
www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 iPhone Web Application
Development

An introduction to web-application development for
mobile within the iOS Safari browser

Alvin Crespo

 BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 iPhone Web Application Development

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2013

Production Reference: 1170513

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-102-4

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Alvin Crespo

Reviewers
Dale Cruse

Faraz K. Kelhini

Acquisition Editor
Joanne Fitzpatrick

Lead Technical Editor
Neeshma Ramakrishnan

Technical Editors
Amit Ramadas

Neha Shanbhag

Project Coordinator
Arshad Sopariwala

Proofreaders
Paul Hindle

Chris Smith

Indexer
Rekha Nair

Graphics
Ronak Dhruv

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Alvin Crespo is a creative technologist strongly focused on delivering compelling
user experiences through the use of frontend technologies. Utilizing the latest industry
standards, he strives to move the Web forward promoting open source technologies.
Having worked in startup and agency environments, he has helped build and architect
complex applications for both medium and large-sized companies.

First and foremost, I would like to thank my lovely wife, Janice
Smith, for helping me produce this book. This has only been possible
through the love and support you have given me. To my friends and
family who have been there throughout the process, my love and
endless thanks cannot express how awesome you all are.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Dale Cruse is the co-author of HTML5 Multimedia Development Cookbook by Packt
Publishing and the technical editor of several other HTML5 books. He started his
career in 1995 as a U.S. Army photojournalist. Since making the switch to purely
digital at CBSNews.com, he's created web and mobile experiences for some of the
most well-known clients in the world, including 20th Century Fox, Bloomingdale's,
and MINI Cooper. Currently, he juggles being both a senior developer at Allen
& Gerritsen and being a New York Yankees fan in South Boston. An in-demand
speaker, you can't get him to shut up on Twitter at @dalecruse.

Faraz K. Kelhini has more than a decade of software development experience in
a broad range of disciplines. His core expertise and interest lies in web technologies,
including PHP (as well as frameworks like Symfony and Zend framework), Python,
HTML5, CSS3, JavaScript (as well as frameworks like jQuery and MooTools), and
Linux/Unix operating systems. He is a professional consultant, editor, and writer
who specializes in technical presentations, workshops, online content publishing, and
knowledge transfer. Faraz has more than 100 articles to his credit within prominent
publications such as Developer.com, .net magazine, and Smashing Magazine.

When not pursuing a new technology or idea, Faraz loves practicing his DSLR
photography skills. More information on his related writings, presentations,
and useful tools can be found at http://eloux.com.

I would like to thank you, the reader; I hope that you enjoy this book
and produce a fantastic HTML5 iPhone App of your own. I look
forward to hearing your feedback and seeing what you come up
with! My thanks also go to my entire friends and family.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Application Architecture	 7

Implementing the HTML5 Mobile Boilerplate	 8
Downloading and installing the HTML5 Mobile Boilerplate	 8
Integrating the build script	 9

Creating our application framework	 9
Modifying the boilerplate	 10
Customizing our markup	 10

Customizing our framework	 14
Creating semantic markup	 18

Creating the header	 18
Creating the footer	 19
Clearing up section	 20

Structuring our stylesheets	 20
Global styling	 21
Defining our global fonts	 21
Our page layout	 22
Using content with :before and :after	 23
Styling our navigation	 23

Responsive design principles	 25
Media queries to the rescue	 25
Responsive images	 26

Fluid images	 26
Establishing our JavaScript architecture	 27

Structuring our app functionality	 28
Namespacing our application	 28
Immediately Invoked Function Expressions	 28

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Use strict	 29
Default options	 29
Defining the constructor	 30
The prototype	 30
Defining public methods	 32
Returning our constructor/function	 33

Integrating a custom module template	 34
Including our scripts	 35
Initializing our framework	 35

Routing to a mobile site	 36
Redirecting via PHP	 37
Redirecting via htaccess	 37

Home screen icons	 37
Introducing our build script	 38

Configuring our build script	 38
Minifying and concatenating scripts	 38
Minifying and concatenating styles	 39

Creating multiple environments	 39
Navigating our directories	 40
Building our project	 40

Summary	 42
Chapter 2: Integrating HTML5 Video	 43

Configuring the server	 43
Video formats	 44
Video format directives	 44

A simple HTML5 video	 44
Single video format	 45
Supporting multiple formats	 45

Listening to HTML5 video events	 46
Video markup review	 47
Attaching video events	 47
Initializing our video	 51

Creating a JavaScript video library	 52
Centralizing our events	 53

Scope in JavaScript	 54
Exposing functionality	 55
Integrating callbacks	 57

Extending callbacks	 59
Using callbacks	 59

Tying it all up	 61
Customizing HTML5 video controls	 64
Summary	 70

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 3: HTML5 Audio	 71
Server configuration	 71

Audio formats	 72
Audio format directives	 72

Simple HTML5 audio integration	 73
MediaElement abstraction	 74

Creating App.MediaElement.js	 74
Initializing App.MediaElement.js	 76

Extending the MediaElement API for audio	 77
The base template	 77
Creating an instance of MediaElement	 78

Finding and caching an audio element	 78
Initializing MediaElement	 78

Dynamic audio player	 79
The select element	 79
Switching audio tracks	 81

The change event listener	 81
The change event handler	 82
Refactoring our code	 84
Initializing our Audio class	 85

Customizing HTML5 audio controls	 86
Creating custom media controls	 86
Adding interactivity to our customized controls	 88
Sequential playback	 88

The markup	 89
The JavaScript	 90

iOS considerations	 93
Volume	 93
Autoplay	 93
Simultaneous playback	 94

Summary	 95
Chapter 4: Touch and Gestures	 97

Simplifying the navigation	 98
Navigation markup and styling	 98

The basic template	 98
Styling a select component	 99

Navigation interactivity	 99
The basic template	 100
Caching our navigation	 100
Listening and handling the change event	 100
Initializing the navigation	 101

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Touch and Gesture events	 102
Touch events	 102

On scroll	 103
On touch and hold	 103
On double-tap zoom	 103
Supported touch events and how they work	 103

Gestures	 104
Creating a responsive photo gallery	 105

Gallery markup and styling	 106
The basic gallery slide list	 106
Adding simple gallery controls	 107
Making images responsive	 107
Styling our gallery	 108
Using CSS3 transitions	 110

Gallery interactivity	 111
The basic template	 112
Caching the gallery	 112
Connecting our controls	 114
Gallery responsiveness	 118

Extending the gallery for touch	 123
The basic template	 123
Default options and modularizing swipe events	 124
Listening to touch events	 125
Handling touch events	 125

Putting it all together	 127
The JavaScript	 128
The markup	 130

Summary	 131
Chapter 5: Understanding HTML5 Forms	 133

HTML5 input types	 134
HTML5 attributes for forms	 135
Form layout for iPhone	 136
Sample HTML5 forms	 137

Setup work	 138
Including our forms styling	 138
Updating the navigation	 138
Including our navigation and forms scripts	 139

The forms	 139
The login form	 139
The registration form	 141
The profile form	 144

Form validation	 150
The basic template	 150
Initializing our forms	 151

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Attaching events	 152
Event handlers	 152

Validating our input	 153
Form styling for iOS	 156

Basic styling	 156
Custom styling	 157

Summary	 161
Chapter 6: Location-aware Applications	 163

Geolocation specification	 163
Implementation	 164
Scope, security, and privacy	 164
API descriptions	 165

The Geolocation interface	 166
The PositionOptions interface	 167
The Position interface	 169
The Coordinates interface	 169
The PositionError interface	 170

Use cases	 171
Points of interest	 172
Route navigation	 172
Latest information	 172

Google Maps API	 173
The API(s)	 173
Obtaining an API key	 173

Activating the service	 173
Retrieving the key	 174

Geolocation and Google Maps	 176
Markup preparation	 176
The Geolocation wrapper	 180
Geolocation with Google Maps	 184

Summary	 188
Chapter 7: One-page Applications	 189

Model-View-Controller or MVC	 189
Models	 190
Views	 190
Controllers	 190
Relationships	 190

Introduction to Underscore.js	 191
Implementation	 191

_.extend	 192
_.each	 193
_.template	 194

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vi]

Introduction to Backbone.js	 196
MVC and Backbone.js	 196
Backbone models	 196
Backbone views	 199
Backbone collections	 201
Server-side interactions	 203

Our sample application	 204
Application architecture	 204

Basic sample architecture	 205
Application markup	 206
Application scripts	 212

Summary	 238
Chapter 8: Offline Applications	 239

Application Cache	 239
The manifest file	 240
Manifest implementation	 241
A simple example	 241

The markup	 242
The JavaScript	 243

Debugging the cache manifest	 245
Debugging in the browser	 246
Debugging using JavaScript	 248

Handling offline applications	 249
A simple use case	 249
Detecting network connectivity	 250
The localStorage API	 251

Summary	 252
Chapter 9: Principles of Clean and Optimized Code	 253

Optimizing stylesheets	 254
Validating our CSS	 254

W3C CSS Validator	 254
Customizable options	 256
Validating a successful example	 257
Validating an unsuccessful example	 258
CSS Lint	 260
Customizable options	 261

Profiling our CSS	 265
Optimizing our CSS	 267

Avoid universal rules	 267
Don't qualify ID or Class rules	 268

Never use !important	 268
Modularize styles	 268

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vii]

Optimizing JavaScript	 269
Validating JavaScript using JSLint	 270

Validating a successful example using JSLint	 271
Validating an unsuccessful example	 272
Customizable options	 274
Integrating JSLint	 274

Profiling our JavaScript	 275
Optimizing our JavaScript	 277

Avoid globals	 277
Leave the DOM alone	 278
Use literals	 278
Modularize functionality	 279

Summary	 280
Chapter 10: Creating a Native iPhone Web Application	 281

Setting up the development environment	 282
Getting started with Xcode	 282

Installing Xcode	 282
Xcode IDE overview – the basics	 282

Setting up PhoneGap	 289
Installing PhoneGap	 290
Creating a PhoneGap project	 291
The PhoneGap license	 292

Configuring our project	 293
Transferring a web application	 294

Transferring our assets	 295
Including our markup	 295
Incorporating our styles	 298
Inserting our scripts	 299

Debugging our application	 303
Logging out our code	 303
Using the Safari developer tools	 304

Extending our application with native functionality	 305
Configuring our application	 306
Setting up our contacts functionality	 306

Summary	 311
Index	 313

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Web applications have come a long way since the 90s, where static HTML pages
were delivered to the client. In those days, web pages had a strict client-server
model, where much of the processing was done on the server and the client only
presented the information with little to no interaction. Such information was only
accessible through desktop computers on very slow networks.

Those days have passed, and we are now connected in ways that were impossible
before. From cellphones that can still make calls on the subway, to tablets presenting
the latest article from your favorite newspaper 30,000 feet in the air; we are now in
a digital age where information is easily accessible through innovative technologies.
Yet, we still struggle to create a seamless interaction between technology and the
physical world.

Although we have devices that are sensitive to our touch, can detect our location, and
have the ability to monitor our vital signals, it is still up to us to make applications that
will change the world. The hard work that goes into creating these applications usually
requires large teams, complex business roles, and costly expenses.

For a brief period of time, developing these applications presented a challenge to
many entrepreneurs who were looking to drive change. A staggered mobile market,
which continues to this day, contributed to limited development resources. What we
saw was an increase in the advancement of these technologies, but very few people
who understood or were even interested in learning all the languages felt
the necessity to create a cross-platform application.

However, it was only a matter of time until a single platform would arrive and
change the world forever. HTML5, and its implementation across devices, helped
drive the force necessary to deliver a platform that allowed developers to innovate
and change the world. Leveraging this technology in our applications allows us to
push the limit of the hardware while creating something that many users can enjoy,
no matter what device they prefer to use.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Over the years, I have come to realize that device agnostic applications will
become the norm. We have seen competitors adopt these standards with little to no
impact on their success; in fact, it can be argued that it has done the opposite. For
these reasons, this book was written to provide you with the techniques to create
applications, based on open standards, and for the successful creation of device
agnostic software.

What this book covers
Chapter 1, Application Architecture, helps you to learn how to create a standard
architecture for iPhone web application development. We will customize the
standard HTML5 Mobile Boilerplate for our needs throughout the book.

Chapter 2, Integrating HTML5 Video, helps you to learn the basics of implementing
an HTML5 video player within your web application. We'll review the specification
and implement an exposed API to tap into.

Chapter 3, HTML5 Audio, explains an implementation of the HTML5 Audio API.
We'll create an audio player that utilizes the same principles from Chapter 2 to
create a reusable component.

Chapter 4, Touch and Gestures, helps you to learn about touch and gesture events,
including the similarities and differences. We'll go over a couple of examples and
more importantly, the specification to properly integrate our application's
user experience.

Chapter 5, Understanding HTML5 Forms, explains the new features in HTML5 forms,
ultimately understanding its uses for our iOS web applications. We'll review the new
inputs, their interactions, and the behaviors expected from the iOS operating system.

Chapter 6, Location-aware Applications, will have Geolocation as the key point, from the
specification to the full implementation in the Safari iOS browser. We'll create
an example that utilizes this feature and demonstrate how we can utilize it in our
own applications.

Chapter 7, One-page Applications, is jam-packed with information on how to create
a seamless experience in your application. We'll go over the principles of the MVC
design pattern and create an example that utilizes its full potential.

Chapter 8, Offline Applications, will cover key topics such as Caching, History, and
local storage. The essentials will be covered and the details exposed in order for us
to create true offline applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Chapter 9, Principles of Clean and Optimized Code, will have us sidestepping the
development process to refine our craftsmanship. We'll go over best practices,
industry supported techniques, and ways to improve our code for the overall
benefit of our applications.

Chapter 10, Creating a Native iPhone Web Application, reviews how we can create
the native application we have learned previously. Applying the same techniques
we'll create native applications based on open standards.

What you need for this book
This book aims to provide web application development solutions specifically for
iOS. With that in mind, you will need an iPhone and/or iPad, preferably an Apple
computer with Mac OS X 10.8 and above. You will definitely need a text editor or
IDE of your choice, including Xcode 4 and above with the iOS simulator installed.
And ultimately, you'll be testing your applications in the most modern web
browsers, including Safari.

Who this book is for
This book is intended for beginner to intermediate level developers who are diving
into web application development specifically for iOS. This book begins with
introductory level material, with each chapter advancing over each topic. The topics
covered will give you a good idea on how to approach the development process
and the steps needed to achieve those goals.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and
an explanation of their meaning.

Code words in text are shown as follows: "Although we've written this code
previously, let's briefly review the structure of the MediaElement class."

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

A block of code is set as follows:

<div class="audio-container">
 <audio controls preload>
 <source src="../assets/nintendo.mp3" type='audio/mpeg;
codecs="mp3"'/>
 <p>Audio is not supported in your browser.</p>
 </audio>
 <select>
 <option value="sample1.mp3" selected>Sample1</option>
 <option value="sample2.mp3">Sample2</option>
 <option value="sample3.mp3">Sample3</option>
 </select>
</div>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Then
download the zip file, by clicking on the Download as zip button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Application Architecture
In this chapter, we will create a standard architecture for our iPhone application.
We will base it on the HTML5 Mobile Boilerplate and customize it for the needs
of the several projects in this book. From marking up our content in HTML5 to
creating a JavaScript framework, we'll create static pages that help us focus on
the foundations of iPhone Web Application development.

In this chapter, we will cover:

•	 Implementing the HTML5 Mobile Boilerplate
•	 Creating a preliminary architecture
•	 Customizing our framework
•	 Creating semantic markup
•	 Structuring our stylesheets
•	 Responsive design principles
•	 Establishing our JavaScript architecture
•	 Routing to a mobile site
•	 Home screen icons
•	 Introducing our build script
•	 Deploying our project

www.it-ebooks.info

http://www.it-ebooks.info/

Application Architecture

[8]

Implementing the HTML5 Mobile
Boilerplate
When you begin development, it is always critical to start with a basic framework
that can be molded to the needs of your project. In many cases, we develop these
frameworks in-house where we work, or perhaps for our own personal projects.
However, the open source community has presented us with a great framework we
can use in our projects—the HTML5 Mobile Boilerplate. This framework is based on
the well-known HTML5 Boilerplate, and has been optimized for mobile including a
lean HTML template; the utilization of Zepto, and use of tools and helpers optimized
for mobile.

Downloading and installing the HTML5 Mobile
Boilerplate
The first step we need to take is to download the HTML5 Mobile Boilerplate,
which is located here:

http://html5boilerplate.com/mobile/

Once the boilerplate is downloaded, you should see the following structure from
the unzipped archive file:

The Preliminary Directory Structure

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

The next step is to take these files and place them in the directory of your choice.
For example, I have placed my files in the following directory on my Mac:

/Users/alvincrespo/Sites/html5iphonewebapp

Next, we'll want to use a build system that helps us create multiple environments,
ease the deployment process, and overall make things easier when we want to
optimize our site for testing and/or production.

According to the documentation for the HTML5 Mobile Boilerplate, there are two
different types of build system, such as the Node Build script and the Ant Build
script. In this book, we'll be using the Ant Build script. I would recommend using
the Ant Build script since it has been around for a while and has the appropriate
features that I use in my projects, including CSS Split, which will help split up
the main CSS file that comes with the boilerplate.

Integrating the build script
To download the Ant Build script, go to the following link:

https://github.com/h5bp/ant-build-script

Then, download the zip file by clicking on the Download as zip button. When you
have downloaded the Ant Build script, copy the folder and its contents to your project.

Once your Ant Build script directory is fully transferred over to your project, rename
the directory containing the build script to build. At this point, you should have
your project completely set up for the rest of the applications in this book. We
will cover how to utilize the build script later on in this chapter.

Creating our application framework
With every project, it's important to create a framework that adjusts to your project's
needs. It's critical to think about every aspect of the project. From the required
document to the team's strengths and weaknesses, it's important we establish
a solid foundation that helps us build and adjust accordingly.

www.it-ebooks.info

http://www.it-ebooks.info/

Application Architecture

[10]

Modifying the boilerplate
We'll now modify our boilerplate for the needs of the projects we will be building.
For simplicity, we'll remove the following items from the folder:

•	 CHANGELOG.md

•	 crossdomain.xml

•	 README.md

•	 /doc (Directory)

Now that the directory has been cleaned up, it's time to take a look at some of
the boilerplate code and customize it for the needs of the projects in this book.

Customizing our markup
First, open up the application in your favorite text editor. Once we've opened up
the application in the editor of our choice, let's look at index.html.

The index file needs to be cleaned up in order to focus on iPhone Web Application
development, and also unused items such as Google Analytics need to be removed.
So let's remove some code that is not necessary for us.

Look for the following code:

<!DOCTYPE html>
<!--[if IEMobile 7]> <html class="no-js iem7"> <![endif]-->
<!--[if (gt IEMobile 7)|!(IEMobile)]><!--> <html class="no-js">
<!--<![endif]-->

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files
e-mailed directly to you.

And modify it to this:

<!DOCTYPE html>
<html class="no-js">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

What we've done here is removed detection for IE Mobile. Although this may be
helpful for other projects, for us it doesn't really help in creating a fully compatible
application just for the iPhone. However, we also need to remove an IEMobile
specific meta tag:

<meta http-equiv="cleartype" content="on">

The previous meta tag turns on cleartype (a utility that assists with the rendering
of fonts) for the IE mobile. This isn't necessary for us and is not a requirement for
our applications.

Now that we've removed some unnecessary markup from our page, we can go
ahead and start enabling features that will enhance our application. Look for the
following meta tags and enable them, by removing the comments surrounding them:

<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black">

These directives inform our application that it can run in fullscreen and they set the
status bar to black.

We can also remove the following code from the <head> of the document:

<!-- This script prevents links from opening in Mobile Safari.
https://gist.github.com/1042026 -->
<!--
 <script>(function(a,b,c){if(c in b&&b[c]){var d,e=a.
location,f=/^(a|html)$/i;a.addEventListener("click",function(a){d=a.
target;while(!f.test(d.nodeName))d=d.parentNode;"href"in d&&(d.href.
indexOf("http")||~d.href.indexOf(e.host))&&(a.preventDefault(),e.
href=d.href)},!1)}})(document,window.navigator,"standalone")</script>
-->

Once we've removed the previous script, your markup should now look like
the following:

<!DOCTYPE html>
<head>
 <meta charset="utf-8">
 <title></title>
 <meta name="description" content="">
 <meta name="HandheldFriendly" content="True">
 <meta name="MobileOptimized" content="320">
 <meta name="viewport" content="width=device-width">
 <link rel="apple-touch-icon-precomposed" sizes="144x144"
href="img/touch/apple-touch-icon-144x144-precomposed.png">

www.it-ebooks.info

http://www.it-ebooks.info/

Application Architecture

[12]

 <link rel="apple-touch-icon-precomposed" sizes="114x114"
href="img/touch/apple-touch-icon-114x114-precomposed.png">
 <link rel="apple-touch-icon-precomposed" sizes="72x72" href="img/
touch/apple-touch-icon-72x72-precomposed.png">
 <link rel="apple-touch-icon-precomposed" href="img/touch/apple-
touch-icon-57x57-precomposed.png">
 <link rel="shortcut icon" href="img/touch/apple-touch-icon.png">
 <meta name="apple-mobile-web-app-capable" content="yes">
 <meta name="apple-mobile-web-app-status-bar-style"
content="black">
 <link rel="stylesheet" href="css/normalize.css">
 <link rel="stylesheet" href="css/main.css">
 <script src="js/vendor/modernizr-2.6.1.min.js"></script>
</head>

Now, we can focus on cleaning up our body. Lucky for us, we only need to remove
one thing—Google Analytics, since we will not be focusing on tracking for iPhone
Web Apps.

To do this, find the following code and remove it:

<!-- Google Analytics: change UA-XXXXX-X to be your site's ID. -->
<script>
 var _gaq=[["_setAccount","UA-XXXXX-X"],["_trackPageview"]];
 (function(d,t){var g=d.createElement(t),s=d.
getElementsByTagName(t)[0];g.async=1;
 g.src=("https:"==location.protocol?"//ssl":"//www")+".google-
analytics.com/ga.js";
 s.parentNode.insertBefore(g,s)}(document,"script"));
</script>

The only scripts that you should have on the page should be the following:

<script src="js/vendor/zepto.min.js"></script>
<script src="js/helper.js"></script>

Once we've completed the previous steps, our markup should be clean and simple
as follows:

<!DOCTYPE html>
<html class="no-js">
<head>
 <meta charset="utf-8">
 <title></title>
 <meta name="description" content="">
 <meta name="HandheldFriendly" content="True">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

 <meta name="MobileOptimized" content="320">
 <meta name="viewport" content="width=device-width">

 <link rel="apple-touch-icon-precomposed" sizes="144x144"
href="img/touch/apple-touch-icon-144x144-precomposed.png">
 <link rel="apple-touch-icon-precomposed" sizes="114x114"
href="img/touch/apple-touch-icon-114x114-precomposed.png">
 <link rel="apple-touch-icon-precomposed" sizes="72x72" href="img/
touch/apple-touch-icon-72x72-precomposed.png">
 <link rel="apple-touch-icon-precomposed" href="img/touch/apple-
touch-icon-57x57-precomposed.png">
 <link rel="shortcut icon" href="img/touch/apple-touch-icon.png">

 <meta name="apple-mobile-web-app-capable" content="yes">
 <meta name="apple-mobile-web-app-status-bar-style"
content="black">

 <link rel="stylesheet" href="css/normalize.css">
 <link rel="stylesheet" href="css/main.css">
 <script src="js/vendor/modernizr-2.6.1.min.js"></script>
</head>
 <body>

 <!-- Add your site or application content here -->

 <script src="js/vendor/zepto.min.js"></script>
 <script src="js/helper.js"></script>
 </body>
</html>

From here, we should examine our stylesheets and scripts for every project and
optimize it as much as we can prior to beginning a project. However, this boilerplate
that we will be using has been optimized by the community and continuously
enhanced with support from many developers, and for our use here, both styles and
scripts are good to go. If you are curious, I encourage you to look at the normalize.
css file, which contains excellent directives for resetting a page. It would also be
beneficial to review the main.css file that has been enhanced with this boilerplate
to support mobile devices.

Now, we'll move on to establishing our framework.

www.it-ebooks.info

http://www.it-ebooks.info/

Application Architecture

[14]

Customizing our framework
It's critical for developers to establish a framework for each project they are working
on, no matter how small or big the project may be. Of course, your framework
should adjust to the requirements that the project demands as well. In this section,
we'll establish a simple framework that we can work with throughout the use of
this book.

We've gone through and cleaned up the boilerplate for our needs, now we'll go
through and expand upon the boilerplate to include the files that are critical to
the applications we will build.

The first application will be based on the HTML5 Video specification (http://dev.
w3.org/html5/spec-author-view/video.html). In that application we'll create a
specific functionality for our video player that includes play, pause, and fullscreen
functionalities. So let's create a directory specific to this application; we'll call this
directory video.

In this directory, we'll create an index.html file and copy the contents from the
homepage of the index.html file.

Now that we have our video section created, let's create the video.css file inside
of our css directory.

Then, create an App directory within our /js folder. Within the /js/App directory,
let's create an App.js file. Later, we'll explain in detail what this file is, but for now
it will be our main application namespace that will essentially encapsulate global
functionality for our application.

Finally, let's create an App.Video.js file that will contain our video application
functionality within the /js/App directory.

You will now repeat the previous steps for each of our applications; including Video,
Audio, Touch, Forms, Location, Single Page, and Offline. In the end, your directory
structure should have the following new directories and files:

/audio
 index.html
/css
 audio.css
 forms.css
 location.css
 main.css
 normalize.css
 singlepage.css

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

 touch.css
 video.css
/forms
 index.html
/js
 /App/App.Audio.js
 /App/App.Forms.js
 /App/App.js
 /App/App.Location.js
 /App/App.SinglePage.js
 /App/App.Touch.js
 /App/App.Video.js
/location
 index.html
/offline
 index.html
/singlepage
 index.html
/touch
 index.html
/video
 .index.html

At this point, we should fix the references to our dependencies, such as our
JavaScript and stylesheet. So let's open up /video/index.html.

Let's modify the following lines:

<link rel="stylesheet" href="css/normalize.css">
<link rel="stylesheet" href="css/main.css">
<script src="js/vendor/modernizr-2.6.1.min.js"></script>

Change the previous markup to the following:

<link rel="stylesheet" href="../css/normalize.css">
<link rel="stylesheet" href="../css/main.css">
<script src="../js/vendor/modernizr-2.6.1.min.js"></script>

Note that we add ../ to each dependency. This is essentially telling
the page to go up one level and retrieve the appropriate files. We
also need to do this for the apple-touch-icon-precomposed links,
shortcut icon, and the scripts at the bottom of the page.

www.it-ebooks.info

http://www.it-ebooks.info/

Application Architecture

[16]

Our framework is now almost complete, except that they aren't connected yet. So
now that we've got everything organized, let's start hooking up everything to one
another. It won't look pretty, but at least it will be working and moving towards
a fully functional application.

Let's start with the main index.html file, /ourapp/index.html. Once we've opened
up the main index.html file, let's create a basic site structure inside our <body>
element. We'll give it a class of "site-wrapper" and put it right below the comment
Add your site or application content here:

<body>
 <!-- Add your site or application content here -->
 <div class="site-wrapper">

 </div>
 <script src="js/vendor/zepto.min.js"></script>
 <script src="js/helper.js"></script>
</body>

Within the wrapper containing our site, let's use the new HTML5 <nav> element
to semantically describe the main navigation bar that will exist across all our apps:

<div class="site-wrapper">
<nav>
</nav>
</div>

Nothing too special yet, but now we'll go ahead and use the unordered list element
and create a navigation bar with no styling:

<nav>

 Application
Architecture

 HTML5 Video

 HTML5 Audio

 Touch and Gesture
Events

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

 HTML5 Forms

 Location Aware
Applications

 Single Page
Applications

</nav>

If we copy the code that we have created in /video/index.html and test the page,
you see that it will not work correctly. For all subdirectories, like video and audio,
we'll need to change the relative path from ./ to ../ so that we can go up one
folder. With this in mind, the nav element would look like the following within
the other applications:

<nav>

 Application
Architecture

 HTML5 Video

 HTML5 Audio

 Touch and Gesture
Events

 HTML5 Forms

 Location Aware
Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Application Architecture

[18]

 Single Page
Applications

</nav>

Now, we can copy the navigation from /video/index.html to the rest of the
application files or to the index.html files we created previously. Once this is done,
we will have a single site that now connects well with each other.

Believe it or not, we have a very simple website going on here. Our pages are set up
with basic markup and general styles. At this point, we need a navigation that brings
our pages together. However, we've barely touched on some important aspects,
including semantic markup for applications, which we'll discuss next.

Creating semantic markup
Semantic markup is important for several reasons, including search engine
optimization, creating maintainable architectures, making code easily
understandable, and meeting accessibility requirements. However, you should
be familiar with structuring your page with markup that is related to your content.
There are new elements within the HTML5 specification that help to ease this
process, including the <header>, <nav>, <footer>, <section>, <article>, and
<aside> elements. Each one of these elements helps describe the aspects of a page
and easily identifies components of your application. In this section, let's structure
our applications, beginning with our Video application.

Creating the header
First, let's start by giving our main index page a title and a header that describes
the page we are on. Let's open the main index.html file in our application
at /index.html.

Find the <title> tag and enter it in iPhone Web Application Development –
Home. Note that we use a hyphen here. This is important since it makes it easier
for users to scan the content of the page and helps with the ranking for specific
keywords.

You should now have the following <title> in the <head> tag of your document:

<title>iPhone Web Application Development - Home</title>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

Now we want the content of the page to reflect the title as well and alert the user of
their progress on our site. What we want to do is create a header that describes the
section they are on. In order to achieve this, let's place the following code before
the navigation we created previously. Your code should then look like this:

<hgroup>
 <h1>iPhone Web Application Development</h1>
 <h2>Home</h2>
</hgroup>
<nav>...</nav>

The <hgroup> element is used to group multiple headers for a section. The rank of
the headers is based on <h1> to <h6>, with <h1> being the highest rank and <h6> the
lowest. Therefore, the highlighted text places our <h1> content higher than our <h2>.

Also note that we are not using the <section> element yet. However, this page does
validate using the W3C Markup Validation Service (http://validator.w3.org/).

We can further describe the page by wrapping our <hgroup> and <nav> elements
within a <header> element to give the page an introductory aid. Once you do this,
you should have the following code:

<header>
 <hgroup>... </hgroup>
 <nav>... </nav>
</header>

With the previous code, we have finally given our page some structure. We are
describing our page with a main header for the site and a sub header for the page.
We have also given the page a navigation menu, allowing the user to navigate
across applications.

Creating the footer
Now let's add a <footer> that contains the name of this book with its copyright date:

<footer>
 <p>iPhone Web Application Development © 2013</p>
</footer>

www.it-ebooks.info

http://www.it-ebooks.info/

Application Architecture

[20]

The previous code will basically relate to the nearest sectioning ancestor. Thus
the footer will relate to the content before it, which we will fill in a bit later. At
this point, your content should look like this:

<div class="site-wrapper">
 <header>
 <hgroup>...</hgroup>
 <nav>...</nav>
 </header>
 <footer>...</footer>

</div>

Clearing up section
You may be wondering why we are not using the <section> element right away
for the <div> element that contains both the <header> and <footer> element. In this
case, it's not necessarily useful since we are not creating a page where the element's
contents would be listed in an outline. This is the suggestion by the W3C and is
something every developer should be aware of when deciding which element to use,
<div> or <section>. In the end, it comes down to the content itself and the outline
the team wishes to create.

Now that we have a basic structure for our pages, we can go ahead and do the same
for the rest of our applications. This will be done for you in the code provided with
this book in case you wish to review a final version.

With this in mind, we will move forward with our application development,
making sure that we use semantic code when and where it makes sense.

Structuring our stylesheets
Styling is extremely important in any application we build, especially since it is
the first aspect of any application the user experiences. In this section, we'll start
structuring our styles appropriately.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

Global styling
First, let's open our main.css file, located in the CSS directory. When you open this
file, you'll see default boilerplate styles. At this point, let's skip through these to create
our own styles. We'll review those styles as we continue to develop our applications.

Find the following line in main.css:

/* ==
========
 Author's custom styles
===
===== */

It's after this comment that we want to include the global styles for the semantic code
we wrote previously.

Start by defining the global site styling such as the background color:

html{
 background: #231F20;
 border-top: 10px solid #FDFF3A;
 border-bottom: 5px solid #FDFF3A;
 width: 100%;
}

In the previous styling, we are making some stylistic choices like setting our
background color and some borders. The important part here is that the width
is defined at 100 percent for the HTML element. This will basically allow us to
extend to 100 percent of the width of the phone for all our content.

Defining our global fonts
We then have to define overall fonts on the page. This will be basic for now and
can continue to extend as design as per our application, but for now take a look
at the following styles:

h1, h2, p, a {
 font-family: Arial, Helvetica, sans-serif;
 text-decoration: none;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Application Architecture

[22]

h1, h2 {
 color: #A12E33;
 font-weight: bold;
 margin: 0;
 padding: 0;
}

h1 {
 font-size: 18px;
}

h2 {
 font-size: 14px;
 font-weight: normal;
}

p {
 color: #F15E00;
 font-size: 12px;
}

a,
a:visited {
 color: #F19C28;
}

In the previous code, you can see that we are working from a higher level down,
the essential understanding of Cascading Style Sheets. We first define our headers,
anchors, and paragraphs by using a specific font family and having no decoration.

As we work down the previous styles, we start to define each one more specifically,
with headers having no padding or margins and a specific color. Then, when we go
down further, we can see that each type of header has a specific font size and we
do the same for paragraphs and anchors.

Our page layout
Once we've defined some of our fonts and site styling, we include some basic layout
information for the <div> element containing our content:

.site-wrapper {
 padding: 5px 10px 10px;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

Since our element automatically scales to 100 percent of the width of the screen,
we tell the content to have a padding of 5px at the top, 10px at the left and right,
and 10px on the bottom. Alternatively, we could have written the following styles:

 padding-top: 5px;
 padding-left: 10px;
 padding-right: 10px;
 padding-bottom: 10px;

The former is known as a shorthand property setting and is considered best practice.

Using content with :before and :after
Since we also want to make sure our second header is differentiated in some form,
we can use a CSS3 pseudo class selector and property to define the before and after
content, as following:

hgroup h2:before,
hgroup h2:after {
 content: " :: ";
}

Keep in mind that the :before and :after pseudo selectors
are supported in Safari 3.2 and above.

The previous selector targets the <h2> elements within the <hgroup> element
and appends the content we have defined in the property before and after it,
as per the :before and :after pseudo class selector.

Styling our navigation
Next, let's style our navigation to look and feel a bit more useable.

nav ul {
 padding: 0;
}

nav li {
 list-style: none;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Application Architecture

[24]

nav a {
 display: block;
 font-size: 12px;
 padding: 5px 0;
}

Here we remove the padding off the element and then remove the default
styling option from each list element. Finally, we make sure each anchor is displayed
correctly by setting the font size to 12px and add padding to the top and bottom of
each anchor to allow for easy selection on the iPhone.

Finally, we'll add some styling to our footer.

footer p {
 text-align: center;
}

Very simply, we're aligning the paragraph within the footer to center. Since we've
defined the default styles for our paragraph in our fonts section, the styling gets picked.

When the previous styles are applied properly, your result should be similar to the
following display:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

Responsive design principles
Responsive design is the key to our mobile applications. Given the fact that many
mobile experiences now surpass those viewed on desktop, it is essential we create
applications that fit our evolving technological landscape. Lucky for us, the HTML5
Mobile Boilerplate comes with preliminary styles that we can modify.

Media queries to the rescue
First, let's open up our main.css file in our css directory.

Next, scroll down to the bottom of the file and you should see the following styling:

/* ==
========
 EXAMPLE Media Queries for Responsive Design.
 Theses examples override the primary ('mobile first') styles.
 Modify as content requires.
===
===== */

@media only screen and (min-width: 800px) {
}

@media only screen and (-webkit-min-device-pixel-ratio: 1.5),
 only screen and (min-resolution: 144dpi) {}

Although this styling gets us off the ground, for iPhone development, we need
some more customization. The first media query is specific for tablet devices,
and the second media query helps us by targeting devices with higher resolution,
such as the iPhone 4.

What we want to do is make this a bit simpler. Since we are only targeting iPhones,
this is what we can replace the previous code with:

/* iPhone 4 and 5 Styles*/
@media only screen and (-webkit-min-device-pixel-ratio: 2) { }

The previous code will target both the iPhone 4 and 5. We specifically target these
two devices by checking the –webkit-min-device-pixel-ratio property on the
device, and if it is true it means we can serve high definition graphics.

Another aspect we want to check is our viewport settings in the index.html pages
we've set up. Luckily, we cleaned this up earlier and it should have the following:

<meta name="viewport" content="width=device-width">

www.it-ebooks.info

http://www.it-ebooks.info/

Application Architecture

[26]

The previous code snippet will basically resize our content based on the width
of the device.

At this point, we should be set for implementing responsive styling later on in our
applications. Now that our styling is set for our applications and is general enough
to expand upon, let's start adding the framework behind the scripts.

Responsive images
Images are an extremely important part of any application. It helps showcase the
features of a product and exemplifies information you want the user to understand.
However, today's varying amount of devices require content to respond correctly.
On top of that, we need to be able to deliver content that is appropriate for the
experience, meaning we need to tailor to higher resolution devices so that the
highest quality content reaches that audience.

There are multiple techniques for delivering the appropriate content. However,
the one you choose depends on the requirements of your project. In this part,
we'll review the traditional responsive web design principle of resizing an image
according to its content and/or container.

Fluid images
In this technique, the developer sets all the images to a maximum width of
100 percent. We then define the container of the image to adjust accordingly.

Fluid width images
To achieve full width images, we can do the following:

<body>

</body>

The markup is pretty simple, we essentially wrap an image into an element that
extends the full width of what we need. In this case, the body will extend 100
percent in width.

Next, we'll define the style of the image as follows:

img {
 max-width: 100%;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

With this simple CSS declaration, we are telling our images to have their maximum
width set to 100 percent of the containing content. This will automatically resize
the image as the device's width changes, which is essential if we want to make
sites responsive to the user's device.

Full width images
In this case, we want the image to stay its full width, but we also need it to cut off
accordingly.

To achieve this, we can start by simply creating a div with a class, in this case
we add a class of overflow:

<div class="overflow"></div>

We can then create the styling that keeps the image at full width and cuts off based
on the resizing of the content:

overflow {
 background: transparent url('img/somgimg.jpg') no-repeat 50% 0;
 height: 500px;
 width: 100%;
}

This is a bit complex, but essentially we attach the image with a background
property. The key here is to make sure we center it using 50 percent. The height
property is just to show the image, and the width tells the container to be 100
percent related to its content.

These are the two techniques we use when implementing a traditional responsive
design. We'll be implementing these techniques much later when we create the
video and image galleries.

Establishing our JavaScript architecture
When establishing a JavaScript architecture for your application, there's a lot to think
about, including possible changes in the near or short term, security, ease of use and
implementation, documentation, and more. Once we can answer the various questions
we have, we can then decide on the pattern (module, facade and/or mediator, and
so on). We also need to know what library or framework would be best suited for us,
such as jQuery, Zepto.js, Backbone.js, or Angular.js.

Luckily for us, we'll be keeping it plain and simple in order to deliver an effective
application on an iPhone. We'll be utilizing Zepto.js as our supported library to
keep it light. We'll then build upon Zepto by creating a custom JavaScript framework
that follows a modular pattern.

www.it-ebooks.info

http://www.it-ebooks.info/

Application Architecture

[28]

Structuring our app functionality
First, let's open up our application directory in our preferred text editor.

Next, open the App.js file we created earlier within our JavaScript directory.
The App.js file should be completely empty, and it shouldn't be included
anywhere. This is where we will begin writing our framework.

Namespacing our application
If you're new to JavaScript, you have most likely created most of your code in the
global scope—perhaps laying out most of your JavaScript inside of script tags.
Although this may achieve some of your goals, when working on large scale
applications we want to avoid such practices. Some of the reasons we want to
namespace our applications is for maintainability, efficiency, and portability.

Let's start out by checking for the App namespace; if it exists we'll use what's there,
if it does not exist, then we'll make an empty object. The following code shows
how we can achieve this:

var App = window.App || {};

Immediately Invoked Function Expressions
Great! We are checking for the App namespace, now let's define it. Let's include
the following code after the check:

App = (function(){}());

The previous code is doing several things, let's take it one step at a time. First,
we're setting the App namespace to what is known as an Immediately Invoked
Function Expression (IIFE). We are essentially creating a function that is
wrapped by parentheses and immediately invoking it after the closing brace.

When we use the previous technique, or IIFE, we create a new execution context
or scope. This helps in creating self-containing code that will hopefully, not
impact other code on the site. It protects us and helps us follow the modular
pattern efficiently.

Let's extend the previous functionality by passing in the window, document,
and Zepto objects, as follows:

App = (function(window, document, $){
}(window, document, Zepto));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[29]

I know that this may be a bit confusing, but let's take a second to think through
what we're doing here. First, we are setting some parameters in the function named
window, document, and $. Then, we are passing in window, document, and Zepto
when we invoke this method. Remember, we discussed previously that this creates
a new scope or execution context? Well, this becomes useful to us because we can
now pass in references to any object that might be global.

How is this useful to us? Well, imagine if you wanted to use the actual Zepto object
over and over again it would be kind of tiring. It's not that difficult to type Zepto,
but you can just namespace it to the dollar sign and keep it simple.

Use strict
Ok, so we've got our module setup. Now let's continue to extend it by including
the use strict directives:

App = (function(window, document, $){
 'use strict';
}(window, document, Zepto));

This directive helps us debug our applications by making changes to how
JavaScript runs, allowing certain errors to be thrown instead of failing silently.

Default options
Default options are a great way of giving your codebase some extensibility. If,
for example, we want to customize or cache an element related to the application
itself then following are the defaults we will use:

var _defaults = {
'element': document.body,
 'name': 'App',
 'videoOptions': {},
 'audioOptions': {},
 'touchOptions': {},
 'formOptions': {},
 'locationOptions': {},
 'singlePageOptions': {}
};

www.it-ebooks.info

http://www.it-ebooks.info/

Application Architecture

[30]

Let's look at these defaults briefly. First we will create a defaults variable, which
will contain all the defaults for our application(s). Inside it, we have defined a
default location to be referenced for our application with the 'element' default
set to document.body—which gets our body element in DOM (Document Object
Model). We then create a custom name for our application called 'App'. After this,
we create empty objects for our video, audio, touch, form, location, and single page
applications—to be built later. These empty objects will be extended as we continue
through the book.

Defining the constructor
Now we need to define our constructor after the use strict directive. This
constructor will take a single parameter named options. We will then extend the
defaults with the parameter options and store these settings that can be retrieved
later, if needed. We will then ultimately cache the 'element' option as a Zepto
object.

function App(options) {
 this.options = $.extend({}, _defaults, options);
 this.$element = $(this.options.element);
}

Here is what the previous code is accomplishing. First, we are using the keyword
this, which is a reference to what will be, an instance of App itself. Thus, this is
the context of the object itself. Hopefully, this is not too confusing and will become
clear as we go on. In this case, we are using this to define an object options, which
will contain the merged contents of _defaults and any custom options we pass
into the constructor.

Note, when we pass an empty object, or {} into $.extend() as the first parameter,
we are telling Zepto to merge _defaults and options into a new object, thus not
overwriting the _defaults object. This is useful when we need to do some sort
of check in the future with the default options.

Once we've defined the options, we then cache the element with this.$element,
where $ in front of element is just for my reference so that I immediately recognize
a Zepto object versus a plain JavaScript object.

The prototype
Ok, so we've created our App namespace, constructed an IIFE to contain our code
and defined our constructor. Now, let's start creating some public methods that can
be accessed to make this a bit modular. But before we do that, let's try to understand
JavaScript's prototype.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[31]

Think of prototype as a live object that can be accessed, modified, and updated
whenever and however you like. It can also be thought of as a pointer, because
JavaScript will continue to go down the chain until it finds the object or it will
return undefined. The prototype is simply a way of extending functionality to
any non-plain object.

To make things a bit more confusing, I mentioned that non-plain objects have
prototypes. These non-plain objects would be Arrays, Strings, Numbers, and
so on. A plain object is one where we simple declare an empty object as follows:

var x = {};

The x variable does not have a prototype, it is simply there as a key/value storage
similar to our _defaults object.

If you haven't yet understood the prototype, don't worry, it's all about getting your
hands dirty and getting some experience. So, let's keep moving and getting our
applications to work.

At this point, your App.js file should look like the following:

var App = window.App || {};
App = (function(window, document, $){
 'use strict';
 var _defaults = {
 'element': document.body,
 'name': 'App',
 // Configurable Options for each other class
 'videoOptions': {},
 'audioOptions': {},
 'touchOptions': {},
 'formOptions': {},
 'locationOptions': {},
 'singlePageOptions': {}
 };
 function App(options) {
 this.options = $.extend({}, _defaults, options);
 this.$element = $(this.options.element);
 }
}(window, document, Zepto));

www.it-ebooks.info

http://www.it-ebooks.info/

Application Architecture

[32]

Defining public methods
Now we need to create some public methods by typing into the prototype. We'll
create a getDefaults method, which returns our default options; toString will
overwrite the native toString method so we can return a custom name. Then
we'll create initialization methods to create our other applications, and we'll name
these initVideo, initAudio, initLocalization, initTouch, initForms, and
initSinglePage respectively.

App.prototype.getDefaults = function() {
 return _defaults;
};

App.prototype.toString = function() {
 return '[' + (this.options.name || 'App') + ']';
};

App.prototype.initVideo = function() {
 App.Video.init(this.options.videoOptions);
 return this;
};

App.prototype.initAudio = function() {
 App.Audio.init(this.options.audioOptions);
 return this;
};

App.prototype.initLocalization = function() {
 App.Location.init(this.options.locationOptions);
 return this;
};

App.prototype.initTouch = function() {
 App.Touch.init(this.options.touchOptions);
 return this;
};

App.prototype.initForms = function() {
 App.Forms.init(this.options.formOptions);
 return this;
};

App.prototype.initSinglePage = function() {
 App.SinglePage.init(this.options.singlePageOptions);
 return this;
};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[33]

At this point we have several methods we can access publicly when we create an
instance of App. First, let's review the code we implemented previously, specifically
this line that gets duplicated, but customized based on the init method:

App.Touch.init(this.options.touchOptions);

For every init method we have created a call to the appropriate application,
for example, App.Touch, App.Forms, App.Video, and so on. Then we pass it the
options we've defined in the constructor that merged our defaults, for example,
this.options.touchOptions, this.options.formOptions, this.options.
videoOptions, and so on.

Note, we haven't created these classes yet for Video, Forms, Touch, and others,
but we will be creating these soon.

Returning our constructor/function
The last thing we need to do in App.js includes returning the constructor. So,
after all the public methods defined previously, include the following code:

return App;

This bit of code, although simple, is extremely important. Let's look at a stripped
down version of App.js to better understand what's going on:

App = (function(){
 function App() {}
 return App;
}());

As mentioned earlier, we are creating an App namespace that gets set to the
immediately invoked function expression. When we do this, we create a new
scope inside this function.

This is why we can have a function or constructor with the name App as well and
have no conflicts or errors. But if you recall, our function App is also an object, just
like everything in JavaScript is an object. This is why, when we return our function
App the App namespace gets set to the constructor. This then allows you to create
multiple instances of App, while centralizing your code inside of a new scope that
is untouchable.

www.it-ebooks.info

http://www.it-ebooks.info/

Application Architecture

[34]

Integrating a custom module template
Now, to get the rest of our architecture together we need to open up every
other App file in the JavaScript directory we are in (/js/App).

When we have these files open, we need to paste the following template,
which is based on the script we've written for App.js:

var App = window.App || {};

App.Module = (function(window, document, $){
 'use strict';

 var _defaults = {
 'name': 'Module'
 };

 function Module(options) {
 this.options = $.extend({}, _defaults, options);

 this.$element = $(this.options.element);
 }

 Module.prototype.getDefaults = function() {
 return _defaults;
 };

 Module.prototype.toString = function() {
 return '[' + (this.options.name || 'Module') + ']';
 };

 Module.prototype.init = function() {

 return this;
 };

 return Module;

}(window, document, Zepto));

When we have each template in, we must then change Module to the appropriate
type, that is Video, Audio, Location, and so on.

