
M A N N I N G

Jim Jackson II
Ian Gilman

Single page web apps, JavaScript, and semantic markup

FOREWORD BY
Scott Hanselman

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 for .NET Developers

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 for
.NET Developers

SINGLE PAGE WEB APPS, JAVASCRIPT
AND SEMANTIC MARKUP

JIM JACKSON II
IAN GILMAN

M A N N I N G
SHELTER ISLAND
www.it-ebooks.info

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Renae Gregoire
20 Baldwin Road Technical proofreader: Roland Civet
PO Box 261 Copyeditor: Andy Carroll
Shelter Island, NY 11964 Proofreader: Melody Dolab

Typesetter: Dennis Dalinnik
Illustrator: Gerry Arrington

Cover designer: Marija Tudor

ISBN: 9781617290435
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13 12
www.it-ebooks.info

www.manning.com
http://www.it-ebooks.info/

 To my lovely bride, Michelle, and my beautiful daughters, Norah and Mary.
Thank you for your help, support, patience, and understanding.

 —J.J.

 To Christina and Caitlyn, my amazing wife-and-daughter team.
 —I.G.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

brief contents
1 ■ HTML5 and .NET 1

2 ■ A markup primer: classic HTML, semantic HTML, and CSS 33

3 ■ Audio and video controls 66

4 ■ Canvas 90

5 ■ The History API: Changing the game for MVC sites 118

6 ■ Geolocation and web mapping 147

7 ■ Web workers and drag and drop 185

8 ■ Websockets 214

9 ■ Local storage and state management 248

10 ■ Offline web applications 273
vii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

contents
foreword xv
preface xvii
acknowledgments xx
about this book xxii
about the cover illustration xxv

1 HTML5 and .NET 1
1.1 New toys for developers thanks to HTML5 3

New HTML5 tags and microdata 4 ■ HTML5 applications
for devices 5 ■ Better, faster JavaScript 6
Libraries, extensions, and frameworks 6 ■ New HTML5
JavaScript APIs 9 ■ Cascading Style Sheets 3 11
MVC and Razor 12

1.2 HTML5 applications end-to-end 12
Page structure and page presentation 13 ■ Page content 14
Application navigation 15 ■ Business logic 16
Server communications 17 ■ The data layer 18

1.3 Hello World in HTML5 19
Creating the template 20 ■ Customizing the application 22
Building the JavaScript library 24 ■ Building the server side 28

1.4 Summary 32
ix

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSx
2 A markup primer: classic HTML, semantic HTML, and CSS 33
2.1 Classic and semantic HTML markup: what’s

the difference? 34
2.2 Basic structural elements of all HTML tags 35

Working with the basic HTML tags 37 ■ Making content flow
where you want with block and inline elements 40 ■ Dividing data
into grids with table elements 42 ■ Using HTML
form elements 43

2.3 Semantic HTML: The semantic blueprint 44
Grouping and dividing page content with content tags 46
Going beyond semantics with application tags 51
Using media tags for audio and video content 53

2.4 Styling HTML5: CSS basics 54
Understanding CSS syntax 54 ■ Building selectors, the most
critical CSS element 55 ■ Assigning fonts 56 ■ Assigning and
manipulating colors 57 ■ Changing the size of an element with
the box model 59 ■ Using columns and blocks for layout 60
Changing screen layout based on changing conditions with
media queries 61 ■ Adjusting an element’s presentation
and location with transitions and transformations 62
Changing styles as needed with pseudo-elements
and pseudo-classes 64

2.5 Summary 65

3 Audio and video controls 66
3.1 Building a site to play audio and video 68
3.2 Audio and video tags 71

Using audio and video tags without JavaScript 72 ■ Using the
audio tag as an HTML element 73 ■ Using the video tag
as an HTML element 74

3.3 Controlling audio and video playback with JavaScript 76
Building custom controls for audio and video 76 ■ Building the
main.js library structure 78 ■ Creating a JavaScript media
player object 79 ■ Completing the media experience by adding
volume controls 80

3.4 Updating media types for open source content 83
3.5 Summary 85
3.6 Complete code listings 86
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xi
4 Canvas 90
4.1 Canvas quick-start 92

Creating the basic Canvas site structure 93 ■ Assigning size
to the canvas 94 ■ Creating the stylesheet for the
sample application 95 ■ Drawing with the 2d context object 96
Building the foundation object of the Canvas application 96

4.2 Creating and manipulating shapes, lines, images,
and text 97
Understanding the basic drawing process 98
Adding shapes 100 ■ Adding lines 101
Adding images 103 ■ Manipulating pixels 105
Adding text 107

4.3 Animating and adding special effects
to canvas images 108
Adding animation 108 ■ Adding special effects with curves
and clipping 111 ■ Managing canvas properties during
screen resizing 113

4.4 Summary 114
4.5 Complete code listing 114

5 The History API: Changing the game for MVC sites 118
5.1 Building a History-ready MVC site 120

Launching the sample project in Visual Studio 121
Adding controllers and views 122 ■ History and
MVC routing 126 ■ Creating the application data model 129
Loading content from the server on demand using
partial views 130

5.2 Using HTML5 History 133
Adding JavaScript to handle History API navigation events 135
Working with the page URL in JavaScript 139 ■ Using History
to update the page 140

5.3 Two more small steps ... 141
5.4 Summary 144
5.5 The complete JavaScript library 144

6 Geolocation and web mapping 147
6.1 “Where am I?”: A (brief) geographic location primer 149
6.2 Building a geolocation application 153

Basic application setup 154 ■ Using the Bing Maps
JavaScript API 157
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxii
6.3 Using the Geolocation API 159
API functions for interacting with device location services 161
Plotting a point on a map 163 ■ Integrating geolocation
and a map 165 ■ Navigating the map using
geolocation data 167

6.4 Building a service to find address information 171
Modeling a point on the Earth in .NET 171
Displaying routes between coordinates 174

6.5 Summary 178
6.6 Complete code listings 178

7 Web workers and drag and drop 185
7.1 Getting started: Building an app that integrates Drag

and Drop and Web Workers 187
7.2 Implementing drag and drop in JavaScript 190

The HTML5 Drag-and-Drop API 191 ■ Using the dataTransfer
object to pass data with drag-and-drop events 193 ■ Building the
object to transfer data during drag and drop 194

7.3 HTML5 Web Workers 198
The basics: sending work to another thread 199 ■ Integrating Web
Workers into a JavaScript library 203

7.4 Summary 208
7.5 The complete code listings 208

8 Websockets 214
8.1 HTTP and TCP—a quick primer 216

An HTTP overview 216 ■ TCP communications
in a nutshell 217

8.2 Building a Websockets chat application 219
Separating interface logic from Websockets communications 222
Implementing Websockets in JavaScript 224 ■ Opening a
Websockets server connection 227 ■ Sending messages 230
Receiving messages 231

8.3 Using Node.js as a TCP server 234
8.4 Summary 241
8.5 The complete code listings 241
www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xiii
9 Local storage and state management 248
9.1 A LocalStorage example application 249
9.2 Structuring a JavaScript library to maintain state 253

Creating an application outline that supports local storage
of objects 253 ■ Building UI elements that can be
stored locally 255

9.3 Using the LocalStorage API 257
Adding and removing items to and from LocalStorage
the not-so-easy way 257 ■ Adding and removing items
the easy way 258 ■ Moving data from LocalStorage
to the page 259 ■ Deleting items from LocalStorage 260
Clearing all items from LocalStorage 260 ■ Using the LocalStorage
storage event to detect changes 261

9.4 Adding UI elements to complete the application 262
9.5 Other uses for LocalStorage 264

Using LocalStorage as a proxy for server data 264
Using LocalStorage to save images 266

9.6 Summary 267
9.7 The complete code listings 267

10 Offline web applications 273
10.1 Building an offline HTML5 application 274

Creating the basic site structure 277 ■ Creating the offline
JavaScript library 279

10.2 The manifest file 280
Adding the application manifest to the sample project 281
Exploring manifest sections 281

10.3 Offline feature detection and event binding 285
10.4 The ApplicationCache object 287
10.5 Adding state management and displaying

connected status 290
10.6 Building the server side of an offline application 295
10.7 Summary 300
10.8 The complete code listings 300

appendix A A JavaScript overview 307
appendix B Using ASP.NET MVC 346
appendix C Installing IIS Express 7.5 372

index 377
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

foreword
HTML5 is taking over the world. Oh no!

.NET is dead! Java is dead!

Everything is dead and HTML5 is the only technology left standing!

Wait, none of the above is true at all. It turns out that HTML5 is a wonderful tool in
our toolbox, one that makes our other tools even better. In fact, learning HTML5 is
one of the best things a .NET developer can do today. .NET on the server and HTML5
in a new browser on the client are a killer combination.

 Jim and Ian have written about HTML5 in a voice that speaks directly to the inter-
ests and concerns of the .NET developer. The samples are clear and useful but also
coded from the perspective of an ASP.NET programmer who wants to get things done.
This is hugely helpful for existing ASP.NET and .NET coders who want to get up to
speed on HTML5.

 HTML5 is a collection of new tags and bits of markup, but the term “HTML5” is
overloaded. It also encapsulates CSS3 and new JavaScript APIs, like GeoLocation and
LocalStorage. But HTML5 is more than these new tools—it is more than a specifica-
tion; it’s a new way to think about writing web applications; it’s an assumption that
your client’s browser has capabilities and processing power that we couldn’t dream up
three years ago.

 A few years ago, if you wanted a chart in a browser you’d either use Flash or dynam-
ically generate an image on the server side. Today, you can send the browser all the
data a chart needs via JSON and then let the user not only see a chart generated with
xv

www.it-ebooks.info

http://ASP.NET/
http://ASP.NET/
http://www.it-ebooks.info/

FOREWORDxvi
HTML5 Canvas, but also interact with or even change the data on the client. A few
years ago, your server was the only computer with the wherewithal to sort, query, and
manipulate interesting cubes of data. Today, you’ve got a tiny database and a powerful
JIT’ed virtual machine inside your client’s web browser.

 Fortunately for us all, you can write HTML5 today with ASP.NET; and with the
release of ASP.NET 4.5, we see additional support for HTML5. The latest Visual Studio
also adds improvements in JavaScript and CSS3 editing. All of HTML5 and its won-
drous bits and pieces are ready for you in Web Forms, Web Pages, and MVC. Your
ASP.NET applications can generate HTML5 that still works in older browsers thanks to
the Modernizr feature detection library. You can use HTML5 and JavaScript on the cli-
ent to call ASP.NET Web APIs on the server. HTML5 is a technology that makes the .NET
developer’s life more interesting!

 There are many books that talk about HTML5 as if it were an island, disconnected
from any server technology. This is not the case with HTML5 for .NET Developers by Jim
and Ian. If you’re a longtime ASP.NET developer looking to bone up on new tech-
niques in web development, or if you’re just getting started with ASP.NET and you want
to make sure you’re attacking new problems in the most modern and progressive way,
this is the book for you.

SCOTT HANSELMAN

WEB COMMUNITY ARCHITECT

MICROSOFT
www.it-ebooks.info

http://www.it-ebooks.info/

preface
In early 2010, I had just finished up a workflow proof-of-concept project and was pok-
ing around other projects at Applied Information Sciences, looking for what was next
in my software career. Since I had some Silverlight experience and wanted to expand
it further, I requested a role on a project to enhance a magazine viewer originally pro-
duced by Vertigo (vertigo.com) for Bondi Digital (BondiDigital.com). I ended up
rebuilding the processing software that imported the source images and data into the
viewer format. This was fortuitous because it was a project role that would continue
while many others rotated in and out over the next two years.

 When the processing solution was complete, I got involved in the Silverlight area
of the application, and it was about this time that Apple’s new toy, the iPad, took off. It
seemed to the project stakeholders that an HTML-only version of our viewer would be
appropriate, so we got to work. For a traditional ASP.NET and Silverlight developer
like me, this was new ground, and it took a number of months and hundreds of dol-
lars in books for me to get my footing with JavaScript and to unlearn all the bits and
pieces of ASP.NET that hide the true nature of HTML, CSS, and JavaScript.

 With a little knowledge and the help of other AIS employees who were working
with Manning Publications on various book ideas, I got Mike Stephens’ name and
called over to discuss a book proposal on Silverlight and GIS, my hobby and one of my
technology passions. We were pretty close to writing up a book contract when a Micro-
soft employee happened to mention in an interview that they (MS) were “refocusing”
Silverlight. This came as a shock to all of the Silverlight developers and client companies
who had been investing heavily in the technology for rich client-side web solutions.
xvii

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACExviii
 Despite some backtracking and spinning the news, this appears to have been a cor-
rect move on Microsoft’s part. While Silverlight is certainly not dead, it has been
eclipsed by HTML5 in terms of industry hype and project work moving forward. For
web consultancies, this is not such a huge problem, because ASP.NET MVC is a top-tier
platform on which to build rich client-side HTML applications. Windows 8 allows
HTML/CSS and JavaScript as first-class development languages for native software! It’s
not a panacea, but it is a great tool to have in the belt.

 While all of this was happening in the industry, I became more involved in the new
HTML version of the magazine viewer application. And because the Silverlight/GIS
book was clearly not going to fly in the marketplace, Mike at Manning asked what
other applications I was working on. I responded that we were building a rich HTML5
client, integrating ASP.NET MVC and deploying it to SQL Azure and Azure Web Roles.
“We could do a book about any of those things!” was Mike’s response. Of course,
I didn’t think I was nearly qualified enough to write such an authoritative tome, but
Mike convinced me that I was, in fact, in the perfect position to do so. As a seasoned
developer who had moved from strict ASP.NET and rich-client C# applications into
JavaScript and HTML, I was in a good position to describe the technologies from a
common perspective.

 During the writing of this book we took a few detours to come to the current for-
mat. The initial idea, when I was the sole author, was to build a single application that
integrated HTML5 APIs into a reference framework. This turned out to be a dead
end. The Microsoft Silk project was working on the same thing, only they had actual
members of the jQuery team looking over their shoulders and helping them out.
This was not a competitive position for our book, and Manning was not excited about
the idea of a single-project book; such books can lead to content that is more focused
on the project than on learning the technology. The next iteration led to the current
focus of one project per chapter and also to the realization that I was not experi-
enced enough to write what could be termed “reference-level” JavaScript code. The
manager on the magazine viewer project was lucky enough to find and contract with
Ian Gilman, and his expertise provided immediate improvements to that platform
and to our collective expertise in JavaScript. Ian is an expert technician and an excel-
lent communicator, so he was a natural choice for the project and for this book. He
also brought in the Git source control expertise. You can see our source repository at
www.github.com/axshon/HTML-5-Ellipse-Tours, where Ellipse Tours is the original
name of the single project.

 The next version of the book was nearly complete in early 2012 when Manning
decided that a new development editor would be added to the project. With the
help of Renae Gregiore, Ian and I reworked the book to focus more on the use of
each HTML5 API, rather than providing deep reference material and then trying to
spend the last few pages of each chapter building a project with it. This final format
reduced the size of the book by moving the MVC-focused chapter and the JavaScript
chapter into appendices.
www.it-ebooks.info

www.github.com/axshon/HTML-5-Ellipse-Tours
http://www.it-ebooks.info/

PREFACE xix
 The format you find within these pages is our collective attempt to find the friend-
liest, fastest route from .NET developer to HTML5/JavaScript expert. Most of the text,
server-side code, and JavaScript code comments you will find here are my words, and
most of the JavaScript, HTML, and CSS is Ian’s work.

 We hope that you find the contents informative and interesting. More importantly,
we hope that our book gives you great ideas for fantastic and fun new software prod-
ucts. If you have an interesting project that you’d like to make some noise about, feel
free to contact me at jim@axshon.net.

JIM JACKSON
www.it-ebooks.info

mailto:jim@axshon.net
http://www.it-ebooks.info/

acknowledgments
We would like to thank the many people who helped make our book possible, starting
with everyone at Manning, from associate publisher Mike Stephens and our develop-
ment editor Renae Gregoire, to the production team of Mary Piergies, Troy Mott,
Andy Carroll, Melody Dolab, Janet Vail, and Dennis Dalinnik.

 Special thanks to Scott Hansleman for happily volunteering to write the foreword.
We are deeply grateful for his endorsement of our work. We also acknowledge Roland
Civet, our technical proofreader, who reviewed the text and tested the code during
development and again shortly before the book went to press.

 The following reviewers read our manuscript at various stages of its development
and we thank them for their feedback and insights: Adam London, Arsalan Ahmed,
Arun Noronha, Asif Jan, Francis Setash, Ian Stirk, Jeffrey Jenkins, Joseph M. Morgan,
Leo Waisblatt, Mark Nischalke, Osama Morad, PhD, Paul Stack, Peter O’Hanlon,
Philippe Vialatte, Rohit Asthana, Stan Bice, and Wyatt Barnett.

 Thanks also to Mark LaPointe, John Blumenauer, Glenn Block, Julie Lerman, Tad
VanFleet, Steve Michelotti, Oskar Austegard, Ernesto Delgado, and Pete Brown.
Thanks for the pointers, direction, and help from the following Microsoft teams: Web
APIs, Project Silk, Internet Explorer, and Interoperability Bridges.

Jim Jackson
Many thanks to Ian Gilman who helped to make this book what it is. His knowledge,
work, and tireless attention to detail have resulted in a book that I believe will be truly
helpful in bringing more and more .NET developers into the age of HTML5.
xx

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTS xxi
 Heartfelt thanks to my wife for being so patient, supportive, and encouraging dur-
ing all the late nights, early mornings, and times when it would have been easier for
me to stop than continue. The fact that we got through it together is a testament to
your faith in me. You are truly appreciated.

Ian Gilman
For their insights and support, thank you to Kevin Hanes, Ben Vanik, Daniel Gasienica,
Aseem Kishore, Oskar Austegard, Gennaro Cannelora, and of course Christina Gilman.
Thank you most of all to Jim, for bringing me into this endeavor with his great passion
for knowledge; it’s been a wild ride!
www.it-ebooks.info

http://www.it-ebooks.info/

about this book
This book was written for professional .NET developers primarily focused on C# and
ASP.NET. While it’s useful for other professionals, the focus has been on developing
server-side code in C# and ASP.NET MVC, with as little overhead as possible.

 Our target reader is a professional who has been placed in the role of developer
on a project that is already on an HTML5 and ASP.NET MVC platform or is being transi-
tioned to this platform. Emphasis is placed on as many stable parts of the HTML5 spec-
ification as possible, so that while the developer learns effective use of JavaScript, he
or she is also able to learn to use these very powerful APIs.

 Please note that while the JavaScript and HTML5 techniques you learn in these
pages are useful for Windows 8 development, this book does not claim to be a Win-
dows 8 development reference.

How the book is organized
This book is divided into two parts. The first part, consisting of chapters 1 and 2, will
give you a general understanding of what HTML5 is and how it can interact with server
components using JavaScript and ASP.NET MVC. Chapter 2 focuses on markup and
how semantics play a role in HTML5 web application development.

 The second part of the book (chapters 3 to 10) covers the various HTML5
JavaScript APIs that are stable and generally supported across browser platforms. Each
implementation is tested against browser versions that were available at the time of
writing and against previous versions as much as possible. The APIs covered in each
chapter are as follows:
xxii

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK xxiii
■ Chapter 3 Audio and video controls
■ Chapter 4 Canvas
■ Chapter 5 The History API: Changing the game for MVC sites
■ Chapter 6 Geolocation and web mapping
■ Chapter 7 Web workers and drag and drop
■ Chapter 8 Websockets
■ Chapter 9 Local storage and state management
■ Chapter 10 Offline web applications

There are three appendixes; they give an overview of JavaScript, explain how to use
ASP.NET MVC, and guide you on how to install IIS Express.

How to use this book
Each chapter in the second part of the book (chapters 3 to 10) is organized into three
parts. The first is a brief introduction, designed to get you thinking about real-world
applications for that chapter’s focus. This part may also include background informa-
tion to help you understand the topic more clearly, as is the case with geolocation.
The introduction also includes a browser support table that shows which browser ver-
sions are compatible with each HTML5 API.

 The second part of the chapter is the actual build. As we build the project, we’ll
show the code and describe where it should be placed in the application source. As
each part of an API is used, it’s introduced and defined. A Core API icon placed in the
margin shows the section where each API is discussed.

 The third and final part of each chapter is the source code listing. Each JavaScript
library, HTML page, stylesheet, or C# class file that is used will be fully listed, unless
that code was previously listed in an earlier part of the chapter. For example, if the
complete markup for an HTML page is listed early in the chapter, it won’t be listed
later. However, if a JavaScript file is created bit-by-bit as the project progresses, the
entire listing will be included in this section.

 Working versions of each sample application can be found at www.ellipsetours.com/
demos/index.html. The code can also be downloaded from the publisher’s website at
www.manning.com/HTML5for.NETDevelopers.

Software requirements
The JavaScript portions of this book are completely compatible with any modern desktop
or mobile browser. The builds for each chapter require Visual Studio 2010 Service Pack 1
or later. All applications have been tested using Visual Studio 2012 Release Candidate.

 Local administrator privileges are required to install Git Bash and node.js, as well
as to run these applications.

 Each chapter starts off with a browser support table that shows which browser ver-
sions are compatible with each HTML5 API.

Core API
www.it-ebooks.info

www.manning.com/HTML5for.NETDevelopers
www.ellipsetours.com/demos/index.html
www.ellipsetours.com/demos/index.html
http://www.it-ebooks.info/

ABOUT THIS BOOKxxiv
Code conventions and downloads
All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts.

 Source code for all working examples in this book is available for download at the
publisher’s website at www.manning.com/HTML5for.NETDevelopers. Working ver-
sions of each sample application can be found at www.ellipsetours.com/demos/
index.html.

Author Online
The purchase of HTML5 for .NET Developers includes free access to a private web forum
run by Manning Publications, where you can make comments about the book, ask tech-
nical questions, and receive help from the author and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/HTML5for
.NETDevelopers. This page provides information about how to get on the forum once
you’re registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.
www.it-ebooks.info

www.manning.com/HTML5for.NETDevelopers
http://www.ellipsetours.com/demos/index.html
http://www.ellipsetours.com/demos/index.html
www.manning.com/HTML5for.NETDevelopers
www.manning.com/HTML5for.NETDevelopers
http://www.it-ebooks.info/

about the cover illustration
The figure on the cover of HTML5 for .NET Developers is captioned “An Infantry Offi-
cer.” The illustration is taken from a 19th-century edition of Sylvain Maréchal’s four-
volume compendium of regional dress customs and military uniforms published in
France. Each illustration is finely drawn and colored by hand. The rich variety of
Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and
regions were just 200 years ago. Isolated from each other, people spoke different dia-
lects and languages. In the streets or in the countryside, it was easy to identify where
they lived and what their trade, profession, military rank, or station in life was just by
their dress.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
xxv

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 and .NET
You’re really going to love HTML5. It’s like having a box of brand new toys in front
of you when you have nothing else to do but play. Forget pushing the envelope;
using HTML5 on the client and .NET on the server gives you the ability to create
entirely new envelopes for executing applications inside browsers that just a few
years ago would have been difficult to build even as desktop applications. The abil-
ity to use the skills you already have to build robust and fault-tolerant .NET solu-
tions for any browser anywhere gives you an advantage in the market that we hope
to prove throughout this book.

 For instance, with HTML5, you can

■ Tap the new Geolocation API to locate your users anywhere on the planet

This chapter covers
■ Understanding the scope of HTML5
■ Touring the new features in HTML5
■ Assessing where HTML5 fits in

software projects
■ Learning what an HTML application is
■ Getting started with HTML applications in

Visual Studio
1

www.it-ebooks.info

http://www.it-ebooks.info/

2 CHAPTER 1 HTML5 and .NET
■ Build photo editing or animation products with the Canvas API
■ Build high-performance user interfaces for using the History and Drag-and-

Drop APIs
■ Accomplish a tremendous amount of work with just a few lines of JavaScript

What, exactly, is HTML5? In a nutshell, it’s one part semantic organization that can
add additional meaning to content on the web and one part JavaScript programming
interfaces that allow you to do things in a simple web page that weren’t possible just a
short time ago. The opportunities are limited only by your imagination, and the tools
and environments you’re currently using to develop software will probably be the
same ones that help you build this new class of application. You can see some exam-
ples in figure 1.1.

HTML5

New forms elements allow you to

better organize, validate, and display

data on the page.

Video and audio controls allow you to

display rich media and even integrate

with other APIs like canvas.

Semantic markup allows

your page structure

to have meaning

without the need for

descriptive CSS styles.

The canvas element allows

you to create rich drawings

and animations inside

your page in real time.

Figure 1.1 From games like Canvas Rider to semantic page layout to audio/video to form
presentation, HTML5 has something for everyone in the web design and application space.
Rich HTML applications are the new normal for web development.
www.it-ebooks.info

http://www.it-ebooks.info/

3New toys for developers thanks to HTML5
Fellow developers, now is the time to sit up and take note. The semantic web, which
HTML5 taps and which we’ll talk more about in the next chapter, is here. Even better,
you already have many of the skills you need to build robust applications for this mar-
ket. The same tools and technologies you use now, like Visual Studio, ASP.NET, and
web services, can be effectively integrated into HTML5 applications. You’ll need to
build on your existing knowledge and expand it into some new areas, but the
rewards—such as seamless integration with tablets and phones, ease of deployments
and upgrades, and rich client feature sets—are worthwhile.

 In this chapter, we’ll look at the new toys that HTML5 brings to .NET developers,
such as the following:

■ New HTML5 elements and microdata, which bring meaning to the markup
beyond just the contents of the tags on the page

■ New web app form factors that let you add features to your page with little or no
additional code

■ New JavaScript APIs that not only lead to better performance but also give you the
ability to build rich interactive graphics and speed performance in your web apps

We’ll also look at JavaScript and why it needs to be a first-class language in your skill
set if you intend to take advantage of HTML5, and we’ll look at the server-side pro-
cesses and options for HTML5 available from the .NET framework.

 Finally, we’ll look at HTML5 applications from end to end, and we’ll implement a
Hello World example that will give you the minimum JavaScript you need to work
through the example applications in this book and will give you a taste of the HTML5
smorgasbord to come.

 Without further ado, let’s begin with a tour of the new toys that HTML5 adds to
your toy box.

1.1 New toys for developers thanks to HTML5
HTML5 is a big topic, and figure 1.2 should give you a better understanding of the var-
ious moving parts in a web application that uses HTML5. If it feels like you’re looking
at the underside of a race car with only a vague idea of how things work, don’t worry.
We’ll provide all the details as we progress through the book. What’s important here is
the big picture and the basic interactions among the parts.

 In this section, we’ll give you a high-level but grounded tour of some of the most
exciting new features of HTML5, many of which you’ll learn how to use in this book. If
we won’t be covering a particular feature in this book, we’ll point you to other good
resources on the topic so you can take side trips whenever you need or like. Specifi-
cally, we’re going to cover the following topics in this section:

■ New HTML5 tags and microdata, which help you build search-optimized,
semantic pages

■ How HTML5 lets you develop across devices and browsers, without having to
write multiple programs
www.it-ebooks.info

http://www.it-ebooks.info/

4 CHAPTER 1 HTML5 and .NET
■ Improvements to JavaScript and the plethora of libraries, extensions, and
frameworks that make your development work so much faster and easier

■ Identifying and implementing the HTML5 APIs that everyone is talking about by
creating user-friendly, graphics-rich, interactive web applications

■ Reviewing where Cascading Style Sheets 3 (CSS3) and ASP.NET MVC fit into
the picture

For our first stop, we’ll turn to HTML5 tags and microdata.

1.1.1 New HTML5 tags and microdata

Imagine that you’re a member of a band called Four Parts Water. You’re creating a
very basic web page just to test out your newly acquired HTML5 knowledge.

 You know about HTML tags, which are the little pieces of text inside brackets that you
write to render elements on a web page. Each tag starts with an opening < symbol and
ends with a closing > symbol. Content is placed next, and then the tag is closed with the
</tag> marker. Opening tags may also include attributes to give them further meaning:

<div>
 <p>My name is Neil.</p>
 <p>My band is called Four Parts Water.</p>
 <p>I am British.</p>
</div>

Browser address bar

HTML
document

JavaScript
HTML5

JavaScript APIs

History

Canvas

Geolocation

Web Workers

Drag and Drop

Websockets

LocalStorage

Offline

Audio/Video

Frameworks

open source
extensions

JavaScript

custom

libraries

CSS3

JavaScript

Custom

libraries

HTML 5

semantic

elements

Microdata

extensions

HTML5

form

elements

Page

structure

Figure 1.2 The basic organization of a web application built using HTML5. The application is consumed
by a web browser that reads an HTML text file and interprets the content, loading other resources like
JavaScript files, images, or stylesheets as necessary. The markup is rendered on the page using stylesheets
that are linked or placed directly into the markup, and JavaScript code executes at the proper time to
change the interface, communicate with the server, or interact with the HTML5 APIs available from the
current browser. These APIs can interact directly with the client system, but JavaScript, as a rule, can’t.
www.it-ebooks.info

http://www.it-ebooks.info/

5New toys for developers thanks to HTML5
That’s good, but now you want to try adding some microdata. Microdata is additional
information you can add to your page using special attribute keywords. It can be set,
read, and changed via JavaScript, and the values your microdata contains can be
nearly anything you like. You can extend tags using microdata to add semantic or
other meaningful information that search engines and JavaScript libraries can use to
make even more sense of the data on the page. A holistic interpretation of your page
data and content will help optimize it for search as well as for accessibility applications
like page readers. Microdata extensions can also reduce the amount of code and
increase the expressiveness of the markup in nearly any page.

 Armed with this knowledge, you write up the code in the following listing (from
html5rocks.com), which displays the same basic page with your name and the name of
your band, but with extra information meant for web crawlers and search engines.

<div itemscope>
 <p>My name is
 Neil.</p>
 <p>My band is called
 Four Parts Water.</p>
 <p>I am
 British.</p>
</div>

As you can see, the various microdata tags help the engines and crawlers to interpret
which pieces of the text are important and what each one means.

1.1.2 HTML5 applications for devices

HTML5 has not only given us .NET developers new ways to make our code make sense
on the web; it has also brought us the ability to develop for exciting new devices that
used to exist only in the imaginations of sci-fi writers: think iPad, Kindle, and smart
phones. Mobile phones have fully featured browsers with display technologies better
than most computers available five years ago, and even laptops now have powerful
graphics processors. Gaming PCs have graphics support that allows them to seamlessly
render complex 3D graphics and animations. HTML5 lets .NET developers enter this
new world, where the challenge is to take advantage of the diversity of browser plat-
forms while maintaining functional continuity.

NOTE Currently the web community uses the terms HTML application and
HTML5 application interchangeably. This is because the new functionality
that’s available as the HTML5 specification comes to market is what is stimulat-
ing the new ideas and methods of developing rich internet applications.
Here, we’ll refer only to “HTML applications,” but our examples will be

Listing 1.1 Microdata tags describing content

Itemscope declaration defines boundaries of itemprops for object.

Itemprop here is name,
standard microdata
vocabulary term that’s
useful for search engines.

Band itemprop isn’t in standard
vocabulary but is allowed nonetheless.

Closing tag for element declared with itemscope
closes object referenced by microdata.
www.it-ebooks.info

http://www.it-ebooks.info/

6 CHAPTER 1 HTML5 and .NET
focused on the parts of HTML5 and JavaScript that make the applications
deeper and more useful to users.

How do you develop a single application to work across all the screens listed in figure 1.3?
It’s certainly possible, but it takes a good understanding of the compromises and fea-
tures available across the entire range of target browsers. We’ll provide you with that
knowledge in chapters to come as we teach you how to use HTML5’s features in multi-
ple browsers.

1.1.3 Better, faster JavaScript

Another feature that makes HTML applications compelling is the incredible improve-
ment in JavaScript engine performance over the last few years, across all browsers.
Gone are the days when JavaScript was only suitable for handling click events or post-
ing forms. Just take a look at figure 1.4 to see how dramatically execution time has
improved through various versions.

 Add HTML5’s native support for JSON data transmission and the array of
performance-enhancing coding techniques available, and it gets difficult to say that
compiled binary libraries are always faster. While perhaps this is true in many
instances, there are plenty of normal operating situations where a JavaScript routine
can be just as fast as the same routine compiled in the .NET runtime. This means that
plugins like Silverlight and Flash have much less of an advantage in the application
market. In some instances, they have no advantage at all.

1.1.4 Libraries, extensions, and frameworks

JavaScript development also benefits from a wide range of open source projects and
free tools. While not new toys themselves, these pieces of the application puzzle allow
you as the developer to make better, more efficient use of the HTML5-specific toys. 1

Figure 1.3 The form factor, size, and resolution of browsers available to you is
growing all the time.
www.it-ebooks.info

http://www.it-ebooks.info/

7New toys for developers thanks to HTML5
1 See the “Roadmap for Windows Store apps using JavaScript” page in the Windows Dev Center at http://msdn
.microsoft.com/en-us/library/windows/apps/hh465037.aspx.

Windows 8
The Windows 8 announcement and subsequent release is big news to all .NET devel-
opers. It brings a new set of features, better security, and an app store, and it takes
the beautiful Windows Store1 styling from Windows Phone. While this book isn’t specif-
ically about building native Windows 8 applications with HTML5, CSS, and JavaScript,
the good news is that what you learn here will be applicable on this new platform.

The Windows-specific version of JavaScript is called WinJS, and it’s JavaScript at
heart with the added ability to call native functions and libraries on the host system.
The markup and styling from your HTML5 applications should be relatively easy to
port into the new Windows 8 environment, making your skills all the more valuable.

In addition, Internet Explorer 10, shipped with Windows 8, is the most compliant, com-
patible browser ever from Microsoft, and it’s incredibly fast. This gives you the option of
building your application as an HTML5 web app to use on multiple devices and browsers
or as a native Windows 8 application, suitable for deployment to the app store.

In short, this book, while not targeted toward any specific platform, will allow you to
use everything you learn to get a major head start on native and browser-based Win-
dows 8 development.

Figure 1.4 JavaScript engine
performance improvements in
the past few years (courtesy
of webkit.org) have led to
impressive speeds all around.
In this graph, the time
required in milliseconds
to perform a large number
of very specific JavaScript
benchmark tasks
is measured.
www.it-ebooks.info

http://msdn .microsoft.com/en-us/library/windows/apps/hh465037.aspx
http://msdn .microsoft.com/en-us/library/windows/apps/hh465037.aspx
http://www.it-ebooks.info/

8 CHAPTER 1 HTML5 and .NET
For instance, there are dozens of unit-testing frameworks for JavaScript including
QUnit, a free framework for JavaScript and jQuery (github.com/jquery/qunit). You
can build complete applications using pattern-based approaches with libraries like
Backbone.js (documentcloud.github.com/backbone) or Knockout.js (knockoutjs.com).
These frameworks give you a client-side MVC (Model-View-Controller) or MVVM
(Model-View-ViewModel) paradigm to build large HTML applications while keeping
them maintainable. There are thousands more; just think of any feature you might
want for a rich website and search for it. You’re almost guaranteed to find something
to get you started.

 It’s hard to say exactly where to start when considering third-party commercial
and open source JavaScript libraries. There are components for performing spe-
cific tasks, libraries that act as development frameworks, libraries for unit testing,
graphics helpers, communications tools, documentation enhancers, and plenty of
others. Just take a look at GitHub (http://www.github.com/) and see for yourself.
A search for “JavaScript” turns up over 9,000 projects. Now jump over to the jQuery
site (www.jquery.com) and take a look at the plugins page. There are almost 500 pages
of plugin projects. 2

Nearly every JavaScript library available today is open for your review and for subse-
quent inclusion in your website based on the license that accompanies it. In addition
to using these libraries outright, you can use them to learn how to do specific tasks or
for architectural guidance.

 As you work through the examples in this book and become more versed in the
JavaScript language, you’ll learn to look at these libraries with a critical eye toward

Wondering where to start when it comes to libraries? Consider jQuery.
jQuery is the obvious place to start when looking at JavaScript libraries to improve
the quality of your applications and speed of your development. It’s one of the most
popular frameworks for developing HTML applications, used in nearly half of all active
websites today.2 The library, a creation of John Resig, is under constant development
and is both fast and easy to use. It also sports a plugin model that allows others to
add new features to it.

Microsoft clearly understands that jQuery is an ideal tool for building the next wave
of applications, and it has invested a lot of energy into data binding, templating plug-
ins, and pattern-based frameworks like Knockout.js. Using HTML5, a Microsoft devel-
oper can now build once and deploy practically anywhere. (Where have we heard that
before?) But more important than Microsoft’s contribution is the fact that it’s an
equal partner in the jQuery ecosystem.

2 See W3Techs “Usage statistics and market share of JQuery for websites” article at http://w3techs.com/
technologies/details/js-jquery/all/all.
www.it-ebooks.info

http://www.github.com/
www.jquery.com
www.jquery.com
http://w3techs.com/technologies/details/js-jquery/all/all
http://w3techs.com/technologies/details/js-jquery/all/all
http://www.it-ebooks.info/

9New toys for developers thanks to HTML5
instancing models, resource allocation, binding to existing elements, and how each
library can fit into the overall goals of your application.

1.1.5 New HTML5 JavaScript APIs

There are also various JavaScript objects and APIs that can help your pages interact
with the outside world and with the rest of the browser’s operating system. There are
quite a few such features, but we’ll focus our discussion on some of the most stable
and useful for building rich web applications.

CANVAS

Canvas is a raster-based drawing mechanism in HTML5. The Canvas JavaScript API has
a lot of functionality, and we’ll cover it in detail in chapter 4. If you want an early peek
though, try using the following code to draw a simple rectangle on a canvas element:

var myCanvas = document.getElementById("rectCanvas");
var canvContext = myCanvas.getContext("2d");
canvContext.fillRect(50, 25, 150, 100);

The key is to get a reference to the canvas and then grab its context object. The con-
text object is what you use to do all work inside the rendered element.

 How can you use it? As a drawing surface, for graphs and charts and for animations
ranging from very simple to extremely complex.

HISTORY

The History API in HTML5 is used to add or replace data in the current browser’s ses-
sion history. You can use it to overwrite the current page with something more generic
or with a more helpful landing page. You can also use it to add a new item to session
history so that on-page navigation events can be accessed using the browser’s forward
and backward buttons:

history.pushState();
history.replaceState();

We’ll discuss the History API in chapter 5.
 How can you use it? To enhance application navigation between views or pages

and to remove unwanted steps from the browser history for the current site.

GEOLOCATION

Our favorite API is Geolocation. Using the geolocation.getCurrentPosition() func-
tion, you can return a latitude and longitude from a device’s onboard GPS device.
Note that the geolocation object is only available to the navigator object in
JavaScript. Navigator isn’t, as you might expect, a wrapper just for geolocation. It’s a
global object that contains a number of functional pieces. Check out chapter 6 on
geolocation for more on this.

 How can you use it? As a tool to let users locate themselves in the world and as the
basis for providing meaningful data about points of interest around a user.
www.it-ebooks.info

http://www.it-ebooks.info/

10 CHAPTER 1 HTML5 and .NET
WEB WORKERS

A web worker allows your HTML application to use multiple threads. For heavy process-
ing applications or long-running JavaScript tasks, the web worker object can be invalu-
able. The web worker is declared as a Worker object and is passed a JavaScript file:

var wrk = new Worker("BackgroundProcess.js");

Once instantiated, the background process script and the hosting worker object can
listen for messages sent back and forth. The worker object could do this:

wrk.postMessage("Hello to the web worker");

And inside BackgroundProcess.js, you could do this to send a message back to
the host:

self.postMessage("Hi from the background process");

This is a minimal example without any of the required plumbing code. What’s impor-
tant here is that the values passed back and forth are strings. This leaves open the pos-
sibility of sending JSON data objects as well as other more complex arrays of values.
We’ll cover Web Workers in chapter 7.

 How can you use it? To speed application performance by performing processor-
intensive calculations in the background, freeing up cycles for graphics rendering and
user interaction.

DRAG AND DROP

Drag and drop is a new feature in HTML5 that allows you to programmatically pick up
and drop elements on your page relative to the page, to each other, or to the user’s
desktop. This is done by wiring up events on elements for drag, drop, dragover, and
dragenter. While a drag operation is occurring, other features of the API can be acti-
vated to provide feedback to the user about what is happening. We’ll look at drag and
drop in chapter 7.

 How can you use it? As a means of bringing natural user interactions to web appli-
cations reliably and quickly.

WEBSOCKETS

Websockets are a means of breaking away from the request/response paradigm of web
page interaction to a bi-directional communication channel. This means that commu-
nications can be happening in both directions simultaneously during a session. This is
best described with examples, but we need to cover more JavaScript basics first. Look
for coverage of Websockets in chapter 8.

 How can you use it? For building real-time communication web applications like
chat, white boards, or collaborative drawing.

LOCAL STORAGE

The Local Storage HTML5 API provides a solution for storing local data through the
use of a key/value style storage specification that’s available for reading and writing
within a single domain. You can read, insert, update, and delete data very easily and
www.it-ebooks.info

http://www.it-ebooks.info/

11New toys for developers thanks to HTML5
store much more information than would normally be possible in a web application.
We’ll cover this API in chapter 9.

 How can you use it? As the basis for building applications that store user data
locally while sending only the data necessary for server functions.

 Local Storage doesn’t provide any specification for synchronizing with a server
database, nor does it provide transactional support. If you need transactional support,
you would be better off looking to the IndexedDB HTML5 specification. This API uses
a document-database (or NoSQL) style approach, but the specification is incomplete
and unstable at this time, so we won’t cover it in this book.

OFFLINE ACCESS

The ability of a site to remain available offline is new in HTML5. It’s done by specifying
a manifest file that describes which files must be downloaded for use offline, which
files should only be accessed while online, and which files, when requested, should get
a substitute file instead. The manifest file is specified in the top-level <html> element
on a page:

<html manifest="/cache.manifest">

How can you use it? As a means of creating rich games or business applications that
function even when an internet connection isn’t available.

AUDIO/VIDEO

The Audio and Video tags allow you to play music and video without Flash or Silver-
light plugins. Browser vendors have built in their own default players, but you can eas-
ily extend or replace them as we’ll show in chapter 3. Because support formats vary
between browsers, you can create your content in multiple formats and allow the
browsers to automatically choose which version to use. This allows for forward and
backward compatibility, keeping you current with the ever-changing multimedia for-
mat landscape.

 A simple audio tag might look something like this:

<audio src="/content/music.mp3"></audio>

1.1.6 Cascading Style Sheets 3
Cascading Style Sheets (CSS) version 3 technically isn’t a part of the HTML5 specifica-
tion, but the graphics capabilities of media queries and transformations make it a cru-
cial part of any browser-based rich application. Putting your presentation rules into
styles allows you to build more manageable and pluggable user interfaces for your cli-
ents. Well-engineered cascading styles can also significantly reduce your develop-
ment time.

 We’ll cover the core CSS3 concepts necessary for implementing HTML5 applica-
tions and understand where CSS3 fits into application design in chapter 2. We’ll
touch on it again throughout the rest of the book as a means of adding smooth ani-
mations and rich styling. While we aren’t providing a definitive CSS3 reference in
this book, you’ll certainly come to realize the benefits of learning CSS more deeply.
www.it-ebooks.info

http://www.it-ebooks.info/

12 CHAPTER 1 HTML5 and .NET
The book Smashing CSS: Professional Techniques for Modern Layout by Eric Meyer (Smashing
Magazine, 2010) is a great addition to any technical library.

1.1.7 MVC and Razor
While not directly part of HTML5, MVC (Model-View-Controller) is a software develop-
ment pattern that allows for the clear separation of concerns between business logic
components and user interface display. The Visual Studio templates for Microsoft’s
latest version of ASP.NET MVC are being constantly updated as free, out-of-band
releases directly to the development community. ASP.NET MVC presents a couple of
ways to operate in the context of an HTML application.

 The first and easiest way is to ensure that all your views are HTML5 compliant. This
can be done online at sites like validator.w3.org that allow you to enter a URL and
return a listing of valid and invalid markup. This includes the semantic organization
of your markup and the use of unobtrusive JavaScript (discussed shortly). You can also
build a single HTML page to contain an entire piece of your application and include it
in your MVC site. We’ll do this in chapter 4, when we cover HTML5 Canvas.

 The next method is to use Razor, the view-processing engine that was introduced as
part of ASP.NET MVC. Razor facilitates readable inline code within your views, allowing
you to write properly formatted HTML with bits of server code interspersed to perform
work based on data models that you can build. Using Razor, your markup becomes more
terse, easier to read, and faster to code. Using Razor and ASP.NET MVC, you can incorpo-
rate all the features of .NET development that you’re accustomed to and transition seam-
lessly into the world of HTML5 application development. Razor is used in our MVC views
throughout this book and it’s covered in more detail in appendix B on ASP.NET MVC.

1.2 HTML5 applications end-to-end
Now that you have a basic understanding of the toys you’ll get to learn about and play
with in this book, the next thing you need to know is how each piece interacts with the
next and where they touch each other in a normal system.

NOTE At the beginning of each chapter, we’ll clearly define which browsers
and versions are supported. You should be able to download, install, and test
with Google Chrome, Internet Explorer, Firefox, Opera, and Apple Safari. In
addition, you can use any mobile browser at your disposal to test site render-
ing and function.

Figure 1.5 shows a very simplified view of where each part can fit into the overall
scheme of an HTML5 application. This is the same diagram you saw in figure 1.2 but
with the addition of Microsoft’s server-side components. This is by no means the only
way these parts can fit together, but it will get you started.

 On the server side of an HTML application, MVC controllers will present a view
(HTML text sent to the browser), take data from a form POST operation, or send or
receive data using Ajax calls. In later chapters, we’ll cover all of these communications
and how to integrate them in an HTML application.
www.it-ebooks.info

http://www.it-ebooks.info/

13HTML5 applications end-to-end
You might find all these pieces a little overwhelming, so we’ll dig a little deeper into
each area to help firm up your understanding. We’ll start with the page structure.

1.2.1 Page structure and page presentation
Figure 1.6 identifies the page structure and where it fits into the scheme of an HTML
application.

 The structure of a single application page consists of the semantic elements, such
as <header>, <footer>, <nav>, <article>, and <section>, as well as any traditional
HTML tags, like <div>, , and <a>. Semantic tags, which will be covered in more
detail in the next chapter, provide organizational cues and a means of denoting where
various parts of the content will exist. Structural elements receive styling using CSS
and can have JavaScript behaviors attached at runtime. Elements in the page structure
can be delivered from the server at runtime, built from templates on the client, or
downloaded on demand.

 Note that the styles that a page uses can also determine its structure. A common
instance of this is when an element is floated. Floated elements (denoted by the CSS

Browser address bar

HTML
document

JavaScript
HTML5

JavaScript APIs

History

Canvas

Geolocation

Web Workers

Drag and Drop

Websockets

Local Storage

Offline

Audio/Video

Frameworks

open source
extensions

JavaScript

custom

libraries

CSS3

JavaScript

Custom

libraries

HTML 5

semantic

elements

Microdata

extensions

HTML5

form

elements

MVC controllers

Form post

Views

Generated JavaScript

Ajax calls

RESTful calls

Form post

Page

structure

Figure 1.5 Basic client and server interactions between HTML5 features and JavaScript APIs within
an application
www.it-ebooks.info

http://www.it-ebooks.info/

14 CHAPTER 1 HTML5 and .NET
style float:left or float:right) don’t participate in page flow but will dock them-
selves to the appropriate side of the window. We’ll discuss positioning elements on the
page when we look at the Canvas API in chapter 4 and the Geolocation API in chapter 6.

 Page presentation is the visual styling that a page structure receives, based on the
location of elements in the structure and the stylesheets included on the page. Styles
in a stylesheet are the starting point for operations that can occur at runtime. While
the page is displayed, changes to the browser layout can trigger media query changes,
and interactions by the user can trigger JavaScript functions. We’ll cover what media
queries are and how they work in chapter 2. For now, the important concept is that by
using CSS and JavaScript, you can dramatically change the presentation of the page
based on changing conditions in the browser.

1.2.2 Page content

The content of your application can be anything from a map to an editable grid. It can
be data from a content management system, pictures uploaded by a user, or news articles.
Whatever the content, it’s the most important part of your application, and it should be

Browser address bar

HTML
document

JavaScript
HTML5

JavaScript APIs

History

Canvas

Geolocation

Web Workers

Drag and Drop

Websockets

LocalStorage

Offline

Audio/Video

Frameworks

open source
extensions

JavaScript

custom

libraries

CSS3

JavaScript

Custom

libraries

HTML 5

semantic

elements

Microdata

extensions

HTML5

form

elements

Page

structure

MVC controllers

Form post

Views

Generated JavaScript

Ajax calls

RESTful calls

Form post

Figure 1.6 Page structure is the physical organization of an HTML page. Which tags exist inside
other tags can determine how elements can be moved or accessed using JavaScript.
www.it-ebooks.info

http://www.it-ebooks.info/

15HTML5 applications end-to-end
placed in the structure in a way that makes it very obvious what it is and why it’s impor-
tant. Figure 1.7 shows the role that content plays in the HTML application scheme.

 Page content can be static, dynamic, or a mix of both depending upon the needs
of the application. It can be added by the user while the application executes or be
pulled on demand when the application detects updates from some other process.

1.2.3 Application navigation

In HTML5 applications, there are two parts related to navigation: manipulation of the
browser URL and posting of values to a server to move to another page. Figure 1.8
highlights the POST operations at the bottom of the diagram and the use of the new
HTML5 History API to manage the URL.

 Navigation can occur when a user clicks a link to another page or submits a form, or
it can be initiated via JavaScript by some other event. In traditional web pages, these
operations were abrupt and sometimes jarring, but in a rich HTML application, a user’s
actions can be considered and handled gracefully. Natural or instinctive interactions are

Browser address bar

HTML
document

JavaScript
HTML5

JavaScript APIs

History

Canvas

Geolocation

Web Workers

Drag and Drop

Websockets

LocalStorage

Offline

Audio/Video

Frameworks

open source
extensions

JavaScript

custom

libraries

CSS3

JavaScript

Custom

libraries

HTML 5

semantic

elements

Microdata

extensions

HTML5

form

elements

MVC controllers

Form post

Views

Generated JavaScript

Ajax calls

RESTful calls

Form post

Page

structure

Figure 1.7 Static content is written directly inside the HTML elements in a page. Dynamic content can
be delivered to the browser in an MVC application by means of views or via JavaScript and Ajax.
www.it-ebooks.info

http://www.it-ebooks.info/

16 CHAPTER 1 HTML5 and .NET
an area gaining a lot of traction in the mobile market today because what may seem
like small parts of the usability story can have a large effect on user satisfaction. Keep-
ing operations subtle and instinctive is an art form where the ability to draw the eye,
the mouse, or the hand to a specific place to perform an operation is critical.

1.2.4 Business logic

The business logic in an HTML application will nearly always be JavaScript on the cli-
ent; the corresponding server-side implementations can be .NET or any other server
technology. As shown in figure 1.9, the custom libraries and frameworks you include
in your application will be responsible for changing the user interface, communicat-
ing with the server, and integrating HTML5 APIs.

 On the communication side, we’ll use ASP.NET MVC in this book but you aren’t
limited to this technology. Any server solution capable of receiving HTTP calls and
returning data will work. The decisions you’ll have to make will revolve around how,
when, and where to validate your business data and which external libraries to use.

Browser address bar

HTML
document

JavaScript
HTML5

JavaScript APIs

History

Canvas

Geolocation

Web Workers

Drag and Drop

Websockets

LocalStorage

Offline

Audio/Video

Frameworks

open source
extensions

JavaScript

custom

libraries

CSS3

JavaScript

Custom

libraries

HTML 5

semantic

elements

Microdata

extensions

HTML5

form

elements

Page

structure

MVC controllers

Form post

Views

Generated JavaScript

Ajax calls

RESTful calls

Form post

Figure 1.8 Application navigation can happen when a user POSTs a message to the server, when a
JavaScript event occurs, or when browser URL changes are intercepted with the HTML5 History API.
www.it-ebooks.info

http://www.it-ebooks.info/

17HTML5 applications end-to-end
1.2.5 Server communications

Communication with the server is accomplished via the initial load of a page, by the post-
ing of a form, or via Ajax calls to web services. A good communication model will keep
the traffic frequency low and the content volume to the barest minimum. Figure 1.10
highlights a limitation in ASP.NET MVC whereby all communications will be transmit-
ted through controllers and can be initiated by either a JavaScript Ajax call or through
a form POST.

 When security is necessary, SSL is available using MVC to keep your data transmis-
sions private, and when security isn’t required, it sometimes makes sense to make
communications with the server somewhat transparent. Doing this will enable your
system to operate in a software-as-a-service (SAAS) model and allow other applications
to consume or manipulate your application’s data.

Browser address bar

HTML
document

JavaScript
HTML5

JavaScript APIs

History

Canvas

Geolocation

Web Workers

Drag and Drop

Websockets

LocalStorage

Offline

Audio/Video

Frameworks

open source
extensions

JavaScript

custom

libraries

CSS3

JavaScript

Custom

libraries

HTML 5

semantic

elements

Microdata

extensions

HTML5

form

elements

Page

structure

MVC controllers

Form post

Views

Generated JavaScript

Ajax calls

RESTful calls

Form post

Figure 1.9 The business logic in an HTML application resides almost exclusively in JavaScript on the
client and on the server in .NET libraries.
www.it-ebooks.info

http://www.it-ebooks.info/

18 CHAPTER 1 HTML5 and .NET
1.2.6 The data layer

The data layer is interesting in an HTML application because it can involve both client
and server data storage. On the server, you’ll store all the normal business data, security,
and transactional information. The client is more complex, because you’ll often need to
store durable state information as well as client data for use offline. Figure 1.11 shows
the intersection of JavaScript with the Local Storage API.

 Local Storage, as mentioned earlier, isn’t the only means of maintaining data on
the client, but it currently has the best mix of supported browsers and simplicity in
usage. Local Storage has far more support and stability than IndexedDB and is far eas-
ier to use than browser cookies, though these other solutions have their place.

 Whether or not a page set up to be accessed offline could also be considered part of
the data layer is an interesting topic that we’ll give some consideration to in chapter 10,
but, for now, understand that certain directives placed in your page will allow it to be
seamlessly accessed when the browser isn’t connected to the internet.

Browser address bar

HTML
document

JavaScript
HTML5

JavaScript APIs

History

Canvas

Geolocation

Web Workers

Drag and Drop

Websockets

LocalStorage

Offline

Audio/Video

Frameworks

open source
extensions

JavaScript

custom

libraries

CSS3

JavaScript

Custom

libraries

HTML 5

semantic

elements

Microdata

extensions

HTML5

form

elements

Page

structure

MVC controllers

Form post

Views

Generated JavaScript

Ajax calls

RESTful calls

Form post

Figure 1.10 Communication with servers is vital to most business applications and can be performed
by contacting controller actions using Ajax or by POSTing forms to the server.
www.it-ebooks.info

http://www.it-ebooks.info/

19Hello World in HTML5
Now that we’ve looked at many of the facets of developing applications using HTML5,
JavaScript, and .NET, it’s time to put it all together by building a Hello World application.

1.3 Hello World in HTML5
Your Hello World application will, in just a few lines of code, display a web page, cre-
ate a JavaScript object, and get JSON data from an MVC controller to present to the
user. Figure 1.12 shows that this application will work in all major browsers. It will also
work on iPhone, iPad, Windows Phone, and Android devices with no modifications!

 When a user enters a name and a date, the server will add a “verified” tag to the
name and validate the date passed in. It will assign a server date to the returned object
that will then be displayed in the interface. No additional navigation will be required
by the user to perform any of these steps.

 This application won’t only let you get your hands dirty right away; it will also intro-
duce you to the following features that will be useful immediately and throughout the
rest of the book:

Browser address bar

HTML
document

JavaScript
HTML5

JavaScript APIs

History

Canvas

Geolocation

Web Workers

Drag and Drop

Websockets

LocalStorage

Offline

Audio/Video

Frameworks

open source
extensions

JavaScript

custom

libraries

CSS3

JavaScript

Custom

libraries

HTML 5

semantic

elements

Microdata

extensions

HTML5

form

elements

Page

structure

MVC controllers

Form post

Views

Generated JavaScript

Ajax calls

RESTful calls

Form post

Figure 1.11 Storage of local data inside an HTML application is best accomplished using the Local
Storage API and JavaScript methods to maintain it.
www.it-ebooks.info

http://www.it-ebooks.info/

20 CHAPTER 1 HTML5 and .NET
■ Updating or removing Visual Studio NuGet project packages as appropriate
■ ASP.NET MVC model binding
■ Posting data to a server using Ajax and jQuery
■ Using JavaScript to add content to and remove it from the page
■ Building and using JavaScript objects
■ JavaScript closure and scoping
■ The jQuery ready handler

In the following sections, you’ll create a new template, customize the application,
build your JavaScript library, and then build what you need for the server side. Time
to get started!

1.3.1 Creating the template

To get started, open Visual Studio normally and start a new project called HelloWorld:

1 Select the Web tab and find the project template called ASP.NET MVC Web
Application. The version of the MVC project template will depend on the latest
version you have installed in your copy of Visual Studio, but for your purposes

Figure 1.12 Hello World executing with no modifications in all the popular browsers
www.it-ebooks.info

http://www.it-ebooks.info/

21Hello World in HTML5
you need at least MVC 3. This can be downloaded for free from the Microsoft
site or installed via the Web Platform Installer (http://www.microsoft.com/
web/downloads/platform.aspx).

2 Set the project name to HelloWorld, as in figure 1.13, and click OK.
3 Select Internet Application using HTML5 Semantic Markup and the Razor

View Engine.
4 Leave the Create Unit Test Project item unchecked.

The template will create a baseline MVC website that you can fire up immediately. You
should have folders containing a list of controllers, folders for views, models and
scripts, and the web.config file, which is probably familiar to you. In the Scripts folder
you’ll notice that there are quite a few files that appear to contain version numbers in
the filenames. This is a common practice in JavaScript libraries. If you have some
familiarity with jQuery, you’ll probably also notice, as shown in figure 1.14, that the
files are out of date.

 The inclusion of NuGet, an open source project started by Phil Haack, in Visual
Studio can make updating these files quick and painless. In the Visual Studio menu
bar, select Tools > Library Package Manager > Manage NuGet Packages for Solution.
In the Manage NuGet Packages window, you can select the Updates tab on the left
and see a screen similar to figure 1.15.

Figure 1.13 Create a new ASP.NET MVC project in Visual Studio using at least MVC 3.
www.it-ebooks.info

http://www.microsoft.com/web/downloads/platform.aspx
http://www.microsoft.com/web/downloads/platform.aspx
http://www.it-ebooks.info/

22 CHAPTER 1 HTML5 and .NET
All you need to do is click the Update button
next to each package (some are linked, so
updates can cascade) until everything is fin-
ished. You should now have all the latest
JavaScript libraries and project references to
continue with the HelloWorld application.
These files aren’t necessarily linked in the
appropriate places, but you’ll update those links
as you encounter them. In later chapters, we’ll
only include and update the packages you’ll
actually be using, but for this exercise we’ll keep
things a little more simple.

TIP This section covers a number of
topics that are specific to the
JavaScript language. If you aren’t
already familiar with the constructs
and features of JavaScript, we recom-
mend you read through appendix A
on JavaScript at the end of this book.

1.3.2 Customizing the application

The first step to customizing your application
is to modify the user interface. Open the Views
> Home > Index.cshtml file and add the
markup from the next listing.

@{ ViewBag.Title = "Home Page"; }
<title>@ViewBag.Message</title>
<article id="inputSection">
 <section class="submission">
 <label for="userName">Name</label>
 <input type="text" id="userName" />
 </section>
 <section class="submission">
 <label for="reqDate">Request Date</label>
 <input type="date" id="reqDate" />
 </section>
 <section>
 <button id="makeRequest" type="button">
 Try Me!</button>

Listing 1.2 The Index.cshtml markup

<article> will be container
for area where you’ll work.

Various <section> elements
will divide up working area.

<button> will be
bound to click
event handler in
JavaScript using
its id value.

Figure 1.14 The starting MVC project
usually contains files that are somewhat out
of date. Using NuGet, you can refresh these
files very quickly to the latest versions.
www.it-ebooks.info

http://www.it-ebooks.info/

23Hello World in HTML5
 </section>
 <section id="outputSection">
 </section>
</article>
<script src="/Scripts/HelloWorld.js" type="text/javascript">
</script>

The markup will automatically be placed inside the master page of your application by
MVC. If you’re using version 3 of MVC, the master page file will still contain references
to the old files. This is the file you need to open next:

1 Navigate in the Solution Explorer to Views > Shared > _Layout.cshtml. Notice at
the top of the page that you have references to various script files. Compare
those references to what is in the Scripts folder of the application and update
them accordingly.

<script src="@Url.Content("~/Scripts/jquery-1.7.2.min.js")" ...
<script src="@Url.Content("~/Scripts/modernizr-2.5.3.js")" ...

2 While you’re here, find the <h1> tag and change its contents to "Hello World".
Run your application now, and you should see something similar to figure 1.16.

3 This is fine but it could use some improvement. Find the Content > Site.css
stylesheet and open it up. Scroll to the bottom and add the following styles:

Figure 1.15 Use NuGet to update all the packages that are included by default in the standard
MVC solution.

Final <section> will be filled with data
returned by server after successful callback.
www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 1 HTML5 and .NET
.submission label {
 display: inline-block;
 width: 100px;
}
.submission input {
 width: 200px;
}
.result label {
 display: inline-block;
 margin-right: 10px;
 width: 115px;
 text-align: right;
 font-weight: bold;
}
.result span {
 font-style: italic;
}

These styles will keep things lined up and pretty later on, when you’re moving data
back and forth between the client and server and dynamically adding and removing
HTML elements. The styles all take the same basic selector (the heading for each style
that determines which elements will be selected). There are plenty of ways to write
styles to get the work done, but we’re being very specific with these styles so as not to
inadvertently edit other styles in other parts of the page.

1.3.3 Building the JavaScript library

You may have noticed in listing 1.2 that we referenced a script file named HelloWorld.js.
It’s time to create that file. To do this, we’ll walk through the following steps:

1 Create the JavaScript file and wire up the jQuery ready function.
2 Create the myApp object.

Figure 1.16 The content of the
home page has the controls you
need for the application, but it
still needs additional styling.
www.it-ebooks.info

http://www.it-ebooks.info/

25Hello World in HTML5

U
s
m

ev

te

t
3 Create the Ajax request to call the MVC controller.
4 Create the JavaScript function to handle the results from the MVC controller.
5 Create the function that displays results on the page.

Let’s get started.
 Expand the Scripts folder and add a new JScript file. At the top of this file, add the

following bit of JavaScript:

$(document).ready(function () {
 myApp.helloWorldWireup();
});

This is known as the ready handler. It’s an event thrown automatically by jQuery when
any page that contains the jQuery library reference completes all of its loading and
page layout tasks. This isn’t necessarily an easy thing to know, so the jQuery team went
to great lengths to check multiple sources of information to infer this state of readi-
ness. All you need to do as a developer is wire up the event and you’re good to go!

 The call to myApp.helloWorldWireup doesn’t do anything yet, so you’ll need to
look at that next. The following listing has the declaration for the object, along with a
bit of logic to get you started. You’ll fill in the stubbed out functions shortly.

var myApp = {

 helloWorldWireup: function () {

 $("#makeRequest").click(function (event) {

 var nm = $("#userName").val();

 var dt = $("#reqDate").val();

 var myData = {
 UserName: nm,
 RequestedDate: dt
 };
 // Ajax request will go here
 });
 },

 processResult: function (returnedData) {
 },

 displayResult: function (label, value) {
 }
}

Your JavaScript object (myApp) will be created as soon as the JavaScript file is loaded
and before the ready event fires, so you can be sure it exists when you call it. This is
the normal flow in an HTML application, regardless of how many JavaScript libraries
you’re loading.

Listing 1.3 The myApp object and its functions

Declare myApp object using var keyword. Object
is immediately attached to window object.

First function declaration is
one you called from ready.

sing jQuery
elector, find
akeRequest
button and

bind click
ent handler

to it.

Inside click event handler find userName and reqDa
input boxes and extract values using jQuery.

Create a new temporary object called myData tha
contains the properties you’ll send to the server.

Once you call server
processResult function
will be called. Stub will be
filled in shortly.

displayResult function allows you
to segregate code that changes
user interface in your object.
www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 1 HTML5 and .NET
The next step is to fill in the Ajax request. jQuery has a built-in function to do this. It
can take a number of different optional properties when executed, but for the pur-
poses of this example, you need only the kind of request to execute (the type), the
url to call, the content type, the data to pass, and the function that will be executed
when the call succeeds (success). Each of these is a property that’s assigned in the
same manner as the myApp object from listing 1.3. Place the code from the next listing
in the commented section of the makeRequest click event handler.

JavaScript object creation
There are various ways to create an object using JavaScript code. You’ll be using a
number of them throughout this book, but the simplest is as follows:

var myObject = {
 prop: "prop 1",
 prop2: "property 2",
 func1: function() {
 alert('hi there!');
 }
};

This tells the JavaScript engine to add a reference in memory to the window object
and call it myObject. This object will have two properties (prop and prop2) that are
prepopulated with values and a function (func1) that, when called, will pop up a mes-
sage box in the browser. The significant rules for this kind of object are

■ Use var to declare the object
■ Separate the property or function name from the value with a colon
■ Separate properties and functions with a comma

Another way to create the same object is as follows:

var myObject = {};
myObject.prop = 'prop 1';
myObject["prop2"] = 'property 2’;
myObject.func1 = function() {
 alert('hi there!');
};

The functionality of this second object is exactly the same as the previous one. The
only difference is in the way it’s instantiated. The advantage of this method is that
each addition of a property or function is independent of the others. This means
you can add new properties and functions to your JavaScript objects whenever you
like using either the dot notation (object.property) or the string notation
(object['property']).

Two other ways of creating objects are to parse JSON text into objects and to copy
one object and/or its properties to another object.
www.it-ebooks.info

http://www.it-ebooks.info/

27Hello World in HTML5

reated
ally.
$.ajax({
 type: "GET",
 url: "/Home/GetMessage",
 data: myData,
 contentType: "application/json",
 success: myApp.processResult
});

When the server is called with the data payload you created earlier, your MVC control-
ler code will update the name, verify that the date passed in is indeed a valid date, and
add a new server date property.

 With that data in hand from the successful execution of the Ajax call, you can fill
in the processResult function. The following listing shows that code.

processResult: function (returnedData) {
 $("#outputSection section").remove();
 myApp.displayResult(
 "User Name",
 returnedData.UserName);
 myApp.displayResult(
 "Request Updated",
 returnedData.RequestedDate);
 myApp.displayResult(
 "Server Time",
 returnedData.ServerDate);
},

Your client-side code is nearly finished. All you need to do is fill in the displayResult
function. This function takes a label and a value, concatenates them into a series of
HTML elements, and then places them inside the recently cleared out outputSection
element. The next listing shows how it works.

displayResult: function (label, value) {
 var start = "<section class='result'><label>";
 var mid = "</label>";
 var end = "</section>";
 $("#outputSection")
 .append(start + label + mid + value + end);
}

Listing 1.4 The Ajax request that will call the MVC controller

Listing 1.5 processResult is called automatically when the Ajax call returns successfully

Listing 1.6 Adding elements to the page using jQuery and string-based HTML

Home/GetMessage URL will be filled in shortly and
takes data object created earlier in click handler.

Ensure that request headers pass
“json” as correct data type.

When Ajax call returns successfully
myApp.processResult will automatically be
called with data returned from the server.

Use jQuery to find element
with ID of outputSection
and clear all contents.

Call displayResult function for
each property in data object
returned from Ajax call.

Creating elements using string
concatenation is simple and objects c
will be styled and laid out automatic

Using jQuery’s append
function find outputSection
object and insert string
contents as HTML elements.
www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 1 HTML5 and .NET
You can run your application now, and all your code will execute. The only problem
will be that calls to Home/GetMessage will fail because you haven’t implemented that
endpoint yet. Next stop, the server!

TIP During normal operations, most modern web browsers won’t report
JavaScript errors unless this feature is turned on specifically. An easy way for a
developer to see these errors is to open the console, which is a kind of debug
engine that most JavaScript engines provide with the browser. The simplest
version to use currently is the one found in Google Chrome. When you’re in
the browser, right-click anywhere on the screen and select Inspect Element. A
new window will appear docked to the bottom of the browser or possibly as a
completely separate window. Across the top, you’ll find the Console button—
click it. You should see all the exceptions thrown during the current session.

1.3.4 Building the server side

Now that your client side is complete and you have at least a basic understanding of
how various pieces of JavaScript are initialized and executed, it’s time to build your
server implementation. The HTML application you’re building in this chapter
requires both a client and a server implementation.

 Many web applications use the server only as file storage. In these applications,
once the resources such as stylesheets, HTML files, and scripts are loaded, the server is
never contacted again. Games are a normal example of this kind of application. Your
application, however, needs to talk to a server to send information and receive
updates. To do that, you need something more than a normal HTML page or MVC
controller that returns a view. You need something that takes only data and returns
only data. You need JSON.

 Your steps here will include

1 Building the model object to contain data on the server.
2 Building the MVC controller method to handle the Ajax request.

JavaScript Object Notation (JSON)
JSON is used for transferring text-based data from one point to another over HTTP
and for serialization of JavaScript objects. It can also be used for many other pur-
poses, but its roots are in the web. It’s fast, human readable, and broadly supported.

Syntax in JSON is extremely simple. Specific characters are used to wrap text into
serialized fields with very little effort and overhead. Data types of field values are
implied, not specified, and objects need not conform to a specific schema. Arrays in
JSON can contain any kind of object.

Here are the basic rules:

■ Curly braces, {}, wrap each object instance, and square brackets, [], wrap each
array instance.
www.it-ebooks.info

http://www.it-ebooks.info/

29Hello World in HTML5
Before you can build an endpoint on your server to take a JSON object and turn it into
a .NET object, you first need to define the properties for that object. In your solution,
add a new class to the Models folder called UserData.cs. This object should contain
three properties, so add the code shown here:

■ Each property in an object has a name and value separated by a colon.
■ Each property in an object and each object in an array must be separated from

the next by a comma.
■ Property names that correspond to keywords must be wrapped in quotes.
■ Property values that are strings are always wrapped in quotes.
■ Object properties can be other objects or arrays.

Here is a simple JSON object:

{"fname":"George", "lname": "Washington"}

This code will result in the direct creation of a JavaScript object with two properties,
each with a value.

Some projects will require sending large amounts of data to the client, and JSON is
perfectly capable of doing this as well. The following JSON code contains an array of
two objects, each containing a timeline that can be immediately parsed and used
in JavaScript:

[{
 "Timeline":"1800s", "StartYear":1800, "EndYear":1899,
 "Events": [
 {"Date":1803, "Event":"Louisiana Purchase"},
 {"Date":1808, "Event":"Napoleon Occupies Spain"},
]
},
{
 "Timeline":"1900s", "StartYear":1900, "EndYear":1999,
 "Events": [
 {"Date":1917, "Event":"US Declares War"},
 {"Date":1991, "Event":"Desert Storm"}
]
}]

JavaScript is used to parse an object from a string using the JSON parser that’s either
built into most modern browsers or available with the free json2.js library found at
http://www.JSON.org/js.html. If your browser doesn’t support JSON, just include this
script and all the JSON parsing logic will be automatically added. Using this method,
you can create an object from a JSON string by calling

JSON.parse('string variable');

An object can also be turned into a string using the stringify method of the same
library:

var x = JSON.stringify(myObject);
www.it-ebooks.info

http://www.JSON.org/js.html
http://www.it-ebooks.info/

30 CHAPTER 1 HTML5 and .NET

lly
ject.

 and leave
ion fails.

ult
te
r.
namespace HelloWorld.Models
{
 public class UserData
 {
 public string UserName { get; set; }
 public string RequestedDate { get; set; }
 public string ServerDate { get; set; }
 }
}

This object will hold the user’s name, the string version of a request date, and the
string version of the current date on the server.

NOTE You could have made these DateTime properties, but that would dis-
tract from our goal of showing you how to receive, manipulate, and send
data from the server. If you want a more detailed investigation of date han-
dling in JavaScript, take a look at appendix A on JavaScript toward the end
of this book.

The next step is to build a controller call that can respond to data posted from the cli-
ent using Ajax. You could create an entirely new controller, but that’s unnecessary
because you already have the Home controller available. Open that controller by nav-
igating in Solution Explorer to Controllers > HomeController. Note that the MVC
convention is to refer to controllers by their name with the suffix of “Controller,” so
the AccountController will be referred to by the URL /Account in your browser.

NOTE There is a bit more to controller naming than just the standard nam-
ing convention, but that conversation will involve setting up ASP.NET MVC
routes. You can find more information about routes as they relate to MVC appli-
cations in chapter 5. You can also check out the great books by authors K.
Scott Allen, Steven Sanderson, Phil Haack, and Adam Freeman. All contain a
wealth of knowledge in this area.

Back in the HomeController, you need to add a new method. It will receive a JSON
object from the client and automatically transform it into your UserData object. It will
make some changes to that object and return it, transforming it back into JSON. This
action is shown in the following listing.

public JsonResult GetMessage(UserData myData)
{
 myData.UserName += " (verified)";
 var dt = DateTime.Now.AddYears(-1);
 DateTime.TryParse(myData.RequestedDate, out dt);
 myData.RequestedDate = dt.ToLongDateString();
 myData.ServerDate = DateTime.Now.ToShortDateString();
 return Json(myData, JsonRequestBehavior.AllowGet);
}

Listing 1.7 GetMessage receives and sends data using client Ajax calls

Model binding in MVC will automatica
convert inbound JSON to UserData ob

Attempt to parse data to date
it as arbitrary value if convers

Method returns JsonRes
object so you can genera
JSON using MVC serialize
www.it-ebooks.info

http://www.it-ebooks.info/

31Hello World in HTML5
Note that in the controller call in listing 1.7 you’re taking a UserData object as a
parameter, but in the client, the object you’re passing looks like this:

var myData = {
 UserName: nm,
 RequestedDate: dt
};

This works because ASP.NET MVC will attempt to transform the input parameters into
the appropriate object type using its model-binding mechanism. If you wanted to, you
could also have written the controller function signature as follows:

public JsonResult GetMessage(string UserName, string RequestedDate) {

This would have resulted in the same data being received on the server. The advan-
tages of model binding are that your method signatures are smaller and easier to
understand, and your objects are created with constructor methods that perform logic
that will be automatically executed when the function is called. These features make
MVC controllers and model binding the ideal way to implement Ajax endpoints for an
HTML application.

 You may be surprised to learn that your first HTML application is complete! Run
the solution now and try it out in various browsers. You should see a nearly identical
implementation in each. Input a name and a date, and watch the results return from
the server after being “verified,” as shown in figure 1.17.

 As you test your freshly minted application, it’s worth taking a look at how various
desktop browsers implement the <input type='date' /> tag (figure 1.18). Opera, for
instance, gives you a built-in date picker, whereas Safari has a small up/down imple-
mentation that changes the date value one day at a time.

Figure 1.17 After completing
the controller call, you should see
data from the server displayed
and updated automatically.
www.it-ebooks.info

http://www.it-ebooks.info/

32 CHAPTER 1 HTML5 and .NET
This date field difference highlights both the necessity of testing your HTML applica-
tions across a range of expected browsers and the need for feature testing. Feature
testing is usually done with a JavaScript library like Modernizr (http://www.modernizr
.com/) that will return a Boolean value for a specific feature. If you decide that you
absolutely require a feature, and it isn’t present in the current browser, you can alert
users that they must use a different browser.

 Modernizr is the natural choice for this kind of feature detection because it’s
widely used, well-maintained, and is included by default in all recent versions of
ASP.NET MVC. The code is as simple as this:

if (Modernizr.touch){
 // .. bind touch events here
}
else {
 alert('touch is not supported');
}

1.4 Summary
With the level of knowledge you now have about the moving parts and interactions of
an HTML5 application built on an MVC foundation, you should be ready to dive into
your own applications and start tinkering to see what you can make happen on your
own! The architecture is straightforward and the possibilities are endless.

 But this chapter is far from the end of the story. In order to build richer, more
functional applications that can interact with all the new HTML5 APIs, style properties,
and semantic markup we talked about in this chapter, you need to dig deeper, starting
with the new semantic elements and CSS features available in HTML5 and CSS3. That’s
what we’ll look at next.

 If you’re already familiar with the new elements and CSS features, you may want to
skip chapter 2 and move straight to the later chapters, where we dive into each of the
HTML5 JavaScript APIs to show you how you can use your current .NET skills to build
the next generation of applications in the browser.

Figure 1.18 The date picker
implementations in various browsers
highlight the wide range of
interpretations in the
browser market.
www.it-ebooks.info

http://www.modernizr.com/
http://www.modernizr.com/
http://www.it-ebooks.info/

A markup primer:
classic HTML,

semantic HTML, and CSS
Classic markup is the HTML you’re probably familiar with already: <div> tags that
have tags inside them, <p> tags that define paragraphs of text, and <a> tags
that mark links to other content. But classic markup isn’t semantic markup, which
is a simple concept with far-reaching effects on the World Wide Web.

 Think of semantic markup as a structural diagram for your pages. You can get a
lot of information about a building from its structural diagrams, and the same is
true with the semantic layout of a page. You can’t see that a page is laid out seman-
tically just by looking at it, but if you take a look at the source it becomes very clear
which items are menus or navigation areas and which areas contain content. This
gives search engines and accessibility devices the ability to find the content on your
pages and to ignore the parts that are only pointers or helpers toward that content.

 In this chapter, we’ll look at the various kinds of structural, content, and data-
entry tags (classic and semantic) that you’ll encounter in HTML5 and then cover

This chapter covers
■ Building and reading semantic markup
■ Using block and inline elements appropriately
■ Styling elements using Cascading Style

Sheets (CSS)
33

www.it-ebooks.info

http://www.it-ebooks.info/

34 CHAPTER 2 A markup primer: classic HTML, semantic HTML, and CSS
the basics of Cascading Style Sheets (CSS)—just enough to get you through this book.
If you’re familiar with HTML and CSS, you may just want to peruse the headings to see
if there’s anything new here for you. Otherwise, settle in for a dive into HTML5 that
will prepare you for working with its semantic elements and more complex functional-
ity in later chapters.

 First, though, let’s take a closer look at how semantic HTML markup works.

2.1 Classic and semantic HTML markup:
what’s the difference?
HTML markup is the text the browser uses to render a page. The difference between
classic markup and semantic markup is the meaning of the tags. With classic HTML, for
example, a <div> tag is a rectangle that renders to the screen and sits with all the
other rectangles. The user looks at the content and can tell its meaning from the way
it’s formatted or the way it’s written. A computer, however, can’t look at a simple <div>
tag and see anything meaningful. It’s just a brick in the page structure that looks like
all the other bricks.

 There are popular attributes that you can add to that simple <div>, like <div
class='header'>, that might give the tag meaning to a computer, but this isn’t guar-
anteed nor is it written in a specification anywhere. It’s just something that has grown
organically on the internet over the last decade. Semantic HTML, however, has mean-
ing built right into the tag—guaranteed—with no additional work necessary. This
makes <section>, for example, readable by a computer as a piece of content that
should exist inside another piece of content, whereas <article> is content that should
be self-contained.

 This means that both types of tags (classic and semantic) render to the screen, but
only one has intrinsic meaning to computer programs, like a search engine or an
aggregator that ‘reads’ a page.

 Organizing your site semantically using HTML5 has the added advantage of making
it easier to create sections and areas that are accessible from JavaScript based on data or
application conditions. This makes your site easier to understand and build even as it
becomes more complex—a remarkable achievement in software development.

 As an example, take a look at the following code listing and notice that you can see
very quickly exactly where the content should be inside the page. Regardless of how
this page looks in a browser, the critical information is easy to find in the code.

<!DOCTYPE html>
<html>
<head><title>HTML5 Maps</title></head>
<body>
<header>
 <hgroup>
 <h1>HTML5 Maps</h1>

Listing 2.1 Sample semantic page structure

Describes header
area for entire page
www.it-ebooks.info

http://www.it-ebooks.info/

35Basic structural elements of all HTML tags
 </hgroup>
</header>
<nav>

 Home

</nav>
<section id="techStart">
 <article id="whatisGIS">
 <section>
 Content describing what GIS is and what it does...
 </section>
 </article>
 <article id="samples">
 <section>
 There are lots of sample maps and articles available here.
 </section>
 </article>
</section>
<footer>
 Terms and Conditions
</footer>
</body>
</html>

What is particularly interesting is that when you lay your site out semantically, you gain
the ability to select just what you want using JavaScript and style classes with very little
effort. For instance, the following code will find all <article> elements on the cur-
rent page and ensure that they’re visible:

$("article").show();

In a scenario where your page can alternate between a graphic element and text,
using semantic markup will allow you to easily discriminate between them to perform
logical operations. Let’s take a closer look at exactly what makes up an HTML tag.

2.2 Basic structural elements of all HTML tags
HTML, at its core, is all about text that’s read by a browser. Browsers read tags and attri-
butes, which in turn are rendered by the browser as elements on the page. Figure 2.1
shows the basic structure of HTML syntax.

 Each rendered element on an HTML page is laid out in the browser window in
whatever way you, as the developer, tell it. You “tell it” by the way you order and
nest elements on the page, with styles and through code. For instance, take a look
at this text:

Go left from the parking lot down Osceola Parkway and turn left on
Buena Vista Drive. Turn right on World Drive and continue to your
destination.

Now take a look at figure 2.2, which shows the same directions with various bits of
markup added.

Contains navigational
elements

Describes section
of data called
techStart

Identifies
article within
section

Identifies single
section or piece
of data within
article

Describes page
footer
www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 2 A markup primer: classic HTML, semantic HTML, and CSS
Put yourself in the driver’s seat; which set of directions would you prefer? The follow-
ing listing shows the code we wrapped around the text to generate the directions in
figure 2.2, producing an image that allows readers to get more meaningful informa-
tion, faster.

<div>
 Left from parking lot
 Osceola Parkway
</div>
<div>
 2 miles
 Buena Vista Drive
</div>
<div>
 3 miles
 World Drive
</div>
<div>2.4 miles</div>

The code here is “classic” HTML, not the new
“semantic” HTML, which comes into play later,
when you introduce semantic tags. Throughout
the rest of the book, we’ll implement both kinds
of tags whenever appropriate.

Listing 2.2 Simple markup to enhance data

Start tag begins

with < and then

defines the type of

element to render.

Attribute gets a name

followed by =, and

then a quoted value.

Close of the start tag can be > if

the tag contains content or is

not allowed to be self-closing

based on the HTML specification.

Close of the start tag can also

be /> if a tag will not contain

additional content or if the

content is generated by the

contents of the attributes.

Content inside

a tag can be text

of other tags.

TAG: The text markup

ELEMENT: The rendered object

on the page created when

the browser reads a tag.

ATTRIBUTE: Text strings added

to tags to provide additional

rendering or programmatic

directives to the browser

and application.

Closing tags always begin

with </ and then the type

of element being closed.

=

Figure 2.1 The basic structure of HTML includes tags and attributes rendered as
page elements.

Left from parking lot

2 miles

3 miles

2.4 miles

Osceola Parkway

Buena Vista Drive

World Drive

Figure 2.2 Displaying directions using
HTML markup gives the reader more
information while maintaining clarity.
www.it-ebooks.info

http://www.it-ebooks.info/

37Basic structural elements of all HTML tags
 In this section, we’ll walk through the various tags and elements that make up the
bulk of classic HTML markup:

■ Basic tags—These tags focus on the elements that should be present in any
page. They’re the core bits that make a page a page.

■ Block and inline elements—These are the foundational display elements in
classic HTML.

■ Table elements—These elements are used to render grids of data on the page.
■ Form elements—These are the elements used for data input in an HTML page.

First up, the basic tags you need to construct any page.

2.2.1 Working with the basic HTML tags
Nearly everything in HTML is a tag, a directive, or a piece of text. Tag attributes, or
text strings added to tags to provide additional rendering or programmatic directives,
are either optional or required.

 A tag can have one of two formats. First, it can be an opening and closing brack-
eted element, sometimes with other tags or text content between them:

<div>this is my content</div>

Here, the <div> tag is just a block that contains the content text. No attributes exist
and this will, by default, render as a rectangle on the page.

 Here’s another example:

MS

This tag is an anchor that will render the text “Microsoft” to the screen as a link that
will navigate the browser to microsoft.com, because of the href attribute.

 Tags can also be self-closing, with the complete content enclosed inside, using
attributes:

<div style="width:50px; background-color:blue;" />

This <div> tag will contain no content but will render a blue rectangle on the screen
exactly 50 pixels wide. The style attribute here uses the same syntax as the CSS styles
we’ll look at later in the chapter.

 The close of a tag is signaled with the characters />, although browser vendors are
very forgiving and this isn’t always necessary. To keep your HTML well-formed, open-
ing tags either need a closing tag associated with them or they must be self-closing.
This ensures that your pages will render the same way across all browsers.

 A basic page usually has the structure shown in the next listing. This isn’t a hard and fast
rule, but it definitely makes it easier to find markup in your pages during development.

<!DOCTYPE html>
<html>

Listing 2.3 Basic page layout tags

DOCTYPE element tells browser what
to expect when rendering page. Html element wraps all

other elements in page.
www.it-ebooks.info

http://www.it-ebooks.info/

38 CHAPTER 2 A markup primer: classic HTML, semantic HTML, and CSS
 <head>
 </head>
 <body>
 </body>
</html>

Now, let’s look more closely at the most important tags you’ll be using when you work
with HTML5.

THE <!DOCTYPE> TAG

This is the only tag we’ll discuss that isn’t HTML. <!DOCTYPE> is like a “Hello World”
nametag for your page. It tells any browser consuming your page how to translate
what it finds next. (The <html> tag should always come next and wrap the content of
the page.)

 The minimal declaration we’re using in this book tells the browser to use HTML5
parsing, whereas a more verbose version would include the parsing schema, like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN">

THE <HEAD> TAG

The <head> tag goes at the top of the page, right after the doctype that the browser
will parse against. The <head> isn’t visible but rather contains directives for how to use
data on the page, where to go for styling information, and how to display the page in
the title bar of the browser.

THE <TITLE> TAG

The <title> element nested inside the <head> element of your page sets the text of
the page tab in the client browser. It will also be the default title when a user makes
your page a favorite or when search engines find your page:

<title>Welcome to my page</title>

THE <META> TAG

<meta> tags give additional information about the current page. Search engines and
plugins use them, and they’re editable from code. The <meta> tag consists of a required

Deprecated HTML tags
There are a number of deprecated tags in HTML5 that you should not use in new
markup. In some cases, the functionality is better achieved with other methods.
Other tags were seldom used or were commonly misunderstood, or their use caused
usability or accessibility issues.

These tags’ functions are replaced with CSS styles: <basefont>, <big>, <center>,
, <s>, <strike>, <tt>, and <u>.

These tags have function or accessibility issues: <frame>, <frameset>, and <noframe>.

These tags have been misunderstood or are seldom used: <acronym>, <applet>,
<isindex>, and <dir>.

Head element doesn’t render in main browser area but can provide
additional touches to page like title and search helper information.

Body element is where
content will be rendered.
www.it-ebooks.info

http://www.it-ebooks.info/

39Basic structural elements of all HTML tags
content attribute and an optional name value. Additional attributes are http-equiv,
used to describe what kind of value is in the content, and scheme, used to help the
browser interpret the content data. <meta> tags are also repeatable:

<meta name="keywords" content="GPS tracks" />
<meta name="author" content="Jim Jackson II" />
<meta name="author" content="Ian Gilman" />

<meta> tags go in the HTML document <head> area.

