions.height}
).addClass("gf_line_"+i).addClass("gf_column_"+j).data("gf",
tileOptions);

 gf.setAnimation(tile, options.animations[animationIndex-1]);

 div.append(tile);
 }
}

With these two changes, the tile maps are now generated dynamically.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[91]

Sorting the occlusion
When using top-down views, we will encounter one of the two possibilities: either
the "camera" looks straight down at the ground or with a slight angle. The following
figure illustrates the two situations:

camera
view

camera looking
straight down

camera looking
with an angle

In the first case, the only situation where an element is hidden by another one is if it's
straight above it. It's quite easy to produce this effect; we can simply use a group for
each altitude and place the sprites and tile maps in the right group.

For example, let's consider a level that contains a tree and a bridge under which the
player can walk, just like in the following figure:

We could organize our game screen like this:

Ground

Player, NPSs, enemy

Bridge, Treetop

www.it-ebooks.info

http://www.it-ebooks.info/

Putting Things into Perspective

[92]

Once this is done, there is not much to worry about. If at some point an NPC (non-
player character) or the player moves up or down, we just have to remove them from
one group and add them to the other one.

Most modern games, however, use the second type of view, and that's the one we
will use for our small game. With this perspective, it's not only the elements above
the others but also the ones in front of them that might hide them. The following
figure illustrates this:

To devise a strictly generic solution for this would be a little overkill for most
games and would likely generate some performance issues. Instead, we will
use the following tricks to generate a convincing effect.

Sprite occlusion
If we make the following assumptions, the situations for sprites become simple:

• The ground is strictly flat. There may be many flat "floors" with different
altitudes but each of them is flat.

• The altitude difference between two flat floors is greater than the size of the
biggest NPC or the player.

With these limitations, we can manage sprite occlusion with these two rules:

• If a sprite is on a higher floor than another, the former will always hide
the latter

• If two sprites are on the same floor, the one with the bigger y coordinate will
always hide the other one

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[93]

The most straightforward way to implement this is to use the z-index CSS property.
The implementation would look like this:

gf.y(this.div, y);
this.div.css("z-index", y + spriteHeight);

Here we need to add the sprite height to the y coordinate because what we need to
consider for occlusion is the bottom of the sprite and not the top.

If the sprite is one floor higher, we will add to make sure that its z index is bigger
than all the sprites in the floor above. Let's say we give an index to each level, 0 being
the lowest one, 1 the one above, and so on; in this case, the formula to generate the z
index from the y coordinate would be:

z-index = y-coordinate + spriteHeight + floorIndex * floorHeight

In our game, all of our sprites will be on the same level so we won't need to use this
function, and we could stick with the preceding code.

Level versus sprite occlusion
If we stick to the same assumption as before, we don't need to do much to generate
an occlusion of sprites from the background. Our level is defined using tile maps.
When designing the level, we will separate our tiles into two tile maps: one being the
floor and the other one being everything above it.

For example, let's consider a scene with a tree and a house:

We will store the ground, the bottom of the house, and the trunk of the tree in one
tile map, and we will store the top of the house as well as the foliage of the tree in
another one.

www.it-ebooks.info

http://www.it-ebooks.info/

Putting Things into Perspective

[94]

Collision detection
Collision detection is slightly different for this game as for the previous one. As we
use collision instead of per-pixel collision with the sprite-bounding box, we find
ourselves in a situation where we might detect a collision where only the sprites'
non-transparent pixels are colliding, as shown in the following figure:

However, there is a very easy solution to this problem without resorting to per-pixel
or polygonal collision detection; we will use a second transparent sprite to create the
zone we really want to use for collision detection.

Player versus environment collisions
In our game, we will use a technique often used in RPG; the player avatar will be
made of not only one sprite but of a superposition of sprites. This will allow us to
change the armor the avatar wears, change the weapon he uses, his haircut, skin
color, and so on, without having to generate all the possible combinations of
those variants.

In our game, we will only use two images for the player avatar: the player and
its weapon. We will place them into a group; this will make it easy to move
them around.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[95]

To these two sprites, we will first add a transparent sprite that will define the
collision zone for the collision with the environment. The following figure shows
exactly that:

As you can see, we've chosen a collision box that is as wide as the body of the
player avatar, but slightly shorter. This is to account for the situation where the
player approaches an obstacle from below. As shown in the previous figure, his
head will hide a part of the bottom of this object. With this smaller collision box,
we automatically generate this effect.

Now we don't want the avatar to collide with every element of the level. For
example, it shouldn't collide with the ground or with anything above it.

If you remember, we separated the level into two tile maps before. To make collision
detection easier, we will simply separate the lower one in two as well:

• One containing all the ground elements that don't collide with the player
• One containing all the elements that collide with the player

This means that we now have three tile maps for the level.

As you can imagine, designing this level and adding all the tiles to the right tile map
is becoming too complicated as we write all the arrays by hand. Instead, we will use
a tile map editor.

Using a tile map editor
There are quite a few free and open source tile map editors around. For this game,
we will use Tiled (http://www.mapeditor.org/). It has the advantage that it allows
the tile maps to be exported to a JSON file.

www.it-ebooks.info

http://www.it-ebooks.info/

Putting Things into Perspective

[96]

The images that we will use to create our level come from the game BrowserQuest by
Mozilla. The following figure shows a part of it:

As you can see, we have tiles for grassy ground, tiles for sandy ground, and tiles that
represent the transition to sandy ground. The transition tiles are half transparent and
half sandy. This allows us to transit to sandy ground from any other type of ground.

This means we will have to use yet another tile map. The lower tile map will be
divided in two: one with all the ground elements and one with the transition
elements that contain transparent pixels and don't collide with the player. However,
in total we will have four tile maps to draw our level. For example, a part of our
level with sand, grass, and a tree would look like this:

We won't look at the entire code that imports the JSON file generated by Tiled. If you
want more details, just look at the gf.importTiled function. The important part is
that we use jQuery's $.ajax function. With this function, we will be able to load the
JSON file. The trick is to use the right parameter to call it:

$.ajax({
 url: url,
 async: false,
 dataType: 'json',
 success: function(json){...}
);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[97]

jQuery also provides a shorthand function called $.getJSON, but we want to have a
synchronous call and that's only possible with $.ajax. With these calls, the function
we provided to the success parameter will be called once the JSON file is loaded. It's
in this function that we will import the file.

If you want to see exactly how we do it, you can simply look at the provided code for
this chapter.

Now that we are using the $.ajax function, we just have to make sure that we
access our code from a server to test it as simply opening our HTML file in a browser
won't work anymore. If you don't have a server running, you can use EasyPHP on
Windows (http://www.easyphp.org), or MAMP on OS X (http://www.mamp.info).

Player versus sprite collision
We will only support one kind of sprite versus sprite collision detection here:
the player attacking an enemy or talking to an NPC. Like before, we will need a
transparent sprite to define the zone where the collision should be detected. Except
this time, this zone is not on the player itself but in front of him, as shown in the
following screenshot:

The only trick is that this zone has to be moved around to always face the direction
where the player is looking. If we take the same OO code that we used for the last
game to implement the player, it would look something like this:

var player = new (function(){
 // the group holding both the player sprite and the weapon
 this.div = $();
 // the sprite holding the player's avatar
 this.avatar = $();
 // the sprite holding the weapon
 this.weapon = $();
 // the hit zone
 this.hitzone = $();

www.it-ebooks.info

http://www.it-ebooks.info/

Putting Things into Perspective

[98]

 // collision zone
 this.colzone = $();

 //...

 this.update = function () {
 //...
 };

 this.left = function (){
 if(state !== "strike"){
 if(orientation !== "left" && moveY === 0 && moveX === 0){
 orientation = "left";
 gf.x(this.hitzone, 16);
 gf.y(this.hitzone, 16);
 gf.h(this.hitzone, 128 + 32);
 gf.w(this.hitzone, 64);
 //...

 }
 //...
 }
 };

 this.right = function (){
 //...
 };

 this.up = function (){
 //...
 };

 this.down = function (){
 if(state !== "strike"){
 if(orientation !== "down" && moveY === 0 && moveX === 0) {
 orientation = "down";
 state = "walk";
 gf.x(this.hitzone, 16);
 gf.y(this.hitzone, 192-80);
 gf.w(this.hitzone, 128 + 32);
 gf.h(this.hitzone, 64);
 //...
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[99]

 //...
 }
 };

 //...
});

The highlighted parts of the code show where we change the position of the collision
zone for interaction with NPCs and enemies. We call this the sprite hit zone because
it represents the zone that is covered by a swing of the player's sword.

To choose the right size and position for this hit zone, you really have to fine-tune it
to the images you use.

In the main game loop, we will then check for collision between this zone and a list
of NPCs and then enemies.

this.detectInteraction = function(npcs, enemies, console){
 if(state == "strike" && !interacted){
 for (var i = 0; i < npcs.length; i++){
 if(gf.spriteCollide(this.hitzone, npcs[i].div)){
 npcs[i].object.dialog();
 interacted = true;
 return;
 }
 }
 for (var i = 0; i < enemies.length; i++){
 if(gf.spriteCollide(this.hitzone, enemies[i].div)){
 // handle combat
 interacted = true;
 return;
 }
 }
 }
};

Talking to NPCs
The only interaction we will implement with NPCs is a one-way dialog. When the
player hits an NPC, we will display a line of dialog. If he hits it again and the NPC
has more to say, we will display the next line of dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

Putting Things into Perspective

[100]

We will use a line at the bottom of the screen to display this text. This line has to be
semitransparent to let the player see the level behind it, and it has to be over all the
elements of the game. This is how we will create it:

container.append("<div id='console' style='font-family: \"Press Start
2P\", cursive; color: #fff; width: 770px; height: 20px; padding: 15px;
position: absolute; bottom: 0; background: rgba(0,0,0,0.5); z-index:
3000'>");

This type of interface is typically called a console. To make it semitransparent and
still leave the text inside it opaque, we apply a transparent background color by
calling the rgba() function. To make sure it floats over all the game elements, we
give it a big enough z index.

To display text in this console, we simply have to use .html(). The following code
is the complete implementation of the NPCs:

var NPC = function(name, text, console){
 var current = 0;

 this.getText = function(){
 if(current === text.length){
 current = 0;
 return "[end]";
 }
 return name + ": " + text[current++];
 };

 this.dialog = function(){
 console.html(this.getText());
 }
}

And this is how we will instantiate one of them:

npcs.push({
 div: gf.addSprite(npcsGroup,"NPC1", {
 x: 800,
 y: 800,
 width: 96,
 height: 96
 }),
 object: new NPC("Dr. Where", ["Welcome to this small
universe...","I hope you will enjoy it.","You should head east from
here...","there's someone you may want to meet."], console)
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[101]

npcs[npcs.length-1].object.div = npcs[npcs.length-1].div;
gf.setAnimation(npcs[npcs.length-1].div, new gf.animation({
 url: "npc/scientist.png"
}));
$("#NPC1").css("z-index",800 + 96);

Nothing very special here; we just have to make sure to set the correct z index too.

Fighting enemies
To fight enemies, we will simulate the throw of a dice. The rule of combat is quite
typical in an RPG: the player throws a dice to the player and adds it to a fixed value
called the attack modifier. This will generate the attack value of the player's strike.
The enemy will try to defend itself by throwing a dice to the enemy and add it to its
own defense modifier.

If the player's strike is bigger than the enemy's defense, the attack is successful and
the enemy will suffer a loss of life equal to the player's strike. If the enemy's defense
is stronger, the attack fails and the enemy remains safe.

The following code is the implementation of this mechanism:

if(gf.spriteCollide(this.hitzone, enemies[i].div)){
 var enemyRoll = enemies[i].object.defend();
 var playerRoll = Math.round(Math.random() * 6) + 5;

 if(enemyRoll <= playerRoll){
 var dead = enemies[i].object.kill(playerRoll);
 console.html("You hit the enemy "+playerRoll+"pt");
 if (dead) {
 console.html("You killed the enemy!");
 enemies[i].div.fadeOut(2000, function(){
 $(this).remove();
 });
 enemies.splice(i,1);
 }
 } else {
 console.html("The enemy countered your attack");
 }
 interacted = true;
 return;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Putting Things into Perspective

[102]

Here we use the console to display the progress of the combat to the player. The
formula for the combat could be different depending on additional parameters, such
as the bonus provided by the weapon the player uses and the enemy's armor. It's
really up to you to find out what you want to consider when deciding if a strike
is successful.

We didn't implement this, but the enemy striking back would be exactly the same.

The complete game
That's it for this game. All the rest of the implementation is taken straight from the
game we created in Chapter 4, Looking Sideways. We use the same object-oriented code
of the player and the other sprites to resolve the collision between the player and
the level.

A good exercise would be to make the enemies move around and attack the player,
implement an experience and life bar for the player, and design a bigger world and
more NPCs to make the story more interesting. Indeed, that's what makes RPGs so
great to write; they are a great medium for telling stories!

Another way you could improve this game is to use an isometric projection instead
of an orthogonal one. Explaining how to write a general-purpose isometric engine
is outside the scope of this book, but if you want to learn more about this, you could
read Making Isometric Social Real-Time Games with HTML5, CSS3, and JavaScript by
Andres Pagella (http://shop.oreilly.com/product/0636920020011.do).

Isometric tiles
There are two difficulties when dealing with isometric tiles. First, it's very simple to
display an orthogonal grid with DOM elements, whereas it's more complicated to
display an isometric one. Secondly, the occlusion is harder to compute.

Drawing an isometric tile map
We will use a trick here to generate our tile map. Each of our tiles will be stored in an
area where they are surrounded by transparent pixels in such a way as to give them
a square shape, just like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[103]

To make the magic happen, we will use two normal tile maps to display one isometric
one. They will overlap, but with an offset between them equal to half the height and
half the width of one tile. The following figure shows you how it would look:

tile map 1
width/2

tile map 2

height/2

Occlusion for isometric games
The occlusion for isometric games is harder to manage than for orthogonal ones.
In this situation, you can't simply play with layers to generate the correct occlusion.
Instead, you will have to give a z index to each "block" positioned in the level
(such as the walls, trees, objects, and others).

The value of this occlusion will depend on its coordinate just as in the case of the
player, NPCs, and enemies previously. This means that you will need to post-process
the tile map and generate them. This process can be quite complex to automate, and
if the number of elements in your game is reasonably small, you may want to do
it by hand. Otherwise, you will need to have some sort of 3D model of where each
block belongs.

Summary
In this chapter, you have learned how to use tile maps to their full potential. You
can now write a wide variety of games using the techniques you have learned in
this chapter and the previous one. You will probably find out that the problems you
encounter while writing a game are often the same. The best solution, however, often
depends on your game's limitations and constraints.

When you start writing your game, don't try to implement a general solution but
instead first focus on your particular situation. The result will most likely be faster,
easier to maintain, and will take you less time to implement.

In the next chapter, we will learn how to implement a multilevel game using the
platformer we created in Chapter 4, Looking Sideways.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Levels to Your Games
Until now all of our games have had only one level. This is nice for a demo or a
proof of concept, but you probably want to have many levels in your game. As
always there are many ways to do this, but most of them are based on the idea
that each of your levels are described by their own file (or files).

We will begin this chapter by quickly exploring the different ways to combine
files to create your game. We will then look at the jQuery functions that allow
such techniques.

Finally, we will take the game we developed in Chapter 4, Looking Sideways,
and extend it to include three levels by implementing some of the techniques
described beforehand.

The following is a quick list of the topics we will cover in this chapter:

• Using multiple files for your game
• Loading files with $.ajax
• Executing remote JavaScript
• Adding a new level to our game

Implementing a multi-file game
The first thing you have to ask yourself is, "When are the other files loaded?" The
classical approach is to have simple levels and load the next one at the end of the
previous one. This is the typical scenario for a platform game.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Levels to Your Games

[106]

Another approach is to have one big level and load a sublevel when you reach a
given point. Typically, in an RPG the big level would be the outside world and the
sublevel would be the inside of buildings. In both of these examples, the loading
of the file doesn't need to be done asynchronously.

The last common approach is to have a single very large level made of many
sublevels. This is typically what you have for MMORPG. Here you need to load
the files asynchronously so that the player doesn't notice that the sublevel has to
be loaded.

The challenge you will face depends greatly on which of the aforementioned
situations you find yourself in. They can be divided as follows: loading a tile map,
a sprite, and loading a logic behavior.

Loading tile maps
If you remember, in Chapter 5, Putting Things into Perspective, we loaded the tile map
in the form of a JSON file. As we explained earlier, we load a JSON file that holds
the description of the tile map. To do this, we use the basic AJAX function in jQuery:
$.ajax(). We will later see all the details about using this function.

However, simply loading a tile map is often not enough to describe your level
entirely. You may want to specify where the end of the level is, what are the areas
that will kill the player, and so on. One common technique is to use a secondary tile
map, one that is invisible and holds tiles that adds meaning to the other tile map.

The following figure shows an example of this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[107]

This has several advantages:

• You can easily give the same semantic meaning to different tiles. For
example, tiles with or without grass can represent the ground and interact
in the exact same way with the player.

• You can give the same semantic meaning to tiles of two levels that use
completely different tile sets. This way you don't really have to worry about
what images are used in your levels as long as they use the same logic tiles
to model it.

Implementing this isn't really hard. The following code shows the changes in the
gf.addTilemap function:

gf.addTilemap = function(parent, divId, options){
 var options = $.extend({
 x: 0,
 y: 0,
 tileWidth: 64,
 tileHeight: 64,
 width: 0,
 height: 0,
 map: [],
 animations: [],
 logic: false
 }, options);

 var tilemap = gf.tilemapFragment.clone().attr("id",divId).
data("gf",options);

 if (!options.logic){

 // find the visible part
 var offset = gf.offset(parent);
 var visible = gf.tilemapBox(options, {
 x: -options.x - offset.x,
 y: -options.x - offset.y,
 width: gf.baseDiv.width(),
 height: gf.baseDiv.height()
 });
 options.visible = visible;

 //create line and row fragment:
 for (var i=visible.y1; i < visible.y2; i++){
 for(var j=visible.x1; j < visible.x2; j++) {

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Levels to Your Games

[108]

 var animationIndex = options.map[i][j];

 if(animationIndex > 0){
 var tileOptions = {
 x: options.x + j*options.tileWidth,
 y: options.y + i*options.tileHeight,
 width: options.tileWidth,
 height: options.tileHeight
 }
 var tile = gf.spriteFragment.clone().css({
 left: tileOptions.x,
 top: tileOptions.y,
 width: tileOptions.width,
 height: tileOptions.height}
).addClass("gf_line_"+i).addClass("gf_column_"+j).
data("gf", tileOptions);

 gf.setAnimation(tile, options.
animations[animationIndex-1]);

 tilemap.append(tile);
 }
 }
 }
 }
 parent.append(tilemap);
 return tilemap;
}

As you can see, we simply add a flag to indicate if the tile maps are here for a logical
purpose. If so, we don't need to create any tiles in it.

The collision detection function is now slightly modified too. In the case of a logical
tile map we can't simply return the divs. Instead, we will return an object literal
containing the size, position, and type of the colliding tiles. The following code
extract shows exactly this:

gf.tilemapCollide = function(tilemap, box){
 var options = tilemap.data("gf");
 var collisionBox = gf.tilemapBox(options, box);
 var divs = []

 for (var i = collisionBox.y1; i < collisionBox.y2; i++){
 for (var j = collisionBox.x1; j < collisionBox.x2; j++){
 var index = options.map[i][j];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[109]

 if(index > 0){
 if(options.logic) {
 divs.push({
 type: index,
 x: j*options.tileWidth,
 y: i*options.tileHeight,
 width: options.tileWidth,
 height: options.tileHeight
 });
 } else {
 divs.push(tilemap.find(".gf_line_"+i+".gf_
column_"+j));
 }
 }
 }
 }
 return divs;
}

Once this feature is implemented, it becomes very easy to load the level. Indeed, as
long as the logical tile map is present and the game's code knows how to react to
each tile, we don't need anything more to make the player react to its environment.

Loading sprites and their behavior
If loading a tile map from a different file is pretty straightforward, there are plenty
of ways to do the same for the sprites that a level contains.

You can implement an interpreter for a JSON file that will in turn create and
configure the enemies and NPCs. This has the advantage that you could merge this
JSON and the one describing the tile map. This way you would only need to load
one file instead of two. As there's a pretty big overhead for each file you load, the
size of the file has little impact; in most situations it will make your level load faster.
The following diagram illustrates this:

time gain

two small files downloading latency downloadinglatency

one large file downloadinglatency

time

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Levels to Your Games

[110]

It has some disadvantages too: first your engine has to be written to understand
every possible behavior you may want your enemies to adopt. It means that if you
have a kind of enemy that is used only once in the tenth level of the game, you will
still need to load its implementation at the same time you load the game at startup.
If you work in a team and the other members want to implement their own type of
enemy, they will need to modify the engine instead of just working on their level.