Once you are done with pasting in the section and changing the names,
you should be all set with the basic JavaScript architecture.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[35]

Including our scripts
One of the last items you will need to take care of is including this basic architecture
into each index.html file. In order to do this, you will need to paste the following
code at the bottom of the page, right after the inclusion of helper.js:

<script src="js/App/App.js"></script>
<script src="js/App/App.Audio.js"></script>
<script src="js/App/App.Forms.js"></script>
<script src="js/App/App.Location.js"></script>
<script src="js/App/App.SinglePage.js"></script>
<script src="js/App/App.Touch.js"></script>
<script src="js/App/App.Video.js"></script>
<script src="js/main.js"></script>

We are basically including each script of the framework. What's important here is to
always include App.js first. The reason for this is that App.js creates the App object
and directly modifies it. If you include it after all the other scripts, then App.js will
overwrite the other scripts because it's directly affecting the App object.

Initializing our framework
The last item we need to take care of is main.js, which includes the initialization
of our application. We do this by wrapping our code in IIFE and then exposing
the instance to the window object. We do this with the following code:

(function(window, document) {
 'use strict';

 var app = new App({
 'element': document.querySelector('.site-wrapper')
 });

 window.app = app;

}(window, document));

What we've seen earlier is an IIFE being assigned to an object. Here we don't see that
because it's not necessary. We just want to make sure our code would not affect the
rest of the code, which in most cases would not happen because of the simplicity of
this project. However, as a best practice I try to self contain my code in most cases.

www.it-ebooks.info

http://www.it-ebooks.info/

Application Architecture

[36]

The difference in the previous code is that we see the initialization of our
framework here:

var app = new App({
 'element': document.querySelector('.site-wrapper')
});

We do that by using the new keyword, creating a new instance of App, and
then passing it an object, which will be merged into our default options we
previously wrote.

querySelector is a JavaScript method that is attached to the
document object. This method accepts a selector that we would
normally use in CSS, parse DOM, and find the appropriate element.
In this case, we are telling our application to self contain itself to the
element with the site-wrapper class.

When we finally initialize our application, we then attach app to the window object:

window.app = app;

This basically makes it accessible anywhere in our application by attaching it to the
window object.

We are now done with the framework for our application. Although we don't have
anything being manipulated on the page, or have attached any events that correlate
with a user's input, we now have a solid foundation for coding that follows best
practices, is effective, efficient, and easily accessible.

Routing to a mobile site
Unless we are making a completely responsive site where the styles of the site
shift based on the dimensions of the device, we most likely will need to do some
sort of redirect to a mobile friendly version of our site.

Lucky for us, this can easily be achieved in several ways. Although I won't cover
in detail the ways in which we can achieve this, here are a few techniques that
might help out when deciding how to move forward.

Since this book is geared towards the frontend, routing to a mobile site
will be briefly covered with PHP and htaccess. We can always perform
this process on the frontend, but it should be avoided for SEO and
page-ranking purposes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[37]

Redirecting via PHP
In PHP we could do the following type of redirect:

<?php
 $iphone = strpos($_SERVER['HTTP_USER_AGENT'], "iPhone");
 if ($iphone) {
 header('Location: http://mobile.site.com/');
 }
?>

In this example we are creating a variable, $iPhone, and giving it a Boolean value
of true or false. If iPhone is found in the user agent, which may or may not be the
best technique to use, then we tell the page to redirect using the header() method
in PHP.

Again, there are other ways of achieving this, but this will get you off the ground
and running.

Redirecting via htaccess
We can also detect the iPhone and redirect it by putting these instructions on the
server using an htaccess file:

RewriteEngine on
RewriteCond %{HTTP_USER_AGENT} iPhone
RewriteRule .* http://mobile.example.com/ [R]

In this example, we are turning on the rewrite engine, creating a rewrite condition
that checks for the iPhone text in the user agent, and then creates a rewrite rule if
the condition is met.

In essence, if we want to redirect to a mobile version of our site, we need to be able
to detect the type of device, not its dimensions, and then redirect appropriately.

Home screen icons
If you're creating an application that should mimic the feeling of being a native
application, or to simply increase the experience of a web app—it is a good idea
to have bookmark icons that represent your application.

At the moment, we do support this feature with the following markup in our
index.html files:

www.it-ebooks.info

http://www.it-ebooks.info/

Application Architecture

[38]

<link rel="apple-touch-icon-precomposed" sizes="144x144"
href="img/touch/apple-touch-icon-144x144-precomposed.png">
<link rel="apple-touch-icon-precomposed" sizes="114x114"
href="img/touch/apple-touch-icon-114x114-precomposed.png">
<link rel="apple-touch-icon-precomposed" sizes="72x72"
href="img/touch/apple-touch-icon-72x72-precomposed.png">
<link rel="apple-touch-icon-precomposed" href="img/touch/apple-
touch-icon-57x57-precomposed.png">
<link rel="shortcut icon" href="img/touch/apple-touch-icon.png">

These directives inform Safari that we have home screen icons for the appropriate
devices. Starting from top to bottom we are supporting retina display, first-
generation iPad and non-Retina iPhone, iPad Touch, and even Android 2.1+.

To put it simply, we have an application that users can bookmark to their home
screen, allowing them to instantly access the web application from their home screen.

Introducing our build script
Earlier, we installed our build script along with the HTML5 Mobile Boilerplate.
We'll now explore the build script a bit further by customizing it for our purposes.
We'll need to make sure our styles, scripts, images, and markup are optimized for
deployment. It will also be necessary for us to set up multiple environments to test
our application thoroughly.

Configuring our build script
Let's start by configuring the build script for our needs, this way we'll have a
custom build script that works for us and gets us going immediately.

Minifying and concatenating scripts
First, let's make sure our scripts get concatenated and minified. So let's open all
our index.html files and wrap all our scripts at the bottom of the page with the
following comments:

<!-- scripts concatenated and minified via ant build script-->
<script src="path/to/script.js"></script>
<!-- end scripts-->

The previous comments are used by the ant task, or build script, to find all JavaScript
files being used, concatenate, and minify them. The process will also use a timestamp
for the newly optimized JavaScript file in order to bust caching on the server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[39]

Minifying and concatenating styles
By default, the Ant Build script minifies and concatenates our styles. However, if
we want to retain comments that identify a particular section of our app, such as the
video or audio section, then we need to do something that will keep those comments.

The comments can be used to identify a section, and it can be written as follows:

/*!
 Video Styling
*/

Write the previous comments for each stylesheet.

We then need to add each of our stylesheets to the project properties so that each
can be minified by the YUI compressor. To do this, we need to open up the project.
properties file located in /build/config.

Then find the following line:

file.stylesheets =

Once we've found that line, let's add all our css files as follows:

file.stylesheets = audio.css,forms.css,location.css,singlepage.
css,touch.css,video.css

Note, that there are no spaces after each file. This is necessary for the build script
to process.

This is all we need to do at the moment for optimizing our styles.

Creating multiple environments
Typically a project will run on a development, test, and production environment.
The test environment should be closest to production in terms of configuration,
allowing us to effectively reproduce any issues that might come up.

In order to build our environments correctly, let's go through the process of building
our project. First, let's open up Terminal, a program that allows you to interact with
the operating system of any Unix style computer through a command-line interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Application Architecture

[40]

Navigating our directories
Once the terminal is up and running, we have to navigate to our project. Here
are a couple of commands that will help you navigate:

cd /somesite

The previous command means we are changing our directory from the current
directory to the somesite directory, relative to where you're now.

cd ../somesite

This command tells us to change the directory, but going up a level with ../
and then going into the somesite directory.

As an easier example to understand, my project exists in /Sites/
html5iphonewebapp. So what I can do is use the following command to enter
my project:

cd /Users/somuser/Sites/html5iphonewebapp

This changes the directory for me to the project where I am developing
this application.

Building our project
Once we've entered the project directory, we can start building our project. By
default, the Ant Build script creates a production environment, which optimizes
all parts of the process.

ant build

This command tells us to build our project, and as explained creates our production
version in a directory labeled publish. You will also notice that when you run that
command, your terminal will update, letting you know what step in the process the
build is in.

Once the build is complete, your directory structure should look similar to the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[41]

The publish directory represents the production environment. You will also see
that an intermediate directory has been created; this is your test environment.

However, let's say you wanted to have full control of the build and wanted to
create your environments manually, then one can do the following in the terminal:

ant build -Denv=dev

This command, ant build –Denv=, lets us define which environment we want
to build and does it accordingly.

We now have a project that is ready to be built upon. There were many steps in
this process, so I encourage you to practice this process in order to develop a good
architecture and deployment process that works for you and/or your team.

www.it-ebooks.info

http://www.it-ebooks.info/

Application Architecture

[42]

Summary
In this chapter, we saw how to use the HTML5 Mobile Boilerplate for our projects,
from downloading the default package to customizing it for our needs. We also took
a couple of simple steps to establish a solid architecture for our JavaScript, CSS, and
HTML. As a bonus, we went over including a build process and customizing it for
our project. We then quickly reviewed best practices for JavaScript applications and
gave a couple of tips on how to direct users to a separate mobile site. We are now
prepared for in-depth development of the mobile web applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating HTML5 Video
Media distribution is essential for any web application; delivering rich experiences
that alter the user's perception. Many times we are asked to put a still image on a
site, and other times we are asked to include video galleries that allow the user to
switch videos easily through some sort of unique navigation. Previously, we were
able to do this with Flash and other plugin based technologies, but with the wide
support of HTML5 video, we now have the ability to deliver video without the
condition of downloading a plugin.

One thing to keep in mind is that HTML5 video and audio share the same
specification. This is because they are both considered a media element (http://www.
whatwg.org/specs/web-apps/current-work/multipage/the-video-element.
html#media-element). What this means is that both video and audio share some
attributes and methods, making it easier to implement them within our applications.

Either way, let's get going by learning how we can configure our server to deliver
our videos correctly.

In this chapter, we will cover:

•	 Configuring our server for video distribution
•	 Implementing HTML5 video
•	 Listening to HTML5 video events
•	 Creating a thorough JavaScript video library
•	 Customizing HTML5 video controls

Configuring the server
Before implementing our video, we need to make sure our server knows what media
types we will be serving. Doing this now helps to avoid headaches later on when we
don't know why we are getting network errors. So let's get to it.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating HTML5 Video

[44]

Video formats
First, we need to know what file types we will be serving up. In our examples we
will be using MP4, but it's always a good idea to allow what is supported. Make sure
you have WebM, OGV, and MP4 formats for your videos. But first, before we go on,
let's side step and learn a little bit about these formats.

We're not going to get too deep into explaining the different types
that are widely supported, but keep in mind that Theora, WebM, and
H.264/MPEG-4 are the most widely supported formats. Both Theora
and WebM are free, with WebM development being supported by
Google. The implementation for Theora in browsers has lagged due
to worry about patents, while WebM has been widely supported by
Mozilla Firefox, Google, and Opera due to its royalty-free and open
video compression features.
Things get a bit hairy when it comes to H.264. Although a great format
for having high quality, good speed, and being a standard for video
compression, patents encumber it. For this reason, it has lagged behind
in support in popular browsers for a long time. Eventually, each browser
came to support this format, but not without controversy.

Video format directives
Next, depending on the server type, we need to include specific directives to
allow our file types. In this example, we are using an Apache server, thus
the following syntax:

AddType video/ogg .ogv
AddType video/mp4 .mp4
AddType video/webm .webm

The previous code would be added to either an .htaccess file on the server or to the
httpd.conf file. Either way, the AddType directive informs the server what types it
should and can serve. So when we go line by line, we can see that we are adding the
video/ogg type with extension .ogv, and we do this for MP4 and WebM.

Taking these initial steps helps us to avoid any network issues when we go ahead
and implement video on our site using HTML5. If you're curious how we use these
types, don't worry, that's exactly what we'll be going over in the next section.

A simple HTML5 video
We've been dying to do something cool in our web application, so let's get to it.
Let's start out by including a video on our site in the simplest manner possible,
and without any complicated interactions!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

Single video format
First, let's open up our index.html file located in the video subdirectory of
the Chapter 2 project. If you skipped the first chapter, don't worry about it,
the Chapter 2 source files follow along and help keep you going.

Once we have our index.html file, we want to include the video element within our
content area, right after the <header> element. This is simple, we can do it like this:

<video src="../assets/testvid.mp4" controls preload></video>

The previous code works similar to an image element. We define a src attribute that
instructs the browser where to find the video, and then we define a controls and
preload attribute, which directs the browser to display default native controls and
to preload the video. Simple, eh?

Supporting multiple formats
This is all we need to put video on our site, but of course, things aren't always so
simple. As we discussed earlier, browsers can support one or none of the formats
that we specify. Of course, right now we have good browser support, but we want
to make sure that our application is solid, so we need to make sure that we deliver
the appropriate file. To do this, we can modify the previous code as follows:

<video poster="testvid.jpg" controls preload>
 <source src="testvid.webm" type='video/webm'/>
 <source src="testvid.ogv" type='video/ogg'/>
 <source src="textvid.mp4" type='video/mp4'/>
 <p>Fallback Content</p>
</video>

Here, we have introduced a new attribute, poster. The poster attribute is an image
we show at the beginning of the video or in cases where the video doesn't load.
Things now get a bit complex when we move the source element inside of the video
element. But, if we check everything out, we're basically defining multiple source
videos and their types. The browser will then choose the appropriate one to display.
What might confuse you is the paragraph element containing the Fallback Content
text. This is here if everything else fails and/or if the browser does not support the
HTML5 video.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating HTML5 Video

[46]

If this is a bit confusing, don't worry about it too much because iPhone's mobile
Safari supports MP4 and is honestly all you need for your applications. So if we want
to keep it simple, we can use the following code for our iPhone applications, and this
is exactly what we do in this book:

<video src="testvid.mp4" controls preload>
 <p>Video is not supported in your browser.</p>
</video>

Now that we have a simple video playing in our application, we might want to
pick up on the events of our video.

Listening to HTML5 video events
It's very likely that you will want full control of your application, or at least monitor
what may be going on. You will usually find yourself attaching events or listening
to them for various reasons. From tracking to enhancing an experience, events are
how we can drive interactivity on the page. With HTML5 video, we can use the
native browser to monitor the status of the video from start to finish. You have the
opportunity to listen for when a video has finished loading and when the user has
paused a video.

Let's review the events that are available to us. What you will find is that the events
we use with videos can also be transferrable for audio. This is because, as we've
learned previously, both video and audio elements are categorized as media elements
in the HTML5 specification. Here is a table of events that are available to us:

Event Name Condition

loadedmetadata The duration and dimensions of the media resource
have been determined.

loadeddata Media data can now be rendered for the first time.

canplay Playback of the media data can resume.

seeking The seeking attribute of the media resource has been
set to true.

seeked The seeking attribute of the media resource has been
set to false.

play The element is not paused. This is fired when the
play() method has returned or when the autoplay
attribute has caused the element to begin playback.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

Event Name Condition

ended The end of the media resource was reached and
playback has stopped.

pause The pause() method has returned and the element
has been paused.

timeupdate The playback position of the media resource has
changed in some way.

volumechange Fired when either the volume or muted attribute
has changed.

There are more events that are defined by the specification, however these are the
events we will listen to from our previous simple implementation. So let's get started.

Video markup review
First, open your index.html file inside of the video directory. In this file,
you have to make sure your content looks like the following:

<div class="site-wrapper">
 <header>

 </header>
 <div class="gallery">
 <video src="../assets/testvid.mp4" controls
preload></video>
 </div>
 <footer>
 ...
 </footer>
</div>

Don't pay attention to the ellipsis, these are just in there to make the code shorter
in the text. What you want to make sure of is that you have the simple <video>
element implementation from the last section.

Attaching video events
Now the fun starts. Let's start extending our JavaScript to include the listeners. Let's
open the App.Video.js file located in the /js directory under the App folder. If you
haven't been following along from our architecture chapter, don't worry, what's
important for you to understand here is that we have created a structure for our
applications and that the App.Video.js file will contain all functionality for the
video application.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating HTML5 Video

[48]

Find the constructor for the App.Video class. This should be on line 16 of your text
editor, and should currently look like the following:

function Video(options) {
 // Customizes the options by merging them with whatever is passed
in
 this.options = $.extend({}, _defaults, options);

 //Cache the main element
 this.$element = $(this.options.element);
}

Again, as a review we are passing in an object that we call options into our
constructor. From here, we create a property called options that is for that instance
of Video, and this property will get set to an extended or merged version of the
options and defaults using Zepto's extend method. Then, we cache the element that
was sent via the merged options. This might be a bit confusing, but it is a very well
recognized pattern in JavaScript applications.

Since we have verified that our constructor exists and is doing fine, we now want to
add the previous listeners. We can easily do this using the native addEventListener
method as follows:

this.options.element.addEventListener('canplay', function(e){
 console.log('video :: canplay');
});

this.options.element.addEventListener('seeking', function(e){
 console.log('video :: seeking');
});

this.options.element.addEventListener('seeked', function(e){
 console.log('video :: seeked');
});

this.options.element.addEventListener('ended', function(e){
 console.log('video :: ended');
});

this.options.element.addEventListener('play', function(e){
 console.log('video :: play');
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

this.options.element.addEventListener('pause', function(e){
 console.log('video :: pause');
});

this.options.element.addEventListener('loadeddata', function(e){
 console.log('video :: loadeddata');
});

this.options.element.addEventListener('loadedmetadata', function(e){
 console.log('video :: loadedmetadata');
});

this.options.element.addEventListener('timeupdate', function(e){
 console.log('video :: timeupdate');
});

There are a couple of things to note here. First, we are using this.options.element
instead of the cached version this.$element. We do this because we actually want
the element and not a Zepto object. Second, we are calling addEventListener and
passing it two parameters. The first parameter is a string that defines the event we
want to listen to. The second parameter is a callback function, which gets called
every time that the event we specified in parameter one fires.

Note that we are using the console.log() method. It is similar to
alert() except without all the annoyances. It helps debug better and
outputs to a console that lets us keep track of all our log output. Using
this method is a good way of debugging our applications and testing
out functionality before going further.

Your constructor should now look like this:

function Video(options) {
 // Customizes the options by merging them with whatever is passed
in
 this.options = $.extend({}, _defaults, options);

 // Cache the main element
 this.element = options.element;
 this.$element = $(this.options.element);

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating HTML5 Video

[50]

 this.options.element.addEventListener('canplay', function(e){
 console.log('video :: canplay');
 });

 this.options.element.addEventListener('seeking', function(e){
 console.log('video :: seeking');
 });

 this.options.element.addEventListener('seeked', function(e){
 console.log('video :: seeked');
 });

 this.options.element.addEventListener('ended', function(e){
 console.log('video :: ended');
 });

 this.options.element.addEventListener('play', function(e){
 console.log('video :: play');
 });

 this.options.element.addEventListener('pause', function(e){
 console.log('video :: pause');
 });

 this.options.element.addEventListener('loadeddata',
function(e){
 console.log('video :: loadeddata');
 });

 this.options.element.addEventListener('loadedmetadata',
function(e){
 console.log('video :: loadedmetadata');
 });

 this.options.element.addEventListener('timeupdate',
function(e){
 console.log('video :: timeupdate');
 });
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[51]

Initializing our video
Now that we have a preliminary video class defined, we need to initialize it. So
let's go ahead and open up main.js, where our initialization code should be located.
It should look something like this:

(function(window, document) {
 'use strict';

 // Create an instance of our framework
 var app = new App({
 // Custom Option, allowing us to centralize our framework
 // around the site-wrapper class
 'element': document.querySelector('.site-wrapper')
 });
 // Expose our framework globally
 window.app = app;
}(window, document));

We created this in the previous chapter, but let's go over it briefly. Here we are
creating a closure, passing it the window and document objects. Inside, we set the
interpreter to read our code strictly. We then create an instance of the overall App
class and then expose it to the window object.

Now we need to add the initialization of the Video class. To do this, let's put the
following snippet of code after we declare a new instance of App, as follows:

new App.Video({
 'element': document.getElementsByTagName('video')[0]
});

This snippet creates a new instance of the App.Video class or the Video class, and
passes in a simple object containing the element. The way we retrieve an element
is through the use of the getElementsByTagName method attached to the document
object. We tell the method to look for all the video elements. The interesting part is
[0], which tells the results of the lookup to only get the first one in the array that
is returned.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating HTML5 Video

[52]

If we load our page and test the video, we should have the log output we defined
earlier in our console, similar to the following screenshot:

Video log output

We've got the preliminary aspects of our Video class going, from events to
initialization. However, we need to tidy it up a bit if we are going to make it reusable
for our application, and if we ever want to extend its functionality. So let's take some
time creating a fully functional JavaScript video library that will work in our iPhone
web applications.

Creating a JavaScript video library
At the moment, we have a very simple Video class that caches an element and then
attaches multiple events that are defined by the media element specification for
HTML5. We have defined the essentials of a video player and now need to abstract it a
bit further so it can be reused and managed much better. Following some conventions
and creating a flexible framework will help us move faster and more effectively.

First, let's think about some things we may want from this class:

•	 An events method that attaches the proper events
•	 Callback methods that can be defined, for example, onPlay, onPause,

and onEnded

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[53]

•	 Public methods that can be called from outside the instance
•	 Chainable methods similar to jQuery where you can call one method after

another, for example, fadeIn().fadeOut().show().hide()

Having a list of items that abstract the behavior of a class is a step in the right direction
for establishing a solid framework or library. Now let's start by creating callbacks.

Centralizing our events
First, let's tackle how we attach the events for our Video class. Previously, we added
these events to the constructor, and although that is a fine technique, it can definitely
be improved by specifying a function that handles the attachment of events onto an
instance of a Video object.

So, let's create a private method called attachEvents in the Video class that can
only be accessed within the App.Video closure or IIFE. When we create our method
attachEvents, we should just place all our event handlers into it. We then want
to call the attachEvents method after we initialize this.$element. When you're
done doing this, your code should look like the following:

function Video(options) {
 this.options = $.extend({}, _defaults, options);

 // Cache the main element
 this.element = options.element;
 this.$element = $(this.options.element);

 attachEvents();
}

function attachEvents() {
 // All your event handlers go here
}

In the previous code, the attachEvents() function will contain
our event handlers created earlier. For the sake of brevity, I'm
omitting them for now.

Now, if we run this code we'll most likely run into a couple of errors. This is actually
normal and is known as a scope issue. In order to fix the problem, first we'll sidestep
to understand what's going on behind the scenes.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating HTML5 Video

[54]

Scope in JavaScript
If you're new to JavaScript, scope will most likely confuse you sooner or later. If
you're at an intermediate or advanced level in JavaScript, you might still have scope
issues. This is completely normal and is something that we all come across. Either
way, let's take our current Video class and analyze it to understand scope in context.

JavaScript has function-level scope, this means that every time a new function is
created, we create a new scope. Scope can be quite confusing, but with practice it
becomes easier. For now think of scopes as a reference to your current position,
aware of itself and its environment, but unaware of newly created scopes inside
it. If it sounds confusing, it can be when you get started. But let's go over some
code to gain a better understanding.

So, let's start with the global scope:

// Global Scope
var x = 10;
(function($){
 // New Scope
 console.log(x);
}(Zepto));

In this example, a stripped down version of App.Video, we can see that the global
scope is around the closure. When we create a closure, a new scope is created. The
cool thing here is that anything outside of the closure can get accessed. So when
we do console.log inside the closure, we should get back 10.

Whenever you create a new function scope, you can pass it parameters that
essentially namespace the value you're sending. In this case, we pass in Zepto and
we tell the new function scope to define the dollar sign as an instance of Zepto inside
that scope. Hopefully that explains scope a bit more clearly, if not, don't worry about
it; it does take time and patience to understand this concept.

So, the problem with our event handlers is the fact that the new function scope,
inside of attachEvents, does not have a reference to this.options. The keyword
this is relative to the window object because of the new scope. The reason it doesn't
have a reference is because our constructor is a completely different scope, and the
two are not speaking with each other. To fix this problem, we can use the .call()
method, which will change the reference of the this keyword to reflect the Video
function scope. It can be done by changing the call of attachEvents like so:

attachEvents.call(this);

If you run your code now, you should not get any errors. If you do, take a look at
the finalized version of the code in order to do a comparison and figure out the issue.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[55]

Exposing functionality
Later on in this chapter, we will be exploring custom user interfaces that help us
override the default functionality of a video player. However, in order to do this
we need to make sure some functionality is exposed. In JavaScript, in order to make
methods public outside of the closure, we need to attach methods to the prototype
of class—in this case, Video.

We can already see that we have two methods that are exposed within all our
classes; these include getDefaults and the overriding function toString. Let's
start extending the prototype by adding the play, pause, stop, mute, unmute,
and fullscreen methods.

Video.prototype.play = function() {
 return this;
}

Video.prototype.pause = function() {
 return this;
}

Video.prototype.stop = function() {
 return this.pause();
}

Video.prototype.mute = function() {
 return this;
};

Video.prototype.unmute = function() {
 return this;
};

Video.prototype.fullscreen = function() {
 return this;
}

I'm sure you have noticed the lack of code in these methods, and that's fine. What
we want to understand is that we can extend the Video prototype, and that we can
add chaining to our methods by returning the instance with the return this line.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating HTML5 Video

[56]

Let's start adding functionality to our methods, beginning with play:

Video.prototype.play = function() {
 this.element.play();

 return this;
}

Here we are getting the element we've cached in the constructor of Video by calling
the play method. You might be wondering where this play method is coming from?
Well, the HTML5 specification defined a play method for media elements, including
video and audio. Thus, we can tap into this method using this.element.play().
We can do the same with the pause method as follows:

Video.prototype.pause = function() {
 this.element.pause();
 return this;
}

Again, we have a method defined by the HTML5 specification for pausing a media
element. Things get a bit confusing when we define a stop method as follows:

Video.prototype.stop = function() {
 return this.pause();
}

It's the same as previous; we actually haven't made any changes. Let me explain, the
specification does not define a stop method, so it's up to us to create one so that we
can provide that functionality. But it's not too difficult because we've defined a pause
method that does a similar action. So all we need to do is call this.pause(), because
this is an instance of Video and we have a pause method defined. The neat thing
here is that we don't need to return this, because the pause method already returns
this, and so all we need to do is return the results of calling the pause method. I
know it's a bit confusing but over time, if this is the first time you're doing this,
it will become clear.

Now, on to our mute and unmute methods:

Video.prototype.mute = function() {
 this.element.muted = true;
 return this;
};
Video.prototype.unmute = function() {
 this.element.muted = false;
 return this;
};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[57]

The only difference in these methods is that we are setting a property on the video
element to false. In this case, we are setting the muted property to either true or
false, depending on what method you call.

Here is where things get a bit complicated:

Video.prototype.fullscreen = function() {
 if (typeof this.element.requestFullscreen === 'undefined') {
 this.element.webkitRequestFullScreen();
 } else {
 this.element.requestFullscreen();
 }
 return this;
}

This is a bit more complicated, and probably a bit frustrating. Trust me, many
within the industry are feeling the pain. What we need to understand here is that
the browser we are dealing with, Safari, runs on an engine called WebKit—an
open source web browser engine.

WebKit is extremely popular and widely supported. The issue is that while it
does a great job at implementing the latest and greatest features, many of these
are experimental and thus, they have a prefix added to them. We see this a lot in
CSS (Cascading Style Sheets) using –webkit. But we also face the same problem
in JavaScript, webkit[standardMethodName].

While this may be awesome, we need to make sure that we have backward
compatibility for newer versions that strip out that prefix. This is why, in the
previous method, we do a check on the standard method name, and if it doesn't
exist, we use the -webkit prefix. Otherwise, we use the standard version.

Integrating callbacks
Callbacks are quite useful in any library or framework, and you've probably already
seen something like it using jQuery or some other popular framework. In essence,
a callback is a method that gets called once the method has completed. For example,
in the Zepto method, fadeout accepts two parameters, the first being the speed,
and the second parameter is a function that gets called when the fading has
completed. This can be seen as follows:

$('.some-class').fadeout('fast', function(){
 // Do something when fading is complete
});

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating HTML5 Video

[58]

The second parameter in the previous code is not only a callback function, but also
an anonymous function. An anonymous function is just a function without a name.
In this case, it is executed every time the fadeOut() effect is finished. We can
rewrite the previous code as follows:

$('.some-class').fadeOut('fast', someFadeOutFunc);
function someFadeOutFunc(){
 // Do something when fading is complete
}

Since we have created a method called someFadeOutFunc, when fadeOut is complete
we'll just call that function instead of creating a new one. This is more efficient and
manageable from an architecture standpoint.

The first step in the process of creating callbacks is to define where we may want
callbacks in our code. In this case, we may want a callback for each action taken
in the video player, so we'll create the following callbacks:

•	 onCanPlay

•	 onSeeking

•	 onSeeked

•	 onEnded

•	 onPlay

•	 onPause

•	 onLoadedData

•	 onLoadedMetaData

•	 onTimeUpdate

•	 onFullScreen

Ok, so now that we know which callbacks we want in our code, let's implement
them in the constructor, right before the attachEvents method:

this.callbacks = {
 'onCanPlay': function(){ },
 'onSeeking': function(){},
 'onSeeked': function(){},
 'onEnded': function(){},
 'onPlay': function(){},
 'onPause': function(){},
 'onLoadedData': function(){},
 'onLoadedMetaData': function(){},
 'onTimeUpdate': function(){},
 'onFullScreen': function(){}
};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[59]

What we've done here is attached a property, known as callbacks, onto an instance
of Video. This property contains an object that has key/value pairs for each callback
we want to implement, with the value being an empty anonymous function.

Extending callbacks
Although we can have our callbacks within the class, the problem is that they are not
extensible, meaning the developers using your Video class won't be able to extend
your callbacks. In order to make them extensible, we need to put them within our
_defaults object:

var _defaults = {
 'element': 'video',
 'name': 'Video',
 'callbacks': {
 'onCanPlay': function(){ },
 'onSeeking': function(){},
 'onSeeked': function(){},
 'onEnded': function(){},
 'onPlay': function(){},
 'onPause': function(){},
 'onLoadedData': function(){},
 'onLoadedMetaData': function(){},
 'onTimeUpdate': function(){},
 'onFullScreen': function(){}
 }
};

The drawback is that now we would need to use this.options.callbacks in
order to access the callback we want. This can be easily fixed by doing the following
in our constructor:

this.callbacks = this.options.callbacks;

This will still allow us to access the callback, but only from the extended object.

Using callbacks
Now that we have our callbacks, and have made them extensible, we can go in and
integrate them into our event handlers. But first, we need to make our event handlers
as private methods in this Video class and call our custom callbacks as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating HTML5 Video

[60]

function onCanPlay(e, ele) {
 this.callbacks.onCanPlay();
}

function onSeeking(e, ele) {

 this.callbacks.onSeeking();
}

function onSeeked(e, ele) {

 this.callbacks.onSeeked();
}

function onEnded(e, ele) {

 this.callbacks.onEnded();
}

function onPlay(e, ele) {

 this.callbacks.onPlay();
}

function onPause(e, ele) {

 this.callbacks.onPause();
}

function onLoadedData(e, ele) {
 this.callbacks.onLoadedData();
}

function onLoadedMetaData(e, ele) {
 this.callbacks.onLoadedMetaData();
}

function onTimeUpdate(e, ele) {
 this.callbacks.onTimeUpdate();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[61]

At this point, we have our callbacks fully integrated into our library. Now, we just
need to call them by modifying the attachEvents handler as follows:

function attachEvents() {
 var that = this;
 this.element.addEventListener('canplay', function(e){
onCanPlay.call(that, e, this); });
 this.element.addEventListener('seeking', function(e){
onSeeking.call(that, e, this); });
 this.element.addEventListener('seeked', function(e){ onSeeked.
call(that, e, this); });
 this.element.addEventListener('ended', function(e){ onEnded.
call(that, e, this); });
 this.element.addEventListener('play', function(e){ onPlay.
call(that, e, this); });
 this.element.addEventListener('pause', function(e){ onPause.
call(that, e, this); });
 this.element.addEventListener('loadeddata', function(e){
onLoadedData.call(that, e, this); });
 this.element.addEventListener('loadedmetadata', function(e){
onLoadedMetaData.call(that, e, this); });
 this.element.addEventListener('timeupdate', function(e){
onTimeUpdate.call(that, e, this); });
 }

There are a couple of concepts being implemented here. First, we've replaced
console.logs with the actual private methods that we have defined previously.
Second, we used the call method to change the scope of the private method
by passing in that, then we sent in event and element as parameters.

Tying it all up
We have everything we need, such as event handlers, exposed functionality,
callbacks, and even chainable methods. That's all good, but now we need to
make it work. This is where the magic comes in.

To verify, your Video class should look something like this:

var App = window.App || {};

App.Video = (function(window, document, $){
 'use strict';

 var _defaults = { ... };

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating HTML5 Video

[62]

 // Constructor
 function Video(options) {
 this.options = $.extend({}, _defaults, options);

 this.element = options.element;
 this.$element = $(this.options.element);

 this.callbacks = this.options.callbacks;

 attachEvents.call(this);
 }

 // Private Methods
 function attachEvents() { ... }

 // Event Handlers
 function onCanPlay(e, ele) { ... }
 function onSeeking(e, ele) { ... }
 function onSeeked(e, ele) { ... }
 function onEnded(e, ele) { ... }
 function onPlay(e, ele) { ... }
 function onPause(e, ele) { ... }
 function onLoadedData(e, ele) { ... }
 function onLoadedMetaData(e, ele) { ... }
 function onTimeUpdate(e, ele) { ... }

 // Public Methods
 Video.prototype.getDefaults = function() { ... };
 Video.prototype.toString = function() { ... };
 Video.prototype.play = function() { ... }
 Video.prototype.pause = function() { ... }
 Video.prototype.stop = function() { ... }
 Video.prototype.mute = function() { ... };
 Video.prototype.unmute = function() { ... };
 Video.prototype.fullscreen = function() { ... }

 return Video;

}(window, document, Zepto));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[63]

Please note that the ellipsis in the previous code denote that there
should be functionality. Due to page count limitations, we can only
showcase a brief summary of the code up to this point. If you need
to see what has been done, please review the previous sections or
checkout the source code with this book.

If your file looks like this, perfect! If it doesn't look quite like this, don't worry about
it, this is why we have the source code attached with this book. At this point, we're
ready to initialize this library on our page.

Let's open up our main.js file; the file should be located under the js directory.
We need to make the following addition:

new App.Video({
 'element': document.getElementsByTagName('video')[0],
 'callbacks': {
 'onCanPlay': function(){ console.log('onCanPlay'); },
 'onSeeking': function(){ console.log('onSeeking'); },
 'onSeeked': function(){ console.log('onSeeked'); },
 'onEnded': function(){ console.log('onEnded'); },
 'onPlay': function(){ console.log('onPlay'); },
 'onPause': function(){ console.log('onPause'); },
 'onLoadedData': function(){ console.log('onLoadedData'); },
 'onLoadedMetaData': function(){ console.
log('onLoadedMetaData'); },
 'onTimeUpdate': function(){ console.log('onTimeUpdate'); },
 'onFullScreen': function(){ console.log('onFullScreen'); }
 }
});

Let's go through this quickly. First, we create a new instance of App.Video, passing
in one parameter— a simple object. Second, the object we are passing in contains two
objects: the video element we want on the page, and a callbacks object that overrides
defaults. The first parameter is using the built in method getElementsByTagName to
get all the instances of the video element, and then we get the first one found using
[0]. This is because that method returns an array. The second parameter, callbacks,
contains the function callbacks we want to be called on this instance of App.Video.
All we want to do in these methods is log out the method being called.

From here on, when the instance is initialized the Video library we've defined will
merge the simple object we've passed in and take it from there. Almost like magic,
except we've created it.

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating HTML5 Video

[64]

One last item to take care of is to make sure we only initialize a video when we are
on the video page. If we are on a non-video page in our application, this code will
produce an error. This is because there are no video elements and we have not added
error detection. This is a good thing to have, but will not be covered in this book.
So, let's do the following in main.js:

if(document.querySelector('video') !== 'null') {
 new App.Video({
 'element': document.getElementsByTagName('video')[0],
 'callbacks': {
 ...
 }
 });
}

In the previous code, we are wrapping our initialization code within an if statement,
checking to make sure that we are on the video page. The way we do a check is
by using the built in method on the document object called querySelector. This
method accepts a CSS type selector, in this case we are sending the video selector,
telling it to get all the instances of a video element. If the result coming back is not
null, then we initialize.

Now we don't need to do anything with the markup, this code will run and we
should be good. If for some reason you come up with any errors, please take a look
at the source code provided with this book. Next, let's consider overwriting the
default controls of this video player to give us more control over the functionality.

Customizing HTML5 video controls
We probably want more input into the video controls, from styling to video
functionality, such as adding a stop button. In order to do this we need to modify
our markup a bit. We should do the following with the video:

<div class="video-container">
 <video src="../assets/testvid.mp4" controls preload>
 <p>Video is not supported in your browser.</p>
 </video>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[65]

All we did here was add a class containing div around the video element and added
a class of video-container to it. Now we want to add some responsive styling to the
video element, so let's open up video.css and add the following styles:

video {
 display: block;
 width: 100%;
 max-width: 640px;
 margin: 0 auto;
}

.video-container {
 width: 100%;
}

The first selector will apply to all the video elements on the page, and we are telling
each element to have a width of 100 percent relative to its container, but to only
have a max width of 640px. The margin property helps it center itself on the page
or to the container. The next selector, video-container, just specifies the width to
be 100 percent. This styling will resize the player accordingly; you can check it out
by resizing your browser.

For this example, we'll use basic controls using the anchor element. Keep in mind
that you can use any sort of styling or markup to style your controls, just remember
that we have exposed our video playback in our Video class, so to keep it short
and simple, we'll just demonstrate how you can do this using the anchor element.

In our video-container dive, we want to append the following markup:

<div class="video-controls">
 <div class="vc-state">
 Play
 Pause
 </div>
 <div class="vc-track">
 <div class="vc-progress vc-track-progress"></div>
 <div class="vc-handle vc-track-handle"></div>
 </div>
 <div class="vc-volume">
 Volume
On
 Volume Off</
a>
 </div>
 Fullscreen
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating HTML5 Video

[66]

The previous markup is what we will be using for our controls. They are pretty
straightforward, but let's review a couple of decisions that were made here. One, we
have a surrounding div with a class of video-controls to help define where all our
controls will exist. Two, each type of control is prefixed with vc, standing for video
controls. Three, in this example we have four types of controls, namely a state, track,
volume, and full screen control. The final point is that some of these controls have
show/hide functionality, for example, play and pause should only show when
the others cancel out.

For styling, we can add the following styles to the video.css file:

.video-controls {
 margin: 12px auto;
 width: 100%;
 text-align: center;
}

.video-controls .vc-state,

.video-controls .vc-track,

.video-controls .vc-volume,

.video-controls .vc-fullscreen {
 display: inline-block;
 margin-right: 10px;
}

.video-controls .vc-fullscreen {
 margin-right: 0;
}

.video-controls .vc-state-pause,

.video-controls .vc-volume-unmute {
 display: none;
}

In this bit of styling, we self-contain all video control styling to the video-controls
class. This helps in maintaining styles in a modular pattern. Again, following
responsive design principles, we tell the controls to have a width of 100 percent.
Then, each type of control is set to display as inline-blocks, similar to float.
Lastly, we tell all default controls that are not supposed to appear initially
to have a display of none. Now, we need to add interactivity to our controls.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[67]

First, let's create an App.VideoControls class that follows our entire framework:

var App = window.App || {};

App.VideoControls = (function(window, document, $){
 'use strict';

 var _defaults = { };

 function VideoControls(ele, options) {
 this.options = $.extend({}, _defaults, options);
 this.ele = ele;
 this.$ele = $(ele);

 this.init();
 }
 return VideoControls;

}(window, document, Zepto));

As you can see, there's not much difference here. The only thing is that we now have
an init method that gets called. This is to separate out initialization functionality
elsewhere so that the constructor is not completely populated with code. Now we
need to add the following defaults:

var _defaults = {
 // Supported Features
 'features': ['play', 'pause', 'fullscreen', 'mute', 'unmute',
'playpause'],
 // State of the controls
 'state': 'paused',
 // State of the sound
 'sound': 'unmuted',
 // Customizable Classes or Classes associated with Elements
 'classes': {
 'state': {
 'holder': 'vc-state',
 'play': 'vc-state-play',
 'pause': 'vc-state-pause'
 },
 'track': {
 'holder': 'vc-track',
 'progress': 'vc-track-progress',
 'handle': 'vc-track-handle'
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating HTML5 Video

[68]

 'volume': {
 'holder': 'vc-volume',
 'mute': 'vc-volume-mute',
 'unmute': 'vc-volume-unmute'
 }
 },
 // Customizable Events or Dispatched Events
 'events': {
 'onPlay': 'videocontrols:play',
 'onPause': 'videocontrols:pause',
 'onFullScreen': 'videocontrols:fullscreen',
 'onMute': 'videocontrols:mute',
 'onUnmute': 'videocontrols:onUnmute'
 }
};

Just as a review of these defaults, the first default is a features array, allowing the
developer tapping into this code to customize what we need initialized. The second
default keeps the state of the controls, namely play, pause, and so on. The third is
a state specifically for sound. The classes default allows us to use custom classes,
thus the developer using this videocontrols class isn't limited to the classes we've
defined in the markup. The last is an events default that defines the custom events
we want to be dispatched. By including it in our defaults, the developer can now
customize these as well.

As you can notice, a lot goes into building a video player that can
be reused and implemented correctly across a web application of
any kind. Putting effort does help out in the end, although it is very
difficult at the beginning. Now we can add and remove functionality
in a much more modular way.

Due to the fact that there's a lot of code that goes into creating custom controls that
mimic those in native controls, we've decided to leave the rest of the functionality,
including show/hide and triggering custom events, in the source code for your
review. Don't worry though, everything is commented and if you do have questions,
I encourage you to e-mail me or ask your fellow colleagues for help.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[69]

Now, we want to implement the communication between the controls and the
video player. But first, we need to clean the main.js file a bit. So, let's remove
the following code from main.js:

if(document.querySelector('video') !== 'null') {
 new App.Video({
 'element': document.getElementsByTagName('video')[0],
 'callbacks': {
 ...
 }
 });
}

We don't want this code in main.js because it will be shared among all the
applications built in this book, so what we need to do is extrapolate it. For this
reason, we have created another JavaScript file named App.VideoController.js
in our js/App directory. This file is also included with the source code of this book.

Please open the App.VideoController.js file included with this book, and find
the initControls method; it should look like the following:

VideoController.prototype.initControls = function() {
 // Remove Default control
 // Comment this out if you want native controls
 $(videoEle).removeAttr('controls');

 controlsEle = document.querySelector('.video-controls');

 controls = new App.VideoControls(controlsEle);

 $(controlsEle).
 on('videocontrols:play', function(){
 video.play();
 }).
 on('videocontrols:pause', function(){
 video.pause();
 }).
 on('videocontrols:fullscreen', function(){
 video.fullscreen();
 }).
 on('videocontrols:mute', function(){
 video.mute();
 }).
 on('videocontrols:onUnmute', function(){
 video.unmute();
 });

 return this;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating HTML5 Video

[70]

Let's briefly review what is going on in this method to understand it better. First,
we are telling our video element to hide its controls. This is done by removing the
controls attribute. Then we cache our controls div in controlsEle. Next, we
initialize our App.VideoControls class and pass it in the cached controls div.
Finally, we add listeners to the cached video controls and listen to the custom events
that we have defined in our defaults of App.VideoControls. These listeners then call
the methods we have exposed in App.Video by telling the instance, video, to run
the appropriate function.

The last issue we need to take care of is initializing this whole program. Since we
removed the initialization in main.js, we need to start it elsewhere. The best place
would be on the specific index.html, which would be video/index.html. So, let's
open up this file and include the following script at the bottom of the page, right
after the inclusion of main.js:

<script>
 new App.VideoController(true);
</script>

This was the last item to take care of. When we run our page, we should have a
fully functional video player that runs off our customized controls.

Summary
Give yourself a big pat on the back, because you have accomplished quite a bit!
Not only do you have a video player with customized controls, but you have
built a solid video library that ties into the HTML5 specification and works on the
iPhone. We have gone over the HTML5 specification for video integration, created
a simple video player that used native controls, built a fully functional and modular
video library, extended the video library with a controls class that customizes our
experience, and finally created a controller class that hooks up both the video and
the customized controls. On the way, we've taken some time to understand scopes
in JavaScript, the prototype, and the usefulness of callbacks. If at any point you had
some trouble with the concepts taught in this chapter, please review the source code
with this book, and as always, practice makes perfect. The next chapter should be
easier since we'll take the concepts we've learned here and apply them to audio.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Audio
In the previous chapter, we discussed the importance of media distribution and how
HTML5 has changed the web in providing both audio and video content natively
in the browser. We specifically went over the HTML5 Video implementation, but
we also discussed the MediaElement specification, which covers common APIs
that are used by both video and audio.

In this chapter, we go further into the specification and abstract it, making it
reusable for audio and video. But before we get to that, we will discuss the
server configuration with a simple example, and then move on to more advanced
implementation with a dynamic audio player and customized controls.

In this chapter, we will learn about:

•	 Integrating a simple HTML5 Audio example
•	 Configuring our server
•	 MediaElement abstraction
•	 Extending the MediaElement API for audio
•	 Creating a dynamic audio player
•	 Customizing the audio controls

Server configuration
Before we get started with the HTML5 audio element, we need to configure our
server for allowing specific audio formats to play appropriately. First, let's take
a moment to understand the appropriate audio formats.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Audio

[72]

Audio formats
Support for the HTML5 audio playback is similar to that of the video element, in that
each browser supports different types of formats for one reason or another. Here are
some tables showcasing what is supported:

•	 Following are the details related to desktop browsers:

Desktop browser Version Codec support
Internet Explorer 9.0+ MP3, AAC
Google Chrome 6.0+ Ogg Vorbis, MP3, WAV
Mozilla Firefox 3.6+ Ogg Vorbis, WAV
Safari 5.0+ MP3, AAC, WAV
Opera 10.0+ Ogg Vorbis, WAV

•	 Following are the details related to mobile browsers:

Mobile browser Version Codec support
Opera Mobile 11.0+ Device-dependent
Android 2.3+ Device-dependent
Mobile Safari (iPhone, iPad,
iPod Touch)

iOS 3.0+ MPEG, MPG, MP3, SWA,
AAC, WAV, BWF, MP4,
AIFF, AIF, AIFC, CDDA,
32G, 3GP2, 3GP, 3GPP

Blackberry 6.0+ MP3, AAC

As we can see, there are multiple format types that are supported by various browsers,
both mobile and desktop. Luckily for us, this book focuses on iPhone web applications,
so for our purpose, we will only focus on delivering MP3 formats, which are supported
by most browsers. Now, we need to make sure our server can play MP3s.

Audio format directives
In order to serve the correct MIME types, we need to configure our Apache server.
To do this, we want to add the following directives to an .htaccess file:

AddType audio/mpeg mp3
AddType audio/mp4 m4a
AddType audio/ogg ogg
AddType audio/ogg oga
AddType audio/webm webma
AddType audio/wav wav

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

Of course, for our purpose, we only need MPEG/MP3, but it's a good idea to allow
these in order to take into account extensibility when supporting other browsers.

Simple HTML5 audio integration
Including audio on a page is pretty simple. We can just include the following
markup in the page and we have an audio player instantly:

<audio controls>
 <source src="../assets/mymusic.mp3" type='audio/mpeg;
codecs="mp3"'/>
 <p>Audio is not supported in your browser.</p>
</audio>

The audio element

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Audio

[74]

The preceding example specifies an audio element with an attribute of controls
telling the browser to have an audio player with native controls for playback. Inside
this element, there is a source element and a paragraph element. The source element
specifies the source of the audio and its type. The attribute src on the source element
is the relative location of the audio, and the type attribute specifies the MIME type
and codec of the source. Lastly, we have a paragraph element, just in case the audio
element is not supported.