THE <LINK> TAG

<link> tags create a link between the current page and an external resource. The
<link> tag must have the reference value to the external resource, assigned as an
href, as well as the kind of relationship the link sets up, called the rel attribute. The
<link> tag is most often used to pull in a stylesheet from the site, but it’s also possible
to assign icon values when adding a link to the desktop:

<link href="http://www.ellipsetours.com/css/touch.css" rel="stylesheet" />
<link href="/images/icon.png" rel="shortcut icon" />

Links can be either relative, pointing to a location in the same site, or absolute, with
the complete URL to the resource listed. <link> tags are located in the head area of
the HTML document.

WARNING <link> tags can reference stylesheets from other sites, but most
designers consider this bad form unless the page author is also the owner of
the other site.

THE <SCRIPT> TAG

A <script> tag places an area of code execution into the HTML page. This can take
the form of a link to an external file, using the src attribute, or it can be inline code.
Inline code appears between the starting <script> and ending </script> tags,
whereas external resource links have only the tag with empty content. The only other
attribute that’s required in a script tag is the type value, which, in your case will be
"text/javascript".

TIP A <script> tag that links to an external source can be closed either with
starting and ending script tags <script src=".."></script> or by closing
the tag in place <script src=".." />. Both are valid HTML, but only the
“complete” version with separate opening and closing tags is valid XHTML.
Internet Explorer uses XHTML validation by default, so be safe and use the
non-minified tag structure.

Although it’s true that script tags can appear anywhere in an HTML page after the
opening HTML tag, best practice indicates that scripts should be in one of two places:

■ Inside the <head> element (for code that must be available for the screen to ini-
tially render)

■ Just before the closing </body> tag
www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 2 A markup primer: classic HTML, semantic HTML, and CSS
Scripts block page rendering while they’re loading, and pages render from top to bot-
tom, so putting your scripts at the end of the HTML document makes more sense. Just
remember that code here, even if it’s self-invoking, won’t fire until just before page
rendering reaches the closing body tag. You can find more discussion of self-invoking
JavaScript in appendix A.

THE <STYLE> TAG

The <style> tag embeds a set of styles directly in your page. Embedding styles this way
reduces the number of files you have to manage, but doesn’t give much benefit
beyond that. You can provide additional information in a title attribute within the
<style> tag, but the browser won’t use it. The only required attribute is type, which,
for all the stylesheets in this book will be text/css:

<style type="text/css">p { background-color: yellow; }</style>

THE <BODY> TAG

Once your page finishes processing information in the <head> tag of the page, it will
start working on the <body> element. This is the top-level container for the content on
your page. Although you can use styles to place elements outside the viewable area of
the <body>, the tags for all visible elements will exist inside the <body> tag. There are
two categories of elements inside the <body> tag that display content: block (or block-
level) and inline.

2.2.2 Making content flow where you want with block
and inline elements

Understanding content flow in HTML is critical, because it determines where tags will
be rendered and how surrounding tags will affect any given tag on your page. As men-
tioned, there are two primary tag layout types: block and inline. Let’s take a look at
block tags first.

BLOCK ELEMENTS

Block elements are tags that, when rendered, take up a rectangle of space that all
other rendered elements in the current container element must either flow before or
after. A <div>, for instance, will take up all the width available to it on the page, and
other content must either come before or after it. Even if the style of the <div> is
such that it’s only one pixel wide, no other content will go next to it unless placed
there manually.

 A simpler way to think about this is in terms of line
breaks. A block element will always try to place itself on a new
line in the content and will always try to force the next ele-
ment on the page onto a new line. You can see this by creat-
ing an HTML page with the following markup inside the
<body> tag:

<p style="width:100px;">Element 1</p>
<p style="width:100px;">Element 2</p>

Element 1

Element 2

Figure 2.3 Blocking
elements render by taking
up a full line of width.
www.it-ebooks.info

http://www.it-ebooks.info/

41Basic structural elements of all HTML tags
Now, replace the <p> tags with any other element type (<div>, for instance) and see
what happens in each case. Paragraph elements are block level so they will present
something like figure 2.3.

 The tags in table 2.1 will all create block-level elements.

INLINE ELEMENTS

Inline tags render elements that are gen-
erally used to style individual pieces of
content. They wrap a single piece of con-
tent and flow with it based on style proper-
ties set in the parent container.

 Elements like are inline and will appear something like figure 2.4 in
the browser.

 The tags in table 2.2 create inline elements.

Table 2.1 Block-level HTML elements (HTML5 elements are shown in bold)

<address> <form> <legend>

<article> <h1>

<aside> <h2> <menu>

<blockquote> <h3> <nav>

<div> <h4> <p>

<fieldset> <h5> <table>

<figcaption> <h6>

<figure> <header> <section>

<footer> <hgroup>

Table 2.2 Inline HTML elements (HTML5 elements are shown in bold)

<a> <input> <progress>

<abbr> <keygen>

<canvas> <label> <summary>

<cite> <link> <textarea>

<datagrid> <mark> <time>

<datalist> <map> <wbr>

<details> <meter>

 <output>

Element 1 Element 2

Figure 2.4 Inline elements render on the same
line and wrap with the text content on the page.
www.it-ebooks.info

http://www.it-ebooks.info/

42 CHAPTER 2 A markup primer: classic HTML, semantic HTML, and CSS
2.2.3 Dividing data into grids with table elements

Tables in HTML are a means of dividing data into a grid format. Tables will naturally
use a block format, but it isn’t uncommon for CSS styles to modify this behavior so that
other content flows around them.

 A <table> tag will have nested inside it various other tags to produce a grid layout.
The nesting of table elements is <table><grouping><row><cell>. Grouping elements
are <thead>, <tbody>, and <tfoot>, and they aren’t required. Each row definition
uses <tr> tags, and individual cells can be either a <thead> to designate a header cell
or a <td> to designate a normal cell. The markup in the following listing shows how a
typical table could be laid out.

<table>
 <thead>
 <tr>
 <th>Month</th>
 <th>Sandy</th>
 <th>Rocky</th>
 <th>Total Sales</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <td>Sum</td>
 <td>$1500</td>
 <td>$2000</td>
 <td>$3500</td>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td>January</td>
 <td>$1000</td>
 <td>$900</td>
 <td>$1900</td>
 </tr>
 <tr>
 <td>February</td>
 <td>$500</td>
 <td>$1100</td>
 <td>$1600</td>
 </tr>
 </tbody>
</table>

When designing a <table> for displaying tabular data, the use of grouping and
header tags can help greatly in styling, but when you’re using a <table> to lay out
your page, you generally won’t use these. You’re more likely to add attributes to indi-
vidual cells to allow them to span multiple rows or multiple columns.

Listing 2.4 A table used to display tabular data

Table header defines top row or rows.

Table rows
contain
table cells.

Table head cells
should exist inside
header group.

Table foot should be before
body group so it’s rendered
before table data is complete.

Table cells exist inside table rows but
can span multiple columns or rows.

Table body group describes
main content for table.
www.it-ebooks.info

http://www.it-ebooks.info/

43Basic structural elements of all HTML tags

Nam
of in

de
n

post
 will
 and
 by
TIP In the past, laying out a page using a table was considered bad practice,
because tables had to be completely loaded from the server before rendering.
Today, with ubiquitous broadband, this isn’t such a problem, but some still
consider tables heavy-handed for full page layouts, because they’re rather
rigid and provide no means of separating styling from content. It’s best to
reserve tables for tabular data, not page layout.

2.2.4 Using HTML form elements
First we should cover the very basics of an HTML form. The action attribute is required
and is a pointer to the form’s data submission location. This might be the same page or a
different page, but wherever it goes, the form data will be included as some kind of
encoded value in the URL unless you override the submit action with your own code.

 The following HTML will yield a URL submitted to the formRead.html page.

<form action="formRead.html">
 <input type="text" name="first" value="John Q" />
 <input type="text" name="last" value="O'Connor" />
 <input type="submit" />
</form>

http://www.site.com/formRead.html?first=John+Q&last=O%27Connor

Now let’s move on and look at what you can do with HTML5’s new input element types.

NEW HTML5 INPUT TYPES FOR FORMS

The new input types in HTML5 have received some good press for two reasons. The
first reason is that the types are descriptive of their purpose, so your code can review
them semantically. You can tell that an input element of type email should contain an
email address, so your code can inject functionality that specifically supports email.
The second and closely related reason is that browsers can use these element types to
automatically add functionality to your page without your needing to write any code.
This saves time and reduces bugs in your forms.

 Along with the new input types are various new attributes that apply to the types:

■ datetime, date, time, month, week, datetime-local—These <input> types express
time-based values. You do this by specifying the type value and allowing the browser
to do the work of rendering a selection interface and formatting the text content. If
the browser doesn’t support this by either validating the text as an appropriate
value or providing a select user interface, you’ll need to build out that functionality
yourself. See the section on jQuery UI in appendix A for more about this.

■ number—This <input> type presents a normal text box but validates against a few
attribute values. The min and max attributes limit the numbers entered, and the
step attribute states the allowed values within those limits. Consider this example:

<input id="numPick" type="number" min="0" max="10" step="1" />

Listing 2.5 A simple form and the resulting URL value when it’s posted

Action attribute can be relative and
states where form will post by default.

e value
put will
termine
ame in

ed URL.
Resulting URL
be character-
form-encoded
default.
www.it-ebooks.info

http://www.it-ebooks.info/

44 CHAPTER 2 A markup primer: classic HTML, semantic HTML, and CSS
This will give you a text box whose value must be a whole number from 0 to 10.

There’s also a value attribute that operates as you would expect, storing the
displayed value, and an automatic JavaScript extension that allows you to
bump the value up or down arbitrarily or based on the step value, using the
following syntax:

numPick.stepUp();
numPick.stepUp(5);
numPick.stepDown();
numPick.setpDown(10);

One other thing to note about number is that when the field is selected in some
mobile browsers, the virtual keyboard that appears will be numeric instead of
alphanumeric. This can be quite helpful in some scenarios.

■ range—This <input> type, in supported browsers, will present a slider control.
The attributes are the same as in a number input, and the operation is the same
except for the interface.

■ search—This <input> type gives you a means to either automatically or manu-
ally style a text box with a button next to it so that it’s consistent with the look
and feel of popular search engines and default browser interfaces. There is
nothing behind this in terms of additional software functionality, but it does
save some work because it will, in supported browsers, automatically submit just
the content of its text box to the server.

■ email—This is another tag similar to the number <input> type that gives you
additional screen and mobile keyboard enhancements. In an email input box,
some mobile devices give a keyboard with “@” and “.com” as extra buttons on
the text keyboard. It’s subtle but helpful. Currently, there is no support for
automatic regex validation of email addresses.

■ url—Similar to email, this <input> type might edit the keyboard presentation
but does no actual validation of the content of the presented text box. It’s a
worthwhile addition, though, because having this specific type gives you an easy
way to add your own targeted validation.

■ color—This <input> type provides a user interface for selecting a color. The
return value is a six-digit hexadecimal color value. There is limited support for
the color type, but as HTML5 applications increase in the wild, this could
become important for online image editing applications as well as for custom
interface editors.

2.3 Semantic HTML: The semantic blueprint
Now let’s turn our focus to HTML5 semantics. A semantic tag renders an element that
describes the kind of content it contains. While a traditional HTML tag, such as a <div>,
can contain anything, a semantic tag such as <header> clearly defines what is inside it.

 Organizing elements semantically provides two major values to a page. First, it
allows search engines to easily determine what content is worth indexing and what
www.it-ebooks.info

http://www.it-ebooks.info/

45Semantic HTML: The semantic blueprint
content is just page noise used for styling or navigation. Second, it allows you, as the
page developer, to segregate your page in a much more maintainable way. When you
come back to a semantic page in a year or two to do some tweaks, it will be easier for
you to find your way around if the page has its blueprint built right in. Finally, it makes
your content more accessible by allowing screen-reading tools to locate the important
content on your page and determine what parts are just navigational noise.

 The following listing is an expansion of the original semantic page layout you saw
in listing 2.1.

<!DOCTYPE html>
<html>
<head>
 <meta name="description" content="..." />
 <meta name="keywords" content="html5,map demos" />
 <title>HTML5 Maps - A resource...</title>
</head>
<body>
<header>
 <hgroup>
 <h1>HTML5 Maps</h1>
 <h2>Learn GIS and HTML5 Together</h2>
 </hgroup>
</header>
<nav>

 Home
 Maps
 Contact

</nav>
<section id="techStart">
 <article id="whatisGIS">
 <header><h2>What is GIS?</h2></header>
 <section>
 Content describing what GIS is and what it does...
 </section>
 </article>
 <article id="samples">
 <header><h2>Sample Maps</h2></header>
 <section>
 There are lots of sample maps and articles available here.
 Take a look here and
 here!
 </section>
 </article>
</section>
<aside>
 <h2>Maps by Vendor</h2>

 Bing Maps
 Google Maps

Listing 2.6 Sample semantic page structure

Describes header area
for entire page

Contains navigational
elements

Describes section
of data called
techStart

Identifies
article within
section

Specifies
header for
article

Specifies
single section
or piece of
data with
article

Creates an aside to
support content but
that isn’t directly
related to the content
www.it-ebooks.info

http://www.it-ebooks.info/

46 CHAPTER 2 A markup primer: classic HTML, semantic HTML, and CSS
 ESRI Maps

</aside>
<footer>
 Terms and Conditions
 Privacy Policy
</footer>
</body>
</html>

We’ll cover the semantic HTML5 tags in three categories:

■ Content tags, which are wrappers for content
■ Application tags, used to present information about how your program is

operating
■ Media tags, which present rich content

2.3.1 Grouping and dividing page content with content tags

Content tags render elements that contain information a reader or user wants to see.
These tags group various kinds of content together and they divide the content that’s
core to the topic from content that’s ancillary or unrelated, such as headers and foot-
ers. You can better understand content tags by looking at a page as a document that
has headings, subheadings, and various navigational bits.

<SECTION>
<section> defines content that should be treated as an independent piece of content
within the page. Based on the HTML5 specification, it should not be used as a styling
or scripting hook; it should be used to denote a specific piece of content. Bruce Law-
son wrote at HTML5doctor.com, “Don’t use it unless there is naturally a heading at the
start of the section” (http://HTML5doctor.com/the-section-element).

 But using the section as a styling mechanism does make sense when looking at the
larger semantic scheme. Why would you locate and style elements based on an article
but not a section? Feel free to style with sections; just be sure to keep them semanti-
cally appropriate.

<section>
 <p>Age considers; youth ventures</p>
</section>

When to use semantic markup
Throughout this book, we’ll be building many HTML applications that exist inside a
single page. These applications may or may not benefit from the inclusion of seman-
tic markup. To that end, we’ve tried to build in HTML5-specific tags only when the
nature of the content warrants it.

Because semantic markup primarily offers web crawlers, search, and accessibility
tools a better understanding of a page, dynamically generated or graphical content
doesn’t always benefit from the use of semantic markup.

Describes page
footer
www.it-ebooks.info

http://HTML5doctor.com/the-section-element
http://www.it-ebooks.info/

47Semantic HTML: The semantic blueprint
<HEADER>
Earlier HTML specifications required the use of only one <h1> tag in an HTML page.
With the creation of the section and article comes the ability to organize multiple con-
tent targets in a page, and the <header> element is the means by which that target can
have its own head elements (<h1>, <h2>, and so on):

<section>
 <header>
 <h1>Famous Quotes</h1>
 <h2>Victor Hugo on Age</h2>
 </header>
 <p>Forty is the old age of youth; fifty is the youth of old age.</p>
</section>

<FOOTER>
The <footer> performs the same function as <header> in a piece of target content, only
it goes at the end. It provides a means of segregating the ending of the target content:

<section>
 <p>Fortune and love favor the brave.</p>
 <footer>Ovid</footer>
</section>

<ARTICLE>
<article> is often confused with <section> because they both perform a page-level
segregation of content. They can also both have <header> and <footer> elements.
The big difference between an article and a section is their level of independence.
Whereas a <section> is part of its parent element or page, the <article> can be an
independently distributable piece of content:

<article>
 <h1>March scheduled activities</h1>
 <p>Come in like a lion</p>
 <p>Go out like a lamb</p>
</article>
<article>
 <h1>April schedule activities</h1>
 <p>Bloomin' flowers</p>
</article>

This leads to additional confusion, because a page can have multiple sections, each
with its own articles. Likewise, a page can have multiple articles with various sections
inside each article. In the former case, the articles relate to the section but not to each
other. In the latter case, the sections are natural dividing points within each article.
Semantically speaking, this makes sense:

<section>
 <header>
 <h1>Recipes</h1>
 </header>
 <article>
 <h1>30 minute apple pie</h1>
www.it-ebooks.info

http://www.it-ebooks.info/

48 CHAPTER 2 A markup primer: classic HTML, semantic HTML, and CSS
 <p>...</p>
 </article>
 <article>
 <header>
 <h1>Herb-braised ham with white wine</h1>
 </header>
 <p>...</p>
 </article>
</section>

or

<article>
 <header>
 <h1>Quotables</h1>
 </header>
 <section>
 <header>
 <h1>Parenting</h1>
 </header>
 <p>Kids are educated by who the parent is, not what he says.</p>
 </section>
 <section>
 <header>
 <h1>Politics</h1>
 </header>
 <p>A fool and his money are soon elected.</p>
 </section>
<article>

A good way to think of the difference between an <article> and a <section> is to
consider section as a verb and article as a noun. A page can be sectioned, but the sec-
tions still comprise the page. Alternatively, a page can have articles, but each article
ought to be distributable without the page it was originally placed on.

<ASIDE>
An <aside> tag exists inside an article or section element and allows for related infor-
mation to be presented about the subject matter without disrupting the main content
flow. It’s a content presentation tag, not a layout tag, so avoid using it as the wrapper
for sidebar-style <menu> structures.

<article>
 <p>All war is deception.</p>
 <aside>Sun Tzu: Chinese General and author (Art of War)</aside>
 <p>Strategy without tactics is the slowest route to victory.</p>
 <p>Tactics without strategy is the noise before defeat.</p>
</article>

<DETAILS>
The <details> element is interesting in that it has an open attribute. By default, this
element and attribute are just grouping elements for content, but when activated
using JavaScript or via built-in browser capabilities, they provide an additional func-
tion controlling whether they’re displayed (open) or hidden (no attribute).
www.it-ebooks.info

http://www.it-ebooks.info/

49Semantic HTML: The semantic blueprint
<SUMMARY>
The <summary> tag is the means of describing a title or heading for a <details> element.
It exists inside a <details> element and, in supported browsers, allows you to toggle the
open attribute. Unsupported browsers will have to be tested to see exactly how they will
render the <summary> tag. Note the rendering of the following code in figure 2.5:

<p>Common Auto Maintenance Tasks</p>
<details open="open">
 <summary>Scheduling Notes</summary>
 Oil change schedules will vary.
</details>

 Change oil
 Rotate tires

<FIGURE>
The <figure> tag is used the same way as figures in books, magazines, and technical
papers. An image or illustration that provides value to the content is placed within an
<article> or <section> to provide additional contextual value:

<figure>

</figure>

<FIGCAPTION>
The <figcaption> tag is contained within a <figure> element and provides the cap-
tion content for that <figure>. Because a single <figure> element can contain
many source images, the <figcaption> can refer to one or more elements inside its
parent figure:

<figure>

 <figcaption>105 mile road through Shenandoah National Park</figcaption>
</figure>

<HGROUP>
The <hgroup> is technically used to group one or more <h1>, <h2>, ... elements and
provide only the top level as part of the document outline. This is generally only use-
ful for text-rich websites and CMS systems, so we’ll forego any further discussion of it.
Note also that <hgroup> may be removed entirely from the HTML5 spec, so use it spar-
ingly, if at all.

Common auto maintenance tasks

Scheduling notes

• Change oil
• Rotate tires

Common auto maintenance tasks

Scheduling notes

• Change oil
• Rotate tires

Oil change schedules will vary. Figure 2.5 The <details> element in both
the expanded and contracted modes with
<summary> providing a clickable heading
(rendered in Chrome)
www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 2 A markup primer: classic HTML, semantic HTML, and CSS
<MARK>
<mark> tags surround text in the page content that’s relevant to the user. The most
common use of the <mark> tag is to highlight search results in a piece of content.
<mark> is different from in that it provides a notation of user relevance, not just
contextual emphasis by the original author:

<p><mark>Wimbledon</mark> is a district in the south west area of London,
England, located south of Wandsworth, and east of Kingston upon Thames.
It is situated within Greater London. It is home to the
<mark>Wimbledon</mark> Tennis Championships and New <mark>Wimbledon
</mark> Theatre, and contains <mark>Wimbledon</mark> Common.</p>

<NAV>
The <nav> tag is a wrapper for the primary navigation elements on your page. <nav>
can contain any other element; it’s simply a means of grouping the important parts of
your page or site navigation in one place. Not every link or menu structure needs to
be located in a <nav>, but it’s helpful for what you consider the important navigation
paths to be contained in a <nav>.

<nav>

 <a>Home
 <a>Back
 <a>Next

</nav>

PAGE CONSTRUCTION WITH SEMANTIC CONTENT TAGS

Figure 2.6 displays a couple of basic examples of how a page might be structured
using semantic tags. Notice that some of the articles can contain sections or the sec-
tions can contain articles. This is based on the purpose of the content. Also, you can

Header Header

Nav

Nav

Section Section

Section

Figure

Figcaption

Article

Article

Article

Footer

Aside

Aside

Figure 2.6 When you use
semantic tags to structure a
page, you can clearly see where
content should go and which
elements support the primary
purpose of the content and
which are used to support the
site functionality in a more
general way.
www.it-ebooks.info

http://www.it-ebooks.info/

51Semantic HTML: The semantic blueprint
see that an aside can be placed outside of the section or article data or be nested all
the way in, right alongside the content. Any way you slice it, the function of the site
and the purpose of the content can be easily ascertained.

2.3.2 Going beyond semantics with application tags

Application tags can present information to the user that is dynamically generated as
a result of executing application code. They’re also useful in presenting graphical
data, as in the case of the <canvas>, or as a data source for other elements, as in the
case of the <datalist>.

<CANVAS>
<canvas> is both a tag and a complete drawing API. You can draw pretty much any-
thing you like in a <canvas> as well as style the element itself using normal proper-
ties. <canvas> can build images on the fly or allow your users the ability to incorporate
existing graphics into their experience. This is a deep topic, and I recommend that
if you want to learn more, you check out any of the numerous blogs and books on
the subject.

 The tag looks simple enough, but it’s the entrance point to a significant API. Here
is all you need to create a canvas:

<canvas />

<COMMAND>
The <command> tag, when placed inside a <menu> element, will define a hook to exe-
cute your code. <command> elements can have a type value of checkbox, radio, or
command, with the last type providing a normal button-style operation.

<menu>
 <command type="command">Save all documents</command>
 <command type="checkbox">Check to include current document</command>
</menu>

SVG and Canvas
There are two ways of presenting custom imaging content to the user. The first is
Scalable Vector Graphics (SVG). SVG uses markup to describe lines and shapes. It’s
useful for drawing 3D images or very complex illustrations. There has even been
some work using SVG to animate drawings. Check out http://www.ro.me for some
amazing work in this area.

The second type of drawing uses the <canvas> element, new in HTML5. The canvas
element starts out as a blank, stylable rectangle on your page and comes to life by
means of JavaScript calls to the canvas’s built-in context object.

Both SVG and Canvas are deeply entertaining topics, but only Canvas falls under the
HTML5 umbrella. For that reason, we’ll spend all of chapter 4 discussing it but we
won’t be covering SVG.
www.it-ebooks.info

http://www.ro.me
http://www.it-ebooks.info/

52 CHAPTER 2 A markup primer: classic HTML, semantic HTML, and CSS
<DATALIST>
<datalist> is a hidden tag on your page that provides a list of values for another
element. When assigning an <input> element to a list attribute, it gets the id that
corresponds to the <datalist> to validate its values against. The validation process
is your responsibility, although the browser may soon provide you with some help in
this regard.

<input type="text" name="autos" list="mfg">
<datalist list="mfg">
 <option value="Ford" />
 <option value="Toyota" />
 <option value="Ferrari" />
</datalist>

<KEYGEN>
<keygen> is a major step toward client-initiated authentication in HTML. When imple-
mented by the browser, this element will generate a public/private key pair and send the
public key to the server with the enclosing form. At the time of this writing, <keygen> is
incomplete, but keep it in mind, because when it’s finalized, it will be an important
part of your security architecture:

<keygen name="myformKey" form="newUserInput" />

<PROGRESS>
The <progress> tag gives you a quick way to show the percentage of progress of any
task. It contains only two required attributes: value and max. The minimum value is
0 and is not editable, which makes this tag not suitable for displaying measurement
values or scalar values in a range. The <meter> tag would be more appropriate for
those situations:

<progress max="120" value="90"></progress>

<METER>
The <meter> tag is similar to the <progress> tag in presentation and function, but it
has the ability to show an amount in a scale that starts from a non-zero value. Do this
by filling in the min and max attributes for the range and the value attribute:

<meter min="25" max="75" value="60"></meter>

The <progress> and <meter> tags both usually render as a simple status bar.

<TIME>
The <time> tag isn’t a means of formatting a time value but rather a means of stating
that a piece of content is a date, time, or date/time for purposes of semantic clarity.
The <time> tag either contains a date/time value or it can enhance a piece of content
that represents a date/time. Build this enhancement with the datetime attribute:

<p>The Gettysburg Address, given on <time>November 19, 1863</time> started
with the words <time datetime="July 1776">Four score and seven years
ago</time> our fathers brought forth...</p>
www.it-ebooks.info

http://www.it-ebooks.info/

53Semantic HTML: The semantic blueprint
2.3.3 Using media tags for audio and video content

Media tags are covered in chapter 3 and are limited to audio and video content. Ele-
ments rendered with media tags can have multiple levels of fallback content so that a
single piece of media content is presentable across a variety of browser platforms.
These tags render presentation elements that can’t necessarily be categorized as
either inline or block.

 To present audio or video content, you must have that content available via a URL
on your server. Cross-domain access of audio and video content is possible, but the
owner of the site where the content exists must enable it.

 Once you have a valid URL for the content, you just need to add the tag to your
page and the user should be able to access it:

<audio src="MarineCorpsHymm.mp3" controls autoplay loop />
<video src="DirtyHarry.mp4" controls height="200px" width="400px" />

<SOURCE>
A <source> tag defines a piece of media content within a media element. It contains a
src attribute as well as a type attribute that corresponds to its media type. (Media types
are the correct nomenclature for what are commonly referred to as mime types.)

<source src="Chrome.mp3" type="audio/mpeg"></source>

<AUDIO>
The <audio> tag represents audio content on a page. An src attribute can be set or you
can place multiple <source> elements inside the tag, along with old-school <object>
tags for injecting plugin players when the browser doesn’t support the formats speci-
fied in the source elements. Whether the audio content is provided as static or stream-
ing content is dependent on how your server is configured:

<audio>
 <source src="CountryBoy.mp3" type="audio/mpeg" />
 <source src="CountryBoy.ogg" type="audio/ogg" />
 <object>Silverlight player here</object>
 Your browser does not support any available audio format.
</audio>

Or

<audio src="DownOnTheCorner.mp3" type="audio/mpeg" />

<VIDEO>
The <video> tag performs the same task for video that the <audio> tag does for audio
content. The same caveats apply regarding video formats and server configuration.
The src attribute is also present, as is the ability to nest <source> and <object> ele-
ments inside a <video> element.

 The <video> element has some added features, like loop, which makes the video
automatically restart, and poster, which describes the image that should appear
before the video starts. autoplay is also available:

<video controls="controls" autoplay="autoplay" poster="StartImg.jpg">
 <source src="DemolitionMan.mp4" type="video/mp4" />
www.it-ebooks.info

http://www.it-ebooks.info/

54 CHAPTER 2 A markup primer: classic HTML, semantic HTML, and CSS
 <source src="DemolitionMan.ogg" type="video/ogg" />
 <object></object>
</video>

The controls Boolean attribute and the mediagroup attribute of <audio> and
<video> are interesting in that they can display to the user a set of controls on the ren-
dered element to allow playback to start, stop, and pause. If the browser is capable,
the addition of the controls attribute will show the user a default player. One addi-
tional feature of <audio> and <video> is their ability to select from a list of content
types and display the one that’s most capable, based on the codecs available to the
user’s browser. You can do this by nesting source elements:

<audio controls autoplay>
 <source src="Chrome.mp3" type="audio/mpeg"></source>
 <source src="Chrome.ogg" type="audio/ogg"></source>
</audio>

2.4 Styling HTML5: CSS basics
You should now have a working knowledge of the new HTML5 elements and know
how to use them. Now you need to know how to style these elements when they hit
your page. CSS is the proper way to do this.

TIP Although CSS isn’t a core HTML or semantic concept, the ability to con-
trol how tag structures render on the page is very important. If you already
have a basic working knowledge of CSS, feel free to skip this section and move
on to chapter 3. This book won’t make you a CSS wizard, but we want to make
it very clear in this section that the marriage between HTML and CSS is critical
in a web application.

By creating a stylesheet file and linking it in the <head> element of your page, your
elements will be automatically styled based on your preferences. A stylesheet is noth-
ing more than a text file with a .css extension. Visual Studio has a built-in template for
these files, but you can also create them with any text editor.

2.4.1 Understanding CSS syntax

A single style consists of a declaration and a body, and a single style statement consists of
a name, a colon, and a value. The value can be a string, a space-separated list of values,
or an enumerated value, and it terminates with a semicolon. Semicolons separate style
statements, and slash-star wrappers mark comments or comment out parts of a style.

 Figure 2.7 shows the layout of a basic style.
 The body of a style is a list of property/value pairs separated by a colon. Each style

property is suffixed with a semicolon, like so:

div {
 /* color indicates the text color */
 color: green;
 background-color: red;
}

www.it-ebooks.info

http://www.it-ebooks.info/

55Styling HTML5: CSS basics
This bit of style will make all <div> elements on a page render as red rectangles
(background-color: red) with green text (color: green).

2.4.2 Building selectors, the most critical CSS element

When working with the CSS language, the most important skill you must have is the
ability to build a selector. Selectors are blocks of text that begin each style. The layout
engine uses them to determine which elements on the page to apply the style to.

 Selectors can be very general or very specific, and a selector in your stylesheet may
or may not be used at a particular time, depending upon the structure of the page
and the specificity of the selector. Not using a style isn’t necessarily a bad thing; styles
are also applied when the page reflows, so your stylesheet should include styles for any
elements you may programmatically add to your page.

 Multiple styles can apply to an individual element and, in fact, most elements on
your pages will have a number of styles. This is due to the specificity of styles and the
fact that elements can be styled based on their tag type, class name, and position on
the page. This ability for a style to apply to an element and all contained elements, or
for a style to combine with another style or override one of its settings, is the cascading
effect that makes Cascading Style Sheets so interesting and, at times, frustrating.

THE UNIVERSAL SELECTOR
You may have a universal selector in your stylesheet that says to apply a particular style
to everything. This is the format for a universal selector:

* { ... }

Notice that the style is a little different than the style listed previously for a <div>
element. The CSS language doesn’t consider line feeds or whitespace when process-
ing styles.

TYPE AND DESCENDENT SELECTORS

The next two ways to apply styles to an element are the type and descendent selec-
tors. The type selector uses the name of the element to apply a style, whereas the

“.” Indicates a CSS class name.

“#” Indicates an element ID.

Determines the specific object

or set of objects to be selected.

Space before another word

indicates that the selector will

be made more specific.

Simple word indicates that a

specific type of tag will be selected.

The actual style to be

implemented begins here.

Figure 2.7 The structure of a CSS style declaration
www.it-ebooks.info

http://www.it-ebooks.info/

56 CHAPTER 2 A markup primer: classic HTML, semantic HTML, and CSS
descendant selector uses multiple names to find an element based on its child rela-
tionship to another type of element.

 The type selector has two variations. Here’s the simple version that selects every
instance of a single element type:

div { ... }

The second version provides a comma-delimited list of element types that performs
the same task with multiple different element types:

div, section { ... }

The descendant selector looks similar to the multi-type selector, but there is no
comma between the types. The following will apply its styling to every element
that exists anywhere inside a <div> element on the page:

div span { ... }

When you want to find a very specific element, you can search for it via a specific id or a
specific class attribute. You use a hash (#) notation before the type to look for the id def-
inition, or use a dot (.) to look for a class name. This is also possible in conjunction with
other selector methods, like element types and child selectors, as shown in the next listing.

#logo { ... }

.menuSelect { ... }

div#logoArea { ... }

div.userName { ... }

div.userName span { ... }

div#inputArea a { ... }

That should give you a good understanding of a large majority of the styles you’ll
encounter in your work. There is much more to this, and we recommend looking into
any book by Eric A. Meyer, one of the foremost CSS professionals in the field today.

2.4.3 Assigning fonts

Fonts assigned in CSS can be a little tricky. Similar to properties like margin and color,
fonts can be assigned to a style using a shorthand combined property value or broken
out into multiple separate properties.

 To use the shorthand, you use the following spaced-delimited properties in order:
style variant weight size family. A typical font assignment could look like this:

p {
 font: italic normal bold 12pt 'Times New Roman',Times,serif;
}

Listing 2.7 Various type, descendent, id, and class selector combinations

Applies to any element
with id of logo

Applies to any element
assigned class of menuSelect

Applies to any div
with id of logoAreaApplies to any div assigned

class of userName

Applies to any span inside div
where div has class of userNameApplies to any anchor

inside div element where
div has id of inputArea
www.it-ebooks.info

http://www.it-ebooks.info/

57Styling HTML5: CSS basics
The only values required in the combined definition are size and family; the other val-
ues will be defaulted if not assigned.

 You probably noticed the comma-delimited string at the end of the preceding
property definition. The font-family value is based on fonts available on the client’s
computer, from the most specific to the least specific. So an assignment of

font-family: helvetica, arial, sans-serif;

will try first to apply the Helvetica font, then the more generic Arial font, and finally
the first sans-serif font it can find.

2.4.4 Assigning and manipulating colors

Now let’s look at how you can assign colors and manipulate them. There are quite a
few ways to express a particular color, and you need to understand these ways in order
to handle and work with them.

 The easiest approach is to use the set of named colors that are recognized by stan-
dard CSS. There are a lot of them, and you can get a list from the w3c website at http://
www.w3.org/TR/css3-color/#svg-color. This list gives you the name of each available
color and displays it along with its hex and RGB values (more on those next).

 You can assign any of the available colors to any CSS property that takes a color. This
includes text color, background color, and border properties, among many others.

 The primary ways of describing a color in CSS with something other than a named
value are hexadecimal, RGB, and HSL. There are many ways to find the values that
equate to various colors in the interface. The color picker in figure 2.8 is one of many
available in various Windows applications.

HEX COLORS

Hex colors are expressed with a hash symbol (#) at the start and then three sets of
hexadecimal (base-16) numbers. The three numbers together make up the Red,
Green, and Blue components of a color. A single number in a hex color can express
up to 256 different values, so a hex color can effectively express over 16 million colors
(256 x 256 x 256).

RGB COLORS

The next method of describing a color is to use the direct Red-Green-Blue numeric
values from 0 to 255 in a comma-separated format. You then use the rgb(r, g, b) CSS

Custom fonts
You can include your own fonts in your page using the @font-face CSS directive. By
using this directive, you can reference a font-face kit installed on your hosting server
and have it be automatically available to your pages for browsers that support it.

The steps involved in generating a kit for a font aren’t difficult, but they can some-
times incur a cost. Check out Google’s web fonts (www.google.com/webfonts) or
Font Squirrel (www.fontsquirrel.com/fontface/generator) for more information.
www.it-ebooks.info

www.google.com/webfonts
www.fontsquirrel.com/fontface/generator
http://www.w3.org/TR/css3-color/#svg-color
http://www.w3.org/TR/css3-color/#svg-color
http://www.it-ebooks.info/

58 CHAPTER 2 A markup primer: classic HTML, semantic HTML, and CSS
function to assign the color. The values of 0 to 255 express how intense the color is,
where 0 has no intensity and is therefore black and 255 has maximum intensity and is
therefore white. This means that you can also express an RGB color using percentage
values, where each color is assigned an intensity value.

HSL COLORS

The final method of expressing colors is
with an HSL value, standing for hue, satu-
ration, and lightness (or luminosity). To
understand how HSL works, you must find
a color disk that shows all possible colors
and has pure red at the top (0 degrees),
green at 120 degrees (4 o’clock), and blue
at 240 degrees (8 o’clock). Figure 2.9 illus-
trates this color wheel.

 An HSL value specifies first the
degrees around the circle and then the
saturation (or the intensity) of the color,
expressed as a percentage. The final
value is the lightness, another percentage
where 0 percent is black and 100 per-
cent is white. It might seem a little hard
to understand, but if you download Paint.NET, a free replacement for Windows Paint,
you’ll see the color wheel and understand it more clearly.

COLORS WITH ALPHA VALUES

New to the color party lately is the alpha or transparency value in both RGB and HSL
colors. These are the RGBA and HSLA CSS functions, and while they appear to have
been a part of earlier CSS specifications, they’ve only recently been broadly supported.
The alpha value in the color is expressed as an opacity percentage, where 0 is com-
pletely transparent and 1 is completely opaque. Note that setting the opacity CSS
property on an HTML element and then assigning it a color with an alpha value makes
for a very tricky display, because you have two properties expressing transparency.

Figure 2.8 Describing a color with
HSL and RGB

Figure 2.9 An HSL color wheel
www.it-ebooks.info

http://www.it-ebooks.info/

59Styling HTML5: CSS basics

gin
2.4.5 Changing the size of an element with the box model

Because everything in HTML boils down to a rectangle of stylable content, you can
think of it in terms of blocks or boxes. The box model is a way of describing how four
different size values in a style can contribute to the size of an element.

 Moving from the outside of a rectangular ele-
ment inward, you’ll encounter sized values for mar-
gin, border, padding, and content as illustrated in
figure 2.10.

 When you assign a width value to a piece of con-
tent, the actual rendered width of that element on
your page will be the value you set, plus left/right
padding, plus left/right borders. The final value is
the margin, and it doesn’t affect the rendered size
of your element. The margin is still important to
overall layout, though, because it acts as a buffer,
“pushing” other content out of the way by the
amount assigned in the style.

 An experiment is in order here to show exactly
what we’re talking about. Take a look at the code in
the next listing. This code defines a simple style
and then adds two <div> tags. The style is set to
apply to all <div> elements on the page.

<style type="text/css">
 div {
 height: 50px;
 width: 50px;
 border-width: 10px;
 border-style: solid;
 padding: 5px;
 margin-top: 10px;
 margin-bottom: 20px;
 background-color: #A0A0A0;
 border-color: #000000;
 }
</style>
<div>Box 1</div>
<div>Box 2</div>

This code will render a screen that looks some-
thing like figure 2.11.

 Now we have to measure each box. If you
were to add code to this page to check the
height of Box 1 or Box 2, you’d find that each
measures exactly 80 pixels. That is to say,

Listing 2.8 A simple box model test creating two divs and a style that applies to both

Margin

Border

Padding 15

15

10

10

30

0

00 10 1015 210 x 230 15

Figure 2.10 The box model of a
standard element refers to the
accumulated values that affect the
rendered size of an element on the
page, as well as how it affects other
elements around it.

Height and width of all
divs will automatically
be set to 50 pixels.

Width of all div
borders will be
set to 10 pixels.

Padding around content of
each div will be 5 pixels.

Top margin of 10 pixels and bottom mar
of 20 pixels will be applied to all divs.

Figure 2.11 How two divs
will appear when styled using
code from listing 2.8. All
measurements in the box
model are applied.

Box 1

Box 2
www.it-ebooks.info

http://www.it-ebooks.info/

60 CHAPTER 2 A markup primer: classic HTML, semantic HTML, and CSS
 50 pixels height
+ 5 pixels top padding
+ 5 pixels bottom padding
+ 10 pixels top border
+ 10 pixels bottom border
—————
 80 pixels total height

NOTE There was a time when the box model in IE was different from all other
browsers, which caused no end to headaches, and some hate IE to this day for
just that reason. Times have changed, though, and IE now uses the same box
model as the others.

If you measure the distance between the edges of each border though, you’ll find that
you only have 20 pixels of space. How can this be if we have a total top and bottom
margin of 30 pixels assigned? The answer lies in the concept of collapsed margins, and
this is something you’ll want to put in the back of your brain for future reference. A
collapsed margin is created when two margins intersect. The smallest margin col-
lapses and only the larger one is kept.

 You can look up “collapsing margins” on the w3.org website, but here are the rules:

■ Margins that intersect will collapse into the largest value among the elements in
the group.

■ Margins only collapse vertically, never horizontally.
■ Margins will collapse only if both elements are block level.
■ Margins don’t collapse in root-level elements on a page.

That should be all you need to understand how elements are measured on your page
and how the various properties that can be applied to elements interact with each
other to cause your page to flow.

2.4.6 Using columns and blocks for layout

Layout using CSS generally comes down to a question of columns and blocks. How do
you create a two- or three-column layout without adding a table to your page and plac-
ing all your content inside it? The answer generally lies in the ability of elements to
nest inside each other and to float.

 A normal <div>, you’ll recall, is a block-level element and will try to take up the
entire width of its container. If you give it a specific width, it will narrow but still not
allow elements to either side. With the addition of a CSS property of float: left or
float: right your <div> will instantly allow elements to show up beside it. Using this
technique, you can stack your block elements side by side.

 To get elements to position themselves properly takes some additional work using
relative positioning and a good understanding of page flow. We recommend you take
a look at a version of the “holy grail” 3-column layout at http://www.alistapart.com/
articles/holygrail. This will give you a good understanding of how margins, position,
and float properties interact to get CSS to deliver fluid layouts.
www.it-ebooks.info

http://www.alistapart.com/articles/holygrail
http://www.alistapart.com/articles/holygrail
http://www.it-ebooks.info/

61Styling HTML5: CSS basics
 Advanced use of CSS to lay out multicolumn pages generally falls into the design realm
and isn’t really the focus of this chapter or this book. Check out http://www.Smashing-
Magazine.com/ and http://www.meyerweb.com/eric/css/ for great design content
and helpful tips.

2.4.7 Changing screen layout based on changing conditions
with media queries
Media queries are often referred to as “@ rules” or “@media rules.” Whatever you call
them, they’re great fun once you understand the concept. They allow you to apply
styles to your page based on changing conditions both within the page and outside it,
like reorienting a slate device. As the mobile web browser grows in popularity, media
queries are gaining in popularity for their simplicity and reliability.

 A media query is simply a statement in one of three formats that says “when this
condition is met, change these styles.” These are the three formats:

■ The media attribute of a stylesheet link element in a page
■ The @media statement inside a stylesheet file
■ The @import statement inside a stylesheet file

Any of these methods is valid and cross-browser compatible. The only difference is in
how you decide to break up your presentation styles. Using the @media statement
inside your stylesheet file will make the stylesheet bigger and harder to manage, but
linking to another stylesheet in certain conditions can be difficult to debug.

NOTE All stylesheets are loaded as part of any @ rules assigned within a page,
so breaking out your styles into separate stylesheets for different layout
options carries a bandwidth cost.

A media query typically starts with a media type (print or screen) and then applies a
property query to that media type. The property value is one of a small number avail-
able in the specification. The last value is the DOM property to execute the query
against. If you wanted your screen to turn green only when the width was exactly 900
pixels wide, you would write a media query like this:

@media screen and (width:900px) {
 body { background-color: green; }
}

This is a pretty rigid rule and not a very useful one. Fortunately, there are prefixes
available to set a range: min- and max-. By using these and the two available logical
operators, you can start to really play with the layout of your page based on conditions
in the browser, without having to write any JavaScript code. This makes your code sig-
nificantly more maintainable (less code is almost always better), but it can be difficult
to unit test, so you may want to keep your rules broader in scope.

 The following snippet shows a modified version of the previous rule that will
change the screen color when the screen is anywhere from 900 to 2,100 pixels wide:
www.it-ebooks.info

http://www.Smashing-Magazine.com/
http://www.Smashing-Magazine.com/
http://www.meyerweb.com/eric/css/
http://www.it-ebooks.info/

62 CHAPTER 2 A markup primer: classic HTML, semantic HTML, and CSS

ther
 prefix

range.

essed
ather
@media screen and (min-width:900px) and (max-width:2100px) {
 body { background-color: green; }
}

The logical operator not shown is OR, and it’s denoted by a comma between the parts
of your rule.

 Once you have the basic format of a rule down, the format for a linked stylesheet is
very simple. The next snippet shows the bit of code you’d use to link another
stylesheet when the identical rule from the previous code listing is detected:

<link rel="stylesheet"
 media="screen and (min-width:900px) and (max-width:2100px)"
 href="../styles/MediaQueryWide.css" />

You can detect several interface features with media queries, but the ones you’ll use
most are width, height, device-width, device-height, orientation, aspect-ratio,
and device-aspect-ratio. Other detectable features will allow you to get very spe-
cific with the color and resolution settings, but these are really beyond the scope of
this book.

 Quite a few developers find media queries onerous, probably because they have
only recently been supported across the entire range of browsers. Changing the entire
layout of a screen based on a CSS rule is fine, but detecting that media queries aren’t
available and then branching your code to handle the environmental change some
other way was a massive duplication of effort and a large hole waiting for bugs. Now
that media queries are supported across the spectrum of modern browsers, it makes
sense to integrate them into your HTML application. This opens up the opportunity
for you to divide the presentation even more from the logic of your application.

2.4.8 Adjusting an element’s presentation and location
with transitions and transformations

Transforms and transitions are generally applied in a method call
notation and are the means of adjusting an element’s presenta-
tion and location. They’re available in four major categories:
skew, rotate, scale, and translate.

SKEW

When you skew an element, you’re changing the relationship
between two parallel sides in relation to each other. Think of putting
your palms on either cheek and pushing one side of your face up
and the other side down. That’s a skew, as illustrated in figure 2.12.

ROTATE

Rotating an element using a transform requires you to give a
number of degrees within a 360 degree circle around which to
rotate the target element. Figure 2.13 shows an element being
rotated using a transform.

This rule adds ano
parameter and the
to specify a value

Same rule expr
in HTML page r
than stylesheet

Figure 2.12 Trans-
form skew applied to
a rectangular
element
www.it-ebooks.info

http://www.it-ebooks.info/

63Styling HTML5: CSS basics
SCALE

Setting the scale of an element can cause it to grow
by applying a percentage value where 1 is 100 per-
cent. Values between 0 and 1 cause the element to
shrink, and values greater than 1 will make the ele-
ment grow. Note that each browser will handle scal-
ing differently and you may encounter pixelation of
items if they grow or shrink too much, especially bit-
map images. Figure 2.14 illustrates scaling a box up
to a larger size.

TRANSLATE

A translate transform causes an element to move
across the screen a certain distance vertically and
horizontally, as illustrated in figure 2.15. Trans-
forms generally don’t impact the flow of other
elements on the screen, but this isn’t guaranteed.

USING CSS3 TRANSFORMS AND TRANSITIONS

As mentioned, the format for calling a transform
uses a method call signature:

#my_ul li {
 transform: scale(0.75);
}

This example shows a scale transform shrinking a list item by 25 percent. The result is
immediate on the screen and will incur a reflow of the page.

 Regarding the instantaneous effect of
a transform, it should be noted that transi-
tions are also included alongside many
transforms. The transition takes a trans-
form and adds the element of time. Using
transitions you can animate elements in
your page based on values in your CSS.
Like the transforms, you can construct
transition style statements in code to
make them even more dynamic.

 A typical transition, as shown in the
following snippet, will cause the hover
opacity to take effect in half a second.
This gives a nice fade that can be duplicated in jQuery, but using CSS is a little simpler
and can be uniformly applied with no code:

.myclass {
 transition: opacity .5s ease-in-out;
}

Figure 2.13 Rotate transform
applied to a rectangular element

Figure 2.14 Scaling an element to be
larger than its specified size

Figure 2.15 Translate transforms cause element
locations to change relative to their assigned
position.

Transitions add time element
to visual transformation.
www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 2 A markup primer: classic HTML, semantic HTML, and CSS
.myclass:hover {
 opacity: 0.4;
}

Transitions take three values: the property to transition, the duration, and the timing
function. While a transition can take a number of built-in timing function values for
the last parameter value, you can also build your own Bezier functions to apply to your
transitions. This leads to some interesting touch-based possibilities.

NOTE One new CSS3 feature that we’ve intentionally left out is the keyframe
animation. This gives you the ability to change the path of an animation
beyond a simple A-to-B value. It’s currently not widely supported, but when it
finally stabilizes, expect it to be the coolest kid on the block.

This leads to the question of which kind of effect to use when animating an element. Do
you use a CSS3 implementation or a jQuery one? The answer depends on your scenario.
If you’re targeting very specific platforms, like the iPad, and you need hardware accelera-
tion, you should consider branching your code to use a WebKit 3D transform/translate
combination and then fall back to a more available jQuery animation using JavaScript.

WARNING Some say that you can detect various CSS3 implementations using
JavaScript. Although this works much of the time, there are some scenarios
where your page won’t be pixel-perfect and the browser won’t report an error
to you. When dealing with advanced CSS3 scenarios, you’ll need to visually
check all your interfaces for the foreseeable future, because no test frame-
works are currently available.

2.4.9 Changing styles as needed with pseudo-elements
and pseudo-classes

Styles don’t have to be static on your page. They can be assigned and removed in code
by editing class names, but there’s an easier way. CSS defines two ways of editing styles
based on detectable conditions: pseudo-classes and pseudo-elements. These are tran-
sitory and are applied only while the condition of the selector is met.

 A pseudo-class for a style is the original style with changes to it based on the named con-
dition. A pseudo-element is written in the same way, but it can add new content to the page.

 The syntax is the normal selector followed by a colon (:) and then the specific
pseudo-class/element name. The most common one that everyone uses is :hover.
When assigned to an anchor, anything in the style will be applied to the anchor ele-
ment when the mouse cursor is inside its boundaries:

a:hover { ... }

In this case, the style will keep existing properties of the anchor element when the
pseudo-class selector doesn’t specifically overwrite it.

 That was easy, but there are other pseudo-classes/elements that are very handy but
seldom used. You should become familiar with them so that you’ll recognize them
when you see them and can write more effective styles yourself.
www.it-ebooks.info

http://www.it-ebooks.info/

65Summary
 The :link, :visited, :active, and :hover pseudo-classes are used primarily for
anchors and will apply the styles to anchors that have these properties. The :focus
pseudo-class allows you to specify that when a particular element has the focus, it
should also get the assigned styles. This is particularly handy in touch-based applica-
tions to let the user know where text will be placed. For instance, this pseudo-class can
be used to grow the search input box when the user places focus on it.

 The next pseudo-classes are used to select ordinal elements within the page.
:first-letter and :first-line can give you a great reading experience in your con-
tent when used sparingly. They respectively assign styles to the first letter and first line
of any element containing text content.

 Two important pseudo-elements are :before and :after. They’re generally used
to place content relative to a selector, which is helpful if you want to allow pages to be
edited, such as in a content-management system. By appending the pseudo-element
to a selector, you can add additional content to your page to indicate things like the
point of insertion of text.

 One final pseudo-class that we should discuss is :target. When you use the target
pseudo-class, you’ll apply the particular style to the href target of the current selector.
This means that the href has to be a page-level anchor, one that’s prefixed with the
hash sign (#) and that refers to an element on the current page. So a link with a
:target style of background-color:green assigned would make the target of any link
green when the link was clicked.

 This is handy, but you should be careful because your entire presentation could
change with an on-page navigation event and no traceable code. Check out the pre-
sentation by Lea Verou at http://leaverou.me/ft2010 for more great examples of
using the :target pseudo-class as well as a lot of other interesting CSS examples.

2.5 Summary
In this chapter we raced through a lot of new and a few old-school features of HTML as
an application framework. We reviewed how to lay out a page and how to add seman-
tics to it. We covered some basic styling techniques in CSS and some of the new fea-
tures in CSS3.

 All of this may seem a little overwhelming if you haven’t been exposed to these
kinds of details before. The normal operation of an ASP.NET website in the past has
been to hide much of this from the site’s author. Throughout the rest of the book,
we’ll be investigating the various HTML5 APIs discussed here and including a few tips
and tricks for working more fluently with the various CSS and HTML elements that
you’ll need to know to be productive in building HTML applications.

 Now that we’ve covered the basics of HTML semantic markup and how it integrates
with CSS and traditional markup, it’s time to get to work on the JavaScript side of the
HTML5 equation. To start, we’ll look at the audio and video elements in more detail.
This will be a good segue, because it involves a lot of markup as well as the building of
a simple JavaScript library.
www.it-ebooks.info

http://leaverou.me/ft2010
http://www.it-ebooks.info/

Audio and video controls
It wasn’t so long ago that the only way to play video content was to embed a Quick-
Time, Flash, Silverlight, or other custom-installed program inside your HTML page
with <object> tags. These elements had very little interactivity with the surround-
ing page and were, for all intents, islands of media on the page. Audio content was
only a little better and, in some cases, worse. When was the last time you visited a
page that played a song in the background? From the user’s perspective, it’s the
height of annoyance that you can’t do anything with that page other than turn
down your computer’s volume or navigate away. This chapter will show you how to
fix all those problems with HTML5.

 HTML5 brings two new tags to the table: <audio> and <video>. Both of these
tags implement the same API interface, so while the internal implementations are

This chapter covers
■ Using audio and video controls with no code
■ Integrating JavaScript controls with audio

and video
■ Simple binding techniques for controlling audio

and video
■ Understanding audio and video formats
66

www.it-ebooks.info

http://www.it-ebooks.info/

67Audio and video controls
different, the external interfaces are identical. Furthermore, neither tag requires
any additional supporting downloads to work in supported browsers. You just add
the tag, supply the source content, and your users can see and hear your media. It
really is that simple!

 You’ll also be able to go even farther, as you’ll see in this chapter’s sample applica-
tion. This example starts with basic operational features that help you understand how
the <audio> and <video> tags and their JavaScript APIs work, and evolves over the
course of the chapter. By the end, it will be able to do the following:

■ Download and play audio and video content
■ Use HTML objects to control content playback

Browser support

Chapter 3 map
Audio and video tags allow the browser to load and play both audio and video content
without the need for plugin frameworks. Each browser vendor controls which media
formats it will support, and the page developer can specify multiple levels of fallback
content to play if a particular format isn’t supported.

Identifying <audio> and <video> tags page 72

Using the controls attribute page 72

Using the autoplay attribute page 72

Repeating content with the loop attribute page 72

Queueing content with the preload attribute page 72

Using <video> and <audio> tags without code page 74

Learning to use HTMLMediaElement in JavaScript page 76

Playing content with JavaScript page 79

Pausing content page 79

Handling volume changes page 80

Look for this icon in this chapter and throughout the book to quickly identify
discussions of key HTML5 functionality.

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

68 CHAPTER 3 Audio and video controls
■ Play and pause content using JavaScript
■ Change volume and mute media content

When the example is complete, you’ll have a working knowledge of the new HTML5
audio and video controls and will be able to start building such content into any exist-
ing web application.

 As you work through the project, you’ll learn how to do several things:

■ Use the audio and video tags without JavaScript, as HTML elements
■ Control audio and video playback with JavaScript
■ Update media types for open source content

Before we get to those topics, let’s look at what you’ll be building and walk through
the steps involved in getting the application started.

3.1 Building a site to play audio and video
Figure 3.1 shows exactly what the site should look like in any compatible browser.

Figure 3.1 The sample site
will play audio and video
content without plugins
or extra downloads.
www.it-ebooks.info

http://www.it-ebooks.info/

69Building a site to play audio and video
To get started building the application skeleton, perform the following steps:

1 Open Visual Studio and create a new ASP.NET MVC application.
2 Select Internet Application, Razor View Engine, and HTML5 semantic markup.
3 Leave the Create Unit Test check box unchecked.
4 Name the application AudioVideo.
5 When Visual Studio starts, navigate to Tools > Library Package Manager > Man-

age NuGet Packages for Solution.
6 Select the Installed Packages tab on the left, and then click Manage on the fol-

lowing packages:
– Entity Framework
– jQuery UI
– jQuery Validation

7 When the pop-up window appears, deselect the project and click OK to remove
the package from your solution.

8 Select the Updates tab on the left and click the Update button for each package
remaining in the center of the window.

9 Open the Razor View file located at \Views\Shared_Layout.cshtml in the solu-
tion, and update the script tags at the top to match the newly updated scripts in
your solution’s Scripts folder.

10 In the menu area, add a new list item:

@Html.ActionLink("AV Players", "Players", "Home")

This creates a link that points to /Home/Players when the application runs. It
won’t work yet because that endpoint and its associated view don’t exist. That’s
the next setup step.

11 Navigate to the Controllers folder and open the Home Controller. Add the fol-
lowing snippet of code to create the new endpoint:

public ActionResult Players()
{
 return View();
}

12 Right-click on the word View, and from the pop-up menu select Add View. This will
create a new file called Players.cshtml in the \Views\Home folder of your solution.

13 If you have not done so already, get the audio and video content from the
GitHub account and add these four files to your solution’s Content folder:
– gwt.ogg
– gwt.mp3
– lego.ogv
– lego.mp4
The .ogg and .ogv files are open source audio and video formats used for
high quality digital media. The format is maintained by the Xiph.org Foundation
www.it-ebooks.info

http://www.xiph.org/
http://www.xiph.org/
http://www.it-ebooks.info/

70 CHAPTER 3 Audio and video controls
(http://www.xiph.org/). The .mp3 and .mp4 formats are proprietary but
very common.

Table 3.1 shows the current browser compatibility levels for the .ogg and .ogv formats.

Now that the application skeleton is in place, we’ll look next at the <audio> and <video>
tags and their basic similarities, and at three different ways that you can use the tags in
your projects. You’ll use one of those ways to build this chapter’s sample application.

Finding the audio/video content for the sample application
You can download the audio and video content we use in this chapter from https://
github.com/axshon/HTML-5-Ellipse-Tours/tree/master/demos/av/Media.

This GitHub project was originally designed as a monolithic sample application for
this book, but we decided that the application-per-chapter paradigm would be more
suited to introducing and explaining each HTML5 API in isolation. All the code in this
book and some additional content are available in the GitHub repository.

Converting audio and video file formats
There are lots of options for converting your audio and video to Ogg or WebM, but
right now the easiest is the free Miro Video Converter (http://www.mirovideocon-
verter.com/). Once you’ve installed it, just drag your audio or video file into it and pick
a format.

For Ogg video (.ogv), select Theora, an open video format (theora.org). The Theora
setting also converts audio files into Ogg audio, but you’ll want to change the result-
ing file extension to .ogg.

Table 3.1 Open source media format compatibility (.ogg and .ogv)

Browser Starting version support

Chrome 4

Internet Explorer Not supported

Firefox 3.5

Opera (desktop) 10.5

Safari (all versions) Not supported

Opera Mobile 11

Android (all versions) Not supported

Windows Mobile Not supported
www.it-ebooks.info

http://www.xiph.org/
http://www.mirovideoconverter.com/
https://github.com/axshon/HTML-5-Ellipse-Tours/tree/master/demos/av/Media
http://www.mirovideoconverter.com/
https://github.com/axshon/HTML-5-Ellipse-Tours/tree/master/demos/av/Media
http://www.it-ebooks.info/

71Audio and video tags
3.2 Audio and video tags
<audio> and <video> tags in HTML5 are similar in that they both implement the
HTMLMediaElement interface. This interface describes all the major functions, proper-
ties, and events necessary to play and control multimedia content on the web. You’ll
see a few of these events and properties in action later when you build out the
JavaScript side of the player application, but you can get the full story on the W3C site
at http://dev.w3.org/html5/spec/media-elements.html#htmlmediaelement.

 The simplest tag that you can implement for rendering audio and video content in
HTML5 plays whatever audio content is in the audio file, as long as it exists in the rela-
tive URL specified in the src attribute. It looks like this:

<audio src="myaudio.mp3"></audio>

The tags become much more powerful when you implement the <source> child tags.
These let you provide multiple formats for your content so it’s more likely to be play-
able across different browser platforms. Here’s an example:

<audio>
 <source src="myaudio.ogg" type="audio/ogg" >
 <source src="myaudio.mp3" type="audio/mp3" >
</audio>

The <source> tag is the same for both the <audio> and <video> tags. You just need
to add as many elements as you have available for the specific piece you want the user to
see or hear, and the browser will start from the top and work its way down until it finds
a format that it supports. No checking is done to detect bandwidth, video size, or any
other information about the source media file. If the format is supported, the browser
will use it. End of story.

 There is also no concept of “more supported” when it comes to playing source
files. A particular format either is or isn’t supported. As you might infer from table 3.1,
there is no format for either audio or video that’s universally supported—not even
mp3—so for now you must put on your format-converter hat and translate whatever
you have into formats supported by your target user’s browser.

NOTE We decided not to give the full story around which formats are sup-
ported by which browsers because the format “wars” are still ongoing, with no
clear winner so far. What is supported on which browser will likely continue
to change rapidly. Expect to have at least two or three formats for each media
file you present to your users.

ASSIGNING HTML ATTRIBUTES TO TAGS

Using an audio or video tag as in the previous snippets isn’t enough to play your media
content, because you haven’t yet assigned the appropriate HTML attributes to the tags to
run the audio content. Audio and video tags can operate in one of three ways:

■ Strictly as HTML elements
■ Strictly as JavaScript controls
■ As a hybrid using both HTML attributes and JavaScript to control playback
www.it-ebooks.info

http://dev.w3.org/html5/spec/media-elements.html#htmlmediaelement
http://www.it-ebooks.info/

72 CHAPTER 3 Audio and video controls
In the next few pages, we’ll describe the ins and outs of presenting media content
using the first method, and then you’ll continue building the sample application using
the second method.

 Because the third (hybrid) method just combines the first two, everything you
learn as we proceed should equip you to build out using that method as well. A typical
situation where you might use the hybrid method is on a video site that automatically
starts playing as soon as content is ready but that allows a user to stop and restart using
JavaScript code.

3.2.1 Using audio and video tags without JavaScript

Let’s start with the first method: using the tags strictly as HTML elements. You might
want to do this when you’re building a static site displaying a tutorial or a web page
that shows an introductory audio or video clip for a site.

 To do this, you can just add the controls attribute to an <audio> tag and refresh
the page:

<audio id="audio" controls>
 <source src="myaudio.ogg" type="audio/ogg" >
 <source src="myaudio.mp3" type="audio/mp3" >
</audio>

You should see one of the various audio player formats built into whatever browser
you run. The selection of screen shots in figure 3.2 may change over time as browsers
are upgraded, but we expect the changes to be minimal.

 The other common <audio> attributes are listed here; values for each are in the
discussion that follows:

<audio id="audio"
 controls
 autoplay
 loop
 preload="metadata or none or auto">

Let’s look at these attributes in a little more detail.

Core API

Figure 3.2 The default
audio players for browsers
vary in height and width.
If layout is a concern,
consider creating your
own player interface.
Section 3.3 shows you
how to do that.
www.it-ebooks.info

http://www.it-ebooks.info/

73Audio and video tags
THE CONTROLS ATTRIBUTE

The controls attribute just needs to be present and doesn’t need a value assigned.
You may also see it listed as controls="controls", which is the same thing.

 The attribute’s function, as you saw earlier, is to show the user audio controls. The ren-
dering and function of these are entirely dependent upon what the browser vendor wants
to give you. They can be always visible or only visible on hover, depending upon the
browser, but this facet of their operation isn’t something you as the developer can affect.

THE AUTOPLAY ATTRIBUTE

The autoplay attribute doesn’t need a value set and will start playing the audio content
as soon as the element is loaded. This harkens back to the early days of audio content on
the internet, when sites would play background music for you while you browsed the
site. This is practically never a good idea because it annoys users and uses bandwidth
unnecessarily. It does have its place in site design and content presentation, but
remember: less is more.

THE LOOP ATTRIBUTE

The loop attribute will start the audio again after it has completed playing. This can
be handy in game development for soundtracks, but again, it can easily be overused.
autoplay will continue to play the audio track until the user unloads the page or
pauses it. If controls aren’t displayed on a track of audio content, and you have loop
turned on, you can guarantee that visitors will leave your site as quickly as they can.
loop is also an attribute that doesn’t need a value set.

THE PRELOAD ATTRIBUTE

The preload attribute has three possible values: metadata, auto, and none:

■ metadata—Requests that the player download enough information about the
audio track to show the total length of the track and possibly other information,
depending upon the browser vendor’s implementation

■ none—Tells the browser to download nothing until the user presses the play
button

■ auto—Attempts to start loading the track as soon as the element is rendered on
the page

Keep in mind that these preload settings are suggestions for the browser. The browser
may choose, for whatever reason, to ignore these settings when downloading audio or
video content for the element.

 Now that you have a grasp of how a generic HTML5 media tag works, let’s spend a
moment focusing on the <audio> tag.

3.2.2 Using the audio tag as an HTML element

If you worked through the markup in the Players.cshtml page you created in section 3.1,
you should have seen the players appear on the page when you ran the application in
a browser and, depending upon the attributes you assigned, it may have started play-
ing or been queued up ready to be started by a user.

Core API

Core API

Core API

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

74 CHAPTER 3 Audio and video controls

ags

y
 so on.
The code in the following snippet is a little more detailed and uses the ASP.NET MVC
Url.Content helper method to build URLs that are relative without parsing HTTP
request address strings. Note the order of the <source> elements. As mentioned ear-
lier, the browser will always try to play these by starting at the top and working down
until it finds a compatible format. It stops there:

<audio id="audio">

 <source src="@Url.Content("~/Content/gwt.ogg")"
 type="audio/ogg" >

 <source src="@Url.Content("~/Content/gwt.mp3")"
 type="audio/mp3" >
</audio>

Be careful when using the browser default players for <audio> content, because they
can differ greatly in the amount of space they take up on the page. Take another look
at the rendered audio players in figure 3.3 and notice how the Safari player is much
narrower and the Internet Explorer player is much wider than Chrome. Any of these
could change your page layout if not handled properly.

3.2.3 Using the video tag as an HTML element

The <video> tag in HTML5 is similar to <audio> in most of its implementation
respects. In fact, anything you can control on an audio track, you can also control on a

Forcing audio and video elements to show their controls
There may be times when you land on a page with audio or video controls that has
controls turned off, and you would like to see them or you want to test your own
pages at runtime. If these pages are using the HTML5 tags and jQuery, the easiest
way to find the elements and turn controls on is to use the attr function:

$("#audio").attr("controls", "controls");
$("#video").attr("controls", "controls");

This code assumes an audio and video element with IDs of audio and video respec-
tively, and it will immediately cause the controls feature of these elements to be
turned on.

Basic audio tag will give code
a way to play sounds but
won’t, by default, display.

Source elements inside media t
will attempt to play in order.

If first source tag is unsupported b
current browser, next is tried, and

Figure 3.3 The
differences between
default rendered audio
players in various
browsers. The Chrome
version is the same
as the size in most other
browsers; Safari and
IE fall outside the
normal boundaries.

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

75Audio and video tags
video track. Features, events, and properties are all the same, except that video con-
tains a few more that are inappropriate for audio. With the <video> tag, you can
assign some additional properties to set the size of the video as well as the image that
appears before the video starts to play.

 A basic <video> tag, like the one in the following snippet, will have source tags
nested inside it and use the same format fallback mechanism described earlier. The
difference between <audio> and <video> when rendered is that video will always dis-
play unless told not to either in code or by some CSS rule. <audio>, on the other hand,
won’t display if controls isn’t turned on:

<video id="video">
 <source src="@Url.Content("~/Content/lego.ogv")" type="video/ogg" >
 <source src="@Url.Content("~/Content/lego.mp4")" type="video/mp4" >
</video>

This code will display the opening frame of the content video but no controls to con-
trol the play. One exception to this rule is that some browsers, notably Internet
Explorer 9 and above, will allow you to right-click on the video and get a context
menu with player controls. These can’t be turned on or off, but it’s possible in code to
override the right-click.

 Just like the <audio> tag, you can add the controls, autoplay, loop, and metadata
attributes, and their function is identical. The additional features only available with
video are the height and width attributes, which will constrain the video to a specific
rectangle, and the poster attribute. poster is a URL value that points to a valid image
file. The image will be scaled to fit inside the assigned height and width, but the
aspect ratio isn’t guaranteed to be retained, unlike video content, which will shrink
until the correct aspect fits inside the assigned height and width rectangle:

<video id="video"
 controls
 autoplay
 loop
 preload="metadata or none or auto"
 poster="@Url.Content("~/Content/VideoPoster.png")">

Figure 3.4 shows the default video player controls implemented by the major browsers
at the time of this writing. The controls appear inside the boundaries of the video—
some push the video content up, some appear over it with a slight transparency effect,
but all are rendered at the bottom of the player’s rendered area.

 Note that the width of the controls will be the same as the width of the player, but
the browser vendor can choose any height for the rendered control surfaces. While
this is fine for tangential content that isn’t necessarily the core purpose of a particular
page, the fact is that if you’re building the page specifically to present audio or video
content, the default players simply won’t do. They’re visually inconsistent and offer no
customization capabilities. Enter the JavaScript APIs.
www.it-ebooks.info

http://www.it-ebooks.info/

76 CHAPTER 3 Audio and video controls
3.3 Controlling audio and video playback with JavaScript

Using the JavaScript API available for <audio> and <video> elements, you can control
nearly every feature of playback in the client browser. You can also wire up events and
properties to any other HTML controls so the presentation is entirely up to the site
designer. As mentioned earlier, you can also use the JavaScript APIs to control features
of playback while leaving the existing browser-provided controls in place.

 Here are some things you can do with these two media elements in code:

■ Assign source values
■ Monitor the state of play
■ Get the total duration and current time of the track being played
■ Detect and modify the rate of playback
■ Assign attributes for loop, autoplay, and controls
■ Detect when a track has finished playing
■ Turn the volume up or down
■ Mute or unmute the volume

As you can see, there are a lot of control features available to you when playing audio
and video content, and you’re going to use the most common ones in your sample
application, such as play/pause, mute/unmute, and volume control. In this section,
you’ll learn how to use the audio and video APIs as you do the following:

■ Build a custom audio and video control surface
■ Build the main.js library structure
■ Create a JavaScript media player object
■ Attach JavaScript to audio and video event models to complete the user’s

media experience

We’ll start with building custom controls.

3.3.1 Building custom controls for audio and video

Before you begin, if you’ve been following along in your solution and fiddling with
<audio> and <video> tag attributes, clear them all out from the Players.cshtml page.

Figure 3.4 The current
default video player
controls will appear inside
the defined height and
width properties of the
video element.

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

77Controlling audio and video playback with JavaScript
You’ll also need to add id properties to the tags so that you can easily identify them in
code. They should look like this:

<audio id="audio">
 <source src="@Url.Content("~/Content/gwt.ogg")" type="audio/ogg" >
 <source src="@Url.Content("~/Content/gwt.mp3")" type="audio/mp3" >
</audio>
<video id="video">
 <source src="@Url.Content("~/Content/lego.ogv")" type="video/ogg" >
 <source src="@Url.Content("~/Content/lego.mp4")" type="video/mp4" >
</video>

Next, below the video element add a few standard <button>, <div>, and tags to
bind to the control code you’ll write shortly. The following listing shows the layout of
this markup. These will act as the controlling user interface elements in the final page.

<div id="video-controls">
 Video:
 <button class="play">play</button>

</div>
<div id="audio-controls">
 Audio:
 <button class="play">play</button>

 <div class="secondary-controls">
 Volume:
 <button id="volume-up">+</button>
 <button id="volume-down">-</button>
 <button id="mute">mute</button>

 </div>
</div>

Listing 3.1 Controls for audio and video elements

Where are all the HTML5 semantic tags?
You may have noticed that in this chapter we’re using regular <div> and tags
to organize the structure of our page. We do this in various places throughout the
book for a number of reasons.

First, the audio/video content in this chapter is contained in a single page, otherwise
known as a single page app (SPA). One of the primary functions of semantic markup is
to allow a web crawler, search engine, or accessibility tool to “read” the content of a
page, but SPAs generally load content dynamically using JavaScript based on user inter-
action or other conditions. A web crawler won’t execute JavaScript, so it won’t be able to
load and parse the dynamic content. This makes the semantic tags somewhat useless.

Second, we want to make it abundantly clear throughout the book that while you can
use semantic HTML tags right away in all of your web pages and HTML applications,
it’s optional. The previous (classic HTML) tags are still valid and common throughout
the web.

Play/pause button
for video content

Note to show
current time
of videoPlay/pause button

for audio content

Note to show current
time of audio

Volume and mute
controls for audio

Display for current
audio volume
www.it-ebooks.info

http://www.it-ebooks.info/

78 CHAPTER 3 Audio and video controls
3.3.2 Building the main.js library structure

With the controls in place, you can start building the controlling code structures.
 Create a new JavaScript library file called main.js in the Scripts folder of your solu-

tion and open it. You’ll have only three functions in your main.js library, as you can
see in the next listing. These will initialize the page, initialize an audio or video
object, and update the volume value on the screen.

$(document).ready(function () {
 Main.init();
});

window.Main = {

 init: function () {
 },

 initMedia: function (name) {
 },

 showVolume: function () {
 }

};

The basic structure here initializes the Main object and creates custom objects via
initMedia to control playback of either audio or video content. Inside the init function,
you’ll test for browser compatibility using Modernizr and then execute the function to
create your objects. That code is shown in the following listing.

var self = this;

if (!Modernizr.audio) {
 alert("Audio tag not supported.");
 return;
}

if (!Modernizr.video) {
 alert("Video tag not supported.");
}

this.video = this.initMedia("video");
this.audio = this.initMedia("audio");

Modernizr checks for audio and video compatibility. Then this code adds two prop-
erties to the Main object created earlier using window.Main = {...}. The properties
(video and audio) are created with the initMedia function. Read on to see how
and why.

Listing 3.2 The basic JavaScript structure of the main.js library

Listing 3.3 init function checks and initializes video and audio elements

Checks for features,
creates two objects,
and binds volume
controls to HTML
controls

Takes either “audio”
or “video” as
parameter and builds
player object that’s
bound to appropriate
media element and a
few of element’s event
handlers

Updates volume
display on screen

Checks for audio
and video support

Creates audio and video objects
and attaches them to Main object
www.it-ebooks.info

http://www.it-ebooks.info/

79Controlling audio and video playback with JavaScript

s
d
ated
3.3.3 Creating a JavaScript media player object

This initMedia function is a great example of how you can reduce the volume of code
you write and improve maintainability. In this function, you’ll find various elements in
the interface, the most important of which is either the rendered <audio> or <video>
element. You then treat that element not as a piece of audio or video content, but as a
piece of generic content. You can do this because both tags implement the HTMLMedia-
Element interface.

 To start, look at the next listing very carefully. It’s the first part of initMedia.
There’s a lot of locating of elements and assigning of variables going on here.

var result = {};
result.$media = $("#" + name);
result.media = result.$media[0];

result.$controls = $("#" + name + "-controls");

result.$play = result.$controls.find(".play");
result.$time = result.$controls.find(".time");

Notice that you have $media, $controls, $play, and $time all as wrapped sets from
jQuery selectors, plus the media element that corresponds to either the <audio> or
<video> element based on the input parameter (name) value. Why go through all
these gyrations? Because a wrapped set will give you all the normal jQuery functional-
ity you need to bind to events, change assigned CSS attributes, and update text values,
but it won’t give you the ability to call functions on individual API objects. For that,
you must have a single object, not a wrapped set.

 The next bit of code in the initMedia function shows the process of getting a
wrapped set and then using the object (not the wrapped set) to execute functions:

result.$play.click(function () {
 if (result.media.paused)
 result.media.play();
 else
 result.media.pause();
});

You’ve just implemented the click handler for the $play button, so the media (audio
or video) will play, but you still have to bind to the various other player events so that
you can pause the media and track what’s happening while it plays. You can use the
$media wrapped set for this because you aren’t executing specific functions.

 Listing 3.5 shows how to bind to the playing, pause, ended, and timeupdate
events. Again, each time you have to call into a specific function or property of the
HTMLMediaElement API, either audio or video, you make the call against the media
local property. This is the last part of the initMedia function.

Listing 3.4 The initMedia function assigning properties for a new object

Find media element with jQuery and pull
actual media element from wrapped set.

Find control
<div> base
on concaten
naming
convention.

With controls <div> find play
button and time element.

Core API

Use wrapped
set to bind to
click event.You must have single

object to check properties
like paused or execute
functions like play.

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

80 CHAPTER 3 Audio and video controls
result.$media
 .bind("playing", function () {
 result.$play.text("pause");
 })
 .bind("pause", function () {
 result.$play.text("play");
 })
 .bind("ended", function () {
 result.media.play();
 })
 .bind("timeupdate", function () {
 var prettyTime =
 Math.round(result.media.currentTime * 100) / 100;
 result.$time.text("time: " + prettyTime + "s");
 });

result.media.play();
return result;

There’s a lot of interplay here with the audio and video elements, the controls on the
page, and the Main object’s various properties. To reiterate, the secret sauce that
makes this event binding with jQuery wrapped sets work is the fact that audio and video
elements implement the HTMLMediaElement interface, making them generally function
the same way as each other but with different output to the browser. Figure 3.5 shows the
various wrapped sets and properties that you established in your code and how they all
play together in the window.Main object.

 Coming full circle to the object you created in initMedia, you first instance an
object variable called result and then bind a bunch of jQuery wrapped sets and a
media object to it. Then you bind the various media events to create a responsive
interface. Finally, you start the media content playing and then return the object to
the caller, which in this case is the init function. It seems complicated, but you’re
really just setting up the interface and playing the media.

3.3.4 Completing the media experience by adding volume controls

Back in the init function, you have this code, which should make a lot more
sense now:

this.video = this.initMedia("video");
this.audio = this.initMedia("audio");

You’re assigning a variable called video and one called audio to new objects created
in the initMedia function. These objects take care of everything related to play,
pause, loop, and content timer functionality. The only bits left to fill in are those
pieces specific to the audio track.

 1Because the example video track you’re using doesn’t happen to have audio, your
code must diverge from doing work inside the initMedia function. If you wanted to

Listing 3.5 Binding events to the media object in the initMedia function

Fires when media
element content begins

Fires when
content is paused

Fires when content has finished
playing and before loop restarts

Fires on interval as
media is played

Starts playing
immediately after
binding UI elements
to media events

Returns newly created media object

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

81Controlling audio and video playback with JavaScript
1 For more on polymorphism and encapsulation, see http://en.wikipedia.org/wiki/Polymorphic_code.

jQuery wrapped set bound to mute button

Click handler to mute audio

Property text edited when mute changes

$mute

$volume

$volumeUp

$volumeDown

window.main

$media

media

$controls

$play

$time

audio

jQuery wrapped set bound to volume button

Property text edited when mute changes

jQuery wrapped sets bound to + and – buttons

Audio.media.volume property edited when volume changed

jQuery wrapped sets bound to audio element

Audio play event handlers

Play control button for audio

Click event handler for initiating audio play/pause

jQuery wrapped set bound to video element

Video play event handlers

Custom JS object created by initMedia

Single object bound to audio player element

Wrapped set of controls <div> for audio

View area for current time value

Custom JS object created by initMedia

Single object bound to video player element

Wrapped set of controls <div> for audio

View area for current time value

Play control button for audio

$media

media

$controls

$play

$time

video

Figure 3.5 Due to the polymorphic1 nature of HTMLMediaElement, you can create both audio and
video objects in the same function. Volume control is separated in these objects because it’s only being
controlled when playing audio content in this example. Therefore, it doesn’t need to be part of the
polymorphic object.
www.it-ebooks.info

http://en.wikipedia.org/wiki/Polymorphic_code
http://www.it-ebooks.info/

82 CHAPTER 3 Audio and video controls
add volume controls to video as well as audio, you could have performed this work
inside initMedia, but for this example we’ll have you put it inside init so that the vol-
ume HTML elements only bind to the audio control. You can, however, still use the
audio object you created.

 The next listing shows the binding of controls for turning volume up and down
and muting the audio, along with a simple binding statement to track the volume-
change event. This code fills in the init function of the main object.

this.$volume = $("#volume");

this.$volumeUp = $("#volume-up")
 .click(function () {
 self.audio.media.muted = false;
 self.audio.media.volume += 0.1;
 });

this.$volumeDown = $("#volume-down")
 .click(function () {
 self.audio.media.muted = false;
 self.audio.media.volume -= 0.1;
 });

this.$mute = $("#mute")
 .click(function () {
 self.audio.media.muted = !self.audio.media.muted;
 });

this.audio.$media
 .bind("volumechange", function () {
 self.showVolume();
 });

this.showVolume();

The final step to getting your application to run is to fill in the showVolume function as
shown in the next listing. This will simply round the volume off to the nearest tenth
(0.1) value and display it on the page.

var prettyVolume =
 Math.round(this.audio.media.volume * 10) / 10;
if (this.audio.media.muted) {
 prettyVolume = 0;
 this.$mute.text("unmute");
}
else {
 this.$mute.text("mute");
}
this.$volume.text(prettyVolume);

Listing 3.6 init function binding UI events to the media object created in initMedia

Listing 3.7 showVolume function to update volume information on the page

Ensure mute is turned off
and add 10% to volume.

Ensure mute is turned off and
subtract 10% from current volume.

Toggle muted
Boolean property.

Track audio control’s volume change
event to show current volume.

Round off volume
to nearest tenth

Check muted property
of audio control

Assign text to $mute
element based on
current mute setting

Display volume
on page
www.it-ebooks.info

http://www.it-ebooks.info/

83Updating media types for open source content
You should be able to run your application in Chrome, Internet Explorer, and Safari
and see everything running. Load the Players page, and the music and video should
immediately start playing, as shown in figure 3.6.

3.4 Updating media types for open source content
We specifically left out Opera and Firefox in our list of browsers that will work as-is in
the Visual Studio solution. These browsers are perfectly compatible with HTML5
<audio> and <video> tags, but when the page is running in your local environment,
you may need to make a few tweaks. These tweaks are related to the open source con-
tent types, not to any specific server compatibility. Opera and Firefox support the .ogv
and .ogg file types by default, so you have to tell the local web server that these are OK
to send out.

 This section will cover the changes you need to make to the project.

Figure 3.6 The completed
application playing audio and
video content, controlled by
your own JavaScript and
HTML elements
www.it-ebooks.info

http://www.it-ebooks.info/

84 CHAPTER 3 Audio and video controls
USING IIS EXPRESS

The first thing you need to do is update your solution so that it uses IIS Express. You
could push this all the way into an IIS Server instance, but that’s really not necessary
for your tests and would generally be the job of a network administration person any-
way. To update your AudioVideo project, follow these steps:

1 Right-click on your AudioVideo project node in Solution Explorer and select
Properties.

2 Click on the Web tab on the left side; you should see a screen similar to figure 3.7.
3 About halfway down the page, in the Servers section of the page, select Use

Local IIS Web Server and then check Use IIS Express. You can leave the default
Project URL as is. (If you need more information about installing IIS Express,
please refer to appendix C.)

ASSIGNING CONTENT TYPES

Now that you have set up the solution to run under IIS Express, you can assign the
.ogg and .ogv content types for the local server. Currently, this can only be done using
the appcmd executable when running IIS Express. Appcmd is a utility program that
can be used for editing a number of configuration values, but updating the available
content types is the only change we’re after.

Figure 3.7 Set up the application to run using the local IIS Express instance.
www.it-ebooks.info

http://www.it-ebooks.info/

85Summary
Follow these steps:

1 Open a command prompt as an administrator.
2 Navigate to either the Program Files or Program Files (x86) folder.
3 Navigate into the IIS Express folder.
4 Run the following command to update the .ogg content type:

appcmd set config /section:staticContent
 /+[fileExtension='.ogg',mimeType='audio/ogg']

5 Run the following command to update the .ogv content type:

appcmd set config /section:staticContent
 /+[fileExtension='.ogv',mimeType='video/ogv']

You should see a screen similar to figure 3.8 in the command-line window.
 Run your program now using any browser you like, and you should get an identical

experience! You’re playing audio and video content with no plugins and with very lit-
tle extraneous code. This is a huge leap forward from what was available just a couple
of years ago, and it’s only the beginning of what will probably be available in the com-
ing years, as formats and specifications stabilize.

3.5 Summary
Streaming audio and video content may be the core of what you want to accomplish
with your website or HTML application, or it may add the final touch of interactivity,
interest, and professionalism to your site. Regardless of your reasons for using the
<audio> and <video> tags, their current compatibility levels point new applications
toward a plugin-free experience, with Flash or Silverlight only being necessary as a fall-
back until the older browsers die off. The sample application in this chapter gives you
a solid foundation to continue building upon. Finding a specific portion of the con-
tent using the seek function and monitoring the caching process with various events
are some possible directions you could look in for additional studies.

Figure 3.8 The appcmd utility program can add the proper content types to the local IIS
Express instance. This setting will then work across all applications that use IIS Express
on the local machine.
www.it-ebooks.info

http://www.it-ebooks.info/

86 CHAPTER 3 Audio and video controls
 In the next chapter, we’ll dig into the basics of drawing on the web using the
HTML5 Canvas API. This will be a deeper topic on the JavaScript front, and the project
in that chapter should be a really fun way to start learning the correlation between
markup and code.

3.6 Complete code listings
The following code is provided to let you check your work or build the project from
scratch if you haven’t been building along.

@{ ViewBag.Title = "Players"; }
<div id="content">
 <audio id="audio">
 <source src="@Url.Content("~/Content/gwt.ogg")" type="audio/ogg" >
 <source src="@Url.Content("~/Content/gwt.mp3")" type="audio/mp3" >
 </audio>
 <video id="video">
 <source src="@Url.Content("~/Content/lego.ogv")" type="video/ogg" >
 <source src="@Url.Content("~/Content/lego.mp4")" type="video/mp4" >
 </video>
 <div id="video-controls">
 Video:
 <button class="play">play</button>

 </div>
 <div id="audio-controls">
 Audio:
 <button class="play">play</button>

 <div class="secondary-controls">
 Volume:
 <button id="volume-up">+</button>
 <button id="volume-down">-</button>
 <button id="mute">mute</button>

 </div>
 </div>
 <div id="avfooter">
 <p>Video copyright 2012,
 Ian Gilman.</p>
 <p>Audio by
 Gennaro's Wax Trio, copyright 2008, BMI, BLZDub Music;
 used by permission.</p>
 </div>
</div>
<script src="@Url.Content("~/Scripts/main.js")"
 type="text/javascript"></script>

Listing 3.8 The complete Players.cshtml code
www.it-ebooks.info

http://www.it-ebooks.info/

87Complete code listings
$(document).ready(function () {
 Main.init();
});

window.Main = {

 //-----------------
 init: function () {
 var self = this;

 if (!Modernizr.audio) {
 alert("Audio tag not supported.");
 return;
 }

 if (!Modernizr.video) {
 alert("Video tag not supported.");
 }

 this.video = this.initMedia("video");
 this.audio = this.initMedia("audio");

 this.$volume = $("#volume");

 this.$volumeUp = $("#volume-up")
 .click(function () {
 self.audio.media.muted = false;
 self.audio.media.volume += 0.1;
 });

 this.$volumeDown = $("#volume-down")
 .click(function () {
 self.audio.media.muted = false;
 self.audio.media.volume -= 0.1;
 });

 this.$mute = $("#mute")
 .click(function () {
 self.audio.media.muted = !self.audio.media.muted;
 });

 this.audio.$media
 .bind("volumechange", function () {
 self.showVolume();
 });

 this.showVolume();
 },

 //-----------------
 initMedia: function (name) {
 var result = {};
 result.$media = $("#" + name);
 result.media = result.$media[0];
 result.$controls = $("#" + name + "-controls");
 result.$play = result.$controls.find(".play");
 result.$time = result.$controls.find(".time");

Listing 3.9 The complete code listing for main.js
www.it-ebooks.info

http://www.it-ebooks.info/

88 CHAPTER 3 Audio and video controls
 result.$play.click(function () {
 if (result.media.paused)
 result.media.play();
 else
 result.media.pause();
 });

 result.$media
 .bind("playing", function () {
 result.$play.text("pause");
 })
 .bind("pause", function () {
 result.$play.text("play");
 })
 .bind("ended", function () {
 result.media.play();
 })
 .bind("timeupdate", function () {
 var prettyTime =
 Math.round(result.media.currentTime * 100) / 100;
 result.$time.text("time: " + prettyTime + "s");
 });

 result.media.play();
 return result;
 },

 //-----------------
 showVolume: function () {
 var prettyVolume =
 Math.round(this.audio.media.volume * 10) / 10;
 if (this.audio.media.muted) {
 prettyVolume = 0;
 this.$mute.text("unmute");
 }
 else {
 this.$mute.text("mute");
 }
 this.$volume.text(prettyVolume);
 }
};

/*--- audio/video ----*/

#content {
 width: 100%;
 max-width: 400px;
 margin: 10px auto;
}

#video {
 width: 400px;
 height: 400px;
}

Listing 3.10 Styles added to site.css to support audio/video formatting
www.it-ebooks.info

http://www.it-ebooks.info/

89Complete code listings
#audio {
 display: block;
}

button {
 padding: 5px;
}

#video-controls {
 margin-top: 25px;
}

#audio-controls {
 margin-top: 25px;
}

.secondary-controls {
 margin-top: 10px;
}

#avfooter {
 margin-top: 50px;
 font-size: 12px;
 color: #888;
}

#avfooter a,
#avfooter a:visited {
 color: #555;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Canvas
The Canvas API is new in HTML5, and it provides a means of drawing bitmap-based
images inside the browser. Canvas has received a lot of media and developer atten-
tion because it is, in fact, a blank canvas upon which anyone can draw practically
any visual element. In addition, because the canvas element is an HTML element
like any other, it can be addressed in JavaScript as a regular element and participate
in page flow and styling. Games are currently the most common use for Canvas, but
any kind of image editing or drawing program could also be built using this API.