You will also need to be really careful to specify a JSON format that covers all
your needs or you run the risk of having to refactor a big part of your game later
on. The following code is an example of how such a JSON file might look like the
following code:

{
 "enemies" : [
 {
 "name" : "Monster1",
 "type" : "spider",
 "positionx" : 213,
 "positiony" : 11,
 "pathx" : [250,300,213],
 "pathy" : [30,11,11]
 },
 {
 "name" : "Monster2",
 "type" : "fly",
 "positionx" : 345,
 "positiony" : 100,
 "pathx" : [12,345],
 "pathy" : [100,100]
 }
],
 "npcs" : [
 {
 "name" : "Johny",
 "type" : "farmer",
 "positionx" : 202,
 "positiony" : 104,
 "dialog" : [
 "Hi, welcome to my home,",
 "Feel free to wander around!"
]
 }
]
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[111]

Another possible implementation is to load a complete script that will in turn create
the enemies and configure them. This has the advantage of making your game more
modular and loosening the coupling between the game and the levels.

It has several disadvantages though. First, if you're not careful, the code of your level
has the potential to override some of your main game variables. This will create bugs
that are quite difficult to track and will depend on the order the levels have been
loaded. Secondly, you will have to be extra careful with choosing your variable scope
as each newly loaded level's code is executed in the global scope.

In the example given in this chapter, we will choose the second solution because it
makes sense for a small game and is quite flexible.

No matter which of those you choose to implement, you will most likely use $.ajax
or one of its aliases. In the next section, we will take a detailed look at it.

Using $.ajax
The $.ajax function is a very powerful, but low-level function. It has many aliases
that can be used for different specific tasks:

• $.get is a multi-purpose alias that reduces the number of options in
comparison with $.ajax and has an API based on multiple optional
parameters instead of a single object literal. It always loads files
asynchronously.

• $.getJSON is a function used to load a JSON file asynchronously.
• $.getScript is a function that loads a script asynchronously and then

executes it.
• $.load is a function that loads an HTML file asynchronously and injects

its content in the selected element.
• $.post is similar to $.get, but uses a post request.

As you can see all these aliases have one thing in common: they all load their files
asynchronously. This means that if you rather load your resource synchronously, you
are back to using $.ajax. However, be reassured it's not really more complicated than
the aliases once you know the right parameters. Furthermore, the API documentation
for the aliases always include the exact parameter to use for an $.ajax call to have the
same effect.

When using $.ajax, you have to make sure that you access the files through a
server and that you respect the same-origin policy. Otherwise, you will likely run
into problems on most browsers. To learn more about $.ajax you should look at
the official jQuery API documentation (http://api.jquery.com/jQuery.ajax/).

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Levels to Your Games

[112]

Loading a JSON file
JSON files are a very convenient way to load external data without having to parse
it yourself. Once loaded, a JSON file is typically stored in a simple JavaScript object.
Then you can simply look up its properties to access the data.

If you want to mimic a call to $.getJSON with $.ajax it will look something like the
following code:

$.ajax({
 url: url,
 dataType: 'json',
 data: data,
 success: callback
});

Here, url is the web address of the JSON file, data is an optional list of parameters
you may want to pass to the server, and success is the callback that will handle the
JSON file once it's loaded. If you want to access the remote file synchronously, you
have to add the parameter async : false to the call.

It's in the callback that you will decide what to do with the JSON file; it will have the
following signature:

var callback = success(data, textStatus, jqXHR)

Here, data holds the object generated from the JSON file. What you will do with it
really depends on your use case; here is a short version of the code that imports the
tile maps generated by Tiled:

success: function(json){
 //...

 var layers = json.layers;
 var usedTiles = [];
 var animationCounter = 0;
 var tilemapArrays = [];

 // Detect which animations we need to generate
 // and convert the tiles array indexes to the new ones
 for (var i=0; i < layers.length; i++){
 if(layers[i].type === "tilelayer"){
 // ...
 tilemapArrays.push(tilemapArray);
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[113]

 // adding the tilemaps
 for (var i=0; i<tilemapArrays.length; i++){
 tilemaps.push(gf.addTilemap(parent, divIdPrefix+i, {
 x: 0,
 y: 0,
 tileWidth: tileWidth,
 tileHeight: tileHeight,
 width: width,
 height: height,
 map: tilemapArrays[i],
 animations: animations,
 logic: (layers[i].name === "logic")
 }));
 }
 }
});

The highlighted part is quite typical. Indeed, most non-trivial JSON will hold
an array of elements to make it possible to describe any number of similar entities.
When you are not the designer of the JSON file specification, you may find yourself
in the situation where you have to convert the content of the JSON object to your
own data structure. That's exactly what this code does.

There is no general approach here and you really have to consider each situation
individually. The nice thing is that in most cases this piece of code is executed
only a few times during the game and therefore, is not sensible with regard to
performances. You're better off making it as readable as possible rather than
searching all the places where you can make it run faster.

Loading a remote script
If you want to mimic the usage of $.getScript with $.ajax, it will look something
like the following:

$.ajax({
 url: url,
 dataType: "script",
 success: success
});

As we did earlier, you can make it synchronous simply by adding async : false
to the list of parameters. This will do two things: load the script and execute it. The
callback is not that important here, it will only allow you to track whether the file
was successfully retrieved or not.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Levels to Your Games

[114]

As mentioned earlier, the script will be executed in the global scope. This has some
implication on your code organization. Until now the code of our games looked like
the following:

$(function() {
 var someVariable = "someValue";

 var someFunction = function(){
 //do something
 }
});

Here all the functions and variables are defined in a "private" scope that cannot be
touched from outside. This means that if your remote code tries to do something
like the following, it will fail:

var myVariable = someVariable;
someFunction();

Indeed, the functions someFunction and someVariable are not visible from the
global scope. The solution is to carefully choose which variable and function should
be visible from the remote code and put them in the global scope. In our situation it
might look like the following:

var someVariable = "someValue";
var someFunction = function(){
 //do something
}

$(function() {
 // do something else
});

You may want to keep all these in a namespace like we did for our framework. As
you're writing a final product that won't likely be used as a library in another, it has
more to do with personal preference.

Debugging calls to $.ajax
Now that we are loading remote files, a new variety of problems can occur: the
URL of the file may no longer be valid, the server may be down, or the file may be
ill formatted. In production, you may want to detect these at runtime to display a
message to the user instead of simply crashing. During the development phase, you
may want to find out exactly what went wrong in order to debug your code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[115]

jQuery provides three functions that you can use to perform this: .done(), .fail(),
and .always(). There used to be three others (.success(), .error(), and
.complete()), but they have been deprecated since jQuery 1.8.

.done()

.done() can be used instead of the success callback. It will only be called once the
file is successfully loaded. The provided function will be called with the following
three arguments in this order: data, textStatus, jqXHR.

data is the loaded file, which means you could handle your JSON file there if you
wanted to.

.fail()

.fail() is called whenever a problem occurred. The provided function will be
called with the following three arguments in this order: jqXHR, textStatus,
exception.

When loading and executing a script, it's very convenient to find what happened
if the script is not executed. Indeed, the exceptions won't appear in most browsers'
debug consoles, but the exception argument will contain the exact exception thrown
by your code.

For example, if we look at the scope problem described earlier where the main
game contains the following code:

$(function() {
 var someVariable = "someValue";

 var someFunction = function(){
 //do something
 }
});

And a remote script like this:

someFunction();

You could catch the exception by writing:

$.getScript("myScript.js").fail(function(jqxhr, textStatus, exception)
{
 console.log("Error: "+exception);
});

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Levels to Your Games

[116]

And the following error would be written to the console:

error: ReferenceError: someFunction is not defined

This will work to detect other problems such as unresponsive servers and so on.

Modifying our platform game
We now have all the knowledge we need for creating a multi-level game. First, we
will create a list of levels and a function to load them:

var levels = [
 {tiles: "level1.json", enemies: "level1.js"},
 {tiles: "level2.json", enemies: "level2.js"}
];

 var currentLevel = 0;

 var loadNextLevel = function(group){
 var level = levels[currentLevel++];
 // clear old level
 $("#level0").remove();
 $("#level1").remove();
 for(var i = 0; i < enemies.length; i++){
 enemies[i].div.remove();
 }
 enemies = [];

 // create the new level

 // first the tiles
 gf.importTiled(level.tiles, group, "level");

 // then the enemies
 $.getScript(level.enemies);

 // finaly return the div holdoing the tilemap
 return $("#level1");
 }

The highlighted lines are the ones that do the remote loading of files. This uses the
functions described earlier. As you can see, there is no mechanism to detect that the
game is over. You could add one as homework if you want to!

Before the next level is loaded, we have to make sure to delete the existing one as
well as the enemies it contains.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[117]

Now we will change the game to work with logic tiles instead of standard ones. This
way we can have a kind of tile that defines the end of one level. Here is our collision
detection code modified to do exactly that:

var collisions = gf.tilemapCollide(tilemap, {x: newX, y: newY, width:
newW, height: newH});
var i = 0;
while (i < collisions.length > 0) {
 var collision = collisions[i];
 i++;
 var collisionBox = {
 x1: collision.x,
 y1: collision.y,
 x2: collision.x + collision.width,
 y2: collision.y + collision.height
 };

 // react differently to each kind of tile
 switch (collision.type) {
 case 1:
 // collision tiles
 var x = gf.intersect(newX, newX + newW, collisionBox.
x1,collisionBox.x2);
 var y = gf.intersect(newY, newY + newH, collisionBox.
y1,collisionBox.y2);

 var diffx = (x[0] === newX)? x[0]-x[1] : x[1]-x[0];
 var diffy = (y[0] === newY)? y[0]-y[1] : y[1]-y[0];
 if (Math.abs(diffx) > Math.abs(diffy)){
 // displace along the y axis
 newY -= diffy;
 speed = 0;
 if(status=="jump" && diffy > 0){
 status="stand";
 gf.setAnimation(this.div, playerAnim.stand);
 }
 } else {
 // displace along the x axis
 newX -= diffx;
 }
 break;
 case 2:
 // deadly tiles
 // collision tiles

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Levels to Your Games

[118]

 var y = gf.intersect(newY, newY + newH, collisionBox.
y1,collisionBox.y2);
 var diffy = (y[0] === newY)? y[0]-y[1] : y[1]-y[0];
 if(diffy > 40){
 status = "dead";
 }
 break;
 case 3:
 // end of level tiles
 status = "finished";
 break;
 }

}

As you can see, we've added the possibility for the player to die when he/she hits
some tiles. This will make him/her reappear at the beginning of the current level. If
the tiles are of type 3, we set the status of the player as finished. Later, we detect the
status and load the next level.

if (status == "finished") {
 tilemap = loadNextLevel(group);
 gf.x(this.div, 0);
 gf.y(this.div, 0);
 status = "stand";
 gf.setAnimation(this.div, playerAnim.jump);
}

Don't forget to rest the player position too, otherwise, it will appear in the middle of
the next level instead of at its starting point.

We now have to write each script that creates the enemies for their respective level.
This is almost the exact same piece of code that we used in the previous version of
the game, but placed in a separate file:

var group = $("#group");

var fly1 = new Fly();
fly1.init(
 gf.addSprite(group,"fly1",{width: 69, height: 31, x: 280, y:
220}),
 280, 490,
 flyAnim
);
enemies.push(fly1);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[119]

var slime1 = new Slime();
slime1.init(
 gf.addSprite(group,"slime1",{width: 43, height: 28, x: 980, y:
392}),
 980, 1140,
 slimeAnim
);
enemies.push(slime1);

var slime2 = new Slime();
slime2.init(
 gf.addSprite(group,"slime2",{width: 43, height: 28, x: 2800, y:
392}),
 2800, 3000,
 slimeAnim
);
enemies.push(slime2);

As you may already have figured, we cannot simply run the game and use that script
without modifying our code some more. As we said before, the remote script will be
executed in the global scope and we need to move the pieces it uses to it.

Here we need the enemies' objects and animations as well as the array that contains
the list of enemies. We will simply take those out of their closure and add them at the
beginning of our game script:

var enemies = [];
var slimeAnim = {
 stand: new gf.animation({
 url: "slime.png"
 }),
 // ...

}
var flyAnim = {
 stand: new gf.animation({
 url: "fly.png"
 }),
 // ...}

var Slime = function() {
 // ...
};
var Fly = function() {}
Fly.prototype = new Slime();

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Levels to Your Games

[120]

Fly.prototype.dies = function(){
 gf.y(this.div, gf.y(this.div) + 5);
}

$(function() {
 // here come the rest of the game
});

Now the game will contain as many levels as we want. Have fun with the level
editor! Here we used the scripts only to set the enemies, but we could use it to
change the level background if we wanted to.

Summary
Making your game multileveled adds a few new tricks to your sleeve. Now you've
learned to divide your assets in many files and load them when you need them.
You've also learned how to use tiles to describe logic behavior and not only the
graphical aspect of your levels.

As mentioned earlier, there is much more that can be done with the game to make
it really fun. I will recommend spending quite some time on level design. In most
commercial games, this is where most of the time is spent, so don't hesitate to stop
coding for a while and start making and testing your levels!

In the next chapter, you will learn how to make a multiplayer game. For this we
will use the game we created in Chapter 5, Putting Things into Perspective, and add
new functionality to it in the same way we did for the game from Chapter 4, Looking
Sideways, which we used in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Multiplayer Game
Single player games are fun, and as we've already seen, there is a large variety of
them you can make with JavaScript. However, having your game run in a web
browser, there is a huge temptation to make it multiplayer. This is exactly what
we will do in this chapter and what better example of a multiplayer game than
an MMORPG!

We will take our small single-player RPG from Chapter 5, Putting Things into
Perspective, and transform it into a brand new MMORPG: World of Ar'PiGi.

However, first a word of warning—the technology we will use to implement the
server-side of our game is PHP + MySQL. The reason for this is it's by far the most
common technology around. If you have some sort of hosting, chances are it's
supported out of the box.

There are many reasons why this is not necessarily the best solution. When writing
a game where the server-side usage is not reduced to simply serving a static page,
you have to think very carefully about scaling:

• How many users will be able to play simultaneously on your system?
• What will you do when the number of players grows past this limit?
• How much are you ready to pay to make your server run?
• What is the quality of service you want to provide to the player?

The answer to these questions should dictate what technology and infrastructure you
will choose. It is not the purpose of this book to elaborate on this; the solution we
will implement should scale up to a few tens of players without any problems, but
the techniques you will learn here can be applied no matter what software solution
or hosting you choose!

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Multiplayer Game

[122]

In this chapter, we will cover the following subjects:

• Multiplayer game specification
• Managing a player's account
• Synchronizing a player's state
• Managing the enemies' server-side

World of Ar'PiGi
The game we will create based on our previous RPG will have the following features:

• A player can create an account and log into the game with it
• When they come back to the game, their avatar will reappear where it was

when they left
• Each player can see all the other players that are playing at the same time
• The name of the other players will appear above their avatar
• The state of the enemies is managed server side: if someone kills a monster,

it will be dead for all the other players as well

This game will have some of the same limitations of the game it's based on.
The monster won't fight back and won't move around.

Managing the player's account
Let's start with the basics: let the player create an account and log into the game. To
store information server side, we will use a database (MySQL). The table structure
we will use is very simple as there is not much to store. The player's account will be
stored in a table we will creatively call players.

This table will have the following rows:

• NAME: This is a string holding the name of the player. It will be unique
so that no two players can have the same name.

• PW: This is a string holding the player's password. It is hashed (more on
this in the next section, Searching elements in the database).

• X: This is a double that will hold the player's x coordinate.
• Y: This is a double that will hold the player's y coordinate.
• DIR: This is an integer that we will use to store the direction the player

is facing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[123]

• STATE: This is an integer that holds the state of the player: standing,
walking, or fighting.

• LASTUPDATE: This is a time stamp that will hold the last time the server
heard from the player.

A SQL script is provided that creates all the tables you need for the game in the file
create_tables.sql.

To create the user interface that allows creating an account or logging into the game,
we will use a series of divs that will overlap the game screen. Only one of them will
be visible at any time. The following figure shows the possible user interactions and
the corresponding screens:

continue
screen user presser

“continue”
user presser
“logout”

user logged
successfully

account created
successfullyaccount creation

screen

user pressed
“create account”

Does a
session
exists ? no

yes

game
starts

login screen

Each of those screens will be a div holding a few input fields and/or buttons. For
example, the screen that lets the player create an account would be:

<div id="create" class="screen">
 <h1>Create an account</h1>
 <div class="input">name:<input id="create-name"
type="text" /></div>
 <div class="input">pw:<input id="create-pw"
type="text" /></div>
 cancel
 create
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Multiplayer Game

[124]

It will be styled with CSS and the interactive part will be written in jQuery. For this
screen, the code is as follows:

$("#create-cancel").click(function(e){
 $("#create").css("display","none");
 $("#login").css("display","block");
 e.preventDefault();
});
$("#create-create").click(function(e){
 // interact with the server
 e.preventDefault();
});

The ID of the link used to connect the JavaScript code to the HTML code has been
highlighted. Nothing too fancy, but it does the trick.

The interesting part has been intentionally left out of the preceding code, that is, the
actual interaction with the server. All the interactions between our client (the game
running into a browser) and the server will be done using JSON and the $.getJSON
function that we talked about in the last chapter (this is a shorthand for $.ajax).

To transmit information to the server, we will use the second argument of the
$.getJSON function. To transmit information to the client, the server will generate
a JSON file.

We will use the server-side file to create an account called createUser.php, so the
$.getJSON call will look as follows:

$.getJSON(
 "createUser.php",
 {
 name: $("#create-name").val(),
 pw: $("#create-pw").val()
 },
 handleCreateUserJson
)

As we've already mentioned, we submit the name and password the user chose by
wrapping them in an object literal and pass it as the second argument to the function
call. As already said, the third argument is a function that will handle the JSON file
once the server returns it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[125]

Searching elements in the database
For the first time, we will have to generate a JSON file. This one is pretty trivial; it
should tell the client if the account creation was successful or not and if it is, the
information about the player.

We've chosen to write it as the following code snippet, but it's really up to you
to create the JSON files in a way that makes the most sense to you. If you are not
familiar with the exact syntax a JSON file should follow, have a quick read at
http://www.json.org/.

{
 "success" : true,
 "x" : 510,
 "y" : 360,
 "dir" : 0
}

It's quite easy to implement the function that will read this JSON file and react
accordingly. We will launch the game if the operation is a success and display
an error message if something went wrong. The following code does just that:

var handleCreateUserJson = function(json,status){
 if (json.success){
 name = $("#create-name").val();
 initialPlayerPos.x = json.x;
 initialPlayerPos.y = json.y
 initialPlayerPos.dir = json.dir;
 $("#create").css("display","none");
 gf.startGame(initialize);
 } else {
 alert("Name already taken!");
 }
}

This is pretty simple as most of the complicated stuff is running on the server. Let's
see what has to be done there. First, we have to retrieve the parameters sent by the
client. As we use $.getJSON, the request to the JSON file is a GET request. This means
that we will use PHP's $_GET super-global variable to access them. When passing
sensible information to the server, you may want to use a POST request instead
(though that alone won't prevent someone motivated enough to still access the
parameters). $_GET is a variable that holds all the parameters sent by the client,
so in our case, we can write:

$name = $_GET['name'];
$pw = $_GET['pw'];

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Multiplayer Game

[126]

We will have stored the name and password the user chose into variables. Now we
have to probe the database to check if a user with this name isn't already defined. To
run a SQL query in PHP, we will use mysqli (http://php.net/manual/en/book.
mysqli.php):

// 1) contect to the DB server
$link = mysqli_connect('localhost', 'username', 'password');

// Select the DB
mysqli_select_db($link, 'rpg');

// query the DB
$result = mysqli_query($link, 'SELECT * FROM players WHERE name =
"'.$name.'"');

Note that the preceding code is not to be used for production as we
directly insert the parameters provided by the user into the database
query and that creates a huge risk of SQL injection! The best practice
would be to always escape all the strings before injecting them into SQL
queries. A simple way would be to use mysqli_escape (http://
www.php.net/manual/en/mysqli.real-escape-string.php).

We won't go into the detail of writing the SQL query. They are pretty easy to read
and, for a basic query like this one, to write. If you want to learn more about SQL,
you can search the Web or read one of the many books available on the subject.

Once we have the result of the query, we need to check if the query returned an
element to see if the name was already present in the DB. This is simply done with:

$obj = mysqli_fetch_object($result);

Now, if $obj is zero, we can create the new account.

Creating a new player in the database
Before looking at the query that will create the player in the database let's talk about
passwords. You should never store raw passwords in the database because history
has shown that databases get hacked quite often. The recommended solution is
to hash the password before storing it. Then you can simply compare the hashed
version of the submitted password with the one stored in the database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[127]

Account creation:

password

logging

saved

database

hash

hashing function

hash

password

hash

hashing function

compared

That's what we will do here with PHP's hash function. Then we will simply insert
the username and the hash into the database along with the starting position of
the player.

As this is also a query, we use the exact same function we used to find out if an
account already existed with this name:

$hash = hash('md5', $pw);
$query = 'INSERT INTO players (name, x, y, dir, pw, state)
VALUES("'.$name.'", 510, 360, 0, "'.$hash.'", 0)';
mysqli_query($link, $query);

The first argument that we passed to the hash function is highlighted in the
preceding code. It's the hash method, and the 'md5' that we used here is not
recommended for production because it's considered too easy to break nowadays.
If you want to find out more about what methods are available, have a look at the
function documentation at http://www.php.net/manual/en/function.hash.php.