This example is perfect to demonstrate how easy it is to have media on our pages,
except it's not always as simple. Most of the time, we want complete control over our
components, and sometimes it's necessary to tap into the APIs specified. We've gone
over these concepts in the previous chapter, and we have developed an extensive
Video class that we can use here. In the next section, we'll take a step back and
abstract the code we've written thus far.

MediaElement abstraction
We've talked about how audio and video share the same API in the HTML5
specification. In this section, we'll discuss taking the video JavaScript we've
written and abstracting it so that we can re-use it for audio playback.

Creating App.MediaElement.js
1.	 First, let's create a new JavaScript file in our js directory and name it App.

MediaElement.js.
2.	 Next, copy over the contents of App.Video.js into the new App.

MediaElement.js file.

In this step, we want to make sure that our file reflects the MediaElement
namespace, so we'll rename the word Video as MediaElement.

Once we've renamed everything to MediaElement, we probably want to remove the
default elements and their names, because they won't be necessary for an abstracted
class like this one. Along with those defaults, we won't need the public fullscreen
method nor the onFullScreen callback.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

When we make the preceding changes, our file should look like this:

var App = window.App || {};
App.MediaElement = (function(window, document, $){
 'use strict';

 var _defaults = {
'callbacks': {
...
}
 };

 function MediaElement(options) { ... }
 function attachEvents() { ... }

MediaElement.prototype.onCanPlay = function(e, ele) { ... }
MediaElement.prototype.onSeeking = function(e, ele) { ... }
MediaElement.prototype.onSeeked = function(e, ele) { ... }
MediaElement.prototype.onEnded = function(e, ele) { ... }
MediaElement.prototype.onPlay = function(e, ele) { ... }
MediaElement.prototype.onPause = function(e, ele) { ... }
MediaElement.prototype.onLoadedData = function(e, ele) { ... }
MediaElement.prototype.onLoadedMetaData = function(e, ele) { ... }
MediaElement.prototype.onTimeUpdate = function(e, ele) { ... }
MediaElement.prototype.getDefaults = function() { ... ;
MediaElement.prototype.toString = function() { ... };
MediaElement.prototype.play = function() { ... }
MediaElement.prototype.pause = function() { ... }
MediaElement.prototype.stop = function() { ... }
MediaElement.prototype.mute = function() { ... };
MediaElement.prototype.unmute = function() { ... };

 return MediaElement;

}(window, document, Zepto));

Although we've written this code previously, let's briefly review the structure of the
MediaElement class. This class contains exposed methods that can be accessed, such
as onCanPlay, onSeeking, and onEnded. These methods are called when the element
we pass in has dispatched the appropriate event. The events we are listening to are in
attachEvents, and they contain the shared API events, such as canplay, seeking,
ended, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Audio

[76]

This class essentially contains only the APIs that are shared among audio and video
media. If we wanted to extend it for a specific functionality, such as fullscreen, we
would extend the instance of MediaElement or use JavaScript inheritance for the
App.Video class.

In this book, we do not cover true JavaScript inheritance. Given that
we want to review HTML5 for iPhone web application development
as a whole, we don't go into more advanced details of JavaScript
architecture.

Initializing App.MediaElement.js
In order to initialize App.MediaElement.js, we can do the following:

new App.MediaElement({
 'element': someElement,
 'callbacks': {
 'onCanPlay': function(){ console.log('onCanPlay'); },
 'onSeeking': function(){ console.log('OVERRIDE :: onSeeking');
},
 'onSeeked': function(){ console.log('OVERRIDE :: onSeeked');
},
 'onEnded': function(){ console.log('OVERRIDE :: onEnded'); },
 'onPlay': function(){ console.log('OVERRIDE :: onPlay'); },
 'onPause': function(){ console.log('OVERRIDE :: onPause'); },
 'onLoadedData': function(){ console.log('OVERRIDE ::
onLoadedData'); },
 'onLoadedMetaData': function(){ console.log('OVERRIDE ::
onLoadedMetaData'); },
 'onTimeUpdate': function(){ console.log('OVERRIDE ::
onTimeUpdate'); }
 }
});

In the preceding code, we create a new instance of MediaElement and pass it an
object, which gets merged with the defaults of the MediaElement constructor. Keep
in mind that element will always refer either to the audio or video element. We can
choose to override the default callbacks or not, as they are optional.

Please note that we are passing in all the callbacks. This is because,
since the writing of this book, Zepto.js contains a bug that does
not do deep copying of an object if passed in the Boolean true value
as the first parameter.

Now we are prepared to use this class with the audio class we've developed for
this page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

Extending the MediaElement API for
audio
Now that we have an abstract MediaElement class, we want to build on top of it to
allow for audio playback. Starting with the base template we've established, we'll
create an App.Audio class that contains all the functionality for this page; from
creating an instance of MediaElement, to creating a drop-down menu for switching
tracks and managing the volume of each track.

The base template
We can establish a base template by following the pattern we have previously
established. Here is some code you can start out with as a template:

var App = window.App || {};

App.Audio = (function(window, document, $){
 'use strict';

 var _defaults = {
 'element': 'audio',
 'name': 'Audio'
 };

 function Audio(options) {
 this.options = $.extend({}, _defaults, options);

 this.element = this.options.element;
 this.$element = $(this.element);

 attachEvents.call(this);
 }

 function attachEvents() { }

 Audio.prototype.getDefaults = function() { ... };

 Audio.prototype.toString = function() { ... };

 return Audio;

}(window, document, Zepto));

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Audio

[78]

Nothing is new here, we are using the same pattern that we've used previously;
establishing an App.Audio class, an IIFE that contains the Audio constructor, the
same attachEvents method to contain the events to handle, and some prototype
methods that extend Audio (getDefaults and toString). We continue to use Zepto
and pass in both window and document into the IIFE as a reference and then self
contain our code.

Creating an instance of MediaElement
In our constructor, we need to do two things. One, we need to get the audio element
on the page and cache it. And two, we need to create or initialize an instance of
MediaElement based on the element on the page.

Finding and caching an audio element
To find the audio element and cache it, we can do the following:

this.audioElement = document.getElementsByTagName('audio')[0];
this.$audioElement = $(this.audioElement);

Remember that the this keyword is in reference to the instance of audio that gets
returned to App.Audio. We then create a property on this called audioElement,
which gets set to the first audio element found on the page.

Note that getElementsByTagName, which exists on the document,
accepts one parameter, a string. This method gets all the elements on
the page that match that tag in an array. In this instance, we only have
one audio element on the page, so we get an array with one element
found. Thus, we use [0] to get the first instance in that array.

Once we have the audio element, we cache it as a Zepto object so that we use Zepto
once, thus increasing the performance of our application. I usually do this in most of
my projects because I find myself using many of Zepto's built-in methods, especially
for creating event listeners. However, this can be skipped if you don't find it useful in
your case.

Initializing MediaElement
Now that we have our audio element, we can follow the code we wrote in the last
section on how to initialize MediaElement. So you don't have to flip back, here's
the code we can use:

this.mediaElement = new App.MediaElement({
 'element': this.audioElement,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[79]

 'callbacks': {
 'onCanPlay': function(){ ... },
 'onSeeking': function(){ ... },
 'onSeeked': function(){ ... },
 'onEnded': function(){ ... },
 'onPlay': function(){ ... },
 'onPause': function(){ ... },
 'onLoadedData': function(){ ... },
 'onLoadedMetaData': function(){ ... },
 'onTimeUpdate': function(){ ... }
 }
});

This is the same code we wrote previously, and the ellipsis in the callbacks should
contain console.log we had written. The one thing you should notice is that
we pass in this.audioElement, our cached audio element, into this instance
of MediaElement. Also, we have now created a reference to the instance of
MediaElement with this.mediaElement. Now we can publicly control the
audio from the instance of App.Audio we will create later on.

At this point, we have a fully functional audio player built off our abstracted class
of MediaElement. However, there's not much going on; we only have a setup that
works and is extensible, but it is not in any way unique. This is where our dynamic
audio player will come in to play.

Dynamic audio player
So at this point, we have an audio class that extends our MediaElement object with
events that are exposed and therefore available for us to create dynamic content.
Now, let's have some fun and create a dynamic audio player that switches tracks.

The select element
Originally, when we created this application in Chapter 1, Application Architecture,
we created a navigation that is contained by anchor tags and list elements. Although
this works perfectly on desktop and perhaps the iPad, it is not suitable for smaller
screen devices like the iPhone. For this reason, the select element brings up a
native component that allows you to easily navigate choices that you can select.

Apple's developer documentation suggests that we use the select element in
our apps, because it has been optimized as a custom control within iOS (http://
goo.gl/T3xuY). This is extremely useful, because it allows us to keep within the
guidelines for web application design for iOS.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Audio

[80]

Now let's go ahead with the implementation. First we need to make sure to add the
select element to our page. Right now, you should have the following markup:

<div class="audio-container">
 <audio controls preload>
 <source src="../assets/sample.mp3" type='audio/mpeg;
codecs="mp3"'/>
 <p>Audio is not supported in your browser.</p>
 </audio>
</div>

What we need to do is add the select element after the audio tag, like so:

<div class="audio-container">
 <audio controls preload>
 <source src="../assets/nintendo.mp3" type='audio/mpeg;
codecs="mp3"'/>
 <p>Audio is not supported in your browser.</p>
 </audio>
 <select>
 <option value="sample1.mp3" selected>Sample1</option>
 <option value="sample2.mp3">Sample2</option>
 <option value="sample3.mp3">Sample3</option>
 </select>
</div>

A select element

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[81]

In the preceding code, we have added a select element that contains multiple
options. These options have a value attribute, and the first option also contains a
selected attribute. The value attribute should contain the track you have in your
assets, and the selected attribute tells the select to have that option automatically
selected on page load.

In this example, we assume that all our audio is MP3. In your case
this may be different, and if so, we would need to build logic into the
code we will write to handle this logic. Because of the complexity that
would be introduced, we focus exclusively on handling audio tracks
that have a MIME type of MP3.

Switching audio tracks
Now that we have a select element on the page listing out the several audio tracks
in an iOS suggested manner, we now want to make our player dynamic based on
user input. To do this, we need to create an event listener to handle the change event.

The change event listener
The select element has a specific event we can listen to, namely the change event.
This is fairly easy to accomplish with Zepto and our cached instance of the audio
element. To add the listener, let's go to our attachEvents method in App.Audio
and add the following bit of code:

var that = this;
this.$element
 on('change', 'select', function(e) { onSelectChange.call(that, e);
});

First we are creating a variable called that, which refers to the instance of audio.
Then we get the cached element we created in the constructor and delegate the
change event coming from any select element on the page. When the change
event fires, we call the anonymous function, namely the third parameter in the
on method. Inside this anonymous function we call a method, which we have not
created, called onSelectedChange, and pass it in the event or the e reference.

We are using Zepto's on method. This method can accept various
parameters similar to jQuery's on method, but in this case, we send
in the event we want to listen to, the element it should be coming
from, and then finally a function that should be called. On top of this,
our anonymous function is doing a call on the method, which we
have discussed previously, but essentially it changes the reference
of this to be audio.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Audio

[82]

The change event handler
Once we have created the listener for the change event, we need to define the handler.
We haven't created this yet, but it entails some fairly complex functionality. Initially,
this should be fairly easy now that we have an API via the MediaElement instance.
However, we only have one audio element on the page, so we need to be able to use
that one element for playback. Thus, we need to do the following in our handler:

•	 Create a temporary reference to our cached audio element
•	 Stop the playback of the audio, even if it is not playing
•	 Clone the cached audio element to the temporary reference
•	 Remove the audio element from the DOM
•	 Delete the cached media element, audio element, and Zepto audio element
•	 Change the source of the cloned audio element
•	 Append the cloned audio element to the DOM
•	 Recreate the cached media element, audio element, and Zepto audio element

Yes, this sounds like a lot of work to do in order to keep a single audio element on
the page, but the code to do this is very little and involves some copy and paste
because we have already written it. So, let's write some magic!

Under the event handler section, we want to include the following method:

function onSelectChange(e) {
 var $tempAudioElement;
 // Stop the song from playing
 this.mediaElement.stop();
 // Store the element temporarily
 $tempAudioElement = this.$audioElement.clone();
 // Now remove the element
 this.$audioElement.remove();
 // Remove from memory
 //-----
 delete this.mediaElement;
 delete this.audioElement;
 delete this.$audioElement;
 //-----

 // Change the temporary audio source
 $tempAudioElement.
 find('source').
 attr('src', '../assets/' + e.target.selectedOptions[0].
value);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[83]

 // Now attach it to the DOM
 this.$element.prepend($tempAudioElement);
 // Reset the audioElement
 this.audioElement = document.getElementsByTagName('audio')[0];
 this.$audioElement = $(this.audioElement);
 // Reset the mediaElement
 this.mediaElement = new App.MediaElement({
 'element': this.audioElement,
 'callbacks': {
 'onCanPlay': function(){ ... },
 'onSeeking': function(){ ... },
 'onSeeked': function(){ ... },
 'onEnded': function(){ ... },
 'onPlay': function(){ ... },
 'onPause': function(){ ... },
 'onLoadedData': function(){ ... },
 'onLoadedMetaData': function(){ ... },
 'onTimeUpdate': function(){ ... }
 }
 });
}

If we go ahead and run the code in the browser, we should be able to switch between
audio tracks with no problem. If you do have an issue, please refer to the provided
source code.

Either way, the preceding code does exactly what we wanted. If we analyze the code
closely, we can see that we are essentially tapping into the MediaElement class when
we stop the playback. This is an example of how easy it is to play around with media
elements such as audio and video now that it has been abstracted. Also note that we
are using quite a few of the Zepto methods, including clone, remove, prepend, and
attr. These are all methods that are useful, which is precisely the reason we cache
our audio element.

You may be asking yourself what the delete section does in our preceding code.
Essentially, this helps with garbage collection; it tells the JavaScript engine that
we no longer need this and so you can recollect it. Yes, we can set them to the
new values after we prepend the new audio element, but this is a sure fire way of
starting fresh and not leaving anything up to guessing from the JavaScript engine.

There is a problem with the code we've written, and that is the redundancy of the
recreation of the audioElement, $audioElement, and mediaElement objects. As
we've defined this functionality previously in our constructor, we can refactor to
make sure our functionality is all located in one place—this is what the next section
looks at. If you already understand what is meant by the refactor of this code,
you can skip this part.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Audio

[84]

Refactoring our code
Since we have the same code in two places, we are starting to introduce some
redundancy. To make our application a bit more manageable, we should centralize
the same functionality into one location. Doing this is not complex, and it is simpler
than you would probably imagine.

For our refactor, we only need to write one method, a setAudioElement method.
This method should be private and only available within the Audio class, and
it should only contain the code necessary for creating the references to the
audioElement, $audioElement, and mediaElement objects.

To do this, create the following method in our private methods section:

function setAudioElement() {
 return this;
}

Now copy the following code from the constructor, and paste it into
setAudioElement:

this.audioElement = document.getElementsByTagName('audio')[0];
this.$audioElement = $(this.audioElement);

this.mediaElement = new App.MediaElement({
 'element': this.audioElement,
 'callbacks': {
 'onCanPlay': function(){ ... },
 'onSeeking': function(){ ... },
 'onSeeked': function(){ ... },
 'onEnded': function(){ ... },
 'onPlay': function(){ ... },
 'onPause': function(){ ... },
 'onLoadedData': function(){ ... },
 'onLoadedMetaData': function(){ ... },
 'onTimeUpdate': function(){ ... }
 }
});

Once we've done this, let's call setAudioElement within our constructor:

function Audio(options) {
 // Customizes the option
 this.options = $.extend({}, _defaults, options);
 //Cache the main element
 this.element = this.options.element;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[85]

 this.$element = $(this.element);
 // Sets the audio element objects
 setAudioElement.call(this);
 attachEvents.call(this);
}

If we run our application now, it should run like normal, as if we had not changed
anything. Now we need to replace the repeated code in the select handler to call
the same method:

function onSelectChange(e) {

 // Now attach it to the DOM
 this.$element.prepend($tempAudioElement);

 setAudioElement.call(this);
}

Now that we've done all the refactoring we need, let's run the application on our
iPhone simulator. When the page runs and you switch between audio tracks, you
should not encounter any issues. There's nothing surprising here, but the cool thing
is that you now a have common code centralized in one location. This is the essence
of refactoring, and it helps achieve a maintainable codebase.

Initializing our Audio class
Up to this point, we've focused on the development of the Audio class. That's fine,
but now we need to initialize all of this code.

To do this, open up the index.html file for the Audio page. This should be located
at /audio/index.html. Once we've opened up that file, scroll to the bottom of the
source code and add the following script after all the other scripts:

<script>
 new App.Audio({
 'element': document.querySelector('.audio-container')
 });
</script>

This is a bit different from how we initialized App.Video, in that we now pass in the
element while App.Video finds the video elements within it. The reason behind the
difference was to show how we can initialize our classes differently. It's up to you on
how you want to initialize a class. Each has its advantages and disadvantages, but
it's good to be aware of the alternatives and choose the best one your code style and
project needs.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Audio

[86]

Now we have a dynamic audio player running off an abstract MediaElement class.
On top of that, we have created a UI that is effective for this purpose and executes
what is expected. But what if we want clearer control of the audio besides what is
provided in the default interface? In the next section, we discover how to control
our audio using the MediaElement class we've created previously.

Customizing HTML5 audio controls
In this section, we'll cover how to customize the controls of our audio player. As
we've seen in our video player discussed in the previous chapter, it can be fairly
useful to create a custom experience. For this book, we've kept it fairly simple, and
we will continue following that pattern so that we can discuss the principles and get
you started quickly. For audio, customizing the controls is even simpler, especially
since we do not have control over the volume, which is discussed further in the
following section.

Creating custom media controls
First, let's remove the controls attribute from our audio element. When we do
this, you should have the following markup:

<audio preload>
 <source src="../assets/sample1.mp3" type='audio/mpeg;
codecs="mp3"'/>
 <p>Audio is not supported in your browser.</p>
</audio>

Now we need to add custom controls to the markup. We can continue doing the
same thing we did in the previous chapter, except this time we abstract it with a
media-controls class and keep it simple by just having a play and pause button.
This should also go after the audio element. When we are finished, the markup
should look like this:

<div class="media-controls">
 <div class="mc-state">
 <button class="mc-play mc-state-play">Play</button>
 <button class="mc-pause mc-state-pause">Pause</button>
 </div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[87]

When you check out the application on the iPhone simulator, it should look like this:

Custom controls

What you will notice is that we now have no audio element being displayed on the
page. This is because we have taken out the controls attribute. Don't worry about
it too much; this is the expected behavior on iOS. Normally, you would create all the
controls for your audio player, but for now we'll just do play and pause. As a bonus,
you would probably want a track as well, but that is for a much larger discussion
and does not fit the scope of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Audio

[88]

Adding interactivity to our customized
controls
This is where all the magic happens. We will now connect the interactivity we've
built into the MediaElement class in order to customize our experience.

First, let's go to our App.Audio JavaScript file and find the attachEvents method.
To keep it short and simple, let's include the following bit of code after our change
event listener:

this.$element.
 find('.media-controls').
 on('click', '.mc-play', function() { that.mediaElement.play();
}).
 on('click', '.mc-pause', function(){ that.mediaElement.
pause(); });

The preceding code uses the cached $element to find the media controls, and then
attaches the clock event onto the play and pause buttons accordingly. Inside each
event listener we use the instance of mediaElement that has been created within
the setAudioElement method to call the play or pause methods.

One thing to note is that our event listeners are using that in order to
reference the instance of mediaElement. If you recall, we created the
that variable at the top of the attachEvents method so that we have
a reference of this inside of the event listener. As we've explained
previously, JavaScript has function scope, so when we create our event
listener, that function has created a new scope that sets the relation of
this to the scope of the event. Behind the scenes, Zepto sets this to
the target element, which would be either the play or pause element.

This is all we need to make customized controls that play and pause our audio.
If we now test the application, we should be able to switch between tracks, play
our track, and pause the track.

Sequential playback
In this section, we take a look at how we can build a preliminary playlist. Although
this section is more bonus material, it's useful when creating some sort of a music
player application where there are playlists of music we want to play sequentially.
At first, it may be difficult to understand how we can do this, especially given the
fact that we need user input to enable playback, but it's not really an issue. Because
the load and play methods are initiated on the first song, we can just switch the
source, load it, and then play the track. So let's go through it step-by-step.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[89]

The markup
We don't really want to play music sequentially by default, this should be user
initiated based on good user experience design. So, let's include another button
for the user to enable or disable this feature:

<div class="mc-state">
 <button class="mc-play mc-state-play">Play</button>
 <button class="mc-pause mc-state-pause">Pause</button>
 <button class="mc-sequential mc-sequential-off mc-state-
sequential">Sequential Off</button>
</div>

All we've done in the preceding code is added another button after the play and pause
buttons. This button contains the appropriate three classes that we need and the text
Sequential Off, because we only want users to enable this feature if they want to.

When your markup is all set, you should have the following interface:

The sequential button

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Audio

[90]

The JavaScript
There's a bit of work to do here, but nothing overly complicated. Here's what we
want to do as a checklist:

•	 Create a default setting for sequential playback, and set it to false
•	 Create a handleOnAudioEnded method, with a parameter for the Audio class
•	 Call the handleOnAudioEnded method within the onEnded callback of the

MediaElement initialization
•	 Inside the handleOnAudioEnded method, we should check if sequential

playback is enabled
•	 If sequential playback is enabled, we want to update the select menu and

reload the audio element
•	 Finally, we want to listen for the click event on the new sequential button to

enable or disable this feature, while also updating the button's status as well

So, first things first, let's create the sequential default setting:

var _defaults = {
 'element': 'audio',
 'name': 'Audio',
 'sequential': false
};

Nothing too crazy, we've just added a default setting called sequential and set it
to false. Next, we want to create the handleOnAudioEnded method that contains
the functionality we've listed previously:

function handleOnAudioEnded(Audio) {
 if(Audio.options.sequential) {
 var $select = Audio.$element.find('select'), $next;

 // Go to next in playlist
 $next = $select.
 find('option[selected]').
 removeAttr('selected').
 next().
 attr('selected', 'selected');

 // Change the Selected Index
 $select[0].selectedIndex = $next.index();

 // Must be made on the audio element itself
 Audio.audioElement.src = '../assets/' + $select.val();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[91]

 Audio.audioElement.load();
 Audio.audioElement.play();
 }
}

Don't worry if you don't understand the preceding code, just take the following
points into account:

•	 The only parameter we are passing is an instance of Audio
•	 We then check if sequential is enabled
•	 Once we've verified we want sequential playback, we create two variables:

$select, which caches the select element, and $next, which will cache the
next song in the playlist

•	 Then we set the $next element while removing the selected attribute from
the current option

•	 We update the select menu by setting the selectedIndex to the next
option in select

•	 Finally, we update the audio elements source directly, load that source, and
set the status to playing

This method handles the playback of the next source we want to play. We could
probably improve this by adding the functionality to change the source, load, and
play inside the MediaElement class, but I'll leave that up to you to decide and extend
as needed. We could also possibly cache select at the class level (Audio), instead
of doing it each time we want to play sequentially.

Note that we have not added any error checking. Currently, this code
doesn't do a check for when we get to the end of the list. Perhaps we want
it to loop, or maybe we want to inform the user the playlist is done? There
are many use cases that we can execute here, but you get the point, which
is that we can have a playlist in our application if we wanted.

Next we want to call the preceding method we created when we pass in callbacks
to the initialization of the media element. As you may recall, we put this in our
setAudioElement, and therefore we want to update the initialization to the following:

this.mediaElement = new App.MediaElement({
 'element': this.audioElement,
 'callbacks': {
 ...
 'onEnded': function(){ handleOnAudioEnded(that); },
 ...
 }
});

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Audio

[92]

All we did here was update the onEnded method by calling handleOnAudioEnded
and passing in that, which is a reference to the instance of the Audio class. Now, all
we need to do is add our event listener for when the user wants sequential playback,
which can be added in our attachEvents method:

this.$element.
 find('.media-controls').
 on('click', '.mc-play', function() { that.mediaElement.play();
}).
 on('click', '.mc-pause', function() { that.mediaElement.
pause(); }).
 on('click', '.mc-sequential', function(e) {
handleSequentialClick(e, that); });

The preceding code basically shows that we have added a click event listener to
our sequential button, and all it does is call the handleSequentialClick method
that accepts an event and the instance of audio with the that variable we created
previously. Notice how we haven't created the handleSequentialClick method?
Well, here it is:

function handleSequentialClick(e, Audio) {
 var $this = $(e.target);

 if(!Audio.options.sequential) {
 Audio.options.sequential = true;
 $this.
 removeClass('mc-sequential-off').
 addClass('mc-sequential-on').
 text('Sequential On');
 } else {
 Audio.options.sequential = false;
 $this.
 removeClass('mc-sequential-on').
 addClass('mc-sequential-off').
 text('Sequential Off');
 }
}

Put simply, this method just updates the default sequential option to true or
false, toggling the value depending on the previous status. The method also
toggles the classes of the button and the inner text, updating the user based on
their interaction.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[93]

iOS considerations
Up to this point, we have customized much of the experience for both the video and
audio elements. This will work perfectly for desktop devices, but there are a few
points we need to take into account when working with touch devices, such as the
iPhone and iPad. The good thing is that these are points that are consistent across
all iOS devices, and as such should be something we take into account.

Volume
We can set the volume for audio and video elements from 0 to 1, and we can
maintain the state of the volume in our MediaElement library. This is good practice
for an overall architecture. However, on iOS, the volume is under the user's physical
control—the volume button we interact with on almost any device.

As per Apple's documentation (http://developer.apple.com/library/
safari/#documentation/AudioVideo/Conceptual/Using_HTML5_Audio_Video/
Device-SpecificConsiderations/Device-SpecificConsiderations.html#//
apple_ref/doc/uid/TP40009523-CH5-SW11):

On iOS devices, the audio level is always under the user's physical control. The
volume property is not settable in JavaScript. Reading the volume property always
returns 1.

Basically, we can't set the volume property; it will always return 1. This is so that
we don't manipulate the user's volume, and as such is only set via the user's volume
control button.

Autoplay
In our application, we've also seen an example of autoplay, where we play the audio
after we select a different track in our select. This works perfectly on a desktop, but
not so much on iOS. There's a reason for this, and it's basically to protect the user's
cellular data usage. This is a design decision on Apple's part, and is something we
could see on other devices as well.

As per Apple's documentation (http://developer.apple.com/library/
safari/#documentation/AudioVideo/Conceptual/Using_HTML5_Audio_Video/
Device-SpecificConsiderations/Device-SpecificConsiderations.html#//
apple_ref/doc/uid/TP40009523-CH5-SW8):

Autoplay is disabled to prevent unsolicited cellular download.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Audio

[94]

It also states that (http://developer.apple.com/library/
safari/#documentation/AudioVideo/Conceptual/Using_HTML5_Audio_Video/
Device-SpecificConsiderations/Device-SpecificConsiderations.html#//
apple_ref/doc/uid/TP40009523-CH5-SW4):

In Safari on iOS (for all devices, including iPad), where the user may be on a
cellular network and be charged per data unit, preload and autoplay are disabled.
No data is loaded until the user initiates it. This means the JavaScript play() and
load() methods are also inactive until the user initiates playback, unless the play()
or load() method is triggered by user action. In other words, a user-initiated Play
button works, but an onLoad="play()" event does not.

Simultaneous playback
You might be asking why we didn't go into more complicated experiences, including
multiple video playback or audio tracks playing at the same time. Well, there's a
good reason for that too, and it's basically because iOS limits the playback of audio
or video streams to one at a time. This also comes back to the fact that we don't want
to use more cellular data than necessary on the page.

As per Apple's documentation (http://developer.apple.com/library/
safari/#documentation/AudioVideo/Conceptual/Using_HTML5_Audio_Video/
Device-SpecificConsiderations/Device-SpecificConsiderations.html#//
apple_ref/doc/uid/TP40009523-CH5-SW10):

Currently, all devices running iOS are limited to playback of a single audio or
video stream at any time. Playing more than one video—side by side, partly
overlapping, or completely overlaid—is not currently supported on iOS devices.
Playing multiple simultaneous audio streams is also not supported.

There are more considerations that should be taken into account when developing
an iOS web application that supports audio and video media playback. We can
continue covering this here, but I encourage you to visit Apple's documentation,
iOS-Specific Considerations (http://developer.apple.com/library/
safari/#documentation/AudioVideo/Conceptual/Using_HTML5_Audio_Video/
Device-SpecificConsiderations/Device-SpecificConsiderations.html), to
review all the necessary considerations. The previously mentioned documentation
snippets should cover some of the concerns you had while developing the video
and audio sections of this book, but it's always good to be aware of all the issues
that come up.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[95]

Summary
In this chapter, we've reviewed the media element API from the perspective of audio
playback on iOS. From abstracting the previous code into a MediaElement class
making it reusable for both audio and video, to customizing the controls of the audio
element, we have created a dynamic audio player that works and is constructed
in a modular pattern. Along with creating an audio player, we have reviewed the
considerations that must be made on an iOS device, such as the control of volume
and the limitation of simultaneous playback. I hope that this chapter has helped
you get started experimenting with audio, and has helped you understand that
we can consolidate code and focus on delivering features that are critical within
our applications by abstracting our code. In the next chapter, we shift to how we
can use touch and gestures to create unique user experiences that go beyond just
clickable buttons.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Touch and Gestures
Creating iPhone web applications, by default, involves touch interaction. This is
obvious, and luckily Apple has done a great job getting us up and going quickly by
mapping clicks to touch events by default. However, what if we wanted a slideshow
that reacted to a swipe from the user? Or, what if we wanted to zoom into a photo,
without affecting the layout of a page, when the user pinched within a defined area
of our application? Well, that's all up to us as developers.

In this chapter we'll go over touch events and gestures, and use the technology
to build a slideshow that is responsive to a user's touch and gestures. Most of the
concepts here will be basic to help you understand these new events that were not
common in traditional web development. However, we'll also dive into some more
advanced features using the pinch gesture to zoom in and out of an image. But, first
we need to do some adjusting to our app by reorganizing our navigation, so that it
does not take up most of the screen real estate, from there we'll start our dive into
touch and gestures.

In this chapter, we will cover:

•	 Simplifying our navigation
•	 Creating a responsive photo gallery
•	 Listening to and handling touch events
•	 Interpreting touch events
•	 Responding to gestures
•	 Extending touch events as a plugin

www.it-ebooks.info

http://www.it-ebooks.info/

Touch and Gestures

[98]

Simplifying the navigation
Our navigation is currently taking up some serious real estate, and although it
worked for our previous examples, it just won't work well with the rest of the
examples for this book. So, first we need to clean up this application in order to
focus on the actual content of our application. We'll clean up our markup to use
the select component. Then we'll add interactivity, so that our select element
actually switches between pages.

Before we start coding, create an App.Nav.js file in our JavaScript directory. Once
the file is created, let's include it at the bottom of our page with the following script tag:

<script src="../js/App/App.Nav.js"></script>

Navigation markup and styling
In this section of the chapter we look at reworking the navigation for our
applications. In most cases we want to make sure to use native controls on the
device, so the goal here is to provide the user the ability to use the custom select
control in iOS, but give us the same flexibility to customize the look and feel while
having the same interaction. We'll modify the markup, look at customizing controls,
and then simulating the same experience.

The basic template
First, let's get rid of the anchor tags that we are using within the navigation.
Once we're done removing those links, let's create a select element with
options and have the values point to the appropriate pages:

<nav>
 <select>
 <option value="../index.html">Application Architecture</
option>
 <option value="../video/index.html">HTML5 Video</option>
 <option value="../audio/index.html">HTML5 Audio</option>
 <option value="../touch/index.html" selected>Touch and Gesture
Events</option>
 <option value="../forms/index.html">HTML5 Forms</option>
 <option value="../location/index.html">Location Aware
Applications</option>
 <option value="../singlepage/index.html">Single Page
Applications</option>
 </select>
</nav>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[99]

In the preceding code we have replaced anchor tags with a select element with
options. Each option has a value that points to the specific page and within the
option is the chapter name. Since we've removed the anchor tags, we need to
adjust the styling.

Styling a select component
There's not much we need to do here, but remove the styling we had in place.
Although it's not necessary, for best practice, you always want to remove unused
styling. This helps increase the performance of your application by lowering the
page load.

So let's remove the following styles:

/* --- NAVIGATION --- */
nav ul {
 padding: 0;
}
nav li {
 list-style: none;
}
nav a {
 display: block;
 font-size: 12px;
 padding: 5px 0;
}

Now, we need to add the interactivity that mimics the default actions of an
anchor tag.

Navigation interactivity
Mimicking the default behavior of an anchor tag is pretty simple. Let's start by
creating a basic template, such as those we've done in previous chapters, then cache
the navigation and add the behavior to switch between pages. So let's get started!

www.it-ebooks.info

http://www.it-ebooks.info/

Touch and Gestures

[100]

The basic template
Following is our default template. As before, it's just a simple IIFE that establishes
a class for our navigation. This closure accepts the window, document, and Zepto
objects, aliasing the Zepto object to the dollar sign.

var App = window.App || {};

App.Nav = (function(window, document, $){

 var _defaults = {};

 function Nav() {}

 return Nav;

}(window, document, Zepto));

Caching our navigation
Now, we could just use Zepto to find the navigation in the DOM each time we need
it. But following our best practices, we can cache the navigation and have a variable
contained in the closure scope that can be used by private and public methods.

var _defaults = {},
 $nav;

function Nav() {
 $nav = $('nav');
}

In the preceding code, we have created a $nav variable that is contained within
the closure scope, so we can now reference it within all methods contained in this
closure. Then in the constructor we set the variable to the nav element.

Listening and handling the change event
Now the fun begins. We need to listen to when the select element's change event is
fired. We have done this before for our audio player. However, we'll briefly go over
how to do this here in case you haven't been following along in order.

First, let's call an attachEvents method that we will define next:

function Nav() {
 $nav = $('nav');

 attachEvents();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[101]

Now that we are calling the attachEvents method, we need to create it. In this
method, we want to listen to the change event and then handle it:

function attachEvents() {
 $nav.
 on('change', 'select', handleSelectChange);
}

In the preceding code we use Zepto's on method to tell the cached navigation
to listen to the change event on a select element, which is contained
within the navigation. From there we assign a method we have not created,
handleSelectChange. This method is a handler that we will define next.

Finally, we need to define our handler. All this handler needs to do is switch
pages based on the changed value of the select element.

function handleSelectChange(e) {
 window.location = this.value;
}

The preceding handler accepts the event parameter, but we actually don't use it.
You can remove this parameter, but usually I like to keep the parameters a handler
accepts. Either way, we are telling the window object to switch locations by setting
window.location to the value that the select element has been changed to.

Note that we are using this.value to set the location of the
window object. In this case, this refers to the select element itself
or the element the on event targets.

Initializing the navigation
Finally, all we need to do is initialize this class. Because this navigation will
theoretically be on every page of our application, we can immediately create
a new instance of App.Nav after we have created this call. So let's add the
following code at the end of App.Nav.js:

new App.Nav();

This is all we need to mimic the behavior of our previous anchor tags. With this
done, we now have plenty of screen real estate to proceed with touch events.
Next, let's discuss touch events and gestures on the iPhone.

www.it-ebooks.info

http://www.it-ebooks.info/

Touch and Gestures

[102]

Touch and Gesture events
Touch events are easy to handle on the iPhone; however, there are a couple of "gotchas"
when you start diving into when events are fired and how they are interpreted in
certain situations. Luckily for us, gestures are also easily implemented with the
GestureEvent object. In this section we'll go over touch and gestures in general,
getting a fundamental understanding of the technology behind these user experiences
so that in the next section, we can successfully create a swipeable slideshow.

Touch events
Touch events include one or more inputs received by your mobile device. In this book
we'll focus on up to two-finger events that we can handle in several ways. iOS does
a great job at interpreting these inputs; however, elements can be either clickable or
scrollable as described by Apple's Developer documentation (http://developer.
apple.com/library/ios/#documentation/AppleApplications/Reference/
SafariWebContent/HandlingEvents/HandlingEvents.html#pageTitle):

A clickable element is a link, form element, image map area, or any other element
with mousemove, mousedown, mouseup, or onclick handlers. A scrollable element
is any element with appropriate overflow style, text areas, and scrollable iframe
elements. Because of these differences, you might need to change some of your
elements to clickable elements, as described in "Making Elements Clickable,"
to get the desired behavior in iOS.

In addition, you can turn off the default Safari on iOS behavior as described in
"Preventing Default Behavior" and handle your own multi-touch and gesture
events directly. Handling multi-touch and gesture events directly gives developers
the ability to implement unique touch-screen interfaces similar to native
applications. Read "Handling Multi-Touch Events" and "Handling Gesture
Events" to learn more about DOM touch events.

This is essential to keep in mind because, depending on the kind of functionality we
require, certain elements behave differently by default. If we want to modify this
functionality, we need to override the defaults by attaching certain events to those
elements, as described earlier. By preventing the default functionality and overriding
it with our own, we can create experiences that are greatly customized to our needs.
An example of this would be creating a full page parallax experience that plays an
animation as we scroll.

Once we know what kind of behavior we want, there are a couple of important
things we need to keep in mind. For example, events are conditional, so depending
on the user interaction some gestures might not generate any events. Let's take a look
at some of these events.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[103]

On scroll
A good example of a conditional event is when the user scrolls a page. In this
interaction the scroll event only fires when the page stops moving and redraws.
For this reason, on most parallax-driven sites the default behavior is prevented
on the page and a custom scroll solution is implemented.

On touch and hold
When a user touches a clickable element and holds down their finger, an information
bubble is displayed. But if you were hoping to catch this gesture, you're out of luck.
Based on the official Apple documentation, no events are dispatched during this
type of interaction.

On double-tap zoom
In this interaction, the user double-taps the screen and the page zooms in. You would
think that there would be an event for this type of interaction, but again we don't
have any events we can tie into.

If we keep in mind the exceptions discussed earlier, we should be good with
developing our application and handling our touch events correctly. Now we need
to know what events we can tie into for touch, including how to listen and handle
them appropriately.

Supported touch events and how they work
The Apple documentation officially lists out all events that are supported on iOS,
including the following touch and gesture events and when they were supported:

Event Generated Conditional Available
gesturestart yes N/A iOS 2.0 and later
gesturechange yes N/A iOS 2.0 and later
gestureend yes N/A iOS 2.0 and later
touchcancel yes N/A iOS 2.0 and later
touchend yes N/A iOS 2.0 and later
touchmove yes N/A iOS 2.0 and later
touchstart yes N/A iOS 2.0 and later

www.it-ebooks.info

http://www.it-ebooks.info/

Touch and Gestures

[104]

Based on the preceding list, we've got everything we need in order to make complex
user experiences on the iPhone using mobile Safari. If you were worried how these
events are handled, there's no need to be, based on the development documentation
by Apple (http://developer.apple.com/library/ios/#documentation/
AppleApplications/Reference/SafariWebContent/HandlingEvents/
HandlingEvents.html) these events are delivered in the same way as
any other browser:

Mouse events are delivered in the same order you'd expect in other web browsers
(…). If the user taps a nonclickable element, no events are generated. If the user
taps a clickable element, events arrive in this order: mouseover, mousemove,
mousedown, mouseup, and click. The mouseout event occurs only if the user
taps on another clickable item. Also, if the contents of the page changes on the
mousemove event, no subsequent events in the sequence are sent. This behavior
allows the user to tap in the new content.

Now that we have a good understanding of one-finger touch events, including the
exceptions and the way they work, we should take some time to understand gestures.

Gestures
Technically, gestures are touch events and so the preceding information also
applies to single-touch events because panning, zooming, and scrolling are all
considered gestures. But, gestures are also complex interactions that can be
interpreted differently. Based on the Apple documentation (http://developer.
apple.com/library/ios/#documentation/AppleApplications/Reference/
SafariWebContent/HandlingEvents/HandlingEvents.html) we can combine
multi-touch events to create custom gestures;

Typically, you implement multi-touch event handlers to track one or two touches.
But you can also use multi-touch event handlers to identify custom gestures. That
is, custom gestures that are not already identified (...)

We've seen from the chart in the previous sections that we can listen to gestures
and thus create custom experiences; however, one thing that is confusing
about gestures and normal touch events is when they happen. But this is
not a mystery, because Apple's documentation (http://developer.apple.
com/library/safari/#documentation/UserExperience/Reference/
GestureEventClassReference/GestureEvent/GestureEvent.html#//apple_
ref/javascript/cl/GestureEvent) provides the following information to us:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[105]

(...) for a two finger multi-touch gesture, the events occur in the following
sequence:

1. touchstart for finger 1. Sent when the first finger touches the surface.

2. gesturestart. Sent when the second finger touches the surface.

3. touchstart for finger 2. Sent immediately after gesturestart when the second
finger touches the surface.

4. gesturechange for current gesture. Sent when both fingers move while still
touching the surface.

5. gestureend. Sent when the second finger lifts from the surface.

6. touchend for finger 2. Sent immediately after gestureend when the second finger
lifts from the surface.

7. touchend for finger 1. Sent when the first finger lifts from the surface.

From the preceding information, we can gather that both touch and gesture events
go hand-in-hand. This allows us to do some interesting things on the frontend
without any guesswork. But, how do we do this? Well, the next section tackles
this by creating a photo gallery that responds to both touch and gestures.

Creating a responsive photo gallery
We'll get a better understanding of touch and gesture events if we focus on small
pieces of functionality that we have already seen in traditional mobile applications,
such as an interactive slideshow. We've seen this everywhere, a slideshow with next
and previous buttons but also the ability to swipe from left to right or vice versa. The
buttons are easy, and attaching touch events is also fairly simple; however, swiping
does not come out of the box in mobile Safari, so we need to build that. So let's get
started by first laying out our gallery and then styling it.

www.it-ebooks.info

http://www.it-ebooks.info/

Touch and Gestures

[106]

Gallery markup and styling
As with any slideshow gallery, it's essential that we create a good structure. This
structure should be easy to follow and doesn't really require too many elements if
we want to modularize it.

The basic gallery slide list
Let's start with something extremely basic. First, let's create a div with a class of
gallery:

<div class="gallery"></div>

From here, we want a content area that will contain all our slides. You may very well
be asking why we just don't dump our slides inside the parent gallery container, and
the reason for this is so that we can extend our gallery with other functionality, such as
a play and pause button, without compromising the structure of the slides themselves.

So let's create another div inside our gallery that contains a class of gallery-content,
like so:

<div class="gallery">
 <div class="gallery-content">
 </div>
</div>

Now that we have a content area for our gallery, we want to make an unordered
list of slides that contain our images. When we finally do this, our gallery
markup should look like this:

<div class="gallery">
 <div class="gallery-content">

 </div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[107]

When you look at the preceding markup, you may be in shock that I
left out content for the alt attribute on the image tag. Yes, this is a
bad practice, but I do this here to move a bit quicker. However, you
shouldn't do this in your applications, always give your images an
alt attribute with relative content.

Now that we have a basic markup structure we should start styling this slideshow,
but keep in mind that the preceding markup is not end all, be all. I've seen some
extraordinary work on other sites, and that's cool, but we want to keep things simple
here and give you a foundation to build upon. I encourage you to experiment and
try new things out, but don't let the preceding markup be the final solution for you.
Before we get to styling this, let's take a step back and understand why we have
a content area.

Adding simple gallery controls
We don't want to complicate the styling for the content area. If we do, this can lead
to some messy styling that "fixes our markup". For this reason, we created a content
area and are now going to add a controls group to our slideshow.

So let's follow the same principle; let's create a div with a class of gallery-controls
that contains two anchor tags, one for the next button and another for the previous
button.

<div class="gallery-controls">
 »
 «
</div>

Now, both the content area and the control are two separate areas that can be
controlled independently. You'll see how this makes things easy for us when we
start styling our gallery. For now, trust me, this will make it simpler for you to
control your gallery. But now, on to our styling!

Making images responsive
We've gone over responsive design in the very first chapter of this book, and
hopefully you do understand the principles. But if you don't, this chapter should
give you a good idea of what we can do to make sure our application not only
works on iPhone, but also on other touch devices as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Touch and Gestures

[108]

So let's say we want our gallery to exist on mobile and desktop versions of our site,
which is a highly desirable feature because now you are building a component that
is reusable and device agnostic. But this also makes things difficult, not taking into
account asset management, we need to calculate how big our images must be. Well,
for this example, we want our images to scale to 100 percent of the slideshow's
width, we want the slideshow to take up 100 percent of our screen width, and have
12 pixel padding on the sides.

In order to accomplish this, we can simply set the width of all images to 100 percent
and have our gallery apply padding of 12 pixels on the sides, like so:

img {
 width: 100%;
}

.gallery {
 margin: 12px 0 0 0;
 padding: 0 12px;
}

Note that our gallery will already take 100 percent of our screen
width, minus the padding we give it on the sides. For this reason
you don't see a property of width: 100% in .gallery. Also,
take into account that we added 12 pixels to the top of the gallery
to give it some room from the main navigation. And last but not
least, we are using shorthand properties here, so that we don't
use padding-left, margin-top, and so on. This makes our code, not
only shorter, but easier to understand and maintain.

This is all that's needed to make a responsive gallery using CSS, the rest of the styling
will be applied via JavaScript. Some of you may balk at this, but it's a fairly used
technique because we need to know the device's width in order to set our gallery
correctly for responsive use. But before we get to that, let's start out by finishing
up the styling for our gallery.

Styling our gallery
Now let's finish up the styling for our gallery in the CSS. Some of this will still apply
for responsive applications, but the previous section helps define the principles.
Don't worry though; I'll go over the styling for each part of this application so that
you can understand it thoroughly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[109]

First, let's make sure our gallery content scales to 100 percent in width, and because
eventually our slides will float left, we want the parent container to have a height;
so let's add a property of overflow: hidden. When you're done, your styles should
look like this:

.gallery .gallery-content {
 width: 100%;
 overflow: hidden;
}

Next, we want to make sure that the unordered list also has a height for when the
slides are floated left, so that this height gets applied to the gallery content. Not only
that, but because we want to animate the unordered list left or right, based on user
interaction, we need to make sure the position and starting left value are defined.
When you're done applying this styling, it should look like this:

.gallery .gallery-content > ul {
 left: 0;
 margin: 0;
 overflow: hidden;
 padding: 0;
 position: relative;
}

Here we've also applied a 0 value to margin and padding. This
is mostly a reset so that we don't run into any layout issues later
on. Normalize.css applies some padding and margin to
unordered lists by default, and this is good but not necessary for
our application so we wipe out those values.

Now, let's focus on styling the controls of our slideshow. This next step is mostly
a setup style, so that we don't run into any issues when we float elements within
a container; such as what we did for the gallery content and unordered list
previously. So let's make sure overflow is set to hidden for our controls:

.gallery .gallery-controls {
 overflow: hidden;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Touch and Gestures

[110]

Since our controls are now set to hidden when elements overflow, we can float our
next and previous buttons accordingly so that they are on the appropriate side of
the slideshow.

.gallery .gallery-controls a[href="#next"] {
 float: right;
}

.gallery .gallery-controls a[href="#previous"] {
 float: left;
}

This is all that's needed to get the basic styling done for your slideshow.
Unfortunately it still doesn't look pretty, and that's because we need to use JavaScript
in order to determine the screen size, apply widths to our slides, and an overall
width to our unordered list. However, there's one more thing we can do here that
brings some serious performance optimization to our application, and that's using
CSS3 transitions.

Before we move on, it's important to note that our CSS selectors are
cascading from the gallery div. This is a good practice because it
allows you to compartmentalize your styles. What we are doing is
basically creating default styles for our gallery, and if anyone wanted
to customize it, they could add their own class before .gallery
to override these styles, allowing the gallery to be much more
customizable. This is a basic CSS fundamental, but I thought I'd point it
out in order to show the importance of creating styles that are modular.