 Ensuring cohesion between your page and a canvas element isn’t exactly a stroll
down Easy Street though. Drawing on the canvas is only possible using JavaScript,
and canvas styling is only available for the entire element, not the pixels you draw
onto it, which means that your meticulously designed CSS will have no effect on
presentation inside a <canvas> element. In other words, if your site uses Canvas to

This chapter covers
■ Building graphics into web applications using

HTML Canvas
■ Working with text, lines, shapes, and images

on Canvas
■ Animating elements in Canvas
90

www.it-ebooks.info

http://www.it-ebooks.info/

91Canvas
present islands of content rather than as a full-screen presentation tool, you’ll have to
replicate the styling you created in CSS using JavaScript.

 Even with these minor setbacks, though, the speed of graphics manipulation and
code execution in modern browsers has opened up new doors to those intrepid souls
who have started developing games using the HTML5 Canvas. This is an area that’s
bound to grow very rapidly.

 But Canvas isn’t just for games. With Canvas you can also build graphing solutions,
edit and compose images, and build powerful visualizations and animations to provide

Browser support

Chapter 4 map
Canvas is a drawing surface that can be used to create and display bitmap images
inside the browser. JavaScript is used to manipulate aspects of the drawing and can
also be used to retrieve data about the current image. Forms in a canvas can be
described using shapes, lines, pixels, or external image files.

Sizing a canvas element page 94

Drawing with a 2d context object page 96

Ordering drawing operations with canvas page 98

Saving the context of a canvas drawing operation page 98

Using fillStyle when drawing page 98

Filling a rectangle with a color page 100

Drawing lines page 101

Drawing images on a canvas page 103

Rotating and translating the canvas drawing surface page 103

Using context.save and context.restore page 103

Working with individual pixels page 105

Using getImageData and putImageData page 105

Adding text to a canvas page 107

Drawing curves with context.arc page 107

Clipping areas of the canvas page 107
www.it-ebooks.info

http://www.it-ebooks.info/

92 CHAPTER 4 Canvas
punch and clarity to business data. The sample application you’ll build in this chap-
ter—an animated browser screensaver—will consist of a single canvas on the page and
a single JavaScript library to do the drawing. As you build it, you’ll learn what you
need to know to start working with Canvas, such as the following:

■ The Canvas drawing context—what it is and how to reference it
■ How to draw lines, shapes, and pixels using the Canvas coordinate system
■ How to move from one position to another when drawing objects
■ How to manipulate images on the client using Canvas
■ How to write text on the canvas
■ How to animate and add special effects to your creations

When you’re done, you’ll have an animated browser screen-
saver, a glimpse of which appears in figure 4.1, that will
amaze and thrill your friends!

 It will have a number of effects that old-school Win-
dows users will remember from the days of ribbon and
spotlight screensavers, but with the new bells and whistles
that Canvas enables. You’ll also have ample knowledge to
start building your own Canvas-based HTML5 applications
from scratch.

 First up, let’s lay the foundation for the application
and look at the basics you’ll need to get any Canvas appli-
cation up and running in no time.

4.1 Canvas quick-start
The fundamental thing that you need to know about working with Canvas in a web
page is that it’s just what its name implies: a drawing canvas. You can draw whatever
you like on it using the various helpers in the API, and you can overwrite bits and
pieces as often as necessary. You draw using pixel coordinates and by telling the API
what kind of drawing to perform (such as lines, shapes, and gradients). Once a pixel is
drawn on the canvas, it’s there until you make a change that places another pixel in
that same location.

 In this section, you’ll do the following:

■ Create the basic site structure for the sample application
■ Learn how to use the <canvas> tag
■ Assign a size to the canvas
■ Create the stylesheet for the sample application
■ Learn to set and use the 2d context object
■ Create the core of the sample Canvas application

We’ll start by creating the site.

Figure 4.1 The finished
sample Canvas application
with animation, image, and
text effects
www.it-ebooks.info

http://www.it-ebooks.info/

93Canvas quick-start

alled
uery
zr.
4.1.1 Creating the basic Canvas site structure

To get started, you’ll need to create an ASP.NET MVC project in Visual Studio called
CanvasTest. You won’t be using any MVC functionality in the Canvas project, but you’ll
be building it in a way that demonstrates how a pure client-side HTML5 application
can live inside an MVC website. We’re doing it this way to show that Canvas can be a
completely independent part of a web application and also to present as much infor-
mation as possible about this rich API.

 Follow these steps to get the project going:

1 Select File > New > Project.
2 In the dialog box, select Web on the left side and then an ASP.NET MVC Web

application using whatever version of the ASP.NET MVC template you currently
have installed.

3 Name your project CanvasTest.
4 Select Internet Application, Razor View engine, and HTML5 semantic markup.
5 Don’t select Create a Unit Test Project, and click OK.

Once inside the new project, open the Home subfolder in the Views project folder
and double-click the Index.cshtml view. Replace the entire contents with the simple
markup in the next listing.

@{ Layout = null;}
<!DOCTYPE html>
<html>
 <head>
 <title>Canvas Demo</title>
 <link href="@Url.Content("~/Content/main.css")"
 rel="stylesheet" type="text/css" />
 <script src="@Url.Content("~/Scripts/jquery-1.7.2.min.js")"
 type="text/javascript"></script>
 <script src="@Url.Content("~/Scripts/modernizr-2.5.3.js")"
 type="text/javascript"></script>
 <script src="@Url.Content("~/Scripts/main.js")"
 type="text/javascript"></script>
 </head>
 <body>
 <canvas id="main"></canvas>
 </body>
</html>

You’ll add the JavaScript file and the stylesheet soon. Right now you need to focus on
the <canvas> tag itself. This element must consist of opening and closing tags; it can’t
be self-closing. Therefore, the simplest canvas element on a page must be this:

<canvas></canvas>

Separate opening and closing tags maintain backward compatibility. If a particular
browser doesn’t support Canvas, the contents of the <canvas> tag will display as the

Listing 4.1 The new Home page in your application will have only scripts and a canvas

In ASP.NET MVC assigning Layout
to null equates to simple page
with no master page layout.

Stylesheet will
add color,
margins, and
other styles to
elements on
current page.

Includes inst
versions of jQ
and Moderni

Application library you’ll
be filling in shortly.

Only content presentation element
on this page is single canvas you’ll
style to take up full page.
www.it-ebooks.info

http://www.it-ebooks.info/

94 CHAPTER 4 Canvas
fallback presentation. If Canvas support is available, the contents inside the <canvas>
tag won’t display.

4.1.2 Assigning size to the canvas

The next important point that you need to know about any canvas element is how to
assign its size. Because it’s a normal HTML element, it’s possible to assign height and
width style settings. You can also use the defined height and width properties to
resize the canvas, like this:

var el = document.getElementById("myCanvas");
el.width = 200;
el.height = 250;

Note that either method—CSS height and width or direct properties (canvas.height
and canvas.width)—will change the size of the canvas, but with completely different
results. Figure 4.2 shows the differences between changing height and width on the
element versus using CSS styles.

Core API

When resized using canvas.height

and canvas.width, the size changes but

the content is reset to the original (empty)

drawing surface.

Start with a

simple canvas

containing a

rectangle

50 x 50 pixels.

When resized using CSS styles, the size

changes and the contents remain but the

content is stretched to the new size instead

of being reset to an empty drawing surface.

canvas.height = 200

canvas.width = 200

CSS style {

Height: 200px

Width: 200px

Figure 4.2 Resizing the canvas element on the page can either clear the content
or force it to stretch, often blurring or distorting the image. The best way to resize
is to use the canvas properties and redraw the image after resizing is completed.
www.it-ebooks.info

http://www.it-ebooks.info/

95Canvas quick-start
Figure 4.2 also illustrates how important it is to understand where and when your can-
vas element resizes. If you want your drawing to automatically stretch as the canvas
grows, use the CSS height and width settings, but remember that this will also intro-
duce the blurry effect. If you have the image data available to redraw at the new canvas
size, assigning the actual height and width properties directly on the canvas will pro-
duce better results.

 Canvas will participate in the content flow of a page as an inline element, mean-
ing it fills only as much space as it needs without forcing a new line before and after
itself. The content that you draw inside the canvas, though, will either scale or be
cleared, depending upon the kind of resize you perform.

WARNING The browser won’t honor assignment of the direct height and
width properties if CSS height or width style properties are applied. The result
of that assignment would be a cleared canvas sized to the CSS style specification.

4.1.3 Creating the stylesheet for the sample application

Now it’s time to create the stylesheet that you’ll be using for the sample application.
These styles will be used to ensure that the canvas takes up the full browser display
area to enhance the screensaver effect:

1 Create a new stylesheet called main.css in the Content folder of the application.
2 Add the following styles:

* {
 margin: 0; padding: 0;
}

html, body {
 position: absolute;
 left: 0; top: 0; right: 0; bottom: 0;
 overflow: hidden; font-family: sans-serif;
}

#main {
 position: absolute; width: 100%; height: 100%;
}

These styles will ensure that the <canvas> and <body> elements take up the
entire browser space even when resized.

With the structure set up, you can run the application and see a blank page. Inspect
the source for that page, and you’ll see your canvas element.

 The client application for this project is a JavaScript library that will draw and ani-
mate all of the content in the finished product. Before you can start to build that
application, though, you need to understand the object at the core of the Canvas API,
the 2d context.
www.it-ebooks.info

http://www.it-ebooks.info/

96 CHAPTER 4 Canvas
4.1.4 Drawing with the 2d context object

Before you dive into the code of the Canvas application, you need to understand how
to get a JavaScript reference to the drawing API, the actual object that you must use to
execute drawing operations with JavaScript. This is a two-step process:

1 Get a reference to the <canvas> element on your page.
2 Find the <canvas> element’s context object and create a variable reference to it.

The context object is the actual API that you use to execute drawing functions:

var canv = document.getElementById("myCanvas");
var ctx = canv.getContext("2d");

Both of these steps will happen together in nearly every piece of code you see because
once you reference your <canvas> element, you have very limited options for what
you can do. With the exception of setting height or width, you must get a reference
to the context object before any drawing operations can begin.

 Getting a reference to the context with jQuery is just as simple, as long as you
remember that you’re working with wrapped sets and not individual elements:

var elemCanvas = $("#myCanvas");
var context = elemCanvas[0].getContext("2d");

This snippet gets a jQuery wrapped set corresponding to the <canvas> element and
then uses the first object in the set to get the drawing API reference, which is the hook
used for all the drawing API methods.

 The only Canvas functions that aren’t available from the context are the previ-
ously mentioned height and width property settings. All the rest of the functionality
you’ll use executes via the context.

4.1.5 Building the foundation object of the Canvas application

Armed with an understanding of what the context object is, its purpose, and how to
get a reference to it, you’re now ready to start working on the sample application.

 In your solution, right-click in the Scripts folder and select Add > New Item >
jScript (or JavaScript) file. Name the file main.js and open it.

What about 3D?
The standard means of operating on an HTML5 canvas element in code is by means
of the 2d context object. This would seem to imply that a 3d context also exists, or
at least is in the works. In fact, the 2d context was specified for just that reason.

Since its release though, browser vendors have worked toward the adoption of
WebGL, a graphics API specifically for 3D development. WebGL currently has narrow
(but growing) support, but we won’t cover it as part of the HTML5 specification.

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

97Creating and manipulating shapes, lines, images, and text

al
hat

nd
.

NOTE We’ll be using the document.ready event handler to contain the code
for the Canvas application. Later chapters will use a separate object to handle
execution logic, but that’s unnecessary here because there’s no direct user
interaction after the page loads.

The code in the following listing, which resizes the canvas and adds placeholders for
later work, goes into the main.js file. If you prefer to read the entire code listing in
one shot, it’s included at the end of this chapter.

$(document).ready(function () {
 if (!Modernizr.canvas) {
 alert("This browser does not support the canvas tag.");
 return;
 }
 var $canvas = $("#main");
 var context = $canvas[0].getContext("2d");
 var w;
 var h;
 var maxVelocity = 10;
 var points = [];
 var radians = 0;
 var segments = 3;
 var pointsCount = 15;

 // Image preparation placeholder

 function resize() {
 w = $canvas.width();
 h = $canvas.height();
 $canvas.attr("width", w);
 $canvas.attr("height", h);
 // Resize function body placeholder
 }
 $(window).resize(resize);
 resize();

 // Randomizer placeholder

 function frame() {
 // Frame function body placeholder
 }
 frame();
});

That’s all the code you need to get started. The next step is to draw simple elements
onto the canvas surface.

4.2 Creating and manipulating shapes, lines,
images, and text
The Canvas API gives you the ability to draw simple lines, rectangles, curves, and arcs that
can be compiled into any kind of drawing you like. These can be used for anything from

Listing 4.2 A beginning ready handler in the main.js file

Use Modernizr to check
for canvas compatibility.

Set up loc
variables t
reference
canvas
element a
2d contextHeight and width elements are

used for drawing on surface.

Velocity, points,
and radians are
variables used to
draw lines and
change directions.

Resize function is used to
re-initialize local variables
when window size changes.

Bind document’s resize event to resize
function and immediately call it.

Real work of drawing will be
done in frame function.
www.it-ebooks.info

http://www.it-ebooks.info/

98 CHAPTER 4 Canvas
cartoons to complex business intelligence graphs. You can also paint images and text
onto the canvas and manipulate the rendered drawing pixel-by-pixel.

 In this section, you’ll build up the sample application’s logic while doing
the following:

■ Learn how to draw on a canvas
■ Add shapes, lines and images
■ Manipulate pixels
■ Add text

We’ll start with the basics of drawing.

4.2.1 Understanding the basic drawing process

Once you have a reference to your canvas context object, you’re ready to start drawing.
 The first thing to note about drawing on the canvas is that you always need at least

x and y coordinates. These numeric values are based on pixels measured from the top
left of the canvas, as shown in figure 4.3.

jQuery selectors, wrapped sets, and chaining
You can write selectors in jQuery using CSS syntax. Any object or group of objects you
would find and style with a CSS element, class, or ID-selector will also return a set
of jQuery objects using the $(selector) function. Proper use of selectors is key to
the incredible amount of work you can do with just a tiny bit of code using jQuery.

A wrapped set is the object returned by a jQuery selector. Wrapped sets can contain
no objects, a single object, or a collection of objects. To determine how many objects
a selector has returned, you can check the length property of the wrapped set. For
example, $("div").length will return the total number of <div> elements on the
current page.

Once you have a wrapped set, you can start to execute functions on it. In jQuery, each
function returns the result of the work performed by that function, so if you want to
remove all <div> elements on your page that have the class name highlighted, you
could do this:

$("div.highlight").remove();

The result returned from the remove() function is a wrapped set of the elements just
removed from the current page. You could then reinsert those elements in another
location on the page using the appendTo() function, as follows:

$("div.highlight").remove().appendTo("div.hiddenElements");

Take care and test thoroughly when editing styles and when removing and inserting
elements using jQuery’s selector syntax and function chaining. These operations are
deceptively simple and extremely powerful.
www.it-ebooks.info

http://www.it-ebooks.info/

99Creating and manipulating shapes, lines, images, and text
THE ORDER OF DRAWING OPERATIONS MATTERS

Keep in mind that when drawing, the order of your drawing operations matters. For
instance, consider the following code, which draws a green square on the canvas ele-
ment. The actual drawing takes place when the fill function executes:

var canvas = document.getElementById("myCanvas");
var ctx = canvas.getContext("2d");
ctx.rect(20,20,50,50); // rect(startX, startY, width, height)
ctx.fillStyle = "rgb(0, 255, 0)"; // Pure green
ctx.fill();

Now look at the following slightly modified example, which creates a black (default
color) square on the canvas, because the fillStyle property is assigned after the
fill function executes:

var canvas = document.getElementById("myCanvas");
var ctx = canvas.getContext("2d");
ctx.rect(20,20,50,50);
ctx.fill();
ctx.fillStyle = "rgb(0, 255, 0)";

As you can see, a slight difference in the sequence produces very different results.

SAVING THE CURRENT STATE OF THE DRAWING CONTEXT

The next basic drawing operations are the save and restore functions. These save
the current state of the drawing context for properties related to lines, fills, text, and
shadows, or restore it back to its previously saved state.

 For instance, take a look at figure 4.4, generated by the code in listing 4.3. It shows
the progression when you first fill a rectangle with the default color of black and then
save the context. Then you change the fillStyle to green and create another rectan-
gle. Finally, you restore the context, which returns the fillcolor to the default of
black and draw a third rectangle.

0 x axis

Measured in pixels

... n

...
 n

y
 a

xi
s

0

Figure 4.3 Canvas x and y
coordinates are always measured
as the number of pixels from the
top-left corner.

Core API

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 4 Canvas

r
Although you don’t need to put the code in the next listing into your application, you
should look at the order of operations carefully.

var canvas = document.getElementById("myCanvas");
var ctx = canvas.getContext("2d");
ctx.fillRect(10, 10, 40, 40);
ctx.save();
ctx.fillStyle = "rgb(0, 255, 0)";
ctx.fillRect(20, 20, 40, 40);
ctx.restore();
ctx.fillRect(30, 30, 40, 40);

4.2.2 Adding shapes

With that background knowledge under your belt, you’re now ready for more building.
 First, you’ll draw a rectangle over the entire canvas drawing surface. You’ve already

created a few sample rectangles, so this will be nothing new. The rectangle will be
white and 80 percent transparent, which has the effect of causing each previous frame
to fade away.

 To change how frames fade away, you’ll change the opacity from 0.2 to any other
value and watch what happens. You could also change the position of the rectangle to
create a residual effect around the border of the canvas.

 You’ll use context.fillStyle and context.fillRect to draw the shapes.

CONTEXT.FILLSTYLE PROPERTY

The fillStyle property of context will set the fill color of all shape elements when
they’re drawn and, when set, will remain the same until any of the following opera-
tions occurs:

■ The <canvas> element size changes, resulting in the strokeStyle returning to
the default value.

Listing 4.3 Getting a reference to the drawing context and using it

Step 2 fills another rectangle

with a newly assigned color

after the context is saved.

Step 1 fills a rectangle

with the default color.

Step 3 restores the context

so the default color has returned.

Figure 4.4 Use save and restore operations to manage
all drawing properties at once.

First rectangle is
drawn using default
fill color of black.

Save
operation
saves value
into state fo
canvas.

Changing fillStyle
property assigns
green as fill
color for all new
pixels drawn.

Restore operation
reverts canvas
back to original
color.

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

101Creating and manipulating shapes, lines, images, and text
■ The context.restore method is called, resulting in the strokeStyle returning
to the previously saved value, or the default value if no previous value was saved.

■ The strokeStyle property changes, overwriting the value.

CONTEXT.FILLRECT FUNCTION

The fillRect function performs the same function as executing a rect function fol-
lowed by fill. The fill operation happens immediately, making this the fastest short-
cut method for filling an area with color.

CREATING THE RECTANGLE

To add a rectangle, place the following code just before the frame function body
placeholder in the JavaScript file. This will create a rectangle that covers the entire
drawing area of the canvas, starting at position 0,0. The rectangle will be 80 percent
transparent so it will effectively fade everything on the canvas by 20 percent:

// ___ clear
context.fillStyle = "rgba(255, 255, 255, 0.8)";
context.fillRect(0, 0, w, h);

Note the use of a fillStyle that’s actually a stringified CSS function. This is perfectly
acceptable when using the 2d context as long as the client browser supports the spe-
cific function used. If the browser doesn’t support the rgba function but does support
Canvas, the fillStyle setting will remain unchanged.

4.2.3 Adding lines

Now, set up a points array as a local variable in the ready handler and add some val-
ues to it. This array draws the flying ribbons effect in each frame execution.

 A simple loop will get the work done. Replace the randomizer comment with
this code:

for (var i = 0; i < pointsCount; i++) {
 points.push({
 x: Math.random() * w,
 y: Math.random() * h,
 vx: (Math.random() * maxVelocity * 2) - maxVelocity,
 vy: (Math.random() * maxVelocity * 2) - maxVelocity
 });
}

The effect we’re after is displayed in figure 4.5: one line with a joint in the middle,
randomly bouncing around the screen. Note that the lines won’t actually move until
you get to the animation section.

 Math.random is used extensively here to make the line length and direction
changes unpredictable and pleasant to watch.

 But first you need to draw the lines. To do that, add the code in the next listing to
the area above the frame function body placeholder.

Core API

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 4 Canvas
// ___ lines
context.strokeStyle = "#0f0";
context.beginPath();
context.moveTo(points[0].x, points[0].y);
for (i = 1; i < segments; i++) {
 context.lineTo(points[i].x, points[i].y);
}
context.stroke();

For just a few lines of code, there’s quite a bit going on here. You assign a context
property, strokeStyle, and then call four different methods to draw the lines on the
canvas surface:

context.strokeStyle = "#0f0";

The strokeStyle property uses a CSS-style color string that can also include RGB and
RGBA functions. When set, the same rules apply as when setting the fillStyle property.

 The beginPath function will start the line drawing process on the drawing surface:

context.beginPath();

When you state that you’re drawing a path, the context will assemble the segments created
by calling the path methods into a single line. Each segment is also known as a subpath.

 You have a lot of options after you start a path; you can draw straight lines, create
simple or complex curves, and join lines together. All are operations that start with a
beginPath statement. When you call beginPath, you’re explicitly saying to the context
that you want to start a new set of subpaths. You may also want to end a current path
by calling either the endPath or stroke function or by restoring the context to its pre-
vious state (see the discussion of context.restore in section 4.2.1).

Listing 4.4 Simple line drawing process with the context object

Figure 4.5 By using the
Math.random function to generate
a list of points, you can generate a
bouncing line effect. This same list of
points will be used to make other
items float around the screen shortly.

Set color of current
context’s line.

Begin line-
drawing
process.

Set first position
of context’s line.

Create line from
first position to
next position.

Draw all lines in context cache.
www.it-ebooks.info

http://www.it-ebooks.info/

103Creating and manipulating shapes, lines, images, and text

ject by
TML

e

iable.
 The moveTo function sets the current starting position on the drawing surface for
the next line:

context.moveTo(points[0].x, points[0].y);

If you call this function multiple times with no drawing in between calls, only the last
call is used. Remember, drawing is a serial (or linear) process.

 The lineTo function tells the context API to take the last position (either from a
previous line or from the last moveTo call) and draw a line from it to the new position:

context.lineTo(points[a].x, points[a].y);

Note that lineTo has the same concatenation effect as arcTo, quadraticCurveTo, and
bezierCurveTo. The result is a line from the last point to the one passed in the cur-
rent method.

 The stroke function is very simple:

context.stroke();

Whatever is currently in the context’s list of subpaths will draw on the surface, and the
list of subpaths is cleared. The stroke method uses the current context’s properties to
draw the line.

4.2.4 Adding images

We mentioned that it’s possible to work with images in
the canvas element. In fact, everything that you draw
on the canvas is an image. But can you also import exter-
nal images like PNGs and JPEGs? Sure! Not only is it pos-
sible, it’s as simple as getting an image reference and
drawing it on your canvas.

 Here you’ll add two identical images to the canvas but
edit the colors on one so that it appears to be a separate
image. Figure 4.6 shows what you’ll end up with after you
work through this section and the next.

 In the sample application, you can include any .png or
.jpg file you like—for our purposes, we’ll grab a simple smi-
ley face off the internet. Place the image file in the Content folder of the MVC application.
Now, in the main.js file, add the code from the following listing in place of the image
preparation placeholder text, adjusting the image filename for the image you’re using.

var $image = $("")
 .hide()
 .appendTo("body");

Listing 4.5 Adding an image to the DOM and getting a jQuery reference to it

Figure 4.6 The images that
you’ll load are the same, but
you’ll use the canvas API to
edit the colors of one before
adding it to the display.

Create new
element ob
passing in H
string. Stor
reference in
$image var

Hide element
so it doesn’t
appear on
screen.

Append it to current document
body. This allows you to get
image’s width and height.
www.it-ebooks.info

http://www.it-ebooks.info/

104 CHAPTER 4 Canvas

wing
r of
age.

vas
ontext
s)
umber
.

Res
dra

conte
o

elements
are d

ap
normally

rota
Now that you have an image in your document, you need to draw it onto the drawing
surface. Place the code in listing 4.6 above the frame function placeholder. This part
of your code does much more than just place an image on the canvas, as you can see
from the resulting screenshot in figure 4.6. This code will rotate the image and then
draw it in the new position.

// ___ image
context.save();
context.translate(points[3].x, points[3].y);
context.rotate(radians);
context.drawImage($image[0],
 -($image.width())/2,-($image.height())/2);
context.restore();

Using the drawImage method, you’ve added an image to the drawing surface. Once
you implement a timer to simulate animation, you’ll see the image moving and rotat-
ing. You’ll also have to take some steps to mitigate the changes that you make to your
context as you implement the rotation effect.

TIP If you find that your image isn’t drawing on the canvas, the most likely
cause is that the image hasn’t been completely loaded before calling draw-
Image on the context object. The easiest solution is to add an anonymous
handler function to the image.onload event and call drawImage in that func-
tion. Alternatively, if the image is already part of the DOM, you can wait for
the jQuery ready event to fire. In our code, we add the image to the DOM by
calling the appendTo function and then draw it onto the canvas later.

THE CONTEXT.TRANSLATE AND CONTEXT.ROTATE FUNCTIONS

Note that when you drew the image onto the canvas, you assigned coordinate values
using the translate function and then you used rotate to rotate the image using the
local radians variable:

context.translate(points[3].x, points[3].y);
context.rotate(radians);

This brings us to an important concept in the drawing surface: The origin point of the
canvas is by default at position 0,0, and that’s the reference point for the next set of
function or property calls on the canvas. Calling the translate function with any
value other than 0,0 will update the origin position of the drawing surface and any-
thing that uses that setting (like the rotate function) will use the new value.

 The rotate function rotates the drawing surface a specific number of radians, where
a single complete circle is (2 * Math.PI). Anything drawn on the surface from the point
where rotate is called will be tilted at the new angle until the rotation value is changed
by either calling rotate again or by restoring the context to its previous setting.

Listing 4.6 Drawing an image onto a canvas

Core API

Save current drawing
context to return to it later.

Translate origin point of dra
on drawing surface to cente
where you want to place im

Rotate can
drawing c
(not canva
specified n
of radians

Draw image using center
point of image as center
point for drawing.

tore
wing
xt so
ther
 that
rawn
pear
 (not
ted).

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

105Creating and manipulating shapes, lines, images, and text
THE CONTEXT.SAVE AND CONTEXT.RESTORE FUNCTIONS

We discussed the save and restore operations earlier, but we only hinted at the stack-
ing nature of context properties.

 The save operation on the drawing context will take all the
current properties and store them in a stack for the current
context object. Think of the context.save function as per-
forming a push operation on an array of context settings. The
restore function, on the other hand, will pop the last item
from the stack of settings and restore the properties as they
existed previously. An example will make this clearer.

 Figure 4.7 shows the result of creating a square, changing
its color incrementally, and saving at each increment. Then, as
the code reverses the process and calls restore iteratively, the
squares gradually return to the original color.

 The code that does it is shown in the next listing.

var canvas = document.getElementById("myCanvas");
var ctx = canvas.getContext("2d");
var d = 5; // distance
var c = 0; // color
for (var i = 0; i < 5; i++) {
 ctx.fillRect(d, d, 40, 40);
 c = (d * 5);
 ctx.fillStyle =
 "rgb(" + c + "," + c + "," + c + ")";
 ctx.save();
 d += 10;
}
for (var t = 0; t < 5; t++) {
 ctx.restore();
 ctx.fillRect(d, d, 40, 40);
 d += 10;
}

4.2.5 Manipulating pixels
When working with bitmapped images, it’s possible to use the Canvas API to manipu-
late the color of individual pixels in a referenced image.

 To do so, the first thing you need to do is add two new variables to the JavaScript
file, both at the top of the declaration area:

var $imageCanvas = null;
var imageContext = null;

The first of these will hold a new canvas element that you create in memory to do the
pixel manipulation, and the second a context object for that canvas. You’ll modify
the pixel colors in the canvas element and then draw that new canvas onto the exist-
ing canvas using the same drawImage function you used earlier.

Listing 4.7 Save and restore functions making use of the settings stack

Core API

Figure 4.7 The result of
layering multiple layers
of fillStyle and then
restoring them one
at a time

Save current
fillStyle property

Restore previous
fillStyle property

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

106 CHAPTER 4 Canvas

on it.

rray
l
alues.

A
ne
25

ally.
 The timing of this is important. Since we’re sure that you, like us, would prefer not
to load the same image twice, you’ll just patch into the load event of the image ele-
ment and make the variable assignments there. In order to do that, take the full
assignment of the image file out of the element creation tag and place it in a jQuery
attr function. The attr function takes a property name and a property value and
makes the assignment.

 In short, you need to remove the original image assignment from your JavaScript
file and replace it with the following code.

var $image = $("")
.load(function() {
 $imageCanvas = $("<canvas>")
 .width($image.width())
 .height($image.height());

 imageContext = $imageCanvas[0].getContext("2d");
 imageContext.drawImage($image[0], 0, 0);
 try {
 var imageData = imageContext.getImageData(
 0, 0, $imageCanvas.width(),
 $imageCanvas.height());
 for (var i = 0; i < imageData.data.length; i++) {
 if (i % 4 != 3)
 imageData.data[i] = 255 - imageData.data[i];
 }
 imageContext.putImageData(imageData, 0, 0);
 }
 catch(e) {
 $("<div class='error'>Note: Direct manipulation of
 pixels loaded from image files isn't allowed when
 running locally</div>")
 .appendTo("body");
 }
})
.attr("src", "Content/smiley.png")
.hide()
.appendTo("body");

Because you’re only loading the image once for the entire application process, this
code will execute exactly once, setting up the $imageContext variable to be ready for
drawing onto the visible canvas. You’ll do this after the original image element is
drawn, using the next point in your positions array inside the frame function:

// ___ imageCanvas
if ($imageCanvas) {
 context.drawImage($imageCanvas[0],
 points[6].x - ($imageCanvas.width() / 2),
 points[6].y - ($imageCanvas.height() / 2));
}

Listing 4.8 Manipulating pixels directly using the Canvas API

Create new, empty canvas element
using size of current image element.

Get new canvas’s context
reference and place image

Get array of image
pixels from new
context object.

Walk entire a
of image pixe
component v

Check to see
if element is

in red, green,
or blue

position for
each pixel.

ssign pixel and
w color in 0 to
5 color range.

Put image data array back
into original canvas,
overwriting original pixels.

If operation fails,
assume it’s because
you’re executing loc

Assign actual image src value to
force load property to execute.
www.it-ebooks.info

http://www.it-ebooks.info/

107Creating and manipulating shapes, lines, images, and text
THE CONTEXT.GETIMAGEDATA AND CONTEXT.PUTIMAGEDATA FUNCTIONS

In listing 4.8 you called two image data functions on the context object that let you
find a specific piece of image data and then put it back onto the canvas: getImageData
and putImageData.

 The getImageData function takes as parameters the starting position and size of
the rectangle measured in pixels to retrieve from a canvas drawing context:

var imgData = context.getImageData(0, 0, width, height);

The returned data object contains an array where every group of four values contains
the RGBA values for one pixel. Figure 4.8 makes the arrangement of values in the img-
Data.data property clear.

 The putImageData function uses the imgData object from getImageData and
places it on the drawing surface in the starting position defined in the parameters
(after you’ve edited the pixels, of course):

context.putImageData(imgData, 0, 0);

By using these two methods, you could do some other interesting things, like offset-
ting the entire drawing surface by 20 pixels, inverting it, or rotating it. Let your imagi-
nation be your guide!

4.2.6 Adding text

We said earlier that you’d be applying text to the canvas. The reality is that you must
draw text on the canvas, not write it. The process for doing this isn’t as simple or flexi-
ble as you might want, but with a little work you can perform basic operations. You can
set the font, color, and position of the text, but you won’t be able to wrap or edit the
text after it’s drawn. This means there’s a limit to the amount of text you can write on
the drawing surface, but it can still be handy.

 Figure 4.9 shows an example of how text will appear when rendered onto the screen.

Core API

data[0]

Red
(0-255

data[1]

Green
(0-255)

data[2]

Blue
(0-255)

data[3]

Alpha
(0-255)

data[4]

Red
(0-255)

data[5]

Red
(0-255)

data[6]

Blue
(0-255)

data[7]

Alpha
(0-255)

data[8]

Red
(0-255)

data[9]

Green
(0-255)

data[10]

Blue
(0-255)

data[11]

Alpha
(0-255

data[...]

...

P1 P2 P3 P4

...

...

Figure 4.8 The ImageData.data property describes the component colors and transparency of each
pixel in the captured area of the drawing surface.
www.it-ebooks.info

http://www.it-ebooks.info/

108 CHAPTER 4 Canvas
 To draw text, you’ll use the context.fillText function,
which adds text at the starting point provided. The text imme-
diately draws onto the canvas, honoring the current properties
for fill, font, and text alignment. Note that the text is either
left-aligned, right-aligned, or centered on the insertion point
relative to the current context origin; it’s not based on any
edge of the actual drawing surface.

 In the sample application, you’ll need to start by defining a
local variable to contain the text. Then you’ll set the fill-
Style property to the color you want the text to be and call
the fillText function to draw it onto the canvas, starting at the coordinates passed in.

 To do this, add the following code snippet in the main.js file, immediately after the
code that implements the imageCanvas object:

// ___ text
var text = "HTML5 for .NET Developers!";
context.fillStyle = "#00a";
context.fillText(text, points[4].x, points[4].y);

You’ve now drawn lines and shapes on the canvas surface and added images and event
text. In addition, you’ve filled shapes with various colors and gone so far as to manipu-
late individual pixels on the drawing surface. But there are a lot of other features to
the HTML5 Canvas API. Things like Bezier curves and gradients are a part of the API,
but there are also logical elements that can be added to your applications with
JavaScript, like collision detection and simulated gravity. These are helpful for games
but also for graphics-intensive simulations and training tools.

 The thing they all have in common is that they require animation. That’s what
we’ll look at next.

4.3 Animating and adding special effects
to canvas images
In this section, we’ll show you how to animate your canvas creations and how to add addi-
tional special effects that will bring polish to your presentation. First up, let’s animate!

4.3.1 Adding animation

If you run your application right now, you’ll see some lines, an image, and a bit of text
sitting there on the screen. This is probably not what you’ve come to expect of the
HTML5 <canvas> element, given all the media and community hype. What you’re
missing is the ability to move things around on the screen. Animation is a key capabil-
ity in any graphics-based application.

 Animation in the HTML5 <canvas> element is simulated, not the real movement of
a drawn object from one point on the drawing surface to another point. This is
because once you place a pixel on your screen, it’s just a pixel, regardless of the
method you used to draw it.

Figure 4.9 You’ll use
the fillText function
to add text to the canvas
and float it around the
page the same way as
you’ll do with the rest of
the visual elements.

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

109Animating and adding special effects to canvas images

Ite
thr

each p
in p
arra
loca

w
anim

ele
w
in

itera
 This doesn’t mean that animation is impossible. On the contrary, once you’ve
established the ground rules for how Canvas animation works, the process is simple
and the performance is usually fairly impressive.

 The steps involved in animating your canvas are as follows:

1 Clear the canvas of previous pixels by overwriting the surface with a blank rectangle.
2 Draw all elements using saved state variables.
3 Iterate all state variables to their next animated positions.
4 Wait a prescribed duration (frame rate).

You may have been thinking in terms of a 3D object-oriented world, but you should
really be thinking in terms of the flip-book animations you drew in the corner of your
textbooks in school. Figure 4.10 shows a simple flip-book animation of a circle flying
up at an angle, hitting the corner of the screen, and then falling back down to its orig-
inal position. Repeat this flip series for a continuous animation.

UPDATING VARIABLES AND STARTING ANIMATION

Once you have the variables to redraw your surface and the functions required to perform
the drawing operations, you just need the timer and the ability to change your variables so
they’re ready to draw the next frame. You’ll do this now by finishing up the frame function.

 The following listing gives you everything you need. Remove the frame function
body placeholder and replace it with this code.

// ___ update positions and handle bounce
for (i = 0; i < points.length; i++) {
 var p = points[i];
 p.x += p.vx;
 if (p.x < 0) {
 p.x = 0;
 p.vx *= -1;
 }
 else if (p.x > w) {
 p.x = w;
 p.vx *= -1;
 }

 p.y += p.vy;
 if (p.y < 0) {
 p.y = 0;
 p.vy *= -1;
 }
 else if (p.y > h) {
 p.y = h;
 p.vy *= -1;
 }
}
radians += 0.01;

// ___ set up the next frame
setTimeout(frame, 30);

Listing 4.9 Updating variables to perform the timed operations and starting animation

rate
ough
oint

oints
y for
tions
here
ated

ment
ill be
 next
tion.

Get single point
object from array.

Set new x coordinate
based on last location
multiplied by velocity.

If new position is too far
to left, reverse x velocity
for next iteration.

If new position is
too far to right,
reverse x velocity. Set new y coordinate

based on last location
multiplied by velocity.

If new position is
too far up, reverse
y velocity.

If new position is
too far down,
reverse y velocity.

Update rotation radians
value for image.

Set timer to re-execute frame
function in 30 milliseconds.
www.it-ebooks.info

http://www.it-ebooks.info/

110 CHAPTER 4 Canvas
1 2 3

4 5 6

7 8 9

10 11 12

Figure 4.10 A simple flip-book-style animation that moves a circle across the screen and back to its
original position using stop-motion animation. This is the essence of animating the HTML5 Canvas; you
draw pixels and then draw them again, moved a bit from their previous location, very, very quickly.
www.it-ebooks.info

http://www.it-ebooks.info/

111Animating and adding special effects to canvas images
Run your application, and you should now see something like figure 4.11.
 The screen is animated and each call to the frame function places a 20 percent

opaque rectangle over the entire drawing surface, giving a nice fade effect. You
should also notice that regardless of the browser you use, the animation effect should
perform reasonably quickly. This is because modern browsers are significantly inte-
grated with operating system graphics engines.

 This demonstration is relatively straightforward. With a quick search for “HTML5
Canvas animation,” you can find other example applications and websites that do
amazing things using this flip-book-style of animation.

4.3.2 Adding special effects with curves and clipping

There are quite a few other concepts available to you in the Canvas API, such as gradi-
ents, blurs, Bezier curves, and advanced cropping mechanisms, but we don’t have
space to cover every one, so we’ll go through just two more before wrapping up—
curves and clipping.

 Your goal here for the sample application is to give the screen a spotlight look
while continuing to animate all the other elements. To do this, you’ll create an
arc that curves all the way around into a circle and then clip the entire surface to
its circumference.

THE CONTEXT.ARC FUNCTION

The arc function will draw an arc around a center point defined by the first two
parameters passed. The third parameter is the arc’s radius in pixels from the center
point, and the fourth and fifth parameters give the start and end angles in radians.
The final parameter is a Boolean that states whether or not the arc should be drawn
clockwise (false) or counter-clockwise (true).

 This is the code you’ll use when you get to the final listing:

context.arc(points[5].x, points[5].y, spotlightRadius,
 (Math.PI/180) * 0, Math.PI/180 * 360, false);

This code creates a complete circle (360 degree arc) starting at the x and y coordinates
passed in. It may make more sense when you look at the named parameters here:

arc(x, y, radius, startAngle, endAngle, counterclockwise)

Figure 4.11 The canvas element with
operational frame timing

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

112 CHAPTER 4 Canvas
Because this function uses radians instead of degrees, you need to use the following
formula to determine the start and end angles in a 360 degree circle:

(Math.PI/180) * [degrees]

The arc function also brings to the fore the fact that any path described on the draw-
ing surface closes automatically if the start and end points are the same or if you call
the closePath function on the context. A closed path is either filled or is used as a
clipping region.

THE CONTEXT.CLIP FUNCTION

The clipping feature of the context is a little confusing until you understand how it
works and, more importantly, when it’s in effect on the drawing surface. Think of the
clipping region on your canvas as a cut-out template that you can place anywhere and
make any shape that you want. When applied to the context, anything drawn, regard-
less of where, will appear only if it falls within the boundaries of the region. The
boundary can be any path, and anything drawn is clipped while the clip is in effect.

 The process is as follows:

1 Describe a closed path (a complete arc, in this case).
2 Call context.clip().
3 Continue drawing (only pixels in the clipping region are painted).
4 Call context.restore() to remove the clipping region.

After calling clip on the context object, the next canvas operations will only draw
inside the defined clipping area.

 To build the clipping area, you need to add a new variable to the mix to track how
big your spotlight effect should be. Place the following code just after you wire up the
resize function to the window event and then call it:

var spotlightRadius = Math.min(w, h) / 2;

Now rework the beginning of the frame function so it looks like the following listing.
This code will black out the screen, draw the circle, and then clip the surface to it.

function frame() {
 context.save();
 // ___ clear
 //context.fillStyle = "rgba(255, 255, 255, 0.2)";
 //context.fillRect(0, 0, w, h);
 // ___ clear
 context.fillStyle = "rgba(0, 0, 0, 1)";
 context.fillRect(0, 0, w, h);

 // ___ spotlight
 context.beginPath();
 context.arc(points[5].x, points[5].y,
 spotlightRadius,
 (Math.PI/180) * 0, Math.PI/180 * 360, false);

Listing 4.10 Drawing arcs on the drawing surface and clipping the screen to it

Core API

Comment out old
background fill
that created the
fading effect.

Fill entire screen with
black rectangle.

Create arc path that curves
360 degrees into circle.
www.it-ebooks.info

http://www.it-ebooks.info/

113Animating and adding special effects to canvas images
 context.clip();

 context.fillStyle = "rgba(56, 56, 56, 1)";
 context.fillRect(0, 0, w, h);

 ...

All code after this listing should stay the same and, as the
spotlight is drawn, will automatically clip to the current
context’s clipping area. To return the screen back to its
preclipped drawing area, add a context.restore just
before your setTimeout method call at the end of the
frame function.

 The next time you run your application, you should
see something like figure 4.12.

 You might notice that even though the canvas ele-
ment is set to resize, no actual resize events are firing and
the canvas takes up only a small portion of the screen.
This is because you’re missing the stylesheet and a little
bit of additional reset code. You’ll connect the final dots on this and finish the appli-
cation shortly.

4.3.3 Managing canvas properties during screen resizing

The final step to completing the application is to reset various properties when the
screen resizes, as shown in the following listing. This code goes in at the end of
the resize function in main.js.

// resetting the width and height also resets
// these other properties, so we set them again
context.lineWidth = 6;
context.lineCap = "round";
context.lineJoin = "round";
context.font = "100px sans-serif";
context.textAlign = "center";
context.textBaseline = "middle";

This step is critical, because when the canvas is resized and is cleared, as described ear-
lier in the chapter, it also resets various other properties. The code in listing 4.11 puts
the properties back the way you want them whenever resize is executed.

 Running your application again will give you the same experience as before, but
with the added benefit of being able to resize your browser window. Congratulations!
Your first Canvas application is complete, and you’re well on your way to mastering
both this specific API and JavaScript development in general.

Listing 4.11 Additional resize code is required to reset various context properties

Clip drawing
surface to
arc’s path.

Fill clipped surface
with gray fill.

Figure 4.12 The canvas
operating with all features,
including the clipping region
that creates a spotlight effect
www.it-ebooks.info

http://www.it-ebooks.info/

114 CHAPTER 4 Canvas
4.4 Summary
In this chapter, you saw what the HTML5 Canvas API is and what it isn’t, and you
learned some of the basic features that you’ll need to know to paint pixels on the
drawing surface. As you’ve seen, Canvas is a great tool for creating games like Canvas
Rider, Agent 008 Ball pool, and many others. Lots of developers have built amazing
online image editing software and, by the time you read this, there are bound to be
plenty of other fantastic examples of Canvas in use.

 Canvas might be the most fun toy in the box, but there are other HTML5 toys that can
help you build better web applications, like the next API we’ll cover, which is History.

4.5 Complete code listing
The following listings will help you fill in the blanks for this chapter’s sample applica-
tion, and they’ll help you check your work.

html { width: 100%; height: 100%; }
body { width: 100%; height: 100%; }
#main { position: absolute; width: 100%; height: 100%; }

$(document).ready(function () {
 if (!Modernizr.canvas) {
 alert("This browser does not support the canvas tag.");
 return;
 }
 var $canvas = $("#main");
 var context = $canvas[0].getContext("2d");
 var $imageCanvas = null;
 var imageContext = null;

 var w;
 var h;
 var maxVelocity = 10;
 var points = [];
 var radians = 0;
 var segments = 3;
 var pointsCount = 7;
 var text = "HTML5 for .NET Developers!";

 var $image = $("")
 .load(function () {
 $imageCanvas = $("<canvas>")
 .width($image.width())
 .height($image.height());

 imageContext = $imageCanvas[0].getContext("2d");
 imageContext.drawImage($image[0], 0, 0);
 try {
 var imageData = imageContext.getImageData(
 0, 0, $imageCanvas.width(), $imageCanvas.height());

Listing 4.12 Styles to support automatic resizing of the canvas element

Listing 4.13 Complete JavaScript application code for canvas demonstration
www.it-ebooks.info

http://www.it-ebooks.info/

115Complete code listing
 for (var i = 0; i < imageData.data.length; i++) {
 if (i % 4 != 3) // operate on R, G, B, but not A
 imageData.data[i] = 255 - imageData.data[i]; // invert
 }

 imageContext.putImageData(imageData, 0, 0);
 } catch (e) {
 $("<div class='error'>
 Note: Direct manipulation of pixels
 loaded from image files isn't allowed
 when running locally</div>")
 .appendTo("body");
 }
 })
 .attr("src", "Content/smiley.png")
 .hide()
 .appendTo("body");

 function resize() {
 // Resize function body placeholder
 w = $canvas.width();
 h = $canvas.height();
 $canvas.attr("width", w);
 $canvas.attr("height", h);
 // resetting the width and height also resets
 // these other properties, so we set them again
 context.lineWidth = 6;
 context.lineCap = "round";
 context.lineJoin = "round";
 context.font = "100px sans-serif";
 context.textAlign = "center";
 context.textBaseline = "middle";
 }
 $(window).resize(resize);
 resize();
 var spotlightRadius = Math.min(w, h) / 2;

 // Randomizer placeholder
 for (var a = 0; a < pointsCount; a++) {
 points.push({
 x: Math.random() * w,
 y: Math.random() * h,
 vx: (Math.random() * maxVelocity * 2) - maxVelocity,
 vy: (Math.random() * maxVelocity * 2) - maxVelocity
 });
 }

 function frame() {
 context.save();

 // ___ clear
 context.fillStyle = "rgba(0, 0, 0, 1)"; // 100% opaque black
 context.fillRect(0, 0, w, h);

 // ___ spotlight
 context.beginPath();
www.it-ebooks.info

http://www.it-ebooks.info/

116 CHAPTER 4 Canvas
 context.arc(
 points[5].x,
 points[5].y,
 spotlightRadius,
 (Math.PI/180) * 0,
 Math.PI/180 * 360,
 false);
 context.clip();

 context.fillStyle = "rgba(56, 56, 56, 1)"; // 100% opaque dark gray
 context.fillRect(0, 0, w, h);

 // ___ lines
 context.strokeStyle = "#0f0";
 context.beginPath();
 context.moveTo(points[0].x, points[0].y);
 for (i = 1; i < segments; i++) {
 context.lineTo(points[i].x, points[i].y);
 }
 context.stroke();
 context.closePath();

 // ___ image
 context.save();
 context.translate(points[3].x, points[3].y);
 context.rotate(radians);
 context.drawImage(
 $image[0], -($image.width()) / 2,
 -($image.height()) / 2);
 context.restore();

 // ___ imageCanvas
 if ($imageCanvas) {
 context.drawImage($imageCanvas[0],
 points[6].x - ($imageCanvas.width() / 2),
 points[6].y - ($imageCanvas.height() / 2));
 }

 // ___ text
 context.fillStyle = "#00a";
 context.fillText(text, points[4].x, points[4].y);

 // ___ update positions and handle bounce
 for (i = 0; i < points.length; i++) {
 var p = points[i];

 p.x += p.vx;
 if (p.x < 0) {
 p.x = 0;
 p.vx *= -1;
 } else if (p.x > w) {
 p.x = w;
 p.vx *= -1;
 }

 p.y += p.vy;
 if (p.y < 0) {
 p.y = 0;
www.it-ebooks.info

http://www.it-ebooks.info/

117Complete code listing
 p.vy *= -1;
 } else if (p.y > h) {
 p.y = h;
 p.vy *= -1;
 }
 }

 radians += 0.01;

 context.restore();
 // ___ set up the next frame
 setTimeout(frame, 30);

 }
 frame();
});
www.it-ebooks.info

http://www.it-ebooks.info/

The History API:
changing the game

for MVC sites
Suppose you’re building a newsreader application for the web and want to incorpo-
rate a search feature for things like images, people, and places. You build a respon-
sive HTML5 interface with a popup <div> that allows a user to cycle through
multiple tabs refining the search. In the background you’re using Ajax and jQuery
to ping the server for hit counts based on each updated criteria. What do you think
will happen when the user cycles through three tabs adding criteria and then, out
of force of habit, hits the Back button? Unless you’re using the jQuery.address
plugin or something similar, the browser will load the previous web page and lose
the search. The user will be annoyed.

 Not anymore. Thanks to the HTML5 History API, the game has changed. Using
the techniques we’ll illustrate in this chapter, you’ll learn to use ASP.NET MVC’s
routing and partial view capabilities to build a site suitable for both old and new
browsers. The site will work in the “normal” way in older browsers but it’ll be more

This chapter covers
■ Understanding the basic operation of the

History API
■ Integrating MVC with the HTML5 History API
■ Controlling history in a web application
118

www.it-ebooks.info

http://www.it-ebooks.info/

119The History API: changing the game for MVC sites
responsive and consume less bandwidth in newer browsers, because pages will be
accessible in two modes:

■ As a standard load from the server without any JavaScript or History integra-
tion, perfect for older browsers

■ With JavaScript and History to reduce server load and eliminate complete
page refreshes

In this chapter, you’ll learn how to do these things in your .NET MVC applications as
you build a simple restaurant menu website that works both with and without
JavaScript and the History API. During the process, you’ll create a custom JavaScript
library to override the standard HTML anchor click events that the browser uses to
navigate to other pages. You’ll also use the HTML5 History API to reduce server load
and provide a fluid user experience for those users with newer browsers.

 These are the major stops along the way:

1 Building the controllers, views, and routing schemes so that they work with the
HTML5 History API

2 Building a JavaScript library to control browser history from inside an ASP.NET
MVC site

3 Adding finishing touches to the master page and CSS styles to complete
the application

Let’s begin!

Browser support

Chapter 5 map
History is an API that adds the ability for a bit of JavaScript code to control the URLs
in a browser’s history. This enables you to easily control what happens within an
application when users click the forward and back buttons and activate navigation
events by clicking links.

history.onpopstate component page 135

history.pushState component page 135

history.replaceState component page 135

Working with browser URLs page 139
www.it-ebooks.info

http://www.it-ebooks.info/

120 CHAPTER 5 The History API: changing the game for MVC sites
5.1 Building a History-ready MVC site
The ASP.NET MVC framework has two features ideal for implementing a History-
friendly web application:

■ A rich routing framework
■ Partial views

The rich routing framework will allow your URL to have semantic meaning within the
context of your application. For instance, consider the URL in figure 5.1, which shows
what a fictitious newsreader application might look like.

 Thanks to ASP.NET MVC’s routing capabilities, the URL—http://news/search/people
in this case—could be a specific MVC application route that’s the entry point for all
the logic around storing, organizing, and finding information about people. If you’re
not sure what a route is, don’t worry; we’ll talk more about routes later in this section.

 The next feature that makes MVC ideal for working with the HTML5 History API is
its ability to present a partial snippet of HTML content, called a partial view. Partial
views allow your JavaScript code to call a specific URL and get a specific response that
feeds asynchronously into various parts of your page. For instance, in the previous
newsreader example, a partial view might include an image and a brief search result
that the page can display in a pop-up HTML element. Later in this section, you’ll build
a partial view that will load—on an existing HTML page—an image and text for restau-
rant menu items.

 As a whole, this section will walk you through

■ Launching the ASP.NET MVC project in Visual Studio
■ Adding controllers and views that can respond to History client events
■ Setting up a History-friendly routing scheme
■ Creating the application data model

Figure 5.1 With the History API
implemented properly, a user could move
through each tab of the search dialog box by
clicking on the tab and then use the
Forward and Back buttons to move between
tabs without losing the search state.
www.it-ebooks.info

http://news/search/people
http://www.it-ebooks.info/

121Building a History-ready MVC site
■ Loading small bits of content from the server into an existing HTML page
on demand

You’ll start by creating the project.

5.1.1 Launching the sample project in Visual Studio

Before you begin, take a look at figure 5.2, which shows what the finished restaurant
menu application will look like.

 To get started building this application, follow these steps:

1 Open Visual Studio and start a new ASP.NET MVC project—an internet appli-
cation that uses the Razor view engine, HTML5 semantic markup, and no unit
test project.

2 Name the project MenuHistory, and then look at the resulting project. You
should have Account and Home controllers (which you can leave as is) and
views to support them.

3 Add an Images folder to the project.

Figure 5.2 The finished History demonstration application will work even in browsers that don’t support
the History API. In supported browsers, though, the user experience will be enhanced and the server load
reduced, because the image and content on the right will load separately without requiring a complete
page refresh.
www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 5 The History API: changing the game for MVC sites

ill

s you to
er data.

yo
t

b
mo
Throughout this chapter, you’ll be dealing with a MenuItem object and a Menu object
that contains a collection of MenuItem objects. In the real world, these correspond to a
real menu at a restaurant and individual dishes on that menu, grouped by the meal
(breakfast, lunch, or dinner). While the exact structure isn’t important yet, the object
model in figure 5.3 will give you an idea of what it is that you’re dealing with.

5.1.2 Adding controllers and views

In this section, you’ll create a simple presentation for a list of menu items in an MVC view.
 First, you need to add a controller and a view:

1 Right-click the Controllers folder and choose Add > Controller.
2 Name the controller MenuController and use the Empty Controller template.

The Index controller action is the default method created for you in an MVC control-
ler, and it will return a Menu along with a separate MenuItem object that corresponds to
the item the user has selected, based on Meal and Dish parameters. This action will
execute when the user clicks on the Menu link at the top of the page.

NOTE If you have questions about how all of this works, you might pause for
a few minutes and take a look at appendix B.

The following listing shows the basic code required in MenuController.cs.

public ActionResult Index(string meal = "", string dish = "")
{
 var menu = new Models.Menu();
 menu.SelectedMeal = meal;
 menu.Items
 .Where(s => s.Meal == meal && s.Key == dish)
 .FirstOrDefault()
 .IsSelected = true;
 return View(menu);
}

Listing 5.1 Controller action to return a menu and selected item to the view

Figure 5.3 The object model that you’ll
be working with has a simple MenuItem
object with various properties that are used
for display, and a collection of items called
the Menu.

Menu constructor w
create static data
needed for system.

Using generic List object allow
use lambda expressions to filt

Method ensures that
single object (or null)
will be returned.

Returned object’s
isSelected property
is set to true.

Object
u pass
o view

will
ecome
del for

view.
www.it-ebooks.info

http://www.it-ebooks.info/

123Building a History-ready MVC site
The controller ends with a call to return View(menu). This view doesn’t yet exist, so
you’ll now create it. Right-click inside the body of your Index method and select Add
View. Set the properties as shown in figure 5.4.

 Next, you need to set up some local variables for your new Index.cshtml file. These
variables will correspond to, and organize lists of, items for breakfast, lunch, and din-
ner and will be used to build out the presentation shortly:

1 In the <h2> element at the top of the view, place HTML5 Restaurant Menu and
then open a new bit of code in the Razor view.

2 Use the code in the next listing to set up your variables, add a using statement,
and change the title of the page.

@model Menu
@using MenuHistory.Models
@{ ViewBag.Title = "Menu"; }
<h2>HTML5 Restaurant Menu</h2>
@{
 var selectedItem = Model.Items
 .Where(s => s.IsSelected == true)
 .FirstOrDefault();
 var selectedDish =
 selectedItem == null ?
 "none" : selectedItem.Key;

Listing 5.2 Setting up local variables in a Razor view

Figure 5.4 Create a strongly
typed view by assigning the
model class value. This can be a
value populated from the
current project’s available
objects, or you can reference an
object from another referenced
assembly in the project.

Using statement in view acts same
as using statement in C# file.

Find selected item from
Menu.Items list if it exists.

Perform null check
to get selected dish.
www.it-ebooks.info

http://www.it-ebooks.info/

124 CHAPTER 5 The History API: changing the game for MVC sites

U
i

each

u
e
f

 List<List<MenuItem>> menuGroups =
 new List<List<MenuItem>>();
 menuGroups.Add(
 (from i in Model.Items
 where i.Meal == "Breakfast"
 select i).ToList<MenuItem>()
);
 menuGroups.Add(
 (from i in Model.Items
 where i.Meal == "Lunch"
 select i).ToList<MenuItem>()
);
 menuGroups.Add(
 (from i in Model.Items
 where i.Meal == "Dinner"
 select i).ToList<MenuItem>()
);
}

The variables you assigned in listing 5.2 will be available while processing the view on
the server. Keep this in mind as you build out your view markup. Even though you’re
writing markup directly in the view, the C# code will maintain state within the context
of the view, and you can use this to build up presentation logic.

 The following listing shows how to build the markup that renders links on the
page for each item on the menu. This code should come next in your Menu
Index.cshtml page.

<aside class="preview-dish"></aside>
@foreach (var mealList in menuGroups)
{
 var titleClass = Model.SelectedMeal ==
 mealList.First().Meal ? "active" : "";
 <section class="menu @titleClass"
 data-meal="@mealList.First().Meal">
 <h3>@mealList.First().Meal</h3>

 @foreach (var item in mealList)
 {
 var itemClass = selectedDish == item.Key ?
 "selected" : "";
 <li class="menu-item @itemClass"
 data-dish="@item.Key">
 @Html.RouteLink(
 item.DishName,
 "Menus",
 new
 {
 meal = item.Meal,
 dish = item.Key
 }
)

Listing 5.3 Building markup using Razor

Create variable to hold ‘list of lists’ to iterate
through each meal with minimal code.

Populate menuGroups variable
for each meal in model.

Aside element
will be filled and
styled later with
partial view.

Iterate through each
list of meal items and,
based on first element
in list, set up style.

In each iteration,
assign data
attribute to each
section and dish.

se first
tem in
 group
to set
p title

lement
or list.

Iterate
through

dishes in meal
list inside

unordered
HTML

element. Create list item and
fill it with route
data to build link.
www.it-ebooks.info

http://www.it-ebooks.info/

125Building a History-ready MVC site
 }

 </section>
}

So far you’ve created a simple presentation for a list of menu items in an MVC view.
You’ll add data soon to make it work, but right now the important point to understand
is that the Menu view will be generated when the http://site/Menu URL is loaded. If
the browser supports the History API, the loading of menu item images and extra text
will happen by means of dynamically loaded partial views. If History isn’t supported,
the partial views and the entire page will be loaded when each menu item is clicked.

 We’ll show you how to use the Modernizr JavaScript object to check for History
support shortly, when you build the JavaScript side of the application. Figure 5.5
describes the way this works.

Menu view

Browsers supporting

History API

Unsupported browsers

Partial view

Menu view Partial view

Menu view Partial view

Menu view Partial view

Partial view

Partial view

Partial view

Dynamically loaded

partial views

Figure 5.5 In supported browsers, the Menu
view is loaded once and partial views of menu
items are loaded on demand, without forcing the
page to reload. In unsupported browsers, the
fallback of loading the entire page for each menu
item click will keep the site working.
www.it-ebooks.info

http://www.it-ebooks.info/

126 CHAPTER 5 The History API: changing the game for MVC sites

A
d

o

5.1.3 History and MVC routing

If you run the application now, you’ll receive an error stating that the route named
“Menus” wasn’t found. That’s because you need to add a route named “Menus” to the
application. The routing engine in MVC provides you with a means of directing a par-
ticular URL or URL format to a controller and action method, and it automatically
parses values from the URL into the parameters you require. This gives you the ability
to respond to many different URL formats in an application and map them to applica-
tion logic easily and quickly.

 In your project, follow these steps to add a new route that responds to calls for the
extra menu item data:

1 Double-click the Global.asax file.
2 Add the "Menus" route in the following listing right before the default route is

registered in the RegisterRoutes method.

routes.MapRoute(
 "Menus",

 "Menu/{meal}/{dish}",

 new
 {
 controller = "Menu",

 action = "Index",

 meal = UrlParameter.Optional,

 dish = UrlParameter.Optional
 }
);

The signature for MapRoute you’re using here is as follows:

MapRoute(string name, string url, object defaults)

You use the name parameter (as you did in listing 5.3) to specifically select this route
for link building and use the url parameter to provide the pattern. Finally, the
defaults object will have property names that are exactly the same (case sensitive)
as the parameters in url. This will result in a route being added to your application as
soon as it starts.

FOLLOWING ROUTES IN AN ASP.NET MVC APPLICATION

You created the new Menus route by tapping into the default RegisterRoutes()
method provided by MVC. This takes a RouteCollection object that’s a property of
the application’s RouteTable. RouteCollection is a list that must contain at least the
default route but can contain any number greater than that. Routes added to this col-
lection are evaluated in the order in which they appear—this is a key point to remem-
ber, as you’ll see shortly. Routing in ASP.NET is really nothing more than an advanced

Listing 5.4 Building the Menus MVC route

Call new route by name when building
routes to ensure proper binding.

Use /Menu/Breakfast/
Pancakes pattern.

dd new
efaults

bject to
route.

Specify that Menu controller
and Index action will be used.

Specify that meal and dish items are optional so
application shouldn’t complain if they don’t exist.
www.it-ebooks.info

http://www.it-ebooks.info/

127Building a History-ready MVC site
pattern-matching engine for URLs. When receiving an HTTP request, the URL goes
through the routing engine, which parses and evaluates it into a set of parameters that
are matched to controllers, action methods on those controllers, and additional route
values that serve as parameters to the action methods.

 Each route in the application’s route table can have an optional name but requires
at least a URL value. The URL is the pattern and can contain literals, parameters
(defined using curly braces), and separator characters. Route names, if used, must be
unique within the application.

 Routing is probably the most often misunderstood part of MVC. The frustration
the route table causes usually stems from adding routes in the wrong order. We said
that the order of the routes matters, and here’s why. Consider the two routes shown in
the next listing.

MapRoute("Location",
 "{id}",
 new { controller = "Maps", action = "GetLocation", id = "" }
);

MapRoute("Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = "" }
);

The problem in listing 5.5 is that the Location route isn’t specific enough and
provides a default value for the location id parameter. You can put all the code
breakpoints in the world on the Index action method in the Home controller file
and try to figure out why it isn’t hit, only to discover after hours of frustrating
effort that the Maps controller is executing the GetLocation action with an empty
id parameter.

TIP The big takeaway when it comes to routing is that the routing scheme
you use in your application should be specific enough to handle all expected
inbound requests, and it should be ordered appropriately to ensure that the
correct controller gets each request.

TWO WAYS TO GENERATE INSIDE-THE-VIEW URLS THAT MATCH A SPECIFIC ROUTE

Whereas the first part of the MVC routing system enables you to map incoming requests
to specific controllers and actions, the second part lets you generate a URL inside a view
that matches a specific route. There are a couple of methods for doing this.

 The easiest option is to use the Html.ActionLink() method. This method has a
number of overloads, but probably the most common is used to build menus and
static links to retrieve views. The default master page in the MVC template uses this
method to build the tabs at the top of the page. You’ll use it to add a new Menu item

Listing 5.5 MVC route selection can sometimes give unexpected results

When using URL like http://site/NewYork, default route will be executed
because it matches single parameter pattern. This seems correct.

All other requests ought to go to default route, but because first route has default value for
id application will always use first route and call Maps controller’s GetLocation action.
www.it-ebooks.info

http://www.it-ebooks.info/

128 CHAPTER 5 The History API: changing the game for MVC sites
to the tab strip. All you need to do is add the following line to the unordered list in
the Views\ Shared\ _Layout.cshtml file:

@Html.ActionLink("Menu", "Index", "Menu")

The method signature here is

ActionLink(string linkText, string actionName, string controllerName)

so the first incidence of "Menu" will be the text, whereas the last tells MVC to call Menu-
Controller. The MVC framework will build a link URL that will navigate to the Menu
controller, Index action. This Html.ActionLink() method is very helpful, because it
will dynamically use the first route in the application’s route table that matches the
parameters sent in.

 The ActionLink method is fine for generating simple anchor tags on the server,
but you’ll be working with the URL on both the client and the server in addition to
adding formatted parameters, so the ability to format the URL properly is very impor-
tant. MVC provides a more specific method for dealing with this kind of situation: the
Html.RouteLink() method you used back in listing 5.3 will build an <a> tag with an
href attribute using the exact route requested, throwing an exception if parameters
aren’t supplied or if the route doesn’t exist. Here is that bit of code again:

@Html.RouteLink(
 item.DishName,
 "Menus",
 new
 {
 meal = item.Meal,
 dish = item.Key
 }

This function signature is

RouteLink(string linkText, string routeName, object routeValues)

RouteLink is more rigid than ActionLink because it forces the use of a specific route
rather than matching based on a regular expression. This is perfect, though, for any sit-
uation where a guaranteed URL matching a specific route in the application is required.

WARNING Although the History API enables you to pick up the URL and edit
it using JavaScript, you should always architect your solution in such a way
that the page will operate effectively even if the History API isn’t available.
This may mean that the interface appears exactly the same, or it may require
some minor interface differences. Either way, your application shouldn’t
break just because this API isn’t available on the client—a principle known as
graceful degradation. The sample application you’re building in this chapter
will do just that.
www.it-ebooks.info

http://www.it-ebooks.info/

129Building a History-ready MVC site
5.1.4 Creating the application data model

You’ve now completed the view, controller, and routes for the application; it’s time to
focus on the data model. Data for this sample application could come from any
source, be it a database, external web service, or even a text file. In fact, the point of a
model in an MVC application is to provide a uniform means of abstracting the data
storage mechanisms of your application from the business and flow logic. In your sam-
ple application—a restaurant menu—the model will consist of a Menu object that con-
tains a list of menu items.

 The first step, then, is to create a Menu class in the Models folder and assign proper-
ties as shown in the next listing.

namespace MenuHistory.Models
{
 public class Menu
 {
 public string SelectedMeal { get; set; }
 public List<MenuItem> Items { get; set; }
 }

 public class MenuItem
 {
 public string Key { get; set; }
 public string Meal { get; set; }
 public string DishName { get; set; }
 public string DishDescription { get; set; }
 public bool IsSelected { get; set; }
 }
}

Using a generic List object to contain your objects makes sense, because it can be
operated upon using LINQ expressions to filter and sort, as you did in both the con-
troller and view earlier. The Key property in MenuItem will be the same as the Dish-
Name value, except it won’t have spaces or special characters. This makes it much
friendlier as a routing element in MVC and, by extension, much easier to manipulate
using the History API and JavaScript.

 In your Menu object, add a constructor with the following contents:

public Menu()
{
 Items = new List<MenuItem>();
 Items.Add(new MenuItem()
 {Key="", Meal="", DishName="", DishDescription=""});
}

Now using this pattern, fill in the objects with the data. The basic data that you’ll use
in this sample application is listed in table 5.1, but you can fill in whatever data you
like. Just keep in mind that the Key string should correspond to a filename in the

Listing 5.6 The Menu and MenuItem model for the History application
www.it-ebooks.info

http://www.it-ebooks.info/

130 CHAPTER 5 The History API: changing the game for MVC sites
Images folder of the site. If you choose to use the data from table 5.1, you can add
your own DishDescription text.

You may also choose to just download the images from our GitHub site at this
URL: github.com/axshon/HTML-5-Ellipse-Tours/tree/master/demos/history/Menu-
History/Images.

 Now that the data model is complete, how do you get it to do any work in
the application?

5.1.5 Loading content from the server on demand using partial views

To get the data model to work, you need to inject your <aside> element with a picture
and description from the menu object. This is the magic of the History API—the
browser doesn’t need to refresh the entire page to present users with those new pic-
tures and descriptions each time a link is clicked.

NOTE Remember that the <aside> tag’s purpose is to provide supporting
information for the content that isn’t in the critical path.

You’ll do this by creating a new view that’s a bit more specialized than the page view
you’ve been working on so far. This view won’t include the markup to present an
entire page. Rather, it will be an HTML island of content that you’ll inject into the
page, on demand.

 To do this, you’ll create a controller to support the partial view and a route to direct
calls to the new controller. The controller is super-simple to create. Just follow these steps:

1 Right-click on the Controllers folder in your application and select Add >
Controller.

2 Name it PreviewController and be sure to use an Empty Controller Template.

Table 5.1 The data for this sample application is simple but provides enough options to show off the
History API and MVC routing.

Key Meal DishName DishDescription

Pancakes Breakfast Pancakes ...

ScrambledEggs Breakfast Scrambled Eggs ...

FrenchToast Breakfast French Toast ...

FruitSalad Lunch Fruit Salad ...

GrilledCheese Lunch Grilled Cheese ...

Hamburger Lunch Hamburger ...

Steak Dinner Steak ...

ChickenPasta Dinner Chicken Pasta ...

Tortilla Dinner Black Bean Tortilla ...
www.it-ebooks.info

http://www.it-ebooks.info/

131Building a History-ready MVC site

e

.

n’t
ecode
 and
 exact
.

The Index controller action should be exactly as shown in the following snip-
pet. Note that in order to use the default MVC route, you must name the con-
troller parameter id:

public PartialViewResult Index(string id)
{
 var menu = new Menu();
 var item = menu.Items.Where(d => d.Key == id).FirstOrDefault();
 return PartialView("Index", item);
}

3 Now right-click inside the Index method of your PreviewController and select
Add View.

4 Make the model a MenuItem and check Create as a Partial View. This partial
view should look like listing 5.7.

NOTE If you’re still not completely familiar with the way ASP.NET MVC
works, this section should bring home the fact that each controller in your
application can have one or more views. The default name for that view and
its associated controller method is Index. So the Index method in the
PreviewController.cs file corresponds to the Index.cshtml view in the proj-
ect’s Views\Preview folder.

@model MenuHistory.Models.MenuItem
<section>
 <figure>
 <img
 src="@Url.Content("~/Images/" + Model.Key + ".jpg")"
 alt="@Html.Raw(Model.DishDescription)" />
 <figcaption>
 @Html.Raw(Model.DishDescription)
 </figcaption>
 </figure>
</section>

Once you include the sample images (in the Images folder) with names correspond-
ing to the Key values of each dish in the model, you should be able to run the applica-
tion and enter a URL like this:

site/Preview/Index/{dish}

Replace the dish parameter with any of the dish names in the model, and you’ll get
something similar to figure 5.6.

 It isn’t pretty yet, but a few final touches and you’ll be ready to start implementing
the client-side History architecture. Your goal here is to create ASP.NET MVC views
compatible with both modern browsers that support the History API and older brows-
ers that don’t. Once you get the pieces in place to make entire page loads work, you

Listing 5.7 The Preview.cshtml partial view displaying image and description

Url.Content
method will
generate relativ
URL for input
string provided

Html.Raw
method wo
escape or d
parameters
will output
text passed

Figure and figcaption
tags are used to insert
images and annotate
them so that image and
text are forever linked.
www.it-ebooks.info

http://www.it-ebooks.info/

132 CHAPTER 5 The History API: changing the game for MVC sites
can override the partial view behavior and execute it independently of the main page
using JavaScript.

 You now need to implement the partial view using a RenderAction inside the
<aside> element on the Menu Index.cshtml page. The following code shows the action
wrapped in a simple null check:

<aside class="previewDish">
@{
 if (selectedItem != null)
 {
 Html.RenderAction(
 "Index",
 "Preview",
 new { id = selectedItem.Key }
);
 }
}
</aside>

If you run your application now, you should see something similar to figure 5.7. Every-
thing works, but with only server-side processing. RenderAction has pulled in the par-
tial view as a complete HTML island and included it in your page as if it were always
there. The client side doesn’t know that the content wasn’t there the entire time.

 At this point, you could call the application complete. For a small application, that
might be appropriate, but in the world of HTML5 applications, you’re far from done.
The problem with the existing application is that each time the user clicks on a menu
item, the entire page is refreshed. That’s not such a big deal if you have a high-speed
connection, but if there’s a lot of content on the page, this can be a big deal. What you
need is the ability to fill in the partial view of data and change around the styles on the

Open-fire grilled to order with no fooling around by our Texas-bred chef

Figure 5.6 The preview
partial view will present a
<section> element with
no styling and no wrapping
HTML structure. This is a
markup island suitable only
for insertion into a separate
page. When the reader clicks
on Steak in the menu, only
this image and description
will be called from the server
and loaded on the page, while
the rest of the page remains
as is.
www.it-ebooks.info

http://www.it-ebooks.info/

133Using HTML5 History
page without refreshing the complete page. This is where the HTML5 History API
comes in, and that’s where we’re headed now.

5.2 Using HTML5 History
Using the History API, you can manipulate the URL of the page without needing to
perform a complete refresh. Additionally, because you have MVC views, controllers,
and routes controlling the system on the server, your application is completely com-
patible with any browser, even if JavaScript is disabled or the History API isn’t available.

 The HTML5 History API allows a visitor to the site to use the back and forward but-
tons without losing the information needed to present the page. As we explained at
the beginning of the chapter, this can be a real asset in a search scenario and it’s going
to help you serve menu item pictures and descriptions on the same page every time
the user clicks a different link. A user with a modern browser will be able to look at
each of the breakfast menu items (or any others, for that matter) without the jarring
effect of the full page load that will still occur in older browsers.

 The History API lets you manipulate the URL and the stack of URLs in the
browser’s history without performing a complete refresh. In a modern browser, you’d

Figure 5.7 The final page with a partial view for each menu item and appropriate styling. The site
functions but doesn’t incorporate the History API, so every menu click will trigger a complete refresh of
the page.
www.it-ebooks.info

http://www.it-ebooks.info/

134 CHAPTER 5 The History API: changing the game for MVC sites
have traffic as illustrated in figure 5.8, where only the first request gets the entire page
and all Ajax requests thereafter only get the partial view.

 In this section, you’ll learn to use the History API through the effective use of
JavaScript and URL formatting. As you move through the section, you’ll

■ Set up JavaScript to respond to the History events that trigger interface changes
■ Use the browser URL to determine what changes need to be made to the interface
■ Change the interface based on the previous two steps

First up, the JavaScript.

Normal request to “Menu” URL

Normal request to “Preview” URL

Client

Normal

request

Routing

engine

Menu

controller

Calls view

passing data

Builds markup

using data

Requests

partial view

Preview

controller

Calls view passing

item key

Builds markup

using item key

Returns

markup

Client

Returns markup

including partial view

Directs to

Ajax

request

Routing

engine

Preview

controller

Calls view passing

item key

Builds markup

using item key

Returns only

partial view

Directs to

Figure 5.8 A client with a modern browser that supports the History API will initially request the page
using the Menu URL, which works through the entire application logic, including the Menu and Preview
controllers. This passes the completed HTML page back to the client. After this initial load, all future
requests will go directly to the Preview controller and will return just the image and text needed to fill in
the preview section of the page.
www.it-ebooks.info

http://www.it-ebooks.info/

135Using HTML5 History
5.2.1 Adding JavaScript to handle History API navigation events

The first step to using the History API is to attach some JavaScript to the ubiquitous
jQuery ready handler. This gives you the entry point to the rest of the code, where you
attach JavaScript event-handling functions to the history events to trigger the process
of loading just a small piece of the page.

 Remember, you don’t usually want your library to execute until the page is com-
pletely loaded. The jQuery team has gone to great effort to figure out when a page is
completely loaded and rendered in any browser. That’s the reason the ready event
is the first coded entry point of almost all HTML5 applications.

 To begin with the basic plumbing work, follow these steps:

1 Open the _Layout.cshtml file in the Shared folder and remove the jQuery and
Modernizr script tags.

2 Replace them with the latest libraries located on the Microsoft CDN.
For your purposes, the script tags at the top of _Layout.cshtml should be

edited to read as follows:

<script
 src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.7.1.js"
 type="text/javascript"></script>
<script
 src="http://ajax.aspnetcdn.com/ajax/modernizr/
 modernizr-2.0.6-development-only.js" type="text/javascript"></
script>

TIP In the preceding snippet, the Modernizr script is set to the development-
only version. For your own projects, check out the Modernizr website at mod-
ernizr.com to build a custom script that includes only the features you need.

3 Add a new JavaScript file to your application in the Scripts folder and call it
main.js.

4 Add the following reference to the JavaScript file just before the closing body
element in the _Layout.cshtml page:

<script src="@Url.Content("~/Scripts/main.js")" type="text/
javascript"></script>

You’ll use the MVC URL helper function to make sure the path is correct when
the application is deployed.

5 Finally, open the main.js file and add the ready handler in the following listing.

$(document).ready(function () {
 if (!Modernizr.history)
 return;
});

Listing 5.8 Wiring up the jQuery ready event

If Modernizr doesn’t detect HTML5 History API
support in current browser, do nothing.
www.it-ebooks.info

http://www.it-ebooks.info/

136 CHAPTER 5 The History API: changing the game for MVC sites
What is important about this particular ready function is that it will do nothing if
the History API isn’t detected by Modernizr. A user without this feature in their
browser can still click on any menu item and have a full view of the additional con-
tent; the browser will just force a complete refresh of the page without the smooth
transitions that you’ll be building shortly. You’re trying to ensure the user experi-
ence gracefully degrades when specific capabilities aren’t detected, giving the user
the best possible experience.

CONNECTING TO THE BROWSER HISTORY EVENT WITH ONPOPSTATE

Now you need to tie into the history event of the browser. Every browser that supports
the History API will have the onpopstate event available for wiring up.

 There are two ways to wire this up in a jQuery world; with the base JavaScript event
or with the jQuery bind function:

onpopstate = function (event) { function body };

Or

$(window).bind("popstate", function (event) { function body });

The onpopstate event fires whenever the user presses the Forward or Back browser
buttons, and also, in some browsers, when a page is loaded. The event argument is
a standard DOM event with the addition of a state property object. This object
contains whatever value was pushed into that particular element in the browser’s
history stack. The state value can also be null if nothing was assigned to it for the
element in question.

 In your ready handler, add the following code to the end. This function will exe-
cute whenever the onpopstate event fires in the browser window:

$(window).bind("popstate", function (event) {
 updateState(history.state);
});

We’ll get to the updateState function next, but right now you need to understand
exactly what this little bit of code does. Whenever the browser’s onpopstate event is
fired, the state value of the history object for the browser window will be set (by the
browser, not by your code) to the value of the data in that item of the history stack.
Additionally, the title of the browser window and the document.location will
already have been updated when the event fires. Finally, no calls will have been made
by the browser to get the resource defined by the new document.location value. Even
if there is no caching on the client, no server calls will be made. Figure 5.9 illustrates
this process.

MANIPULATING THE HISTORY STACK DIRECTLY USING PUSHSTATE AND REPLACESTATE

Before the History API existed, the history stack (the browser’s URL history) was only
changed indirectly by the browser itself when users navigated from page to page. It
couldn’t be directly changed. But now, with a basic understanding of the History API,
you can modify the browser’s history for the duration of the current page.

Core API

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

137Using HTML5 History
But there are still two missing pieces of logic to explore:

■ The links on the menu page are anchor tags that will force the browser to do a
complete round trip to the server to get the entire page, defeating the purpose
of the History API.

■ While you’re obtaining values from the history.state property, you aren’t
assigning that value anywhere because you haven’t implemented the update-
State function yet.

The history object uses two built-in functions to directly manipulate the history stack:
pushState and replaceState. pushState adds a new item to the history stack for the
current browser session. Values that are pushed to history won’t be available in any
other browser or session and can’t be enumerated other than to count them using the
history.length property. In contrast, replaceState takes the current history entry
and replaces the data, title, and URL values without adding or removing anything from
the rest of the history stack.

History stack

OnPopState

Forward

Back

When the browser’s

onpopstate event is fired, the

state value in this object is

assigned by the browser.

Additionally, the title and location
properties will already have been updated

by the time the event fires.

No server calls are made

automatically by the browser

during this operation.

OnPopState does not remove items

from the history stack. It only copies the

history item values into the state,
title, locatiand on properties.History item

state item title url

History item

state item title url

History item

state object title url

History item

state object title url

History item

state object title url

history.state document.title

Browser window after OnPopState

document.location

{ {} }
Figure 5.9 Understanding OnPopState in the History API
www.it-ebooks.info

http://www.it-ebooks.info/

138 CHAPTER 5 The History API: changing the game for MVC sites

stopProp
kee

from b
beyo ler will

cked
)

stateFr
function w

to build
stat
The pushState and replaceState functions have the same signature, with the syntax
illustrated in figure 5.10.

 Back in your application, you won’t need to modify the current page in history
after it has completed the load cycle, so you can use the pushState function exclu-
sively. In your ready function, add the code in the next listing.

$(".menu-item").click(function (event) {

 event.preventDefault();

 event.stopPropagation();

 var $target = $(this);

 var url = $target.find("a").attr("href");

 var state = stateFromPath(url);

 history.pushState(state, "", url);

 updateState(state);
});

While there seems to be a lot going on in this click handler, the fact of the matter is
that you’re just overriding default page behavior and adding your own methods in its
place. The History API is acting like a local storage LIFO (last-in-first-out) queue that
stores the URL and data you want without much fuss. The mechanisms you build
around that operation are far more complex than the actual API itself.

 At this point, two methods still need to be built out: the stateFromPath function
and the updateState function. stateFromPath parses the current URL to build a
state object with the meal and dish properties that everything else uses. The update-
State function uses the state object to set styles and asynchronously load content to
the page.

Listing 5.9 Using jQuery to override the default behavior of anchors

Object containing any

relevant state information.

If no data is required, use null.

Window title for this

history entry. If no title

is required, use null.

The URL to apply to the

browser address bar.

Optional parameter.

history.pushState(data , title , url);

history.replaceState(data , title , url);

Figure 5.10 pushState and replaceState function syntax in the
history object

jQuery selector finds
all menu elements

preventDefault overrides
normal click behavior

agation
ps event
ubbling

nd event “this” inside click hand
refer to context (the cli
element in this instance

Gets URL parameter from
target object’s anchor element

Calls
omPath
ith URL
 custom
e object

Pushes new
state object
into historyUpdates user interface

based on new state
www.it-ebooks.info

http://www.it-ebooks.info/

139Using HTML5 History
 In section 5.2.2, you’ll build the stateFromPath function because it will give you
the opportunity to look more deeply at the page URL and some of its important prop-
erties. Afterwards, in section 5.2.3, you’ll tackle the updateState function.

5.2.2 Working with the page URL in JavaScript

The location property of the window object in JavaScript is much more than just the
URL that appears in the browser’s address bar. It is, in fact, a breakout of the major
components of the current URL, along with a reload() method that forces the page
to re-request everything from the server for the current page. The various properties
are all subsets of the entire URL, presented as strings that can be parsed and divided as
required, as illustrated in figure 5.11.

 By this point, it should be very clear what you’re trying to accomplish. In order to
build an object that contains the meal and the dish, you take a typical URL used in the
application, such as

http://www.mysite.com/Menu/Breakfast/Pancakes

and divide the pathname into its component parts. The last element in the array is the
dish; the element just before it is the meal.

 Add the function in the following listing to your main.js file.

function stateFromPath(path) {
 var base = "/Menu/";
 var parts = path.replace(base, "").split("/");
 return {
 meal: (parts.length >= 1 ? parts[0] : ""),
 dish: (parts.length >= 2 ? parts[1] : "")
 };
}

This code is by no means ready for prime time. In a production scenario, you’d want
to test the entire URL to make sure it’s valid according to business rules and that the
properties being assigned are in the right order. You should also consider parsing out
any querystring values and special characters, and perhaps escaping the outbound
text to avoid URL-encoded text.

Listing 5.10 Dividing the location.pathname to build a JavaScript object

protocol hostname host port pathname hash

href

http://www.ellipsetours.com:80/Menu/Breakfast#top

Figure 5.11 The window.location object properties

Remove /Menu/ part of path
parameter and split
remaining string into array.

Last part of array should be dish
and previous part is meal element.
www.it-ebooks.info

http://www.it-ebooks.info/

140 CHAPTER 5 The History API: changing the game for MVC sites

.

Add a
cla
sele

meal i
WARNING Assigning values using the history.replaceState method will
change the current URL of the browser without forcing a server-side hit, but the
History API can’t edit the protocol, hostname, or host properties of the URL.

5.2.3 Using History to update the page

You’re almost home! You’ve tested for the existence of History API support, and
you’ve intercepted the onpopstate event and all menu item click events so that you
can call the updateState function. You also worked out a simple mechanism to parse
the URL into an object. This is all the background that allows you to change the page
based on user interactions without a full page refresh. The updateState function will
do just that.

ADDING THE UPDATESTATE FUNCTION

The updateState function goes into your main.js file and makes extensive use of
jQuery selectors and Ajax asynchronous server calls to get the preview data. Start with
the following code that builds the function signature. The first thing you do inside the
function is check to see that the state parameter has been assigned:

function updateState(state) {
 if (!state)
 state = stateFromPath(location.pathname);
}

The previous snippet ensures that you’ll always have a state value, regardless of
whether there’s a value in history when the onpopstate event fires.

 Next, enhance the updateState function to make the edits to the user interface
that would be there by default if the MVC view had been called directly with the cur-
rent URL. Do this by adding and removing CSS classes from elements on the page,
appending the code in the next listing to the updateState function.

var $selectedMenu =
 $(".menu[data-meal='" + state.meal + "']");
$(".menu").not($selectedMenu).removeClass("active");
$selectedMenu.addClass("active");

var $selectedItem =
 $(".menu-item[data-dish='" + state.dish + "']");
$(".menu-item").not($selectedItem).removeClass("selected");
$selectedItem.addClass("selected");

ADDING THE MENU ITEM PREVIEW

The final part of the updateState function is the menu item preview, using the jQuery
Ajax $.ajax() function that’s provided in the following listing. Note that the URL cor-
responds to the route you defined for the preview view. The value of data in the call-
back function should be an HTML island that you can append to the preview
container element with no changes.