Now we can generate the JSON that the client will receive. This is done by using PHP's
json_encode function (http://php.net/manual/en/function.json-encode.php).
This function takes an object and transforms it into a JSON-formatted string.

$json['success'] = true;
$json['x'] = 510;
$json['y'] = 360;
$json['dir'] = 0;

echo json_encode($json);

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Multiplayer Game

[128]

Now, just to give you a global picture of what the client file looks like. The complete
code is reproduced as follows:

<?php
 session_start();

 include 'dbconnect.php';

 // JSON Object
 $json = array('success'=>false);

 $name = $_GET['name'];
 $pw = $_GET['pw'];

 if(isset($name) && isset($pw)) {
 $hash = hash('md5', $pw);
 $query = 'SELECT * FROM players WHERE name = "'.$name.'"';
 $result = mysqli_query($link, $query);
 $obj = mysqli_fetch_object($result);
 if(!$obj){
 $query = 'INSERT INTO players (name, x, y, dir, pw, state)
VALUES("'.$name.'", 510, 360, 0, "'.$hash.'", 0)';
 $result = mysqli_query($link, $query);

 $_SESSION['name'] = $name;
 $_SESSION['pw'] = $pw;

 $json['success'] = true;
 $json['x'] = 510;
 $json['y'] = 360;
 $json['dir'] = 0;
 }
 }

 echo json_encode($json);

 // Close DB's connection
 mysqli_close($link);
?>

Here, you can see that we are including a file called dbconnect.php, which allows
us to write the database configuration only once in this file and use it from every file
that needs to connect to it. This is the same basic function we will use for every other
functionality we will implement server side.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[129]

Keeping the player connected
There is, however, one thing in this implementation that we haven't explained yet. If
you look at the highlighted code, you will see that the name of the user is stored into
the session.

This will allow the server to continue knowing the name of the player without
having to submit it with every following request. It will also allow us to permit the
user to continue playing the game without having to give his/her username and
password again if he/she comes back while the session is still valid.

If you look at the user-interaction flow graph at the beginning of this chapter, you
will see there is a screen that proposes to the user to continue playing. We will
display it only if the server still has a valid session it can use for him/her. To check
this, we will create another PHP file named session.php that looks as follows:

<?php
 session_start();

 // MySQL connection
 include 'dbconnect.php';

 // JSON Object
 $json = array('connected'=>'false');

 if(isset($_SESSION['name'])) {
 $query = 'SELECT * FROM players WHERE name = "'.$_
SESSION['name'].'"';
 $result = mysqli_query($link, $query);
 $obj = mysqli_fetch_object($result);
 if($obj){
 $json['name'] = $_SESSION['name'];
 $json['x'] = floatval($obj->x);
 $json['y'] = floatval($obj->y);
 $json['dir'] = intval($obj->dir);
 } else {
 session_destroy();
 }

 mysqli_free_result($result);
 }

 echo json_encode($json);

 mysqli_close($link);
?>

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Multiplayer Game

[130]

Then we simply check if the name is present in the session. However, if it is, there
is one more thing we need to do; that is, retrieve the player from the database. This
will give us its last coordinate and check once more that the username and password
really match.

We don't save the coordinate in the session itself because we want the player to be
able to connect to the same account using many different machines or browsers
(although not simultaneously).

Once a request has been executed by the database, we can use mysql_result to read
the result. This function takes three arguments:

1. The result of the query, generated by mysql_query.
2. The index of the result we want to read. This is needed because a query can

return more than one result (for example, if we search for all the accounts in
the players table).

3. The name of the field we want to read.

Once we have this information, we can send it to the client by formatting it into
a JSON file.

On the client side, we will call this function at the very beginning of the game to
choose which screen to display (the continue screen or the login one). This is done
as usual with a $.getJSON call.

$.getJSON(
 "session.php",
 function(json){
 if(json.connected){
 name = json.name;
 initialPlayerPos.x = json.x;
 initialPlayerPos.y = json.y
 initialPlayerPos.dir = json.dir;
 $("#session-name").html(name);
 $("#session").show(0);
 } else {
 $("#login").show(0);
 }
 }
);

This is very similar to what we have done before.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[131]

Logging the user into the game
This is done in almost the exact same way we checked for an existing session. On the
server side, we need to make a request to prove if the username and password match
and get the player position.

On the client side, we need to display a warning if the password was wrong and
start the game if everything went well.

The JSON we use for this is as follows:

{
 "success" : true ,
 "x" : 154,
 "y" : 1043,
 "dir" :0
};

If the username and password don't match, success will be false. Otherwise, the
JSON will look as shown earlier. We won't show you the server and client-side
code as they are very similar to what we have already seen.

Keeping the players in sync
With what we've seen until now, we can log into the game, but that's about it; what
we need now is a way to keep the server informed of the player's movement and
to give the client the position of all the other players. The following figure shows
you how the client and the server will interact:

Client-side

main game loop:
read keyboard

stat

update

player position

read

update loop

send player’s
position

send other
players position

other players
position

update

database

save new
player position

update script

read other
player position

Server-side

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Multiplayer Game

[132]

We will do both these things in one JSON call. We will use it to pass to the server the
player's current position as we did before for the username and password. In return,
the server will generate a JSON file with the list of all the other players.

{
 "players" : [
 {"name": "Alice", "x": 23, "y": 112, "dir": 0, "state": 0},
 {"name": "Bob", "x": 1004, "y": 50, "dir": 2, "state": 1}
]
};

Let's first have a look at the server side. There we need to write two queries: the first
one to retrieve the list of all players and the second one to update the state of the
current player.

Retrieving all the other players
This simply means finding all the entries in the players table except the one for the
current player. There is, however, one thing we have to be careful about: we only
want to display the players that are currently playing the game.

As a lot of things can happen online, we cannot be sure that the player will be able
to log out before being disconnected, so instead, we choose to use a time stamp.
Each time that the player updates its position, we will set the time stamp to the
current time.

This way we can know which players are not online anymore by comparing
this time stamp to the current time. We've arbitrarily decided that player will be
considered offline if we haven't heard from him/her in more than 10 minutes. The
corresponding MySQL query would be:

$query = 'SELECT * FROM players WHERE lastupdate >
TIMESTAMPADD(MINUTE, -10, NOW()) AND name <> "'.$_GET['name'].'"';

Here, we test if the name is not the same as the current player (<> means "not equal
to" in SQL).

The code that reads the result and prints it to the server's response is as follows:

$result = mysqli_query($link, $query);

while ($obj = mysqli_fetch_object($result)) {
 array_push($json['players'], array('name'=>$obj->name,
'x'=>floatval($obj->x), 'y'=>floatval($obj->y), 'dir'=>intval($obj-
>dir), 'state'=>floatval($obj->state)));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[133]

}

mysqli_free_result($result);

This is very similar to when we retrieve just the current user from the database, so
you should already be familiar with this code.

Updating the current player position
To update the entry in the database that holds the information about the player, we
can use the following query:

mysqli_query($link, 'UPDATE players SET x='.$x.', y ='.$y.',
dir = '.$dir.', state = '.$state.', lastupdate = NOW() WHERE
name="'.$name.'"');

As we don't expect any result from this query, we don't need to store it anywhere.

Client-side code
Now we need to write the code that will send the current player position to the server.
This is not too complicated as it's just passing the parameters to the $.getJSON call.
We will, however, need to encode the player direction and status to integers (as we
decided to store them that way in the database).

To do this, we will extend the player's object with two new methods:

this.getState = function(){
 switch (state){
 case "idle":
 return 0;
 case "walk":
 return 1;
 case "strike":
 return 2;
 default:
 return 0;
 }
};

this.getOrientation = function(){
 switch (orientation){
 case "down":
 return 0;
 case "up":

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Multiplayer Game

[134]

 return 1;
 case "left":
 return 2;
 default:
 return 3;
 }
};

Then, we will simply call them when we call getJSON:

$.getJSON(
 "update.php",
 {
 name: name,
 x: gf.x(player.div),
 y: gf.y(player.div),
 dir: player.getOrientation(),
 state: player.getState()
 },
 updateOthers
);

The callback function is probably the most complicated part of this whole chapter.
Go through the returned list of all players. If a new player was created, we need to
add him/her to the map. If a player moved, we need to update his/her position,
and if a player quit the game, we need to remove him/her.

This is exactly what the following code does:

function(json,status){
 // Here we need to update the position of all the other players
 var existingOthers = {};
 var players = json.players
 for (var i = 0; i < players.length; i++){
 var other = players[i];
 existingOthers["other_"+other.name] = true;
 var avatar, weapon;
 var div = $("#other_"+other.name);
 var created = false;
 if(div.size() > 0){
 avatar = $("#other_"+other.name+"_avatar");
 weapon = $("#other_"+other.name+"_weapon");
 // update
 gf.x(div, other.x);
 gf.y(div, other.y);
 div.css("z-index",other.y + 160);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[135]

 } else {
 var created = true;
 // create other players
 div = gf.addGroup($("#others"), "other_"+other.name, {
 x: other.x,
 y: other.y
 })
 others.push(div);
 div.css("z-index",other.y + 160);
 avatar = gf.addSprite(div, "other_"+other.name+"_avatar", {
 x: (192-128)/2,
 y: (192-128)/2,
 width: 128,
 height: 128
 });
 weapon = gf.addSprite(div, "other_"+other.name+"_weapon", {
 width: 192,
 height: 192
 });
 div.append("<div style='font-family: \"Press Start 2P\";
background: rgba(0,0,0,0.5); padding: 5px; color: #FFF; width: 192px;
position: absolute;'>"+other.name+"</div>");
 div.data("state", {dir: other.dir, state: other.state});
 }

 // set the correct animation
 if(created || other.state !== div.data("state").state || other.
dir !== div.data("state").dir){
 div.data("state", {dir: other.dir, state: other.state});

 gf.transform(avatar, {flipH: false});
 gf.transform(weapon, {flipH: false});
 var pAnim = playerAnim.stand;
 var wAnim = weaponAnim.stand;
 if(other.state === 1){
 pAnim = playerAnim.walk;
 wAnim = weaponAnim.walk;
 } else if (other.state === 2){
 pAnim = playerAnim.strike;
 wAnim = weaponAnim.strike;
 }
 if(other.dir === 0){
 gf.setAnimation(avatar, pAnim.down, true);
 gf.setAnimation(weapon, wAnim.down, true);

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Multiplayer Game

[136]

 } else if (other.dir === 1){
 gf.setAnimation(avatar, pAnim.up, true);
 gf.setAnimation(weapon, wAnim.up, true);
 } else {
 gf.setAnimation(avatar, pAnim.side, true);
 gf.setAnimation(weapon, wAnim.side, true);
 if(other.dir === 2){
 gf.transform(avatar, {flipH: true});
 gf.transform(weapon, {flipH: true});
 }
 }
 }

 }
 // remove gone others
 for (var i = others.length-1; i >= 0; i--){
 var other = others[i];
 if(!existingOthers[other.attr("id")]){
 other.fadeOut(2000, function(){
 $(this).remove();
 });
 others.splice(i,1);
 }
 }

 setTimeout(updateFunction,100);
}

The first part is to either update the position or create the other players. The second
part is to set the correct animation based on the player orientation and status.

Then we go through the list of all players and if some of them weren't on the list
of updated players, we remove them from the game.

Finally, we set a timeout for the function calling $.getJSON to be called again in 100
milliseconds. The frequency you choose will be a trade-off between server usage and
game fluidity, so you probably will have to fine-tune this value to your game needs.

Taking care of monsters
Now the game starts to get interesting. There is, however, one small thing missing.
If one player kills a monster, it will only be dead for him and not for all the other
players. This can be fine in some very special cases, but most of the time this is not
what we want.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[137]

The solution is to implement the logic that takes care of the enemies and the fights
server side. This means that we need another database table that will hold all of
our enemies. This table will need to hold the following information:

• The ID of the enemy, to identify it uniquely
• The type of the enemy—a skeleton, an ogre, and so on—to define how it

will look to the player
• The x and y coordinate of the enemy
• Its life to allow the player to kill it
• Its defense for the combat system
• Its spawn rate to determine when the monster should be spawned

again once it has been killed

Then, periodically, we will transmit to the clients the position and properties of those
enemies. As we already have a page that is being pooled regularly to get the position
of the other players, we can simply enhance it to return the state of the enemies too.

This simply means that the JSON file will now look like this (with the new
part highlighted):

{
 "players" : [
 {"name": "Alice", "x": 23, "y": 112, "dir": 0, "state": 0},
 {"name": "Bob", "x": 1004, "y": 50, "dir": 2, "state": 1}
],
 "enemies" : [
 {"name": "enemy1", "type" : "ogre", "x": 2014, "y": 200},
 {"name": "enemy2", "type" : "skeleton", "x": 220, "y": 560}
]
};

We will need another query to find all the enemies still alive in the database:

SELECT * FROM enemies WHERE life <> 0

The code that writes the JSON and parses it to create or update the enemies is exactly
the same as the one for the other players, so we won't reproduce it here, but you can
have a look at the full source if you want to.

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Multiplayer Game

[138]

Implementing server-side combat
To implement combat with those server-side enemies, we could still use the
code we have client side and send the result to the server. This has some serious
disadvantages, as it is very easy to cheat the system and modify the client to simply
send the information that the enemy has been defeated without really doing the
combat. Secondly, it makes dealing with combat between one enemy and many
players very difficult.

We will instead implement it server side, as it is shown in the following diagram:

read enemies
position

read combatant
properties

Server-side

database

update script

combat script

send enemies
position

send conbat
result

send combat
information

Client-side

update

read

enemies
position

update loop

main game loop
detect combat

update game stste

The code that used to get executed client side was as follows:

this.detectInteraction = function(npcs, enemies, console){
 if(state == "strike" && !interacted){
 // ... interaction with NPCs here ...
 for (var i = 0; i < enemies.length; i++){
 if(gf.spriteCollide(this.hitzone, enemies[i].div)){
 var enemyRoll = enemies[i].object.defend();
 var playerRoll = Math.round(Math.random() * 6) + 5;

 if(enemyRoll <= playerRoll){
 var dead = enemies[i].object.kill(playerRoll);
 console.html("You hit the enemy
"+playerRoll+"pt");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[139]

 if (dead) {
 console.html("You killed the enemy!");
 enemies[i].div.fadeOut(2000, function(){
 $(this).remove();
 });
 enemies.splice(i,1);
 }
 } else {
 console.html("The enemy countered your attack");
 }
 interacted = true;
 return;
 }
 }
 }

We will now simply have a JSON call:

this.detectInteraction = function(npcs, enemies, console){
 if(state == "strike" && !interacted){
 // ... interaction with NPCs here ...
 for (var i = 0; i < enemies.length; i++){
 if(gf.spriteCollide(this.hitzone, enemies[i])){
 $.getJSON("fight.php",
 { name : enemies[i].attr("id") },
 function(json){
 if (json.hit){
 if (json.success){
 if(json.killed){
 console.html("You killed the enemy!");
 } else {
 console.html("You hit the enemy
"+json.damage+"pt");
 }
 } else {
 console.html("The enemy countered your
attack");
 }
 }
 })
 interacted = true;
 return;
 }
 }
 }
};

www.it-ebooks.info

http://www.it-ebooks.info/

Making a Multiplayer Game

[140]

Here, you can see that the JSON contains two flags to give information about the
combat. The first is hit; it is true if the combat really happened. This is necessary
because there is a chance that the enemy is already dead without the client knowing
it. Then, success conveys the success of the attack and is false if the enemy
successfully defended itself and true otherwise.

The complete logic of the combat will be implemented server side in the fight.php
file, but is the exact replica of what used to happen client side:

$query = 'SELECT * FROM enemies WHERE life <> 0 AND name =
"'.$name.'"';
$result = mysqli_query($link, $query);
$obj = mysqli_fetch_object($result);
if ($obj) {

 $playerRoll = rand (5 , 11);
 $enemyRoll = rand ($obj->defense, $obj->defense + 6);

 $json['hit'] = true;

 if ($playerRoll > $enemyRoll){
 $json['success'] = true;

 if($playerRoll > $obj->life){
 $json['killed'] = true;

 // update DB
 mysqli_query($link, 'UPDATE enemies SET life = 0 WHERE
name = "'.$name.'"');
 } else {
 $json['killed'] = false;
 $json['damage'] = intval($playerRoll);

 // update DB
 mysqli_query($link, 'UPDATE enemies SET life = '.($obj-
>life - $playerRoll).' WHERE name = "'.$name.'"');
 }
 }
}

The highlighted part represents the code that was taken out of the client and put into
the server. And that's all you really need for the combat to work.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[141]

Once an enemy is dead, you may want to periodically respawn it. The most obvious
way is to use a server-side script that gets executed at regular intervals through the
use of a cron command. Alternatively, you could cheat and use any of the other files
we created to respawn the enemies; for example, each time a player logs in.

Summary
The game we've created here is by far the most complex we've written in this book so
far. It could of course be enhanced a lot by adding PvP combat, a chat system, and so
on, but this chapter has covered all the basics to allow you to implement those!

However, calling a bunch of files asynchronously is not a very elegant solution, and
if you target very recent browsers, you may want to take a look at the WebSocket
API that allows you to establish and maintain a bi-directional communication
channel between the browser and the server.

Another way to maintain a permanent connection to the server is by using long
polling methods.

In the next chapter, we will modify our platformer to integrate with Facebook and
Twitter as well as keep a list of high scores!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Get Social
Since the time of the first videogame, a simple technique has been used to keep
them interesting—leaderboards. Leaderboards are a simple way to keep the players
playing your game. The players will try to perform better each time, better than their
friends, or better than any other players in the world.

Social networks add a new dimension to this simple idea by allowing the game to
publish the player score to his/her timeline (or feed). This has many advantages, one
of them being that it will help potential new players to learn about your game. If they
see that one of their friends just played your game, then they may want to try it too!

In this chapter, we will first show how to implement a simple server-side
leaderboard using the same techniques we saw in the previous chapter. We will then
see how to allow the player to log in with his/her Twitter account into the game and
tweet the score on his/her behalf.

Finally, we will see how to log in to the game using Facebook, publish events in the
player's timeline, and create achievements.

It's important to realize when you use Facebook or Twitter that you have to be careful
to follow the rules they establish, and even stay informed about the change of the rules
to keep your game compliant. It's been seen more than once that applications or games
that were previously allowed to use those services were then banned.

We will show you how to use these two social networks, but the base mechanisms are
the same for almost any service around that provides the same kind of functionality.

We will cover these subjects in the following order:

• Creating a simple self-hosted leaderboard
• Making cheating harder
• Integrating the game with Twitter to allow the player to tweet his/her score
• Integrating the game with Facebook to allow the player to win achievements

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Get Social

[144]

Creating a simple leaderboard
Obviously, creating a leaderboard will require some sort of database to keep a tab of
the scores. As in the previous chapter, we will use PHP and MySQL to implement
the server side of our game. However, unlike in Chapter 7, Making a Multiplayer Game,
playing together the solution presented here can be viable in real life. Requesting
and saving highscores is an operation that takes very little server resources and
isn't called that often; for each user, we will approximately query the server once
every 10 seconds, as opposed to where we queried it many times per second for our
MMORPG in Chapter 7, Making a Multiplayer Game.

First, we will need a metric to use as a score. Here, we will simply use the time it
took for the player to finish a level, in seconds. The following diagram shows the
user interaction workflow that we will use:

user presses
“space”player submits

her name

yes

no

next level
starts

user presses
“space”

Display Leaderboard

Display Leaderboard
and allow player to

enter her name

score
saved

Player
scores in
the top 5

Player
finishes
a level

As a UI, we will use two screens that we will implement in the same way we
implemented the interface for the last chapter—simple div elements that we will
make visible or invisible, as we need them.

The first screen is simply there to announce the beginning of a level and prompt the
user to get ready. The second one is more complex. It shows the result of the player,
the list of the top five players, and if the player scored amongst them, give him/her
the opportunity to save his/her name into this list. The following screenshot shows
what this will look like:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[145]

We chose to use this mechanism instead of asking for the user's name at the
beginning of the game, and then automatically save the score because this
mimics the behavior of old arcade games.

This means there are two server-side actions:

1. Retrieving the top five list of scores for a level.
2. Saving a score for a given level.

We will implement those two actions with two files, namely, highscore.php and
save.php.

Saving highscores
The database table we will use holds three columns:

• Level: This is an integer that holds the index of the level
• Name: This is a string that holds the username
• Time: This is an integer that represents the number of seconds it took the user

to finish the level

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Get Social

[146]

The script that saves the highscore is very simple—we will transmit the name, score,
and level to the server. We will then save them to the database with the following
SQL query:

INSERT INTO scores (level, name, time) VALUES (1, "John", 36)

The rest of the script is very similar to what we saw in the previous chapter, so we
won't reproduce it here, but you can have a look at the full source code if you want.