Using CSS3 transitions
CSS3 transitions are extremely important to our applications. Not only because it
makes things easier for us, but also because it gives us performance optimization.
By default, mobile Safari uses hardware acceleration for CSS3 transitions; what this
means is that the hardware will handle the rendering of these transitions, and as
such we won't need to do it manually. Traditionally, we needed to do this using
JavaScript, and because of that we gained no performance optimization, but now
we do with CSS3 transitions. So let's use them!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[111]

This is a basic gallery, and we want to keep it simple. So let's just add our transition
to the unordered list. After all, the unordered list is what we want to animate when
the user swipes or initiates an action from the controls. To do this, we will use
the transition property and use shorthand to define what property we want to
animate, how long, and what transition-timing-function, otherwise known as easing
method, to use.

.gallery .gallery-content > ul {
 left: 0;
 margin: 0;
 overflow: hidden;
 padding: 0;
 position: relative;

 -webkit-transition: left 500ms ease;
 -moz-transition: left 500ms ease;
 -ms-transition: left 500ms ease;
 -o-transition: left 500ms ease;
 transition: left 500ms ease;
}

The only thing we have done here is added the transition property to our
unordered list. This property tells the unordered list to animate the left property
within 500 milliseconds and to use the default easing method.

Here we are defining five transition properties, each one being
prefixed to the browser vendor while the last is the supported
standard property. This is done so that our gallery is usable across
devices. Yes, it's a bit complicated and messy, but it is a necessary
evil given the fact that browser vendors have prefixed this property
and only now have begun to use the non-prefixed version.

Gallery interactivity
The heart of our slideshow lies in its interactivity; from next and previous buttons,
swipeable content and animation rich displays—our slideshow is dependent on
JavaScript. In this section we dive deep into what makes our slideshow work; using
our basic framework, we'll build a Gallery class that is efficient and achieves the
goals stated previously. In reality, our gallery should just have functionality that
allows it to resize and play in a certain direction. But, as always, this takes some
setup work and then we hook everything up. So let's get started!

www.it-ebooks.info

http://www.it-ebooks.info/

Touch and Gestures

[112]

The basic template
First, we'll create our Gallery class. This class should be set up in the same way
as any other class we've built. But in case you haven't been following the book in
order, all we need to do is check for the App namespace and then create a Gallery
class underneath it. Wrapped in a closure, we'll have some defaults and a Gallery
function, and return it at the end of the closure declaration. As we have mentioned
previously, we'll have the following:

var App = window.App || {};

App.Gallery = (function($) {

 var _defaults = {};

 function Gallery() {}

 return Gallery;

}(Zepto));

The only thing that is different here is that we are only passing in the Zepto object.
Previously, we were passing in window and document, but for this class we won't
need those two objects, so we limit it to the Zepto library.

That's all we need for now, but what's more critical is to cache the elements we
will be re-using, plus they will need to be available in the closure so that they are
available in private and public methods.

Caching the gallery
Caching objects is extremely helpful in our applications, especially since it increases
the performance and makes our app extremely efficient. By cutting down on the
number of lookups we need to do in the DOM, we allow for faster processing
and create a less error-prone application.

Not only do we want to cache certain elements, but we want them to also be
available in the closure so that they are accessible by all methods. To do this,
all we need to do is add the cached variables after the _defaults variable
located above our construct, like so:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[113]

var _defaults = {},
 $gallery,
 $slides,
 $slidesContainer,
 $slidesLength,
 $galleryControls,
 slidesWidth,
 galleryWidth;

In the preceding code, we can see that the gallery, its slides, the container of the
slides, the number of slides, gallery controls, and slide and gallery width will be
cached. However, at this point in time we haven't cached anything. So let's start
assigning them the values they should have.

The best place to initialize your values would be in the constructor, or when you
create an instance of a gallery. The constructor should go ahead and cache the
values we need for the rest of the running application. On top of that, each variable
semantically describes what it should be holding, making it easier for you to
understand what's going on. Let's take a look at the following function:

function Gallery() {
 $gallery = this.$el = $('.gallery');

 $slides = $gallery.find('li');

 $slidesContainer = $gallery.find('.gallery-content > ul');

 $galleryControls = $gallery.find('.gallery-controls');

 $slidesLength = $slides.length;
}

From this function we can gather that we cache the gallery, and from that all other
values are determined. For example, we use $gallery to find all the slides, or list
items. This is extremely useful, because what we are doing is telling our application
to begin with the gallery element and then dive into it to find the appropriate
values. Otherwise, we would typically begin at the top of the document and then
go down, which is extremely costly when it comes to DOM lookups.

This is a critical step in the process, because everything else should be easy as pie.
So let's start hooking up some interactivity!

www.it-ebooks.info

http://www.it-ebooks.info/

Touch and Gestures

[114]

Connecting our controls
First, we want the user to be able to click on the next and previous buttons. However,
we don't want anything to happen just yet, we just want to capture those events. As
always let's start small and then work up, what we want to do is have a foundation
to work with.

Attaching the events
We've previously gone over how to attach events, and in this chapter it's no different.
So first create an attachEvents method that looks up the next and previous buttons
from the gallery and then calls a play method. When you're done writing the code,
you should have something like this:

function attachEvents() {
 $galleryControls
 on('click', 'a[href="#next"]', play).
 on('click', 'a[href="#previous"]', play);
}

Nothing is different here. We use the cached $galleryControls variable and tell
it to listen to the click event coming from our next and previous buttons. When
that click event comes from the designated element, then call our play method.
If we run our code now, nothing would happen, except that we would probably
get an error because play does not exist. But let's not do that; instead we'll call our
attachEvents method in our constructor after all of the setup code takes place:

function Gallery() {
 // our previous code

 attachEvents();
}

Nothing crazy here, we're just calling attachEvents, a private method. Did you
notice how we are using $galleryControls even though it's a private method?
That's because that variable exists within the closure scope, so this makes it easier
to manage variables without polluting the global scope of the program. If you don't
yet understand what's going on here, don't worry. With time and practice this will
make sense and things will just be that much easier.

Now, we still have a problem. There is no play method, so let's create it!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[115]

Handling our events
Because our play method does not exist, our application fails; so we need to write
it. But what should it do? Well, for this application, we want it to determine the
direction in which the gallery should play. Then we want it to animate left or right
based on the current position in which the gallery is located. You might be saying,
that sounds easier than you think. But in reality it is. So let's go step-by-step.

Caching variables, again
Yes, we want to cache as much as possible. Again this is a mobile application we
are creating for iPhone and because of the nature of mobile, we need to optimize
where we can. But what should we be caching? Well, the first thing we'll be checking
is direction, and then manipulating a current left position of the unordered list. To
prevent lookups of these values, let's just state a currentLeftPos and direction at
the top of the method, like so:

function play(e) {
 var currentLeftPos, direction;
}

Simple! Now, let's determine these values. An easy way to determine direction is to
have it based on the value of the element clicked. In this case, we can check for #next
or #previous, the values of the href attributes. To make it simpler, we may want to
remove the hash tag as well, just in case we ever wanted to expose this method and
allow ourselves to pass in next or previous. So let's do this:

function play(e) {
 var currentLeftPos, direction;

 direction = $(this).attr('href');

 direction = direction.substr(1, direction.length);
}

Don't worry too much about the details here, but essentially since
play is an event handler, this has become the target event, which
would be our anchor tag. This is how we can get the href value
from those elements. Also, don't be too nervous about the string
manipulation going on there. Basically we are using substr,
a built-in string method, and passing it 1 so that it starts at
position one and then gets the rest of the string. This is how we are
able to get the word next or previous from the href attribute.

www.it-ebooks.info

http://www.it-ebooks.info/

Touch and Gestures

[116]

Great, at this point we have determined the direction. Now we want to get the latest
left position of the unordered list. To do this, we can add the following bit of code
after we've set the direction:

function play(e) {

 // Previous code

 currentLeftPos = parseInt($slidesContainer.css('left'), 10);
}

Note that we are using parseInt, a built-in number method that
accepts an integer as its first parameter and then the base as its
second. We do this because when we request the value of the left
property, we get something like 0px, and we want the value that we
are using to be an integer, not a string. So parseInt helps us out by
taking 0px and interpreting it as an integer of 0.

Now it's time to create the magical part of our application. This part is a bit complex,
but in the end will help us achieve the effect we are looking for. But let's first focus
on getting our application to move on the next call to action. To do this, we want to
set the left position of the unordered list to the current left position minus the width
of a single slide. To do this, we can simply write the following code after the setting
of currentLeftPos:

function play(e) {
 // Previous code

 // Next
 $slidesContainer.css({
 'left': currentLeftPos + -(slidesWidth) + 'px' });
}

The preceding code will do exactly as we ask it; however, there are a couple of issues
we run into. First, this will always run, even if the previous button is hit. Two, there's
no check for when you have reached the very end of your gallery. This can easily be
added to our application like so:

function play(e) {
 // Previous code

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[117]

 // Next
 if (direction === 'next') {
 if (Math.abs(currentLeftPos) < (galleryWidth - slidesWidth)) {
 $slidesContainer.css({
 'left': currentLeftPos + -(slidesWidth) + 'px'
 });
 }
 }
}

You may have noticed that we are using Math.abs on the
currentLeftPos. That is because we'll be getting a negative
number as our value, and since we don't want to complicate the
math or comparison, we simply turn it into a positive integer
using Math.abs. Keep it simple!

In this adjusted code we check the direction, looking for next, and then checking
to make sure the current left position is less than the gallery width minus a single
slide's width. This helps prevent any errors that might come up.

Now on to implementing our previous functionality. For this step, we'll follow
the same procedure; we'll make sure we want to go in the previous direction, then
we'll do a comparison to make sure we don't go below the 0 mark, and finally we'll
execute the code if the conditions have been met. When we're done implementing
this functionality, we should have the following bit of code:

function play(e) {
 // Previous code

 // Previous
 if (direction === 'previous') {
 if (Math.abs(currentLeftPos) > 0) {
 $slidesContainer.css({
 'left': currentLeftPos + slidesWidth + 'px'
 });
 }
 }
}

The only difference here is that we are comparing against the static number 0. This
is to prevent any positive values that will cause a visual error in our gallery. Then
instead of negating our numbers, we use the correct values in order to add to a
negative number, thus giving the appearance of a Previous action.

www.it-ebooks.info

http://www.it-ebooks.info/

Touch and Gestures

[118]

In the end, our play method should look like this:

function play(e) {
 var currentLeftPos, direction;

 direction = $(this).attr('href');

 direction = direction.substr(1, direction.length);

 currentLeftPos = parseInt($slidesContainer.css('left'), 10);

 // Next
 if (direction === 'next') {
 if (Math.abs(currentLeftPos) < (galleryWidth - slidesWidth)) {
 $slidesContainer.css({
 'left': currentLeftPos + -(slidesWidth) + 'px'
 });
 }
 }

 // Previous
 if (direction === 'previous') {
 if (Math.abs(currentLeftPos) > 0) {
 $slidesContainer.css({
 'left': currentLeftPos + slidesWidth + 'px'
 });
 }
 }
}

Are we done? Yes we are! Even though we are only switching the left position value
of our unordered list. We are actually animating because, if you remember, we've
told our element to transition the left property within our CSS. See how easy and
effective using CSS3 properties is? With a simple declaration we have been able
to minimize code and make a highly optimized version of our gallery.

Now, that we have the core of our gallery completed, let's make it responsive!

Gallery responsiveness
We're going to side-step here a bit, but it's worth the necessary effort! In this step,
we're going to look into making our gallery responsive to our user's device's width.
So let's get started by setting our styles.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[119]

Setting the gallery styles
Here we're going to set all the styles necessary to make our gallery responsive. There
are a couple of things we need to do. First, let's create a public setStyles method
using the Gallery function's prototype:

Gallery.prototype.setStyles = function() {

 return this;
};

The preceding method, as you may have noticed, returns the instance of Gallery
and thus allows you to chain your methods. Next, get an individual slide's width.
This width is 100 percent of the container it's in, so it should be of the same width
as the gallery itself. To get this width we can do the following within setStyles:

Gallery.prototype.setStyles = function() {

 slidesWidth = $slides.width();

 return this;
};

Now, we can determine the full width of the gallery by multiplying the number of
slides by the width each is set to, which we've already determined in the previous
step. When we do this, we achieve the following code:

Gallery.prototype.setStyles = function() {

 slidesWidth = $slides.width();

 galleryWidth = slidesWidth * $slidesLength;

 return this;
};

This following step may be confusing, however it is critical because we need to
manually set the width of each slide in order to float them next to each other. So
what we need to do now is apply the slideWidth value to each slide, like so:

Gallery.prototype.setStyles = function() {

 slidesWidth = $slides.width();

 galleryWidth = slidesWidth * $slidesLength;

 $slides.width(slidesWidth);

 return this;
};

www.it-ebooks.info

http://www.it-ebooks.info/

Touch and Gestures

[120]

Now, we can also set the width of the slides container using the calculate gallery
width. Again, we need to do this in order to keep a gallery that has slides which are
floated to the left. So we'll set the slide container's width and then float all our slides to
the left. Your setStyles method will look like this, when we code these requirements:

Gallery.prototype.setStyles = function() {

 slidesWidth = $slides.width();

 galleryWidth = slidesWidth * $slidesLength;

 $slides.width(slidesWidth);

 $slidesContainer.css({'width': galleryWidth});

 $slides.css({'float': 'left'});

 return this;
};

This is all it takes in order to set our gallery's styles in a responsive manner.
However, there's one issue here; the styles cannot reset, which is needed in order to
determine the widths of the slides and containers appropriately when the device's
orientation or width changes in some way. Let's do some setup work in order to get
this reset going.

To do this, we'll simply wrap our functionality within a method that we then pass
to a public resetStyles method. In this technique, we are essentially sending in
a callback that will get executed when resetStyles functionality has finished
taking place. For now, your code should result in the following:

Gallery.prototype.setStyles = function() {

 this.resetStyles(function(){
 slidesWidth = $slides.width();

 galleryWidth = slidesWidth * $slidesLength;

 $slides.width(slidesWidth);

 $slidesContainer.css({'width': galleryWidth});

 $slides.css({'float': 'left'});
 });

 return this;
};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[121]

As you can see, all the functionality we originally created for setStyles has been
wrapped in an anonymous function, also known as a callback, that will get called
when resetStyles is done running. To get the full picture, let's continue on by
creating our resetStyles function.

Resetting the gallery styles
Resetting an element's style is actually not that complicated, so we'll go head first
into this method. Check out the following code that should be within your reset
method.

Gallery.prototype.resetStyles = function(callback) {
 $slides.attr('style', null);

 $slidesContainer.attr('style', null);

 $slides.attr('style', null);

 if (typeof callback !== 'undefined') {
 callback.call(this);
 }

 return this;
};

Not too crazy right? We are basically just removing the inline styles that Zepto
applies when we set an element's style using JavaScript, or what we've done in our
setStyles method. When we remove these styles, we then check for a callback
method and execute that method. This is a good practice because, let's say we
need to reset the styles of our gallery for any other reason; we don't want to create
unnecessary functions for no reason.

Initializing the gallery styles
The last thing we need to do is initialize our styles. To do this, let's call setStyles
when our code initializes in the Gallery constructor.

function Gallery() {
 // our previous code

 this.setStyles();
 attachEvents();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Touch and Gestures

[122]

When we finally have our styles in place, our application should look like the
following in the portrait mode:

Responsive gallery

In landscape mode, our application should like the following:

Responsive gallery

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[123]

Unfortunately, your application won't look or behave like the one
shown in these screenshots; this is because nothing is hooked up
right now and we haven't even gone through initializing any of our
code. But if you do want to get to that immediately and see how
we do it, you can check out the last section in this chapter, right
before our conclusion. If you follow those steps, you should have
an application that will look similar to what we have just seen.

Technically, our gallery is now completely built and we can now fully interact with
it using our next and previous buttons. But now, it's on to the fun we've all been
waiting for, touch events!

Extending the gallery for touch
We could, by default, include touch interactivity into the Gallery class, but this
wouldn't be reusable and couldn't be applied to other parts of the application.
So in this section we'll create a new class called Swipe, and it will contain
everything that's needed to detect swiping gestures on a specific module.

The basic template
As always we want to start out with our basic framework, similar to the other classes
we've written before. To get started we can write the following basic template:

var App = window.App || {};

App.Swipe = (function(window, document, $){

 var _defaults = {};

 function Swipe(options) {
 this.options = $.extend({}, _defaults, options);
 }

 return Swipe;

}(window, document, Zepto));

The Swipe class is a bit different from our Gallery class in that it accepts the window,
document, and Zepto objects. Another difference is that the Swipe constructor
accepts one parameter called options, used to override default values that we will
set soon.

www.it-ebooks.info

http://www.it-ebooks.info/

Touch and Gestures

[124]

Default options and modularizing swipe events
There are a couple things we want to do inside the Swipe class. First, we want to
make sure it only applies to the particular container and not the entire document.
Then, we want to be able to cache certain values like the initial x position of the touch
and the end x position. These cached values should also be available in the closure
scope, so that they are available across all methods.

Here are the defaults we would like to have and the cached values that will be
available in the closure's scope:

var _defaults = {
 'el': document.body,
 '$el': $(document.body)
},
el,
$el,
delta,
initXPos,
endXPos,
threshold = 30;

What we're basically saying in the preceding code is that the default element, the
swipe functionality, should be attached to is the document's body element. From here
we make sure that we can access these cached elements in the closure's scope. Finally
we set up some variables that will store the information about the touch gesture we
will be listening for.

Now in our constructor we want to override these defaults and make sure some
of these initial values will exist in the global scope:

function Swipe(options) {
 this.options = $.extend({}, _defaults, options);
 $el = this.$el = this.options.$el = $(this.options.el);
 threshold = this.options.threshold || threshold;

 this.init();
}

Here we are using Zepto's extend method to create a new object that contains a
merge of the options parameter into the defaults object. We then make sure that
the closure's scope contains the cached element the swipe class will be attached to.
Finally we check if a custom threshold was passed in and override the default 30.
After all this, we call an initialize method at the end of the constructor so that the
Swipe class starts automatically.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[125]

Listening to touch events
Now we need to attach the appropriate events to the Swipe class. These events will
be based on the touch events we covered earlier, but they will be used in such a way
that mimics swipe gestures. To achieve this, we first need to listen to the touchstart,
touchend, and touchmove events and assign event handlers to each of these. We can
do all of this inside the init method that we are calling from the constructor.

So first let's create our init method on the Swipe's prototype, and let's make
sure we are returning the instance at the end of the method:

Swipe.prototype.init = function() {

 return this;
};

Inside this method we want to listen to the touch events mentioned previously
and make sure they have event handlers. To do this, we'll use Zepto's on method
and attach the events to the element we've cached:

Swipe.prototype.init = function() {
 this.options.$el.
 on('touchstart', handleTouchStart).
 on('touchend', handleTouchEnd).
 on('touchmove', handleTouchMove);

 return this;
};

In the preceding code we pass in the event as a string to the on method's first
parameter, and then assign an event handler, which we have not yet created. What
you'll also notice is that these methods are chainable, allowing us to attach several
events all at once. This is why we return this at the end of our public methods,
so that we can allow ourselves to make calls synchronously.

Handling touch events
Now we need to create the event handlers we've assigned to each listener. We'll go
through one handler at a time so that we can explain how the swipe gesture is created
from these touch events. The first we want to look at is the touchstart handler.

www.it-ebooks.info

http://www.it-ebooks.info/

Touch and Gestures

[126]

When we place our finger on the phone, the first thing we want to do is store the
initial x position of the finger. To access this information, there is a touches array
on the event triggered. Because we only want to use the first touch, we need to access
the first touch in the touches array. Once we get the first touch, we can get the x
position by using the pageX attribute on that object. This is what the functionality for
handleTouchStart will look like:

function handleTouchStart(e) {
 initXPos = e.touches[0].pageX;
}

As you can see the handleTouchStart method accepts one parameter, the event
object. We then set initXPos to the pageX attribute on the first touch in the touches
array on the event object. That might sound like a huge mess, but basically we are
just accessing the objects we need to in order to hold the initial x value of your touch.

Next, we want to create the handleTouchMove event handler. This handler will
contain the same concepts as handleTouchStart, but instead of the initial x position,
we want to update the ending x position. This can be seen in the following code:

function handleTouchMove(e) {
 e.preventDefault();
 endXPos = e.changedTouches[0].pageX;
}

There are a couple of differences here that I'll explain. First, we prevent the default
behavior of a touch move. This is to stop any weird behavior from happening
and is usually suggested when we want to create a unique experience, such as
a swipeable gallery.

Another difference you'll notice is that we are looking into the changedTouches
object on the event. This is because the move event does not contain a touches
object. Although a bit contentious, this helps keep track of each touch and the
changed attributes of that specific touch. So if I had multiple touches, then my
changedTouches object would contain each changed touch appropriately.

Up until now, all we have done is set the initial and ending x position. Now we
need to use those values to create a delta value that is then used to trigger a swipe
in the left or right direction. This is what our handleTouchEnd event handler will
be doing for us.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[127]

Here's the code that handleTouchEnd should contain:

function handleTouchEnd(e) {
 endXPos = e.changedTouches[0].pageX;
 delta = endXPos - initXPos;

 if(delta > threshold) {
 $el.trigger('SwipeLeft');
 }

 // The *-1 converts the threshold to a negative integer
 if(delta < threshold*-1) {
 $el.trigger('SwipeRight');
 }
}

Now let's go over this code, one line at a time. First we do the exact same thing that
handleTouchMove does, and that's setting the end x position. Next, we set our delta
value, which is the difference calculated by subtracting the end x position from the
initial x position. Now we do a comparison; if the delta is larger than the threshold,
then trigger a custom event called SwipeLeft. Our next comparison is a bit more
confusing but basically we check to see if the delta value is less than a negative
threshold. This is so that we can detect a swipe in the right direction.

Our Swipe class is now complete. We have created the necessary functionality that
listens to our touch events and then mimics a gesture that we can tie into to. But
we haven't actually connected it to our gallery, which is the last step in the process.
Feel proud that you've reached this point, because now the easy stuff happens!

Putting it all together
Okay, so at this point we have a gallery and the ability to detect swipe gestures
using touch events. But right now, nothing is really connected, and in fact we haven't
initialized our Gallery class so nothing should be working right now. But this is
what this last section is about; we'll go through initializing our Gallery class, adding
the Swipe functionality and then reacting to our swipe events.

www.it-ebooks.info

http://www.it-ebooks.info/

Touch and Gestures

[128]

The JavaScript
The first thing we want to do is open our App.Touch.js file, as you recall this file
pertains to the functionality of our touch page and thus is the file that will contain
all our initialization. When we have this file open, go to the init method, or if it's
not created already, then create it and initialize an instance of Gallery:

Touch.prototype.init = function() {
 var that = this;

 // Initializing Gallery
 this.gallery = new App.Gallery();

 return this;
};

Now that we have initialized our Gallery class, the gallery should instantly
initialize. But keep in mind we have not modified our markup to include this file.
So even at this point, you won't see the fruits of your labor. But let's make sure
we continue the setup work. In this next step, we want to initialize our Swipe
class and make sure it sets itself to the gallery element:

Touch.prototype.init = function() {
 // Previous code

 // Initializing Swipe
 this.swipe = new App.Swipe({
 'el': document.querySelector('.gallery')
 });

 return this;
};

Now, even at this point our gallery does not respond to swipe events. That is because
our swipe functionality only detects touches and dispatches those custom events we
set up previously, so what we need to do is listen for those events on the gallery and
then tell it to play the next or previous slide:

Touch.prototype.init = function() {
 // Previous code

 // Listen to the swipe and then trigger the appropriate click
 this.swipe.$el.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[129]

 on('SwipeLeft', function(){
 that.gallery.$el.find('a[href="#previous"]')
.trigger('click');
 }).
 on('SwipeRight', function(){
 that.gallery.$el.find('a[href="#next"]').trigger('click');
 });

 return this;
};

In the preceding code, we listen for the SwipeLeft and SwipeRight events that get
dispatched by our instance of swipe. When either event is dispatched, based on the
event, we simulate a click on either the previous or next button. In this way we are
able to give the appearance that the user is swiping throughout our gallery, while
at the same time eliminating any kind of complications.

When you are done writing your init method, it should look like this:

Touch.prototype.init = function() {
 var that = this;

 // Initializing Gallery
 this.gallery = new App.Gallery();

 // Initializing Swipe
 this.swipe = new App.Swipe({
 'el': document.querySelector('.gallery')
 });

 // Listen to the swipe and then trigger the appropriate click
 this.swipe.$el.
 on('SwipeLeft', function(){
 that.gallery.$el.find('a[href="#previous"]')
.trigger('click');
 }).
 on('SwipeRight', function(){
 that.gallery.$el.find('a[href="#next"]').trigger('click');
 });

 return this;
};

www.it-ebooks.info

http://www.it-ebooks.info/

Touch and Gestures

[130]

The markup
The final item that needs to be taken care of is the markup on the page—the scripts
being included. To make things simpler and get you to finally run your application
correctly, here's what you need to include on your page:

 <script src="../js/vendor/zepto.min.js"></script>
 <script src="../js/helper.js"></script>
 <!-- BEGIN: Our Framework -->
 <script src="../js/App/App.js"></script>
 <script src="../js/App/App.Nav.js"></script>
 <script src="../js/App/App.Gallery.js"></script>
 <script src="../js/App/App.Swipe.js"></script>
 <script src="../js/App/App.Touch.js"></script>
 <!-- END: Our Framework -->
 <script src="../js/main.js"></script>
 <script> touch = new App.Touch(); </script>

The difference here, compared to other pages, is that we are only including the items
we need, including App.Nav.js, App.Gallery.js, App.Swipe.js, and App.Touch.js.
In comparison to other pages, we were including the entire framework, but we don't
really need to do that for this page or any pages moving forward. One thing to note is
that we have also created a global touch object that gets set to an instance of our App.
Touch class. This is so that we can reference it in the debugger easily, but this should
be replaced with App.touch, so that it is not polluting the global namespace.

We've reached the end! At this point you should have a fully functional gallery that
has swipeable interactivity. Now pat yourself on the back; it's been a long journey, but
I hope you can appreciate the fact that we have created reusable, modular code that
is completely self-contained. On top of that, our gallery is completely responsive and
adapts to users' devices, allowing them to enjoy the experience consistently.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[131]

Summary
In this chapter we have restyled our main navigation, gone over the fundamentals
of both touch and gesture events, and then implemented both types of events
using a responsive photo gallery that will adapt to the user's device. We have
also gone through attaching these events and handling them appropriately for
our requirements in the slideshow. From here on out you should have a good
understanding about how to use touch events to create unique experiences on the
iPhone, as well as on other mobile devices. Next, let's take a look at some special
interactions that come with handling forms in HTML5 on the iPhone.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding HTML5 Forms
In this chapter we take a look at forms using the latest HTML5 technology, including
new input types and form attributes. We'll briefly review some of the new input
types that we'll be using in our sample forms. From there we'll discuss some of
the new attributes in the specification, while also looking at the autocapitalize
attribute specifically for mobile devices. Before we dive into our sample forms,
we consider the layout of forms on iOS devices and the limitations that come up
when interacting with these forms. Finally, we create some sample forms, develop
some simple validations, and then style our form specifically for iOS - and
WebKit-supported browsers.

Once we've reviewed all of these features and have gone through our sample forms,
we should have a solid grasp on HTML5 forms and how they relate to developing
a web application for iOS.

Here are the topics that we will cover in this chapter:

•	 New HTML5 input types
•	 New HTML5 form-specific attributes
•	 Form layout for iPhone
•	 Form validation
•	 Form styling for iOS

So, let's start by going over the new standard HTML5 input types.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding HTML5 Forms

[134]

HTML5 input types
HTML5 introduces several new input types that speed up the development of our
applications. In total there are 13 new input types introduced with the HTML5
specification, including datetime, datetime-local, date, month, time, week,
number, range, email, url, search, tel, and color. Unfortunately, only 10 of
these new inputs are supported on iOS, but there's no need to worry since the type
defaults to text automatically. This doesn't help us too much, but it does allow us
to create polyfills for the types we need but aren't supported. However, either way,
following is a breakdown of all the input types supported on iOS and a description
of what each does:

Input type Description
button Represents a button with no additional semantics.
checkbox Represents a state or option that can be toggled.
date Represents a control for setting the element's value to a string

representing a date.
datetime Represents a control for setting the element's value to a string

representing a global date and time (with time zone information).
datetime-
local

Represents a control for setting the element's value to a string
representing a local date and time (with no time zone information).

email Represents a control for editing a list of e-mail addresses.
file Represents a list of file items, each consisting of a filename, a file

type, and a file body (the contents of the file).
hidden Represents a value that is not intended to be examined or

manipulated by the user.
image Represents either an image from which the UA enables a user to

interactively select a pair of coordinates and submit the form, or
alternatively a button from which the user can submit the form.

month Represents a control for setting the element's value to a string
representing a month.

number Represents a precise control for setting the element's value to a string
representing a number.

password Represents a one-line plain-text edit control for entering a password.
radio Represents a selection of one item from a list of items (a radio

button).
range Represents an imprecise control for setting the element's value to a

string representing a number.
reset Represents a button for resetting a form.
search Represents a one-line plain-text edit control for entering one or more

search terms.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[135]

Input type Description
submit Represents a button for submitting a form.
tel Represents a one-line plain-text edit control for entering a telephone

number.
text Represents a one-line plain text edit control for the input element's

value.
time Represents a control for setting the element's value to a string

representing a time (with no time zone information).
url Represents a control for editing an absolute URL given in the

element's value.
week Represents a control for setting the element's value to a string

representing a week.

These details are available at:

•	 http://www.w3.org/TR/html-markup/input.html

•	 https://developer.apple.com/library/safari/#documentation/
AppleApplications/Reference/SafariHTMLRef/Articles/InputTypes.
html#//apple_ref/doc/uid/TP40008055-SW1

Even though there are plenty of inputs we can experiment with here, we will only
be focusing on the new email, number, datetime, and range types. The sample
forms in this book will also contain the regular types, including text, password,
and submit.

Now that we have a good grasp of what is supported and have a reference of
information for what types might fit our needs, let's go ahead and review the
attributes we can also take advantage of.

HTML5 attributes for forms
There are many attributes we can use in HTML5, but to keep this part simple we'll
focus on the new attributes we can use on inputs and forms alike. The following
attributes are defined in the latest HTML5 specification, except for autocapitalize,
and are also supported on iOS:

Input attributes Description
autocapitalize Specifies the auto-capitalization behavior of text elements.
autocomplete Specifies whether the element represents an input control for

which a UA is meant to store the value entered by the user (so
that the UA can prefill the form later).

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding HTML5 Forms

[136]

Input attributes Description
min The expected lower bound for the element's value.
max The expected upper bound for the element's value.
multiple Specifies that the element allows multiple values.
placeholder A short hint (one word or a short phrase) intended to aid the

user when entering data into the control represented by its
element.

required Specifies that the element is a required part of form submission.

You can find details on these attributes at:

•	 http://www.w3.org/TR/html-markup/global-attributes.html#global-
attributes

•	 https://developer.apple.com/library/safari/#documentation/
AppleApplications/Reference/SafariHTMLRef/Articles/Attributes.
html#//apple_ref/doc/uid/TP40008058-SW2

•	 http://www.w3.org/TR/html-markup/form.html#form.attrs.
autocomplete

Not all form attributes are listed in the preceding table; only the latest
supported attributes that are defined in the HTML5 specification
are listed. This is to give us a good idea of the latest and greatest. If,
however, you would like to gain a broader sense of what's supported,
I encourage you to review the preceding sources that detail out this
information and provide a thorough explanation of each attribute in
the specification.

We now have a basic understanding of the latest attributes supported on iOS.
We can now briefly review some design considerations and then jump straight
into some sample HTML5 forms to see how the latest input types and attributes
work together to simplify our development process.

Form layout for iPhone
In this section, we briefly cover some design considerations when we are creating
a form for iOS. You may or may not have full control of the design of your form;
however, to make it simpler to understand the limitations that may come up, the
following table helps demonstrate the limited amount of screen real estate we have
when working with forms. Hopefully, this will help you explain these limitations
so that adjustments could be made. Let's take a look at the following table:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[137]

UI control Pixel dimensions
Status bar 20 in Height
URL text field 60 in Height
Form assistant 44 in Height
Keyboard 216 in Portrait Height

162 in Landscape Height
Button bar 44 in Portrait Height

32 in Landscape Height

The details regarding these controls can be found at https://developer.apple.
com/library/safari/#documentation/AppleApplications/Reference/
SafariWebContent/DesigningForms/DesigningForms.html.

Based on these values, we need to adjust our forms for certain dimensions when
these controls appear. For example, if all of these controls appear, except for the
button bar, and we have an available height of 480 pixels, then our screen real
estate ends up being a whopping height of 140 pixels.

As you can see it's a challenge to create usable forms for iOS, but not impossible.
There are some interesting techniques that we can use to accommodate forms
within our applications. But the best technique is simplicity. Make sure that you
don't require your user to provide lots of information at once; so instead of requiring
a name, e-mail, password, and password confirmation with a date of birth, you just
require a username, password, and email address. Keeping it simple goes a long
way in our applications and helps improve the user experience.

We now have a fair understanding of the limitations that come up when designing
forms for iOS, but now let's jump into functionality and see how we can create some
simple forms.

Sample HTML5 forms
Now we're going to take a close look at some code, including the markup, scripts,
and styles. Some of this you may already know and for the most part the only
emphasis here will be on the new HTML5 inputs and attributes. We'll look at how
they get implemented into a form, what their effect is on the UI controls, and how
to leverage this new technology into our scripts. But first, let's do some setup work
so that everything is consistent across our pages.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding HTML5 Forms

[138]

Setup work
The first thing we need to do is open up the index.html file for our forms page.
Once we have this open, you'll see that we have the old template that we initially
created at the beginning of this book. As our applications have evolved, we must
update this template to reflect those changes, so let's do the following tasks:

•	 Include the forms styling (forms.css) after our main styles
•	 Update the navigation to reflect our new menu
•	 Include our navigation script (App.Nav.js) and our forms script

(App.Forms.js)

Including our forms styling
Currently, we do not have any styling for this page, but we should include our
page-specific stylesheet. When we do this, our head should look like this:

 <!DOCTYPE html>
 <html class="no-js">
 <head>
 [PREVIOUS META TAGS]

 <link rel="stylesheet" href="../css/normalize.css">
 <link rel="stylesheet" href="../css/main.css">
 <link rel="stylesheet" href="../css/forms.css">
 <script src="../js/vendor/modernizr-2.6.1.min.js"></script>
 </head>

Updating the navigation
Again, as with the previous chapter, we need to update our navigation to reflect
the new select menu. This helps us save screen real estate for our application.
When we update our navigation, our markup will be updated to the following code:

<nav>
 <select>
 <option value="../index.html">Application Architecture</
option>
 <option value="../video/index.html">HTML5 Video</option>
 <option value="../audio/index.html">HTML5 Audio</option>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[139]

 <option value="../touch/index.html">Touch and Gesture Events</
option>
 <option value="../forms/index.html" selected>HTML5 Forms</
option>
 <option value="../location/index.html">Location Aware
Applications</option>
 <option value="../singlepage/index.html">Single Page
Applications</option>
 </select>
</nav>

Including our navigation and forms scripts
Now that we have our navigation in place, let's include the navigation script and
while we're at it, let's include the page-specific script for our forms:

<script src="../js/vendor/zepto.min.js"></script>
<script src="../js/helper.js"></script>
<!-- BEGIN: Our Framework -->
<script src="../js/App/App.js"></script>
<script src="../js/App/App.Nav.js"></script>
<script src="../js/App/App.Forms.js"></script>
<!-- END: Our Framework -->
<script src="../js/main.js"></script>

As you can see we are only including the necessary scripts for this page to function.

The forms
We will be developing three different forms on the page, including a login,
register, and profile form. They're pretty basic and will mostly demonstrate the
implementation of forms. After each bit of code, we'll review the new inputs
and give some background information on how they affect our markup and user
interface. For this part, don't concern yourself with the overall structure; meaning
don't worry about the containing div of the form or the section with the header.
The structure won't be discussed and is mostly there as a guideline for you. So,
let's start with our login form.

The login form
The following is the structure for our Login form. Review this carefully, mostly
focus on the form element and how it utilizes the autocapitalize attribute, and
then look at how the required attribute is implemented across our username and
password fields:

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding HTML5 Forms

[140]

<!-- BEGIN: LOGIN CONTAINER -->
<form autocorrect="off" autocapitalize="off">
 <div class="error-messaging"></div>
 <label for="login-username">Username</label>
 <input name="username" id="login-username" type="text"
placeholder="johndoe" required>
 <label for="login-password">Password</label>
 <input name="password" id="login-password" type="password"
required>
 <input type="submit" value="Submit">
</form>
<!-- END: LOGIN CONTAINER -->

When we look at the final product, which is not at this point since we haven't styled
our form, it should look somewhat like this:

Our login form

As you can see, we have autocapitalize set to off on the form element. This
basically tells mobile Safari to not capitalize any of the inputs within it. We
could easily set this to off on each individual input, but for the simplicity of
this demonstration we've kept it on the form element.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[141]

Another cool thing that's going on here is that we've set required on both username
and password. This is great because it won't submit the form unless these fields are
filled out. In the old days, we would need to set a class of required and then check
it with JavaScript; now we don't with the advent of HTML5.

I know some of you may be shocked, but you won't receive any
notice that a field is required in iOS. According to the developer
documentation it's not supported. So why mention it here? Well
because if we truly wanted to support multiple mobile devices, it's
still a good idea to include this attribute so that our application is
device-friendly, and if Apple chooses to support it in the future, we
are future-proofing our application. Again, this has to be weighed by
you and possibly by your team, but having this attribute conforms to
the HTML 5 specification—it's just not supported on iOS, yet.

We can also see that the placeholder attribute is being used to apply some
default text to our text inputs. Keep in mind that placeholder is exactly that:
a placeholder. It is not setting the value of our input, so the value is still empty.

The registration form
Now we move on to our registration form. In this form we'll collect the user's name,
username, e-mail, password, and confirmation password. Again, don't focus on
structure. Concentrate on how the autocorrect attribute is implemented on the
form element and then the use of the email input type.

<!-- BEGIN: REGISTER CONTAINER -->
<form autocorrect="off" autocapitalize="off">
 <div class="error-messaging"></div>
 <div class="field">
 <label for="register-name">Name</label>
 <input name="name" id="register-name" type="text"
placeholder="John Doe">
 </div>
 <div class="field">
 <label for="register-username">Username</label>
 <input class="required" name="username" id="register-username"
type="text" placeholder="johndoe">
 </div>
 <div class="field">
 <label for="profile-email">Email</label>
 <input class="required" type="email" id="profile-email"
autocorrect="off">
 </div>
 <div class="field">
 <label for="register-password">Password</label>

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding HTML5 Forms

[142]

 <input class="required" named="password" id="register-
password" type="password">
 </div>
 <div class="field">
 <label for="register-password-confirm">Confirm Password</
label>
 <input class="required" named="password" id="register-
password-confirm" type="password">
 </div>
 <input type="submit" value="Register">
</form>
<!-- BEGIN: REGISTER CONTAINER -->

When we have completed this section and some of the preliminary styles, our form
will look like this:

Our registration form

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[143]

In this form, we've turned off autocorrect from all form fields. Again, we can do
this individually with every element, but to make things simpler we've chosen to
add it to the form element.

The last point to take into account is the use of the input type, email. When we start
using some of the customized input types, our user interface accommodates. For
example, when we click on the email input type, we'll see that the controls change
to include the @ symbol:

The email input type

Now, let's take a closer look at some other input types to see how this affects our
user interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding HTML5 Forms

[144]

The profile form
The following form is a sort of combination of both the login and registration forms
with some extra fields. However, there are a couple of differences, so let's focus on
just what's changed. In this example, we'll see that we've changed autocapitalize
to sentences and have set autocorrect to off on only the fields we want it to
apply to. On top of that, we start using the datetime, number, and range input
types. The last change we've made is to apply the required fields using a class
instead of an attribute—this will be explained further in the implementation of our
scripts. For now, review the markup and then read on to view the explanations.

<!-- BEGIN: PROFILE UPDATES -->
<form autocapitalize="sentences">
 <div class="error-messaging"></div>
 <h2>Basic Information</h2>
 <div class="field">
 <label for="profile-name">Name</label>
 <input name="name" id="profile-name" type="text"
placeholder="John Doe">
 </div>
 <div class="field">
 <label for="profile-username">Username</label>
 <input name="username" id="profile-username" type="text"
placeholder="johndoe" autocorrect="off">
 </div>
 <div class="field">
 <label for="profile-dob">Date of Birth</label>
 <input type="datetime" id="profile-dob">
 </div>
 <div class="field">
 <label for="profile-email">Email</label>
 <input type="email" id="profile-email" autocorrect="off">
 </div>
 <h2>Personal Information</h2>
 <div class="field">
 <label for="profile-age">Age</label>
 <input type="number" id="profile-age">
 </div>
 <div class="field">
 <label for="profile-city">City</label>
 <input type="text" id="profile-city" placeholder="Boston">
 </div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[145]

 <div class="field">
 <label for="profile-state">State</label>
 <select name="state" id="profile-state">
 <!-- OPTIONS GO HERE -->
 </select>
 </div>
 <div class="field">
 <label for="profile-zip">ZipCode</label>
 <input type="number" min="0" id="profile-zip">
 </div>
 <h2>Professional Information</h2>
 <div class="field">
 <label for="profile-skills-markup">HTML5</label>
 <input type="range" min="0" max="5" id="profile-skills-
markup">
 </div>
 <div class="field">
 <label for="profile-skills-styles">CSS3</label>
 <input type="range" min="0" max="5" id="profile-skills-
styles">
 </div>
 <div class="field">
 <label for="profile-skills-scripts">JavaScript</label>
 <input type="range" min="0" max="5" id="profile-skills-
scripts">
 </div>
 <h2>Bio Information</h2>
 <label for="profile-bio">About Yourself</label>
 <textarea id="profile-bio" name="about"></textarea>
 <div class="field">
 <label for="register-password">Password</label>
 <input class="required" named="password" id="register-
password" type="password">
 </div>
 <p>Provide your password to confirm.</p>
 <input type="submit" value="Update Profile">
</form>

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding HTML5 Forms

[146]

Our final product will look like this after our styling:

Our profile form

In this example, we've set autocapitalize to sentences on the form element.
This helps us out because now we've defined exactly what we want to be capitalized,
and that is sentences only. This is described in Apple's documentation and can be
further explored there. As for autocorrect, we've set it on the individual items
because we may want it to correct on textarea. Again, we could have chosen to set
autocorrect to off on the form element and then set it to on within the textarea,
but this is a matter of choice and is completely up to you as the developer. Now let's
review the several input types.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[147]

The datetime type
In this example we use datetime for the Date of Birth field. This is great because our
UI accommodates exactly how we expect it to in order to provide exact information:

The datetime input type

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding HTML5 Forms

[148]

The number type
The number input type also manipulates our UI, so that we have a selection of
numbers as defaults in our controls:

Our number input type

The range type
The range input type is an extremely useful control within our forms. Again,
this type provides a custom UI that allows us to use system defaults, instead
of JavaScript, to provide the type of value we're looking for:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[149]

The range input type

Now we've finished reviewing some of the new input fields and attributes in
HTML5 and how they affect our iOS web application's UI. Next is using JavaScript
to validate our form. Again, this will be very basic and will introduce us to how
we can set up a reusable component for forms and won't directly tie into these new
inputs and attributes. This is because these custom inputs and attributes were part
of the specification to help speed up development, thus your need to use scripts for
validation should be limited. Either way, let's move forward and take a quick look
into our scripts.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding HTML5 Forms

[150]

Form validation
In this section, we review the JavaScript written for this page. There's nothing that's
really new or that pushes the boundary; it is explicitly meant to demonstrate how to
use the framework we've developed in this book to create self-contained code that
validates multiple forms and makes it easier for you to extend. So let's get started
by reviewing the basic template.

The basic template
The following is the basic template we've been using. A standard namespacing
technique that extends the App namespace with a Form class will contain all of our
functionality.

var App = window.App || {};

App.Form = (function(window, document, $){
 'use strict';

 var _defaults = {
 'element': 'form',
 'name': 'Form'
 };

 function Form(options) {
 // Customizes the options by merging them with whatever is
passed in
 this.options = $.extend({}, _defaults, options);

 this.init();
 }

 //--
 // Private Methods
 //--

 //--

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[151]

 //--
 // Event Handlers
 //--

 //--

 //--
 // Public Methods
 //--
 Form.prototype.getDefaults = function() {
 return _defaults;
 };

 Form.prototype.toString = function() {
 return '[' + (this.options.name || 'Form') + ']';
 };

 Form.prototype.init = function() {
 // Initialization Code

 return this;
 };

 return Form;

}(window, document, Zepto));

Just keep in mind that the code is self-contained in an immediately invoked function
expression or IIFE/closure. When we initialize App.Form the Form constructor will
be called and our public method, init, will initialize any code that we write within
it. So let's get started there, by attaching the appropriate events.

Initializing our forms
We need to initialize our forms, but we don't really need to create a new object for
each one. What we can do is have it event-driven and then handle our validation
using the attributes we've written for each input. But let's look at our event setup.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding HTML5 Forms

[152]

Attaching events
First, let's perform attaching events:

this.$element.
 on('submit', 'form', handleFormSubmission);

this.$cache.loginFormContainer.
 on('click', 'a[href="#forgot-password"]',
handleForgotPasswordClick).
 on('click', 'a[href="#register"]', handleRegisterClick);

this.$cache.registerFormContainer.

 on('click', 'a[href="#login"]', handleLoginClick);

In the preceding code we've got a couple of things going on. First, we look
for the submission of any form on the page. Then, we're going to call the
handleFormSubmission method, which we'll write in a moment, when we submit
the form. The following event listeners are basically a show/hide for the login and
register buttons.

Nothing new or groundbreaking here, we're basically doing some setup work and
can always come back to this if we need to. The key here is that we have not created
a new instance of an object for each form, instead we've generalized our code to just
listen for the submit event on each form. Now let's create, or set up, our handlers
and then write the functionality for them.

Event handlers
Now, let's take a look at the event handlers.

function handleFormSubmission(e) {
 e.preventDefault();

 // Code goes here
}

function handleForgotPasswordClick(e) {
 e.preventDefault();

 // Code goes here
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[153]

function handleRegisterClick(e) {
 e.preventDefault();

 // Code goes here
}

function handleLoginClick(e) {
 e.preventDefault();

 // Code goes here
}

We haven't done anything new here, the only steps we've taken are to stub out our
code so that we know where each piece of functionality will exist. From here, we
look at the validation code for the submission of each form. We will not be looking
at the show/hide functionality of each form, but you do have the source code that
accompanies this book in case you are curious about how that works.

Validating our input
We're going to take a look at the handleFormSubmission method and go step-by-
step in order to understand how we are validating our fields. If you feel confused
at any step of the process, don't worry about it. We've all been here, and I myself
struggle sometimes with form validation and how it should be handled on a project-
by-project basis.

First, let's start by caching the variables we'll be using:

function handleFormSubmission(e) {
 var $target, errors, $required, fields, $errorText, i, required_
fields_length;
}

These variables describe themselves, a standard practice since we want to
understand what is going on and thus, attaching meaningful names to our variables
is a must.

Now, we need to prevent default behavior of our form; meaning we don't want the
form to submit just yet. To do this, let's do the following:

function handleFormSubmission(e) {
 var $target, errors, $required, fields, $errorText, i, required_
fields_length;
 e.preventDefault();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding HTML5 Forms

[154]

We have added e.preventDefault, which tells the event to prevent the event's
default behavior in the browser. Next, we want to define the target, empty out any
previous error messaging, create an empty errors object, and then find all required
elements. This can be done with the following code:

function handleFormSubmission(e) {
 // Previous code
 $target = $(e.target);
 $target.find('.error-messaging').empty();
 errors = { 'required': [], 'invalid': [] };
 $required = $target.find(':required');
}

Note that our errors object contains two arrays: a required
array and an invalid array. This errors array will keep track
of what's gone wrong; for example, if a field is required and the
value is empty, then we'll populate the required array within
the error object, but if an input is filled out but is not valid, then
we'll to populate the invalid object within the errors object.