Listing 5.11 Modifying presentation with jQuery based on the state object

If the state value was not
passed in, get it from the
stateFromPath function.

Locate page element whose data
attribute equals selected meal item

Remove active class from
every other meal item.

ctive
ss to
cted
tem.

Perform same
actions against
dish items.
www.it-ebooks.info

http://www.it-ebooks.info/

141Two more small steps ...
var $dishContainer = $(".preview-dish");
var $oldDish = $dishContainer.find("section");

if (!state.dish) {
 $oldDish.fadeOut(function () {
 $oldDish.remove();
 });
 return;
}

var url = "/Preview/Index/" + state.dish;

$.ajax(
 url: url,
 dataType: "html",
 success: function(data) {
 var $newDish = $(data);

 $newDish.find("img").load(function() {

 $newDish.fadeIn(function() {
 $newDish.css("z-index", 0);
 });

 $oldDish.fadeOut(function() {
 $oldDish.remove();
 });
 });

 $newDish
 .css("z-index", 1)
 .hide()
 .appendTo($dishContainer);
 }
});

At first, some of the code in listing 5.12 may seem backward, but take a moment to
remember the order of operations in jQuery and to consider that CSS styles affecting
page flow won’t take effect until an element is actually attached to the DOM. To be
clear, the order of this code (and the way jQuery executes it) ensures that as one
image fades away, the next fades in, but only after the image load is complete. A small
amount of careful coding here gives a smooth, subtle, and professional transition to
the image previews and, in keeping with your goals, forces a server request for a much
smaller data set than is required for a complete page refresh.

5.3 Two more small steps ...
The application should work now, but you still need to make some tweaks to the master
page and CSS styles to pretty everything up. You need the CSS styling set up so that as sec-
tions become active or inactive, you get appropriate “active” and “inactive” effects and a
new tab for the menu at the top of the page. It would also be helpful to change the
application title that will appear in the header bar of the browser when the page loads.

Listing 5.12 Using Ajax to load an HTML island from the preview partial MVC view

Get reference to preview section
and find currently selected dish.

If no selected dish you’re at
top level, so fade section out.

After fadeout, remove
section from DOM.

If no dish is selected there’s
nothing to fill, so exit.

If dish is selected,
compile new URL.

On success, get
data as HTML.

Load image from returned
data so that everything
appears at once.

When image is loaded,
fade it into view.

Fade out old image as new
one fades in, and remove it
when fade is complete.

None of animations will
fire until new wrapped
set is attached to DOM.
www.it-ebooks.info

http://www.it-ebooks.info/

142 CHAPTER 5 The History API: changing the game for MVC sites
You’ll refine the application by making those tweaks now.

CHANGING THE APPLICATION TITLE

To assign the application title, follow these simple steps:

1 Open the Shared/_Layout.cshtml file and find the
<div> tag with the id of title.

2 Change the content of the tag to "HTML5 Restau-
rant" and save the file.

Now the master page will display a better title through-
out the application.

CHANGING CSS STYLES

Recall that you’re assigning CSS classes to <section> tags of
either active or inactive (empty string) and tags of
either selected or unselected (empty string). An inactive
section should still be readable and links-clickable, but the
active and selected elements should stand out so the user
knows where they are without having to read the URL. Fig-
ure 5.12 shows the look you’re after for selected menu items.

Hash values and querystrings
We’ve discussed parsing the normal parts of the URL in this chapter, and that’s often
all you’ll need to use the History API in HTML5. But there will be times when additional
data is required, both on the client side and on the server. Here are some brief points
to remember about querystring values that come after the resource name and about
hash values, prefixed by a hash (#) symbol, that come at the end of the URL:

■ Querystring values have no native JavaScript API to parse them into their com-
ponent name/value pairs, nor is there a native method in the jQuery library. You
can parse these values using regular expressions against the location.href
value, but you need to take care and unescape the values before you attempt
to present them in your user interface.

■ Querystring values are available both on the client and the server.
■ Hash values must be escaped and can contain any value or set of values but

don’t by design have a specification for name/value pairs in the manner of
the querystring.

■ Hash values are only available on the client. They can’t be detected or manipu-
lated on the server other than to be set.

■ Hash values are popular for deep-linking content in a way that allows an HTML5
application to see what’s requested and take action asynchronously to load
additional data. This keeps the user interface responsive even when large
amounts of data must be downloaded.

The HTML5 History API also implements the onhashchange event that fires when
hash changes take place, but this isn’t universally supported, so you should test thor-
oughly before implementing a solution that relies heavily on this event.

Figure 5.12 The menu
application with routes styled
based on selected meals and
dishes. Selected meals are
bold, and selected dishes are
inset and changed from italic
to normal font.
www.it-ebooks.info

http://www.it-ebooks.info/

143Two more small steps ...
 To tweak your CSS to look like figure 5.12, open the site.css file in the content
folder of your MVC application and scroll to the bottom.

NOTE In typical .NET web development, insufficient time is devoted to
understanding the critical role that CSS plays in application development and
natural user interface design. We’re digging into styles here to emphasize this
relationship and to drive home the cascading nature of CSS styles.

Listing 5.13 shows the new styles that you’ll be creating. With this code, you first over-
ride the existing anchor styling so that the menu page can be customized without
affecting any other pages. You then build your active and default menu sections with a
small inset and color change for active sections. Next, you style your selected and
default links and list items to provide a look and feel that gives the user visual cues
without a jarring appearance. Place the code from the next listing into your site.css
file as described.

section.menu h3 {
 color: gray;
}

section.menu a:link,
 section.menu a:visited {
 text-decoration: none;
 color: grey;
}

section.menu.active {
 margin-left: 20px;
}

section.menu.active h3 {
 color: black;
 font-weight: bold;
 font-size: larger;
}

section.menu.active a:link,
 section.menu.active a:visited {
 color: black;
}

section.menu li {
 font-style: italic;
}

section.menu li.selected {
 font-style: normal;
 font-size: larger;
 margin-left: 20px;
}

Listing 5.13 CSS styles to highlight selected menu items

Set font color for default
section heading.

Override anchor link style
for menu sections.

When section is active make
title text larger and entire
section indented.

Color text of active links black regardless
of whether they were previously visited.

When menu list item is
selected indent it and
remove italic font.
www.it-ebooks.info

http://www.it-ebooks.info/

144 CHAPTER 5 The History API: changing the game for MVC sites
.preview-dish {
 position: relative;
 float: right;
 height: 380px;
 width: 480px;
}

.preview-dish section {
 position: absolute;
 width: 100%;
 height: 100%;
 border: 1px solid black;
}

This is good CSS practice for applying a single style to multiple selectors and for over-
riding existing styles in other parts of the application. Note also that because you’re
using the Menu object’s SelectedMeal property, you can execute a URL with just the
name of the meal (such as /Menu/Dinner) and get a view that highlights an entire
section without offsetting a single dish element. When these little tricks become
second nature to you, you’ll find your development speed increasing along with the
quality and beauty of your applications.

5.4 Summary
In this chapter we looked at how to use partial views and custom routes in ASP.NET
MVC to build up a page that’s responsive and compatible in any browser. You also
learned how to implement the HTML5 History API using asynchronous methods and
jQuery animations. These methods could just as easily be used for a photo album web-
site, a newsreader, or a wizard-style questionnaire. Any interaction that represents a
progression of steps is a good candidate for History integration.

 Using the History API will reduce the number and size of requests to the server as well
as provide a richer and more responsive experience for users. The History API may not
be the most talked-about API in the HTML5 arsenal, but it deserves attention in any
HTML application based on the large benefits in such a small package of features.

 In the next chapter, we’ll look at one of the most popular of the HTML5 APIs—
Geolocation. This technology allows you to develop location-aware websites that can
respond to a user’s current location in real time.

5.5 The complete JavaScript library
The following listing shows you the complete main.js file to provide you with a refer-
ence and help you check your work.

// ----------
function stateFromPath(path) {
 var base = "/Menu/";
 var parts = path.replace(base, "").split("/");
 return {

Listing 5.14 The complete main.js library

Aside element that
contains menu photo
should be floated to
right of screen.

Section element that contains
photo will be absolutely positioned
inside aside so that it will render
in exact same spot every time.
www.it-ebooks.info

http://www.it-ebooks.info/

145The complete JavaScript library
 meal: (parts.length >= 1 ? parts[0] : ""),
 dish: (parts.length >= 2 ? parts[1] : "")
 };
}
// ----------
function updateState(state) {
 if (!state)
 state = stateFromPath(location.pathname);
 // ___ menu
 var $selectedMenu =
 $(".menu[data-meal='" + state.meal + "']");
 $(".menu").not($selectedMenu).removeClass("active");
 $selectedMenu.addClass("active");
 var $selectedItem =
 $(".menu-item[data-dish='" + state.dish + "']");
 $(".menu-item").not($selectedItem).removeClass("selected");
 $selectedItem.addClass("selected");

 // ___ preview
 var $dishContainer = $(".preview-dish");
 var $oldDish = $dishContainer.find("section");
 if (!state.dish) {
 $oldDish.fadeOut(function () {
 $oldDish.remove();
 });
 return;
 }
 var url = "/Preview/Index/" + state.dish;
 $.get(url, function (data) {
 var $newDish = $(data);
 $newDish.find("img").load(function () {
 $newDish.fadeIn(function () {
 $newDish.css("z-index", 0);
 });
 $oldDish.fadeOut(function () {
 $oldDish.remove();
 });
 });
 $newDish
 .css("z-index", 1)
 .hide()
 .appendTo($dishContainer);
 });
}
// ----------
$(document).ready(function () {
 if (!Modernizr.history)
 return;
 // ___ history event
 $(window).bind("popstate", function (event) {
 updateState(history.state);
 });
 // ___ clicks
 $(".menu-item").click(function (event) {
 event.preventDefault();
 event.stopPropagation();
www.it-ebooks.info

http://www.it-ebooks.info/

146 CHAPTER 5 The History API: changing the game for MVC sites
 var $target = $(this);
 var url = $target.find("a").attr("href");
 var state = stateFromPath(url);
 history.pushState(state, "", url);
 updateState(state);
 });
});
www.it-ebooks.info

http://www.it-ebooks.info/

Geolocation
and web mapping
The convergence of social media, rich web content, and onboard location services
in a mobile device has created a genuine opportunity for developers and businesses
that understand the value of “where.” When a user asks “where?” what he or she is
really asking can be any or all of the following:

■ Where am I in relation to where I want to go?
■ Where is the person with whom I am communicating, relative to my location?
■ How close am I to the product or service I am interested in?
■ Is there anything of interest to me nearby?
■ When will I arrive, and is there anything that might slow my progress?

This chapter covers
■ Understanding geospatial data and

geolocation services
■ Building web maps using the HTML5

Geolocation API
■ Building and using ASP.NET MVC controllers for

JSON data services
147

www.it-ebooks.info

http://www.it-ebooks.info/

148 CHAPTER 6 Geolocation and web mapping
The question of “where” always boils down to at least two locations: the user’s location
and the location of the entity the user is interested in. Everything else is just noise and
a distraction from this core equation.

 Building geolocation into an HTML application—the focus of this chapter—
requires you to understand a number of rather abstract concepts, like finding a spe-
cific position on the Earth and measuring distances between points across the Earth’s
surface. In addition, you must understand how those concepts are put into practice
using the HTML5 Geolocation API and a third-party mapping API that can display the
geospatial data on a web page. We’ll show you how to do these things in this chapter,
covering the basics you need to work with geographic data. You’ll also learn to do
the following:

■ Use the Geolocation API via JavaScript code to find a user’s device
■ Work with third-party mapping APIs (the Bing Maps JavaScript API, in particu-

lar) that provide a user interface with viewable maps

Browser support

Chapter 6 map
Geolocation is a programming interface that allows JavaScript to read GPS informa-
tion that the browser gets from the host operating system. Data can be read directly
through the interface, or the listeners can be assigned to receive the data whenever
the physical location of the device changes.

The following parts of the Geolocation API will be discussed in this book. Section 6.3.1
covers the basics of each object and function in this list, and the rest of the chapter
shows how each object and function operates.

The navigator.geolocation object

getCurrentPosition

watchPosition

clearWatch

The position object

The coordinates object

Handling geolocation errors

The position options object

The setAutolocate function
www.it-ebooks.info

http://www.it-ebooks.info/

149“Where am I?”: A (brief) geographic location primer
■ Plot data on a map
■ Use data from the Geolocation API to change the map
■ Enable navigation by combining APIs
■ Calculate geospatial data
■ Bring server geospatial data into your application

First, we’ll spend a little time covering what geospatial data is and what it means in ref-
erence to your location on the planet. You need this knowledge to understand how
to implement a mapping solution. If you already understand these concepts, feel free to
scan the headings or skip directly to the next section, where you’ll put that knowledge
to use in a real application.

6.1 “Where am I?”: A (brief) geographic location primer
The practice of finding an exact location for anything on the planet is based on the
use of angles to determine where something is on the surface of a sphere. Consider
figure 6.1, a rendering of a stress ball, similar to one you might have on your desk

Pick any two splines and trace

them to the center of the ball.
The two splines will

form an angle.

If you say that one

spline is position zero,

all other splines

will be at an angle

up or down, left or

right, from that spline.

Using this method, you can measure any point

on the ball as an angle from the zero spline.

Figure 6.1 Using a squeeze ball as an example, you can follow any two splines from the surface of
the ball to the center and see that an angle is described. The angle can further be divided by how far
up or down it goes and how far left or right it goes from a single reference point on the surface.
www.it-ebooks.info

http://www.it-ebooks.info/

150 CHAPTER 6 Geolocation and web mapping
right now. If you use an arbitrary spline as the zero marker, you can see that any other
spline can be identified by its angle up or down, left or right, from the zero spline.

 Notice that applying this methodology to locations on Earth, you can divide and
subdivide the angles to get as much precision as necessary. You can, theoretically,
locate any point on the planet, no matter how microscopic!

This very general explanation is helpful, but it’s still not enough to be useful to you in
building an application. For that, you also need to know some standard terminology
for describing a unique position.

LATITUDE AND LONGITUDE

Latitude is the name for the number of degrees north or south from the equator. Pos-
itive numbers will always describe points between the equator and the North Pole
whereas negative numbers describe points between the equator and the South Pole.
Latitude registers between –90 and 90 degrees, so 90 degrees of latitude would
describe a straight line from the center of the Earth to the North Pole. If you want to
express these values without using negative numbers, you can say that degrees of lati-
tude are either north or south of the equator.

 Longitude is the value in degrees east or west from the prime meridian. The prime
meridian runs from the North Pole to the South Pole, straight through Greenwich,
England, and down through the western part of Africa. Points to the west of the prime
meridian are negative values while points to the east are positive. These values can

Locations based on coordinates versus those relative to a known position
There are two primary ways to determine the location of a user, regardless of the
actual mathematical formula used. The first is using a conventional geographic coor-
dinate system based on angles of latitude and longitude. This system allows you to
specify two numbers, and it results in a precise location anywhere on the planet.

The second method locates the position of something relative to a known position.
Using this method, you can state that from your current position, the thing of interest
is at 90 degrees and 20 meters away. You could also state that it’s 20 meters away
at 3 o’clock. The critical values required are the absolute position of the starting
point, the direction the person at the starting location is facing, the distance to the
target, and the bearing of the target based on the starting direction.

A common scenario where this second kind of location method is used is in a tactical
or military environment. Each team member knows where the other teammates are
and can direct actions based on that knowledge. They must act quickly and don’t
need to remember which way is north or exactly how far something is from each mem-
ber. Rather, a team leader must be able to tell each member where something is rel-
ative to either himself or another team member. This method is generally less
accurate because multiple variables are involved and each has a margin of error, but
it’s quick and useful when precision isn’t necessary.

We’ll be focusing on the first, more scientific method in this chapter.
www.it-ebooks.info

http://www.it-ebooks.info/

151“Where am I?”: A (brief) geographic location primer
also be expressed as degrees east or west of the prime meridian. When using just the
numbers without the east or west tags, longitude values increment until they reach
180 degrees on the other side of the planet. Near that point, you can have a longitude
value of 179.9999 and move slightly and be at –179.9999.

 Putting it all together, you can identify any single point on Earth with a pair of
numeric values describing angular latitude and longitude values from the correspond-
ing zero lines. Here are a couple of examples:

■ The Washington Monument is at 38.8891 degrees latitude, –77.0355 degrees
longitude. This is also 38.8891 degrees north and 77.0355 degrees west.

■ The Eiffel Tower is at 48.8584 degrees latitude, 2.2944 degrees longitude. This
is the same as saying it’s 48.8584 degrees north and 2.2944 degrees east.

Figure 6.2 shows exactly how these values flow across the planet from the equator
north and south and from the prime meridian east and west.

 This seems pretty straightforward, and possibly even lame. “I learned this in elemen-
tary school! What does this have to do with the Geolocation API?” you might be think-
ing. The real value to you as an application developer comes when you have multiple
geographic coordinates. After all, what developer cares about the latitude and longitude
of the Washington Monument or the Eiffel Tower? But taken together, when you have

Figure 6.2 Longitude is the
number of degrees of angle
around the Earth east or west
of the prime meridian, and
latitude is the number of
degrees north or south
of the equator.
www.it-ebooks.info

http://www.it-ebooks.info/

152 CHAPTER 6 Geolocation and web mapping
multiple values and an arbitrary meaning for each point, you can measure the distance
between any two points to determine travel information, distribution over an area, and
even changes to spatial data over time. Multiple points are where spatial coordinates
meet real-world data and become geographic information systems (GISs).

 To carry the example one step further, you could use the computeDistance
JavaScript function you’ll write later in this chapter to determine that the distance
between the Washington Monument and the Eiffel Tower is 6,162 kilometers, based
only on their latitude and longitude coordinates.

MAKING GEOSPATIAL DATA MEANINGFUL WITH GIS
GIS is the science and practice of adding meaning to one or more geographic points.
The study of demographics, weather systems, geology, hydrology, and a myriad of
other scientific disciplines center on the question of where an entity of interest is and,
frequently, how that entity changes over time. GIS, as an industry, covers the range
from spatial data collection, storage, and retrieval to the deep analysis of spatial data
as it relates to other data.

Now, armed with the nonfunctional geolocation information that you need in order
to understand how this chapter’s sample application works, let’s start building.

Why is position zero in Europe?
Zero degrees of latitude makes sense in that it’s the exact center of the spinning
planet. But why is zero degrees of longitude set for a random location in western
Europe? It was actually established in the mid-1800s based on the fact that England,
as the prime super-power of the time, controlled most of the world’s shipping. Since
navigation at sea needed to be somewhat consistent, most seafarers of the time
adopted the British prime meridian for their maps. What this really means is that the
prime meridian is both arbitrary and based almost completely on a combination of
convenience and politics.

The missing link … altitude
You may have noticed that we included only latitude and longitude in our discussion.
Altitude is the third piece of coordinate data, describing the distance straight up from
any point on the planet, measured from sea level. We’re intentionally avoiding the
discussion of altitude here because, while it’s important to many types of GIS data
collection, many mobile geolocation implementations don’t use it. Also, many of the
normal web mapping functions, like routing and address location, don’t need altitude
to function properly.
www.it-ebooks.info

http://www.it-ebooks.info/

153Building a geolocation application
6.2 Building a geolocation application
The application you’ll build in the rest of this chapter uses ASP.NET MVC, JavaScript,
and HTML5. There’s a screenshot of it in figure 6.3.

 To help you build the mapping application, we’ll take you through the follow-
ing steps:

1 Setting up the initial MVC project
2 Creating a new mapping page and adding it to the application menu
3 Getting a free Bing Maps account and displaying basic maps on the page
4 Using the Geolocation and Bing Maps APIs to auto-locate yourself on a map
5 Upgrading the Geolocation API code to follow the user as the device moves around
6 Adding server support for building turn-by-turn directions

When you’re finished, you’ll have a number of moving parts in your application, all of
which are illustrated in figure 6.4.

 Let’s get started with the basic application setup.

Figure 6.3 The finished geolocation application will allow you to auto-locate yourself on the map and
get directions to the point you click on the map.
www.it-ebooks.info

http://www.it-ebooks.info/

154 CHAPTER 6 Geolocation and web mapping
6.2.1 Basic application setup

The initial setup is relatively painless:

1 Open Visual Studio and create a new ASP.NET MVC project called GeoMapping.
2 Update all of the NuGet packages by navigating to Tools > Library Package

Manager > Manage NuGet Packages for Solution.

URL

/home/maps

Home

controller Maps()

method

Maps view (HTML)

<section> element

main-map

<script>

main.js

<script>

Bing Maps

JavaScript API

GeoData

controller

GetAddress()

method

Loads Bing Map object

into main-map element

Assigns map interaction

events to Bing Maps API

event handlers

Stores places clicked and

calculates distances

Ajax calls to GeoData

controller to reverse

geocode a map point

✓

✓

✓

✓

Displays map tiles on

page, handling normal

map pan/zoom events

Sends map interaction

events from main.js to

Bing Maps web services

Loads directions

between points from

Bing Maps web service

and displays on map

✓

✓

✓

Figure 6.4 The geolocation application you’ll create in this chapter will communicate with the
server by means of a method on the HomeController (/home/maps) and through a JSON-enabled
controller call (/GeoData/GetAddress). The Bing Maps JavaScript API will work directly with the
<section> object assigned as the map to display information, and user interaction will be handled
using your own custom JavaScript library.
www.it-ebooks.info

http://www.it-ebooks.info/

155Building a geolocation application

r

l

3 Find the Updates tab and go through each list item in the center of the screen
and click the Update button.

4 Open the Scripts folder and find the jQuery and Modernizr libraries listed.
Note the version numbers of the files.

5 Navigate to the Views > Shared > _Layout.cshtml file, which is the default mas-
ter page for the application.

6 Find the scripts listed at the top of the page and update the version numbers.

Now you’re ready to get on with the real work of creating the mapping web page.

CREATING THE PAGE AND A MAPPING ENDPOINT

Your first substantial step is to create the page that will contain your map and wire it
up to the MVC navigation. To do this, you’ll create a new stylesheet because the
JavaScript map requires absolute positioning; you’ll also need to tweak the page to
allow for a full browser presentation.

 In your new solution, open the HomeController and add the following snippet of
code inside the class definition:

public ActionResult Maps()
{
 return View();
}

That’s all you need to create the new mapping endpoint. MVC will now recognize the
URL yoursite/Home/Maps, although nothing will appear there yet.

CREATING THE INTERFACE FOR THE APPLICATION PAGE
Next, you need to create the interface page:

1 Right-click on the View() text inside the Maps method and select Add View.
2 In the pop-up menu that appears, deselect the check box for Use a Layout or

Master Page, and click Add.

A new view called Maps.cshtml will be created. Place the code in the following listing into
the new view. This will create the HTML structures you need to display the application.

@{ Layout = null; }
<!DOCTYPE html>
<html>
<head runat="server">
 <title>Bing Maps and Geolocation</title>
 <link href="@Url.Content("~/Content/Maps.css")"
 rel="stylesheet" type="text/css" />
 <script
 src="@Url.Content("~/Scripts/jquery-1.7.2.min.js")"
 type="text/javascript"></script>
 <script
 src="@Url.Content("~/Scripts/modernizr-2.5.3.js")"
 type="text/javascript"></script>

Listing 6.1 The interface for the geolocation application page

jQuery and Modernize
aren’t required for
mapping but are helpfu
for working with DOM
and for feature
detection respectively.
www.it-ebooks.info

http://www.it-ebooks.info/

156 CHAPTER 6 Geolocation and web mapping

ique
.

 <script src="http://ecn.dev.virtualearth.net/
 mapcontrol/mapcontrol.ashx?v=7.0"
 type="text/javascript"></script>
</head>
<body>
 <aside class="box-round box-shadow">
 <input id="auto" type="checkbox" />
 <label for="auto">Auto-locate</label>
 <div id="status"></div>
 </aside>
 <section id="main-map">
 </section>
 <section id="itinerary" class="box-round box-shadow">
 <div class="close">[close]</div>
 </section>
 <script src="@Url.Content("~/Scripts/config.js")"
 type="text/javascript"></script>
 <script src="@Url.Content("~/Scripts/main.js")"
 type="text/javascript"></script>
</body>
</html>

CREATING THE STYLESHEET

Now you need the stylesheet (maps.css). It goes in the Content folder in your applica-
tion, but we won’t list the entire contents here. It’s boring and not relevant to the opera-
tion of the application. If you’re building the app as you read along, skip to the end of the
chapter to grab the code (listing 6.12) and then come back here to continue.

TIP The styles may seem beside the point in a mapping and GIS chapter, but
keep in mind that in the world of HTML5, details count, and users demand a
clean, fluid experience in their browsers. Adding rounded corners and drop
shadows, and making your application cover every bit of real estate available on
a device can make the difference between a good experience and a great one.

ADDING A LINK TO THE MENU BAR

Next, you need to tell MVC to add a new link to the top menu bar, so that when you
run your application you’ll see the new tab, as in figure 6.5.

 To add the Maps menu item, follow these steps:

1 In your application, open the Views\ Shared\ _Layout.cshtml file.
2 Find the menu element, and at the bottom of its content add a new list item:

@Html.ActionLink("Maps", "Maps", "Home")

Mapcontrol script is required
and should come from
virtualearth.net domain.

We’ll use <aside>
element to hold controls
that test GIS functionality.

One element on page should have un
ID that you can assign to map object

Itinerary will be
displayed or hidden
based on current
application state.

Figure 6.5 The new Maps
menu item should appear in the
application after you edit the
master page.
www.it-ebooks.info

http://www.it-ebooks.info/

157Building a geolocation application
Unfortunately, when you click on the new Maps menu item, the resulting page doesn’t
display anything. A view that used a master page would at least have the menus, but
because we assigned Layout=null in the view, this particular page doesn’t even have that.

 The reason is that you still need to get the map API up and running. Remember,
you’re working with two different APIs in this chapter: the Bing Maps JavaScript API
that provides a user interface with viewable maps, and the HTML5 Geolocation API that
allows your JavaScript code to find out where the user’s device is currently located.
Your next step is to build the maps UI.

6.2.2 Using the Bing Maps JavaScript API

The world of web-based mapping and GIS is broad and deep. Here’s just a small sam-
ple of companies offering mapping or GIS services for web applications:

■ Bing Maps—http://www.bingmapsportal.com
■ Google Maps—https://developers.google.com/maps/
■ Esri—http://www.esri.com/software/arcgis/web-mapping
■ OpenStreetMap—http://www.openstreetmap.org
■ Yahoo! Maps—http://developer.yahoo.com/maps

Each of these services provides a JavaScript library that you can link to in your site to
display and control maps. Each of these libraries also provides a deep set of GIS and
display features that can be used in conjunction with the Geolocation API to provide a
rich location-based experience. These companies and organizations also provide web
services that you can call from your client or server to get additional data or to per-
form calculations. For instance, there are data sets available for the U.S. census, and
rainfall and climate information for the entire planet. Or you might want to do
advanced calculations based on something called a viewshed. This is the calculated
area that’s visible to the human eye from any point on the map based on known ter-
rain information.

 You’ll be using the Bing Maps JavaScript API for a couple of reasons. First, as a
Microsoft developer, you’ll probably already have an MSDN user ID you can use to sign
up for a Bing Maps Developer account. Second, Bing Maps competes directly against
Google Maps, which is currently the most popular web mapping service by far. As
such, you’re more likely to be familiar with Google Maps, so using a different API
should help broaden your horizons and help you understand the work involved in
changing out services, should the need ever arise.

OPENING A BING MAPS ACCOUNT

The first thing you need to start using Bing Maps is a developer account. Go to http://
www.bingmapsportal.com and sign in with your Windows Live ID. From there you can
follow the steps to set up the key strings that you’ll supply to the Bing Maps API to get
maps. This key will be used to track usage and billing for the various services offered
by Microsoft.
www.it-ebooks.info

http://www.bingmapsportal.com
https://developers.google.com/maps/
http://www.esri.com/software/arcgis/web-mapping
http://www.openstreetmap.org
http://developer.yahoo.com/maps
http://www.bingmapsportal.com
http://www.bingmapsportal.com
http://www.it-ebooks.info/

158 CHAPTER 6 Geolocation and web mapping
DISPLAYING A MAP ON THE PAGE

Once you have your license key, you’ll need to create a map on your page. By default,
the Bing map will be placed inside a <div> tag and will immediately take up the entire
interface. Use styles to set its absolute position, height, and width to achieve the layout
you’re looking for.

 Note that the Maps.cshtml page references two JavaScript files that don’t yet exist:

■ /Scripts/config.js
■ /Scripts/main.js

Create new JavaScript files in the Scripts folder using these names. Now open the con-
fig.js file and add the following code, inserting your Bing Maps key as the value:

window.config = {
 mapKey: "your key here"
};

This will allow you to change your map key when moving between environments and
keep it out of your main codebase, where it doesn’t belong. You may also decide to
use this config object to store other data, or you may prefer to get your key from a
remote server.

 Now that the structure is in place, let’s see how you can make the map display on
the page and integrate the Geolocation API. Open the main.js file and add the code in
the next listing.

$(document).ready(function () {
 gis.init();
});

window.gis = {
 map: null,
 watchID: null,

You mean I have to pay for maps?
Outside of the OpenStreetMaps series of APIs, you’ll certainly have to pay for maps
deployed to a production website if you’re charging for your service. If you don’t
charge for your application, or if your application will be used for a non-profit organi-
zation, you may be able to get your mapping features for free. Additionally, as a devel-
oper, you’ll get a certain number of API hits for free as part of your developer
agreement. Read the terms and conditions carefully before spending too much time
developing against a single service, so you aren’t boxed into untenable expenses
when you go live with your application.

If you’re able to put maps on your site for free, you’ll often find as part of your agree-
ment that you can use services freely with some restrictions on the kind of maps you
can display and the specific services you implement for each vendor.

Listing 6.2 Initializing the Bing Map on your page using the jQuery ready() function

Call gis object’s ready function
when page has loaded.

gis contains map
property assigned below.
www.it-ebooks.info

http://www.it-ebooks.info/

159Using the Geolocation API
 $autoCheckbox: null,
 $status: null,
 $itinerary: null,
 startTime: 0,
 distance: 0,
 previousLocation: null,
 places: [],
 directionsManager: null,

 init: function () {
 var self = this;

 this.$status = $("#status");

 this.$itinerary = $("#itinerary")
 .click(function () {
 self.$itinerary.fadeOut();
 });

 this.map = new Microsoft.Maps.Map(
 $("#main-map")[0],
 { credentials: config.mapKey }
);

 Microsoft.Maps.Events.addHandler(
 this.map, "click", function (event) {
 self.handleClick(event);
 });

 this.$autoCheckbox =
 $("#auto").change(function () {
 self.setAutoLocate(
 self.$autoCheckbox[0].checked);
 });

 if (Modernizr.geolocation)
 this.setAutoLocate(true);
 }};

If you run your application now (and if you filled in your Bing Maps key), you should
be able to click on the Maps tab and see a map similar to the one in figure 6.6.

 Try it out! You can zoom in and out to anywhere on the planet and switch between
road and aerial views. Spend some time getting a feel for how the map pans and
zooms with mouse clicks, scroll wheel operations, and the map controls in the top-left
corner. Once you feel confident about the user’s experience, continue on in the next
section to start adding functionality to your map. We’ll start by showing you how to
integrate the HTML5 Geolocation API with the user interface elements and the map-
ping API features.

6.3 Using the Geolocation API
The HTML5 Geolocation API is a great entry point into the world of spatially inte-
grated web applications. The API itself doesn’t provide any mapping support or GIS
capabilities. It will return a location and a time stamp and, depending upon the browser,
perform very basic calculations to tell you the direction and speed of the device, but

Assign local properties that will contain interface elements
to avoid requerying DOM during execution.

Map object is created and assigned
to local variable using UI <div>
element and configured map key.

Using Modernizr check for HTML5 Geolocation API
and assign auto-locate check box event handler.
www.it-ebooks.info

http://www.it-ebooks.info/

160 CHAPTER 6 Geolocation and web mapping
nothing beyond that. In order to use it effectively, you have to add logic around the
API to display maps and determine geospatial relationships between the device and
the world around it.

 To get a better understanding of how this puzzle fits together, in this section you’ll

■ Interact with device location services
■ Plot a point on a map
■ Integrate geolocation and a map
■ Navigate a map using geolocation

First, let’s go over the basic operating principals of the Geolocation API and then use
the Bing mapping service to exercise some basic geospatial functions.

Figure 6.6 The working Bing Maps JavaScript API
www.it-ebooks.info

http://www.it-ebooks.info/

161Using the Geolocation API
6.3.1 API functions for interacting with device location services

The geolocation object is available as an object property attached to the window
.navigator object. You can detect its availability with a simple truthy statement in
JavaScript:

if (window.navigator.geolocation) {
 ... do work ...
}

The window.navigator object has three methods for interacting with device loca-
tion services:

■ getCurrentPosition—This will return a Position object based on the last
known or cached location. It takes function callbacks for success and errors and
an options object.

■ watchPosition—This sets up an iterative watch operation that pings the loca-
tion services of the device and returns a Position on each iteration. This func-
tion will return a number that uniquely identifies the watch operation. (Note
that the specification states this value is a “token,” but in reality it’s a numeric
value that will increment as you add new position watches.) It takes the same
success and error callback functions as well as the options object.

■ clearWatch—This ends a watchPosition loop based on the unique ID speci-
fied in the input parameter.

THE POSITION OBJECT

The Position object is returned by both the getCurrentPosition and watchPosi-
tion callback functions, and it has only two properties:

■ coords object property—This property corresponds to a single coordinate object.
■ timestamp property—This is a numeric value that can be converted quickly into

a JavaScript date object by passing it in as a parameter to Date().

TIP Some browsers support additional features on the Position object, but
these aren’t part of the version 1 HTML5 Geolocation specification and
shouldn’t be counted on for across-the-board availability. For instance, recent
versions of Firefox for Windows will return an Address object property
attached to Position that could potentially save your application from need-
ing to use a paid geolocation service to get an accurate address for a position.

THE COORDINATES OBJECT

Coordinates are the meat of the Position object, and they contain a set of properties
corresponding to the found location:

■ latitude—The decimal value of the current latitude.
■ longitude—The decimal value of the current longitude.
■ accuracy—The number of meters (radius) that the latitude and longitude

coordinates are considered accurate to.

Core API

Core API

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

162 CHAPTER 6 Geolocation and web mapping
■ altitude—The height above sea level in meters.
■ altitudeAccuracy—The number of meters the altitude value is considered

accurate to.
■ heading—The direction of travel in degrees, based on 0 degrees as true north.

A degree heading from the coordinate object can be read directly onto
a compass.

■ speed: Speed at which the device is traveling, in meters per second.

Among the properties of the coords object, only latitude and longitude are guaran-
teed to be populated. Accuracy and altitude information can be either null or NaN
(not a number) but will never be undefined.

THE ERROR HANDLER CALLBACK AND ERROR OBJECT

The error handler callback is an optional parameter for both getCurrentLocation
and watchPosition. When fired, it will return an error object that contains a numeric
code value and a message. Although the error code is numeric, it can be called based
on constants defined in the error object itself:

errHandler(err) {
 switch (err.code) {
 case err.TIMEOUT:
 // Could not acquire position
 break;
 case err.POSITION_DENIED:
 // User did not allow geolocation usage
 break;
 case err.POSITION_UNAVAILABLE:
 // Browser could not access location based services
 break;
 }
}

THE POSITION OPTIONS OBJECT

The options object is also optional on both the getCurrentLocation and watch-
Location function calls. When supplied, it can have any or all of the following properties:

■ enableHighAccuracy—A Boolean value of true indicates that the application
would like the most accurate results possible. This may delay the results until
more satellites are found, or it may reduce battery life by tracking more GPS
locators more frequently. The actual implementation of high accuracy varies by
platform. The default value is false.

■ timeout—An integer value (milliseconds) indicating how long to wait after call-
ing getCurrentPosition before the error handler is invoked with the TIMEOUT
error. The default value is zero.

■ maximumAge—The number of milliseconds during which it’s acceptable to
return a cached position object. If set to a non-zero value, the API can
return a previously cached position without re-executing its hardware-based
GPS location operations. If not supplied to getCurrentPosition, the default

Core API

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

163Using the Geolocation API
value is zero. If not supplied to watchPosition, the value returned can be
the most recent position returned or the first position returned when execut-
ing the loop.

Overall, the operational set for the Geolocation API is simple and straightforward,
but the ability to build location into an existing application gives you some great
consumer and corporate possibilities. As mentioned earlier, though, you can’t do
much when all you have is a location and no reference to other points of interest
around you. To resolve that, we’ll now look to the Bing Maps Ajax Control that can
be easily integrated with geolocation to provide mapping and GIS capabilities to
your HTML application.

6.3.2 Plotting a point on a map

Any single point on the map will correspond to a position on the Earth that, as we dis-
cussed earlier, has latitude and longitude coordinates. The Bing Maps Ajax Control
can find this point by referencing the x and y coordinates of a click event.

 Earlier, when you started working on the main.js file, you placed the following bit
of code in the init function:

Microsoft.Maps.Events.addHandler(this.map, "click", function (event) {
 self.handleClick(event);
});

That code wires up the map’s click event to the Events object, which is a property of
the Microsoft.Maps object and has the addHandler function listed along with a few
others. You can remove a handler with removeHandler and check to see if a specific
handler is attached using hasHandler. The addThrottledHandler function gives you
the ability to add a handler that will reduce event noise on the map by firing the target
event at a minimum interval, based on the throttleInterval parameter passed in.
This is perfect for tracking mouse movement without causing undue load on the
browser’s UI thread.

 The preceding event wire-up code calls the handleClick function of the gis
object, which you haven’t yet created, so that’s the next step. Add the code from the
following listing to main.js just after the init function’s closing brace.

handleClick: function (event) {
 var self = this;

 if (event.targetType != "map")
 return;

 if (this.places.length >= 2)
 this.clearPlaces();

 var point = new Microsoft.Maps.Point(
 event.getX(), event.getY());

Listing 6.3 The click event handler will find the coordinates for any point on the screen

Check to see that
map was actually
clicked.

With event find x and y
coordinates that were clicked.
www.it-ebooks.info

http://www.it-ebooks.info/

164 CHAPTER 6 Geolocation and web mapping

to

 var loc = event.target.tryPixelToLocation(point);
 var pin = new Microsoft.Maps.Pushpin(loc, {
 icon: "/Content/html5.png",
 width: 32,
 height: 32
 });

 var place = {
 pin: pin,
 address: null
 };

 this.map.entities.push(pin);
 this.places.push(place);

 // Ajax call to server will go here
},

Note that the map object is referenced in two ways:

■ self.map in the JavaScript library
■ target property in the click event handler

The getX and getY functions both return the x and y values in pixels identifying
where the user clicked. You have to use the tryPixelToLocation function to turn this
into a map point with latitude and longitude. tryPixelToLocation returns null if it
can’t find a geographic location from an x,y combination.

CREATING PUSHPINS

A Pushpin must have in its constructor two arguments: a location object and an
options object. options can be null, but the parameter itself is required.

 The default Pushpin object is defined in the Bing Maps Ajax Control and isn’t edit-
able, but you can create your own. The following code shows how to create a new
Pushpin with an image as its display object:

var pin = new Microsoft.Maps.Pushpin(loc, {
 icon: "Images/html5.png",
 width: 32,
 height: 32
});

You can search MSDN for the PushpinOptions object to see a complete list of the
properties available for this object.

ADDING AN ARRAY OF OBJECTS OVER THE MAP

The entities property of the map object is an array of objects that will appear on the
map. These objects, such as the official HTML5 logo, may be in the visible area or
located somewhere off-screen.

 For instance, if you draw a route, the map control will track all the points and
lines on that route but only display what’s in the current viewable map. You don’t
have to worry about showing or hiding elements as they enter or exit the viewable
map area. If they’re not in the current viewable map area, they will appear as the
user pans and zooms around on the map. Consider the entities property to be

Convert x,y
coordinates
map location
object.

Add pushpin
to map at new
location.

Places property will contain
references to clicked locations
for routing feature.

Add new pushpin
to map so it can
be viewed.
www.it-ebooks.info

http://www.it-ebooks.info/

165Using the Geolocation API
something like a transparency over the map. It doesn’t affect the imagery, but it can
be used to enhance it.

NOTE The official logo for HTML5 can be loaded from http://www.w3.org/
html/logo/—your purposes are best served with a 32x32 pixel version. You
can download this file and place it in the content folder of your application,
or choose your own.

TRY IT OUT!
Run your application now. You should see the map and be able to click on any point.
When you do, the HTML5 logo will appear where you clicked. Click again and a sec-
ond point will be added to the map. Once two points have been added to the map, the
third click will remove the first two points and add the third. Your page should end up
looking something like figure 6.7.

6.3.3 Integrating geolocation and a map

Earlier in this chapter we walked through the parts of the Geolocation API that
you’ll be using. It’s time to put these pieces of the API together to locate the user in
the world.

 First, take a look at the init function. You used this code earlier to wire up the
auto-locate check box’s change event:

this.$autoCheckbox =
 $("#auto").change(function () {

Figure 6.7 The map will place an
HTML5 logo in every position
clicked on the map when the
auto-locate check box is checked
on the page.
www.it-ebooks.info

http://www.w3.org/html/logo/
http://www.w3.org/html/logo/
http://www.it-ebooks.info/

166 CHAPTER 6 Geolocation and web mapping

n
 self.setAutoLocate(
 self.$autoCheckbox[0].checked);
 });

if (Modernizr.geolocation)
 this.setAutoLocate(true);

The setAutoLocate function called in that code will set up a location watch and
update the map whenever the location changes. The function is shown in the follow-
ing listing and should be placed at the end of the current code in the gis object.

setAutoLocate: function (value) {
 var self = this;

 if (this.auto == value)
 return;

 if (value && !Modernizr.geolocation) {
 this.$status
 .text("geolocation not supported");
 return;
 }

 this.auto = value;
 this.$autoCheckbox[0].checked = this.auto;

 if (this.auto) {
 this.$status.text("locating...");
 this.watchID = navigator.geolocation
 .watchPosition(function(position) {
 self.updateForPosition(position);
 },
 function(error) {
 if (error.code == error.PERMISSION_DENIED)
 self.$status.text("Please enable geolocation!");
 else if (error.code == error.POSITION_UNAVAILABLE)
 self.$status.text("Unable to get location.");
 else if (error.code == error.TIMEOUT)
 self.$status.text("Timeout error");
 else
 self.$status.text("Unknown error");

 self.setAutoLocate(false);
 },
 {
 enableHighAccuracy: true,
 maximumAge: 30000
 }
);
 }
 else {
 navigator.geolocation.clearWatch(this.watchID);
 this.watchID = null;
 }
},

Listing 6.4 setAutoLocate will handle errors and watch the current position

Core API

Determine if local auto variable
has changed; if not do nothing.

Check again for
geolocation capability.

At startup check box is in indeterminate
state so assign it definite value.

Call Geolocation’s watchPosition
function if auto is true and get
numeric ID value for watch.

Update map
position whe
watch value
changes.

Handle errors
with anonymous
function using
error.code
value.

If error occurs turn
off auto-location.

Assign options to allow for
best accuracy of data.

If auto is false call
clearWatch and set
watchID value to turn
off location tracking.
www.it-ebooks.info

http://www.it-ebooks.info/

167Using the Geolocation API
CONSIDERING TIMING AND DEVICE BATTERY LIFE

You’re still missing the updateForPosition function, but before we get to that, let’s dis-
cuss the nature of watchPosition in terms of timing and possible device battery life.

 GPS locators are generally radio devices that often maintain a constant fix on mul-
tiple satellites. As such, they can take up a lot of power on a mobile device. While you
can’t tell watchPosition how often to return a new location, you can give it plenty of
wiggle room in caching a position using the maximumAge option. You could also decide
to call getCurrentPosition inside a setInterval loop, but at that point you’re still
counting on the internal implementation of the device to maintain satellite tracking.

 The current crop of devices on the market aren’t really suited for long-term GPS
tracking, but as geolocation becomes more a part of the mobile space, expect things
to change and the power consumption and accuracy of these devices to improve.

6.3.4 Navigating the map using geolocation data
The next step in tracking the user on the map is to actually perform work with the
data returned from the Geolocation API. The effect you’re looking for is displayed in
figure 6.8, where, when geolocation is detected, the screen will update the current
view and zoom level with the new position. When the map loads to the full-world view,
it will immediately zoom to your current location.

 The function to make this happen is updateForPosition. Review the following list-
ing and add it to your gis object.

updateForPosition: function (position) {
 var loc = new Microsoft.Maps.Location(
 position.coords.latitude,
 position.coords.longitude);

Listing 6.5 updateForPosition applies the current position to the map object

Figure 6.8 As soon as the map loads
and the Geolocation API is detected, the
code will find your current location and
zoom directly to it.

Geolocation position object has
latitude and longitude necessary
to build map location.
www.it-ebooks.info

http://www.it-ebooks.info/

168 CHAPTER 6 Geolocation and web mapping
 var a = Math.min(25000,
 position.coords.accuracy) / 5000;
 var zoom = 16 - Math.round(a);
 this.map.setView({
 zoom: zoom,
 center: loc
 });

 // watched route drawing goes here
},

Notice that the position object returned by the Geolocation API isn’t the same as the
location object you used for locating things on the map. Using the Bing Maps API,
you can build a location object from either the pixel location on the map or from lat-
itude and longitude inputs. Everything comes back around to the latitude and longi-
tude though.

 The setView function can take a number of properties in the ViewOptions object
parameter. The center property takes a single location, and the bounds property can
take a LocationRect object that describes a rectangle using the top-left location and
height and width values in degrees. Heading can be used to describe which direction
appears at the top of the map, and the zoom level can be set from 1 (whole Earth) to a
max value that can be different for each location but is generally between 12 and 20.

 Here are a few examples:

this.map.setView({
 zoom: 14,
 center: loc,
});

Or

this.map.SetView({
 zoom: 14,
 center: loc,
 heading: 45
});

Or

this.map.SetView({
 locationrect: rect
});

PERFORMING GEOSPATIAL CALCULATIONS WITH COORDINATES

Locating yourself on a map is pretty important, but what happens when you want
to show more data on the map, like a line to show where you’ve traveled? The
coordinates object contains heading and speed values, but it’s worthwhile to add
some of your own calculations.

 Go back into the updateForPosition function and add the code in listing 6.6 to
do some basic work with the positions. Then draw a Polyline on the map. This will
result in your application displaying the current total distance traveled and the speed

Round current level of accuracy
to assign valid zoom level.

After creating location use it
to center map on location.
www.it-ebooks.info

http://www.it-ebooks.info/

169Using the Geolocation API

e-

If dis

travele
than

accura

bec
may
at which the user is traveling. This code should go in at the end of the updateFor-
Position function in main.js.

if (this.previousLocation) {
 var distance =
 this.computeDistance(this.previousLocation, loc);
 if (distance > position.coords.accuracy / 2) {
 var line = new Microsoft.Maps.Polyline(
 [this.previousLocation, loc], null);
 this.map.entities.push(line);

 this.distance += distance;
 this.previousLocation = loc;
 }

 var millisecondsPerHour = 1000 * 60 * 60;
 var hours =
 ($.now() - this.startTime) / millisecondsPerHour;
 var kilometerDistance = this.distance / 1000;
 var speed = kilometerDistance / hours;
 this.$status.html("distance: "
 + (Math.round(this.distance * 10) / 10)
 + " m, speed: "
 + (Math.round(speed * 10) / 10)
 + " km/h");
}
else {
 this.previousLocation = loc;
 this.startTime = $.now();
 this.$status.text("located");

}

Once the page is loaded and is following the user, the user should see something like
figure 6.9.

USING THE HAVERSINE FORMULA TO CALCULATE DISTANCES

You probably noticed the reference to the haversine formula. If you’ve done any geo-
spatial work at all, you’ll recognize this function. We won’t be getting into the details
of how this formula does its work, but there are a couple of things that you should be
aware of when working with it.

Listing 6.6 Drawing lines between locations and calculating various travel properties

How many lines can you add to a map?
Polyline is a common object in mapping applications because it can represent
either a straight line between two points or an array of line segments along a route.
Most mapping services, like the Bing Maps Ajax Control, are highly optimized to allow
for many lines to be drawn on the surface without incurring too much processing over-
head. You should be careful about the amount of data you’re trying to display, but
the real threshold is actually quite high.

Get distance using haversin
based function and last and
current locations.

tance in
meters

d is less
 current
level of

cy don’t
continue
ause you
not have
actually

traveled.

Create Polyline object to
display line between last
and current positions.

Total up distance traveled.

Replace last position with current position
to get ready for next watchPosition event.

Using total distance
and time calculate
and display average
speed.
www.it-ebooks.info

http://www.it-ebooks.info/

170 CHAPTER 6 Geolocation and web mapping
 First is the kilometerConversion variable. This
corresponds to the average radius of the Earth in
kilometers. The value has about a three meter vari-
ance on the planet, because the Earth isn’t exactly
round, but bulges a bit in the center.

 The second thing you need to be aware of about
the haversine formula is that it doesn’t measure the
distance across the surface of the Earth. What it
actually does is determine the angle differential
between point A and point B and calculate the dis-
tance across that arc at the distance of the radius
provided. An example may help explain this better.

 Imagine you’re holding a grapefruit in your
hand, and you’re pushing two chopsticks into it so
that their tips touch at the exact center of the sphere.
The point where each chopstick enters the surface
of the grapefruit can be located by degrees of longi-
tude around the circumference, starting from a
known position (the prime meridian) and degrees
of latitude between the exact top and bottom points.
With those values, you can calculate the angle
between the two chopsticks. All you need now is
the distance from the center to the surface where the
chopsticks enter the grapefruit, and you can use
the haversine formula to tell you the distance
between each hole. This formula is used to find the “great-circle” distance: the distance
along an arc between two points described by latitude and longitude coordinates.

The following listing shows a JavaScript implementation of the haversine formula for
your sample application; place it in the gis object in your solution.

computeDistance: function (locationA, locationB) {
 var latA = locationA.latitude;
 var lonA = locationA.longitude;

For more details on the haversine formula ...
The haversine formula has an implementation in every programming language
because it makes geographic distance calculations easy and fast. While the trigo-
nometry involved is well beyond the scope of this book, you can find many resources
that detail its function. One of the best is the Wikipedia page at en.wikipedia.org/
wiki/Haversine_formula.

Listing 6.7 The haversine formula for JavaScript

Figure 6.9 Following the position of
the current user, the application will
track and note any change of position
in real time. Accuracy will depend on
the location and device used, but as
you can see, a run-of-the-mill iPhone is
accurate enough to tell you which side
of the street you’re on.
www.it-ebooks.info

http://www.it-ebooks.info/

171Building a service to find address information
 var latB = locationB.latitude;
 var lonB = locationB.longitude;
 var kilometerConversion = 6371;

 var dLat = (latB - latA) * Math.PI / 180;
 var dLon = (lonB - lonA) * Math.PI / 180;
 var a = Math.sin(dLat / 2) * Math.sin(dLat / 2) +
 Math.cos(latA * Math.PI / 180) *
 Math.cos(latB * Math.PI / 180) *
 Math.sin(dLon / 2) * Math.sin(dLon / 2);
 var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
 var meters = c * kilometerConversion * 1000;

 return meters;
}

You could stop here and have a pretty good web mapping solution. You’re able to
locate the user and follow them as the device moves around. You also have a beautiful
map with a lot of built-in functionality. But in the world of .NET development, you
have a bunch of additional options available on the server that allow you to build even
more features. Your next step is to add server support for routing.

6.4 Building a service to find address information
The server side of your application will be an MVC controller endpoint that returns an
address based on latitude and longitude coordinates. This is referred to as reverse
geocoding, and it’s available as a service from many providers.

 The Bing Maps REST Services platform is one such provider. This service is an inte-
grated part of the Bing platform, so your existing developer map key will also work for
this service. You’ll be using a JSON-enabled MVC controller to receive the coordinates
and send back the address.

NOTE You could just call the Bing REST service from the client, but we decided
that adding the server component was important because applications fre-
quently need to curate data that’s sent to the client by adding and removing var-
ious parts. This example can be easily extended to provide application-specific
geospatial data (or any kind of data) to the client via JSON controller actions.

First, you’ll build a controller to handle geospatial data, and then you’ll learn to dis-
play routes between coordinates.

6.4.1 Modeling a point on the Earth in .NET

You need to add two new objects and a controller to the application to support the
new functionality. Follow these steps to build the objects:

1 In Visual Studio, find the Models folder, right-click and select Add > Class.
2 Name the new file GeoObjects. This file will contain two classes, GeoPoint and

GeoAddress, which correspond to the input coordinates and the output address.
3 Add the code from the following listing to activate the properties for these

two objects.
www.it-ebooks.info

http://www.it-ebooks.info/

172 CHAPTER 6 Geolocation and web mapping
public class GeoPoint
{
 public double Latitude { get; set; }
 public double Longitude { get; set; }
}

public class GeoAddress
{
 public string AddressLine { get; set; }
 public string AdminDistrict { get; set; }
 public string AdminDistrict2 { get; set; }
 public string CountryRegion { get; set; }
 public string FormattedAddress { get; set; }
 public string Locality { get; set; }
 public string PostalCode { get; set; }
}

BUILDING THE AJAX ENDPOINT

Next, you need to build the server endpoint that your client application will use as an
Ajax endpoint. Remember, you have a comment placeholder in the main.js file; you’ll
fill that in shortly. The server side of that call is an MVC controller, so you need to do
the following:

1 Right-click on Controllers in your solution, and select Add > Controller.
2 Name it GeoDataController.
3 When the controller opens, delete the Index() method; it won’t be used.
4 In its place, add the GetAddress call as follows:

public JsonResult GetAddress(GeoPoint geoPoint)
{
 var ret = ReverseGeocode(geoPoint);
 return Json(ret, JsonRequestBehavior.AllowGet);
}

This code simply takes the geoPoint object passed in and reverse-geocodes it to get
the nearest address to the coordinates. It then takes the output and converts it to a
JSON object and sends it back to the client. The JsonResult object and corresponding
Json() MVC function are helpers that allow you to quickly serialize objects into a for-
mat that’s easily consumed by JavaScript.

REVERSE GEOCODING COORDINATES TO GET AN ADDRESS FOR A MAP POINT

The next code you need is the actual ReverseGeocode function, which you’ll place right
into the controller as a private method. Since the built-in MVC Json method doesn’t give
you everything you need to handle JSON data, you need to get another package:

1 In your solution, navigate the menus to Tools > Library Package Manager >
Manage NuGet Packages for Solution.

2 Find the Online tab on the left, and then in the Search box at the top right type
Json.NET.

3 Install that free package.

Listing 6.8 The GeoPoint and GeoAddress objects are used for reverse geocoding
www.it-ebooks.info

http://www.it-ebooks.info/

173Building a service to find address information

The ReverseGeocode function in listing 6.9 calls into the Bing Maps REST API with a
point consisting of Latitude and Longitude properties. When provided with the point
data, the REST service will return a JSON string that you can parse to find the address
object it should contain. You serialize that object into your own GeoAddress object
and return it.

 The following code should be placed in the GeoDataController.cs file.

private GeoAddress ReverseGeocode(GeoPoint point)
{
 var key = "your bing maps key";
 var urlFmt =
 @"http://dev.virtualearth.net/REST/" +
 "v1/Locations/{0},{1}?o=json&key={2}";
 var url = string.Format(urlFmt,
 point.Latitude.ToString(),
 point.Longitude.ToString(),
 key);
 var req = WebRequest.Create(url) as HttpWebRequest;
 if (req != null)
 {
 using (var resp =
 req.GetResponse() as HttpWebResponse)
 {
 var rdr = new StreamReader(
 resp.GetResponseStream());
 var responseStr = rdr.ReadToEnd();
 JObject fullResponse =
 JObject.Parse(responseStr);
 try
 {
 JToken addressResponse =
 fullResponse["resourceSets"]
 .First()["resources"]
 .First()["address"];

What about security?
Some might think that using the HTTP POST method in this Ajax call, rather than the
default GET, would improve security, and to some extent they’re correct. This would
indeed solve the problem of another site calling your method to reverse-geocode
a location.

We’re using GET here for simplicity and to keep the focus on the Geolocation API and
its most basic implementation. A typical production scenario would include securing
your service endpoint both using the more secure POST method as well as using SSL
(HTTPS) and adding security attributes to your controller call. Those improvements
are out of scope for this book, but the MSDN library (http://msdn.microsoft.com) has
plenty of security-related resources to get you rolling, depending on your application
and deployment environments.

Listing 6.9 Using Bing Maps REST Services to reverse-geocode a coordinate

Locations API is called to get address
though REST service has other features.

Call web service
by using
HttpWebRequest.

HttpWebResonse will contain
address data in JSON format.

Use Json.NET JObject
to parse response text.

Parse data using Json.NET
into object with dynamically
assigned properties.
www.it-ebooks.info

http://msdn.microsoft.com
http://www.it-ebooks.info/

174 CHAPTER 6 Geolocation and web mapping

ows

SON
.

 var settings = new JsonSerializerSettings();
 settings.ContractResolver =
 new CamelCasePropertyNamesContractResolver();
 var addr =
 JsonConvert.DeserializeObject<GeoAddress>(
 addressResponse.ToString(),
 settings
);
 return addr;
 }
 catch
 {
 return null;
 }
 }
 }
 else
 {
 return null;
 }
}

That takes care of all the work required on the server side. Other than using the Bing
Maps REST Services for reverse-geocoding, you can also perform other tasks, like get-
ting real-time traffic data and performing routing calculations on the server. There’s a
lot of cross-pollination between the REST services and the Ajax control, so we decided
to keep the work close to the client and use the Ajax routing features rather than the
REST versions.

6.4.2 Displaying routes between coordinates

As you’ve probably noticed by now, the JavaScript we’ve had you write so far only
allows two coordinates to be entered at a time. When the third point is added to the
map, the first two are removed and the new point is added as the next starting point.
But to call your freshly minted MVC controller, you need an Ajax call that passes in a
data object.

 First, you’ll call GetAddress to find the normalized address for each location,
and then you’ll send two addresses to a Bind service to get turn-by-turn directions
between them.

TIP Remember that while you’re passing a JSON object with Latitude and
Longitude properties to the controller, MVC’s model binding feature will
automatically convert that to a GeoPoint object because all the properties of
the object match the property names in the JSON object (including capitaliza-
tion). That means passing in a Latitude and Longitude results in a GeoPoint
with no work on your part whatsoever!

Find the comment in the handleClick function in main.js where the Ajax call is sup-
posed to go. In place of the comment, add the code shown in the next listing.

Serializer object all
for easy translation
between incoming J
and concrete object

With new serializer
perform operation
to create new
GeoAddress object.

If response is empty
or throws exception
return null to client.
www.it-ebooks.info

http://www.it-ebooks.info/

175Building a service to find address information
$.ajax({
 url: "/GeoData/GetAddress",
 dataType: "json",
 data: {
 Latitude: loc.latitude,
 Longitude: loc.longitude
 },
 success: function (data, textStatus, jqXHR) {
 if (!data || !data.FormattedAddress) {
 self.removePlace(place);
 return;
 }
 place.address = data;
 if (self.places.length == 2
 && self.places[0].address
 && self.places[1].address)
 self.getDirections(
 self.places[0].address,
 self.places[1].address
);
 },
 error: function (jqXHR, textStatus, errorThrown) {
 alert("unable to get address: " + errorThrown);
 self.removePlace(place);
 }
});

In the preceding Ajax callback function, you call a number of other functions that
don’t yet exist.

 The removePlace function goes into the gis object in main.js and takes a single place
out of your local places array if there’s an exception or if data doesn’t have an address:

removePlace: function(place) {
 var index = $.inArray(place, this.places);
 if (index != -1) {
 this.places.splice(index, 1);
 this.map.entities.remove(place.pin);
 }
},

The clearDirections function removes displayed directions from the interface. This
is done with the directionsManager object that we’ll discuss soon. Remember that
this function was part of a commented-out bit of code in the clearPlaces function, so
you’ll need to remove that comment:

clearDirections: function () {
 if (!this.directionsManager)
 return;
 this.directionsManager.resetDirections();
 this.$itinerary.fadeOut();
},

clearDirections also gets placed in the gis JavaScript object.

Listing 6.10 jQuery Ajax call to get an address from a controller action

Call current application’s
GeoData/GetAddress
controller method.

Pass named
parameters to service.

Assign returned address
to current place object.

If two addresses exist build
route between them.

If error is returned
remove place object
that caused error.
www.it-ebooks.info

http://www.it-ebooks.info/

176 CHAPTER 6 Geolocation and web mapping

e

y
BUILDING AND DISPLAYING DIRECTIONS

Finally, you’re at the last part of the application where you actually get turn-by-turn
directions from the Bing Maps API and display them on the map. To do this, you’ll cre-
ate a function that has a private function inside it. It may look a little odd, but it helps
to keep private logic out of the exposed API of the gis object.

 The directionsManager object is a feature of the mapping API that must be
loaded separately. This keeps the primary download smaller. This means that in order
to get directions, you have to check for the existence of the object, and, if it doesn’t
exist, load it by calling its constructor. Once it’s loaded, you can set up waypoints with
it and then request directions between those waypoints.

 The following listing shows how this works. This code should go at the end of the
gis object code in main.js.

 getDirections: function (addressA, addressB) {
 var self = this;

 function getRoute() {
 self.directionsManager.resetDirections();

 self.directionsManager.setRequestOptions({
 routeMode: Microsoft.Maps.Directions
 .RouteMode.driving
 });

 self.directionsManager.setRenderOptions({
 itineraryContainer: self.$itinerary[0]
 });

 self.directionsManager.addWaypoint(
 new Microsoft.Maps.Directions.Waypoint({
 address: addressA.FormattedAddress
 }));

 self.directionsManager.addWaypoint(
 new Microsoft.Maps.Directions.Waypoint({
 address: addressB.FormattedAddress
 }));

 self.$itinerary.fadeIn();
 self.directionsManager.calculateDirections();
 }

 if (this.directionsManager) {
 getRoute();
 }
 else {
 Microsoft.Maps.loadModule(
 "Microsoft.Maps.Directions", {
 callback: function () {
 self.directionsManager =
 new Microsoft.Maps.Directions
 .DirectionsManager(self.map);

Listing 6.11 Building and displaying directions with the Bing Maps directionsManager

getRoute function is
private to direction-
building function.

setRequestOptions function can tak
number of parameters including
map zoom level and current displa
type (aerial or road).

RenderingOptions for route
allow you to specify where
or if turn-by-turn directions
will appear.

Add as many waypoint
objects as needed for
route and they’ll be
evaluated in order to
build final directions list.

Calling calculateDirections
will perform actual routing
work on server to return
new route.

directionsManager object is part
of Microsoft.Maps.Directions
module and must be explicitly
loaded to be used.
www.it-ebooks.info

http://www.it-ebooks.info/

177Building a service to find address information
 Microsoft.Maps.Events.addHandler(
 self.directionsManager,
 "directionsError",
 function (error) {
 alert("Directions error: " + error.message);
 self.clearPlaces();
 }
);
 getRoute();
 }
 });
 }
}

TRY IT OUT!
When you run the application now, you should get the same HTML5 logo on each
map click, but when the second icon appears, you should see a route built from
point A to point B and directions displayed according to the style set for the itiner-
ary <div>. Figure 6.10 shows the final product, complete with geolocation and Bing
Maps integration.

If error occurs
directionsError will fire.

Figure 6.10 The completed application showing routing information and the user’s current location
www.it-ebooks.info

http://www.it-ebooks.info/

178 CHAPTER 6 Geolocation and web mapping
6.5 Summary
In this chapter you learned how to integrate the Geolocation API with an HTML or
ASP.NET MVC application, as well as the basics of working with the Bing Maps Ajax
Control and REST services. But beyond that, you saw how you can build location-
awareness directly into your applications.

 You’ve gained a reasonable understanding of how to get location data from a cli-
ent machine and transmit it back and forth to the server to add value to your user
experience. Geolocation is rapidly becoming a can’t-live-without technology for appli-
cation development, and this chapter was designed to give you a broad overview of
what is possible right now for HTML applications.

 Coming up next, we’ll look at HTML5 Web Workers and the Drag-and-Drop APIs.
These two features aren’t related but complement one another effectively in a desk-
top environment that needs to perform a lot of processing without affecting the
user experience.

6.6 Complete code listings
The following listing shows the complete contents of the maps.css file.

html, body, #main-map {
 position: absolute;
 left: 0;
 top: 0;
 right: 0;
 bottom: 0;
 margin: 0;
 padding: 0;
}

aside {
 position: absolute;
 right: 10px;
 bottom: 10px;
 width: 250px;
 padding: 10px;
 z-index: 1;
 background-color: #ddd;
 border: 1px solid #333;
}

#itinerary {
 display: none;
 position: absolute;
 left: 10px;
 top: 10px;
 padding: 10px;
 z-index: 2;
 background-color: #ddd;
 border: 1px solid #333;

Listing 6.12 The maps.css stylesheet
www.it-ebooks.info

http://www.it-ebooks.info/

179Complete code listings
 font-size: smaller;
}

#itinerary .close {
 float: right;
 cursor: pointer;
}

.box-round {
 -webkit-border-radius: 6px;
 -moz-border-radius: 6px;
 border-radius: 6px;
 -moz-background-clip: padding;
 -webkit-background-clip: padding-box;
 background-clip: padding-box;
}

.box-shadow {
 -webkit-box-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
 -moz-box-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
 box-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
}

The complete JavaScript code for main.js is in the next listing.

// ----------
$(document).ready(function () {
 gis.init();
});

// ----------
window.gis = {
 map: null,
 watchID: null,
 $autoCheckbox: null,
 $status: null,
 $itinerary: null,
 startTime: 0,
 distance: 0,
 previousLocation: null,
 places: [],
 directionsManager: null,

 // ----------
 init: function () {
 var self = this;

 this.$status = $("#status");

 this.$itinerary = $("#itinerary")
 .click(function() {
 self.$itinerary.fadeOut();
 });

 // ___ map
 this.map = new Microsoft.Maps.Map($("#main-map")[0],
 {credentials: config.mapKey});

Listing 6.13 The main.js JavaScript file
www.it-ebooks.info

http://www.it-ebooks.info/

180 CHAPTER 6 Geolocation and web mapping
 Microsoft.Maps.Events.addHandler(this.map, "click", function(event) {
 self.handleClick(event);
 });

 // ___ button
 this.$autoCheckbox = $("#auto").change(function() {
 self.setAutoLocate(self.$autoCheckbox[0].checked);
 });

 // ___ get started
 if (Modernizr.geolocation)
 this.setAutoLocate(true);
 },

 // ----------
 handleClick: function(event) {
 var self = this;

 if (event.targetType != "map")
 return;

 if (this.places.length >= 2)
 this.clearPlaces();

 var point = new Microsoft.Maps.Point(event.getX(), event.getY());
 var loc = event.target.tryPixelToLocation(point);
 var pin = new Microsoft.Maps.Pushpin(loc, {
 icon: "/Content/html5.png",
 width: 32,
 height: 32
 });

 var place = {
 pin: pin,
 address: null
 };

 this.map.entities.push(pin);
 this.places.push(place);

 $.ajax({
 url: "/GeoData/GetAddress",
 data: {
 latitude: loc.latitude,
 longitude: loc.longitude
 },
 success: function(data, textStatus, jqXHR) {
 if (!data || !data.FormattedAddress) {
 self.removePlace(place);
 return;
 }

 place.address = data;
 if (self.places.length == 2
 && self.places[0].address && self.places[1].address)
 self.getDirections(
 self.places[0].address, self.places[1].address);
 },
 error: function(jqXHR, textStatus, errorThrown) {
www.it-ebooks.info

http://www.it-ebooks.info/

181Complete code listings
 alert("unable to get address: " + errorThrown);
 self.removePlace(place);
 }
 });
 },

 // ----------
 removePlace: function(place) {
 var index = $.inArray(place, this.places);
 if (index != -1) {
 this.places.splice(index, 1);
 this.map.entities.remove(place.pin);
 }
 },

 // ----------
 clearPlaces: function() {
 var self = this;

 $.each(this.places, function(index, place) {
 self.map.entities.remove(place.pin);
 });

 this.places = [];
 this.clearDirections();
 },

 // ----------
 getDirections: function(addressA, addressB) {
 var self = this;

 function getRoute() {
 self.directionsManager.resetDirections();

 self.directionsManager.setRequestOptions({
 routeMode: Microsoft.Maps.Directions.RouteMode.driving
 });

 self.directionsManager.setRenderOptions({
 itineraryContainer: self.$itinerary[0]
 });

 self.directionsManager.addWaypoint(
 new Microsoft.Maps.Directions.Waypoint({
 address: addressA.FormattedAddress
 }));

 self.directionsManager.addWaypoint(
 new Microsoft.Maps.Directions.Waypoint({
 address: addressB.FormattedAddress
 }));

 self.$itinerary.fadeIn();
 self.directionsManager.calculateDirections();
 }

 if (this.directionsManager) {
 getRoute();
 } else {
 Microsoft.Maps.loadModule("Microsoft.Maps.Directions", {
 callback: function () {
www.it-ebooks.info

http://www.it-ebooks.info/

182 CHAPTER 6 Geolocation and web mapping
 self.directionsManager = new Microsoft.Maps.Directions
 .DirectionsManager(self.map);

 Microsoft.Maps.Events.addHandler(
 self.directionsManager, "directionsError", function(error) {
 alert("Unable to get directions: " + error.message);
 self.clearPlaces();
 });

 getRoute();
 }
 });
 }
 },

 // ----------
 clearDirections: function() {
 if (!this.directionsManager)
 return;

 this.directionsManager.resetDirections();
 this.$itinerary.fadeOut();
 },

 // ----------
 setAutoLocate: function(value) {
 var self = this;

 if (this.auto == value)
 return;

 if (value && !Modernizr.geolocation) {
 this.$status.text("This browser does not support geolocation.");
 return;
 }

 this.auto = value;
 this.$autoCheckbox[0].checked = this.auto;

 if (this.auto) {
 this.$status.text("locating...");
 this.watchID = navigator.geolocation.watchPosition(
 function(position) {
 self.updateForPosition(position);
 },
 function(error) {
 if (error.code == error.PERMISSION_DENIED)
 self.$status.text("Please enable geolocation!");
 else if (error.code == error.POSITION_UNAVAILABLE)
 self.$status.text("Unable to get location.");
 else if (error.code == error.TIMEOUT)
 self.$status.text("Timeout while getting location.");
 else
 self.$status.text("Unknown error while getting location.");
 self.setAutoLocate(false);
 }, {
 enableHighAccuracy: true,
 maximumAge: 30000
 });
www.it-ebooks.info

http://www.it-ebooks.info/

183Complete code listings
 } else {
 navigator.geolocation.clearWatch(this.watchID);
 this.watchID = null;
 }
 },

 // ----------
 updateForPosition: function(position) {
 var loc = new Microsoft.Maps.Location(
 position.coords.latitude, position.coords.longitude);
 var a = Math.min(25000, position.coords.accuracy) / 5000;
 var zoom = 16 - Math.round(a);
 this.map.setView({
 zoom: zoom,
 center: loc,
 });

 if (this.previousLocation) {
 var distance = this.computeDistance(this.previousLocation, loc);
 if (distance > position.coords.accuracy / 2) {
 // threshold to filter out noise
 var line = new Microsoft.Maps.Polyline(
 [this.previousLocation, loc], null);
 this.map.entities.push(line);

 this.distance += distance;
 this.previousLocation = loc;
 }

 var millisecondsPerHour = 1000 * 60 * 60;
 var hours = ($.now() - this.startTime) / millisecondsPerHour;
 var kilometerDistance = this.distance / 1000;
 var speed = kilometerDistance / hours;
 this.$status.html("distance: "
 + (Math.round(this.distance * 10) / 10)
 + " m, speed: "
 + (Math.round(speed * 10) / 10)
 + " km/h");
 } else {
 this.previousLocation = loc;
 this.startTime = $.now();
 this.$status.text("located");
 }
 },

 // ----------
 computeDistance: function (locationA, locationB) {
 var latA = locationA.latitude;
 var lonA = locationA.longitude;
 var latB = locationB.latitude;
 var lonB = locationB.longitude;
 var earthRadiusInKilometers = 6371;

 var dLat = (latB - latA) * Math.PI / 180;
 var dLon = (lonB - lonA) * Math.PI / 180;
 var a = Math.sin(dLat / 2) * Math.sin(dLat / 2) +
 Math.cos(latA * Math.PI / 180) * Math.cos(latB * Math.PI / 180) *
www.it-ebooks.info

http://www.it-ebooks.info/

184 CHAPTER 6 Geolocation and web mapping
 Math.sin(dLon / 2) * Math.sin(dLon / 2);
 var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
 var meters = c * earthRadiusInKilometers * 1000;

 return meters;
 }
};
www.it-ebooks.info

http://www.it-ebooks.info/

Web workers
and drag and drop
This chapter is all about making difficult things simple. In any HTML application
with a significant amount of user interaction, you’ll encounter requirements that
conflict with one another, such as the need to upload a file or edit an image while
maintaining a responsive interface. In this chapter, we’ll show you how to balance
the need for a responsive user interface (UI) with the requirement to perform
complex, processor-intensive tasks with two new HTML5 APIs: Web Workers and
Drag and Drop.

 Depending on the host system’s memory and processor, doing any heavy pro-
cessing can often cause the screen to hang for a few moments. You may even
encounter a browser message stating that it thinks you have a runaway process. The

This chapter covers
■ Implementing drag and drop in

a desktop browser
■ Marshaling data while dragging user

interface elements
■ Building a multithreaded web application
■ Transferring high-cost CPU operations to

background threads
185

www.it-ebooks.info

http://www.it-ebooks.info/

186 CHAPTER 7 Web workers and drag and drop
Web Worker API provides a good solution to this problem, allowing you to create back-
ground workers that can do work in different threads, thus freeing up the UI thread to
redraw the page or perform other interactive logic.

 On the UI side, we’ll discuss the user’s ability to pick up a piece of the interface
and place it somewhere else. You could do this in earlier versions of HTML, but not
without a lot of effort, and the resulting applications were incompatible across
browser platforms. The HTML5 Drag-and-Drop API solves this problem with a simple
set of features that are easy to understand and integrate. Drag and drop has tradition-
ally been a resource-intensive operation for the browser to perform, so the ability to
do it smoothly while executing a heavy-duty JavaScript task in the background should
be a good test of processor capabilities.

 In this chapter, we’ll show you how to use both of these new APIs in a single exam-
ple—a graphics processing application. We’ll first take a quick look at the final app
and lay the groundwork for building it. Then you’ll work on these two main tasks:

Browser support

Chapter 7 map
Drag and drop is the ability to add functionality to any rendered element on a page to
be picked up and dragged, along with additional data, across the page and dropped
in another location. Drag and drop can be initiated via touch or mouse events. Each
stage of a drag-and-drop sequence triggers JavaScript events that a developer can
use to execute work.

We’ll cover drag-and-drop topics in the following sections:

The drag-and-drop event model page 191

Implementing drag-and-drop event handlers page 191

The dataTransfer object page 193

Using the drop event with data page 194

Web workers are objects in JavaScript that are loaded from a separate JavaScript file
and that execute work in a background thread. Web workers can receive messages
from the hosting thread and can send messages back to the thread that created them.

We’ll look at web workers in the following sections:

The web workers processing model page 198

Sending work to another thread page 199

Responding to updates from another thread page 203
www.it-ebooks.info

http://www.it-ebooks.info/

187Getting started: building an app that integrates Drag and Drop and Web Workers
■ Implement drag and drop in JavaScript, including using the dataTransfer
object and building a unit-of-work object

■ Implement web workers, including sending work to another thread and inte-
grating web workers into a JavaScript library

Let’s dive right in with a high-level tour of the application, and then you’ll start building.

7.1 Getting started: building an app that integrates Drag
and Drop and Web Workers
The sample application consists of a single page in an ASP.NET MVC project. At the top
of the page, it will present three images that the user can drag from their original loca-
tions and drop onto a set of <canvas> elements. When the drop occurs, your
JavaScript library will take the image data from the dropped image and shuttle it off to
a web worker.

 The web worker, in turn, will change the image data and send it back to the main
library to update the <canvas>. The process the web worker executes will make incre-
mental changes to the image sent to it, sending those changes back to the main appli-
cation library. This will allow the user to drag images onto the <canvas> elements very
quickly without the processor needing to wait for available cycles.

 The completed DragWorker project is shown in figure 7.1.

LAYING THE FOUNDATION FOR A DRAG-AND-DROP/WEB-WORKERS APPLICATION

Now that you know where we’re headed, you’ll create the solution, add the new page
and images, set the styles, and create the view:

Figure 7.1 When complete, the DragWorker application will allow the user to drag images from the top
bar and drop them onto one of the boxes for processing. Processing of the image data is done on a
background thread using HTML5 web workers.
www.it-ebooks.info

http://www.it-ebooks.info/

188 CHAPTER 7 Web workers and drag and drop
1 Create a new ASP.NET MVC web application and call it DragWorker.
2 Make it an internet application and, when it’s loaded in Visual Studio, update

all the NuGet packages by navigating to Tools > Library Package Manager >
Manage NuGet Packages for Solution.

3 Find the Updates tab on the left, and when the center content loads, click the
Update button on each of the packages.

4 Open _Layout.cshtml in the Views\Shared folder, and update the script tags to
the versions that now exist in your Scripts folder.

CREATING THE PAGE

Now create the new page that will contain your HTML5 application:

1 Open the HomeController.cs file in the Controllers folder, and add the code that
follows to the bottom of the class. This code creates the endpoint for your website
to respond with an MVC view when /DragWorker is entered in the site URL.

public ActionResult DragWorker()
{
 return View();
}

2 Go back to the _Layout.cshtml master page and add this line item to the menus
that appear at the top of the site:

@Html.ActionLink("Drag Worker", "DragWorker", "Home")

ADDING THE IMAGES

Next, you need to add the images that you’ll be
working with. Your example uses three images
(figure 7.2) that you can find on GitHub at
github.com/axshon/HTML-5-Ellipse-Tours/
tree/master/demos/drag-workers/Images.
Place these images in the Content folder of
the project.

NOTE You may also use your own images. If you do, you’ll need to find the
areas where we reference the images in the solution and change them to refer
to your own image filenames.

CREATING THE STYLESHEET

You’ll be using a separate stylesheet instead of the default site.css because some of
your styles will overwrite those in the ASP.NET MVC templates. So you need to create a
new stylesheet in the Content folder called drag.css. You can refer to the complete
code listing at the end of this chapter for the content of that file.

 The styles are unremarkable except for the user-select style property, which,
when set to none, won’t allow the element to appear selected when the user
begins to drag it. This helps with consistent element styling during drag-and-drop

Figure 7.2 The images used in this
chapter’s sample application are available in
the downloadable project files that
accompany this book.
www.it-ebooks.info

http://www.it-ebooks.info/

189Getting started: building an app that integrates Drag and Drop and Web Workers

ult
’t

s.

d.
operations but doesn’t affect function at all. The rest of the layout helps with the
placement of the images along the top bar on the DragWorker page.

BUILDING THE VIEW

It’s now time to build the view for DragWorker:

1 Navigate back to the DragWorker endpoint in the HomeController, and right-
click on it.

2 From the pop-up menu select Add View.
3 In the MVC view that’s created, add the markup in the following listing. This is

the UI that contains all the HTML elements in the screenshot in figure 7.3.

@{ Layout = null; }
<!DOCTYPE html>
<html>
<head>
 <title>Drag & Drop and Web Workers</title>
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1.0, minimum-scale=1.0,
 maximum-scale=1.0" />
 <script src="@Url.Content("~/Scripts/jquery-1.7.2.js")"
 type="text/javascript"></script>
 <script src="@Url.Content("~/Scripts/modernizr-2.5.3.js")"
 type="text/javascript"></script>
 <link href="@Url.Content("~/Content/drag.css")"
 rel="stylesheet" type="text/css" />
</head>
<body>
 <header class="box-round box-shadow">

 Drag an image from this page or from your
 desktop into one of the boxes below. You
 can also drag from box to box.
 </header>
 <section id="content">
 <div id="unit1" class="unit box-round box-shadow"
 draggable="true">
 <canvas />
 </div>
 <div id="unit2" class="unit box-round box-shadow"
 draggable="true">
 <canvas />
 </div>
 </section>
 <script src="@Url.Content("~/Scripts/main.js")"
 type="text/javascript"></script>
</body>
</html>

Listing 7.1 The complete markup for the DragWorker MVC view

Set layout to null to keep master
page from being pulled in.

 elements by defa
are draggable so they don
need additional attribute

<div> elements aren’t
draggable so they get
draggable attribute applie

Each <div>
contains canvas
where you’ll
present image.
www.it-ebooks.info

http://www.it-ebooks.info/

190 CHAPTER 7 Web workers and drag and drop
The draggable attribute in listing 7.1 is new in HTML5, and it allows the page
designer to assign specific elements as being draggable or not. Most browsers will
allow images to be draggable by default, and a basic implementation is already in
place. For other elements you’ll need to set the attribute to true and then implement
whatever logic you want to execute the drag-and-drop operations.

 If you pulled in all the styles in drag.css listed at the end of this chapter, you should
be able to run your application now and see the basic layout with the images in the
top-right corner, as shown in figure 7.3.

 Although it looks nice, nothing will work until you build out your main.js file.
That’s the next step.

7.2 Implementing drag and drop in JavaScript
The client libraries for the DragWorker application exist in two files. The first is
main.js, which contains all the logic for detecting support, implementing drag-and-
drop operations, and handling messaging back and forth between the web worker
background process and the hosting page. The second file, worker.js, is where you’ll
build out the background web-worker tasks in section 7.3.

 The basic structure of main.js is as shown in the following listing.

$(document).ready(function () {
 DragMain.init();
});

window.DragMain = {
 init: function () {
 var self = this;
 if (!Modernizr.draganddrop) {
 alert("Drag and drop not supported.");
 return;

Listing 7.2 The outline of the main.js file

Figure 7.3 The page structure for DragWorker is ready, but no UI elements are
enabled because the source drag-and-drop library isn’t yet working.

When page loads initialize
DragMain object.

Check for
drag-and-drop
support.
www.it-ebooks.info

http://www.it-ebooks.info/

191Implementing drag and drop in JavaScript

s.
 }
 if (!Modernizr.webworkers) {
 alert("Web workers not supported. ");
 return;
 }

 new Unit($("#unit1"), "cycle");
 new Unit($("#unit2"), "diffuse");
 }
};

window.Unit = function ($container, type) {
};

Unit.prototype = {
 useImage: function (url) {
 }
};

The code for the DragMain object is complete, but the main.js library still has a lot of
work to be done. DragMain’s only function is to create two Unit objects, sending each
the jQuery selector necessary for the Unit to

■ Find a page element
■ Wire up drag-and-drop events

A Unit in this application is simply the container that you’ll use to wrap the function-
ality for drag and drop as well as what you’ll pass in to the web worker. The next step is
digging into this object to make it implement HTML5 drag and drop.

 First, though, you need some background on exactly what this API looks like and
how it works.

7.2.1 The HTML5 Drag-and-Drop API

The drag-and-drop implementation in HTML5 is all about the event model. There are
seven events that fire at various times during a drag-and-drop operation. The events
fire either on the item that’s being dragged or on the item that the dragged item is
intercepting. These events, after the dragStart, can occur in just about any order.

 Figure 7.4 shows a simple view of the entire drag-and-drop event model.
 The overall model for drag and drop is quite simple and removes any requirement

to track the drag operation in code. By using the various events and the object that’s
firing each event, you can give your users a very clear idea of exactly what’s going to
happen and when.

WARNING When we discuss drag and drop, we’re usually talking about a
desktop browser. The ability to drag elements in a touch interface, while pos-
sible, can lead to unmanageable event chains and interactions that are hard
for the user to predict or cancel. It’s better to use the touch and gesture pro-
gramming models, rather than their low-level events, on devices like the iPad,
iPhone, and tablets. You can search for iOS gesture events to find reference
material for iPhone and iPad devices and search for pointer events for the

Check for web
worker support.

Create two Unit objects that correspond
to <div> containers on page.

Unit objects are created with container
object and flag value and will handle
drag-and-drop and web worker message

Unit prototype’s useImage
function handles drawing
image onto canvas.

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

192 CHAPTER 7 Web workers and drag and drop
Windows 8 compatible event models. Deep integration with touch is beyond
the scope of this book.

In addition to the events and the objects that fire them, certain events bring with
them properties that you can use to provide even more functionality. The most impor-
tant of these is the dataTransfer object that’s attached to the dragStart and drop
events. Let’s take a closer look at that object.

Draggable

object

{Mouse down} on a draggable

object triggers dragstart

event on draggable object

{Mouse move} with mouse

down triggers repeated drag

events on draggable object

{Mouse up} triggers dragend

event on draggable object

Draggable object edge entering drop

target edge triggers dragcenter

event on drop target

Draggable object moving over

drop target triggers repeated

dragover events on drop target

{Mouse up} triggers drop

event on drop target

Draggable object leaving drop

target triggers dragleave

event on drop target

Drop target

Figure 7.4 The drag-and-drop event model is executed between a draggable object and a drop
target object. Various events fire on both objects when the mouse button is depressed, the mouse
is moved, and the mouse button is released.
www.it-ebooks.info

http://www.it-ebooks.info/

193Implementing drag and drop in JavaScript
7.2.2 Using the dataTransfer object to pass data
with drag-and-drop events

When a drag operation occurs, you can easily target both the source of the action and
its eventual target object. This is done simply by tracking the element firing each
event. But what happens when the elements represent business objects and you need
to perform some kind of operation with the underlying data?

 For instance, what if you’re attempting to drag a contact from a list into a screen
element used for chat? It’s helpful to bring all the contact information with you while
you drag. Also, what happens when you want the drag operation to signify some spe-
cific action, like throwing an image in the trash? You could track identifiers and look
them up when the operation fires, but the native drag-and-drop specification gives
you a better option: the dataTransfer object, a property of both the drag and drop
events, provides some interesting capabilities. This object is writable in the case of
dragStart, the point in the process where you want to assign the data to drag, and it’s
read-only in the case of drop, where you’ll read the data back.

 In order to assign data to the dataTransfer object, you can use the setData func-
tion, passing in the content type and the actual data object as parameters. This function
can only be called during the dragStart event because it’s read-only at every other
time. The getData function operates on the drop event and takes as its parameter the
content type. When called, it returns the object assigned in setData.

 For instance, the following code snippet shows the relevant parts of code from the
drag-and-drop implementation you’ll write shortly. This code assigns the data from a
canvas element to the drag event and then gets it back on the drop event:

// Assign dataTransfer on dragStart
this.$container.bind("dragStart", function (e) {
 var url = self.$canvas[0].toDataURL();
 e.originalEvent.dataTransfer.setData("text/uri-list", url);
});

// Retrieve data from dataTransfer on drop
this.$container.bind("drop", function(e) {
 var url = e.originalEvent.dataTransfer.getData("URL");
});

Note that when you start the drag operation, you pick up the URL of the image that’s
being dragged and save it to the dataTransfer object. Then, when the drop opera-
tion occurs, you grab that URL and send it to the useImage function in the Unit object
for processing. The image data isn’t transferred, just the URL.

 The dataTransfer object also has the ability to affect the UI by changing the drag
icon when an element fires the dragenter or dragover events. This is most commonly
used for changing the drag icon to a drop icon or to change the mouse cursor to a
dragging fist.