Retrieving highscores
To retrieve the highscores, you can simply provide the level to the server and get the
scores in return, but we have chosen a slightly more complex mechanism. We will
give the task of deciding if the current user is part of the top five list, and if so, at
which position. This will allow you to implement anti-cheating measures later.

So, you will provide the level and user's time to the server and it will return a JSON
file holding all the information you need to generate the leaderboard screen. We
chose the following format for the JSON:

{
 "top" :[
 {"name": "Joe", "time": 14},
 {"name": "John", "time": 15},
 {"time": 17},
 {"name": "Anna", "time": 19}
],
 "intop": true,
 "pos": 2
}

The idea here is to have a flag to indicate that the player is in the top five list, intop.
If this flag is true, then another variable named pos is present too. This variable holds
the index in the array, top, that holds the player's time. All the other entries in top
are the scores of players in the leaderboard, sorted from the first to the fifth. If intop
is false, the array only holds the other player's scores.

To generate this response, we will first use a SQL query:

SELECT * FROM scores WHERE level=1 ORDER BY time ASC LIMIT 5

This query starts like the other queries we used up until now, but at the end
(highlighted in the preceding code above), it is a modifier that specifies that you
want the result sorted by ascending times (ORDER BY time ASC) and that we only
want five results (LIMIT 5).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[147]

There is not much work to do to parse the result and generate the JSON. The only
subtlety is the insertion of the player's score if it is good enough. Here is the complete
code for this page:

<?php
 session_start();

 include 'dbconnect.php';

 $time = $_GET['time'];
 $level = $_GET['level'];

 if(isset($time) && isset($level)){

 // JSON Object
 $json = array('top'=>array(), 'intop'=>false);

 $query = 'SELECT * FROM scores WHERE level='.$level.' ORDER BY
time ASC LIMIT 5';
 $result = mysqli_query($link, $query);
 $i=0;

 while ($obj = mysqli_fetch_object($result)) {
 if(!$json['intop'] && $time < $obj->time){
 $json['intop'] = true;
 $json['pos'] = $i;

 array_push($json['top'], array('time'=>$time));

 $i++;
 }
 if($i < 5){
 array_push($json['top'], array('time'=>$obj->time,
'name'=>$obj->name));
 $i++;
 }
 }

 if($i < 5 && !$json['intop']){
 $json['intop'] = true;
 $json['pos'] = $i;

 array_push($json['top'], array('time'=>$time));
 }

 mysqli_free_result($result);

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Get Social

[148]

 echo json_encode($json);
 }

 mysqli_close($link);
?>

The highlighted parts of this code are the ones that take care of the player's score.

Displaying the highscores
On the client side, we will generate the screen with the result and an input field to
allow the player to submit its name to the leaderboard, if he/she so wishes. Let's
have a look at the code that does this:

var finishedTime = Math.round((Date.now() - levelStart) / 1000);
 $.ajax({
 dataType: "json",
 url: "highscore.php",
 data: {
 level: currentLevel,
 time: finishedTime
 },
 async: false,
 success: function (json) {
 var top = "";
 for (var i = 0; i < json.top.length; i++){
 if(json.intop && json.pos === i){
 top += "<input id='name' placeholder='_____' size='5' />"
 + "<input id='timeScore' type='hidden' value='"+json.
top[i].time+"'></input>"
 + "<input id='level' type='hidden'
value='"+currentLevel+"'></input>"
 + " "+minSec(json.top[i].time)
 + " submit
";
 } else {
 top += "" + json.top[i].name + " " + minSec(json.top[i].
time) + "
";
 }
 }
 $("#top_list").html(top);
 }
 }).fail(function(a,b,c){
 var toto = "toto";
 });

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[149]

The code that generates the list itself is highlighted. Here, we create three input
fields—one for the player to enter his/her name and two hidden ones to hold the
level number and the player score. They are followed by a link that will be used to
submit the score. The code that handles the link is as follows:

$("#levelEnd").on("click","#saveScore",function(){
 $.get("save.php",{
 name: $("#name").val(),
 time: $("#timeScore").val(),
 level: $("#level").val()
 }, function(){
 $("#saveScore").fadeOut(500);
 });
 return false;
 });

Here, we simply retrieve the values of the input fields and then submit them to
the server. As a small feedback to the player, we remove the submit button once
it's done.

Making cheating harder
There is no silver bullet to avoid a cheater in general. This is particularly true with
games written in JavaScript, since their source code is so easy to access. Of course,
you can obfuscate your code, but that will only slow down someone really motivated
to figure out your code. There are, however, a few other techniques that you can use
to make it more difficult or less efficient to cheat in your game.

Server-side verification
The safest way to prevent cheating is to move things on the server side. If you
remember, that's exactly what we did with the fight mechanism in our MMORPG in
Chapter 7, Making a Multiplayer Game. To apply the same paradigm to a platformer
would effectively mean transmitting every keystroke to the server and letting the
server decide the resulting position for the player.

In most cases, this is not a realistic solution. But you can still use the server-
side logic to validate the score submitted by the player. You can have a series of
invisible checkpoints distributed in the level where you ping the server. If the user
submits a score without having passed through each of those, then something fishy
is going on. You can also record a series of metrics, such as how many times the
player dies or jumps.

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Get Social

[150]

The thing is that you must really tailor the validation for your game; there is no
general approach. However, it is very important that your anti-cheating measures
don't flag an honest player as a cheater, because that will generate a lot of frustration.
It's also important for you to think about how much effort you want to invest in this
area, since the more time you spend on this, the less the time you will spend on your
game's other areas.

For your game, we will implement something simple. We know how fast the player
is moving, we know how far the end of the level is, so we can compute a minimum
time it will take the player to go through the level. We will compare the player's
score to this and validate it if it's not smaller.

To do this, we will simply add those lines in highscore.php:

// player walk may 7px in 30ms -> 233.1
$minTime = array(
 1 => 15, // 3500 / 233.1
 2 => 15, // 3500 / 233.1
 3 => 42, // 9800 / 233.1
 4 => 23 // 5460 / 233.1
);
$timeValid = !($minTime[intval($level)] < intval($time));
//...
while ($obj = mysqli_fetch_object($result)) {
 if(!$json['intop'] && $time < $obj->time && $timeValid){
 // ...
 }

If the player score was detected as impossible, it will still be displayed, but the
player won't be prompted to enter his/her name.

Making your variables less readable
One thing you can do is make it harder for someone to cheat your game simply by
opening the browser's inspector and changing a value somewhere, since we used the
hidden input field to store values before sending them back to the server, to save the
highscore. This makes sense in a strictly semantic way and makes our server-side
implementation rest, but is very easy to hack. The following screenshot shows what a
user would see if he/she opens the page in Chrome's page inspector:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[151]

One simple rule of thumb is to avoid storing any important information in the
DOM, since it's accessible to any user, even those without much programming
knowledge. In our case, we will simply remove those from the call to save.php
and use the session to store the values instead. In highscore.php, we can simply
add the following code:

if(!$json['intop'] && $time < $obj->time && $timeValid){
 $json['intop'] = true;
 $json['pos'] = $i;

 array_push($json['top'], array('time'=>$time));

 $_SESSION['level'] = $level;
 $_SESSION['time'] = $time;

 $i++;
}

The save.php file only has to look for the level and time into the session:

$name = $_GET['name'];
$time = $_SESSION['time'];
$level = $_SESSION['level'];

This simple change already makes the game harder to cheat.

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Get Social

[152]

Obfuscating your code
Obfuscating your code is a very simple step, but will help you quite a lot. Once
your code is obfuscated, it will be almost unreadable in the inspector. The following
example is a piece of code that asks for the leaderboard:

if (status == "finished") {
 gameState = "menu";
 $("#level_nb_2").html(currentLevel);
 $("#level_nb_1").html(currentLevel + 1);

 var finishedTime = Math.round((Date.now() - levelStart) / 1000);
 $.ajax({
 dataType: "json",
 url: "highscore.php",
 data: {
 level: currentLevel,
 time: finishedTime
 },
 async: false,
 success: function (json) {
 var top = "";
 for (var i = 0; i < json.top.length; i++){
 if(json.intop && json.pos === i){
 top += "<input id='name' placeholder='_____' size='5' />"
 + "<input id='timeScore' type='hidden' value='"+json.
top[i].time+"'></input>"
 + "<input id='level' type='hidden'
value='"+currentLevel+"'></input>"
 + " "+minSec(json.top[i].time)
 + " submit
";
 } else {
 top += "" + json.top[i].name + " " + minSec(json.top[i].
time) + "
";
 }
 }
 $("#top_list").html(top);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[153]

 }).fail(function(a,b,c){
 var toto = "toto";
 });

 $("#time").html(minSec(finishedTime));

 $("#levelEnd").fadeIn(2000, function(){
 $("#backgroundFront").css("background-position","0px 0px");
 $("#backgroundBack").css("background-position","0px 0px");
 gf.x(group, 0);

 tilemap = loadNextLevel(group);
 gf.x(player.div, 0);
 gf.y(player.div, 0);
 gf.setAnimation(player.div, playerAnim.jump);
 });
 status = "stand";
}

The same code once obfuscated (through UglifyJS) looks similar to the following:

if("finished"==status){gameState="menu",$("#level_nb_2").
html(currentLevel),$("#level_nb_1").html(currentLevel+1);var
finishedTime=Math.round((Date.now()-levelStart)/1e3);$.ajax({dataType
:"json",url:"highscore.php",data:{level:currentLevel,time:finishedTim
e},async:!1,success:function(a){for(var b="",c=0;a.top.length>c;c++)
b+=a.intop&&a.pos===c?"<input id='name' placeholder='_____' size='5'
/><input id='timeScore' type='hidden' value='"+a.top[c].time+"'></
input>"+"<input id='level' type='hidden' value='"+currentLevel+"'></
input>"+" "+minSec(a.top[c].time)+" <a id='saveScore'
href='#'>submit
":""+a.top[c].name+" "+minSec(a.top[c].
time)+"
";$("#top_list").html(b)}}).fail(function(){}),$("#time").
html(minSec(finishedTime)),$("#levelEnd").fadeIn(2e3,function()
{$("#backgroundFront").css("background-position","0px
0px"),$("#backgroundBack").css("background-position","0px 0px"),gf.x(
group,0),tilemap=loadNextLevel(group),gf.x(player.div,0),gf.y(player.
div,0),gf.setAnimation(player.div,playerAnim.jump)}),status="stand"}

This is already way more difficult to debug and at the same time, it's smaller!

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Get Social

[154]

Making your network protocol less readable
Once the client side of the code is fixed, there is still a place where a cheater could
access the game variable—network traffic. Let's have a look at what a sniffing
application can see when the player finishes the level:

This is a problem since without even having to hack the client-side code, a player
could simply forge a packet with the right information to cheat. Here are three
simple things that you could do to make it more difficult for a cheater to understand
your network traffic:

1. Give random names to the variables so that by simply looking at them, the
cheater cannot find out what value they hold.

2. Encode the content of the variables. This is very useful for this situation,
because here the user typically knows the value of his/her score. He/she
will only have to look for the variable that holds it to find out what he/she
has to modify.

3. Add a lot of random variables to make it harder to know which ones are
really being used.

Like before, this will only make it slightly harder to cheat for a determined player
but combined with all the other techniques in the following sections, it will probably
discourage most of them. Let's implement each one of these.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[155]

Encoding values
Let's first begin by encoding the values. This can be done in lots of ways, some more
secure than others. Here, our goal is really only to prevent the cheater from searching
for his/her score in the list of values to identify which one holds it. So, we don't need
any complex encoding. We will simply use a left shift (<< on the client) and then a
right shift (>> on the server).

Here is the client-side code:

$.ajax({
 dataType: "json",
 url: "highscore.php",
 data: {
 level: currentLevel,
 time: finishedTime << 1
 },
 async: false,
 success: function (json) {
 // ...
 }
});

The server counterpart is as follows:

$time = intval($_GET['time']) >> 1;

To confuse the user even more, we will transmit the value in a clear manner in many
other variables that won't be readable on the server side.

Randomly naming the variables
There is not much to explain here; just replace the name of the variable! If you're
really paranoid, then you can change the variables each time you call the server, but
that's not what we will do here. Here is the client-side code:

$.ajax({
 dataType: "json",
 url: "highscore.php",
 data: {
 Nmyzsf: currentLevel,
 WfBCLQ: finishedTime << 1
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Get Social

[156]

 async: false,
 success: function (json) {
 // ...
 }
});

The server-side code is as follows:

$time = intval($_GET['WfBCLQ']) >> 1;
$level = $_GET['Nmyzsf'];

Adding random variables
Now that the names of the variables don't convey their content anymore, it's very
important that you create more variables, otherwise it's very easy to just try each of
them to find out which one contains the score. Here is an example of what you could
do on the client side:

$.ajax({
 dataType: "json",
 url: "highscore.php",
 data: {
 sXZZUj: Math.round(200*Math.random()),
 enHf8F: Math.round(200*Math.random()),
 eZnqBG: currentLevel,
 avFanB: Math.round(200*Math.random()),
 zkpCfb: currentLevel,
 PCXFTR: Math.round(200*Math.random()),
 Nmyzsf: currentLevel,
 FYGswh: Math.round(200*Math.random()),
 C3kaTz: finishedTime << 1,
 gU7buf: finishedTime,
 ykN65g: Math.round(200*Math.random()),
 Q5jUZm: Math.round(200*Math.random()),
 bb5d7V: Math.round(200*Math.random()),
 WTsrdm: finishedTime << 1,
 bCW5Dg: currentLevel,
 AFM8MN: Math.round(200*Math.random()),
 FUHt6K: Math.round(200*Math.random()),
 WfBCLQ: finishedTime << 1,
 d8mzVn: Math.round(200*Math.random()),
 bHxNpb: Math.round(200*Math.random()),
 MWcmCz: finishedTime,
 ZAat42: Math.round(200*Math.random())
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[157]

 async: false,
 success: function (json) {
 // ...
 }
});

The server doesn't have to change anything, since those new variables are just
ignored. There will be some things that you may want to do, such as duplicate values
and use the player score on the variable that won't be used.

While doing these things, you have to be very careful to annotate the code so that
you remember which variables are the correct ones!

Integrating with Twitter
Twitter is an amazing way to share simple information with other people. You may
want to use it in two ways:

• Allow the player to log in, thus providing a unique username
• Allow the player to tweet his/her high score or progression in the game

You will now see two possibilities to integrate your game with it.

Twitter for dummies
There is a very simple way to use Twitter that doesn't even require you to use any kind
of API. If the user is already logged in to Twitter, you can prompt him/her to submit a
prewritten tweet, simply by opening a URL. This URL is formatted as follows:

http://twitter.com/home?status=Pre written status here!

The highlighted part of this address is the status you wrote for the player. What we
could do in our game is to provide a tweet this link next to the Submit button on
the leaderboard screen:

$.ajax({
 dataType: "json",
 url: "highscore.php",
 data: {
 // ...
 },
 async: false,
 success: function (json) {
 var top = "";

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Get Social

[158]

 for (var i = 0; i < json.top.length; i++){
 if(json.intop && json.pos === i){
 top += "<input id='name' placeholder='_____' size='5' />"
 + " "+minSec(json.top[i].time)
 + " submit"
 + " <a id='tweetScore' target='_blank' href='http://twitter.
com/home?status="+escape("I've just finished level "+currentLevel+" in
YAP in "+minSec(json.top[i].time)+"!")+"'>tweet
";
 } else {
 top += "" + json.top[i].name + " " + minSec(json.top[i].time)
+ "
";
 }
 }
 $("#top_list").html(top);
 }
});

The highlighted part is where the magic happens. You will notice that we used
JavaScript's escape function to make sure the string we provided is formatted
for a URL.

This method is very easy to implement, but has some limitations:

• If the user is not already logged in, he/she will have to do so before posting
his/her tweet.

• You cannot access the user's Twitter handle to use it for the local leaderboard.
This means that if the player wants to tweet and save his/her time, then the
name will have to be entered here too.

• For each tweet, a new window is opened and the player will have to
confirm it.

If you want to allow the user to log in and automatically publish tweets without
having to open a new window each time, then you will have to use Twitter's API.

Full access to Twitter's API
The more complete solution to integrate with Twitter is to ask the user for
permission to connect his/her account to the game. The basic mechanism for
this uses OAuth, which is an open authentication standard supported by a
lot of companies such as Twitter, Google, and Facebook.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[159]

To give the player the choice to log in using Twitter or not, we will slightly change
the startup screen:

If the player clicks on Start game, then he/she will start to play. If he/she clicks
on Log in with Twitter, then he/she will be prompted to authorize the game with
Twitter and then return to the game's startup screen.

Registering your game with Twitter
Before doing anything else, you have to register your game with Twitter. To do this,
you first need to log in to the Twitter developer's site (https://dev.twitter.com).
Then, you can click on My Application:

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Get Social

[160]

Here, you can click on Create a new application, fill in all the required fields, and
agree to the terms and conditions of Rules of the Road. Once this is done, you will
be prompted with a screen that presents to you all the properties of your newly
created application:

Please note the two areas of circled code in this screenshot; you'll need them later.
There is one last thing that you will need to configure here. Go to the Settings tab
and scroll down to Application Type. Here, by default, Read only is selected. If you
want to be able to publish tweets on the user's behalf, you'll need to change this to
Read and Write:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[161]

That's it; your game should now be configured correctly on Twitter's side.

Server-side helper library
You could implement all of the interactions with Twitter's API directly in PHP,
but this would be tedious; thankfully, there exists a lot of libraries to help you
with this. The one for PHP is called twitteroauth (http://github.com/abraham/
twitteroauth). Other languages have other libraries, so don't hesitate to look at
Twitter's developers' documentation to learn more about those.

The very nice thing about twitteroauth is that you can install it on almost every kind
of hosting that supports PHP. You just need to copy the library's file in the same
directory where you have your game's file. In our example, we copied them in a
subdirectory called twitter.

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Get Social

[162]

Now, you need to configure the library. To do this, open config.php from the
twitteroauth folder:

define('CONSUMER_KEY', '(1)');
define('CONSUMER_SECRET', '(2)');
define('OAUTH_CALLBACK', '(3)');

In this file, at (1) and (2), you have to write the two values that you noted
previously in your application page on Twitter's developer website. Then, at (3),
you have to write the URL of twitteroauth's callback.php file.

The very last step is to edit callback.php and to replace the following line with the
address of your game's index file:

header('Location: ./index.php');

Authentication
Here is the workflow used to authenticate and authorize your game with Twitter:

Yes

Client

Game screen
a link offers the player

the possibility to log out

Game screen
a link offers the player
the possibility to log in

callback.php
check if the player was

successesfully logged into
twitter

Player
logged in?

redirect.php
prepares the server session

and generates the login
link for twitter

Authorization screen
the payer has to choose

to authorized the game to
use twitter or not

application
authorized?

No

No

Yes

Server Twitter

This is not as complicated as it looks, and a big part of this workflow is already
implemented by twitteroauth. We will now create a login page with a Twitter
button. We will use a simple link that points to twitteroauth's redirect.php file.
When the player clicks on it for the first time, he/she will be redirected to a page on
Twitter's website that asks him/her to authorize the game:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[163]

Then, once the player does this, he/she will be redirected back to the URL you
specified in the callback.php file. If the player has already done this once, he/she
will just be able to log in directly.

What would be useful from now on is the ability to know in our JavaScript code
whether a player is already connected or not. To do this, let's transform our game
HTML file into a PHP file and add the following code at its beginning:

<?php
session_start();

require_once('twitter/twitteroauth/twitteroauth.php');
require_once('twitter/config.php');

/* Get user access tokens out of the session. */
$access_token = $_SESSION['access_token'];
$connection = new TwitterOAuth(CONSUMER_KEY, CONSUMER_SECRET, $access_
token['oauth_token'], $access_token['oauth_token_secret']);
$user = $connection->get('account/verify_credentials');

?>

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Get Social

[164]

This code enables session tracking, includes some files of the twitteroauth library,
and then checks to see if an access token is stored in the session. This will be the case
if the player logged in with Twitter.

Then, the server connects to Twitter to retrieve the user object. This is all well and
good, but the JavaScript code still has no idea about all this. What we need for
this is to create a custom script with the values we want to transmit to the client's
JavaScript:

<script type="text/javascript">
<?php if($_SESSION['status'] == 'verified'){ ?>
 var twitter = true;
 var twitterName = "<?php print $user->screen_name; ?>";
<?php } else { ?>
 var twitter = false;
<?php } ?>
</script>

Now, if the player is logged in with Twitter, we will have the global variable
twitter set to true and the global variable twitterName holding the player's screen
name.

One last thing that you may want to do is to give feedback to the user that he/she is
successfully logged in with Twitter and give him/her the possibility to log out. To do
this, we will slightly change the start screen if the player is already logged in:

<div id="startScreen" class="screen">
 <?php if($_SESSION['status'] != 'verified'){ ?>
 Login
with Twitter
 <?php } else { ?>
 <a class="button tweetLink" href="./twitter/clearsessions.
php">Logout from Twitter
 <?php }?>
 Start game
</div>

With these relatively small changes, you've already implemented authentication
through Twitter.