Now, remember when we added the required class but not the required attribute
to our profile form? Well the preceding code wouldn't catch that, so we'll run into
issues. In order to prevent that, we can do the following:

function handleFormSubmission(e) {
 // Previous code
 if ($required.length === 0) {
 $required = $target.find('.required')
 }
}

This code helps solve our issue with the required class, but does have a logical
flaw. Can you find that flaw? I'll leave that up to you as possibly a teaser for you to
solve. The next step in this process is to find all our form elements, and then find the
required fields and check that they've been filled out:

function handleFormSubmission(e) {
 //Previous code
 fields = $target[0].elements;

 i = 0, required_fields_length = $required.length;
 for (i; i < required_fields_length; i++) {
 if ($required[i].value === '') {
 errors.required.push($($required[i]).prev('label').text() + ' is
required.');
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[155]

At this point, we are basically populating our invalid array inside the error object
if the field is empty. If the field is empty, we collect the value of the label associated
with that field and attach a customized message that will be presented to the user.

Unfortunately, specific validation won't be covered, such as e-mail,
numerical, and other constraints. However, there is room here for you
to explore and add to this bit of code, but hopefully this is enough for
you to understand validation, requirements, and how to handle these
use cases in your code.

The last step is to check for errors, and if they do exist present these errors to the
user so that they can correct them accordingly:

function handleFormSubmission(e) {
 //Previous code
 if (errors.required.length === 0 && errors.invalid.length === 0) {
 console.log('Form Requirements and Validations Passed');
 return;
 } else {
 $errorText = $('');

 if (errors.required.length !== 0) {
 $errorText.append('' + errors.required.join('') +
'');
 }

 if (errors.invalid.length !== 0) {
 $errorText.append('' + errors.invalid.join('') +
'');
 }

 $target.find('.error-messaging').append($errorText);
 }
}

Our check is pretty simple, we essentially check if the invalid and required
arrays are empty within the error object. If they are, we want to continue with the
submission—which in this case would be an AJAX call. Otherwise, we want to create
an unordered list containing the errors and then append them to the form, so that
the user understands what went wrong without a page refresh.

Hopefully, this section has helped you understand the approach in validating a form.
With the latest support of the HTML5 specification, much of the work is taken care
of by the browser. This speeds up development by lessening the development of
customized components and helps us focus on delivery. Now as a bonus feature,
we move on to styling our form.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding HTML5 Forms

[156]

Form styling for iOS
In this section we look at styling our form. If we currently test out our form on an
iOS device or even a desktop browser, it won't be pretty. In fact you might be a little
upset at how ugly it really is. So, let's style it and make everyone happy. We'll start
with basic styling that helps achieve a good look. Then we'll consider how we can
customize our components using CSS3 features.

Basic styling
Styling forms is pretty easy. We can simply use the elements themselves, but there is
a single "gotcha". You might notice the fact that we've specified [type="datetime"]
in one of our selectors. This is because the datetime input type shows a select menu
type of UI in iOS and thus, the typical input selector won't apply. Otherwise, there's
not much to the basic styling that really pops out here, and it basically gives us the
styles we've seen in the previous images when we discussed the input types used
in our forms.

/*!
 Forms Styling
*/

label {
 color: #FFF;
 font-family: 'Helvetica', 'Arial', sans-serif;
 font-size: 12px;
 display: block;
 margin: 10px 0 5px 0;
}

input, select, input[type="datetime"], textarea {

 font-size: 13px;

 display: block;
 margin: 0;
 padding: 5px 8px;
}

input[type="submit"] {
 margin: 10px 0;
}

.form-container {
 display: none;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[157]

 margin: 15px 0;
}

.form-container.active {
 display: block;
}

form h2 {
 margin: 10px 0 5px 0;
}

.error-messaging ul {
 list-style: square outside;
 margin: 5px 0 0 0;
 padding: 0 0 0 12px;
}

.error-messaging li {
 color: #A12E33;
 font-family: 'Helvetica', 'Arial', sans-serif;
 font-size: 12px;
}

Custom styling
This is where a lot of the magic happens. In this section, we use custom CSS3 styles
to customize our components. The following styles will customize our inputs, selects,
and give us a more stylized form that matches our current styling. Some things
you may want to keep in mind when reviewing the styling are the use of the CSS3
gradient properties as background and the use of border-radius.

/*!
 Forms Styling
*/

label {
 color: #FFF;
 font-family: 'Helvetica', 'Arial', sans-serif;
 font-size: 12px;
 display: block;
 margin: 10px 0 5px 0;
}

input, select, input[type="date-time"], textarea {

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding HTML5 Forms

[158]

 background: rgb(69,72,77);
 background: -moz-linear-gradient(top, rgba(69,72,77,1) 0%,
rgba(0,0,0,1) 100%);
 background: -webkit-gradient(linear, left top, left bottom, color-
stop(0%,rgba(69,72,77,1)), color-stop(100%,rgba(0,0,0,1)));
 background: -webkit-linear-gradient(top, rgba(69,72,77,1)
0%,rgba(0,0,0,1) 100%);
 background: -o-linear-gradient(top, rgba(69,72,77,1)
0%,rgba(0,0,0,1) 100%);
 background: -ms-linear-gradient(top, rgba(69,72,77,1)
0%,rgba(0,0,0,1) 100%);
 background: linear-gradient(to bottom, rgba(69,72,77,1)
0%,rgba(0,0,0,1) 100%);

 font-size: 13px;
 color: #e5e5e5;

 border: 1px solid #000918;

 -moz-border-radius: 3px;
 -webkit-border-radius: 3px;
 -ms-border-radius: 3px;
 -o-border-radius: 3px;
 border-radius: 3px;

 display: block;
 margin: 0;
 padding: 5px 8px;

 -moz-box-shadow: 1px 1px 1px #333;
 -webkit-box-shadow: 1px 1px 1px #333;
 -ms-box-shadow: 1px 1px 1px #333;
 -o-box-shadow: 1px 1px 1px #333;
 box-shadow: 1px 1px 1px #333;
}

input[type="text"],
input[type="number"],

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[159]

input[type="email"],
input[type="datetime"],
input[type="password"],
textarea {
 background: -webkit-gradient(linear, left top, left bottom, color-
stop(0, #42422F), color-stop(0.09, #444));
}

input[type="submit"] {
 margin: 10px 0;
}

.form-container {
 display: none;
 margin: 15px 0;
}

.form-container.active {
 display: block;
}

form h2 {
 margin: 10px 0 5px 0;
}

.error-messaging ul {
 list-style: square outside;
 margin: 5px 0 0 0;
 padding: 0 0 0 12px;
}

.error-messaging li {
 color: #A12E33;
 font-family: 'Helvetica', 'Arial', sans-serif;
 font-size: 12px;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding HTML5 Forms

[160]

When we apply the preceding styles, we get the following UI:

The range input type

As you can see, we've given our form a completely new look and feel and have
easily styled the select component, something that is not easily done on desktop
browsers. Going on from these styles, I would recommend checking out
the –webkit-appearance property that essentially allows you to further customize
your form and gives you much more control in terms of how components can get
styled. However, at this point you should have a solid foundation to build HTML5
forms for iOS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[161]

Summary
In this chapter, we have reviewed the latest HTML5 input types and attributes
specifically for our sample application. We then discussed the layout of forms on iOS
and its limitations. Finally, we developed a couple of forms and attached a very basic
validation script that used these latest input and attributes to our advantage. As a
bonus, we went into styling our forms specifically for WebKit browsers, including
mobile Safari on iOS.

We should now have a solid grasp of forms on iPhone and iPad, and how they can
be used with the latest HTML5 technology for our advantage. This chapter helped
to demonstrate the use of forms and the considerations we need to take in order
to create a user-friendly form. On top of that, we now move into location awareness
in our next chapter and will use some of the concepts learned here to extend
the experience.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Location-aware Applications
Geolocation is a widely requested feature in today's applications, giving accurate
location-specific information to the user. In this chapter, we'll review the Geolocation
API in the HTML5 specification. With this knowledge, we'll go ahead and build
a wrapper that allows us to easily tap into this feature. Once we have a thorough
understanding of how we can retrieve the user's location, we put our newly found
knowledge to use with a simple application that uses the Google Maps API. At the
end of this chapter you should have a thorough understanding of the Geolocation
specification, have a simple example of its implementation, and as a bonus you
should have gained some experience in using the Google Maps API. So let's start
out by exploring the specification.

In this chapter we will cover:

•	 Geolocation specification
•	 Retrieving the user's current location
•	 Watching the user's location
•	 Handling geolocation errors
•	 Google Maps API
•	 Tying Google Maps with geolocation
•	 Customizing Google Maps

Geolocation specification
Location-based services have been around for quite a while and have evolved over
time. In essence these services strive to provide features that allow the use of time and
location in various types of programs. However, until now there has not been a useful
set of tools for the frontend. Therefore, the W3C (World Wide Web Consortium), has
tried to standardize the API that retrieves geographical location from a client-side
device, whether that is your desktop computer, mobile phone, or tablet.

www.it-ebooks.info

http://www.it-ebooks.info/

Location-aware Applications

[164]

Implementation
The Geolocation API defines a high-level interface to location information
associated only with the device hosting the implementation, such as latitude and
longitude. The API itself is agnostic of the underlying location information sources.

(As mentioned at http://dev.w3.org/geo/api/spec-source.
html#introduction.)

Common ways that browsers have implemented the Geolocation API involve
Global Positioning Systems (GPS), IP addresses, WIFI and Bluetooth MAC
addresses, and basic user input. Due to the various ways these technologies work
and the varying degrees browser vendors choose to implement the specification,
there is no guarantee that this API will return the location of the user or device.
Therefore it is up to you, as the developer, to make sure your users are also aware
of this limitation and that reasonable expectations are explained to all involved.

Scope, security, and privacy
When it comes to implementing Geolocation into our apps the only part we'll need
to worry about is the scripts. There is no need to provide any sort of markup and
there's no need to query or tap some external resource or API. The implementation
of Geolocation is strictly on the scripting side and is directly associated with the
device in use. It is also useful to know that the position is delivered in terms of
World Geodetic System coordinates or latitude and longitude.

Security and privacy concerns must also be considered when exposing a user's
location. From the security methods used to retrieve and store this information to
how it is distributed among other parties, each device implementing it must provide
a mechanism that protects the user's privacy. Therefore, the following considerations
are required by the W3C specification:

•	 Permission from the user is required to send the location information.
•	 Location information must only be requested when necessary.
•	 The user must approve of retransmitting location information.
•	 The party holding this information must disclose to the user that they are

collecting location data, including its purpose, security, accessibility, sharing
(if the data will be shared among other parties), and the length of time such
data will be stored.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[165]

Keep in mind that applications written for mobile Safari do not have
direct access to the device. They can only query the browser to access
the device on their behalf. Therefore, your application is requesting the
browser for specific information and the browser does the work for you,
but you never have one-on-one communication with the device itself.

Overall, the specification takes into account the concerns that arise with sharing
personal information, such as Geolocation, with other parties. However, these
considerations do not take into account the complexity that might arise when a
user inadvertently grants permission or if the users decides to change their mind.
For these reasons, the specification does make the following recommendation:

Mitigation and in-depth defensive measures are an implementation responsibility
and not prescribed by this specification. However, in designing these measures,
implementers are advised to enable user awareness of location sharing, and to
provide easy access to interfaces that enable revocation of permissions.

(As mentioned at http://www.w3.org/TR/geolocation-API/#implementation_
considerations.)

With these concerns and considerations in mind, we now briefly dive into describing
API. In the following section, we'll look at how API is built and specifically look at
parts that will be utilized in the application built in this chapter.

API descriptions
At this point of the chapter you may be wondering why we haven't looked at
the code yet, and although that is a valid concern, my goal here is to help you
understand the Geolocation API thoroughly and to guide you through the
actual W3C specification. So in this chapter we look at four interfaces or exposed
behaviors that define the Geolocation specification, including the Geolocation,
PositionOptions, Position, Coordinates and PositionError interfaces. If you
get confused by any of the information provided here, there's no need to worry.
Consider this section more of reference material that can help you increase your
knowledge on the subject.

www.it-ebooks.info

http://www.it-ebooks.info/

Location-aware Applications

[166]

The Geolocation interface
The Geolocation object is used to determine the location of the device. When we
instantiate the Geolocation object a user-agent algorithm is used to determine the
location, then a position object is created and populated with the data. If we look
at the W3C specification, the Geolocation is defined as this:

interface Geolocation {
 void getCurrentPosition(PositionCallback successCallback,
 optional PositionErrorCallback errorCallback,
 optional PositionOptions options);

 long watchPosition(PositionCallback successCallback,
 optional PositionErrorCallback errorCallback,
 optional PositionOptions options);

 void clearWatch(long watchId);
};

(As seen at http://www.w3.org/TR/geolocation-API/#geolocation.)

The previous code is not JavaScript and is a description of the API or Interface
Definition Language (IDL). If its confusing, don't worry, I felt the same way when
I first looked at a specification page. However, what you are looking at here is the
description of the Geolocation object. When you read the previous code, you should
gather the following information:

There are three methods:

•	 getCurrentPosition, which accepts three parameters, two of which
are optional

•	 watchPosition, which accepts three parameters, two of which are optional
•	 clearWatch, which accepts one parameter

You should now know that there are three methods associated with the Geolocation
object and each has a specific purpose as described by the function name. So let's go
over these three methods, beginning with getCurrentPosition, which as you may
have guessed obtains the current location of the device or attempts to.

The getCurrentPosition method
As described earlier, this method accepts three parameters, two of which are
optional. The first parameter should be a callback method for a successful request.
The second and third parameters are completely optional. The second parameter, if
defined, is another callback method for when an error occurs. The last parameter is
an options object as defined by the PositionsOptions interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[167]

The watchPosition method
The watchPosition method also accepts three parameters, which are the same as
the getCurrentPosition method parameters. The only difference here is that this
method will continuously fire the successCallback, or the first parameter, until
the clearWatch method is called. Keep in mind that the successCallback will only
fire if the position has changed and is thus not dependent on any time option. This
method also returns a long value that defines the watch operation—this is what
is used to clear it with the clearWatch method.

The clearWatch method
As we've already discussed, clearWatch is used to stop the process set by
watchPosition. To use this method we must use the long value returned
by watchPosition and send it in as a parameter to clearWatch.

The PositionOptions interface
We have seen that the PositionOptions object is used to pass an optional parameter
to both the getCurrentPosition and watchPosition methods. This object is
defined by W3C as follows:

interface PositionOptions {
 attribute boolean enableHighAccuracy;
 attribute long timeout;
 attribute long maximumAge;
};

(As seen at http://www.w3.org/TR/geolocation-API/#position-options.)

What we should take from this is that we can create an object with the key/value
pairs for enableHighAccuracy, timeout, and maximumAge. This object would look
like the following in our JavaScript code:

var positionOptions = {
 'enableHighAccuracy': false,
 'timeout': Infinity,
 'maximumAge': 0
};

But what do these values mean? Well, lucky for us this is all defined in the
specification. Don't worry though, here's a simple explanation for each of
these options.

www.it-ebooks.info

http://www.it-ebooks.info/

Location-aware Applications

[168]

The enableHighAccuracy option
This option basically hints to the device that the application would like to receive the
best possible results. The default is set to false, because if set to true it may result
in slower response times and/or increased power consumption. Keep in mind that
the user might deny this feature and that the device may not be able to provide more
accurate results.

The timeout option
Timeout is defined as the amount of time, in milliseconds, to wait until the
successCallback is invoked. If the amount of time to get location data exceeds this
value then the error callback is invoked and a PositionError code of TIMEOUT is
sent. By default, the value is set to Infinity.

The maximumAge option
The maximum age option is in reference to using a cached position whose age is not
greater than the amount set by this option. By default this attribute is set to 0 and
therefore an attempt to acquire a new position object is made each time. If this
option is set to Infinity then the cached position is returned each time.

Now that we understand the options, we could pass this object as the third
parameter to the getCurrentPosition and watchPosition methods. A
simple implementation of the API would look something like this:

var positionOptions = {
 'enableHighAccuracy': false,
 'timeout': Infinity,
 'maximumAge': 0
};

function successCallback(position) {}

function errorCallback(positionError) {}

// Get the current position
navigator.geolocation.getCurrentPosition(successCallback,
errorCallback, positionOptions);

// Watch for position changes
navigator.geolocation.watchPosition(successCallback, errorCallback,
positionOptions);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[169]

Now we know how to customize our calls to the Geolocation API, but what does
the data look like when a success call is made? Or, what does an error return back?
These are extremely useful to know in order to develop a good wrapper around the
Geolocation API. So let's take a look at the coordinates and position error interfaces.

The Position interface
The Position interface is just a container for the information returned by device
implementation of the Geolocation API. It returns a Coordinates object and
Timestamp. This is described in the W3C specification as follows:

interface Position {
 readonly attribute Coordinates coords;
 readonly attribute DOMTimeStamp timestamp;
};

(As seen at http://www.w3.org/TR/geolocation-API/#position.)

In context of what we have discussed up to this point, the position interface comes
into play on the successCallback of the getCurrentPosition method. If you
recall, this method accepts one parameter called options that is of the position
object defined earlier. In practice, if we wanted to log out the coordinates and
timestamp we could do the following:

function successCallback(position) {
 console.log(position.coords);
 console.log(position.timestamp);
}

The timestamp returned is represented as DOMTimeStamp and the coords object
contains the geographic coordinates with additional information, which is defined
by the Coordinates interface.

The Coordinates interface
As we have discussed previously, the successCallback for getCurrentPosition
and watchPosition returns a position object that contains the Coordinates object.
This Coordinates object contains multiple attributes, which are described in the
following table:

www.it-ebooks.info

http://www.it-ebooks.info/

Location-aware Applications

[170]

Attribute Description
latitude Geographic coordinate in decimal degrees.
longitude Geographic coordinate in decimal degrees.
altitude Height of the position in meters. Null if not present.
accuracy Accuracy of longitude and latitude in meters. Null if not

present. Must be a non-negative real number.
altitudeAccuracy Accuracy of altitude in meters. Null if not present. Must be

a non-negative real number.
heading Direction of travel in degrees (0° ≤ heading ≤ 360°)

clockwise. Null if not present. If stationary value must be
NaN.

speed Magnitude of current velocity in meters per second. Null if
not present. Must be a non-negative real number.

(Seen at http://www.w3.org/TR/geolocation-API/#coordinates.)

Now that we know the properties available through the Coordinates interface,
we can access these properties with the following implementation.

function successCallback(position) {
 console.log(position.coords);
 console.log(position.coords.lattitude);
 console.log(position.coords.longitude);
 console.log(position.timestamp);
}

As you can see, we can access the attributes via the position.coords object. In this
way it is extremely easy for us to access the user's current location and tie it to other
APIs, which is what we will be doing shortly with the Google Maps API. Lastly,
let's discuss the PositionError interface so that we know how to handle errors
efficiently within our applications.

The PositionError interface
The PositionError interface comes into play when an error occurs on the
getCurrentPosition or watchPosition method(s). This interface describes
the codes that are sent to our error handler or callback, and a message. The W3C
explains the PositionError interface as following:

interface PositionError {
 const unsigned short PERMISSION_DENIED = 1;
 const unsigned short POSITION_UNAVAILABLE = 2;
 const unsigned short TIMEOUT = 3;
 readonly attribute unsigned short code;
 readonly attribute DOMString message;
};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[171]

(As seen at http://www.w3.org/TR/geolocation-API/#position-error.)

The previous code describes two attributes that are sent over as an object to the error
handler, the two attributes being code and message.

The code attribute could be any of the three constants,

•	 PERMISSION_DENIED (error code 1): The user chose not to let the browser
have access to the location information.

•	 POSITION_UNAVAILABLE (error code 2): The location of the device could not
be determined by the browser.

•	 TIMEOUT (error code 3): The total time in acquiring the location information has
surpassed the specified timeout property in the PositionOptions interface.

The second parameter, message, would be a DOMstring or String describing
the problem.

In our implementation we could then do something like this:

function errorCallback(positionError) {
 if (positionError.code === 3) {
 console.log("A Timeout has occurred");
 console.log("Additional Details: " +
positionError.message);
 }
}

As you can see, we can easily determine an error using the PositionError interface
and customize our error messages based on the codes provided. At this point, you
should have a solid foundation on which you can build. We'll now briefly go over
some use cases for implementing the Geolocation API into our applications and then
move into building our application for this book. You can skim over the next section,
as it will only give you ideas of how Geolocation can or has been implemented.

Use cases
Before we jump into building our application, I'd like to review some instances in
which Geolocation can be implemented into our applications. This will be sweet
and short, but it will help you formulate ideas on how to efficiently implement this
feature. Much of this is already located in the W3C specification, but I hope this
will give you more insight into how useful the specification is and why you
should definitely check it out when exploring new features.

www.it-ebooks.info

http://www.it-ebooks.info/

Location-aware Applications

[172]

Points of interest
We have always been interested in our surroundings whether that is food, beer, or
entertainment. So wouldn't it be cool if we could list out possible points of interest
in our applications that relate to the content the user is accessing? We can do this
with the Geolocation API. By finding the user's current location and tapping into
open APIs from third-party vendors we can easily find where the user is and
present relevant information about the area they are currently located in.

Route navigation
We've seen this being done before, plenty of times with native applications on
our phones. It's even possible that your phone comes preloaded with this feature
for which so many have paid hundreds of dollars before. Now, with the HTML5
Geolocation API we can build this using the currentPosition method and tie
it to something like Google Maps so that we can present the user with a route.
If we wanted to, we could even possibly make it a live application using the
watchPosition method, although you may run into API access limits,
so keep that in mind when building your apps.

Latest information
Another useful feature in this application is to present the user with the latest
information. This can be easily created if we expose an API from a backend
system, but what if we went further and implemented information outside
our own application based on the current position of the user. For example,
if I lived in Boston and went on a trip to Seattle, I would probably want to know
what's going on in Seattle and not Boston, so my application should probably
handle that scenario. With the HTML5 Geolocation API we can achieve this
very easily without much complication.

We now have a solid understanding of the Geolocation API, from theoretical
understanding to simple implementation, we have gone over everything we need to
know about Geolocation and how to work with it. Use cases have also been defined
to help us find a way of integrating it into our applications, more likely than not you'll
find new and innovative ways of using this piece of technology in your applications.
As for now, let's gear ourselves for a simple use case scenario of pointing out the user's
current location using the Google Maps API. So let's get started.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[173]

Google Maps API
Before we get on to implementing Geolocation with Google Maps, we need to do
some setup work that is pretty simple. As you may already know, Google Maps
provides an API that you can tap into to implement their maps into your application,
making it easy for you to display information relative to a user's input or even
better—their current location. However, for several reasons we need to use an API
key from Google to authorize our application and keep track of the requests made
from your application. In this section we'll cover the setup work and hopefully move
you along quickly.

The API(s)
First of all, you need to know that there are several APIs related to Maps, including
JavaScript v3, Places, iOS SDK, Android API, Earth API, and more. For our purposes
we'll be using the JavaScript API v3; note that we will be using using version 3 of
the API. If you would like more information on the several APIs you can visit the
following page:

https://developers.google.com/maps/

Obtaining an API key
If you have been following along you'll notice that we need an API key for our
application. Google has provided the following reasoning for this:

Using an API key enables you to monitor your application's Maps API usage, and
ensures that Google can contact you about your application if necessary. If your
application's Maps API usage exceeds the Usage Limits, you must load the Maps
API using an API key in order to purchase additional quota.

(As seen at https://developers.google.com/maps/documentation/javascript/
tutorial#api_key.)

Activating the service
Now let's get started on creating the API key. First, log in to your Google account
at the following URL:

https://code.google.com/apis/console

www.it-ebooks.info

http://www.it-ebooks.info/

Location-aware Applications

[174]

Once we log in at the previous URL, we select the Services tab.

The Services tab

In the Services tab, we are presented with all the services provided by Google.
In this list we need to activate the Google Maps API v3. It should look like this:

Inactive Google Maps API

When you click on the OFF button, the service will activate and should look like
the following:

Active Google Maps API

The Google Maps API v3 service is now activated under your Google account.
The next step is to retrieve the key that will be used in our implementation of
the Geolocation API.

Retrieving the key
Now that the service has been activated under our Google account, let's
get the key—the final step. To do this, switch to the API Access tab in the
left-hand navigation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[175]

The API Access tab

When we access this page we'll be presented with a Simple API Access section that
will contain our generated key. This is the key you'll want to use to authorize your
Google Maps implementation in the next section. Along with the key you'll notice
that it will list the referrers, when it was activated, and who activated the key (you).
To the right of all this information, you'll also notice a couple of options. These
options include the ability to generate a new key, edit the referrers, and ultimately
delete the key generated.

Note you also have the ability to set up an OAuth 2.0 Client ID, which
will secure your applications. This is definitely recommended if you'll
be dealing with sensitive information, which in a way you would be
because you will be working with user location. However, the setup
and use of OAuth is beyond the scope of this book, but I recommend
that you take some time to learn this new authentication method
and implement it within your own application once you get a solid
foundation working with APIs.

With the API key in hand we are now all set to start implementing Geolocation with
Google Maps. The following section will take what we've learned and use the simple
methods available to us for putting a Google Map on our page. In this regard I hope
it sparks your interest into the Google Maps API as it has been developed over time
and is a great framework to use in almost any application. Now let's get started
developing some cool stuff.

www.it-ebooks.info

http://www.it-ebooks.info/

Location-aware Applications

[176]

Geolocation and Google Maps
If you have been following along from the beginning of this chapter you should have
a thorough understanding of the Geolocation API and have your Google account set
up to tap into the Google Maps JavaScript API. If you haven't been following along
that's okay as well, since this section is primarily driven to show how to implement
both technologies. This section will prepare our location page within our application
and then move quickly to implement Geolocation with Google Maps.

Markup preparation
In the previous chapter, we did some setup work to get our application going; we
will follow the same setup work here to make sure all our pages are consistent. So
let's open up the markup page related to location in /location/index.html
of the source files accompanying this book. When we have this page open in our
text editor, let's make the following updates to the markup:

•	 Update the navigation to reflect a select menu.
•	 Include the location.css file that will have the page specific styling

for this page.
•	 Remove unused scripts from the bottom of the page.
•	 Include App.Location.js.
•	 Initialize App.Location after the inclusion of main.js.

Once we have made these updates, your markup should look like this:

<!DOCTYPE html>
<html class="no-js">
<head>
 <meta charset="utf-8">
 <title></title>
 <meta name="description" content="">
 <meta name="HandheldFriendly" content="True">
 <meta name="MobileOptimized" content="320">
 <meta name="viewport" content="width=device-width">

 <!-- IOS THUMBS -->

 <!-- APPLE META TAGS -->

 <link rel="stylesheet" href="../css/normalize.css">
 <link rel="stylesheet" href="../css/main.css">

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[177]

 <link rel="stylesheet" href="../css/location.css">
 <script src="../js/vendor/modernizr-2.6.1.min.js"></script>
</head>
 <body>
 <!-- Add your site or application content here -->
 <div class="site-wrapper">
 <header>
 <hgroup>
 <h1>iPhone Web Application Development</h1>
 <h2>Location Aware Apps</h2>
 </hgroup>
 <nav>
 <select>
 <!-- OPTIONS HERE -->
 </select>
 </nav>
 </header>
 <footer>
 <p>iPhone Web Application Development © 2013</p>
 </footer>
 </div>

 <script src="../js/vendor/zepto.min.js"></script>
 <script src="../js/helper.js"></script>
 <!-- BEGIN: Our Framework -->
 <script src="../js/App/App.js"></script>
 <script src="../js/App/App.Nav.js"></script>
 <script src="../js/App/App.Location.js"></script>
 <!-- END: Our Framework -->
 <script src="../js/main.js"></script>
 <script> new App.Location({ 'element': document.body }); </
script>
 </body>
</html>

Note that comments were added where more markup should
exist. The markup that pertains to these sections is in the source
code provided with the book. Please look there for more on what
should exist in those sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Location-aware Applications

[178]

Now that we have brought the markup up to the consistent layout of our previous
pages we are ready to start customizing this application for location awareness.
The next step in the process is to prepare the markup for the additional functionality
we'll build in. To do this, here is what we need to do:

•	 Include the Google Maps API JavaScript.
•	 Include the Geolocation wrapper we'll be building.
•	 Create a div that will contain our map.

When we follow the previous directions, our markup will look like this:

<!DOCTYPE html>
<html class="no-js">
<head>
 <meta charset="utf-8">
 <title></title>
 <meta name="description" content="">
 <meta name="HandheldFriendly" content="True">
 <meta name="MobileOptimized" content="320">
 <meta name="viewport" content="width=device-width">

 <!-- IOS THUMBS -->

 <!-- APPLE META TAGS -->

 <link rel="stylesheet" href="../css/normalize.css">
 <link rel="stylesheet" href="../css/main.css">
 <link rel="stylesheet" href="../css/location.css">
 <script src="../js/vendor/modernizr-2.6.1.min.js"></script>
</head>
 <body>
 <!-- Add your site or application content here -->
 <div class="site-wrapper">
 <header>
 <hgroup>
 <h1>iPhone Web Application Development</h1>
 <h2>Location Aware Apps</h2>
 </hgroup>
 <nav>
 <select>
 <!-- OPTIONS HERE -->

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[179]

 </select>
 </nav>
 </header>
 <div id="map_canvas"></div>
 <footer>
 <p>iPhone Web Application Development © 2013</p>
 </footer>
 </div>

 <script src="//maps.googleapis.com/maps/api/js?key=YOUR_API_
KEY&sensor=SET_TO_TRUE_OR_FALSE"></script>
 <script src="../js/vendor/zepto.min.js"></script>
 <script src="../js/helper.js"></script>
 <script src="../js/Geolocation.js"></script>
 <!-- BEGIN: Our Framework -->
 <script src="../js/App/App.js"></script>
 <script src="../js/App/App.Nav.js"></script>
 <script src="../js/App/App.Location.js"></script>
 <!-- END: Our Framework -->
 <script src="../js/main.js"></script>
 <script> new App.Location({ 'element': document.body }); </
script>
 </body>
</html>

As you can see, there is not much of a difference. What we have done here is include
in a new script that includes the Google Maps JavaScript. We then include another
script named Geolocation.js, which will exist in /js/ and finally we create a div
with an ID of map_canvas that exists between the header and footer.

Note that you will need to include the API key, which you created in
the last section, into the Google Maps JavaScript URL string, replacing
YOUR_API_KEY with the key you were provided earlier. Also keep
in mind that you must set the sensor parameter to either true or false.
The sensor parameter tells Google Maps that the application uses a
sensor, such as a GPS, for the user's location.

Okay, so our markup is now ready. We don't need to do anything else here and so
now we'll move to the JavaScript, creating our Geolocation wrapper first and then
implementing it into our App.Location class. So let's take a look at how we can
make tapping into Geolocation easier within our applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Location-aware Applications

[180]

The Geolocation wrapper
In most cases, we don't want to rewrite the same methods over and over for every
use case. So we create wrappers that abstract the functionality of certain technologies
so we can use them easily within our apps. This is what we're going to do now,
abstract the Geolocation API so we can use it with the Google Maps API.

Let's get started by creating a Geolocation.js file inside of our JavaScript
directory. As you may have already noticed this is not going to exist under the App
namespace; this is because it is an abstract class that any application might be able to
use. For our purpose we'll only want to get the current position of the user and we
want to be able to use this information across our application, so we'll make it global.

Here is the basic template for our Geolocation class:

(function($){

 var _self, _defaults, _callbacks;

 // Default options
 _defaults = {};

 // Stores custom callbacks
 _callbacks = {};

 /**
 @constructor
 */
 function Geolocation(options) {
 this.options = $.extend({}, _defaults, options);

 _self = this;
 }

 Geolocation.prototype.toString = function() {
 return "[object " + this.constructor.name + "]";
 }

 // Exposess the Geolocation Function
 window.Geolocation = new Geolocation();

}(Zepto));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[181]

This is not different from any of the code we've written previously except for how
we expose this class with the following code:

window.Geolocation = new Geolocation();

Instead of returning the Geolocation object we basically just initialize it and set it to
the window object, which makes it global. You'll also notice the addition of a closure
scoped variable named _callbacks, which will contain callbacks that the user can
override when extending Geolocation functionality. Now let's extend this even
further by including default values for retrieving the current position, and a general
properties object that will hold all returned data from the Geolocation API:

 // Default options
 _defaults = {
 'currentPositionOptions': {
 'enableHighAccuracy': false,
 'timeout': 9000,
 'maximumAge': Infinity
 },
 'props': {}
 };

These options will be used when we retrieve the user's location. As for now, let's
leave these as it is, and create a callback that the user can override when a success
or error occurs with the Geolocation API:

 // Stores custom callbacks
 _callbacks = {
 'getCurrentPositionCallback': function(){}
 };

We'll see how to implement this shortly, but for now this will be a default method
that will be used to do callbacks. Next, let's check if the device/browser actually
supports the Geolocation API:

 /**
 @constructor
 */
 function Geolocation(options) {
 this.options = $.extend({}, _defaults, options);

 if(navigator.geolocation) {
 this.geolocation = navigator.geolocation;
 }

 _self = this;
 _self.props = this.options.props;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Location-aware Applications

[182]

This is a fairly simple check for geolocation support, and essentially we just create a
property on Geolocation called geolocation that will be set to the API if it exists. In
this way, we don't have to do navigator.geolcation every time within the class.
Also, it will make it easier to double-check if the geolocation functionality exists later
on. At this point, we're ready to expose the getCurrentPosition method from the
Geolocation API:

Geolocation.prototype.getCurrentPosition = function(callback) {
 if (typeof callback !== 'undefined') {
 _callbacks.getCurrentPositionCallback = callback;
 }

 if (typeof this.geolocation !== 'undefined') {
 this.geolocation.getCurrentPosition(currentPositionSuccess,
currentPositionError, _self.options.currentPositionOptions);

 return this;
 }

 return false;
};

The previous method is public and accessible because we have attached it to
the prototype of Geolocation. This method will accept one parameter, a function
callback that will be called on success or error of the getCurrentPosition call on
the Geolocation API. This method checks to see if the parameter is not undefined
and then reassigns based on what was sent in. We then do a check on the
geolocation property we set in the constructor; if it's not undefined we call
the getCurrentPosition method on the Geolocation API and send in the
appropriate parameters. We then return the instance of our Geolocation class.
If the geolocation property is not defined we return a Boolean of false, so error
checking could also be done at the time the developer uses this method.

Note we are passing two undefined methods
currentPositionSuccess and currentPositionError,
which will be defined shortly. However, also notice we sent in the
default properties we defined previously into this method as its
third parameter. By doing this we give the developer the ability
to further customize the experience of Geolocation functionality
easily. You'll see how easy it will be to customize these values
when we start developing the App.Location.js file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[183]

At this point, all that's left is creating the earlier callbacks. So let's create the
following successCallback:

function currentPositionSuccess(position) {
 _self.props.coords = position.coords;
 _self.props.timestamp = position.timestamp;

 _callbacks.getCurrentPositionCallback.call(_self, _self.props);
}

The last callback is called, as you may have guessed, when we have successfully
retrieved the user's location. As defined by the W3C specification, this method
accepts a single parameter—a Position object containing the coordinates and
timestamp. We expose the returned information using the property props defined
in the constructor. Once all this information is retrieved and set, the callback
getCurrentPositionCallback is invoked and passed the retrieved properties.

Note we are also changing the meaning of this inside the callback to
be that of the instance of Geolocation by passing in _self as the first
parameter to call.

Lastly, lets create our error callback:

 function currentPositionError(positionError) {
 _callbacks.getCurrentPositionCallback.call(_self,
positionError);
 }

This callback, as defined by the W3C specification, accepts one parameter, a
PositionError object that has an error code along with a brief message. However,
all we have to do is use the callback and pass this information along, similar to what
was done in the successCallback. Except here, all we are doing is passing the
PositionError object so that custom messages can be created outside of this wrapper.

And with that, we are done creating a simple wrapper for the Geolocation API.
We can now easily tap into the API from within App.Location.js. So let's move
on to extending the App.Location object and start using the Google Maps API
with Geolocation.

www.it-ebooks.info

http://www.it-ebooks.info/

Location-aware Applications

[184]

Geolocation with Google Maps
So we're now ready to start implementing Geolocation with Google Maps using App.
Location. We'll use the same boilerplate that has been used throughout the book to
connect our Geolocation wrapper with the Google Maps API. To get started let's
open up App.Location.js provided with the book's source code. When you have
this open, it should look similar to the following code:

var App = window.App || {};

App.Location = (function(window, document, $){
 'use strict';

 var _defaults = {
 'name': 'Location'
 }, _self;

 function Location(options) {
 this.options = $.extend({}, _defaults, options);

 this.$element = $(this.options.element);
 }

 Location.prototype.getDefaults = function() {
 return _defaults;
 };

 Location.prototype.toString = function() {
 return '[' + (this.options.name || 'Location') + ']';
 };

 Location.prototype.init = function() {
 // Initialization Code

 return this;
 };

 return Location;

}(window, document, Zepto));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[185]

There's nothing new here if you have been following the book in order. But as a
review, we have declared a new namespace called Location under the general App
object. This namespace will contain all the functionality for our location page so it's
perfect as a controller between Google Maps and Geolocation functionality. So let's
start by caching the map element creating a closure scoped reference to the Location
instance and then initializing it. The constructor should then look like this:

function Location(options) {
 this.options = $.extend({}, _defaults, options);

 this.$element = $(this.options.element);

 // Cache the map element
 this.$cache = {
 'map': this.$element.find('#map_canvas')
 };

 _self = this;

 this.init();
}

Here we have created a $cache property onto the instance of Location, this $cache
property will contain the reference to the map element and can thus be accessed
using this property. We then create a closure scoped self variable that reference the
instance of Location. Finally we initialize our code by calling the
init method located on the instance's prototype.

The next step in the process is to retrieve the user's current location using our
Geolocation wrapper. We'll add this bit of code to the initialize method,
as follows:

Location.prototype.init = function() {
 // Initialization Code
 Geolocation.getCurrentPosition(function(args){
 if(args.toString() !== '[object PositionError]') {
 _self.initGoogleMaps();
 } else {
 console.log("An ERROR has occurred: " + args.message);
 }
 });

 return this;
};

www.it-ebooks.info

http://www.it-ebooks.info/

Location-aware Applications

[186]

Here we can finally see the implementation of our Geolocation wrapper and how
easy it is to integrate within our applications since the Geolocation class has taken
care of validating and verifying the setup. The great part about this is that our callback
actually handles the errors; by checking the object type of PositionError we are able
to continue with the integration of Google Maps or logging out the error returned. Of
course our way of handling the error should be more elaborate for the user, but for
this case it helps identify how easy it is to go with this approach in our applications.

Now, let's take a look at how we can implement Google Maps with a successful
callback by looking at the initGoogleMaps method called earlier:

Location.prototype.initGoogleMaps = function() {
 this.latlng = new google.maps.LatLng(Geolocation.props.coords.
latitude, Geolocation.props.coords.longitude);

 this.options.mapOptions.center = this.latlng;

 this.map = new google.maps.Map(this.$cache.map[0], this.options.
mapOptions);

 this.marker = new google.maps.Marker({
 'position': this.latlng,
 'map': this.map,
 'title': 'My Location'
 });

 this.infowindow = new google.maps.InfoWindow({
 'map': this.map,
 'position': this.latlng,
 'content': 'My Location!',
 'maxWidth': '140'
 });

There's a lot going on here but, believe it or not, we're pretty much done. So let's
go through this step by step.

First, we are setting the latlng property to a new instance of the LatLng class that is
part of the Google Maps API. This class constructor returns an object representing
a geographic point (https://developers.google.com/maps/documentation/
javascript/reference#LatLng). Although we already have the coordinates from
the Geolocation API, we need to make sure that we create a Google Maps instance of
LatLng because it will be used in the following methods.

Now, before moving on we need to sidestep for a moment. The Google Maps API
is extremely extensive and customizable, allowing us to customize the look and
feel of the map in pretty much every area. To explore this a bit more, let's create a
mapOptions object on the defaults that will customize our map for mobile:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[187]

var _defaults = {
 'name': 'Location',
 'mapOptions': {
 'center': '',
 'zoom': 8,
 'mapTypeId': google.maps.MapTypeId.ROADMAP,
 'mapTypeControl': true,
 'mapTypeControlOptions': {
 'style': google.maps.MapTypeControlStyle.DROPDOWN_MENU
 },
 'draggable': true,
 'scaleControl': false,
 'zoomControl': true,
 'zoomControlOptions': {
 'style': google.maps.ZoomControlStyle.SMALL,
 'position': google.maps.ControlPosition.TOP_LEFT
 },
 'streetViewControl': false
 }
}, _self;

Now, we won't jump into this extensively but keep in mind that there are many
options available to you that can be explored and optimized for our iPhone web
application. I encourage you to visit the following URL and explore these options
so that you are familiar with what is available to you:

https://developers.google.com/maps/documentation/javascript/
reference#MapOptions

Let's return to the initGoogleMaps method that we were describing previously.
Continuing from the initialization of the LatLng class, we now define the center
property on the mapOptions object we just created. This property is set to the
instance of LatLng:

this.options.mapOptions.center = this.latlng;

Now that we have defined all the properties we need to create Google Map, we
initialize the Map class part of the Google Maps API:

this.map = new google.maps.Map(this.$cache.map[0],
this.options.mapOptions);

This method accepts the div element we created and have cached in our JavaScript,
as its first parameter. The second parameter will be the options object we created.
The reason we set the center property on the mapOptions object is because the
initialization of the map would display the user's location. We have now completed
the implementation of the Geolocation and Google Maps API.

www.it-ebooks.info

http://www.it-ebooks.info/

Location-aware Applications

[188]

Summary
In this chapter, we reviewed the Geolocation specification as defined by the W3C.
We then used this information to build a wrapper so we could tap into the API
easily. As a bonus we reviewed the Google Maps API, created an access key and then
used our Geolocation wrapper to determine the user's location and display it to the
user. You should now have a good understanding of determining a user's location
and using it effectively. In the next chapter, we'll get into one-page application
development, using the concepts we've learned and extending it using some
additional open source libraries.

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications
Until this point we have developed individual pages with related static content. In
this chapter we kick it up a notch by diving into one-page-application development.
We've seen this in many of our web applications, including Pandora, Mint, and
NPR. We'll cover the foundations of one-page-application development, from an
introduction to MVC, Underscore, and Backbone to creating architecture with
our sample application and utilizing the methods taught in the first section of this
chapter. Once you complete this chapter you should have a solid understanding
of concepts behind one-page-applications, which will allow you to continue to
extend on this knowledge and help guide you on your way to building complex
applications. So let's get started by first learning about MVC.

In this chapter, we will cover:

•	 MVC Architecture
•	 Introduction to Underscore.js
•	 Introduction to Backbone.js
•	 Creating a one-page application

Model-View-Controller or MVC
Model-View-Controller (MVC) is a heavily used design pattern in programming.
A design pattern is essentially a reusable solution that solves common problems in
programming. For example, the Namespace and Immediately-Invoked Function
Expressions are patterns that are used throughout this book. MVC is another pattern
to help solve the issue of separating the presentation and data layers. It helps us keep
our markup and styling outside of the JavaScript; keeping our code organized, clean,
and manageable—all essential requirements for creating one-page-applications.
So let's briefly discuss the several parts of MVC, starting with models.

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[190]

Models
A model is a description of an object, containing the attributes and methods that
relate to it. Think of what makes up a song, for example the track's title, artist,
album, year, duration, and more. In its essence, a model is a blueprint of your data.

Views
The view is a physical representation of the model. It essentially displays the
appropriate attributes of the model to the user, the markup and styles used on the
page. Accordingly, we use templates to populate our views with the data provided.

Controllers
Controllers are the mediators between the model and the view. The controller
accepts actions and communicates information between the model and the view
if necessary. For example, a user can edit properties on a model; when this is done
the controller tells the View to update according to the user's updated information.

Relationships
The relationship established in an MVC application is critical to sticking with the
design pattern. In MVC, theoretically, the model and view never speak with each
other. Instead the controller does all the work; it describes an action, and when
that action is called either the model, view, or both update accordingly. This
type of relationship is established in the following diagram:

Controller

Model View

This diagram explains a traditional MVC structure, especially that the
communication between the controller and model is two-way; the controller can
send data to/from the model and vice versa for the view. However, the view and
model never communicate, and there's a good reason for that. We want to make
sure our logic is contained appropriately; therefore, if we wanted to delegate events
properly for user actions, then that code would go into the view.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[191]

However, if we wanted to have utility methods, such as a getName method that
combines a user's first name and last name appropriately, that code would be
contained within a user model. Lastly, any sort of action that pertains to retrieving
and displaying data would be contained in the controller.

Theoretically, this pattern helps us keep our code organized, clean, and efficient.
In many cases this pattern can be directly applied, especially in many backend
languages like Ruby, PHP, and Java. However, when we start applying this strictly
to the frontend, we are confronted with many structural challenges. At the same
time, we need this structure to create solid one-page-applications. The following
sections will introduce you to the libraries we will use to solve these issues and more.

Introduction to Underscore.js
One of the libraries we will be utilizing in our sample application will be
Underscore.js. Underscore has become extremely popular in the last couple of
years due to the many utility methods it provides developers without extending
built-in JavaScript objects, such as String, Array, or Object. While it provides
many useful methods, the suite has also been optimized and tested across many
of the most popular web browsers, including Internet Explorer. For these reasons,
the community has widely adopted this library and continually supported it.

Implementation
Underscore is extremely easy to implement in our applications. In order to get
Underscore going, all we need to do is include it on our page like so:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
 <title></title>
 <meta name="description" content="">
 <meta name="viewport" content="width=device-width">
 </head>
 <body>
 <script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.0/
jquery.min.js"></script>
 <script src="//cdnjs.cloudflare.com/ajax/libs/underscore.
js/1.4.3/underscore-min.js"></script>
 </body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[192]

Once we include Underscore on our page, we have access to the library at the global
scope using the _ object. We can then access any of the utility methods provided by
the library by doing _.methodName. You can review all of the methods provided
by Underscore online (http://underscorejs.org/), where all methods are
documented and contain samples of their implementation. For now, let's briefly
review some of the methods we'll be using in our application.

_.extend
The extend method in Underscore is very similar to the extend method we have
been using from Zepto (http://zeptojs.com/#$.extend). If we look at the
documentation provided on Underscore's website (http://underscorejs.
org/#extend), we can see that it takes multiple objects with the first parameter
being the destination object that gets returned once all objects are combined.

Copy all of the properties in the source objects over to the destination object,
and return the destination object. It's in-order, so the last source will override
properties of the same name in previous arguments.

As an example, we can take a Song object and create an instance of it while
also overriding its default attributes. This can be seen in the following example:

<script>
 function Song() {
 this.track = "Track Title";
 this.duration = 215;
 this.album = "Track Album";
 };

 var Sample = _.extend(new Song(), {
 'track': 'Sample Title',
 'duration': 0,
 'album': 'Sample Album'
 });
</script>

If we log out the Sample object, we'll notice that it has inherited from the Song
constructor and overridden the default attributes track, duration, and album.
Although we can improve the performance of inheritance using traditional JavaScript,
using an extend method helps us focus on delivery. We'll look at how we can utilize
this method to create a base architecture within our sample application later on in
the chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[193]

_.each
The each method is extremely helpful when we want to iterate over an Array or
Object. In fact this is another method that we can find in Zepto and other popular
libraries like jQuery. Although each library's implementation and performance is
a little different, we'll be using Underscore's _.each method, so that we can stick
within our application's architecture without introducing new dependencies. As per
Underscore's documentation (http://underscorejs.org/#each), the use of _.each
is similar to other implementations:

Iterates over a list of elements, yielding each in turn to an iterator function. The
iterator is bound to the context object, if one is passed. Each invocation of iterator
is called with three arguments: (element, index, list). If list is a JavaScript object,
iterator's arguments will be (value, key, list). Delegates to the native forEach
function if it exists.