 The dropEffect property is set to copy, move, link, or none and allows you to spec-
ify that a particular kind of operation will be performed when drop fires.

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

194 CHAPTER 7 Web workers and drag and drop
 Closely associated with dropEffect is effectAllowed. This property can be assigned
for the source object only on dragStart, and for dragenter and dragover for the target
object. It allows you to specify which effects are possible during these operations.

7.2.3 Building the object to transfer data during drag and drop

With that basic understanding of drag and drop under your hat, let’s get back to the
Unit object. Listing 7.3 shows its skeleton.

 You first need to set up some local jQuery wrapped sets for the outer container,
which, in this case, has a <div> and <canvas> element inside it. Then you build out
some structural code for web workers. You’ll enhance and fill in that code shortly.
Finally, the important code for this discussion is the drag-and-drop event binders that
you attach to the previously mentioned wrapped sets (the <div> container elements).

CREATING THE UNIT OBJECT TO CONTROL THE KIND OF WORK TO SEND TO THE WEB WORKER

The code in the following listing should be placed in main.js after the closing brace of
the window.DragMain object. You should already have the stubbed-out function there
from the earlier code listing.

window.Unit = function ($container, type) {
 if (!(this instanceof arguments.callee))
 throw new Error("Don't forget to use 'new'!");

 var self = this;
 this.$container = $container;
 this.$canvas = $container.find("canvas");
 this.context = this.$canvas[0].getContext("2d");

 //this.worker = new Worker("/Scripts/worker.js");
 //this.worker.onmessage = function (event) { };
 //this.worker.postMessage({ });

 // Draggable
 this.$container
 .bind("dragStart", function (event) {
 });

 // Drop target
 this.$container
 .bind("dragover", function(event) {
 })
 .bind("dragleave", function(event) {
 })
 .bind("drop", function(event) {
 });
};

IMPLEMENTING DRAG-AND-DROP EVENT HANDLERS IN THE UNIT OBJECT

A few lines of code in the previous listing are commented out. Those are related to
web workers and the background processing that we’ll discuss in the next section. Our
focus in listing 7.3 is on the drag-and-drop events you’re binding to.

Listing 7.3 The basic structure of the Unit object

Check to be sure that object
was called with new keyword
to ensure you get prototype.

Set up container element
references and get reference
to canvas drawing context.

Set up web worker
implementation for later.

Bind dragStart so that element
from one canvas can be
dropped onto another canvas.

Bind rest of drag events to
container to implement
drop operations.

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

195Implementing drag and drop in JavaScript
 The elements in HTML implement the dragStart function automatically,
but if you want the user to be able to drag the image from one canvas onto another
canvas, you need to manually wire up that event. In addition, when the dragover and
dragleave events fire, you’ll simply add and remove CSS class attributes to give the
user the appropriate feedback without performing any actual work. dragend is where
the real magic happens. That’s where you take the dataTransfer object and paint the
image onto the canvas when drop occurs.

 The following listing shows how all this works inside the Unit object code. This
code fills out the functions in the window.Unit object in main.js.

// Draggable
this.$container
 .bind("dragStart", function (event) {
 var url = self.$canvas[0].toDataURL();
 event.originalEvent
 .dataTransfer.setData("text/uri-list", url);
 });

// Drop target
this.$container
 .bind("dragover", function(event) {)
 self.$container.addClass("drag-over");
 event.preventDefault();
 event.stopPropagation();
 })
 .bind("dragleave", function(event) {
 self.$container.removeClass("drag-over");
 })
 .bind("drop", function(event) {
 self.$container.removeClass("drag-over");

 var data =
 event.originalEvent.dataTransfer;
 if (!data)
 return;

 event.preventDefault();
 event.stopPropagation();

 var url = data.getData("URL");
 if (url && url.indexOf("file://") != 0) {
 self.useImage(url);
 }
 else {
 alert("Cannot drag that image into here");
 }
 });

The stylesheet indicates that when the style class of drag-over is applied, the border
should be set to 2 pixels: border: 2px solid #99f. As a result, when an element being
dragged enters the boundary of the <div>, it should appear as shown in figure 7.5 and

Listing 7.4 Implementing drag-and-drop event handlers in the Unit object

When dragStart occurs use
toDataURL function to get
base64-encoded string of
current pixels in canvas element.

Assign image string data
as content of drag event.

When target element is notified
that another element has entered
its boundaries change styles of box.

Reverse the styling when element
is dragged out of container.

When drop event fires get
dataTransfer object reference.

Retrieve image data string
from transfer object.

Draw image onto
canvas element.
www.it-ebooks.info

http://www.it-ebooks.info/

196 CHAPTER 7 Web workers and drag and drop
will return to normal when the element is either dropped or exits the boundary of the
target element.

THE DROP EVENT: DRAWING AN IMAGE TO SCALE ON THE CANVAS ELEMENT

When an image is dropped onto the <div>, the code you have so far will get the image
contents of the drop event and call useImage on the current Unit object, tracking the
events. Here’s the core of the logic:

.bind("drop", function(event) {
 self.$container.removeClass("drag-over");

 var data = event.originalEvent.dataTransfer;

 var url = data.getData("URL");
 self.useImage(url);
});

This function is part of Unit’s prototype and allows you to improve code reuse. Using
this method, any object that’s dropped that can be converted to image data can call
this function to paint that image onto the <canvas>.

 The next listing accomplishes this; place it at the end of the main.js file.

Unit.prototype = {
 useImage: function (url) {
 var self = this;
 var $image = $("")
 .load(function () {
 var img = $image[0];
 var w = img.width;
 var h = img.height;
 var cw = self.$container.width();
 var ch = self.$container.height();

Listing 7.5 The useImage function draws an image to scale on the canvas element

Figure 7.5 When an element is dragged over one of the two divs, the border should be
highlighted to give the user feedback about what is about to happen.

Core API

Create new image
wrapped set in
memory.

Attach event
handler to
load event.

Assign height and width
properties based on
parent container’s size.
www.it-ebooks.info

http://www.it-ebooks.info/

197Implementing drag and drop in JavaScript
 var scale = cw / w;
 if (h * scale > ch)
 scale = ch / h;
 w *= scale;
 h *= scale;
 self.$canvas
 .attr("width", w)
 .attr("height", h)
 .width(w)
 .height(h);
 self.context
 .drawImage($image[0], 0, 0, w, h);
 try {
 var imageData =
 self.context
 .getImageData(0, 0, w, h);
 //self.worker.postMessage({
 // method: "setImageData",
 // imageData: imageData
 //});
 }
 catch (e) {
 alert("Cannot use images from other sites");
 }
 })
 .error(function () {
 alert("Unable to load " + url);
 })
 .attr("src", url);
 }
};

We’ll come back to the web worker part of the previous code listing soon. For now, the
important parts of this useImage function are that you’re creating an element
in memory, attaching a handler to its load event, and then setting the source value.

NOTE Order of operations is important when building elements from
scratch. Assigning the src attribute before binding to the load event might
work for larger images that load more slowly, but it would almost certainly
fail for smaller images that load very quickly. In this situation, a smaller
image could be loaded into the DOM before the event handler wire-up is
completed, leaving the event uncaptured. In the previous listing there were a
few lines of code that call self.worker.postMessage. These are specific to
web workers and the code is commented to allow you to run a quick test on
your application.

TRY IT OUT!
With drag and drop enabled, you should be able to start your application and drag an
image from the top bar onto the boxes at the bottom of the screen. You should also be
able to drag images from one bottom box over to the other and see it be painted
there. Figure 7.6 shows how your page should look.

Find height and width
scale properties so
aspect is maintained.

Set canvas object’s height
and width properties based
on new adjusted size.

Draw image onto canvas from
previously assigned variable.

Post new message with
image data to web worker
to tell it to begin working.

Assign src attribute to
image which will fire load
event when data is set up.
www.it-ebooks.info

http://www.it-ebooks.info/

198 CHAPTER 7 Web workers and drag and drop
At this point, you have a solution with a custom single-page application inside an
ASP.NET MVC site. This page allows a user to drag images from their original locations
onto a target and drop them there. The dropped image is then displayed.

 The next step is to have the drop target (or in this case, the Unit object) imple-
ment logic sending the image data to a background thread for processing, where
you’ll manipulate individual pixels in a loop, simulating a processor-heavy task. You
must also get that background thread to communicate back to the Unit when updates
are complete. Enter the world of the web worker.

7.3 HTML5 Web Workers
Suppose you’re writing an image editing tool that will do red-eye detection on
uploaded photographs in the browser. In most cases, you’d create a function to
detect the conditions related to red-eye in an image and then call it whenever a
photo is received. This presents a problem, though, when a user wants to upload
many images at once or wants to edit metadata about an image while the photo is
being processed. Web workers solve this problem by allowing you to send the byte
data that makes up the photo to a background thread for processing. When the
work is done, the background thread calls back to the hosting thread, and the inter-
face is updated.

 Web workers are a very simple set of interfaces that allow you to start work in
a thread owned by the browser but that’s different from the thread used to
update the interface. This means true asynchronous programming for JavaScript

Figure 7.6 The application working with only HTML5 drag and drop implemented. Dragging an image
from the top bar and dropping it onto either box at the bottom of the screen will draw the full-sized version
of that image in the box. In addition, dragover icons will appear when the cursor is over a suitable
box element.

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

199HTML5 Web Workers
developers. Modern browsers’ JavaScript engines perform asynchronous tasks
blazingly quickly, but they don’t provide truly concurrent processing, where two
tasks are working simultaneously.

 Conventional asynchronous tasks usually take the form of callbacks and are fine
for simple applications. As the speed of JavaScript engines increases, it even works for
many complex applications—a tremendous amount of research and development has
been done to get every last ounce of performance out of traditional JavaScript appli-
cations. But web workers go a step further and allow you to offload an entire task to
another thread, only responding when that thread has an update for the caller.

TIP Refer to Nicholas Zakas’s High Performance JavaScript (O’Reilly, 2010) for
insights into how to get the most from a single thread in JavaScript.

The problem with the single thread, as you’ve probably realized, is that if you’re using
<canvas> to build an image or calling a server to round-trip a large data packet,
there’s really nothing you can do that won’t slow down your UI, your complex task, or
both. As the client side of web applications gets more complex, you’ll find that a sin-
gle thread is just not enough anymore. Figure 7.7 contrasts the current synchronous
UI threading model with the new world of HTML5 web workers.

 A web worker’s lifetime can last only as long as your current page exists in the
browser. If you refresh the page or navigate to a different page, that worker object will
be lost and will need to be restarted from scratch if you want to have access to it again.

7.3.1 The basics: sending work to another thread

A web worker isn’t a static object that’s always available, like the Geolocation API.
Rather, it’s an object that you create and reference with a variable.

 You do that by calling new on the Worker object and passing it a script file. The file
should be referenced by a complete URL or by a location relative to the current page
location in your website:

var myWorker = new Worker('WorkerProceses.js');

Also worth noting is that a web worker doesn’t necessarily have to be hosted by the UI
thread. A web worker can spawn another web worker just as easily as the UI thread
can. The terminology we’ll use for the most part will be host and worker, where host is
the thread that spawns a new web worker and worker is the thread executing the
spawned script.

 Once created, the worker won’t timeout or stop its work unless told to do so via the
worker.terminate function. Because the JavaScript is immediately executed into
memory when the script file is loaded, the worker can immediately begin performing
work such as making calls to Geolocation or making Ajax calls for data. It can also
start sending messages back to its parent thread immediately.

 The host’s worker object has a postMessage(string) method that the host uses
to pass in strings or JSON data. The worker also throws a message event that can be

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

200 CHAPTER 7 Web workers and drag and drop
wired up using either the addEventListener function in the host or by wiring a
function to the onmessage event. Likewise, inside the worker object, you can call
postMessage and attach a function to the message event. The worker also has a
worker.terminate function callable by the host, which stops all work being per-
formed inside the worker. Once terminate is called, no additional messages will be
sent or received by the worker object. Figure 7.8 should give you a better idea of the
basic methodology.

HOW DO HOST SCRIPTS WORK WITH WEB WORKER SCRIPTS?
An example is in order here. The next two code listings aren’t part of this chapter’s
project, but they’re simple examples of the way a host script and web-worker script
operate together.

Traditional JavaScript application Asynchronous JavaScript application

Process

Process

Process

Process If a callback or event is

received, the current thread

must yield for processing

New work = new thread

Processing occurs without

affecting user interface

performance

Worker sends

messages with

completed work

UI sends

messages for

work required

A single thread

performs all work

Ajax call

Ajax callback

server

Event

Process

Create worker Web worker

Receive work

Process

Process Process

Process

Receive message Send message

Process Process

Create worker

Event handler

Figure 7.7 While traditional JavaScript applications allow only one thread to perform application tasks,
web workers can spawn a new background thread and perform work there, communicating with the UI
thread as needed without affecting UI performance.
www.it-ebooks.info

http://www.it-ebooks.info/

201HTML5 Web Workers
Rules for web workers
Because web workers are isolated from the host browser’s thread, there are certain
rules that you need to understand before using them in your website:

■ A web worker will execute inside its own thread in the browser. It has access to
server resources and any data passed to it from the host thread. It also has the
ability to start its own workers (called subworkers) and will then become the host
thread for those workers. A web worker can also access the navigator object,
which means it can communicate with the geolocation API. It can make its own
Ajax calls and access the location object.

■ A web worker can’t access any part of the UI. This means that anything inside the
window object is off-limits, as is the document object. In a JavaScript applica-
tion, any variables declared are automatically in the global scope, meaning
they’re attached to window, so your web worker won’t be able to access any
application variables or functions or respond to any events or callbacks from the
rest of your application.

■ A web worker uses a single JavaScript file to execute and, within that script, can
pull in other files when it starts up. This opens the possibility of having your entire
application logic reside on a thread separate from the UI thread, but that’s well
outside the scope of this chapter. In the example application, you’re offloading
only the image processing and leaving drag and drop to the UI thread.

The specification states that web workers, by design, aren’t intended for short-term
execution and shouldn’t be counted upon to be available after starting up. This means
that the results of work you send to a web worker shouldn’t have UI dependencies. Web
workers are useful but heavy, so try not to use a big hammer on a small nail.

What is a host and what is a worker?
In the world of web workers, as in most multithreading scenarios, the terminology can
be a little confusing. Why not just call the host the UI thread and the new thread the
background? The answer is that a host process may very well be a worker itself.

Host process

worker = new Worker(script)

Worker process

self.message(event.data)

self.postMessage(string)

worker.postMessage(script)

worker.message(event.data)

worker.terminate()

Figure 7.8 The hosting process
(usually the UI thread) can post
and receive messages using the
same methods as the client
(worker), except that the host
calls these methods on the
worker object, whereas the
client process uses the self
keyword to execute these
functions.
www.it-ebooks.info

http://www.it-ebooks.info/

202 CHAPTER 7 Web workers and drag and drop

l

t.
Read through the following listing. It assumes there’s a button with an ID of test-
Workers on an otherwise blank web page.

$(document).ready(function () {
 workerTest.init();
});
window.workerTest = {
 myWorker: null,
 init: function () {
 self = this;
 self.myWorker = new Worker("/Scripts/myWorker.js");
 $("#testWorkers").click(
 function () {
 self.myWorker.postMessage("Test");
 }
);
 self.myWorker.addEventListener("message",
 function (event) {
 alert(event.data);
 },
 false);
 }
};

The overall interface between a host application and a web worker is very simple, as
you can see. The primary difference is that the host calls functions on its worker vari-
able, whereas the client calls the same functions on self.

 The next listing shows the code in the myWorker.js file.

count = 0;
init = function () {
 self.count++;
 self.postMessage("start count: " + count);
}
self.addEventListener("message", function (event) {

Consider a large-scale business application that’s managing business logic in a
worker thread and communicating rules to the UI thread. If at some point it needs to
do some graphics or intense calculations, the worker thread can spin up a worker of
its own. The worker becomes the host while simultaneously maintaining its status as
the worker for the UI-hosting thread.

Because of this capability, we’re keeping the terminology consistent as host and
worker, where the host is the creator of the new thread and worker is the thread that
was created.

Listing 7.6 Creating a worker and sending messages to it

Listing 7.7 A simple web worker script example

Initialize object using regular
jQuery ready function.

Current page library
creates new worker
object and assigns it
as local variable.

Same code then sends worker
message whenever
testWorkers button is clicked.

When worker you created
sends message back to page
(host), notify user of page.

You don’t have access to window so you
can’t assign variables to it by default.
Variables here are scoped to script file.

Update count value
to show that work
has been done.

Upon initialization you can cal
postMessage event, proving
that messages can be sent not
in response to any host reques
www.it-ebooks.info

http://www.it-ebooks.info/

203HTML5 Web Workers

U

va
whe

mess
rec

Cr
new

worke
suppl

rela
UR
wo

script
 self.count++;
 setTimeout(function () {
 self.postMessage("Last Msg: " + event.data +
 ", count: " + count);
 }, 1000);
}, false);
init();

With this basic example out of the way, it’s time to get back to your sample project and
see how you can make web workers perform a task for your application.

7.3.2 Integrating web workers into a JavaScript library
In this section, you’ll finish the main.js file by building in the integration with web
workers and then building the worker.js file, which is the code that will execute in a
background thread. The sample application has two locations in main.js where you
placed code that was intentionally commented out: in the Unit object and in the Unit
object’s prototype useImage function.

 You’ll build the client’s core Unit object first; it places image data on the current
drawing context whenever a message is received from the web worker. Open the
main.js file and find the code that starts with this.worker. Update that section with
the code in the following listing.

this.worker = new Worker("/Scripts/worker.js");
this.worker.onmessage = function (event) {
 self.context.putImageData(event.data, 0, 0);
 setTimeout(function () {
 self.worker.postMessage({
 method: "nextFrame"
 });
 }, 30);
};

this.worker.postMessage({
 method: "setType",
 type: type
});

You’re not testing to see if the data received from the worker is actually an image
because you’re in control of the worker object. Because workers can’t be started with
scripts from another domain, such checks are unnecessary in a small project.

 When an image is dropped, the following happens:

■ A new Unit is created.
■ The worker object is instantiated with a set of initialization variables.
■ The Unit is prepared to respond to an updated image from the worker by

immediately drawing it onto the drawing context.

With the message posted from the host to the worker, we now need to switch over and
look at how the worker will respond.

Listing 7.8 Creating a web worker object and sending it a job to perform

pdate
count
riable
never
age is
eived.

When message is received
wait one second and
respond with message sent
and current count value.

At end of script call
init function to start
performing work.

eate
web
r by
ying
tive
L to
rker
 file.

onmessage event
will fire whenever
worker calls
postmessage.

Locally take data
from postmessage
and draw it onto
canvas.

On a timer tell web
worker to fire next
frame of image
processing.

Once worker is created tell it to start working.
Type parameter is string value used to
instantiate Unit object (either cycle or diffuse).
www.it-ebooks.info

http://www.it-ebooks.info/

204 CHAPTER 7 Web workers and drag and drop

ge
Che
met

b
it’s
an
m

d,
t.data
RESPONDING TO MESSAGES FROM THE HOST PROCESS

The only thing left to do in the host process is to send the initial data to the web worker.
This is handled in the prototype, but you need to flesh out the web worker first.

 The operation of the DragWorker is simple:

1 Determine what kind of image processing to perform when setType is called.
This is done when the Unit object is first instantiated; it will either perform a
pixelation effect or a gradual changing of the colors in an image.

2 Get the imageData array from the drawing context on the UI thread.
3 Perform the first frame operation immediately on imageData.
4 Use postMessage to send a message back to the host thread with the updated data.
5 Wait for the next frame call for updated imageData, and execute the image

modifications.
6 Use postMessage to send a message back to the host thread with the updated data.

If you haven’t done so already, create the worker.js object in the Scripts folder and
open it up. Add the code in the following listing to this file.

addEventListener("message", function (event) {
 var method = event.data.method;
 if (typeof method == "string" && method in DragWorker)
 DragWorker[method].call(DragWorker, event.data);
}, false);

The most notable part of the previous code is the ability to call a function on an
object using just a string and passing in two arguments. Using the built-in call and
apply functions that are attached to the JavaScript function prototype, you can exe-
cute functions using arbitrary names.

 Both call and apply perform the same task, with the primary difference being in
their signatures. Whereas call takes only an object and a list of parameters, apply
takes the object and an array of argument parameters. It’s not enough of a difference
to matter in this scenario, where you only want to execute a function with a single
parameter, the event.data property.

CREATING THE IMAGE EDITING LOGIC

You referenced the DragWorker object in the event listener, so in worker.js you need to
create it. The following listing provides the function signatures you need to modify
individual pixels in an image and to transfer them back out to the hosting thread.

var DragWorker = {
 type: null,
 imageData: null,

Listing 7.9 The worker.js file responds to messages from the hosting process

Listing 7.10 DragWorker contains the image editing logic

Core API

Data using postMessa
is available in
event.data property.

ck the
hod to
e sure
 string
d that
ethod
exists.

Call function requeste
passing in entire even
object as parameter.

imageData will contain image data
originally taken from UI drawing context.
www.it-ebooks.info

http://www.it-ebooks.info/

205HTML5 Web Workers
 directions: [
 [-1, -1],
 [0, -1],
 [1, -1],
 [1, 0],
 [1, 1],
 [0, 1],
 [-1, 1],
 [-1, 0]
],

 setType: function (data) {
 this.type = data.type;
 },

 setImageData: function (data) {
 this.imageData = data.imageData;
 this.nextFrame();
 },

 nextFrame: function () {
 },

 getPixelIndex: function (x, y) {
 },

 getPixel: function (x, y) {
 },

 setPixel: function (x, y, pixel) {
 }
};

In your application, setImageData looks like this:

setImageData: function (data) {
 this.imageData = data.imageData;
 this.nextFrame();
},

In that snippet, you’re assigning a local property from the data object and calling the
nextFrame function, which executes the edits described in listing 7.11 pixel by pixel.
We’re listing them without explanation, because graphics algorithms aren’t the core
logic we want to show you here. Suffice it to say that the pixel data in an image consists
of sets of four values strung together, arranged as

Red,Green,Blue,Alpha;
Red,Green,Blue,Alpha;
Red,Green,Blue,Alpha;
etc.

This RGBA combination of values is exactly the same as the CSS RGBA color values dis-
cussed in chapter 2.

 The following listing shows the pixel editing functions that go into worker.js.

Directions property is a
map of coordinates for
our diffusion method.

Type property, assigned when
you call setType, will describe
the flavor of image processing.

setImageData function assigns data to
imageData but will also execute first frame.

nextFrame function performs image
manipulation and is only code that
posts messages back to host thread.

These functions help us
manipulate individual
pixels in the image data.
www.it-ebooks.info

http://www.it-ebooks.info/

206 CHAPTER 7 Web workers and drag and drop

s

.

l
;
getPixelIndex: function (x, y) {
 if (x < 0 || x >= this.imageData.width ||
 y < 0 || y >= this.imageData.height)
 return -1;

 return (y * this.imageData.width * 4) + (x * 4);
},

getPixel: function (x, y) {
 var index = this.getPixelIndex(x, y);
 if (index == -1)
 return null;
 return {
 r: this.imageData.data[index],
 g: this.imageData.data[index + 1],
 b: this.imageData.data[index + 2],
 a: this.imageData.data[index + 3]
 };
},

setPixel: function (x, y, pixel) {
 var index = this.getPixelIndex(x, y);
 if (index == -1)
 return null;
 this.imageData.data[index] = pixel.r;
 this.imageData.data[index + 1] = pixel.g;
 this.imageData.data[index + 2] = pixel.b;
 this.imageData.data[index + 3] = pixel.a;
}

EDITING AN IMAGE IN THE WEB WORKER AND POSTING IT BACK TO THE HOST THREAD

Finally, you’ve arrived at the crux of the web worker: the editing of an image in a back-
ground thread and the subsequent posting of that image back to the host thread.

 The nextFrame function in worker.js is displayed in the next listing and includes a
switch statement to determine the type of operation to execute. You could easily add
more processing or more types of operations, like alpha fades or image rotation, to
this function.

nextFrame: function () {
 switch (this.type) {
 case "cycle":
 var a;
 for (i = 0; i < this.imageData.data.length; i++) {
 if (i % 4 != 3) {
 var value = this.imageData.data[i] + 1;
 if (value > 255)
 value = 0;
 this.imageData.data[i] = value;
 }
 }
 break;

Listing 7.11 Pixel functions allow you to operate on a pixel rather than an array of data

Listing 7.12 nextFrame will edit the image and send it back to the host

Cycle functionality get
every non-alpha color
element in each pixel

Increment value of pixe
by 1 until it reaches 255
then return to 0.

Put new data back
into original array.
www.it-ebooks.info

http://www.it-ebooks.info/

207HTML5 Web Workers
 case "diffuse":
 var x;
 var y;
 for (y = 0; y < this.imageData.height; y++) {
 for (x = 0; x < this.imageData.width; x++) {
 var direction =
 this.directions[
 Math.floor(Math.random() *
 this.directions.length)];
 var x1 = x + direction[0];
 var y1 = y + direction[1];
 var pixel = this.getPixel(x, y);
 var pixel1 = this.getPixel(x1, y1);
 if (pixel1) {
 this.setPixel(x, y, pixel1);
 this.setPixel(x1, y1, pixel);
 }
 }
 }
 break;
 }
 postMessage(this.imageData);
},

TRY IT OUT!
Run your application now, and you should be able to drag images onto the left and
right panes of the screen to see the web workers doing their job and modifying the
images, as in figure 7.9.

Diffuse functionality
executes for loop on
both height and width.

Pick random
direction.

Get pixels in current location
and new location.

Swap two pixels.

Send newly edited image
back to host thread.

Figure 7.9 The completed application. Drag and drop events still fire, allowing a user to drop any image
onto either box. Once the drop occurs, the web worker will take over and edit the image data, sending
updates back to the hosting thread where the image is repainted on the page.
www.it-ebooks.info

http://www.it-ebooks.info/

208 CHAPTER 7 Web workers and drag and drop
The strong contrasts on the updated image appear when the 255 value of any RGB
value is hit and it reverts back to 0 to start again. If you wait long enough, that image
should return to its original state for about 30 milliseconds.

 On the right side, the image will always maintain the same number of pixels, and
those pixels will never change color. They will, however, change positions and start to
blur and pixelate the screen until the original image is no longer distinguishable.

7.4 Summary
In this chapter, you worked your way through the development of a drag-and-drop
interface that modified images from a <canvas> element using web workers. Along
the way, you looked at a means of moving data along with UI elements during a drag
operation and at how to marshal data and objects back and forth between the host
thread and the worker thread.

 Drag and drop is a feature of desktop interfaces that has, in the past, been difficult
to replicate without major branches in code to accommodate different browsers. The
HTML5 API brings everyone onto a level playing field to reduce code and improve reli-
ability. While the Drag-and-Drop API is limited to desktop browsers, there are far fewer
limits to what you can do with web workers. As mobile devices get more processors
and desktops become faster, it will be more important to use the Web Worker API to
speed your application processing by taking work away from the main UI thread and
giving it to background threads.

 We’ll continue this theme of improving performance with web applications in the
next chapter, as we dig into the world of real-time communications between a web
page and a server, otherwise known as Websockets.

7.5 The complete code listings

$(document).ready(function () {
 DragMain.init();
});

window.DragMain = {
 init: function () {
 var self = this;

 if (!Modernizr.draganddrop) {
 alert("This browser does not support drag and drop");
 return;
 }

 if (!Modernizr.webworkers) {
 alert("This browser does not support web workers");
 return;
 }

 new Unit($("#unit1"), "cycle");
 new Unit($("#unit2"), "diffuse");

Listing 7.13 The complete code for main.js
www.it-ebooks.info

http://www.it-ebooks.info/

209The complete code listings
 }
};

window.Unit = function ($container, type) {
 if (!(this instanceof arguments.callee))
 throw new Error("Don't forget to use 'new'!");

 var self = this;
 this.$container = $container;
 this.$canvas = $container.find("canvas");
 this.context = this.$canvas[0].getContext("2d");

 this.worker = new Worker("/Scripts/worker.js");
 this.worker.onmessage = function (event) {
 self.context.putImageData(event.data, 0, 0);
 setTimeout(function () {
 self.worker.postMessage({
 method: "nextFrame"
 });
 }, 30);
 };

 this.worker.postMessage({
 method: "setType",
 type: type
 });

 // Draggable
 this.$container
 .bind("dragStart", function (event) {
 var url = self.$canvas[0].toDataURL();
 event.originalEvent.dataTransfer.setData("text/uri-list", url);
 });

 // Drop target
 this.$container
 .bind("dragover", function(event) {
 self.$container.addClass("drag-over");
 event.preventDefault();
 event.stopPropagation();
 })
 .bind("dragleave", function(event) {
 self.$container.removeClass("drag-over");
 })
 .bind("drop", function(event) {
 self.$container.removeClass("drag-over");

 var data = event.originalEvent.dataTransfer;
 if (!data)
 return;

 event.preventDefault();
 event.stopPropagation();

 var url = data.getData("URL");
 if (url && url.indexOf("file://") != 0) {
 self.useImage(url);
 } else if ("FileReader" in window) {
 var files = data.files;
www.it-ebooks.info

http://www.it-ebooks.info/

210 CHAPTER 7 Web workers and drag and drop
 var found = false;
 var a;
 for (i = 0; i < files.length; i++) {
 var file = files[i];
 if (!file.type.match("image.*"))
 continue;
 var reader = new FileReader();
 reader.onload = function(loadEvent) {
 self.useImage(loadEvent.target.result);
 };
 reader.readAsDataURL(file);
 found = true;
 break;
 }
 if (!found)
 alert("no image files dropped");
 } else {
 alert("This browser does not support dragging from desktop");
 }
 });
};

Unit.prototype = {
 useImage: function (url) {
 var self = this;
 var $image = $("")
 .load(function () {
 var img = $image[0];
 var w = img.width;
 var h = img.height;
 var cw = self.$container.width();
 var ch = self.$container.height();
 var scale = cw / w;
 if (h * scale > ch)
 scale = ch / h;
 w *= scale;
 h *= scale;
 self.$canvas
 .attr("width", w)
 .attr("height", h)
 .width(w)
 .height(h);
 self.context.drawImage($image[0], 0, 0, w, h);
 try {
 var imageData =
 self.context.getImageData(0, 0, w, h);
 self.worker.postMessage({
 method: "setImageData",
 imageData: imageData
 });
 }
 catch (e) {
 alert("Cannot use images from other sites");
 }
 })
www.it-ebooks.info

http://www.it-ebooks.info/

211The complete code listings
 .error(function () {
 alert("Unable to load " + url);
 })
 .attr("src", url);
 }
};

addEventListener("message", function (event) {
 var method = event.data.method;
 if (typeof method == "string" && method in DragWorker)
 DragWorker[method].call(DragWorker, event.data);
}, false);

var DragWorker = {
 type: null,
 imageData: null,
 directions: [
 [-1, -1],
 [0, -1],
 [1, -1],
 [1, 0],
 [1, 1],
 [0, 1],
 [-1, 1],
 [-1, 0]
],

 setType: function (data) {
 this.type = data.type;
 },

 setImageData: function (data) {
 this.imageData = data.imageData;
 this.nextFrame();
 },

 nextFrame: function () {
 switch (this.type) {
 case "cycle":
 var a;
 for (i = 0; i < this.imageData.data.length; i++) {
 if (i % 4 != 3) {
 var value = this.imageData.data[i] + 1;
 if (value > 255)
 value = 0;
 this.imageData.data[i] = value;
 }
 }
 break;

 case "diffuse":
 var x;
 var y;
 for (y = 0; y < this.imageData.height; y++) {
 for (x = 0; x < this.imageData.width; x++) {

Listing 7.14 The complete code for worker.js
www.it-ebooks.info

http://www.it-ebooks.info/

212 CHAPTER 7 Web workers and drag and drop
 var direction =
 this.directions[
 Math.floor(Math.random() *
 this.directions.length)];
 var x1 = x + direction[0];
 var y1 = y + direction[1];
 var pixel = this.getPixel(x, y);
 var pixel1 = this.getPixel(x1, y1);
 if (pixel1) {
 this.setPixel(x, y, pixel1);
 this.setPixel(x1, y1, pixel);
 }
 }
 }
 break;
 }
 postMessage(this.imageData);
 },

 getPixelIndex: function (x, y) {
 if (x < 0 || x >= this.imageData.width ||
 y < 0 || y >= this.imageData.height)
 return -1;

 return (y * this.imageData.width * 4) + (x * 4);
 },

 getPixel: function (x, y) {
 var index = this.getPixelIndex(x, y);
 if (index == -1)
 return null;
 return {
 r: this.imageData.data[index],
 g: this.imageData.data[index + 1],
 b: this.imageData.data[index + 2],
 a: this.imageData.data[index + 3]
 };
 },

 setPixel: function (x, y, pixel) {
 var index = this.getPixelIndex(x, y);
 if (index == -1)
 return null;
 this.imageData.data[index] = pixel.r;
 this.imageData.data[index + 1] = pixel.g;
 this.imageData.data[index + 2] = pixel.b;
 this.imageData.data[index + 3] = pixel.a;
 }
};

* { margin: 0; padding: 0; }

html, body {
 position: absolute;

Listing 7.15 The complete code for drag.css
www.it-ebooks.info

http://www.it-ebooks.info/

213The complete code listings
 left: 0; top: 0; right: 0; bottom: 0;
}

header {
 position: absolute;
 left: 10px; top: 10px; right: 10px; height: 60px;
 padding: 4px; border: 1px solid #ccc;
}

header span { float: left; }

header img {
 float: right; height: 100%;
 padding-left: 10px;
 -webkit-user-select: none;
 -khtml-user-select: none;
 -moz-user-select: none;
 -o-user-select: none;
 user-select: none;
}

#content {
 position: absolute;
 left: 10px; top: 90px; right: 10px; bottom: 10px;
}

.unit {
 position: absolute;
 padding: 4px; border: 2px solid #ccc;
}

.unit.drag-over {
 border: 2px solid #99f;
}

#unit1 {
 left: 0; top: 0; right: 51%; bottom: 0;
}

#unit2 {
 left: 51%; top: 0; right: 0; bottom: 0;
}

.box-round {
 -webkit-border-radius: 6px;
 -moz-border-radius: 6px;
 border-radius: 6px;
 -moz-background-clip: padding
 -webkit-background-clip: padding-box;
 background-clip: padding-box;
}

.box-shadow {
 -webkit-box-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
 -moz-box-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
 box-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Websockets
The Websockets specification is one of the most interesting and paradigm-shifting
APIs in the HTML5 stack. When implemented in a web platform, your applications
can go from sending a request and waiting for a response to talking to a server or
other clients in real time.

 With Websockets, you can build, for instance, a web application on a tablet
device that can play a game with thousands of players in real time. MMOG (mas-
sively multiplayer online games) are already popular, and the versions based on
HTML5 are getting more common all the time. How about a website that lets you
fire it up, go for a run, and race with someone on the other side of the planet? Inte-
grate Websockets with Geolocation, and you’re literally on your way in every sense.
Or consider the live streaming of a concert where you get to interact with people in

This chapter covers
■ Understanding the basic difference between

HTTP and TCP traffic
■ Using Websockets and JavaScript to

communicate in real time over the web
■ Installing Node.js and building a simple

TCP server
214

www.it-ebooks.info

http://www.it-ebooks.info/

215Websockets
the audience or even the band. This is perfectly possible and may perhaps be com-
monplace very soon.

 Using Websockets, your HTML application gains the ability to communicate in real
time with a server and other users. You become a live node on a much larger network, able
to push and pull data simultaneously without the formatting constraints of HTTP traffic.

 In this chapter, you’ll build a simple chat application that uses a single page inside
an ASP.NET MVC application to communicate with a server built using Node.js. It will
be easier than you think and faster than you might expect. You can look forward to
these highlights as you move through the chapter:

■ Building the chat web page
■ Creating a library to bind to Websockets API events
■ Installing Node.js and building a simple TCP chat server
■ Connecting the client library to the server and discriminating between custom

event types

First though, as a .NET developer, you may not be familiar with the ins and outs of
HTTP and TCP, so we’ll start with a little background on what they are and how they
perform their respective tasks.

Browser support

Chapter 8 map
Websockets allow a browser to communicate with a server via TCP. TCP communica-
tions are lighter and faster than normal HTTP communications, they’re persistent,
and they’re bidirectional. Persistent connections allow the server to push data to a
client without the browser requesting it, a feature not possible in HTTP. Bidirectional
communications allow the client and server to be sending and receiving messages at
the same time.

The WebSocket object section 8.2.2

The send function section 8.2.2

The onmessage event section 8.2.2

The readyState property section 8.2.2

Other connection events section 8.2.2

The close function section 8.2.2

Opening a server connection with Websockets section 8.2.3
www.it-ebooks.info

http://www.it-ebooks.info/

216 CHAPTER 8 Websockets
8.1 HTTP and TCP—a quick primer
Nearly all traffic to and from web browsers throughout the world flows by means of
Hypertext Transfer Protocol (HTTP). This isn’t the fastest means of text, data, or
image transmission, but it’s reliable. The Transmission Control Protocol (TCP) is a
layer below HTTP, and it has fewer rules about how it can operate in the wild. Due to
the lack of constraints, TCP is usually faster than HTTP.

 Up until recently, TCP was not available to a native browser window and could only
be implemented via a plugin like Silverlight or Flash or as a native desktop applica-
tion. The introduction of the Websockets protocol into the HTML5 specification is
changing that, though rather slowly.

 In this section, we’re going to walk through the basics of HTTP traffic and its limita-
tions and then contrast it with TCP traffic. Neither technology is perfect for all scenar-
ios, so this section will help you to understand where each fits, absent the current
hype surrounding Websockets.

8.1.1 An HTTP overview

HTTP is designed around a request/response pattern. The client makes a request to
the server. When the server receives that request, it checks to see if the resource
requested is available and responds with a status code, a collection of text called the
header, and, if available, the actual content that was requested. The content can be
anything from a simple HTML page to a script to an image. Figure 8.1 shows the
nature of HTTP communications.

 While the client waits patiently for the response, many things happen that have
kept HTTP at the top of the internet food chain:

■ The hosting server can respond with the requested content from the original
content source.

■ The origin server can respond with a cached version of the content.

Client

Request

Request

Request

Request

Server

Figure 8.1 The HTTP
specification is one of client-
initiated requests and server
responses. This provides for very
good scalability and multiple kinds
of caching, but it doesn’t allow for
bidirectional communication.
www.it-ebooks.info

http://www.it-ebooks.info/

217HTTP and TCP—a quick primer
■ The origin server can respond with an exception message and content.
■ An intermediate server can respond on behalf of the origin server with a

cached version of the content.
■ An intermediate proxy server can reroute the request to a different server or

through a secure firewall.

The hosting server is the network point that responds to a specific IP address and has
access to the original version of the content requested. The hosting endpoint may be
a façade that internally redirects traffic to a bunch of internet servers to further
enhance scalability but, even then, the single IP address, from the client’s perspective,
is returning the requested content.

 Servers like IIS can handle many thousands of concurrent connections and can
respond to requests over those connections in any order they see fit. A web server can
dynamically compress the content before sending it and will usually try to obtain
cached content before trying to get at the original version.

 While the request is in transit to its final IP address, intermediate servers will get it
and forward it on as appropriate. These servers also have the option, depending upon
the kind of request, to respond with their own cached version of the content. That
means a request from Asia to a server in the United States may not have to travel all
the way around the globe to fulfill its mission.

 All of this makes for an extremely scalable, stable platform upon which to build
applications and deliver content. It doesn’t, however, provide the answer to every kind
of communication problem. Communication using HTTP is always one way (request
from client/response from server), and at its fastest it’s still never real-time. In addi-
tion, the resource the client is interested in may not be on that server but in fact may
be located on another client. The hosting server has no means of initiating a request
to any client, let alone a specific one, to retrieve that content to fulfill the original cli-
ent’s request. It’s just not possible using HTTP. Inasmuch as this is a problem, the solu-
tion is TCP.

8.1.2 TCP communications in a nutshell

The Transmission Control Protocol (TCP) is part of the foundation that makes HTTP
work. Consider HTTP to be a very specific format of communicating via TCP. TCP is
much “closer to the metal” on a server, handling many different kinds of communica-
tions between servers and between networked clients and servers. It uses a simple mes-
sage for communications, unlike HTTP, which mandates a lot of header information
that must travel with every request and response. This makes TCP capable of sending
nearly any kind of data.

 The characteristic that gives it its reliability is called ordered delivery. Ordered deliv-
ery is a means whereby a message passed from one server to another will be delivered
in the same order as it was sent, or it will be rejected and retried by the requestor until
a confirmation of receipt is returned. For example, a large image sent via TCP will
be transferred in smaller packets, and if a packet is received out of order, it will be
www.it-ebooks.info

http://www.it-ebooks.info/

218 CHAPTER 8 Websockets
rejected and retried. This mechanism is well suited to duplex messaging capabilities
because it’s light and fast and can “talk” in both directions at the same time.

 Anyone who has ever used a CB radio or a walkie-talkie understands the nature of
half duplex and full duplex communications, even if they don’t know the terms.
Duplex, in this context, refers to having two parties in a communications chain. Half
duplex, as shown in figure 8.2, means that only one party can talk at a time; the other
party can only respond when the original party is finished. HTTP is a half-duplex mode
of communications. Even though a client can send multiple requests very quickly, the
server can’t respond to a single request until that request is completely received.

 TCP, on the other hand, is a full-duplex mode of communication, similar to a cell
phone conversation, where two parties can be talking and listening at the same time.
Teenagers seem to be exceptionally good at this kind of communication. One party is
perfectly capable of responding to a request even if the request is incomplete or still in
progress. Figure 8.3 shows two parties communicating simultaneously with each other.

 TCP in a web-based scenario opens the door to interesting new areas, but it has a
significant downside in that a connection can be consumed for every client in the sys-
tem. Each connection, in turn, requires server processor time to create, use, and
destroy it, even if it’s only used for a tiny amount of time. An instant-messaging server,

Figure 8.2 In HTTP (half-duplex communications) when one party talks, the only
thing the other party can do is listen. When the client sends a request, the server
must listen before it can respond. While the server is responding, the client can
only listen. Modern browsers try to mitigate this by allowing many connections
at one time, but each single request can only be issued a single response.
www.it-ebooks.info

http://www.it-ebooks.info/

219Building a Websockets chat application
for instance, can experience many spikes during the course of a regular day. Still, the
concept of a web application whose server side can actively push unrequested data to
one or many clients is well worth the time to learn. Real-time gaming, real-time geoloca-
tion, and any kind of competitive sports could be great new areas for this technology.

 This is where the Websockets HTML5 API comes in. It’s a means of opening a TCP-
based communication link to a server and then sending and receiving messages in the
form of strings (or JSON objects) over that connection.

 With that in mind, it’s time for you to start learning about Websockets as you build
a chat application.

8.2 Building a Websockets chat application
The sample application for this chapter will be, as mentioned, a chat service. You’ll
build both a client and server using JavaScript. We’ve got a lot of ground to cover
here, so we’ll only discuss the code that’s pertinent to the overall function of the appli-
cation. If you find yourself unsure about some of the JavaScript syntax, we recom-
mend you take a look at appendix A, which provides a JavaScript overview.

 The client you build will be able to

■ Connect from inside an ASP.NET MVC application
■ See all other users connected
■ Be notified in real time when any other user sends a message
■ Push messages immediately to all other users

You’ll build the server using Node.js. Node.js is an open source server technology that
runs the V8 JavaScript engine to handle requests and responses using JavaScript as its
native language. Your solution will consist of a free, third-party JavaScript library that
wraps all the TCP communication functions and a custom library that you’ll write and
execute locally. The server will be able to

■ Keep track of users as they enter and exit the application
■ Transfer any message from a user to all other users in the application

Figure 8.3 In TCP (full-duplex
communication) all parties on a call
can communicate simultaneously.
A request can be responded to before
it’s even completely received.
www.it-ebooks.info

http://www.it-ebooks.info/

220 CHAPTER 8 Websockets
Figure 8.4 shows what the application will look like when it’s complete. You’ll run the
chat server from a command window and open as many browser windows as you like
to connect to it.

SETTING UP THE CLIENT PAGE’S BASIC STRUCTURE

To get started, follow these steps:

1 Open Visual Studio and create a new ASP.NET MVC application. Name
it SocketChat.

2 When the new solution opens, go through the normal routine of updating the
NuGet packages with the latest versions of all the default packages. (Navigate
the menus to Tools > Library Package Manager > Manage NuGet Packages for
Solution. Click the Updates tab on the left, and when the center content loads,
click the Update button on each of the packages.)

3 Navigate to the Controllers folder, open the HomeController, and add a new
method, as follows:

public ActionResult Chat()
{

Figure 8.4 The working chat application will require the installation of Node.js and
the use of its command-line interface to simulate a TCP server. When the server is
running, any number of clients can be connected and chat in real time.
www.it-ebooks.info

http://www.it-ebooks.info/

221Building a Websockets chat application

c

 return View();
}

You now have an endpoint, so running your application with /Home/Chat will result
in that code being processed, but no view will be returned. By default, this view’s name
is Chat.cshtml, but it doesn’t exist yet. You can create it now:

1 Right-click on the word View in your controller.
2 Select Add View.
3 Deselect the check box for Use a Layout or Master Page.
4 Click the Add button.

Your view won’t be based on the normal master page, so the code in the following list-
ing sets Layout = null when placed in the Chat.cshtml page.

@{ Layout = null; }
<!DOCTYPE html>
<html>
<head>
 <title>Websockets</title>
 <script
 src="@Url.Content("~/Scripts/jquery-1.7.2.js")"
 type="text/javascript"></script>
 <script
 src="@Url.Content("~/Scripts/modernizr-2.5.3.js")"
 type="text/javascript"></script>
 <link href="@Url.Content("~/Content/chat.css")"
 rel="stylesheet" type="text/css" />
</head>
<body>
 <form id="login" class="box-round box-shadow">
 <p>Choose a name and hit return:</p>
 <input id="name" type="text" />
 <div id="login-status"></div>
 </form>
 <section id="chat">
 <aside id="members"></section>
 <div id="log"></div>
 <div id="input">
 <input id="entry" type="text" />
 </div>
 </section>
 <script
 src="@Url.Content("~/Scripts/socketserver.js")"
 type="text/javascript"></script>
 <script
 src="@Url.Content("~/Scripts/main.js")"
 type="text/javascript"></script>
</body>
</html>

Listing 8.1 The Chat.cshtml page

Scripts should be
updated to latest
versions from
NuGet updates.

Chat.css will be
chat-specific
stylesheet.

Login form will hide all
other content until
user logs in with name.

Members
area will
show all

users
urrently in
chat room.

Log area will show all messages
as they’re sent or received.

Bottom of screen will
have text box for sending
messages to room.

Socketserver.js fill will
contain Websockets-
specific code.

Main.js will contain UI
logic to update screen
and send messages.
www.it-ebooks.info

http://www.it-ebooks.info/

222 CHAPTER 8 Websockets
WIRING UP THE MENU SYSTEM

The only part of the basic HTML structure left is to wire up /Chat to the menu system.
To add a new Chat menu item to your application, open the file at Views\Shared_
Layout.cshtml and place the following line in the menu structure:

@Html.ActionLink("Chat", "Chat", "Home")

ADDING STYLES

That takes care of the user interface (UI) except for the stylesheet, the contents of
which need not be covered here in any detail. The complete CSS is listed at the end
of this chapter if you’re building the application as you read.

 The primary thing you should know about the styles is how the current user’s mes-
sages are differentiated from those of everyone else in the chat room. In your applica-
tion, you’ll do this with the following style declaration, which makes the text bold if
the element has the local-member style class applied to it:

.local-member {
 font-weight: bold;
}

So now, when you see this line of jQuery, you’ll know what it does:

$("element").toggleClass("local-member", userIsLocal || false);

This JavaScript uses the jQuery toggleClass function, which takes the class setting
and turns it on or off using an optional switch value that should return true or false.
If the value userIsLocal is true, the class assignment will be removed; otherwise it
will be added to the wrapped set being acted upon.

NOTE When you add the chat.css file to the project, be sure to place it in the
Content folder.

With the styles out of the way, the basic structure is in place for your chat page. Let’s
turn our attention to the JavaScript logic. You’ll build the chat client in two parts so
that you can separate the Websockets API calls from the UI manipulation and data
logic. Read on to find out why.

8.2.1 Separating interface logic from Websockets communications

The current level of support for Websockets is rather low in two ways. First, many
browsers don’t support the specification. Second, there are few server solutions avail-
able to traditional web programmers that can effectively handle TCP traffic. The sec-
ond reason probably impacts the first, but that’s speculation on our part.

 The fact is that if you build a chat application, you’ll likely have to implement both
a TCP solution and an HTTP solution. HTTP chat would probably mean building a
long-polling server that’s described in a sidebar further on in this chapter, but the
more direct impact on this sample application is that the server communication
library needs to be loosely coupled to the UI logic. You’ll do this by building two sepa-
rate JavaScript libraries: one for interacting with the user and the page, and a second
www.it-ebooks.info

http://www.it-ebooks.info/

223Building a Websockets chat application
for communicating with the server via Websockets. This will allow you to determine if
the Websockets API is available in the current browser and to fall back to a different
solution if it isn’t. You won’t be implementing that logic here, because it’s beyond the
scope of this chapter, but we’ll show you where that logic should go.

 Figure 8.5 shows the basic premise of an application that detects Websockets
support and falls back to a long-polling communication library if Websockets isn’t sup-
ported. This approach is simpler but similar to the way Microsoft SignalR handles
communications.

CREATING THE KEY JAVASCRIPT FILES

Start by creating two JavaScript files in the Scripts folder of your project: main.js and
socketserver.js. The first file will hold the UI logic and call into the second to make calls
to the server. This is a common pattern in JavaScript applications and isn’t as rigid as a
normal .NET application, where objects must be strongly typed or use specific inheri-
tance chains. In JavaScript, the only limitation is that a JavaScript file must be loaded
on the page before any methods are called on it. It seems pretty obvious, but when you
begin loading files asynchronously, this limitation becomes very important.

 The code in listing 8.2 is the outline of your main.js file. It has a jQuery ready han-
dler and a Main object with an init function and a couple of other utility functions.
No Websockets work is done here, other than to check Modernizr for compatibility.
Note also that your init function contains a few other event handlers and a local
receive function.

$(document).ready(function() {
 Main.init();
});

window.Main = {
 user: null,
 members: [],

 init: function () {
 var self = this;

Listing 8.2 Code in the main.js file to set up the application function

Client browser

Websockets

supported

Websockets

chat library

Chat server

Long-polling

chat library

Websockets

not supported

Client

library
Figure 8.5 Because
Websockets support is
somewhat limited in modern
browsers, most web
applications still need a
fallback capability to handle
“live” communications with
a server.

Store local user.

Store current list of
all users in room.
www.it-ebooks.info

http://www.it-ebooks.info/

224 CHAPTER 8 Websockets

ck
ew

 if (!Modernizr.websockets) {
 alert("Websockets not supported.");
 return;
 }

 if (!window.JSON) {
 alert("JSON not supported.");
 return;
 }

 function receive(method, data) {
 }

 this.$output = $("#log");
 this.$members = $("#members");
 this.$name = $("#name").focus();

 $("#login").submit(function (event) {
 });

 this.$entry = $("#entry").keypress(function(event) {
 });
 },

 addMember: function (data) {
 },

 removeMember: function (data) {
 },

 addMessage: function (data) {
 }
};

8.2.2 Implementing Websockets in JavaScript

At this point in your application, you have the basic outline of your UI layer. Next,
turn your attention to the communications layer: socketserver.js. This library will
respond to all communications to and from both the server and the client layer. The
basic layout of this file is to create a new SocketServer object and then append to its
prototype the functionality you need. Take a look at the next listing, the base code for
socketserver.js, and then we’ll discuss the details.

window.SocketServer = function(callback) {
 this.callback = callback;
 this.connection = null;
};

SocketServer.prototype = {
 send: function (method, data, complete) {
 var self = this;
 if (method == "connect") {
 var Socket =

Listing 8.3 The setup code for socketserver.js

Local function responds
when data is received
from server.

Store local variables for page
elements so that DOM doesn’t
have to be requeried.

Login button will add
current user to chat room.

Keypress event
will send message
to room.

Adding and removing members
from UI and local property is
done with separate functions.

Add message to screen when
anyone in room sends message.

Set new SocketServer object
passing in callback function.

Assign callba
function to n
property of
SocketServer
object.

Create null property
that will later contain
connection object.

Send function responds to all
communications with method,
data packet, and callback.
www.it-ebooks.info

http://www.it-ebooks.info/

225Building a Websockets chat application

t
if
 window.WebSocket || window.MozWebSocket;
 if (Socket) {
 var url = "";
 this.connection = new Socket(url);

 this.connection.onopen = function () {
 };

 this.connection.onmessage =
 function (event) {
 };

 this.connection.onclose = function (event) {
 };
 }
 else {
 data.code = "failure";
 complete(data);
 }
 }
 else if (method == "message") {
 }
 }
};

In your Websockets library, the connection property corresponds to a WebSocket
object. This API contains the following characteristics:

■ The WebSocket object
■ The send function
■ The onmessage event
■ The readyState property
■ Non-message connection events
■ The close function

These are all defined in the specification at http://www.w3.org/TR/websockets, and
we’ll discuss them each briefly in the following subsections.

THE WEBSOCKET OBJECT

The WebSocket object handles all communications. It’s instanced using the new key-
word and it must have a connection string url parameter at a minimum. You can also
use a protocols optional parameter to specify the kind of security to use and the port
to communicate over. You can also provide these values as part of the URL:

var mySocket = new WebSocket('connection string');

Once you have an instance of a WebSocket object, you can bind to its various events
and monitor its state.

THE SEND FUNCTION

The only available method for pushing information from the client to the server is
send. This function takes a single data parameter that can be one of three types:

mySocket.send(DOMString);
mySocket.send(Blob);
mySocket.send(ArrayBuffer);

Assign connection property to
new HTML5 WebSocket objec
or Mozilla WebSocket object
HTML5 version doesn’t exist.

When connection
object initially
opens this function
will be executed.When message

is received on
connection this

function is
executed. When connection

closes execute
function.

When message is sent
from local client this
code will execute.

Core API

Core API
www.it-ebooks.info

http://www.w3.org/TR/websockets
http://www.it-ebooks.info/

226 CHAPTER 8 Websockets
The DOMString parameter is just that; an escaped string value (meaning no special
characters) that can be a serialized JSON object or any other bit of stringified data.
The blob parameter is used to represent non-native JavaScript objects—usually files,
though you’re not limited to that. Finally, the ArrayBuffer is an array of byte data
used to transmit information not easily convertible to strings. A classic example of this
is the ImageData array from a <canvas> 2d context object. Using these three method
signatures, you can send just about anything over the wire to the server.

THE ONMESSAGE EVENT

The onmessage JavaScript function is called when the server sends a message to the
client WebSocket. The event object passed contains a data property that’s the actual
message object sent from the server:

mySocket.onmessage = function (event) {
 var message = event.data;
 console.log('The server said: ' + message);
};

TIP This is a good time to mention that with the current WebSocket imple-
mentation, a browser can only communicate with a server. Communication
directly between browsers on different machines isn’t possible in this version
of the specification. Using Node.js, you can pass data directly through to any
specific client, but that’s the extent of current client-to-client capabilities.

THE READYSTATE PROPERTY

When a new WebSocket object is created, it will have a readyState property that’s
read-only to the calling JavaScript but will change to editable based on changes to the
state of the connection.

 Although the specification says this will be set to an empty value when created,
the reality is that it will immediately start trying to connect to the server passed into the
constructor. Therefore, it will always have a value that corresponds to one of the fol-
lowing constants:

■ CONNECTING (value: 0)—Assigned as soon as the WebSocket tries to connect to
its assigned server

■ OPEN (value: 1)—Assigned when the connection to the server is established

Websockets, WebSocket, or Web Socket?
You may have noticed that we’re referring in the text to “Websockets” while in code
we use “WebSocket”. A quick search on the internet will also reveal plenty of discus-
sion around this technology using the two words “web sockets”.

The reason for this disparity is that although the current specification uses “Web-
sockets” as both its title and in the normative text, browser vendors have created
objects in their implementation using WebSocket. As a result, the correct name of
the specification is Websockets but the correct name of the implemented object is
WebSocket. Placing a space between the two words is never correct.

Core API

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

227Building a Websockets chat application
■ CLOSING (value: 2)—Assigned when the close() function is called but the con-
nection is still open

■ CLOSED—(value: 3) Assigned when the connection has been closed.

During normal operations, this property will be checked to ensure that a message can
be sent or received, and often to change the status value displayed to the user. You
can check this value in one of two ways: by using the numeric value or with the con-
stant implemented in the WebSocket object itself:

if (mySocket.readyState === 1) {
 .. open connection ..
}
if (mySocket.readyState === WebSocket.CLOSED) {
 .. closed connection ..
}

NON-MESSAGE CONNECTION EVENTS

There are three more events you can tap to open and close connections or when an
error occurs.

 The onopen event fires after the connection is established whereas onclose fires
after the connection is completely closed. These events are helpful for setup and tear-
down operations.

 The onerror event occurs when anything unexpected happens, like a failed connec-
tion or a security exception. The error object returned is a standard JavaScript exception.

THE CLOSE FUNCTION

The close() function allows up to two optional parameters to be passed: a number
and a string. The number is a status code, and the string is a human-readable value.
Usually close is called with no parameters:

mySocket.close();

Your application now has the various chunks of code in place to respond to events and
operations related to Websockets, but these operations have no actual implementa-
tions yet. Next, you’ll fill in the code, both in main.js and in socketserver.js, to log into
the chat room, send and receive messages, and log out.

8.2.3 Opening a Websockets server connection

This phase of development will get the current user logged into the chat server and
thus into the chat room. Listing 8.4 shows how this is implemented in main.js.

 First, you need to create a new SocketServer object and then immediately send a
message with it. The SocketServer is defined in the socketserver.js file and is the sin-
gle place in your application where you implement Websockets. In a production sce-
nario, this would allow you to alternatively implement some other kind of
communications if Websockets isn’t available in the current browser.

 You should already have a stub for the login button’s submit event in the main.js
file. Fill in the following code in that area.

Core API

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

228 CHAPTER 8 Websockets

ver

Pa

obj
w

acti

$("#login").submit(function (event) {
 event.preventDefault();
 var name = self.$name.val();
 if (name) {
 var $status = $("#login-status").text("Connecting...");
 self.server = new SocketServer(receive);
 self.server.send(
 "connect",
 { From: name },
 function (result) {
 if (result && result.code == "success") {
 result.local = true;
 self.user = self.addMember(result);
 $("#login").hide();
 $("#chat").show();
 self.$entry.focus();
 }
 else {
 $status.text("Failed to connect.");
 }
 }
);
 }
});

Remember that sending the message "connect" to the object defined in socket-
server.js will create a new instance of the HTML5 WebSocket object and wire up its var-
ious events. This more complete code is in listing 8.3 if you missed it, but here’s the
critical part:

send: function (method, data, complete) {
 var self = this;
 if (method == "connect") {
 var Socket = window.WebSocket || window.MozWebSocket;
 if (Socket) {
 var url = "";
 this.connection = new Socket(url);

 this.connection.onopen = function () {
 };
 ...

Next, you’ll finish the login experience by notifying the server that the current user
has successfully opened a connection to the server. This is done by the SocketServer
custom object first sending a message to the server and then executing the callback
you passed in with the user data object (containing the user’s name).

 The method name sent to the server is "memberEnter". This is described in the fol-
lowing listing, which you should use to update the connection.onopen code area of
socketserver.js.

Listing 8.4 Logging the user in via the login submit function

Get name user is
attempting to log in as.

Create new SocketSer
object as defined in
socketserver.js file.

ss connect
string to

ect to state
hat kind of
on to take.

Pass in user’s name
as JSON object.

Callback you send to
SocketServer will be executed
when login is complete. It will
update UI by adding name to
list of chat members.

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

229Building a Websockets chat application

.

this.connection.onopen = function () {
 self.connection.send(JSON.stringify({
 method: "memberEnter",
 data: data
 }));
 data.code = "success";
 complete(data);
};

Because you only send text back and forth but work with objects in the coded logic,
you’re formatting it into JSON objects and setting a method property with every call.
This allows the server to parse the message and switch on the method to perform dif-
ferent tasks, which is the most transparent way of doing so because the string that
you’re sending can be easily read and debugged, but this isn’t the only way. You could
alternatively have passed in the name of a function to execute, or even a complete
function body. These are less safe approaches and expose more functionality on the
server side than we, and likely you, would prefer, so we decided to stick to the method
name methodology.

 Next, you’ll spend some time getting messages to and from the server.

Listing 8.5 Responding to a newly opened Websockets connection in socketserver.js

Long polling for pseudo-real-time web
We’ve been discussing TCP as the only means of real-time communication, but the
functionality we’re after has been available, albeit in a somewhat less attractive form,
for a while. The solution is called long polling.

In an ASP.NET MVC application, long polling consists of a controller action requested
by the client but held on the server until data is actually available to send. The client
waits for a response, or abandons the request and sends a new request when new
data is available to send to the server or when a specific timeout has expired.

Here’s an example chat scenario:

Client:
Send chat request (with message) to server.

Wait for response.

Server:
Receive message from client.

Send message to all other clients.

Hold client request until a message is ready to send.

connection.onopen event fires when
new connection is opened to server.

When opened send message to server
stating that current user has entered room

Now that user has notified server that
it’s online execute original callback.
www.it-ebooks.info

http://www.it-ebooks.info/

230 CHAPTER 8 Websockets
8.2.4 Sending messages

Sending a message consists of taking data entered by the user in the entry text box
element and sending it to the SocketServer object. That object, which is already
maintaining an open TCP connection to the server (via Websockets), will add a
method property and forward it on to the server. The server will only send messages to
everyone else; it won’t send the message it just received back to the original sender.
Therefore, on the client that sent the original message, you just add the message to
the screen by calling addMessage.

 The following listing shows how the client (main.js) will respond when the enter
key is pressed on the input text box. This code goes inside the init function.

this.$entry = $("#entry").keypress(function (event) {
 if (event.which == 13) {

Client:
Abandon original request.

Send new chat request (with new message) to server.

Wait for response.

Server:
Receive message from client.

Send to all other clients.

Hold request until a message is ready to send to original client.

Server:
Receive message from a different client.

Send response to first client with message.

Client:
Receive response from server.

Update application with new message.

Immediately send request to server with no message.

Wait for response.

Using long polling, you can simulate real-time web applications but you don’t have
truly bidirectional communications. Everything is initiated by the client in true HTTP
fashion. As a fallback position, though, this is a great way to allow Websockets-
compatible clients to play in the same space as non-compliant browsers.

The main.js file in this chapter’s solution provides a loosely coupled example that
allows you to build in a long-polling library that’s hot-swappable with the Websockets
communications library.

Listing 8.6 Sending a message from page in main.js

Only execute if enter
key was pressed.
www.it-ebooks.info

http://www.it-ebooks.info/

231Building a Websockets chat application

t.
 var message = self.$entry.val();
 if (message) {
 self.$entry.val("");
 var data = {
 From: self.user.name,
 Message: message
 };
 self.server.send("message", data);
 self.addMessage(data);
 }
 }
});

The message has been sent to the SocketServer object, and that object must now for-
ward it to the chat server. Listing 8.7 shows how this happens. First a method name is
added to the object, and it’s packaged up as JSON and fired off using the WebSocket
object (the connection variable). This code goes at the end of the send function in
SocketServer.prototype.

else if (method == "message") {
 if (this.connection.readyState != 1)
 return;
 this.connection.send(JSON.stringify({
 method: method,
 data: data
 }));
}

This is a pretty simple solution so far. You have a connection opened to the server,
and the first message sent will be one that logs the current user into the chat room.
When a user sends a message, it’s pushed from the UI to the main object, which
passes it on to SocketServer. SocketServer then uses its WebSocket connection to
send the message to the server, which passes it on to all the other users currently in
the room.

 Figure 8.6 shows the two phases of outbound message operations: logging in and
sending a message.

 Notice how little code you’re using to execute all of this functionality. When com-
plete, your entire node server code file will consume less than 90 lines of JavaScript.
This makes for a very targeted system with only the functions that you really need. It
stays fast and light, as JavaScript is meant to be!

8.2.5 Receiving messages

The next operation that you need to handle is receiving messages from the server.
When any message is received, it will have a method property and a data object prop-
erty. The method will tell the application whether a user has entered the chat room, or
left, or posted a message.

Listing 8.7 Sending a message to the server inside socketserver.js

Get message that should
be sent to server.

Build data object to contain current
user and message to be sent.

Send message to
SocketServer objecAdd message to

current user’s page.

Check readyState to ensure
connection is still open.

Build stringified JSON object
and send it to server.
www.it-ebooks.info

http://www.it-ebooks.info/

232 CHAPTER 8 Websockets
The Websockets implementation doesn’t need to know anything about this, other
than the property names, so the code in socketserver.js for handling message receipt is
very simple:

this.connection.onmessage = function (event) {
 var envelope = JSON.parse(event.data);
 self.callback(envelope.method, envelope.data);
};

This bit of code simply parses the object received from the server and forwards it on
using the original callback you wired up at the beginning.

 The logic that does something with the message is in the receive function that
goes inside of the init function of main.js. The following listing shows the full text of
that function.

function receive(method, data) {
 if (method == "memberEnter") {
 self.addMember(data);
 }

Listing 8.8 Receiving a message from the server in main.js

Page

main.js

Login Message Receive

Instance

socket object

Send Receive

“connect” “message” “message”

“memberEnter”

Other

client

“message” “message”

socketserver.js

node.js server server.js

Other

client

Other

client

Figure 8.6 Each message sent will contain a
method string parameter that tells the
SocketServer object how to handle that
message. Login passes the "connect" method,
whereas messages sent and received get the
"message" method that the Main object
knows should be used to add the message
to the chat room.

Respond to new member
entering chat room.
www.it-ebooks.info

http://www.it-ebooks.info/

233Building a Websockets chat application

 list
on
ot.
 else if (method == "memberExit") {
 self.removeMember(data);
 }
 else if (method == "message") {
 self.addMessage(data);
 }
}

This part of the application takes whatever kind of message was received from the
server and forwards it to one of three local functions in the main object. The only
thing that’s left in the SocketServer object is the code that responds when the local
connection is closed. This is the onclose event mentioned earlier.

RESPONDING TO A CLOSED CONNECTION

In the socketserver.js file, find the onclose function call and add the following code:

this.connection.onclose = function (event) {
 data.code = "failure";
 complete(data);
};

This will execute the callback with a failure message and stop processing. It won’t
attempt to reopen the connection or determine what the problem is. In a live commu-
nication mechanism, this isn’t uncommon, because the normal operation would be to
purge and restart the connection process from scratch and not duplicate the connec-
tion testing logic.

UPDATING THE UI
You’re nearly finished with the chat client. In the earlier code, you responded to a
member entering, leaving, and sending a message to the chat room. Listing 8.9 shows
the functions that update the UI when these events occur.

 Note here that the local variables assigned in the init function prefixed with a dol-
lar sign ($) are now being used. This methodology allows you to update the page with-
out requerying the DOM—a good trick to have up your sleeve when you need every
millisecond of performance out of the browser. This code fills out the functions you
added earlier to main.js.

addMember: function (data) {
 var member = { name: data.From };
 member.$element = $("<p>" + member.name + "</p>")
 .toggleClass("local-member", data.local || false)
 .appendTo(this.$members);
 this.members.push(member);
 return member;
},

removeMember: function (data) {
 var i;
 for (i = 0; i < this.members.length; i++) {
 var member = this.members[i];

Listing 8.9 Responding to the addition and removal of members in main.js

Respond to
member exiting.

Respond to new message
from chat room member.

When members enter chat
room add them to member
and assign CSS class based
whether it’s local user or n

Push new member into
local array of users.
www.it-ebooks.info

http://www.it-ebooks.info/

234 CHAPTER 8 Websockets
 if (member.name == data.From) {
 member.$element.remove();
 this.members.splice(i, 1);
 break;
 }
 }
},

addMessage: function (data) {
 $("<p>" + data.From + ": " + data.Message + "</p>")
 .toggleClass("local-member",
 data.From == this.user.name)
 .appendTo(this.$output);
}

Congratulations! You’ve just implemented a Websockets-based chat client that does
exactly nothing. Nothing, that is, until you build the chat server capable of transmit-
ting data via TCP. That’s where Node.js comes in.

8.3 Using Node.js as a TCP server
Unless you’ve been living under a rock for the last two years, you’ve probably heard of
Node.js. Many of the superstars in the software development universe have been trum-
peting it for its speed and versatility. It hasn’t been used much in production environ-
ments so far, but the foundation is being laid for a major jump forward in web server
technology just over the horizon. But what exactly is Node.js?

 The home page for Node.js (nodejs.org) describes it this way:

Node.js is a platform built on Chrome’s JavaScript runtime for easily
building fast, scalable network applications. Node.js uses an event-
driven, non-blocking I/O model that makes it lightweight and efficient,
perfect for data-intensive real-time applications that run across distrib-
uted devices.

Did you get that? It’s a web server that runs on JavaScript! How cool is that? If by this
time in our book you aren’t falling in love (or at least serious like) with JavaScript,
then you may want to look into some of the Microsoft solutions available for handling
TCP connections using WCF (Windows Communication Foundation) and possibly in
the Windows 8 platform. For our part, we couldn’t resist the urge to test Node.js’s
chops against a Windows computer and an HTML5 chat client.

INSTALLING NODE.JS
To get started, you need to download and install Node.js. Do this by clicking on the
Download link at http://nodejs.org and running the installer. You should get a simple
wizard-style setup screen similar to what you see in figure 8.7.

 Follow the onscreen instructions until the wizard is finished. Once it’s installed,
you can run Node.js from any command line simply by entering the text node at the
prompt. This will enter you into a JavaScript working environment where you can use
any valid JavaScript language construct to execute code.

When members leave remove them
from interface and local array.

Messages are posted to
interface and same CSS logic
is applied to messages.
www.it-ebooks.info

http://nodejs.org
http://www.it-ebooks.info/

235Using Node.js as a TCP server
For instance, figure 8.8 declares a variable, adds numbers, and prints the values out.
Then it prints the words “hello world” to the screen. A simple start.

 You can do much more than this, though. Using Node.js you can build libraries,
include third-party utilities, and execute the entire thing as an operational server.

 The chat server you’re building will be a single JavaScript file in a folder of your
solution. It will use a free third-party web service utility to send and receive TCP traffic
to and from your web client. Let’s get started.

PREPARING TO BUILD THE CHAT SERVER
The first thing you need to do is to create a new folder and install the Node Package
Manager (npm):

Why Node.js for TCP chat?
You might be wondering why we aren’t using a .NET server technology to implement
our server-side TCP socket code. The reason is that no production-ready implemen-
tation of a TCP service exists on the .NET stack that fulfilled our need for clarity and
our desire to bring as few ancillary topics as possible into the mix.

We looked into SignalR, native WCF, and some others, but they all had one of two
problems: they involved the inclusion of a large amount of code and settings that
made the chapter too long and complex; or they abstracted the core Websockets
functionality and focused the code too much on polyfills and patches for Flash and
long polling. Polyfills, at a high level, are JavaScript shims that allow code to function
as if the particular browser feature were a native part of the platform.

In the end, the buzz around Node.js and the fact that we could perform a few simple
steps and have just a few lines of JavaScript code implement the entire server solu-
tion made it an easy choice.

Figure 8.7 The Node.js
installation wizard for
Windows platforms
www.it-ebooks.info

http://www.it-ebooks.info/

236 CHAPTER 8 Websockets
1 Create a new folder called NodeServer
off the main project in your Visual Studio
solution. This folder doesn’t need to be
inside your solution, but putting it inside
it makes the example a bit easier and it
gives you the ability to use the JavaScript
IntelliSense built into Visual Studio.

2 Once the folder is created, add a new
text file called package.json. This is a
standard name for Node.js applications
that will allow npm, a utility program that
installs with Node.js, to find and install
third-party libraries.

3 Place this text inside package.json:

{
 "name": "manning-socket-demo",
 "author": "iangilman",
 "version": "0.0.1",
 "dependencies": ["ws"] // The unique name of the ws socket library
}

Name corresponds to the name of your application, and author is you. Version
is your own application’s version number, and dependencies is an array of
libraries that should be downloaded and installed locally in a special location
off the current folder.

4 When you have saved this file, open a command prompt and change the direc-
tory to NodeServer.

5 Run the following command:

npm install

That should result in something similar to figure 8.9, where the npm utility has
installed the ws library.

Figure 8.8 Entering node at
the command line enters you into the
JavaScript environment where
normal JavaScript code can execute.

Figure 8.9 The npm utility will automatically install all packages listed in package.json into
the folder where the package file exists.
www.it-ebooks.info

http://www.it-ebooks.info/

237Using Node.js as a TCP server

A

co
When you look in this folder, you’ll see a new subfolder called node_modules. This
folder was automatically created and populated by the installation. Any external mod-
ule you install on this node server will go, by default, into this folder.

BUILDING THE CHAT SERVER

Now you’re ready to start building the actual chat server. Back in Visual Studio, create
a new JavaScript file called server.js in your application’s NodeServer folder and add
the code in the next listing to that file.

var ws = require("ws");
var port = 16433;
var socketServer = new ws.Server({ port: port });

socketServer.on("connection", function (socket) {
 chatServer.addUser(socket);
});

var chatServer = {
 users: [],

 addUser: function (socket) {
 },

 removeUser: function (user) {
 },

 sendToAllBut: function (userException, message) {
 },

 sendMembersTo: function (recipient) {
 }
};

console.log("Server started. " +
"Connect via ws://localhost:" + port);

The code in listing 8.10 performs a number of operations that should be explained a
little further. First is the require keyword:

var ws = require("ws");

This is a Node.js-specific keyword that should be at the beginning of each library that
has external dependencies. Calling require will tell the Node.js engine to load that
library into memory so that its structure and content is available in the current scope.
It’s similar to adding a script tag to a web page.

 Next you create a ws.Server object, passing in a port number:

var socketServer = new ws.Server({ port: port });

ws in this context is the ws library that you installed earlier, and you’re expected as the
developer to know what it does, because you required Node.js to load it earlier. No
IntelliSense here, you’re on your own!

Listing 8.10 Getting started building the Node.js chat server with the server.js file

require is standard Node.js command that
includes other libraries into current application.

Create new ws.Server
object to handle TCP traffic.

When new connection is
made add new user to
chatServer.users array.

Define chatServer
object here.

dd user
that has
nnected
to users

array.

Remove user that
has disconnected.

Send message to all users
except original sender.

Post messages to new users for
each other user in system. This
keeps all users synchronized
with people in chat room.

For developer explain what connection
URL should be for server.
www.it-ebooks.info

http://www.it-ebooks.info/

238 CHAPTER 8 Websockets
 The rest of the code in this library is just plain old JavaScript—nothing special to
understand or load.

 The basic structure is now complete; you just need to fill everything in and run
your application. The addUser function in listing 8.11 will add a user to the local array
and then wire up message and close events. This code goes into the main chatServer
object defined in server.js. Keep in mind that a user object in the context of the server
library is an open socket connected to a unique user at the other end.

addUser: function (socket) {
 var self = this;

 var user = { socket: socket };

 this.users.push(user);

 socket.on("message", function (message) {
 var envelope = JSON.parse(message);
 if (envelope.method == "memberEnter") {
 user.name = envelope.data.From;
 self.sendMembersTo(user);
 }
 self.sendToAllBut(user, message);
 });

 socket.on("close", function () {
 self.sendToAllBut(user, JSON.stringify({
 method: "memberExit",
 data: {
 From: user.name
 }
 }));
 self.removeUser(user);
 });
},

NOTE The socket.on(string, callback) event you’re using is not part of
the Websockets specification. It’s defined and executed strictly inside the ws
library. We decided to use this library because it’s simple to use and small; it
doesn’t try to provide any polyfills for solutions other than TCP communica-
tions. Other utilities like Sockets.IO and SignalR provide end-to-end solutions
with fallbacks and polyfills, but defining and building solutions around them
would take up too much space in a single chapter.

Next, fill in the removeUser function, which simply finds a user leaving the chat room
and deletes the user from the local users array:

removeUser: function (user) {
 for (var i = 0; i < this.users.length; i++) {
 if (this.users[i] == user) {
 this.users.splice(i, 1);

Listing 8.11 Adding a user to the chat room and starting to listen for messages

Add user to
users array.

Respond to new message
coming from client.

Respond to
new socket.
www.it-ebooks.info

http://www.it-ebooks.info/

239Using Node.js as a TCP server
 break;
 }
 }
},

By now, you should be familiar enough with JavaScript array manipulation that this
code requires no further explanation. The next listing, on the other hand, which calls
the user.socket.send function for each user except the original sender of the mes-
sage, does need a little bit of explanation. Take a look.

sendToAllBut: function (userException, message) {
 for (var i = 0; i < this.users.length; i++) {
 var user = this.users[i];
 if (user != userException)
 user.socket.send(message);
 }
},

The code in listing 8.12 goes into the chatServer object in server.js. Recall that when
you wired up the original connection event earlier, you passed in a socket object as a
parameter to the addUser function. This socket is an open connection to the client
that’s created in the ws library and then passed as the connection parameter. It isn’t a
reference to a single, application-level connection.

 The final step in your application is to send to each newly connected user a mes-
sage with a data object representing each member currently connected. The send-
MembersTo function is shown in the following listing and also goes into server.js.

sendMembersTo: function (recipient) {
 for (var i = 0; i < this.users.length; i++) {
 var user = this.users[i];
 if (user != recipient) {
 recipient.socket.send(
 JSON.stringify({
 method: "memberEnter",
 data: {
 From: user.name
 }
 }));
 }
 }
}

Now you need to save the server.js file, open a command window, and navigate to the
NodeServer folder. Type in the following command:

node server.js

That should give you a window with a message similar to figure 8.10.

Listing 8.12 Distributing a message to users

Listing 8.13 Telling a user about the other users in the chat room

If current user in array
isn’t same as user sending
message send message.

Grab each user in
current users list and
filter out current user.

Execute message using each
user’s own connection.

Most commands available in browser
that aren’t DOM-related are also
available in Node.js, including
JSON.stringify. This is why you only check
for JSON compatibility in browser.
www.it-ebooks.info

http://www.it-ebooks.info/

240 CHAPTER 8 Websockets
The last thing you need to do before you can try the chat application is edit the socket-
server.js file so that the URL it uses to connect matches the URL that your server
is presenting:

if (Socket) {
 var url = "ws://localhost:16433";
 ...

Once you’ve made this change, you can execute your MVC application.

TRY IT OUT!
Navigate to the Chat page and open another window using the same URL. You should
be able to chat between the windows, connecting via the Node.js server. You should see
something like figure 8.11—a working chat application that executes real-time updates
using Websockets and TCP!

Figure 8.10 Node.js server is running
and waiting for connections.

Figure 8.11 The working chat application will only be available locally, but the client URL is
editable, so deploying a Node.js server should be a simple matter of purchasing the server
and deploying your server.js file.
www.it-ebooks.info

http://www.it-ebooks.info/

241The complete code listings
8.4 Summary
Direct TCP communications between applications was a very difficult proposition until
just recently, but with the increasing acceptance of both Node.js and Websockets in
the browser, expect it to get more popular and even more refined.

 Building TCP communications into an existing ASP.NET MVC application is
straightforward due to the lack of MVC interactivity required. As a foundation for real-
time communications, the code in this chapter should suit you well. We hope that the
creative minds reading this will already be thinking of ways to integrate geolocation,
collaborative drawing, or any of the other HTML5 APIs into a real-time web scenario.

 In the next chapter, we’ll take a look at the LocalStorage API in HTML5. This fea-
ture is reasonably well supported in modern browsers and gives you the ability to
download or build content on the client and then save it for use in a later session.

8.5 The complete code listings
The following listings provide the complete code for this chapter’s sample application.

* {
 margin: 0;
 padding: 0;
}

html,
body {
 position: absolute;
 left: 0;
 top: 0;
 right: 0;
 bottom: 0;
 overflow: hidden;
}

#login {
 position: absolute;
 width: 200px;
 height: 74px;
 left: 50%;
 top: 50%;
 margin-left: -100px;
 margin-top: -37px;
 border: 1px solid #999;
 padding: 10px;
}

#login p {
 margin-bottom: 0.5em;
}

#login-status {
 margin-top: 0.4em;
}

Listing 8.14 The complete chat.css stylesheet
www.it-ebooks.info

http://www.it-ebooks.info/

242 CHAPTER 8 Websockets
#chat {
 display: none;
}

#members {
 position: absolute;
 left: 0;
 top: 0;
 width: 100px;
 bottom: 0;
 border-right: 1px solid black;
 padding: 10px;
}

.local-member {
 font-weight: bold;
}

#log {
 position: absolute;
 left: 121px;
 top: 0;
 right: 0;
 bottom: 21px;
 padding: 10px;
}

#input {
 position: absolute;
 left: 121px;
 height: 20px;
 right: 0;
 bottom: 0;
}

#entry {
 width: 100%;
}

.box-round {
 -webkit-border-radius: 6px;
 -moz-border-radius: 6px;
 border-radius: 6px;

 -moz-background-clip: padding;
 -webkit-background-clip: padding-box;
 background-clip: padding-box;
}

.box-shadow {
 -webkit-box-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
 -moz-box-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
 box-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
}

// ----------
$(document).ready(function () {

Listing 8.15 The complete main.js file
www.it-ebooks.info

http://www.it-ebooks.info/

243The complete code listings
 Main.init();
});

// ----------
window.Main = {
 user: null,
 members: [],

 // ----------
 init: function() {
 var self = this;

 if (!Modernizr.websockets) {
 alert("Your browser doesn't support WebSockets.");
 return;
 }

 function receive(method, data) {
 if (method == "memberEnter")
 self.addMember(data);
 else if (method == "memberExit")
 self.removeMember(data);
 else if (method == "message")
 self.addMessage(data);
 }

 this.$output = $("#log");
 this.$members = $("#members");

 this.$name = $("#name")
 .focus();

 $("#login")
 .submit(function(event) {
 event.preventDefault();
 var name = self.$name.val();
 if (name) {
 var $status = $("#login-status")
 .text("Connecting…");

 self.server = new SocketServer(receive);
 self.server.send("connect", {
 From: name
 }, function(result) {
 if (result && result.code == "success") {
 result.local = true;
 self.user = self.addMember(result);
 $("#login").hide();
 $("#chat").show();
 self.$entry.focus();
 } else {
 $status.text("Failed to connect.");
 }
 });
 }
 });

 this.$entry = $("#entry")
 .keypress(function(event) {
www.it-ebooks.info

http://www.it-ebooks.info/

244 CHAPTER 8 Websockets
 if (event.which == 13) { // return key
 var message = self.$entry.val();
 if (message) {
 self.$entry.val("");

 var data = {
 From: self.user.name,
 Message: message
 };

 self.server.send("message", data);
 self.addMessage(data);
 }
 }
 });
 },

 // ----------
 addMember: function(data) {
 var member = {
 name: data.From
 };

 member.$element = $("<p>" + member.name + "</p>")
 .toggleClass("local-member", data.local || false)
 .appendTo(this.$members);

 this.members.push(member);
 return member;
 },

 // ----------
 removeMember: function(data) {
 var i;
 for (i = 0; i < this.members.length; i++) {
 var member = this.members[i];
 if (member.name == data.From) {
 member.$element.remove();
 this.members.splice(i, 1);
 break;
 }
 }
 },

 // ----------
 addMessage: function(data) {
 $("<p>" + data.From + ": " + data.Message + "</p>")
 .toggleClass("local-member", data.From == this.user.name)
 .appendTo(this.$output);
 }
};

// ----------
window.SocketServer = function(callback) {
 this.callback = callback;
 this.connection = null;
};

Listing 8.16 The complete socketserver.js file
www.it-ebooks.info

http://www.it-ebooks.info/

245The complete code listings
// ----------
SocketServer.prototype = {
 // ----------
 send: function(method, data, complete) {
 var self = this;
 if (method == "connect") {
 var Socket = window.WebSocket || window.MozWebSocket;
 if (Socket) {
 var url = "ws://manning-socket-demo.nodester.com";
 this.connection = new Socket(url);

 this.connection.onopen = function() {
 self.connection.send(JSON.stringify({
 method: "memberEnter",
 data: data
 }));

 data.code = "success";
 complete(data);
 };

 this.connection.onmessage = function(event) {
 var envelope = JSON.parse(event.data);
 self.callback(envelope.method, envelope.data);
 };

 this.connection.onclose = function(event) {
 data.code = "failure";
 complete(data);
 };
 } else {
 data.code = "failure";
 complete(data);
 }
 } else if (method == "message") {
 if (this.connection.readyState != 1)
 return;

 this.connection.send(JSON.stringify({
 method: method,
 data: data
 }));
 }
 }
};

// ==========
// socket server
var ws = require("ws");
var port = 16433; // or whatever port your server is set up for
var socketServer = new ws.Server({port: port});

socketServer.on("connection", function(socket) {
 chatServer.addUser(socket);
});

Listing 8.17 The complete server.js (node)
www.it-ebooks.info

http://www.it-ebooks.info/

246 CHAPTER 8 Websockets
// ==========
// chat server
var chatServer = {
 users: [],

 // ----------
 addUser: function(socket) {
 var self = this;

 var user = {
 socket: socket
 };

 this.users.push(user);

 socket.on("message", function(message) {
 var envelope = JSON.parse(message);
 if (envelope.method == "memberEnter") {
 user.name = envelope.data.From;
 self.sendMembersTo(user);
 }

 self.sendToAllBut(user, message);
 });

 socket.on("close", function() {
 self.sendToAllBut(user, JSON.stringify({
 method: "memberExit",
 data: {
 From: user.name
 }
 }));

 self.removeUser(user);
 });
 },

 // ----------
 removeUser: function(user) {
 for (var i = 0; i < this.users.length; i++) {
 if (this.users[i] == user) {
 this.users.splice(i, 1);
 break;
 }
 }
 },

 // ----------
 sendToAllBut: function(userException, message) {
 for (var i = 0; i < this.users.length; i++) {
 var user = this.users[i];
 if (user != userException)
 user.socket.send(message);
 }
 },

 // ----------
 sendMembersTo: function(recipient) {
 for (var i = 0; i < this.users.length; i++) {
www.it-ebooks.info

http://www.it-ebooks.info/

247The complete code listings
 var user = this.users[i];
 if (user != recipient) {
 recipient.socket.send(JSON.stringify({
 method: "memberEnter",
 data: {
 From: user.name
 }
 }));
 }
 }
 }
};

// ==========
console.log("Server started. Connect via ws://localhost:" + port);
www.it-ebooks.info

http://www.it-ebooks.info/

Local storage
and state management
Any application that handles a lot of user interaction and customization will benefit
from the ability to store stateful information without the fuss and transactional sup-
port of sending it to the server and retrieving it when the user returns to the site.
Consider a game site where the user wants to keep the last five highest scores. Only
the highest score goes to the server for display; the rest are stored locally on the cli-
ent for as long as the user wants. This reduces traffic and storage loads on the
server while keeping the data accessible to the user.

 Previous versions of HTML have a couple of options for storing this kind of data,
but HTML5 goes a few steps further to give you a reasonably simple and stable means
of keeping track of the information that your server solution doesn’t care about.

 Typical kinds of values that might be stored locally are user preferences for sort-
ing lists or previous search terms, but that certainly isn’t the end of the story.

This chapter covers
■ Storing data locally in the browser
■ Retrieving stored data and restoring

application state
■ Managing objects and properties using

LocalStorage
248

www.it-ebooks.info

http://www.it-ebooks.info/

249A LocalStorage example application
You can also use local storage to reduce bandwidth requirements and speed applica-
tion initialization time. This is done by requesting static data only once and then plac-
ing it in the local store for reuse the next time the site is visited.