Publishing high scores on Twitter
Now that the user is connected to Twitter, you can allow him/her to tweet his/her
time in a much more seamless manner. To do this, we will create a new server-side
script called twitterPost.php. This file will use Twitter's statuses/update API.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[165]

Let's have a look at the complete script:

<?php
session_start();
require_once('twitter/twitteroauth/twitteroauth.php');
require_once('twitter/config.php');

$time = $_SESSION['time'];
$level = $_SESSION['level'];
if(isset($time) && isset($level)){
 /* Get user access tokens out of the session. */
 $access_token = $_SESSION['access_token'];
 $connection = new TwitterOAuth(CONSUMER_KEY, CONSUMER_SECRET,
$access_token['oauth_token'], $access_token['oauth_token_secret']);

 $parameters = array('status' => 'I\'ve just finished level
'.$level.' for Yet Another Platformer in '.$time.' seconds!');
 $status = $connection->post('statuses/update', $parameters);
}
?>

You probably recognized most of the code from what we added at the beginning of
our game page (only the highlighted part is new). The last two lines create and then
send to Twitter the status you want to publish. It's pretty straightforward, but there
is more to what we can do—since the player is logged in, you know his/her screen
name, which you can use for the leaderboard.

In the client-side code, we will generate a slightly different version of the
leaderboard as follows:

$.ajax({
 dataType: "json",
 url: "highscore.php",
 data: {
 // ...
 },
 async: false,
 success: function (json) {
 var top = "";
 for (var i = 0; i < json.top.length; i++){
 if(json.intop && json.pos === i){
 if (twitter){
 top += "<input id='name' type='hidden'
val='"+twitterName+"'/>"

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Get Social

[166]

 + twitterName + " " + minSec(json.top[i].time)
 + " submit"
 + " tweet
";
 } else {
 top += "<input id='name' placeholder='_____' size='5' />"
 + " "+minSec(json.top[i].time)
 + " submit"
 + " <a target='_blank' href='http://twitter.com/
home?status="+escape("I've just finished level "+currentLevel+" in YAP
in "+minSec(json.top[i].time)+"!")+"'>tweet
";
 }
 } else {
 top += "" + json.top[i].name + " " + minSec(json.top[i].time)
+ "
";
 }
 }
 $("#top_list").html(top);
 }
});

Here, we make the input field holding the player's name hidden and fill it with the
user's screen name. Then, we write the screen name in the leaderboard. The nice
thing with this is that the server-side code doesn't change at all.

That's all that we will implement with Twitter here, but I encourage you to take a
look at the complete Twitter API and be creative!

Integrating with Facebook
In many ways, integration with Facebook resembles integration with Twitter.
Facebook offers, however, much more game orientation. In our case, we will
implement achievements for logged-in users. We will use Facebook's PHP SDK, but
other languages are supported too.

As for Twitter, we need to first register our application in Facebook. To do this, log in
to Facebook's developer website (https://developers.facebook.com/) and click
on Apps in the header:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[167]

Then, click on Create New Apps and fill in the required information. You will then
be prompted with your newly created application page. Here, you'll have to note the
two values shown in the following screenshot (just as we did for Twitter):

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Get Social

[168]

If you look at the red arrow in the preceding screenshot, you'll notice that you can
choose how your app and Facebook will interact. To have full access to Facebook's
Open Graph API that allows you, amongst other things, to publish achievements,
you need to select App on Facebook.

This will allow you to have your game load into an iframe in Facebook itself. To do
this, you will, however, need to have a valid HTTPS certificate installed on your
domain name. But if you only want your game to load from your own server, then
you don't need any (you'll still need to enter an address in the corresponding field,
and you can simply prefix your non-secure address with https to make it valid).

There is one last step that you need to take to make it possible for your Facebook
application to give achievements—register it as a game. To do this, simply click on
App Details on the left. Then, select Games under App Info | Category, as shown
in the following screenshot:

Authenticating with Facebook
The basic authentication mechanism for Facebook is very similar to that of Twitter.
There is, however, a small difference with regard to the access—in Twitter, you
had to define that your application needed read and write access in the developer's
website, whereas with Facebook, the granularity of what access you ask the user for
is much finer and it's only during the login phase that you specify those.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[169]

Let's have a look at the code required for authentication. Just as for Twitter, we will
first write the instructions that try to get the user at the beginning of our game file:

<?php
session_start();

// Twitter ...

// Facebook
require 'facebook/facebook.php';

$app_id = '(1)';
$app_secret = '(2)';
$app_namespace = 'yap_bookdemo';
$app_url = 'http://yetanotherplatformer.com/';
$scope = 'publish_actions';

$facebook = new Facebook(array(
 'appId' => $app_id,
 'secret' => $app_secret,
));

// Get the current user
$facebookUser = $facebook->getUser();

?>

The highlighted line defines that we want our game to be able to publish entries on
the player's timeline. The values, (1) and (2), are the values that you noted in the
application configuration page.

If $facebookUser is null, it means that the user is already logged in, otherwise we
will have to display a login button. To do this, we will write a code very similar to
the one we wrote for Twitter:

<div id="startScreen" class="screen">
 ...
 <?php if(!$facebookUser){
 $loginUrl = $facebook->getLoginUrl(array(
 'scope' => $scope,
 'redirect_uri' => $app_url
));
 ?>

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Get Social

[170]

 <a class="button tweetLink" href="<?php print $loginUrl; ?>">Login
with Facebook
 <?php } else {
 $logoutUrl = $facebook->getLogoutUrl(array(
 'next' => $app_url
));
 ?>
 <a class="button tweetLink" href="<?php print $logoutUrl;
?>">Logout from Facebook
 <?php } ?>
 Start game
</div>

Here, you can see that Facebook's PHP SDK offers a convenient method to generate
the URL for logging the user in or out.

Now, we will add a small piece of code to indicate to the JavaScript code whether the
user is logged in to Facebook or not. Once again, the code here is very similar to the
code we used for Twitter:

<script type="text/javascript">
 // ...
 <?php if($facebookUser){ ?>
 var facebook = true;
 var facebookId = "<?php print $facebookUser; ?>";
 <?php } else { ?>
 var facebook = false;
 <?php } ?>
</script>

Creating achievements
We will now create an achievement for our game. To do so, you will need two files
on your server:

• An HTML file with a series of meta tags in the header
• An image file that will represent the achievement in the player's timeline

The HTML file will not only serve as a configuration file for your achievement, but
it will also be linked to the achievement publication on your player's timeline. For
Facebook to recognize the achievement as valid, you need to have the following
seven meta tags defined in the header:

• og:type contains the value game.achievement. It differentiates
achievements from other kinds of OpenGraph entities.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[171]

• og:title is a very short description of the achievement.
• og:url is the URL of the current file.
• og:description is a longer description of the achievement.
• og:image is the image mentioned earlier. It can be in PNG, JPEG, or GIF

format and have a minimum size of 50 x 50 pixels. The maximum aspect ratio
is 3:1.

• game:points is the number of points associated with this achievement. In
total, your game cannot give more than 1000 points and the smallest number
allowed is 1. Achievements with greater point values will have a higher
probability to be displayed on the player's friend's news feed.

• fb:app_id is your application's ID.

The body of the HTML file can be a nice page explaining what this achievement
is all about, or anything you really want. A very simple example of a complete
achievement page is as follows:

<html>
 <head>
 <meta property="og:type" content="game.achievement" />
 <meta property="og:title" content="Finished level 1" />
 <meta property="og:url" content="http://8bitentropy.com/yap/ach1.
html" />
 <meta property="og:description" content="You just finished the
first level!" />
 <meta property="og:image" content="http://8bitentropy.com/yap/
ach1.png" />
 <meta property="game:points" content="50" />
 <meta property="fb:app_id" content="(1)" />
 </head>
 <body>
 <h1>Well done, you finished level 1!</h1>
 </body>
</html>

The resulting achievement will appear similar to the following screenshot on the
player's timeline:

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Get Social

[172]

But, writing this document is not enough for your achievement to be completely
configured. You will have to submit it to Facebook. To do this, you have to do a POST
request at the correct URL with the correct parameters. This request should also be
associated with an application token.

Application tokens are a way in which Facebook ensures that it's really your game
and not some other application that is communicating with it. The easiest way to do
this is to write a PHP page that will in turn submit your achievement(s). Here is the
complete code:

<?php

require 'facebook/facebook.php';

$app_id = '(1)';
$app_secret = '(2)';
$app_namespace = 'yap_bookdemo';
$app_url = 'http://yetanotherplatformer.com/';
$scope = 'publish_actions';

$facebook = new Facebook(array(
 'appId' => $app_id,
 'secret' => $app_secret,
));

$app_access_token = get_app_access_token($app_id, $app_secret);
$facebook->setAccessToken($app_access_token);

$response = $facebook->api('/(1)/achievements', 'post', array(
 'achievement' => 'http://yetanotherplatformer.com//ach1.html',
));

print($response);

// Helper function to get an APP ACCESS TOKEN
function get_app_access_token($app_id, $app_secret) {
 $token_url = 'https://graph.facebook.com/oauth/access_token?'
 . 'client_id=' . $app_id
 . '&client_secret=' . $app_secret
 . '&grant_type=client_credentials';

 $token_response =file_get_contents($token_url);
 $params = null;
 parse_str($token_response, $params);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[173]

 return $params['access_token'];
}

?>

This code is quite verbose, but you'll recognize most of it from the previous ones.
The important part has been highlighted—first, we retrieve the application token,
then we associate it with the future request, and finally we use the SDK to do the
POST request.

The address for this POST request is formatted as follows: "Application ID" /
"achievements". The transmitted parameter is simply the URL of the achievement file.

Since the error message generated here (if something goes wrong) can be quite
obscure, you may want to first validate your achievement file by using the
debugging tool provided by Facebook at https://developers.facebook.com/
tools/debug/.

Publishing the achievements
Now that Facebook has registered the achievement, we can award it to our players.
The command to do this is also a POST request and must also be associated with
an application token. For the sake of simplicity, we will create a simple PHP page
that will award the achievement when called. This is far from optimal in a real-life
situation, where you want to avoid having the user simply call the file himself/
herself. You can award the achievement in the highscore.php file instead.

This is the complete code of this file; it is very similar to the file we used to register
our achievements, and the differences are highlighted:

<?php
session_start();

// Facebook
require 'facebook/facebook.php';

$app_id = '(1)';
$app_secret = '(2)';
$app_namespace = 'yap_bookdemo';
$app_url = 'http://yetanotherplatformer.com/';
$scope = 'publish_actions';

$facebook = new Facebook(array(
 'appId' => $app_id,
 'secret' => $app_secret,

www.it-ebooks.info

http://www.it-ebooks.info/

Let's Get Social

[174]

));

// Get the current user
$facebookUser = $facebook->getUser();

$app_access_token = get_app_access_token($app_id, $app_secret);
$facebook->setAccessToken($app_access_token);

$response = $facebook->api('/'.$facebookUser.'/achievements', 'post',
array(
 'achievement' => 'http://yetanotherplatformer.com/ach1.html'
));

print($response);

// Helper function to get an APP ACCESS TOKEN
function get_app_access_token($app_id, $app_secret) {
 ...
}

?>

This time, we create a POST request to a URL with the format: "User ID" /
"achievements". Now, we simply have to asynchronously call this file from our game
when the user finishes the first level:

if (status == "finished") {
 ...
 if(facebook && currentLevel === 1){
 $.get("ac h1.php");
 }
 ...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[175]

Summary
We've learned a lot during this chapter, even though we have only scratched the
surface of what kind of social interactions are possible with the new tools. Facebook
and Twitter's APIs are large and change constantly. If you want to use them in the
best possible way, I would really recommend reading their complete documentation.

But, when using third-party services, especially the free ones, you have to realize
that you become dependent on them. They can change anything at any time, without
giving you much notice. They can decide that they don't want your game to use their
service anymore. Always keep this in mind, and if possible, make sure that you have
an exit strategy in those situations!

In the next chapter, we will explore another hot topic—making your game mobile!
For this, we will take our platformer and expand it to work on modern smartphones
and tablets.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Mobile
Mobile devices are quickly becoming the go-to platform for gaming. The good news
is that the web browsers in most of these devices are pretty good, and in most cases,
you can make your mobile game run smoothly on them.

These devices have, however, some memory and power limitations. There are some
games that simply won't work on a mobile browser at the moment. You cannot
expect to have just as many sprites running smoothly on your smartphone that has
one-tenth of the power of your desktop computer.

On the plus side, a mobile device offers a few capabilities you typically don't find on
a desktop:

• The multi-touch interface allows for new kinds of interaction with your game
• The device orientation API allows you to control your game or UI in

interesting ways
• Most devices allow your game to be installed to the "springboard" just like a

native app, blurring the line between browser games and native ones
• An offline cache allows your game to work even without an Internet

connection active on the device

In this chapter, we will take our MMORP and make it work on an iOS device. Most
of the APIs we will use are de facto standards and are supported on Android as well.
Here is a short overview of the topics we will cover:

• Dealing with the performance limitations of mobile devices
• Adding multi-touch control to our game
• Integrating our game with the springboard and other mobile-specific

configuration
• Using the device orientation API
• Taking advantage of web storage and the offline application cache

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Mobile

[178]

We chose to only consider the iOS side of things for several reasons:

• iOS is still globally the most commonly used mobile OS even though
Android has caught up recently (depending on the source and what exactly
is considered a mobile device, you will find market share for iOS between
30 percent and 50 percent).

• Even if the choice Apple made to forbid a third-party browser for its OS
has been very controversial, it has the positive side effect of making web
development much easier. Indeed, you don't have to deal with too much
diversity on the browser side.

• Most of the specific APIs available on mobile browsers have first been
created or implemented by Apple on Webkit mobile.

Before we begin, I'd like to emphasize the fact that this is a field that evolves even
faster than the rest of the web development world. New APIs are regularly added and
the performance of each new device is significantly better than the one it replaces. If
you are serious about making games that take full advantage of mobile devices, you
should invest some time to keep yourself up-to-date with those changes.

Making your game run well on mobile
devices
Performance issues are probably the single biggest problem you will encounter when
developing a browser-based mobile game, the main reason being that a wide variety
of devices is available, each with very different capabilities.

Even if you chose to support only iOS, which is probably the simplest ecosystem
at the moment, you will still have very large differences in performance, screen
resolution, and browser support.

To get an idea of the complexity of the situation, take a look at the supported device
for jQuery Mobile (http://jquerymobile.com/gbs/). For your game, you should
probably have an approach similar to theirs; select a few device/software versions
you will target. Your game should work flawlessly on those.

Then make sure that the game runs without errors on a broader selection of devices.
On those devices, performance can be less than ideal. Finally, draw a clear line
beyond which you won't even bother to test whether your game runs at all.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[179]

The size of each of these categories will depend on how much effort you want to
invest in them. One problem is that you can't really use the emulators provided with
each platform's SDK to investigate performance issues. This means that, in the end,
you will have to test your game on actual devices.

This is not a problem for large companies, but if you are a small indie game
developer, you will probably find this to be a limiting factor on the number of
devices you will support.

Detecting mobile browsers
To cope with the differences between the desktop and the mobile device there are
many possible approaches:

1. Design one game only with mobile devices in mind. It will run without any
problem on desktops too but may not be as beautiful or as complex as it
might have been had it been designed specifically for desktops. The good
thing is that if players compete with one another in your game, they will all
be on the same level.

2. Design two games, one optimized for desktop and one for mobile. This is
almost twice the work, but you will probably share a big part of the art,
music, and server-side code (if any). This is the ideal solution in terms of
performances, but if you have PvP (player versus player) in your game
player on one platform, it could be advantageous compared to those in the
other platforms.

3. You could design only one game but add some purely cosmetic features
if the game runs on a desktop browser. With this solution, you have only
one code base, but it may be slightly more complex. The problem with the
PvP game remains.

The approach you will choose to follow will depend on your priorities, but for the
second and third approaches, you will need to detect what kind of platform the
player is running your game on.

Depending on how precise you want to be, this can be quite a complex task.
There are basically two general methods you can use: client-side detecting and
server-side detecting.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Mobile

[180]

Client-side browser detection
If what you want is to implement the third approach described previously, detecting
the browser on the client side makes a lot of sense. The most common approach is to
use the navigator.userAgent string (UA for short). This variable contains a very
long and cryptic string that holds a lot of information.

It's important to keep in mind that the browser can fake this string (this is called UA
spoofing). For example, in Safari, you can specify which browser it should imitate.
The good thing is that mobile devices typically don't offer this without some hacking
on the user part. Furthermore, some very different mobiles have the same UA such
as the desktop and mobile versions of Internet Explorer.

A big part of it is here for legacy reasons, and you really shouldn't bother with it, but
by looking at the occurrence of a given string in this longer string, you can detect
what kind of browser you're dealing with. For example, if the userAgent string
contains iPhone, you know that the browser is Safari mobile running on an iPhone.
The corresponding JavaScript would be something like this:

if(navigator.userAgent.match(/iPhone/i)){
 // iPhone detected
 // ...
} else {
 // not an iPhone
}

Now this will work for an iPhone, but if your user is using an iPad, it won't be
detected. You have to look for the string iPad to detect an iPad. The same goes for
iPod Touch, where you would have to look for iPod. If you want to differentiate
between iDevices and others, you could do something like this:

if(navigator.userAgent.match(/iPhone|iPod|iPad/i){
 // iDevice detected
 // ...
} else {
 // not an iDevice
}

If you want the granularity to detect individual devices, you should use the
following code:

if(navigator.userAgent.match(/iPhone/i)){
 // iPhone detected
} else if(navigator.userAgent.match(/iPad/i)) {
 // iPad detected

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[181]

} else if(navigator.userAgent.match(/iPod/i)) {
 // iPod touch detected
} else {
 // not an iDevice
}

As you can imagine, this list could quickly become quite long if you want to detect
a large number of devices. Hopefully, there exist code snippets that do exactly what
you are aiming to do. If you just want to detect mobile devices, you can use the
script provided at http://detectmobilebrowsers.com/. If you want more control
of what exactly it is that you detect, you can use the script provided by the always
excellent Peter-Paul Koch at http://www.quirksmode.org/js/detect.html.

Server-side detection
If what you want is to implement the second approach (different versions of your
game for mobile and desktop browsers), you will probably want to detect the
player's browser on the server and redirect them to the right version of the game.
As with client-side detection, the most common technique uses the browser's
userAgent string.

If you use PHP, you will be happy to learn that it almost supports browser detection
out of the box. Indeed, you can use the get_browser function in conjunction with
an up-to-date php_browscap.ini file to get information about the browser (you can
find various versions of this file at http://tempdownloads.browserscap.com/).
You will have to configure the browscap property in your php.ini file to point to
your php_browscap.ini file for it to be recognized. The code to replicate the client-
side detection we've implemented previously would look like this:

$browser = get_browser(null);

if($browser->platform == "iOS"){
 echo "iOS";
} else {
 echo "not iOS";
}

This has the same shortcoming as the client-side implementation: the browser can
forge the userAgent string.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Mobile

[182]

Should you really detect the browser?
It's not generally considered good practice to detect the browser. The preferred
solution is generally to use feature detection. For example, this really makes sense if
you want to use device orientation, then you will simply check if the corresponding
API is available at runtime.

In this situation, it is a far more robust approach, but what we're talking about here
is optimizing the game performance-wise. There is no feature that you can detect
that will provide information about this. In this situation, I would argue that browser
detection makes sense.

A more robust alternative would be to run a very quick benchmark before starting
the game to extrapolate the performance of the device your game is running on. This
would be a lot of work but can be worth the effort in situations where you can scale
the performance of your game linearly. For example, you could define the number
of trees you use to draw a forest in a very fine way, say, 80 percent of the maximum
number of trees.

This is typically the case if you use a lot of particle effects. Then it's very easy to
change the total number of particles you use to match the device performance.

Performance limitation – memory
Now that we're able to detect that the game runs on a mobile device, we will be able
to adapt to the device's limitations. The first thing that probably pops up in your
mind when talking about performance is the speed of the processor, but most of the
time, memory is a bigger limitation.

On the desktop, you don't need to think about memory anymore, in most cases
(except to avoid memory leaks). On mobile devices, memory is a much more limited
resource, and sometimes, simply loading a big image is too much for the browser.
For example, the maximum allowed size for an image is as follows for iDevices:

< 256 MB of RAM > 256 MB of RAM
GIF, PNG, and TIFF images 3 megapixels 5 megapixels
JPEG 32 megapixels 32 megapixels
Canvas DOM element 3 megapixels 5 megapixels

It's important to note that this has absolutely nothing to do with the compression of
the image. Indeed, though it's important to compress your images to reduce the time
it will take to download them for the memory imprint, the only thing that matters is
the resolution.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[183]

So if compression isn't going to help, what can we do? Let's take the example of our
multiplayer RPG. There, we used a very large image with all the tiles for our tile
map. Many of those tiles are not actually used in the map we created for our game.
So, a very simple way to reduce this very large image is to remove all the tiles we
don't need.

This means that instead of having one large image that you will use through the
whole game, you will have a smaller image for each zone. This will increase the
complexity of the code because it means managing the transition between zones,
but it has the advantage of not degrading your level design at all.