Let's take a look at an example of using _.each with the code we created in
the previous section. We'll loop through the instance of Sample and log out the
object's properties, including track, duration, and album. Because Underscore's
implementation allows us to loop through an Object, just as easily as an Array,
we can use this method to iterate over our Sample object's properties:

<script>
 function Song() {
 this.track = "Track Title";
 this.duration = 215;
 this.album = "Track Album";
 };

 var Sample = _.extend(new Song(), {
 'track': 'Sample Title',
 'duration': 0,
 'album': 'Sample Album'
 });

 _.each(Sample, function(value, key, list){
 console.log(key + ": " + value);
 });

</script>

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[194]

The output from our log should look something like this:

track: Sample Title
duration: 0
album: Sample Album

As you can see, it's extremely easy to use Underscore's each method with arrays
and objects. In our sample application, we'll use this method to loop through an
array of objects to populate our page, but for now let's review one last important
method we'll be using from Underscore's library.

_.template
Underscore has made it extremely easy for us to integrate templating into our
applications. Out of the box, Underscore comes with a simple templating engine that
can be customized for our purposes. In fact, it can also precompile your templates for
easy debugging. Because Underscore's templating can interpolate variables, we can
utilize it to dynamically change the page as we wish. The documentation provided
by Underscore (http://underscorejs.org/#template) helps explain the different
options we have when using templates:

Compiles JavaScript templates into functions that can be evaluated for rendering.
Useful for rendering complicated bits of HTML from JSON data sources. Template
functions can both interpolate variables, using <%= … %>, as well as execute
arbitrary JavaScript code, with <% … %>. If you wish to interpolate a value,
and have it be HTML-escaped, use <%- … %>. When you evaluate a template
function, pass in a data object that has properties corresponding to the template's
free variables. If you're writing a one-off, you can pass the data object as the
second parameter to template in order to render immediately instead of returning
a template function.

Templating on the frontend can be difficult to understand at first, after all we were
used to querying a backend, using AJAX, and retrieving markup that would then
be rendered on the page. Today, best practices dictate we use RESTful APIs that
send and retrieve data. So, theoretically, you should be working with data that is
properly formed and can be interpolated. But where do our templates live, if not
on the backend? Easily, in our markup:

<script type="tmpl/sample" id="sample-song">
 <section>
 <header>
 <h1><%= track %></h1>
 <%= album %>
 </header>
 </section>
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[195]

Because the preceding script has an identified type for the browser, the browser
avoids reading the contents inside this script. And because we can still target this
using the ID, we can pick up the contents and then interpolate it with data using
Underscore's template method:

<script>
 function Song() {
 this.track = "Track Title";
 this.duration = 215;
 this.album = "Track Album";
 };

 var Sample = _.extend(new Song(), {
 'track': 'Sample Title',
 'duration': 0,
 'album': 'Sample Album'
 });

 var template = _.template(Zepto('#sample-song').html(), Sample);

 Zepto(document.body).prepend(template);

</script>

The result of running the page, would be the following markup:

<body>
 <section>
 <header>
 <h1>Sample Title</h1>
 Sample Album
 </header>
 </section>
 <!-- scripts and template go here -->
</body>

As you can see, the content from within the template would be prepended to the
body and the data interpolated, displaying the properties we wish to display; in this
case the title and album name of the song. If this is a bit difficult to understand, don't
worry about it too much, I myself had a lot of trouble trying to pick up the concept
when the industry started moving into one-page applications that ran off raw data
(JSON).

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[196]

For now, these are the methods we'll be using consistently within the sample
application to be built in this chapter. It is encouraged that you experiment with the
Underscore.js library to discover some of the more advanced features that make
your life easier, such as _.map, _.reduce, _.indexOf, _.debounce, and _.clone.
However, let's move on to Backbone.js and how this library will be used to create
our application.

Introduction to Backbone.js
To add structure to our one-page application, we will be using Backbone.js, a light
framework that helps us apply the MVC design pattern. Backbone.js is one of the
many MVC-type frameworks that help frontend development stick to best practices
of separating out the data from the views or in particular, the DOM. On top of that,
our applications can become quite complex for one-page apps. Backbone.js helps
alleviate these issues and gets us going quickly. So let's start with discussing how
MVC applies to this framework.

MVC and Backbone.js
There are many types of JavaScript frameworks that apply MVC differently, it is
no different for Backbone. Backbone implements Models, Views, Collections,
and Routers; it also includes an Event, History, and Sync system. As you can see,
Backbone does not have a traditional Controller that was discussed earlier,
but we can interpret Views as controllers. As per Backbone's documentation
(http://backbonejs.org/#FAQ-mvc):

(…) in Backbone, the View class can also be thought of as a kind of controller,
dispatching events that originate from the UI, with the HTML template serving
as the true view.

This type of MVC implementation can be a bit confusing, however our sample
application will help clear things up. For now let's dive into Backbone models,
views, and collections. In the following sections we'll go over how each part of
Backbone gets implemented and the parts we'll be using to build our application.

Backbone models
As in any MVC pattern, the Model is critical, containing the data and logic, including
properties, access controls, conversions, validations, and more. Keep in mind that
we write models on a daily basis, and in fact we have created a number of models
throughout this book (MediaElement, Video, Audio, and so on). Backbone models
are similar to a boilerplate in that they provide utility methods that we would
otherwise have to build ourselves.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[197]

Let's take the following code as an example:

function Song() {
 this.track = "Track Title";
 this.duration = 215;
 this.album = "Track Album";
};

Song.prototype.get = function(prop) {
 return this[prop] || undefined;
}

Song.prototype.set = function(prop, value) {
 this[prop] = value;

 return this;
}

var song = new Song();

song.get('album');
// "Track Album"

song.set('album', 'Sample Album');
// Song

song.get('album');
// "Sample Album"

In the preceding example, we have created a Song model, the same as in the previous
section, that has several properties (track, duration, and album) and methods
(get and set). From there we create an instance of Song and use the methods created
to get and set the album property. This is great; however, we needed to create those
methods manually. That is not what we want to do; we already know we need
those methods, so we just want to focus on the data and extending it. This is
where Backbone models come into play.

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[198]

Let's analyze the following Model:

var SongModel = Backbone.Model.extend({
 'defaults': {
 'track': 'Track Title',
 'duration': 215,
 'album': 'Track Album'
 }
});

var song = new SongModel();

song.get('album');
// "Track Album"

song.set('album', 'Sample Album');
// SongModel

song.get('album');
// "Sample Album"

The preceding code shows how quickly we get off the ground writing our
applications. Behind the scenes, Backbone is a namespace and has a model object
attached to it. Then, using Underscore's extend method, we return a copy of
Backbone.Model, that has merged default properties attached to it, to the variable
SongModel. Then we do the same as earlier, using get and set, with the desired
output in the comments.

As you can see it's pretty simple to get started using Backbone, especially if you
just wanted a way to organize your data without building custom functionality
for each and every application. Now let's look at views inside Backbone and how
it can actually help us separate the data from our UI.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[199]

Backbone views
Backbone views are a bit different than models in such a way that they are more for
convenience. If we look at the Backbone documentation and compare the Views and
Models sections, we'll find that Views are a bit more bare bones, but again are useful
in organizing our applications. To see why these are still useful, let's look at the
following code:

var $section = $('section');

$section.on('click', 'a', doSomething);

function doSomething() {
 // we do something here
}

Typically, this is how we would cache our elements on the page and delegate events
for particular user interactions. However, what if this could be done with less
setup work? In the following code, we transform the preceding code into a typical
Backbone view setup.

var SongView = Backbone.View.extend({
 'el': document.querySelector('section'),

 'events': {
 'click a': 'doSomething'
 },

 'doSomething': function(e){
 console.log($(e.currentTarget).attr('href'));
 }
});

var view = new SongView();

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[200]

As you can see, Backbone takes care of the setup work for you. It caches the element
selected and delegates the events for you behind the scenes. Literally, all you need to
do on your end is the setup and quickly move on to the next step; now you'll notice
that your development time decreases while your efficiency increases, and this is just
the preliminary steps into Backbone. Now, the magic happens when we connect the
Model and View together. To see this in action, take a look at the following code:

var SongModel = Backbone.Model.extend({
 'defaults': {
 'track': 'Track Title',
 'duration': 215,
 'album': 'Track Album'
 }
});

var song = new SongModel();

var SongView = Backbone.View.extend({
 'el': document.querySelector('section'),

 'events': {
 'click a': 'doSomething'
 },

 'initialize': function() {
 this.model.on('change:track', this.updateSongTitle, this);

 this.$el.$songTrack = this.$el.find('.song-track');
 this.$el.$songTrack.text(this.model.get('track'));
 },

 'doSomething': function(e){
 console.log($(e.currentTarget).attr('href'));
 },

 'updateSongTitle': function() {
 this.$el.$songTrack.text(this.model.get('track'));
 }
});

var view = new SongView({
 'model': song
});

song.set('track', 'Sample Track');
// The DOM Updates with the right value

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[201]

In this code snippet we have finally connected a single model to one view. The way we
have done this is by passing in the instance of the model into the instance of the view:

var view = new SongView({
 'model': song
});

When we do this, we associate the Model and the View. But we also need to do
something with that Model, and usually we want to display the data associated with it.
So in this example, we create an initialize method that gets called as a constructor.
In this method, we use Backbone's built-in event system to track any changes
associated with the Model's track property and call updateSongTitle accordingly.
While we're at it, we change the context of the event handler by passing in this as
the third parameter and then cache the element displaying the song's track.

In the end, when you change the instance of the song's track property, the DOM
updates accordingly. We now have the basics we need to build our application.
But let's take a look at Backbone collections to understand how keeping track
of our data increases the efficiency of our application.

Backbone collections
Now, up until this point we have worked with a single Model, which is great but
in most cases we work with sets of data. This is why Backbone collections exist, to
manage an ordered set of models. Backbone collections also tie into Underscore's
methods, allowing us to work with these sets easily and efficiently with no setup work.

Let's look at the following code:

var SongModel = Backbone.Model.extend({
 'defaults': {
 'track': 'Track Title',
 'duration': 215,
 'album': 'Track Album'
 }
});

var SongCollection = Backbone.Collection.extend({
 'model': SongModel
});

var SongView = Backbone.View.extend({
 'el': document.querySelector('section'),

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[202]

 'events': {
 'click a': 'doSomething'
 },

 'initialize': function() {
 this.collection.on('change', this.updateDetected, this);
 },

 'doSomething': function(e){
 console.log($(e.currentTarget).attr('href'));
 },

 'updateDetected': function() {
 console.log("Update Detected");
 }
});

var collection = new SongCollection();

for (var i = 0; i < 100; i++) {
 collection.add(new SongModel());
}

var view = new SongView({
 'collection': collection
});

This sample code is very similar to the code produced in the previous section. The
difference here is that we have created a SongCollection that takes models of type
SongModel. Then we create an instance of this collection, add 100 models to it via
our for loop, and finally attach the collection to our View.

Our View has also changed in such a way that we have attached the change event to
our collection, and created a more general listener that gets called whenever a Model
is updated within the collection. Therefore, when we execute the following code the
View lets us know that something was updated:

collection.models[0].set('album', 'sample album');
// "Update Detected"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[203]

Server-side interactions
It's not easy seeing how a Backbone application connects to the server, especially
since we have so much going on in the frontend code. But, if YOU take a look at
the documentation provided on the Backbone.js website (http://backbonejs.
org/#Sync), we know that Models contain all the functionality for manipulating
the data. In fact, Models connect to the database and can sync with it.

Backbone.sync is the function that Backbone calls every time it attempts to read
or save a model to the server. By default, it uses (jQuery/Zepto).ajax to make a
RESTful JSON request and returns a jqXHR. You can override it in order to
use a different persistence strategy, such as WebSockets, XML transport, or
Local Storage.

But, Models aren't the only ones that can connect to the server. As the documentation
continues to read, a model or collection can begin a sync request and interact
with it accordingly. This is a bit different than a traditional MVC implementation,
especially since collections and models can interact with the database. To better
display Backbone's implementation of MVC, the provided image helps display the
relationship between the different types of objects:

SongView

- template:String
- el:DOMElement
- model: SongModel

- initialize(params)
- render

SongCollection

- mode:SongModel- track:String
- duration:Number
- artist:String
- album:String

SongModel

<< database >>

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[204]

This is pretty much what we have created previously; a view, model, and controller.
The implementation is slightly different, but we can see that there is a clear
separation between the presentation layer and data because the view never directly
interacts with the database. If this is a bit confusing, it's because it is and is another
level of complexity that, when understood, will help guide you to coding Zen.

You are now fully prepared to create a one-page application using Underscore,
Backbone, and Zepto. But, there is a problem. These libraries help speed up our
development and increase efficiency, but don't actually provide a solid structure
for our applications. This is what we tackle in our sample application. Next,
we will discuss architecture, implementation, and optimization needed for
one-page applications.

Our sample application
We have now been introduced to Underscore.js and Backbone.js, and have
a good understanding of what these libraries provide and how they help with
application development. However, we still need a way of structuring our
applications, so that they are easily extended and most importantly, managed.
So in this part of the chapter, we'll start building out a sample application
that ties everything together and gets you going on building out one-page
applications quickly.

Application architecture
Our sample application will do two things. One, it will allow us to see user
information, such as a profile and dashboard. Two, it will have a playlist of songs
that can be listened to using the HTML5 Audio media element. We can think of these
requirements as almost two applications: a user application for managing user data
and another application that manages the playback of media. However they will be
related, in such a way that the user will have a playlist of songs related to them.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[205]

Basic sample architecture
Let's begin implementing the preceding architecture. First, we know that there
will be two applications, similar to our App objects, so let's start by defining these:

•	 js/Music/

•	 js/User/

•	 Within the JavaScript (js) folder, we should create the preceding two folders:
Music and User. These two folders will contain the code for the User
and Music applications accordingly. To help manage our backbone files,
we'll then create models, views, and collections folders for each.

•	 js/Music/

°° views/

°° models/

°° collections/

•	 js/User/

°° views/

°° models/

°° collections/

Great! Now we can start by creating a main JavaScript file that will contain the
namespace for each application; each namespace being User and Music accordingly.

•	 js/Music/

°° views/

°° models/

°° collections/

°° Music.js

•	 js/User/

°° views/

°° models/

°° collections/

°° User.js

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[206]

Now, most of our views are going to be the same with functionality that is very
familiar. For example, there will be a global navigation bar that contains three
links that will initiate a hide/show for each section, hiding the current section and
showing the next. We don't necessarily want to code the same thing over and over
again, so it would be nice to have a base view that our applications can inherit from.
To do this, we'll create a folder called views within our App folder:

•	 js/App/

°° views/

°° BaseView.js

Okay, so this is basically our JavaScript framework for this sample application. Of
course, there are other ways of setting this up, and perhaps they are even better—
which is great. For our purpose, this fits the bill and helps demonstrate some
structure within our applications. Now, let's start by looking at our markup.

Application markup
Let's open up the index.html file pertaining to this chapter; it should be located
at /singlepage/index.html. Now, if we haven't already done so, let's start by
updating the global navigation of the site, which we have done previously for other
chapters. If you need reference material, look at the previous chapter's finished
source code, provided with this book, and update the markup as necessary.

Our markup, when updated, should look like this:

<!DOCTYPE html>
<html class="no-js">
<head>
 <!-- Meta Tags and More Go Here -->

 <link rel="stylesheet" href="../css/normalize.css">
 <link rel="stylesheet" href="../css/main.css">
 <link rel="stylesheet" href="../css/singlepage.css">
 <script src="../js/vendor/modernizr-2.6.1.min.js"></script>
</head>
 <body>
 <!-- Add your site or application content here -->
 <div class="site-wrapper">
 <header>
 <hgroup>
 <h1>iPhone Web Application Development</h1>
 <h2>Single Page Applications</h2>
 </hgroup>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[207]

 <nav>
 <select>
 <!-- Options Go Here -->
 </select>
 </nav>
 </header>
 <footer>
 <p>iPhone Web Application Development © 2013</p>
 </footer>
 </div>

 <!-- BEGIN: LIBRARIES / UTILITIES-->
 <script src="../js/vendor/zepto.min.js"></script>
 <script src="../js/vendor/underscore-1.4.3.js"></script>
 <script src="../js/vendor/backbone-0.9.10.js"></script>
 <script src="../js/helper.js"></script>
 <!-- END: LIBRARIES / UTILITIES-->
 <!-- BEGIN: FRAMEWORK -->
 <script src="../js/App/App.js"></script>
 <script src="../js/App/App.Nav.js"></script>
 <!-- END: FRAMEWORK -->
 </body>
</html>

Now, let's begin modifying this code to fit our application. First, let's start by adding
in a div after the header with a class of content:

 <div class="site-wrapper">
 <header>
 <hgroup>
 <h1>iPhone Web Application Development</h1>
 <h2>Single Page Applications</h2>
 </hgroup>
 <nav>
 <select>
 <!-- Options Go Here -->
 </select>
 </nav>
 </header>
 <div class="content"></div>
 <footer>
 <p>iPhone Web Application Development © 2013</p>
 </footer>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[208]

When we're done doing that let's modify the scripts, by including our entire
application that we created previously. This means we are including the Music
and User application scripts, and the BaseView. The scripts section of our markup
should then look like this:

<!-- BEGIN: LIBRARIES / UTILITIES-->
<script src="../js/vendor/zepto.min.js"></script>
<script src="../js/vendor/underscore-1.4.3.js"></script>
<script src="../js/vendor/backbone-0.9.10.js"></script>
<script src="../js/helper.js"></script>
<!-- END: LIBRARIES / UTILITIES-->
<!-- BEGIN: FRAMEWORK -->
<script src="../js/App/App.js"></script>
<script src="../js/App/App.Nav.js"></script>
<script src="../js/App/views/BaseView.js"></script>
<!-- END: FRAMEWORK -->
<!-- BEGIN: MUSIC PLAYLIST APPLICATION -->
<script src="../js/Music/Music.js"></script>
<script src="../js/Music/models/SongModel.js"></script>
<script src="../js/Music/collections/SongCollection.js"></script>
<script src="../js/Music/views/SongView.js"></script>
<script src="../js/Music/views/PlayListView.js"></script>
<script src="../js/Music/views/AudioPlayerView.js"></script>
<!-- END: MUSIC PLAYLIST APPLICATION -->
<!-- BEGIN: USER APPLICATION -->
<script src="../js/User/User.js"></script>
<script src="../js/User/models/UserModel.js"></script>
<script src="../js/User/views/DashboardView.js"></script>
<script src="../js/User/views/ProfileView.js"></script>
<!-- END: USER APPLICATION -->
<script src="../js/main.js"></script>
<script> Backbone.history.start(); </script>
<!-- END: BACKBONE APPLICATION -->

Note that we have started the Backbone history API. Although we
have not discussed this thoroughly, this is essential for keeping
state in our applications. The details for the implementation of the
History API in Backbone are beyond the scope of this book, but it is
highly encouraged for those of you looking to harness the power of
offline storage using Backbone. For now, keep in mind that this is
essential for routing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[209]

Creating templates
Now our markup is close to completion, but we are still left with what the rest of the
application will be made of; and that is where templating will come in. The next step
is to include the templates that will be required for our application, including the
audio player view, playlist, song, dashboard, profile, and shared navigation views.
So how does one specify a template on a static HTML page? Like this:

<script type="tmpl/Music" id="tmpl-audioplayer-view">
 <section class="view-audioplayer">
 <header>
 <h1>Audio Player</h1>
 </header>
 <div class="audio-container">
 <audio preload controls>
 <source src="../assets/<%= file %>" type='audio/mpeg;
codecs="mp3"'/>
 <p>Audio is not supported in your browser.</p>
 </audio>
 </div>
 </section>
</script>

You may be wondering why this does not cause any errors in validation or code
execution within the browser. Well to help clear things up, the type attribute of our
script tag is a non-supported MIME type and because of this, the browser ignores
all content within this script block (http://www.whatwg.org/specs/web-apps/
current-work/multipage/scripting-1.html#script-processing-prepare).
Because the code within the block doesn't get executed, we can include our HTML
templates to be used later on. Keep in mind that we have attached an ID that we
can use to target this element using Zepto. And also note the source for the audio
element, specifically <%= file %>. This will be used by Underscore's template
method to interpolate the data passed into the template itself. We'll get to that
soon, but for now know that this is how we can set up our templates.

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[210]

Okay, we now know how to create templates, so let's implement the following
templates right before the inclusion of our applications' scripts. We can include
the preceding template for the audio player, and after that we can include the
following template:

<!-- Playlist View -->
<script type="tmpl/Music" id="tmpl-playlist-view">
 <section class="view-playlist">
 <header>
 <h1><%= name + "'s" %> Playlist</h1>
 <% print(_.template($('#tmpl-user-nav').html(), {})); %>
 </header>

 </div>
</script>

In the playlist view template we have some pretty interesting stuff going on.
Take a look at the code after the h1 tag. We see here the template method from
Underscore's library; it is accepting one parameter that will be an HTML string
of the template #tmpl-user-nav, which we have not defined yet, and the second
parameter is an empty object. This example is showcasing the use of a template
within a template, kind of Inception-like but hopefully not too scary. Remember
that we mentioned there would be a global navigation included in our applications;
the preceding method helps us code once—keeping our code clean, manageable,
and efficient.

Now, our playlist still doesn't contain a list of songs. That is because it will be
dynamic and based on a dataset of songs; this is why we have an empty unordered
list within the playlist view. But how will our songs look? Traditionally, we would
just create a list (li) element in our JavaScript, but with templates we no longer
need to do that—we can keep our markup outside our logic:

<!-- Individual Song View -->
<script type="tmpl/Music" id="tmpl-song-view">
 <li class="view-song">
 <%= track %>
 <%= artist %>

</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[211]

See how easy it is now to keep your markup outside of your scripts? In this template,
we are following the same basic principles: define a script block containing markup
and create the markup that will then be interpolated to include the data we want.
In this case, we want the track and artist to be output into their own elements.
Now let's create the user's dashboard:

<script type="tmpl/User" id="tmpl-user-dashboard">
 <section class="view-dashboard">
 <header>
 <h1><%= name + "'s" %> Dashboard</h1>
 <% print(_.template($('#tmpl-user-nav').html(), {})); %>
 </header>
 </section>
</script>

Again, it's the same as before. In fact we are repeating ourselves by using the same
method in the playlist view to display the global navigation. By now, you have
noticed that each template receives a specific ID, and that, for convention, we have
defined the type of each script block according to its application, for example
tmpl/User for the User application and tmpl/Music for the Music application.
Let's now take a look at the profile view that combines both the preceding methods:

<script type="tmpl/User" id="tmpl-user-profile">
 <section class="view-profile">
 <header>
 <h1><%= name + "'s" %> Profile</h1>
 <% print(_.template($('#tmpl-user-nav').html(), {})); %>
 </header>
 <dl>
 <dt>Bio</dt>
 <dd><%= bio %></dd>
 <dt>Age</dt>
 <dd><%= age %></dd>
 <dt>Birthdate</dt>
 <dd><%= birthdate.getMonth() + 1 %>/<%= birthdate.
getDate() %>/<%= birthdate.getFullYear() %></dd>
 </dl>
 </section>
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[212]

In this view, we have the global navigation being printed out and data being
interpolated. As you can see, there is no limit to what you can do in templates.
But it can also be something as simple as the global navigation for our applications:

<script type="tmpl/User" id="tmpl-user-nav">
 Dashboard
 Profile
 Playlist
</script>

In this last example, there is nothing complicated happening, it is essentially the
global navigation we have been expecting and it turns out—it's just markup. Now,
you may be wondering why not create all of this in the DOM, hide it, and then
populate it with the information you need using the built-in selector engines in
Zepto or jQuery. And honestly, that is a great question to ask. But there is one main
reason, performance. It is expensive to use these engines, even the built-in methods
querySelector and querySelectorAll. We do not want to touch the DOM,
because it is a heavy operation, especially for large-scale applications handling large
data sets. And ultimately, it's messy to do DOM operations just for data population
or storage. Just don't do it, it is a nasty habit to use the DOM for data and not a best
practice throughout the industry.

Our templates are complete, and that concludes the markup of our application.
Now we move to the fun part, our scripts. The next part will be quite complex and
pretty challenging, but I promise that when we're done, you'll be a pro at one-page
applications and ready to create your own quickly. The first time around is always
rough, but stick through it and you'll reap the rewards.

Application scripts
In this section we'll go through the scripts needed to make our application work.
We'll start with reviewing the BaseView, the view containing shared functionality
in inherited views (PlayListView, ProfileView, and DashboardView). From there
we'll create our Music and User applications, each having their relative models,
views, and collections.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[213]

The BaseView
Let's start looking at our scripts, beginning with the BaseView file we created under
the App namespace (js/App/views/BaseView.js). In this file, we'll create the
BaseView class that will extend Backbone's general View class. The BaseView will
then look like this:

(function(window, document, $, Backbone, _){

 var BaseView = Backbone.View.extend({

 });

 // Expose the User Object
 window.App.BaseView = BaseView;

}(window, document, Zepto, Backbone, _));

This class follows the exact same pattern as the rest of the JavaScript we have written
in previous chapters, the only differences here include the inclusion of Backbone and
Undescore and the way we expose the BaseView class using window.App.BaseView
= BaseView.

Now, bear with me here. We will be creating several methods that will be included
in any object extending the BaseView class. These methods will include show, hide,
onProfileClick, onPlaylistClick, onDashboardClick, and onEditClick. As
you may have guessed, some of these methods will be event handlers that will
navigate to certain parts of our application. Check out the following code for the
implementation:

(function(window, document, $, Backbone, _){

 var BaseView = Backbone.View.extend({
 'hide': function() {
 this.$template.hide();
 },

 'show': function() {
 this.$template.show();
 },

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[214]

 'onProfileClick': function(e) {
 e.preventDefault();

 User.navigate('profile/' + this.model.get('username'), {
'trigger': true });
 },

 'onPlaylistClick': function(e) {
 e.preventDefault();

 Music.navigate('playlist', { 'trigger': true });
 },

 'onDashboardClick': function(e) {
 e.preventDefault();

 User.navigate('dashboard', { 'trigger': true });
 },

 'onEditClick': function() {
 console.log('onEditClick');
 }
 });

 // Expose the User Object
 window.App.BaseView = BaseView;

}(window, document, Zepto, Backbone, _));

Now, you may notice that the objects written here have not been created, such as
the $template, User, and Music objects. We'll return to this in a few steps, but keep
in mind that this.$template will refer to the instance extending BaseView, and
that the User and Music objects will be routers that will use the built-in backbone
method called navigate to change our application's location in the URL and to store
the history of the user's interaction. To better understand how this class, BaseView,
gets used, let's start creating the code for the Music object in Music.js (js/Music/
Music.js).

Music application
Now let's jump into creating the first part of our application, the music application.
Both the music and user applications are separated to add a higher level of
maintainability and reuse. Starting with the music application, we'll create
the appropriate router, collection, model, and view.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[215]

The router
Our music application begins with the Music class defined in our Music.js file
located at js/Music/. In this file, we will extend Backbone's Router class, containing
the routes for our music application, a sample data object for use with our models
and collections, and finally an event handler for when the playlist is requested. First,
let's start out with defining the class:

(function(window, document, $, Backbone, _){

 var Music = Backbone.Router.extend({
 // Application Routes
 'routes': {
 'playlist': 'setupPlaylist',
 'playlist/:track': 'setupPlaylist'
 }
 });

 // Expose the Music Object
 window.Music = new Music();

}(window, document, Zepto, Backbone, _));

Following the pattern we have established with our BaseView class, we extend the
Router class in Backbone and define some default routes. The two routes include a
general playlist route and an alternative route containing the playlist and the track
number. Both routes, when called, will invoke the setupPlaylist method that we
will define next:

'setupPlaylist': function(track){
 if (!this.songCollection) {
 // Create song collection on the instance of Music
 this.songCollection = new this.SongCollection(this.songs);
 }

 if (!this.playListView) {
 // Create song list view on the instance of Music
 this.playListView = new this.PlayListView({
 'el': document.querySelector('.content'),
 'collection': this.songCollection,
 'model': new User.UserModel()
 });
 } else {

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[216]

 this.playListView.show();
 this.playListView.audioPlayerView.show();
 }

 if (track) {
 this.playListView.updateTrack(track);
 }
}

Don't worry if this code is a bit intimidating, it's actually pretty simple. First, we
check if a songCollection object has been initialized with the instance of Music.
If it hasn't then we create one, using a sample data object of songs—which we
haven't created yet. Next, we do the same thing, checking if the playListView
object has been created; if not we move on to creating it. Otherwise, we just show
the playlist and the audio player associated with it. Lastly, we check if a track
number has been passed in (related to the second route we created); if there is a
track number, we update the playListView to reflect the track selected.

Let's focus on the initialization of the playListView:

this.playListView = new this.PlayListView({
 'el': document.querySelector('.content'),
 'collection': this.songCollection,
 'model': new User.UserModel()
});

Although we haven't officially created the PlayListView class, we can review how
it gets initialized. In this case, we are attaching a property of playListView on the
instance of Music with this.playListView. This property is going to be an instance
of the PlayListView (new PlayListView({})). This new instance of PlayListView
will accept a plain object that contains three properties: an element defined as el, a
collection, and an instance of a UserModel, which has not been defined.

The last thing we need to do here is include an initialize method that will create
a sample data object (this.songs), and listen for when the playlist route is called.
When we call the playlist route, or navigate to it, we want both the profile and
dashboard to hide; we'll do this manually within the routes listener:

'initialize': function() {
 this.songs = [{
 'duration': 251,
 'artist': 'Sample Artist',
 'added': new Date(),
 'track': 'Sample Track Title',
 'album': 'Sample Track Album'
 }, {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[217]

 'duration': 110,
 'artist': 'Sample Artist',
 'added': new Date(),
 'track': 'Sample Track Title',
 'album': 'Sample Track Album'
 }, {
 'duration': 228,
 'artist': 'Sample Artist',
 'added': new Date(),
 'track': 'Sample Track Title',
 'album': 'Sample Track Album'
 }
];

 this.on('route:setupPlaylist', function() {
 // This should be more dynamic, but fits our needs now
 // ---
 if (User.profileView) {
 User.profileView.hide();
 }

 if (User.dashboardView) {
 User.dashboardView.hide();
 }
 // ---
 });
},

Okay, so we have created the initialize method here, which gets called when an
instance of Music is created. This is good, because in this method we take care of any
setup work, such as creating the sample data object. The sample data object is an array
of objects that will then be transformed into models by the SongCollection class:

'setupPlaylist': function(track){
 if (!this.songCollection) {
 // Create song collection on the instance of Music
 this.songCollection = new this.SongCollection(this.songs);
 }
 // Some code defined after
}

Looks familiar huh? Now we're tying up loose ends. We haven't created the
SongCollection class yet, but as Backbone's documentation states, if an array is
passed into a collection, it is automatically turned into the model specified in the
collection (to be described in future steps).

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[218]

The last thing this initialize method does, is define a listener on the route for
playlist (this.on('route:setupPlaylist', function() {});). The event handler
then hides the profile and dashboard if they have been created. Also, note that we
have specified the route using route:setupPlaylist, but we could have easily
listened to any route by just using route.

So I know this is a lot to digest, but we'll now connect the dots from this Music class,
starting with collections then moving on to models and finally views. This class is
the foundation for everything else that needs to get built in order to have a fully
functional music application and provide the blueprint of our development.

The collection
The collection for our music application is simple. Following the basic template
of what we've done previously, we will create a closure containing the
SongCollection class. Then we will define the type of model the SongCollection
should keep. And lastly, we'll expose the class to our Music object.

When we are done implementing these requirements, our class looks like this:

(function(window, document, $, Backbone, _){

 var SongCollection = Backbone.Collection.extend({
 'model': window.Music.SongModel
 });

 window.Music.SongCollection = SongCollection;

}(window, document, Zepto, Backbone, _));

See how simple it was? Now we know that this collection only keeps track of
models that are of type SongModel and that if passed an array, it will transform
the contained objects into SongModel types. This is all this class will do for now.
Of course, you are welcome to extend it and play around with the several methods,
such as the comparator, this class can harness; but for now, this is all we need.

The model
Our SongModel will describe the type of data we're trying to keep track of. This
model will also contain a single method that will take a property of duration, in
seconds, and return it in minutes. Of course, we have the option to prepare our
model, when it has been initialized, but for now we'll keep it simple.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[219]

The SongModel, when written, will look like this:

(function(window, document, $, Backbone, _){

 var SongModel = Backbone.Model.extend({
 'defaults': {
 // in seconds
 'duration': 0,
 'artist': '',
 'added': 0,
 'track': '',
 'album': ''
 },

 'initialize': function() {

 },

 'getDurationInMinutes': function() {
 var duration = this.get('duration');

 if (duration === 0) {
 return false;
 }

 return this.get('duration') / 60;
 }
 });

 window.Music.SongModel = SongModel;

}(window, document, Zepto, Backbone, _));

From the preceding code, we can infer that the SongModel will have the attributes
duration, artist, added, track, and album. Each will have a default value of an
empty String or 0. We can also notice that each model will have a method named
getDurationInMinutes that can be invoked and would return the duration of that
model in minutes. Again, the SongModel class follows the same basic architecture
and best practices, returning itself to the Music object. Finally, we are ready to look
at the views for this music application.

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[220]

The view(s)
In this part, we're going to review three separate views, including the play list,
song, and audio player views. Each view renders an individual part of the music
application, except for playlist, which renders both the audio player and each
individual song. So, let's start with the playlist view.

The playlist view
We want the play list view to do a couple of things but we'll take it one step at
a time. First, let's create the PlayListView class, which will extend our already
created BaseView class.

(function(window, document, $, Backbone, _){

 var PlayListView = App.BaseView.extend({
 // Code goes here
 });

 // Expose the PlayListView Class
 window.Music.PlayListView = PlayListView;

}(window, document, Zepto, Backbone, _));

Next, we want the PlayListView class to reference the proper template.

(function(window, document, $, Backbone, _){

 var PlayListView = App.BaseView.extend({
 'template': _.template($('#tmpl-playlist-view').html())
 });

 // Expose the PlayListView Class
 window.Music.PlayListView = PlayListView;

}(window, document, Zepto, Backbone, _));

By including a template as a property we can easily reference it using this.
template. Keep in mind that we have not processed the template at this stage,
we have simply used Underscore's template method to retrieve the markup.
Next, we want to define an event listener for when the user clicks on a song.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[221]

(function(window, document, $, Backbone, _){

 var PlayListView = App.BaseView.extend({
 'template': _.template($('#tmpl-playlist-view').html()),

 'events': {
 'click .view-song': 'onSongClicked'
 }
 });

 // Expose the PlayListView Class
 window.Music.PlayListView = PlayListView;

}(window, document, Zepto, Backbone, _));

In this step we are telling the view to delegate all the events we've created to the
view's element. In this event object, we are listening for a click event on an element
with the class of .view-song. When this element is clicked, we want to invoke the
onSongClicked event handler. Let's define this event handler next.

(function(window, document, $, Backbone, _){

 var PlayListView = App.BaseView.extend({
 'template': _.template($('#tmpl-playlist-view').html()),

 'events': {
 'click .view-song': 'onSongClicked'
 },

 'onSongClicked': function(e) {
 var $target = $(e.currentTarget);

 this.$el.find('.active').removeClass('active');

 $target.addClass('active');

 Music.navigate('playlist/' + ($target.index() + 1), { 'trigger':
true });
 }
 });

 // Expose the PlayListView Class
 window.Music.PlayListView = PlayListView;

}(window, document, Zepto, Backbone, _));

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[222]

The event handler defined in the preceding code toggles the active class and then
tells the Music router to navigate to the playlist route, telling it to trigger the route
event and pass in the track's index. By doing this, our route is called, passed a track,
and the playlist updates. However, we still do not have the updateTrack method
defined. Let's include the following method in our class:

(function(window, document, $, Backbone, _){

 var PlayListView = App.BaseView.extend({
 'template': _.template($('#tmpl-playlist-view').html()),

 'events': {
 'click .view-song': 'onSongClicked'
 },

 'onSongClicked': function(e) {
 var $target = $(e.currentTarget);

 this.$el.find('.active').removeClass('active');

 $target.addClass('active');

 Music.navigate('playlist/' + ($target.index() + 1), { 'trigger':
true });
 },

 'updateTrack': function(track) {
 this.audioPlayerView.render(track);

 this.setActiveSong(track || 1);
 }
 });

 // Expose the PlayListView Class
 window.Music.PlayListView = PlayListView;

}(window, document, Zepto, Backbone, _));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[223]

Now we have the updateTrack method, and this is essentially telling the audio
player's view to render the track it has received. Unfortunately our code is still not
ready to be run because we haven't created this method. Also, the following method,
setActiveSong, is not defined, so we need to do that now:

(function(window, document, $, Backbone, _){

 var PlayListView = App.BaseView.extend({
 'template': _.template($('#tmpl-playlist-view').html()),

 'events': {
 'click .view-song': 'onSongClicked'
 },

 'onSongClicked': function(e) {
 var $target = $(e.currentTarget);

 this.$el.find('.active').removeClass('active');

 $target.addClass('active');

 Music.navigate('playlist/' + ($target.index() + 1), { 'trigger':
true });
 },

 'setActiveSong': function(track) {
 this.$el.find('.active').removeClass('active');

 this.$el.find('.view-song').eq(track - 1).addClass('active');

 return this;
 },

 'updateTrack': function(track) {
 this.audioPlayerView.render(track);

 this.setActiveSong(track || 1);
 }
 });

 // Expose the PlayListView Class
 window.Music.PlayListView = PlayListView;

}(window, document, Zepto, Backbone, _));

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[224]

Our setActiveSong method is now created and essentially toggles the active class
depending on the URL's track number. We could probably extrapolate and create a
general toggle here for songs, but for now this meets the criteria. But we're not done
yet, we still need to initialize this class and render it appropriately. Let's take a look
at what the class now needs:

(function(window, document, $, Backbone, _){

 var PlayListView = App.BaseView.extend({
 // code before

 'initialize': function() {
 this.render();
 },

 'render': function() {
 var i = 0,
 view,
 that = this;

 // Create the template
 this.$template = $(this.template(this.model.attributes));

 // Append the template
 this.$el.append(this.$template);

 // Create the audio player
 if(!this.audioPlayerView) {
 this.audioPlayerView = new Music.AudioPlayerView({
 'el': this.el.querySelector('.view-
playlist'),
 'model': new User.UserModel()
 });
 }

 this.collection.each(function(element, index, list){
 var view = new Music.SongView({
 'el': that.$template.find('ul'),
 'model': element
 });
 });

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[225]

 return this;
 },

 // code after
 });

 // Expose the PlayListView Class
 window.Music.PlayListView = PlayListView;

}(window, document, Zepto, Backbone, _));

The preceding code completes the class, but before we move on let's take a look at
what's going on here. First, we have defined an initialize method. This method
will be invoked after the construction of an instance of this class, therefore the render
method will also be called. Typically, in Backbone, the render method does exactly
what the function is called—renders the view.

The render method defined does a few things; first it compiles our template using
the model that was passed in. Earlier we saw the following code:

// Create song list view on the instance of Music
this.playListView = new this.PlayListView({
 'el': document.querySelector('.content'),
 'collection': this.songCollection,
 'model': new User.UserModel()
});

As we can see, a new UserModel is created and passed into the PlayListView, and
this instance is used to populate the playlist's template. Once the compilation is done,
we attach the compiled template using Zepto's append method. What is it attaching
it to, you ask? Well, the above initialization of this class is looking for an element
with the class of content, which we defined after the header element on our page.
Therefore, the PlayListView is going to attach itself to this div of class content.

When the template is done being attached, we check if the audio player view has
been created. If not, then we create it:

if(!this.audioPlayerView) {
 this.audioPlayerView = new Music.AudioPlayerView({
 'el': this.el.querySelector('.view-playlist'),
 'model': new User.UserModel()
 });
}

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[226]

Finally, once the check for the audio player view is made we get to the fun stuff. In
this last part we loop through the collection that was sent over, which is an instance
of SongCollection and the same data created in Music.js. As we loop through
each model in the collection we create an instance of SongView each time, passing
in the compiled template's unordered list element and passing it the current model.

Now, if that didn't blow your mind, I'm not sure what could. Either way, I hope
you're still up for the challenge because we have two more views we need to look at:
the AudioPlayerView and the SongView. Don't lose hope though, we have passed
the greatest challenge and are ready to ride the wave.

The audio player view
We're going to build our AudioPlayerView next. This view needs to pick up on the
template we created earlier, populating it with the track number and loading it if
we directly access the URL, for example /#playlist/2. We also need to override
a method on the extended BaseView, the method that needs to be overwritten is
onDashboardClick. This is because it requires we hide the playlist and then
navigate to the dashboard. So at the very basic level, this class will look like this:

(function(window, document, $, Backbone, _){

 var AudioPlayerView = App.BaseView.extend({
 'template': _.template($('#tmpl-audioplayer-view').html()),

 'events': {
 'click a[href="#dashboard"]': 'onDashboardClick'
 },

 'initialize': function(){
 this.render();
 },

 'render': function(file){
 // Put our rendering code here
 },

 'onDashboardClick': function() {
 this.hide();
 Music.playListView.hide();

 User.navigate('/dashboard', { 'trigger': true });
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[227]

 });

 window.Music.AudioPlayerView = AudioPlayerView;

}(window, document, Zepto, Backbone, _));

As we can see, all the requirements listed in the previous paragraph have been met
with this base class for the AudioPlayerView. However, we need to render out this
view, populating it with the data provided by the URL. To do this, we need to write
our render method like so:

'render': function(file){
 var audioElement;

 if (file) {
 audioElement = this.$el.find('audio')[0];

 // Must be made on the audio element itself
 audioElement.src = '../assets/' + 'sample' + (file || 1) + '.mp3';
 audioElement.load();
 audioElement.play();

 return this;
 }

 this.$template = $(this.template({ 'file': 'sample' + (file || 1) +
'.mp3', 'name': this.model.get('name') }));
 this.$template.find('audio')[0].volume = 0.5;

 this.$el.find('header').after(this.$template);

 return this;
},

Similar to the previous render method we wrote for the playlist view, the render
method checks if a file, a number, has been passed in. If it has we populate the
audio element from our template with what was passed in. Next, we compile our
template, then set the volume to 0.5 and attach the player right after the header of
PlayListView. If we review how we initialized this class, we'll notice that the audio
player view delegates to the playlist view element (inside PlayListView):

this.audioPlayerView = new Music.AudioPlayerView({
 'el': this.el.querySelector('.view-playlist'),
 'model': new User.UserModel()
});

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[228]

The song view
The last part of our music application is the SongView. So let's quickly review the
requirements for this and see its implementation. For this view, we again want to set
our template. When we initialize this view we want to attach an event handler on the
model passed in, so if the model is ever updated, the view renders automatically with
the update. The render method of this view should essentially compile the template
with the model's attributes and then attach itself to the element set for this view.

When we are done implementing the preceding requirements, the view should
look somewhat like this:

(function(window, document, $, Backbone, _){

 var SongView = App.BaseView.extend({
 'template': _.template($('#tmpl-song-view').html()),

 'initialize': function() {
 // Listen to when a change happens on the model assigned this
view
 this.listenTo(this.model, 'change', this.render);

 this.render();
 },

 'render': function() {
 this.$el.append(this.template(this.model.attributes));

 return this;
 }
 });

 // Expose the SongView
 window.Music.SongView = SongView;

}(window, document, Zepto, Backbone, _));

As we can see, we follow the standards set in previous view implementations.
The only difference is the addition of the event listener on the model's change
event. Let's remind ourselves of how this view gets initialized in PlayListView:

this.collection.each(function(element, index, list){
 var view = new Music.SongView({
 'el': that.$template.find('ul'),
 'model': element
 });
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[229]

Now we fully understand how the music application works. At this point, our page
could function just with this implementation; however, I don't recommend it since
errors will come up because we haven't created the user application. But we now
know that our routes define the actions in our application, views are the presentation
layer that implements models and collections. Models are the heart of our
application, containing all the data we need in a manageable fashion. And finally,
collections help us manage larger data sets of our models and because we
can pass these into the view, the view itself can manage the render of this data,
which is ideal for large-scale applications.

The next step of this process is to develop the user application, but hopefully things
will be a bit easier. As we did in the last part, we'll start out with the router and
work our way to the collection, model, and views.

User application
The user application will follow the same flow as the music application we created.
Again, we'll cover the implementation of a router, model, and view. When we are
done with this section we'll have subapplications that each run separately and
increases the maintainability and efficiency of our one-page application.

The router
Our router for the user application will be very similar to the music application.
We'll define the routes for the dashboard and profile. We will also take the time to
create the homepage route of our one-page application. The route will contain the
appropriate methods for setting up the dashboard and profile. It will also contain
the homepage method, which will call the dashboard route. In the initialize
method of the router we will listen to these routes and hide other views.

(function(window, document, $, Backbone, _){

 var User = Backbone.Router.extend({
 // Application Routes
 'routes': {
 '': 'home',
 'dashboard': 'setupDashboard',
 'profile/:user': 'setupProfile'
 },

 'initialize': function() {

 },

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[230]

 'home': function() {

 },

 'setupDashboard': function() {

 },

 'setupProfile': function(name) {

 }
 });

 // Expose the User Object
 window.User = new User();

}(window, document, Zepto, Backbone, _));

In the preceding code, we follow our standards, and create the base template for our
user application. Next, let's take a look at what the initialize method will contain:

'initialize': function() {
 var that = this;

 this.on('route:setupDashboard route:setupProfile', function(){
 if(Music.playListView) {
 Music.playListView.hide();
 }
 });

 this.on('route:setupDashboard', function(){
 if (that.profileView) {
 that.profileView.hide();
 }
 });

 this.on('route:setupProfile', function(){
 if (that.dashboardView) {
 that.dashboardView.hide();
 }
 });
},

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[231]

The initialize method of our route meets the requirements we've listed by
creating the event listeners for the routes we created. Each listener hides the sections
we don't want to see, but how do we see the actual part of the application we want?
Well, that's where the setup methods come in.

'setupDashboard': function() {
 if (!this.dashboardView) {
 this.dashboardView = new this.DashboardView({
 'model': this.model = new this.UserModel(),
 'el': document.querySelector('.content')
 });
 this.setupDashboard();
 return;
 }

 this.dashboardView.show();
},
'setupProfile': function(name) {
 if (!this.profileView) {
 this.profileView = new this.ProfileView({
 'model': this.model = new this.UserModel(),
 'el': document.querySelector('.content')
 });
 return;
 }

 this.profileView.show();
}

These methods are pretty much the same. They do a check for whether the view has
been created on the instance of the router (for example this.dashboardView and
this.profileView), if it has we just show that view. However, if the view has not
been created, we initialize the appropriate view and then call that setup method
again (recursive), so that we can show it since the view now exists.

You may have noticed that we are creating a new UserModel
that gets passed to many of our views. This is okay for now, since
we want to test the meat of our application. But theoretically, one
UserModel would be initialized and maintained throughout
the application. Sounds like something you can tackle once you
complete this chapter!

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[232]

The last thing we need to do is include the homepage method for our application:

'home': function() {
 this.navigate('dashboard', { 'trigger': true });
},

Automatically, when you visit /singlepage/index.html, this route will be called.
As defined in the Backbone.js library's documentation, an empty route refers to
the home state of the application. Although we can define the setupDashboard
method to be the callback, this is to illustrate that we can go from one route to
another immediately when needed. Perhaps we could do some preprocessing
here, or even create that single UserModel noted earlier?

The collection
Because we are only handling one user in this application, there won't be any need
for creating a collection. Phew! You thought this would get a bit more difficult eh?
Well, don't get your hopes up; we still have the model and view(s) to consider.

The model
As with any model in Backbone, we are just describing the data that will be handled
throughout our application. This is no different for our UserModel, which will
contain the default attributes of an instance and set the name of the person by
combining the first_name and last_name attributes when it is initialized.

To meet these requirements, our UserModel will be defined like so:

(function(window, document, $, Backbone, _){

 var UserModel = Backbone.Model.extend({
 'defaults': {
 // in seconds
 'first_name': 'John',
 'last_name': 'Doe',
 'bio': 'Sample bio data',
 'age': 26,
 'birthdate': new Date(1987, 0, 2),
 'username': 'doe'
 },

 'initialize': function() {
 this.attributes.name = this.get('first_name') + ' ' + this.
get('last_name');
 }
 });

 window.User.UserModel = UserModel;

}(window, document, Zepto, Backbone, _));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[233]

That's really it for our model. We are just defining default values for our user
and setting the name when an instance is created. Now we'll take a look at our
DashboardView and ProfileView—the last two pieces for this application.