 In this chapter, you’ll learn how to use LocalStorage as you build a simple interface
with draggable boxes that can have their background colors edited. The locations and
colors of these boxes are saved locally and are restored when the page is revisited later.
As this chapter progresses, you’ll

■ Get a preview of the example application and lay the foundations for it
■ Structure a JavaScript library to maintain state
■ Use the LocalStorage API to create, read, update, and delete (CRUD) data
■ Use data saved in local storage to manipulate the user interface
■ Learn about other uses for LocalStorage

Let’s begin with a closer look at this chapter’s sample application.

9.1 A LocalStorage example application
This chapter’s example is simple, but it illustrates how you can save data in Local-
Storage and then use it the next time you return to the site or reset values back
to their initial settings. In the process, you’ll take a couple of sideways looks at
bits of jQuery syntax that might be new to you as you integrate jQuery UI and
touch. jQuery UI is a JavaScript UI library designed to help you build beautiful
interfaces more quickly. Touch integration happens by means of a very simple

Browser support

Chapter 9 map
The LocalStorage API allows a browser to store persistent data inside the browser
cache without using hidden HTML fields or cookies. Data can be created, stored, and
retrieved locally with no server communications at all.

Adding and removing items pages 257 and 258

Moving data from LocalStorage to the page page 259

Deleting items from LocalStorage page 260

Clearing LocalStorage page 260

Using LocalStorage events page 261
www.it-ebooks.info

http://www.it-ebooks.info/

250 CHAPTER 9 Local storage and state management
jQuery plugin, and the core LocalStorage application page is built into an
ASP.NET MVC application.

TIP You’ll be using the LocalStorage API in
this chapter, but it isn’t the only means of
managing data locally on the client. Cook-
ies, IndexedDB, client-side databases like
SQLite, and HTML-only methods like hid-
den <input> fields are all useful and work
well. LocalStorage, however, has the best
combination of compatibility in modern
browsers, a low barrier to entry in terms of
code, and low traffic volume during normal
HTTP request/response operations.

As the application operates, the user will be
able to create multiple boxes, reposition them
on the screen, and change their background
color. Once the color has changed or an object
has been moved, other tabs in the same browser
viewing the same page will reflect those changes
through LocalStorage event listeners. Addition-
ally, if you close the page and reopen it, the elements will be colored and placed
exactly where they were previously until the screen is reset or the browser cache is
manually cleared by the user. Figure 9.1 gives you a preview of what the running page
will look like.

BUILDING THE STRUCTURE OF YOUR PAGE

To get started, follow these steps:

1 Open Visual Studio and create a new ASP.NET MVC application called Local-
StorageApp.

2 When it has loaded, go through the normal routine of updating the NuGet
packages with the latest versions of all the default packages. (Navigate the
menus to Tools > Library Package Manager > Manage NuGet Packages for Solu-
tion. Click the Updates tab on the left, and when the center content loads, click
the Update button on each of the packages.)

3 Open the _Layout.cshtml file in the Views\Shared folder of your solution and
update the links to the versions of Modernizr and jQuery listed in your Scripts folder.

4 In your application, open the HomeController.cs file and add a new control-
ler action:

public ActionResult Storage()
{
 return View();
}

Figure 9.1 When complete, this chapter’s
sample application will allow elements on
the page to be repositioned and their
background colors changed. Edits to the
screen will be stored in LocalStorage for
retrieval the next time the page is loaded.
www.it-ebooks.info

http://www.it-ebooks.info/

251A LocalStorage example application

n is
ds

5 Now go back to the _Layout.cshtml file and update the menu unordered list
with the following item:

@Html.ActionLink("Local Storage", "Storage", "Home")

This will add a new menu for the Local Storage application page to the top of
the website.

6 Back in the Home controller, right-click on the word View.
7 In the pop-up menu, select Add View.
8 Uncheck the Use a Layout or Master Page check box and click Add to get the

basic outline of a page.

Now, replace the entire contents of this view with the markup in the following listing,
which gives you all the structural elements you need. Play close attention to the style
classes listed for the various tags. These are important for the jQuery UI implementa-
tion you’ll be using.

<!DOCTYPE html>
<html>
<head>
 <title>Local Storage</title>
 <script src="@Url.Content("~/Scripts/jquery-1.7.2.js")"
 type="text/javascript"></script>
 <script
 src="@Url.Content("~/Scripts/
 jquery-ui-1.8.19.js")"
 type="text/javascript"></script>
 <script
 src="@Url.Content("~/Scripts/
 ➥ jquery.ui.touch-punch.js")"
 type="text/javascript"></script>
 <script src="@Url.Content("~/Scripts/modernizr-2.5.3.js")"
 type="text/javascript"></script>
 <link href="http://ajax.aspnetcdn.com/ajax/
 ➥ jquery.ui/1.8.16/
 ➥ themes/smoothness/jquery-ui.css"
 rel="stylesheet"
 type="text/css" />
 <link href="@Url.Content("~/Content/storage.css")"
 rel="stylesheet" type="text/css" />
</head>
<body>

 <div id="dialog" title="Choose Hue">
 <div id="hue"></div>
 </div>

 <button id="new">New</button>
 <button id="clear">Clear</button>

 <script src="@Url.Content("~/Scripts/main.js")"
 type="text/javascript"></script>

Listing 9.1 The complete markup for the Storage.cshtml page

jQuery UI is required
for application.

Touch-punch plugi
free utility that ad
touch to existing
jQuery UI widgets.

When using jQuery UI
widgets include theme to
style elements on page.

Choose Hue dialog box
will be displayed over
elements to be edited.

New and Reset buttons will create new
box on page or clear existing boxes.

main.js file is primary library
for this application.
www.it-ebooks.info

http://www.it-ebooks.info/

252 CHAPTER 9 Local storage and state management
</body>
</html>

GITING AN OPEN SOURCE JAVASCRIPT LIBRARY

You’ve updated all the existing JavaScript libraries in your application by means of
NuGet, but you don’t have the jquery.ui.touch-punch JavaScript file listed in the
HTML <script> tag. This is a freely downloadable library written by David Furfero.
The project for this library is located on GitHub at https://github.com/furf/jquery-
ui-touch-punch/.

 You could pull this library down by copying and pasting the JavaScript, but we
wanted to give you a little insight into how you can do this with Git, one of the most
popular source-control and source-sharing tools available today:

1 Download and run the latest executable installer of Git for Windows from http:/
/code.google.com/p/msysgit/downloads/list.

2 Create a folder on your local drive called MyGitProjects with a subfolder called
Touch-Punch.

3 Find and execute the Git Bash program that installed as part of Git. Enter the
following commands, as shown in figure 9.2:

cd C:\MyGitProjects
cd Touch-Punch
git init
git pull https://github.com/furf/jquery-ui-touch-punch

Your Git Bash window should look something like figure 9.2. Assuming you placed
your MyGitProjects folder on the C: drive, you should be able to navigate to C:\MyGit-
Projects\Touch-Punch and copy the jquery.ui.touch-punch.js file into your solution

Figure 9.2 Pulling a library from GitHub requires that you initialize a folder as a repository
and then pull from the original source into that folder by means of the project URL.
www.it-ebooks.info

https://github.com/furf/jquery-ui-touch-punch/
https://github.com/furf/jquery-ui-touch-punch/
http://code.google.com/p/msysgit/downloads/list
http://code.google.com/p/msysgit/downloads/list
http://www.it-ebooks.info/

253Structuring a JavaScript library to maintain state
folder. The touch-punch library must be loaded into your page after jQuery UI, but
once that’s done, any jQuery UI widget will be touch-enabled.

WARNING Using open source libraries from a public repository can save you
time, money, and headaches, but you must read through the licensing for
each library you intend to use to be sure you’re in compliance with the wishes
or demands of the original authors. This is part of being a good citizen of the
open source community.

Our primary purpose in including jQuery UI in this application is to give you the pol-
ished horizontal slider in a way that doesn’t take the focus away from the core purpose
of this chapter. The theme we included is also arbitrary—you could use any of the
themes available or a custom theme you create yourself. We’ll also be using the jQuery
draggable interaction to show an alternative to wiring up your own HTML5 drag-and-
drop implementation.

 The styles that you’ll use (outside of the jQuery theme styles) are important in this
application only in that the box is absolutely positioned in the primary object. That
means its style is set to position:absolute. This allows you to place it anywhere on
the page.

 Other than that, you’re providing just enough styling to give the page a clean and
pleasant look. The real work in this chapter is, once again, a JavaScript library. Let’s
take a look at its structure and function.

9.2 Structuring a JavaScript library to maintain state
You’ll be spending your remaining time in this chapter down in the weeds of the
JavaScript code. The application you’re building must create, discriminate, display,
store, and reset multiple objects that share many of the same characteristics with only
minor differences between them. The object-creation logic must also try to make each
element slightly different from all the others, so the user can tell which is which.

 First, you’ll build the basic structure of the main.js file, and then you’ll see how a
single element is created in code. Both of these involve taking a closer look at the
LocalStorage API.

9.2.1 Creating an application outline that supports
local storage of objects

Your JavaScript application structure must support all the operations necessary to
position and style elements on the screen and provide for their persistence in Local-
Storage. You do this in six steps:

1 Create an object with properties and events.
2 Add the object to the page and to LocalStorage.
3 Allow the user to change the position and other properties of the object.
4 When any change is made, update the object in LocalStorage.
www.it-ebooks.info

http://www.it-ebooks.info/

254 CHAPTER 9 Local storage and state management

S
o

Local

Lo

st
5 When the user comes back to the page, load all previous objects from Local-
Storage and display them on the page.

6 Allow the user to remove all objects from LocalStorage.

To enable your application to take those steps, create a new JavaScript file named
main.js and place it in the Scripts folder in your solution. This is the primary applica-
tion library for the chapter; it’s listed at the bottom of the <body> element in your
main MVC view.

 The following listing shows the basic outline of this library.

$(document).ready(function () {
 Main.init();
});

window.Main = {
 nextBoxIndex: 0,
 offset: 0,
 $slider: null,
 $selectedBox: null,

 init: function () {
 var self = this;

 if (!Modernizr.localstorage) {
 alert("Local storage not supported.");
 return;
 }

 if (!Modernizr.hsla) {
 alert("hsl colors not supported.");
 return;
 }

 if (!window.JSON) {
 alert("JSON not supported.");
 return;
 }
 },

 createBox: function (key) { },

 saveBox: function ($box) { },

 clearAll: function () { },

 loadAll: function () { },

 removeBox: function ($box) { },

 startDialogFor: function ($box) { },

 setHue: function ($box, hue) { },

 initDialog: function () { }

};

Listing 9.2 Wiring up document.ready and building the Main object

Local properties are used
to give boxes unique ID and
position them on page.

Properties will be assigned
as wrapped sets to
perform operations.

Check for support for
LocalStorage, CSS
HSLA, and JSON.

Create box
object and
return it to
caller.ave box

bject to
Storage.

Clear LocalStorage
of all saved boxes.

ad all
boxes
from

orage.

Remove single
box from
LocalStorage.

Open jQuery
UI dialog box
for changing
box color.

Assign color
to box.

Create in-memory slider
control for use in dialog box.
www.it-ebooks.info

http://www.it-ebooks.info/

255Structuring a JavaScript library to maintain state
Reading through the code, you should get a decent idea of the scope of the problem
you’re solving with this application. You initialize your Main object in the document
ready function and then check for compatibility with all the APIs you’ll be using. You
have functions that create objects (createBox) and some that manipulate page ele-
ments like dialog boxes and slider controls. Along the way, pay close attention to the
saveBox and loadAll functions, because they’re the keys to working with LocalStorage.

 As you progress, you’ll update the init function when necessary to respond to a
page event and then fill in the function call that executes the unit of work.

9.2.2 Building UI elements that can be stored locally

The first bit of functional code you need to write is against the button that creates a
new box object. You’ll wire up this button so that it responds by creating the new box
object and saves it to LocalStorage.

 Place the following snippet in the init function:

$("#new")
 .button()
 .click(function () {
 var $box = self.createBox();
 self.saveBox($box);
 });

You create the box and immediately save it, which is a simple pattern that’s perfectly
acceptable in a single-user environment like a browser. A single box object in your
application is actually a jQuery wrapped set that has a reproducible interface, a
unique identifier, and a few events attached to it to allow it to be dragged and its back-
ground color to be changed.

 The following lsiting shows what the createBox function in main.js should look
like. This will create a box, give it an id value, style it, and then place it on the page.

createBox: function (key) {
 var self = this;

 var index;
 if (key) {
 var parts = key.split("-");
 index = parseInt(parts[1], 10);
 this.nextBoxIndex =
 Math.max(index, this.nextBoxIndex) + 1;
 }
 else {
 index = this.nextBoxIndex;
 key = "box-" + index;
 this.nextBoxIndex++;
 this.offset += 20;
 }

Listing 9.3 The createBox function can create an object with a specific id
or a fresh box

Make button
object into
jQuery UI
button.

Use chaining to
bind click event
to button.

Create new
box object.Immediately save

box object.

If key value is passed
in use it to create
unique id for box.

If no key value is passed
use next counter value
available. Keys can be
any string value so long
as they’re unique.
www.it-ebooks.info

http://www.it-ebooks.info/

256 CHAPTER 9 Local storage and state management
 var html = "<div class='box box-shadow box-round'>"
 + "Drag Me
"
 + "or <button class='change-color'>"
 + "Change color</button>
"
 + "or <button class='remove'>"
 + "remove</button>"
 + "</div>";

 var $box = $(html)
 .attr("id", key)
 .css({
 left: this.offset,
 top: this.offset,
 "z-index": index
 })
 .appendTo("body")
 .draggable({
 stop: function (event, ui) {
 self.saveBox($box);
 }
 });

 this.setHue($box, this.offset);

 $box.find(".change-color")
 .button()
 .click(function () {
 self.startDialogFor($box);
 });

 $box.find(".remove")
 .button()
 .click(function () {
 self.removeBox($box);
 });

 return $box;
},

The box object you created is ready to roll when
createBox is complete. You added it to the interface,
styled it, and bound the appropriate event handlers to
its various subelements.

 Note also that you called a function called draggable
on your box. This is a jQuery UI function that will inject
the appropriate behaviors into the box to make it respond
to drag events without a lot of unnecessary flags and x,y
coordinate math.

 Because you’re also including the touch-punch plugin,
touch events will also be automatically wired up to
respond to drag events.

 Figure 9.3 shows what the box and its hue selector dia-
log box will look like at runtime.

Build box markup
on the fly by
concatenating
strings.

Take string and build
wrapped set out of it.

After box has been
created add it to
current page.

From new wrapped set find change
color button and wire it up.

Find the remove button and
wire its click event up as well.

Return completed
box to caller.

Figure 9.3 The box object
you build in createBox has
all events prewired and dialog
boxes ready for operation.
www.it-ebooks.info

http://www.it-ebooks.info/

257Using the LocalStorage API
9.3 Using the LocalStorage API

Here we arrive at the meat of the chapter, where you’ll dig into the LocalStorage API
and see how data is stored, read, and removed on the client. In this section, you’ll spe-
cifically learn how to do the following:

■ Add and remove items from the localStorage object the not-so-easy way
■ Add and remove items the easy way
■ Move data from localStorage to the page
■ Delete items from localStorage
■ Clear all items from localStorage
■ Use the localStorage event

First up, we’ll show you how to add items to and remove them from the localStorage
object the not-so-easy way, just so that you know how to do it. This is helpful in
JavaScript when you need to build a function call in code and execute it using either
the call or apply JavaScript keywords. We won’t cover these implementations in
detail since they wouldn’t significantly add to the LocalStorage discussion.

9.3.1 Adding and removing items to and from LocalStorage
the not-so-easy way

Suppose you’re writing the game application we mentioned briefly at the opening of this
chapter. You want to store the last five high scores for the current user, updating the list as
new games are finished, and then retrieve them for display on the user’s home screen.

 The localStorage.getItem(key) function could be used to retrieve a single score
as a string from storage based on a unique user-defined key string (in this case, the
date and time string when the user completed the game). If the string returned is
actually a JSON object, it will have to be parsed back into that object. Numeric values
that are retrieved will be coerced using normal JavaScript parsing methods, or they
can be forced into their legitimate types by casting them directly. If the key passed
into getItem doesn’t exist, the item won’t be created and no exception will be thrown,
but null will be returned:

var t = localStorage.getItem("lastKey");

localStorage.setItem(key, value) will create or overwrite a single item in storage
based on the key provided. If the key doesn’t exist, the item will be created in Local-
Storage. If the key does exist, the value of the item in LocalStorage will be completely
overwritten with the new value. If an exception is thrown from calls to either storage
object when setting a value, it will almost always be a QuotaExceededError that should
be specifically tracked. This exception means that the current storage object can’t
write the data because the value, when added to the currently consumed storage, will
exceed what’s allotted by the browser. The setItem function doesn’t return a value:

localStorage.setItem("lastKey", 2);

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

258 CHAPTER 9 Local storage and state management
These methods of getting and setting data items in LocalStorage are perfect for situ-
ations where the key of the element you’re working with is a generated or concate-
nated value. The second way of getting and setting values, described next, will work
in the same scenarios, but getItem and setItem give your code a bit more specific-
ity. In the end, it’s a personal choice which way you decide to set and retrieve Local-
Storage items.

9.3.2 Adding and removing items the easy way

Now that you know the API calls to get and set items in LocalStorage, let’s look at the
easy way to add and remove items. The process is exactly the same as using getItem
and setItem, but it’s quicker to write and easier to read.

 The LocalStorage API allows you to assign values as properties directly by using
standard setters and getters. This means that as long as the key value you want to
use is a valid string with no special characters, you can just use this code to set and
get values:

localStorage.box = "myBox"; // set value
var t = localStorage.box; // get value

This creates and then reads an entry in LocalStorage with a key of box and a value of
"myBox".

 If your value contains characters like dashes (interpreted as minus) or other
special characters, you can use the following code to force the key to be exactly
what you need:

localStorage["box-0"] = "myBox"; // set value
var t = localStorage["box-0"]; // get value

Those two snippets of code are functionally equivalent.
 Because this chapter’s application allows a user to create as many boxes as they

want, you need to assign an ID value that includes an incrementing number. For this,
you can use the second syntax to add a box object to LocalStorage, as shown in the fol-
lowing listing.

 The saveBox function should already be stubbed out in main.js. This code com-
pletes it.

saveBox: function ($box) {
 var position = $box.position();
 localStorage[$box.attr("id")] =
 JSON.stringify({
 left: position.left,
 top: position.top,
 hue: $box.data("hue")
 });
},

Listing 9.4 Saving an item to LocalStorage using a property setter

Core API

Pass in id value to localStorage
object to create or update
LocalStorage entry in browser.

LocalStorage items can contain anything
but simplest method is to assign values
you want to JSON object and stringify it.
www.it-ebooks.info

http://www.it-ebooks.info/

259Using the LocalStorage API
9.3.3 Moving data from LocalStorage to the page

Now that the box or boxes have been saved to LocalStorage, you can read them back
out. Because any change to a box will be updated to LocalStorage right away, you
don’t need to worry about adding a single item when the new button is clicked.
Instead, wait for an event that tells the code that something happened in LocalStor-
age, and then just read everything out that you’ve saved and drop it on the screen.

 That’s the purpose of the loadAll function in main.js, shown in the following list-
ing. You do this with the help of the length property of LocalStorage, which returns
an integer corresponding to the number of separate items currently saved.

loadAll: function () {
 var ids = [];
 for (var i = 0; i < localStorage.length; i++) {
 var key = localStorage.key(i);
 if (key.indexOf("box-") !== 0)
 continue;

 var data = localStorage[key];
 var box = JSON.parse(data);
 var id = "#" + key;
 ids.push(id);

 var $box = $(id);
 if (!$box.length)
 $box = this.createBox(key);

 $box
 .css({
 left: box.left,
 top: box.top

Transactional data in LocalStorage
The save operation in listing 9.4 brings up an important feature of LocalStorage.
Browsers by their very nature operate in a single-user environment, so local data oper-
ations seldom need total transactional support. But even the simplest operations
must have some features that larger database engines take for granted.

LocalStorage ensures that data written to and read from storage is atomic, consis-
tent, and isolated. Atomicity means that data is guaranteed to be completely written
or not written at all. If an exception is thrown while writing to LocalStorage, you don’t
need to clean up after yourself and go look for the data. Failure means complete fail-
ure, and success means complete success. Consistency ensures that the data you
read is in exactly the state that it was in when you wrote it to storage, and that nothing
written will be changed by the browser engine. Isolation requires that nothing half-
written can be read. Data records are locked until writing is complete.

The final feature of normal database transactions is durability, which isn’t really
within the scope of LocalStorage.

Listing 9.5 loadAll takes everything from LocalStorage and dumps it to the page

Core API

Get key from
LocalStorage based
on its index.

Get value based on key name
and create box object from data.

Assign box object’s id based
on LocalStorage key name.

Create box if it
doesn’t already exist.

Move box to position
where it was last saved.
www.it-ebooks.info

http://www.it-ebooks.info/

260 CHAPTER 9 Local storage and state management
 });

 this.setHue($box, box.hue);
 }

 var found = ids.join(", ");
 $(".box").not(found).remove();
},

You should keep in mind an assumption from the loadAll function; namely, that the
number of box objects stored is small enough that read and write operations will be
fast. JavaScript engines even in today’s mobile browsers are blazingly fast, so this is a
pretty reasonable assumption.

9.3.4 Deleting items from LocalStorage

Your library can now successfully load a new box object or all box objects that have
been saved to LocalStorage. The next step is to fill in the remove functionality that
you wired up in the createBox function. This fires whenever the remove button is
clicked for any box. The following snippet shows the simple code you need to execute
this operation:

removeBox: function ($box) {
 $box.remove();
 localStorage.removeItem($box.attr("id"));
},

As you can see, you can add and update LocalStorage properties directly using setters
and getters, but complete removal of a stored record requires that you use the
removeItem API function. This function will search through all items in the current
storage object and remove the item whose key matches the input parameter. If the key
doesn’t exist, no exception will be thrown and no work will be performed. The
removeItem function doesn’t return a value.

9.3.5 Clearing all items from LocalStorage

The next functional element in the LocalStorage API that you need to look at is the
ability to clear everything from the current browser’s LocalStorage data. You do this
with the clear function, which removes all items currently in storage without regard
for their contents or how many exist. Use this function wisely (and sparingly).

 You already have a clear button on the page, so you just need to wire up its click
event. Do this in the init function as follows:

$("#clear")
 .button()
 .click(function () {
 self.clearAll();
 });

Then implement the clearAll function in your Main object, like so:

Set box color to its
last saved value.

Take all ids found and remove
box objects no longer in storage.

Core API

First remove object
from user interface.

Second remove entry
from LocalStorage.

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

261Using the LocalStorage API
clearAll: function () {
 $(".box").remove();
 localStorage.clear();
},

With that code, you take everything with the .box class, remove it from the page, and
clear the storage object completely. There’s no going back and no confirmation when
clearing items, so if you saved anything else to LocalStorage in another part of the
application, it’s gone for good.

9.3.6 Using the LocalStorage storage event to detect changes

The last part of the LocalStorage story is making sure that whenever a change is made
to the localStorage object, all other code in the current application updates appro-
priately. The storage event fires whenever anything is saved, updated, or removed
from localStorage.

 Place the following snippet inside the init function (at the end) to start listening
for the storage event. When the event fires, you reload every box currently stored:

$(window)
 .bind("storage", function () {
 self.loadAll();
 });

this.initDialog();
this.loadAll();

Note that only changes to stored data will fire the storage event, not reads. Updating
a value to an identical value will also fire the storage event, because it’s technically
an update.

LocalStorage and SessionStorage
There are two kinds of storage available in the HTML5 specification: LocalStorage
and SessionStorage. SessionStorage isn’t as durable as LocalStorage and won’t per-
sist between page refreshes. It will also not be available to the other tabs or browser
windows on the same client machine open to the same domain.

A good use for SessionStorage might be a single-page survey site, where the user
is asked questions but the answers don’t need to be saved between page loads.
In that kind of scenario, the ability for the site to automatically “clean” itself could
be helpful.

Note that although the storage event specification document indicates that the stor-
age object (Session or Local) is passed along as part of the storage event, tests
indicate that this has not yet been implemented in any browser.

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

262 CHAPTER 9 Local storage and state management
9.4 Adding UI elements to complete the application
The sample application is nearly complete. You’re reading, editing, and removing
data from LocalStorage, and now you must get your code to implement the user inter-
face behaviors that will do the actual data edits. We’re going to walk you through cre-
ating a jQuery UI slider object that lets the user drag a slider to the left or right to
change the background color of the box. Just like the draggable and dialog func-
tions, the slider function will take over an assigned element (in this case the #hue
element) and set it up as a slider.

CREATING A JQUERY UI SLIDER

slider takes as parameters the minimum value (farthest to the left), the maximum
value (farthest to the right), and a set of events. In this case, you’ll use only the slide
and change events. The slide event will fire as the slider element moves, and the
change event will fire when the slide movement stops.

 This may seem redundant, but it’s important, because if changes are made to the
slider value programmatically, those changes won’t be bubbled in the slide event, only
change. On the other hand, if a user is dragging the slider around, they’d probably like
to see the result of the changes immediately in the UI element. For that, change isn’t
responsive enough. Wiring up to both events allows you the best of both worlds.

 The following listing shows the details. This code should fill in the initDialog
function in main.js.

initDialog: function () {
 var self = this;

 this.$slider = $("#hue")
 .slider({
 min: 0,
 max: 360,
 slide: function (event, ui) {
 self.setHue(self.$selectedBox, ui.value);
 self.saveBox(self.$selectedBox);
 },
 change: function (event, ui) {
 self.setHue(self.$selectedBox, ui.value);
 self.saveBox(self.$selectedBox);
 }
 });
}

USING SETHUE

This brings us to the setHue function, which needs a little more explaining. First, take
a look at the function in the following snippet:

setHue: function ($box, hue) {
 $box.data("hue", hue);
 $box.css({

Listing 9.6 Initializing a jQuery UI slider with event managers attached

Calling .slider on UI element will
create jQuery UI slider control.

Min and max values correspond
to degrees on color wheel.

When each event fires
assign background color
of box and save it.
www.it-ebooks.info

http://www.it-ebooks.info/

263Adding UI elements to complete the application
 "background-color": "hsl(" + hue + ", 100%, 75%)"
 });
},

This function calls the jQuery css function, passing in a concatenated string as the
value for background-color. The complete hsl value will look something like
hsl(80, 100%, 75%) after concatenation. The function takes the box object and a hue
value as parameters.

 This simple function is called from various places in the code to assign the back-
ground color of each box element. Remember from chapter 2 that HSL is assigned using
three values and a color wheel. The color wheel (shown in figure 9.4) shows red at the
top (0 degrees), green at 4 o’clock (120 degrees), and blue at 8 o’clock (240 degrees).

 The first parameter to hsl is the number of degrees to use to select the base color.
The second value describes, as a percentage, how far out from the center of the circle
(between 0 and 100 percent) the color should be assigned, and the final value
describes how light or dark the value is.

 With that in mind, the setHue function concatenates a string for the appropriate
hsl function and assigns it to the background color.

DISPLAYING A SLIDER IN A JQUERY UI DIALOG BOX

The last function left to complete is startDialogFor. This function takes a box object
as its input parameter and finds the change-color button. With that button’s posi-
tion, it draws a dialog box over it and inserts the slider object you created earlier. This
lets you reuse one slider for the entire application, saving memory and speeding the
application a bit.

 The following listing shows how startDialogFor works. You should have a stubbed
function for startDialogFor in main.js. This code completes it.

Figure 9.4 An HSL color wheel can
describe any color by the angle of the
color from 0 (straight up), the distance
from the center as a percentage, and
how light or dark the value is.
www.it-ebooks.info

http://www.it-ebooks.info/

264 CHAPTER 9 Local storage and state management
startDialogFor: function ($box) {
 var $dialog = $("#dialog")
 .dialog({
 resizable: false
 });

 var $colorButton = $box.find(".change-color");
 var buttonPosition = $colorButton.offset();
 $dialog.dialog(
 "option",
 "position",
 [
 buttonPosition.left +
 (($colorButton.outerWidth() - $dialog.outerWidth())
 / 2),
 buttonPosition.top +
 ($colorButton.outerHeight() * 1.5)
]);

 this.$selectedBox = $box;
 this.$slider.slider("value",
 this.$selectedBox.data("hue"));
},

At this point, you should be able to run the application, drag the boxes around the
interface, change the colors of boxes, and the entire page should reload in another
tab to the exact same values as the current page. If you close your browser and reopen
it, you should get a page that looks exactly like it did before you closed it.

 You should also be able to inspect the values in LocalStorage. The easiest way to do
this currently is in the Chrome browser:

1 Open your page in Chrome and right-click anywhere on the page.
2 Select Inspect Element.
3 In the Inspector, select the Resources tab.
4 Expand the Local Storage tree node.

You should see something like figure 9.5, with a JSON-text entry for each box dis-
played on the page.

9.5 Other uses for LocalStorage
What you’ve seen so far is an example of how to work with local storage in an HTML5
application—but it’s only the beginning. You might also want to use LocalStorage as a
proxy for server data, or to save images, to bring additional features and enhance-
ments to your websites.

9.5.1 Using LocalStorage as a proxy for server data

Suppose you’re writing a weather application. You want your program to be as respon-
sive as possible for your users, so you decide to use LocalStorage to store the last

Listing 9.7 The startDialogFor function displays a slider in a jQuery UI dialog box

Create fixed-size jQuery
UI dialog object.

Find change-color button
and get its position.

Update dialog with
position value calculated
from color-change button.

Add slider to dialog.
www.it-ebooks.info

http://www.it-ebooks.info/

265Other uses for LocalStorage
weather reading for the user’s current location. When the application starts, you
immediately read the value from LocalStorage and display it while requesting updates
from the server. The user sees a very responsive (if somewhat out-of-date) application
that updates a few moments later with the current reading.

 This way of using LocalStorage is part of the data.Store feature of the Ext JS
framework, but you can build your own with very little effort. The core of the solution
is a custom JavaScript layer over LocalStorage that will request the data you need from
the server only if it hasn’t been previously saved locally. The data might be static, used
across multiple pages, or it might be large enough that you would prefer not to down-
load it each time your page is loaded. Using LocalStorage as a proxy, you pull down

Figure 9.5 LocalStorage values are available for viewing in Chrome Developer Tools. Select the
Resources tab and the Local Storage tree node. What’s more, these value are editable for testing
purposes! All other browser developer toolkits contain similar functionality.
www.it-ebooks.info

http://www.it-ebooks.info/

266 CHAPTER 9 Local storage and state management
the data only once and it’s available seamlessly whenever you need it for the life of the
cache or the life of the page.

 The primary danger with this solution is that you ought to have a mechanism to
expire the local data if it isn’t completely static. You’ll also need to name the key for your
data so that it won’t be overwritten by any other part of the application. If you can get a
grip on these two issues, though, you can significantly increase the speed and reduce the
server traffic in your application. The following listing shows an example of this.

function getMyData() {
 if (localStorage.myData) {
 return localStorage.myData;
 }
 else {
 $.ajax({
 url: 'http://mysite.com/getData',
 success: function(data) {
 localStorage.myData = data;
 return localStorage.myData;
 }
 });
 }
}

9.5.2 Using LocalStorage to save images
Looking at images on a mobile platform can be very painful. iOS, in particular, has a
notoriously low limit for the total size of images cached for a site, after which no addi-
tional images will be requested.

 One solution to this problem is to convert your images on the server to base64-
encoded strings, which lets you pass the string down to the client on any GET call and
save the data to LocalStorage. Then you set the source value of your selected image to
the string value, and your image will appear in the page. LocalStorage in this instance
allows you to reduce traffic on your site. Even though base64-encoded images are
slightly larger than their normal image counterparts, you only need to request these
images once. They will consume part of your LocalStorage quota, but not your image
size quota on an iOS device.

 The next listing shows how you can build a base64 string from an image using C# code.

// Server C#
var img = Image.FromFile(filePath);
using (var mem = new MemoryStream())
{
 img.Save(mem, ImageFormat.Jpeg);
 return "data:image/jpeg;base64," +
 Convert.ToBase64String(mem.ToArray());
}

Listing 9.8 A simple proxy over LocalStorage

Listing 9.9 Using LocalStorage to save base64 images

Function checks for locally stored
data first and returns it if it exists.

If data doesn’t exist browser
retrieves it from server,
stores it, and returns it.

Using C# you get image
object from file path.

Load base64 string for image
and return it to client. Prefix of
base64 string tells image element
how to present string data.
www.it-ebooks.info

http://www.it-ebooks.info/

267The complete code listings
// Client JavaScript
localStorage.myImage = stringFromServer;
$("#image").attr("src", localStorage.myImage);

9.6 Summary
LocalStorage is one of those simple tools, like a hammer or a screwdriver. You’ll want to
keep it handy in all of your applications as a first-line solution to reducing server traffic or
maintaining local data across sessions that doesn’t need to reside on the server. With its
wide support and speed of access, you’ll find more uses for it the more you look.

 The downsides are the lack of support for automatically clearing items based on
age, and the inability to prevent a user from clearing cached items manually. Still, as a
local data store, it would be difficult to imagine a simpler or more usable solution
than LocalStorage.

 In the next chapter, we’ll look at another HTML5 API that’s useful on its own but
that’s also very complementary to the LocalStorage API: the Offline API. This API lets
your users work with your application even if their devices are disconnected from
the internet!

9.7 The complete code listings
The following listings are provided to help you check your work or to build the solu-
tion from scratch if you haven’t been building the solution while you read.

$(document).ready(function () {
 Main.init();
});

window.Main = {
 nextBoxIndex: 0,
 offset: 0,
 $slider: null,
 $selectedBox: null,

 // ----------
 init: function () {
 var self = this;

 if (!Modernizr.localstorage) {
 alert("Local storage not supported.");
 return;
 }

 if (!Modernizr.hsla) {
 alert("hsl colors not supported.");
 return;
 }

 if (!window.JSON) {
 alert("JSON not supported.");

Listing 9.10 The complete contents of main.js

Client stores string locally
so it doesn’t have to call
server each time.

Client assigns image object src
attribute to base64 image string.
www.it-ebooks.info

http://www.it-ebooks.info/

268 CHAPTER 9 Local storage and state management
 return;
 }

 $("#new")
 .button()
 .click(function () {
 var $box = self.createBox();
 self.saveBox($box);
 });

 $("#clear")
 .button()
 .click(function () {
 self.clearAll();
 });

 $(window)
 .bind("storage", function () {
 self.loadAll();
 });

 this.initDialog();
 this.loadAll();
 },

 // ----------
 createBox: function (key) {
 var self = this;
 var index;

 if (key) {
 var parts = key.split("-");
 index = parseInt(parts[1], 10);
 this.nextBoxIndex = Math.max(index, this.nextBoxIndex) + 1;
 } else {
 index = this.nextBoxIndex;
 key = "box-" + index;
 this.nextBoxIndex++;
 this.offset += 20;
 }

 var html = "<div class='box box-shadow box-round'>"
 + "Drag Me
"
 + "or <button class='change-color'>Change color</button>
"
 + "or <button class='remove'>remove</button>"
 + "</div>";

 var $box = $(html)
 .attr("id", key)
 .css({
 left: this.offset,
 top: this.offset,
 "z-index": index
 })
 .appendTo("body")
 .draggable({
 stop: function (event, ui) {
 self.saveBox($box);
www.it-ebooks.info

http://www.it-ebooks.info/

269The complete code listings
 }
 });

 this.setHue($box, this.offset);

 $box.find(".change-color")
 .button()
 .click(function () {
 self.startDialogFor($box);
 });

 $box.find(".remove")
 .button()
 .click(function () {
 self.removeBox($box);
 });

 return $box;
 },

 // ----------
 saveBox: function ($box) {
 var position = $box.position();
 localStorage[$box.attr("id")] = JSON.stringify({
 left: position.left,
 top: position.top,
 hue: $box.data("hue")
 });
 },

 // ----------
 clearAll: function () {
 $(".box").remove();
 localStorage.clear();
 },

 // ----------
 loadAll: function () {
 var ids = [];
 for (var a = 0; a < localStorage.length; a++) {
 var key = localStorage.key(a);
 if (key.indexOf("box-") !== 0)
 continue;

 var data = localStorage[key];
 var box = JSON.parse(data);
 var id = "#" + key;
 ids.push(id);

 var $box = $(id);
 if (!$box.length)
 $box = this.createBox(key);

 $box
 .css({
 left: box.left,
 top: box.top
 });
www.it-ebooks.info

http://www.it-ebooks.info/

270 CHAPTER 9 Local storage and state management
 this.setHue($box, box.hue);
 }

 var found = ids.join(", ");
 $(".box").not(found).remove();
 },

 // ----------
 removeBox: function ($box) {
 $box.remove();
 localStorage.removeItem($box.attr("id"));
 },

 // ----------
 startDialogFor: function ($box) {
 var $dialog = $("#dialog")
 .dialog({
 resizable: false
 });

 var $colorButton = $box.find(".change-color");
 var buttonPosition = $colorButton.offset();
 $dialog.dialog("option", "position", [
 buttonPosition.left + (($colorButton.outerWidth() –
 $dialog.outerWidth()) / 2),
 buttonPosition.top + ($colorButton.outerHeight() * 1.5)
]);

 this.$selectedBox = $box;
 this.$slider.slider("value", this.$selectedBox.data("hue"));
 },

 // ----------
 setHue: function ($box, hue) {
 $box.data("hue", hue);
 $box.css({
 "background-color": "hsl(" + hue + ", 100%, 75%)"
 });
 },

 // ----------
 initDialog: function () {
 var self = this;

 this.$slider = $("#hue")
 .slider({
 min: 0,
 max: 360,
 slide: function (event, ui) {
 self.setHue(self.$selectedBox, ui.value);
 self.saveBox(self.$selectedBox);
 },
 change: function (event, ui) {
 self.setHue(self.$selectedBox, ui.value);
 self.saveBox(self.$selectedBox);
 }
 });
 }

};
www.it-ebooks.info

http://www.it-ebooks.info/

271The complete code listings
* {
 margin: 0;
 padding: 0;
}

html,
body {
 position: absolute;
 left: 0;
 top: 0;
 right: 0;
 bottom: 0;
 overflow: hidden;
 font-family: sans-serif;
}

.box {
 position: absolute;
 left: 10px;
 top: 10px;
 width: 180px;
 height: 140px;
 padding: 20px;
 font-size: 20px;
 line-height: 2em;
}

.box button {
 font-size: 16px;
}

#dialog {
 display: none;
}

#new {
 position: absolute;
 right: 10px;
 top: 10px;
}

#clear {
 position: absolute;
 right: 10px;
 top: 60px;
}

#info {
 position: absolute;
 right: 10px;
 bottom: 10px;
 max-width: 500px;
 color: #999;
 font-size: 14px;
}

Listing 9.11 The complete contents of storage.css
www.it-ebooks.info

http://www.it-ebooks.info/

272 CHAPTER 9 Local storage and state management
p {
 margin-bottom: 1em;
}

a,
a:hover,
a:active,
a:visited {
 color: #666;
}

a,
a:visited {
 text-decoration: none;
}

.box-round {
 -webkit-border-radius: 6px;
 -moz-border-radius: 6px;
 border-radius: 6px;

 /* useful if you don't want a bg color
 from leaking outside the border: */
 -moz-background-clip: padding;
 -webkit-background-clip: padding-box;
 background-clip: padding-box;
}

.box-shadow {
 -webkit-box-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
 -moz-box-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
 box-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Offline web applications
On a recent trip to visit family, I, Jim Jackson, had an opportunity to watch my
nephew playing games and surfing the web on his iPod. I talked to him a little
about modern web design and showed him a few sites with some interesting new
features. Later, while in the car, I asked him to go back to one of the sites we had
visited together. To his amazement, the site still worked!

 Not having a background in software development, his was a pretty typical reac-
tion to an HTML5 offline application. The idea that you can browse to an application
while online, and then go back to it when you’re offline to continue reading or work-
ing, goes against everything most people have learned about how the internet works.
But this offline-capable concept is gaining momentum and familiarity with users.

 In this chapter, you’ll learn to build offline applications in the context of a sim-
ple shopping list application that can be edited online and offline. The build will
be done in the following steps, with each step building on previous work:

This chapter covers
■ Building a stable offline web application
■ Synchronizing to a server in occasionally

connected applications
■ Understanding the constraints of building

offline web applications
273

www.it-ebooks.info

http://www.it-ebooks.info/

274 CHAPTER 10 Offline web applications
1 Creating a basic HTML and CSS structure.
2 Developing a JavaScript interface using jQuery.
3 Using an application manifest to tell the browser how to handle content

when offline.
4 Writing offline JavaScript logic to effectively manipulate the offline HTML5 API.
5 Building server components to receive and send data to the client when online.

In addition to all the JavaScript and jQuery goodness, we’ll cover all the facets of the
current Offline API specification detailed in figure 10.1.

 As in previous chapters, we’ll build the markup and stylesheet and then dig into
the application library in stages to highlight the HTML5 API and various jQuery func-
tions. Complete listings for the build are provided at the end of the chapter, as are the
complete JavaScript file contents. Put on your coding hat and let’s get to work!

10.1 Building an offline HTML5 application
Suppose your partner is upset because you never seem to remember to buy needed
supplies at the grocery store. You know that the criticism is deserved, and you’ve
committed to never forgetting again. To that end, you’re going to design and build
a simple shopping list application that can be edited either online or offline. This

Browser support

Chapter 10 map
Offline HTML5 applications are loaded from the server and cached locally by the
browser. They can be used at a later time without the need for an internet connection
and can be programmed such that resources available only when online don’t inter-
fere with offline execution.

What the manifest file is and how to build it page 280

What manifest sections are and how they work page 281

CACHE section—Files cached for offline use page 281

NETWORK section—Files accessed only when online page 281

FALLBACK section—File substitutions for online/offline use page 281

ApplicationCache—Checking for offline file availability page 287

Detecting when the offline cache is ready page 290
www.it-ebooks.info

http://www.it-ebooks.info/

275Building an offline HTML5 application
way, your partner can add stuff to the list, and you can access it even when you’re at
the grocery store.

 Figure 10.2 shows the simple, usable interface you’ll be creating.
 The basic premise of an offline web application is that, with specific directives in

the markup and careful site preparation, you can take your application with you even
when you aren’t connected to a network. With this feature, though, come some
unique challenges and important design decisions.

The cache manifest

file contains sections

defining what is cached,

what is not, and fallbacks

for online-only resources.

cached

Cache manifest

network

<html manifest=”app.manifest”>

navigator.online

window.online

window.online

network

The enumerationstatus

is available to check

the current state of

the cache at any time.

The directivemanifest

tells the browser that this

is an offline-capable page.

navigator contains a single

Boolean property describing

whether the browser is

currently connected.

window will throw an event

when the browser connects

and a separate event when

the browser disconnects.

applicationCache

is the core API for

checking and updating

the filescached for

the current page.

Events fired from

applicationCache

can be used to monitor

the current state of the

cache while updating.

window.online

Functions

applicationCache

updated()

uncached

Status

idle

checking

downloading

updateready

obsolete

cached

Events

checking

downloading

error

noupdate

obsolete

progress

updateready

Figure 10.1 The Offline API reaches into multiple areas of browser operation, from tags in the
markup to window and applicationCache events to new file types.
www.it-ebooks.info

http://www.it-ebooks.info/

276 CHAPTER 10 Offline web applications
To make your current site or HTML application available offline, you must first inven-
tory the resources that you currently use. Every file you include in your site will need
to be evaluated against the following criteria:

■ Is the resource static or is it dynamically called?
■ If the resource is static, should it be available when the application is offline?
■ If it’s not available when offline, should a substitute resource be provided?
■ If the resource is dynamic, how will the application handle requests for it when

no network connection is available?

Let’s first consider the design of the shopping list app. The application must show
when the user is connected or disconnected. A simple cue on the screen will help
there. Then you must decide how to store the data generated locally, so that it can be
synchronized back and forth with the server. This chapter’s sample application will
use LocalStorage and an MVC controller to handle the storage and synchronization.
Finally, the client-side logic must work the same way from the user’s perspective
whether they’re connected or disconnected, and it should gracefully handle changing
connectivity states internally. This is where the Offline HTML5 API and some smooth
jQuery operations come in.

 With those design considerations “considered,” you’ll now create the basic site
structure and then the offline JavaScript library.

Figure 10.2 The complete application will allow a user to add and remove shopping
items regardless of whether or not they’re currently connected.
www.it-ebooks.info

http://www.it-ebooks.info/

277Building an offline HTML5 application
10.1.1 Creating the basic site structure

Start by opening Visual Studio and creating a new ASP.NET MVC web application, and
call it ShoppingList. Be sure to make it an internet application that uses the Razor
engine and HTML5 semantic markup when you come to the New Project dialog box.
Using MVC allows you to create a controller to feed data to and from the client via Ajax,
but remember that it doesn’t allow you to use a Razor view for your offline application.

 Inside the new solution, you first need to create your offline page. Follow these steps:

1 Right-click on the solution node and select Add > New Item > HTML Page.
2 Name the new page Shopping.htm, after which your page should appear in the

application’s root folder.

Going offline versus being offline
There are two scenarios that you’ll have to consider when building your offline website.

The first occurs when a user is online and then loses connectivity. This could be
because they’re using a portable Wi-Fi device and walked out of range or because an
“airplane mode” was switched on. Whatever the reason, the important part is that
the page was not reloaded, and the browser was not closed and reopened, but the net-
work connection was suddenly unavailable. In this scenario, you need to track the cur-
rent connection status from within the page. This chapter’s sample application will
show you one way to do just that.

The second scenario is when the user visits an offline-accessible page and then
closes the browser. When the user reopens the browser and navigates back to the
page, there is no connection, so nothing can be loaded from the server. At that stage,
all content previously saved to the cache is loaded.

Both of these scenarios imply the ability for the page to suddenly come back online.
When that happens, the page should be notified and any connection-related functions
should fire. That brings us to the problem of data synchronization, a topic that’s out
of scope for this book.

Using ASP.NET MVC with offline HTML5 applications
This application will be built on an MVC (Model View Controller) platform using a sim-
ple JSON controller for the data synchronization and a singleton object to emulate a
data storage server, but the page we’ll be visiting won’t be an MVC view. Instead we’ll
use a simple HTML page.

We must do it this way because offline web applications require a physical page to
reference as the starting point for the offline cache. The standard MVC application,
by comparison, only presents a URL endpoint, not a physical file.

So, to be clear, you must have a physical HTML file in place for ASP.NET MVC to sup-
port an offline scenario.
www.it-ebooks.info

http://www.it-ebooks.info/

278 CHAPTER 10 Offline web applications
3 Inside the new page, add the complete markup (provided in the code listing
section at the end of this chapter).

The next listing shows the entire HTML markup for the Shopping.html page. One
thing we do want you to note about the initial markup is the attribute in the opening
<html> tag that points to a file named app.manifest.

<!DOCTYPE html>
<html manifest="app.manifest">
<head>
 <title>Offline Web Apps</title>
 <meta name="apple-mobile-web-app-capable" content="yes" />
 <meta name="viewport"
 content="user-scalable=no, initial-scale=1.0,
 minimum-scale=1.0, maximum-scale=1.0" />
 <script
 src="http://ajax.aspnetcdn.com/ajax/
 jquery/jquery-1.7.2.js"
 type="text/javascript"></script>
 <script
 src="http://ajax.aspnetcdn.com/ajax/
 modernizr/modernizr-2.0.6-development-only.js"
 type="text/javascript"></script>
 <link href="Content/offline.css"
 rel="stylesheet" type="text/css" />
</head>
<body>
 <section id="content">
 <h1>Shopping List</h1>

 <p>Enter an item and hit return.</p>
 <input id="input" type="text" />
 <div id="items"></div>
 </section>
 <script src="Scripts/main.js"
 type="text/javascript"></script>
</body>
</html>

App.manifest is the file that, by its presence, tells the browser that this page should be
available offline. More on the contents of that file shortly.

 Next is the styling for the application. In Solution Explorer, do the following:

1 Right-click on the Content folder and select Add > New Item > Style Sheet.
2 Name the new stylesheet offline.css.
3 Grab the markup from listing 10.10 at the end of this chapter, and add it to

the stylesheet.

You’ll be creating a brand new set of styles for this offline application because it isn’t
necessary to duplicate the normal tabbed interface in the rest of the application. This

Listing 10.1 The Shopping.htm page
www.it-ebooks.info

http://www.it-ebooks.info/

279Building an offline HTML5 application
will give the user a cue that this page is different and allow you to keep things as
streamlined as possible. And because most of that content is unremarkable, and isn’t
related to the API featured in this chapter, we won’t discuss it here.

10.1.2 Creating the offline JavaScript library

Now that the CSS is loaded, it’s time to work on the JavaScript interface to help sort
through which functions are responsible for which tasks during execution. The
offline HTML application will use local storage to contain two kinds of data:

■ The current list of shopping items
■ A listing of required actions to update the server to reflect the client state

You’ll also add functions to manage state on the page and reduce duplication of code.
 You haven’t yet created the main.js file in the Scripts folder of the site, so do that

now. Open it and add the code in listing 10.2 to stub out the entire API. This code cre-
ates the outline that you’ll fill in as we dig deeper into offline applications. (Remem-
ber, if you have any questions about where specific pieces of code fit in the main.js file,
the complete listing is at the end of this chapter.)

Telling the user that a site is available offline
Building the CSS file provides a good opportunity to think about how to let your users
know that the site they’re visiting is available offline. Each application is different, so
at this point it’s more important to understand the scope and nature of the problem
rather than to focus on specific suggestions for resolving it.

The first part of the problem is letting your users know in a fluent fashion that the site
they’re visiting will be available to them later, even if they aren’t connected. It’s
unnatural for users to consider opening a browser on a device when they know that
there’s no connection, so what kinds of indicators on the site could provide that cue?
Additionally, you’ll probably only be building a subset of the site’s functionality for
offline consumption, so how can this be indicated to the user?

Next, while a user is working with the site, it’s reasonable to expect an occasional
loss of connectivity. How can your application tell the user what has happened, and
indicate that there’s no cause for concern because their work is being saved locally?

Offline web pages are still very new, so little or no research has been done to stan-
dardize on a method of identifying these conditions to your users. This leaves the
door open to practically any solution, with your creativity being the only limitation.
Chrome, for instance, changes its home page to monochrome icons if the system
isn’t currently online. This is a very intuitive indicator, but you might choose to include
an icon or glyph in the corner of the browser window that shows the currently con-
nected status. Even a banner that appears temporarily in your site isn’t unheard of,
though some might consider it heavy handed.

Your final solution should make it very clear to anyone visiting the site what is possi-
ble and what the current connectivity status is. Anything less that this is a recipe for
confusion, or worse, an unused website.
www.it-ebooks.info

http://www.it-ebooks.info/

280 CHAPTER 10 Offline web applications

.

$(document).ready(function () {
 Main.init();
});

window.Main = {
 $status: null,
 $input: null,

 shoppingItems: [],

 itemActions: [],

 init: function () {
 },

 updateForNetStatus: function (connected) {
 },

 newItem: function (title) {
 },

 loadState: function () {
 },

 saveState: function () {
 },

 syncWithServer: function () {
 }
};

This JavaScript file is the last client-side file you need before starting the process of mak-
ing the site available offline. We’ll fill in the logic soon, but for now it’s time to turn your
attention to the file unique to an offline HTML5 application: the application manifest.

10.2 The manifest file

The manifest is a simple text file located somewhere on your website and linked to an
attribute of the <html> element of your page. When the browser encounters the man-
ifest, it will immediately read it and start processing it line-by-line to determine which
parts of the current page should be saved. Every page that you want available offline
should have a manifest directive linked like so:

<html manifest="app.manifest">

A manifest attribute can be relative to the current page URL or it can be an absolute
location, as long as that location is on the same domain as the current page. Elements
inside the manifest with relative URLs will be loaded relative to the manifest location,
not the current page location.

 For instance, to load a script file from the scripts subfolder, you could use this as a
relative path:

/scripts/jquery.js

Listing 10.2 The JavaScript API for the offline web application

ShoppingList object will contain placeholder
for status and input elements to prevent
from having to requery DOM every time.

Keep list of current shopping items.

Keep list of all items
that must be
synchronized to server.Initialize object.

Start listening for
current online status.

newItem function updates UI with new element and
assigns element’s delete key to anonymous function.

loadState function is called when initializing screen and
pulls data from LocalStorage calling newItem on each value

saveState takes all items in local shoppingItems
array and updates LocalStorage with same.

syncWithServer takes all items cached
for server updates and sends them off.

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

281The manifest file
This is an absolute path:

http://mysite.com/scripts/jquery.js

Additionally, when the browser requests the manifest file, it will use the content type
of text/cache-manifest. You’ll need to ensure your web server supports this content
type and the .manifest file extension.

TIP The .manifest file extension is provided by convention, but you can
choose to use any extension you like, as long as your server will serve it with
the appropriate content type.

In this section, you’ll add a cache manifest to the sample application, and then dive in
to learn the various parts of the manifest and how you can use those parts.

10.2.1 Adding the application manifest to the sample project

There is no built-in template in Visual Studio for the manifest, so you’ll just format a
simple text file:

1 Right-click on the ShoppingList project node and select Add > New Item.
2 From the dialog box, select Text File and name the file app.manifest. This

should put the file in the root folder of your application where it will be avail-
able to the rest of the application.

3 Open the new app.manifest file and add the following code, which tells the
browser to download and keep copies of the CDN (Content Delivery Network)
versions of jQuery and Modernizr as well as the main.js and site.css files:

CACHE MANIFEST
v11
http://ajax.aspnetcdn.com/ajax/jquery/jquery-1.7.2.min.js
http://ajax.aspnetcdn.com/ajax/modernizr/modernizr-2.5.3.js
Scripts/main.js
Content/offline.css

Note that you don’t need to list the current page; it contains the manifest direc-
tive, so it will automatically be cached. Note also that the file must always start
with CACHE MANIFEST or an exception will be thrown in the browser.

TIP The # v11 comment line denotes an arbitrary version for the file. This
isn’t part of the specification, but it’s handy because it will act as a cache
buster to tell the browser whenever a change has been made or to force all cli-
ents to update.

10.2.2 Exploring manifest sections

The manifest for this project is very simple, listing only a set of static resources that
should be available offline, but the HTML5 specification allows for far more complex
organization if you need it. White space is ignored during parsing, so feel free to use it
to help organize the file content.

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

282 CHAPTER 10 Offline web applications
 The manifest can also be divided into sections by placing special single-line direc-
tives in the text to define specific offline behaviors. A directive defines a section in the
file, and each type of section can be defined multiple times and be placed in any
order. As the browser reads in the file, it will handle each section as a unit when it
encounters these directives. A complete cache manifest file could look something like
the following snippet:

CACHE MANIFEST

CACHE:
site.css
/scripts/header.jpg
appcode.js

NETWORK:
signup.html
signup.js

FALLBACK:
twitterfeed.js hidetwitter.js

THE CACHE SECTION

The CACHE directive is optional if no other directives precede it in the manifest. If the
order of entries must be maintained such that multiple CACHE sections are used, this
directive will signal the beginning of a list of files that will be downloaded and cached
by the browser for offline use.

 Remember that the exact directive specified in the manifest must be what your
application references. Any change in capitalization or relative location will cause the
retrieval from the cache to fail.

 We aren’t using the CACHE directive in this sample application because there are no
other sections in the manifest file, so the browser will default to handling the manifest
file content as a CACHE section.

THE NETWORK SECTION

This section of the manifest describes files that must always be requested from the net-
work. If the application isn’t online and a request is encountered for these resources,
the request won’t be honored, no request will be executed, and no exception will
be thrown.

 Note that this list of resources to use only when connected doesn’t generally
include Ajax calls. Those calls would normally be wrapped inside a navigator.onLine
check. Rather, the NETWORK section is used for pages that are built dynamically by the
server or server processing resources, such as .cgi URLs.

 The following manifest says that the update.cgi resource will only be called when
online, and it specifies that the stylesheet should be cached:

CACHE MANIFEST
NETWORK:
/update.cgi
CACHE:

Top line of manifest
file is always same.

CACHE section tells browser which
elements to store locally for use later.

NETWORK section is list of files that
will only be accessed when connected.

FALLBACK section specifies which files
to substitute when disconnected.

Core API

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

283The manifest file
/styles.css
/main.js
/logo.png

Notice the order of elements in the preceding code. Manifest files are read from top-
to-bottom, and, as the section headers are encountered, the browser will change the
mode of operation to account for the listings in that section.

 In a simple scenario, this doesn’t make much difference, but as an offline applica-
tion gets more complex, it can become more important to declare items as network-
only before other items are accounted for. For instance, in an MVC application, it
isn’t unheard of to have the manifest file created dynamically from a Razor view.
When you build in this way, it’s possible to list a resource in the application multiple
times. The last-in rule applies here, so only the last listing of the resource in the man-
ifest file will be honored.

THE FALLBACK SECTION

The FALLBACK section is used to tell the browser that whenever a particular resource
is requested, something else needs to be substituted for that resource. This can be
very simple:

FALLBACK:
/login.htm /offline.htm

This FALLBACK section states that when the login.htm file is requested in the offline
page, the offline.htm file should be returned instead.

 While the other sections just list the resources by URL, a FALLBACK entry has two
parts: the requested resource and the replacement resource. It gets a little more com-
plicated because the requested resource can be either specific or something called a
fallback namespace. Fallback namespaces are really just simplified pattern matches spe-
cific to URLs. They can start with complete or relative URLs, and they don’t require a
specific filename. Consider the following example:

FALLBACK:
/Images/OnlineOnly /Images/ImageNotFound.jpg

The following listing states that any image requested from the relative path /Images/
OnlineOnly/... should instead be replaced with the ImageNotFound.jpg file when
browsing offline. As with the other sections, though, the requested resource must
match exactly the fallback namespace in terms of capitalization and relative URLs.

CACHE MANIFEST
v4.34.5

CACHE:
style.css
require.js
myApp.js
main.js

Listing 10.3 A complex cache manifest with multiple sections

Core API

CACHE MANIFEST must always
be first line of manifest file.

CACHE section tells browser that everything
that follows should be downloaded and saved.
www.it-ebooks.info

http://www.it-ebooks.info/

284 CHAPTER 10 Offline web applications
FALLBACK:
online.json offline.json

This manifest file listing will cache the stylesheet and a few JavaScript files, and then,
whenever a call is made to load data from online.json, the offline.json file will be sub-
stituted and no exceptions will be thrown.

SPACE CONSTRAINTS FOR OFFLINE APPLICATIONS

As you build your manifest file, remember that every browser will have some kind of
space constraint placed upon it for offline applications. This limitation may be due to
the browser’s application cache being limited to a specific size, like the current iOS
Mobile Safari limit of 5 MB. It may also be a natural limit imposed by the amount of
disk or storage space available to the browser, or by you as the developer based on the
amount of time it would take to download the full contents listed in the manifest.

 A best practice is to limit your offline application to about 5 MB per domain
(including subdomains), but you should do your own research because devices are
getting more powerful daily, and browser vendors are wising up to the possibilities
offered by offline web applications.

Manifest file breadcrumbs
Every page that needs to be available offline should be listed in the manifest file, but
browsers don’t, at this time, follow a trail of pages that contain listings of different man-
ifest files. So if PageA references ManifestA, and ManifestA says PageB is available
offline, the browser will download and cache PageB. But if PageB contains a reference
to ManifestB, that manifest file won’t be downloaded or its listings cached.

The more appropriate solution is to create a single manifest file for your entire site that
lists all the elements that should be included for the desired offline functionality to work.

Duplicating downloads with offline applications
Older implementations of the HTML5 offline APIs would download all the regular con-
tent for a site and request the offline content separately, thus incurring a lot of extra
bandwidth. Testing indicates that the current crop of modern browsers for desktops
and mobile devices will download content only once, so if a particular resource is
required for both online and offline operation, it will only be downloaded once.

Additional content listed in the manifest but that’s not necessary for the current page
will also be downloaded when the page loads.

This information isn’t published by browser vendors; it was determined by loading var-
ious applications into all available browsers and watching traffic.

FALLBACK section
specifies replacement
resources to use
when offline.

offline.json file will be used
when offline and online.json
file will be used when
connected.
www.it-ebooks.info

http://www.it-ebooks.info/

285Offline feature detection and event binding
The overall layout of your manifest file should be logical and read like a story. The ele-
ments that you want available offline could logically go at the beginning if your appli-
cation is primarily used offline. But if you’re building a mortgage calculation website,
the services and server data points that should only be available when connected (in
the NETWORK section) could logically be placed first. In that instance, the CACHE direc-
tive would be further down in the file.

 Having the ability to repeat section headings also allows you to describe entire
areas of functionality in your application as a unit, with comments surrounding
them. The application manifest file can be as simple or as complex as necessary to
suit your needs.

10.3 Offline feature detection and event binding
Back in the shopping list application, you now have a manifest file and you’re pre-
pared to handle the automated download of content whenever a browser hits
the website.

 Let’s now turn our attention to the initialization function for the JavaScript object,
presented in listing 10.4. This function, placed in the init function of main.js, pro-
vides the following functionality:

■ Detects features
■ Handles the addition of new items to the shopping list by capturing the

Enter key
■ Captures the state change from connected to disconnected and back within

the page
■ Loads the application from saved state when the page is reopened

init: function () {
 var self = this;
 var msg = "This browser does not support ";
 if (!Modernizr.applicationcache) {
 alert(msg + "offline apps");
 return;
 }
 if (!Modernizr.localstorage) {
 alert(msg + "local storage");
 return;
 }
 if (!window.JSON) {
 alert(msg + "JSON");
 return;
 }

 this.$status = $("#status");

 this.$input = $("#input")
 .keypress(function (event) {
 if (event.which == 13) {

Listing 10.4 The init function to assign local variables and wire up events

Use Modernizr and
window object to
validate offline, local
storage, and JSON
capabilities

Describes online/offline
status of application

Listens for Enter key to
start UI update logic
www.it-ebooks.info

http://www.it-ebooks.info/

286 CHAPTER 10 Offline web applications

s
Item
 by
and
 of
 var value = self.$input.val();
 if (value) {
 var item = self.newItem(value);
 self.itemActions.push({
 type: "add",
 title: item.title
 });
 self.saveState();
 self.$input.val("");
 if (navigator.onLine)
 self.syncWithServer();
 }
 }
 })
 .focus();

 $(window)
 .bind("online", function () {
 self.updateForNetStatus(true);
 })
 .bind("offline", function () {
 self.updateForNetStatus(false);
 });

 this.loadState();
 this.updateForNetStatus(navigator.onLine);
}

The init() function provides your first hints at the ways JavaScript deals with occa-
sionally connected web applications. You have to call Modernizr to check for the
applicationcache feature, and you also need to perform some work based on
the navigator object’s online Boolean property. Then you wire up two events thrown
from the window object to respond when connectivity is lost and when a connection is
regained. Both of these events have no parameters.

jQuery chaining and the use of the self keyword
As a short tangent into jQuery, note that you’re using chaining on the $input variable
to find the element with a selector, bind the keypress event handler, and set the
focus all in one statement. We’ve broken these kinds of chains up into multiple lines
for readability, but the execution is still much faster than executing the same selector
multiple times against the DOM to perform different tasks.

Consider also that although you’re declaring a self variable at the top of the init
function, you’re only using it inside the event handlers. In all other places in this
code, you’re using the this keyword to assign and read values. This is to distinguish
between the parts of the code that are wrapped in a closure and those parts that
aren’t. This isn’t necessarily an industry best practice, but it does provide a good
opportunity for training and self awareness when writing JavaScript. (Did you see
what we did there?)

When Enter key i
pressed calls new
to add item typed
user to interface
to array property
shopping items

Uses itemActions
array to synchronize
with server

Whenever Enter key is pressed attempts to
synchronize with server if you’re connected

Throws both online and
offline events whenever
connectivity status changes

Once events are bound and
local variables assigned loads
interface from previously
saved state and updates
connected status in UI
www.it-ebooks.info

http://www.it-ebooks.info/

287The ApplicationCache object
10.4 The ApplicationCache object

Now that your application can handle input from the user, knows whether or not
you’re connected, and will automatically download the offline content, the next item
that needs an introduction is the ApplicationCache object. This JavaScript object is
provided by the browser; it has a very limited set of functions and a few properties,
and it publishes a short stack of events. All of these ApplicationCache components
are used to explain to your library how the browser is currently handling the down-
load and storage of offline-accessible content.

 ApplicationCache doesn’t give you a means of directly accessing or modifying
cached content. Instead, the browser handles everything internally and performs
some sleight-of-hand whenever content is requested. You can think of it as an internal
proxy to the network: when connected, resources will be loaded from the list of
resources in the manifest; when not connected, resources will be pulled from the
locally cached versions that were loaded and saved the last time the page was online.

 The need to integrate with the ApplicationCache object in an application grows
as the application grows in size and complexity. By allowing you to tap into changes to
the cache status, the ApplicationCache object ensures your code can wait until all
necessary resources are downloaded before attempting to use an offline-only piece
of content.

NOTE Although the sample application you’re building in this chapter isn’t
complex or large enough to warrant the integration of the ApplicationCache
object, we thought it was important to walk through a few snippets of code to
show you the details of its operation.

The basic question that the ApplicationCache answers for each offline resource in
the application is, “Is it available to me right now?” The answer will be based on
whether or not the application is online, whether the resource was assigned in the
manifest as being available offline, and whether the browser is currently in the process
of downloading the resource.

 The first time the browser arrives at a page that’s listed as being offline-accessible
(containing a manifest directive in the opening <html> tag), it will load the manifest
file and then attempt to cache all elements listed.

 The next time the browser navigates to the same page, a number of checks will
be performed:

■ Is the browser currently offline?
■ If offline, is there a manifest listed?
■ If there is a manifest, do files listed for offline access exist in the cache?

The answers to these questions will determine how the browser responds to the page.
Note that the page may be cached and contain a manifest attribute but still not have
all the elements required by the markup. In this case, requests for resources will gen-
erally throw an INVALID_STATE_ERR exception from the window object.

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

288 CHAPTER 10 Offline web applications
As long as the cache is up to date, no exceptions will be thrown, and the browser will
respond normally to requests while it’s connected and redirect requests to the applica-
tion cache when disconnected. Figure 10.3 shows how the ApplicationCache deter-
mines where to find resources based on the connected state.

APPLICATIONCACHE EVENTS

The ApplicationCache events outlined in figure 10.4 come from the W3C documen-
tation. Figure 10.4 also shows you how those events correspond to one another during
normal operations. The checking, downloading, progress, cached, updateready, and
noupdate events will all be fired at various times based on the condition of the current
cache in the browser and on the hosting server.

 When your code receives the updateready event from the ApplicationCache
object, you should respond by calling the ApplicationCache.swapCache() function.
This function will remove the currently cached elements and replace them with the
newly downloaded items.

 During the normal caching process, you can also check the Application-
Cache.status property. This is an enumeration that exists inside the Application-
Cache object and can be referred to in that way or by the numeric value for each
status. Here are the various status values:

■ applicationCache.UNCACHED = 0
■ applicationCache.IDLE = 1
■ applicationCache.CHECKING = 2
■ applicationCache.DOWNLOADING = 3
■ applicationCache.UPDATEREADY = 4
■ applicationCache.OBSOLETE = 5

Browser / page

ApplicationCache

object

<html manifest=”app.manifest”>

<head>

<link src=”styles/site.css”...

</head>

<body>

<img src=”myImg.jpg”...

</body>

</html>

Yes

No

Offline files

Server

resourcesComplete?
Figure 10.3 The proxy cycle
occurs after the cache has
completed loading. If the page is
offline, each request for a resource
that’s assigned in the manifest is
redirected to the cache. If the page
is online, resources are pulled from
the server as necessary.

Core API
www.it-ebooks.info

http://www.it-ebooks.info/

289The ApplicationCache object
You can bind to any of the events listed and check the status of the application cache
at any time in your code by using a simple addEventListener call. A loading bar
might be helpful for the progress event, and a confirmation that everything is ready
would work well with the cached event.

 The only event that requires you to react beyond just notifying the user is the
updateready event. As noted in the diagram, this event will fire when an update to

The browser is checking for

an update or attempting to

download the manifest for the

first time. This is always the

first event in the sequence.

The browser has found

an update and is fetching

it or is downloading the

resources listed by the

manifest for the first time.

The browser is

downloading

resources listed by

the manifest.

The resources listed

in the manifest have

been downloaded and

the application is

now cached.

The resources listed in

the manifest have been

newly re-downloaded

and the script can use

swapCache() to switch

to the new cache.

checking

First visit

to site?
Yes No

downloading

downloading

Start

downloading

process

process

Yes

Yes

No

No

NoYes

Yes

cached updateready noupdate

Manifest

changed?

Complete?

Complete?

Start

downloading

The manifest is unchanged.

Figure 10.4 The ApplicationCache event model. Note that the checks for whether or not the
manifest has changed and the current download status are at the discretion of the browser-vendor
and not defined in detail in the specification.
www.it-ebooks.info

http://www.it-ebooks.info/

290 CHAPTER 10 Offline web applications
the cache has completed downloading. At that time, your code will need to swap the
current cache with the fresh version, as shown here:

window.applicationCache.addEventListener("updateready", function() {
 // The new cache has been downloaded
 appCache.swapCache();
 if (confirm("A new version of this site is available. Load it?"))
 window.location.reload();
}, false);

Note that you have to call window.location.reload after calling swapCache. This is
because, although the fresh content has downloaded and been placed in the cache,
the user can’t access this new cache until the window is refreshed. The reason, accord-
ing to the HTML5 specification, is that the new cache is stored but not associated with
the current cache document until after a refresh. While annoying, this is easily han-
dled in your code.

10.5 Adding state management and
displaying connected status
With that important aside on the application cache out of the way, you’re now very
close to a functional offline HTML5 application. Your site can download the appropri-
ate content and check for features. It can also respond to online and offline events
and to new entries typed into the input box. The remaining logic will fill in the vari-
ous functions that plumb up the JavaScript library.

ADDING ONLINE OR OFFLINE STATUS TEXT

Your first stop will be to update the interface with the status text of either “online” or
“offline”. Do this by filling in the updateForNetStatus function. This function simply
takes the current status and updates the UI appropriately:

updateForNetStatus: function (connected) {
 if (connected) {
 this.$status.text("(online)");
 this.syncWithServer();
 }
 else {
 this.$status.text("(offline)");
 }
}

TIP When running this project using the web server built into Visual Studio
(called Cassini), your site will probably not throw the online and offline
events, nor will the manifest file be sent with the correct content type. To
remedy this, you can use IIS Express to get a complete experience without
delving too deeply into the normal setup procedures for a deployed internet
application. This setup is described in appendix C.
www.it-ebooks.info

http://www.it-ebooks.info/

291Adding state management and displaying connected status

C

a

pro
ad
of

an
h

c

A

loc
s

ACCEPTING NEW ITEMS FROM USERS

The next step in completing the client logic is the newItem function. You called this
function earlier from an anonymous handler inside init that responds when the
Enter key is pressed.

 newItem will take a line of text entered by the user and add it inside a <div> ele-
ment on the page with a close button next to it. The same item will also be added to
the local array of items to be synchronized to the server when connected. You’ll assign
style classes to the new element, add it to the DOM (Document Object Model), and
then wire up the Close button’s event handler.

 Fill out the stub for the newItem function based on the following listing.

newItem: function (title) {
 var self = this;
 var item = {
 title: title
 };

 var html =
 "<div class='item box-round box-shadow'>"
 + title
 + "<button class='close'>x</button></div>";

 item.$element = $(html);
 .prependTo("#items");

 item.$element.find(".close")
 .click(function () {
 var index =
 $.inArray(item, self.shoppingItems);
 if (index != -1)
 self.shoppingItems.splice(index, 1);

 item.$element.remove();

 self.itemActions.push({
 type: "delete",
 title: item.title
 });

 self.saveState();

 if (navigator.online)
 self.syncWithServer();
 });

 this.shoppingItems.push(item);
 return item;

}

A lot of things are happening in this function, but it shows some interesting facets of
development with jQuery. For instance, the concatenation of a string and subsequent

Listing 10.5 The newItem function updates the page and binds to the remove button

Create new object to contain text plus
element you’ll be adding to page.

Create new <div> and
<button> elements by
concatenating strings.

reate new
element,

ssign it to
your

perty, and
d it to top
 items list.

With new element reference
find close button by class.

Bind
onymous
andler to

new
button’s

lick event.

Check to see if new item is in current
shoppingList array property.

If item exists remove it
from array property and UI.

You still have reference to the item
object, so add it to itemActions
array for server removal.

Save all items back to LocalStorage.

If online synchronize with server. If not
online synchronization will happen later.

dd new
item to

al list of
hopping

items.

Return new item to caller (in this
case, Enter key from input element)
www.it-ebooks.info

http://www.it-ebooks.info/

292 CHAPTER 10 Offline web applications
creation of a wrapped set is the fundamental logic inside most of the client-side tem-
plating engines around today.

 The prependTo function is used to insert an item at the beginning of the item’s
<div> and is different from the prepend jQuery function only in that one is an
inverted version of the other. If you wanted to accomplish the same result with
prepend you would use this code:

item.$element = $(html);
$("#items").prepend(item.$element);

The jQuery inArray utility function is one of a few that are helpers around basic
JavaScript functionality and have no direct correlation to wrapped sets of DOM ele-
ments. Using this function, you can quickly test to see if an object or property exists in
an array, and get its index if it does.

LOADING THE CURRENT OBJECT FROM SAVED VALUES

Loading the current object from saved values in LocalStorage is straightforward, as is
saving state back into LocalStorage. (For a complete discussion of LocalStorage, refer
to chapter 9.)

 Find the loadState and saveState functions stubs in your library, and fill in the
code from the following listing.

loadState: function () {
 if (localStorage.itemActions)
 this.itemActions =
 JSON.parse(localStorage.itemActions);
 var data = localStorage.shoppingItems;
 if (!data)
 return false;
 var items = JSON.parse(data);
 var i;

Working with arrays
JavaScript arrays are quite straightforward. You can create an empty one just by put-
ting two square brackets together: []. You also use the square brackets to get and
set values at specific indexes, just like with most programming languages. You push
elements (numbers, objects, even other arrays) onto the end with the array’s push()
method, and pop them back off with pop(). To push and pop things onto and off of
the front, use unshift() and shift() respectively. For adding or removing in the
middle of an array, use splice().

In addition, jQuery provides some nice helper functions, such as $.inArray(), which
returns the index at which a specified value appears. One of the most powerful is
$.map(), which allows you to create a new array based on a transformation function.
For instance, if you had an array of book objects, you could use $.map() to return an
array of just the authors whose names begin with A.

Listing 10.6 Loading and saving state using LocalStorage and JSON

Parse itemActions from
LocalStorage if any exist.

Shopping items must exist before
you can load any state values.
www.it-ebooks.info

http://www.it-ebooks.info/

293Adding state management and displaying connected status

d
.

 for (i = 0; i < items.length; i++)
 this.newItem(items[i]);
 return true;
},

saveState: function () {
 localStorage.itemActions =
 JSON.stringify(this.itemActions);

 var items = [];
 var i;
 for (i = 0; i < this.shoppingItems.length; i++)
 items.push(this.shoppingItems[i].title);

 localStorage.shoppingItems = JSON.stringify(items);
}

Using the JSON object, you can serialize JavaScript objects into strings for storage and
reverse the process as often as necessary. The current crop of browser JavaScript
engines performs these tasks very quickly, but string manipulations are inherently one
of the slower parts of any language, so keep this in mind while designing your applica-
tion libraries.

The client-side code is nearly complete. When the user types texts and hits the Enter
key, the new item will be saved and made ready for server synchronization. The inter-
face will clearly indicate when the application is connected, and content that must be
available offline is specified in the manifest.

CONNECTING TO THE SERVER

The final step you need to handle is the connection to the server. The syncWith-
Server function in listing 10.7 is the last bit of untouched code in the client library,
and it does just what its name says. Once this step is complete, you’ll begin work on
the MVC controller and singleton storage object, but having this call in place will help
you understand what you’re trying to accomplish on the server.

Synchronizing data generated offline
The ability to create a page that shows your users static content when offline is fine
and helpful in some situations, but much more is possible in the world of HTML5. By
determining that the current connection status is offline, an HTML application can store
data in LocalStorage or IndexedDB, or by using cookies. Then, when the connection is
reestablished, the data can be synchronized back to the server automatically.

The exact nature of the offline storage and synchronization processes will be up to
you as the site developer, because nothing is written in the HTML5 specification on
the subject. This isn’t a new problem, however, so finding a solid solution should not
be difficult. This chapter’s sample application describes a rudimentary solution for
data synchronization that purges local data and calls the server using an ASP.NET
MVC controller.

When saving state stringify current
itemActions and save to LocalStorage.

Push each item from shoppingItems
list into new array.

New array is stringified an
assigned to LocalStorage
www.it-ebooks.info

http://www.it-ebooks.info/

294 CHAPTER 10 Offline web applications

ned

nts
 This code will fill in the synchWithServer function in main.js that you stubbed
out earlier.

syncWithServer: function () {
 var self = this;

 $.ajax({
 url: "/ShoppingList/SyncShoppingList",
 type: "POST",
 dataType: "json",
 contentType: "application/json; charset=utf-8",
 data: JSON.stringify({
 itemActions: this.itemActions
 }),
 success: function (data, textStatus, jqXHR) {
 if (!data || !("length" in data)) {
 alert("Unable to synch with server");
 return;
 }

 var i;
 for (i = 0; i < self.shoppingItems.length; i++)
 self.shoppingItems[i].$element.remove();

 self.shoppingItems = [];

 for (i = 0; i < data.length; i++)
 self.newItem(data[i]);

 self.itemActions = [];
 self.saveState();
 },
 error: function (jqXHR, textStatus, errorThrown) {
 alert("Unable to sync with server: " + errorThrown);
 }
 });
}

The MVC framework controller you’ll build will automatically coerce the itemActions
object you send it into a generic list of strongly typed objects, as long as the name of
your data payload corresponds to the inbound parameter name on the controller.
This is called MVC model binding, and it prevents you from having to pass in an array
of parameters.

 We’ve discussed the need to reduce interface repaints (called reflows) a number of
times in this book, but in this instance we decided to remove and recreate all the list
items when the controller action returns data. We did this to simplify the code and to
prevent item identifier conflicts. Synchronization with a server can be rather chaotic,
because both client and server could theoretically be adding, editing, or deleting indi-
vidual items simultaneously. To simplify things, we assigned the server version as the
data of record and let the chips fall where they may on the client. This allows you to
maintain a list without a unique identifier for each shopping item, and it removes the

Listing 10.7 Synchronizing with the server using Ajax and jQuery

With current item actions list
create new JavaScript object
that includes name.

Once controller has retur
list as it exists on server
remove all interface eleme
related to shoppingItems
array and clear out array.

For each item in returned array
call newItem to reinitialize item
(including UI element).
www.it-ebooks.info

http://www.it-ebooks.info/

295Building the server side of an offline application
necessity for deconfliction code. Because your shopping items have no unique identi-
fier, you have no value to assign as the id for the HTML element on the screen, and
that means you need to drop and create all your items with each screen refresh.

 The client side of the application is now complete, but the application won’t run
because there’s no server-side functionality yet. Your next step is to build the compo-
nents necessary to maintain the shopping list on the server.

10.6 Building the server side of an offline application
Recall that the basic structure for this chapter’s sample application is an HTML page
that lives inside an MVC application and calls a custom controller with two actions:
one to get all current shopping list items, and one to synchronize the client list with
what’s on the server. You’ll also be creating two objects: a simple POCO (Plain Old CLR
Object) and a singleton to act as your server. The singleton will contain a generic list
of shopping items, and when items are added or removed, it will lock the thread to
execute the activity. This will keep things simple but reasonably scalable.

 Both the POCO and singleton objects should be placed in the Models folder of
your MVC solution. The POCO object, transmitted in JSON format back and forth
between client and server, should look like this:

public class ShoppingItemAction {
 public string type { get; set; }
 public string title { get; set; }
}

This POCO object has a type property that describes whether the item should be
added or removed from the list, and it has a title property that will be stored in the
list inside your singleton.

THE SINGLETON SERVER

Your singleton object will serve as the data server. It contains a generic list of strings
that make up your shopping list and an object called a ReaderWriterLockSlim. This
object is designed to give you a very lightweight yet scalable means of locking the cur-
rent thread. It has the ability to perform a read, write, or upgradeable lock that can
transition from read to write. It adds a bit to the line count in your code, but it makes
the thread-locking logic easy to read and track. This is an updated method of han-
dling thread locking, as compared to the object-locking method common in older
.NET programs.1

 The next listing shows what your completed ShoppingServer object should
look like.

1 For a more complete discussion of object locking, see the “Implementing the Singleton Pattern in C#” article
on the C# in Depth website: http://csharpindepth.com/Articles/General/Singleton.aspx.
www.it-ebooks.info

http://csharpindepth.com/Articles/General/Singleton.aspx
http://www.it-ebooks.info/

296 CHAPTER 10 Offline web applications

er

public class ShoppingServer {

 private static ReaderWriterLockSlim locker =
 new ReaderWriterLockSlim();

 private static List<string> CurrentShoppingList =
 new List<string>();

 static ShoppingServer() { }

 public static List<string>
 Update(List<ShoppingItemAction> itemActions) {
 foreach (var item in itemActions)
 {
 switch (item.type)
 {
 case "add":
 Add(item.title);
 break;
 case "delete":
 Delete(item.title);
 break;
 }
 }
 if (ItemCount() > 100)
 {
 Clear();
 Add("Too many items. List cleared.");
 }
 return GetAll();
 }

 public static void Add(string item) {
 try {
 locker.EnterUpgradeableReadLock();
 if (!CurrentShoppingList.Contains(item))
 {
 try {
 locker.EnterWriteLock();
 CurrentShoppingList.Add(item);
 }
 finally {
 locker.ExitWriteLock();
 }
 }
 }
 finally {
 locker.ExitUpgradeableReadLock();
 }
 }

 ...

 public static List<string> GetAll() {
 try {

Listing 10.8 The ShoppingServer singleton object

ReaderWriterLockSlim will
be used to lock current
thread for reads and writes.

CurrentShoppingList is
internal data store. Whenev
it’s touched thread must be
locked to avoid conflicts.

Static constructor
ensures that your object
will only be instanced
once in your application.

Update function will evaluate
each inbound item and call Add
or Delete based on itemAction
object’s type property.

As safety mechanism kill
entire list if it reaches more
than 100 shopping items.

ReaderWriterLockSlim
object uses bookend
style format. Each call
to execute lock must
be accompanied by
associated call to
release lock.

GetAll function returns
everything in current list
without making any changes.
www.it-ebooks.info

http://www.it-ebooks.info/

297Building the server side of an offline application
 locker.EnterReadLock();
 return CurrentShoppingList;
 }
 finally {
 locker.ExitReadLock();
 }
 }
}

The ShoppingServer object isn’t robust enough for a production environment, but as
a pattern it shows off a simple, scalable, thread-safe singleton. Because it has a static
constructor, it will only ever be instanced once on the server, regardless of how many
requests come in to modify shopping list items.

THE MVC CONTROLLER

Next, you need to create the ShoppingList controller. In your Visual Studio solution,
do the following:

1 Right-click on the Controllers folder.
2 Select Add > Controller.
3 Name the new controller ShoppingListController.
4 Leave the controller template assigned as Empty Controller.
5 Once your controller is open, remove the Index ActionResult method.

The controller should now be virtually empty. In place of the original Index Action-
Result, add the code from the following listing.

public class ShoppingListController : Controller
{
 [HttpPost]
 public ActionResult SyncShoppingList(
 List<ShoppingItemAction> itemActions) {
 var ret = new List<string>();
 if (itemActions != null)
 ret = ShoppingServer.Update(itemActions);
 else
 ret = ShoppingServer.GetAll();
 return Json(ret);
 }
}

Note that this controller uses a single POST method to both update the existing list
and return all items, even if no actions are required. This allows the code in your
JavaScript client to reduce its footprint and operate in a more traditionally func-
tional manner.

ADDING THE MANIFEST CONTENT TYPE TO THE SERVER

The last thing you need to do before you can run your application is to add the manifest
content type to your server. You can do this using IIS Express (as illustrated in figure 10.5):

Listing 10.9 The ShoppingList controller

HttpPost attribute allows
SyncShoppingList to respond to
POST method and make changes
to ShoppingServer singleton.
www.it-ebooks.info

http://www.it-ebooks.info/

298 CHAPTER 10 Offline web applications
1 Right-click the project node of your solution and select Properties.
2 Select the Web tab.
3 Find the Servers node and select it.
4 Turn on the Use Local IIS Web Server radio button.
5 Check the Use IIS Express check box.
6 Leave the default project URL as is.
7 Click the Create Virtual Directory button.

If you don’t have IIS Express installed, you can find instructions on how to download
and install it in appendix C. Now when you run your solution, you’ll be using the local
IIS Express instance instead of the Cassini server that Visual Studio defaults to.

 The application will run now, but it won’t work when disconnected because the
server doesn’t recognize the application manifest content type. The next step is to add
this content type to the local server.

 Open a command prompt running as a local administrator, and navigate to the IIS
Express folder. This will be named IIS Express and will be either inside Program Files
or Program Files (x86). Once in that folder, execute the following commands:

appcmd set config /section:staticContent
/-[fileExtension='.manifest',mimeType='application/x-ms-manifest']

appcmd set config /section:staticContent /
+[fileExtension='.manifest',mimeType='text/cacheManifest']

It should complete and look something like figure 10.6.
 You can now safely run your application! After you start it, you can navigate to /

Shopping.htm and see your offline application page. You’ll see an online or offline
indicator in the heading area, depending upon whether your computer is connected
to a network or not. If you’re not connected, you’ll be able to continue working and
synchronize to the server whenever a connection is reestablished. Note the indicator
at the top of the page in figure 10.7.

Figure 10.5 Setting up the manifest as a valid content type requires running the solution inside
either IIS or IIS Express.
www.it-ebooks.info

http://www.it-ebooks.info/

299Building the server side of an offline application
Try adding a few items to your shopping list and then disconnect from your net-
work. Add a few more and delete one or two, then reconnect. Set breakpoints both
in the client JavaScript and on the server to see when calls are made and what the
contents of each call are. Now close the browser entirely and reopen it, navigating to
the shopping list page. You should see all your items still there, even if you discon-
nected before you reopened the browser. This is the beauty and power of an offline
web application!

Figure 10.6 Setting up the manifest file as a valid content type requires you to reset a
Microsoft default and add the new type using appcmd.exe located in your IIS Express folder.

Figure 10.7 The completed application should work both online and offline.
www.it-ebooks.info

http://www.it-ebooks.info/

300 CHAPTER 10 Offline web applications
10.7 Summary
Offline web applications can be robust and responsive in most modern browsers, and
the proliferation of tablet-based devices with only Wi-Fi support should increase their
popularity. The biggest drawback is still the fact that users are unaccustomed to using
a website while not connected. Once this barrier is overcome, though, proper design
and attention to details in an offline application will yield a rich experience and a
website that’s usable in many more circumstances than has been traditionally possible
in web development.

 In this chapter, you learned how to bind to the browser events that tell an applica-
tion whether or not it’s connected and some interesting ways to use jQuery to show
the user that the connection state has changed. We looked at the application manifest
file, the core of an offline application that describes which resources to make available
offline, which to ignore, and which to provide replacements for when disconnected.
We also took a close look at the ApplicationCache object and saw how it lets you mon-
itor the cached state of the current application. Finally, we tied everything together by
using more jQuery, JavaScript, and an ASP.NET MVC server project to store and return
the user’s shopping list items. You now have a complete HTML5 application that will
work both online and offline in a variety of browsers.