In some situations, even with this technique you will find it hard to reduce the size of
the image enough. One easy solution is to have two versions of the level, one for the
desktop and the other for mobile platforms. On the mobile version, you will reduce
the variety of tiles. For example, in our game we use multiple tiles to render grass,
as shown in the following figure:

Here, we could simply use a single tile instead. Sure, the resulting graphics will
be less varied, but it will dramatically decrease the number of tiles you'll need. This
has, however, the disadvantage of requiring you to maintain two separate versions
of each level.

Performance limitation – speed
The performance for mobile devices varies greatly, but even the fastest ones are
still way slower than any desktop. This means that there are games that simply
won't run on mobile devices, no matter how much effort you put into them. There
are, however, many games that you can slightly transform to make them run at a
reasonable speed.

When making a DOM-based game, there are not many areas where you can speed
things up. The first thing you should do is to try reducing the number of sprites
or tiles.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Mobile

[184]

Specifying the page's visible area
A very simple way to reduce the number of tiles is to make the game area smaller.
You may think this is a very bad idea since what you really want is for the game
area to fill up the entire screen, which means adapting to the device resolution. Well,
yes...and no! Yes, you want the game area to fill the entire screen, but no, that doesn't
necessarily mean using the full resolution.

Mobile browsers offer a very handy meta property that allows you to specify how
the browser should manage the page width. This will come in handy here since we
can basically choose the size you want for the game area and then force the browser
to display it in fullscreen mode.

This property is called viewport, and to specify a given width for the screen you can
simply write:

<meta name="viewport" content="user-scalable=no, width=480" />

We configure two different behaviors here. First, we say to the browser that the
original width of the page is 480 pixels. Let's say the device's native resolution is 960
pixels; this will mean that the page will be zoomed in to. Had the device resolution
been 320 pixels, the page would have been zoomed out of.

The second thing we do here is to disable the zoom function for the user. This is not
necessary if you want to use touch events later; to control the game, you want to be
sure that the user won't zoom in or out while trying to manipulate the game.

Level of details
Reducing the number of sprites can be tricky. For example, you don't want to reduce
the number of NPCs (Non Player Characters) or enemies in the game. Identifying the
element that can be removed is a tedious task.

The following figure is taken from Chapter 5, Putting Things into Perspective. It's a
quick reminder of the structure of the tile map we used for our RPG.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[185]

If you keep the purely decorative elements in the last two layers in this figure it
becomes easy to reduce the number of sprites; if needed, just delete those two layers
and you're done.

It doesn't necessarily mean that you have to get rid of all those elements. What you
could do is have two different versions of those layers, one with a lot of elements
and one with way fewer.

If you really need to reduce the number of sprites even further, you will have to
consider the impact it will have on the gameplay. There is no standard answer here;
you will have to approach each game individually and find the right balance between
keeping your gameplay like you originally intended the and speed of your game.

Touch control
Until now we've only talked about the problematic parts of mobile devices, but
there are also advantages that come with these devices. Touch screens allow for
a very interesting game mechanism (and multi-touch screens even more so).

In this section, we will implement two different ways of controlling our game with
touches, but it's really a field where you can be creative and find novel and engaging
ways for the player to interact with your game. What is important to know is that
the API for touch control is not standard, and mobile devices may implement it with
some differences. Nevertheless, the code shown in the following section should work
on iOS and on recent versions of Android.

Both interfaces we will implement are based on the same basic idea: the whole screen
is a joypad, and no visible UI elements are used. The advantage of this is that the
bigger the surface used for control, the more precise the control. The disadvantage
is that you need to explain to the user how it works if he/she will not be able to
discover it by himself/herself by simply looking at the screen.

The code we use can easily be adapted to work with smaller control placed at the
bottom/side of the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Mobile

[186]

D-pad
A d-pad (short for directional pad) is a kind of control that was used in old-school
game consoles. It provides a few predefined directions the user can choose between
(for example, up, down, left, and right). By contrast, joysticks provide an analogic
interface, where the player can choose a precise direction (for example, a 30 degree
angle). The first control methods we will implement divide the screen into five zones
as shown in the following figure:

UP

LEFT

DOWN

RIGHTINTERACT

The advantage is that this method has a one-to-one mapping with the keyboard
control. If the player touches the UP zone, it will correspond to pressing the up
arrow on the keyboard and so on for the other border zones. If the player touches
the center zone, it will correspond to pressing the Space bar.

To implement this, we will create five virtual keys and expand the part of the code
that checks for keyboard input to check for that as well. The following code extract is
the definition of those virtual keys:

var UP = {
 on: false,
 id: 0
};
var DOWN = {
 on: false,
 id: 0
};
var LEFT = {
 on: false,
 id: 0
};
var RIGHT ={

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[187]

 on: false,
 id: 0
};
var INTERACT ={
 on: false,
 id: 0
};

As you can see, those keys have ID fields. This is necessary because we are dealing
with multi-touch events, and we have to be able to identify which touch events
ended to turn the on field back to false when the player lifts his/her finger.

To detect that the player touches the screen, we will register a touchstart event
handler. This event is similar to the onmousedown event, except that it contains a list
of touches. This makes sense because we're dealing with multi-touch input and we
cannot simply assume that only one finger is touching the screen.

All those touches are stored in the event.changedTouches array. In your event
handler, you simply need to look at each of them. The following code extract is the
whole event handler:

document.addEventListener('touchstart', function(e) {
 if(gameStarted){
 e.preventDefault();
 for (var i = 0; i < e.changedTouches.length; i++){
 var touch = e.changedTouches[i]

 var x = touch.pageX - 480 / 2;
 var y = touch.pageY - 320 / 2;

 if (Math.abs(x) < 20 && Math.abs(y) < 20){
 INTERACT.on = true;
 INTERACT.id = touch.identifier;

 } else if (Math.abs(x) > 480 / 320 * Math.abs(y)) {
 // left or right
 if(x > 0){
 RIGHT.on = true;
 RIGHT.id = touch.identifier;
 } else {
 LEFT.on = true;
 LEFT.id = touch.identifier;
 }
 } else {
 // up or down

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Mobile

[188]

 if(y > 0){
 DOWN.on = true;
 DOWN.id = touch.identifier;
 } else {
 UP.on = true;
 UP.id = touch.identifier;
 }
 }
 }
 }
}, false);

Since "jQuery Core" doesn't support touch events, we use the standard way to
register event handlers. Then we prevent the events from bubbling up to make sure
they won't produce zooms, scroll, and so on. The last part of this event handler
checks for each touch to find out what zone it's on, switches the on flag of the
corresponding key to true, and sets the correct id value for tracking.

Now we need to be able to detect when the touch ends. This is done with touchend
event. This event works in a similar way to the touchstart one, and the code of
the event handler has the same structure. Here we don't need to worry about the
position of the touch but only about its ID. We will then switch the on flag of the
corresponding touch back to false.

document.addEventListener('touchend', function(e) {
 if(gameStarted){
 e.preventDefault();

 for (var i = 0; i < e.changedTouches.length; i++){
 var touch = e.changedTouches[i]
 if (touch.identifier === UP.id){
 UP.on = false;
 }
 if (touch.identifier === LEFT.id){
 LEFT.on = false;
 }
 if (touch.identifier === RIGHT.id){
 RIGHT.on = false;
 }
 if (touch.identifier === DOWN.id){
 DOWN.on = false;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[189]

 if (touch.identifier === INTERACT.id){
 INTERACT.on = false;
 }
 }
 }
}, false);

Now that our virtual keys hold the correct value, we can use them in our code as we
used the array that holds the state of the real keys. That's exactly what the following
code does; the modified parts have been highlighted:

var gameLoop = function() {
 var idle = true;

 if(gf.keyboard[37] || LEFT.on){ //left arrow
 player.left();
 idle = false;
 }
 if(gf.keyboard[38] || UP.on){ //up arrow
 player.up();
 idle = false;
 }
 if(gf.keyboard[39] || RIGHT.on){ //right arrow
 player.right();
 idle = false;
 }
 if(gf.keyboard[40] || DOWN.on){ //down arrow
 player.down();
 idle = false;
 }
 if(gf.keyboard[32] || INTERACT.on){ //space
 player.strike();
 idle = false;
 }
 if(idle){
 player.idle();
 }

 // ...
};

With these simple modifications, we've implemented the first version of our
touch control.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Mobile

[190]

Analog joystick
The previous control method was fine, but you may want to allow the player a more
natural way to make the avatar move. This is where the following method comes in.
Here, we only have two zones: a small one in the center that works like the Space bar
and the rest of the screen. The following figure shows these two zones:

INTERACT

MOVE

If the player touches this bigger zone, the avatar will move in the direction of the
touch. If the fingers of the player change direction, the avatar's movement will
change accordingly, as shown in the following figure:

player movement’s
direction

touch

+

To implement this means slightly changing the way the player is controlled, so
we've added a new method to the player object: direction. This function takes an
angle in degrees and extrapolates the most appropriate animation as well as the new
position of the player. The following code shows this function:

this.move = function(angle){
 if(state !== "strike"){
 var xratio = Math.cos(angle);
 var yratio = Math.sin(angle);
 if(Math.abs(xratio) > Math.abs(yratio)){
 if(xratio < 0){
 this.left();
 } else {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[191]

 this.right();
 }
 } else {
 if (yratio < 0){
 this.up();
 } else {
 this.down();
 }
 }
 moveX = 3*xratio;
 moveY = 3*yratio;
 }
};

There is only one piece of code worth pointing out here, highlighted in the preceding
snippet. To compute the vertical and horizontal movement from the angle, we use
sine and cosine functions. Their meaning is explained in the following figure:

sine (angle)

cosine(angle)
angle

1

Those two functions will give us a number between -1 and 1 that represent how
much the player should move along each axis. We then simply multiply this by the
maximum movement (3, in our case) to get the real movement along each axis.

We do nothing to support the case where the player tries to control the game with
the keyboard and the touch screen since this is very unlikely.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Mobile

[192]

Event handlers
Now we will use a pattern somewhat similar to what we used before with our
virtual keys. Here we will have only two of them. One will be the same as before:
the interaction key. The second one is a bit special since it will be used to store the
angle at which the avatar should move.

The touchstart event handler is almost the same as before, except that we compute
the angle between the touch and the center of the screen:

document.addEventListener('touchstart', function(e) {
 if(gameStarted){
 for (var i = 0; i < e.changedTouches.length; i++){
 var touch = e.changedTouches[i];
 var x = touch.pageX - 480 / 2;
 var y = touch.pageY - 320 / 2;
 var radius = Math.sqrt(Math.pow(x,2)+Math.pow(y,2));

 if(radius < 30) {
 INTERACT.on = true;
 INTERACT.id = touch.identifier;
 } else if(!MOVE.on){
 MOVE.on = true;
 MOVE.id = touch.identifier;
 MOVE.angle = Math.atan2(y,x);
 }
 }
 }
}, false);

For this, we use another trigonometric function: cotangent. This function allows
us to retrieve the angle between two segments of a right triangle as shown in the
following figure:

b

a
angle

1

angle= cotan(b/a)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[193]

The touchend handler is identical to the previous one but for the two virtual keys:

document.addEventListener('touchend', function(e) {
 if(gameStarted){
 for (var i = 0; i < e.changedTouches.length; i++){
 var touch = e.changedTouches[i]
 if (touch.identifier === INTERACT.id){
 INTERACT.on = false;
 }
 if (touch.identifier === MOVE.id){
 MOVE.on = false;
 }
 }
 }
}, false);

We will need a third event handler to track the movement of the fingers between the
start of the touch and its end. This handler has a structure similar to that of touchend
but updates the angle of the MOVE virtual key:

document.addEventListener('touchmove', function(e) {
 if(gameStarted){
 e.preventDefault();
 for (var i = 0; i < e.changedTouches.length; i++){
 var touch = e.changedTouches[i];
 if (touch.identifier === MOVE.id){
 var x = touch.pageX - 480 / 2;
 var y = touch.pageY - 320 / 2;
 MOVE.angle = Math.atan2(y,x);
 }
 }
 }
}, false);

With those three event handlers, our new control interface is implemented. You
really have to try them to see which one you prefer. Those methods are really only
two among many others, and choosing the right one will have a big influence on the
success of your game on mobile devices, so don't hesitate to try a lot of them before
choosing the final one!

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Mobile

[194]

Integrating our game with the
springboard
There is a very elegant way to make your game run in fullscreen mode on iOS. With
the proper configuration, we can make your game installable on the springboard.
This will have several effects: the game will run without any
browser UI element, and it will have an icon and a splash screen.

All this is done through setting a series of meta tags in the document header.

Making your game installable
To make your game installable you have to use the apple-mobile-web-app-
capable meta tag in your document head with the value yes. Once this is done the
player will be able to add the game to the springboard from Safari as shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[195]

The code you should have in your header is as follows:

<meta name="apple-mobile-web-app-capable" content="yes" />

A web page installed this way will be run without any visible browser UI elements
(also called Chrome). The following figure gives the name of all the UI elements:

status bar

browser chromeSearch

3:26 PMCarrier
Cannot Open Page

browser chrome

Sadly, at the time of writing, this property is not well supported by Android phones.
Some of them will make the web page installable to the main screen with
a custom icon but won't accept the chromeless mode. Others will simply ignore
it entirely.

Configuring the status bar
Once launched from the springboard, the only remaining UI element is the status
bar. As shown in the preceding figure, it's the bar at the top of the screen that holds
information such as network reception and name, and remaining battery.

You can choose how this status bar looks like to make it fit your application as
much as possible. This is done with the apple-mobile-web-app-status-bar-style
meta tag.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Mobile

[196]

The following list holds the possible values you can give to this tag and their
corresponding effects:

• default: If you don't use this meta tag or give it this value, you will leave
the choice of the appearance of the status bar to the OS.

• black: With this value, the status bar will have a black background and
white text.

• black-translucent: With this value, the status bar will have a slightly
transparent black background with white text. This setting has the peculiarity
that the web page will be rendered under the status bar. This has the
advantage of giving the full device resolution to the game; whereas, with
the other settings, the web page will lose a few pixels on top of the screen.

The code you should have in your header is as follows:

<meta name="apple-mobile-web-app-status-bar-style" content="black-
translucent" />

Specifying the application icon
If you don't specify anything, iOS will use a screenshot of the web page as an icon.
If you want to specify an icon to be used instead, you will need to use one or more
link tags. The problem is that different iDevices need different icon sizes. The
solution is to specify the size of the icon in the link tag like this:

<link rel="apple-touch-icon" sizes="72x72" href="icon.png" />

The possible sizes are: 57 x 57, 72 x 72, 114 x 114, and 144 x 144. The icon you
specified with this tag will be overlaid with a sort of gloss effect. If you want your
icon to be used as is, you can use the rel tag apple-touch-icon-precomposed
instead.

Specifying a splash screen
When the user launches the game, a screenshot will be displayed during the loading
of the page. If you instead want to specify an image, you can use a link tag with the
rel tag apple-touch-startup-image.

We will have the same problem as with the icon: each device has another screen
resolution and should use a corresponding image. However, the way to specify the
resolution of the image is different from that for the icon. Here, you will need to use
the media attribute.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[197]

With the media attribute, you can specify the device width with device-width, the
device orientation with orientation, and whether the device uses retina display
with -webkit-device-pixel-ratio. A complete example would be as follows:

<link href="startup-image.png" media="(device-width: 320px) and
(orientation: portrait) and (-webkit-device-pixel-ratio: 2)"
rel="apple-touch-startup-image">

Using device orientation
In some situations, it can be useful to have access to the device orientation. For
example, you can use it to control the avatar's movement. To do this, you can simply
register an event handler that will receive an event each time the device orientation
changes. The following code does exactly that:

if(window.DeviceOrientationEvent) {
 window.addEventListener("deviceorientation", function(event){
 var alpha = event.alpha;
 var beta = event.beta;
 var gamma = event.gamma;
 // do something with the orientation
 }, false);
}

The first if statement is there to check whether the device supports the device
orientation API. Then we register an event handler that accesses the orientation of the
device. This orientation is provided by three angles: alpha is the rotation around the z
axis, beta is the rotation around the x axis, and gamma is the rotation around the y axis.

You already know what the x and y axes are; they are the same that we used to
position the elements of our games. The z axis is an axis that points out of the screen
towards the player.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Mobile

[198]

The following figure shows those axes and their corresponding angles:

alpha

beta

gamma

x
y

z

Using the offline application cache
One very useful feature of mobile devices is the ability for the web pages to work
offline. For a game like the platformer we created earlier, it means that, once
installed, you won't ever need a network connection again to load the game assets.

To enable offline mode, you will need to create a file called a manifest. The manifest
is a list of all the files required by the game. They will be stored locally on the device
during game installation on the springboard.

The format of this manifest is as follows:

CACHE MANIFEST

CACHE:
tilesheet.png
level.json
gameFramework.js
rpg.js
jquery.js

NETWORK:
*

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[199]

The CACHE section lists all the files to be stored locally. The NETWORK section lists
all the external resources that are accessible when the application is online. If
you don't want to restrict the network access you may simply write * as in the
preceding example.

To link the manifest to your game, you will use the following attribute for your
html tag:

<html manifest="pathto/manifestFiles">

The manifest has to be served by the server with the MIME type text/cache-
manifest.

You have to be aware that once the application is installed using such a manifest, the
game's file will not be updated even if the application changed on the server. The
only way to force the refreshing of the resources is to change the manifest itself. If
you don't really need to change the manifest, you can simply write a version number
or timestamp in a comment; this will be enough to trigger the refresh.

Another possibility is that of adding a version number on your static media. This will
help avoiding some bugs in iOS where the static files are not refreshed correctly.

Using web storage
There are, however, situations where your application needs to transmit information
to the server, for example, when the player hits a high score. What should you do if
the game is running in offline mode at this moment?

The solution is to use web storage. We won't go into the details of all that you can
do with web storage, but the basic idea here is to store all the information you want
to send to the server in local storage and transmit it once the game is online again.
This technology is part of the HTML5 specification and therefore supported only by
modern browsers. The available space you have to save your data in is 5 MB, so you
will have to use it wisely.

To store any value you want on the client's side, you can simply use the setItem
method of the sessionStorage object. To retrieve the value, you can use the
getItem method.

The following code shows exactly this:

sessionStorage.setItem('key','value');
sessionStorage.getItem('key');

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your Game Mobile

[200]

Now if you want to check whether the game is online, you can use the onLine flag
on the navigator object, as follows:

if(navigator.onLine){
 // push data to the server
}

In the case of our RPG, you may want to store the player position and the
enemies he/she killed locally and push them to the server once the Internet
connection is restored.

Summary
In this chapter you've learned a lot of specific APIs and techniques available only to
the mobile device. Writing games for mobile devices using web technologies is often
a challenge but will greatly increase the number of potential players for your game.

You can even distribute your game in the App Store by using PhoneGap (also known
as Apache Cordova).

In the next chapter we will see how to add sound and music to your game. This is a
tricky thing to do with web technologies, but it's well worth the trouble!

www.it-ebooks.info

http://www.it-ebooks.info/

Making Some Noise
This is the last chapter of this book, but it's far from the least important subject.
Music and sound effects are a crucial part of a game's user experience. The right
music can completely change the way a level feels. The right sound effects can help
the player understand a game's mechanics or give him/her just the feedback that he/
she needs to perform the right action at the right time.

Furthermore, the player expects to have sound in a game since it's been present in
games since the early days of gaming. Sadly, when it comes to sound, HTML games
have some big problems. There is not one single powerful solution you can use that
will make it possible to add sound to your game and have it work on all browsers.

In this chapter we will cover four different techniques to add sound to your game:

• Embedding: This is the oldest way to include sound in a page. It was used
a lot in the old days to make a page play a MIDI file as background music.
It's not standard, doesn't offer a consistent JavaScript API, and you have no
guarantee that a given audio format is supported. On the plus side though,
it's supported by almost all the browsers you can find.

• HTML5 Audio: You can use the audio tag to produce sound. On the plus
side, almost all browsers support it. The downside is that you will have to
deal with the fact that each browser supports a different variety of codec
and that you will not be able to manipulate the sound.

• Web Audio API: This is basically a JavaScript wrapper around OpenAL.
This means that you can do anything you want with the sound. Sadly, at
the moment only Chrome and Safari (on iOS too) support it.

• Flash: It's possible to use Flash just to play the sound. This may seem like
a strange idea since we're making a JavaScript game here, but you could
typically use this as a fallback for older browsers.

Then we will have a look at a few interesting tools you could use to generate sound
for your game.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Some Noise

[202]

Abstracting audio
First let's create a very simple library to abstract interactions between our framework
and the sound implementation we chose. The following code represents a "contract"
that all our implementations will have to respect:

// a sound object
sound = function(){
 // Preloads the sound
 this.preload = function(url){
 // TODO: implement
 };

 // Returns true if the sound is preloaded
 this.isPreloaded = function(){
 // TODO: implement
 }

 // Starts to play the sound. If loop is true the
 // sound will repeat until stopped
 this.play = function(loop){
 // TODO: implement
 };

 // Stops the sound
 this.stop = function(){
 // TODO: implement
 };
};

For the Web Audio API implementation, we will add more capabilities to our object,
but this is the basic functionality you might expect for any audio library.