The view(s)
The user application will contain two views, including the DashboardView and
ProfileView. As we have already established, each view extends the BaseView we
created earlier. We'll need to make some changes in order to fit our experience, but
overall this will be very similar to our music application view's implementation.

The dashboard view
As with our previously defined views, DashboardView will contain the template that
will be used for the display of our dashboard, contain the events pertaining to this
view and then render the template. What you'll notice here is that our events will use
the event handlers defined in BaseView, because the BaseView event handlers meet
the basic requirements of navigating to another view while the route listeners handle
the hide functionality.

(function(window, document, $, Backbone, _){

 var DashboardView = App.BaseView.extend({
 'template': _.template($('#tmpl-user-dashboard').html()),

 'events': {
 'click a[href="#profile"]': 'onProfileClick',
 'click a[href="#playlist"]': 'onPlaylistClick'
 },

 'initialize': function() {

 this.render();
 },

 'render': function() {
 if (!this.$template) {
 this.$template = $(this.template(this.model.attributes));

 this.$el.prepend(this.$template);
 }

 return this;
 }
 });

 window.User.DashboardView = DashboardView;

}(window, document, Zepto, Backbone, _));

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[234]

The code for this view is fairly simple; we've seen this pattern before and are
repeating it here. Because we've defined the event handlers in BaseView, we don't
need to redefine them here. As for the render method, it checks for the creation of
the template, and if it exists, it populates the template with the user's data, which
we passed in when creating the instance of DashboardView in User.js.

This is all we need to do for the dashboard view; like I promised, it's fairly easy once
the general setup is finished. Next let's take a look at the final part of our application:
the profile view.

The profile view
Our profile view will be exactly the same as the dashboard view in that we have a
template, some events, and a render method. And just like before, we won't need
to define the event handlers because the basic requirement of hiding a view is
being taken care of by the BaseView we created at the beginning of this process.

(function(window, document, $, Backbone, _){

 var ProfileView = App.BaseView.extend({
 'template': _.template($('#tmpl-user-profile').html()),

 'events': {
 'click a[href="#dashboard"]': 'onDashboardClick',
 'click a[href="#edit"]': 'onEditClick'
 },

 'initialize': function() {

 this.render();
 },

 'render': function() {
 if (!this.$template) {
 this.$template = $(this.template(this.model.attributes));

 this.$el.prepend(this.$template);
 }

 return this;
 }
 });

 window.User.ProfileView = ProfileView;

}(window, document, Zepto, Backbone, _));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[235]

And that wraps everything up. If we run the page now, we get a fully accessible
application that has the dashboard view as its default view. You can then interact
with the application by navigating to the profile and playlist views. As you do so,
the application changes the URL and keeps history of your activity, letting you
go back and forward easily. Pretty neat, huh? Here are a couple of screenshots
to showcase what the final application should look like:

You might be wondering about the styling for this application.
Well lucky for you, the source code of this book has all of that
written for you. We won't be going over the styling, since it
doesn't really cover anything mobile specific and is more of a
visual enhancement to display the applications we built here.

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[236]

This screenshot of the application running in the iOS simulator showcases the
dashboard view of the application we've written. In this view, we see our regular
header and footer, including the title of the book, and a select control as the
navigation. Inside the content area we see our dashboard templates rendering John
Doe's dashboard and links to the playlist, profile, and back to the dashboard.

Here we are in the playlist and song views showcasing an audio control and the ability
to switch between tracks. We can see the rendering of templates inside of templates
(audio tracks inside of the playlist). With this example, we can see how separation of
controls (models, views, and controllers) helps us distinguish logic from user interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[237]

In this screenshot, we see an audio track selected and playing under the Playlist
page. It might seem like there's not a lot going on, but behind the scenes we have
created a reusable application that allows user interaction without a page refresh.

In this last screenshot, we see the profile view, displaying John Doe's short
biography, age, and birth date. During the transition of playlist and profile we
didn't see a page refresh, instead a content update. Analyzing the URL, we can
see that history has been kept and thus, allowing us to use the native back button
to maneuver through the one-page application.

www.it-ebooks.info

http://www.it-ebooks.info/

One-page Applications

[238]

Summary
Give yourself a pat on the back; we have finally reached the end of this chapter! It's
been a good ride, and hopefully not too bad. At this point you are now prepared to
tackle the development of one-page applications. From understanding the MVC design
pattern to implementation, utilizing libraries such as Backbone and Underscore, you
can now go and extend on this foundation by developing complex applications that
tie into APIs and create a dynamically beautiful experience for the user.

www.it-ebooks.info

http://www.it-ebooks.info/

Offline Applications
In this chapter, we will cover the basics of offline application development.
Specifically, we’ll discuss the application manifest, including the advantages and
disadvantages, and see how we can handle offline interactions. Then we’ll jump
into how localStorage and IndexedDB can be used to temporarily store data on
the client side. The content in this chapter will be supplemented with basic examples
that will help you get up and going quickly. So, let’s start out by covering how the
application manifest is beneficial for us.

We will cover the following topics in this chapter:

•	 The application manifest
•	 Handling offline interactions
•	 The localStorage and IndexedDB APIs

Application Cache
Application Cache, or otherwise known as AppCache, allows you to define the
resources that should be cached and available during offline use. This essentially
makes your web application usable when the user is offline, and thus losing network
connectivity or even refreshing the page will not affect your users' connectivity, and
they will still be able to interact with your application. Let’s get started by taking a
look at what the application cache manifest looks like.

www.it-ebooks.info

http://www.it-ebooks.info/

Offline Applications

[240]

The manifest file
Our application manifest file contains the information regarding what resources will
be cached by the file. It explicitly informs the browser of the resources you want to be
made available offline, making it accessible for offline use, but also speeding up the
page load through caching. The following code showcases a basic example of what
a cache manifest looks like for the examples that accompany this chapter:

 CACHE MANIFEST

index.html

stylesheets
../css/normalize.css
../css/main.css
../css/offline.css

javascripts
../js/vendor/modernizr-2.6.1.min.js
../js/vendor/zepto.min.js
../js/helper.js
../js/App/App.js
../js/App/App.Nav.js
../js/App/App.Offline.js
../js/main.js

In the preceding example, there are a couple of things happening. First, we identify
the cache manifest using the all-caps word, CACHE MANIFEST. This line is required
and read by the browser to be exactly what it is, a cache manifest. The next line
defines a file we would like to cache, index.html. Now, there is something we need
to keep in mind; this manifest file is relative to where we are. This means that our
file is located where index.html is in a directory (for example, offline.appcache
is located at localhost/, just like index.html).

Moving on, we find that we can include comments in our manifest file by including
the pound sign in front (#stylesheets). This helps us keep track of what’s going on in
this file. From here on out, we define the stylesheets and scripts that we would like to
define relative to the page being viewed. At this time, we are looking at a real manifest
file and breaking it down to understand it. As we progress through the chapter, we’ll
come back to this file and see how it affects the example built in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[241]

Manifest implementation
In order to effectively use our cache manifest, we need to be able to associate it
with the current page. But to do this, we also need to set up our server to handle
the manifest correctly by sending over the correct MIME-type. Each type of server
handles this a bit differently, and the directives may seem different, but they all
achieve the same results—sending the correct type of header associated with that file.

In Apache, our configuration would look something like this:

AddType text/cache-manifest .appcache

As you can see, we have defined all files of type .appcache to be delivered with
a content type of text/cache-manifest. This allows the browser to interpret the
file correctly, and thus the browser associates it as cache-manifest. Although this is
great, we are not yet done. To finish up, we need our page to define this file so that it
is associated correctly.

To make our cache manifest related to our page, we need to set the manifest
attribute on our HTML tag like so:

<html manifest=”offline.appcache”>

We are now done defining our application cache manifest and delivering it with
the related page, but we have only briefly touched upon this technology. To fully
understand its power, we need to see this in use. So we’ll go ahead and create a
simple example that gets us using what we have learned so far.

A simple example
Our example for this chapter will be based on the previous chapter. For this reason,
we won’t go into detail on the structure, styling, or scripts used to create this sample.
However, it will be stripped down to an essential profile view that will allow you
to understand offline applications without any additional knowledge needed from
previous chapters. To begin with, let’s look at our markup.

www.it-ebooks.info

http://www.it-ebooks.info/

Offline Applications

[242]

The markup
As always, the source code accompanying this book contains everything you need
to get started with this chapter’s goals. So, let’s look at the meat of this sample and
examine how this example will function, starting with the markup. If you open the
index file located in the offline directory, you’ll notice that our content should look
something like this:

<div class=”site-wrapper”>
 <section class=”view-profile”>
 <header>
 <h1>John’s Profile</h1>
 Edit
 </header>
 <dl>
 <dt>Bio</dt>
 <dd>This is a little bit about myself; I like iphone web
apps and development in general.</dd>
 <dt>Age</dt>
 <dd>26</dd>
 <dt>Birthdate</dt>
 <dd>January 1st, 1987</dd>
 </dl>
 <form>
 <div class=”field”>
 <label for=”bio”>Bio</label>
 <textarea id=”bio”>
 This is a little bit about me; I like iphone web
apps and development in general.
 </textarea>
 </div>
 <div class=”field”>
 <label for=”age”>Age</label>
 <input id=”age” type=”number” value=”26”>
 </div>
 <div class=”field”>
 <label>Birthdate</label>
 <input type=”date” value=”1987-01-01”>
 </div>
 </form>
 </section>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[243]

As with any web application, especially those written in this book, this is just an
excerpt of the overall application architecture, which would contain a header, footer,
stylesheets, and scripts. But, the preceding markup describes a profile view that
displays a user’s information, including a short bio, age, and birth date. Along with
this information is a form that allows you to update such information.

The experience for this application is as follows. First, when the user loads the page
they should see all the information associated with them. Secondly, they will have
the option to edit this information using a hyperlink with the text Edit. When the
hyperlink is clicked, a form will appear that allows the user to edit their information.
Accordingly, the Edit hyperlink will update to View Profile. Lastly, when the user
clicks on View Profile, the form will hide and the display of the user’s information
will reappear.

The JavaScript
This isn’t as complicated as it sounds. In fact, the script that is used to create the
functionality of the page is dependent on the following script:

var $viewProfile = $(‘.view-profile’),
 $form = $viewProfile.find(‘form’),
 $dl = $viewProfile.find(‘dl’),
 $p = $(‘<p />’);

function onEditClick(e) {
 e.preventDefault();
 e.stopImmediatePropagation();

 $form.show();
 $dl.hide();
 $(this).text(‘View Profile’).attr(‘href’, ‘#view’);
}

function onViewClick(e) {
 e.preventDefault();
 e.stopImmediatePropagation();

 $form.hide();
 $dl.show();
 $(this).text(‘Edit’).attr(‘href’, ‘#edit’);
}

$viewProfile.
 on(‘click’, ‘a[href=”#edit”]’, onEditClick).
 on(‘click’, ‘a[href=”#view”]’, onViewClick);

www.it-ebooks.info

http://www.it-ebooks.info/

Offline Applications

[244]

Let’s look at what’s going on in the preceding code to make sure no one is lost. First,
we cache the elements appropriate to our page. In this way, we are optimizing the
performance by not traversing the DOM every time we need to look something up.
Then, we define our onEditClick and onViewClick event handlers, which show or
hide the appropriate content blocks and then update the text and href properties
of the anchor tag it relates to. Finally, we attach the click event on the anchor tags
to the cached $viewProfile element.

Note that the preceding JavaScript is an excerpt of the book’s
accompanying source code for this chapter. For simplicity, we have
removed the closure and Offline class in order to better explain the
meat and bones of the application being built here. Of course, you are
welcome to either use the preceding code as is, or continue using the
book’s source code. Whichever way you choose, the desired outcome will
be an application that shows or hides content based on the current state.

When the preceding code is executed and the page is loaded, these are the following
states of the application:

Initial application state and application edit state

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[245]

Now that we have a solid foundation of what the application should look like when
we interact with it, we want to make sure that it gets cached. By implementing the
techniques given at the beginning of our application, we should have an application
that now functions offline.

Remember that we need to place the application cache manifest in the same directory
as the sample application that is being built here. So, our application manifest needs
to exist in the offline directory along with our index.html file. If you look at the
source code for this chapter, you should see a working example of the structure
and layout of our manifest and source files. Running this application on a server
configured correctly will render our page offline. But the question is, how do we
debug something like this? Well, this is what the next section tackles.

Debugging the cache manifest
Debugging our offline applications is extremely important, after all, if our
application depends on network connectivity, it’s crucial we deliver an alternative
experience that is successful to our users. However, it is not easy to debug an
offline application. There are several reasons for this, but it’s mostly based on the
implementation of the application cache interface.

When Safari revisits your site, the site is loaded from the cache. If the cache
manifest has changed, Safari checks the HTML file that declares the cache, as well
as each resource listed in the manifest, to see if any of them has changed.

A file is considered unchanged if it is byte-for-byte identical to the previous version;
changing the modification date of a file does not trigger an update. You must
change the contents of the file. (Changing a comment is sufficient.)

This can be found in the Apple documentation at: https://
developer.apple.com/library/safari/#documentation/iPhone/
Conceptual/SafariJSDatabaseGuide/OfflineApplicationCache/
OfflineApplicationCache.html#//apple_ref/doc/uid/TP40007256-CH7-SW5

www.it-ebooks.info

http://www.it-ebooks.info/

Offline Applications

[246]

Debugging in the browser
Based on the previous documentation, we can improve the debugging process by
clearing the cache with updated resources. This could be as simple as updating a
comment in our code, but to ensure that the correct assets are being cached, we can use
modern browsers and use the debugger tools to review the assets being cached. Review
the following screenshots to see how you can test that your assets are being cached:

Safari developer tools – resources

The developer tools in Safari, shown in the preceding screenshot, help us debug
our application cache by providing a Resource tab that allows us to analyze the
application cache for multiple domains. In this example, we can see the resources
related to the domain for our sample application. When we review the application
cache, we can see a list of files associated with the cache to the right. Additionally,
we can see the location of the file and the status of the user; in this case, we are
online and idle.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[247]

Chrome developer tools – resources

The Chrome developer tools similarly help display information related to the
application cache. Although the user interface is a bit different, it contains all the
same components needed to review the assets associated with your application
cache. This view also includes the online status of your application; in this example,
we are not online and idle.

www.it-ebooks.info

http://www.it-ebooks.info/

Offline Applications

[248]

Debugging using JavaScript
The application cache can also be debugged using JavaScript, and luckily for us,
the implementation of the application cache manifest is extremely easy to interact
with. There are multiple events we can listen to, including progress, error, and
updateready. When we listen to these events, we can choose to implement a
supplementary experience, but for our use case here, we’ll just log out the event.

window.applicationCache.addEventListener(‘cached’, handleCacheEvent,
false);
window.applicationCache.addEventListener(‘checking’, handleCacheEvent,
false);
window.applicationCache.addEventListener(‘downloading’,
handleCacheEvent, false);
window.applicationCache.addEventListener(‘error’, handleCacheError,
false);
window.applicationCache.addEventListener(‘noupdate’, handleCacheEvent,
false);
window.applicationCache.addEventListener(‘obsolete’, handleCacheEvent,
false);
window.applicationCache.addEventListener(‘progress’, handleCacheEvent,
false);
window.applicationCache.addEventListener(‘updateready’,
handleCacheEvent, false);

function handleCacheEvent(e) {
 console.log(e);
}

function handleCacheError(e) {
 console.log(e);

}

In the preceding script, we listen to the events defined by the specification
(http://www.whatwg.org/specs/web-apps/current-work/#appcacheevents)
and call either the handleCacheEvent or handleCacheError methods. In each of
these methods, we just log out the event itself; however, if we wanted to, we could
create an alternate experience.

There are also a number of action methods that can be employed during the
implementation of the application cache process. For example, we could manually
update the cache using the update method.

window.applicationCache.update();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[249]

Although the preceding method could be helpful for us, remember that the cache
will only update if the contents themselves have changed. In reality, the update
method triggers the download process (http://www.whatwg.org/specs/web-apps/
current-work/#application-cache-download-process), which does not tell the
browser to get the latest cache. The swapCache method is another action call that
can be used to debug our applications by switching the cache to the latest version.

window.applicationCache.swapCache();

Keep in mind that if we make this call, the assets are not updated automatically. The
way we get the updated assets are on a page refresh. Based on the specification, an
easier way to do what we need here would be to do location.reload() (http://
www.whatwg.org/specs/web-apps/current-work/#dom-appcache-swapcache).

At this point, we have a good idea about the application cache manifest, including
how it functions, the implementation details, and ultimately how to debug it. Now
we need to know how to handle offline interactions using the preceding methods
and more. When we have a good understanding of both aspects, we’ll be able to
create simple offline applications that utilize this technology.

Handling offline applications
At this point, we have learned how to cache our files on the client side using
the application manifest interface to not only speed up our site, but also make it
available to our users when they are offline. However, this technique doesn’t take
into account what you should do to handle interactions by the user. In this case,
we need to make sure our application has usable parts that can make the application
seamless when they lose connection.

A simple use case
Before we proceed, let’s define a simple use case for why handling an offline
application is useful to both the user and us. Let’s say we have a user named John,
and John is commuting to work and is currently updating his profile in a web
application on his iPhone. The commute involves some spotty network connections,
and sometimes he does lose connection. He would like to be able to continue using
the application while he is on his way to work, instead of waiting to do so at work.

Given the world we live in today, and how a spotty interaction could really cost a
company a customer, we definitely want to handle this gracefully. It doesn’t mean
that we will provide all the services to the user while they are offline, that would be
unreasonable. What this does mean is that we need to inform the user that they are
offline and that certain features are currently disabled for this reason.

www.it-ebooks.info

http://www.it-ebooks.info/

Offline Applications

[250]

Detecting network connectivity
Now, you may be asking, “How do you detect a network connection?” Well, it’s
actually pretty simple. Let’s take a look at the following code:

var $p = $(‘<p />’);
if(!navigator.onLine) {
 $p.
 text(‘NOTICE: You are currently offline. Your data will sync with
the server when reconnected.’);

 $(‘.view-profile’).
 before($p);
}

Let’s review the preceding code briefly. The first part of this code creates a cached
element in memory and stores it in the $p variable. The next line, which is the most
important, detects online connectivity by checking the navigator object’s onLine
property. If the person is not online, we finally set the text of that cached element
and append it to our previous code.

If our application were offline, it would look like this:

Detecting network connectivity

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[251]

Of course, this is a stripped down version of how you would handle network
connectivity in your real-world applications, but it showcases that you can pick up
the status of the network and determine the experience offline. This is great for us
because it opens up a new world in web development that we haven’t been able
to explore. But of course, this also entails some complex forethought into how
such experiences are handled.

Going back to the use case we defined, the user wanted to update his/her profile
information, and obviously this would be extremely difficult to achieve without the
necessary resources. Fortunately for us, there are two new technologies we can use
to accomplish simple tasks similar to this use case. So, let’s briefly go over these
two technologies.

The localStorage API
Although offline status is a feature of the new HTML5 specification, it goes hand in
hand with another feature of HTML5, namely storage (http://dev.w3.org/html5/
webstorage/). Storage is something that many developers have thought previously
to be a one-to-one relationship with a backend system. This is no longer true, since
we are now able to save data on the client device using the localStorage API.

Let’s cover a brief example using localStorage to see how it works:

localStorage.setItem(‘name’, ‘John Smith’);

The code we just wrote here has multiple parts to it. First, there is a global object
named localStorage. This object has methods that a developer can interact with,
including the setItem method. Lastly, the setItem method takes two parameters,
both of which are strings.

To retrieve the value of the item we just set, we would do this:

localStorage.getItem(‘name’);

Pretty cool, huh? The only downside is that the current implementation of this
describes the API as only accepting strings for each key/value pair, similar to a
JavaScript object. However, we can go beyond this limitation by doing the following:

localStorage.setItem(‘name’, JSON.stringify({ ‘first’: ‘John’, ‘last’:
‘Smith’ }));

The difference here is that we are also accessing the built-in JSON object that turns
the object into a string so that the localStorage API can efficiently store this as a
plain string. Otherwise, you would store [object Object], which is just the type
of the object.

www.it-ebooks.info

http://www.it-ebooks.info/

Offline Applications

[252]

To access this information, we would do the following:

JSON.parse(localStorage.getItem(‘name’));

When you run this code in the console, you should then see an object. What the
JSON functionality has done is turn the “stringified” object into a traditional
JavaScript object. This makes accessing the data we have stored easy and efficient.

As you can start to gather, we have the power to store information on the client
side that we could not in the past, allowing us to temporarily allow the user to
interact with certain aspects of the site while the application is offline. Combining
the storage and offline features of HTML5 allows us to bring deeper interactions
to our applications while meeting client and user expectations.

However, the limitation to localStorage is the amount of information that can be
stored. For this reason, another technology exists, called IndexedDB. Although its
support is not consistent and the technology is still in experimental stages across
browsers, it’s worth taking a look at. Unfortunately, we won’t cover that technology
in this book, due to its lack of support in iOS Safari, but it’s still worth some review
(https://developer.mozilla.org/en-US/docs/IndexedDB).

Summary
In this chapter, we covered the basics of application cache including an example
of its implementation. Our review pointed out the benefits of using this new
technology, but also discussed the downsides, such as the inconsistent support,
mostly with older browsers, and the issues we face when testing it. We learned
how to handle offline interactions and how localStorage and IndexedDB allow
us to store information temporarily on the client side as a solution. In the next
chapter, we’ll discuss performance optimization and see how this has played
out in the application developed in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Principles of Clean and
Optimized Code

Throughout the book, we have stressed the importance of optimizing from the
very start of our application development. Although we have looked at topics from
caching elements in JavaScript to modularizing our styles, in this chapter we want
to summarize the techniques used in the book. After all, performance is highly
important in our mobile applications for several reasons. In this chapter, we will
cover optimizing our styles, scripts, and media. In addition to covering optimization
techniques, we'll go over good coding standards that enhance the maintainability
of your codebase while also enhancing performance at the same time. We'll start
out by discussing stylesheets.

In this chapter, we will cover the following topics:

•	 Validating CSS
•	 Profiling CSS
•	 CSS best practices
•	 Validating JavaScript
•	 Profiling JavaScript
•	 JavaScript best practices

www.it-ebooks.info

http://www.it-ebooks.info/

Principles of Clean and Optimized Code

[254]

Optimizing stylesheets
Traditionally, styles have been "plopped" onto web applications without
any forethought. Usually, we would just style our pages without any thought
to modularity, reusability, and maintainability. However, this is no longer
acceptable due to the extensive nature of web applications today.

In this book, we have strived to adhere to a couple of industry standards, such as
modularity. However, we do have tools now that can help us validate and profile
our styles. Starting with an analysis of a sample CSS file, we can then optimize
those styles; this is what we aim to do in this section of the chapter.

Validating our CSS
In order to optimize our stylesheets, we need to first verify that our CSS is valid and
compliant with today's standards. We can use various tools out there to validate our
styles, including the W3C CSS Validator and a tool called CSS Lint. Both these tools
check your stylesheets and give you a summary of what is wrong, why it is wrong,
and what you should do about it.

W3C CSS Validator
To access the W3C CSS Validator, you can visit the following URL:

http://jigsaw.w3.org/css-validator/

The following screenshot displays the W3C validator default view, which allows
you to enter in the URI of the page containing styles. It will automatically pick up
your stylesheets and validate them according to the W3C specification. However,
we are not limited only to having our page crawlable on a live or production-ready
site. We also have the option of uploading our stylesheets, or putting them directly
into this application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[255]

The W3C CSS Validator – URI view

In the following view, you can see that we can validate the styles through a file
upload process. This will simply run those stylesheets through a processor at the
backend to check if the styles are valid; once this process is done, we get our results.

The W3C CSS Validator – file upload view

www.it-ebooks.info

http://www.it-ebooks.info/

Principles of Clean and Optimized Code

[256]

Lastly, we have the option to directly insert our styles into the tool, perhaps the
fastest and easiest solution depending on the project and needs of the team or
individual. We don't have to worry about styles being stripped or modified in any
way; the text field will handle all your input correctly. Again, similar to the other
views, the input will run through a processor and present to you the results once
the Check button is clicked.

The W3C CSS Validator – direct input view

Customizable options
As with any good-quality assurance tool, we need to have the ability to customize
the options of this tool to fit our needs. In this case, we have various options that
are available to us, including:

•	 Profile: This option specifies the profile to be used when validating styles,
for example, CSS Level 1, CSS Level 2, CSS Level 3, and so on.

•	 Warnings: This option specifies the warning to be presented in the report,
for example, Normal, Most Important, No Warnings, and so on.

•	 Medium: This option specifies the medium the stylesheets are supposed
to represent, for example, Screen, Print, Handheld, and so on.

•	 Vendor Extensions: This option specifies the way vendor extensions
(-webkit-, -moz-, -o-) are to be handled in the report, for example,
Warnings or Errors.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[257]

Validating a successful example
Let's take a look at a successful validation example. First, let's use some styles we
created in a previous chapter to see if the CSS passes validation; in particular, let's
use the singlepage.css file contents and paste it into the direct input view of the
W3C validator and run it with the default options.

When we run the validator, our result should look like this:

The W3C CSS Validator – successful validation

As you can see, the output is successful and passes the CSS Level 3 specification. It's
so amazing that we even get badges from the validator to put on our site! But don't do
that; even though you should give yourself a pat on the back, this is something that
most of us don't really like on our sites. Now let's look at an unsuccessful example.

www.it-ebooks.info

http://www.it-ebooks.info/

Principles of Clean and Optimized Code

[258]

Validating an unsuccessful example
Errors happen all the time in programming, and so it's only natural for us to
encounter validation errors in our styling, scripts, and markup. So, let's take a
look at what an example of validation errors in the W3C CSS Validator looks
like. For this example, we'll use a variation of the video.css file we created
in Chapter 2, Integrating HTML5 Video. For the purpose of this example, I've
introduced several mistakes with the following styles:

video {
 display: block;
 width: 100%;
 max-width: 640px;
 margin: 0 auto;
 font-size: 2px;
 font-style: italics;
}

.video-container {
 width: 100;
}

.video-controls {
 margin: 12px auto;
 width: 100%;
 text-align:;
}

.video-controls .vc-state,

.video-controls .vc-track,

.video-controls .vc-volume,

.video-controls .vc-fullscreen, {
 display: inline-block;
 margin-right: 10px;
}

.video-controls .vc-fullscreen {
 margin-right: 0;
}

.video-controls .vc-state-pause,

.video-controls .vc-volume-unmute {
 display: none;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[259]

When we pass the preceding styles through the W3C CSS Validator, we get
the following:

The W3C CSS Validator – unsuccessful validaton

In the preceding example we're getting a couple of value, property, and
parse errors, all of which can be easily solved by the references given in this
unsuccessful validation example. What's great about this is that instead of
trying to figure out what might be breaking your layout, a simple fix on the
errors shown in the screenshot might solve all your problems.

In a sense this is basically all you need to make sure that your CSS is valid and
compliant across several browsers. However, what if you could prevent these
errors from happening? Well, there's a tool for that, CSS Lint.

www.it-ebooks.info

http://www.it-ebooks.info/

Principles of Clean and Optimized Code

[260]

CSS Lint
In most cases, we want to avoid having errors all together when we code, and it would
be helpful to catch these early on with a tool of some sort. CSS Lint is that tool, and in
fact can be used right inside the text editor or IDE of your choice. CSS Lint not only
checks your styling against certain principles of CSS (such as the box model), but
also does a lot of the syntax checking, helping you debug your styles effectively.

CSS Lint points out problems with your CSS code. It does basic syntax checking as
well as applying a set of rules to the code that look for problematic patterns or signs
of inefficiency. The rules are all pluggable, so you can easily write your own or omit
ones you don't want.

The details regarding CSS Lint can be found at https://github.com/
stubbornella/csslint/wiki/About.

Similar to the W3C CSS Validator, CSS Lint has its own site where you can copy
and paste your styles into a text area and have the processor checkout your styling.
The page in which we interact with looks like this:

CSS Lint

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[261]

Customizable options
CSS Lint also comes with customizable options, which are extensive, that you can
customize to fit you or your team's needs. There are six sections of customizable
options, including Errors, Maintainability & Duplication, Compatibility,
Accessibility, Performance, and OOCSS (Object Oriented CSS).

The customizable options are located right below the Lint! button:

CSS Lint options

Checking the appropriate options enables the engine to validate against those
properties. Usually these options vary between projects; for example, you may be
working on an application that requires padding and width to be set on certain
elements and thus, unchecking the Beware of broken box sizing option may be
more suitable for you, so that you are not presented with multiple errors.

www.it-ebooks.info

http://www.it-ebooks.info/

Principles of Clean and Optimized Code

[262]

Validating a successful example using CSS Lint
When we customize our options and pass the page through CSS Lint with proper
stylesheets that meet standards while also catering to the team's needs, we should
receive a successful validation, such as the following screenshot:

CSS Lint – successful validation

In the above case, our CSS styles pass and no additional information is needed.
However, what happens when our CSS does not pass validation?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[263]

Validating an unsuccessful example using CSS Lint
If we take the alternative video styles we created in the previous section for the
W3C CSS Validator and pass them through CSS Lint, we get the following:

CSS Lint – unsuccessful validation

www.it-ebooks.info

http://www.it-ebooks.info/

Principles of Clean and Optimized Code

[264]

However, just because we received four errors and two warnings does not mean we
are helpless. In fact, when we scroll down the page, we will see a list of items that
need to be taken care of; it also includes the type of problem, description, and line
that the error occurs on:

CSS Lint – unsuccessful validation listing

Integrating CSS Lint
Although we have a graphical user interface (GUI) that we can use to validate
our styles, it would be easier if we could streamline the process with our personal
development workflow. For example, it would be great if our CSS could be validated
as we saved our stylesheet in our text editor or integrated development environment
(IDE). CSS Lint is very extensible, allowing us to achieve these integrated workflows.

Some IDEs and text editor vendors have already implemented CSS Lint, including
Sublime Text, Cloud 9, Microsoft Visual Studio, and Eclipse Orion. Although the
installation and setup of CSS Lint into your preferred tool is out of the scope of this
book, you can look up all the information needed here:

https://github.com/stubbornella/csslint/wiki/IDE-integration

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[265]

Profiling our CSS
Previously it was extremely difficult to profile any of your CSS, in fact probably
impossible. But with the advancements that have taken place in browser debugging
tools, we are now able to profile stylesheets to some degree. In this section, we review
how to take profiles of our styles and read the information presented to us in the Safari
browser on Mac.

In the upcoming screens, we will briefly go over how profiling can be used for styles
and how the Safari browser presents this information to us. We will only look at layout
and rendering of our styles. Using the single-page application we built previously,
we will look at the effectiveness of our styles and see the weaknesses and strengths
of our styling in how it relates to the presentation layer of our application.

Let's begin by looking at the dashboard view of our single-page application with
the Safari debugging tools opened and on the profile tab (clock symbol).

Safari profiling tool

www.it-ebooks.info

http://www.it-ebooks.info/

Principles of Clean and Optimized Code

[266]

When we first load up our single-page application and view the profiling of the page
load, we see three different timelines, including Network requests, Layout & Rendering,
and JavaScript & Events. For our purposes, let's look at Layout & Rendering.

When we look at the Layout & Rendering timeline, we can see where repaints
and restyle calculations were made on page load. The debugger also lets us know
what type of process was run, when it was run, and the properties that were
changed, including its start time and duration. This is all extremely helpful when
looking for performance leaks on our page. But, what about runtime profiling?
Well, the debugger has that to.

In fact, in our left-hand side bar there is a circle on the same line as the Profiles tab that
allows us to profile either our JavaScript or CSS. This is great because when we enable
this, we'll start profiling the application at run time. So, let's say we enable the profiling
of our CSS and then, within our application, click on the Profile tab to switch page
views; we'll definitely execute some changes in the view that would make our styles
change. When we do this and stop our CSS profiling, we get the following results:

Safari profiling tool – runtime profiling

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[267]

When we analyze our profile we see the selectors that are being utilized, the total
time for it to render, the number of matches on the page, and its source. This is a great
breakdown of what sort of processing took place and gives us a good idea of the
amount of time each selector takes to find and render, giving us a good idea of what
can be improved. Given, our application for this book is small, but if you were working
on an application that included complex animations or the rendering of thousands
of rows of data, this would come in useful in debugging your mobile application.

Once we have a good idea of what is bottlenecking our application, we need to do
something about it. Having this information gives us critical information on the
performance of our application and what we should focus on. The optimization
phase is based on the problem(s) and needs of the project each team or individual
faces, so in the next section we discuss some optimization techniques that can be
used for faster rendering and matching of our styles.

Optimizing our CSS
In this section, we briefly go over some industry standards that help us optimize
our applications rendering time by providing modular styles that are efficient,
maintainable, and well crafted. These standards have been widely discussed by
individuals and organizations well known in the industry and have ultimately been
adopted in various frameworks. Of course, the standards discussed here may change
as time progresses and browsers implement better processing methods that make
new techniques faster and more efficient, but this should be a good starting guide
for anyone looking to create stylesheets that meet today's demands.

Avoid universal rules
Do not use the * selector in your rules. These select every element in the DOM
and thus their traversal method is inefficient.

For example, the following is extremely inefficient:

header > *

The preceding code is inefficient for one reason, it is using a universal selector.
Because CSS reads from right to left, the engine is saying "let's pick up all elements
and then see if they are immediately related to the header element." Because we
need to traverse the entire DOM, the rendering of this selector is extremely slower
than something like this:

header > h1

www.it-ebooks.info

http://www.it-ebooks.info/

Principles of Clean and Optimized Code

[268]

Don't qualify ID or Class rules
Qualifying an ID or Class involves directly attaching the tag name with the appropriate
selector, but is extremely inefficient for the same reasons as the previous rule.

For example, all of the following selectors are bad:

input#name-text-field

.text-field#name-text-field

input.text-field

.text-field.address-text-field

Although some of these may seem tempting, they are unnecessary and inefficient.
However, there is an exception here; if we want to change the style by adding a
class to an element, then qualifying a class might be necessary. Either way, we
could do the following to correct the preceding qualifying ID or classes.

#name-text-field

.text-field

.text-field.address-text-field

As it was mentioned in the preceding paragraph, the last selector might be more
useful when changing the styles of an element based on a user action via JavaScript.

Never use !important
This rule is pretty self-explanatory. It is definitely tempting to use this to override
styles, but don't; it will only cause headaches as your application(s) become more
extensive. For this reason, check out the next rule.

Modularize styles
It's very easy to create styles that are generic to a web application or website;
however, if we start thinking in terms of modularity, we start creating styles that are
reserved for a part of that application. For example, take a form and its inputs, and
let's say we wanted all forms on a site to contain text fields with a brown border.
We could do the following:

form .text-field { border: 1px solid brown; }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[269]

Now we have reserved all fields with the class .text-field inside a form element to
contain this style. So if any input fields with the class .text-field are outside this
selector, we can then style them any way we want. Or on the other hand we could
override the style like so:

form .personal-information .text-field { border: 1px solid blue; }

Now, if we include this style after the original one, it would take precedence
because we are actually using cascading principles that make our styling more
efficient and manageable.

Keep in mind that descendant selectors are the most expensive kind
of selector. However they are extremely versatile, and therefore we
should not sacrifice maintainability or semantics for efficient CSS.

In most cases, these rules should be enough, but you will most likely find it useful
to implement some of the other best practices that have been written about in the
industry. Of course, you should work with the practices that have been adopted
for the framework you use, or better yet, fit your team. I have found these to be
extremely helpful and a great starting point, and I encourage you to research
and experiment as you see fit. Now, let's take a look at how JavaScript could be
optimized for our applications.

Optimizing JavaScript
Now that we have covered the optimization of stylesheets, let's look at our scripts.
JavaScript has also had a history of being dropped onto the page without any
forethought or planning, and in general has led to bad reputation for the language.
But again, because of the complex nature of web applications, the open source
community has helped shape the language.

Throughout the book, we have adopted several industry standards, including
namespaces, closures, caching variables, and so on. However, it is also essential
we validate and profile our scripts so they can be optimized. In this section,
we will go through this and hopefully cover the major points needed to make
high-performance mobile applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Principles of Clean and Optimized Code

[270]

Validating JavaScript using JSLint
In recent years, various tools have come out to help us validate our JavaScript.
Tools such as JSLint and JSHint have been created to help us as we code, similar to
CSS Lint. But why should we use these tools, especially for JavaScript? JSLint's site
(http://www.jslint.com/lint.html) mentions the reasoning behind the tool:

JavaScript is a young-for-its-age language. It was originally intended to do small
tasks in webpages, tasks for which Java was too heavy and clumsy. But JavaScript
is a surprisingly capable language, and it is now being used in larger projects.
Many of the features that were intended to make the language easy to use are
troublesome when projects become complicated. A lint for JavaScript is needed:
JSLint, a JavaScript syntax checker and validator.

JSLint's website also mentions the following:

JavaScript is a sloppy language, but inside it there is an elegant, better language.
JSLint helps you to program in that better language and to avoid most of the slop.
JSLint will reject programs that browsers will accept because JSLint is concerned
with the quality of your code and browsers are not. You should accept all of
JSLint's advice.

To test out our JavaScript, we can easily visit JSLint's website
(http://www.jslint.com/):

The JSLint website

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[271]

As you can see, JSLint is very similar to CSS Lint, in such a way that all you really
need to do is input your JavaScript onto the page and the results will be displayed to
you. So let's check out what a successful and an unsuccessful output would look like.

Validating a successful example using JSLint
In our example, we will utilize our App.js JavaScript to test out with the JSLint utility.
When we run this file, a successful output will detail out the methods, variables, and
properties used throughout the closure. Let's look at the following screenshots:

Successful validation using JSLint – methods and variables

www.it-ebooks.info

http://www.it-ebooks.info/

Principles of Clean and Optimized Code

[272]

The preceding example is the top view of a successful validation using JSLint. The
validator will return to us a list beginning with a listing of all global objects. It will
then continue on with a listing of the methods, variables, and some detail about
each. For example, initVideo returns this or an instance of App and so on.

Successful validation using JSLint – properties

Validating an unsuccessful example
Taking the same example as the previous one without modifying the JSLint
options would produce several errors. These errors are mostly whitespace,
spacing, and global objects that the processor is not aware of.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[273]

JSLint – unsuccessful validation

Based on the preceding output, the errors are listed in red with a description, sample
code, and line number of where the error occurs, allowing you to easily debug your
application. Now, let's say we didn't want whitespace or spacing to actually affect
the outcome of our validation; then we could customize the options for JSLint.

www.it-ebooks.info

http://www.it-ebooks.info/

Principles of Clean and Optimized Code

[274]

Customizable options
As with most of the tools we are discussing in this chapter, JSLint also comes
packaged with options that can be customized to fit our needs. Let's briefly
review some of the options that are available to us via the website.

JSLint – the Options screen

The options that are available to us are extensive, from whitespace formatting to
the correctness of the toleration of TODO comments that we all put in our JavaScript.
Of course, some of these options may not fit our needs at the time of testing, but
in general, they are very helpful in keeping with a consistent coding standard
that delivers cross-platform valid scripts.

Integrating JSLint
Similar to CSS Lint, JSLint can be used in your IDE or text editor—whichever
environment you prefer. Many vendors have already created plugins or extensions
to these tools to allow you to easily lint your code as you type or save. For example,
Sublime Text has a SublimeLinter package that comes with CSS Lint, JSLint, and
also some other tools that can help you code more efficiently. How is this possible?

JSLint can be run anywhere that JavaScript (or Java) can run. See for example
https://github.com/douglascrockford/JSLint/wiki/JSLINT.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[275]

Refer to the following for more details:

https://github.com/douglascrockford/JSLint

In its essence, JSLint is a JavaScript method that can be passed in code and is then
evaluated by JavaScript itself, making it extremely efficient to process your code and
to integrate into other environments. So if it doesn't already exist for your text editor or
IDE, you can easily create an extension that helps you code with quality using JSLint.

Profiling our JavaScript
As with CSS profiling, testing the performance of your JavaScript was extremely
hard in the old days of the Web. However, we don't really need to worry about it
too much these days, since almost every browser debugger has implemented a way
to profile your scripts. Using Safari's built-in debugging tool, we'll check out how to
debug our application's script performance.

In the following examples, we will just go over the profiling of the JavaScript on the
single-page application we built previously, similar to what we did for the profiling
of our styles in the previous section.

Safari profiling tool – JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

Principles of Clean and Optimized Code

[276]

The preceding screenshot is a review of the scripts on page load. When we review
the JavaScript & Events timeline, we are given a breakdown of the type, details,
location, start time, and duration of each script, contributing to the scripts timeline
outcome. Although the start time is something which we definitely want to know in
order to see what might be blocking scripts (other scripts), duration is probably even
more important because each script can block the process of page rendering if it is
not brought in asynchronously.

On top of viewing the performance of the page-load impact from scripts, we can also
profile the functionality that our scripts perform. For example, let's say we wanted to
detect how our methods are performing when we click on the Profile button within
our application. Well this can be easily accomplished using the same technique as
profiling your CSS, by clicking the circle in the Profile tab and enabling profiling for
our JavaScript; we will be able to see all the methods called and their performance.

Safari profiling tool – JavaScript runtime

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[277]

Based on our preceding use case, we can detail out the performance of our
application pretty easily. From what we can gather in this example, our
onProfileClick event takes about 8.40 ms to execute, and is called once.
However, the larger picture is that we can see all the methods being called
and the order of this execution—great information that can be used to help detect
memory leaks and performance optimization that is necessary for our application.

You can see from these very basic examples that debugging our application for
performance is easier than ever before. We can profile our JavaScript, find out how
our application is working, and the efficiency of our code. But now that we have this
information, what can we do to improve our codebase? Well this is what we tackle in
the next section, general optimization tips that we can all use to make our application
perform better without sacrificing code quality.

Optimizing our JavaScript
JavaScript is highly extensible, allowing us to do almost anything we want—which
is great, but can also be extremely harmful. For example, you can easily forget about
using the keyword var in front of your variables. However, we don't want to do this
because it will make our variables available at the global scope, which may cause
conflicts with other scripts that might use that exact same variable name. We can also
easily wrap our JavaScript in a try...catch statement, not exactly the best practice
because we're not figuring out what the problem is. Or if we wanted to, we could
eval or evaluate a string of JavaScript pretty easily without any error checking.

For this reason, the industry has adopted multiple best practices that are true and
tested, implemented by the most used open source libraries out there, including
jQuery, Backbone, and Underscore. In this section, we briefly go over the practices I
have based the book on and those I believe are critical to the success of any application.

Avoid globals
It is extremely easy and tempting to create all your variables and functions in the
global scope, or outside of the closures we created in our applications. But don't do
that; it's a terrible idea and looked down upon in the community for several reasons.
For example, if a variable is kept in the global scope, it must be maintained during the
entire execution of your application, decreasing the performance of your application.

So instead of doing this:

Var Modal = function(){};

You should be doing this:

(function(){ function Modal(){} }());

www.it-ebooks.info

http://www.it-ebooks.info/

Principles of Clean and Optimized Code

[278]

The preceding technique is very similar to what we have been doing all along. In
fact, this is what we called closures or immediately invoked function expression
(IIFE). When we wrap a method inside the parenthesis and then invoke it using (),
we are calling that method immediately and creating a new containing scope,
so anything inside those parenthesis is not available at the global scope, making
our code a bit more manageable.

Leave the DOM alone
Well, we probably won't be doing that, but we should definitely keep it to a minimum.
Accessing the DOM is expensive and is an issue when it comes to application
performance. So let's take a use case, such as updating a list of information.

Avoid doing this:

var $list = $('ul');

for (var i; i < 100; i++) {
 var li = '' + i + '';

 $list.append(li);
}

Instead, you should do this:

var $list = $('ul'),
 liArray = [];

for (var i; i < 100; i++) {
 liArray.push('' + i + '');
}

$list.append(liArray.join(''));

The difference between the two is that the former touches the DOM each time we
create a list item, while the latter pushes each item to an array, and when it comes
to appending, joins the array with an empty string, touching the DOM only once.

Use literals
This can be seen throughout our entire codebase for this book. This is more efficient
since we don't use the new keyword. For example, instead of declaring a new
variable via the new keyword, we just use the Array literal, like so:

var arr = []; // not new Array();
var str = ''; // not new String('');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[279]

Modularize functionality
To keep code modular, you want to make sure that each function or class has a
specific set of functionality it is supposed to achieve. Most of the time, each function
should probably be about 10 to 15 lines of code that achieves a certain goal.

For example, you may write the following bit of functionality:

function init() {
 var $list = $('ul'),
 liArray = [];

 for (var i; i < 100; i++) {
 liArray.push('' + i + '');
 }

 $list.append(liArray.join(''));	

 $list.on('click', function() {
 // do something
 });
}

Instead of writing the preceding code, we can do this:

function populateLists() {
 var $list = $('ul'),
 liArray = [];

 for (var i; i < 100; i++) {
 liArray.push('' + i + '');
 }

 $list.append(liArray.join(''));	

 return $list;
}

function attachListsEvents($list) {
 $list.on('click', doSomething);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Principles of Clean and Optimized Code

[280]

function doSomething(e) {
 // do something
}

function init() {
 var $list = populateLists();

 attachListsEvents($list);
}

As you can see, the code has been modularized to do specific sets of functionality,
allowing us to create methods that run a specific set of instructions that each method,
by name, describes. This is great for maintaining our codebase while delivering
effective functionality.

Summary
In this chapter, we have considered performance optimization for various parts
of our applications, including styles, scripts, and media. We went over validating,
optimizing, and profiling our styles and scripts. In addition, we briefly covered how
we can optimize our media, including images, audio, and video. Now that we have
firm understanding of the techniques used throughout the book to optimize our
applications, in the next chapter, we will take a look at frameworks that can help
us deliver native applications using HTML5, CSS3, and JavaScript.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Native iPhone
Web Application

In this chapter, we look at transferring our native applications for iOS Safari to
a native environment using the PhoneGap framework. We'll dive into setting up
our development environment, including the setup of the Xcode IDE and use of
the iOS Simulator. We'll build a HelloWorld example to demonstrate how easy
it is to get going quickly, and then transfer our single-page application, built in
Chapter 7, One-page Applications. Once we have a solid foundation on native
application development, we'll enhance the single-page application by tying into
native functionality using PhoneGap's Contacts API to bring in our contacts and
display some of their information.

We aim to help you achieve a consistent look and feel for your native application
using a single codebase. The goals here are to get you started on native application
development using the programming languages you have grown to love and
understand for the Web. With that in mind, let's start by setting up our
development environment.

In this chapter, we will cover:

•	 Xcode installation
•	 Using the iOS Simulator
•	 Implementing PhoneGap
•	 Creating a HelloWorld example
•	 Transferring a current application, including CSS, JavaScript, HTML,

and assets
•	 Tying into native functionality using the Contacts API in PhoneGap

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Native iPhone Web Application

[282]

Setting up the development environment
As with any workflow to creating software, our development environment is critical.
So, let's take some time setting up the environment preferred by many engineers to
create native applications. In this section, we'll go over the installation of Xcode, and
an overview of the Integrated Development Environment (IDE). We'll continue by
setting up the PhoneGap framework and lastly look at how the iOS Simulator plays a
critical roll in testing our app. As a bonus, we'll look at configuring our application to
fit our needs in this chapter. So let's get started.

Getting started with Xcode
Xcode is the preferred IDE for native application development on the iOS operating
system, as it is actively supported by Apple and specifically tailored to the OS X and
iOS operating systems. The IDE is provided by Apple and can be used to create Mac
OS X, iPhone, and iPad applications. While it can also be used for other various types
of development, these three platforms are most commonly associated with Xcode. By
default, your Mac does not come with Xcode, so we'll need to install it.

Installing Xcode
Luckily for us, Xcode is extremely easy to install. We can install the IDE
through the Mac App Store (https://itunes.apple.com/us/app/xcode/
id497799835?ls=1&mt=12). When the installation is complete, we will have various
pieces of software installed on our computer, including the Instruments analysis tool,
iOS Simulator, and the latest Mac OS X and iOS software development kit (SDK).