 We hope you enjoyed this book, especially all the fantastic ways that you, as a .NET
developer, can impact the future of the web, both for business and consumer applica-
tions. This book was not designed to be a complete reference manual but rather to
provide you with the tools you need to get started with professional JavaScript coding
practices and up to the level of knowledge necessary to leverage the great things that
HTML5 is bringing to the web. Go forth and build amazing HTML applications!

10.8 The complete code listings
The following listings provide the complete code for the sample application in this
chapter.

#content {
 width: 100%;
 max-width: 300px;
 margin: 10px auto;
}

h1 {
 display: inline;
}

#input {
 width: 100%;
}

#items {
}

Listing 10.10 CSS required to align and style the shopping list items
www.it-ebooks.info

http://www.it-ebooks.info/

301The complete code listings
.item {
 margin: 10px 0px;
 padding: 10px;
}

.item .close {
 float: right;
}

.box-round {
 -webkit-border-radius: 6px;
 -moz-border-radius: 6px;
 border-radius: 6px;
 -moz-background-clip: padding;
 -webkit-background-clip: padding-box;
 background-clip: padding-box;
}

.box-shadow {
 -webkit-box-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
 -moz-box-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
 box-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);

}

/// <reference path="http://ajax.aspnetcdn.com/ajax/
 jquery/jquery-1.7.1.js" />
/// <reference path="http://ajax.aspnetcdn.com/ajax/
 jquery/jquery-1.7.1-vsdoc.js" />

$(document).ready(function () {
 Main.init();
});

window.Main = {
 $status: null,
 $input: null,
 shoppingItems: [],
 itemActions: [],

 init: function () {
 var self = this;
 var msg = "This browser does not support ";
 if (!Modernizr.applicationcache) {
 alert(msg + "offline apps");
 return;
 }
 if (!Modernizr.localstorage) {
 alert(msg + "local storage");
 return;
 }
 if (!window.JSON) {
 alert(msg + "JSON");
 return;
 }

Listing 10.11 The complete main.js JavaScript file

Safari 3 and 4, iOS 3.0
and earlier, Android 1.6
and earlier

Firefox 3.6
and earlier

Opera 10.0, IE 9, Safari
5, Firefox 4, iOS 4,
Android 2.1 and greater,
and all versions of
Chrome

Used to mask
background color
on rounded corners Safari 3 and 4, iOS

4.0.2 through 4.2,
and Android 2.3
and greater

Firefox 3.5 and 3.6

Opera 10.5, IE 9, Firefox 4 and
greater, Chrome 6 and greater,
and iOS 5
www.it-ebooks.info

http://www.it-ebooks.info/

302 CHAPTER 10 Offline web applications
 this.$status = $("#status");

 this.$input = $("#input")
 .keypress(function (event) {
 if (event.which == 13) {
 var value = self.$input.val();
 if (value) {
 var item = self.newItem(value);
 self.itemActions.push({
 type: "add",
 title: item.title
 });
 self.saveState();
 self.$input.val("");
 if (navigator.onLine)
 self.syncWithServer();
 }
 }
 })
 .focus();

 $(window)
 .bind("online", function () {
 self.updateForNetStatus(true);
 })
 .bind("offline", function () {
 self.updateForNetStatus(false);
 });

 this.loadState();
 this.updateForNetStatus(navigator.onLine);
 },

 updateForNetStatus: function (connected) {
 if (connected) {
 this.$status.text("(online)");
 this.syncWithServer();
 }
 else {
 this.$status.text("(offline)");
 }
 },

 newItem: function (title) {
 var self = this;
 var item = {
 title: title
 };

 var html = "<div class='item box-round box-shadow'>"
 + title
 + "<button class='close'>x</button></div>";

 item.$element = $(html)
 .prependTo("#items");

 item.$element.find(".close")
 .click(function () {
www.it-ebooks.info

http://www.it-ebooks.info/

303The complete code listings
 var index =
 $.inArray(item, self.shoppingItems);
 if (index != -1)
 self.shoppingItems.splice(index, 1);

 item.$element.remove();

 self.itemActions.push({
 type: "delete",
 title: item.title
 });

 self.saveState();

 if (navigator.online)
 self.syncWithServer();
 });

 this.shoppingItems.push(item);
 return item;
 },

 loadState: function () {
 if (localStorage.itemActions)
 this.itemActions =
 JSON.parse(localStorage.itemActions);
 var data = localStorage.shoppingItems;
 if (!data)
 return false;

 var items = JSON.parse(data);
 var a;
 for (a = 0; a < items.length; a++)
 this.newItem(items[a]);

 return true;
 },

 saveState: function () {
 localStorage.itemActions =
 JSON.stringify(this.itemActions);

 var items = [];
 var a;
 for (a = 0; a < this.shoppingItems.length; a++)
 items.push(
 this.shoppingItems[a].title);

 localStorage.shoppingItems = JSON.stringify(items);
 },

 syncWithServer: function () {
 var self = this;

 if (this.itemActions.length) {
 $.ajax({
 url: "/ShoppingList/SyncShoppingList",
 type: "POST",
 dataType: "json",
 contentType: "application/json; charset=utf-8",
www.it-ebooks.info

http://www.it-ebooks.info/

304 CHAPTER 10 Offline web applications
 data: JSON.stringify({
 itemActions: this.itemActions
 }),
 success: function (data, textStatus, jqXHR) {
 if (!data || !("length" in data)) {
 alert("Unable to synch with server");
 return;
 }

 var a;
 for (a = 0; a < self.shoppingItems.length; a++)
 self.shoppingItems[a].$element.remove();

 self.shoppingItems = [];

 for (a = 0; a < data.length; a++)
 self.newItem(data[a]);

 self.itemActions = [];
 self.saveState();
 },
 error: function (jqXHR, textStatus, errorThrown) {
 alert("Unable to sync with server: " + errorThrown);
 }
 });
 }
 else {
 $.getJSON(
 "/ShoppingList/GetShoppingList",
 function (data) {
 alert(data);
 });
 }
 }
};

public class ShoppingServer {

 private static ReaderWriterLockSlim locker = new ReaderWriterLockSlim();

 private static List<string> CurrentShoppingList = new List<string>();

 static ShoppingServer() { }

 public static List<string> Update(List<ShoppingItemAction> itemActions)
 {
 foreach (var item in itemActions)
 {
 switch (item.type)
 {
 case "add":
 Add(item.title);
 break;
 case "delete":
 Delete(item.title);
 break;

Listing 10.12 The ShoppingServer singleton object
www.it-ebooks.info

http://www.it-ebooks.info/

305The complete code listings
 }
 }
 if (ItemCount() > 100)
 {
 Clear();
 Add("Too many items. List cleared.");
 }
 return GetAll();
 }

 public static void Add(string item) {
 try {
 locker.EnterUpgradeableReadLock();
 if (!CurrentShoppingList.Contains(item))
 {
 try {
 locker.EnterWriteLock();
 CurrentShoppingList.Add(item);
 }
 finally {
 locker.ExitWriteLock();
 }
 }
 }
 finally {
 locker.ExitUpgradeableReadLock();
 }
 }

 public static void Delete(string item) {
 try {
 locker.EnterUpgradeableReadLock();
 if (CurrentShoppingList.Contains(item))
 {
 try {
 locker.EnterWriteLock();
 CurrentShoppingList.Remove(item);
 }
 finally {
 locker.ExitWriteLock();
 }
 }
 }
 finally {
 locker.ExitUpgradeableReadLock();
 }
 }

 public static void Clear() {
 try {
 locker.EnterWriteLock();
 CurrentShoppingList.Clear();
 }
 finally {
 locker.ExitWriteLock();
 }
 }
www.it-ebooks.info

http://www.it-ebooks.info/

306 CHAPTER 10 Offline web applications
 public static int ItemCount() {
 try {
 locker.EnterReadLock();
 return CurrentShoppingList.Count();
 }
 finally {
 locker.ExitReadLock();
 }
 }

 public static List<string> GetAll() {
 try {
 locker.EnterReadLock();
 return CurrentShoppingList;
 }
 finally {
 locker.ExitReadLock();
 }
 }
www.it-ebooks.info

http://www.it-ebooks.info/

appendix A
A JavaScript overview

JavaScript is the primary client-side programming language you’ll be using when
writing HTML5 applications. Using JavaScript, you can select anything on a ren-
dered page, save and work with data in memory, and communicate asynchronously
with the server. Using additional frameworks such as jQuery, you can speed up your
development tasks while reducing the volume of delivered code.

 You may be somewhat familiar with the basics of JavaScript, but this appendix
may still help you iron out some of the details that aren’t very apparent during nor-
mal operations. Things like unobtrusive JavaScript and method chaining can be a
real challenge without a solid foundation in the language.

A.1 The JavaScript core language
JavaScript is a functional language that’s deployed uncompiled in text files. It’s possible
to use JavaScript as an object-oriented language, but you would be mistaken to try and
use it the way you use C#. JavaScript looks very similar in construction to C#, but they’re
completely different languages providing very different development experiences.

 First, we’ll look at the various pieces of construction syntax that make up
JavaScript code:

■ Variables
■ Operators
■ Flow control
■ Strings and dates
■ Declaring and using functions
■ Timers
■ Arrays
■ Checking for null, undefined, and NaN
■ Comments in JavaScript
307

www.it-ebooks.info

http://www.it-ebooks.info/

308 APPENDIX A A JavaScript overview
A.1.1 Variables

A variable in JavaScript is untyped and declared using the var keyword. When we say
untyped, we mean that it can either be a simple value type, an object, or a function:

var myName = "Jim Jackson II";

A variable is accessible anywhere within the function it’s defined in. If the variable is
defined outside of any function, or if the var keyword is left off, the variable will reside
at global scope, accessible everywhere. You should keep your global variables to a min-
imum, however, as they can easily cause confusion, and they could collide with the
existing global variables the browser defines (such as window, document, navigator,
and so on). Even though JavaScript allows you to leave the var keyword off, it’s a best
practice to always include it.

 If you were writing a function to perform work and needed a geolocation object
that you wanted to call navigator, you could be dropping a serious bomb on the rest
of your application. This code,

navigator = "Current location is North of Main Street";

would create a navigator variable that explicitly overwrites the browser’s navigator
object. The following code, however, when placed inside a function, will hide the
navigator object locally but won’t overwrite the global object:

var navigator = "Current location is North of Main Street";

A.1.2 Operators

Operators in JavaScript are generally the same as in any other language—just a
slightly different flavor, in some cases. When shifting back and forth between
JavaScript and C#, there are some minor things to keep in mind, but these are pretty
easy to figure out. Visual Basic developers will have a little steeper learning curve.

 In this section, we’ll cover five types of operators:

■ Mathematical operators
■ Comparison operators
■ Assignment operators
■ Logical operators
■ Conditional operators

First are the mathematical operators.

The userAgent
The navigator.userAgent variable is used in all browsers to tell the hosting server
who exactly it is in terms of browser vendor, version, and several other elements.
When feature detection doesn’t work, the userAgent is a good fallback to determine
compatibility levels in your application. It should be regarded as read-only, but as you
can see from the var discussion, anything in JavaScript can be overwritten.
www.it-ebooks.info

http://www.it-ebooks.info/

309The JavaScript core language
MATHEMATICAL OPERATORS

Table A.1 lists the mathematical operators in JavaScript. They’re used to perform sim-
ple math operations between variables.

COMPARISON OPERATORS

The next set of operators is used for comparing one value against another. When exe-
cuted, the comparison operators in Table A.2 will return true or false.

In the examples in table A.2, the === comparison operator deserves further discus-
sion. The exact equality operator is used to avoid scenarios where a value is assigned
as a string but checked as a number, and vice versa. Although you can’t specifically
assign a type for any variable you use, JavaScript will infer the type of every variable.

 We’ll discuss more of the various types as we move forward in this appendix, but
suffice it to say that there is equal and there is really, really equal. Use the exact com-
parison operator as often as you can to avoid unintended consequences in check-
ing values.

Table A.1 Mathematical operators in JavaScript

Operator Description Usage Result

+ Addition var t = 5 + 5; 10

Concatenation var t = "a" + 5; a5

- Subtraction var t = 13 – 4; 9

* Multiplication var t = 4 * 4; 16

/ Division var t = 16 / 4; 4

% Modulus var t = 15 % 4; 3

Table A.2 Comparison operators in JavaScript

Operator Description Usage Result

== Equality 5 == 6 false

=== Exact equality 5 === "6" false

!= Not equal 5 != 10 true

> Greater than 100 > 50 true

< Less than 100 < 50 false

>= Greater than or equal to 100 >= 100 true

<= Less than or equal to 100 <= 120 true
www.it-ebooks.info

http://www.it-ebooks.info/

310 APPENDIX A A JavaScript overview
ASSIGNMENT OPERATORS

Assignment operators are used to set the value of one variable to another. They’re
listed in table A.3.

LOGICAL OPERATORS

The fourth set of operators is smaller but no less important. The logical operators
listed in table A.4 provide a means of comparing multiple true or false statements.

 Notice the parentheses surrounding the logical operators. Depending upon the
nature of your code, these may not be completely required, but they provide scope to
the operators so they’re recommended.

Truthy and falsy
The double-equals operator (==) is one of the ways that an expression in JavaScript
can return a truthy or falsy result. These terms refer to any expression that can be
evaluated as Boolean but isn’t inherently Boolean. So a 0 value is falsy even
though it isn’t technically false, and any nonzero value is truthy. Likewise, an
empty string is falsy, and a string containing any value is truthy. This also helps
when evaluating for the presence of a value because you can simply ask “is it?”
and return a Boolean value.

Table A.3 Assignment operators in JavaScript

Operator Description Usage Result

= Assignment t = 5 t is 5

++ Increment var t = 5;
t++;

t is 6

-- Decrement var t = 5;
t++;

t is 4

+= Add second part to the first var t = 5;
t += 6;

t is 11

-= Subtract second part from the first var t = 5;
t -= 3;

t is 2

/= Divide second part by the first var t = 15;
t /= 5;

t is 3

*= Multiply the second part by the first part var t = 5;
t *= 3;

t is 15

%= Assign first variable to modulus of first parameter
divided by second parameter

var t = 15;
t %= 4;

t is 3
www.it-ebooks.info

http://www.it-ebooks.info/

311The JavaScript core language
CONDITIONAL OPERATORS

The final operator is the conditional, and it’s more of an expression than an operator.
It’s used to provide what you may have called an “Immediate If” statement in Visual
Basic or Excel. It states that if the comparison operator is true, return the first argu-
ment to the expression; otherwise return the second.

 It uses a question mark (?) to delimit the test condition and a colon (:) to delimit
the true and false values:

var rpm = 6850;
var minutes = 5;
var engine = (rpm >= 6000 && minutes > 3) ? "Boom" : "Vroom Vroom";

Now that the operators are out of the way, let’s look at how program flow is controlled
inside your code. This is done with a variety of flow-control structures.

A.1.3 Flow control
In order for any program to respond to varying conditions, it must be able to branch
and loop its logic based on evolving conditions. Flow-control constructs in the
JavaScript language are minimal, but they provide everything you need for just about
any scenario in a normal application.

 In this section, we’ll cover five flow-control constructs:

■ if

■ switch

■ for

■ while

■ do..while

The first is the if statement.

THE IF STATEMENT

The if construct in JavaScript has a few different options to make it more or less terse
as conditions permit. if is called on a true/false condition placed in parentheses,
and if the condition returns true, the next code block will execute. If the condition
returns false, the next code will be ignored and if an else block exists, it will be exe-
cuted instead. The code block to be executed can be multiple lines of code inside
curly brackets {...} or it can be a single line of code.

 The following listing shows the options for an if block.

Table A.4 Logical operators in JavaScript

Operator Description Usage Result

&& AND operation (5 > 10 && 6 < 20) true—5 is greater than 10 and 6 is less than 20

|| OR (4 > 5 || 6 < 20) false—4 isn’t greater than 5 even though 6 is
less than 20

! NOT operation !(5 > 5) true—5 isn’t greater than 5
www.it-ebooks.info

http://www.youtube.com/watch?v=h9ThvOyrPCw
http://www.it-ebooks.info/

312 APPENDIX A A JavaScript overview
var x, y;
if (1 == 1) {
 x = "condition returned true";
}
y = "this code always executes";

if (1 == 1)
 x = "condition returned true";
y = "this code always executes";

if (1 == 0) {
 x = "condition returned true";
}
else {
 x = "condition returned false";
}
var = "this code always executes";

if (1 == 0)
 x = "condition returned true";
else
 x = "condition returned false";
y = "this code always executes";

THE SWITCH STATEMENT

The switch statement is executed in the same way as switch statements in C#. An ini-
tial expression is evaluated inside parentheses, and then a progressive set of switch
statements is compared from top to bottom.

 For example, when the condition following a case is met, the code in the following
listing, up to the break keyword, is executed.

var t;
switch (favoriteAuthor) {
 case "Beck":
 t = "Politics is so in";
 break;
 case "Rand":
 t = "Distopian future";
 break;
 case "Alinsky":
 t = "Community organization";
 break;
 default:
 t = "Author not found";
}

THE FOR STATEMENT

The for statement is a means of evaluating a number of values in a list or for evaluat-
ing a condition a specific number of times. Like the if statement, it can be used with

Listing A.1 Variations of the if statement in JavaScript

Listing A.2 switch statements evaluate from top to bottom based on the expression

Evaluate for true/false and
execute content of block if true.

If no curly braces are used only one statement
executed before returning to normal flow.

Execute else block if
evaluation returns false.

Same curly brace rules
apply to else blocks.

Switched expression
always in parentheses.

Each switch statement
evaluated in order.

Default statement should
always provide fallback for
“not found” situations.
www.it-ebooks.info

http://www.it-ebooks.info/

313The JavaScript core language

t’s
le.
or without curly braces, but if none are provided, only one line of code immediately
following the for statement line will be executed:

var max = 10;
var myValue = 1;
for (var count = 1; count <= max; count++) {
 myValue *= count;
}
return myValue;

WHILE AND WHILE...IN STATEMENTS

The next structures that allow you to control the flow of code are the while and
while...in statements. These are used to evaluate a condition and to continue to
execute while it’s true. The difference between while and for is that the while loop
won’t change the iterator’s value, so the possibility of an infinite loop is opened up.
Most current JavaScript engines will detect this and warn the user that they should
stop executing, but good software should never introduce this possibility:

var now = new Date();
var i = now.getSeconds();
var count = 0;
while (i < 20) {
 now = new Date();
 i = now.getSeconds();
 count++;
};

THE DO...WHILE LOOPING CONSTRUCT

The do...while looping construct is a modification of the while loop, where the con-
ditional statement is placed at the end. Whereas the previous listing may not execute
at all and leave the counter at 0, the do...while in the following listing will always
execute at least one time. Therefore, the exact same sequence can be guaranteed to
have a count value greater than 0 regardless of other conditions.

var now = new Date();
var i = now.getSeconds();
var count = 0;
do {
 now = new Date();
 i = now.getSeconds();
 count++;
} while (i < 20);

A.1.4 Strings
In this section, we’ll cover basic string manipulation, parsing and dividing strings, and
finding a string inside of another string.

 String manipulation in JavaScript is very easy on the surface, but as in many other
programming languages, looks can be deceiving. Handling strings in JavaScript

Listing A.3 The do...while construct guarantees at least one iteration

Add one to count variable while i
less than or equal to max variab
Execute on each iteration.

In body of block. Result
here would be 3,628,800.

Get current seconds value.

Check value iteratively.

Add to count value until
seconds are greater than 20.
Expect value in the millions.
www.it-ebooks.info

http://www.it-ebooks.info/

314 APPENDIX A A JavaScript overview
should be done as efficiently as possible to reduce code speed bumps. Doing things
right the first time will also make your code easier to read and maintain later.

 There are a number of JavaScript string manipulation functions built in that are
also worth learning.

BASIC STRING MANIPULATION

Basic string concatenation can be done in two major ways.
 You can use the + operator to append one string to another:

var nm = "Statue" + " of " + "Liberty";

You can also use the += operator to perform an additive append:

var nm = "Statue";
nm += " of ";
nm += "Liberty";

When performing larger or more cumulative tasks, you can use some of the built-in
string manipulation functions of JavaScript. These functions give you more control
over where text is inserted in the target string as well as the ability to break apart a
string into specific bits and pieces.

 The length property can be evaluated against any string to determine the number
of characters in the string or against an array to determine the number of elements it
contains. If the string that length is called against is undefined, the function will
throw an exception:

var t = "alphanumeric";
var tlen = t.length; // 12
var nlen = "AnotherString".length; // 13

DIVIDING STRINGS

Next is the split function. This will break apart a string based on a separator charac-
ter you pass in. An optional parameter will also split the inbound string only a specific
number of times and then stop processing. The result will be an array of string values.
Note that the separator you pass in will be removed from the output array. This search
is also case sensitive:

var t = "Peter Piper Picked a Peck of Pickled Peppers";
var outPut = str.split("P");

The outPut from the preceding code will be as follows:

["eter ","iper ","icked a ","eck of ","ickled ","eppers"]

The next two string functions are substr() and substring(), which allow you to find
and return a specific part of another string. The difference between the two is that
substr() takes as a parameter the zero-based starting index and the length of
the string to return, whereas substring() takes the zero-based starting index and the
zero-based ending index of where to stop:

var t = "Peter Piper Picked a Peck of Pickled Peppers";
var u = t.substr(29, 7); // Pickled
var v = t.substring(29, 36); // Pickled
www.it-ebooks.info

http://www.it-ebooks.info/

315The JavaScript core language
The values of the variables u and v in the preceding code are exactly the same.

FINDING ONE STRING INSIDE ANOTHER STRING

The next functions provide the ability to get a single character or the location of a
string inside another string.

 The indexOf() function performs a case-sensitive search of a string for the exis-
tence of another string, and it returns the zero-based index of the beginning of the
found value. indexOf() will return -1 if the value was not found.

 The charAt() function will return the single character in the index location speci-
fied, or an empty string if there is no character at the specified index:

var t = "Peter Piper Picked a Peck of Pickled Peppers";
var chr = t.charAt(29); // P
var iof = t.indexOf("Pepper"); // 37

In the preceding code, chr is “P” while iof is 37. The replace() function will take the
regular expression or a substring and replace it with the new string value parameter
doing a case-sensitive search. The original string value isn’t changed during a
replace() operation:

var t = "Crossbows were used by the Romans";
var rep = t.replace("Crossbows", "Longbows");

In the preceding code, t is unchanged whereas rep has the value “Crossbows”
replaced with “Longbows”.

 The final two functions are toLowerCase() and toUpperCase(). They take no
parameters and are used primarily to get around the case sensitivity of the other func-
tions. They’re called as "myString".toLowerCase() or myVar.toUpperCase().

A.1.5 Dates

Date handling in JavaScript can be a bit of a problem, especially for .NET developers.
Although there are plenty of ways to get the current date or to create a date from
scratch in JavaScript, the dates that come down from your server-side code or that go
back up will often require some massaging due to differences in the way dates are for-
matted by the different languages.

Regular expressions and pattern matching
JavaScript comes natively with the ability to pattern match using regular expressions.
The RegExp object is used to handle regular expression matching.

Regular expressions are their own micro-language, and they can be very powerful
when used correctly, but they’re also terribly difficult to debug. I recommend starting
out by looking at the w3schools site (http://www.w3schools.com/jsref/jsref_obj_regexp
.asp) for a very brief introduction to the subject and then moving on to something
more substantial, like the Regular Expressions Cookbook by Jan Goyvaerts and Ste-
ven Levithan (O’Reilly, 2009).
www.it-ebooks.info

http://www.w3schools.com/jsref/jsref_obj_regexp.asp
http://www.w3schools.com/jsref/jsref_obj_regexp.asp
http://www.it-ebooks.info/

316 APPENDIX A A JavaScript overview

te/time
e

readable

ate/time
 object
 Getting the current date and time is fairly simple:

var dt = new Date();

Printing off dt would result in something like: “Mon Sep 1 06:38:18 EDT 2014”, which
is certainly readable but won’t format directly into a DateTime data type in .NET.

 What you need to do is reformat this date into a string that can be accepted by the
server as well as translate the value from the server into a valid JavaScript Date value.
You need to do three things with the target date in this example:

1 Take a .NET date and convert it to a JavaScript-readable date string.
2 Take a JavaScript-readable date string and create a date object from it.
3 Take a JavaScript date object and convert it to a .NET readable date string.

Using the following simple technique, you’ll still have to convert to and from dates in
your work, but the data that’s passed should be easily readable and translatable in
either direction. Here’s the relevant code:

// JavaScript
var dtInput = new Date("Fri Nov 02 2012 21:23:58");
var dtOut = dtIn.toDateString() +
 " " + dtIn.toLocaleTimeString();
//
var dt = DateTime.Parse("Nov 2 2011 21:23:58");
var dtOut = dt.ToShortDateString() +
 " " + dt.ToLongTimeString();

While not as robust as some date/time handling JavaScript libraries, this code has the
advantage of the date being perfectly readable in both frameworks and while it’s
being transferred back and forth. The disadvantage is that the user’s local time set-
tings are removed by default, so time zone information is lost.

 Once you have your date value in JavaScript, you can work with it as an actual date,
making comparisons and editing its value.

A.1.6 Basic function declarations

We’ve covered so far how to work with various types of data in JavaScript. Now it’s time
to look deeper at how to create reusable pieces of functionality. In JavaScript, this is
done using functions. Functions are objects declared using the function keyword,
and they come in a variety of flavors.

 We’ll discuss three here:

■ Anonymous functions
■ Named functions
■ Self-invoking functions

We’ll start with anonymous functions.

Convert JavaScript da
string to.NET DateTim

Convert.NET DateTime to JavaScript-
date/time string

Convert.NET-produced d
string to JavaScript Date

Convert JavaScript Date
object to.NET-readable
date/time string
www.it-ebooks.info

http://www.it-ebooks.info/

317The JavaScript core language
ANONYMOUS FUNCTIONS

Anonymous functions don’t have names, but they’re full-fledged functions and can
return values using the return statement. They’re generally used inline as the call-
back argument for another function. The format is as follows:

function() { ... }

When an Ajax call is made to a server, it usually has a success callback function. If it
makes sense in the context of the application, and if the success handler won’t be used
anywhere else, you can use the anonymous function directly inside the Ajax function call
to handle the results returned. The following snippet shows how to do this in a jQuery
call. (The longer form of using XMLHttpRequest would distract from the point here.)

$.ajax({
 url: "myRequest.html",
 success: function(data){

Type coercion and conversion
Type coercion in JavaScript is one of Douglas Crockford’s bad parts in his book
JavaScript: The Good Parts (O’Reilly, 2008).

Coercion of values in JavaScript occurs when a comparison is made between two val-
ues that aren’t of the same type using the operators == or !=. JavaScript will attempt
to coerce the values into the same type and then compare them. This is bad because
a string value of "1" isn’t the same as a numeric value of 1. If you disagree, then try
this simple piece of code:

var numA = "1";
var numB = 1;
var test1 = numA == numB;
var test2 = numA === numB;
var result = numA + numB;

If the result you’re looking for is 11, then ignore this and move to the next section.
If, in your world, 1+1=2, then you should have a clear understanding of what type
coercion is.

The value of test1 in the preceding code is true, and the value of test2 is false.
False is the correct answer, because if you wanted to add two numbers but one is
a string, JavaScript will automatically convert all values in the formula to strings and
concatenate them, not operate on them mathematically.

The appropriate way to perform a conversion in the preceding code would be to con-
vert numA to an integer using the parseInt(numA, 10) function. The second value
(radix) in parseInt assigns the result as a decimal number.

Also of note is that the plus (+) operator will try to automatically convert a value to a
number when placed in front of a variable. The following code will convert the variable
b to the number 1 from the string "1".

var a = "1";
var b = +a;

Anonymous function assigned to
success parameter of Ajax request.
www.it-ebooks.info

http://www.it-ebooks.info/

318 APPENDIX A A JavaScript overview

Once fun
is com

another
parent

is us
invo
 ...

 }
});

NAMED FUNCTIONS

Named functions have the same wrapping curly braces, but they also get a name that
can be used to refer to them. They can also return values using the return statement.

 Here’s a named function:

function execAddValues(firstNum, secondNum) {
 ...
 return (firstNum + secondNum);
}

SELF-INVOKING FUNCTIONS

A function is self-invoking when its entire declaration is wrapped in parentheses and
it’s followed by another set of parentheses. The wrapping parentheses are used to
encapsulate the entire function as an immediately executable block. The empty
parentheses at the end then immediately execute the entire block.

 This snippet shows how this kind of function is written:

(function helloWorld() {
 alert("I am here!");
})();

Self-invoking functions can also take parameters and, as you’ll see when we discuss
object-oriented JavaScript, they have public and private properties.

 Self-invoking functions are critical to the plugin model of the jQuery and jQuery
UI frameworks, so you should become familiar with their structure. Once invoked,
they’re available in memory and from any other piece of code in your application.

 The following are all valid function wrappers:

function() {}
function foo() {}
var bar = function() {};
var bar = function foo() {};

A.1.7 Functions as parameters
We mentioned earlier that a callback inside an Ajax call can be an anonymous func-
tion or it can be a named function. The following code shows how this can be done in
just a few lines of code. This is helpful because if the successCallback function (in
this case, assigned to dataReturned) is useful to other Ajax calls, it no longer has to be
repeated in every instance:

var dataReturned = function(data) {
 alert("found " + data.length + " items");
};

$.getJSON(
 "http://www.mySite.com/getData",

Execute function body when success returns.

Close anonymous function before
any other code is executed.

Function is declared
normally but inside
parenthetic block.

Body of self-invoking function is
same as any other function.

ction
plete
set of
heses
ed to
ke it.

Declare named
function.

Function has same
signature as callback.
www.it-ebooks.info

http://www.it-ebooks.info/

319The JavaScript core language
 dataReturned
)

This code barely scratches the surface of what’s possible using callbacks. We won’t be
discussing deferred functions and promises in jQuery, but you can pick up the latest
edition of Bear Bibeault and Yehuda Katz’s jQuery in Action (Manning, 2008) to get a
good handle on these enormously powerful features.

A.1.8 Timers

In JavaScript, there are two built-in functions that allow you to perform work based on
a timed interval and two additional methods to clear out those timed events.

THE SETTIMEOUT FUNCTION

The first function is setTimeout(), and it’s used to execute a callback function when a
specific number of milliseconds has expired (1,000 milliseconds is equal to 1 second).
It returns an integer that’s unique to that timer. The timer ID value can be passed into
the clearTimeout() function to stop it from processing at any time.

 setTimeout() executes only one time unless it’s placed inside some other loop.
Like every other callback in JavaScript, the function that’s called can be either named
or anonymous.

 The following listing shows a very basic timed event.

var timerID = null;
var timerID = null;
function toggleTimeout() {
 if (timerID) {
 clearTimeout(timerID);
 console.log("cancelled");
 timerID = null;
 } else {
 timerID = setTimeout(function() {
 console.log("expired");
 timerID = null;
 }, 3000);
 console.log("started");
 }
}
toggleTimeout();
toggleTimeout();
toggleTimeout();

THE SETINTERVAL FUNCTION

The next timed event function is setInterval(). This operates in almost the same
way as setTimeout() except that it executes continuously until stopped, firing its call-
back whenever the interval is hit. The following listing shows a simple interval timer.

Listing A.4 Using the setTimeout() and clearTimeout() methods

When data is returned
execute named function.

Does timer exist?

Cancel, log, and destroy it.

Make new timer that logs
message and resets.

Timer will execute every 3 seconds.

Log that time has started.
Log shows
"started". Log shows "cancelled".

Log shows "started", and
3 seconds later "expired".
www.it-ebooks.info

http://www.it-ebooks.info/

320 APPENDIX A A JavaScript overview
var intervalCount = 0;
var intervalID = setInterval(function() {
 intervalCount++;
 console.log("Count: " + intervalCount);
 if(intervalCount == 10) {
 clearInterval(intervalID);
 intervalID = null;
 }
}, 2000);

The setInterval() function isn’t used very often in JavaScript for user interface
operations because it’s very easy to get into a looping condition where a stack of inter-
val methods are all waiting for some user interaction. It’s also impossible to determine
how quickly a user will interact with the interface to prevent the stacking of timed
messages. setInterval() is much more appropriate for background operations that
should continue to process while other work is occurring.

A.1.9 Array

The next element of the JavaScript language that we should explore is the array.
Arrays are just lists of elements, and they’re automatically coerced into the type each
value in the array represents. This means that a single array can contain strings and
integers and they can both be acted upon as their base value types.

 To create an array, you simply declare a variable as an array and start adding ele-
ments to it based on index position:

var myStuff = [];
myStuff[0] = "toy truck";
myStuff[1] = "book";

You can also instance an array inline by providing the data directly to the variable:

var otherStuff = ["uniform", "bicycle", "hat"];

Once elements are in an array, you can loop through them using a simple for loop
and the array’s length property:

Listing A.5 setInterval() performs like setTimeout() but continues to execute

Timers as DoEvents()
There are some things to note regarding timers and intervals in JavaScript. According
to Nicholas Zakas in his book High Performance JavaScript (O’Reilly, 2010), set-
Timeout() can be used very effectively to allow the browser to finish other tasks
while your JavaScript code is executing. This is done by executing code inside very
short timers (250 milliseconds or less). Be sure not to make the timer interval any
smaller than 25 milliseconds, though, because the operating system may not be
granular enough to detect the timeout, and it may just execute the callback instantly.

Make new interface that
increments count when fired.

Log count.

If this is 10th interval,
clear variable.

Iterate every 2000 milliseconds (or 2 seconds).
www.it-ebooks.info

http://www.it-ebooks.info/

321The JavaScript core language
for(var i = 0; i < arr.length; i++) {
 var item = arr[i];
}

Arrays can also be sorted and inverted. In the preceding code, otherStuff.sort()
would yield an array containing “bicycle”, “hat”, “uniform”. Likewise, calling other-
Stuff.reverse() on the updated array would give you “uniform”, “hat”, “bicycle”.
You can also put two arrays together using either the join() or concat() functions.
The join() function will output a string (separated by commas, by default) that con-
tains all elements in the array, whereas concat() will return a new array based on the
contents of two arrays.

 To use an array as a queue to hold items for processing, you can choose to either
remove them in a first-in-first-out (FIFO) or first-in-last-out (FILO) methodology. The
shift() function will remove the first element in an array and return it to the caller,
whereas the pop() function removes the last element from an array and returns it.

 To get elements into an array, you can use the push() function to add elements to
the end of an array or the unshift() function to add elements to the beginning.

A.1.10 null, undefined, and NaN

While you’re building your software, you’ll occasionally come across instances where a
variable is undefined. Alternatively, there are instances where a variable is null. It’s
important to understand the difference between these two.

 A variable that’s undefined has been declared but not given a value:

var myVariable;

myVariable in this code is equal to undefined because it wasn’t given a value. In addi-
tion to an unassigned variable, any reference to a variable that hasn’t been declared at
all will return undefined.

 On the other hand, a null value in a variable indicates a positive action taken by
the code and not by the JavaScript engine. null is an object that indicates “no value”
in the variable that contains it.

 null can be used to clear the contents of a variable so that it can be reused, but a
null value can’t be concatenated or coerced into a string. When calculated upon,
null takes the value of 0:

var a = null;
var b = null;
var c = 10;
var d = a + b;
var e = a + c;
var f = a.toString()

Not-a-number (aka NaN) is another value built into JavaScript, and it’s used to state
that something went wrong somewhere along the way. It can be assigned in your code
to indicate things like an out-of-bounds value, or it can be assigned automatically

(null + null)
always equals 0.

(null + 10)
equals 10.

Attempting to
coerce null into
string will throw
exception.
www.it-ebooks.info

http://www.it-ebooks.info/

322 APPENDIX A A JavaScript overview

e Para
tags

used a
c

spa
indent
summa

para
t
when attempting to parse a value into a number that isn’t numeric, or when a calcula-
tion is invalid.

 To check a value to see if it’s NaN, use the isNaN() built-in JavaScript function.

var car = "Corvette";
var year = parseInt(car);
var yearIsNaN = isNaN(year);
var month = 13;
if (month > 12) {
 month = NaN;
}
var monthIsNaN = isNaN(month);

A.1.11 Commenting JavaScript
Comments in JavaScript can be marked by either a double-hack (or double-slash)

// This is a comment

which will tell JavaScript that the rest of the line is a comment, or by enclosing multi-
ple lines between hack/star (or slash/star) tags:

/* This is a comment on multiple
lines of JavaScript code. */

Everything inside a comment is ignored by the JavaScript runtime compiler, but
comments are used by the Visual Studio IDE when formatted and placed properly.
Listing A.6 shows how a function can be commented so that IntelliSense will appear
as you build out your project. The parameter tags are the same as those available in
C#, but there’s no type checking of parameter types, and the number of available tags
is somewhat more limited.

///<summary>First paragraph of the function summary
///<para> Second paragraph of function summary</para>B
///</summary>
///<param name="start" type="integer">Starting year</param>
///<param name="showall" type="boolean">
///Show all timelines (true) or just highlights (false)
///</param>

The other comment helper that Visual Studio provides is the ability to dynamically
import and background compile other scripts into the current file so that IntelliSense
is also available on those objects and functions. Here’s how it’s done:

///<reference path="/Scripts/MyLibrary.js" />

This comment will import the MyLibrary.js file from a location relative to the current
file, compile it in the development environment, and provide IntelliSense as you work.

Listing A.6 Code comments in JavaScript using Visual Studio

Try to assign number to non-numeric value.

Check value for NaN
using built-in function.

Assign NaN
specifically. isNaN returns true or

false regardless of
parameter passed.

Summary element
appears when you typ
opening parenthesis
on function.

graph
can be
nd you
an use
ces to
text in
ry and
meter
tags.

Parameter type
value is optional bu
name and content
description are
required.

To make Visual Studio aware of these for
IntelliSense purposes special triple-hack is used.
www.it-ebooks.info

http://www.it-ebooks.info/

323The DOM
A.2 The DOM
The Document Object Model (DOM) is the API through which JavaScript can gain access
to your pages. The browser will build up this DOM tree of elements and objects and keep
it synchronized with the actual graphical representation in the browser window.

 Your goal is to write great software using HTML and JavaScript, so with the basics of
the language out of the way, it’s time to dig into exactly how you get references to
parts of the DOM using JavaScript.

 In this section, we’ll cover basic rendered HTML element references and events.

WARNING When building a JavaScript application, it’s important to under-
stand that everything you do in your code must execute in the same thread
that your browser is using to perform updates and receive callbacks from
Ajax. This means that any looping you do should be minimized, and any edits
to layout properties should be batched as much as possible. We’ll cover batch-
ing of UI updates in detail later. The only alternative is to use background
threads with the HTML5 Web Workers API, discussed in chapter 7.

A.2.1 Elements

First, you need to understand how JavaScript can get access to elements in the DOM,
and then you can start working with them. This can be handled in a number of ways
using built-in functions.

 There are three primary functions that are available in all browsers, and they’re all
attached to the document object:

■ document.getElementById("searchId") will take the searchId passed in and
return a single element from the current document, if it exists. Remember that
an element’s ID should be unique to the page, so this function returns a single
value: either the element in question, or null if the ID isn’t found.

■ document.getElementsByName("searchName") takes the searchName value and
returns an array of all elements in the document with that name applied.

■ document.getElementsByTagName("searchTag") takes the searchTag value
and returns an array of all elements on the page of that type.

Once you have a reference to an element or an array of elements, there are properties
on each object that you might want to track or edit. Some of these are read-only, but
many can be edited while your application is running. A few that might be important
are the innerHTML and innerText properties. These give you the entire HTML
markup inside an element and the plain text inside that element respectively. The
children property will return a collection of child elements of the current element, if
any exist.

 You can also read attributes using the attribute property of the HTML element
and set each one’s value based on the ordinal position of the attribute in the element
or by its name. This is a little difficult to grasp without an example, so the following list-
ing starts at the top-level body element in an existing page and then walks the entire
www.it-ebooks.info

http://www.it-ebooks.info/

324 APPENDIX A A JavaScript overview

ence.

h

rrent
DOM tree, collecting a few properties from each element along the way. This will also
give you a chance to exercise your newly minted knowledge of functions.

function walkDOMTree() {
 var elements = document.getElementsByTagName("body");
 var properties = [];
 iterateProps(elements, properties);
 console.dir(properties);
}
function iterateProps(elements, properties) {
 for (var i = 0; i < elements.length; i++) {
 var element = elements[i];
 properties.push({
 id: element.id,
 height: element.clientHeight,
 tag: element.tagName
 });
 if (element.children.length)
 iterateProps(elements.children, properties);
 }
}
walkDomTree();

A.2.2 DOM events
While your users are executing your application, there are many events that can be cap-
tured or fired. Your JavaScript code can assign functions to these events and respond to
them whenever they occur. These events can also trigger other events, and so on. Events
also propagate themselves, meaning that they travel into and out of the DOM tree when
fired, depending upon how they’re registered. This warrants a little further explanation.

 There are two phases in every event in the browser: capturing and bubbling. The
capturing phase starts out at the highest level in the document and passes the event
through to the eventual target. The bubbling phase occurs after the event has been
processed at the target and bubbles the event back up from child to parent element,
all the way to the top. While most browsers handle these operations in the back-
ground, you’ll find that sometimes your code behaves unexpectedly when one event
triggers the next, which in turn triggers the first.

 The way to avoid this problem, aside from good coding practices and well-docu-
mented requirements, is to be sure to stay consistent in the way you wire up your event
handlers. The JavaScript addEventListener function, available in all modern brows-
ers, is used to attach functions to DOM events (though it isn’t available in Internet
Explorer before version 9). addEventListener has the following signature:

element.addEventListener(eventName, callbackHandler, useCapture);

The first parameter is the name of the event, like click or blur. The second parameter is
the function to execute when the event fires, and the final parameter is optional and
states whether to fire the function on the capturing phase or bubbling phase of the event.

Listing A.7 Walking the DOM tree and storing properties

Get element refer

Iterate through
each property.

Declare
iterateProps
function.

Walk eac
element
inside cu
element.

Collect data about each
nested element.

When all children
are evaluated
properties array will
contain references.
www.it-ebooks.info

http://www.it-ebooks.info/

325JavaScript environment
TIP jQuery generally uses the bubbling phase for event binding, so you’re
generally safer setting useCapture to false if you need to add an event lis-
tener outside of jQuery. This isn’t a hard and fast rule, though, so do what
makes the most sense in your scenario.

A.3 JavaScript environment
The environment that your code operates in gives you certain advantages in mod-
ern browsers. Not only do you have the full JavaScript language at your disposal,
you also have numerous other tools that can be used to help debug and control the
work being performed.

 In this section, we’ll discuss some of the higher-level pieces of the JavaScript lan-
guage as well as some built-in tooling to help keep your project rolling. Specifically,
this section covers

■ Browser JavaScript engines
■ The JavaScript environment global scope
■ Built-in JavaScript objects
■ JavaScript debugging tools

A.3.1 Browser JavaScript engines

Browser JavaScript engines were not exactly the life of the party just a few years ago.
Performance profiles and benchmarks were available, but they were generally ignored
by most developers. Such is not the case in the current browser market. The game is
on, and all the major players are achieving levels of performance that rival compiled
Java and .NET libraries.

 The reasons for this center around a few vendors deciding that just because your
free email account is entirely browser-based doesn’t mean that it has to be slow and
clunky. Google’s Gmail software broke open new areas of the market and showed that
effective use of JavaScript in the browser can produce a rich, motivational, and intui-
tive experience. Over the last few years, the other browsers on the market got the mes-
sage, refining and replacing JavaScript engines regularly.

 Table A.5 lists the major engines available today.

Table A.5 Browsers and their JavaScript engines

Browser JavaScript engine

Microsoft Internet Explorer Chakra (introduced in IE9)

Google Chrome V8

Apple Safari Nitro

Mozilla Firefox TraceMonkey and most recently JaegarMonkey

Opera Karakan (or Carakan)
www.it-ebooks.info

http://www.it-ebooks.info/

326 APPENDIX A A JavaScript overview
These are names to remember, because along with layout engines, these will be the
most likely causes of browser incompatibilities in your projects. In addition to these
desktop browser engines, each mobile browser you encounter will also have a
JavaScript engine. Unfortunately, the market for web devices is moving so quickly
right now that any information we wrote down would be almost guaranteed to be out-
dated by the time you read it. The easiest place to find information about the latest
browsers is www.caniuse.com.

A.3.2 Global scope

All variables and functions in JavaScript have a specific scope. This scope can and
should be limited to a namespace or a function, but it doesn’t necessarily have to be.
The global scope in JavaScript is where the document object and all of the built-in
JavaScript engine features live.

 Recall the test we did earlier, where we overwrote the navigator object in the
browser. You could just as easily assign a variable in your application to any other
object. Even inside your functions, if you declare a variable incorrectly, it can be
placed into global scope.

 Best practices indicate that you should place all your variables into your own
namespace rather than into the global scope, but how exactly do you do that? The fol-
lowing listing shows the right and wrong ways to make declarations and to declare
variables and functions.

window._app = {
 mode: "clean",
 setupInfo: {
 startUpTasks: {},
 cacheInfo: {}
 }
};

_app.theme = {
 color: "blue"
};

currentUser = {
 userName: "Earnest"
};

An entire JavaScript application working inside a single namespace can be broken up
into as many sub-areas as are appropriate to the application. This results in an archi-
tecture that’s navigable like most .NET applications and performs the same logic-
division function.

Listing A.8 Assigning variables in a namespace instead of the global scope

Create object named _app.

Add mode
property.Add function

property.

Create new object
inside _app object.

Current user has been mistakenly
placed in global namespace.
www.it-ebooks.info

www.caniuse.com
http://www.it-ebooks.info/

327JavaScript environment
A.3.3 Built-in objects

There are a few objects that come packaged in your browser’s JavaScript engine. Some
are user interface containers and others are helper objects that can be trusted to work
the same way across platforms.

NAVIGATOR OBJECT

The navigator object is most often used for either its userAgent string or, in HTML5,
for the geolocation object. There are other important bits to it though, like the
mimeTypes which gives you an array of acceptable media types that can be processed
by the current browser. You can also look at the language variable and check for
cookieEnabled. In addition, there are specific vendor and version properties, but
these are usually retrieved from the userAgent string.

MATH OBJECT

The Math object gives you all the features you’ve come to expect in other software
development languages. Using Math you can round numbers, compute geometries,
and find square roots. If you do any work with geolocation, among other things, you’ll
find the Math object invaluable.

WINDOW OBJECT

The window variable refers to a DOMWindow object, and it’s the top-level browser win-
dow. This is the main area that you have to work with when rendering your applica-
tion. You can measure both the available real estate for your application as well as the
entire space the browser window consumes. window also refers to the global
namespace, so window.myApp and myApp both refer to the same object.

SCREEN OBJECT

The screen object refers to the operating system screen where the browser resides. If
the browser occupies more than one monitor, screen will generally use the largest
screen size available, but this isn’t guaranteed.

More on the navigator.userAgent
The userAgent string is the basis for browser detection and the opposite side of the
coin from direct feature detection for your application. Both methods are used to
determine which browser is currently serving up your application and, by extension,
which features should be enabled or disabled.

Browser detection using the userAgent string should be your second choice when
deciding what features to enable in your application, due to the sheer volume of pos-
sible variations. The userAgent string is different for every version of every browser
on the market. While you can parse out individual values, there’s no guarantee that
the flag you looked for in the last version will be remotely similar in the new version.
This leads to a lot of branching logic. Still, there are certain features and known bugs
that can’t be feature-detected and must be found by searching the userAgent string
for a known value.
www.it-ebooks.info

http://www.it-ebooks.info/

328 APPENDIX A A JavaScript overview
DOCUMENT OBJECT

The document object is the HTML markup that was loaded from a URL location to the
browser. It’s the object representation of your entire HTML document with an API
wrapped around it. It has properties for head, body, scripts, and stylesheets, along
with event handlers that you can wire up in your application.

 The difference between the window object and the document object is that the
window object is provided by the JavaScript environment, whereas document is the DOM
representation of your rendered page, including any changes that you make in your
application. document is a property of window.

 As you saw in the earlier examples, the document object is the starting point for
finding elements in the current page. It’s also the place where you can look at the
body element and determine the overall dimensions of the current page, regardless of
the browser window size. Using the window and body sizes, you can make adjustments
for hiding elements offscreen and bringing them into view smoothly. You can also tell
quickly how much of the page isn’t currently visible.

LOCATION OBJECT

The location object contains properties and methods to manipulate the URL of the
current window. This is pretty straightforward but merits a short example because
you’ll be using location so frequently. The following is a simple URL to play a video:

http://www.youtube.com/watch?v=h9ThvOyrPCw

From this URL, you can get the following information from the location object:

location.protocol = http:
location.host = www.youtube.com
location.pathname = /watch
location.href = http://www.youtube.com/watch?v=h9ThvOyrPCw
location.search = ?v=h9ThvOyrPCw

A.3.4 Debugging tools

Debugging a JavaScript application while it’s running was once very difficult, but the
last few years have added numerous tools to help you investigate systems on the fly.
The developer toolkits that are delivered with modern browsers offer an array of
inspectors and debuggers that can help you understand nearly any facet of your appli-
cation in almost any scenario. The two lowest-level debugging tools, though, are alert
and console.

 The alert() function provided by JavaScript is something that all JavaScript devel-
opers have used, right up to the point where they accidentally put it inside an iterator
that loops one thousand times. A JavaScript alert is just a message box posted by the
browser that must be responded to by the user. Generally, background processes will
stop while the alert appears, but there are circumstances where timers and CSS transi-
tions will continue if they were already started before the alert was triggered.

 The syntax is very simple:

alert("hello world");
www.it-ebooks.info

http://www.it-ebooks.info/

329Object orientation
The problem with alerts is that you have to definitively respond to them; they can’t
just queue up for you to investigate later. That’s where console helps you out.

 The console object in the JavaScript environment is now a part of every modern
browser. You use it by placing one of a series of function calls directly into your code.
When the code is executed, the result will appear in the developer tools that come
with the browser.

 The most common statement is console.log("message");, and it can be used in
any executable place within your JavaScript code. Other methods available in the con-
sole are warn and error. These will display different icons in the console area to help
you more quickly find problems in your executing code.

WARNING Some browsers don’t support console, so use it sparingly or not at all
in production code. There are polyfills for console and many JavaScript libraries
that you can add to your application to provide logging while maintaining back-
ward compatibility. One that’s particularly helpful and stable is Ben Alman’s
debug library: http://benalman.com/projects/javascript-debug-console-log.

One other feature worth noting is the console.assert() method. This is used as a
sort of inline unit tester. When provided with an expression as its first argument, it will
either do nothing when the value evaluates to true, or it will print the string contents
of the second argument. For instance, this statement,

console.assert((Math.PI === 3.15), "No, that is not PI")

will print the message

"No, that is not PI"

whenever your application passes this section of code. While it’s not a real unit-testing
framework, this should certainly help you in a development environment.

WARNING console is only available to you while you’re in development. Con-
sole calls that are still in your code when it goes into production will throw
exceptions. This means that if your users don’t have development tools
installed in their browser of choice (and why would they?) they’ll hit these
exceptions.

A.4 Object orientation
JavaScript is a loosely typed functional language that contains a lot of object-oriented
features. The objects you use in JavaScript aren’t like those you build in .NET. They’re
classless, meaning they don’t have specific object definitions or a predefined inheri-
tance hierarchy. As a prototype-based language, it instead achieves its object-oriented
features by means of a collection of properties and a prototype. Some examples of
how to build out objects should make these concepts very clear.

 In this section, we’ll cover the following:

■ Object declarations and namespaces
■ Dynamic properties and property iteration
www.it-ebooks.info

http://benalman.com/projects/javascript-debug-console-log
http://www.it-ebooks.info/

330 APPENDIX A A JavaScript overview

Prope
instanti

without v
are assi

v
undefi
■ Functions
■ Prototype
■ this and scope
■ A simple object pattern
■ Closures
■ Exception handling

A.4.1 Object declarations and namespaces

We’ve described the idea of namespaces for segregating your application logic from the
global namespace. What you’re actually doing when you instantiate a new namespace is
creating a new object where all of your code can operate, safe from other namespaces
that may have been created by plugins or other libraries like jQuery.

 Normally, you instantiate a namespace by means of an empty object declaration:

var myApp = {};

Once the browser reads past this line of code, the myApp object is available for use.
Although the way you declare additional features on this namespace is different from
.NET code, its use is very similar, as you’ll see shortly.

 To add new properties to this namespace that are themselves other objects you can
reuse the previous technique, separating objects in the hierarchy using dot notation:

myApp.Initializer = {};

A.4.2 Dynamic properties and iteration

Properties on JavaScript objects can be instantiated and assigned when they’re first
used or when the object is instantiated, and they’re always case sensitive.

 The notation for assigning a property and then immediately using it is simple; it
can be done either using braces ([]) or using the dot notation and providing the
assigned value. You can also define the property without assigning a value, in which
case the property will exist but its value will be undefined. This is shown in the follow-
ing listing.

var myObj = {};
myObj["firstName"] = "Rick";
myObj.age = 31;
myObj.weight;
alert(myObject.firstName + " is " + myObject.age +
 " and weighs " + myObject.weight);

The next method of declaring properties is executed when the object is instantiated.
Rather than using the empty curly braces to instantiate a new object, you fill in the
body of the object with the properties you’ll be using. Naming conventions still apply,
and unset properties will still be set to undefined.

Listing A.9 Instantiating properties on JavaScript objects

Declaring property on object using bracketed names.

Properties can also use dot notation if
property names aren’t JavaScript keywords.

rties
ated
alue

gned
alue
ned.

Result should be “Rick is 31
and weighs undefined”.
www.it-ebooks.info

http://www.it-ebooks.info/

331Object orientation
 Inside the object declaration, a colon delimits the property name from its value,
and both must be wrapped in quotes if they contain keywords, special characters, or
spaces. A comma separates each property declaration.

 Individual properties can also be declared as objects using the curly brace notation:

var roadster = {
 year: 1965,
 make: "Ford",
 model: "Shelby 427 SC",
 "top speed": "186 mph",
 engine: {
 displacement: "427 ci",
 horsepower: "500+"
 "red line rpm": 6800
 }
};

A.4.3 Functions

Functions are instantiated similarly to properties except that they get the keyword
function in their declaration and they contain an executable definition. Functions
are very interesting in that they can also be passed around as properties and be
assigned and reassigned as variables. This makes for a very powerful construct that can
do a lot of work with very little code:

var bike = {
 chainRing: 32,
 cog: 12,
 gearRatio: function() {
 return (this.chainRing / this.cog);
 }
};
alert("Gear ratio: " + bike.gearRatio());

A.4.4 Prototype

Every object in JavaScript has a prototype from which it inherits properties and func-
tions. New objects created from an object with a custom prototype will automatically
receive changes to methods and properties, as long as those values aren’t overwritten
in the new object.

 This is difficult to understand without an example, so the following listing should
help to clarify this concept.

function Truck() {
}
Truck.prototype.wheels = 4;

var ford = new Truck();
console.log(ford.wheels); // 4

Listing A.10 Understanding prototypes in JavaScript

Function declarations are
similar to properties except
for use of function keyword.

When executing function
inside object the this keyword
refers to containing object.

Declare truck
function.

Give truck’s prototype
wheels property with
value of 4.

Create new
truck instance.
www.it-ebooks.info

http://www.it-ebooks.info/

332 APPENDIX A A JavaScript overview
var chevy = new Truck();
chevy.wheels = 6;
console.log(chevy.wheels); // 6
console.log(ford.wheels); // 4

Truck.prototype.wheels = 8;
console.log(ford.wheels); // 8
console.log(chevy.wheels); // 6

A.4.5 ‘this’ and scope

If you have children or siblings, the question “who started it?” is probably familiar to
you. In JavaScript, the use of the this keyword is completely dependent upon the
answer to that question.

 this is always available in JavaScript, but what exactly this refers to will be a mat-
ter of scope. this is primarily a means of dealing with objects, be it a JavaScript object
or an HTML element. If an HTML element directly executes a piece of code, that ele-
ment started the execution, and this will be a reference to that originating element.
If the function that’s called then turns around and fires a second function, this will
revert to the default ownership, the window or global namespace:

var el = document.getElementById("myElement");
el.addEventListener("click", elementClicked, false);
function elementClicked() {
 alert(this);
 secondLevelFunction();
}
function secondLevelFunction() {
 alert(this);
}

A second feature of the language, and a significant reason for using unobtrusive
JavaScript, is made apparent when attempting to directly wire up an event to an ele-
ment on the page:

<div id="myDiv" onclick="elementClicked()">Click Here</div>

In the preceding code, this will refer to the global namespace, not to the myDiv ele-
ment. Why? The reason has to do with the way assignments are made.

 When an assignment is made using the onclick="elementClicked()" method, the
assignment is only a reference to the original function. On the other hand, when
the assignment is made using JavaScript, as in el.addEventListener("click",
elementClicked), the click event handler is assigned to an actual object, the element-
Clicked function. The handler now has an in-memory copy of the original function,
not a reference to it. By extension, if changes are made to the original function, they
won’t be available in the copied function.

 It seems obvious that you’d want to use the second method of event assignment
where this actually has a usable value, and the current trend in the JavaScript

Create another
instance but assign
wheels value as 6.

Ford still has
4 wheels.

Change
prototype to
8 wheels.Ford has 8 wheels.

Chevy has 6 wheels.

Assign event handler
to HTML element
using JavaScript.

When executed this refers to
element with ID of “myElement”.

Because no references were passed or
assigned this in second function refers
to window or global namespace.
www.it-ebooks.info

http://www.it-ebooks.info/

333Object orientation
community provides exactly that solution. Unobtrusive JavaScript is a means of devel-
oping applications where binding of events and data is performed apart from the
actual markup. While it can often mean developers new to the paradigm get an
instant headache, the result of assigning functions to elements outside of the markup
is that this will always refer to the originating element. So you’ll always know who
started it!

A.4.6 A simple object pattern

There are plenty of patterns for building objects in JavaScript. The book JavaScript Pat-
terns by Stoyan Stefanov (O’Reilly, 2010) is comprehensive in its coverage of various
object patterns.

 It’s important to understand all of them to some degree, but an example of a sim-
ple object will help you understand how the object is instantiated, as well as some
other features of the language, like closure. Notice also, in the next listing, the use of
the this keyword.

function Counter() {
 this.count = 0;
 var self = this;
 setInterval(function() {
 self.increment();
 }, 1000);
}
Counter.prototype = {
 increment: function() {
 this.count++;
 }
};
var counter = new Counter();

A.4.7 Closures

Closure in JavaScript is both maligned by those new to the language and much loved
once those same developers begin to understand its power. Closure is one of those
concepts that’s very difficult to explain but that gets easier as you see and use exam-
ples of it.

 It starts with the concept that in JavaScript you can declare functions inside of
other functions. This is often handy for event handlers and callbacks. One interesting
feature of these nested functions is that the inner function has direct access to all of
the variables declared in the enclosing function, even if the enclosing function is no
longer running. This feature is called ‘closure’, and it can be very handy.

 Here’s an example:

function outer() {
 var count = 1;

Listing A.11 A simple JavaScript object

Define counter function.
Assign variables to
store reference to self.

When created start timer
that increments every second.

Prototype contains the
increment function.

When new counter object is
instantiated timer will start.
www.it-ebooks.info

http://www.it-ebooks.info/

334 APPENDIX A A JavaScript overview
 function inner() {
 count++;
 }

 console.log(count);

 inner();
 console.log(count);

 setTimeout(inner, 5000);
 console.log(count);
}

What does this really mean? Basically, it comes down to a question of scope and
where a particular variable or object is or isn’t available.

 When an anonymous function is created to handle the callback event of an Ajax
request, that function is called separately from the original wrapper, but the variables
declared inside that wrapper are still available due to closure. In the previous object
example, notice the line inside the setInterval callback function that refers to the
self variable. Even though this is executing inside a separate function, the Counter
object provides the closure mechanism, so self is still available and contains a value.

 We won’t go into any additional detail, but we do reference the concept when we
encounter it and explain in context throughout the rest of the book. In the end, if you
understand closure and selectors in JavaScript and jQuery respectively, you’re well
ahead of the game.

A.4.8 Exception handling

Exception handling in JavaScript uses the same structure as C#, and it’s not very differ-
ent from Visual Basic.NET, so this section should be a quick review for you.

 There are three parts to an exception-handling block: try, catch, and finally.
They work almost exactly as you would expect, except for the fact that both the catch
and finally blocks are optional in JavaScript, whereas only the finally block can be
omitted in C#.

 The following listing shows some basic options.

try {
 // do work and ignore all exceptions
}

try {
 // do work
}
catch (ex) {
 alert(ex.name + " " + ex.message);
}

try {
 // do work
}

Listing A.12 Various optional try/catch/finally exception management blocks

Still equal to 1;
we haven’t run
inner() yet.

Now equal
to 2.

Still equal to 2,
setTimeout
won’t fire for
another
5 seconds.

When it fires in
5 seconds count
will be 3 even
though outer() is
no longer running.

try block with no
exception management
will ignore all errors.

Normal try/catch
block where no additional
processing is necessary
after an exception.

Full try/catch/
finally block where all
optional areas are used.
www.it-ebooks.info

http://www.it-ebooks.info/

335Communications
catch (ex) {
 alert(ex.name + " " + ex.message);
}
finally {
 // finish up
}

Your JavaScript application also has the ability to throw a new exception simply by
using the throw keyword:

throw new Error("An error was thrown.");

All exceptions have at least the name and message properties, but you can add more,
and some browsers also add more information, like the line number where the excep-
tion was thrown. Be careful of relying on these extended exception features, though,
because they vary between browser vendors.

A.5 Communications
JavaScript can make asynchronous requests back to a server using Ajax, and it can also
load data and files directly from a URL. These capabilities allow you to build extremely
smooth yet lightweight interfaces.

 In this section, we’ll cover the following topics:

■ XmlHttpRequest object
■ Sending data to a server
■ JSON and JSONP
■ Basic JSON syntax
■ Complex JSON syntax

Selective catch
It’s also possible to catch multiple different kinds of exceptions, but in this case
you’ll need to check the type of each error using the instanceof operator:

catch (ex) {
 if (ex instanceof TypeError) {
 // Handle TypeError exception
 }
 else {
 // Handle other exceptions
 }
}

The following specific error types can be used in catch blocks: Error, RangeError,
ReferenceError, SyntaxError, TypeError, and URIError.

Full try/catch/
finally block where all
optional areas are used.
www.it-ebooks.info

http://www.it-ebooks.info/

336 APPENDIX A A JavaScript overview

 HTTP
ries
eady.
A.5.1 XmlHttpRequest

The first thing that you need to understand about asynchronous communications
with JavaScript is the XmlHttpRequest object. This is otherwise known as Ajax.

 This object requires four operations to make it work:

1 Declare an XMLHttpRequest object.
2 Assign an OnReadyStateChange handler function.
3 Open the request object.
4 Send the request.

The following listing shows the minimal requirements to make a request for a file in
the same location as the current HTML page. This assumes a server is available to han-
dle the requests and responses, of course.

var req = new XMLHttpRequest();
req.onreadystatechange = function() {
 if (this.status === 200 && this.readyState === 4) {
 alert("Response: " + this.response);
 }
}
req.open("GET", "test2.html");
req.send();

A.5.2 Sending data

It’s also possible to send data using the XMLHttpRequest object. To do this, you pass
your data package in the send function call and assign a request header content type
parameter.

 The data you send should be formatted based on the content type you assign:

var req = new XMLHttpRequest();
var data = "fname=Abraham&lname=Lincoln";
req.open("POST", "postValues.html");
req.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");
req.send(data);

A.5.3 JSON and JSONP

Other than HTML, the three kinds of data you’ll generally use are XML, JSON, and JSONP.
We’ll be sticking with JSON and JSONP here because of their wide acceptance in the
JavaScript community, their easy-to-follow syntax, and their relatively small payload size.

 For instance, the following content shows the difference between the same person
object represented in XML versus JSON. The XML data would have to be parsed,
whereas the JSON data, in addition to being much smaller, can be used to directly
hydrate a new JavaScript object:

<person>
 <firstname>John</firstname>

Listing A.13 XmlHttpRequest used to GET data from the server

Status code is a standard
value, and readyState va
from 0 to 4 where 4 is r

Response value
of request will
contain all data
from server.

When opening
request standard
HTTP methods are
always used.
www.it-ebooks.info

http://www.it-ebooks.info/

337Communications
 <lastname>Hancock</lastname>
 <birthdate>Jan 23 1737</birthdate>
</person>

{
 "firstname":"John",
 "lastname":"Hancock",
 "birthdate":"Jan 23 1737"
}

JSON stands for JavaScript Object Notation, and it’s used for transferring text-based
data from one point to another over HTTP. It can and has been used for many other
purposes, but its roots are in the web. JSON uses specific characters to wrap text into
serialized fields with very little effort and overhead. It’s fast, human readable, and
broadly supported.

 JSONP stands for “JSON with Padding,” and it’s used to get JSON data from a
remote site. If the data were regular JSON, it would break the same-origin policy built
into JavaScript, so instead, a function wrapper is placed around the data and the
entire package is sent as a script. Because scripts can be loaded from any origin, the
function returned by the script is evaluated and read into memory as data, even
though it’s technically a script and not a JSON data island.

A.5.4 JSON syntax

JSON syntax is extremely simple. Data types of values are implied, not specified, the
objects need not conform to a specific schema, and arrays of objects can contain any-
thing. When parsed, a JSON data island will contain an object or an array of objects
containing only name/value pairs.

 Here are the basic rules:

■ Curly braces {} wrap each object instance.
■ Each property in an object has a name and value separated by a colon.
■ Each property in an object is separated from the next by a comma.
■ Property names and property values that are strings are quoted.
■ Square brackets [] wrap each array instance.
■ Objects in arrays are separated by a comma.
■ Object properties can be other objects or arrays.
■ Whitespace is allowed between any elements.

Here is a simple JSON object:

{"fname":"George","lname":"Washington"}

This code will result in the direct creation of a JavaScript object with two properties,
each with a value.
www.it-ebooks.info

http://www.it-ebooks.info/

338 APPENDIX A A JavaScript overview
A.5.5 Complex JSON objects

Some projects will require sending large amounts of data to the client, and JSON is per-
fectly capable of doing this as well. This JSON code contains an array of two objects, each
containing a timeline that can be immediately parsed and used in JavaScript.

[{
 "Timeline":"1800s",
 "StartYear":1800,
 "EndYear":1899,
 "Events": [
 {"Date":1803, "Event":"Louisana Purchase"},
 {"Date":1808, "Event":"Napoleon Occupies Spain"},
 {"Date":1821, "Event":"Missouri Admitted"},
 {"Date":1828, "Event":"Greece Wins Independence"},
 {"Date":1845, "Event":"Texas Admitted"},
 {"Date":1848, "Event":"California Gold Rush"},
 {"Date":1896, "Event":"Utah Admitted"}
]
},
{
 "Timeline":"1900s",
 "StartYear":1900,
 "EndYear":1999,
 "Events": [
 {"Date":1917, "Event":"US Declares War"},
 {"Date":1920, "Event":"Prohibition"},
 {"Date":1933, "Event":"TVA"},
 {"Date":1941, "Event":"US Declares War"},
 {"Date":1959, "Event":"Alaska Admitted"},
 {"Date":1963, "Event":"Kennedy Assassinated"},
 {"Date":1983, "Event":"Star Wars"},
 {"Date":1991, "Event":"Desert Storm"}
]
}]

Throughout this book, we send most data using regular JSON calls. Both WCF web APIs
and MVC 3 support JSON data natively, so you should consider it a core part of your
data strategy.

A.6 Structured libraries
A library in JavaScript refers to a single file or a group of files that are deployed and
operate together within an application. The term structured library generally refers to a
library that operates autonomously, either as an independent functioning unit or as
a foundation for a larger application. This is really not a technical term but rather a
way to describe how a specific library should be deployed and used.

 In this section, you’ll find information on the following topics:

■ Libraries
■ Script locations
■ Non-blocking scripts
www.it-ebooks.info

http://www.it-ebooks.info/

339Structured libraries
■ Immediate functions and object initialization
■ JavaScript file operations

A.6.1 Libraries

A single library loaded using a script tag in an HTML page or loaded asynchronously
will usually execute all of its code immediately. This isn’t to say that it will fire all
events and perform all work, but rather all structural elements and global elements
will be immediately created and loaded into memory. This makes the order of the
script tags in your pages very important.

 Remember that when JavaScript encounters a variable that isn’t already instanti-
ated, it will try to create it. If a piece of code is expecting a default value and encoun-
ters undefined, it will usually throw an exception. Likewise, a property nested in an
object that has not been instantiated will also throw an exception.

A.6.2 Script locations

A script tag can be in any location in your page, within either the <head> or <body>
tags, but there are two primary locations where they’re most effective.

 The first location is in the <head> element, where you’d expect it. Place files here
only if they have code that will dynamically change the layout of the page. Although
most of your layout should come from CSS, it’s possible that certain scenarios will
require you to make tweaks based on conditions in the browser. Scripts in the <head>
element will block execution of the page, so be sparing in their use and size.

 The second location has been extensively performance tested by the Yahoo User
Interface team (responsible for the YUI library) and should be your primary location
for setting up script references. This is at the end of the <body> element, just before
the closing tag. Placing scripts here allows them to load after the rendering of the
page has completed and, in modern browsers, allows the browser to start downloading
scripts before rendering is even complete. For a complete discussion, go to http://
developer.yahoo.com/performance/.

A.6.3 Non-blocking scripts

When a JavaScript file loads, it will block rendering in the browser, regardless of where
the script is loaded. While placing scripts at the end of the <body> tag helps, if you’re
loading many files or large libraries, there’s still the possibility that some startup task in
your application can be blocked by loading a library that won’t be needed until later.

 There’s a defer attribute of a <script> tag that can help with Firefox and Internet
Explorer, but it’s hardly a workable solution for cross-browser software and it only causes
the script to wait until the browser determines that the document is ready. What you
really need is the ability to, in code, decide when a script needs to be loaded.

 That’s the purpose of the addScript function in the next listing. This bit of code
will dynamically download a script any time it’s required and give it an ID that will pre-
vent it from being reloaded on the page.
www.it-ebooks.info

http://developer.yahoo.com/performance/
http://developer.yahoo.com/performance/
http://www.it-ebooks.info/

340 APPENDIX A A JavaScript overview
function addScript(url) {
 var id = url.replace(/[^\w]/gi, "");
 var element = document.getElementById(id);
 if (!element) {
 element = document.createElement("script");
 element.type = "text/javascript";
 element.src = url;
 element.id = id;
 document.getElementsByTagName("head")[0]
 .appendChild(element);
 }
}

This code will load the script once and only once, and execute it after it has loaded
the first time. If your program makes structural or data changes to the library, these
won’t be affected by any attempts to reload the script.

A.6.4 Immediate functions and immediate object initialization

One of the ways to keep the global namespace a little more clean is to use JavaScript’s
immediate execution syntax. When a script is wrapped and then immediately exe-
cuted, it’s operating inside its own functional space, isolated from other areas of the
application. There are two flavors of immediate execution: immediate functions and
immediate object initializations.

 An immediate function is wrapped in parentheses and then has parentheses after
it to provide the cue to “run this now.”

(function () { ... })();

You can also return a value from inside an immediate function by returning and
assigning a value to a variable:

var x = (function () { return 10; })();

And finally, you can pass variables to an immediate function:

var greet = (function (fname, lastname)
{
 return "Hello " + fname + " " + lname;
}("Ian", "Gilman");

Immediate object initialization uses similar syntax, except that it uses object notation
rather than a functional wrapper. The following listing describes an object that sets up
an operating environment upon initialization. The object is wrapped in parentheses
and then a startup method of the object is immediately called. Once parsed and exe-
cuted, this object is immediately available.

Listing A.14 A script loader that doesn’t block processing in the host application

Generate new element id
based on script file URL.

See if script already
exists on current page.

If script is new create new
element of type script.

Set source of new script
element to input parameter.

Load element onto current
page. This also executes code
after loading is complete.
www.it-ebooks.info

http://www.it-ebooks.info/

341Structured libraries
({
 start: function() {
 // Perform startup tasks here.
 }
}).start();

A.6.5 JavaScript files

So you’re working furiously on your project, building out “the next big thing” in
HTML applications, and you realize that your application is starting to slow down. Fur-
ther investigation leads to the discovery that you’re loading 23 JavaScript files with
every page and have ten thousand lines of code. What to do?

 Well, you have a number of options, all of which can work together to make a good
solution. Visual Studio will perform the following tasks on your JavaScript files for you,
but for now a good understanding of what they mean will be useful.

 Each of these performance enhancements can be used with Visual Studio as either
a predeployment script or as a post-build command in the development environment.

MINIFICATION

Minification of a JavaScript file refers to the removal of whitespace and comments in a
file. If you open a minified file in a text editor with word wrapping off, it will generally
appear as one long continuous line of text. Some minification tools also rename long
variable and function names to shorter versions.

 Minification can save a lot of space in your JavaScript files, and most of the devel-
opment tools available for browsers can “prettify” JavaScript on the fly as you’re
debugging. This indented and carriage-returned version won’t be as readable as the
original if you have shortened names, but minification is the most common perfor-
mance improvement a JavaScript application gets, and nearly all open source libraries
ship with development and minified versions.

COMBINE

Because each JavaScript file downloaded will require a new connection to the server
(if it hasn’t been previously cached), it sometimes makes sense to combine multiple
JavaScript files into a single file for deployment. This doesn’t hurt execution and
speeds application load time if there are a lot of files to process.

COMPRESS

File compression goes a step or two beyond normal minification procedures. It takes a
little longer to execute and can sometimes introduce bugs into the resulting libraries
as part of the compression process. A JavaScript compressor will take the existing
JavaScript and use various algorithms to shrink it to the smallest functional piece of
code and then minify that code. Most names inside the code are changed, and func-
tions can be completely rewritten or relocated inside the code. Don’t expect to have
easily debuggable code after compression has been performed on it.

Listing A.15 Immediate object initialization
www.it-ebooks.info

http://www.it-ebooks.info/

342 APPENDIX A A JavaScript overview
A.7 jQuery
Now that you have a foundation for understanding the JavaScript language, it’s time
to take our discussion to the next level. jQuery is John Resig’s creation and has, in just
a few short years, revolutionized web and JavaScript development. A number of Micro-
soft product managers and evangelists have a penchant for saying that many develop-
ers don’t code JavaScript anymore, they code in jQuery.

 The basic building block you’ll need to start using jQuery is the library itself. You
can get it from http://jquery.com for free. Include it in a script tag in your application
either as a local file or as a CDN-based reference, and your application will immediately
have the $ available for use. The $ sign is an alias similar to the _app alias you set up in
an earlier example. Using $ you can find elements and execute jQuery functions.

 We cover many examples of jQuery throughout this book. This basic understand-
ing of the nomenclature and how to turn the key and start the engine of jQuery in
your application will help you here and in your personal and professional projects.

 In this section, you’ll gain knowledge of the following:

■ jQuery selectors
■ Wrapped sets
■ Chaining
■ Event handling
■ Animations and effects
■ Ajax
■ jQuery helper utilities
■ Extending jQuery with plugins
■ Including jQuery in a project

Understanding JavaScript licensing for production applications
Most open source projects come with some kind of license that allows you to use
them in your projects. These licenses almost always require that the original author
be attributed in the code via comments and that the licensing model also be
included. Minification and combining of JavaScript in your application can result in the
removal of these comments, thus breaking the licensing agreement that allowed you
to use the code in the first place.

If you need to do your own minification of an open source library and can’t get the
comments to be reinserted after the fact, your best option is to contact the original
author and see about putting a global licensing text document in your project some-
where, and refer to it using a variable inside your code:

var OpenSourceLicense = "http://ellipsetours.com/licenses.html";

Just remember that the code belongs to the original author, and they have a right
to attribution.
www.it-ebooks.info

http://jquery.com
http://www.it-ebooks.info/

343jQuery
A.7.1 Selectors

Understanding CSS selectors is one of the most important skills in JavaScript develop-
ment because most of jQuery’s DOM manipulation is handled by means of selectors.
Using selectors you can select one or many elements by ID, class name, tag type, posi-
tion in the DOM, or by the existence of particular attributes. For instance, to find all
<div> elements on a page, you’d use $("div"), and you could begin to work on these
elements as a group or iterate through them to do work individually.

 Proper use of selectors is key to the incredible amount of work you can do with just
a tiny bit of code using jQuery.

A.7.2 Wrapped sets

A selector in jQuery returns a wrapped set. Wrapped sets can contain no objects, a sin-
gle object, or a collection of objects. To determine how many objects have been
returned by a selector, you can call the length property on the wrapped set:

$("div").length;

Remember that when you’re executing a selector, you’ll be returning a wrapped set,
so be very careful. Applying a style to all <div> elements on a page is generally not a
good idea, but the code to do it is deceptively simple.

A.7.3 Chaining

Once you have a wrapped set, you can start to execute functions on it. In jQuery, each
function returns the result of the work performed, so if you want to remove all <div>
elements on your page that have the class name of highlight, you could do this:

$("div.highlight").remove();

The result returned from the remove() function is a wrapped set of the elements just
removed from the DOM. You could then reinsert those elements in another location
on the page using the appendTo() function, and so on.

A.7.4 Event handling

jQuery allows you to bind functions directly to event handlers in the DOM simply by
using the bind() function, the click() function, or any of various other built-in
event-handling functions. In coordination with selectors, you can wire up event han-
dlers on a form or page very quickly and reliably.

A.7.5 Animations and effects

jQuery has a number of animations that can be applied to the CSS properties of ele-
ments, like fading them in and out of view or sliding them around the page based on
user interaction. You can apply various effects to these animations using delay timers
to chain effects together and, as you’ll see in the next section on jQuery UI, there’s
also a set of additional features that start where the basic jQuery library leaves off.
www.it-ebooks.info

http://www.it-ebooks.info/

344 APPENDIX A A JavaScript overview
A.7.6 Ajax

jQuery has built-in support for Ajax requests to get JSON data, POST data to a server, and
perform any other asynchronous task you like. The latest versions of jQuery have a com-
pletely new Ajax implementation that promises to provide even easier implementations.

A.7.7 jQuery helper utilities

The jQuery library also has a number of utility functions that will help you parse JSON,
build and manipulate arrays, and create copies of existing objects. We’ll deal with
each as we encounter them in the various examples throughout the book.

A.7.8 Extending jQuery with plugins

One of the best features of jQuery is the ability to extend it with plugins. There are lit-
erally thousands of plugins available for free that will do practically any kind of work
you like. Some are helpful just for learning specific features, and others provide sup-
port for things like URL manipulation. Whatever the repeatable task you want to per-
form, there’s likely a plugin already out there to do it. The only question will be
whether you want to add the plugin to your project or use what you learn from its
code to build your own implementation.

A.7.9 Including jQuery

We mentioned briefly that you just need to include the jQuery library as a script tag in
your page to start using it. This can take a number of forms. The simplest is to go to
the jQuery site and download the latest debug and minified versions, and include
them in your project. There are other options though.

 The best way is to use a content delivery network (CDN) that will use edge-cached
servers to provide files, often more quickly than your own server can. Using the Microsoft-
or Google-hosted CDN versions of jQuery is also helpful, because your browser will cache
that file from that location and be able to use it if another site makes the same request.
The overall performance of all projects that use jQuery is improved when you use a CDN.

 The Microsoft CDN has a page at http://www.asp.net/ajaxlibrary/cdn.ashx with
links to all the latest libraries, including debug versions that have Visual Studio com-
ments built in! This alone should make learning jQuery a much faster journey.

 The Google CDN is located at http://code.google.com/apis/libraries/ and has
links to various pages containing links to multiple versions of jQuery and jQuery UI,
along with many other libraries.

A.8 jQuery UI
Although we use jQuery as the DOM manipulation and application framework
throughout the book for application logic and page manipulation, there’s another
library that we’ll be relying on for additional presentation help: jQuery UI.

 Available from the same CDN locations as jQuery, jQuery UI provides three basic
features to your application:
www.it-ebooks.info

http://www.asp.net/ajaxlibrary/cdn.ashx
http://code.google.com/apis/libraries/
http://www.it-ebooks.info/

345jQuery UI
■ Widgets
■ Effects
■ Themes

Here’s the 15-second drill on each.

TIP jQuery UI is a separate project and development team from jQuery
proper. This means the release schedules are different and version numbers
aren’t coordinated. There is, however, plenty of communication between
teams, so you can expect that any incompatibility between versions will be
thoroughly documented.

A.8.1 Widgets

A widget is a user interface element that jQuery UI creates for you that encapsulates a
specific functionality. By including jQuery UI in your project, you no longer have to
build your own custom datepicker control or tabbed interface. Widgets can be
declared in code that you would normally have to create yourself. Each widget comes
with its own set of properties and events.

A.8.2 Effects

Effects in jQuery UI are extensions to the basic effects in jQuery. You can add custom
or prebuilt Bezier functions to animations and animate colors, and there are more
involved effects for showing and hiding content.

A.8.3 Themes

Themes in jQuery UI are usually built using ThemeRoller, a tool that works in Firefox to
help you build out custom themes. The theme itself consists of stylesheets and JavaScript
files that, when included in your project, will give it a very polished look and feel.
Themes are sets of styles with very specific names that jQuery UI components will use to
automatically change user interface properties and states when events are fired.

 We’ll discuss some of the operations and features available in jQuery UI in this book,
but if you want a deeper understanding, you should consider the latest edition of jQuery
in Action by Bear Bibeault and Yehuda Katz (Manning, 2008). This book has an entire
section on jQuery UI that will help you gain a more complete understanding.

A.8.4 Component inclusion

Because jQuery UI has so many different components, the development team took a
different approach from the default jQuery library CDN distribution model. When
you navigate to http://jqueryui.com/download, you’re presented with a set of options
that allow you to decide which specific options you want in your application and to
download only those. This makes for a much lighter library in your application. If you
decide later that you want some other features, just rebuild your custom download
and you’re ready to go!
www.it-ebooks.info

http://jqueryui.com/download
http://www.it-ebooks.info/

appendix B
Using ASP.NET MVC

As a .NET developer building an HTML application, you have a number of decisions
to make, not the least of which is the server-side framework and toolset to use.
There are plenty of options in the industry and quite a few even within the scope of
.NET development.

 We’ll focus here on ASP.NET MVC, a web framework with rich templates for
Visual Studio, ideal for building HTML5 applications. MVC is part of a larger web
programming topology in the Microsoft stack that includes classic ASP.NET and
ASP.NET Web APIs.

 The approach to this family of tools lately has been to consider them all as
“web applications” and not to differentiate too much between them. This is fine if
you’re a developer with a clear understanding of the advantages, disadvantages,
and patterns in each of the tools, but it doesn’t help you understand where each of
the applications fits in if you’re new to HTML applications. This appendix will
teach you the basics of an ASP.NET MVC application so that you’re comfortable
enough with the templates to build the sample applications throughout the rest of
this book.

B.1 Using MVC
MVC stands for Model-View-Controller, a development pattern that helps with the
clear separation of concerns when developing a website (see figure B.1). The
model in this pattern maintains business logic and the view provides the presenta-
tion. The controller responds to actions from the view and can react by redirecting
the client to a different view, by manipulating model data in some way, or both.

 The beauty of MVC for an HTML application developer is the clarity of the
markup you can create, and the speed at which you can create it. Other frameworks
are a bit more drag-and-drop, such as traditional ASP.NET Web Forms and non-
Microsoft tools such as Dreamweaver; MVC, in contrast, requires you to understand
346

www.it-ebooks.info

http://www.it-ebooks.info/

347Starting a new MVC application
the actual markup that will exist in your page when you build the user interface. This
helps keep you, as a developer, more in touch with the possible semantic aspects of
your pages, which should help in maintainability and readability.

 MVC also has the concept of master pages, which allow you to leverage default
layouts in your application so that you can focus on the actual content. The Razor
view engine that’s packaged with MVC makes for very productive application inter-
face build cycles. It also doesn’t hurt that the MVC pattern is quite common
throughout the non-Microsoft web development industry, so your skills with this
framework will give you a head start in learning and understanding other develop-
ment frameworks.

B.2 Starting a new MVC application
The sample application in this appendix will be a set of simple signup pages for an
email newsletter. It will be built using Visual Studio 2012, but where appropriate we’ll
add notes to show differences between this and the previous version of Visual Studio.
The signup page will have field-level rules applied both on the client and on the
server, and it will have the ability to check the server for a list of all current subscrib-
ers. Let’s get started.

B.2.1 Getting (or updating) ASP.NET MVC

In order to use the MVC framework in Visual Studio 2012, you must have the appropri-
ate templates and Visual Studio add-ins installed. These templates are installed by

• Build presentation

• Implement client-side interactivity

• Respond to View requests

• Respond to direct requests

• Communicate with other Controllers

• Communicate with Model

• Implement server-side business rules

• Handle structured data

• Data persistence

• Data manipulation

View

Controller

Model

Figure B.1 The MVC pattern
clearly separates a web
application into specific parts.
www.it-ebooks.info

http://www.it-ebooks.info/

348 APPENDIX B Using ASP.NET MVC
default in Visual Studio 2012 and will work
with all web development versions of Visual
Studio, including the free Express version.

 If your version doesn’t have the ASP.NET
MVC templates installed, go to http://www
.microsoft.com/web/downloads and you’ll
be presented with the option to download the
Web Platform Installer (figure B.2).

 The Web Platform Installer will review your
system and present an interface that shows you
what is and isn’t installed in your system. If you
don’t already have ASP.NET MVC with any
Tools Updates installed under the Products
menu, click the Add button and then the
Install button to get them (figure B.3).

TIP Be sure to pick the latest version of ASP.NET MVC because it’s released
out-of-band from the normal Visual Studio and .NET Framework releases.
This means it can be updated far more often than the core frameworks and
developer tools. The version used in this appendix is ASP.NET MVC 4.

Figure B.3 Finding and starting the installation of ASP.NET MVC

Figure B.2 The Web Platform Installer, free
from Microsoft
www.it-ebooks.info

http://www.microsoft.com/web/downloads
http://www.microsoft.com/web/downloads
http://www.it-ebooks.info/

349Starting a new MVC application
Accept the terms of use and begin the installation (figure B.4).
 When the installation is complete, confirm the installation in the window that’s

presented and exit the Web Platform Installer. That’s all there is to it! You’re ready to
start building an ASP.NET MVC web application.

B.2.2 Steps to building a new application

Now that you have the latest tools for your development environment, it’s time to
start building.

 Open Visual Studio and select File > New > Project from the menu. In the dialog
box that appears (figure B.5), find the latest version of the ASP.NET MVC Web Applica-
tion template. Name it MVCNewsletter and click OK.

 Once you select the template and give it a name, you’re presented with another
dialog box (figure B.6) that allows you to decide what kind of plumbing (if any) to
build into your new application by default.

TIP Just because you select an empty application template doesn’t mean that
you won’t be able to take advantage of the MVC add-ins to Visual Studio that
enhance your development experience. On the contrary, all features will still
be available to you, but you won’t get any of the basic security structures or
styling starters that come with the other templates.

For this example, you’ll be building an Internet Application, using the Razor engine.
This will, by default, give you HTML5 semantic markup in your pages. For now, leave

Figure B.4 Installing ASP.NET MVC
www.it-ebooks.info

http://www.it-ebooks.info/

350 APPENDIX B Using ASP.NET MVC
Figure B.5 The new ASP.NET MVC Web Application template

Figure B.6 The MVC site template selector
www.it-ebooks.info

http://www.it-ebooks.info/

351Walking through an MVC application
the Create a Unit Test Project check box unse-
lected. This application won’t include unit tests.
Click OK to build your base project.