Using our small library
To use a sound in our game we will simply link the corresponding implementation
to our HTML file:

<script type="text/javascript" src="sound.js"></script>

Now we will add background music to our levels; we need to set up the sound and
preload it. We will do this by splitting the initialize function into two parts:

var initialize = function() {
 // ...
 backgroundMusic = new sound();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[203]

 backgroundMusic.preload("background_music.mp3");
 waitForSound();
}

var waitForSound = function(){
 if (backgroundMusic.isPreloaded()){
 // ...
 backgroundMusic.play(true);
 } else {
 setTimeout(arguments.callee, 100);
 }
}

The waitForSound function checks whether the sound is preloaded. If it isn't, we
create a timeout to check its state again later (100 milliseconds later, to be precise). As
you can see, once the sound is preloaded, we start the level and play the sound. Now
we need to stop the sound when the level is finished as shown in the following code:

var player = new (function(){
 // ...
 this.update = function () {
 if(status == "dead"){
 // ...
 } else if (status == "finished") {
 backgroundMusic.stop();
 // ...

Start it again when the next level begins:

var gameLoop = function() {
 if(gameState === "level"){
 // ..
 } else if (gameState === "menu") {

 if (gf.keyboard[32]){
 // ..
 backgroundMusic.play(true);
 }
 }
};

With these modifications, and if the sound library respects the contract we just
specified, we will have background music. Now let's have a look at different
implementations for this sound library.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Some Noise

[204]

Embedding sound
HTML possesses a very handy way to delegate the reading of some content to a
plugin: the embed tag. It's not a standard tag but is supported by all browsers and
is used widely to include Flash in websites.

This same HTML tag can be used to include sound in a web page. This is far from
an ideal solution for many reasons:

• There is no standard way to know programmatically whether browsers
support this feature.

• There is no standard way to control the sound playback since the exposed
API depends on the plugin used to play the sound. It's possible to try
to detect what plugin is loaded, but this process is not very reliable.
Furthermore, it will be a lot of work to provide implementation for each
possible plugin.

• The supported format depends on the plugins installed and not only on
the browser.

• Even if the sound format is supported, the browser may ask permission to
start the plugin. As long as the user hasn't accepted the launch of the plugin,
no sound will be played.

There may be some use cases where it's reasonable to use this method to include
sounds in your game, but if any of the other techniques presented in the rest of this
chapter work for you, I would recommend using those instead.

Implementation
Let's have a look at the part of the implementation that takes care of the preloading:

// Preloads the sound
this.preload = function(url){
 // Preloading is not supported in a consistant
 // way for embeded sounds so we just save the
 // URL for later use.
 this.url = url;
};

// Returns true if the sound is preloaded
this.isPreloaded = function(){
 // Since we use no preloading we always return true
 return true;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[205]

Implementing preloading with the embed tag would require the knowledge of the
exact plugin being used to play the sound. Sadly, this isn't possible. Instead we've
chosen to create a completely generic implementation. As a side effect, we cannot
support preloading. The previous code simply bypasses preloading by always
returning true.

This creates a major problem: the file will only start to load when you want to play it.
This means that there will be quite a large delay between the call to the play function
and the time when the player hears the sound. This isn't a big issue for background
music, but for sound effects it makes this time almost worthless. On the plus side,
the second time you play the sound it will probably have been cached, so the delay
should be reduced.

Since we don't want to use any JavaScript API to interact with the plugin, we
will simply inject the embed tag into the page and configure it to automatically
start playback.

// Starts to play the sound. If loop is true the
// sound will repeat until stopped
this.play = function(loop){
 var embed = "<embed width='0' height='0' src='";
 embed += this.url;
 embed += "' loop='";
 embed += (loop)? "true" : "false";
 embed += "' autostart='true' />";
 this.obj = $(embed);
 $("body").append(this.obj);
};

We store the generated tag in order to remove it during the stop method:

// Stops the sound
this.stop = function(){
 this.obj.remove();
};

The disadvantage of this is that we don't reuse the tag we've created. But as you
won't use this technique in situations where you need to create lots of sound, this
is not a big issue.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Some Noise

[206]

Supported format
Since the list of supported formats using the embed tag depends on the installed
plugin, it's not possible to guarantee that a given file will be playable. However,
if you use WAV and MIDI, you should be safe.

If you choose to use WAV files, be careful because there are many different ways the
sound can be encoded in this format, and to maximize the compatibility you should
use uncompressed waves.

HTML5 Audio element
In order to match Flash's multimedia capabilities, video and audio elements were
added to HTML5. They both come with matching JavaScript APIs that allow you to
create and manipulate the video or sound with JavaScript without needing to write
to the document (just like the Image object allows you to load an image without
having to use the img tag).

First let's have a quick look at what the audio tag looks like:

<audio>
 <source src="backgroundMusic.ogg" type='audio/ogg;
codecs="vorbis"'>
 <source src="backgroundMusic.mp3" type='audio/mpeg; codecs="mp3"'>
</audio>

As you can see here, it's possible to provide multiple sources to the audio tag. This is
to circumvent the single biggest issue with this API: compatibility with file formats.
Indeed, even though all modern browsers support the audio element, there is not
one single audio format that you can use that will be recognized by all of them. The
solution is to provide multiple formats.

This is far from ideal since it will force you to maintain multiple versions of your
sound files on your server. The following table shows the compatibility of existing
sound formats with current browser versions:

MP3 AAC WAV Ogg Vorbis
Chrome ✓ ✓ ✓

Firefox ✓ ✓

Internet Explorer ✓ ✓

Opera ✓ ✓

Safari ✓ ✓ ✓

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[207]

This means that if you want to support all browsers, you'll have to provide at least
two file formats. The consensus is that you should choose MP3 and Ogg Vorbis
(sound files ending with .ogg).

For a game, you typically won't use an HTML tag but will instead directly work
with the JavaScript API. Before we begin, a small note of warning: even though the
specification for this standard has not yet been finalized, most modern browsers
support this feature quite well. Since the standard has changed during the past years,
some older versions of current browsers may have slightly different implementations.

Let's have a look at how you create an audio element in JavaScript:

var audio = new Audio();

To find out what format the browser can play with JavaScript, you can use the
canPlayType method. The basic usage would be:

var canPlay = audio.canPlayType('audio/ogg; codecs="vorbis"');

The problems begin with the possible values returned by this function: "probably",
"maybe", "no", and "". This is probably far from what you would have expected, but
there is a very good reason for this: depending on the format, it's not always possible
for a decoder to know for sure if it's supported before accessing the file itself. Here is
what those values mean:

• "probably": It's almost a yes! The browser knows the file type and is pretty
sure it can decode almost all files of this type.

• "maybe": The browser knows the file format but also knows it doesn't
support all variants of it. Another reason might be that the browser delegates
the reading of this file to a plugin and has no way of being sure that the
plugin can handle this particular file.

• "": The browser doesn't know about this file type and won't delegate the
reading to a plugin either. With this response, you can safely assume that
the file won't be played.

• "no": This is the same answer as ""; it was used by some early
implementations of the standard. If you want to support older
browsers too, you should expect this response sometime.

With this knowledge, what you would do to mimic the behavior of the HTML code
we saw earlier is something like this:

var audio = new Audio();
var canPlayOggVorbis = audio.canPlayType('audio/ogg;
codecs="vorbis"');

www.it-ebooks.info

http://www.it-ebooks.info/

Making Some Noise

[208]

var canPlayMP3 = audio.canPlayType('audio/mpeg; codecs="mp3"');
if (canPlayOggVorbis == "probably" || (canPlayOggVorbis == "maybe" &&
canPlayMP3 != "probably")) {
 sound.ext = ".ogg";
} else {
 sound.ext = ".mp3";
}

This has given the priority to Ogg Vorbis but gives the priority to "probably" over
"maybe", so if the browser can only maybe play Ogg Vorbis but thinks it can probably
play MP3, we will load the MP3 version of the file.

Preloading a sound
In contrast to the embed tag, the audio element provides a way to manage the
preloading of the sound. This is done through the readyState property of
the audio element. It can have many possible values:

• HAVE_NOTHING: Either the file is not accessible or no data at all has been
loaded until now; probably the former. The numerical value corresponding
to this state is 0.

• HAVE_METADATA: The very beginning of the file has been preloaded; this is
enough to parse the metadata part of the sound. With that data, the duration
of the sound can be parsed. The numerical value corresponding to this state
is 1.

• HAVE_CURRENT_DATA: The sound has been loaded up to the current playback
position but not enough to continue playback. Most likely, this is due to the
playback position being the end of the file since, usually, a state transition
occurs very fast to the file below. The numerical value corresponding to this
state is 2.

• HAVE_FUTURE_DATA: The sound has been preloaded enough to start playing
the rest of the file from the given playback position, but you have no
guarantee that the playback won't stop soon to allow for more buffering.
The numerical value corresponding to this state is 3.

• HAVE_ENOUGH_DATA: Enough of the sound has been preloaded so that the
sound should play entirely without interruption (this is an estimate based on
the playback rate and download speed). The numerical value corresponding
to this state is 4.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[209]

For our implementation, we will consider a sound preloaded only if it's in the
HAVE_ENOUGH_DATA state. Let's have a look at the preloading implementation
of our small library:

// a sound object
sound = function(){

 // Preloads the sound
 this.preload = function(url){
 this.audio = new Audio();
 this.audio.preload = "auto";
 this.audio.src = url + sound.ext;
 this.audio.load();
 };

 // Returns true if the sound is preloaded
 this.isPreloaded = function(){
 return (this.audio.readyState == 4)
 }

 // ..
};

(function(){
 var audio = new Audio();
 var canPlayOggVorbis = audio.canPlayType('audio/ogg;
codecs="vorbis"');
 var canPlayMP3 = audio.canPlayType('audio/mpeg; codecs="mp3"');
 if (canPlayOggVorbis == "probably" || (canPlayOggVorbis == "maybe"
&& canPlayMP3 != "probably")) {
 sound.ext = ".ogg";
 } else {
 sound.ext = ".mp3";
 }
})();

There are two parts in the preceding code; we've already seen the highlighted
one—it's used to determine the supported sound format. It's wrapped in a function
that will be executed only once and stores the supported format in the sound object
as an object variable.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Some Noise

[210]

The rest of the code is the preloading implementation. First we create an audio
object. Then we set the preloading mode to auto. This tells the browser that it can
download as much as it wants from the file. After that, we point to the correct
version of our file. Here you can see that the src argument is expected to omit
the extension to allow the function to choose the correct version.

Finally, we call the load function. This is necessary for some implementations to
actually start loading the file. We will consider the sound preloaded only for the
value HAVE_ENOUGH_DATA of the readyState property.

Playing and stopping sounds
Controlling the playback is pretty easy. Let's first have a look at our implementation:

// Starts to play the sound. If loop is true the
// sound will repeat until stopped
this.play = function(loop){
 if (this.audio.lopp === undefined){
 this.audio.addEventListener('ended', function() {
 this.currentTime = 0;
 this.play();
 }, false);
 } else {
 this.audio.loop = loop;
 }
 this.audio.play();
};

// Stops the sound
this.stop = function(){
 this.audio.pause();
 this.audio.currentTime = 0;
};

The implantation of the play part is pretty straightforward. However, some older
browsers don't support the loop attribute. For these, we need to loop manually. To
achieve this, we register an event handler that will be called when the sound reaches
its end. This event handler will simply rewind the sound and play it again.

As you can see, there is no stop function for the audio element, but there is a pause
one. This means that if we call start again after a pause function, the sound will
continue from where it was and will not start at the beginning. To rewind the sound,
we set the current time to 0, which means "at the beginning".

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[211]

Having a pause function could be handy, so we will add one to our library:
// Pauses the sound
this.pause = function(loop){
 this.audio.pause();
};

Now you may think that this is a pretty good solution, and in most cases, it is.
There are, however, a few problems with it; you cannot manipulate the sound much
beyond changing its playback speed. Effects, panning (control of the repartition of
the sound among the available output channels), and such are out of the question.
Furthermore, on some devices (mostly mobile ones), you cannot play two sounds
simultaneously. Most of the time, this is due to hardware limitations, but the result
is that you cannot have background music and sound effects at the same time. If you
want to use this API on iOS, you have to be aware that you can only start to play the
sound in response to an event generated by the user.

Web Audio API
The Web Audio API aims to give the JavaScript developer basically the same tool he
is used to having when writing a native application. It replicates the capabilities of
OpenAL, a very widely used API for game development. Furthermore it's a standard
API. Sadly, for the moment, it's only implemented on Webkit-based browsers
including the mobile version in iOS 6.

Before work on this standard began, Mozilla added a similar API to Firefox called
Audio Data and is currently working on migrating to the Web Audio API. It should
probably be available in a stable version before the end of 2013. As for Internet
Explorer, nothing has been announced yet. If you want to use the Web Audio API
in Firefox, you can now use the audionode.js library (https://github.com/
corbanbrook/audionode.js), but it's incomplete and hasn't been updated in
years. However, if you stick to simple usage, it will probably do the trick!

Instead of simply providing a way to play a sound, this API provides a full stack
to generate sound effects. This has the side effect of producing a slightly more
complex API.

Basic usage
The idea behind the Web Audio API is that you connect nodes together in order to
route a sound to the speakers. You can imagine those nodes as real-life devices such
as amplifiers, equalizers, effect pedals, or CD players. All that is done in the Web
Audio API is done through the Audio context. It's an instantiated object, but you can
only have one instance of it at any given time.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Some Noise

[212]

Let's start with a very basic example by connecting an MP3 source to the speaker, as
shown in the following figure:

Audio Data

Buffer Source

(Speakers)

Destination

To create an MP3 source, you first need to load the sound. This is done through an
asynchronous XML HTTP request. Once this is done, we have a file encoded as an
MP3 that we will need to decode to obtain the bytes describing the sound wave and
store them into a buffer:

var soundBuffer = null;
var context = new webkitAudioContext();

var request = new XMLHttpRequest();

request.open('GET', url, true);
request.responseType = 'arraybuffer';

// Decode asynchronously
request.onload = function() {
 context.decodeAudioData(request.response, function(buffer) {
 soundBuffer = buffer;
 }, onError);
}
request.send();

var context = new webkitAudioContext();

At this point, the soundBuffer object holds the decoded sound data. We then need
to create a source node and connect it to the buffer. Metaphorically, this would be
like putting a CD in the CD player:

var source = context.createBufferSource();
source.buffer = buffer;

Finally, we need to connect the source to the speakers:

source.connect(context.destination);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[213]

This is like connecting our CD player to a headset or some speakers. At this point,
you won't hear anything because we still haven't played the sound. To do this, we
can write the following:

source.start(0);

If the name of this method changed recently to make it more understandable, it used
to be called noteOn so you may want to support this too, since the change is fairly
recent and a few browsers may still have the old name implemented. If you want
to stop playback, you will call stop (or its new name noteOff). You are probably
wondering why we need to pass an argument to this function. That would be because
this API allows you to synchronize audio in a very precise way to do whatever you
want (another sound or a visual effect). The value you pass is the moment at which
the sound should start to play (or stop). This value is given in seconds.

With what we've seen until now, we can already implement our small library, so let's
do it before we have a look at the more complex usage:

sound = function(){
 this.preloaded = false;

 // Preloads the sound
 this.preload = function(url){
 var request = new XMLHttpRequest();
 request.open('GET', url, true);
 request.responseType = 'arraybuffer';

 // Decode asynchronously
 var that = this;
 request.onload = function() {
 sound.context.decodeAudioData(request.response, function(buffer)
{
 that.soundBuffer = buffer;
 that.preloaded = true;
 });
 }
 request.send();
 };

 // Returns true if the sound is preloaded
 this.isPreloaded = function(){
 return this.preloaded;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Making Some Noise

[214]

 // Starts to play the sound. If loop is true the
 // sound will repeat until stopped
 this.play = function(loop){
 this.source = sound.context.createBufferSource();
 this.source.buffer = this.soundBuffer;
 this.source.connect(sound.context.destination);
 this.source.loop = true;
 this.source.start(0);
 };

 // Stops the sound
 this.stop = function(){
 this.source.stop(0);
 };
};

sound.context = new webkitAudioContext();

There's nothing new here except that the play and stop functions can only be called
once. This means that you have to create a new bufferSource object each time you
want to play the sound.

Connecting more nodes
Let's add a new node to our context: a gain node. This node allows you to change
the volume of your sound. The real-life version of this sound would be an amplifier.
The following figure shows how our node will be connected:

Audio Data

Buffer Source

(volume)

Gain Node

(Speakers)

Destination

First let's create the node:

var gainNode = context.createGainNode();

Then we will connect our source to the node input and the speakers to the
node output:

source.connect(gainNode);
gainNode.connect(context.destination);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[215]

Once this is done, we can modify the volume by changing the value of the gain.
value property, as follows:

gainNode.gain.value = 0.8;

The gain parameter is something called AudioParams. It's a parameter you will find
in a lot of nodes, and it possesses a series of functions that allow you to manipulate a
value, not only immediately but also making it change over time.
Here are the functions you can call on this object:

• setValueAtTime(value, time): This will change the value at the
specified time. The time is the absolute time given in seconds, just as
for the start function.

• linearRampToValueAtTime(value, time): This will make the current
value change linearly until it reaches the specified value at the provided time.

• exponentialRampToValueAtTime(value, time): This will make the
current value change exponentially until it reaches the specified value
at the provided time.

• setTargetAtTime(target, time, constant): This will make the current
value approach the target value from the given time at a constant rate.

• setValueCurveAtTime(valuesArray, time, duration): This will make
the value go through all the values in the provided array from the provided
time during the provided duration.

• cancelScheduledValues(time): This will cancel all the programmed value
changes from the given time.

The following figure shows examples of those functions:

goal value
time

linear exponential

time

goal value

time

target at time value curve

timeconstant

base value

base value

www.it-ebooks.info

http://www.it-ebooks.info/

Making Some Noise

[216]

All these functions can be set up to chain one after the other. The exact way in which
they will interact can sometimes be complex, and some transitions will create an
error. For more details, you should have a look at the specs.

Loading more than one sound
This sound is just one among many available nodes you can use to create your
sound graph. You can combine them as you want, and of course, connect more than
one source to your context.destination object. If you want to use more than one
sound, you will want to preload them all at once.

You could use the API we've seen to do this, but there is a way to do this out of the box
in Web Audio by using BufferLoader. The following code shows how this works:

bufferLoader = new BufferLoader(
 context,
 [
 'sound1.mp3',
 'sound2.mp3'
],
 function(bufferList){
 // bufferList is an array of buffer
 }
);
bufferLoader.load();

The callback will be executed when the sound is buffered, just as with the onload
callback in the previous example.

So many nodes, so little time
There is quite a number of effect nodes provided by this API; let's now have a
quick overview of the nodes. This list is taken from the specifications (http://www.
w3.org/TR/webaudio/). Keep in mind that the specifications are still evolving and
the implementation is not always complete or up-to-date with the specifications.

Delay node
The delay node will simply delay the sounds coming in. It has only one parameter
that represents the amount of time the sound should be delayed by.

delay
t0

delay

t0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[217]

ScriptProcessor node
This node is a general-purpose node that allows you to write your own effect in
JavaScript. It has two parameters:

• bufferSize: This defines the size of the buffer, which has to be one of the
following values: 256, 512, 1024, 2048, 4096, 8192, or 16384. The buffer is the
part of the sound your JavaScript function will work on.

• onaudioprocess: This is the function that will modify your sound. It will
receive an event as a parameter with the following properties: the node that
called it, the input buffer, and the time at which the audio from the buffer
will be played. The function will have to write the sound to the event's
output buffer.

ScriptProcessor

buffer

Panner node
This node will allow you to spatialize the sound in a 3D environment. You can define
the sound source's spatial properties with the setPosition, setOrientation, and
setVelocity functions. To modify the listener's spatial properties, you will have to
access the context.listener object and use those same functions.

There are many mode parameters you can set on this node to fine-tune the ways the
spatialization is done, but you'll have to look at the specs for the details.

Iistener

www.it-ebooks.info

http://www.it-ebooks.info/

Making Some Noise

[218]

Convolver node
This node creates a Convolver effect (http://en.wikipedia.org/wiki/
Convolution). It takes two parameters: the buffer holding the sound wave used as
an impulse for the convolution and a Boolean value that specifies whether the effect
should be normalized or not.

Convolver

impulse

Analyser node
This node doesn't change the sound at all; instead, it can be used to do frequency and
time-domain analyses.

Analyser

sound analysis data

DynamicCompressor node
This node implements a compressor effect. You can configure the effect with the
following parameters: threshold, knee, ratio, reduction, attack, and release.

Compressor

threshold

BiquadFilter node
This node can be used to apply a series of low-order filters. To specify which one you
can use the node's type property to assign it one of the following values: lowpass,
highpass, bandpass, lowshelf, highshelf, peaking, notch, and allpass. You can
configure the chosen effect by setting some properties of the node. For details, you
can have a look at the specs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[219]

WaveShaper node
This node implements a waveshaper effect (http://en.wikipedia.org/wiki/
Waveshaper) defined by its shaping function provided as an array in the curve
properties of the node.