Xcode IDE overview – the basics
By default, the Xcode IDE gets installed in the applications directory; launch it
by double-clicking on the icon displayed. The icon is a hammer that is diagonally
located over a blue technical drawing that has a pencil, brush, and ruler forming
the letter A. When the application launches, we will see the welcome screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[283]

The welcome screen

This is the welcoming screen for Xcode, and it lists out recent projects and the
ability to create a new project, connect to a repository, learn about Xcode, or check
out the Apple developer portal. On your screen you will most likely not have the
HelloWorld project listed in the preceding screenshot, which is what we will be
building, and if it's your first time this should be empty.

Because this section is to get us familiar with Xcode itself, don't
hesitate about the next few screens. The next screens are what we
will be building out, but are only meant to help us recognize certain
parts of the Xcode application to make it easier for you to use.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Native iPhone Web Application

[284]

The Xcode workspace
Now, let's go over the user interface of Xcode in order to understand how we can
leverage this powerful tool. First of all, as we already know, we are introduced to
the welcome screen when we open the application. You can choose to disable this
feature by unchecking the Show this window when Xcode launches checkbox on
the welcome screen. But when we have a project that we have created open, this
is what it looks like:

The project display

Looks pretty simple right? Well that's good, because this is known as the workspace
and this is critical because Xcode aims to have all development efforts be located
within one central window in the IDE, helping us consolidate and speed up our
development process. But recognize the two critical aspects of this workspace: the
Navigator Area located to the left where all of our files are located, and then the
Editor Area where we can edit the project we are in.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[285]

The Navigator and Editor Areas

The preceding screenshot helps demonstrate the two most critical aspects of Xcode
when it comes to developing an application. Keep in mind that, depending on the
file selected, your Editor Area will change. For example, in the preceding screenshots
we have a GUI that allows us to set properties of our project.

The Xcode toolbar
The toolbar in Xcode has various features that we'll use constantly when developing
native applications. For example, in the following screenshot, there are Run, Stop,
and Breakpoints buttons, including a Scheme selector. These actions are extremely
important when debugging your application(s). The Run button does exactly what
it says, it runs your application. Stop on the other hand will stop all activities with
the running application. And the Breakpoints button will display our breakpoints
in the Editor Area.

The toolbar displaying Run, Scheme, and Breakpoints

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Native iPhone Web Application

[286]

The Scheme selector lets you choose which application to test and in what
environment to test it. In our example application, HelloWorld will be tested using
the iPhone 6.0 Simulator, but we have various options to choose from. Looking at
the following screenshot, we can see that, if installed, we can test our application
using the iPad Simulator and various versions of it, and the iPhone Simulator.

The toolbar Scheme selector

The toolbar also has various actions to the right of the IDE, including the editor
views, general views, and organizer. The default editor view is a text editor
component, allowing us to do basic editing of our source files. The middle editor
view is the assistant editor, which we will not be covering. The last editor view is
the version editor.

The toolbar project display options

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[287]

The version editor is great for our use as developers, allowing us to edit files and see
the versioning happening immediately. For example, in the following screenshot we
can see that a comment was added, and that the original versioned file is informing
the user of where the changes have been made, allowing us to see live edits of the
same file.

The project versioning display

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Native iPhone Web Application

[288]

Moving on to the View toolbar section, we have three buttons. Each button reveals
a certain part of the editor that is useful to us depending on the situation. The first
button is selected by default because it shows us the Navigator Area to the left. The
middle button reveals the debugging area as shown in the following screenshot:

The project debugging display

This is great because we can now debug our application as it runs and see the logs
as the application is tested. Remember all those logs we use in our applications?
They will show up here; they are extremely useful if we don't have a developer
console that is very useful in our browser. The last button in the toolbar controls the
utilities. These utilities help us control various settings of the current file in question;
from name to source control, we can customize various details of our files.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[289]

The project file configuration display

Okay, so we know the basic features of Xcode and that there is much to
explore—and that it is both great and beneficial to us as developers. We can
continue to cover all the extremely useful features of Xcode, but for our benefit
let's move on to PhoneGap, after all we are more interested in learning to build
a native application. The tools can always be used and customized for our needs.

Setting up PhoneGap
Xcode is great to use in your arsenal of application development environments.
However, PhoneGap is where all the magic happens. It's the framework that
empowers us to create native applications that are based on the code we have
already written with HTML, CSS, and JavaScript. So let's review how to install it,
create a project, and briefly go over its support and license to prepare us to harness
its abilities for our own applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Native iPhone Web Application

[290]

Installing PhoneGap
PhoneGap is extremely easy to get started with; first let's install it from PhoneGap's
website, here: http://phonegap.com/download/. When the ZIP file completely
finishes downloading, we'll want to extract its contents. Now when you start
examining the contents of the extraction, you'll notice that there's a lot going on,
especially in the lib directory where multiple operating systems are listed. This
is good, because PhoneGap supports multiple platforms, but what we want is
specifically for iOS. Our focus should be on the following:

PhoneGap directory structure

Notice that in the iOS directory we have multiple files, all of which are critical to
the creation of our first PhoneGap project. In the next section, we'll create our first
PhoneGap project using this cleaned up version of the PhoneGap framework.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[291]

Creating a PhoneGap project
Now that we have the PhoneGap framework downloaded and simplified for our
purposes, we want to create our first ever project using this framework. In order to
do that, we'll need the help of our trusted command-line interface (CLI). By default,
all Mac operating systems comes with Terminal, but we can also us iTerm (free)
as well. Either way, launch that application, which is located in /Applications/
Utilities/.

When you have Terminal open, we'll need to navigate to the directory your
PhoneGap files are located at. This should be in our Downloads directory by default,
depending on your browser settings. In this case, I would navigate to /Users/
acresp/Downloads with the cd command, like so:

cd /Users/acresp/Downloads

Once we're in the directory PhoneGap was extracted to, we need to navigate to view
the bin directory inside the iOS folder inside phonegap. To do this, we can type in
the following:

cd phonegap-2.5.0/lib/ios/bin/

Now we can build our PhoneGap application using the create shell script inside
the bin folder. The documentation for this script is as follows:

#
create a Cordova/iOS project
#
USAGE
./create <path_to_new_project> <package_name> <project_name>
#
EXAMPLE
./create ~/Desktop/radness org.apache.cordova.radness Radness
#

This is excellent for us because we know what we can do to create our application
easily. But before we do that, let's make sure our application directory is created
within our project. For the purpose of this chapter, I have created a cordova250
directory that will contain our HelloWorld application, and may contain other
PhoneGap projects as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Native iPhone Web Application

[292]

Now that we have made sure that our application directory exists, we can run
the following command to make sure our application gets created:

./create ~/Sites/HTML5-iPhone-Web-App/cordova250/HelloWorld

.org.apache.cordova.HelloWorld HelloWorld

This will produce a directory called HelloWorld inside the cordova250 folder
with all the necessary files we need to get started. We have now created our first
PhoneGap project. There's not a whole lot happening just yet, but let's continue;
we'll soon start developing a native application. First, let's review the support
that's out there for this framework and the license backing it up.

The PhoneGap license
You're probably wondering about the PhoneGap license, especially since we have
used many open source projects along the way to create our applications. PhoneGap
is based on the Apache license (http://phonegap.com/about/license/). And
what's even better for us is that the Apache foundation has provided us with clear
and concise information about what is allowed, forbidden, and required. Straight
from the FAQ section of the What does it mean? section (available at http://www.
apache.org/foundation/license-faq.html#WhatDoesItMEAN), we are given
all the details we need:

It allows you to:

freely download and use Apache software, in whole or in part, for personal,
company internal, or commercial purposes;

use Apache software in packages or distributions that you create.

It forbids you to:

redistribute any piece of Apache-originated software without proper attribution;

use any marks owned by The Apache Software Foundation in any way that might
state or imply that the Foundation endorses your distribution;

use any marks owned by The Apache Software Foundation in any way that might
state or imply that you created the Apache software in question.

It requires you to:

include a copy of the license in any redistribution you may make that includes
Apache software;

provide clear attribution to The Apache Software Foundation for any distributions
that include Apache software.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[293]

It does not require you to:

include the source of the Apache software itself, or of any modifications you may
have made to it, in any redistribution you may assemble that includes it;

submit changes that you make to the software back to the Apache Software
Foundation (though such feedback is encouraged).

Based on these parameters, we can continue to create open source software using
PhoneGap as long as we include a copy of the license with every redistribution, so
long as it has clear attribution to The Apache Software Foundation. If you do have
any other questions related to PhoneGap's license or the Apache 2.0 license, there
is more information on the preceding link and on PhoneGap's license page
(http://phonegap.com/about/license/).

Configuring our project
Our project can be configured to fit our needs and concurrently, those for our
users. This process is fairly simple and well documented at the PhoneGap API
documentation site (http://docs.phonegap.com/en/2.5.0/guide_project-
settings_index.md.html#Project%20Settings). Most of these settings are
easily modified through the config.xml file located in our project directory
/cordovar250/HelloWorld/HelloWorld/config.xml.

Here is a current list of items that can be customized:

Preference Description
UIWebViewBounce (Boolean, defaults to
true)

This sets the property of a rubber-band
type interaction/bounce animation.

TopActivityIndicator (string, defaults to
gray)

This sets the color of the spinning
throbber in the status/battery bar,
with valid values of whiteLarge,
white, and gray.

EnableLocation (Boolean, defaults to false) This determines whether to initialize
the Geolocation plugin at start-up,
making your location more accurate at
startup.

EnableViewportScale (Boolean, defaults
to false)

This enables/disables viewport
scaling.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Native iPhone Web Application

[294]

Preference Description
AutoHideSplashScreen (Boolean, defaults
to true)

This controls whether the splash screen
is hidden through a JavaScript API.

FadeSplashScreen (Boolean, defaults to
true)

This enables the splash screen to fade
in and out.

FadeSplashScreenDuration (float,
defaults to 2)

This indicates the splash screen's fade
duration in seconds.

ShowSplashScreenSpinner (Boolean,
defaults to true)

This shows or hides the splash screen's
loading spinner.

MediaPlaybackRequiresUserAction
(Boolean, defaults to false)

This allows HTML5 to auto play.

AllowInlineMediaPlayback (Boolean,
defaults to false)

This controls inline HTML5 media
playback. The video element in the
HTML document must also include
the webkit-playsinline attribute

BackupWebStorage (string, defaults to
cloud)

If set to cloud, storage data will be
backed up to iCloud. If set to local,
only local backups will be made. If set
to none, no backups occur.

KeyboardDisplayRequiresUserAction
(Boolean, defaults to true)

If this is set to false, the keyboard will
open when form elements get called
via JavaScript's focus().

SuppressesIncrementalRendering
(Boolean, defaults to false)

This allows content to be received
before being rendered.

Transferring a web application
At this point, we have created a sample HelloWorld application using PhoneGap
and Xcode. Now, we'll take it up a notch by reviewing transferring our single-
page application from Chapter 7, One-page Applications. In this section, we'll go over
transferring our assets, including our markup, styles, and scripts, and then learn how
to debug our applications. Finally, we'll extend our single-page application by using
native functionality that PhoneGap has allowed us to tap into using the code we've
already written.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[295]

Transferring our assets
Let's start by transferring our assets. This section will briefly go over how to transfer
what we have written with a minimal level of effort. The goal here is to basically
have the same application we have running natively. We won't be using PhoneGap's
built-in features just yet, but we'll have an app up and running quickly.

Including our markup
The first thing we want to do here is open up the Xcode project that was generated
previously using PhoneGap. To do this, we first locate our project in Finder, in my
case ~/Sites/HTML5-iPhone-Web-App/cordova250/HelloWorld/. Once we've
located our project, double-click on the HelloWorld.xcodeproj file; this will
launch the project in Xcode.

Once Xcode has launched with our project, we'll see it index our files. While it's
indexing, it won't prevent you from interacting with your project, so you'll be able
to start editing files. So, let's go ahead and check out our index.html file located
in the www directory.

Our project's preliminary HelloWorld markup

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Native iPhone Web Application

[296]

As you can see, we've got a basic template set up for us. Let's run this HelloWorld
markup to see the results. The first item you should see is a splash screen with the
default PhoneGap image and immediately after the device ready introduction.
Here are screenshots displaying the results:

The splash screen and the device-ready screen

Now that we know that our application is running with the default markup and
styles, we should be able to move pretty quickly. So, the first order of business is
to bring in the completed markup from the single-page application screen seen in
Chapter 7, One-page Applications. We won't review the code written for that chapter
here, but here is the template:

<!DOCTYPE html>
<html class="no-js">
<head>
 <meta charset="utf-8">
 <title></title>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[297]

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"
/>
 <meta name="format-detection" content="telephone=no" />
 <meta name="viewport" content="user-scalable=no, initial-scale=1,
maximum-scale=1, minimum-scale=1, width=device-width, height=device-
height, target-densitydpi=device-dpi" />

 <link rel="stylesheet" href="css/normalize.css">
 <link rel="stylesheet" href="css/main.css">
 <link rel="stylesheet" href="css/singlepage.css">
 <script src="js/vendor/modernizr-2.6.1.min.js"></script>
</head>
 <body>
 <div class="app">
 <div id="deviceready" class="blink">
 <p class="event listening">Connecting to Device</p>
 <div class="event received site-wrapper">
 <header>
 <hgroup>
 <h1>iPhone Web Application Development</
h1>
 <h2>Single Page Applications</h2>
 </hgroup>
 </header>
 <div class="content"></div>
 <footer>
 <p>iPhone Web Application Development ©
2013</p>
 </footer>
 </div>
 </div>
 </div>
 </body>
</html>

Keep in mind that we have made some modifications in order to fit this directory
structure. For example, instead of referencing our CSS files using ../css/somefile.
css, we use css/somefile.css and the same applies for any other assets that we'll
be importing. You'll also notice that the preceding code template doesn't include
the templates we created from Chapter 7, One-page Applications; this is to keep the
preceding template short and simple in terms of how to import assets into your
own PhoneGap project.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Native iPhone Web Application

[298]

At this point, we won't test our application because we're not done bringing in our
assets, including styles and scripts, but we should be good for the time being. What
we want to take away here is that importing an existing static web application is
as simple as copy and paste, but don't let this fool you; most applications are not
as simple and this example is just to demonstrate how easy it is to get going.
Now let's move on to importing our styles.

Incorporating our styles
We now have our markup set up in our project index.html file. That was easy; this
part will also be as easy. All we need to do is include our CSS files that are being used
for this project. To make things easier, I've just included all of our previous stylesheets
into the Xcode project's CSS directory. Your project should now look like this:

Our imported stylesheets

Now that we have imported our stylesheets into our Xcode project, we're half way
there. At this point we need to import our scripts. Again, do not test your application
here since it probably won't work. This last bit will get us to where we need to be,
so let's start importing our scripts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[299]

Inserting our scripts
Okay, so we've imported our markup and stylesheets—this is great. But there's one
last piece, our JavaScript. This last piece is essential to making our application run.
So, let's start by doing the same thing we did for our styles; just import all your
scripts into the js directory of the Xcode project. When you do this, the result
will be the following:

Our imported scripts

We have our scripts inside the Xcode project. But we still need to do some
configuration, including referencing our scripts correctly inside the index.html file,
and making sure our application will launch accordingly. Let's start by referencing
our scripts correctly in our index.html file.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Native iPhone Web Application

[300]

Remember the markup we transferred over two sections ago, with a default template
that was showcased? We're going to take a step back and look at that template again,
except we're only going to look at the bottom of the markup right before the body tag
closes. This is where our applications previously included the JavaScript; so there's
nothing new here, we just want to make sure the files are being referenced correctly.
Just make sure that in your index.html file, your scripts look like this:

 <!-- BEGIN: LIBRARIES / UTILITIES-->
 <script src="cordova-2.5.0.js"></script>
 <script src="js/vendor/zepto.min.js"></script>
 <script src="js/vendor/underscore-1.4.3.js"></script>
 <script src="js/vendor/backbone-0.9.10.js"></script>
 <script src="js/helper.js"></script>
 <!-- END: LIBRARIES / UTILITIES-->
 <!-- BEGIN: FRAMEWORK -->
 <script src="js/App/App.js"></script>
 <script src="js/App/App.Nav.js"></script>
 <script src="js/App/views/BaseView.js"></script>
 <!-- END: FRAMEWORK -->
 <!-- BEGIN: MUSIC PLAYLIST APPLICATION -->
 <script src="js/Music/Music.js"></script>
 <script src="js/Music/models/SongModel.js"></script>
 <script src="js/Music/collections/SongCollection.js"></script>
 <script src="js/Music/views/SongView.js"></script>
 <script src="js/Music/views/PlayListView.js"></script>
 <script src="js/Music/views/AudioPlayerView.js"></script>
 <!-- END: MUSIC PLAYLIST APPLICATION -->
 <!-- BEGIN: USER APPLICATION -->
 <script src="js/User/User.js"></script>
 <script src="js/User/models/UserModel.js"></script>
 <script src="js/User/views/DashboardView.js"></script>
 <script src="js/User/views/ProfileView.js"></script>
 <!-- END: USER APPLICATION -->
 <script src="js/main.js"></script>
 <!-- END: BACKBONE APPLICATION -->
 </body>
</html>

Note a couple of things that are going on here. First, we include the cordova library
that comes with PhoneGap at the very top; this will be essential in a moment or two
when we try to detect a deviceready event. Next, we reference all our JavaScript
source files to the js directory in our Xcode project, not ../js. Now, the last
thing we need to do here is make sure our code runs when the device is ready,
which means we need to modify how our single-page application starts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[301]

To make sure our application starts, we need to listen to the deviceready event
that is provided by the PhoneGap event (http://docs.phonegap.com/en/2.5.0/
cordova_events_events.md.html#deviceready). This event is triggered once
Cordova has been fully loaded. This is essential because the DOM is not loaded
while native code is loading, and the splash screen is displayed. So we can run into
problems when a Cordova function is required before the DOM loads. So for our
purpose, we'll listen to the deviceready event and then start our application.
This can be done with the following code:

<script>
 (function(){
 document.addEventListener('deviceready', onDeviceReady, false);

 function onDeviceReady(){
 console.log("onDeviceReady");
 var parentElement,
 listeningElement,
 receivedElement;

 parentElement = document.getElementById('deviceready');
 listeningElement = parentElement.querySelector('.listening');
 receivedElement = parentElement.querySelector('.received');

 listeningElement.setAttribute('style', 'display:none;');
 receivedElement.setAttribute('style', 'display:block;');

 // Start our application
 Backbone.history.start();
 }
 }());
</script>

Let's examine this code line by line. First, we create a closure that executes
immediately. Within this scope, we listen to the deviceready event and assign the
onDeviceReady callback function. We then define the onDeviceReady callback that
shows and hides our application. This method creates three variables, parentElement,
listeningElement, and receivedElement. We cache the deviceready DOM element
and assign it to parentElement, and we do the same thing for listeningElement and
receivedElement. Next, we set the style attribute on the proper elements, showing
the application and hiding the splash screen. Finally, we start our Backbone-based
single-page application.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Native iPhone Web Application

[302]

Let's place the preceding script after all our scripts in the index.html file. Now,
we should be able to run our application successfully and navigate the dashboard,
profile, and playlist views. If everything as discussed previously was done correctly,
you should be able to use your single-page application natively, like so:

Native single-page application

Note that in the preceding screenshots, we have a Contacts navigation
item. This has not been built yet and will be part of the last section of
this chapter.

At this point we have created a native application that showcases the simplicity
of transferring a current web application using PhoneGap. Yes, we haven't used
PhoneGap or Xcode to its fullest extent, but we now understand that getting the
process started is pretty easy. We'll sidestep for a moment to understand debugging
our application(s), and then ultimately use PhoneGap's API to build a native
component into our application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[303]

Debugging our application
Debugging an application is critical to any workflow or process; for this reason
we need to know what it's like debugging a native application built off web
technologies. It's not as complex or easy as you may think. But it's still doable and
at the current time of writing, this is one of the best ways to debug your application.
So let's get to it.

Logging out our code
We're all familiar with the console object available to us via JavaScript. This is still
available to us but is somewhat confusing when trying to find where the log has
been output when creating a native app. Traditionally, we had a console tool that
was available on our simulator or actual device to debug errors; however, this is
no longer the case.

First, let's look at how logging takes place in Xcode. Remember the debug view
discussed earlier on in the chapter? Well, this is where we want to use it. So first,
let's enable the debug view. Now, let's run the application we currently have.

When we run your application, we should see the following in the debugger area:

2013-03-16 14:24:43.732 HelloWorld[2322:c07] Multi-tasking -> Device:
YES, App: YES

2013-03-16 14:24:44.624 HelloWorld[2322:c07] Resetting plugins due to
page load.

2013-03-16 14:24:45.196 HelloWorld[2322:c07] Finished load of: file:///
Users/acresp/Library/Application%20Support/iPhone%20Simulator/6.0/
Applications/DEEABC2E-C2D6-40F3-A19E-43E4F7F5EB47/HelloWorld.app/www/
index.html

2013-03-16 14:24:45.243 HelloWorld[2322:c07] [LOG] onDeviceReady

We should focus on the last line where [LOG] takes place. This is the output
generated using console.log(), which is currently in our onDeviceReady callback.
This is great for us because we can actively see the logs we created. The negative
aspect to this is that we don't have typical developer tools that we can find in other
browsers. But with recent developments, we can now debug our applications using
Safari's built-in developer tools to debug an iOS app running in the simulator.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Native iPhone Web Application

[304]

Using the Safari developer tools
As I've mentioned, we are now able to debug web applications built off PhoneGap
using Safari's developer tools. So let's take a crack at this real quick, by opening
Safari on our computer. If you don't already have the developer tools enabled, do
so by going into Safari's preferences and selecting the checkbox for Show Develop
menu in menu bar under the Advanced tab.

The Advanced tab for Safari preferences

Once we have the developer tools enabled, we can access them from the Develop
menu for Safari. If we have our application running in the iOS simulator, then we
should be able to debug our application by selecting index.html from the iPhone
Simulator submenu. This will then launch the native developer tools in Safari.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[305]

Debugging environment

Now we are able to fully debug an application using the Safari developer tools for
our native application. It is truly that easy to have a fully integrated development
environment with simulation and debugging all part of the process. Although we can
go into further detail about debugging, it is beyond the scope of this book. However,
let's move on to the final section of this book, where we will learn to utilize PhoneGap's
built-in APIs to tie into native functionality for our single-page application.

Extending our application with native
functionality
Congratulations! We have been able to create our first native application using what
we've already created with HTML5, CSS, and JavaScript. This is exciting stuff, but we're
not done yet. Let's now leverage one of PhoneGap's APIs to tap into native functionality.

From a higher level we want our application to display the contacts we have on our
phone. We want to be able to access this information when we click on the Contacts
button in our application navigation. For this example, we just want to display
the full name of our contacts. To achieve these goals we'll be using PhoneGap's
Contacts API (http://docs.phonegap.com/en/2.5.0/cordova_contacts_
contacts.md.html#Contacts). To do this, we'll ensure that this is configured in our
application, and then write the appropriate code to handle this within the already
existing framework of our application. Let's begin with the configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Native iPhone Web Application

[306]

Configuring our application
We've already gone over the basics of configuring our application previously, but
let's take a look at this again to ensure its full understanding. First, let's open up the
config.xml file located at the top of our project. Then enable the Contacts API by
setting its value to CDVContacts. When you're done, you should have the following
in your config.xml file:

The project configuration

Setting up our contacts functionality
In this section of the chapter, we'll look at hooking into our contacts information to
display in our native application. First we'll create the view, then the template, and
finally the actual API that comes with PhoneGap. When we're done, we should have a
good idea on how we can tap into these APIs to create native web applications for iOS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[307]

Creating the ContactsView class
Once we have set up our configuration for this application, we need to set up
everything else in order to get the contacts view to work. To begin, let's create a
contacts view to be added to our user directory. We'll extend its functionality later,
but for now here is the template we'll be using:

(function(window, document, $, Backbone, _){

 var ContactsView = App.BaseView.extend({
 'template': _.template($('#tmpl-user-contacts').html()),

 'initialize': function() {

 this.render();
 },

 'render': function() {

 return this;
 }
 });

 window.User.ContactsView = ContactsView;

}(window, document, Zepto, Backbone, _));

The preceding code isn't anything new. We're basically creating a ContactsView
class that follows the conventions we've set previously with no bit of additional
functionality. Do note that we have set a template for this view that does not exist
yet. Let's include this file with the scripts we've included in index.html add it to
the last view being included. Now, let's create the template associated with this view.

Implementing the ContactsView template
Using what we've already built for our playlist, we'll just duplicate the template for
the playlist view and change its header. While we're at it, we'll just change the class
of the unordered list to contacts-list as well. When we're done, our template will
look like this:

<script type="tmpl/User" id="tmpl-user-contacts">
 <section class="view-contacts">
 <header>
 <h1><%= name + "'s" %> Contacts</h1>
 <% print(_.template($('#tmpl-user-nav').html(), {})); %>
 </header>
 <ul class="contacts-list">
 </section>
</script>

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Native iPhone Web Application

[308]

Include this template after the rest of the other templates we've created. At this point,
we should be 50 percent there. Now, you may run into some styling issues, but just
make sure to add the contacts-list class to the same styles that the playlist uses.
We won't go over that here, since it's pretty brief; so we'll continue by writing the
contacts implementation.

Integrating the Contacts API
To look up a user's contacts is pretty simple using the PhoneGap API. In fact, our
example will be based on the documented Navigator object, contacts. But first,
we need to create a new instance of ContactFindOptions (http://docs.phonegap.
com/en/2.5.0/cordova_contacts_contacts.md.html#ContactFindOptions),
which will hold our filtering options when finding contacts.

'initialize': function() {

 // Filter options
 this.contactOptions = new ContactFindOptions();
 this.contactOptions.filter = "";
 this.contactOptions.multiple = true;

 this.render();
},

The preceding code sets the filter and multiple properties on the instance of
ContactFindOptions. By default filter is empty, meaning there is no limitation,
and multiple is set to true, allowing for multiple contacts to come through. Next,
we want to find two fields when we get the contacts, their displayName, and name.
These fields will be in an array, which we'll use shortly.

'initialize': function() {

 // Filter options
 this.contactOptions = new ContactFindOptions();
 this.contactOptions.filter = "";
 this.contactOptions.multiple = true;

 // Fileds we want back from query
 this.contactFields = ['displayName', 'name'];

 this.render();
},

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[309]

Next, we want to find the contacts when the view renders. So inside our render view,
we want to pass in the preceding options.

'render': function() {
 // Find user contacts
 navigator.contacts.find(this.contactFields, this.
onContactsSuccess, this.onContactsError, this.contactOptions);

 this.$template = $(this.template(this.model.attributes));

 this.$el.prepend(this.$template);
 }

 return this;
},

Note that we have not yet created our onContactsError or onContactsSuccess
methods. Also, you'll see that we create the template and attach it to the DOM
the same way we did for all the other views. There's not much left to do with this
method, so let's look at our callbacks, beginning with onContactSuccess.

The onContactSuccess callback is where all our magic happens. We'll create a div
element in memory and then loop through the results, adding each element to div
as a list item. Once everything is completed, we'll take the contents of that the div
element and add it to our contacts-list unordered list.

'onContactsSuccess': function(contacts) {
 console.log('onContactsSuccess');
 // Temporary Div
 var $div = $('<div />');
 if (contacts.length !== 0) {
 console.log('contacts length greater than 0');
 _.each(contacts, function(contact){
 console.log(contact.name);
 $div.append($('' + contact.name.formatted + ''));
 });
 } else {
 alert("No contacts found!");
 }

 $('.contacts-list').append($div.html());
},

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Native iPhone Web Application

[310]

As you can see here, we use the underscore method each to loop through the results.
And as we mentioned before, we create a list item containing the user's name as its
text content. Pretty simple behavior here and nothing too complicated. Now, let's
check out our onContactsError callback:

'onContactsError': function(contactsError) {
 alert('onContactsError!');
}

In this callback, we just alert that there has been error. Of course, in our real-world
application we would create something a bit more comprehensive, but for our purposes
this is good enough. If we run our application now, we should get the following:

The Contacts API implementation

Give yourself a pat on the back! You have reached the end of this section, have now
successfully integrated with the PhoneGap API, and tapped into native functionality.
Very cool, isn't it?

Please note that the source code provided with this book comes with a
few checks, making sure that the same contacts aren't added each time
the user visits the Contacts view. This was done in order to save some
time and really focus on the meat of the solution.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[311]

Summary
In this chapter, we were introduced to native application development using the
same programming languages we use for our web applications. Using the popular
open source PhoneGap framework, we achieved the ability to create the single-
page application, built in Chapter 7, One-page Applications, as a native application for
iOS. We went over extending the single-page application by tying into the native
functionality using the Contacts API in PhoneGap, listing out our contacts and some
information. We should now have a foundation for creating native applications that
allow us to use web technologies to distribute web applications for iOS Safari and
the iOS operating system.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
$cache property 185
:after 23
:before 23
_.each 193, 194
_.extend 192
<hgroup> element 19
_.template 194, 195
-webkit-appearance property 160

A
ant task 38
API descriptions

Geolocation interface 166
PositionOptions interface 167

API key
about 173
retrieving 174, 175
services, activating 173, 174

AppCache
about 239
cache manifest, implementing 241
example 241
manifest file 240

app functionality
constructor, defining 30, 31
constructor/function, returning 33
default options 29
IFE 28, 29
namespacing 28
public methods, defining 32, 33
structuring 28
use strict directives 29

application architecture
about 204
basic architecture 205
markup 206
scripts 212

Application Cache. See AppCache
application framework

boilerplate, modifying 10
creating 9
customizing 14-18
markup, customizing 10-13

application markup
about 206-208
templates, creating 209-212

application scripts
about 212
BaseView 213, 214
music application 214
user application 229

App.VideoControls class 67
assets, web application

markup, including 295-297
scripts, inserting 299-301
styles, incorporating 298
transferring 295

attachEvents method 88, 92, 100
audio formats 72
audio tracks, switching

Audio class, initializing 85, 86
change event handler 82, 83
change event listener 81
code, refactoring 84, 85

autocapitalize attribute 133
autoplay 93

www.it-ebooks.info

http://www.it-ebooks.info/

[314]

B
Backbone.js

about 196
backbone models 196, 198
collections 201, 202
MVC 196
server side interactions 203, 204
views 199, 201

build script
about 38
configuring 38
integrating 9
minifying 38
multiple environments, creating 39
styles, concatenating 39

C
cache manifest

debugging 245
debugging, in browser 246, 247
debugging, JavaScript used 248, 249

callbacks, JavaScript video library
about 57, 58
creating 58
extending 59
using 59, 61
verifying 61-64

center property 187
clearWatch method 167
CLI 291
command-line interface. See CLI
contacts functionality

Contacts API, integrating 308, 310
ContactsView class, creating 307
ContactsView template, implementing 307

ContactsView template
implementing 307

control caching, responsive photo gallery
interactivity

events, attaching 114
events, handling 115
variables, caching 115-118

controllers 190
CSS Lint 254

CSS, stylesheets
CSS Lint 260
CSS Lint, integrating 264
customizable options 256, 261
example validation, CSS Lint used 262
example, validating 257-259
ID/class, qualifying 268
optimizing 267
profiling 265-267
styles, modularizing 268, 269
universal rules, avoiding 267
unsuccessful example validation,

CSS Lint used 263, 264
validating 254
W3C CSS Validator 254, 255

custom module template integrating
about 34
framework, initializing 35, 36
scripts, including 35

D
datetime type 147
development environment

about 282
PhoneGap, setting up 289
project configuration 293, 294

deviceready event 301
Document Object Model. See DOM
DOM 30
Download as zip button 9
dynamic audio player

audio tracks, switching 81
select element 79, 81

E
example

JavaScript 243-245
markup 242, 243

extend method 124

F
fluid images

fluid width images 26, 27
full width images 27

www.it-ebooks.info

http://www.it-ebooks.info/

[315]

form layout, iPhone 136
forms

HTML attributes 135, 136
form styling, for iOS

about 156
basic styling 156
custom styling 157, 160

form validation
about 150
basic template 150, 151
events, attaching 152
events handler 152, 153
form, initializing 151
input, validating 153-155

G
gallery responsiveness

creating 118
styles, initializing 121, 123
styles, resetting 121
styles, setting 119, 121

Geolocation
about 163
and Google maps 176
specification 163

Geolocation interface
about 166
clearWatch method 167
getCurrentPosition method 166
watchPosition method 167

Geolocation specification
about 163
API descriptions 165
implementation 164
privacy 164, 165
scope 164, 165
security 164, 165
use cases 171
W3C specification, considerations 164

gesture events
about 102
working 104, 105

getCurrentPosition method 168, 182
Global Positioning Systems. See GPS

Google maps
Geolocation 184-187
Geolocation wrapper 180-183
markup preparation 176-179

Google Maps API
about 173
API key, obtaining 173
API(s) 173

GPS 164

H
handleOnAudioEnded method 90
handleSequentialClick method 92
handleTouchEnd event handler 126
handleTouchStart method 126
header() method 37
home screen icons 37
HTML5 audio controls

customizing 86
custom media controls, creating 86, 87
interactivity, adding 88
sequential playback 88

HTML attributes, forms
autocapitalize 135
autocomplete 135
max 136
min 136
multiple 136
placeholder 136
required 136

HTML5 input types
about 134
button 134
checkbox 134
date 134
datetime 134
datetime-local 134
email 134
file 134
hidden 134
image 134
month 134
number 134
password 134
radio 134
range 134

www.it-ebooks.info

http://www.it-ebooks.info/

[316]

reset 134
search 134
submit 135
tel 135
text 135
time 135
url 135
week 135

HTML5 Mobile Boilerplate
about 8
downloading 8, 9
implementing 8
installing 8, 9
modifying 10

HTML5 Video 43
HTML5 video controls

about 64
configuring 65-70

HTML5 video events
listening 46, 47
video events, attaching 47, 49
video, initializing 51, 52
video markup review 47

HTML attributes, forms
autocapitalize 135
autocomplete 135
max 136
min 136
multiple 136
placeholder 136
required 136

I
IDE 264
IDL 166
IFE 28
IIFE 28, 278
Immediately Invoked Function

Expression. See IIFE
initGoogleMaps method 186, 187
Integrated Development Environment. See

IDE
Interface Definition Language. See IDL
iOS

about 79
form styling 156

iOS considerations
about 93
autoplay 93
simultaneous playback 94
volume 93

iOS software development kit. See SDK
iPhone

form layout 136

J
JavaScript

optimizing 269, 277
profiling 275-277
used, for cache manifest debugging 248
validating, JSLint used 270, 271

JavaScript architecture
app functionality, structuring 28
application, structuring 28
establishing 27

JavaScript optimization
about 277
DOM, isolating 278
 functionality, modularizing 279, 280
globals, avoiding 277, 278
literals, using 278

JavaScript video library
about 52
callbacks, integrating 57
essentials 52, 53
events, centralizing 53
functionality, exposing 55-57
scopes 54

JSLint
customizable options 274
integrating 274, 275
successful example, validating 271
unsuccessful example, validating 272, 273
used, for JavaScript optimization 270, 271

L
last_name attribute 232
latlng property 186
localStorage API 251
login form 139

www.it-ebooks.info

http://www.it-ebooks.info/

[317]

M
MediaElement abstraction

about 74
App.MediaElement.js, creating 74-76
App.MediaElement.js, initializing 76

MediaElement API
extending, for audio 77

MediaElement API extension, for audio
about 77
audio element, caching 78
audio element, finding 78
base template 77, 78
MediaElement, initializing 78, 79

mobile site
redirecting via htaccess 37
redirecting via PHP 37
routing 36

Model-View-Controller. See MVC
multiple environments

creating 39
directories, navigating 40
project, building 40, 41

music application
about 214
collection 218
model 218, 219
router 215-217
view 220
view, audio player view 226, 227
view, playlist view 220-226
view, song view 228

MVC
about 189
Backbone.js 196
controllers 190
models 190
relationships 190
views 190

N
Namespace 189
navigation

interactivity 99
markup 98
simplifying 98

styling 98
navigation interactivity

about 99
basic template 100
caching 100
change event, handling 100, 101
change event, listening 100, 101
initializing 101

navigation styling
basic template 98
select component, styling 99

number type 148

O
offline application 239
offline applications

handling 249
localStorage API 251, 252
network connectivity, detecting 250, 251
simple use case 249

onContactSuccess callback 309
onEnded method 92
on method 81
onProfileClick event 277
OOCSS (Object Oriented CSS) 261

P
PhoneGap

creating 291, 292
installing 290
license 292, 293
setting up 289

Playlist page 237
PositionOptions interface

about 167
Coordinates interface 169
enableHighAccuracy option 168
maximumAge option 168, 169
PositionError interface 170, 171
Position interface 169
timeout option 168

profile form
about 144, 146
datetime type 147
number type 148

www.it-ebooks.info

http://www.it-ebooks.info/

[318]

range type 148, 149
Profile tab 266, 276
prototype 30
publish directory 41

Q
querySelector 36

R
range type 148, 149
registration form 141
relationships 190, 191
render method 234
required class 154
resetStyles method 120
responsive design principles

about 25
images 26
media queries 25, 26

responsive images
about 26
fluid images 26

responsive photo gallery
about 105
basic slide list 106, 107
controls, adding 107
CSS3 transitions, suing 110, 111
gallery markup 106
images, making responsive 107, 108
interactivity 111
JavaScript 128, 129
markup 130
styling 108-110
touch interactivity 123

responsive photo gallery interactivity
about 111
basic template 112
caching 112, 113
control, caching 114

S
sample application

about 204
application architecture 204

sample HTML5 forms
about 137
setup work 138

sample HTML5 forms setup
forms 139
forms scripts 139
forms styling 138
login form 139-141
navigation, updating 138
profile form 144, 146
registration form 141-143

Scheme selector 286
SDK 282
semantic markup

about 18
customizing 18
footer, creating 20
header, creating 18
section, clearing 20

Sequential playback
about 88
JavaScript 90-92
markup 89

server configuration
about 43, 71
audio formats 72
audio formats directives 72
video format directives 44
video formats 44

setActiveSong method 224
setAudioElement method 84
setStyles method 120
simple HTML5 audio integration 73, 74
simple HTML5 video

about 44
multiple formats, supporting 45, 46
single video format 45

simultaneous playback 94
somesite directory 40
stylesheets

optimizing 254
structuring 20

stylesheets, structuring
about 20
:after, using 23
:before, using 23

www.it-ebooks.info

http://www.it-ebooks.info/

[319]

global fonts, defining 21, 22
global styling 21
navigation, styling 23, 24
page layout 22, 23

SwipeRight events 129

T
Terminal 291
toString method 32
touch events

about 102
gesturechange 103
gestureend 103
gesturestart 103
on double-tap zoom 103
page scroll example 103
touch 103
touchcancel 103
touchend 103
touchmove 103
touchstart 103
working 103, 104

touch interactivity, in responsive
photo gallery

basic template 123
default options 124
handling 125, 126
swipe events, modularizing 124
touch events, listening 125

U
Underscore.js

about 191
implementations 191, 192

Underscore.js implementations
_.each 193, 194
_.extend 192
_.template 194, 195

underscore method 310
updateTrack method 223
use cases

latest information 172
points if interest 172
route navigation 172

user application
about 229
collection 232
model 232, 233
router 229-231
view 233
view, dashboard view 233, 234
view, profile view 234-237

V
videocontrols class

configuring 68
views 190
View toolbar section 288
volume button 93

W
W3C 163
W3C Markup Validation Service 19
web application

configuring 306
contacts functionality, setting up 306
debugging 303
extending, with native

functionality 305-310
transferring 294

web application debugging
about 303
code, logging out 303
Safari developer tools, using 304, 305

World Wide Web Consortium. See W3C

X
Xcode

IDE overview 282
installing 282
starting with 282

Xcode IDE
overview 282, 283
toolbar 285-289
workspace 284, 285

Xcode toolbar 285

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
HTML5 iPhone Web Application
Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Responsive Web Design with
HTML5 and CSS3
ISBN: 978-1-849693-18-9 Paperback: 324 pages

Learn responsive design using HTML5 and CSS3 to
adapt websites to any browser or screen size

1.	 Everything needed to code websites in HTML5
and CSS3 that are responsive to every device
or screen size

2.	 Learn the main new features of HTML5 and
use CSS3’s stunning new capabilities including
animations, transitions, and transformations

3.	 Real-world examples show how to progressively
enhance a responsive design while providing fall
backs for older browsers

HTML5 Mobile Development
Cookbook
ISBN: 978-1-849691-96-3 Paperback: 254 pages

Over 60 recipes for building fast, responsive HTML5
mobile websites for iPhone 5, Android, Windows
Phone, and Blackberry

1.	 Solve your cross-platform development issues
by implementing device and content adaptation
recipes

2.	 Maximum action, minimum theory allowing
you to dive straight into HTML5 mobile web
development

3.	 Incorporate HTML5-rich media and
Geolocation into your mobile websites

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Multimedia Development
Cookbook
ISBN: 978-1-849691-04-8 Paperback: 288 pages

Recipes for practical, real-world HTML5
multimedia-driven development

1.	 Use HTML5 to enhance JavaScript
functionality. Display videos dynamically
and create movable ads using JQuery

2.	 Set up the canvas environment, process
shapes dynamically, and create interactive
visualizations

3.	 Enhance accessibility by testing browser
support, providing alternative site views,
and displaying alternate content for non
supported browsers

Responsive Web Design by
Example
ISBN: 978-1-849695-42-8 Paperback: 338 pages

Discover how you can easily create engaging,
responsive websites with minimum hassle!

1.	 Rapidly develop and prototype responsive
websites by utilizing powerful open source
frameworks

2.	 Focus less on the theory and more on results,
with clear step-by-step instructions, previews,
and examples to help you along the way

3.	 Learn how you can utilize three of the most
powerful responsive frameworks available
today: Bootstrap, Skeleton, and Zurb
Foundation

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Application Architecture
	Implementing the HTML5 Mobile Boilerplate
	Downloading and installing the HTML5 Mobile Boilerplate
	Integrating the build script

	Creating our application framework
	Modifying the boilerplate
	Customizing our markup

	Customizing our framework
	Creating semantic markup
	Creating the header
	Creating the footer
	Clearing up section

	Structuring our stylesheets
	Global styling
	Defining our global fonts
	Our page layout
	Using content with :before and :after
	Styling our navigation

	Responsive design principles
	Media queries to the rescue
	Responsive images
	Fluid images

	Establishing our JavaScript architecture
	Structuring our app functionality
	Namespacing our application
	Immediately Invoked Function Expressions
	Use strict
	Default options
	Defining the constructor
	The prototype
	Defining public methods
	Returning our constructor/function

	Integrating a custom module template
	Including our scripts
	Initializing our framework

	Routing to a mobile site
	Redirecting via PHP
	Redirecting via htaccess

	Home screen icons
	Introducing our build script
	Configuring our build script
	Minifying and concatenating scripts
	Minifying and concatenating styles

	Creating multiple environments
	Navigating our directories
	Building our project

	Summary

	Chapter 2: Integrating HTML5 Video
	Configuring the server
	Video formats
	Video format directives

	A simple HTML5 video
	Single video format
	Supporting multiple formats

	Listening to HTML5 video events
	Video markup review
	Attaching video events
	Initializing our video

	Creating a JavaScript video library
	Centralizing our events
	Scope in JavaScript

	Exposing functionality
	Integrating callbacks
	Extending callbacks
	Using callbacks

	Tying it all up

	Customizing HTML5 video controls
	Summary

	Chapter 3: HTML5 Audio
	Server configuration
	Audio formats
	Audio format directives

	Simple HTML5 audio integration
	MediaElement abstraction
	Creating App.MediaElement.js
	Initializing App.MediaElement.js

	Extending the MediaElement API for audio
	The base template
	Creating an instance of MediaElement
	Finding and caching an audio element
	Initializing MediaElement

	Dynamic audio player
	The select element
	Switching audio tracks
	The change event listener
	The change event handler
	Refactoring our code
	Initializing our Audio class

	Customizing HTML5 audio controls
	Creating custom media controls
	Adding interactivity to our customized controls
	Sequential playback
	The markup
	The JavaScript

	iOS considerations
	Volume
	Autoplay
	Simultaneous playback

	Summary

	Chapter 4: Touch and Gestures
	Simplifying the navigation
	Navigation markup and styling
	The basic template
	Styling a select component

	Navigation interactivity
	The basic template
	Caching our navigation
	Listening and handling the change event
	Initializing the navigation

	Touch and Gesture events
	Touch events
	On scroll
	On touch and hold
	On double-tap zoom
	Supported touch events and how they work

	Gestures

	Creating a responsive photo gallery
	Gallery markup and styling
	The basic gallery slide list
	Adding simple gallery controls
	Making images responsive
	Styling our gallery
	Using CSS3 transitions

	Gallery interactivity
	The basic template
	Caching the gallery
	Connecting our controls
	Gallery responsiveness

	Extending the gallery for touch
	The basic template
	Default options and modularizing swipe events
	Listening to touch events
	Handling touch events

	Putting it all together
	The JavaScript
	The markup

	Summary

	Chapter 5: Understanding HTML5 Forms
	HTML5 input types
	HTML5 attributes for forms
	Form layout for iPhone
	Sample HTML5 forms
	Setup work
	Including our forms styling
	Updating the navigation
	Including our navigation and forms scripts

	The forms
	The login form
	The registration form
	The profile form

	Form validation
	The basic template
	Initializing our forms
	Attaching events
	Event handlers

	Validating our input

	Form styling for iOS
	Basic styling
	Custom styling

	Summary

	Chapter 6: Location-aware Applications
	Geolocation specification
	Implementation
	Scope, security, and privacy
	API descriptions
	The Geolocation interface
	The PositionOptions interface
	The Position interface
	The Coordinates interface
	The PositionError interface

	Use cases
	Points of interest
	Route navigation
	Latest information

	Google Maps API
	The API(s)
	Obtaining an API key
	Activating the service
	Retrieving the key

	Geolocation and Google Maps
	Markup preparation
	The Geolocation wrapper
	Geolocation with Google Maps

	Summary

	Chapter 7: One-page Applications
	Model-View-Controller or MVC
	Models
	Views
	Controllers
	Relationships

	Introduction to Underscore.js
	Implementation
	_.extend
	_.each
	_.template

	Introduction to Backbone.js
	MVC and Backbone.js
	Backbone models
	Backbone views
	Backbone collections
	Server-side interactions

	Our sample application
	Application architecture
	Basic sample architecture
	Application markup
	Application scripts

	Summary

	Chapter 8: Offline Applications
	Application Cache
	The manifest file
	Manifest implementation
	A simple example
	The markup
	The JavaScript

	Debugging the cache manifest
	Debugging in the browser
	Debugging using JavaScript

	Handling offline applications
	A simple use case
	Detecting network connectivity
	The localStorage API

	Summary

	Chapter 9: Principles of Clean and Optimized Code
	Optimizing stylesheets
	Validating our CSS
	W3C CSS Validator
	Customizable options
	Validating a successful example
	Validating an unsuccessful example
	CSS Lint
	Customizable options

	Profiling our CSS
	Optimizing our CSS
	Avoid universal rules

	Don't qualify ID or Class rules
	Never use !important
	Modularize styles

	Optimizing JavaScript
	Validating JavaScript using JSLint
	Validating a successful example using JSLint
	Validating an unsuccessful example
	Customizable options
	Integrating JSLint

	Profiling our JavaScript
	Optimizing our JavaScript
	Avoid globals
	Leave the DOM alone
	Use literals
	Modularize functionality

	Summary

	Chapter 10: Creating a Native iPhone Web Application
	Setting up the development environment
	Getting started with Xcode
	Installing Xcode
	Xcode IDE overview – the basics

	Setting up PhoneGap
	Installing PhoneGap
	Creating a PhoneGap project
	The PhoneGap license

	Configuring our project

	Transferring a web application
	Transferring our assets
	Including our markup
	Incorporating our styles
	Inserting our scripts

	Debugging our application
	Logging out our code
	Using the Safari developer tools

	Extending our application with native functionality
	Configuring our application
	Setting up our contacts functionality

	Summary

	Index