 When it’s complete, your solution structure
should look something like figure B.7. Take note
of the various folder names and where files are
located throughout the structure. We’ll be refer-
ring back to the folder structure throughout the
rest of this appendix.

 Believe it or not, you now have a working MVC
web application! Press F5 to run your application,
and you should see something similar to figure B.8.

 You’ve built an MVC application, but you still
don’t know any more about how it works than
when you started. A look through the code gener-
ated in the template will be a useful exercise, so
that’s what we’ll do next.

B.3 Walking through an MVC
application
A look at how the various pieces in your basic
application operate will help you understand MVC
in general. More specifically, it’ll show you how
you can get your markup and data into the
browser where the real fun begins!

NOTE One thing worth mentioning about MVC
is that the pattern is storage-agnostic. This means there’s nothing in the
pattern that prescribes how you should store or retrieve stateful data. This
is good, because storage technologies and mechanisms can be vastly differ-
ent, and they often depend on the deployment environment infrastructure
and can’t be chosen by a developer. When using MVC, the web application
developer can focus more on the business rules and user experience than
on data persistence.

B.3.1 Models

The model in the MVC pattern is the part that handles business rules and structured data.
It could be referred to as the “business objects,” but that would be too limiting. In fact,
the model should mimic the way the data is used in the application, which may include
somewhat more or less than would be required in a conventional business object.

 Take listing B.1, for example; the LogInModel object (found in the Models\
AccountModels.cs file) has only three properties: UserName, Password, and RememberMe.
These properties are annotated using data attributes corresponding to business rules.

Figure B.7 The starting solution
structure of an MVC internet
application
www.it-ebooks.info

http://www.it-ebooks.info/

352 APPENDIX B Using ASP.NET MVC
More complex models can have methods and custom rules applied, but those rules
are usually limited to only what is required to perform model-specific tasks. There’s
no need to build an entire user object with a complete object graph when all you
need are these three bits of information to log the user into the system.

public class LogInModel
{
 [Required]
 [Display(Name = "User name")]
 public string UserName { get; set; }

 [Required]
 [DataType(DataType.Password)]
 [Display(Name = "Password")]
 public string Password { get; set; }

 [Display(Name = "Remember me?")]
 public bool RememberMe { get; set; }
}

Listing B.1 The LogInModel object in the default MVC template

Figure B.8 A beginning MVC site with no content added

Data annotations used to efficiently
implement some rules; others require
use of coded logic directly in model.

Only UserName, Password, and
RememberMe properties required for
user to log in, so these are all that are
used in this particular model.
www.it-ebooks.info

http://www.it-ebooks.info/

353Walking through an MVC application

ses
to

se
Take a look at the other model objects in the AccountModels.cs file that’s included
by default in the template you used to build the project. The RegisterModel contains
some information that’s shared with the LogInModel and some additional properties,
but it’s missing the RememberMe field because it’s not required for a user to register
on the site. Efficiency and a view toward the final use of the data are key in develop-
ing your models.

 Speaking of efficiency, there are times where, in simpler areas of an application, a
model isn’t required but is instead inferred. If your application needs to retrieve a bit
of data from the server, the model doesn’t exist as an independent set of objects, but
rather as the result of a call to or from storage. The pattern still fits this situation, but
the model is less tangible in the code.

 This use of multiple objects with similar sets of properties all corresponding to the
same real-world entity is called domain modeling. A domain model is one that tries to
view the whole system at once, including all business problems it involves. A finished
domain model will have objects, functions, and composites of these that solve all the
business problems as efficiently as possible with no excess.

 In looking at the model in MVC, you should look for the specific problem you’re deal-
ing with and use the object or base type that most closely solves it. For example, to check
on whether a user’s account has been suspended, you can make a service call to a server
and return a Boolean value. In that case, the Boolean value would be the model.

B.3.2 Controllers

The next part of the pattern is the controller. Controllers handle user interaction and
respond using model data and business rule validations. The controller is then responsi-
ble for determining which view to return to the client. We’ll discuss views shortly.

 In ASP.NET MVC, the controller responds to client requests by means of action
methods, and MVC application routing is used to determine which action method of
which controller should be used. Controllers may contain one or many action meth-
ods, each responding to a different signature combination of URL and parameters.
Controllers should be considered your primary application organizing tool in an
MVC application.

 The following listing shows a good example of a controller that handles multiple
action method calls.

public ActionResult Register()
{
 return View();
}

[HttpPost]
public ActionResult Register(RegisterModel model)

Listing B.2 Sample AccountController methods in the MVC 3 template

Default call to the /Account/
Register URL results in an empty
model being passed to Register
view object. This displays an empty
form that’s ready for user input.

 b POST method u
model binding
parse incoming
values into a
RegisterModel
object. GET
methods also u
model binding.

 c
www.it-ebooks.info

http://www.it-ebooks.info/

354 APPENDIX B Using ASP.NET MVC

{
 if (ModelState.IsValid)
 {
 // Attempt to register the user
 MembershipCreateStatus createStatus;
 Membership.CreateUser(
 model.UserName,
 model.Password,
 model.Email,
 null, null, true, null,
 out createStatus);
 if (createStatus == MembershipCreateStatus.Success)
 {
 FormsAuthentication
 .SetAuthCookie(model.UserName, false);
 return RedirectToAction("Index", "Home");
 }
 else
 {
 ModelState.AddModelError(
 "", ErrorCodeToString(createStatus));
 }
 }
 // If we got this far, something failed, redisplay form
 return View(model);
}

You’ll notice that the call to Register() is practically empty B. It just returns
View(). What does this mean? Well, in the convention-over-configuration methodology
of MVC, this will cause the framework to go look for a View object named Register,
preferably inside the Account folder of the application (because you’re using the
Account controller).

 Convention-over-configuration means that the application will execute tasks based
on the names of objects. When you call http://mysite.com/Account, MVC will look for
an AccountController object with an Index method. No custom code needs to be
written to make this happen; it’s simply the convention that the name of the HTTP
URL action corresponds to the name of the controller, and the default view will always
be named Index.

 Next, notice the second overloaded instance of Register() that has an HttpPost
attribute assigned c. It takes a RegisterModel object as a parameter. This combi-
nation of attributes and properties means that when the view does a form POST to
the /Account/Register URL, this method will try to parse the incoming parameters
into a RegisterModel object and then work with that object to register the current
user. When complete, the controller responds with the RegisterView containing
updates made to the model by the user. This process of transforming the incoming
parameters into a model object is called model binding, and listing B.2 shows these
two methods.

 There’s certainly a lot happening inside the AccountController object. As the
main organizing object in an MVC application, controllers are the hub around which

Properties of model are
validated and ModelState.IsValid
Boolean is checked.

Once object is valid object’s
properties are processed into data
store to officially register user.

If registration was handled
properly user is registered
and you can call
RedirectToAction method
using Index method of
Home controller.

If there was an error
view is returned to
user and ModelState
will include exceptions
encountered.
www.it-ebooks.info

http://mysite.com/Account
http://www.it-ebooks.info/

355Walking through an MVC application
everything else turns. As mentioned, which method of which controller responds to a
specific URL call from the client is based on the routes assigned in the application.
That’s our next stop on the MVC line.

B.3.3 Routing basics

Routing is the process of handling incoming URL requests from a client and deter-
mining, by means of a table of possible route patterns, which controller in your appli-
cation should respond to the request.

 When an MVC application starts, it builds a list of routes called the RouteTable.
When an incoming request is detected, the routes in the RouteTable are searched, in
order, for the first route that matches the scheme. The controller listed in that route is
then called and passed all the context information from the incoming request. Rout-
ing is one of the main stages in an MVC application, as shown in figure B.9.

 You should have a default route already assigned in the sample application you’re
building. Open the Global.asax.cs file and find the RegisterRoutes method. This will
include the code in the following listing, which creates a new route and maps it to a
specific controller and a specific action on that controller.

Incoming request

View

Routing handler

Controller

View

Response Figure B.9 Routing in the overall MVC request/
response path
www.it-ebooks.info

http://www.it-ebooks.info/

356 APPENDIX B Using ASP.NET MVC

aps
ide
nt in
at will
k to
routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new {
 controller = "Home",
 action = "Index",
 id = UrlParameter.Optional
 }
);

In listing B.3 you should be able to see that routing is nothing more complicated than
pattern-matching on incoming URLs. It can get a little bit confusing at times if routes
are added in the wrong order or when one route mistakenly catches a request instead
of it falling through to the next, but once you understand the basics, the rest will
come with experience.

B.3.4 Views and Razor
The view is the final piece of the MVC puzzle, and it’s responsible for presentation. It
also includes script tags to include all of the JavaScript functionality built into MVC.

 You might be thinking that the view sounds like a regular HTML page, and, from the
perspective of the browser, it is. The difference between a regular HTML page and an MVC
view is the amount of repetitive work required to build it. MVC Views use the Razor view
engine to automate many of the tasks that would usually require a lot of typing and testing.

 Just look at listing B.4. Notice all the @ symbols throughout the markup. These tell
Razor that a bit of code will come next. Razor is smart enough to determine where the
code stops and regular markup starts again. Using Razor you can intertwine your
hand-coded HTML with generated HTML anywhere you like inside the view, perform
looping operations to iterate over collections, and check other parts of the applica-
tion for additional information to include in the final page. It’s an integrated
approach to building a semantic HTML page on the server.

@model MVCNewsletter.Models.LoginModel

@{
 ViewBag.Title = "Log in";
}

<hgroup class="title">
 <h1>@ViewBag.Title.</h1>
 <h2>Use this form to enter your
 user name and password.</h2>
</hgroup>

@using (Html.BeginForm(new { ReturnUrl = ViewBag.ReturnUrl })) {

Listing B.3 Adding a default route to the MVC RouteTable

Listing B.4 The templated LogIn view in MVC application

Name of
route

URL pattern to use when matching
incoming requests; property names
in next argument must match
parameterized values in URL pattern

Controller to use when
route is matched

Default method name
to use on controller
for route

Handling
specification for
id value in route
if it exists

Model declaration often starts
MVC view but this isn’t required.

ViewBag is dynamic object that can pass
information from controller to view.

Normal markup can
be placed anywhere
in view code.

BeginForm wr
everything ins
using stateme
HTML form th
be posted bac
controller.
www.it-ebooks.info

http://www.it-ebooks.info/

357Walking through an MVC application
 @Html.ValidationSummary(true, "Log in was unsuccessful.
 Please correct the errors and try again.")

 <fieldset>
 <legend>Log in Form</legend>

 @Html.LabelFor(m => m.UserName)
 @Html.TextBoxFor(m => m.UserName)

 @Html.LabelFor(m => m.Password)
 @Html.PasswordFor(m => m.Password)

 @Html.CheckBoxFor(m => m.RememberMe)
 @Html.LabelFor(m => m.RememberMe,
 new { @class = "checkbox" })

 <input type="submit" value="Log in" />
 </fieldset>
 <p>
 @Html.ActionLink("Register", "Register")
 if you don't have an account.
 </p>
}

@section Scripts {
 @Scripts.Render("~/bundles/jqueryval")
}

B.3.5 Controlling views

We noted that the controller is the main organizational element in an MVC applica-
tion and that a single controller can return different views based on the conditions it
detects. There are a number of ways for a controller to do this. All are straightforward,
but they deserve a little attention just to be sure that you can trace the views being pre-
sented in the browser to the code on the server sending them out.

 To redirect output from a controller to a view, you can return the view itself or
redirect to another controller that will then be responsible for returning a view:

return View();
return View(viewName);
return RedirectToAction(actionResult, controller);

Both the View and the RedirectToAction methods have multiple overloads, includ-
ing versions that take model objects.

 You can determine the result of a controller call by starting with the default values
based on the controller name, and then get more specific as additional parameters
are provided in the code. Figure B.10 shows a few examples of how calls from the
HomeController might result in output from various elements in the application.

Postback will
use form name
attributes for
posted values.

Razor HTML helper methods
can be used to build elements
and bind directly to properties.

TextBoxFor supplies
input of type “text”.

PasswordFor creates
input of type “password”.

CheckBoxFor builds
check box element
and binds to
Boolean value.

Closing using block
tells Razor to insert
closing form tag.

Client-side JavaScript can be
included using regular HTML script
tags or MVC script bundling.
www.it-ebooks.info

http://www.it-ebooks.info/

358 APPENDIX B Using ASP.NET MVC
Other ways of directing output from a controller to the browser involve overloading
the View and RedirectToAction methods, but the approaches described here will be
used most often.

B.3.6 Combining views to build up the presentation

You may have noticed in the earlier view code that there was no markup to describe
the <html>, <head>, or <body> elements. If you ran the project and looked at the out-
put, you’ll have noticed that a lot of markup exists that didn’t come from the view.

 MVC didn’t magically generate this markup; it came from the master layout page
for your application. In fact, because a layout property was not explicitly defined in
the view, MVC used the default view built into the template. This is pulled by conven-
tion from the _ViewStart.cshtml file in the top level of your Views folder. It contains
only this line of code:

@{ Layout = "~/Views/Shared/_Layout.cshtml"; }

This says that the layout to use is in the /Views/Shared/_Layout.cshtml file.
 The _ViewStart.cshtml file starts out simple, but it’s a great foundation for more in

terms of global logic or additional markup. This is the foundation, and you’re free to
create as much supporting content, script includes, and style directives here as you
need for your particular application.

 The _Layout.cshtml file, in turn, is used as a master page to provide semantic orga-
nization to any view that doesn’t override it with a @{ Layout = "" } directive.

 There are some interesting things to note about the _Layout.cshtml file, as illus-
trated in the following listing. Note that the markup is complete, including links to
various resources, scripts, and Razor directives pointing to other elements from the
project that should be rendered into the page.

Home controller Results directed to

return view() \views\home\index.cshtml

\views\home\confirmation.cshtmlreturn view(“confirmation”)

return redirecttoaction(“register”, “account”) \controllers\accountcontroller\register

Figure B.10 Controllers can connect to multiple views and other controllers using naming
conventions or by specifying the exact objects and methods to use. Each method also has
overloads to pass along a model object.
www.it-ebooks.info

http://www.it-ebooks.info/

359Walking through an MVC application
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>@ViewBag.Title - My ASP.NET
 MVC Application</title>
 <link href="~/favicon.ico"
 rel="shortcut icon" type="image/x-icon" />
 <meta name="viewport"
 content="width=device-width" />
 @Styles.Render("~/Content/themes/base/css",
 "~/Content/css")
 @Scripts.Render("~/bundles/modernizr")
 </head>
 <body>
 <header>
 <div class="content-wrapper">
 <div class="float-left">
 <p class="site-title">
 @Html.ActionLink("Your logo here",
 "Index", "Home")</p>
 </div>
 <div class="float-right">
 <section id="login">
 @Html.Partial("_LoginPartial")
 </section>
 <nav>
 <ul id="menu">
 @Html.ActionLink("Home",
 "Index", "Home")
 @Html.ActionLink("About",
 "About", "Home")
 @Html.ActionLink("Contact",
 "Contact", "Home")

 </nav>
 </div>
 </div>
 </header>
 <div id="body">
 @RenderSection("featured", required: false)
 <section class="content-wrapper
 main-content clear-fix">
 @RenderBody()
 </section>
 </div>
 <footer>
 <div class="content-wrapper">
 <div class="float-left">
 <p>© @DateTime.Now.Year –
 My ASP.NET MVC Application</p>
 </div>

Listing B.5 The templated _Layout shared view

Default doctype
declares HTML5 page.

Razor syntax included to
display data from ViewBag.

External resources like
scripts and stylesheets
can also be included.

Complete sections of
HTML build out
structure of the page.

Html.ActionLink will
build link using
controller name and
action method name.

RenderBody fills in
remaining content of
final physical Razor view.
www.it-ebooks.info

http://www.it-ebooks.info/

360 APPENDIX B Using ASP.NET MVC
 <div class="float-right">
 <ul id="social">
 <a href=http://facebook.com
 class="facebook">Facebook
 <a href=http://twitter.com
 class="twitter">Twitter

 </div>
 </div>
 </footer>

 @Scripts.Render("~/bundles/jquery")
 @RenderSection("scripts", required: false)
 </body>
</html>

You can include partial views or regular views. Once again, there’s no magic here, only
conventions and markup interspersed with Razor syntax to control what output will be
sent to the browser. The following listing shows a partial view from the application
that builds links based on whether a user is logged in or not.

@if (Request.IsAuthenticated) {
 <p>Hello, @Html.ActionLink(User.Identity.Name,
 "ChangePassword", "Account",
 routeValues: null, htmlAttributes:
 new { @class = "username", title = "Change password" })!
 @Html.ActionLink("Log off", "LogOff", "Account")
 </p>
} else {

 @Html.ActionLink("Register", "Register", "Account",
 routeValues: null, htmlAttributes:
 new { id = "registerLink" })
 @Html.ActionLink("Log in", "Login", "Account",
 routeValues: null, htmlAttributes: new { id = "loginLink" })

}

Now that you understand what happens where in an MVC application, let’s dig a little
deeper and build out a real application using the MVCNewsletter sample application.

B.4 An MVC application in action
The example newsletter application will show you some important features available
in the MVC framework that are relevant to HTML application builders:

■ Posting form data to a specific controller action
■ Client and server business rule validation using MVC
■ Redirecting a controller to a different view

To get started on this part of the project, you’ll build the data entry page with an
HTML form inside.

Listing B.6 The _LogOnPartial partial view

Razor can detect
what is and isn’t
code as it
processes view.

Html.ActionLink is
primary way to
render MVC-ready
links inside view.
www.it-ebooks.info

http://www.it-ebooks.info/

361An MVC application in action
B.4.1 Building a data entry form

The simplest means of data entry in any web application is to post an HTML form to
some location on a web server and use the posted data to enter data into storage. In the
sample application, you’ll post a user’s name, email address, and agreement to fictitious
terms and conditions. The page that hosts your form will include its business rules auto-
matically from the server business object, and rules will be enforced in both locations.

 The form that presents the appropriate screen to the user is shown in the follow-
ing listing. Open the existing Index.cshtml page inside the Views\Home folder, and
update it so it matches this code.

@model MVCNewsletter.Models.Subscriber
@{
 ViewBag.Title = "Home Page";
}
@section featured {
 <section class="featured">
 <div class="content-wrapper">
 <hgroup class="title">
 <h1>@ViewBag.Title.</h1>
 </hgroup>
 @using (Html.BeginForm(
 "SignupNow",
 "Home",
 FormMethod.Post,
 new { id = "signup" }))
 {
 <p class="myForm">
 @Html.LabelFor(m => m.FirstName)
 @Html.TextBoxFor(m => m.FirstName)
 @Html.ValidationMessageFor(m => m.FirstName)

 @Html.LabelFor(m => m.LastName)
 @Html.TextBoxFor(m => m.LastName)
 @Html.ValidationMessageFor(m => m.LastName)

 @Html.LabelFor(m => m.Email)
 @Html.TextBoxFor(m => m.Email)
 @Html.ValidationMessageFor(m => m.Email)

 @Html.CheckBoxFor(m => m.TermsAccepted)
 @Html.LabelFor(m => m.TermsAccepted, new { id = "chkLabel" })
 @Html.ValidationMessageFor(m => m.TermsAccepted)

 </p>
 <input type="submit" value="Submit" id="submit" />
 }
 </div>
 </section>
}

Listing B.7 The newsletter signup form in the Home\Index.cshtml view

Model for this view is
subscriber object, created
later in appendix.

Directive is feature of MVC 4 that
allows named section of content
to be automatically filled when
placed in master page.

Creates a form using Razor
syntax that directs posts
to SignupNow method of
Home controller.

You may also pass HTML attributes
into form as anonymous object.

Labels, text boxes, and
error validation messages
are created using Razor
syntax based on model’s
annotated field-level rules.

Post form using
normal HTML
Submit button.
www.it-ebooks.info

http://www.it-ebooks.info/

362 APPENDIX B Using ASP.NET MVC

.

ons
;
s
ELEMENT IDENTIFIERS AND FORM PROPERTIES

When your form is presented on the server, it will have an action attribute that points
to /Home/SignupNow, an ID of signup, and a method of post.

 Each input object has a name property that will be posted to the server along with
the value in the text box. The check box added using CheckBoxFor will return a value
that’s automatically converted to a Boolean.

 The names of elements are important because these names will be automatically parsed
into the same parameter names as the controller method. If the names don’t match, null
values will automatically be used for parameter values and your data will be lost.

 Because you’re using a model object, though, this is all handled for you by MVC’s
model binding. You simply need to state that your controller will post a Subscriber
object to the SignupNow method of the Home controller.

USING THE CONTROLLER TO HANDLE POSTED FORM DATA

A normal ActionResult method in an MVC controller will handle post operations
without a specific attribute. If you have an overloaded method, though, you can use
attributes to specify methods for get and post. You saw an example of this overloading
in the Register methods earlier in the appendix. If the name of the controller
method is unique, MVC will automatically route the posted data to it, and no addi-
tional attributes are necessary on the controller.

B.4.2 Validating posted data on the server

At this point you’re going to use the normal MVC pattern by validating business rules
inside a model object. You’ll create both the business object and a custom attribute to
validate the TermsAccepted rule.

 To do so, right-click on the Models folder of the project and select Add > Class.
Name the new class “Subscriber”, and when the file opens, add the code in the next
listing to the object.

public class Subscriber
{
 [Required(ErrorMessage = "*")]
 [StringLength(80, MinimumLength = 3,
 ErrorMessage = "First name must be 3 to 80 characters")]
 [DisplayName("First Name")]
 public string FirstName { get; set; }

 [Required(ErrorMessage = "*")]
 [StringLength(80, MinimumLength = 3,
 ErrorMessage = "Last name must be 3 to 80 characters")]
 [DisplayName("Last Name")]
 public string LastName { get; set; }

 [Required(ErrorMessage = "*")]
 [RegularExpression(@"^[a-zA-Z][\w\.-]*[a-zA-Z0-9]@[a-zA-Z0-9]
 [\w\.-]*[a-zA-Z0-9]\.[a-zA-Z][a-zA-Z\.]*[a-zA-Z]$",

Listing B.8 The UserModel object is used to store and validate user information

Using .NET data
annotations simple
property validations
can be added quickly

DisplayName
attribute will be
displayed when
LabelFor is called
in Razor view.

Regular expressi
can also be used
this one validate
email pattern.
www.it-ebooks.info

http://www.it-ebooks.info/

363An MVC application in action

T
n.

 ErrorMessage = "Invalid email address")]
 public string Email { get; set; }

 [IsTrue(ErrorMessage = "You must accept terms and
 conditions before proceeding.")]
 [DisplayName("I agree to all terms and conditions")]
 public bool TermsAccepted { get; set; }
}

With no procedural code at all, you’re very close to completely validating your busi-
ness object. The only thing you need to implement is the IsTrue attribute.

 In the IsValid code you’ll just check each property to verify that all rules are valid.
So far, nothing is using this model, though, so that’s your next step.

HOW TO GET MVC TO USE A DIFFERENT VIEW

Next, you’ll build a new method in the HomeController called SignupNow. This uses
what you’ve learned about redirecting to a different view after validating the business
rules, adding the user to the repository, and then returning a view named Confirmation.
This method takes as a parameter your UserModel object. Using MVC model binding,
the named values coming from the posted form are automatically converted into a
new object. After validating the business rules, you’ll add the user to your cache
(described soon) and then return a confirmation page with the Boolean result of the
action. The code in the following listing goes directly into the HomeController.cs file.

 In the Models folder, add another new class and call it IsTrueAttribute. The fol-
lowing listing shows the code you should use.

using System;
using System.ComponentModel.DataAnnotations;

namespace MVCNewsletter.Models
{
 [AttributeUsage(AttributeTargets.Property,
 AllowMultiple = false, Inherited = false)]
 public class IsTrueAttribute : ValidationAttribute
 {
 public override bool IsValid(object value)
 {
 return value != null && value is bool && (bool)value;
 }
 }
}

That takes care of all the business rule validations that you’ll implement in this exam-
ple. More complex attributes and business rules could be added here, but the basic
idea should be clear to you by now. Next, we’ll turn our attention to the controller so
that the form you implemented earlier in the Index.cshtml view will have somewhere
to go when it posts.

Listing B.9 IsTrueAttribute is applied to the Boolean property of the
business object

IsTrue attribute isn’t part of .NE
but will be added in next sectio

Assigning AttributeUsage
ensures that you can
only assign this attribute
to property.

ValidationAttribute is
base class for
IsTrueAttribute.

Simple null/Boolean
check will return
whether attribute
validates or not.
www.it-ebooks.info

http://www.it-ebooks.info/

364 APPENDIX B Using ASP.NET MVC

k
 The following listing shows the new method that needs to be added to the Control-
lers\HomeController.cs file. Note that you reference a CacheRepo object in this code.
That code will come soon.

public ActionResult SignupNow(Subscriber sub)
{
 if (this.ModelState.IsValid)
 {
 var msg = CacheRepo.AddUser(HttpContext.Cache, sub);
 if (msg == "Email already exists")
 return View("Index", sub);
 else
 return View("Confirmation", sub);
 }
 else
 {
 return View("Index", sub);
 }
}

Note that in this scenario, you don’t return any information about business rule fail-
ures. That’s because while you expect your form to be the only thing to ever post to
this controller, you can’t guarantee it. If you wanted to handle business rules more
gracefully on the server, you could respond with more information or a JSON object
containing exception information. In the current approach, however, you get valida-
tion on the client and the server because of the integration between data annotations
and the MVC Html.ValidationMessageFor method.

ADDING THE VIEW

The controller is performing all the business rule validations and sending necessary
information on to the soon-to-be-built repository for storage, but the result of a suc-
cessful submission, the Confirmation view, doesn’t yet exist to respond to the View
request from SignupNow in the Home controller. To build this view, right-click on the
Views\Home folder and select Add > View. Set it up as shown in figure B.11 and your
new view should be ready to go.

 The resulting view will have almost nothing in it, so you can build it out a bit using
HTML and Razor to provide different messages based on the model’s value. You can
also add a little script that will be useful later for calling your web service. The follow-
ing listing shows the complete contents of the Confirmation.cshtml page.

@model MVCNewsletter.Models.Subscriber
@{
 ViewBag.Title = "Confirmation";
}

Listing B.10 The ActionResult for a posted form using convention-based routes

Listing B.11 The Confirmation view based on a Boolean model

Parameter passed in from form will
automatically be parsed into object
using model binding.

ModelState property is set up by.NET Framewor
because of attributes applied earlier.

If repository finds that
email already exists
Index view will be
returned for updates.

If email doesn’t already exist
and ModelState is valid
confirmation screen is loaded.

If ModelState isn’t valid, original
Index view is returned.

Model for this view
is Subscriber.
www.it-ebooks.info

http://www.it-ebooks.info/

365An MVC application in action
<h2>Confirmation</h2>
Thanks for registering, @Model.FirstName!

Your subscription will be sent to @Model.Email

<button id="getAll">Get All Subscribers</button>
<div id="subList"></div>
@section scripts {
<script type="text/javascript">
</script>
}

Before long, we’ll come back to the Confirmation view to look at the contents of the
<script> tag at the bottom, but for now you need to return to the server to add the
CacheRepo repository object we’ve mentioned twice now.

B.4.3 Adding a repository to store data

The cache repository object in this example is a simple tool to store data in memory
on the server. In general, though, a repository is an object or layer in an application
that provides an abstraction between business data and data storage. It can be very
simple or very sophisticated. You’re using it here to ensure that no data-storage code
needs to be duplicated between the form that saves posted data and the service that
retrieves it.

 The following listing shows a simple repository used to store a Subscriber object
and retrieve a list of Subscribers from the ASP.NET memory cache available to web
applications. Create a new class file called CacheRepo.cs in the Models folder to hold
this object.

Figure B.11 Adding a
confirmation view to the
SignupNow controller action

Because you have valid
model returned to view, you
can use any property in it.

getAll button will be
used shortly to make
Ajax call back to server.
www.it-ebooks.info

http://www.it-ebooks.info/

366 APPENDIX B Using ASP.NET MVC

s
e if
ist
ail
using System;
using System.Collections;
using System.Collections.Generic;
using System.Web.Caching;

namespace MVCNewsletter.Models
{
 public class CacheRepo
 {
 public static bool EmailExists(Cache cache, string email)
 {
 return (cache.Get(email.ToLower()) != null);
 }

 public static string AddUser(Cache cache, UserModel user)
 {
 var email = user.Email.ToLower();
 if (EmailExists(cache, email))
 {
 return "Email already exists";
 }
 else
 {
 cache.Add(email, user,
 null, Cache.NoAbsoluteExpiration,
 new TimeSpan(0, 10, 0),
 CacheItemPriority.Normal, null);
 return "Added"
 }
 }

 public static UserModel GetUser(Cache cache, string email)
 {

Stylesheet edits to pretty up the page
It’s worth a quick look at the styles we use to enhance the pages. These styles
should be added to the end of the Content\Site.css file that already exists in
your solution:

div.showName {
 background-color: Gray;
 color: White;
 margin-left: 20px;
 padding: 5px;
}
p.myForm label {
 width: 100px;
 display: inline-block;
}
#chkLabel {
 width: 250px;
}

Listing B.12 A simple object to cache server data

Repository
starts with
Boolean check
for particular
email address
in cache.

Method add
user to cach
it doesn’t ex
based on em
address.

If User already
exists tell the caller.

Add user to memory
cache object passed in if
it doesn’t already exist.
www.it-ebooks.info

http://www.it-ebooks.info/

367An MVC application in action

r

f
 email = email.ToLower();
 if (EmailExists(cache, email))
 return cache[email] as UserModel;
 else
 return null;
 }

 public static List<UserModel> GetAllUsers(Cache cache)
 {
 var ret = new List<UserModel>();
 foreach (var itm in cache)
 {
 if (itm is DictionaryEntry &&
 ((DictionaryEntry)itm).Value is UserModel)
 ret.Add(GetUser(cache,
 ((DictionaryEntry)itm).Key.ToString()));
 }
 return ret;
 }
 }
}

Now that you have the repository object completed, the client and server logic to reg-
ister a subscriber for your fictitious newsletter is complete. Run the application by
pressing F5 in Visual Studio, and you should see a data-entry screen similar to the one
in figure B.12.

 Try entering short names with only two characters or email addresses that are
incorrectly formatted. You should see error messages and no data saved by the Cache-
Repo object. Fix all the data entry errors and click the Submit button again. You
should see the confirmation screen as in figure B.13.

 You could stop there and have a decent application, but you’d miss half the MVC
story. The other side of the story is client-initiated calls to the server that don’t need

When getting single user,
make sure to convert it
back to UserModel object.

Return null if user
wasn’t found.

Cycle all objects in
cache, check thei
types, and return
them if they’re o
type UserModel.

Figure B.12 The working data-entry
screen for your MVC application will
validate business rules in the form
when the Submit button is clicked and
will transfer to the confirmation page
when a successful post is executed.
www.it-ebooks.info

http://www.it-ebooks.info/

368 APPENDIX B Using ASP.NET MVC
a form to post. This is the function of Ajax, and it’s the last step in building this
sample application.

B.5 Getting data asynchronously from the server
So far you’ve implemented business rules on the client and the server and are storing
Subscribers in an object called CacheRepo from inside the SignupNow method of the
HomeController. Next, you’ll fill in the functionality behind the Get All Subscribers
button. This will call into the server to get all subscribers currently cached. In a real-
world application, this kind of call could ask for filtered data or request a rollup of
information about all subscribers.

B.5.1 Wiring up events using the jQuery click function

You’ll use the getAll button in the confirmation page to call a service located at the
relative location of /Home/GetAllUsers. Listing B.13 shows how you can call a jQuery
Ajax function specifically for getting JSON data. $.getJSON() has a number of param-
eter variations, including overloads to catch failures, but this example uses the most
basic version. This code goes right into the <script> tag you placed at the end of the
Confirmation.cshtml file.

$("#getAllUsers").click(function () {
 var url = location.protocol + "//" +
 location.host + "/Home/GetAllUsers";
 $.getJSON(
 url,
 function (data) {
 }

Listing B.13 Binding a button click and making an Ajax call with jQuery

Figure B.13 The confirmation screen
will display some information from the
model so that you can see a successful
post to the repository object.

$.getJson implements GET
request to specific URL and
will return JSON-based data
as return value.
www.it-ebooks.info

http://www.it-ebooks.info/

369Getting data asynchronously from the server
);
});

The anonymous function here doesn’t do anything with the data, so you need to
implement that next.

B.5.2 Appending new data to the document using jQuery

Another slick method available in jQuery is the $.each looping iterator. This function
takes the input data object and a function that must have an indexer and a value
object as parameters. On each iteration of the data object’s collection (if a collection
exists), the index is incremented with the appropriate array index, and the value
object contains the actual item from the array.

 Place the code in the following listing into the anonymous callback you just added
to Confirmation.cshtml (in listing B.13).

$.each(data, function (index, value) {
 var htm = "<div class='showName'>" +
 value.Email + ", Name: " +
 value.FirstName + " " + value.LastName +
 "</div>";
 $(htm).appendTo($("#subList"));
});

The code in listing B.14 takes the Email, FirstName, and LastName properties of each
value and puts them into a string that’s appended to the current HTML document. In
a real application, this would be where you operate on each item and edit parts of the
interface or populate some other array of variables in the application.

B.5.3 Building a data-only controller method

Next, you’ll go back to the Home controller and add the new data endpoint. The next
listing shows the method that the getJson jQuery function calls.

public JsonResult GetAllUsers()
{
 var users = CacheRepo.GetAllUsers(HttpContext.Cache);
 return Json(users, JsonRequestBehavior.AllowGet);
}

That’s all there is to it! You already built the functionality in the CacheRepo object, so
all that’s necessary is to call into it and return the data in JSON format. Run the appli-
cation again and add a few subscribers. Then, in the confirmation screen, click the
Get All Subscribers button and you should see results like figure B.14.

Listing B.14 The jQuery $.each function to iterate JSON objects and build HTML

Listing B.15 GetAllUsers in HomeController gets data from the repository
www.it-ebooks.info

http://www.it-ebooks.info/

370 APPENDIX B Using ASP.NET MVC
B.6 Complete code listings

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using MVCNewsletter.Models;

namespace MVCNewsletter.Controllers
{
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 ViewBag.Message = "Modify this template to
 kick-start your ASP.NET MVC application.";

 return View();
 }

 public ActionResult About()
 {
 ViewBag.Message = "Your app description page.";

 return View();
 }

 public ActionResult Contact()
 {
 ViewBag.Message = "Your contact page.";

 return View();
 }

Listing B.16 The complete HomeController code

Figure B.14 The completed
application will save users using a form
post and then get them back from the
server using an Ajax request returning
JSON data.
www.it-ebooks.info

http://www.it-ebooks.info/

371Complete code listings
 public ActionResult SignupNow(Subscriber sub)
 {
 if (this.ModelState.IsValid)
 {
 var msg = CacheRepo.AddUser(HttpContext.Cache, sub);
 if (msg == "Email already exists")
 return View("Index", sub);
 else
 return View("Confirmation", sub);
 }
 else
 {
 return View("Index", sub);
 }
 }

 public JsonResult GetAllUsers()
 {
 var users = CacheRepo.GetAllUsers(HttpContext.Cache);
 return Json(users, JsonRequestBehavior.AllowGet);
 }

 }
}

@model MVCNewsletter.Models.Subscriber
@{
 ViewBag.Title = "Confirmation";
}
<h2>Confirmation</h2>
Thanks for registering, @Model.FirstName!

Your subscription will be sent to @Model.Email

<button id="getAll">Get All Subscribers</button>
<div id="subList"></div>
@section scripts {
<script type="text/javascript">
 $("#getAll").click(function () {
 var url = location.protocol + "//" +
 location.host + "/Home/GetAllUsers";
 $.getJSON(
 url,
 function (data) {
 $.each(data, function (index, value) {
 var htm = "<div class='showName'>" +
 value.Email + ", Name: " +
 value.FirstName + " " +
 value.LastName + "</div>";
 $(htm).appendTo($("#subList"));
 });
 }
);
 });
</script>
}

Listing B.17 The complete Home\Confirmation.cshtml code
www.it-ebooks.info

http://www.it-ebooks.info/

appendix C
Installing IIS Express 7.5

In a number of places throughout this book, we use Internet Information Services
(IIS) Express to run a project outside of the localhost environment. Many versions
of Visual Studio come with IIS Express version 7.5 already installed. This server plat-
form is also included with Microsoft WebMatrix. If, however, you’re working with
an installation of Visual Studio that doesn’t have IIS Express, you didn’t install it, or
you’re testing on a machine without Visual Studio, you’ll need to follow these pro-
cedures to get it working and available.

C.1 Installing Web Platform Installer
The quickest way to get IIS Express installed
is to use the Web Platform Installer. Open a
browser, point it to http://www.microsoft
.com/web/, and find the Microsoft Web
Platform Installer section displayed in fig-
ure C.1.

 Click the Download It Now button,
and when the File Download window
appears, click Run, as shown in figure C.2.

 Once it’s installed, navigate through
your Windows menu to Microsoft Web
Platform Installer, shown in figure C.3.

Figure C.1 The Web Platform Installer can be
found on the Microsoft site.
372

www.it-ebooks.info

http://www.microsoft.com/web/
http://www.microsoft.com/web/
http://www.it-ebooks.info/

373Finding IIS Express 7.5
C.2 Finding IIS Express 7.5
Once the Web Platform Installer starts, look for the top-left search text box. Enter “IIS
Express 7.5” and press Enter. You should see a screen similar to figure C.4.

 Now click the Install button, and follow the various prompts and confirmations till
you get to the installation stage shown in figure C.5. You may be asked to restart your
computer during this installation process.

 Once the installation has completed, you should get the confirmation screen
shown in figure C.6.

 Once installation is complete, you can assign a website to run using IIS Express
from within Visual Studio 2010 SP1 or later.

Figure C.2 Installing the Web Platform Installer

Figure C.3 Run the Web Platform Installer.
www.it-ebooks.info

http://www.it-ebooks.info/

374 APPENDIX C Installing IIS Express 7.5
Figure C.4 Find IIS Express 7.5 and click the Add button.

Figure C.5 Installing IIS Express 7.5
www.it-ebooks.info

http://www.it-ebooks.info/

375Finding IIS Express 7.5
Figure C.6 Installation of IIS Express 7.5 is complete.
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

index
Symbols

_Layout.cshtml file 358
_ViewStart.cshtml file 358
: character 64
:after pseudo-class 65
:before pseudo-class 65
:first-letter pseudo-class 65
:first-line pseudo-class 65
:focus pseudo-class 65
:target pseudo-class 65
!DOCTYPE element 38
. symbol 56
.ogg format 70, 85
.ogv format 70, 85
@ rules 61
@ symbols 356
@font-face CSS directive 57
@import statement 61
@media statement 61
/> character 37
symbol 56–57, 142
#hue element 262
< symbol 4
> symbol 4
$.ajax() function 140
$.getJSON() function 368
$(selector) function 98
$controls 79
$imageContext variable 106
$media 79
$play 79
$time 79

Numerics

2d context object, for canvas
element 96

A

<a> tag 128
AccountController object 30,

354
AccountModels.cs file 351, 353
accuracy property 161
<acronym> tag 38
action attribute 43
ActionLink method 128
ActionResult method 297, 362
addEventListener function 200
addHandler function 163
addMessage function 230
address object 161, 173
addressResponse.ToString()

method 174
addThrottledHandler

function 163
addUser function 238–239
Ajax calls, in ASP.NET

MVC 368–369
appending data to document

using jQuery 369
building controller method

for 369
using jQuery click

function 368–369
Ajax Control 163, 169
Ajax, with jQuery 344

alpha values, in CSS3 58
altitude property 152, 162
altitudeAccuracy property 162
animating, canvas element 108–

111
animations, in jQuery 343
anonymous functions, in

JavaScript 317
API interface 66
APIs (application programming

interfaces), for
JavaScript 9–11

audio 11
canvas 9
drag and drop 10
geolocation 9
history 9
local storage 10–11
offline access 11
video 11
web workers 9–10
websockets 10

appCache.swapCache()
method 290

appcmd executable 84
appendTo() method 98, 343
<applet> tag 38
application programming inter-

faces. See APIs
application title, changing 142
ApplicationCache object 287–

290, 300
ApplicationCache.status

property 288
ApplicationCache.swapCache()

method 288
377

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX378
apply function 204
arc function, for canvas

element 111–112
arcTo 103
Array() method 320
ArrayBuffer array 226
arrays, in JavaScript 320–321
article element 47–48
<article> tag 34
<aside> element 132, 156
ASP.NET MVC 346–370

Ajax calls in 368–369
appending data to docu-

ment using jQuery 369
building controller method

for 369
using jQuery click

function 368–369
controllers in 353–355
form for 361–362
models in 351–353
overview 346–347
routing for 355–356
storing data 365–368
templates for

installing 347–349
selecting 349–351

validating posted data on
server 362–365

views in
controlling 357–358
overview 356
partial views 358–360
Razor engine for 356

ASP.NET MVC template 93
ASP.NET MVC Web Application

template 349–350
aspect-ratio 62
assignment operators, in

JavaScript 310
atomicity 259
attr function 106
audio element 11, 53, 73–74
audio players 72
audio/video 66–88

audio element 73–74
building site for 68–70
controlling with

JavaScript 76–83
custom controls with 76–77
library structure 78
media player object in 79–80
volume controls in 80–83

controlling without
JavaScript 72–73

implementation methods
for 71–72

serving open source content
types 83–86

video element 74–75
<audio> tag 66
AudioVideo application 69
AudioVideo project node 84
auto value 73
autoplay attribute 67, 73, 75

B

Backbone.js 8
BackgroundProcess.js 10
base64 images 266
<basefont> tag 38
beginPath function 102
bezierCurveTo 103
bidirectional

communications 230
<big> tag 38
bike.gearRatio() method 331
bind() method 343
Bing Maps Ajax Control 163–

164, 169, 178
Bing Maps JavaScript API 148,

157–159
Bing Maps REST Services 171,

173–174
bitmap images, scaling 63
blob parameter 226
block element 40–41
body element 40
<body> tag 39
Boolean property 82, 286, 363
box model 59–60
box object 256
browser engines, for

JavaScript 325–326
business logic, for HTML5

applications 16–17
<button> tag 77

C

C# file 123
CACHE section, of manifest

file 282
CacheRepo object 364, 367–

369
calculateDirections

function 176
call function 204

CamelCasePropertyNames-
ContractResolver()
method 174

canvas element 51, 90–117
2d context object for 96
animating 108–111
drawing process 98–100
images in 103–105

restore function 105
rotate function 104
save function 105
translate function 104

JavaScript API for 9
lines in 101–103
manipulating pixels 105–107
shapes in 100–101

creating rectangle 101
fillRect function 101
fillStyle property 100

size of 94–95
special effects for 111–114

arc function 111–112
clip function 112–113
managing properties dur-

ing screen resizing 113–
114

text in 107–108
canvas.height property 94
canvas.width property 94
<canvas> 2d context object 226
<canvas> element 51, 90, 96,

100, 108, 187
CanvasTest project 93
cascading effect 55
Cascading Style Sheets version 3.

See CSS3
<center> tag 38
chaining, in jQuery 343
changes to LocalStorage API,

detecting 261
charAt() method 315
chat application 220
chat server, with node.js 237–

240
Chat.cshtml 221
chat.css file 222
chat.css stylesheet 241
Chat() method 220
chatServer object 237–239
CheckBoxFor 357, 361–362
Choose Hue dialog box 251
Chrome Developer Tools 265
classic HTML, vs. semantic

HTML 34–35
clear button 260
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 379
Clear() method 296, 305
clearDirections function 175
clearPlaces function 175
clearTimeout() method 319
clearWatch method 148, 161,

166, 183
click event 163
click() method 343
clip function, for canvas

element 112–113
close function 215, 225, 227
close() method 227
CLOSED constant 227
closePath function 112
CLOSING constant 227
closing tags 4, 39
closures, in JavaScript 333–334
collapsed margin 60
colon character 64
color type 44
color wheel 58, 262–263
colors, in CSS3 57–58

hex colors 57
HSL colors 58
RBG colors 57–58
with alpha values 58

column layout, with CSS3 60–61
combining JavaScript

libraries 341
command element 51
commenting, in JavaScript 322
communications

bidirectional 230
full-duplex 219
half-duplex 218
in JavaScript 335–338

JSON objects 336–338
JSONP objects 336–337
sending data 336
XmlHttpRequest object 336

live 223
with servers 18

comparison operators, in
JavaScript 309

components, of HTML5
applications 3–4

compression, of JavaScript
libraries 341–342

computeDistance function 152,
169–170, 183

concat() method 321
conditional operators, in

JavaScript 311
config object 158
config.js file 158

Confirmation view 363–365
Confirmation.cshtml file 364,

368
CONNECTING constant 226
connection event 239
connection property 225
connection variable 231
connection.onopen code 228
consistency 259
console.assert() method 329
Contact() method 370
content attribute 39
Content folder 156
context object 96
context.arc 91
context.beginPath()

method 102, 112, 115–116
context.clip() method 112–113,

116
context.closePath()

method 116
context.fillText function 108
context.restore() method 91,

101, 104, 112, 116–117
context.save() method 104, 112,

115–116
context.stroke() method 102–

103, 116
controllers

for MVC pattern, and history
API 122–125

in ASP.NET MVC 353–355
Controllers folder 69, 220
controls attribute 54, 67, 72–73,

75
coordinates object, for geoloca-

tion API 161–162
coordinates, vs known

position 150
coords object property 161
Counter object 334
Counter() method 333
Create a Unit Test Project check

box 351
Create Unit Test check box 69
Create Unit Test Project item 21
create, read, update, and delete.

See CRUD
createBox function 255, 260
creating objects 26
CRUD (create, read, update,

and delete) data 249
CSS class 140, 142, 195, 233
CSS file 279
CSS property 57–58, 60

CSS3 (Cascading Style Sheets
version 3) 54–65

box model for 59–60
colors in 57–58

hex colors 57
HSL colors 58
RBG colors 57–58
with alpha values 58

column layout with 60–61
fonts in 56–57
media queries for 61–62
overview 11–12
pseudo-classes in 64–65
pseudo-elements in 64–65
selectors for 55–56

descendent selectors 55–56
type selectors 55–56
universal selector 55

syntax for 54–55
transformations with 62–64

implementing 63–64
rotate method 62–63
scale method 63
skew method 62
translate method 63

ctx.fill() method 99
ctx.restore() method 100, 105
ctx.save() method 100, 105
curly braces 28
CurrentShoppingList.Clear()

method 305
CurrentShoppingList.Count()

method 306
custom fonts 57

D

data layer, for HTML5
applications 18–19

data model, for MVC
pattern 129–130

data.Store feature 265
datalist element 52
dataTransfer object 186–187,

192–193, 195
Date object 316
date picker 32
date type 43
Date() method 161, 313, 316
dates, in JavaScript 315–316
DateTime data type 316
DateTime properties 30
datetime type 43
DateTime.Now.ToShort-

DateString() method 30
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX380
datetime-local type 43
debugging tools, for

JavaScript 328–329
default audio players 72
default video players 76
deleting items, in LocalStorage

API 260
deprecated tags 38
descendent selectors, for

CSS3 55–56
details element 48–49
device battery life, and

geolocation 167
device-aspect-ratio 62
device-height 62
devices, HTML5 applications

for 5–6
device-width 62
dialog function 262
<dir> tag 38
directions, for routes on

map 176–177
directionsError 177, 182
directionsManager object 175–

176
Dish parameter 122
DishDescription text 130
DishName value 129
displayResult function 25, 27
distances, calculating with hav-

ersine forumla 169–171
<div class='header'> attribute 34
<div> tag 34, 37, 56, 159
do...while loops, in

JavaScript 313
DOCTYPE element 37
Document Object Model. See

DOM
document object, in

JavaScript 201, 328
document.location 136
document.ready event

handler 97, 254
DoEvents() method 320
DOM (Document Object

Model), in JavaScript 323–
324

elements 323–324
events 324

domain modeling 353
DOMString parameter 226
DOMWindow object 327
dot notation 26
dot symbol 56
Download It Now button 372

drag and drop API 190–198
building object to transfer

data 194–198
drop event for 196–197
event handlers for 194–

196
building site for 187–190

stylesheet for 188–189
view for 189–190

JavaScript API for 10
overview 191–192
passing data with dataTransfer

object 193–194
drag.css folder 188, 212
dragenter event 10, 193
draggable attribute 189–190
draggable function 256, 262
dragleave event 195
DragMain object 190–191,

194
DragMain.init() method 190
dragover event 10, 193, 195
dragover icons 198
dragStart function 191, 193,

195
DragWorker MVC view 189
DragWorker object 204
DragWorker project 187
DragWorker() method 188
drawImage method 104–105
drawing on canvas element 98–

100
drop event, for drag and drop

API 196–197
drop target 198
dropEffect property 193
dt.ToLongDateString()

method 30
dt.ToLongTimeString()

method 316
dt.ToShortDateString()

method 316
dtIn.toDateString()

method 316
dtIn.toLocaleTimeString()

method 316
durability 259
dynamic content 15

E

effectAllowed property 194
effects, with jQuery UI 345
elementClicked() method

332

elements, names for 362
 tag 50
email type 43
email.ToLower() method 366–

367
Empty Controller template 122,

130
enableHighAccuracy

property 162
encapsulation 81
endPath 102
engine performance,

JavaScript 7
entities property 164
error handler callback, for geo-

location API 162
errors, reporting 28
Esri 157
event handlers, for drag and

drop API 194–196
event handling, in jQuery 343
event.data property 204
event.getX() method 163
event.getY() method 163, 180
event.preventDefault()

method 138, 145, 195, 209,
228, 243

event.stopPropagation()
method 138, 145, 195, 209

Events object 163
events, for ApplicationCache

object 288–290
exception handling, in

JavaScript 334–335

F

FALLBACK section, of manifest
file 283–284

figcaption element 49
figure element 49
File Download window 372
file formats, converting 70
FileReader() method 210
fill function 99
fillcolor 99
fillRect function, for canvas

element 101
fillStyle property 99–100, 102,

105, 108
fillText function 108
flip-book style animation 110
float:left 14
float:right 14
floated elements 13
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 381
flow control, in JavaScript 311–
313

do...while loops 313
for statement 313
if statement 311
switch statement 312
while statements 313

font assignment 56
Font Squirrel 57
 tag 38
font-family value 57
fonts

custom 57
in CSS3 56–57

foo() method 318
footer element 47
for statement, in JavaScript 313
form element, input types

for 43–44
forms, in ASP.NET MVC 361–

362
frame function 97, 101, 104,

106, 109, 111–113
<frame> tag 38
<frameset> tag 38
full-duplex communication 219
func1 function 26
functions, in JavaScript 316–

319, 331
anonymous functions 317
as parameters 318–319
named functions 318
self-invoking functions 318

Furfero, David 252

G

GeoAddress class 171–174
GeoDataController.cs file 173
geographic coordinates,

multiple 151
geographic information sys-

tems. See GISs
geolocation API 147–184

application using 153–159
adding link to menu

bar 156–157
page for map 155
stylesheet for 156
using Bing Maps JavaScript

API 157–159
building service to find

addresses 171–178
displaying routes between

coordinates 174–178

modeling point on earth in
.NET 171–174

Coordinates object 161–162
error handler callback 162
geographic locations 149–152

GISs 152
latitude and

longitude 150–152
integrating geolocation and

map 165–167
navigating map using geoloca-

tion data 167–171
performing geospatial cal-

culations with
coordinates 168–169

using haversine forumla to
calculate distances 169–
171

options object 162–163
plotting point on map 163–

165
adding array of objects to

map 164–165
creating Pushpins 164

Position object 161
geolocation, JavaScript API

for 9
geolocation.getCurrent-

Position() method 9
GeoMapping project 154
GeoObjects file 171
GeoPoint class 171–174
Get All Subscribers button 369
GET method 173
GetAddress 174
GetAll() method 296, 305–306
GetAllUsers() method 369, 371
getCurrentLocation 162
getCurrentPosition

method 148, 161–162, 167
getData function 193
getImageData function 91, 107
GetLocation action 127
getMyData() method 266
getRoute() method 176, 181–

182
getX function 164
getY function 164
gis object 158, 163, 166–167,

170, 175–176
gis.init() method 158, 179
GISs (geographic information

systems) 152
Git Bash program 252
GitHub 70, 188

global scope, in JavaScript 326
Global.asax file 126
Global.asax.cs file 355
Google Maps 157
graceful degradation 128
grouping elements 42

H

<h1> tag 23, 47
<h2> tag 123
half-duplex

communications 218
handleClick function 163, 174
hash symbol 56–57, 142
hasHandler 163
haversine formula, calculating

distances with 169–171
<head> element 38–39, 54
<header> tag 44
heading property 162
height attribute 75
height property 94–95
Hello World example 19–32

JavaScript library for 24–28
server side of application 28–

32
template for 20–22

helloWorld() method 318
hex colors, in CSS3 57
hgroup element 49
history API 118–146

and page URL 139
changing application title 142
changing CSS styles 142–144
for MVC pattern 120–133

and MVC routing 126–128
controllers for 122–125
data model for 129–130
using partial views 130–133
views for 122–125

updating page 140–142
loading partial view 140–

142
updateState function 140

using JavaScript 135–139
onpopstate event 136–137
pushState function 136–139
replaceState function 136–

139
history, JavaScript API for 9
history.length property 137
history.pushState() method 9
history.replaceState()

method 9, 140
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX382
history.state property 137
Home subfolder 93
HomeController 30, 154–155,

220, 357
HomeController.cs file 188,

250, 363–364
host scripts, for web workers

API 200–203
host thread

editing image in web worker
and posting back to 206

responding to messages
from 204

hosting servers 216
href attribute 37, 128
HSL color wheel 58, 263
hsl value 263
HTML application 5
HTML file 28, 277
Html.ActionLink()

method 127–128
Html.Raw method 131
Html.RouteLink() method 128
Html.ValidationMessageFor

method 364
<html> tag 11, 38
HTML5 applications 5, 12–19

business logic 16
components of 3–4
data layer for 18–19
for devices 5–6
navigation for 15–16
page content 14–15
page structure 13–14
server communications 17

HTML5 History API 16
HTMLMediaElement

interface 71, 79–80
HTTP (Hypertext Transfer

Protocol) 216–217
http-equiv attribute 39
HttpWebRequest 173
Hypertext Transfer Protocol. See

HTTP

I

id definition 56
id parameter 127
if statement, in JavaScript 311
IIS Express 7.5, installing 372–

373
image.onload event 104
imageCanvas object 108
imageData array 204, 226

ImageData.data property 107
ImageNotFound.jpg file 283
images

in canvas element 103–105
restore function 105
rotate function 104
save function 105
translate function 104

saving with LocalStorage
API 266–267

 element 188, 197
imgData.data property 107
immediate functions, for

JavaScript 340–341
immediate object initialization,

in JavaScript 340–341
implementation methods, for

audio/video 71–72
Index controller 122
Index method 127
Index.cshtml file 22, 123
Index.cshtml view 93, 131, 361,

363
Index() method 123, 131, 172,

354, 370
IndexedDB 18
IndexedDB HTML5

specification 11
indexOf() method 315
init() method 203, 208, 286
initDialog function 262
initMedia function 78–80
inline element 41, 95
inner() method 334
<input type='date' /> tag 31
input types, for form

element 43–44
<input> fields 250
Installed Packages tab 69
installing

ASP.NET MVC 347–349
IIS Express 7.5 372–373
node.js 234–235

intermediate servers 217
Internet Explorer 10 7
iPad 191
iPhone 191
<isindex> tag 38
isolation 259
IsTrueAttribute class 363
ItemCount() method 296, 305–

306
items, in LocalStorage API

adding to 257–258
clearing all 260–261

deleting 260
retrieving from 259–260

J

JavaScript 307–345
APIs for 9–11

audio 11
canvas 9
drag and drop 10
geolocation 9
history 9
local storage 10–11
offline access 11
video 11
web workers 9–10
websockets 10

arrays 320–321
browser engines for 325–326
built-in objects 327–328

document object 328
location object 328
Math object 327
navigator object 327
screen object 327
window object 327

commenting 322
communications 335–338

JSON objects 336–338
JSONP objects 336–337
sending data 336
XmlHttpRequest

object 336
controlling audio/video

with 76–83
custom controls with 76–77
library structure 78
media player object in 79–

80
volume controls in 80–83

dates 315–316
debugging tools for 328–329
DOM in 323–324

elements 323–324
events 324

flow control 311–313
do...while loops 313
for statement 313
if statement 311
switch statement 312
while statements 313

for history API 135–139
onpopstate event 136–137
pushState function 136–

139
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 383
JavaScript (continued)
replaceState function 136–

139
functions 316–319

anonymous functions 317
as parameters 318–319
named functions 318
self-invoking functions 318

global scope 326
libraries for 6–9
NaN values 321–322
null values 321–322
object-oriented features 329–

335
closures 333–334
exception handling 334–335
functions 331
namespaces 330
object patterns 333
object properties 330–331
prototypes 331
this keyword 332–333

operators 308–311
assignment operators 310
comparison operators 309
conditional operators 311
logical operators 310
mathematical

operators 309
performance improvements

for 6
strings 313–315

dividing 314–315
finding substrings 315
manipulating 314

structured libraries 338–342
combining 341
compression of 341–342
immediate functions 340–

341
immediate object

initialization 340–341
loading 339
locations for 339
minification of 341
non-blocking scripts 339–

340
timers 319–320

setInterval function 319–
320

setTimeout function 319
undefined values 321–322
variables 308

JavaScript errors 28
JavaScript interface 274, 279

JavaScript library 154
JavaScript Object Notation. See

JSON
join() method 321
jQuery 8, 342–344

Ajax with 344
animations 343
appending data to document

using 369
chaining in 343
click function for 368–369
event handling 343
extending with plugins 344
helper utilities 344
including in page 344
selectors 343
wrapped sets 343

jQuery UI 344–345
effects 345
including in page 345
themes 345
widgets 345

jQuery UI slider 262
jQuery.address plugin 118
JScript file 25
JSON (JavaScript Object

Notation) 28
Json method 172
JSON objects, in JavaScript 336–

338
Json() method 172
json2.js library 29
JSONP objects, in

JavaScript 336–337
JsonResult object 30, 172
JsonSerializerSettings()

method 174

K

Key property 129
Key string 129
keygen element 52
keypress event 224
kilometerConversion

variable 170
knockout.js 8
known position, vs

coordinates 150

L

last-in-first-out. See LIFO
latitude and longitude 150–152
latitude property 161, 173

Lawson, Bruce 46
Layout.cshtml file 23, 135, 155,

251, 358
length property 98, 259
 tag 142
libraries, JavaScript 6–9, 338–

342
combining 341
compression of 341–342
immediate functions 340–341
immediate object

initialization 340–341
loading 339
locations for 339
minification of 341
non-blocking scripts 339–340

LIFO (last-in-first-out) 138
lines, in canvas element 101–103
lineTo function 103
link element 39, 61
list attribute 52
List object 122, 129
live communications 223
load event 106
loadAll function 255, 259–260
loading JavaScript libraries 339
local data, storing 19
local storage, JavaScript API

for 10–11
LocalStorage API 248–272

adding items to 257–258
as proxy for server data 264–

266
building site for 249–253,

262–265
dialog box for 263–265
JavaScript library for 252–

253
using jQuery UI slider

262
using setHue 262–263

clearing all items from 260–
261

deleting items from 260
detecting changes to 261
JavaScript library to maintain

state 253–256
retrieving data from 259–260
saving images with 266–267

localStorage.clear()
method 261, 269

localStorage.getItem(key)
function 257

localStorage.setItem(key, value)
function 257
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX384
location object 164, 168, 328
Location route 127
location.href value 142
LocationRect object 168
locations

for JavaScript libraries 339
of user 150

locker.EnterReadLock()
method 297, 306

locker.EnterUpgradeableRead-
Lock() method 296, 305

locker.EnterWriteLock()
method 296, 305

locker.ExitReadLock()
method 297, 306

locker.ExitUpgradeableRead-
Lock() method 296, 305

locker.ExitWriteLock()
method 296, 305

logical operators, in
JavaScript 310

login submit function 228
LogInModel object 351–352
long polling 229–230, 235
longitude property 161, 173
loop attribute 67, 73, 75

M

Main object 78
main.css 95
Main.init() method 78, 87, 223,

243, 254, 267, 280, 301
main.js code 87
main.js file 93, 96–97, 103, 108,

113, 135, 190
main.js JavaScript file 179
main.js library 78, 144
makeRequest button 25
makeRequest click event

handler 26
Manage NuGet Packages for

Solution 154
Manage NuGet Packages

window 21
manifest file, for Offline

API 280–285
adding to project 281
CACHE section 282
FALLBACK section 283–

284
NETWORK section 282–

283
Mapcontrol script 156
MapRoute 126

maps
displaying routes between

coordinates on 174–178
integrating geolocation

with 165–167
navigating using geolocation

data 167–171
performing geospatial cal-

culations with
coordinates 168–169

using haversine forumla to
calculate distances 169–
171

plotting points on 163–165
adding array of objects to

map 164–165
creating Pushpins 164

Maps menu item 156
Maps method 155
maps, paying for 158
Maps.cshtml 155, 158
maps.css 156, 178
Maps() method 155
margins, collapsing 60
mark element 50
massively multiplayer online

games. See MMOG
Math object, in JavaScript 327
Math.floor.Math.random()

method 207, 212
Math.random() method 101,

115
mathematical operators, in

JavaScript 309
max attribute 52
maximumAge option 167
maximumAge property 162
Meal parameter 122
mealList.First() method 124
media element 79
media queries, for CSS3 61–62
mediagroup attribute 54
mem.ToArray() method 266
member.$element.remove()

method 234, 244
MemoryStream() method

266
Menu class 122, 129, 144
Menu Index.cshtml page 124,

132
Menu() method 129, 131
<menu> element 51
MenuController 122, 128
MenuHistory project 121
MenuItem object 122

MenuItem() method 129
Menus MVC route 126
messages, for websockets API

receiving 231–234
sending 230–231

meta element 38–39
metadata attribute 75
metadata value 73
meter element 52
method property 229, 231
Meyer, Eric 12
microdata 3–5
Microsoft SignalR 223
Microsoft.Maps object 163
Microsoft.Maps.Directions

module 176
Microsoft.Maps.Point

.event.getX() method 180
minification, of JavaScript

libraries 341
Miro Video Converter 70
MMOG (massively multiplayer

online games) 214
Models folder 29
models, in ASP.NET MVC 351–

353
Models.Menu() method 122
ModelState property 364
model-view-controller. See MVC
Model-View-ViewModel. See

MVVM
Modernizr 32, 135
month type 43
moveTo function 103
multiple geographic

coordinates 151
mute/unmute feature 76
MVC (model-view-controller)

pattern 8
history API for 120–133

and MVC routing 126–128
controllers for 122–125
data model for 129–130
using partial views 130–133
views for 122–125

overview 12
MVC controller, for Offline

API 297
MVC project template 20
MVC site template selector 350
MVCNewsletter 349, 356, 361,

363–364, 366, 370–371
MVVM (Model-View-

ViewModel) 8
myApp object 24–25
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 385
myApp.helloWorldWireup()
method 25

myApp.processResult 27
myData object 25
MyGitProjects folder 252
MyLibrary.js file 322
myObject 26
mySocket.close() method 227
myVar.toUpperCase()

method 315
myWorker.js file 202

N

name value 39
named functions, in

JavaScript 318
namespaces, in JavaScript 330
NaN values, in JavaScript 321–

322
nav element 50
navigation, for HTML5

applications 15–16
navigator object, in

JavaScript 327
NET object 29
NETWORK section, of manifest

file 282–283
new keyword 225
nextFrame function 205–206
Node Package Manager. See npm
node.js 214–215, 219–220, 226,

234–237, 239–241
chat server with 237–240
installing 234–235

NodeServer folder 236
<noframe> tag 38
non-blocking scripts, for

JavaScript 339–340
none value 73
NoSQL 11
npm (Node Package

Manager) 235
NuGet 21
null values, in JavaScript 321–322
number type 43–44
numeric values 257

O

object patterns, in
JavaScript 333

objects, creating 26
offline access, JavaScript API

for 11

Offline API 273–306
ApplicationCache

object 287–290
building site for 274–280
detecting offline status 285–

286
manifest file for 280–285

adding to project 281
CACHE section 282
FALLBACK section 283–

284
NETWORK section 282–

283
server side of offline

application 295–300
adding manifest content

type to server 297–300
MVC controller 297
singleton server 295–297

space constraints for 284–285
state management for 290–

295
accepting new items 291–

292
connecting to server 293–

295
loading saved values 292–

293
status text 290

onclose event 233
onerror event 227
onhashchange event 142
onmessage event 200, 203, 215,

225–226
onopen event 227
onpopstate event 136–137
open attribute 48–49
OPEN constant 226
opening tags 4, 39
OpenStreetMaps 157–158
operators, in JavaScript 308–

311
assignment operators 310
comparison operators 309
conditional operators 311
logical operators 310
mathematical operators 309

options object 148, 161, 164
ordered delivery 217
origin servers 216
otherStuff.reverse()

method 321
otherStuff.sort() method 321
outer() method 333–334
outputSection element 27

P

<p> tags 41
package.json file 236
page content, for HTML5

applications 14–15
page elements 36
page structure, for HTML5

applications 13–14
paragraph elements 41
parameters, in JavaScript 318–

319
partial views 120, 125

for MVC pattern, and history
API 130–133

in ASP.NET MVC 358–360
loading 140–142

performance, of JavaScript 6
pixels, in canvas element 105–

107
play/pause feature 76
Players.cshtml code 86
Players.cshtml file 69
Players() method 69
plugin projects 8
plugins, for jQuery 344
POCO object 295
point.Latitude.ToString()

method 173
point.Longitude.ToString()

method 173
Polyfills 235
Polyline 168–169, 183
polymorphism 81
pop() method 292, 321
position object 148, 162, 167–168
position zero 152
position:absolute style 253
positions, determining 150
POST method 173, 297, 353
POST operations 15
posted data, validating 362–365
poster attribute 75
postMessage event 200, 202, 204
postMessage(string)

method 199
preload attribute 67, 73
PreviewController 130
PreviewController.cs file 131
processResult function 25, 27
progress element 52
prop property 26
prop2 property 26
properties, in JavaScript 330–

331
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX386
protocols parameter 225
prototypes, in JavaScript 331
proxy, for server data 264–266
pseudo-classes, in CSS3 64–65
pseudo-elements, in CSS3 64–

65
push() method 292, 321
Pushpin object 164
PushpinOptions object 164
Pushpins, on maps 164
pushState function 119, 136–

139, 146
putImageData function 91, 107

Q

quadraticCurveTo 103
querystring 142
QUnit 8
QuotaExceededError 257

R

radians variable 104
range type 44
Razor engine, for ASP.NET

MVC 356
Razor, overview 12
RBG colors, in CSS3 57–58
rdr.ReadToEnd() method 173
ReaderWriterLockSlim()

method 296, 304
ready event 25
ready function 136, 138, 255
ready handler 20
readyState property 215, 225–

226
real time chat 220
receive function 223, 232
receiving messages, with web-

sockets API 231–234
rect function 101
RedirectToAction method 354,

357–358
RegExp object 315
Register() method 353–354
RegisterModel object 353–354
RegisterRoutes method 126,

355
rel attribute 39
reload() method 139
RememberMe field 353
remove() method 260–261,

269–270, 291, 294, 303–304

removeHandler 163
removeItem function 260
removePlace function 175
removeUser function 238
RenderAction 132
replace() method 315
replaceState function 119, 136–

140
req.GetResponse() method 173
req.send() method 336
reqDate box 25
Resig, John 8
resize function 97, 112–113
resp.GetResponseStream()

method 173
REST service, Bing 171, 173
restore function 105
result variable 80
result.media.pause()

method 79, 88
result.media.play() method 79–

80, 88
return View(menu) method 123
ReverseGeocode function 172–

173
rgb function 57
rgba function 101
rotate method, in CSS3 62–63
RouteCollection object 126
RouteLink 128
RouteTable 126, 355–356
routing framework 120
routing, for ASP.NET MVC 355–

356

S

<s> tag 38
SAAS (software-as-a-service) 17
save function, for canvas

element 105
save operation 100
saveBox function 255
Scalable Vector Graphics. See SVG
scale method, in CSS3 63
scheme attribute 39
screen object, in JavaScript 327
script element 39–40
</script> tags 39
<script> tag 365, 368
search type 44
secondLevelFunction()

method 332
section element 46
<section> tag 34, 132, 154

security 17, 173
SelectedMeal property 144
selectors

for CSS3 55–56
descendent selectors 55–56
type selectors 55–56
universal selector 55

in jQuery 343
self keyword 201
self.map 164
self.worker.postMessage 197
self-invoking functions, in

JavaScript 318
semantic HTML 46–54

article element 47–48
aside element 48
audio element 53
canvas element 51
command element 51
constructing pages with 50–51
datalist element 52
details element 48
figcaption element 49
figure element 49
footer element 47
header element 47
hgroup element 49
keygen element 52
mark element 50
meter element 52
nav element 50
progress element 52
section element 46
source element 53
summary element 49
time element 52
video element 53–54
vs. classic HTML 34–35

semantic markup 46
semantic tags 13, 77
semicolons 54
send function 215, 224–225,

231, 239
sending data, in JavaScript 336
sending messages, with

websockets API 230–231
sendMembersTo function 239
server communications, for

HTML5 applications 17
server, for Offline API 295–300

adding manifest content type
to server 297–300

MVC controller 297
singleton server 295–297

server.js (node) 245
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 387
server.js file 239
SessionStorage 261
setAutoLocate function 166
setData function 193
setHue function 262–263
setInterval function, in

JavaScript 319–320
setRequestOptions function 176
setTimeout function, in

JavaScript 319
setView function 168
shapes, in canvas element 100–

101
creating rectangle 101
fillRect function 101
fillStyle property 100

shift() method 292, 321
ShoppingList object 280
ShoppingServer object 295, 297
ShoppingServer.GetAll()

method 297
ShoppingServer() method 296,

304
showVolume function 82
SignalR, Microsoft 223, 235, 238
SignupNow method 361–362,

368
single page app. See SPA
singleton server, for Offline

API 295–297
site.css file 143, 366
site.css styles 88
site.css stylesheet 23
sizes, of canvas element 94–95
skew method, in CSS3 62
slash-star wrappers 54
slider function 262
socket.on(string, callback)

event 238
Sockets.IO 238
SocketServer object 224, 227–

228, 230–233
socketserver.js file 223–224,

227–229, 231–233
SocketServer.prototype 231
software-as-a-service. See SAAS
source element 53
<source> tag 71
SPA (single page app) 77
space constraints, for Offline

API 284–285
 tag 41, 56, 77
special effects, for canvas

element 111–114
arc function 111–112

clip function 112–113
managing properties during

screen resizing 113–114
speed property 162
splice() method 292
square brackets 28
src attribute 39, 53
startDialogFor function 254,

256, 263–264, 269–270
state management, for Offline

API 290–295
accepting new items 291–292
connecting to server 293–295
loading saved values 292–293
status text 290

state object 140
state value 136
stateFromPath function 138–

140
stateful data 351
static content 15
status, for Offline API 285–286
step value 44
storage event 261
Storage.cshtml page 251
storage.css 271
Storage() method 250
storage-agnostic pattern 351
<strike> tag 38
string notation 26
stringify method 29
strings, in JavaScript 313–315

dividing 314–315
finding substrings 315
manipulating 314

stroke function 102
strokeStyle 100–102, 116
style attribute 37
style element 40
stylesheets 4, 14
subpaths 102–103
Subscriber object 362, 365
substring() method 314
substrings, in JavaScript 315
subworkers 201
summary element 49
<summary> tag 49
SVG (Scalable Vector

Graphics) 51
switch statement, in

JavaScript 206, 312
syntax

for CSS3 54–55
for HTML5 35–38

T

table element 42
<table> tag 42
tabular data 42
tag attributes 37
tag formats 37
</tag> marker 4
tag structures 54
tags, deprecated 38
target property 164
TCP (Transmission Control

Protocol) 217–219
templates, for ASP.NET MVC

installing 347–349
selecting 349–351

TermsAccepted rule 362
testWorkers 202
text strings 37
text, in canvas element 107–108
themes, for jQuery UI 345
this keyword, in JavaScript 332–

333
this.worker 203
throttleInterval parameter 163
time element 52
time type 43
timeout property 162
timers, in JavaScript 319–320

setInterval function 319–320
setTimeout function 319

timestamp property 161
title attribute 40
title element 38
toggleClass function 222
toggleTimeout() method 319
toLowerCase() method 315
Touch-Punch folder 252
touch-punch plugin 251, 256
toUpperCase() method 315
<tr> tags 42
transactional data 259
transformations, with CSS3 62–

64
implementing 63–64
rotate method 62–63
scale method 63
skew method 62
translate method 63

translate method, in CSS3 63
Transmission Control Protocol.

See TCP
Truck() method 331–332
tryPixelToLocation

function 164, 180
www.it-ebooks.info

http://www.it-ebooks.info/

INDEX388
<tt> tag 38
type selectors, for CSS3 55–56
type value 39, 43

U

<u> tag 38
UI (user interface) 185, 222
 element 156
undefined values, in

JavaScript 321–322
Unit object 191, 193–196, 198,

203–204
universal selector, for CSS3 55
unshift() method 292, 321
updateForPosition 166–168,

182–183
Updates tab 21
updateState function 136–138,

140
url parameter 126, 225
url type 44
URL, and history API 139
Url.Content method 74, 131
Use a Layout or Master Page

check box 155
useImage function 191, 193,

196–197, 203
user interface. See UI
user location 150
user.Email.ToLower()

method 366
user.socket.send function 239
UserData object 30–31
UserData.cs 29
userIsLocal 222
UserModel object 362–363,

367
userName box 25
user-select property 188
using statement 123

V

value attribute 44, 52
var keyword 25
variables, in JavaScript 308
verified tag 19
video element 11, 53–54, 74–75
video players 76
<video> tag 66
View object 354
View() method 69, 155, 188,

221, 250, 353–354, 357
ViewOptions object 168

view-processing engines 12
views

for MVC pattern, and history
API 122–125

in ASP.NET MVC
controlling 357–358
overview 356
partial views 358–360
Razor engine for 356

Views project folder 93
viewshed 157
volume controls, controlling

audio/video with
JavaScript 80–83

volumechange event 82

W

walkDOMTree() method 324
watchLocation function 162
watchPosition method 148,

161–163, 166–167, 169,
182

web crawler 77
web fonts, Google 57
Web Platform Installer 348–349,

372
web workers API 198–208

building site for 187–190
stylesheet for 188–189
view for 189–190

host scripts for 200–203
integrating into JavaScript

library 203–208
editing image in web

worker and posting back
to host thread 206

image editing logic
for 204–206

responding to messages
from host process 204

web worker scripts for 200–
203

web.config file 21
WebSocket object 215, 225–228,

231
websockets API 214–247

and HTTP 216–217
and node.js 234–241

chat server with 237–240
installing 234–235

and TCP 217–219
building site for 219–234

close function 227
JavaScript files for 223–225

menu for 222
onmessage event 226
opening server

connection 227–230
pages for 220–221
readyState property 226–

227
receiving messages 231–

234
send function 225–226
sending messages 230–231
styles for 222
WebSocket object 225–226

week type 43
while statements, in

JavaScript 313
widgets, for jQuery UI 345
width attribute 75
width property 94–95
window object, in

JavaScript 201, 327
window.DragMain object 194
window.location.reload()

method 290
window.Main object 80
window.navigator object 161
Windows 8 7
WinJS 7
wizard-style setup screen 234
worker object 199, 201–203
worker.js file 190, 194, 203–206,

209, 211
worker.terminate function 199–

200
workerTest.init() method 202
wrapped sets, in jQuery 343
ws library 236

X

x coordinate 99
XmlHttpRequest object 335–

336
XMLHttpRequest()

method 336

Y

y coordinate 99
Yahoo! Maps 157

Z

Zakas, Nicholas 199
zero degrees, location of 152
www.it-ebooks.info

http://www.it-ebooks.info/

Jackson ● Gilman

A
shift is underway for Microsoft developers—to build web
applications you’ll need to integrate HTML5 features like
Canvas-based graphics and the new JavaScript-driven APIs

with familiar technologies like ASP.NET MVC and WCF. Th is
book is designed for you.

HTML5 for .NET Developers teaches you how to blend HTML5
with your current .NET tools and practices. You’ll start with a
quick overview of the new HTML5 features and the semantic
markup model. Th en, you’ll systematically work through the
JavaScript APIs as you learn to build single page web apps that
look and work like desktop apps. Along the way, you’ll get tips
and learn techniques that will prepare you to build “metro-style”
applications for Windows 8 and WP 8.

What’s Inside
● HTML5 from a .NET perspective
● Local storage, threading, and WebSockets
● Using JSON-enabled web services
● WCF services for HTML5
● How to build single page web apps

Th is book assumes you’re familiar with HTML, and concentrates
on the intersection between new HTML5 features and Microsoft -
specifi c technologies.

Jim Jackson is a soft ware consultant and project lead specializing
in HTML5-driven media. Ian Gilman is a professional developer
passionate about open technologies and lively user interfaces.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/HTML5for.NETDevelopers

$44.99 / Can $47.99 [INCLUDING eBOOK]

HTML5 for .NET Developers

WEB DEVELOPMENT/.NET

M A N N I N G

“Speaks directly to the
interests and concerns of the

.NET developer.”
—From the Foreword by

 Scott Hanselman, Microsoft

“Looks under the hood of
HTML5 to teach more than

just pretty pages.”—Joseph M. Morgan, Amerigroup

“A comprehensive jumpstart
for the .NET developer looking
to make a leap into HTML5.”—Peter O’Hanlon

Lifestyle Computing Ltd

“A great HTML5 and API
 learning resource!”—Stan Bice

Applied Information Sciences

SEE INSERT

www.it-ebooks.info

http://www.it-ebooks.info/

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	Jim Jackson
	Ian Gilman

	about this book
	How the book is organized
	How to use this book
	Software requirements
	Code conventions and downloads
	Author Online

	about the cover illustration
	1 HTML5 and .NET
	1.1 New toys for developers thanks to HTML5
	1.1.1 New HTML5 tags and microdata
	1.1.2 HTML5 applications for devices
	1.1.3 Better, faster JavaScript
	1.1.4 Libraries, extensions, and frameworks
	1.1.5 New HTML5 JavaScript APIs
	1.1.6 Cascading Style Sheets 3
	1.1.7 MVC and Razor

	1.2 HTML5 applications end-to-end
	1.2.1 Page structure and page presentation
	1.2.2 Page content
	1.2.3 Application navigation
	1.2.4 Business logic
	1.2.5 Server communications
	1.2.6 The data layer

	1.3 Hello World in HTML5
	1.3.1 Creating the template
	1.3.2 Customizing the application
	1.3.3 Building the JavaScript library
	1.3.4 Building the server side

	1.4 Summary

	2 A markup primer: classic HTML, semantic HTML, and CSS
	2.1 Classic and semantic HTML markup: what’s the difference?
	2.2 Basic structural elements of all HTML tags
	2.2.1 Working with the basic HTML tags
	2.2.2 Making content flow where you want with block and inline elements
	2.2.3 Dividing data into grids with table elements
	2.2.4 Using HTML form elements

	2.3 Semantic HTML: The semantic blueprint
	2.3.1 Grouping and dividing page content with content tags
	2.3.2 Going beyond semantics with application tags
	2.3.3 Using media tags for audio and video content

	2.4 Styling HTML5: CSS basics
	2.4.1 Understanding CSS syntax
	2.4.2 Building selectors, the most critical CSS element
	2.4.3 Assigning fonts
	2.4.4 Assigning and manipulating colors
	2.4.5 Changing the size of an element with the box model
	2.4.6 Using columns and blocks for layout
	2.4.7 Changing screen layout based on changing conditions with media queries
	2.4.8 Adjusting an element’s presentation and location with transitions and transformations
	2.4.9 Changing styles as needed with pseudo-elements and pseudo-classes

	2.5 Summary

	3 Audio and video controls
	3.1 Building a site to play audio and video
	3.2 Audio and video tags
	3.2.1 Using audio and video tags without JavaScript
	3.2.2 Using the audio tag as an HTML element
	3.2.3 Using the video tag as an HTML element

	3.3 Controlling audio and video playback with JavaScript
	3.3.1 Building custom controls for audio and video
	3.3.2 Building the main.js library structure
	3.3.3 Creating a JavaScript media player object
	3.3.4 Completing the media experience by adding volume controls

	3.4 Updating media types for open source content
	3.5 Summary
	3.6 Complete code listings

	4 Canvas
	4.1 Canvas quick-start
	4.1.1 Creating the basic Canvas site structure
	4.1.2 Assigning size to the canvas
	4.1.3 Creating the stylesheet for the sample application
	4.1.4 Drawing with the 2d context object
	4.1.5 Building the foundation object of the Canvas application

	4.2 Creating and manipulating shapes, lines, images, and text
	4.2.1 Understanding the basic drawing process
	4.2.2 Adding shapes
	4.2.3 Adding lines
	4.2.4 Adding images
	4.2.5 Manipulating pixels
	4.2.6 Adding text

	4.3 Animating and adding special effects to canvas images
	4.3.1 Adding animation
	4.3.2 Adding special effects with curves and clipping
	4.3.3 Managing canvas properties during screen resizing

	4.4 Summary
	4.5 Complete code listing

	5 The History API: changing the game for MVC sites
	5.1 Building a History-ready MVC site
	5.1.1 Launching the sample project in Visual Studio
	5.1.2 Adding controllers and views
	5.1.3 History and MVC routing
	5.1.4 Creating the application data model
	5.1.5 Loading content from the server on demand using partial views

	5.2 Using HTML5 History
	5.2.1 Adding JavaScript to handle History API navigation events
	5.2.2 Working with the page URL in JavaScript
	5.2.3 Using History to update the page

	5.3 Two more small steps ...
	5.4 Summary
	5.5 The complete JavaScript library

	6 Geolocation and web mapping
	6.1 “Where am I?”: A (brief) geographic location primer
	6.2 Building a geolocation application
	6.2.1 Basic application setup
	6.2.2 Using the Bing Maps JavaScript API

	6.3 Using the Geolocation API
	6.3.1 API functions for interacting with device location services
	6.3.2 Plotting a point on a map
	6.3.3 Integrating geolocation and a map
	6.3.4 Navigating the map using geolocation data

	6.4 Building a service to find address information
	6.4.1 Modeling a point on the Earth in .NET
	6.4.2 Displaying routes between coordinates

	6.5 Summary
	6.6 Complete code listings

	7 Web workers and drag and drop
	7.1 Getting started: building an app that integrates Drag and Drop and Web Workers
	7.2 Implementing drag and drop in JavaScript
	7.2.1 The HTML5 Drag-and-Drop API
	7.2.2 Using the dataTransfer object to pass data with drag-and-drop events
	7.2.3 Building the object to transfer data during drag and drop

	7.3 HTML5 Web Workers
	7.3.1 The basics: sending work to another thread
	7.3.2 Integrating web workers into a JavaScript library

	7.4 Summary
	7.5 The complete code listings

	8 Websockets
	8.1 HTTP and TCP—a quick primer
	8.1.1 An HTTP overview
	8.1.2 TCP communications in a nutshell

	8.2 Building a Websockets chat application
	8.2.1 Separating interface logic from Websockets communications
	8.2.2 Implementing Websockets in JavaScript
	8.2.3 Opening a Websockets server connection
	8.2.4 Sending messages
	8.2.5 Receiving messages

	8.3 Using Node.js as a TCP server
	8.4 Summary
	8.5 The complete code listings

	9 Local storage and state management
	9.1 A LocalStorage example application
	9.2 Structuring a JavaScript library to maintain state
	9.2.1 Creating an application outline that supports local storage of objects
	9.2.2 Building UI elements that can be stored locally

	9.3 Using the LocalStorage API
	9.3.1 Adding and removing items to and from LocalStorage the not-so-easy way
	9.3.2 Adding and removing items the easy way
	9.3.3 Moving data from LocalStorage to the page
	9.3.4 Deleting items from LocalStorage
	9.3.5 Clearing all items from LocalStorage
	9.3.6 Using the LocalStorage storage event to detect changes

	9.4 Adding UI elements to complete the application
	9.5 Other uses for LocalStorage
	9.5.1 Using LocalStorage as a proxy for server data
	9.5.2 Using LocalStorage to save images

	9.6 Summary
	9.7 The complete code listings

	10 Offline web applications
	10.1 Building an offline HTML5 application
	10.1.1 Creating the basic site structure
	10.1.2 Creating the offline JavaScript library

	10.2 The manifest file
	10.2.1 Adding the application manifest to the sample project
	10.2.2 Exploring manifest sections

	10.3 Offline feature detection and event binding
	10.4 The ApplicationCache object
	10.5 Adding state management and displaying connected status
	10.6 Building the server side of an offline application
	10.7 Summary
	10.8 The complete code listings

	appendix A A JavaScript overview
	A.1 The JavaScript core language
	A.1.1 Variables
	A.1.2 Operators
	A.1.3 Flow control
	A.1.4 Strings
	A.1.5 Dates
	A.1.6 Basic function declarations
	A.1.7 Functions as parameters
	A.1.8 Timers
	A.1.9 Array
	A.1.10 null, undefined, and NaN
	A.1.11 Commenting JavaScript

	A.2 The DOM
	A.2.1 Elements
	A.2.2 DOM events

	A.3 JavaScript environment
	A.3.1 Browser JavaScript engines
	A.3.2 Global scope
	A.3.3 Built-in objects
	A.3.4 Debugging tools

	A.4 Object orientation
	A.4.1 Object declarations and namespaces
	A.4.2 Dynamic properties and iteration
	A.4.3 Functions
	A.4.4 Prototype
	A.4.5 ‘this’ and scope
	A.4.6 A simple object pattern
	A.4.7 Closures
	A.4.8 Exception handling

	A.5 Communications
	A.5.1 XmlHttpRequest
	A.5.2 Sending data
	A.5.3 JSON and JSONP
	A.5.4 JSON syntax
	A.5.5 Complex JSON objects

	A.6 Structured libraries
	A.6.1 Libraries
	A.6.2 Script locations
	A.6.3 Non-blocking scripts
	A.6.4 Immediate functions and immediate object initialization
	A.6.5 JavaScript files

	A.7 jQuery
	A.7.1 Selectors
	A.7.2 Wrapped sets
	A.7.3 Chaining
	A.7.4 Event handling
	A.7.5 Animations and effects
	A.7.6 Ajax
	A.7.7 jQuery helper utilities
	A.7.8 Extending jQuery with plugins
	A.7.9 Including jQuery

	A.8 jQuery UI
	A.8.1 Widgets
	A.8.2 Effects
	A.8.3 Themes
	A.8.4 Component inclusion

	appendix B Using ASP.NET MVC
	B.1 Using MVC
	B.2 Starting a new MVC application
	B.2.1 Getting (or updating) ASP.NET MVC
	B.2.2 Steps to building a new application

	B.3 Walking through an MVC application
	B.3.1 Models
	B.3.2 Controllers
	B.3.3 Routing basics
	B.3.4 Views and Razor
	B.3.5 Controlling views
	B.3.6 Combining views to build up the presentation

	B.4 An MVC application in action
	B.4.1 Building a data entry form
	B.4.2 Validating posted data on the server
	B.4.3 Adding a repository to store data

	B.5 Getting data asynchronously from the server
	B.5.1 Wiring up events using the jQuery click function
	B.5.2 Appending new data to the document using jQuery
	B.5.3 Building a data-only controller method

	B.6 Complete code listings

	appendix C Installing IIS Express 7.5
	C.1 Installing Web Platform Installer
	C.2 Finding IIS Express 7.5

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back cover