Flash fallbacks
This may seem strange, but there are a few situations where you may want to use
Flash for sound. For example, you may have designed a simple game with HTML
because you wanted to target iOS devices and desktops at the same time. But you
want older browsers such as IE 6 to have sound too. Or you want to use only MP3
and provide Flash for devices that don't support it. Those are some situations where
you may want to use Flash if the HTML5 Audio element is not supported.

There are some libraries that allow you to abstract this; we will take a detailed
look at one of them—SoundManager 2—and then a quick overview of some
available alternatives.

SoundManager 2
To use SoundManager 2 (http://www.schillmania.com/projects/
soundmanager2/), you only need to include a smallish JavaScript code on your
page and provide a link to the Flash files (hosted on the same server to comply
with the same-origin policy). Let's have a quick look at what the implementation
of preloading would look like.

sound = function(){

 this.preloadStarted = false;

 // Preloads the sound
 this.preload = function(url){
 if(sound.ready){
 this.audio = soundManager.createSound({
 id: 'sound'+sound.counter++,
 url: url,
 autoLoad: true,
 autoPlay: false,
 volume: 50
 });
 this.preloadStarted = true;
 } else {

www.it-ebooks.info

http://www.it-ebooks.info/

Making Some Noise

[220]

 this.url = url;
 }
 };

 // Returns true if the sound is preloaded
 this.isPreloaded = function(){
 if (!this.preloadStarted){
 this.preload(this.url);
 return false;
 } else {
 return (this.audio.readyState == 3)
 }
 }
 //...
};

sound.ready = false;
sound.counter = 0;
// a sound object
soundManager.setup({
 url: 'sm2.swf',
 flashVersion: 8,
 useHTML5Audio: true,
 onready: function() {
 sound.ready = true;
 }
});

To use SoundManager 2, we first have to configure it; that's what the highlighted
part of the preceding code does. The url parameter is the path to the Flash file that
will be used to play the sound. We've chosen Flash Version 8 because you don't
need a higher version if you want to mimic the HTML5 Audio element. We then set
a flag to make the library use HTML5 to play the sound when Flash is not available.
Since this method can take some time before all is loaded and ready to be used, we
set an event handler to detect whether the SoundManager object is ready. This event
handler simply sets a flag. There are more available parameters, and I recommend
that you take a look at them in the well-written documentation for SoundManager.

To implement the preload function, we have to take into account that
SoundManager may not be ready. If that is the case, we wait for the next call to
isPreloaded to start the preloading (if SoundManager is ready at this point).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[221]

To query the status of the sound we can use the readyState parameter, but be careful;
the available values are not the same as the ones for the HTML5 Audio element:

• 0: Sound is not initialized; preloading has not started yet
• 1: Sound is loading
• 2: An error occurred during the loading of the sound
• 3: The file has been loaded

Obviously, we will consider a sound as being ready if the readyState parameter has
the value 3. Here is the implementation of the last three methods; there is nothing
special here since each of them has an exact match in SoundManager:

// Starts to play the sound. If loop is true the
// sound will repeat until stopped
this.play = function(loop){
 this.audio.loops = loop;
 this.audio.play();
};

// Pauses the sound
this.pause = function(loop){
 this.audio.pause();
};

// Stops the sound
this.stop = function(){
 this.audio.stop();
};

That's it for the SoundManager implementation of our sound library.

Alternatives to SoundManager
There are many other libraries that do what SoundManager does. jPlayer
(http://www.jplayer.org/) is one of them. Contrary to what SoundManager does,
it allows you to play video too and was conceived from the ground up around the
HTML5 Audio and Video elements whereas this was added later to SoundManager.
Furthermore, it's conceived as a jQuery plugin. However, it's conceived to be used as
a media player, with a UI visible to the user. This can be disabled if you want to use
it in your game.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Some Noise

[222]

Another possibility is that of using SoundJS (http://www.createjs.com/#!/
SoundJS). It's a part of the CreateJS suite of tools and is well adapted to game
programming. SoundJS supports HTML5 Audio, Web Audio API, and Flash. If
you're familiar with CreateJS, using it should not be a problem; otherwise, it will
probably seem a little harder to use than the two previous ones. I would argue
that this is worth the effort since it's a very clean and modern library.

If you don't want to learn yet another library to play your sounds, you could use
mediaelement.js (http://mediaelementjs.com/); it provides an implementation
of the HTML5 Audio and Video elements for browsers that don't support it. If you
use this library, you will simply write your code using the audio element, and a
Flash or Silverlight script will be used to play it where needed.

Generating sound effects
Until now, we mostly spoke about music. Of course, the same techniques
can be used to play sound effects. There is however a very elegant solution
for dealing with them: generating them at runtime. This mimics the way a lot
of effects were created on old game consoles. To do this in JavaScript, you can
use SFXR.js (https://github.com/humphd/sfxr.js). It's a port of the popular
SFXR. Sadly, it only works with Firefox's Audio Data API. Nevertheless, I would
encourage you to check it out!

Summary
You have now learned lots of different ways to play sounds in your games using
standard APIs, plugins, and Flash libraries, and your head is probably hurting right
now! The state of audio in the browser is not very nice at the moment, but in a few
years, when the Web Audio API is supported across all browsers, we will be in a
much better situation! So, I would recommend spending some time on learning it
well even if it's slightly more complex than the HTML5 Audio element.

You now have all the tools you need to create the perfect jQuery game! I really
hope you enjoyed reading this book and that it will inspire you to create many
wonderful games.

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
$.ajax function 97, 111
$.get 111
$.getJSON 111
$.getScript 111
$.load 111
$.post 111
.animate() function 10
.append() function 14
.bind() function 12
.clearQueue() function 11
.delay() function 11
.delegate() function 12, 13
.dequeue() function 11
.detach() function 15
.done() 115
.fail() 115
.html() function 14
.prepend() function 14
.remove() function 15
.stop() function 11

A
addCallback function 42
addSprite function 51
addTilemap function 86
analog joystick

about 190
event handlers 192, 193
implementing 190, 191

Analyser node 218
animation function 76
animations

adding, to framework 23, 24

chaining 10
implementing 22, 23

audio
abstracting 202

audio, abstracting
library, using 202, 203

audio element 208
audionode.js library 211
audio tag 206

B
BiquadFilter node 218
BrowserQuest

URL 84

C
cancelScheduledValues(time) function 215
canPlayType method 207
chaining

about 8
advantages 8

cheating, preventing
code, obfuscating 152, 153
network protocol, making less readable 154
server-side verification 149
variables, making less readable 150, 151

colliding tiles
searching 68, 69

collision detection
about 35, 65, 94
colliding tiles, finding 68, 69
implementing 35-38
player, versus environment collisions 94, 95
player, versus sprite collision 97

www.it-ebooks.info

http://www.it-ebooks.info/

[224]

sprite, versus sprite collision 69
tile maps, colliding with 66, 67
using 35

context.destination object 216
context.listener object 217
Convolver effect 218
Convolver node 218
CreateJS 222
CSS transform

about 59, 60
adding, to framework 61, 62
using, for animating sprites 52

D
Delay node 216
device orientation

using 197
DOM elements

data, associating with 13, 14
used, for rendering game elements 19

d-pad
about 186
implementing 186-189

DynamicCompressor node
about 218
attack parameter 218
knee parameter 218
ratio parameter 218
reduction parameter 218
release parameter 218
threshold parameter 218

E
embed tag 204-206
endCallback function 42
enemies

creating 79-81
fighting 101, 102

event handlers
removing 13

events handling
.bind() function 12
.delegate() function 12
about 12

exponentialRampToValueAtTime
(value, time) function 215

F
Facebook developer website

URL 166
Facebook integration

about 166, 168
authentication mechanism 168
game achievements, creating 170, 171
game achievements, publishing 173, 174

finite state machine. See FSM
Flash 219
framework, game

about 20
animations, adding 23-25

Frogger game
creating 18, 19
states 32

FSM
about 32
advantage 32
drawing 32
implementing 32

fx queue 11

G
game

cheating, preventing 149
coding 70
collision detection 35, 94
framework 20
initializing 30-32
levels, adding 105
level, versus sprite occlusion 93
main loop 32
occlusion, sorting 91, 92
optimizations 41
preloading 27-29
registering, with Facebook 166, 168
registering, with Twitter 159, 160
sprite occlusion 92, 93
sprites 21
sprites, animating 25

game achievements, Facebook
creating 170-173
publishing 173, 174

game authentication, Facebook 168-170

www.it-ebooks.info

http://www.it-ebooks.info/

[225]

game authentication, Twitter API 162-164
game framework

about 55
collision detection 65
enemies, creating 79, 80
game, coding 70
game screen, setting up 71
groups 57
object-oriented code, for player 72
offline divs 55
parallax scrolling 78
player control 77, 78
sprite transformation 59
tile maps 62

game mobile
creating 178, 179
device limitations, memory 182, 183
device limitations, speed 183
device orientation, using 197
mobile browsers, detecting 179
number of sprites, reducing 184, 185
offline application cache, using 198
page's visible area, specifying 184
springboard integration 194
touch control 185
web storage, using 199

game screen
setting up 71

game-springboard integration
about 194
application icon, specifying 196
game, installing 194, 195
splash screen, specifying 196, 197
status bar, configuring 195

getItem method 199
gf.addGroup function 57
gf.addSprite function 57
gf.createTile function 90
gf.importTiled function 96
gf_tilemap class 87
gf.updateVisibility() function 87
gf.x function 87
groups 57
groups, game

organizing 57

H
highscores

publishing, on Twitter 164, 166
HTML 204
HTML5 Audio element

about 206, 207
playback, controlling 210, 211
sound, preloading 208, 209

HTML fragments
about 49, 50

I
img tag 206
impulse 218
initialize function 202
Internet Explorer 19
intervals and timeouts

code 43-46
reducing 42

isometric games
occlusion 103

isometric tiles
dealing with 102
isometric tile map, drawing 102

J
jPlayer 221
jQuery

about 7
chaining 8
data, associating with DOM elements 13
DOM manipulating 14
events handling 12
polymorphism 8

jQuery 1.7 13
jQuery animation functions

.animate() 10

.clearQueue() 11

.delay() 11

.dequeue() 11

.stop() 11
jQuery API documentation

URL 24

www.it-ebooks.info

http://www.it-ebooks.info/

[226]

jQuery Mobile
URL 178

jQuery's API
URL 16

JSON
URL 125

JSON file
loading 112, 113

jump method 76

K
keyboard polling, game optimization

about 47
keys state, tracking 48, 49

L
leaderboards

about 143
creating 144, 145
highscores, displaying 148, 149
highscores, retrieving 146, 148
highscores, saving 145

Learning jQuery
URL 16

library
using 202, 203

linearRampToValueAtTime(value, time)
function 215

M
main loop, game

about 32
implementing 33-35

mediaelement.js 222
MIDI 206
mobile browsers

client-side browser detection 180, 181
detecting 179
feature detection, using 182
server-side detection 181

mobile device
capabilities 177

modulo technique 36
multi-file game

$.ajax function, using 111
call, debugging to $.ajax 114
implementing 105, 106
JSON file, loading 112, 113
remote script, loading 113, 114
sprites, loading 109-111
tile map, loading 106-109

multiplayer game
creating 121
players account, managing 122
server-side combat, implementing 138-141

N
naive implementation 64, 65
network traffic, protecting

about 154
random variables, adding 156, 157
values, encoding 155
variables, naming randomly 155

nodes
connecting 214, 215, 216

NPCs
implementing 99, 100

O
OAuth 158
object-oriented code, for player 72
offline application cache

using 198, 199
offline divs 55, 56
OpenAL 211
optimizations, game

HTML fragments 49-51
intervals and timeouts, reducing 42
keyboard polling 47
one single interval, using 42, 43
reflow, avoiding 51, 52
requestAnimationFrame, using 53, 54
sprite, animating using CSS Transforms 52,

53
orthogonal projection 83

www.it-ebooks.info

http://www.it-ebooks.info/

[227]

P
Panner node 217
parallax scrolling 78
pause function 211
Pixen

URL 21
platform game

modifying 116-120
playback

controlling 210, 211
player

versus, environment collisions 94, 95
versus, sprite collisions 97, 99

player control 77
players account, multiplayer game

elements, searching in database 125, 126
managing 122-124
new player, creating in database 126-128
player, keeping connected 129, 130
user, logging into game 131

players avatar
controlling 75, 76

players, keeping in sync
about 131, 132
client-side code 133-136
current player position, updating 133
players, retrieving 132, 133

players position
updating 73-75

play function 205
polygonal collision detection 94
polymorphism

about 8
using 9

preload function 220
preloading 27, 28

Q
queues

usage 11

R
readyState property 208
reflow

avoiding 51, 52
remote script

loading 113, 114
requestAnimationFrame

using 53, 54
rgba() function 100

S
ScriptProcessor node

about 217
bufferSize parameter 217
onaudioprocess parameter 217

server-side combat
implementing, in multiplayer game 138-

141
server-side helper library, Twitter API 161,

162
setInterval function 22, 42
setItem method 199
setOrientation function 217
setPosition function 217
setTargetAtTime(target, time, constant)

function 215
setValueAtTime(value, time) function 215
setValueCurveAtTime(valuesArray, time,

duration) function 215
setVelocity function 217
sound

embedding 204
preloading 208, 209

soundBuffer object 212
sound effects

generating 222
sound, embedding

implementation 204, 205
supported formats 206

SoundJS 222
SoundManager

alternatives 221, 222

www.it-ebooks.info

http://www.it-ebooks.info/

[228]

SoundManager 2
using 219-221

sounds
playing 210, 211
stopping 210, 211

sprite occlusion
about 92
managing 92

sprites
about 21
advantage 109
advantages 21, 22
animating 25-27
animations, implementing 22, 23
disadvantages 21, 110

sprite transformation
about 59
CSS transform 59, 60

startGame function 43
startPreloading function 30, 42
stop function 210
stop method 205

T
tile map editor

using 95-97
tile map optimization

about 84
tile map, moving 87, 89
visible tiles, finding 85, 86

tile maps
about 62
advantages 63, 107
constraints 63
loading 106
naive implementation 64

top-down games
tile map, moving 87-90
tile map, optimizing 84, 85
visible tiles, finding 85, 86

top-down perspective 83

touch control, mobile game
about 185
analog joystick 190, 191
d-pad 186

touchend handler 193
touchstart event handler 192
Twitter 157
Twitter API

about 158
game, authenticating 162-164
game, registering with Twitter 159-161
highscores, publishing on Twitter 164-166
logging in 159
server-side helper library 161, 162

Twitter developer site
URL 159

Twitter integration
about 157
Twitter API, accessing 158
Twitter, for dummies 157, 158

twitteroauth library 161, 164

W
waitForSound function 203
WAV 206
WaveShaper node 219
Web Audio API

about 211
multiple sound, loading 216
nodes, connecting 214-216
usage 211-214

web storage
using 199, 200

World of Ar'PiGi 122

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
jQuery Game Development
Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant jQuery UI Starter
ISBN: 978-1-782168-23-2 Paperback: 36 pages

Discover how you can create rich end-user
experiences for your web applications with jQuery UI

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Learn how you can effectively utilize
jQuery UI!

3. Refresh your JavaScript and jQuery skills

4. Quickly create Widgets and interactions

Instant Migration to HTML5 and
CSS3 How-to
ISBN: 978-1-849695-74-9 Paperback: 68 pages

Discover how to upgrade your existing website to the
latest HTML5 and CSS3 standards

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. Learn how to upgrade existing websites to
HTML5 & CSS3 without changing appearance

3. Improve browser and mobile devices support
for websites

4. Reduce the size of web pages by using the latest
HTML5 elements and CSS3 features for faster,
more-efficient websites

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Responsive Web Design by
Example
ISBN: 978-1-849695-42-8 Paperback: 338 pages

Discover how you can easily create engaging,
responsive websites with minimum hassle!

1. Rapidly develop and prototype responsive
websites by utilizing powerful open source
frameworks

2. Focus less on the theory and more on results,
with clear step-by-step instructions, previews,
and examples to help you along the way

3. Learn how you can utilize three of the most
powerful responsive frameworks available
today: Bootstrap, Skeleton, and Zurb
Foundation

Responsive Web Design with
HTML5 and CSS3
ISBN: 978-1-849693-18-9 Paperback: 324 pages

Learn responsive design using HTML5 and CSS3 to
adapt websites to any browser or screen size

1. Everything needed to code websites in HTML5
and CSS3 that are responsive to every device or
screen size

2. Learn the main new features of HTML5 and
use CSS3’s stunning new capabilities including
animations, transitions and transformations

3. Real world examples show how to
progressively enhance a responsive design
while providing fall backs for older browsers

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: jQuery for Games
	The way of jQuery
	Chaining
	Polymorphism

	Moving things around
	Chaining animations
	Managing the queue
	.stop()
	.clearQueue()
	.dequeue()
	.delay()

	Other usage of queues

	Handling of events
	.bind()
	.delegate()
	Removing event handlers
	jQuery 1.7

	Associating data with DOM elements
	Manipulating the DOM
	.append()
	.prepend()
	.html()
	.remove()
	.detach()

	Stay curious my friend!
	Summary

	Chapter 2: Creating Our First Game
	How does this book work?
	Let's get serious – the game
	Learning the basics
	Framework
	Sprites
	Implementing animations
	Adding animations to our framework

	Moving sprites around
	Preloading

	Initializing the game
	Main loop
	Main loop implementation

	Collision detection
	Summary

	Chapter 3: Better, Faster, but not Harder
	Intervals and timeouts
	One interval to rule them all
	Code

	Keyboard polling
	Keeping track of the keys' state

	HTML fragments
	Avoiding reflow
	Moving your sprite around using CSS Transforms
	Using requestAnimationFrame instead of timeouts
	Summary

	Chapter 4: Looking Sideways
	Offline divs
	Groups
	Sprite transformation
	CSS transform
	Adding transform to the framework

	Tile maps
	Naive implementation

	Collision detection
	Colliding with tile maps
	Finding the colliding tiles

	Sprite versus sprite collision

	Coding the game
	Basic setup of the game screen
	Object-oriented code for the player
	Updating the player's position
	Controlling the player's avatar

	Player control
	Parallax scrolling
	Creating enemies
	Summary

	Chapter 5: Putting Things into Perspective
	Optimizing tile maps for top-down games
	Finding the visible tiles
	Moving the tile map

	Sorting the occlusion
	Sprite occlusion
	Level versus sprite occlusion

	Collision detection
	Player versus environment collisions
	Using a tile map editor

	Player versus sprite collision
	Talking to NPCs
	Fighting enemies

	The complete game
	Isometric tiles
	Drawing an isometric tile map
	Occlusion for isometric games

	Summary

	Chapter 6: Adding Levels to Your Games
	Implementing a multi-file game
	Loading tile maps
	Loading sprites and their behavior
	Using $.ajax
	Loading a JSON file
	Loading a remote script
	Debugging calls to $.ajax
	.done()
	.fail()

	Modifying our platform game
	Summary

	Chapter 7: Making a Multiplayer Game
	World of Ar'PiGi
	Managing the player's account
	Searching elements in the database
	Creating a new player in the database
	Keeping the player connected
	Logging the user into the game

	Keeping the players in sync
	Retrieving all the other players
	Updating the current player position
	Client-side code

	Taking care of monsters
	Implementing server-side combat

	Summary

	Chapter 8: Let's Get Social
	Creating a simple leaderboard
	Saving highscores
	Retrieving highscores
	Displaying the highscores

	Making cheating harder
	Server-side verification
	Making your variables less readable
	Obfuscating your code
	Making your network protocol less readable
	Encoding values
	Randomly naming the variables
	Adding random variables

	Integrating with Twitter
	Twitter for dummies
	Full access to Twitter's API
	Registering your game with Twitter
	Server-side helper library
	Authentication
	Publishing high scores on Twitter

	Integrating with Facebook
	Authenticating with Facebook
	Creating achievements
	Publishing the achievements

	Summary

	Chapter 9: Making Your Game Mobile
	Making your game run well on mobile devices
	Detecting mobile browsers
	Client-side browser detection
	Server-side detection
	Should you really detect the browser?

	Performance limitation – memory
	Performance limitation – speed
	Specifying the page's visible area
	Level of details

	Touch control
	D-pad
	Analog joystick
	Event handlers

	Integrating our game with the springboard
	Making your game installable
	Configuring the status bar
	Specifying the application icon
	Specifying a splash screen

	Using device orientation
	Using the offline application cache
	Using web storage
	Summary

	Chapter 10: Making Some Noise
	Abstracting audio
	Using our small library

	Embedding sound
	Implementation
	Supported format

	HTML5 Audio element
	Preloading a sound
	Playing and stopping sounds

	Web Audio API
	Basic usage
	Connecting more nodes
	Loading more than one sound
	So many nodes, so little time
	Delay node
	ScriptProcessor node
	Panner node
	Convolver node
	Analyser node
	DynamicCompressor node
	BiquadFilter node
	WaveShaper node

	Flash fallbacks
	SoundManager 2
	Alternative to SoundManager

	Generating sound effects
	Summary

	Index

